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Spark Overview 

 

 

• Open source projects initiated by 
AMPLab in UC Berkeley 

 
• Apache incubation since June 2013 

 

• Intel closely collaborating with 
AMPLab & the community 
on open source development 

 

 

 

UC BERKELEY 



Contributions by Intel 

 

 

 

• Netty based shuffle for Spark 

• FairScheduler for Spark 

• Spark job log files 

• Metrics system for Spark 

• Spark shell on YARN 

• Spark (standalone mode) integration with security Hadoop 

• Byte code generation for Shark 

• Co-partitioned join in Shark 
. . .  

 

Intel China 
• 3 committers 
• 7 contributors 
• 50+ patches 
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• Intel partnering with several big websites  

– Building next-gen big data analytics using the 
Spark stack 

– E.g., Alibaba , Baidu iQiyi, Youku, etc. 

Collaboration Partners 



• Advertising 
– Operation analysis 
– Effect analysis 
– Directional optimization 

• Analysis 
– Website report 
– Platform report 
– Monitor system 

• Recommendation 
– Ranking list 
– Personal recommendation 
– Hot-click analysis 

 
 

Big Data in Partners 



 

 

FAQ #1: Poor Performance  
– machine learning and graph computation  

– OLAP for Tabular data,   interactive query 

FAQs 



 

Hadoop Data Sharing 
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FAQ #2: Too many big data systems 

FAQs 



Big Data Systems Today 

MapReduce 

… 
Specialized systems 

(iterative, interactive and 
streaming apps) 

General batch 
processing 



Vision of Spark Ecosystem 

   

One stack to rule them all! 



Spark Ecosystem 
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FAQ #3: Study cost 

FAQs 



 

 

Code Size 
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FAQ #4: Is Spark Stable? 

FAQs 



• Spark 0.8 has been released  

• Spark 0.9 will be release in Jan 2013 

 

Spark Status 



 

 

FAQ #5: Not enough memory to cache 

FAQs 



• Graceful degradation  

• Scheduler takes care of this 

• Other options 

– MEMORY_ONLY 

– MEMORY_ONLY_SER 

– MEMORY_AND_DISK 

– DISK_ONLY 

Not Enough Memory 



 

 

FAQ #6: How to recover when failure? 

FAQs 



 How to Failover? 
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• Lineage: track the graph of transformations 
that built RDD 

• Checkpoint: lineage graphs get large  

How to Failover? 



 

 

FAQ #7: Is Spark compatible with 
Hadoop ecosystem? 

FAQs 



 

 

FAQ #8:Need port to Spark? 

FAQs 



 

 

FAQ #9: Any cons about Spark? 

FAQs 
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• Logs continuously collected & streamed in 
– Through queuing/messaging systems 

• Incoming logs processed in a (semi) streaming 
fashion 
– Aggregations for different time periods, demographics, 

etc. 

– Join logs and history tables when necessary 

• Aggregation results then consumed in a (semi) 
streaming fashion 
– Monitoring, alerting, etc. 

Case1#:Real-Time Log Aggregation 



 

 

 

 

• Implications 
– Better streaming framework support 

• Complex (e.g., statful) analysis, fault-tolerance, etc. 

– Kafka & Spark not collocated 
• DStream retrieves logs in background (over network) and caches blocks in memory 

– Memory tuning to reduce GC is critical 
• spark.cleaner.ttl (throughput * spark.cleaner.ttl < spark mem free size) 

• Storage level (MEMORY_ONLY_SER2) 

– Lower latency (several seconds) 
• No startup overhead (reusing SparkContext) 

 

Real-Time Log Aggregation: Spark Streaming 
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• Algorithm: complex match operations 
– Mostly matrix based 

• Multiplication, factorization, etc. 

– Sometime graph-based 
• E.g., sparse matrix 

• Iterative computations 

– Matrix (graph) cached in memory across iterations 

 

Case #2:Machine Learning & Graph Analysis 



• N-degree association in the 
graph 
– Computing associations between two 

vertices that are n-hop away 

– E.g., friends of friend 

 

• Graph-parallel implementation 
– Bagel (Pregel on Spark) and GraphX 

• Memory optimizations for efficient graph 
caching critical 

– Speedup from 20+ minutes to <2 minutes 

 

Graph Analysis: N-Degree Association 



Graph Analysis: N-Degree Association 

v w 

u 

State[w] = list of Weight(x, w) 
(for current top K weights to vertex w) 

 State[v] = list of Weight(x, v) 
(for current top K weights to vertex v) 

 

v w 

u 
Messages = {D(x, u) =  
    Weight(x, w) * edge(w, u)}  
(for weight(x, w) in State[w]) 

 

Messages = {D(x, u) =  
    Weight(x, v) * edge(w, u)}  
(for weight(x, v) in State[v]) 

 

v w 

u 

State[u] = list of Weight(x, u) 
(for current top K weights to vertex u) 
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• Memory is King! 

• One stack to rule them all! 

• Contribute to community! 
 

Summary 




