
Spark: High-Speed Big
Data Analysis Framework

Intel
Andrew Xia

Weibo:Andrew-Xia

Agenda

• Intel contributions to Spark

• Collaboration

• Real world cases

• Summary

Spark Overview

• Open source projects initiated by
AMPLab in UC Berkeley

• Apache incubation since June 2013

• Intel closely collaborating with
AMPLab & the community
on open source development

UC BERKELEY

Contributions by Intel

• Netty based shuffle for Spark

• FairScheduler for Spark

• Spark job log files

• Metrics system for Spark

• Spark shell on YARN

• Spark (standalone mode) integration with security Hadoop

• Byte code generation for Shark

• Co-partitioned join in Shark
. . .

Intel China
• 3 committers
• 7 contributors
• 50+ patches

Agenda

• Intel contributions to Spark

• Collaboration

• Real world cases

• Summary

• Intel partnering with several big websites

– Building next-gen big data analytics using the
Spark stack

– E.g., Alibaba , Baidu iQiyi, Youku, etc.

Collaboration Partners

• Advertising
– Operation analysis
– Effect analysis
– Directional optimization

• Analysis
– Website report
– Platform report
– Monitor system

• Recommendation
– Ranking list
– Personal recommendation
– Hot-click analysis

Big Data in Partners

FAQ #1: Poor Performance
– machine learning and graph computation

– OLAP for Tabular data, interactive query

FAQs

Hadoop Data Sharing

iter. 1 iter. 2 . . .

Input

query 1

query 2

query 3

result 1

result 2

result 3

HDFS
read

Slow due to replication, serialization, and disk IO

 Spark Data Sharing

Input

query 1

query 2

query 3

. . .

one-time
processing

iter. 1 iter. 2 . . .

Input

10-100× faster than network and disk

FAQ #2: Too many big data systems

FAQs

Big Data Systems Today

MapReduce

…
Specialized systems

(iterative, interactive and
streaming apps)

General batch
processing

Vision of Spark Ecosystem

One stack to rule them all!

Spark Ecosystem

HDFS/Hadoop Storage

Mesos YARN

Tachyon

Spark

Shark
SQL

Spark
Streaming

Graphx
Graph-
parallel

MLBase
Machine
learning

M
P
I…
…

M

ap
R

ed
u

ce

FAQ #3: Study cost

FAQs

Code Size

0

20000

40000

60000

80000

100000

120000

140000

Hadoop
MapReduce

Storm
(Streaming)

Impala
(SQL)

Giraph
(Graph)

Spark

non-test, non-example source lines

GraphX

Shark*

* also calls into Hive

Streaming

FAQ #4: Is Spark Stable?

FAQs

• Spark 0.8 has been released

• Spark 0.9 will be release in Jan 2013

Spark Status

FAQ #5: Not enough memory to cache

FAQs

• Graceful degradation

• Scheduler takes care of this

• Other options

– MEMORY_ONLY

– MEMORY_ONLY_SER

– MEMORY_AND_DISK

– DISK_ONLY

Not Enough Memory

FAQ #6: How to recover when failure?

FAQs

 How to Failover?

Input

query 1

query 2

query 3

. . .

one-time
processing

iter. 1 iter. 2 . . .

Input

• Lineage: track the graph of transformations
that built RDD

• Checkpoint: lineage graphs get large

How to Failover?

FAQ #7: Is Spark compatible with
Hadoop ecosystem?

FAQs

FAQ #8:Need port to Spark?

FAQs

FAQ #9: Any cons about Spark?

FAQs

Agenda

• Intel contributions to Spark

• Collaboration

• Real world cases

• Summary

• Logs continuously collected & streamed in
– Through queuing/messaging systems

• Incoming logs processed in a (semi) streaming
fashion
– Aggregations for different time periods, demographics,

etc.

– Join logs and history tables when necessary

• Aggregation results then consumed in a (semi)
streaming fashion
– Monitoring, alerting, etc.

Case1#:Real-Time Log Aggregation

• Implications
– Better streaming framework support

• Complex (e.g., statful) analysis, fault-tolerance, etc.

– Kafka & Spark not collocated
• DStream retrieves logs in background (over network) and caches blocks in memory

– Memory tuning to reduce GC is critical
• spark.cleaner.ttl (throughput * spark.cleaner.ttl < spark mem free size)

• Storage level (MEMORY_ONLY_SER2)

– Lower latency (several seconds)
• No startup overhead (reusing SparkContext)

Real-Time Log Aggregation: Spark Streaming

Kafka
Cluster

Log
Collectors

Spark
Cluster RDBMS

• Algorithm: complex match operations
– Mostly matrix based

• Multiplication, factorization, etc.

– Sometime graph-based
• E.g., sparse matrix

• Iterative computations

– Matrix (graph) cached in memory across iterations

Case #2:Machine Learning & Graph Analysis

• N-degree association in the
graph
– Computing associations between two

vertices that are n-hop away

– E.g., friends of friend

• Graph-parallel implementation
– Bagel (Pregel on Spark) and GraphX

• Memory optimizations for efficient graph
caching critical

– Speedup from 20+ minutes to <2 minutes

Graph Analysis: N-Degree Association

Graph Analysis: N-Degree Association

v w

u

State[w] = list of Weight(x, w)
(for current top K weights to vertex w)

 State[v] = list of Weight(x, v)
(for current top K weights to vertex v)

v w

u
Messages = {D(x, u) =
 Weight(x, w) * edge(w, u)}
(for weight(x, w) in State[w])

Messages = {D(x, u) =
 Weight(x, v) * edge(w, u)}
(for weight(x, v) in State[v])

v w

u

State[u] = list of Weight(x, u)
(for current top K weights to vertex u)

Agenda

• Intel contributions to Spark

• Collaboration

• Real world cases

• Summary

• Memory is King!

• One stack to rule them all!

• Contribute to community!

Summary

