

2013 中国大数据技术大会 Big Data Technology Conference 2013

Spark: High-Speed Big Data Analysis Framework

Intel Andrew Xia Weibo:Andrew-Xia

Agenda

- Intel contributions to Spark
- Collaboration
- Real world cases
- Summary

Spark Overview

 Open source projects initiated by AMPLab in UC Berkeley

Apache incubation since June 2013

 Intel closely collaborating with AMPLab & the community on open source development

Contributions by Intel

- Netty based shuffle for Spark
- FairScheduler for Spark
- Spark job log files
- Metrics system for Spark
- Spark shell on YARN
- Spark (standalone mode) integration with security Hadoop
- Byte code generation for Shark
- Co-partitioned join in Shark

Intel China

- 3 committers
- 7 contributors
- 50+ patches

. . .

Agenda

- Intel contributions to Spark
- Collaboration
- Real world cases
- Summary

Collaboration Partners

- Intel partnering with several big websites
 - Building next-gen big data analytics using the Spark stack
 - E.g., Alibaba , Baidu iQiyi, Youku, etc.

Big Data in Partners

- Advertising
 - Operation analysis
 - Effect analysis
 - Directional optimization
- Analysis
 - Website report
 - Platform report
 - Monitor system
- Recommendation
 - Ranking list
 - Personal recommendation
 - Hot-click analysis

FAQ #1: Poor Performance

- machine learning and graph computation
- OLAP for Tabular data, interactive query

Hadoob

Hadoop Data Sharing

Slow due to replication, serialization, and disk IO

пацоор

Spark Data Sharing

10-100× faster than network and disk

FAQ #2: Too many big data systems

Big Data Systems Today

• • •

General batch processing

Specialized systems (iterative, interactive and streaming apps)

Vision of Spark Ecosystem

One stack to rule them all!

Spark Ecosystem

FAQ #3: Study cost

Code Size

non-test, non-example source lines

пацоор

* also calls into Hiv

FAQ #4: Is Spark Stable?

Spark Status

- Spark 0.8 has been released
- Spark 0.9 will be release in Jan 2013

FAQ #5: Not enough memory to cache

Not Enough Memory

- Graceful degradation
- Scheduler takes care of this
- Other options
 - MEMORY_ONLY
 - MEMORY_ONLY_SER
 - MEMORY AND DISK
 - DISK_ONLY

FAQ #6: How to recover when failure?

How to Failover?

How to Failover?

- Lineage: track the graph of transformations that built RDD
- Checkpoint: lineage graphs get large

FAQ #7: Is Spark compatible with Hadoop ecosystem?

FAQ #8:Need port to Spark?

FAQ #9: Any cons about Spark?

Agenda

- Intel contributions to Spark
- Collaboration
- Real world cases
- Summary

Case1#:Real-Time Log Aggregation

- Logs continuously collected & streamed in
 - Through queuing/messaging systems
- Incoming logs processed in a (semi) streaming fashion
 - Aggregations for different time periods, demographics, etc.
 - Join logs and history tables when necessary
- Aggregation results then consumed in a (semi) streaming fashion
 - Monitoring, alerting, etc.

Real-Time Log Aggregation: Spark Streaming

- Better streaming framework support
 - Complex (e.g., statful) analysis, fault-tolerance, etc.
- Kafka & Spark not collocated
 - DStream retrieves logs in background (over network) and caches blocks in memory
- Memory tuning to reduce GC is critical
 - spark.cleaner.ttl (throughput * spark.cleaner.ttl < spark mem free size)
 - Storage level (<u>MEMORY_ONLY_SER2</u>)
- Lower latency (several seconds)
 - No startup overhead (reusing SparkContext)

Case #2: Machine Learning & Graph Analysis

- Algorithm: complex match operations
 - Mostly matrix based
 - Multiplication, factorization, etc.
 - Sometime graph-based
 - E.g., sparse matrix
- Iterative computations
 - Matrix (graph) cached in memory across iterations

Graph Analysis: N-Degree Association

- N-degree association in the graph
 - Computing associations between two vertices that are n-hop away
 - E.g., friends of friend


```
Weight<sub>1</sub>(u, v) = edge(u, v) \in (0, 1)
Weight<sub>n</sub>(u, v) = \sum_{x \to v} Weight<sub>n-1</sub>(u, x)*Weight<sub>1</sub>(x, v)
```

- Graph-parallel implementation
 - Bagel (Pregel on Spark) and GraphX
 - Memory optimizations for efficient graph caching critical
 - Speedup from 20+ minutes to <2 minutes

Graph Analysis: N-Degree Association

Agenda

- Intel contributions to Spark
- Collaboration
- Real world cases
- Summary

Summary

- Memory is King!
- One stack to rule them all!
- Contribute to community!

