H

4
G
515
&t
TR
i 44

5

P 454
g
faate
WIRES
O A IR
= AR IRAT
Pk
Ik

iR
—/MWeb/l 55 %

ARSCRS S H RSO (www.topgoer.cn) - 1 -

>
AN
el

I

Effective Go - (3% GO &)

Introduction

Go is a new language. Although it borrows ideas from existing languages, it has unusual properties that make
effective Go programs different in character from programs written in its relatives. A straightforward
translation of a C++ or Java program into Go is unlikely to produce a satisfactory result—Java programs are
written in Java, not Go. On the other hand, thinking about the problem from a Go perspective could produce a
successful but quite different program. In other words, to write Go well, it’s important to understand its
properties and idioms. It's also important to know the established conventions for programming in Go, such as
naming, formatting, program construction, and so on, so that programs you write will be easy for other Go
programmers to understand.

This document gives tips for writing clear, idiomatic Go code. It augments the language specification, the Tour
of Go, and How to Write Go Code, all of which you should read first.

5l

Go &t IT&#iEE . RECAIARIES PHEE T2 HE, [ERSRARERRE, 5 Go SifeEAR EAiARTHE
. KMIAR C++ 5 Java P HIEN Go BEFIFARES N E——Y5 Java £/ Java W5 H, A2 Go. —
JrHs AP Go HIMEER NI, ARERAE S h R RE AT R AR R R A . B0, BEARURS Go FRF S194F, s et
LA PERT G . i 4y AUt R g S e SRR R R s 22, SRR OR G 5 O PP A RE B 0 U LA P 0 P B

m

AR TS S M. HUE K Go AURSERAE T —2eRy . BN I S NE. Go W E 2k MU IfT(EH] Go gfe IIAh TR
W1, DR R AT A A S [l B X 8 SRS

Effective Go fEA Go EFMAITLEEERE, (AR E IR, A, J7Epssei.

MR : @2016.8.6 by bingoHuang, revision to Chinese & English version.

BHCRLEARRET B CANNEE LRI it —a)iE: fEhE, MR HAK, English + Computer Skills
= Freedom (EE + HEVRE = BB

WAH BRI . SRS RN, 20— TR S (W Go D IR, EREMSRIEEY>, 15
Mo B AR R FE R AR A5 SO s S B i, 5 M58 5 2 PR A SR ST B 155«

R Go B IR AL RS RS .

&t hellogee $efLR HOCEIPEMR—, XRBZATHIEHSCRBTRIrSH B0, BIERA L.

BRI Go 15 5 kX RO ThOCElER T, IR E DA RIE, ATEME. AANCH Go-zh TiH 4 iiEi,
BRI T AZAL X HIIRAL, SO A A OB R o SCRRAR o

W

%

FEHHER: Effective Go JE /K

%

ASCRS £ s RO (www. topgoer.cn) F - 2 -

https://go-zh.org/ref/spec
https://tour.golang.org/
https://go-zh.org/doc/code.html
https://go-zh.org/ref/spec
https://tour.golang.org/
https://go-zh.org/doc/code.html
https://github.com/2016
http://lixiaolai.com/2016/06/12/makecs-preface/
https://golang.org/
http://www.hellogcc.org/
http://www.hellogcc.org/effective_go.html
https://go-zh.org/
https://go-zh.org/doc/effective_go.html
https://github.com/Go-zh/go
https://golang.org/doc/effective_go.html
http://www.hellogcc.org/effective_go.html

BEBHIFR = Effective Go 1/
Read, Fork and Star

« Read on GitBook
« Fork on GitHub
o WRTA—TF STAR , BEE S, AR KIS

TR
N TAERF TR 3, FERARAE W 5 1 50 576 1) R 3L

o PDF #%3x{
o EPUB #%{

License

BREFBIEIIAN, AT RIS - B4 (CC-BY) 3.0 Whiltd#at, UL BSD il #4L.

ARS8 F b B SRS (www. topgoer.cn) i - 3 -

https://go-zh.org/doc/effective_go.html
https://www.gitbook.com/book/bingohuang/effective-go-zh-en/details
https://github.com/bingoHuang/effective-go-zh-en
https://c.163.com/dashboard#/m/nos/
http://bingohuang.nos-eastchina1.126.net/effective-go-zh-en-gitbook.pdf
http://bingohuang.nos-eastchina1.126.net/effective-go-zh-en-gitbook.epub
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/LICENSE

k

=
il

{Effective Go) HFEIGERR

Effective Go - (33 GO %&HE)

Introduction

Go is a new language. Although it borrows ideas from existing languages, it has unusual properties that make
effective Go programs different in character from programs written in its relatives. A straightforward
translation of a C++ or Java program into Go is unlikely to produce a satisfactory result—Java programs are
written in Java, not Go. On the other hand, thinking about the problem from a Go perspective could produce a
successful but quite different program. In other words, to write Go well, it's important to understand its
properties and idioms. It's also important to know the established conventions for programming in Go, such as
naming, formatting, program construction, and so on, so that programs you write will be easy for other Go
programmers to understand.

This document gives tips for writing clear, idiomatic Go code. It augments the language specification, the Tour
of Go, and How to Write Go Code, all of which you should read first.

55

Go —ITaHMiES . RECIBEAIESHESE T ZHE, AR SAAFRE, #1590 Go Mt Am LA R TIHe
. KA C++ 5 Java P HEN Go B IFARES NI E——Y¥5 Java BN Java W51, MiAZ Go. J—
Ji, A Go HIFEE LT, AR REG S R AT AT ECR AR IR AR . HeftEid, ALK Go R ERLF, sl
FRICRR YRR o TR A AU TR AS A SR E Mt IR EE 2, SRR RS S IR 7 A RE TE A B R AR AR Fr ST B A

AR AT S5 MR Go ARG AL | —tedi T, BN i E AN, Go i ik BLK Wi Go gt B AR
B, DRI R AT A S D 1 X A A

Effective Go fEA Go EFMATILEEHEARE, (BRI E IS, i, 7 sseii.

B

EiET
915
IS wia
ERE
i %4
Va1
. g

€

. MIghtk

VRV
RN AR S
13, FEFRIRRF

14. Witk

15. Kk

16. iR

17. —/> Web Hi#%5 %

CENOUAWNPE

i
N = O

ASCRS £ s RO (www. topgoer.cn) F - 4 -

https://go-zh.org/ref/spec
https://tour.golang.org/
https://go-zh.org/doc/code.html
https://go-zh.org/ref/spec
https://tour.golang.org/
https://go-zh.org/doc/code.html
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/README.md
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/01_Overview.md
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/02_Formatting.md
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/03_Commentary.md
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/04_Names.md
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/05_Semicolons.md
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/06_Control_structures.md
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/07_Functions.md
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/08_Data.md
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/09_Initialization.md
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/10_Methods.md
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/11_Interfaces_and_other_types.md
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/12_The_blank_identifier.md
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/13_Embedding.md
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/14_Concurrency.md
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/15_Errors.md
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/16_A_web_server.md

S : @2016.8.6 by bingoHuang, revision to Chinese & English version.

BIRAAMAHT T CNNHR TR il —ai%: A, 2R 2 KU, English + Computer Skills

= Freedom (3&iE + HEHFERE = BH)

WAHRBEF . U SN RERARGAR G, 22300 —iES (o Go D WIFEIN, EREMSEIESZS, IR

AN o Pt AT 1 AR P s th S X R, 7 (8 B 2 B AR ST) 3

R Go B MR AL RIS e .

¥ hellogee -HEH) HSCIbERR—, KRBCZATHIET SO T HISERBTEL BRI O,

BRI Go 1 5 P oCHE X SROEH ThOCRIFERR ., IR E NI WE, A2, AANCH Go-zh TiH 41 HiEd,

BRI T AZAR X IIRAL, O A D XU R P SCRRAS o

W

%

FE IR Effective Go ZE 3K

9

S RIFIR —: Effective Go H X /k
Read, Fork and Star

+ Read on GitBook
« Fork on GitHub
o IHIRTF—T STAR , SREHEFIIN, XA KME !

TR
T UKF TGN, LI 19 5 6 URS G778 T BAHE

o PDF #%3l
« EPUB #=

License

FREENIAE, ATTA B BRAAIRILE - B4 (CC-BY) 3.0 Mhiltizal, fRi%RH] BSD Wil $24L.

ARS8 b B SR (www. topgoer.cn) - 5 -

https://github.com/2016
http://lixiaolai.com/2016/06/12/makecs-preface/
https://golang.org/
http://www.hellogcc.org/
http://www.hellogcc.org/effective_go.html
https://go-zh.org/
https://go-zh.org/doc/effective_go.html
https://github.com/Go-zh/go
https://golang.org/doc/effective_go.html
http://www.hellogcc.org/effective_go.html
https://go-zh.org/doc/effective_go.html
https://www.gitbook.com/book/bingohuang/effective-go-zh-en/details
https://github.com/bingoHuang/effective-go-zh-en
https://c.163.com/dashboard#/m/nos/
http://bingohuang.nos-eastchina1.126.net/effective-go-zh-en-gitbook.pdf
http://bingohuang.nos-eastchina1.126.net/effective-go-zh-en-gitbook.epub
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/LICENSE

515

Introduction

5l

lll3

Go is a new language. Although it borrows ideas from existing languages, it has unusual properties that make
effective Go programs different in character from programs written in its relatives. A straightforward
translation of a C++ or Java program into Go is unlikely to produce a satisfactory result—Java programs are
written in Java, not Go. On the other hand, thinking about the problem from a Go perspective could produce a
successful but quite different program. In other words, to write Go well, it's important to understand its
properties and idioms. It's also important to know the established conventions for programming in Go, such as
naming, formatting, program construction, and so on, so that programs you write will be easy for other Go
programmers to understand.

Go 2—T1a¥iES . RECIEAIIESHESE T2 EE, ERSAARRHE, M Go WA LA R T
HEilsE. BIAMN C++ o Java FEFEEN Go T IFARES NiliE——5 Java FEF2H Java 51, AR Go.
S5, EN Go WL, VREURES S R R AT A R . iU, 2 Go PSR, Wi
DB SRR VE MRS . T A4 AR alil. REFP AR AR R E DUt (R RE BB, SXREIRG S IR FT A e T 2 B AR e O i B
ko

This document gives tips for writing clear, idiomatic Go code. It augments the language specification, the Tour
of Go, and How to Write Go Code, all of which you should read first.

ASCRER AT g SR HIIET) Go ARURD St T — 2RI, BRI G, Go i 20k BUK AT Go it kb A
B, DR R AT A S] 1A e A

Examples

il

The Go package sources are intended to serve not only as the core library but also as examples of how to use
the language. Moreover, many of the packages contain working, self-contained executable examples you can
run directly from the golang.org web site, such as this one (if necessary, click on the word”Example”to open it
up). If you have a question about how to approach a problem or how something might be implemented, the
documentation, code and examples in the library can provide answers, ideas and background.

Go WIS AMURZ L, AN 222 T] Go i S IR BIERD . shak, i —2e i & 1l TARR), a7 n]

PTG, ARETAEHEAE golang.org Wl B3E A7 EAT, teln XAl GRS “ORE)” SRIBITED o IR A OG T A
B AR, BRSSP TS, AT DA ERIU SR B 56 B LR & e

ASCRS £ s RSO (www. topgoer.cn) F - 6 -

https://go-zh.org/ref/spec
https://tour.golang.org/
https://go-zh.org/doc/code.html
https://go-zh.org/ref/spec
https://tour.golang.org/
https://go-zh.org/doc/code.html
https://golang.org/src/
https://golang.org/
https://golang.org/pkg/strings/#example_Map
https://go-zh.org/src/pkg/
https://golang.org/
https://golang.org/pkg/strings/#example_Map

i 3k

ieSav e

Formatting

A

Formatting issues are the most contentious but the least consequential. People can adapt to different
formatting styles but it’'s better if they don’t have to, and less time is devoted to the topic if everyone adheres
to the same style. The problem is how to approach this Utopia without a long prescriptive style guide.

e AL AR T 7 EEIRA BTG — R . BT LUE RS R g i AR, (EY0 TR fh i v 78 AN
B2 A5 A N HSEAE A] A KR LIRS D E TR BR (I (R 2 s b R T T SR B A B, e UK
AT -

With Go we take an unusual approach and let the machine take care of most formatting issues. The gofmt
program (also available as go fmt, which operates at the package level rather than source file level) reads a Go
program and emits the source in a standard style of indentation and vertical alignment, retaining and if
necessary reformatting comments. If you want to know how to handle some new layout situation, run gofmt; if
the answer doesn’t seem right, rearrange your program (or file a bug about gofmt), don’t work around it.

15 Go HIRAT I RFRAE, ALHLARRALIE G 7 ks 20Uk . gofmt #2777 (B ATH go fmt, ‘& LV RALTEX G AR IESCAF) #
Go FEFFH AR ME RS 4iTat . X 5%, OREEVERIFAE 7 BN BB AR 200k o A PR AR I T b B — 83 i AR A), i ki AT
gofmt; FARTIARNE, Wl HEFALRINET (B3 5% gofmt (19 Bug) , 1A ka4l .

As an example, there’s no need to spend time lining up the comments on the fields of a structure. Gofmt will
do that for you. Given the declaration

HBIAAL, RIS T AT [RRS S5 R A T B0 7 BOERERS 55, gofmt BOu Ry, A LN A

type T struct {
name string // name of the object
value int its value

type T struct {
name string // W54
value int // X/ 5 1d

gofmt will line up the columns:

gofmt 2K T xE 554

type T struct {
name string // name of the object
value int / its value

type T struct {
name string // X5 %
value int Y F &

ARSCRS f s RO (www. topgoer.cn) - 7 -

e

All Go code in the standard packages has been formatted with gofmt.
FrfEEFTE R Go Ri#H LA M gofmt #bid 7.
Some formatting details remain. Very briefly:

A S TR AR, e AR

Indentation

We use tabs for indentation and gofmt emits them by default. Use spaces only if you must.
Line length

Go has no line length limit. Don’ t worry about overflowing a punched card. If a line feels too long, wrap i
t and indent with an extra tab.
Parentheses

Go needs fewer parentheses than C and Java: control structures (if, for, switch) do not have parentheses in
their syntax. Also, the operator precedence hierarchy is shorter and clearer, so

x<<8 + y<<16
means what the spacing implies, unlike in the other languages.

L3

FAVEIHIRSF (tabd) F5sE, gofmt BRIANHAEHIE . AEARIIHE A 0 BN HLAE) 24
TR

Go XHAT A ELAA PR, AHEOITILEA A . MR —ATSRAERI, AT AT IR G S tab Faik.
55

thite C f1 Java, Go FriiffEs HA: f&lght) (if. for Al switch) 7EIEVL FIATERTES . Hat, BIEFLILR
AbBRARASTE AN v, R
x<<8 + y<<16
IEFR T AT ARIE B8 X

AR s BRSO (www. topgoer.cn) #4 4- 8 -

R

TR
Commentary
ey 2

Go provides C-style /% %/ block comments and C++-style // line comments. Line comments are
the norm; block comments appear mostly as package comments, but are useful within an expression or to
disable large swaths of code.

Go i FH XHF C AMMBRER /e x/ 1 CH+ KIEHITIER /o ATEREINEN, s 3= 2 4E i
R IR TR] — R BRI 31«

The program—and web server—godoc processes Go source files to extract documentation about the contents
of the package. Comments that appear before top-level declarations, with no intervening newlines, are
extracted along with the declaration to serve as explanatory text for the item. The nature and style of these
comments determines the quality of the documentation godoc produces.

godoc BER MR, E&—A Web ikRgsds, ©XF Go HUERGHEITAL L, JHEIE PRI NS . HIETZg A Y 28T, H
G WA AT RS, 512 W — BRI R, (F %2k HIK USRS . IX BRI R AN UK 2R 3E T godoc
AR SCRA R

Every package should have a package comment, a block comment preceding the package clause. For multi-file
packages, the package comment only needs to be present in one file, and any one will do. The package
comment should introduce the package and provide information relevant to the package as a whole. It will
appear first on the godoc page and should set up the detailed documentation that follows.

TR AL S BUEIERE, ME A TR, X TES 2N E, SRR R & R IE S
BIar. ELERERAE AR EXZ BT, JHRMRIARER . X I godoc TURI P i L, I REBEH 4
L VRN SR

/%

Package regexp implements a simple library for regular expressions.
The syntax of the regular expressions accepted is:

regexp:

concatenation { ' |’ concatenation }
concatenation:

{ closure }
closure:

term [% | '+ |72]

term:

character
[’ [7 1 character-ranges ']’
" regexp)’

*/

package regexp

/%
regexp FNIEMZFRIERSEI T —ANAT B EE .

ASCRS £ s RO (www. topgoer.cn) F - 9 -

R

R R A IE N Rk SN :

NAUES S
BEC {7 BB
HRK:
{ Mt}
iR
H ['% [+ |72]
%H:
e
FIF
S R R === <5/
T COIEMERER)’

*/

package regexp

If the package is simple, the package comment can be brief.

LR, ATERE R T DL

// Package path implements utility routines for

" manipulating slash—separated filename paths.

// path CSLH T —Le5 A LR, LUETHRIEHIERAL A KGRI 1E.

Comments do not need extra formatting such as banners of stars. The generated output may not even be
presented in a fixed-width font, so don’t depend on spacing for alignment—godoc, like gofmt, takes care of
that. The comments are uninterpreted plain text, so HTML and other annotations such as _this_ will
reproduce verbatim and should not be used. One adjustment godoc does do is to display indented text in a
fixed-width font, suitable for program snippets. The package comment for the fmt package uses this to good
effect.

R HATHONORKR A, WA SRR M. AR B R TR TCIE LV T AR R, RS BT S o6 5%
godoc 21& gofmt JBREALBEAFX — V). VERSRASPM AR, & HTML s e X KRR
WA iy, AR T EAT. godoc B e, sl CAiat i SCAR LSS S8 R R, RGN B AR B fmit
IR 1A I RCR -

Depending on the context, godoc might not even reformat comments, so make sure they look good straight
up: use correct spelling, punctuation, and sentence structure, fold long lines, and so on.

godoc 7 £ B AR T 1T 0, IRBCAs AU RE N AT S0 (P TR . RN 0% LA BT
AT

Inside a package, any comment immediately preceding a top-level declaration serves as a doc comment for
that declaration. Every exported (capitalized) name in a program should have a doc comment.

FEAL, AT ATTRZR 7S AT T PR A A E % A W SORERE. R85, BT R (FFERS) 14 ARHASR %A SO

.

Doc comments work best as complete sentences, which allow a wide variety of automated presentations. The
first sentence should be a one-sentence summary that starts with the name being declared.

SCRSAERE i A S BN R T, X E A REE R S A S R B — RO R DA A B AR P Tk, I HR A I 2L

AT RS A b RSO (www. topgoer.cn) 47 10 -

https://go-zh.org/pkg/fmt/
https://go-zh.org/pkg/fmt/

R

// Compile parses a regular expression and returns, if successful, a Regexp
'/ object that can be used to match against text.

func Compile(str string) (regexp *Regexp, err error) f

// Compile HFMEHTIENZAZHBIE, WIRKT), W Regexp Xf Rt il - FVCELHTEF XTI Ao
func Compile(str string) (regexp *Regexp, err error) {

If the name always begins the comment, the output of godoc can usefully be run through grep. Imagine you
couldn’t remember the name”Compile” but were looking for the parsing function for regular expressions, so
you ran the command,

FERE B LLA TR, godoc i st ReiEIL grep 22 N . BanfRicAME “Compile” IXASZFK, 1 XAEFRIE 2R
AR R, ISR AT A AT

$ godoc regexp | grep parse

If all the doc comments in the package began, “This function...”, grep wouldn’t help you remember the name.
But because the package starts each doc comment with the name, you'd see something like this, which recalls
the word you're looking for.

AT T SCRER AR DL “UhpR L. Tk, grep SCIETEARICE AR (Bl TR R SCRER A UL A TR L, Rt
REAE BIXFEINE, ERER N IRIEE TR AR

$ godoc regexp | grep parse
Compile parses a regular expression and returns, if successful, a Regexp
parsed. It simplifies safe initialization of global variables holding
cannot be parsed. It simplifies safe initialization of global variables

Go’s declaration syntax allows grouping of declarations. A single doc comment can introduce a group of
related constants or variables. Since the whole declaration is presented, such a comment can often be
perfunctory.

GO Bk L AL A W] o BN SCRVERR A 21— AT DR A i, i T RS I, XM AR TE 4L

// Error codes returned by failures to parse an expression.
var (
ErrInternal = errors. New(“regexp: internal error”)
ErrUnmatchedLpar = errors. New(“regexp: unmatched ’ ()
ErrUnmatchedRpar = errors. New(“regexp: unmatched ’)’”)

)

/) Ik ZAEHT I G 1R [l iR A G

var (
ErrInternal = errors. New(“regexp: internal error”)
ErrUnmatchedLpar = errors. New(“regexp: unmatched ~ ()
ErrUnmatchedRpar = errors.New(“regexp: unmatched ')’ ”)

)

Grouping can also indicate relationships between items, such as the fact that a set of variables is protected by
a mutex.

ARSI HB R SCRS (www. topgoer.cn) - 11 -

HER

RIS TRAAT A4 R, AT I I B A ISR W TR B D6 AR, 9] 2 — 2 ey L R LR) AR

var (
countLock sync.Mutex
inputCount uint32
outputCount uint32
errorCount uint32

ARSCRS S H RSO (www.topgoer.cn) i - 12 -

Names

W

Names are as important in Go as in any other language. They even have semantic effect: the visibility of a
name outside a package is determined by whether its first character is upper case. It's therefore worth
spending a little time talking about naming conventions in Go programs.

LW A EIE S PROBAL, ©fF Go PRFEZ. G efIEEaLWmiE L. fli, ML/ R, T
HEDTRRENREG ThE BIHAH DL EIE RN R Go B i dr 4415 -

Package names

(X

When a package is imported, the package name becomes an accessor for the contents. After

Y AMERANG, BAS T WA, 1
import “bytes”

the importing package can talk about bytes.Buffer. It's helpful if everyone using the package can use the same
name to refer to its contents, which implies that the package name should be good: short, concise, evocative.
By convention, packages are given lower case, single-word names; there should be no need for underscores or
mixedCaps. Err on the side of brevity, since everyone using your package will be typing that name. And don’t
worry about collisions a priori. The package name is only the default name for imports; it need not be unique
across all source code, and in the rare case of a collision the importing package can choose a different name to
use locally. In any case, confusion is rare because the file name in the import determines just which package is
being used.

25, e AR astatiEe bytes. Buffer k51 1. #HUTA ANABELURRIRI AFRKS LA A, IO REMaE, Fit, @R
HHEMEAM AR FLAPRBAZFGE I 7005 T AR AR, R DU RS SRR A 44, HOASREAE T)2 s g
ik err B ARt TRIESIER, BUOMEM N Z BRI AN LA ALIELITFHTR. 28 S AR
Pt e — BRI FR, E IR TR ZEAE A RRS R, BB BUR B RR LT, RO SR RIS KR
TR JEiRan T, AR SRR, HR A S IR -

Another convention is that the package name is the base name of its source directory; the package in
src/encoding/base64 is imported as “encoding/base64” but has name base64, not encoding_base64 and not
encodingBase64.

=N E R A NN RS B SRR SRR . {E src/pkg/encoding/base64 FftLNAE A “encoding/base64” S\,
HAL4 NN base64, ik encoding_base64 5k encodingBase64.

The importer of a package will use the name to refer to its contents, so exported names in the package can
use that fact to avoid stutter. (Don’t use the import . notation, which can simplify tests that must run outside
the package they are testing, but should otherwise be avoided.) For instance, the buffered reader type in the
bufio package is called Reader, not BufReader, because users see it as bufio.Reader, which is a clear, concise
name. Moreover, because imported entities are always addressed with their package name, bufio.Reader does
not conflict with io.Reader. Similarly, the function to make new instances of ring.Ring—which is the definition of
a constructor in Go—would normally be called NewRing, but since Ring is the only type exported by the
package, and since the package is called ring, it's called just New, which clients of the package see as
ring.New. Use the package structure to help you choose good names.

AT RS A B R SCRS (www. topgoer.cn) - 13 -

WHSAE LS O RG FHHNE, WIbahrm S AR DUsRE anbss. GEZE/ import . g%k, B AT LA 220
MR A AMNEAT IR, BRibz SRR SRR . D #ilin, bufio A9 AR IS KA Reader TfjIF BufReader,
KN P A bufio.Reader, XZAAME MR LK. Mo, BT SRS S A2 dE, Pt
bufio.Reader ~4:15 io.Reader Kk/Erge. [k, M 1612 ring.Ring FIFF SOl A GXBE Go THIMGEEED — ke
28 NewRing, {Ei1T Ring 2% A S mME—258, Hiztn ring, Bt Earel ol New, ‘©RAMQKIER, o
1% ring.New. {45 4] LS Bh R ik 35 45 1 ik

Another short example is once.Do; once.Do(setup) reads well and would not be improved by writing
once.DoOrWaitUntilDone(setup). Long names don’t automatically make things more readable. A helpful doc
comment can often be more valuable than an extra long name.

F—AERLIHF % once.Do, once.Do(setup) #ik2#iEMT,] once.DoOrWaitUntilDone(setup) 564 /& e if
B KArS A S E BT EE. — 0 F ARSI SORE LA K 2 B I E

Getters

RS

Go doesn’'t provide automatic support for getters and setters. There’s nothing wrong with providing getters
and setters yourself, and it’s often appropriate to do so, but it's neither idiomatic nor necessary to put Get into
the getter’s name. If you have a field called owner (lower case, unexported), the getter method should be
called Owner (upper case, exported), not GetOwner. The use of upper-case names for export provides the hook
to discriminate the field from the method. A setter function, if needed, will likely be called SetOwner. Both
names read well in practice:

Go I ARXFRELE: (getter) FMBLE I (setter) FRMLEBNIRE. R ORI AU E 288, WHRMEEIXEM, BF
B Get MEBIFRIE G 70, BEAESIM, kG nE, HRENLN owner CUNE, KSHD 7B, HIRIEEN Y
4 Owner CK5, S 1k GetOwner, K5 7RI YA G H IR E N X 50 7 i 7 Bt 7R, 25 Bt
BEH, SetOwner &AL . W 2B KRR A

owner := obj.Owner ()
if owner != user {
obj. SetOwner (user)

Interface names

®O4

By convention, one-method interfaces are named by the method name plus an -er suffix or similar modification
to construct an agent noun: Reader, Writer, Formatter, CloseNotifier etc.

R Z5e, RS — N5 N S Lz T ER A RN L - er |54k 4, W Reader. Writer. Formatter.
CloseNotifier .

There are a number of such names and it’s productive to honor them and the function names they capture.
Read, Write, Close, Flush, String and so on have canonical signatures and meanings. To avoid confusion, don’t
give your method one of those names unless it has the same signature and meaning. Conversely, if your type
implements a method with the same meaning as a method on a well-known type, give it the same name and
signature; call your string-converter method String not ToString.

WIHR G L ARE, RN LR R b2 5. Read. Write. Close. Flush. String Z#5H A
M AE L NG, A BN BRI i 4, BRAMRIIBAIE C IR A B SURR . Rz, AR

RS TRk, 5 AP EIR B D AR R S A AR a4 . 1K BR B4y i 44 04 String
iMidE ToString.

MixedCaps

A% SR B R SCRS (www.topgoer.cn) i 4E- 14 -

4

LA Y TRR7 S

Finally, the convention in Go is to use MixedCaps or mixedCaps rather than underscores to write multiword
names.

J5, Go Hh#yE i FHLEiEidik MixedCaps 8¢ mixedCaps TiidkE FRIZE 1 2okt £ 9ii L AR T 4 -

A% SR B R SCRS (www. topgoer.cn) i 4- 15 -

N
>

g
Ji

3
Jn

Semicolons

a5

Like C, Go’s formal grammar uses semicolons to terminate statements, but unlike in C, those semicolons do
not appear in the source. Instead the lexer uses a simple rule to insert semicolons automatically as it scans, so
the input text is mostly free of them.

A C —#, Go WIERIEAMHI /> SokE MR N C ARME, XS IFAERS T I Bz, AR5 i ds 2 6 H]
AR BB 5, IR A A 25 T .

The rule is this. If the last token before a newline is an identifier (which includes words like int and float64), a
basic literal such as a number or string constant, or one of the tokens

SR RSRER s 2526 AT I — MRIC MR (B4 int A float6d JX MBI) « H{A ok 5 4 Hh 3 Bk 2 HH 3 A 5
S BAF R —

break continue fallthrough return ++ ——) }

the lexer always inserts a semicolon after the token. This could be summarized as, “if the newline comes after
a token that could end a statement, insert a semicolon”.

MNE S WO U 2B ZAR LSS AN 5 o 1K ST DAERE ST A i id B AR, M5
A semicolon can also be omitted immediately before a closing brace, so a statement such as

Iy SR TEA R FE S 2 0 A, HIg
go func() { for { dst <~ <=src } } ()

needs no semicolons. Idiomatic Go programs have semicolons only in places such as for loop clauses, to
separate the initializer, condition, and continuation elements. They are also necessary to separate multiple
statements on a line, should you write code that way.

KREREAIE T 0T . WHGofe/y RAEw U for IR TAIXFER T E 205, DASRIEAIAG S . 260 B BT 0T.
RIRFE— A7 P B2 MG, BTREM SHRIT.

One consequence of the semicolon insertion rules is that you cannot put the opening brace of a control
structure (if, for, switch, or select) on the next line. If you do, a semicolon will be inserted before the brace,

which could cause unwanted effects. Write them like this

L LW, URECARLE—ANMEhl ik (f. for. switch B select) [KHESHTE N —17. WARIXFH, MATERIES
BTN N5, XATRESIREAR EMACR . IRBAIZERES

if i < £O |

g0

not like this

2% SR s RSO (www. topgoer.cn) % - 16 -

P
Ji

TASE IR

if i < £O // wrong!
{ // wrong!

g0

if i <tQ // #!
{ V&
g0)

A RSO (www.topgoer.cn) #E- 17 -

FE 45K

FEfI 45

Control structures

ety o)

The control structures of Go are related to those of C but differ in important ways. There is no do or while loop,
only a slightly generalized for; switch is more flexible; if and switch accept an optional initialization statement
like that of for; break and continue statements take an optional label to identify what to break or continue; and
there are new control structures including a type switch and a multiway communications multiplexer, select.
The syntax is also slightly different: there are no parentheses and the bodies must always be brace-delimited.

Go gkl s C AVFZ ML, EHARZ A RMB| 4. Go A do 5 while 7§36, A — @K
for; switch L8 RIG—xi; if M1 switch 1} for —HE 2L MVIUGILTE R AN, IBA — A& AR RN 2 Bl (5
RIAS IR 450 select, MBI LVEAR: WA RIS, M0 An 00 40 H RS S 376

If
In Go a simple if looks like this:
TE Go 1, —AMEEMY if 5 E KRG FE

if x>0 {

return y

Mandatory braces encourage writing simple if statements on multiple lines. It's good style to do so anyway,
especially when the body contains a control statement such as a return or break.

e)) RS 5 AR A AORE T B B iF A AT o AR TE AR return 50 break SEPEHEAIN, X AR AG KRS i LAk —
Lo s 1

Since if and switch accept an initialization statement, it's common to see one used to set up a local variable.

i if A1 switch Wiz gl IR EA DR CE = 22 B+ L

if err := file.Chmod(0664); err != nil {
log. Print (err)
return err

In the Go libraries, you'll find that when an if statement doesn’t flow into the next statement—that is, the body
ends in break, continue, goto, or return—the unnecessary else is omitted.

£ Go T, IR R If iIHAASPATEI N 2By, TRRIEHITA DL break. continue. goto & return 55,
RILFE else A,

f, err := os.Open(name)
if err != nil {
return err
}
codeUsing (f)

SRS A B R SCRS (www. topgoer.cn) 7 18 -

FE 45K

This is an example of a common situation where code must guard against a sequence of error conditions. The
code reads well if the successful flow of control runs down the page, eliminating error cases as they arise.
Since error cases tend to end in return statements, the resulting code needs no else statements.

R WS OL, ARSI T RS IR IR E:, MR BRI T A I DA
return £59, 2 Ja RIS LT else T .

f, err := os.Open (name)
if err !'= nil {
return err
}
d, err := f.Stat()
if err != nil {
f. Close ()
return err

}
codeUsing (f, d)

Redeclaration and reassignment

HHF Y SHERRE

An aside: The last example in the previous section demonstrates a detail of how the := short declaration form
works. The declaration that calls 0s.Open reads,

AT AR e ANREIER TR = A . T 0s.0Open 1B
f, err := os.Open(name)

This statement declares two variables, f and err. A few lines later, the call to f.Stat reads,

ZIEA)] T AN A err, 7E)UATZ G, OB
d, err := f.Stat()

which looks as if it declares d and err. Notice, though, that err appears in both statements. This duplication is
legal: err is declared by the first statement, but only re-assigned in the second. This means that the call to
f.Stat uses the existing err variable declared above, and just gives it a new value.

WHT f.Stat. EEERLTZANT d flerr. WiE, REWMEATEHHIT err, (HXFESGREEERN: err £ —
FABRI A, (EAESE S AE A R R 2 T . R, A f.Stat AR T CA A IR err, B R pE
WG 1.

In a := declaration a variable v may appear even if it has already been declared, provided:
TEE . NARART, CRR RS v il HBITE: = A .

« this declaration is in the same scope as the existing declaration of v (if v is already declared in an outer
scope, the declaration will create a new variable §),
« the corresponding value in the initialization is assignable to v, and

« there is at least one other variable in the declaration that is being declared anew.

o ARFEUIECHER v AT EAEHEE Gi v CAEANEERE A, MR A S eIE MR E §
o (EYIHAL T S HIRA R ME A RER T v, H

ARSI B RSO (www. topgoer.cn) - 19 -

P4y

o (EMLOCHE WA DS — AR I .

This unusual property is pure pragmatism, making it easy to use a single err value, for example, in a long if-
else chain. You'll see it used often.

TG 7 B2 2R (K S SR B, e A BAT AT DR DTt 3 — A err {8, #ilg0, #£— DK if-else A4
H IRERIE IR .

§ It’s worth noting here that in Go the scope of function parameters and return values is the same as the
function body, even though they appear lexically outside the braces that enclose the body.

§ AR, HIfE Go MR EUBSRUE FETE L FAL T KRGS 2 4, (e AT/ FE 48R0 2 B B 5 SR AR 7
For

The Go for loop is similar to—but not the same as—C's. It unifies for and while and there is no do-while. There
are three forms, only one of which has semicolons.

Go (1 for TEFR2EL T C, EHARAE. ©4— 7 for #1 while, AFEA do-while 7. TH=ZFIER, ERG—FHES
o

// Like a C for
for init; condition; post { }

// Like a C while
for condition { }

// Like a C for(;;)

for { }

// W C # for fE¥

for init; condition; post { }

// Wi C) while 7§¥F

for condition { }

// Wi C # for(;;) &
for { }

Short declarations make it easy to declare the index variable right in the loop.
TETHE 75 B e 1L FRATT S 25) TEAG A v 75 B R A
sum := 0

for i := 0; i < 10; i++ {
sum += i

If you're looping over an array, slice, string, or map, or reading from a channel, a range clause can manage the
loop.

AR VIl AT ECE N, SONEE PRGN E, range TRIBEB AR RN S .

for key, value := range oldMap {
newMap [key] = value

A RS A B RSO (www. topgoer.cn) i 20 -

LT

If you only need the first item in the range (the key or index), drop the second:

BRI T LI R — AT TR , Je358 T ANAT 1

for key := range m {
if key. expired() {
delete(m, key)

If you only need the second item in the range (the value), use the blank identifier, an underscore, to discard
the first:

AARRTEELZI PP IS A B WA AR IRAT, RN RIZR E 9 —AME:

sum := 0
for , value := range array {
sum += value

The blank identifier has many uses, as described in a later section.
T EFRFFCHE Z R AE, BRI/ hRAiR .

For strings, the range does more work for you, breaking out individual Unicode code points by parsing the UTF-
8. Erroneous encodings consume one byte and produce the replacement rune U+FFFD. (The name (with
associated builtin type) rune is Go terminology for a single Unicode code point. See the language specification
for details.) The loop

YT AR, range BERGIRALE AR TRbEN AT UTF-8, KAz Unicode i f7r g thisk. iR igmidis 5 M —
AT, JFLARF Y U+FFFD SRACE . (AR “FF3C” AN rune /& Go X4 Unicode i sifIFrid. 11 WG S M
) o A

for pos, char := range "HZx \ x80 :&” { // \x80 is an illegal UTF-8 encoding
fmt. Printf (“character %#U starts at byte position %d\n”, char, pos)

prints

character U+65E5 * H’ starts at byte position 0
character U+672C * 4" starts at byte position 3
character U+FFFD €’ starts at byte position 6
character U+8A9E ’ &’ starts at byte position 7

for pos, char := range “HZA\x80:E" { // \x80 RANIEIEAUTF-84wHL
fmt. Printf ("5 %#U 48T 79508 %d\n”, char, pos)

AT ED

FAF UH65ES T H AT EHIME 0
FRFUH672C A IRFEAME 3
TR UHFFFD " @' AT F A E 6
FIF UHBAGE CEE BT ENME T

ARSI HB R SCRS (www. topgoer.cn) - 21 -

FE 45K

Finally, Go has no comma operator and ++ and - are statements not expressions. Thus if you want to run
multiple variables in a for you should use parallel assignment (although that precludes ++ and -).

Bn, Go WA SEER, M ++ Al - NiEamAERER. Kb, EHREEE for il 2 A&, NRHTATIRE 1077 3
(FAESHg +4+ - .

Reverse a
for i, j :=0, len(a)-1; i < j; i, j =i+l j-I {
alil, aljl = alj], alil

/ R¥% a
for i, j := 0, len(a)-1; i < j; i, j = i+l, j-1 {
alil, alj] = alj], ali]

Switch

Go’s switch is more general than C’s. The expressions need not be constants or even integers, the cases are
evaluated top to bottom until a match is found, and if the switch has no expression it switches on true. It's
therefore possible—and idiomatic—to write an if-else-if-else chain as a switch.

Go (1 switch b C (s HFEXRR T T NE FEEE, case B4 E B FE —#47RIEERILA AL, ¥ switch J§
AT EER, THILE true, B, AT if-else-if-else 5 B—1 switch, XMW HEHE Go XK .

func unhex(c byte) byte {

switch {

case ‘0 <{=c && c <=9 :
return c - 0’

case 'a’ <=c &k c <='f
return c - 'a’ + 10

case ‘A <(=c && c <= F:
return ¢ - A’ + 10

}

return 0

There is no automatic fall through, but cases can be presented in comma-separated lists.

switch JF AL HE) R, (H case Al I 5 70 MR A 284 [F] O AL BE K AT

func shouldEscape (¢ byte) bool {
switch ¢ {
case ', ¥, K, =, U, W, W
return true
t

return false

Although they are not nearly as common in Go as some other C-like languages, break statements can be used
to terminate a switch early. Sometimes, though, it's necessary to break out of a surrounding loop, not the
switch, and in Go that can be accomplished by putting a label on the loop and”breaking” to that label. This
example shows both uses.

RAEEANE Go PRI TSR CIEFEEAL, (3 break iAW LME switch #7241k, UL switch, AR B LAHT
WZZHIEH . 18 Go o, TATR FRARETCE BIEIASE, 205 “Bi” BUIRERIA . FHipI0] 1R T H B,

A% SR B RSO (www. topgoer.cn) iy 4 - 22 -

P S5

Loop:
for n := 0; n < len(src); n += size {
switch {
case src[n] < sizeOne:
if validateOnly {
break
}
size = 1
update (src[n])

case src[n] < sizeTwo:
if ntl >= len(src) {
err = errShortInput
break Loop

t
if validateOnly {
break
1
size = 2
update (src[n] + src[n+1]<<shift)

Of course, the continue statement also accepts an optional label but it applies only to loops.
44K, continue WEAIMAEHEEZ — AN FTIEIORRZE, A E R ETETEA R

To close this section, here’s a comparison routine for byte slices that uses two switch statements:

// Compare returns an integer comparing the two byte slices,

lexicographically.

’/ The result will be 0 if a == b, -1 if a < b, and +1 if a > b
func Compare(a, b [Ibyte) int {

for i :=0; i < len(a) & i < len(b); i++ {

switch {
case al[i] > blil:
return 1
case al[i] < b[i]:
return -1
}
}
switch {
case len(a) > len(b):
return 1
case len(a) < len(b):
return -1
}
return 0

PR — TS5, SRR P A switch 1EA1 0 7 W B EEAT HL A

' Compare {4 FHNUF LEE BTN FF 0] HaR o] — N5
/) oa == b, WERNE, F a < b; WERK -1; # a > b, WERK +1.
func Compare(a, b [Ibyte) int {
for i :=0; i < len(a) & i < len(b); i++ {
switch {
case ali] > b[i]:

A SR 3 R SCRS (www. topgoer.cn) i 4 - 23 -

LT

return 1
case al[i] < b[i]:
return -1
1
}
switch {
case len(a) > len(b):
return 1
case len(a) < len(b):
return -1
}
return 0

Type switch
REERFE

A switch can also be used to discover the dynamic type of an interface variable. Such a type switch uses the
syntax of a type assertion with the keyword type inside the parentheses. If the switch declares a variable in
the expression, the variable will have the corresponding type in each clause. It's also idiomatic to reuse the
name in such cases, in effect declaring a new variable with the same name but a different type in each case.

var t interface{}
t = functionOfSomeType ()
switch t := t. (type) {

default:

fmt. Printf (“unexpected type %T”, t) // %T prints whatever type t has
case bool:

fmt. Printf ("boolean %t\n”, t) // t has type bool
case int:

fmt. Printf (“integer %d\n”, t) // t has type int
case *bool:

fmt. Printf ("pointer to boolean %t\n”, *t) // t has type *hool
case *int:

fmt. Printf (“pointer to integer %d\n”, *t) // ¢ has type *int
}

switch] AW AR R AR M . o FOMEFE @R AR S5 PSR T type ISR M 1A, 4 switch fERIA
AW AR, RBATR RN T PR IZAR R R R, EIXL case PEM— AN TR GIE XM, sk
RAETFAS case BB T — AN BUH [F) 44 FRH L 7

var t interface{}
t = functionOfSomeType ()
switch t := t. (type) {

default:

fmt. Printf (“unexpected type %T”, t) /) ST FiH t B4 BH
case bool:

fmt. Printf (“boolean %t\n”, t) // t & bool %Y
case int:

fmt. Printf (“integer %d\n”, t) // t & int EH
case *bool:

fmt. Printf ("pointer to boolean %t\n”, *t) // t 4 #*bool ZEZ
case *int:

fmt. Printf (“pointer to integer %d\n”, *t) // ¢ /& *int 7/
}

2% SR B RSO (www. topgoer.cn) 4 - 24 -

PR EL

BRI AN
Functions

R

Multiple return values

SR E

One of Go's unusual features is that functions and methods can return multiple values. This form can be used
to improve on a couple of clumsy idioms in C programs: in-band error returns such as -1 for EOF and modifying
an argument passed by address.

Go S AR 2 — B AL BN TR Bl 2 AME . XA AT BLEks C i — 2B qhi ¥ 2465 s i(EaR |l (FlanH -1
o EOF) RMEHGE ML e NI SiS

In C, a write error is signaled by a negative count with the error code secreted away in a volatile location. In
Go, Write can return a count and an error: “Yes, you wrote some bytes but not all of them because you filled
the device”. The signature of the Write method on files from package os is:

1E C o, GANBAE R RS AR, MR SFREERE MM E WAL E. ML Go H, Write iR HIH ANHF
TR S — MR R, BEAN T e, EIRRERE AN, BV O, £ os W, File.Write 24 8:

func (file *File) Write(b []byte) (n int, err error)

and as the documentation says, it returns the number of bytes written and a non-nil error when n != len(b).
This is a common style; see the section on error handling for more examples.

IEQUCASTA, SR N T, JFEE n 1= len(b) BHR [EI—NHE nil 1 error 851R(E. X2 — R WS IG AN, T2
B R AL B T

A similar approach obviates the need to pass a pointer to a return value to simulate a reference parameter.
Here's a simple-minded function to grab a number from a position in a byte slice, returning the number and
the next position.

FRATAT ISR —Fh T B T30k e REE Ge UL 5 RIS 80 A N FEE o DU 7 S 00 R 50T A 5L o e o B 3RO, O
IR HE AR — AN

func nextInt(b []byte, i int) (int, int) {
for ; i < len(b) && !isDigit(b[i]); i++ {
}
x =0
for ; i < len(b) && isDigit(b[i]); i++ {
x = x¥10 + intb[i]) -0’
}

return x, i

You could use it to scan the numbers in an input slice b like this:

PRATMG R HOZAE, Sl e T b Ay,

A RS A B R SCRS (www. topgoer.cn) - 25 -

PRIAS

for i :=0; i < len(bh); {
x, i = nextInt(b, i)
fmt. Println(x)

Named result parameters

W BERES

The return or result “parameters” of a Go function can be given names and used as regular variables, just like
the incoming parameters. When named, they are initialized to the zero values for their types when the
function begins; if the function executes a return statement with no arguments, the current values of the result
parameters are used as the returned values.

Go PABUIR MMEERES R TS " WM 4, FENE AR, MEEARIES . @adh, —BZREIMHRIAT, efl
LRI SR MR AE ;X BT T SRS return 186), W5 RIS 10 A IR R]

The names are not mandatory but they can make code shorter and clearer: they’'re documentation. If we name
the results of nextint it becomes obvious which returned int is which.

e FRASE AR, (E eI R RS eI R AT T nextint 4R, IBAEIREIR int BE
wmHET.

func nextInt(b []byte, pos int) (value, nextPos int) {

Because named results are initialized and tied to an unadorned return, they can simplify as well as clarify.
Here's a version of io.ReadFull that uses them well:

B #ear A A R Cainte, HOSKIKETSHIRE, EATae AR RRmiEW. T io.ReadFull Hi2 MR
8

func ReadFull (r Reader, buf []byte) (n int, err error) {
for len(buf) > 0 & err == nil {
var nr int
nr, err = r.Read (buf)
n += nr
buf = buf[nr:]
}

return

Defer

Go’s defer statement schedules a function call (the deferred function) to be run immediately before the
function executing the defer returns. It's an unusual but effective way to deal with situations such as resources
that must be released regardless of which path a function takes to return. The canonical examples are
unlocking a mutex or closing a file.

Go 1y defer WA T Five— A E M (RHERHATERED , IZREREIT defer KRR M 2 BT S RIHAT . BRI
T, HAGZAE LR (A RO Bl Teil DR AR (], AR IR A RR . SR A48 T AR B L R AN S A
AF.

'/ Contents returns the file’s contents as a string.
func Contents(filename string) (string, error) {
f, err := os.Open(filename)
if err != nil {

2R SR B RSO (www. topgoer.cn) 4 - 26 -

PR 2L

nn

return , err

}

defer f.Close() // f.Close will run when we re finished.

var result []byte
buf := make ([]byte, 100)

for {
n, err := f.Read(buf[0:])
result = append(result, buf[0:n]...) // append is discussed later.
if err != nil {
if err == io.EOF {
break
}
return 7”7, err // f will be closed if we return here.
}
}
return string(result), nil // f will be closed if we return here.

// Contents Y& 1FHIAZANERF17 818 A

func Contents(filename string) (string, error) {
f, err := os.Open(filename)
if err != nil {

nn

return , err

}
defer f.Close() // f. Close 2HEENISEHKFIE1T.

var result []byte
buf := make ([Jbyte, 100)
for {

n, err := f.Read(buf[0:])

result = append(result, buf(0:n]...) // append J7E/F I 1E

if err != nil {

if err == io.EOF {
break

}
return *”, err // HMNIEXEREE, { HSHKA.

}
return string(result), nil // EAIEXERESE, £ BEE#ETEH.

Deferring a call to a function such as Close has two advantages. First, it guarantees that you will never forget
to close the file, a mistake that’s easy to make if you later edit the function to add a new return path. Second,
it means that the close sits near the open, which is much clearer than placing it at the end of the function.

HEIB1# 0 Close Z KRB AP nisFal: 55—, CREMIRIRA S SICR Ao QARAR LUG SOR % BR BN 1587 3% [
PRIy, XAME AR SR A BT ERE KA TR AR, K8 BRI B B R AL AT T

The arguments to the deferred function (which include the receiver if the function is a method) are evaluated
when the defer executes, not when the call executes. Besides avoiding worries about variables changing
values as the function executes, this means that a single deferred call site can defer multiple function

executions. Here's a silly example.

BAER MBI S ARZ R ECR TR NS OISR) AEHER HATI S BORME, TASRAE T I HATI A SRAE . R UL
i AR BARLAE PR AT I TR, (I IR SR B AR 1) 8 P TR 2 A R B BT . TR AN B 817

for i :=0; i <5; i++ {
defer fmt.Printf("%d 7, i)

ARSI HB RSO (www. topgoer.cn) - 27 -

PR 2L

Deferred functions are executed in LIFO order, so this code will cause 4 3 2 1 0 to be printed when the function
returns. A more plausible example is a simple way to trace function execution through the program. We could
write a couple of simple tracing routines like this:

WAHER e B IR SR et (LIFOD BOIBUFHAT R BA_EARTFE B BOR I 254 TE1 4 32 1 0. — MRS L] 12
IR R TTE, IR R R R B AAT o FRATTRT DA S X T S A R 1

func trace(s string) { fmt.Println(“entering:”, s) }
func untrace(s string) { fmt.Println("leaving:”, s) }

’/ Use them like this:
func a() {

trace ("a”)

defer untrace(”a”)

// do something. ...

func trace(s string) { fmt. Println(“entering:”, s) }
func untrace(s string) { fmt.Println("leaving:”, s) }

/) B FEE ENT:
func a() {

trace (“a”)
ey

defer untrace(”a”)
/) L

We can do better by exploiting the fact that arguments to deferred functions are evaluated when the defer
executes. The tracing routine can set up the argument to the untracing routine. This example:

BT LA RIS, MR R0 ST defer SUTHESYORIL. BB BIRIT4E 0 RIB PI935, bl Fil
T

func trace(s string) string {
fmt. Println (“entering:”, s)
return s

func un(s string) {
fmt. Println(“leaving:”, s)

}

func a() {
defer un(trace(”a”))
fmt. Println("in a”)

}

func b() {
defer un(trace(”b”))
fmt. Print1ln("in b”)
a()

}

func main() {

b()

SRS A B RSO (www. topgoer.cn) - 28 -

PR 2L

prints

SATED

entering: b
in b
entering: a
in a
leaving: a
leaving: b

For programmers accustomed to block-level resource management from other languages, defer may seem
peculiar, but its most interesting and powerful applications come precisely from the fact that it’s not block-
based but function-based. In the section on panic and recover we’ll see another example of its possibilities.

SFF BT PR R A B R R, defer AT B, HEIRAT T SR (KR A 1A ok B T BT s A AR
FEii. £ panic fil recover XM, FATKA BT & m R &7

AT RS A B RSO (www. topgoer.cn) - 29 -

il

G
Data

e

Allocation with new

new i

Go has two allocation primitives, the built-in functions new and make. They do different things and apply to
different types, which can be confusing, but the rules are simple. Let’s talk about new first. It's a built-in
function that allocates memory, but unlike its namesakes in some other languages it does not initialize the
memory, it only zeros it. That is, new(T) allocates zeroed storage for a new item of type T and returns its
address, a value of type #*T . In Go terminology, it returns a pointer to a newly allocated zero value of
type T.

Go fiflt TR A, B AR new A make. EAFTIEEARE, BT HREBMAIE . BT RS SRR, (H

FOWHARFE . ERAVEREE new. KENMHRAENAAR A EZRE, ES5HEESHRAZREAR, A EI0N

7, ReRNAEER. Wil new(T) 2AKAN T MHTU K CEERHNAAER, JHREIERbIE, W —N2EEA
T [RfE. M Go IRIERDE, Eiklal—/ Mgkl ZFEEHERBK, RACh T MEHE.

Since the memory returned by new is zeroed, it’s helpful to arrange when designing your data structures that

the zero value of each type can be used without further initialization. This means a user of the data structure

can create one with new and get right to work. For example, the documentation for bytes.Buffer states that

“the zero value for Buffer is an empty buffer ready to use.” Similarly, sync.Mutex does not have an explicit
constructor or Init method. Instead, the zero value for a sync.Mutex is defined to be an unlocked mutex.

WESR new REIMNAFCEE, B UREITEIREEN, SR HNEEFALIE—DYIEN T, X ERE ZEE 8
M RF A new B MR St BEIEH TAE. #ilin, bytes.Buffer BISCRHI2E] “E (A Buffer 52 CHER LRI
X. " [, sync.Mutex HH¥4 W MHIEREEL Init 777k, MR ZER sync.Mutex il O &4 & Xy CUF et fF81 7 .

The zero-value-is-useful property works transitively. Consider this type declaration.

“RAHJEIE" AR . BRUL N RAEY.

type SyncedBuffer struct {
lock sync. Mutex
buffer bytes.Buffer

Values of type SyncedBuffer are also ready to use immediately upon allocation or just declaration. In the next
snippet, both p and v will work correctly without further arrangement.

SyncedBuffer M (E th 27575 I gt o el WAE RS 1. SR Z:ARI . p M v JeRgilE— 2P AR BRI AT IR AR T AF

p := new(SyncedBuffer) type *SyncedBuffer
var v SyncedBuffer type SyncedBuffer

Constructors and composite literals

WERHERATHE

SRS A B R SCRS (www. topgoer.cn) i 30 -

il

Sometimes the zero value isn’'t good enough and an initializing constructor is necessary, as in this example
derived from package os.

BN L AGEF, XN G2 YIRS RS, Wk E os BH X BAR TR .

func NewFile(fd int, name string) *File {
if £fd < 0 {
return nil
}
f := new(File)
f.fd = fd
f. name = name
f.dirinfo = nil
f.nepipe = 0
return f

There's a lot of boiler plate in there. We can simplify it using a composite literal, which is an expression that
creates a new instance each time it is evaluated.

X AL T IO BATEE B A P ER T, %A U RRRORALIN #2658 (1 561 .

func NewFile(fd int, name string) *File {
if fd < 0 {
return nil

}
f := File{fd, name, nil, 0}
return &f

Note that, unlike in C, it's perfectly OK to return the address of a local variable; the storage associated with the
variable survives after the function returns. In fact, taking the address of a composite literal allocates a fresh
instance each time it is evaluated, so we can combine these last two lines.

TR, AR B —ANRERAS R R ML S A BOE S, XS C ARl 2R AR R R 1L R HOR [R OR AL Sk b, A
BRI AN A IR RN, #RE Oy — DB LB BN AT, DRIRBRATTRT LR L i) R fE P AT A G A T F

return &File{fd, name, nil, 0}

The fields of a composite literal are laid out in order and must all be present. However, by labeling the
elements explicitly as field:value pairs, the initializers can appear in any order, with the missing ones left as
their respective zero values. Thus we could say

IR B AR 22 . B EL B E e R AR TR, WAL BN BT LA AT L L
ARE KT BT RE. Bk, BATTUUH B

return &File{fd: fd, name: name}

As a limiting case, if a composite literal contains no fields at all, it creates a zero value for the type. The
expressions new(File) and &File{} are equivalent.

DEEHLR, BHEEFH RN, IR EME. Kk new(File) 1 &File{} 5.
Composite literals can also be created for arrays, slices, and maps, with the field labels being indices or map

keys as appropriate. In these examples, the initializations work regardless of the values of Enone, Eio, and
Einval, as long as they are distinct.

A% SR B RSO (www. topgoer.cn) i 4 - 31 -

il

BFMEFEMTHTOESA . VI U, FRARZ R RIS E M RIS SLiE . 78 Foynibid R, it
Enone. Eio 1 Einval 2414, REENIRZEARBAT .

a := [...]string {Enone: “no error”, Eio: “Eio”, Einval: “invalid argument”}
s := [Istring {Enone: “no error”, Eio: “Eio”, Einval: “invalid argument”}
m := mapl[int]string{Enone: “no error”, Eio: “Eio”, Einval: “invalid argument”}

Allocation with make

make 4E

Back to allocation. The built-in function make(T, args) serves a purpose different from new(T). It creates slices,
maps, and channels only, and it returns an initialized (not zeroed) value of type T (not *T). The reason
for the distinction is that these three types represent, under the covers, references to data structures that
must be initialized before use. A slice, for example, is a three-item descriptor containing a pointer to the data
(inside an array), the length, and the capacity, and until those items are initialized, the slice is nil. For slices,
maps, and channels, make initializes the internal data structure and prepares the value for use. For instance,

A B N IFHE k. AR make(T, args) 1 HAFET new(T). & R FOIGI A WUFRAMEE, JHREIZRAN T

amide *T) W—ACYIEN GHIEEE) BE. BBUXAHZERRERE T, X =mMBERRE o5 AR, &
TR T LRIt B, VIR R—NEE =TARNRAR, & —AMam BN HdEmfes. KELAKE,
PEIX =T AEAL Z /T, YA nile 3P B AIEIE, make FIT 410500 P 35T A0 B8 45 60 51 v 45 4B B4 (101
i,

make ([]int, 10, 100)

allocates an array of 100 ints and then creates a slice structure with length 10 and a capacity of 100 pointing
at the first 10 elements of the array. (When making a slice, the capacity can be omitted; see the section on
slices for more information.) In contrast, new([]int) returns a pointer to a newly allocated, zeroed slice
structure, that is, a pointer to a nil slice value.

B EA 100 A int MEALER, HE GE MDY 10, FEDY 100 JFREZEALTET 10 MR 4.
CERYIFI, HAEEaTLAR, H2ELSWDA 1.) Sk, new([lint) iR —AMEEH MK, CEFMYIA L
¥, BI—AME R nil Y1 ER$EH .

These examples illustrate the difference between new and make.

TR T T new fl make Z Al X 5

var p *[]int = new([]int) // allocates slice structure; *p == nil; rarely useful
var v [Jint = make([]int, 100) // the slice v now refers to a new array of 100 ints

// Unnecessarily complex:
var p *[]int = new([]int)
*p = make ([]int, 100, 100)

// Idiomatic:

v := make ([]int, 100)

var p *[]int = new([]int) /) FEIOIF R *p == nil; ZEARIZHH

var v []int = make ([int, 100) // &1} v BIZEGIH T —NEH 100 1 int 5EHIFTEH
R EEGRE F 2

var p *[]int = new([]int)
*p = make ([Jint, 100, 100)

AT RS A B RSO (www. topgoer.cn) - 32 -

il

/) ST
v := make ([]int, 100)

Remember that make applies only to maps, slices and channels and does not return a pointer. To obtain an
explicit pointer allocate with new or take the address of a variable explicitly.

e, make MUEHTHUS . PIAAEE AR EEE . ARSI, HEH new 20 HC A AFER KSR — A
L.

Arrays

A

Arrays are useful when planning the detailed layout of memory and sometimes can help avoid allocation, but
primarily they are a building block for slices, the subject of the next section. To lay the foundation for that
topic, here are a few words about arrays.

FEVEAIRI N AR A R B ARE AR, AReReE el 2 NI, EETEZAMETRA B ZR N — 3T
T ARESER EIUERROy e .

There are major differences between the ways arrays work in Go and C. In Go,

« Arrays are values. Assigning one array to another copies all the elements.
« In particular, if you pass an array to a function, it will receive a copy of the array, not a pointer to it.

« The size of an array is part of its type. The types [10]int and [20]int are distinct.
DL #dAE Go Al C i FE X . 15 Go 1,

o BRURAE. A5 MEUIRT S AR S BRI A TR,
o FERIML, EREANBAHEANTENRE, R RGNS AN — BRI A TR .
o HAMR/NEHEMI— . FA [10]int A1 [20]int ZAAR .

The value property can be useful but also expensive; if you want C-like behavior and efficiency, you can pass a
pointer to the array.

BAUVMER B ARG, EARGEas FT R CHREIAT WAL, ARAT A& — MR 1R AL R E

func Sum(a *[3]float64) (sum float64) f{
for , v := range *a {
sum += v
}

return

array := [...]float64{7.0, 8.5, 9.1}

x := Sum(&array) // Note the explicit address—of operator

func Sum(a *[3]float64) (sum float64) f{
for , v := range *a {
sum t= v
}

return

AT RS B R SCRS (www. topgoer.cn) - 33 -

il

array := [...]float64{7.0, 8.5, 9.1}
x := Sum(&array) T R AT A

But even this style isn’t idiomatic Go. Use slices instead.
R HAR Go I, VIR A 7.

Slices

il

Slices wrap arrays to give a more general, powerful, and convenient interface to sequences of data. Except for
items with explicit dimension such as transformation matrices, most array programming in Go is done with
slices rather than simple arrays.

VIR it B AT ke, OB PR AR L T . SO R . B T ERE AR SR A L R LAk, Go
9T 7 B2 g e A S D) R A S B o

Slices hold references to an underlying array, and if you assign one slice to another, both refer to the same
array. If a function takes a slice argument, changes it makes to the elements of the slice will be visible to the
caller, analogous to passing a pointer to the underlying array. A Read function can therefore accept a slice
argument rather than a pointer and a count; the length within the slice sets an upper limit of how much data
to read. Here is the signature of the Read method of the File type in package os:

DI R ORAE 1 RRZEALI S, BRI T 50— DR, e s R — AL R E — DRy 2 Hfs

Ao MEXSZ Y e R BB SO R S R W, X n] DL e e id 1R R R R e . BRI, Read ¥rl#E— M)
Jr S MAE— MR NHEG DR B e 1 TSR LR BUTOh os B File X7MA) Read Jrik%s44:

func (file *File) Read(buf []byte) (n int, err error)

The method returns the number of bytes read and an error value, if any. To read into the first 32 bytes of a
larger buffer buf, slice (here used as a verb) the buffer.

IR I A T RO — AR A RE) o HENERIEMX b s 32 AN, R L vy s,
n, err := f.Read(buf[0:32])

Such slicing is common and efficient. In fact, leaving efficiency aside for the moment, the following snippet
would also read the first 32 bytes of the buffer.

ARG (7 R R A ANREEER, DUR i BUARERE SO 2o X (KT 32 A5

var n int
var err error
for i :=0; i < 32; i++ {

nbytes, e := f.Read(buf[i:i+1]) Read one byte
if nbytes == 0 || e != nil {

err = e

break

}

n += nbytes

var n int
var err error

A% SR B RSO (www. topgoer.cn) 4 - 34 -

il

for i :=0; i < 32; i++ {

nbytes, e := f.Read(bufl[i:i+1]) // EH—1FT7
if nbytes == 0 || e != nil {

err = e

break
}

n += nbytes

The length of a slice may be changed as long as it still fits within the limits of the underlying array; just assign
it to a slice of itself. The capacity of a slice, accessible by the built-in function cap, reports the maximum length
the slice may assume. Here is a function to append data to a slice. If the data exceeds the capacity, the slice is
reallocated. The resulting slice is returned. The function uses the fact that len and cap are legal when applied
to the nil slice, and return 0.

AEPR AR ZH RS, K rT A2 M, Afeily R E St BT, U1y s et iy 2 e s cap 3k
B, THRSHIZY A PTIEMEORKE . DU RS EERE IR A R SRR A, WS ER AT A . IR EE
BAFTERIYI A . iz R T E AR len Al cap ERT nil DA R AIER, BaRE 0.

func Append(slice, data[]byte) []byte {

1 := len(slice)

if 1 + len(data) > cap(slice) { // reallocate
// Allocate double what’s needed, for future growth.
newSlice := make([]byte, (1+len(data))*2)
// The copy function is predeclared and works for any slice type.
copy (newSlice, slice)
slice = newSlice

}

slice = slice[0:1+len(data)]

for i, ¢ := range data {
slice[l+i] = ¢

}

return slice

func Append(slice, data[]byte) []byte {

1 := len(slice)

if 1 + len(data) > cap(slice) { // HE#
/) R TIG RIS, T AT
newSlice := make([]byte, (1+len(data))*2)
"/ copy EREAZTFEIRG, H Al FAEY] 22,
copy (newSlice, slice)
slice = newSlice

}

slice = slice[0:1+len(data)]

for i, ¢ := range data {
slice[l+i] = ¢

}

return slice

We must return the slice afterwards because, although Append can modify the elements of slice, the slice itself
(the run-time data structure holding the pointer, length, and capacity) is passed by value.

RALMBIUR VL), BV Append FIEEL slice [7uER, ETAH S LISTH RS EEHE . KEMFE) &
I AE AR o

AT RS A B R OCRS (www. topgoer.cn) - 35 -

il

The idea of appending to a slice is so useful it's captured by the append built-in function. To understand that
function’s design, though, we need a little more information, so we’ll return to it later.

P IBINARPEANEEE AR, BUE BN Em S append. ZEHEFZRE BRI, RADEFE - LLFIMNIELE, A7
HMEENHE.

Two-dimensional slices

371}

Go’s arrays and slices are one-dimensional. To create the equivalent of a 2D array or slice, it is necessary to
define an array-of-arrays or slice-of-slices, like this:

Go W) Jr e — 4R . EEIE SN # BB)y, i iE MR, SRV, IR

type Transform [3][3]float64 // A 3x3 array, really an array of arrays.
type LinesOfText [][]byte // A slice of byte slices.

type Transform [3][31float64 // —A> 3x3 HI¥4, HSTREEZANBUN—NEA.
type LinesOfText [][lbyte // AEZBANFHUR I~ .

Because slices are variable-length, it is possible to have each inner slice be a different length. That can be a
common situation, as in our LinesOfText example: each line has an independent length.

BTV K2R, R ST RN 2 A AR EZ T . AT LinesOfText i1+, 2w WIS It RHT
WHLHCIKE.

text := LinesOfText {
[IJbyte("Now is the time”),
[IJbyte(“for all good gophers”),
[IJbyte(“to bring some fun to the party.”),

Sometimes it's necessary to allocate a 2D slice, a situation that can arise when processing scan lines of pixels,
for instance. There are two ways to achieve this. One is to allocate each slice independently; the other is to
allocate a single array and point the individual slices into it. Which to use depends on your application. If the
slices might grow or shrink, they should be allocated independently to avoid overwriting the next line; if not, it
can be more efficient to construct the object with a single allocation. For reference, here are sketches of the
two methods. First, a line at a time:

AL —A YR, GInE B R R I RAT I, RXAME DU & R AT PR AORIZFXA B — gt 2 4k
SEHOYBECEE ANV ISR R AN, R RN R IR E . SRR SR TRRIN T o 500 Jr 2o h ek
Wk, AERAZAE S S R R B AT NS, RO ECRAIE N R NS A BN IR i KA,
MHSH . HER K AT

/ Allocate the top—level slice.

picture := make([][Juint8, YSize) // One row per unit of y.
/' Loop over the rows, allocating the slice for each row.
for i := range picture {

picture[i] = make([Juint8, XSize)

Y A ERTRE A
picture := make([][Juint8, YSize) // %47 y i /7.
/T, R AT B

SRS A b RSO (www. topgoer.cn) - 36 -

il

for i := range picture {
picture[i] = make([Juint8, XSize)

And now as one allocation, sliced into lines:

Bl — o Be, RHATHEAT YL

// Allocate the top-level slice, the same as before.
picture := make([][Juint8, YSize) // One row per unit of y.
// Allocate one large slice to hold all the pixels.
pixels := make([Juint8, XSize*YSize) // Has type [Juint8 even though picture is [][Juint8.
// Loop over the rows, slicing each row from the front of the remaining pixels slice.
for i := range picture {
picture[i], pixels = pixels[:XSizel], pixels[XSize:]

// SYETEY R, AR .
picture := make([][Juint8, YSize) // & y NEIT—1T.
/] R AKEY) R RSB B3
pixels := make([Juint8, XSizexVSize) // #AZEA [luint8, REEFZ [1[Juint8.
/) AT, ARG ED) I ETTE D) AT R
for i := range picture {
picturel[i], pixels = pixels[:XSize], pixels[XSize:]

Maps

S)

Maps are a convenient and powerful built-in data structure that associate values of one type (the key) with
values of another type (the element or value) The key can be of any type for which the equality operator is
defined, such as integers, floating point and complex numbers, strings, pointers, interfaces (as long as the
dynamic type supports equality), structs and arrays. Slices cannot be used as map keys, because equality is
not defined on them. Like slices, maps hold references to an underlying data structure. If you pass a map to a
function that changes the contents of the map, the changes will be visible in the caller.

WIS D7 T SR) Y R), e T AR RIS AL A o LB T DURAE AT AR SV B A SRR R, e, 7
SH FAFERL IRE O CLSHEERASCRARSE RN |« GBI, I AR R ST, DA E NIRRT IS
RS HUR—HE, B 5 2R, AR e Nt IR ST RO R, BB O I R R A

Maps can be constructed using the usual composite literal syntax with colon-separated key-value pairs, so it's
easy to build them during initialization.

WS AT {3] — R R 2 T AT R, LA - DO S 0 B, DAL RT AR AR A (R 2 2 A AT

var timeZone = map[string]lint{
“UTC”: 0%60%60,
“EST”: -5%60%60,
“CST”: —6%60%60,
“MST”: -7%60%60,
“PST”: —8%60%60,

Assigning and fetching map values looks syntactically just like doing the same for arrays and slices except that
the index doesn’t need to be an integer.

AT RS A B RSO (www. topgoer.cn) - 37 -

il

TG AR e S B ARV 2L T, AN TR A I PR 28 51 AN T

offset := timeZone[”EST”]

An attempt to fetch a map value with a key that is not present in the map will return the zero value for the
type of the entries in the map. For instance, if the map contains integers, looking up a non-existent key will
return 0. A set can be implemented as a map with value type bool. Set the map entry to true to put the value
in the set, and then test it by simple indexing.

PR W R LR, AR o 5 2 TR SR MR, B, AW R, M 24
LRI 2RI O, B4 AT SeBLH—AMEN bool FIBRST. KA HITEA true AL BTG A T, MR IE
L1128 5 BT W 7 A1

attended := map[string]bool {
“Ann”: true,

”

Joe”: true,

t

if attended[person] { // will be false if person is not in the map
fmt. Println(person, “was at the meeting”)

}

attended := map[string]bool {
“Ann”: true,

re»
Joe”: true,

if attended[person] { // ZRA NI, WA false
fmt. Println (person, “IEfEFF4")

Sometimes you need to distinguish a missing entry from a zero value. Is there an entry for “UTC” or is that the
empty string because it’s not in the map at all? You can discriminate with a form of multiple assignment.

AT I AR TG X 2 FEIUE AP A BN FAE . 0 T — MEARON K “UTC” 2 H, thal SR d A7 AR IZ I 15 8 F {8 .
PRAr LU 2 S A 7 R X A L -

var seconds int
var ok bool

seconds, ok = timeZone[tz]

For obvious reasons this is called the “comma ok” idiom. In this example, if tz is present, seconds will be set
appropriately and ok will be true; if not, seconds will be set to zero and ok will be false. Here's a function that
puts it together with a nice error report:

SR, BATAFRZ A i85 ok” WL, TE NmMB 7, 35 tz /745, seconds Mt &R FiE M4 0ME, H ok &9iE N
true; #HAfELE, seconds NI E NE, 1 ok &4 E N false.

func offset(tz string) int {
if seconds, ok := timeZone[tz]; ok {
return seconds

}

log. Println(“unknown time zone:”, tz)

AT RS A B RSO (www. topgoer.cn) - 38 -

il

return 0

To test for presence in the map without worrying about the actual value, you can use the blank identifier
(_)inplace of the usual variable for the value.

AT TG o R A AEAE SR O AN D0 SERRME, AT S AR ¢) SRIRENEM — AR R
_, present := timeZone[tz]

To delete a map entry, use the delete built-in function, whose arguments are the map and the key to be
deleted. It's safe to do this even if the key is already absent from the map.

MRS R0, I A R L delete, & A Je BRI ERIOEE VS S . RIVEENE R B ANFEAZ IR v, R AT th i 22
eI

delete(timeZone, “PDT”) // Now on Standard Time

delete(timeZone, “PDT”) TLLE FHFRHERT]

Printing

TER

Formatted printing in Go uses a style similar to C's printf family but is richer and more general. The functions
live in the fmt package and have capitalized names: fmt.Printf, fmt.Fprintf, fmt.Sprintf and so on. The string
functions (Sprintf etc.) return a string rather than filling in a provided buffer.

Go K Bks AT ED RIS FT C 1) printf L, HEEINFEFMEAH. XEREAT fmt @, HRES s F R K
5. 1 fmt.Printf. fmt.Fprintf, fmt.Sprintf %&. 78 K% (Sprintf 55) SIREl—ANF5F 8, MEARE RS EMZMTX .

You don’t need to provide a format string. For each of Printf, Fprintf and Sprintf there is another pair of
functions, for instance Print and PrintIn. These functions do not take a format string but instead generate a
default format for each argument. The Println versions also insert a blank between arguments and append a
newline to the output while the Print versions add blanks only if the operand on neither side is a string. In this
example each line produces the same output.

RE TR PR . B4 Printf, Fprintf A1 Sprintf #2055 5 5405, Wi Print 5 Printin. X 28 s 30 A 2
TR, M NS AR —F B Printin RIVNREUE SRS IEN SR, FEAE H B IN— AN RATTF,
1M Print BATEEEAE RPN ER AT Z AR B AR N2 Ao L R/R B8 47 7= AL I S R 2 —FE

fmt. Printf (“Hello %d\n”, 23)

fmt. Fprint (os. Stdout, “Hello 7, 23, “\n”)
fmt. Println(“Hello”, 23)

fmt. Println (fmt. Sprint ("Hello 7, 23))

The formatted print functions fmt.Fprint and friends take as a first argument any object that implements the
io.Writer interface; the variables os.Stdout and os.Stderr are familiar instances.

fmt.Fprint — 28Kk 2NALST BT BT 15 2 AR AT SEBL T 0. Wrriter 352 TR R4 A% — A s, 48k os.Stdout 5 os.Stderr #5
7 NMITEHI T

Here things start to diverge from C. First, the numeric formats such as %d do not take flags for signedness or
size; instead, the printing routines use the type of the argument to decide these properties.

2% SR B RSO (www. topgoer.cn) i 4 - 39 -

https://go-zh.org/doc/effective_go.html#blank
https://go-zh.org/doc/effective_go.html#blank

il

WX BT, Hi5 CHYEARRT . B, B %d ZFEFEER RN R ZZORT S BO0NIARE, TR ARG S S 1R
R E XL J P

var X uint64 = 1<<64 - 1
fmt. Printf ("%d %x; %d %x\n”, X, X, int64(x), int64(x))

prints

HeATED
18446744073709551615 fEEFEFFEreeeeeee; —1 —1

If you just want the default conversion, such as decimal for integers, you can use the catchall format %v (for
“value”); the result is exactly what Print and Println would produce. Moreover, that format can print any value,
even arrays, slices, structs, and maps. Here is a print statement for the time zone map defined in the previous
section.

AR SRR e, i bt (B 8, ARmT DU ATE I 1A% 50 Yov (XIRE “fE7) 5 HLA53LS Print A1 Printin (4
SEAAHRE. BEAh, XA FOEAEFT TR, PR OREEL AR . DU AT BN b e SRR X O B A

fmt. Printf ("%v\n”, timeZone) // or just fmt.Println (timeZone)
which gives output

map [CST:~21600 PST:-28800 EST:-18000 UTC:0 MST:-25200]

fmt. Printf (“%v\n”, timeZone) // B{HH fmt. Printin (timeZone)
X 2=
map [CST:-21600 PST:-28800 EST:-18000 UTC:0 MST:-25200]

For maps the keys may be output in any order, of course. When printing a struct, the modified format %+v
annotates the fields of the structure with their names, and for any value the alternate format %#v prints the
value in full Go syntax.

IR, W R IO T BEAAT U R o AT EDEE AR, SCEEIR A Yoty SONETH RIS T BER B B, TS — A
i %#v KEEEIR Go kT EIE.

type T struct f
a int
b float64
¢ string
1
t = &T{ 7, —2.35, “abc\tdef” }
fmt. Printf ("%v\n”, t)
fmt. Printf ("%+v\n”, t)
fmt. Printf ("%#v\n”, t)
fmt. Printf ("%#v\n”, timeZone)

prints

AT EN

A% SR B R SCRS (www. topgoer.cn) % - 40 -

B

&{7 -2.35 abc def}

&{a:7 b:-2.35 c:abc def}

&main. T{a:7, b:-2.35, c:”abc\tdef”}

map[string] int{”CST”:-21600, “PST”:-28800, “EST”:-18000, “UTC”:0, “MST”:-25200}

(Note the ampersands.) That quoted string format is also available through %q when applied to a value of type
string or []byte. The alternate format %#q will use backquotes instead if possible. (The %q format also applies
to integers and runes, producing a single-quoted rune constant.) Also, %x works on strings, byte arrays and
byte slices as well as on integers, generating a long hexadecimal string, and with a space in the format (% x) it
puts spaces between the bytes.

CGEERHPI & f75) 282 string 5 [1byte R, WM %q PEM 5157/ S Mk %#q SRR 5]
T (%q R TREAF L, ER7ENERIISRACE R, O A, Y%x BRI T TR E . T DL
B AR AR E AR A #, AR (%) ESTEFEZ RN TR .

Another handy format is %T, which prints the type of a value.

S AR %T, ST ENSEAME AL,

fmt.Printf(“%T\n", timeZone)
prints

SATED
map[string] int

If you want to control the default format for a custom type, all that’s required is to define a method with the
signature String() string on the type. For our simple type T, that might look like this.

R AR e SRR S, R OIZRALE — A HA String() string 242107575 X FIRATR AR T, iy
LIS (B

func (t *T) String() string {

return fmt. Sprintf ("%d/%g/%q”, t.a, t.b, t.c)
}
fmt. Printf ("%v\n”, t)

to print in the format

ZATEDH I
7/-2.35/"abc\tdef”

(If you need to print values of type T as well as pointers to T, the receiver for String must be of value type; this
example used a pointer because that’'s more efficient and idiomatic for struct types. See the section below on
pointers vs. value receivers for more information.)

CHERARTTEAR TG I T (S EIBRETENSE M T (94&, String AORRCE sl AU E R LH A5~ iiios 2 —AMEE
I G R sR U A E A . E R R S5 vs. R —TD

Our String method is able to call Sprintf because the print routines are fully reentrant and can be wrapped this
way. There is one important detail to understand about this approach, however: don’t construct a String
method by calling Sprintf in a way that will recur into your String method indefinitely. This can happen if the
Sprintf call attempts to print the receiver directly as a string, which in turn will invoke the method again. It's a
common and easy mistake to make, as this example shows.

SR8 s R SCRS (www. topgoer.cn) i 4- 41 -

https://go-zh.org/doc/effective_go.html#pointers_vs_values
https://go-zh.org/doc/effective_go.html#pointers_vs_values

il

FATH String kB ETA R Sprintf, [RUONFTEIEIFERT PASE 4 B 4 fhor s s . AN BEEEIX R T, 06 — A EER
4. i Sprintf detid String Jrik, EONE S TIREBINRIIN String Jrik. 24 Sprintf B AN EIE LT
FrE R AT EN S, TR A T R Sk S T Sprintf I, SXRIE S . 3K AMEE LR, TN R .

type MyString string

func (m MyString) String() string {
return fmt. Sprintf ("MyString=%s”, m) // Error: will recur forever.

type MyString string

func (m MyString) String() string {
return fmt. Sprintf ("MyString=%s”, m) // #ix: = RiE1H

It's also easy to fix: convert the argument to the basic string type, which does not have the method.

LRV AR T B 2 S AN AR TR A, BRI

W

type MyString string
func (m MyString) String() string {
return fmt. Sprintf ("MyString=%s”, string(m)) // OK: note conversion.

type MyString string
func (m MyString) String() string {
return fmt. Sprintf ("MyString=%s”, string(m)) // H/Ll: J&Eifsfi

In the initialization section we’ll see another technique that avoids this recursion.
TE WA — v, JRATG Bk S X P I3 (1 55 — R R
Another printing technique is to pass a print routine’s arguments directly to another such routine. The

signature of Printf uses the type ...interface{} for its final argument to specify that an arbitrary number of
parameters (of arbitrary type) can appear after the format.

Iy AT ENEARMGE KT ENBIRE A S 2 BAEAR A D) — D IRFERI IR . Printf (24 R OS2 1 .. interface{} 2§
M, e U R RS M BUE R R, RS T,

func Printf (format string, v ...interface{}) (n int, err error) {

Within the function Printf, v acts like a variable of type [linterface{} but if it is passed to another variadic
function, it acts like a regular list of arguments. Here is the implementation of the function log.Printin we used
above. It passes its arguments directly to fmt.Sprintin for the actual formatting.

5 Printf p¥f, v HREACEZE [linterface{} RARAE, HMAUGEEBRN MRS RET, ClBLEFINLSTIR
1o BURARMNZ AT IR log.Printin (s8l. & BB I 2L fmt.Sprintin 247 SEbrikE k.

// Println prints to the standard logger in the manner of fmt.Printlin.
func Println(v ... interface{}) {
std. Output (2, fmt.Sprintln(v...)) // Output takes parameters (int, string)

2% SR B R SCRS (www.topgoer.cn) i 4- 42 -

https://go-zh.org/doc/effective_go.html#initialization
https://go-zh.org/doc/effective_go.html#initialization

il

// Println I8 fmt. Println #9775 20K H & FTEIE bR 1E R 75
func Println(v ...interface{}) {
std. Output (2, fmt.Sprintln(v...)) // Output ##3Z/Z (int, string)

We write ... after v in the nested call to Sprintin to tell the compiler to treat v as a list of arguments; otherwise
it would just pass v as a single slice argument.

fEiz Sprintln AT, BATEE ... SE v ZJERE IR ESR v AUE—DR2AIER, Ble e v SRR R SeEk
i

There's even more to printing than we’ve covered here. See the godoc documentation for package fmt for the
details.

AR Z K TATED RIS 8 L2 VEEIE 200 godoc XI fmt GLAH I S0 .

By the way, a ... parameter can be of a specific type, for instance ...int for a min function that chooses the
least of a list of integers:

JE 4, .. TESRE BARRZRAL, B NS R i s ME R E min, FOBEZN Lint 8L,

func Min(a ...int) int {
min := int(Cuint(0) >> 1) // largest int
for , i := range a {
if i < min {

min = i

}

return min

func Min(a ...int) int {
min := intCuint(0) >> 1) // &KAH int
for , i := range a {
if i < min {

min = i
}
}
return min
}
Append

Bin

Now we have the missing piece we needed to explain the design of the append built-in function. The signature
of append is different from our custom Append function above. Schematically, it’s like this:

PLAEFRATE XS N 2 iR 3L append MIBETHEIT AN e BT . append BEIZE L AN TR SR ATE 2 LK Append %, KECk
Ui, R R

func append(slice []T, elements ...T) [IT

where T is a placeholder for any given type. You can’t actually write a function in Go where the type T is
determined by the caller. That’'s why append is built in: it needs support from the compiler.

2SR 3 s R SCRS (www. topgoer.cn) i - 43 -

il

Hrh i T RS e R AR SEbe b, IRTCIATE Go S — A RA T i A duE i . X REl2 8 append Jy
W RRB R B R AR I SR

What append does is append the elements to the end of the slice and return the result. The result needs to be
returned because, as with our hand-written Append, the underlying array may change. This simple example

append VIR ARBBIICRIFR MG RATLAUR ISR, JHESHAIT 58 Append —#, BURZ B4l se & ik
AZo LUR i 61

x := [lint{1, 2, 3}
x = append (x, 4, 5, 6)
fmt. Println(x)

prints [1 2 3 4 5 6]. So append works a little like Printf, collecting an arbitrary number of arguments.
HATEN [12 345 6]. itk append #5544 Printf A5, FlHEZATREREL S,

But what if we wanted to do what our Append does and append a slice to a slice? Easy: use ... at the call site,
just as we did in the call to Output above. This snippet produces identical output to the one above.

ELUERIATELR Append TRFER —ANUIEMEN S — MR g ? AR . AERATRIIIT AT L., R IRAT A T
Output M. BLNAGR A B 5 B — AT .

x := [lint{1,2, 3}
y := [Jint{4,5, 6}

x = append(x, y...)
fmt. Println(x)

Without that ..., it wouldn’t compile because the types would be wrong; y is not of type int.

WEREA . EE R T IMEHRTCE E, KDy y A2 int R,

2SR 8 F RSCRS (www. topgoer.cn) i 4- 44 -

wIgR ik

witatl
Initialization

BIgE

Although it doesn’t look superficially very different from initialization in C or C++, initialization in Go is more
powerful. Complex structures can be built during initialization and the ordering issues among initialized
objects, even among different packages, are handled correctly.

RENFEN LF, Go MWLt S C 8k C++ MEIFEARZER, (B AR, AT, AMUT U E s
TRINGER, B REIE WAL A [L% 2 8 AT AL BT -
Constants

HE

Constants in Go are just that—constant. They are created at compile time, even when defined as locals in
functions, and can only be numbers, characters (runes), strings or booleans. Because of the compile-time
restriction, the expressions that define them must be constant expressions, evaluatable by the compiler. For
instance, 1<<3 is a constant expression, while math.Sin(math.Pi/4) is not because the function call to math.Sin
needs to happen at run time.

Go I H B RAE R TR RN QIR M@ el iR R Ech e U R R, R RN T T (O L F
PR BRI BT RS, & eIk s it 2 il g g PR e R B RIA . flin 1<<3 e —MiERE
X, 1 math.Sin(math.Pi/4) WAE, Bv% math.Sin 1 e&30 e s 4 2 k24

In Go, enumerated constants are created using the iota enumerator. Since iota can be part of an expression
and expressions can be implicitly repeated, it is easy to build intricate sets of values.

1 Go ft, MOZEH RN ota Q. dT iota AOARIAAM —#sy, MERENAT LIg =S, X RHEE 510
EAERENEE T .

type ByteSize float64

const (
TR T 25 LR R R B
N = iota // ignore first value by assigning to blank identifier
KB ByteSize = 1 << (10 * iota)
MB
GB
B
PB
EB
7B
YB

The ability to attach a method such as String to any user-defined type makes it possible for arbitrary values to
format themselves automatically for printing. Although you’ll see it most often applied to structs, this
technique is also useful for scalar types such as floating-point types like ByteSize.

T String 2 KAGTTEMINE AL € XM E, BRI e 3T B B SR AT E B TR, B R AR — 1l
RIEME— . JRE TR T 26 FIRXAMEOR M T4, HEX TR ByteSize Z JME b AR MR A HIK.

RS R3 R SCRS (www. topgoer.cn) i - 45 -

wIgR ik

func (b ByteSize) String() string {

switch {
case b >= YB:

return fmt. Sprintf ("%. 2fYB”, b/YB)
case b >= 7ZB:

return fmt. Sprintf ("%. 2fZB”, b/ZB)
case b >= EB:

return fmt. Sprintf (“%. 2fEB”, b/EB)
case b >= PB:

return fmt. Sprintf (“%. 2fPB”, b/PB)
case b >= TB:

return fmt. Sprintf ("%. 2fTB”, b/TB)
case b >= GB:

return fmt. Sprintf ("%. 2fGB”, b/GB)
case b >= MB:

return fmt. Sprintf ("%. 2fMB”, b/MB)
case b >= KB:

return fmt. Sprintf (“%. 2fKB”, b/KB)
}
return fmt. Sprintf ("%. 2fB”, b)

The expression YB prints as 1.00YB, while ByteSize(1el3) prints as 9.09TB.

Fik\ YB &4TEIH 1.00YB, 1fi ByteSize(lel3) M<:4TENH 9.09TB.

The use here of Sprintf to implement ByteSize’s String method is safe (avoids recurring indefinitely) not
because of a conversion but because it calls Sprintf with %f, which is not a string format: Sprintf will only call

the String method when it wants a string, and %f wants a floating-point value.

X B Sprintf 528 ByteSize) String iR %4 (AELRBIT) , REIAZE AR, ML ebl %f WHT
Sprintf, EIAR R R Sprintf R&E TSR R A A String Jiik, 1 %f 75— NF U

Variables

Zg

Variables can be initialized just like constants but the initializer can be a general expression computed at run
time.

AR IR S I, (EEIAR(E R] DUR RS AT N A Bt S — AR iE 5

var (

home 0s. Getenv ("HOME”)
user = os.Getenv ("USER”)
gopath = os. Getenv ("GOPATH”)

The init function
init B

Finally, each source file can define its own niladic init function to set up whatever state is required. (Actually
each file can have multiple init functions.) And finally means finally: init is called after all the variable
declarations in the package have evaluated their initializers, and those are evaluated only after all the
imported packages have been initialized.

RS R 3 R SCRS (www. topgoer.cn) i 4 - 46 -

¥igatk

B, BATESCARHEET LLE e CH CRESH init MECKICE SR ERPRE . CLSHEA ST RUIE 24 init &
Blo) eI ERE VISR RA ST R A AL R Al i e TR 8 SRS init A 2R, ke
init AATERTE DA QAR LS A 2R E .

Besides initializations that cannot be expressed as declarations, a common use of init functions is to verify or
repair correctness of the program state before real execution begins.

B 7S ANRE B s O BRI WIER AL AT, init BRBOE 3 HIAERE 7 FOETHRHAT AT, A58 sl IER P AOR A

func init() {
if user == 77 {
log. Fatal (“$USER not set”)
}
if home == 7" {
home = ”/home/” + user
}
if gopath == 7" {
gopath = home + ”/go”

// gopath may be overridden by ——gopath flag on command Iine.
flag. StringVar (&gopath, “gopath”, gopath, “override default GOPATH”)

func init() {
if user == "7 {
log. Fatal (“$USER not set”)
}
if home == "7 {
home = ”/home/” + user
}
if gopath = 77 {
gopath = home + ”/go”

'/ gopath AJIHT w7 HIH] ——gopath FRidE mEfi.
flag. StringVar (&gopath, “gopath”, gopath, “override default GOPATH”)

A SR B R SCRS (www. topgoer.cn) i 4 - 47 -

ik

WaRA
Methods
Fik

Pointers vs. Values

184t vs. H

As we saw with ByteSize, methods can be defined for any named type (except a pointer or an interface); the
receiver does not have to be a struct.

1EQ ByteSize A, FATATLIGAEAT Chan 44 (A0 (B THREF B 1) 5 SO Bl PN N S e A

In the discussion of slices above, we wrote an Append function. We can define it as a method on slices instead.
To do this, we first declare a named type to which we can bind the method, and then make the receiver for the
method a value of that type.

LEZHIE VIR, 95 T 4> Append %, FATRATHREILE SO R % it FRATE B A2 2
RURIBTEZTT 5, IR 2T RIS BONZ R A

type ByteSlice []byte

func (slice ByteSlice) Append(data []byte) []byte {
Body exactly the same as above

}

type ByteSlice []byte

func (slice ByteSlice) Append(data []byte) []byte {
= (KA AT A A
}

This still requires the method to return the updated slice. We can eliminate that clumsiness by redefining the
method to take a pointer to a ByteSlice as its receiver, so the method can overwrite the caller’s slice.

PATTIER T L2 MBS T R o O 1 BRI AME, BAT I S e %073k, MR 1A ByteSlice RIfREHEN
WOTERRNCE, RR TR R E S A R R T .

func (p *ByteSlice) Append(data []byte) {
slice := *p
// Body as above, without the return.
*p = slice

func (p *ByteSlice) Append(data []byte) {
slice := *p
// EEFIRTTHARR, (A%A return.

*p = slice

RS R 3 s R SCRS (www. topgoer.cn) i - 48 -

ik

In fact, we can do even better. If we modify our function so it looks like a standard Write method, like this,

FCSIRAMEATE ST . E AT R BUE SO SRt Write SERIRITT %, ALK,

func (p *ByteSlice) Write(data []byte) (n int, err error) {
slice := *p
// Again as above
*p = slice

return len(data), nil

func (p *ByteSlice) Write(data []byte) (n int, err error) {
slice := *p
// MK VB R T AH [F]
*p = slice

return len(data), nil

then the type *ByteSlice satisfies the standard interface io.Writer, which is handy. For instance, we can
print into one.

MR *ByteSlice b 1 ARAERT io.Writer #2100, K ARR S . Fltn, FATAr CLEIESTEDRE ARG AN .

var b ByteSlice
fmt. Fprintf (&b, “This hour has %d days\n”, 7)

We pass the address of a ByteSlice because only *ByteSlice satisfies io.Writer. The rule about pointers
vs. values for receivers is that value methods can be invoked on pointers and values, but pointer methods can
only be invoked on pointers.

A THs ByteSlice #ytuifE N, FINRAE #ByteSlice A io.Writer. LLFREFEE AR AIDCHITE T [EI7E M8
AEFREAMERA, TRRE T ik R aeEE R R .

This rule arises because pointer methods can modify the receiver; invoking them on a value would cause the
method to receive a copy of the value, so any modifications would be discarded. The language therefore
disallows this mistake. There is a handy exception, though. When the value is addressable, the language takes
care of the common case of invoking a pointer method on a value by inserting the address operator
automatically. In our example, the variable b is addressable, so we can call its Write method with just b.Write.
The compiler will rewrite that to (&b).Write for us.

I A AT X MR TR R B 7R T VB B s @i E A e & S BUr BN ZE M RIA, R E S =

F, BFIZE S A RVFR MR AAANTRE S AR AR AT TR, B4 Z0E B B es B SR AL AR AR A A

FR e A RO AR BT FEIRATRIE b, AR b R FHER), PRI ERAT R FEid b.Write SRIFAI'E /R Write J7ik, s
2K e ES N (&b). Write.

By the way, the idea of using Write on a slice of bytes is central to the implementation of bytes.Buffer.

WA —$2, FEFIT A A Write U487 C4 bytes.Buffer FTsZil.

RS R 3 s R SCRS (www. topgoer.cn) i - 49 -

e A A 2R 7Y

i AN AR SR

Interfaces and other types
BO5HBERA
E;3m|

Interfaces in Go provide a way to specify the behavior of an object: if something can do this, then it can be
used here. We've seen a couple of simple examples already; custom printers can be implemented by a String
method while Fprintf can generate output to anything with a Write method. Interfaces with only one or two
methods are common in Go code, and are usually given a name derived from the method, such as io.Writer for
something that implements Write.

Go FIEE MR M RIAT NERME 1 — A5k MRSEREAR P AT LSS XA, AP et nl ORI L. AT e e Wk v 2 i
FLERE) T B SEBL String Tk, AT LLE E SUTENR £, 1iEid Write U5k, Fprintf WIREXMEATX S A it . 1E
Go R, B — PRk DR E W, HHAFGETRA TRIERTE, W io. Writer mti2seil 17 Write #9—2x)
%o

A type can implement multiple interfaces. For instance, a collection can be sorted by the routines in package
sort if it implements sort.Interface, which contains Len(), Less(i, j int) bool, and Swap(i, j int), and it could also
have a custom formatter. In this contrived example Sequence satisfies both.

REFR IR RE S 2 AN . Bl — A28 T sort.Interface #: MA@ sort Wi B REHTHE . %4 T ds
Len(). Less(i, j int) bool LA} Swap(i, j int), 54k, ZEEUATT DA —A HE kb . DU MR de i+
Sequence 7 I il X B R 0 o

type Sequence []int

Wethods required by sort. Interface.
sort. Interface izl 7%,

func (s Sequence) Len() int {
return len(s)

1

func (s Sequence) Less(i, j int) bool {
return s[i] < s[j]

}

func (s Sequence) Swap(i, j int) {

s[il, slj] = sljl, sli]

Method for printing — sorts the elements before printing.
CHHTFFTEIR 757 — FE4T HIRTX 0 E AT HEF
func (s Sequence) String() string {
sort. Sort (s)
str := “[”
for i, elem := range s {
if i >0 {
s = 7
1
str += fmt. Sprint (elem)

}

return str + 7”7

2% SR 3 R SCRS (www. topgoer.cn) i % - 50 -

e A A 2R 7Y

Conversions

KA

The String method of Sequence is recreating the work that Sprint already does for slices. We can share the
effort if we convert the Sequence to a plain []int before calling Sprint.

Sequence ¥ String JEE ST Sprint AV S YGe . A RAEA Sprint Z Hi#% Sequence # N AliRE]
[lint, #tREILZ ORI ThAE .

func (s Sequence) String() string {
sort. Sort (s)
return fmt. Sprint ([Jint(s))

This method is another example of the conversion technique for calling Sprintf safely from a String method.
Because the two types (Sequence and []int) are the same if we ignore the type name, it's legal to convert
between them. The conversion doesn’t create a new value, it just temporarily acts as though the existing value
has a new type. (There are other legal conversions, such as from integer to floating point, that do create a new
value.)

GVEEB I BRI, FE String Jridit e A A Sprintf 195 A —BIF. FHIRATABE IR (198, X PR
(Sequence M [lint) HSSRAFR, BULFE =& 2 MHHMT G EVEN . FRBEIFA S OENE, € Rk
BERANPRMM . OO EGERIN 2O E, WACBEERHOIF S8 D

It’s an idiom in Go programs to convert the type of an expression to access a different set of methods. As an
example, we could use the existing type sort.IntSlice to reduce the entire example to this:

15 Go REFPt, NV EIANE R T i AR M AT B e I B AR R L. Bt FRATATAE I BLA 9 sort.IntSlice SREDKFILEEAN
ZNB

type Sequence []int

Method for printing — sorts the elements before printing
func (s Sequence) String() string {

sort. IntSlice (s). Sort ()

return fmt. Sprint ([Jint(s))

type Sequence []int

HFATEI 7772 — 7E4T EI T oo 30
func (s Sequence) String() string {
sort. IntSlice(s). Sort ()
return fmt. Sprint ([]int(s))

Now, instead of having Sequence implement multiple interfaces (sorting and printing), we're using the ability
of a data item to be converted to multiple types (Sequence, sort.IntSlice and []int), each of which does some
part of the job. That's more unusual in practice but can be effective.

WA, il Sequence SEILZ ML (HEFAHTED , FRATAEDEEEE 2% B i h £ #1258 (Sequence. sort.IntSlice
AN SRAE AN I IRE, SR REE SRR e — B> TAE. XA BARA B R [E %, (BB A AL

Interface conversions and type assertions

ARSI HB RSO (www. topgoer.cn) - 51 -

e A A 2R 7Y

BORBSRANS

Type switches are a form of conversion: they take an interface and, for each case in the switch, in a sense
convert it to the type of that case. Here’s a simplified version of how the code under fmt.Printf turns a value
into a string using a type switch. If it's already a string, we want the actual string value held by the interface,
while if it has a String method we want the result of calling the method.

FOMBE R RIS — P B —MED, TR (switch) JRHEHHIWE PR LS (case) , FFAERFIR
SR HIFAOZAA . DU ACRS Y fmt. Printf I id SRR S He oy TR R IR, 37 e B2 PR, AT 2%
B sEBRI AT a5 A String 5k, AT S FZ O A A

type Stringer interface {
String() string

var value interface{} // Value provided by caller.
switch str := value. (type) {
case string:
return str
case Stringer:
return str.String()

type Stringer interface {
String() string

var value interface{} VA FE 1 .
switch str := value. (type) {
case string:
return str
case Stringer:
return str.String()

The first case finds a concrete value; the second converts the interface into another interface. It's perfectly
fine to mix types this way.

PG DU AR, B8 TR DO AR . IR RO TR A R AR R 58

What if there’s only one type we care about? If we know the value holds a string and we just want to extract it?
A one-case type switch would do, but so would a type assertion. A type assertion takes an interface value and
extracts from it a value of the specified explicit type. The syntax borrows from the clause opening a type
switch, but with an explicit type rather than the type keyword:

FIRATHR IO —FhEAIR 2 IR 1 AIE %A — A string TAAEIREUER? R —Fis i 0 28R ST, (S T B2y
Fo RAUWFEZ - MEOME, RN PIRRIUEE O MHR B E . B % A Rk A, (HE T E AR
B, ik type BT

value. (typeName)

and the result is a new value with the static type typeName. That type must either be the concrete type held
by the interface, or a second interface type that the value can be converted to. To extract the string we know
is in the value, we could write:

A RN A F SR typeName B E. %R UAUIZEE DI REAREAL, BB 1200] He 0 (K20 — i 128
Ao BEPLMIRAVEIEE % E P A5 E, A U

A5 SR B RSO (www. topgoer.cn) i 4- 52 -

https://go-zh.org/doc/effective_go.html#type_switch
https://go-zh.org/doc/effective_go.html#type_switch

e A A 2 Y

str := value. (string)

But if it turns out that the value does not contain a string, the program will crash with a run-time error. To
guard against that, use the “comma, ok” idiom to test, safely, whether the value is a string:

R C PR E P AT A 8, RS LU AT BRI 5. B IR, AR 25, ok BTN At %
PR TN AT

str, ok := value. (string)

if ok {
fmt. Printf (“string value is: %q\n”, str)
} else {

fmt. Printf ("value is not a string\n”)

str, ok := value. (string)

if ok {
fmt. Printf ("F4fFER{EA %q\n”, str)
} else {

fmt. Printf ("iZEHIEFRFE\n")

If the type assertion fails, str will still exist and be of type string, but it will have the zero value, an empty
string.

AW R str R RSEATAE HOy A7 eh 8, (el 240, M7

As an illustration of the capability, here’s an if-else statement that’s equivalent to the type switch that opened
this section.

VERXTIXFRE U, X EAEA if-else 4], BHMTFARNIFLIERIERE.

if str, ok := value. (string); ok {
return str

} else if str, ok := value. (Stringer); ok {
return str.String()

HEA%

If a type exists only to implement an interface and has no exported methods beyond that interface, there is no
need to export the type itself. Exporting just the interface makes it clear that it's the behavior that matters, not
the implementation, and that other implementations with different properties can mirror the behavior of the
original type. It also avoids the need to repeat the documentation on every instance of a common method.

FRFNIUA RSB T AN, BRI AR S 5%, WZRAA e ® S . (U iz D R IRATE S
ETHATNMARSEEL, He A B s BN se R iz SRR AT . It REAG I8t G B A3) 45 1) S 491 2 52 44 5 S0

In such cases, the constructor should return an interface value rather than the implementing type. As an
example, in the hash libraries both crc32.NewlEEE and adler32.New return the interface type hash.Hash32.
Substituting the CRC-32 algorithm for Adler-32 in a Go program requires only changing the constructor call; the
rest of the code is unaffected by the change of algorithm.

crc32.NewlEEE A1 adler32.New #fiR [A]

TEXAIROL T, 3 R R 2 3R el — A% D T ARSI R, I3 hash b,
Rt etk i st ZOf AT AT, HR AR IAN 32 53k

#0267 hash.Hash32. Z7F Go f&FH i Adler-32 51 #4% CRC-32,
AR

AT RS A B RSO (www. topgoer.cn) - 53 -

e A A 2 Y

A similar approach allows the streaming cipher algorithms in the various crypto packages to be separated from
the block ciphers they chain together. The Block interface in the crypto/cipher package specifies the behavior
of a block cipher, which provides encryption of a single block of data. Then, by analogy with the bufio package,
cipher packages that implement this interface can be used to construct streaming ciphers, represented by the
Stream interface, without knowing the details of the block encryption.

FFE 7 N EEK crypto B Z A R — M IS R SRS R /3TF. crypto/cipher) Block #1148 @ T s
EEEAT Ny, BN BGR NS . 15, A bufio A250L, ARTSEZEL T i%4% ORISR B E GEWT T 4i& LL Stream
N DR IR LD, T I 75 ST H s 4 =5

The crypto/cipher interfaces look like this:

crypto/cipher 4% 15 H R AR X FE

type Block interface {
BlockSize () int
Encrypt (src, dst []byte)
Decrypt (src, dst []byte)

type Stream interface {
XORKeyStream(dst, src []byte)

Here’s the definition of the counter mode (CTR) stream, which turns a block cipher into a streaming cipher;
notice that the block cipher’s details are abstracted away:

TR CTR FE S e RN SORUINGE » FE RSN 4y Cpdm gk 1.

NewCTR returns a Stream that encrypts/decrypts using the given Block in
/ counter mode. The length of iv must be the same as the Block’s block size.

func NewCTR(block Block, iv []byte) Stream

NewCTR & [E]—1> Stream, FWIE / MEEAEH T H A HZEH] Block HAT.
iv IKERIS Block WK /DAAIR]
func NewCTR(block Block, iv []byte) Stream

NewCTR applies not just to one specific encryption algorithm and data source but to any implementation of the
Block interface and any Stream. Because they return interface values, replacing CTR encryption with other
encryption modes is a localized change. The constructor calls must be edited, but because the surrounding
code must treat the result only as a Stream, it won't notice the difference.

NewCTR IR I AR T € RN AR, & TAEFIXT Block % A1 Stream RYSEL. BN EATIR 142 11

ft, FrU AR CTR RFMUR M0t i o B A A R s o, (H el T30 8 BBl RS R B & F
i Stream, FEATASEEBILH X 5.

Interfaces and methods
BOMbFE

Since almost anything can have methods attached, almost anything can satisfy an interface. One illustrative
example is in the http package, which defines the Handler interface. Any object that implements Handler can
serve HTTP requests.

BT JUTAE AR R TN i%, BRI J LR T B A e i — M . — /MREME 7t it http & d s XK Handler £
Ho ARSIl T Handler [T QAR ALTE HTTP 153K,

RS R 8 F RSCRS (www. topgoer.cn) i 4- 54 -

P2 UM AL 28 Y

type Handler interface {
ServeHTTP (ResponseWriter, *Request)

ResponseWriter is itself an interface that provides access to the methods needed to return the response to the
client. Those methods include the standard Write method, so an http.ResponseWriter can be used wherever an
io.Writer can be used. Request is a struct containing a parsed representation of the request from the client.

ResponseWriter # FIH4& 4L 7 XS JE U7 1), 38875V 5 B N 2 P i RO K o B TR 8 iR B T ARAER) Write 757, BRlItL
http.ResponseWriter i F-T-{£fi io.Writer i& 1% 5. Request Z5HHAEL & CLigAT 1% 3 i 5K o

For brevity, let’'s ignore POSTs and assume HTTP requests are always GETs; that simplification does not affect
the way the handlers are set up. Here’s a trivial but complete implementation of a handler to count the
number of times the page is visited.

NI, FAURITA R HTTP 5K #2 GET Jrik, MZNg POST Jiik, XA AL it 577 &1
AN SRR P S, e DA DU 4 5 1 IR E

/ Simple counter server.
type Counter struct {
n int

func (ctr *Counter) ServeHTTP(w http. ResponseWriter, req *http.Request) {
ctr. nt+

fmt. Fprintf (w, “counter = %d\n”, ctr.n)

/TR R A R
type Counter struct f{
n int

func (ctr *Counter) ServeHTTP (w http. ResponseWriter, req *http.Request) {
ctr. nt++

fmt. Fprintf (w, “counter = %d\n”, ctr.n)

(Keeping with our theme, note how Fprintf can print to an http.ResponseWriter.) For reference, here’s how to
attach such a server to a node on the URL tree.

CEIRIBAIMAERR, 1 Fprintf Wl a4 4) http.ResponseWriter.) fE &%, X R ER T WX — A IRS SN
F| URL 4 —AN 15 55 b

import “net/http”

ctr := new(Counter)
http. Handle (“/counter”, ctr)

But why make Counter a struct? An integer is all that's needed. (The receiver needs to be a pointer so the
increment is visible to the caller.)

{HMfF4 Counter iR ZEFIANE? —/NEERAS 7. (BRI LAUNIRER, HEEIERT T WA E A W, D

Simpler counter server.

type Counter int

AT RS A B RSO (www. topgoer.cn) - 55 -

e AN AR SRR

func (ctr *Counter) ServeHTTP(w http.ResponseWriter, req *http.Request) {
sfctr+
fmt. Fprintf (w, “counter = %d\n”, *ctr)

/BRI B AR
type Counter int

func (ctr *Counter) ServeHTTP(w http.ResponseWriter, req *http.Request) {
kctrt++
fmt. Fprintf (w, “counter = %d\n”, *ctr)

What if your program has some internal state that needs to be notified that a page has been visited? Tie a
channel to the web page.

LU N, ERSERIREIRE £ R LA EREITR? v Web BUHIZRE AME T .

/ A channel that sends a notification on each visit
/ (Probably want the channel to be buffered.)

type Chan chan *http. Request

func (ch Chan) ServeHTTP(w http.ResponseWriter, req *http.Request) {
ch <= req
fmt. Fprint (v, “notification sent”)

R I A2 R A
(R B M (518 .)
type Chan chan *http. Request

func (ch Chan) ServeHTTP(w http.ResponseWriter, req *http.Request) {
ch <= req
fmt. Fprint (v, “notification sent”)

Finally, let’s say we wanted to present on /args the arguments used when invoking the server binary. It's easy
to write a function to print the arguments.

s ABCBCTRATT A B R 5 2 eI RE RN A RS2 Jargs. IRFTER, BAMTEISSS AT 1.

func ArgServer() f{
fmt. Println (os. Args)

How do we turn that into an HTTP server? We could make ArgServer a method of some type whose value we
ignore, but there’s a cleaner way. Since we can define a method for any type except pointers and interfaces,
we can write a method for a function. The http package contains this code:

AT E oy HTTP RS #50e? AT LK ArgServer Sy Bpa] 2SR 19 7572, ANl Fhi fa s i)ik BEAR
IRATRT O BRFEET AN O LM I e 73, AR RE N — A MBS — N5k http B URUY:

// The HandlerFunc type is an adapter to allow the use of
// ordinary functions as HTTP handlers. If f is a function
// with the appropriate signature, HandlerFunc(f) is a

AT RS A b RSO (www. topgoer.cn) - 56 -

e AN AR SRR

// Handler object that calls f.
type HandlerFunc func(ResponseWriter, *Request)

// ServeHTTP calls f(c, req).
func (f HandlerFunc) ServeHTTP(w ResponseWriter, req *Request) {
f(w, req)

// HandlerFunc FEZE—NEAIAS, B HEERETM HTTP L4 FEF.
/ 4 R PNAFIELEL IR E, HandlerFunc (£) B2 £ B4 PEFEFXR .
type HandlerFunc func (ResponseWriter, *Request)

// ServeHTTP calls f(c, req).
func (f HandlerFunc) ServeHTTP(w ResponseWriter, req *Request) {
f(w, req)

HandlerFunc is a type with a method, ServeHTTP, so values of that type can serve HTTP requests. Look at the
implementation of the method: the receiver is a function, f, and the method calls f. That may seem odd but it’s
not that different from, say, the receiver being a channel and the method sending on the channel.

HandlerFunc ;&2 EA ServeHTTP Jiikgett, ZIR AEMAE AR HTTP 53K, BATRE R ZI LML Sl
REARECE, MO fo XEERIRAEE, EALRENE, KOG ZRR — AT, 78 %A 1 Ak
HE

To make ArgServer into an HTTP server, we first modify it to have the right signature.

NT ¥ ArgServer IR HTTP IR #5, B aBARL eI &8 MZE 4.

/' Argument server.
func ArgServer (w http. ResponseWriter, req *http.Request) {
fmt. Fprintln(w, os.Args)

(SERRE A
func ArgServer (w http. ResponseWriter, req *http.Request) f{
fmt. Fprintln(w, os.Args)

ArgServer now has same signature as HandlerFunc, so it can be converted to that type to access its methods,
just as we converted Sequence to IntSlice to access IntSlice.Sort. The code to set it up is concise:

ArgServer #1 HandlerFunc SL7EHE T M4, PIUGERAT DK H AL 4 xR 2B R LLUG il & /I J7 1V, UG BRATR
Sequence ¥4 IntSlice LLji) IntSlice.Sort JSEE. & S ACHS AR 5 fij .

http. Handle (“/args”, http. HandlerFunc (ArgServer))

When someone visits the page /args, the handler installed at that page has value ArgServer and type
HandlerFunc. The HTTP server will invoke the method ServeHTTP of that type, with ArgServer as the receiver,
which will in turn call ArgServer (via the invocation f(c, req) inside HandlerFunc.ServeHTTP). The arguments will
then be displayed.

MG NVi Jargs DUEIRS, 3 2NZ 00 A B2 78 718 ArgServer f125% HandlerFunc. HTTP fR%# 2 LA

ArgServer J#EME, WHRIZZETLN ServeHTTP J7ik, ea gk ArgServer Giiid f(c, req)) , #ENS o R
Hok,

AT RS A B RSO (www. topgoer.cn) - 57 -

e AN AR SRR

In this section we have made an HTTP server from a struct, an integer, a channel, and a function, all because
interfaces are just sets of methods, which can be defined for (almost) any type.

FEA R, TABEE AR, AL o AMEEN AL @7 A HTTP RS &, X DI R v 1 RT3k
ME A, M LTAEFTR B AR E LT

2% SR s RSO (www. topgoer.cn) i % - 58 -

The blank identifier

= BN RRF

We’'ve mentioned the blank identifier a couple of times now, in the context of for range loops and maps. The
blank identifier can be assigned or declared with any value of any type, with the value discarded harmlessly.
It’s a bit like writing to the Unix /dev/null file: it represents a write-only value to be used as a place-holder
where a variable is needed but the actual value is irrelevant. It has uses beyond those we’ve seen already.

PAle for-range FEIAAT W SR LR ARRIRTT . 2 AAR IR Al 003 58 BOMAE (TSR B AR (TAE, I HAE 2 A 2
EF. EH R Unix 111 /dev/null SCMF: R USHE, (5 ZASRE AT ESPRE R I IE S A5 . BAERT IS
LWL ERARET

The blank identifier in multiple assignment

% BRE I E B RAF

The use of a blank identifier in a for range loop is a special case of a general situation: multiple assignment.
for range JEH px 28 FIAR RS I ARE R — RSSO, MRS DRI A 2 S IRME .

If an assignment requires multiple values on the left side, but one of the values will not be used by the
program, a blank identifier on the left-hand-side of the assignment avoids the need to create a dummy
variable and makes it clear that the value is to be discarded. For instance, when calling a function that returns
a value and an error, but only the error is important, use the blank identifier to discard the irrelevant value.

AR ZIL R 2 A e, EEARAZEALYRFEN, A2 Apn R A 2 BT # @ T IR s, Jf
RETE MR I IZ B E T B, AR B, e B MEM— MR, HRFERREZ, A ZE AR
WRFREFIR M -

if , err := os.Stat(path); os.IsNotExist(err) f
fmt. Printf ("%s does not exist\n”, path)

Occasionally you'll see code that discards the error value in order to ignore the error; this is terrible practice.
Always check error returns; they’re provided for a reason.

PRR A WO BRI 5 T R E ARSI FOEE R Sk, 15 55 MG B AR R 1], e SR R A2

// Bad! This code will crash if path does not exist.
fi, := os.Stat (path)
if fi. IsDir() {

fmt. Printf ("%s is a directory\n”, path)

/AR EREEAATLE, ERSHR.
fi, := os.Stat(path)
if fi.IsDir() {
fmt. Printf ("%s is a directory\n”, path)

AT RS b RSO (www. topgoer.cn) - 59 -

https://go-zh.org/doc/effective_go.html#for
https://go-zh.org/doc/effective_go.html#maps
https://go-zh.org/doc/effective_go.html#for
https://go-zh.org/doc/effective_go.html#maps

S
oI5

2 ARR IR

Unused imports and variables

RERAKIANZE

It is an error to import a package or to declare a variable without using it. Unused imports bloat the program
and slow compilation, while a variable that is initialized but not used is at least a wasted computation and
perhaps indicative of a larger bug. When a program is under active development, however, unused imports
and variables often arise and it can be annoying to delete them just to have the compilation proceed, only to
have them be needed again later. The blank identifier provides a workaround.

A PN WA AR e P R . R IR SRR WK FHEIR g IR, 1 A HE R 42
EAMUIR T SERE /), A PTRERTIECE R Bug. ARIMTERFIT A R, W& ERMT AR, BARLG 2
HIZIEA], BT 58 B B AR EATA T, AR B 2 AR IRFF A R4 — Ml g ooy 5.

This half-written program has two unused imports (fmt and io) and an unused variable (fd), so it will not
compile, but it would be nice to see if the code so far is correct.

BAG T —FIRFERARMEAGGA (Fmt A1io) LUR—ANRMEMIER (fd) . FUERERE, (55 H i E
SR IER, TR B

package main

import (
et
—
io
"log”
ros”

func main() {
fd, err := os.Open(“test.go”)
if err != nil {
log. Fatal (err)

7 TODO: use fd.

To silence complaints about the unused imports, use a blank identifier to refer to a symbol from the imported
package. Similarly, assigning the unused variable fd to the blank identifier will silence the unused variable
error. This version of the program does compile.

FARIESHE IR T AR RARIRE, FEE ARSI E AP IR S . AR, KR AR fd P2 AreiRggs
WHER FAARM AR R . ST T I LR RRUAHT BLg 1%

package main

import (

-

p—

io

"og”

"o’
var _ = fmt.Printf // For debugging; delete when done. // JH T ifi{, Z&4H
var io.Reader // For debugging,; delete when done. (T, G

func main() {
fd, err := os.Open(“test.go”)
if err != nil {

A% SR 3 RSO (www. topgoer.cn) % - 60 -

N

Pini
=

ESEL !

log. Fatal (err)

TODO: use fd.
= fd

By convention, the global declarations to silence import errors should come right after the imports and be
commented, both to make them easy to find and as a reminder to clean things up later.

RG], PATNAE S AFFIMAER G, H 645 5 B P AR TRER, AR AR e T 53R 3, IR0 DU B e 5 .

Import for side effect

ANBEHERTTRA

An unused import like fmt or io in the previous example should eventually be used or removed: blank
assignments identify code as a work in progress. But sometimes it is useful to import a package only for its
side effects, without any explicit use. For example, during its init function, the net/http/pprof package registers
HTTP handlers that provide debugging information. It has an exported API, but most clients need only the
handler registration and access the data through a web page. To import the package only for its side effects,
rename the package to the blank identifier:

Baiflh fmt 2K io AR I SRR R B R B 2 A E 2R RS AR U TAE IEERE T b (B R SARA
AR T HEWER, TR . Gl 78 net/http/pprof A1 init &S T HTTP AR P 1R (5
Bo EAEMTRIK APL B %) 90 R 22 A B L R s S Web GURIVE HAGE . 80 A UL EE]
gL, Rz 497 R IR

import “net/http/pprof”

This form of import makes clear that the package is being imported for its side effects, because there is no
other possible use of the package: in this file, it doesn’t have a name. (If it did, and we didn’t use that name,
the compiler would reject the program.)

AR AR AR AR Z B RN HLRE T S AR, POSKAELEMET iz e Aiscth, edfisr. Giefs
FIEATBAEN, iFds S BLEiZ5mm.

Interface checks

BOKE

As we saw in the discussion of interfaces above, a type need not declare explicitly that it implements an
interface. Instead, a type implements the interface just by implementing the interface’s methods. In practice,
most interface conversions are static and therefore checked at compile time. For example, passing an

*0s.File to a function expecting an io.Reader will not compile unless *0s. File implements the
io.Reader interface.

G IRAERTT £ 1) AP i RE, — /NRRTETE Balh A i e e Bl 7 A 0. BOmAR ., %R B R BBl 7 3N 07
V5, HSUERSIIL TR 0. RSB, KB AR A, SRR BRI . i, S — kos.File %
AL io.Reader MIBRECKA 209wk, FrdE *os.File SEILT io.Reader #:l1.

Some interface checks do happen at run-time, though. One instance is in the encoding/json package, which
defines a Marshaler interface. When the JSON encoder receives a value that implements that interface, the
encoder invokes the value’s marshaling method to convert it to JSON instead of doing the standard conversion.
The encoder checks this property at run time with a type assertion like:

JRAEmL, AL O EXEZITN T #li, encoding/json flE X T —A> Marshaler # M. %4 JSON 4nhd a2 —
ML IZIRORIE, Azt AR ATk, IRy JSON, M AEREfFARiERO B e e . it ds /IS 4T

AT RS A B R SCRS (www. topgoer.cn) - 61 -

https://go-zh.org/doc/effective_go.html#interfaces_and_types
https://go-zh.org/doc/effective_go.html#interfaces_and_types
https://go-zh.org/pkg/encoding/json/
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/Marshaler
https://go-zh.org/doc/effective_go.html#interface_conversions
https://go-zh.org/pkg/encoding/json/
file:///tmp/calibre_5.27.0_tmp_hyzr9i3r/fehv9no0_pdf_out/Marshaler

V

|
ey

2 bR

S

N

BHd s SR A E N, BRI
m, ok := val. (json.Marshaler)

If it's necessary only to ask whether a type implements an interface, without actually using the interface itself,
perhaps as part of an error check, use the blank identifier to ignore the type-asserted value:

AR EAIWREA R R RSB RN, AT ELbE T OAS GTRE AR AR » S AR IR 2
W S I 5 PO (B«

if , ok := val. (json.Marshaler); ok f{
fmt. Printf (“value %v of type %T implements json.Marshaler\n”, val, val)

One place this situation arises is when it is necessary to guarantee within the package implementing the type
that it actually satisfies the interface. If a type—for example, json.RawMessage—needs a custom JSON
representation, it should implement json.Marshaler, but there are no static conversions that would cause the
compiler to verify this automatically. If the type inadvertently fails to satisfy the interface, the JSON encoder
will still work, but will not use the custom implementation. To guarantee that the implementation is correct, a
global declaration using the blank identifier can be used in the package:

TR ST SRR — e R O, BRI L. A AR (Fln json.RawMessage) FEE-—FhE
il JSON KIS, BN M52 json.Marshaler, ANl IUEEH ST DIE g R85 2 H shI0EE . #7122 A0@nt 2ng i
PR WORE R Z4 0, A4 JSON Gifid 8 nl TAE, (HEH RS EH M. AMAILSZIIER, {EZa b= absif
P — AN R A

var _ json.Marshaler = (*¥RawMessage) (nil)

In this declaration, the assignment involving a conversion of a *RawMessage to a Marshaler requires that

*#RawMessage implements Marshaler, and that property will be checked at compile time. Should the
json.Marshaler interface change, this package will no longer compile and we will be on notice that it needs to
be updated.

e ERS, RATEHE T *RawMessage RS IR Y 7 Marshaler, DL SRER *RawMessage S
Marshaler, X Hj@PERS R UG, 75 json.Marshaler 4 %, Aol g, AN SEE R E
R LN

The appearance of the blank identifier in this construct indicates that the declaration exists only for the type
checking, not to create a variable. Don’t do this for every type that satisfies an interface, though. By
convention, such declarations are only used when there are no static conversions already present in the code,
which is a rare event.

TEX AP S LA AR IRAT, RIS IR AE 2 o TR A . AN AN E il 2 B D i e TR FTR AL 2
s ACAAUY AR AT AR A AN A RIS 1, BRI AR

AT RS A b RSO (www. topgoer.cn) - 62 -

https://go-zh.org/doc/effective_go.html#interface_conversions
https://go-zh.org/pkg/encoding/json/#RawMessage
https://go-zh.org/pkg/encoding/json/#RawMessage

R

P ik
Embedding

PR

Go does not provide the typical, type-driven notion of subclassing, but it does have the ability to “borrow”
pieces of an implementation by embedding types within a struct or interface.

Go JF AR AL, RAIRANN RN, (FIDR SRR R BRI L, BRI ARSI,

Interface embedding is very simple. We've mentioned the io.Reader and io.Writer interfaces before; here are
their definitions.

O N AER f . RATZ AT 215 io.Reader 1 io.Writer #11, X B EAINE L.

type Reader interface {
Read(p [lbyte) (n int, err error)

type Writer interface {
Write(p [Ibyte) (n int, err error)

The io package also exports several other interfaces that specify objects that can implement several such
methods. For instance, there is io.ReadWriter, an interface containing both Read and Write. We could specify
io.ReadWriter by listing the two methods explicitly, but it's easier and more evocative to embed the two
interfaces to form the new one, like this:

io ALt il 7 s e, DA Re e B G T Se B . Bl io.ReadWriter w2 MU 7 Read AT Write (19310, &
ATAT LA I 5 s H B X AN 532k 6 W io.ReadWriter, LD I /N2 11 Py ik 2058 42 101 rp S SR 2 5 FLVE L O e vk
AR

ReadWlriter is the interface that combines the Reader and Writer interfaces

type ReadWriter interface {

Reader

Writer
}

ReadlWiriter #0454 T Reader fll Writer #££I1.
type ReadWriter interface f{

Reader

Writer
}

This says just what it looks like: A ReadWriter can do what a Reader does and what a Writer does; it is a union
of the embedded interfaces (which must be disjoint sets of methods). Only interfaces can be embedded within
interfaces.

IEMIEERKAR:: ReadWriter RESZMHATAT Reader 1 Writer AT LASEI 1 etE, €N MELGA CENLIUE A
LMD o WAEHORERIRA R B

A5 SR B R SCRS (www. topgoer.cn) i 4- 63 -

The same basic idea applies to structs, but with more far-reaching implications. The bufio package has two
struct types, bufio.Reader and bufio.Writer, each of which of course implements the analogous interfaces from
package io. And bufio also implements a buffered reader/writer, which it does by combining a reader and a
writer into one struct using embedding: it lists the types within the struct but does not give them field names.

[() A AR R 1T DA AR S R A b, (B SO IRz . bufio AL bufio.Reader 1 bufio.Writer X P44 #4285,
EAVEF— AT 5 o AR E UKD . tAh, bufio BB 44 reader/writer FR¥ LA BRBIGE Mt T, S2IL T W92
M reader/writer: EAEM RS T IXER, HIERG TEANFBRS.

Readllriter stores pointers to a Reader and a Writer.
[t implements io. Readlriter.

type ReadWriter struct {

*Reader *bufio. Reader
sWriter *bufio. Writer
1
ReadWriter 7#f# T 5/f Reader fll Writer HG75#f

ESEH T io. ReadWriter
type ReadWriter struct {

*Reader *bufio. Reader

*Writer *bufio. Writer

The embedded elements are pointers to structs and of course must be initialized to point to valid structs
before they can be used. The ReadWriter struct could be written as

WHRIN T RIS R IR, IR e A TERE P L AT WIIR L R 17 A S AR (1455 . - ReadWriter S5k fkmlidad i~
TrAOE X

type ReadWriter struct {
reader *Reader
writer *Writer

but then to promote the methods of the fields and to satisfy the io interfaces, we would also need to provide
forwarding methods, like this:

B T ITHZ T BT 2L To 0, ARG SR A A7k, R IR

func (rw *ReadWriter) Read(p []byte) (n int, err error) {
return rw. reader. Read (p)

By embedding the structs directly, we avoid this bookkeeping. The methods of embedded types come along
for free, which means that bufio.ReadWriter not only has the methods of bufio.Reader and bufio.Writer, it also
satisfies all three interfaces: io.Reader, io.Writer, and io.ReadWriter.

T RS R, BRATA AR Gt B, RS ik rT LLELR251 . IX R bufio.ReadWriter A ALHE
bufio.Reader #il bufio.Writer {75i%, ‘BRI L T =4#:11: io.Reader. io.Writer L% io.ReadWriter.

There's an important way in which embedding differs from subclassing. When we embed a type, the methods
of that type become methods of the outer type, but when they are invoked the receiver of the method is the
inner type, not the outer one. In our example, when the Read method of a bufio.ReadWriter is invoked, it has
exactly the same effect as the forwarding method written out above; the receiver is the reader field of the
ReadWriter, not the ReadWriter itself.

A% SR B R SCRS (www. topgoer.cn) 4 - 64 -

EEFX WIS TROEEFE . MR — AR, 2R 7R BN AR ik, AR e TR, 2570
PR R R, TMARANESI . EFRATEI T, 24 bufio.ReadWriter () Read J7ikpiB N, & 52 W5 M RITER
HEFRERIZOR: BlliE & ReadWriter 1) reader 7B, ik ReadWriter A5 .

Embedding can also be a simple convenience. This example shows an embedded field alongside a regular,
named field.

PR FEI A P AR o SN TR 17— A i 7 B — AN H) i 4 7 B

type Job struct f{
Command string

*log. Logger

The Job type now has the Log, Logf and other methods of *log. Logger . We could have given the Logger a
field name, of course, but it's not necessary to do so. And now, once initialized, we can log to the Job:

Job ZKHEH T Log. Logf i *log. Logger e k. BATHRTT LA Logger 24— 5B 4, (HEER0BIX4
e BFE, —BHWIGIE, AT Job T

2

job. Log (“starting now...”)

The Logger is a regular field of the Job struct, so we can initialize it in the usual way inside the constructor for
Job, like this,

Logger s Job SR MFBL IIRATAE Job muig e, il — By 2k AIa i e, mgRIxre:

func NewJob (command string, logger *log.Logger) *Job {
return &Job {command, logger}

}

or with a composite literal,

ORI S AT
job := &Job{command, log.New(os.Stderr, “Job: ”, log.Ldate)}

If we need to refer to an embedded field directly, the type name of the field, ignoring the package qualifier,
serves as a field name, as it did in the Read method of our ReaderWriter struct. Here, if we needed to access
the *log. Logger of a Job variable job, we would write job.Logger, which would be useful if we wanted to
refine the methods of Logger.

HRAVHEEERL B, T ZRERES, HEEE BN B 4%, MG 3417 ReaderWriter Z5H414(1)
Read ik taliet. #HRAVFHED 1 Job KM MAFE job (1) *log. Logger ., A LLEZE{E job.Logger. #3kA14H
T Logger (550, XadEw A H .

func (job *Job) Logf (format string, args ...interface{}) {
job. Logger. Logf ("%q: %s”, job.Command, fmt.Sprintf (format, args...))
}

Embedding types introduces the problem of name conflicts but the rules to resolve them are simple. First, a
field or method X hides any other item X in a more deeply nested part of the type. If log.Logger contained a
field or method called Command, the Command field of Job would dominate it.

AT RS A HB RSO (www. topgoer.cn) - 65 -

PRSI 5 N Ay A o i il J, AR DU EIAR TR B . 1%, FREUE X SRGBZ M IR E BN H T X
log.Logger & —444y Command 12k 777%, Job) Command ZE&HE G

Second, if the same name appears at the same nesting level, it is usually an error; it would be erroneous to
embed log.Logger if the Job struct contained another field or method called Logger. However, if the duplicate
name is never mentioned in the program outside the type definition, it is OK. This qualification provides some
protection against changes made to types embedded from outside; there is no problem if a field is added that
conflicts with another field in another subtype if neither field is ever used.

Fo, AMIFERREZH L HILR AR, W2 E— MR, & Job M & 40y Logger IFBE %,
log.Logger MR BIFLh T &= R k. ST, 5 A KA RAEIZRAE CZAMIREF AR, A& s, XA IRGE
RERSTESN A IR E R A BB S AP ORI . UL, USRI 5B 5 53 — D7 B P K B 5%, R SEX PN 0 7
BOR AN 2 WA FH A 1) AL o

AT RS A b R SCRS (www. topgoer.cn) - 66 -

IR

HK
Concurrency

HE

Share by communicating

BEYEEENF
Concurrent programming is a large topic and there is space only for some Go-specific highlights here.
IR MERI RS (ERTRIE, XA iE—L% Go FFA AR,

Concurrent programming in many environments is made difficult by the subtleties required to implement
correct access to shared variables. Go encourages a different approach in which shared values are passed
around on channels and, in fact, never actively shared by separate threads of execution. Only one goroutine
has access to the value at any given time. Data races cannot occur, by design. To encourage this way of
thinking we have reduced it to a slogan:

FEFFRGRET, 9D I AR G () IR ARG) 75 SRS B A P, XA S HOR R AR INAE . Go & IkkEAE, ©RILERE
HRAFAL S, bR b, ZADMOLIATIAREAA S THICE, EERA RN, HH 4> goroutine REMS I FII%ME. %K
Wse g NBETE A4 1o Oy TIRMBIR AT A, BAT Ry — A1 S

Do not communicate by sharing memory; instead, share memory by communicating.

AELE I RIS, TR S R I A .

This approach can be taken too far. Reference counts may be best done by putting a mutex around an integer
variable, for instance. But as a high-level approach, using channels to control access makes it easier to write
clear, correct programs.

AR g . BN, 51 R THEGEE Oy B RS I LR ORI e SE . (B — R gy ik, 5 R i Uy 17 g
BPALIRS R, LR .

One way to think about this model is to consider a typical single-threaded program running on one CPU. It has
no need for synchronization primitives. Now run another such instance; it too needs no synchronization. Now
let those two communicate; if the communication is the synchronizer, there’s still no need for other
synchronization. Unix pipelines, for example, fit this model perfectly. Although Go’s approach to concurrency
originates in Hoare’s Communicating Sequential Processes (CSP), it can also be seen as a type-safe
generalization of Unix pipes.

AT LA SR () B2 RIS AT AR B CPU 2 RO A A B . W e g m 2 Jis . B s AT — MR, ehE®
F2G . BUEILEA IR TEE . ARl EE RS, e AT ZEL D . fln, Unix S5 X se L 52
H. RE Go IR AR T Hoare HEEINFFALEL (CSP) , "EARKIR AT LUE MU 28 22 42 1) Unix B TE RIS

Goroutines

Goroutines

They're called goroutines because the existing terms—threads, coroutines, processes, and so on—convey
inaccurate connotations. A goroutine has a simple model: it is a function executing concurrently with other

AR I RSO (www. topgoer.cn) 1 - 67 -

K

goroutines in the same address space. It is lightweight, costing little more than the allocation of stack space.
And the stacks start small, so they are cheap, and grow by allocating (and freeing) heap storage as required.

AP *#* goroutine ¥+, JEDUAIA ARG —L&AE . WhRE, BERESS—RERifL L e & L. Goroutine HA RIS
R et 53 E goroutine JFREATAEF Mk MR R B, EOR LR, ITAERE LT U AR AR M BC . 10 HAR AR
TFER AR /NG, ITELEATIRERDY, /RS A B HE R [0. RO A2

Goroutines are multiplexed onto multiple OS threads so if one should block, such as while waiting for 1/O,
others continue to run. Their design hides many of the complexities of thread creation and management.

Goroutine fEZ M EER G Lol sLBl 2B, DA — N 2RFEPHZE, i ZEfs 1/0, WAL E LI <1817,
Goroutine [1P T A2 00 R A B 2 441k

Prefix a function or method call with the go keyword to run the call in a new goroutine. When the call

completes, the goroutine exits, silently. (The effect is similar to the Unix shell’s & notation for running a
command in the background.)

TE R AT EE AT IN go KB RERSAE BT goroutine HiT'E . M EUE, 1% goroutine & iE . (RURA
&A% Unix Shell iy & %5, BRibaA G Gigir.)

go list.Sort () Y/ run list. Sort concurrently; don’t wait for it.

go list.Sort() // FEKRIELT list. Sort, ErmosE 4.

A function literal can be handy in a goroutine invocation.

PR ¥R 4E goroutine i AER AT .

func Announce (message string, delay time.Duration) {
go func() {
time. Sleep (delay)
fmt. Println (message)

YO // Note the parentheses — must call the function.

func Announce (message string, delay time.Duration) {
go func() {
time. Sleep (delay)
fmt. Println (message)
YO // EBRIES - UG Z R

In Go, function literals are closures: the implementation makes sure the variables referred to by the function
survive as long as they are active.

£ Go ", BREUTIHGE AL SR GRAE 1 BR B0 51 RIS R IR 2R i i 383 5 b % Sl e) A I

These examples aren’t too practical because the functions have no way of signaling completion. For that, we
need channels.

R R AT 4 S EE, R RN SIS N 4 A B, R, JRAT S A
Channels

S

AT RS A B R SCRS (www. topgoer.cn) - 68 -

I K

Like maps, channels are allocated with make, and the resulting value acts as a reference to an underlying data
structure. If an optional integer parameter is provided, it sets the buffer size for the channel. The default is
zero, for an unbuffered or synchronous channel.

F S WU R, A2 make ROMECAAE. JLETRMESE Y VR EBAR SR G . E R R B S, ©
M AZEE R E LN X RN BOMERE, RRATEMN IR 5 1E.

ci := make(chan int) // unbuffered channel of integers

c¢j := make(chan int, 0) // unbuffered channel of integers

cs := make(chan *os.File, 100) // buffered channel of pointers to Files
ci := make(chan int) BER BT [T G (5 8

¢j := make(chan int, 0) BRI M 5

cs := make(chan *os.File, 100) // 75/ X 1FI8EF 17280 508

Unbuffered channels combine communication—the exchange of a value—with synchronization—guaranteeing
that two calculations (goroutines) are in a known state.

T E A AR I 2 R A, EREFTR (W4 goroutine) THELAL T IR .

There are lots of nice idioms using channels. Here's one to get us started. In the previous section we launched
a sort in the background. A channel can allow the launching goroutine to wait for the sort to complete.

EIEARZBE, FAINZKEITIG 7. /8 b1, AR G)R3) 7 HFP . (SR 301 goroutine S5 HETF 52
o

¢ := make(chan int) // Allocate a channel.
/ Start the sort in a goroutine; when it completes, signal on the channel.
go func() {
list. Sort ()
c <~ 1 // Send a signal; value does not matter.
10O
doSomethingForAWhile ()
K=@ // Wait for sort to finish; discard sent value.
¢ := make(chan int) // Al MEE
// TE goroutine HEBIHET. HE TG, TEIGE EXEES .
go func() {
list. Sort ()
c <~ 1 /) RiFEEE, fF4ETLHE.
1O
doSomethingForAWhile ()
e /) FRHFER, EFRKNE

Receivers always block until there is data to receive. If the channel is unbuffered, the sender blocks until the
receiver has received the value. If the channel has a buffer, the sender blocks only until the value has been
copied to the buffer; if the buffer is full, this means waiting until some receiver has retrieved a value.

FUCE AR BT 2 — B A EE R AR, WAL I BN, ok H e — %, AEER g, W
JeikFE BRMENCE BB Genh XA T ARRILEE ;A7 deb X Oy, ik & — B ELRAMR I IOl —MEDN k.

A buffered channel can be used like a semaphore, for instance to limit throughput. In this example, incoming
requests are passed to handle, which sends a value into the channel, processes the request, and then receives
a value from the channel to ready the “semaphore” for the next consumer. The capacity of the channel buffer
limits the number of simultaneous calls to process.

A RS A B RSO (www. topgoer.cn) - 69 -

I K

WM TR S B, IR R, BEARIER 2L 84y handle, "B MEE TR, ARERE

R IZEE S, DMEiRZ E SR R - RiER. FEZm XK AR RGE 1T EN A process FI%CE IR,

var sem = make(chan int, MaxOutstanding)

func handle(r *Request) {

sem <- 1 // Wait for active queue to drain.

process(r) // May take a long time.
<{-sem // Done; enable next request to run.
}
func Serve(queue chan *Request) {
for {
req := <-queue
go handle(req) // Don’t wait for handle to finish.
}

var sem = make (chan int, MaxOutstanding)

func handle(r *Request) {
sem <— 1 // ZEfE)TANA A& 45

process(r) // AJGEFEREM 1],
{-sem /) ek AET—NER A LUE 1T
}
func Serve(queue chan *Request) {
for {
req := <-queue
go handle(req) // L% fF handle %54,

Once MaxOutstanding handlers are executing process, any more will block trying to send into the filled channel
buffer, until one of the existing handlers finishes and receives from the buffer.

—HA MaxOutstanding MBS HENZIPRE, HABKI T AL PLE AR EAOR B R FE 20 KA RPH 28, BRI
AR 5E BAC B NG X R Bl — MBI

This design has a problem, though: Serve creates a new goroutine for every incoming request, even though
only MaxOutstanding of them can run at any moment. As a result, the program can consume unlimited
resources if the requests come in too fast. We can address that deficiency by changing Serve to gate the
creation of the goroutines. Here’s an obvious solution, but beware it has a bug we’ll fix subsequently:

SR, EEAAEE RS R4 R4 MaxOutstanding 4~ goroutine fig[RIHZEAT, {H Serve iffe AR EEN F R AIEE T
B goroutine. AR, HIHRRRI, ZREFH S LRIEFERIT. AT VRHNXAAE, BATATLLUEMEK Serve
SRR Go 2, XRANMRAIMI TR, HELLERIMEE S HILT Bug.

func Serve(queue chan *Request) {
for req := range queue {
sem <- 1
go func() {
process (req) // Buggy; see explanation below.
<{-sem

1O

A RS A B RSO (www. topgoer.cn) i 7- 70 -

I K

func Serve(queue chan *Request) {
for req := range queue {
sem <- 1
go func() {
process (req) // X /LA Bug, MEFENF.
<{-sem

1O

The bug is that in a Go for loop, the loop variable is reused for each iteration, so the req variable is shared
across all goroutines. That's not what we want. We need to make sure that req is unique for each goroutine.
Here's one way to do that, passing the value of req as an argument to the closure in the goroutine:

Bug HITE Go) for fifHfrh, ZAGH B RTERFUGERM S EA, Fik req ZESTEFTE R goroutine 3L, XA
fIAEZEN . BATTZEHIR req XT84 goroutine SKRULHEME 1. A —FOTERRBEME], HUZW req MEIENESHENE
% goroutine {1

func Serve(queue chan *Request) {
for req := range queue {
sem <- 1
go func (req *Request) {
process (req)
<{-sem

} (req)

Compare this version with the previous to see the difference in how the closure is declared and run. Another
solution is just to create a new variable with the same name, as in this example:

PCRCHT IS PSR, 2 A A RS AT 2250 o9 — T o7 S8 DU IR) 42 7 QR i AR &, gl ep i -

func Serve(queue chan *Request) {

for req := range queue {
req := req // Create new instance of req for the goroutine.
sem <— 1
go func() {

process (req)
<{-sem

1O

func Serve(queue chan *Request) {

for req := range queue {
req := req // NiZ Go FEOI#E req BIHSEH).
sem <- 1
go func() {

process (req)
<{-sem

1O

It may seem odd to write

AT RS A B R SCRS (www. topgoer.cn) - 71 -

K

EMGE R AR

req := req

but it's a legal and idiomatic in Go to do this. You get a fresh version of the variable with the same name,
deliberately shadowing the loop variable locally but unique to each goroutine.

{H7E Go HHIXFEMOR A BRI . IRHIMIFRR A 73R8 Tz i — DN E A, DUk R %0 & ke s A i, et
£34 goroutine {4,

Going back to the general problem of writing the server, another approach that manages resources well is to
start a fixed number of handle goroutines all reading from the request channel. The number of goroutines
limits the number of simultaneous calls to process. This Serve function also accepts a channel on which it will
be told to exit; after launching the goroutines it blocks receiving from that channel.

(5] 380 Gt 5 1R 55 o) — R Il A B0k 5 — P s B R VR 1) U D VR 2 U s L 2 £ & 1Y handle goroutine, — g i SR 15 AR i AL
#&. Goroutine [I%EIRH 1 RN T process K& . Serve FEFESH—/MEKEE HEE, 7EB30f goroutine
Joi, EOK B ZE I IS E P RO .

func handle(queue chan *Request) {
for r := range queue {
process (1)

func Serve(clientRequests chan *Request, quit chan bool) {

/" Start handlers

for i := 0; i < MaxOutstanding; i++ {
go handle(clientRequests)

}

{—quit // Wait to be told to exit.

func handle(queue chan *Request) f{
for r := range queue {
process (r)

func Serve(clientRequests chan *Request, quit chan bool) {
Je B AL PEFE 7
for i := 0; i < MaxOutstanding; i++ {
go handle(clientRequests)

}

<{-quit AP B M o

Channels of channels

REHHIEE

One of the most important properties of Go is that a channel is a first-class value that can be allocated and
passed around like any other. A common use of this property is to implement safe, parallel demultiplexing.

Go R H E R (R — 2, A B BB S BRI . R W R e dx . TFAT I B0 iR

A5 SR B RSO (www.topgoer.cn) i 4- 72 -

I K

In the example in the previous section, handle was an idealized handler for a request but we didn’t define the
type it was handling. If that type includes a channel on which to reply, each client can provide its own path for
the answer. Here’'s a schematic definition of type Request.

1 LT 7, handle 2N ARF BB H R FERE T, (EERATEARE CEPTRB R RAER . FiZR M & D
TRIEHEE, BafE— D amlae Ny R E Ok iR, BUF N Request R o

type Request struct {
args [Jint
f func([]int) int
resultChan chan int

The client provides a function and its arguments, as well as a channel inside the request object on which to
receive the answer.

FP Pt T AR B S, BEAMETE R R A RN R T

func sum(a [Jint) (s int) {
for , v := range a {
s t=v
t

return

request := &Request{[]int{3, 4, 5}, sum, make(chan int)}
/ Send request

clientRequests <- request
’ Wait for response.

fmt. Printf (“answer: %d\n”, <-request.resultChan)

func sum(a [Jint) (s int) {
for , v := range a {
s t= v
}

return

request := &Request{[]int{3, 4, 5}, sum, make(chan int)}
C RIEIER

clientRequests <- request
" SEEELY

fmt. Printf ("answer: %d\n”, <-request.resultChan)

On the server side, the handler function is the only thing that changes.

e S, R T s handler %L,

func handle (queue chan *Request) {
for req := range queue {
req. resultChan <- req. f(req. args)

There's clearly a lot more to do to make it realistic, but this code is a framework for a rate-limited, parallel,
non-blocking RPC system, and there’s not a mutex in sight.

AT RS A b R SCRS (www. topgoer.cn) - 73 -

I K

FUEHSCPR T FLE AR 2 TAERU, XSRS RE S — MR AT IR JFA7. ARFHIE RPC RGRUIESE, W HEFAEE)
[

Parallelization
AT

Another application of these ideas is to parallelize a calculation across multiple CPU cores. If the calculation
can be broken into separate pieces that can execute independently, it can be parallelized, with a channel to
signal when each piece completes.

KRR AR RAE S CPU 00 ESEBURT IR Rt SO R RO 0 A J LR AT AT R R, e T DR bt
GRS MR IE ROE AR S, IR SEIUIFAT AL

Let’s say we have an expensive operation to perform on a vector of items, and that the value of the operation
on each item is independent, as in this idealized example.

IERANTEE R BB 5. BATEXS — R A A AT R BRI B, TR NI (T S 52 T

type Vector []float64

// Apply the operation to v[i], v[i+l] ... up to v[n-1].
func (v Vector) DoSome(i, n int, u Vector, ¢ chan int) {
for ; i < n; i++ {
v[i] += w. Op(v[il)
}

c <=1 // signal that this piece is done

type Vector []float64

KGN R vi], vii+l] ... EZF| v[n-1]
func (v Vector) DoSome(i, n int, u Vector, c chan int) {
for ; i < n; i++ {
v[i] += w. Op(v[i])
1
@ &= 1 /) Rl SN — B H K

We launch the pieces independently in a loop, one per CPU. They can complete in any order but it doesn’t
matter; we just count the completion signals by draining the channel after launching all the goroutines.

WAVEIEI R B 5 T ML kb, A4 CPU BHUT — N3RS A TRELELF TR R e, (HiX A x &, 4]
HBTERTA goroutine JFA G HL, FFGuiiHEE) se s 5 Bial .

const NCPU = 4 // number of CPU cores

func (v Vector) DoAll (u Vector) {
¢ := make(chan int, NCPU) // Buffering optional but sensible.
for i := 0; i < NCPU; i++ {
go v. DoSome (i*len(v)/NCPU, (i+1)*len(v)/NCPU, u, c)
}
// Drain the channel.
for i := 0; i < NCPU; i++ {

<{-¢ // wait for one task to complete

RS R 3 F H RSCRS (www. topgoer.cn) i 4- 74 -

IR

All done.

const NCPU = 4 CPU #0054

func (v Vector) DoAll (u Vector) {
¢ := make(chan int, NCPU) ZEINIXAE AT, (H B AT
for i :=0; i < NCPU; i++ {
go v.DoSome (i*len(v)/NCPU, (i+1)*len(v)/NCPU, u, c)

HEZ (518
for i := 0; i < NCPU; i++ {
<~ SELFEE 5550 1R
}
D) 5E K

The current implementation of the Go runtime will not parallelize this code by default. It dedicates only a
single core to user-level processing. An arbitrary number of goroutines can be blocked in system calls, but by
default only one can be executing user-level code at any time. It should be smarter and one day it will be
smarter, but until it is if you want CPU parallelism you must tell the run-time how many goroutines you want
executing code simultaneously. There are two related ways to do this. Either run your job with environment
variable GOMAXPROCS set to the number of cores to use or import the runtime package and call
runtime.GOMAXPROCS(NCPU). A helpful value might be runtime.NumCPU(), which reports the number of
logical CPUs on the local machine. Again, this requirement is expected to be retired as the scheduling and run-
time improve.

H T Go ig47 i S ER I ARSI AT HATRIY, & HONH P Z ARG S i o — A B A% 0 . (R goroutine AT RETE R
G R %E, TTEAT RN 2 NE A2 PATH SRR . BN SRS E R, LTk E eSS EA . (HI
15, FHURAE CPU IHATHAT, il iFig 7R A5 25N 5 £ /> goroutine fEPITRIG. HWFNEEIAEIX—HIY, %
2 TEIBATIRE TAER K GOMAXPROCS 8548 s Y MR EAE IR 08, 324 N runtime 253
runtime.GOMAXPROCS(NCPU). runtime.NumCPU() (i GEIRA I, BRI ETHLES 324 CPU #0%. 4R,
W& R SRR AT I (it R S AT T B R 5 7

Be sure not to confuse the ideas of concurrency—structuring a program as independently executing
components—and parallelism—executing calculations in parallel for efficiency on multiple CPUs. Although the
concurrency features of Go can make some problems easy to structure as parallel computations, Go is a
concurrent language, not a parallel one, and not all parallelization problems fit Go’s model. For a discussion of
the distinction, see the talk cited in this blog post.

TERAZLRIAIFRATAT LS IR A RS AT R AL ISR P R 7%, TORAT IR 1 8R4 % CPU L PAT M BEAT
5. AT Go MR AR RENS LERELL (8 U By M O ATHH5E, (8 Go DI MIFAINARIFTIIE =, H Go RIALJF AN G
PR RFFAT . ST E DO g, W SR,

A leaky buffer

T e R IR X

The tools of concurrent programming can even make non-concurrent ideas easier to express. Here's an
example abstracted from an RPC package. The client goroutine loops receiving data from some source,
perhaps a network. To avoid allocating and freeing buffers, it keeps a free list, and uses a buffered channel to
represent it. If the channel is empty, a new buffer gets allocated. Once the message buffer is ready, it's sent to
the server on serverChan.

IR gL TAHE R RS 0 REAI RS X RAMENE RPC GBI, %/ Go FEAFLERYR, mREL LS

TR FE U . N D TCARE P X, EORMF T — D WEER, (T — Mg EIER R, S EENE, e ieHirs
WX —HIHR g Xaids, ekl serverChan # Ak Bk 55 45 -

RS R3 F H RSCRS (www. topgoer.cn) i - 75 -

https://blog.golang.org/2013/01/concurrency-is-not-parallelism.html
https://blog.golang.org/2013/01/concurrency-is-not-parallelism.html

I K

var freelist = make(chan *Buffer, 100)
var serverChan = make (chan *Buffer)

func client() {
for {
var b *Buffer
// Grab a buffer if available; allocate if not.
select {
case b = <{—freelist:
// Got one; nothing more to do.
default:
// None free, so allocate a new one.
b = new(Buffer)

}
load (b) // Read next message from the net.
serverChan <- b // Send to server.

var freelList = make(chan *Buffer, 100)
var serverChan = make (chan *Buffer)

func client() {
for {
var b *Buffer
/) HEEMIX AR, A AR BANE
select {
case b = <{-freelist:
/) KA A -
default:
// FEEEIN, B B — N
b = new(Buffer)
1
load (b) /MG SRR T — 257 B
serverChan <— b // KiEXEZJRF45.

The server loop receives each message from the client, processes it, and returns the buffer to the free list.

R 5525 N P R AN R, ARIEAT], R DR [25 2 IR B

func server() {
for {
b := <{-serverChan // Wait for work.
process (b)
// Reuse buffer if there’s room.
select {
case freelList <- b:
// Buffer on free list; nothing more to do.
default:

// Free list full, just carry on.

AR I RSO (www.topgoer.cn) # - 76 -

I K

func server() f{
for {
b := <-serverChan /) ERELAE.
process (b)
/) EHERMIX AT EHE
select {
case freelList <- b:
/) PG TR EZ G, R
default:
/) BB i, RIFRLL

The client attempts to retrieve a buffer from freelList; if none is available, it allocates a fresh one. The server’s
send to freeList puts b back on the free list unless the list is full, in which case the buffer is dropped on the
floor to be reclaimed by the garbage collector. (The default clauses in the select statements execute when no
other case is ready, meaning that the selects never block.) This implementation builds a leaky bucket free list
in just a few lines, relying on the buffered channel and the garbage collector for bookkeeping.

ZPumi B freeList FPEREZEMX: HERAZMXTTH, Sl o — M. RS b iR 51 freelist hE
TFCE, BRI ZEr R DOR T, SRR B AR . (select 1EA)H Y default TAITEEA &AERFAIRHAAT, Xtk vk
* selects /KIEASHIHIE. O KEEMS AN K FE A B 1S, IO AR LA B 7 — A Al R Bz ab X
R 55 1) 25 PR A 2R

AT RS b R SCRS (www. topgoer.cn) - 77 -

-

T
Nrce
JHO

R
Errors

iR

Library routines must often return some sort of error indication to the caller. As mentioned earlier, Go’s
multivalue return makes it easy to return a detailed error description alongside the normal return value. It is
good style to use this feature to provide detailed error information. For example, as we'll see, 0s.0pen doesn’t
just return a nil pointer on failure, it also returns an error value that describes what went wrong.

VB R 75 e R 3R P SRR B B R PR . Z BT ER BN, Go T M2 IR MR, SRR E R TR R AE R, ERE
AEFA TR [TV DR TR o BT MRS PR R B (5 R — R R AP RS . B, RAITHE &), os.Open f£
RIS AR [l —A> nil 485, IR Al — D PEAIA A RN error {H.

By convention, errors have type error, a simple built-in interface.

RIBZ)5E, HARMRALE T N error, XE—ANPW IR AR,

type error interface {
Error () string

A library writer is free to implement this interface with a richer model under the covers, making it possible not
only to see the error but also to provide some context. As mentioned, alongside the usual *0s. File return
value, 0s.0Open also returns an error value. If the file is opened successfully, the error will be nil, but when
there is a problem, it will hold an os.PathError:

JE IR 9 5 T 0 TR R R AR AL] DU A SELIX M O, IXREAM ARG WS, ERedRft—2E RS, mieid &, B T IEE
M *os.File i&[AM{H, o0s.Open iR[E—A~ error {H. #1CHERINFIIF, error fEHLE nil , WATRH T W, %
il — os.PathError,

// PathError records an error and the operation and
'/ file path that caused it.
type PathError struct {

Op string // “open”, “unlink”, etc.
Path string // The associated file.
Err error // Returned by the system call.

func (e *PathError) Error() string {
+ e.Path +

” » ”

return e.Op + ” + e.Err. Error ()

// PathError 10— PMEIR IR = (Z R FIEE(E

type PathError struct {

Op string // “open”, “unlink” FFZE.
Path string // FHFIRAI1E.
Err error /) HR G R [

func (e *PathError) Error() string {

2% SR B RSO (www. topgoer.cn) i 4- 78 -

-

T
Nrce
JHO

” o» . ”

return e.Op + + e.Path + + e. Err. Error ()

PathError’s Error generates a string like this:

PathError (] Error 24 pliln MRS B

open /etc/passwx: no such file or directory

Such an error, which includes the problematic file name, the operation, and the operating system error it
triggered, is useful even if printed far from the call that caused it; it is much more informative than the plain
“no such file or directory”.

ARG S TR L BRAEARA (R AR R iR R, RV A2 0 R A AN O R R S B AR, et
WA, KA AEEZSC R E R R

When feasible, error strings should identify their origin, such as by having a prefix naming the operation or
package that generated the error. For example, in package image, the string representation for a decoding
error due to an unknown format is “image: unknown format”.

HE T R RS AT RE AR B E AT SRS, Bl A A R B A TS, BIANTE image B, i TR AR TS BRI AR I
$°4 “image: unknown format”.

Callers that care about the precise error details can use a type switch or a type assertion to look for specific
errors and extract details. For PathErrors this might include examining the internal Err field for recoverable
failures.

AU SO AR B S BT, R P 2R B P el ST R A R i, IR . 4T PathErrors, &MiZiEt
ERE AR Err 7 BLLAEAT AT R IR KL

for try := 0; try < 2; try++ {
file, err = os.Create(filename)
if err == nil {

return

}

if e, ok := err. (xos.PathError); ok & e.Err == syscall.ENOSPC {
deleteTempFiles() // Recover some space.
continue

t

return

for try := 0; try < 2; try++ {
file, err = os.Create (filename)
if err == nil {

return

}

if e, ok := err. (xos.PathError); ok & e.Err == syscall.ENOSPC {
deleteTempFiles () // %E 2455/,
continue

t

return

The second if statement here is another type assertion. If it fails, ok will be false, and e will be nil. If it
succeeds, ok will be true, which means the error was of type *0s. PathError , and then so is e, which we
can examine for more information about the error.

AT RS A b R SCRS (www. topgoer.cn) - 79 -

https://go-zh.org/doc/effective_go.html#interface_conversions

A

i
et
JHo

XA 4 i R A A S . TR, ok ¥k false, T e Wy nil. BE RS, ok BN true, X EIEEIZENEE
+ *0s. PathError A, T e BENSARI S TR TEZE R .

Panic

Panic

The usual way to report an error to a caller is to return an error as an extra return value. The canonical Read
method is a well-known instance; it returns a byte count and an error. But what if the error is unrecoverable?
Sometimes the program simply cannot continue.

T FH 2 s S R A ROT SR error MENERSMEIR M. BrdERT Read Tt BT R Sq], el] — A= i it
HoA—A~ error. (HEUREHRIN AR ENVE? A BSR4 SHE1T

For this purpose, there is a built-in function panic that in effect creates a run-time error that will stop the
program (but see the next section). The function takes a single argument of arbitrary type—often a string—to
be printed as the program dies. It's also a way to indicate that something impossible has happened, such as
exiting an infinite loop.

ks BATRRME T AR panic BEL ERPAE - DNBITIRRIFZIETE Y (EIFRGE T 1) o AR MER M
ez (—RONTRER) , IFERFEILIRTE. BRI L TR MO, L AERRIEH iR 1

/' A toy implementation of cube root using Newton’s method.
func CubeRoot (x float64) float64 {
z = x/3 // Arbitrary initial value
for i := 0; i < le6; i+t {
prevz := z
7z —= (z%z%z-x) / (3%z%z)
if veryClose(z, prevz) {
return z

"A million iterations has not converged; something is wrong.

panic (fmt. Sprintf (“CubeRoot (%g) did not converge”, x))

/AT L R — NI A LT
func CubeRoot(x float64) float64 {

z = x/3 ALEIIGE
for i := 0; i < le6; i+t {
prevz = z
7z —= (z¥z%z-x) / (3%z%z)
if veryClose(z, prevz) {
return z
}

B T IRIEACH RN S, NG I T o
panic (fmt. Sprintf (“CubeRoot (%g) did not converge”, x))

This is only an example but real library functions should avoid panic. If the problem can be masked or worked
around, it's always better to let things continue to run rather than taking down the whole program. One
possible counterexample is during initialization: if the library truly cannot set itself up, it might be reasonable
to panic, so to speak.

JXLUX%/PTW' SR EE R BOREIE S panic. A BT DA i o, LR R P AR S AT T A R LAY —
ATRER B RWIIRIL: AR RELL A O TAE, HA 2% AL Panic, Weldie %t

ASCR A8 M RO (www. topgoer.cn)) -

https://go-zh.org/doc/effective_go.html#interface_conversions

A

i
et
JHo

var user = os.Getenv ("USER”)

func init() {
if user == 77 {
panic (“no value for $USER”)

Recover

W=

When panic is called, including implicitly for run-time errors such as indexing a slice out of bounds or failing a
type assertion, it immediately stops execution of the current function and begins unwinding the stack of the
goroutine, running any deferred functions along the way. If that unwinding reaches the top of the goroutine’s
stack, the program dies. However, it is possible to use the built-in function recover to regain control of the
goroutine and resume normal execution.

2 panic #IAME CRFERHHRIZTIE R, By AR AR E R0 , B SLZ &R YRR I aT, IR
411 goroutine HIAR, BATAEMTHEHEIR e %L. & RIWIFE goroutine T, FEFFmiait. A HA v LLH A2
recover R EFH A goroutine FZHIAL IR A R &2 1EH AT

A call to recover stops the unwinding and returns the argument passed to panic. Because the only code that
runs while unwinding is inside deferred functions, recover is only useful inside deferred functions.

W recover ¥ fE i mEERE, FFREEN panic F95E2 . HTE RN R A #eER) Forb 0/ iz 4T, ik recover R
REFEAAR 1 s B A B 2

One application of recover is to shut down a failing goroutine inside a server without killing the other executing
goroutines.

recover [—ANNE]l & 78 A 45 o vh & 12U goroutine TG 7 AR AEH S IEAE T (1 goroutine.

func server (workChan <-chan *Work) {
for work := range workChan {
go safelyDo (work)

func safelyDo (work *Work) {
defer func() {
if err := recover(); err != nil {
log. Println ("work failed:”, err)
}
1O
do (work)

In this example, if do(work) panics, the result will be logged and the goroutine will exit cleanly without
disturbing the others. There’s no need to do anything else in the deferred closure; calling recover handles the
condition completely.

EBIt, % do(work) filtk T Panic, HAEFMalE, Mi% Go B TERVEET R, A& THEIHE goroutine.
AL TAEHGE AP UM FE, recover 23 BLFX—1).

Because recover always returns nil unless called directly from a deferred function, deferred code can call
library routines that themselves use panic and recover without failing. As an example, the deferred function in

2% SR B RSO (www. topgoer.cn) i 4E- 81 -

safelyDo might call a logging function before calling recover, and that logging code would run unaffected by
the panicking state.

- EH B MBS bR £ U recover IS ANEIR[E] nil, BB HEIR MR EY RE G U A G H 7 panic R recover [f))% i 5L
MAS M. HlinfE safelyDo o, BB e Bnl s 72] recover FiSGIH A0SR EL, MiZI0 % BREUN 24 A 32 Panic R
R TTIN} AT

With our recovery pattern in place, the do function (and anything it calls) can get out of any bad situation
cleanly by calling panic. We can use that idea to simplify error handling in complex software. Let’s look at an
idealized version of a regexp package, which reports parsing errors by calling panic with a local error type.
Here’s the definition of Error, an error method, and the Compile function.

A L R E R, do i R ILR A FAERTAARD) @i A panic Sk f IR R ZE S . FRATT T LAR F I A REARDR:]
CE AR R . ERAITEE regexp BMHEAELIRA, ©aLURMMaREEHH panic Kk & TR, LN
—/~ error Z5AY) Error J5ikF—4 Compile BRI E -

'/ Error is the type of a parse error; it satisfies the error interface.
type Error string
func (e Error) Error() string f

return string(e)

// error is a method of *Regexp that reports parsing errors by

// panicking with an Error.
func (regexp *Regexp) error(err string) {
panic (Error (err))

'/ Compile returns a parsed representation of the regular expression.
func Compile(str string) (regexp *Regexp, err error) {
regexp = new(Regexp)
'/ doParse will panic if there is a parse error.
defer func() {
if e := recover(); e != nil {

regexp = nil Clear return value.

err = e. (Error) // Will re—panic if not a parse error.

10)

return regexp. doParse (str), nil

/) Error ZMHrERIIER, EIHE error £,

type Error string
func (e Error) Error() string {
return string(e)

i

/ error A& *Regexp H]Zii%, ML —1 Error MR Panic KIREGAEVIHEIR.
func (regexp *Regexp) error(err string) {
panic (Error (err))

'/ Compile iX|[a[iZiE W74 ZCARHT /G I

func Compile(str string) (regexp *Regexp, err error) {
regexp = new(Regexp)
// doParse will panic if there is a parse error.
defer func() {

if e := recover(); e != nil {
IR [ElE
7 BRI R, HEHMA Panic.

regexp = nil
err = e. (Brror) //

A SRS A b B SCRS (www. topgoer.cn) #4 7 - 82 -

Br

T
N
o

}
10)

return regexp. doParse (str), nil

If doParse panics, the recovery block will set the return value to nil—deferred functions can modify named
return values. It will then check, in the assignment to err, that the problem was a parse error by asserting that
it has the local type Error. If it does not, the type assertion will fail, causing a run-time error that continues the
stack unwinding as though nothing had interrupted it. This check means that if something unexpected
happens, such as an index out of bounds, the code will fail even though we are using panic and recover to
handle parse errors.

doParse fif)z 1 Panic, #REBKEIRIMERY nil —HAER AR A RES B 2 AR IE. {E err MR RES, HA
Kot i 5 R TN RITRAL Error AR A E . AEBA, KA SRR, BN & R IEATINE R, IFAREEAR) M,
Pt —VINAR T — . 2B RRE A R T R R B A RSN, I ARERAEN T panic F1 recover ik
HgHTRi, AR R,

With error handling in place, the error method (because it’s a method bound to a type, it's fine, even natural,
for it to have the same name as the builtin error type) makes it easy to report parse errors without worrying
about unwinding the parse stack by hand:

JHRLE J R, error HiE (BT ERMNVE R ALK %, HIRIEE 508K error 28814 A0 %G %
2D RIS AN HHA AR RS, T T T oA R AT -

if pos == 0 {
re.error (7%’ illegal at start of expression”)

Useful though this pattern is, it should be used only within a package. Parse turns its internal panic calls into
error values; it does not expose panics to its client. That is a good rule to follow.

SEIRPEIRA T, BER SRR N . Parse 2065 AIRRY panic W% A error {8, EIF A2 # 2=k 0
panic. X AMEFIE H R IR .

By the way, this re-panic idiom changes the panic value if an actual error occurs. However, both the original
and new failures will be presented in the crash report, so the root cause of the problem will still be visible. Thus
this simple re-panic approach is usually sufficient—it’s a crash after all—but if you want to display only the
original value, you can write a little more code to filter unexpected problems and re-panic with the original
error. That's left as an exercise for the reader.

A — 4, XA S i A Panic IB VR & A8 7 A SR B DRI R Paimic (R . AR, AN S S A6 100300 3 () o 8 2 1 DA

PR, BRI R ARSI R T LB . X R B K BT R Panic OB LR B AT T, RS R 2 — . R R A AR
BORIBUG A, BT S — R IR A R, R 5 R R G E il Panic. X ELURX AN RIS T 1.

AT RS b RSO (www. topgoer.cn) i 7d- 83 -

p 1

—/~Weblj

<d
xR

bet
o

—/Web Ik %5 2%

A web server

—A Web R%%

Let’s finish with a complete Go program, a web server. This one is actually a kind of web re-server. Google
provides a service at http://chart.apis.google.com that does automatic formatting of data into charts and
graphs. It’s hard to use interactively, though, because you need to put the data into the URL as a query. The
program here provides a nicer interface to one form of data: given a short piece of text, it calls on the chart
server to produce a QR code, a matrix of boxes that encode the text. That image can be grabbed with your cell
phone’s camera and interpreted as, for instance, a URL, saving you typing the URL into the phone’s tiny
keyboard.

IERATUA =72 R Go FEFENEE AN, —4> Web ¥ &, iz s g Web 554 10H . Google f£
http://chart.apis.google.com Ef4t T — K2R BHn 5 SOV RIS . AT, SRS IRAEAZ L, ISR 20K S
YENETAE] URL o BEAER Ny — Rl i U it 7 AP AOIHR O 4508 —/NBOUR, BRI) R i 55 A SR A Jlk — 2k
(QR 1), IXFE— RNl SCA M AR . AZEE AT AR PR SATR, IR — 5778, el URL, SXREEL 42
TARTES /N T LB BN URL HIRRIL.

Here's the complete program. An explanation follows.

LAUF AR, WA A —BUiRe.

package main

import (
"$lag”
“html/template”
"Tog”
“net/http”

)

var addr = flag. String(“addr”, ”:1718”, “http service address”) // @=17, k=18
var templ = template.Must (template. New(“qr”).Parse (templateStr))

func main() {
flag. Parse ()
http. Handle (”/”, http. HandlerFunc (QR))
err := http.ListenAndServe (*addr, nil)
if err != nil {

log. Fatal (“ListenAndServe:”, err)

func QR(w http. ResponseWriter, req *http.Request) {
templ. Execute (w, req.FormValue("s”))

const templateStr = -

<html>

<head>

<title>QR Link Generator</title>
<{/head>

<body>

A% SR B RSO (www. topgoer.cn) i 4 - 84 -

http://chart.apis.google.com/
http://chart.apis.google.com/

—/~Weblj

S

™o
T

{{if . 1}

{1

{{end}}

{form action="/" name=f method="GET”><input maxLength=1024 size=70
”” title="Text to QR Encode”><input type=submit
value="Show QR” name=qr>

</form>

</body>

</html>

name=s value=

The pieces up to main should be easy to follow. The one flag sets a default HTTP port for our server. The
template variable templ is where the fun happens. It builds an HTML template that will be executed by the
server to display the page; more about that in a moment.

main i AU R % B 2 B . BATIEN — MR E IR S E 7B . BURCE R templ IEZA AT . B
(5 HTML BERORs 2 BEIR S5 de AT HF o e T b A S IRATR PEan i it .

The main function parses the flags and, using the mechanism we talked about above, binds the function QR to
the root path for the server. Then http.ListenAndServe is called to start the server; it blocks while the server
runs.

main EUEHT 7S HhR SRR RTINS RIALHERE QR MRERE RIS SRR 2. 2851 http.ListenAndServe A3}
MRgs 8% EAFEMST SIS AT A T B2 IR

QR just receives the request, which contains form data, and executes the template on the data in the form
value named s.

QR U2 W5 R AR R, IR E s PHIEHE AT R .

The template package html/template is powerful; this program just touches on its capabilities. In essence, it
rewrites a piece of HTML text on the fly by substituting elements derived from data items passed to
templ.Execute, in this case the form value. Within the template text (templateStr), double-brace-delimited
pieces denote template actions. The piece from {{if .}} to {{end}} executes only if the value of the
current data item, called . (dot), is non-empty. That is, when the string is empty, this piece of the template is
suppressed.

B htmi/template AE8 sk, 2R RREAUE. AR L, EEER TR mrh R R (EXR2RR
i) k4 templ.Execute $UTHIMES T HTML 30K, /EBHRCCA (templateStr) o, XUKHE 5 55 i AR R R K 3l
e Mo {if) B {{end}) RSB METEIR I CXEEN O KEFEN A ST Wil A7
FONEI, BRI AR B2 R

The two snippets {{. }} say to show the data presented to the template—the query string—on the web
page. The HTML template package automatically provides appropriate escaping so the text is safe to display.

LB (()) Fon R RN (MW A BoR A/ Web s BD o HTML B CRs B 2 SCARZEAT
B S R SOAS (R R A 2 4

The rest of the template string is just the HTML to show when the page loads. If this is too quick an
explanation, see the documentation for the template package for a more thorough discussion.

AT BB B L TN 2 R (K HTML. IS B BRI, 15225 R SR 2 A B EL IR e

And there you have it: a useful web server in a few lines of code plus some data-driven HTML text. Go is
powerful enough to make a lot happen in a few lines.

AR SR s R SCRS (www. topgoer.cn) i 4E- 85 -

https://go-zh.org/pkg/html/template/
https://go-zh.org/pkg/html/template/

—ANWeblii

R

PRET IS T BTSSR, A8 — SR E M HTMLC AR I Web IR %5 4. Goifi & 9 K BIAELLAR 2 3045 UG/
PR T 2R R o

AR F s BRSO (www. topgoer.cn) F £- 86 -

	介绍
	前言
	引言
	格式化
	注释
	命名
	分号
	控制结构
	函数
	数据
	初始化
	方法
	接口和其他类型
	空白标识符
	内嵌
	并发
	错误
	一个Web服务器

