

Mastering	Go	Web	Services

Table	of	Contents

Mastering	Go	Web	Services

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Our	First	API	in	Go

Understanding	requirements	and	dependencies

Installing	Go

Installing	and	using	MySQL

Redis

Couchbase

Nginx

Apache	JMeter

Using	predefined	datasets

Choosing	an	IDE

Eclipse

Sublime	Text

LiteIDE

IntelliJ	IDEA

Some	client-side	tools

Looking	at	our	application

Setting	up	our	database

Introducing	the	HTTP	package

Quick	hitter	–	saying	Hello,	World	via	API

Building	our	first	route

Gorilla

Routes

Setting	data	via	HTTP

Connecting	to	MySQL

Serving	data	from	the	datastore	to	the	client

Setting	headers	to	add	detail	for	clients

Summary

2.	RESTful	Services	in	Go

Designing	our	application

Looking	at	REST

Making	a	representation	in	an	API

Self-description

The	importance	of	a	URI

HATEOAS

Other	API	architectures

RPC

Choosing	formats

JSON

XML

YAML

CSV

Comparing	the	HTTP	actions	and	methods

The	PATCH	method	versus	the	PUT	method

Bringing	in	CRUD

Adding	more	endpoints

Handling	API	versions

Allowing	pagination	with	the	link	header

Summary

3.	Routing	and	Bootstrapping

Writing	custom	routers	in	Go

Using	more	advanced	routers	in	Gorilla

Using	Gorilla	for	JSON-RPC

Using	services	for	API	access

Using	a	simple	interface	for	API	access

Returning	valuable	error	information

Handling	binary	data

Summary

4.	Designing	APIs	in	Go

Designing	our	social	network	API

Handling	our	API	versions

Concurrent	WebSockets

Separating	our	API	logic

Expanding	our	error	messages

Updating	our	users	via	the	web	service

Summary

5.	Templates	and	Options	in	Go

Sharing	our	OPTIONS

Implementing	alternative	formats

Rolling	our	own	data	representation	format

Introducing	security	and	authentication

Forcing	HTTPS

Adding	TLS	support

Letting	users	register	and	authenticate

A	quick	hit	–	generating	a	salt

Examining	OAuth	in	Go

Making	requests	on	behalf	of	users

Summary

6.	Accessing	and	Using	Web	Services	in	Go

Connecting	our	users	to	other	services

Saving	the	state	with	a	web	service

Using	data	from	other	OAuth	services

Connecting	securely	as	a	client	in	Go

Summary

7.	Working	with	Other	Web	Technologies

Serving	Go	through	a	reverse	proxy

Using	Go	with	Apache

Go	and	NGINX	as	reverse	proxies

Enabling	sessions	for	the	API

Sessions	in	a	RESTful	design

Using	NoSQL	in	Go

Memcached

MongoDB

Enabling	connections	using	a	username	and	password

Allowing	our	users	to	connect	to	each	other

Summary

8.	Responsive	Go	for	the	Web

Creating	a	frontend	interface

Logging	in

Using	client-side	frameworks	with	Go

jQuery

Consuming	APIs	with	jQuery

AngularJS

Consuming	APIs	with	Angular

Setting	up	an	API-consuming	frontend

Creating	a	client-side	Angular	application	for	a	web	service

Viewing	other	users

Rendering	frameworks	on	the	server	side	in	Go

Creating	a	status	update

Summary

9.	Deployment

Project	structures

Using	process	control	to	keep	your	API	running

Using	supervisor

Using	Manners	for	more	graceful	servers

Deploying	with	Docker

Deploying	in	cloud	environments

Amazon	Web	Services

Using	Go	to	interface	directly	with	AWS

Handling	binary	data	and	CDNs

Checking	for	the	existence	of	a	file	upload

Sending	e-mails	with	net/smtp

RabbitMQ	with	Go

Summary

10.	Maximizing	Performance

Using	middleware	to	reduce	cruft

Caching	requests

Simple	disk-based	caching

Enabling	filtering

Transforming	a	disk	cache	into	middleware

Caching	in	distributed	memory

Using	NoSQL	as	a	cache	store

Implementing	a	cache	as	middleware

Using	a	frontend	caching	proxy	in	front	of	Go

Rate	limiting	in	Go

Implementing	rate	limiting	as	middleware

Implementing	SPDY

Detecting	SPDY	support

Summary

11.	Security

Handling	error	logging	for	security

Preventing	brute-force	attempts

Knowing	what	to	log

Handling	basic	authentication	in	Go

Handling	input	validation	and	injection	mitigation

Using	best	practices	for	SQL

Validating	output

Protection	against	XSS

Using	server-side	frameworks	in	Go

Tiger	Tonic

Martini

Goji

Beego

Summary

Index

Mastering	Go	Web	Services

Mastering	Go	Web	Services
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	April	2015

Production	reference:	1080415

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-130-4

www.packtpub.com

http://www.packtpub.com

Credits
Author

Nathan	Kozyra

Reviewers

Jiahua	Chen

János	Fehér

Aleksandar	S.	Sokolovski

Forrest	Y.	Yu

Commissioning	Editor

Julian	Ursell

Acquisition	Editor

Kevin	Colaco

Content	Development	Editor

Amey	Varangaonkar

Technical	Editors

Edwin	Moses

Shali	Sasidharan

Copy	Editors

Jasmine	Nadar

Vikrant	Phadke

Project	Coordinator

Suzanne	Coutinho

Proofreaders

Simran	Bhogal

Stephen	Copestake

Maria	Gould

Paul	Hindle

Indexer

Monica	Ajmera	Mehta

Graphics

Sheetal	Aute

Production	Coordinator

Alwin	Roy

Cover	Work

Alwin	Roy

About	the	Author
Nathan	Kozyra	is	a	veteran	developer	and	software	architect	with	more	than	a	dozen
years	of	experience	in	developing	web	applications	and	large-scale	SaaS	platforms.	He	has
also	authored	the	book	Mastering	Concurrency	in	Go,	published	by	Packt	Publishing.

I	would	like	to	thank	my	wife,	Mary,	and	my	son,	Ethan,	for	their	perpetual	love	and
support.

About	the	Reviewers
Jiahua	Chen	is	a	Gopher,	web	application	developer,	and	signing	lecturer.	He	is	the
creator	of	the	Gogs	project.	He	is	also	pursuing	his	studies.	He	was	the	technical	reviewer
for	the	video	Building	Your	First	Web	Application	with	Go,	published	by	Packt	Publishing.

János	Fehér	has	been	involved	in	a	wide	variety	of	projects	since	1996,	including
technical	support	for	NATO	operations	and	the	development	of	a	high-performance
computing	grid,	national	TV	and	radio	websites,	and	web	applications	for	universities	and
adult	learning.

In	recent	years,	he	has	been	heavily	involved	in	distributed	and	concurrent	software
architectures.	He	is	currently	the	head	of	development	for	the	start-up	called	Intern
Avenue,	where	his	team	is	working	on	a	matching	technology	platform	to	help	employers
find	the	best	young	talent	for	their	business.

I	would	like	to	thank	my	amazing	fiancée,	Szilvi,	for	her	support	and	patience	during	the
many	long	days	and	nights	it	has	taken	me	to	make	this	book	relevant	for	both
stakeholders	and	technologists.

Aleksandar	S.	Sokolovski	is	a	software	engineering	professional	from	Europe.	He	has	a	a
bachelor’s	degree	in	computer	science	from	the	Ss.	Cyril	and	Methodius	University	and	a
master’s	degree	in	technology,	innovation,	and	entrepreneurship	from	the	University	of
Sheffield.	He	was	a	member	of	the	organizational	committee,	participant,	and	presenter	on
multiple	international	research	conferences;	he	is	also	a	published	author	of	many	research
papers.	He	has	worked	as	a	research	and	teaching	associate	at	the	Faculty	of	Informatics
and	Computer	Science	in	Skopje,	Macedonia.	He	is	currently	working	as	a	research
associate	and	software	engineer	in	the	telecom	industry.	He	is	a	member	of	IEEE,	PMI,
and	AAAS.

Aleksandar	has	worked	as	a	reviewer	for	the	book	Mastering	Concurrency	in	GO,
published	by	Packt	Publishing.

I	give	my	regards	and	blessings	to	everyone	who	supported	me	to	complete	this	project:
my	family	for	their	support	and	their	help,	especially	my	sister,	Sofija,	my	parents,	Stefan
and	Brankica,	and	last	but	not	least,	my	girlfriend.

Forrest	Y.	Yu	is	an	author	of	two	books	on	operating	systems.	He	has	a	wide	range	of
interests	and	experience	in	desktop	applications,	web	services,	LBS,	operating	systems,
cloud	computing,	information	security,	and	so	on.	Recently,	he	has	been	working	at
Amazon,	building	the	next	generation	information	security	platform	and	tools.	He	is	also
the	reviewer	of	the	book	Scratch	Cookbook	and	the	video	Building	Games	with	Scratch
2.0,	both	of	which	were	published	by	Packt	Publishing.	He	has	a	blog,
http://forrestyu.com/,	where	you	can	find	more	information	about	him.

I	want	to	thank	my	wife,	Danhong,	for	all	her	support.	I	also	want	to	thank	my	son,	Frank,
for	all	the	happiness	he	brings	to	us.

http://forrestyu.com/

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
If	there’s	one	thing	that’s	said	more	than	anything	else	about	the	Go	language,	it’s	that	“Go
is	a	server	language.”

Certainly,	Go	was	built	to	be	an	ideal	server	language,	designed	as	a	next-generation
iteration	over	the	expanses	and/or	over-engineering	of	C,	C++,	and	Java.

The	language	has	evolved—largely	with	fervent	community	support—to	go	far	beyond
servers	into	system	tools,	graphics,	and	even	compilers	for	new	languages.	At	its	heart,
however,	Go	is	made	for	powerful,	concurrent,	and	easy-to-deploy	cross-platform	servers.
This	is	what	makes	the	language	ideal	for	this	book’s	topic.

Mastering	Web	Services	in	Go	is	intended	to	be	a	guide	to	building	robust	web	services
and	APIs	that	can	scale	for	production,	with	emphasis	on	security,	scalability,	and
adherence	to	RESTful	principles.

In	this	book,	we’ll	build	a	rudimentary	API	for	a	social	network,	which	will	allow	us	to
demonstrate	and	dive	deeper	into	some	fundamental	concepts,	such	as	connecting	Go	to
other	services	and	keeping	your	server	secure	and	highly	available.

By	the	end	of	this	book,	you	should	be	experienced	with	all	the	relevant	instances	to	build
a	robust,	scalable,	secure,	and	production-ready	web	service.

What	this	book	covers
Chapter	1,	Our	First	API	in	Go,	quickly	introduces—or	reintroduces—some	core	concepts
related	to	Go	setup	and	usage	as	well	as	the	http	package.

Chapter	2,	RESTful	Services	in	Go,	focuses	on	the	guiding	principles	of	the	REST
architecture	and	translates	them	into	our	overall	API	design	infrastructure.

Chapter	3,	Routing	and	Bootstrapping,	is	devoted	to	applying	the	RESTful	practices	from
the	previous	chapter	to	built-in,	third-party,	and	custom	routers	for	the	scaffolding	of	our
API.

Chapter	4,	Designing	APIs	in	Go,	explores	overall	API	design	while	examining	other
related	concepts,	such	as	utilization	of	web	sockets	and	HTTP	status	codes	within	the
REST	architecture.

Chapter	5,	Templates	and	Options	in	Go,	covers	ways	to	utilize	the	OPTIONS	request
endpoints,	implementing	TLS	and	authentication,	and	standardizing	response	formats	in
our	API.

Chapter	6,	Accessing	and	Using	Web	Services	in	Go,	explores	ways	to	integrate	other	web
services	for	authentication	and	identity	in	a	secure	way.

Chapter	7,	Working	with	Other	Web	Technologies,	focuses	on	bringing	in	other	critical
components	of	application	architecture,	such	as	frontend	reverse	proxy	servers	and
solutions,	to	keep	session	data	in	the	memory	or	datastores	for	quick	access.

Chapter	8,	Responsive	Go	for	the	Web,	looks	at	expressing	the	values	of	our	API	as	a
consumer	might,	but	utilizing	frontend,	client-side	libraries	to	parse	and	present	our
responses.

Chapter	9,	Deployment,	introduces	deployment	strategies,	including	utilization	of
processes	to	keep	our	server	running,	highly	accessible,	and	interconnected	with
associated	services.

Chapter	10,	Maximizing	Performance,	stresses	upon	various	strategies	for	keeping	our
API	alive,	responsive,	and	fast	in	production.	We	look	at	caching	mechanisms	that	are
kept	on	disk	as	well	as	in	memory,	and	explore	ways	in	which	we	can	distribute	these
mechanisms	across	multiple	machines	or	images.

Chapter	11,	Security,	focuses	more	on	best	practices	to	ensure	that	your	application	and
sensitive	data	are	protected.	We	look	at	eliminating	SQL	injection	and	cross-site	scripting
attacks.

What	you	need	for	this	book
To	use	the	examples	in	this	book,	you	can	utilize	any	one	of	a	Windows,	Linux,	or	OS	X
machine,	though	you	may	find	Windows	limiting	with	some	of	the	third-party	tools	we’ll
be	using.

You’ll	obviously	need	to	get	the	Go	language	platform	installed.	The	easiest	way	to	do	this
is	through	a	binary,	available	for	OS	X	or	Windows	at	[URL].	Go	is	also	readily	available
via	multiple	Linux	package	managers,	such	as	yum	or	aptitude.

The	choice	of	the	IDE	is	largely	a	personal	issue,	but	we	recommend	Sublime	Text,	which
has	fantastic	Go	support,	among	other	languages.	We’ll	spend	a	bit	more	time	detailing
some	of	the	pros	and	cons	of	the	other	common	IDEs	in	Chapter	1,	Our	First	API	in	Go.

We’ll	utilize	quite	a	few	additional	platforms	and	services,	such	as	MySQL,	MongoDB,
Nginx,	and	more.	Most	should	be	available	across	platforms,	but	if	you’re	running
Windows,	it’s	recommended	that	you	consider	running	a	Linux	platform—preferably	an
Ubuntu	server—on	a	virtual	machine	to	ensure	maximum	compatibility.

Who	this	book	is	for
This	book	is	intended	for	developers	who	are	experienced	in	both	Go	and	server-side
development	for	web	services	and	APIs.	We	haven’t	spent	any	time	on	the	basics	of
programming	in	Go,	so	if	you’re	shaky	on	that	aspect,	it’s	recommended	that	you	brush	up
on	it	prior	to	diving	in.

The	target	reader	is	comfortable	with	web	performance	at	the	server	level,	has	some
familiarity	with	REST	as	a	guiding	principle	for	API	design,	and	is	at	least	aware	of	Go’s
native	server	capabilities.

We	don’t	anticipate	that	you’ll	be	an	expert	in	all	the	technologies	covered,	but
fundamental	understanding	of	Go’s	core	library	is	essential,	and	general	understanding	of
networked	server	architecture	setup	and	maintenance	is	ideal.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Now
download	the	julia-n.m.p-win64.exe	file	on	a	temporary	folder.”

A	block	of	code	is	set	as	follows:

package	main

import	(

		"fmt"

)

func	main()	{

		fmt.Println("Here	be	the	code")

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold	as	follows:

package	main

import	(

		"fmt"

)

func	stringReturn(text	string)	string	{

		return	text

}

func	main()	{

		myText	:=	stringReturn("Here	be	the	code")

		fmt.Println(myText)

}

Any	command-line	input	or	output	is	written	as	follows:

curl	--head	http://localhost:8080/api/user/read/1111

HTTP/1.1	200	OK

Date:	Wed,	18	Jun	2014	14:09:30	GMT

Content-Length:	12

Content-Type:	text/plain;	charset=utf-8

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“When	a	user	clicks	on
Accept,	we’ll	be	returned	to	our	redirect	URL	with	the	code	that	we’re	looking	for.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	color	images	of	this	book
We	also	provide	you	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in
this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You
can	download	this	file	from:
http://www.packtpub.com/sites/default/files/downloads/1304OS_ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/1304OS_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Our	First	API	in	Go
If	you	spend	any	time	developing	applications	on	the	Web	(or	off	it,	for	that	matter),	it
won’t	be	long	before	you	find	yourself	facing	the	prospect	of	interacting	with	a	web
service	or	an	API.

Whether	it’s	a	library	that	you	need	or	another	application’s	sandbox	with	which	you	have
to	interact,	the	world	of	development	relies	in	no	small	part	on	the	cooperation	among
dissonant	applications,	languages,	and	formats.

That,	after	all,	is	why	we	have	APIs	to	begin	with—to	allow	standardized	communication
between	any	two	given	platforms.

If	you	spend	a	long	amount	of	time	working	on	the	Web,	you’ll	encounter	bad	APIs.	By
bad	we	mean	APIs	that	are	not	all-inclusive,	do	not	adhere	to	best	practices	and	standards,
are	confusing	semantically,	or	lack	consistency.	You’ll	encounter	APIs	that	haphazardly
use	OAuth	or	simple	HTTP	authentication	in	some	places	and	the	opposite	in	others,	or
more	commonly,	APIs	that	ignore	the	stated	purposes	of	HTTP	verbs	(we	will	discuss
more	on	this	later	in	the	chapter).

Google’s	Go	language	is	particularly	well	suited	to	servers.	With	its	built-in	HTTP
serving,	a	simple	method	for	XML	and	JSON	encoding	of	data,	high	availability,	and
concurrency,	it	is	the	ideal	platform	for	your	API.

Throughout	this	book,	we’ll	not	only	explore	a	robust	and	clean	API	development	but	also
its	interaction	with	other	APIs	and	data	sources,	and	best	practices	for	such	development.
We’ll	build	one	large	service	and	a	bunch	of	smaller	ones	for	individual,	self-contained
lessons.

Most	importantly,	by	the	end,	you	should	be	able	to	interact	with	any	networked	API	in
Go	and	be	able	to	design	and	execute	a	well-polished	API	suite	yourself.

This	book	requires	at	least	a	casual	familiarity	with	the	web-based	APIs	and	a	beginner’s
level	competency	in	Go,	but	we’ll	do	some	very	brief	introductions	when	we	discuss	new
concepts	and	steer	you	to	more	information	if	it	turns	out	that	you’re	not	entirely	versed	in
this	aspect	of	either	Go	or	APIs.

We	will	also	touch	a	bit	on	concurrency	in	Go,	but	we	won’t	get	too	detailed—if	you	wish
to	learn	more	about	this,	please	check	out	for	the	book	authored	by	me,	Mastering
Concurrency	in	Go,	Packt	Publishing.

We	will	cover	the	following	topics	in	this	chapter:

Understanding	requirements	and	dependencies
Introducing	the	HTTP	package
Building	our	first	routes
Setting	data	via	HTTP
Serving	data	from	the	datastore	to	the	client

Understanding	requirements	and
dependencies
Before	we	get	too	deep	into	the	weeds	in	this	book,	it	would	be	a	good	idea	for	us	to
examine	the	things	that	you	will	need	to	have	installed	in	order	to	handle	all	our	examples
as	we	develop,	test,	and	deploy	our	APIs.

Installing	Go
It	should	go	without	saying	that	we	will	need	to	have	the	Go	language	installed.	However,
there	are	a	few	associated	items	that	you	will	also	need	to	install	in	order	to	do	everything
we	do	in	this	book.

Note
Go	is	available	for	Mac	OS	X,	Windows,	and	most	common	Linux	variants.	You	can
download	the	binaries	at	http://golang.org/doc/install.

On	Linux,	you	can	generally	grab	Go	through	your	distribution’s	package	manager.	For
example,	you	can	grab	it	on	Ubuntu	with	a	simple	apt-get	install	golang	command.
Something	similar	exists	for	most	distributions.

In	addition	to	the	core	language,	we’ll	also	work	a	bit	with	the	Google	App	Engine,	and
the	best	way	to	test	with	the	App	Engine	is	to	install	the	Software	Development	Kit
(SDK).	This	will	allow	us	to	test	our	applications	locally	prior	to	deploying	them	and
simulate	a	lot	of	the	functionality	that	is	provided	only	on	the	App	Engine.

Note
The	App	Engine	SDK	can	be	downloaded	from
https://developers.google.com/appengine/downloads.

While	we’re	obviously	most	interested	in	the	Go	SDK,	you	should	also	grab	the	Python
SDK	as	there	are	some	minor	dependencies	that	may	not	be	available	solely	in	the	Go
SDK.

http://golang.org/doc/install
https://developers.google.com/appengine/downloads

Installing	and	using	MySQL
We’ll	be	using	quite	a	few	different	databases	and	datastores	to	manage	our	test	and	real
data,	and	MySQL	will	be	one	of	the	primary	ones.

We	will	use	MySQL	as	a	storage	system	for	our	users;	their	messages	and	their
relationships	will	be	stored	in	our	larger	application	(we	will	discuss	more	about	this	in	a
bit).

Note
MySQL	can	be	downloaded	from	http://dev.mysql.com/downloads/.

You	can	also	grab	it	easily	from	a	package	manager	on	Linux/OS	X	as	follows:

Ubuntu:	sudo	apt-get	install	mysql-server	mysql-client
OS	X	with	Homebrew:	brew	install	mysql

http://dev.mysql.com/downloads/

Redis
Redis	is	the	first	of	the	two	NoSQL	datastores	that	we’ll	be	using	for	a	couple	of	different
demonstrations,	including	caching	data	from	our	databases	as	well	as	the	API	output.

If	you’re	unfamiliar	with	NoSQL,	we’ll	do	some	pretty	simple	introductions	to	results
gathering	using	both	Redis	and	Couchbase	in	our	examples.	If	you	know	MySQL,	Redis
will	at	least	feel	similar,	and	you	won’t	need	the	full	knowledge	base	to	be	able	to	use	the
application	in	the	fashion	in	which	we’ll	use	it	for	our	purposes.

Note
Redis	can	be	downloaded	from	http://redis.io/download.

Redis	can	be	downloaded	on	Linux/OS	X	using	the	following:

Ubuntu:	sudo	apt-get	install	redis-server
OS	X	with	Homebrew:	brew	install	redis

http://redis.io/download

Couchbase
As	mentioned	earlier,	Couchbase	will	be	our	second	NoSQL	solution	that	we’ll	use	in
various	products,	primarily	to	set	short-lived	or	ephemeral	key	store	lookups	to	avoid
bottlenecks	and	as	an	experiment	with	in-memory	caching.

Unlike	Redis,	Couchbase	uses	simple	REST	commands	to	set	and	receive	data,	and
everything	exists	in	the	JSON	format.

Note
Couchbase	can	be	downloaded	from	http://www.couchbase.com/download.

For	Ubuntu	(deb),	use	the	following	command	to	download	Couchbase:

dpkg	-i	couchbase-server	version.deb

For	OS	X	with	Homebrew	use	the	following	command	to	download	Couchbase:

brew	install	

https://github.com/couchbase/homebrew/raw/stable/Library/Formula/libcou

chbase.rb

http://www.couchbase.com/download

Nginx
Although	Go	comes	with	everything	you	need	to	run	a	highly	concurrent,	performant	web
server,	we’re	going	to	experiment	with	wrapping	a	reverse	proxy	around	our	results.	We’ll
do	this	primarily	as	a	response	to	the	real-world	issues	regarding	availability	and	speed.
Nginx	is	not	available	natively	for	Windows.

Note
For	Ubuntu,	use	the	following	command	to	download	Nginx:

apt-get	install	nginx

For	OS	X	with	Homebrew,	use	the	following	command	to	download	Nginx:

brew	install	nginx

Apache	JMeter
We’ll	utilize	JMeter	for	benchmarking	and	tuning	our	API	for	performance.	You	have	a	bit
of	a	choice	here,	as	there	are	several	stress-testing	applications	for	simulating	traffic.	The
two	we’ll	touch	on	are	JMeter	and	Apache’s	built-in	Apache	Benchmark	(AB)	platform.
The	latter	is	a	stalwart	in	benchmarking	but	is	a	bit	limited	in	what	you	can	throw	at	your
API,	so	JMeter	is	preferred.

One	of	the	things	that	we’ll	need	to	consider	when	building	an	API	is	its	ability	to	stand
up	to	heavy	traffic	(and	introduce	some	mitigating	actions	when	it	cannot),	so	we’ll	need
to	know	what	our	limits	are.

Note
Apache	JMeter	can	be	downloaded	from	http://jmeter.apache.org/download_jmeter.cgi.

http://jmeter.apache.org/download_jmeter.cgi

Using	predefined	datasets
While	it’s	not	entirely	necessary	to	have	our	dummy	dataset	throughout	the	course	of	this
book,	you	can	save	a	lot	of	time	as	we	build	our	social	network	by	bringing	it	in	because	it
is	full	of	users,	posts,	and	images.

By	using	this	dataset,	you	can	skip	creating	this	data	to	test	certain	aspects	of	the	API	and
API	creation.

Note
Our	dummy	dataset	can	be	downloaded	at
https://github.com/nkozyra/masteringwebservices.

https://github.com/nkozyra/masteringwebservices

Choosing	an	IDE
A	choice	of	Integrated	Development	Environment	(IDE)	is	one	of	the	most	personal
choices	a	developer	can	make,	and	it’s	rare	to	find	a	developer	who	is	not	steadfastly
passionate	about	their	favorite.

Nothing	in	this	book	will	require	one	IDE	over	another;	indeed,	most	of	Go’s	strength	in
terms	of	compiling,	formatting,	and	testing	lies	at	the	command-line	level.	That	said,	we’d
like	to	at	least	explore	some	of	the	more	popular	choices	for	editors	and	IDEs	that	exist	for
Go.

Eclipse
As	one	of	the	most	popular	and	expansive	IDEs	available	for	any	language,	Eclipse	is	an
obvious	first	mention.	Most	languages	get	their	support	in	the	form	of	an	Eclipse	plugin
and	Go	is	no	exception.

There	are	some	downsides	to	this	monolithic	piece	of	software;	it	is	occasionally	buggy	on
some	languages,	notoriously	slow	for	some	autocompletion	functions,	and	is	a	bit	heavier
than	most	of	the	other	available	options.

However,	the	pluses	are	myriad.	Eclipse	is	very	mature	and	has	a	gigantic	community
from	which	you	can	seek	support	when	issues	arise.	Also,	it’s	free	to	use.

Note
Eclipse	can	be	downloaded	from	http://eclipse.org/
Get	the	Goclipse	plugin	at	http://goclipse.github.io/

Sublime	Text
Sublime	Text	is	our	particular	favorite,	but	it	comes	with	a	large	caveat—it	is	the	only	one
listed	here	that	is	not	free.

This	one	feels	more	like	a	complete	code/text	editor	than	a	heavy	IDE,	but	it	includes	code
completion	options	and	the	ability	to	integrate	the	Go	compilers	(or	other	languages’
compilers)	directly	into	the	interface.

Although	Sublime	Text’s	license	costs	$70,	many	developers	find	its	elegance	and	speed
to	be	well	worth	it.	You	can	try	out	the	software	indefinitely	to	see	if	it’s	right	for	you;	it
operates	as	nagware	unless	and	until	you	purchase	a	license.

Note
Sublime	Text	can	be	downloaded	from	http://www.sublimetext.com/2.

LiteIDE
LiteIDE	is	a	much	younger	IDE	than	the	others	mentioned	here,	but	it	is	noteworthy
because	it	has	a	focus	on	the	Go	language.

It’s	cross-platform	and	does	a	lot	of	Go’s	command-line	magic	in	the	background,	making
it	truly	integrated.	LiteIDE	also	handles	code	autocompletion,	go	fmt,	build,	run,	and	test

http://eclipse.org/
http://goclipse.github.io/
http://www.sublimetext.com/2

directly	in	the	IDE	and	a	robust	package	browser.

It’s	free	and	totally	worth	a	shot	if	you	want	something	lean	and	targeted	directly	for	the
Go	language.

Note
LiteIDE	can	be	downloaded	from	https://code.google.com/p/golangide/.

IntelliJ	IDEA
Right	up	there	with	Eclipse	is	the	JetBrains	family	of	IDE,	which	has	spanned
approximately	the	same	number	of	languages	as	Eclipse.	Ultimately,	both	are	primarily
built	with	Java	in	mind,	which	means	that	sometimes	other	language	support	can	feel
secondary.

The	Go	integration	here,	however,	seems	fairly	robust	and	complete,	so	it’s	worth	a	shot	if
you	have	a	license.	If	you	do	not	have	a	license,	you	can	try	the	Community	Edition,
which	is	free.

Note
You	can	download	IntelliJ	IDEA	at	http://www.jetbrains.com/idea/download/
The	Go	language	support	plugin	is	available	at	http://plugins.jetbrains.com/plugin/?
idea&id=5047

Some	client-side	tools
Although	the	vast	majority	of	what	we’ll	be	covering	will	focus	on	Go	and	API	services,
we	will	be	doing	some	visualization	of	client-side	interactions	with	our	API.

In	doing	so,	we’ll	primarily	focus	on	straight	HTML	and	JavaScript,	but	for	our	more
interactive	points,	we’ll	also	rope	in	jQuery	and	AngularJS.

Note
Most	of	what	we	do	for	client-side	demonstrations	will	be	available	at	this	book’s	GitHub
repository	at	https://github.com/nkozyra/goweb	under	client.

Both	jQuery	and	AngularJS	can	be	loaded	dynamically	from	Google’s	CDN,	which	will
prevent	you	from	having	to	download	and	store	them	locally.	The	examples	hosted	on
GitHub	call	these	dynamically.

To	load	AngularJS	dynamically,	use	the	following	code:

<script	

src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.18/angular.min.js">

</script>

To	load	jQuery	dynamically,	use	the	following	code:

<script	src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js">

</script>

https://code.google.com/p/golangide/
http://www.jetbrains.com/idea/download/
http://plugins.jetbrains.com/plugin/?idea&id=5047
https://github.com/nkozyra/goweb

Looking	at	our	application
Throughout	this	book,	we’ll	be	building	myriad	small	applications	to	demonstrate	points,
functions,	libraries,	and	other	techniques.	However,	we’ll	also	focus	on	a	larger	project
that	mimics	a	social	network	wherein	we	create	and	return	to	users,	statuses,	and	so	on,	via
the	API.

Though	we’ll	be	working	towards	the	larger	application	as	a	way	to	demonstrate	each
piece	of	the	puzzle,	we’ll	also	build	and	test	self-contained	applications,	APIs,	and
interfaces.

The	latter	group	will	be	prefaced	with	a	quick	hitter	to	let	you	know	that	it’s	not	part	of
our	larger	application.

Setting	up	our	database
As	mentioned	earlier,	we’ll	be	designing	a	social	network	that	operates	almost	entirely	at
the	API	level	(at	least	at	first)	as	our	master	project	in	this	book.

When	we	think	of	the	major	social	networks	(from	the	past	and	in	the	present),	there	are	a
few	omnipresent	concepts	endemic	among	them,	which	are	as	follows:

The	ability	to	create	a	user	and	maintain	a	user	profile
The	ability	to	share	messages	or	statuses	and	have	conversations	based	on	them
The	ability	to	express	pleasure	or	displeasure	on	the	said	statuses/messages	to	dictate
the	worthiness	of	any	given	message

There	are	a	few	other	features	that	we’ll	be	building	here,	but	let’s	start	with	the	basics.
Let’s	create	our	database	in	MySQL	as	follows:

create	database	social_network;

This	will	be	the	basis	of	our	social	network	product	in	this	book.	For	now,	we’ll	just	need
a	users	table	to	store	our	individual	users	and	their	most	basic	information.	We’ll	amend
this	to	include	more	features	as	we	go	along:

CREATE	TABLE	users	(

		user_id	INT(10)	UNSIGNED	NOT	NULL	AUTO_INCREMENT,

		user_nickname	VARCHAR(32)	NOT	NULL,

		user_first	VARCHAR(32)	NOT	NULL,

		user_last	VARCHAR(32)	NOT	NULL,

		user_email	VARCHAR(128)	NOT	NULL,

		PRIMARY	KEY	(user_id),

		UNIQUE	INDEX	user_nickname	(user_nickname)

)

We	won’t	need	to	do	too	much	in	this	chapter,	so	this	should	suffice.	We’ll	have	a	user’s
most	basic	information—name,	nickname,	and	e-mail,	and	not	much	else.

Introducing	the	HTTP	package
The	vast	majority	of	our	API	work	will	be	handled	through	REST,	so	you	should	become
pretty	familiar	with	Go’s	http	package.

In	addition	to	serving	via	HTTP,	the	http	package	comprises	of	a	number	of	other	very
useful	utilities	that	we’ll	look	at	in	detail.	These	include	cookie	jars,	setting	up	clients,
reverse	proxies,	and	more.

The	primary	entity	about	which	we’re	interested	right	now,	though,	is	the	http.Server
struct,	which	provides	the	very	basis	of	all	of	our	server’s	actions	and	parameters.	Within
the	server,	we	can	set	our	TCP	address,	HTTP	multiplexing	for	routing	specific	requests,
timeouts,	and	header	information.

Go	also	provides	some	shortcuts	for	invoking	a	server	without	directly	initializing	the
struct.	For	example,	if	you	have	a	lot	of	default	properties,	you	could	use	the	following
code:

Server	:=	Server	{

		Addr:	":8080",

		Handler:	urlHandler,

		ReadTimeout:	1000	*	time.MicroSecond,

		WriteTimeout:	1000	*	time.MicroSecond,

		MaxHeaderBytes:	0,

		TLSConfig:	nil

}

You	can	simply	execute	using	the	following	code:

http.ListenAndServe(":8080",	nil)

This	will	invoke	a	server	struct	for	you	and	set	only	the	Addr	and	Handler	properties
within.

There	will	be	times,	of	course,	when	we’ll	want	more	granular	control	over	our	server,	but
for	the	time	being,	this	will	do	just	fine.	Let’s	take	this	concept	and	output	some	JSON
data	via	HTTP	for	the	first	time.

Quick	hitter	–	saying	Hello,	World	via	API
As	mentioned	earlier	in	this	chapter,	we’ll	go	off	course	and	do	some	work	that	we’ll
preface	with	quick	hitter	to	denote	that	it’s	unrelated	to	our	larger	project.

In	this	case,	we	just	want	to	rev	up	our	http	package	and	deliver	some	JSON	to	the
browser.	Unsurprisingly,	we’ll	be	merely	outputting	the	uninspiring	Hello,	world
message	to,	well,	the	world.

Let’s	set	this	up	with	our	required	package	and	imports:

package	main

import

(

		"net/http"

		"encoding/json"

		"fmt"

)

This	is	the	bare	minimum	that	we	need	to	output	a	simple	string	in	JSON	via	HTTP.
Marshalling	JSON	data	can	be	a	bit	more	complex	than	what	we’ll	look	at	here,	so	if	the
struct	for	our	message	doesn’t	immediately	make	sense,	don’t	worry.

This	is	our	response	struct,	which	contains	all	of	the	data	that	we	wish	to	send	to	the	client
after	grabbing	it	from	our	API:

type	API	struct	{

		Message	string	"json:message"

}

There	is	not	a	lot	here	yet,	obviously.	All	we’re	setting	is	a	single	message	string	in	the
obviously-named	Message	variable.

Finally,	we	need	to	set	up	our	main	function	(as	follows)	to	respond	to	a	route	and	deliver
a	marshaled	JSON	response:

func	main()	{

		http.HandleFunc("/api",	func(w	http.ResponseWriter,	r	*http.Request)	{

				message	:=	API{"Hello,	world!"}

				output,	err	:=	json.Marshal(message)

				if	err	!=	nil	{

						fmt.Println("Something	went	wrong!")

				}

				fmt.Fprintf(w,	string(output))

		})

		http.ListenAndServe(":8080",	nil)

}

Upon	entering	main(),	we	set	a	route	handling	function	to	respond	to	requests	at	/api	that
initializes	an	API	struct	with	Hello,	world!	We	then	marshal	this	to	a	JSON	byte	array,
output,	and	after	sending	this	message	to	our	iowriter	class	(in	this	case,	an
http.ResponseWriter	value),	we	cast	that	to	a	string.

The	last	step	is	a	kind	of	quick-and-dirty	approach	for	sending	our	byte	array	through	a
function	that	expects	a	string,	but	there’s	not	much	that	could	go	wrong	in	doing	so.

Go	handles	typecasting	pretty	simply	by	applying	the	type	as	a	function	that	flanks	the
target	variable.	In	other	words,	we	can	cast	an	int64	value	to	an	integer	by	simply
surrounding	it	with	the	int(OurInt64)	function.	There	are	some	exceptions	to	this—types
that	cannot	be	directly	cast	and	some	other	pitfalls,	but	that’s	the	general	idea.	Among	the
possible	exceptions,	some	types	cannot	be	directly	cast	to	others	and	some	require	a
package	like	strconv	to	manage	typecasting.

If	we	head	over	to	our	browser	and	call	localhost:8080/api	(as	shown	in	the	following
screenshot),	you	should	get	exactly	what	we	expect,	assuming	everything	went	correctly:

Building	our	first	route
When	we	talk	about	routing	in	Go	nomenclature,	we’re	more	accurately	discussing	a
multiplexer	or	mux.	In	this	case,	the	multiplexer	refers	to	taking	URLs	or	URL	patterns	and
translating	them	into	internal	functions.

You	can	think	of	this	as	a	simple	mapping	from	a	request	to	a	function	(or	a	handler).	You
might	draw	up	something	like	this:

/api/user		func	apiUser

/api/message		func	apiMessage

/api/status		func	apiStatus

There	are	some	limitations	with	the	built-in	mux/router	provided	by	the	net/http
package.	You	cannot,	for	example,	supply	a	wildcard	or	a	regular	expression	to	a	route.

You	might	expect	to	be	able	to	do	something	as	discussed	in	the	following	code	snippet:

		http.HandleFunc("/api/user/\d+",	func(w	http.ResponseWriter,	r	

*http.Request)	{

				//	react	dynamically	to	an	ID	as	supplied	in	the	URL

		})

However,	this	results	in	a	parsing	error.

If	you’ve	spent	any	serious	time	in	any	mature	web	API,	you’ll	know	that	this	won’t	do.
We	need	to	be	able	to	react	to	dynamic	and	unpredictable	requests.	By	this	we	mean	that
anticipating	every	numerical	user	is	untenable	as	it	relates	to	mapping	to	a	function.	We
need	to	be	able	to	accept	and	use	patterns.

There	are	a	few	solutions	for	this	problem.	The	first	is	to	use	a	third-party	platform	that
has	this	kind	of	robust	routing	built	in.	There	are	a	few	very	good	platforms	to	choose
from,	so	we’ll	quickly	look	at	these	now.

Gorilla
Gorilla	is	an	all-inclusive	web	framework,	and	one	that	we’ll	use	quite	a	bit	in	this	book.	It
has	precisely	the	kind	of	URL	routing	package	that	we	need	(in	its	gorilla/mux	package),
and	it	also	supplies	some	other	very	useful	tools,	such	as	JSON-RPC,	secure	cookies,	and
global	session	data.

Gorilla’s	mux	package	lets	us	use	regular	expressions,	but	it	also	has	some	shorthand
expressions	that	let	us	define	the	kind	of	request	string	we	expect	without	having	to	write
out	full	expressions.

For	example,	if	we	have	a	request	like	/api/users/309,	we	can	simple	route	it	as	follows
in	Gorilla:

gorillaRoute	:=	mux.NewRouter()

gorillaRoute.HandleFunc("/api/{user}",	UserHandler)

However,	there	is	a	clear	risk	in	doing	so—by	leaving	this	so	open-ended,	we	have	the
potential	to	get	some	data	validation	issues.	If	this	function	accepts	anything	as	a
parameter	and	we	expect	digits	or	text	only,	this	will	cause	problems	in	our	underlying
application.

So,	Gorilla	allows	us	to	clarify	this	with	regular	expressions,	which	are	as	follows:

r	:=	mux.NewRouter()

r.HandleFunc("/products/{user:\d+}",	ProductHandler)

And	now,	we	will	only	get	what	we	expect—digit-based	request	parameters.	Let’s	modify
our	previous	example	with	this	concept	to	demonstrate	this:

package	main

import	(

		"encoding/json"

		"fmt"

		"github.com/gorilla/mux"

		"net/http"

)

type	API	struct	{

		Message	string	"json:message"

}

func	Hello(w	http.ResponseWriter,	r	*http.Request)	{

		urlParams	:=	mux.Vars(r)

		name	:=	urlParams["user"]

		HelloMessage	:=	"Hello,	"	+	name

		message	:=	API{HelloMessage}

		output,	err	:=	json.Marshal(message)

		if	err	!=	nil	{

				fmt.Println("Something	went	wrong!")

		}

		fmt.Fprintf(w,	string(output))

}

func	main()	{

		gorillaRoute	:=	mux.NewRouter()

		gorillaRoute.HandleFunc("/api/{user:[0-9]+}",	Hello)

		http.Handle("/",	gorillaRoute)

		http.ListenAndServe(":8080",	nil)

}

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

With	this	code,	we	have	some	validation	at	the	routing	level.	A	valid	request	to	/api/44
will	give	us	a	proper	response,	as	shown	in	the	following	screenshot:

An	invalid	request	to	something	like	/api/nkozyra	will	give	us	a	404	response.

Note
You	can	download	the	Gorilla	web	toolkit	from	http://www.gorillatoolkit.org/
The	documentation	on	its	URL	multiplexer	can	be	found	at
http://www.gorillatoolkit.org/pkg/mux

http://www.packtpub.com
http://www.packtpub.com/support
http://www.gorillatoolkit.org/
http://www.gorillatoolkit.org/pkg/mux

Routes
Routes,	from	drone.io,	is	explicitly	and	solely	a	routing	package	for	Go.	This	makes	it
much	more	focused	than	the	Gorilla	web	toolkit.

For	the	most	part,	URL	routing	will	not	be	a	bottleneck	in	a	smaller	application,	but	it’s
something	that	should	be	considered	as	your	application	scales.	For	our	purpose,	the
differences	in	speed	between,	say,	Gorilla	and	Routes	is	negligible.

Defining	your	mux	package	in	routes	is	very	clean	and	simple.	Here	is	a	variation	on	our
Hello	world	message	that	responds	to	URL	parameters:

func	Hello(w	http.ResponseWriter,	r	*http.Request)	{

		urlParams	:=	r.URL.Query()

		name	:=	urlParams.Get(":name")

		HelloMessage	:=	"Hello,	"	+	name

		message	:=	API{HelloMessage}

		output,	err	:=	json.Marshal(message)

		if	err	!=	nil	{

				fmt.Println("Something	went	wrong!")

		}

		fmt.Fprintf(w,	string(output))

}

func	main()	{

		mux	:=	routes.New()

		mux.Get("/api/:name",	Hello)

		http.Handle("/",	mux)

		http.ListenAndServe(":8080",	nil)

}

The	primary	difference	here	(as	with	Gorilla)	is	that	we’re	passing	our	routes	multiplexer
to	http	instead	of	using	the	internal	one.	And	as	with	Gorilla,	we	can	now	use	variable
URL	patterns	to	change	our	output,	as	follows:

Note
You	can	read	more	about	routes	and	how	to	install	them	at:
https://github.com/drone/routes.

Run	the	following	command	to	install	routes:

https://github.com/drone/routes

go	get	github.com/drone/routes

Setting	data	via	HTTP
Now	that	we’ve	examined	how	we’re	going	to	handle	routing,	let’s	take	a	stab	at	injecting
data	into	our	database	directly	from	a	REST	endpoint.

In	this	case,	we’ll	be	looking	exclusively	at	the	POST	request	methods	because	in	most
cases	when	large	amounts	of	data	could	be	transferred,	you	want	to	avoid	the	length
limitations	that	the	GET	requests	impose.

Tip
Technically,	a	PUT	request	is	the	semantically	correct	method	to	use	for	requests	that	are
made	to	create	data	in	the	create-read-update-delete	(CRUD)	concept,	but	years	of
disuse	have	largely	relegated	PUT	to	a	historical	footnote.	Recently,	some	support	for
restoring	PUT	(and	DELETE)	to	their	proper	place	has	taken	hold.	Go	(and	Gorilla)	will
gladly	allow	you	to	relegate	requests	to	either	and	as	we	go	forward,	we’ll	move	towards
more	protocol-valid	semantics.

Connecting	to	MySQL
Go	has	a	largely	built-in	agnostic	database	connection	facility,	and	most	third-party
database	connectivity	packages	yield	to	it.	Go’s	default	SQL	package	is	database/sql,
and	it	allows	more	general	database	connectivity	with	some	standardization.

However,	rather	than	rolling	our	own	MySQL	connection	(for	now,	at	least),	we’ll	yield	to
a	third-party	add-on	library.	There	are	a	couple	of	these	libraries	that	are	available,	but
we’ll	go	with	Go-MySQL-Driver.

Note
You	can	install	Go-MySQL-Driver	using	the	following	command	(it	requires	Git):

go	get	github.com/go-sql-driver/mysql

For	the	purpose	of	this	example,	we’ll	assume	that	you	have	MySQL	running	with	a
localhost	on	the	3306	standard	port.	If	it	is	not	running,	then	please	make	the	necessary
adjustments	accordingly	in	the	examples.	The	examples	here	will	also	use	a	passwordless
root	account	for	the	sake	of	clarity.

Our	imports	will	remain	largely	the	same	but	with	two	obvious	additions:	the	sql	package
(database/sql)	and	the	aforementioned	MySQL	driver	that	is	imported	solely	for	side
effects	by	prepending	it	with	an	underscore:

package	main

import

(

		"database/sql"

		_	"github.com/go-sql-driver/mysql"

		"encoding/json"

		"fmt"

		"github.com/gorilla/mux"

		"net/http"

)

We’ll	set	a	new	endpoint	using	Gorilla.	You	may	recall	that	when	we	intend	to	set	or
create	data,	we’ll	generally	push	for	a	PUT	or	POST	verb,	but	for	the	purposes	of	this
demonstration,	appending	URL	parameters	is	the	easiest	way	to	push	data.	Here	is	how
we’d	set	up	this	new	route:

		routes	:=	mux.NewRouter()

		routes.HandleFunc("/api/user/create",	CreateUser).Methods("GET")

Note
Note	that	we’re	specifying	the	verbs	that	we’ll	accept	for	this	request.	In	real	usage,	this	is
recommended	for	the	GET	requests.

Our	CreateUser	function	will	accept	several	parameters—user,	email,	first,	and	last.
User	represents	a	short	user	name	and	the	rest	should	be	self-explanatory.	We’ll	precede
our	code	with	the	definition	of	a	User	struct	as	follows:

type	User	struct	{

		ID	int	"json:id"

		Name		string	"json:username"

		Email	string	"json:email"

		First	string	"json:first"

		Last		string	"json:last"

}

And	now	let’s	take	a	look	at	the	CreateUser	function	itself:

func	CreateUser(w	http.ResponseWriter,	r	*http.Request)	{

		NewUser	:=	User{}

		NewUser.Name	=	r.FormValue("user")

		NewUser.Email	=	r.FormValue("email")

		NewUser.First	=	r.FormValue("first")

		NewUser.Last	=	r.FormValue("last")

		output,	err	:=	json.Marshal(NewUser)

		fmt.Println(string(output))

		if	err	!=	nil	{

				fmt.Println("Something	went	wrong!")

		}

		sql	:=	"INSERT	INTO	users	set	user_nickname='"	+	NewUser.Name	+	"',	

user_first='"	+	NewUser.First	+	"',	user_last='"	+	NewUser.Last	+	"',	

user_email='"	+	NewUser.Email	+	"'"

		q,	err	:=	database.Exec(sql)

		if	err	!=	nil	{

				fmt.Println(err)

		}

		fmt.Println(q)

}

When	we	run	this,	our	routed	API	endpoint	should	be	available	at
localhost:8080/api/user/create.	Though	if	you	look	at	the	call	itself,	you’ll	note	that
we	need	to	pass	URL	parameters	to	create	a	user.	We’re	not	yet	doing	any	sanity	checking
on	our	input,	nor	are	we	making	certain	it’s	clean/escaped,	but	we’ll	hit	the	URL	as
follows:	http://localhost:8080/api/user/create?
user=nkozyra&first=Nathan&last=Kozyra&email=nathan@nathankozyra.com.

And	then,	we’ll	end	up	with	a	user	created	in	our	users	table,	as	follows:

Serving	data	from	the	datastore	to	the
client
Obviously,	if	we	start	setting	data	via	API	endpoint—albeit	crudely—we’ll	also	want	to
retrieve	the	data	via	another	API	endpoint.	We	can	easily	amend	our	current	call	using	the
following	code	to	include	a	new	route	that	provides	the	data	back	via	a	request:

func	GetUser(w	http.ResponseWriter,	r	*http.Request)	{

		urlParams			:=	mux.Vars(r)

		id							:=	urlParams["id"]

		ReadUser	:=	User{}

		err	:=	database.QueryRow("select	*	from	users	where	

user_id=?",id).Scan(&ReadUser.ID,	&ReadUser.Name,	&ReadUser.First,	

&ReadUser.Last,	&ReadUser.Email)

		switch	{

						case	err	==	sql.ErrNoRows:

														fmt.Fprintf(w,"No	such	user")

						case	err	!=	nil:

														log.Fatal(err)

		fmt.Fprintf(w,	"Error")

						default:

								output,	_	:=	json.Marshal(ReadUser)

								fmt.Fprintf(w,string(output))

		}

}

We’re	doing	a	couple	of	new	and	noteworthy	things	here.	First,	we’re	using	a	QueryRow()
method	instead	of	Exec().	Go’s	default	database	interface	offers	a	couple	of	different
querying	mechanisms	that	do	slightly	different	things.	These	are	as	follows:

Exec():	This	method	is	used	for	queries	(INSERT,	UPDATE,	and	DELETE	primarily)	that
will	not	return	rows.
Query():	This	method	is	used	for	queries	that	will	return	one	or	more	rows.	This	is
usually	designated	for	the	SELECT	queries.
QueryRow():	This	method	is	like	Query(),	but	it	expects	just	one	result.	This	is
typically	a	row-based	request	similar	to	the	one	we	had	in	our	previous	example.	We
can	then	run	the	Scan()	method	on	that	row	to	inject	the	returned	values	into	our
struct’s	properties.

Since	we’re	scanning	the	returned	data	into	our	struct,	we	don’t	get	a	return	value.	With
the	err	value,	we	run	a	switch	to	determine	how	to	convey	a	response	to	the	user	or	the
application	that’s	using	our	API.

If	we	have	no	rows,	it	is	likely	that	there	is	an	error	in	the	request	and	we’ll	let	the
recipient	know	that	an	error	exists.

However,	if	there	is	a	SQL	error,	then	we’ll	stay	quiet	for	now.	It’s	a	bad	practice	to
expose	internal	errors	to	the	public.	However,	we	should	respond	that	something	went
wrong	without	being	too	specific.

Finally,	if	the	request	is	valid	and	we	get	a	record,	we	will	marshal	that	into	a	JSON
response	and	cast	it	to	a	string	before	returning	it.	Our	following	result	looks	like	what
we’d	expect	for	a	valid	request:

And	then,	it	appropriately	returns	an	error	(as	shown	in	the	following	screenshot)	if	we
request	a	particular	record	from	our	users’	table	that	does	not	actually	exist:

Setting	headers	to	add	detail	for	clients
Something	that	will	come	up	a	bit	more	as	we	go	on	is	the	idea	of	using	HTTP	headers	to
convey	important	information	about	the	data	that	we’re	sending	or	accepting	via	the	API.

We	can	quickly	look	at	the	headers	that	are	being	sent	through	our	API	now	by	running	a
curl	request	against	it.	When	we	do,	we’ll	see	something	like	this:

curl	--head	http://localhost:8080/api/user/read/1111

HTTP/1.1	200	OK

Date:	Wed,	18	Jun	2014	14:09:30	GMT

Content-Length:	12

Content-Type:	text/plain;	charset=utf-8

This	is	a	pretty	small	set	of	headers	that	is	sent	by	Go,	by	default.	As	we	go	forward,	we
may	wish	to	append	more	informative	headers	that	tell	a	recipient	service	how	to	handle	or
cache	data.

Let’s	very	briefly	try	to	set	some	headers	and	apply	them	to	our	request	using	the	http
package.	We’ll	start	with	one	of	the	more	basic	response	headers	and	set	a	Pragma.	This	is
a	no-cache	Pragma	on	our	result	set	to	tell	users	or	services	that	ingest	our	API	to	always
request	a	fresh	version	from	our	database.

Ultimately,	given	the	data	we’re	working	with,	this	is	unnecessary	in	this	case,	but	is	the
simplest	way	to	demonstrate	this	behavior.	We	may	find	going	forward	that	endpoint
caching	helps	with	performance,	but	it	may	not	provide	us	with	the	freshest	data.

The	http	package	itself	has	a	pretty	simple	method	for	both	setting	response	headers	and
getting	request	headers.	Let’s	modify	our	GetUser	function	to	tell	other	services	that	they
should	not	cache	this	data:

func	GetUser(w	http.ResponseWriter,	r	*http.Request)	{

		w.Header().Set("Pragma","no-cache")

The	Header()	method	returns	the	Header	struct	of	iowriter,	which	we	can	then	add
directly	using	Set()	or	get	by	using	values	using	Get().

Now	that	we’ve	done	that,	let’s	see	how	our	output	has	changed:

curl	--head	http://localhost:8080/api/user/read/1111

HTTP/1.1	200	OK

Pragma:	no-cache

Date:	Wed,	18	Jun	2014	14:15:35	GMT

Content-Length:	12

Content-Type:	text/plain;	charset=utf-8

As	we’d	expect,	we	now	see	our	value	directly	in	CURL’s	header	information	and	it
properly	returns	that	this	result	should	not	be	cached.

There	are,	of	course,	far	more	valuable	response	headers	that	we	can	send	with	web
services	and	APIs,	but	this	is	a	good	start.	As	we	move	forward,	we’ll	utilize	more	of
these,	including	Content-Encoding,	Access-Control-Allow-Origin,	and	more	headers

that	allow	us	to	specify	what	our	data	is,	who	can	access	it,	and	what	they	should	expect	in
terms	of	formatting	and	encoding.

Summary
We’ve	touched	on	the	very	basics	of	developing	a	simple	web	service	interface	in	Go.
Admittedly,	this	particular	version	is	extremely	limited	and	vulnerable	to	attack,	but	it
shows	the	basic	mechanisms	that	we	can	employ	to	produce	usable,	formalized	output	that
can	be	ingested	by	other	services.

At	this	point,	you	should	have	the	basic	tools	at	your	disposal	that	are	necessary	to	start
refining	this	process	and	our	application	as	a	whole.	We’ll	move	forward	with	applying	a
fuller	design	to	our	API	as	we	push	forward,	as	two	randomly	chosen	API	endpoints	will
obviously	not	do	much	for	us.

In	our	next	chapter,	we’ll	dive	in	deeper	with	API	planning	and	design,	the	nitty-gritty	of
RESTful	services,	and	look	at	how	we	can	separate	our	logic	from	our	output.	We’ll
briefly	touch	on	some	logic/view	separation	concepts	and	move	toward	more	robust
endpoints	and	methods	in	Chapter	3,	Routing	and	Bootstrapping.

Chapter	2.	RESTful	Services	in	Go
When	people	typically	design	APIs	and	web	services,	they’re	making	them	as	an
afterthought	or	at	least	as	the	final	step	in	a	large-scale	application.

There’s	good	logic	behind	this—the	application	comes	first	and	catering	to	developers
when	there’s	no	product	on	the	table	doesn’t	make	a	lot	of	sense.	So,	typically	when	an
application	or	website	is	created,	that’s	the	core	product	and	any	additional	resources	for
APIs	come	second	to	it.

As	the	Web	has	changed	in	recent	years,	this	system	has	changed	a	little	bit.	Now,	it’s	not
entirely	uncommon	to	write	the	API	or	web	service	first	and	then	the	application.	Most
often,	this	happens	with	highly	responsive,	single-page	applications	or	mobile	applications
where	the	structure	and	data	are	more	important	than	the	presentation	layer.

Our	overarching	project—a	social	network—will	demonstrate	the	nature	of	a	data-and-
architecture-first	application.	We’ll	have	a	functional	social	network	that	can	be	traversed
and	manipulated	exclusively	at	API	endpoints.	However,	later	in	this	book,	we	will	have
some	fun	with	a	presentation	layer.

While	the	concept	behind	this	could	be	viewed	as	entirely	demonstrative,	the	reality	is	that
this	method	is	behind	a	lot	of	emerging	services	and	applications	today.	It’s	extremely
common	for	a	new	site	or	service	to	launch	with	an	API,	and	sometimes	with	nothing	but
an	API.

In	this	chapter,	we	will	examine	the	following	topics:

Strategies	for	designing	an	API	for	our	application
The	basics	of	REST
Other	web	service	architectures	and	methods
Encoding	data	and	choosing	data	formats
REST	actions	and	what	they	do
Creating	endpoints	with	Gorilla’s	mux
Approaches	to	versioning	your	application

Designing	our	application
When	we	set	out	to	build	our	larger	social	network	application,	we	have	a	general	idea
about	our	datasets	and	relationships.	When	we	extend	these	to	a	web	service,	we	have	to
translate	not	just	data	types	to	API	endpoints,	but	relationships	and	actions	as	well.

For	example,	if	we	wish	to	find	a	user,	we’ll	assume	that	the	data	is	kept	in	a	database
called	users	and	we’d	expect	to	be	able	to	retrieve	that	data	using	the	/api/users
endpoint.	This	is	fair	enough.	But,	what	if	we	wish	to	get	a	specific	user?	What	if	we	wish
to	see	if	two	users	are	connected?	What	if	we	wish	to	edit	a	user’s	comment	on	another
user’s	photo?,	and	so	on.

These	are	the	things	that	we	should	consider,	not	just	in	our	application	but	also	in	the	web
services	that	we	build	around	it	(or	in	this	case,	the	other	way	around,	as	our	web	services
comes	first).

At	this	point,	we	have	a	relatively	simplistic	dataset	for	our	application,	so	let’s	flush	it	out
in	such	a	way	that	we	can	create,	retrieve,	update,	and	delete	users	as	well	as	create,
retrieve,	update,	and	delete	relationships	between	the	users.	We	can	think	of	this	as
friending	or	following	someone	on	traditional	social	networks.

First,	let’s	do	a	little	maintenance	on	our	users	table.	Presently,	we	have	a	unique	index	on
just	the	user_nickname	variable,	but	let’s	create	an	index	for	user_email.	This	is	a	pretty
common	and	logical	security	point,	considering	that,	theoretically,	one	person	is	bound	to
any	one	given	e-mail	address.	Type	the	following	into	your	MySQL	console:

ALTER	TABLE	`users`

		ADD	UNIQUE	INDEX	`user_email`	(`user_email`);

We	can	now	only	have	one	user	per	e-mail	address.	This	makes	sense,	right?

Next,	let’s	go	ahead	and	create	the	basis	for	user	relationships.	These	will	encompass	not
just	the	friending/following	concept	but	also	the	ability	to	block.	So,	let’s	create	a	table	for
these	relationships.	Again,	type	the	following	code	into	your	console:

CREATE	TABLE	`users_relationships`	(

		`users_relationship_id`	INT(13)	NOT	NULL,

		`from_user_id`	INT(10)	NOT	NULL,

		`to_user_id`	INT(10)	unsigned	NOT	NULL,

		`users_relationship_type`	VARCHAR(10)	NOT	NULL,

		`users_relationship_timestamp`	DATETIME	NOT	NULL	DEFAULT	

CURRENT_TIMESTAMP,

		PRIMARY	KEY	(`users_relationship_id`),

		INDEX	`from_user_id`	(`from_user_id`),

		INDEX	`to_user_id`	(`to_user_id`),

		INDEX	`from_user_id_to_user_id`	(`from_user_id`,	`to_user_id`),

		INDEX	`from_user_id_to_user_id_users_relationship_type`	(`from_user_id`,	

`to_user_id`,	`users_relationship_type`)

)

What	we’ve	done	here	is	created	a	table	for	all	of	our	relationships	that	include	keys	on

the	various	users	as	well	as	the	timestamp	field	to	tell	us	when	the	relationships	were
created.

So,	where	are	we?	Well,	right	now,	we	have	the	capability	to	create,	retrieve,	update,	and
delete	both	user	information	as	well	relationships	between	the	users.	Our	next	step	would
be	to	conceptualize	some	API	endpoints	that	will	allow	consumers	of	our	web	service	to
do	this.

In	the	previous	chapter,	we	created	our	first	endpoints,	/api/user/create	and
/api/user/read.	However,	if	we	want	to	be	able	to	fully	control	the	data	we	just
discussed,	we’ll	need	more	than	that.

Before	that	though,	let’s	talk	a	little	bit	about	the	most	important	concepts	that	relate	to
web	services,	particularly	those	utilizing	REST.

Looking	at	REST
So,	what	is	REST	exactly,	and	where	did	it	come	from?	To	start	with,	REST	stands	for
Representational	state	transfer.	This	is	important	because	the	representation	of	data	(and
its	metadata)	is	the	critical	part	of	data	transfer.

The	state	aspect	of	the	acronym	is	slightly	misleading	because	statelessness	is	actually	a
core	component	of	the	architecture.

In	short,	REST	presents	a	simple,	stateless	mechanism	for	presenting	data	over	HTTP	(and
some	other	protocols)	that	is	uniform	and	includes	a	control	mechanism	such	as	caching
directives.

The	architecture	initially	arose	as	part	of	Roy	Fielding’s	dissertation	at	UC	Irvine.	Since
then,	it	has	become	codified	and	standardized	by	World	Wide	Web	Consortium	(W3C).

A	RESTful	application	or	API	will	require	several	important	components,	and	we’ll
outline	these	now.

Making	a	representation	in	an	API
The	most	important	component	of	the	API	is	the	data	we’ll	pass	along	as	part	of	our	web
service.	Usually,	it’s	formatted	text	in	the	format	of	JSON,	RSS/XML,	or	even	binary	data.

For	the	purpose	of	designing	a	web	service,	it’s	a	good	practice	to	make	sure	that	your
format	matches	your	data.	For	example,	if	you’ve	created	a	web	service	for	passing	image
data,	it’s	tempting	to	jam	that	sort	of	data	into	a	text	format.	It’s	not	unusual	to	see	binary
data	translated	into	Base64	encoding	and	sent	via	JSON.

However,	an	important	consideration	with	APIs	is	thrift,	in	terms	of	data	size.	If	we	take
our	earlier	example	and	encode	our	image	data	in	Base64,	we	end	up	with	an	API	payload
that	will	be	nearly	40	percent	larger.	By	doing	this,	we	will	increase	latency	in	our	service
and	introduce	a	potential	annoyance.	There	is	no	reason	to	do	this	if	we	can	reliably
transfer	the	data	as	it	exists.

The	representation	in	the	model	should	also	serve	an	important	role—to	satisfy	all
requirements	for	the	client	to	update,	remove,	or	retrieve	such	a	particular	resource.

Self-description
When	we	say	self-description,	we	can	also	describe	this	as	self-contained	to	encompass
two	core	components	of	REST—that	a	response	should	include	everything	necessary	for
the	client	per	request	and	that	it	should	include	(either	explicitly	or	implicitly)	the
information	on	how	to	handle	the	information.

The	second	part	refers	to	cache	rules,	which	we	very	briefly	touched	on	in	Chapter	1,	Our
First	API	in	Go.

It	may	go	without	saying	but	providing	valuable	caching	information	about	a	resource
contained	by	an	API	request	is	important.	It	eliminates	redundant	or	unnecessary	requests
down	the	road.

This	also	brings	in	the	concept	of	the	stateless	nature	of	REST.	By	this	we	mean	that	each
request	exists	on	its	own.	As	mentioned	earlier,	any	single	request	should	include
everything	necessary	to	satisfy	that	request.

More	than	anything,	this	means	dropping	the	idea	of	a	normal	web	architecture	where	you
can	set	cookies	or	session	variables.	This	is	inherently	not	RESTful.	For	one,	it’s	unlikely
that	our	clients	would	support	cookies	or	continuous	sessions.	But	more	importantly,	it
reduces	the	comprehensive	and	explicit	nature	of	responses	expected	from	any	given	API
endpoint.

Tip
Automated	processes	and	scripts	can,	of	course,	handle	sessions	and	they	could	handle
them	as	the	initial	proposal	of	REST.	This	is	more	a	matter	of	demonstration	than	a	reason
why	REST	rejects	a	persistent	state	as	part	of	its	ethos.

The	importance	of	a	URI
For	reasons	that	we’ll	touch	on	later	in	this	chapter,	the	URI	or	URL	is	one	of	the	most
critical	factors	in	a	good	API	design.	There	are	several	reasons	for	this:

The	URI	should	be	informative.	We	should	have	information	on	not	just	the	data
endpoints	but	also	on	what	data	we	might	expect	to	see	in	return.	Some	of	this	is
idiomatic	to	programmers.	For	example,	/api/users	would	imply	that	we’re	looking
for	a	set	of	users,	whereas	/api/users/12345	would	indicate	that	we’re	expecting	to
get	information	about	a	specific	user.
The	URI	should	not	break	in	the	future.	Soon,	we’ll	talk	about	versioning,	but	this	is
just	one	place	where	the	expectation	of	a	stable	resource	endpoint	is	incredibly
important.	If	the	consumers	of	your	service	find	missing	or	broken	links	in	their
applications	over	time	without	warning,	this	would	result	in	a	very	poor	user
experience.
No	matter	how	much	foresight	you	have	in	developing	your	API	or	web	service,
things	will	change.	With	this	in	mind,	we	should	react	to	changes	by	utilizing	HTTP
status	codes	to	indicate	new	locations	or	errors	with	present	URIs	rather	than
allowing	them	to	simply	break.

HATEOAS
HATEOAS	stands	for	Hypermedia	as	the	Engine	of	Application	State,	and	it’s	a
primary	constraint	of	URIs	in	a	REST	architecture.	The	core	principles	behind	it	require
that	APIs	should	not	reference	fixed	resource	names	or	the	actual	hierarchies	themselves,
but	they	should	rather	focus	on	describing	the	media	requested	and/or	define	the
application	state.

Note
You	can	read	more	about	REST	and	its	requirements	as	defined	by	its	original	author	by
visiting	Roy	Fielding’s	blog	at	http://roy.gbiv.com/untangled/.

http://roy.gbiv.com/untangled/

Other	API	architectures
Beyond	REST,	we’ll	look	at	and	implement	a	few	other	common	architectures	for	APIs
and	web	services	in	this	book.

For	the	most	part,	we’ll	focus	on	REST	APIs	but	we	will	also	go	into	SOAP	protocols	and
APIs	for	XML	ingestion	as	well	as	newer	asynchronous	and	web	socket	based	services
that	allow	persistence.

RPC
Remote	procedure	calls,	or	RPC,	is	a	communication	method	that	has	existed	for	a	long
time	and	makes	up	the	bones	of	what	later	became	REST.	While	there	is	some	merit	for
using	RPC	still—in	particular	JSON-RPC—we’re	not	going	to	put	much	effort	into
accommodating	it	in	this	book.

If	you’re	unfamiliar	with	RPC	in	general,	its	core	difference	as	compared	to	REST	is	that
there	is	a	single	endpoint	and	the	requests	themselves	define	the	behaviors	of	the	web
service.

Note
To	read	more	about	JSON-RPC,	go	to	http://json-rpc.org/.

http://json-rpc.org/

Choosing	formats
The	matter	of	formats	used	to	be	a	much	trickier	subject	than	it	is	today.	Where	we	once
had	myriad	formats	that	were	specific	to	individual	languages	and	developers,	the	API
world	has	caused	this	breadth	of	formats	to	shrink	a	bit.

The	rise	of	Node	and	JavaScript	as	a	lingua	franca	among	data	transmission	formats	has
allowed	most	APIs	to	think	of	JSON	first.	JSON	is	a	relatively	tight	format	that	has
support	in	almost	every	major	language	now,	and	Go	is	no	exception.

JSON
The	following	is	a	quick	and	simple	example	of	how	simply	Go	can	send	and	receive
JSON	data	using	the	core	packages:

package	main

import

(

		"encoding/json"

		"net/http"

		"fmt"

)

type	User	struct	{

		Name	string	`json:"name"`

		Email	string	`json:"email"`

		ID	int	`json:"int"`

}

func	userRouter(w	http.ResponseWriter,	r	*http.Request)	{

		ourUser	:=	User{}

		ourUser.Name	=	"Bill	Smith"

		ourUser.Email	=	"bill.smith@example.com"

		ourUser.ID	=	100

		output,_	:=	json.Marshal(&ourUser)

		fmt.Fprintln(w,	string(output))

}

func	main()	{

		

		fmt.Println("Starting	JSON	server")

		http.HandleFunc("/user",	userRouter)

		http.ListenAndServe(":8080",nil)

}

One	thing	to	note	here	are	the	JSON	representations	of	our	variables	in	the	User	struct.
Anytime	you	see	data	within	the	grave	accent	(`)	characters,	this	represents	a	rune.
Although	a	string	is	represented	in	double	quotes	and	a	char	in	single,	the	accent
represents	Unicode	data	that	should	remain	constant.	Technically,	this	content	is	held	in	an
int32	value.

In	a	struct,	a	third	parameter	in	a	variable/type	declaration	is	called	a	tag.	These	are
noteworthy	for	encoding	because	they	have	direct	translations	to	JSON	variables	or	XML
tags.

Without	a	tag,	we’ll	get	our	variable	names	returned	directly.

XML
As	mentioned	earlier,	XML	was	once	the	format	of	choice	for	developers.	And	although
it’s	taken	a	step	back,	almost	all	APIs	today	still	present	XML	as	an	option.	And	of	course,
RSS	is	still	the	number	one	syndication	format.

As	we	saw	earlier	in	our	SOAP	example,	marshaling	data	into	XML	is	simple.	Let’s	take
the	data	structure	that	we	used	in	the	earlier	JSON	response	and	similarly	marshal	it	into
the	XML	data	in	the	following	example.

Our	User	struct	is	as	follows:

type	User	struct	{

		Name	string	`xml:"name"`

		Email	string	`xml:"email"`

		ID	int	`xml:"id"`

}

And	our	obtained	output	is	as	follows:

		ourUser	:=	User{}

		ourUser.Name	=	"Bill	Smith"

		ourUser.Email	=	"bill.smith@example.com"

		ourUser.ID	=	100

		output,_	:=	xml.Marshal(&ourUser)

		fmt.Fprintln(w,	string(output))

YAML
YAML	was	an	earlier	attempt	to	make	a	human-readable	serialized	format	similar	to
JSON.	There	does	exist	a	Go-friendly	implementation	of	YAML	in	a	third-party	plugin
called	goyaml.

You	can	read	more	about	goyaml	at	https://godoc.org/launchpad.net/goyaml.	To	install
goyaml,	we’ll	call	a	go	get	launchpad.net/goyaml	command.

As	with	the	default	XML	and	JSON	methods	built	into	Go,	we	can	also	call	Marshal	and
Unmarshal	on	YAML	data.	Using	our	preceding	example,	we	can	generate	a	YAML
document	fairly	easily,	as	follows:

package	main

import

(

		"fmt"

		"net/http"

		"launchpad.net/goyaml"

)

type	User	struct	{

		Name	string

		Email	string

		ID	int

}

func	userRouter(w	http.ResponseWriter,	r	*http.Request)	{

		ourUser	:=	User{}

		ourUser.Name	=	"Bill	Smith"

		ourUser.Email	=	"bill.smith@example.com"

		ourUser.ID	=	100

		output,_	:=	goyaml.Marshal(&ourUser)

		fmt.Fprintln(w,	string(output))

}

func	main()	{

				fmt.Println("Starting	YAML	server")

		http.HandleFunc("/user",	userRouter)

		http.ListenAndServe(":8080",nil)

}

The	obtained	output	is	as	shown	in	the	following	screenshot:

https://godoc.org/launchpad.net/goyaml

CSV
The	Comma	Separated	Values	(CSV)	format	is	another	stalwart	that’s	fallen	somewhat
out	of	favor,	but	it	still	persists	as	a	possibility	in	some	APIs,	particularly	legacy	APIs.

Normally,	we	wouldn’t	recommend	using	the	CSV	format	in	this	day	and	age,	but	it	may
be	particularly	useful	for	business	applications.	More	importantly,	it’s	another	encoding
format	that’s	built	right	into	Go.

Coercing	your	data	into	CSV	is	fundamentally	no	different	than	marshaling	it	into	JSON
or	XML	in	Go	because	the	encoding/csv	package	operates	with	the	same	methods	as
these	subpackages.

Comparing	the	HTTP	actions	and
methods
An	important	aspect	to	the	ethos	of	REST	is	that	data	access	and	manipulation	should	be
restricted	by	verb/method.

For	example,	the	GET	requests	should	not	allow	the	user	to	modify,	update,	or	create	the
data	within.	This	makes	sense.	DELETE	is	fairly	straightforward	as	well.	So,	what	about
creating	and	updating?	However,	no	such	directly	translated	verbs	exist	in	the	HTTP
nomenclature.

There	is	some	debate	on	this	matter,	but	the	generally	accepted	method	for	handling	this	is
to	use	PUT	to	update	a	resource	and	POST	to	create	it.

Note
Here	is	the	relevant	information	on	this	as	per	the	W3C	protocol	for	HTTP	1.1:

The	fundamental	difference	between	the	POST	and	PUT	requests	is	reflected	in	the	different
meaning	of	the	Request-URI.	The	URI	in	a	POST	request	identifies	the	resource	that	will
handle	the	enclosed	entity.	This	resource	might	be	a	data-accepting	process,	a	gateway	to
some	other	protocol,	or	a	separate	entity	that	accepts	annotations.	In	contrast,	the	URI	in	a
PUT	request	identifies	the	entity	enclosed	with	the	request—the	user	agent	knows	which
URI	is	intended	and	the	server	MUST	NOT	attempt	to	apply	the	request	to	some	other
resource.	If	the	server	desires	that	the	request	to	be	applied	to	a	different	URI,	it	MUST
send	a	301	(Moved	Permanently)	response;	the	user	agent	MAY	then	make	its	own
decision	regarding	whether	or	not	to	redirect	the	request.

So,	if	we	follow	this,	we	can	assume	that	the	following	actions	will	translate	to	the
following	HTTP	verbs:

Actions HTTP	verbs

Retrieving	data GET

Creating	data POST

Updating	data PUT

Deleting	data DELETE

Thus,	a	PUT	request	to,	say,	/api/users/1234	will	tell	our	web	service	that	we’re
accepting	data	that	will	update	or	overwrite	the	user	resource	data	for	our	user	with	the	ID
1234.

A	POST	request	to	/api/users/1234	will	tell	us	that	we’ll	be	creating	a	new	user	resource
based	on	the	data	within.

Note

It	is	very	common	to	see	the	update	and	create	methods	switched,	such	that	POST	is	used	to
update	and	PUT	is	used	for	creation.	On	the	one	hand,	it’s	easy	enough	to	do	it	either	way
without	too	much	complication.	On	the	other	hand,	the	W3C	protocol	is	fairly	clear.

The	PATCH	method	versus	the	PUT	method
So,	you	might	think	after	going	through	the	last	section	that	everything	is	wrapped	up,
right?	Cut	and	dry?	Well,	as	always,	there	are	hitches	and	unexpected	behaviors	and
conflicting	rules.

In	2010,	there	was	a	proposed	change	to	HTTP	that	would	include	a	PATCH	method.	The
difference	between	PATCH	and	PUT	is	somewhat	subtle,	but,	the	shortest	possible
explanation	is	that	PATCH	is	intended	to	supply	only	partial	changes	to	a	resource,	whereas
PUT	is	expected	to	supply	a	complete	representation	of	a	resource.

The	PATCH	method	also	provides	the	potential	to	essentially	copy	a	resource	into	another
resource	given	with	the	modified	data.

For	now,	we’ll	focus	just	on	PUT,	but	we’ll	look	at	PATCH	later	on,	particularly	when	we	go
into	depth	about	the	OPTIONS	method	on	the	server	side	of	our	API.

Bringing	in	CRUD
The	acronym	CRUD	simply	stands	for	Create,	Read	(or	Retrieve),	Update,	and	Delete.
These	verbs	might	seem	noteworthy	because	they	closely	resemble	the	HTTP	verbs	that
we	wish	to	employ	to	manage	data	within	our	application.

As	we	discussed	in	the	last	section,	most	of	these	verbs	have	seemingly	direct	translations
to	HTTP	methods.	We	say	“seemingly”	because	there	are	some	points	in	REST	that	keep	it
from	being	entirely	analogous.	We	will	cover	this	a	bit	more	in	later	chapters.

CREATE	obviously	takes	the	role	of	the	POST	method,	RETRIEVE	takes	the	place	of	GET,
UPDATE	takes	the	place	of	PUT/PATCH,	and	DELETE	takes	the	place	of,	well,	DELETE.

If	we	want	to	be	fastidious	about	these	translations,	we	must	clarify	that	PUT	and	POST	are
not	direct	analogs	to	UPDATE	and	CREATE.	In	some	ways	this	relates	to	the	confusion	behind
which	actions	PUT	and	POST	should	provide.	This	all	relies	on	the	critical	concept	of
idempotence,	which	means	that	any	given	operation	should	respond	in	the	same	way	if	it
is	called	an	indefinite	number	of	times.

Tip
Idempotence	is	the	property	of	certain	operations	in	mathematics	and	computer	science
that	can	be	applied	multiple	times	without	changing	the	result	beyond	the	initial
application.

For	now,	we’ll	stick	with	our	preceding	translations	and	come	back	to	the	nitty-gritty	of
PUT	versus	POST	later	in	the	book.

Adding	more	endpoints
Given	that	we	now	have	a	way	of	elegantly	handling	our	API	versions,	let’s	take	a	step
back	and	revisit	user	creation.	Earlier	in	this	chapter,	we	created	some	new	datasets	and
were	ready	to	create	the	corresponding	endpoints.

Knowing	what	you	know	now	about	HTTP	verbs,	we	should	restrict	access	to	user
creation	through	the	POST	method.	The	example	we	built	in	the	first	chapter	did	not	work
exclusively	with	the	POST	request	(or	with	POST	requests	at	all).	Good	API	design	would
dictate	that	we	have	a	single	URI	for	creating,	retrieving,	updating,	and	deleting	any	given
resource.

With	all	of	this	in	mind,	let’s	lay	out	our	endpoints	and	what	they	should	allow	a	user	to
accomplish:

Endpoint Method Purpose

/api OPTIONS To	outline	the	available	actions	within	the	API

/api/users GET To	return	users	with	optional	filtering	parameters

/api/users POST To	create	a	user

/api/user/123 PUT To	update	a	user	with	the	ID	123

/api/user/123 DELETE To	delete	a	user	with	the	ID	123

For	now,	let’s	just	do	a	quick	modification	of	our	initial	API	from	Chapter	1,	Our	First
API	in	Go,	so	that	we	allow	user	creation	solely	through	the	POST	method.

Remember	that	we’ve	used	Gorilla	web	toolkit	to	do	routing.	This	is	helpful	for	handling
patterns	and	regular	expressions	in	requests,	but	it	is	also	helpful	now	because	it	allows
you	to	delineate	based	on	the	HTTP	verb/method.

In	our	example,	we	created	the	/api/user/create	and	/api/user/read	endpoints,	but
we	now	know	that	this	is	not	the	best	practice	in	REST.	So,	our	goal	now	is	to	change	any
resource	requests	for	a	user	to	/api/users,	and	to	restrict	creation	to	POST	requests	and
retrievals	to	GET	requests.

In	our	main	function,	we’ll	change	our	handlers	to	include	a	method	as	well	as	update	our
endpoint:

		routes	:=	mux.NewRouter()

		routes.HandleFunc("/api/users",	UserCreate).Methods("POST")

		routes.HandleFunc("/api/users",	UsersRetrieve).Methods("GET")

You’ll	note	that	we	also	changed	our	function	names	to	UserCreate	and	UsersRetrieve.
As	we	expand	our	API,	we’ll	need	methods	that	are	easy	to	understand	and	can	relate
directly	to	our	resources.

Let’s	take	a	look	at	how	our	application	changes:

package	main

import	(

		"database/sql"

		"encoding/json"

		"fmt"

		_	"github.com/go-sql-driver/mysql"

		"github.com/gorilla/mux"

		"net/http"

		"log"

)

var	database	*sql.DB

Up	to	this	point	everything	is	the	same—we	require	the	same	imports	and	connections	to
the	database.	However,	the	following	code	is	the	change:

type	Users	struct	{

		Users	[]User	`json:"users"`

}

We’re	creating	a	struct	for	a	group	of	users	to	represent	our	generic	GET	request	to
/api/users.	This	supplies	a	slice	of	the	User{}	struct:

type	User	struct	{

		ID	int	"json:id"

		Name		string	"json:username"

		Email	string	"json:email"

		First	string	"json:first"

		Last		string	"json:last"

}

func	UserCreate(w	http.ResponseWriter,	r	*http.Request)	{

		NewUser	:=	User{}

		NewUser.Name	=	r.FormValue("user")

		NewUser.Email	=	r.FormValue("email")

		NewUser.First	=	r.FormValue("first")

		NewUser.Last	=	r.FormValue("last")

		output,	err	:=	json.Marshal(NewUser)

		fmt.Println(string(output))

		if	err	!=	nil	{

				fmt.Println("Something	went	wrong!")

		}

		sql	:=	"INSERT	INTO	users	set	user_nickname='"	+	NewUser.Name	+	"',	

user_first='"	+	NewUser.First	+	"',	user_last='"	+	NewUser.Last	+	"',	

user_email='"	+	NewUser.Email	+	"'"

		q,	err	:=	database.Exec(sql)

		if	err	!=	nil	{

				fmt.Println(err)

		}

		fmt.Println(q)

}

Not	much	has	changed	with	our	actual	user	creation	function,	at	least	for	now.	Next,	we’ll

look	at	the	user	data	retrieval	method.

func	UsersRetrieve(w	http.ResponseWriter,	r	*http.Request)	{

		w.Header().Set("Pragma","no-cache")

		rows,_	:=	database.Query("select	*	from	users	LIMIT	10")

		Response		 :=	Users{}

		for	rows.Next()	{

		user	:=	User{}

				rows.Scan(&user.ID,	&user.Name,	&user.First,	&user.Last,	&user.Email)

		Response.Users	=	append(Response.Users,	user)

		}

			output,_	:=	json.Marshal(Response)

		fmt.Fprintln(w,string(output))

}

On	the	UsersRetrieve()	function,	we’re	now	grabbing	a	set	of	users	and	scanning	them
into	our	Users{}	struct.	At	this	point,	there	isn’t	yet	a	header	giving	us	further	details	nor
is	there	any	way	to	accept	a	starting	point	or	a	result	count.	We’ll	do	that	in	the	next
chapter.

And	finally	we	have	our	basic	routes	and	MySQL	connection	in	the	main	function:

func	main()	{

		db,	err	:=	sql.Open("mysql",	"root@/social_network")

		if	err	!=	nil	{

		}

		database	=	db

		routes	:=	mux.NewRouter()

		routes.HandleFunc("/api/users",	UserCreate).Methods("POST")

		routes.HandleFunc("/api/users",	UsersRetrieve).Methods("GET")

		http.Handle("/",	routes)

		http.ListenAndServe(":8080",	nil)

}

As	mentioned	earlier,	the	biggest	differences	in	main	are	that	we’ve	renamed	our	functions
and	are	now	relegating	certain	actions	using	the	HTTP	method.	So,	even	though	the
endpoints	are	the	same,	we’re	able	to	direct	the	service	depending	on	whether	we	use	the
POST	or	GET	verb	in	our	requests.

When	we	visit	http://localhost:8080/api/users	(by	default,	a	GET	request)	now	in	our
browser,	we’ll	get	a	list	of	our	users	(although	we	still	just	have	one	technically),	as	shown
in	the	following	screenshot:

Handling	API	versions
Before	we	go	nay	further	with	our	API,	it’s	worth	making	a	point	about	versioning	our
API.

One	of	the	all-too-common	problems	that	companies	face	when	updating	an	API	is
changing	the	version	without	breaking	the	previous	version.	This	isn’t	simply	a	matter	of
valid	URLs,	but	it	is	also	about	the	best	practices	in	REST	and	graceful	upgrades.

Take	our	current	API	for	example.	We	have	an	introductory	GET	verb	to	access	data,	such
as	/api/users	endpoint.	However,	what	this	really	should	be	is	a	clone	of	a	versioned
API.	In	other	words,	/api/users	should	be	the	same	as	/api/{current-version}/users.
This	way,	if	we	move	to	another	version,	our	older	version	will	still	be	supported	but	not
at	the	{current-version}	address.

So,	how	do	we	tell	users	that	we’ve	upgraded?	One	possibility	is	to	dictate	these	changes
via	HTTP	status	codes.	This	will	allow	consumers	to	continue	accessing	our	API	using
older	versions	such	as	/api/2.0/users.	Requests	here	will	also	let	the	consumer	know
that	there	is	a	new	version.

We’ll	create	a	new	version	of	our	API	in	Chapter	3,	Routing	and	Bootstrapping.

Allowing	pagination	with	the	link	header
Here’s	another	REST	point	that	can	sometimes	be	difficult	to	handle	when	it	comes	to
statelessness:	how	do	you	pass	the	request	for	the	next	set	of	results?

You	might	think	it	would	make	sense	to	do	this	as	a	data	element.	For	example:

{	"payload":	["item","item	2"],	"next":	"http://yourdomain.com/api/users?

page=2"	}

Although	this	may	work,	it	violates	some	principles	of	REST.	First,	unless	we’re	explicitly
returning	hypertext,	it	is	likely	that	we	will	not	be	supplying	a	direct	URL.	For	this	reason,
we	may	not	want	to	include	this	value	in	the	body	of	our	response.

Secondly,	we	should	be	able	to	do	even	more	generic	requests	and	get	information	about
the	other	actions	and	available	endpoints.

In	other	words,	if	we	hit	our	API	simply	at	http://localhost:8080/api,	our	application
should	return	some	basic	information	to	consumers	about	potential	next	steps	and	all	the
available	endpoints.

One	way	to	do	this	is	with	the	link	header.	A	link	header	is	simply	another	header
key/value	that	you	set	along	with	your	response.

Tip
JSON	responses	are	often	not	considered	RESTful	because	they	are	not	in	a	hypermedia
format.	You’ll	see	APIs	that	embed	self,	rel,	and	next	link	headers	directly	in	the
response	in	unreliable	formats.

JSON’s	primary	shortcoming	is	its	inability	to	support	hyperlinks	inherently.	This	is	a
problem	that	is	solved	by	JSON-LD,	which	provides,	among	other	things,	linked
documents	and	a	stateless	context.

Hypertext	Application	Language	(HAL)	attempts	to	do	the	same	thing.	The	former	is
endorsed	by	W3C	but	both	have	their	supporters.	Both	formats	extend	JSON,	and	while
we	won’t	go	too	deep	into	either,	you	can	modify	responses	to	produce	either	format.

Here’s	how	we	could	do	it	in	our	/api/users	GET	request:

func	UsersRetrieve(w	http.ResponseWriter,	r	*http.Request)	{

		log.Println("starting	retrieval")

		start	:=	0

		limit	:=	10

		next	:=	start	+	limit

		w.Header().Set("Pragma","no-cache")

		w.Header().Set("Link","<http://localhost:8080/api/users?

start="+string(next)+";	rel=\"next\"")

		rows,_	:=	database.Query("select	*	from	users	LIMIT	10")

		Response	:=	Users{}

		for	rows.Next()	{

				user	:=	User{}

				rows.Scan(&user.ID,	&user.Name,	&user.First,	&user.Last,	&user.Email)

				Response.Users	=	append(Response.Users,	user)

		}

		

		output,_	:=	json.Marshal(Response)

		fmt.Fprintln(w,string(output))

}

This	tells	the	client	where	to	go	for	further	pagination.	As	we	modify	this	code	further,
we’ll	include	forward	and	backward	pagination	and	respond	to	user	parameters.

Summary
At	this	point,	you	should	be	well-versed	not	only	with	the	basic	ideas	of	creating	an	API
web	service	in	REST	and	a	few	other	protocols,	but	also	in	the	guiding	principles	of	the
formats	and	protocols.

We	dabbled	in	a	few	things	in	this	chapter	that	we’ll	explore	in	more	depth	over	the	next
few	chapters,	particularly	MVC	with	the	various	template	implementations	in	the	Go
language	itself.

In	the	next	chapter,	we’ll	build	the	rest	of	our	initial	endpoints	and	explore	more	advanced
routing	and	URL	muxing.

Chapter	3.	Routing	and	Bootstrapping
After	the	last	two	chapters,	you	should	be	comfortable	with	creating	an	API	endpoint,	the
backend	database	to	store	your	most	pertinent	information,	and	mechanisms	necessary	to
route	and	output	your	data	via	HTTP	requests.

For	the	last	point,	other	than	our	most	basic	example,	we’ve	yielded	to	a	library	for
handling	our	URL	multiplexers.	This	is	the	Gorilla	web	toolkit.	As	fantastic	as	this	library
(and	its	related	frameworks)	is,	it’s	worth	getting	to	know	how	to	handle	requests	directly
in	Go,	particularly	to	create	more	robust	API	endpoints	that	involve	conditional	and
regular	expressions.

While	we’ve	briefly	touched	on	the	importance	of	header	information	for	the	web	service
consumer,	including	status	codes,	we’ll	start	digging	into	some	important	ones	as	we
continue	to	scale	our	application.

The	importance	of	controlling	and	dictating	state	is	critical	for	a	web	service,	especially
(and	paradoxically)	in	stateless	systems	such	as	REST.	We	say	this	is	a	paradox	because
while	the	server	should	provide	little	information	about	the	state	of	the	application	and
each	request,	it’s	important	to	allow	the	client	to	understand	this	based	on	the	absolute
minimal	and	standard	mechanisms	that	we’re	afforded.

For	example,	while	we	may	not	give	a	page	number	in	a	list	or	a	GET	request,	we	want	to
make	sure	that	the	consumer	knows	how	to	navigate	to	get	more	or	previous	result	sets
from	our	application.

Similarly,	we	may	not	provide	a	hard	error	message	although	it	exists,	but	our	web
services	should	be	bound	to	some	standardization	as	it	relates	to	feedback	that	we	can
provide	in	our	headers.

In	this	chapter,	we’ll	cover	the	following	topics:

Extending	Go’s	multiplexer	to	handle	more	complex	requests
Looking	at	more	advanced	requests	in	Gorilla
Introducing	RPC	and	web	sockets	in	Gorilla
Handling	errors	in	our	application	and	requests
Dealing	with	binary	data

We’ll	also	create	a	couple	of	consumer-friendly	interfaces	for	our	web	application,	which
will	allow	us	to	interact	with	our	social	network	API	for	requests	that	require
PUT/POST/DELETE,	and	later	on,	OPTIONS.

By	the	end	of	this	chapter,	you	should	be	comfortable	with	writing	routers	in	Go	as	well	as
extending	them	to	allow	more	complex	requests.

Writing	custom	routers	in	Go
As	mentioned	earlier,	until	this	point,	we’ve	focused	on	using	the	Gorilla	Web	Toolkit	for
handling	URL	routing	and	multiplexers,	and	we’ve	done	that	primarily	due	to	the
simplicity	of	the	mux	package	within	Go	itself.

By	simplicity,	we	mean	that	pattern	matching	is	explicit	and	doesn’t	allow	for	wildcards	or
regular	expressions	using	the	http.ServeMux	struct.

By	looking	directly	into	the	following	setup	of	the	http.ServeMux	code,	you	can	see	how
this	can	use	a	little	more	nuance:

//	Find	a	handler	on	a	handler	map	given	a	path	string

//	Most-specific	(longest)	pattern	wins

func	(mux	*ServeMux)	match(path	string)	(h	Handler,	pattern	string)	{

		var	n	=	0

				for	k,	v	:=	range	mux.m	{

						if	!pathMatch(k,	path)	{

								continue

						}

						if	h	==	nil	||	len(k)	>	n	{

								n	=	len(k)

								h	=	v.h

								pattern	=	v.pattern

						}

				}

				return

}

The	key	part	here	is	the	!pathMatch	function,	which	calls	another	method	that	specifically
checks	whether	a	path	literally	matches	a	member	of	a	muxEntry	map:

func	pathMatch(pattern,	path	string)	bool	{

		if	len(pattern)	==	0	{

			//	should	not	happen

				return	false

		}

		n	:=	len(pattern)

		if	pattern[n-1]	!=	'/'	{

			return	pattern	==	path

		}

		return	len(path)	>=	n	&&	path[0:n]	==	pattern

}

Of	course,	one	of	the	best	things	about	having	access	to	this	code	is	that	it	is	almost
inconsequential	to	take	it	and	expand	upon	it.

There	are	two	ways	of	doing	this.	The	first	is	to	write	your	own	package,	which	will	serve
almost	like	an	extended	package.	The	second	is	to	modify	the	code	directly	in	your	src
directory.	This	option	comes	with	the	caveat	that	things	could	be	replaced	and
subsequently	broken	on	upgrade.	So,	this	is	an	option	that	will	fundamentally	break	the
Go	language.

With	this	in	mind,	we’ll	go	with	the	first	option.	So,	how	can	we	extend	the	http	package?
The	short	answer	is	that	you	really	can’t	without	going	into	the	code	directly,	so	we’ll
need	to	create	our	own	that	inherits	the	most	important	methods	associated	with	the
various	http	structs	with	which	we’ll	be	dealing.

To	start	this,	we’ll	need	to	create	a	new	package.	This	should	be	placed	in	your	Golang
src	directory	under	the	domain-specific	folder.	In	this	case,	we	mean	domain	in	the
traditional	sense,	but	by	convention	also	in	the	web	directory	sense.

If	you’ve	ever	executed	a	go	get	command	to	grab	a	third-party	package,	you	should	be
familiar	with	these	conventions.	You	should	see	something	like	the	following	screenshot
in	the	src	folder:

In	our	case,	we’ll	simply	create	a	domain-specific	folder	that	will	hold	our	packages.
Alternatively,	you	can	create	projects	in	your	code	repository	of	choice,	such	as	GitHub,
and	import	the	packages	directly	from	there	via	go	get.

For	now	though,	we’ll	simply	create	a	subfolder	under	that	directory,	in	my	case
nathankozyra.com,	and	then	a	folder	called	httpex	(a	portmanteau	of	http	and	regex)
for	the	http	extension.

Depending	on	your	installation	and	operating	system,	your	import	directory	may	not	be
immediately	apparent.	To	quickly	see	where	your	import	packages	should	be,	run	the	go
env	internal	tool.	You	will	find	the	directory	under	the	GOPATH	variable.

Tip

If	you	find	your	go	get	commands	return	the	GOPATH	not	set	error,	you’ll	need	to	export
that	GOPATH	variable.	To	do	so,	simply	enter	export	GOPATH=/your/directory	(for	Linux
or	OS	X).	On	Windows,	you’ll	need	to	set	an	environment	variable.

One	final	caveat	is	that	if	you’re	using	OS	X	and	have	difficulty	in	getting	packages	via	go
get,	you	may	need	to	include	the	-E	flag	after	your	sudo	call	to	ensure	that	you’re	using
your	local	user’s	variables	and	not	those	of	the	root.

For	the	sake	of	saving	space,	we	won’t	include	all	of	the	code	here	that	is	necessary	to
retrofit	the	http	package	that	allows	regular	expressions.	To	do	so,	it’s	important	to	copy
all	of	the	ServeMux	structs,	methods,	and	variables	into	your	httpex.go	file.	For	the	most
part,	we’ll	replicate	everything	as	is.	You’ll	need	a	few	important	imported	packages;	this
is	what	your	file	should	look	like:

		package	httpex

import

(

		"net/http"

		"sync"

		"sync/atomic"

		"net/url"

		"path"

		"regexp"

)

type	ServeMux	struct	{

		mu				sync.RWMutex

		m					map[string]muxEntry

		hosts	bool	//	whether	any	patterns	contain	hostnames

}

The	critical	change	happens	with	the	pathMatch()	function,	which	previously	required	a
literal	match	of	the	longest	possible	string.	Now,	we	will	change	any	==	equality
comparisons	to	regular	expressions:

//	Does	path	match	pattern?

func	pathMatch(pattern,	path	string)	bool	{

		if	len(pattern)	==	0	{

				//	should	not	happen

				return	false

		}

		n	:=	len(pattern)

		if	pattern[n-1]	!=	'/'	{

				match,_	:=	regexp.MatchString(pattern,path)

				return	match

		}

		fullMatch,_	:=	regexp.MatchString(pattern,string(path[0:n]))

		return	len(path)	>=	n	&&	fullMatch

}

If	all	of	this	seems	like	reinventing	the	wheel,	the	important	takeaway	is	that—as	with
many	things	in	Go—the	core	packages	provide	a	great	starting	point	for	the	most	part,	but
you	shouldn’t	hesitate	to	augment	them	when	you	find	that	certain	functionality	is	lacking.

There	is	one	other	quick	and	dirty	way	of	rolling	your	own	ServeMux	router,	and	that’s	by
intercepting	all	requests	and	running	a	regular	expression	test	on	them.	Like	the	last
example,	this	isn’t	ideal	(unless	you	wish	to	introduce	some	unaddressed	efficiencies),	but
this	can	be	used	in	a	pinch.	The	following	code	illustrates	a	very	basic	example:

package	main

import

(

		"fmt"

		"net/http"

		"regexp"

)

Again,	we	include	the	regexp	package	so	that	we	can	do	regular	expression	tests:

func	main()	{

				http.HandleFunc("/",	func(w	http.ResponseWriter,	r	*http.Request)	{

						path	:=	r.URL.Path

						message	:=	"You	have	triggered	nothing"

						testMatch,_	:=	regexp.MatchString("/testing[0-9]{3}",path);	

						if	(testMatch	==	true)	{

								//	helper	functions

								message	=	"You	hit	the	test!"

						}

						fmt.Fprintln(w,message)

				})

Here,	instead	of	giving	each	match	a	specific	handler,	we	test	within	a	single	handler	for
the	testing[3	digits]	matches	and	then	react	accordingly.

In	this	case,	we	tell	the	client	that	there’s	nothing	unless	they	match	the	pattern.	This
pattern	will	obviously	work	for	a	/testing123	request	and	fail	for	anything	that	doesn’t
match	this	pattern:

				http.ListenAndServe(":8080",	nil)

}

And	finally,	we	start	our	web	server.

Using	more	advanced	routers	in	Gorilla
Now	that	we’ve	played	around	a	bit	with	extending	the	multiplexing	of	the	built-in
package,	let’s	see	what	else	Gorilla	has	to	offer.

In	addition	to	simple	expressions,	we	can	take	a	URL	parameter	and	apply	it	to	a	variable
to	be	used	later.	We	did	this	in	our	earlier	examples	without	providing	a	lot	of	explanation
of	what	we	were	producing.

Here’s	an	example	of	how	we	might	parlay	an	expression	into	a	variable	for	use	in	an
httpHandler	function:

/api/users/3

/api/users/nkozyra

Both	could	be	approached	as	GET	requests	for	a	specific	entity	within	our	users	table.	We
could	handle	either	with	the	following	code:

mux	:=	mux.NewRouter()

mux.HandleFunc("/api/users/[\w+\d+]",	UserRetrieve)

However,	we	need	to	preserve	the	last	value	for	use	in	our	query.	To	do	so,	Gorilla	allows
us	to	set	that	expression	to	a	key	in	a	map.	In	this	case,	we’d	address	this	with	the
following	code:

mux.HandleFunc("/api/users/{key}",	UserRetrieve)

This	would	allow	us	to	extract	that	value	in	our	handler	via	the	following	code:

variables	:=	mux.Vars(r)

key	:=	variables["key"]

You’ll	note	that	we	used	"key"	here	instead	of	an	expression.	You	can	do	both	here,	which
allows	you	to	set	a	regular	expression	to	a	key.	For	example,	if	our	user	key	variable
consisted	of	letters,	numbers,	and	dashes,	we	could	set	it	like	this:

r.HandleFunc("/api/users/{key:[A-Za-z0-9\-]}",UserRetrieve

And,	in	our	UserRetrieve	function,	we’d	be	able	to	pull	that	key	(or	any	other	that	we
added	to	the	mux	package)	directly:

func	UserRetrieve(w	http.ResponseWriter,	r	*http.Request)	{

		urlParams	:=	mux.Vars(r)

		key	:=	vars["key"]

}

Using	Gorilla	for	JSON-RPC
You	may	recall	from	Chapter	2,	RESTful	Services	in	Go,	that	we	touched	on	RPC	briefly
with	the	promise	of	returning	to	it.

With	REST	as	our	primary	method	for	delivery	of	the	web	service,	we’ll	continue	to	limit
our	knowledge	of	RPC	and	JSON-RPC.	However,	this	is	a	good	time	to	demonstrate	how
we	can	create	RPC	services	very	quickly	with	the	Gorilla	toolkit.

For	this	example,	we’ll	accept	a	string	and	return	the	number	of	total	characters	in	the
string	via	an	RPC	message:

package	main

	

import	(

		"github.com/gorilla/rpc"

		"github.com/gorilla/rpc/json"

		"net/http"

		"fmt"

		"strconv"

		"unicode/utf8"

)

	

type	RPCAPIArguments	struct	{

		Message	string

}

	

type	RPCAPIResponse	struct	{

		Message	string

}

	

type	StringService	struct{}

	

func	(h	*StringService)	Length(r	*http.Request,	arguments	*RPCAPIArguments,	

reply	*RPCAPIResponse)	error	{

		reply.Message	=	"Your	string	is	"	+	fmt.Sprintf("Your	string	is	%d	chars	

long",	utf8.RuneCountInString(arguments.Message))	+	"	characters	long"

		return	nil

}

	

func	main()	{

		fmt.Println("Starting	service")

		s	:=	rpc.NewServer()

		s.RegisterCodec(json.NewCodec(),	"application/json")

		s.RegisterService(new(StringService),	"")

		http.Handle("/rpc",	s)

		http.ListenAndServe(":10000",	nil)

}

One	important	note	about	the	RPC	method	is	that	it	needs	to	be	exported,	which	means
that	a	function/method	must	start	with	a	capital	letter.	This	is	how	Go	treats	a	concept	that
is	vaguely	analogous	to	public/private.	If	the	RPC	method	starts	with	a	capital	letter,	it

is	exported	outside	of	that	package’s	scope,	otherwise	it’s	essentially	private.

In	this	case,	if	you	called	the	method	stringService	instead	of	StringService,	you’d	get
the	response	can’t	find	service	stringService.

Using	services	for	API	access
One	of	the	issues	we’ll	quickly	encounter	when	it	comes	to	building	and	testing	our	web
service	is	handling	the	POST/PUT/DELETE	requests	directly	to	ensure	that	our	method-
specific	requests	do	what	we	expect	them	to.

There	are	a	few	ways	that	exist	for	handling	this	easily	without	having	to	move	to	another
machine	or	build	something	elaborate.

The	first	is	our	old	friend	cURL.	By	far	the	most	popular	method	for	making	networked
requests	over	a	variety	of	protocols,	cURL	is	simple	and	supported	by	almost	any
language	you	can	think	of.

Note
There	is	no	single	built-in	cURL	component	in	Go.	However,	this	largely	follows	the	ethos
of	slim,	integrated	language	design	that	Go’s	developers	seem	to	be	most	interested	in.

There	are,	however,	a	few	third-party	solutions	you	can	look	at:

go-curl,	a	binding	by	ShuYu	Wang	is	available	at	https://github.com/andelf/go-curl.
go-av,	a	simpler	method	with	http	bindings	is	available	at	https://github.com/go-
av/curl.

For	the	purpose	of	testing	things	out	though,	we	can	use	cURL	very	simply	and	directly
from	the	command	line.	It’s	simple	enough,	so	constructing	requests	should	be	neither
difficult	nor	arduous.

Here’s	an	example	call	we	can	make	to	our	create	method	at	/api/users	with	a	POST	http
method:

curl	http://localhost:8080/api/users	--data	

"name=nkozyra&email=nkozyra@gmail.com&first=nathan&last=nathan"

Keeping	in	mind	that	we	already	have	this	user	in	our	database	and	it’s	a	unique	database
field,	we	return	an	error	by	simply	modifying	our	UserCreate	function.	Note	that	in	the
following	code,	we	change	our	response	to	a	new	CreateResponse	struct,	which	for	now
includes	only	an	error	string:

		type	CreateResponse	struct	{

				Error	string	"json:error"

		}

And	now,	we	call	it.	If	we	get	an	error	from	our	database,	we’ll	include	it	in	our	response,
at	least	for	now;	shortly,	we’ll	look	at	translations.	Otherwise,	it	will	be	blank	and	we	can
(for	now)	assume	that	the	user	was	successfully	created.	We	say	for	now	because	we’ll
need	to	provide	more	information	to	our	client	depending	on	whether	our	request	succeeds
or	fails:

		func	UserCreate(w	http.ResponseWriter,	r	*http.Request)	{

				NewUser	:=	User{}

https://github.com/andelf/go-curl
https://github.com/go-av/curl

				NewUser.Name	=	r.FormValue("user")

				NewUser.Email	=	r.FormValue("email")

				NewUser.First	=	r.FormValue("first")

				NewUser.Last	=	r.FormValue("last")

				output,	err	:=	json.Marshal(NewUser)

				fmt.Println(string(output))

				if	err	!=	nil	{

						fmt.Println("Something	went	wrong!")

				}

				Response	:=	CreateResponse{}

				sql	:=	"INSERT	INTO	users	SET	user_nickname='"	+	NewUser.Name	+	"',	

user_first='"	+	NewUser.First	+	"',	user_last='"	+	NewUser.Last	+	"',	

user_email='"	+	NewUser.Email	+	"'"

				q,	err	:=	database.Exec(sql)

				if	err	!=	nil	{

						Response.Error	=	err.Error()

				}

				fmt.Println(q)

				createOutput,_	:=	json.Marshal(Response)

				fmt.Fprintln(w,string(createOutput))

		}

Here	is	how	it	looks	if	we	try	to	create	a	duplicate	user	via	a	cURL	request:

>	curl	http://localhost:8080/api/users	–data	

"name=nkozyra&email=nkozyra@gmail.com&first=nathan&last=nathan"

{"Error":	"Error	1062:	Duplicate	entry	''	for	key	'user	nickname'"}

Using	a	simple	interface	for	API	access
Another	way	in	which	we	can	swiftly	implement	an	interface	for	hitting	our	API	is
through	a	simple	web	page	with	a	form.	This	is,	of	course,	how	many	APIs	are	accessed—
directly	by	the	client	instead	of	being	handled	server-side.

And	although	we’re	not	suggesting	this	is	the	way	our	social	network	application	should
work	in	practice,	it	provides	us	an	easy	way	to	visualize	the	application:

<!DOCTYPE	html>

<html	lang="en">

		<head>

				<meta	charset="utf-8">

				<title>API	Interface</title>

				<script	

src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js">

</script>

				<link	

href="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css"	

rel="stylesheet">

				<script	

src="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js">

</xscript>

				<link	rel="stylesheet"	href="style.css">

				<script	src="script.js"></script>

		</head>

		<body>

		<div	class="container">

						<div	class="row">

		<div	class="col-12-lg">

								<h1>API	Interface</h1>

				<div	class="alert	alert-warning"	id="api-messages"	role="alert"></div>

				<ul	class="nav	nav-tabs"	role="tablist">

						<li	class="active"><a	href="#create"	role="tab"	data-

toggle="tab">Create	User

				

				<div	class="tab-content">

						<div	class="tab-pane	active"	id="create">

						<div	class="form-group">

						<label	for="createEmail">Email</label>

						<input	type="text"	class="form-control"	id="createEmail"	

placeholder="Enter	email">

						</div>

						<div	class="form-group">

						<label	for="createUsername">Username</label>

						<input	type="text"	class="form-control"	id="createUsername"	

placeholder="Enter	username">

						</div>

						<div	class="form-group">

												<label	for="createFirst">First	Name</label>

						<input	type="text"	class="form-control"	id="createFirst"	

placeholder="First	Name">

						</div>

						<div	class="form-group">

						<label	for="createLast">Last	Name</label>

						<input	type="text"	class="form-control"	id="createLast"	

placeholder="Last	Name">

						</div>

						<button	type="submit"	onclick="userCreate();"	class="btn	btn-

success">Create</button>

				

						</div>

				</div>

		</div>

		</div>

		</div>

		

		<script>

		function	userCreate()	{

				action	=	"http://localhost:8080/api/users";

				postData	=	{};

				postData.email		=	$('#createEmail').val();

				postData.user		=	$('#createUsername').val();

				postData.first		=	$('#createFirst').val();

				postData.last	=	$('#createLast').val();

				

				

				$.post(action,postData,function(data)	{

						if	(data.error)	{

								$('.alert').html(data.error);

								$('.alert').alert();

						}

				},'jsonp');

		}

		

		$(document).ready(function()	{

				$('.alert').alert('close');

				

				

		});

		</script>

		</body>

</html>

When	this	is	rendered,	we’ll	have	a	quick	basic	visual	form	for	getting	data	into	our	API
as	well	as	returning	valuable	error	information	and	feedback.

Tip
Due	to	cross-domain	restrictions,	you	may	wish	to	either	run	this	from	the	same	port	and

domain	as	our	API	server,	or	include	this	header	with	every	request	from	the	server	file
itself:

w.Header().Set("Access-Control-Allow-Origin","http://localhost:9000")

Here,	http://localhost:9000	represents	the	originating	server	for	the	request.

Here’s	what	our	rendered	HTML	presentation	looks	like:

Returning	valuable	error	information
When	we	returned	errors	in	our	last	request,	we	simply	proxied	the	MySQL	error	and
passed	it	along.	This	isn’t	always	helpful	though,	because	it	seems	to	require	at	least	some
familiarity	with	MySQL	to	be	valuable	information	for	the	client.

Granted,	MySQL	itself	has	a	fairly	clean	and	straightforward	error	messaging	system,	but
the	point	is	it’s	specific	to	MySQL	and	not	our	application.

What	if	your	client	doesn’t	understand	what	a	“duplicate	entry”	means?	What	if	they	don’t
speak	English?	Will	you	translate	the	message	or	will	you	tell	all	of	your	dependencies
what	language	to	return	with	each	request?	Now	you	can	see	why	this	might	get	arduous.

Most	APIs	have	their	own	system	for	error	reporting,	if	for	no	other	reason	than	to	have
control	over	messaging.	And	while	it’s	ideal	to	return	the	language	based	on	the	request
header’s	language,	if	you	can’t,	then	it’s	helpful	to	return	an	error	code	so	that	you	(or
another	party)	can	provide	a	translation	down	the	road.

And	then	there	are	the	most	critical	errors	which	are	returned	via	HTTP	status	codes.	By
default,	we’re	producing	a	few	of	these	with	Go’s	http	package,	as	any	request	to	an
invalid	resource	will	provide	a	standard	404	not	found	message.

However,	there	are	also	REST-specific	error	codes	that	we’ll	get	into	shortly.	For	now,
there’s	one	that’s	relevant	to	our	error:	409.

Note
As	per	W3C’s	RFC	2616	protocol	specification,	we	can	send	a	409	code	that	indicates	a
conflict.	Here’s	what	the	spec	states:

The	request	could	not	be	completed	due	to	a	conflict	with	the	current	state	of	the	resource.
This	code	is	only	allowed	in	situations	where	it	is	expected	that	the	user	might	be	able	to
resolve	the	conflict	and	resubmit	the	request.	The	response	body	SHOULD	include
enough	information	for	the	user	to	recognize	the	source	of	the	conflict.	Ideally,	the
response	entity	would	include	enough	information	for	the	user	or	user	agent	to	fix	the
problem;	however,	that	might	not	be	possible	and	is	not	required.

Conflicts	are	most	likely	to	occur	in	response	to	a	PUT	request.	For	example,	if	versioning
were	being	used	and	the	entity	being	PUT	included	changes	to	a	resource	which	conflict
with	those	made	by	an	earlier	(third-party)	request,	the	server	might	use	the	409	response
to	indicate	that	it	can’t	complete	the	request.	In	this	case,	the	response	entity	would	likely
contain	a	list	of	the	differences	between	the	two	versions	in	a	format	defined	by	the
response	Content-Type.

With	that	in	mind,	let’s	first	detect	an	error	that	indicates	an	existing	record	and	prevents
the	creation	of	a	new	record.

Unfortunately,	Go	does	not	return	a	specific	database	error	code	along	with	the	error,	but
at	least	with	MySQL	it’s	easy	enough	to	extract	the	error	if	we	know	the	pattern	used.

Using	the	following	code,	we’ll	construct	a	parser	that	will	split	a	MySQL	error	string	into

its	two	components	and	return	an	integer	error	code:

		func	dbErrorParse(err	string)	(string,	int64)	{

				Parts	:=	strings.Split(err,	":")

				errorMessage	:=	Parts[1]

				Code	:=	strings.Split(Parts[0],"Error	")

				errorCode,_	:=	strconv.ParseInt(Code[1],10,32)

				return	errorMessage,	errorCode

		}

We’ll	also	augment	our	CreateResponse	struct	with	an	error	status	code,	represented	as
follows:

		type	CreateResponse	struct	{

				Error	string	"json:error"

				ErrorCode	int	"json:code"

		}

We’ll	also	take	our	MySQL	response	and	message	it	into	a	CreateResponse	struct	by
changing	our	error	response	behavior	in	the	UsersCreate	function:

				if	err	!=	nil	{

						errorMessage,	errorCode	:=	dbErrorParse(err.Error())

						fmt.Println(errorMessage)

						error,	httpCode,	msg	:=	ErrorMessages(errorCode)

						Response.Error	=	msg

						Response.ErrorCode	=	error

						fmt.Println(httpCode)

				}

You’ll	note	the	dbErrorParse	function,	which	we	defined	earlier.	We	take	the	results	from
this	and	inject	it	into	an	ErrorMessages	function	that	returns	granular	information	about
any	given	error	and	not	database	errors	exclusively:

type	ErrMsg	struct	{

				ErrCode	int

				StatusCode	int

				Msg	string

}

func	ErrorMessages(err	int64)	(ErrMsg)	{

				var	em	ErrMsg{}

				errorMessage	:=	""

				statusCode	:=	200;

				errorCode	:=	0

				switch	(err)	{

						case	1062:

								errorMessage	=	"Duplicate	entry"

								errorCode	=	10

								statusCode	=	409

				}

				em.ErrCode	=	errorCode

				em.StatusCode	=	statusCode

				em.Msg	=	errorMsg

				return	em

		}

For	now,	this	is	pretty	lean,	dealing	with	a	single	type	of	error.	We’ll	expand	upon	this	as
we	go	along	and	add	more	error	handling	mechanisms	and	messages	(as	well	as	taking	a
stab	at	translation	tables).

There’s	one	last	thing	we	need	to	do	with	regard	to	the	HTTP	status	code.	The	easiest	way
to	set	the	HTTP	status	code	is	through	the	http.Error()	function:

						http.Error(w,	"Conflict",	httpCode)

If	we	put	this	in	our	error	conditional	block,	we’ll	return	any	status	code	we	receive	from
the	ErrorMessages()	function:

				if	err	!=	nil	{

						errorMessage,	errorCode	:=	dbErrorParse(err.Error())

						fmt.Println(errorMessage)

												error,	httpCode,	msg	:=	ErrorMessages(errorCode)

						Response.Error	=	msg

						Response.ErrorCode	=	error

						http.Error(w,	"Conflict",	httpCode)

				}

Running	this	again	with	cURL	and	the	verbose	flag	(-v)	will	give	us	additional
information	about	our	errors,	as	shown	in	the	following	screenshot:

Handling	binary	data
First,	we’ll	need	to	create	a	new	field	in	MySQL	to	accommodate	the	image	data.	In	the
following	case,	we	can	go	with	BLOB	data,	which	accepts	large	amounts	of	arbitrary	binary
data.	For	this	purpose,	we	can	assume	(or	enforce)	that	an	image	should	not	exceed	16
MB,	so	MEDIUMBLOB	will	handle	all	of	the	data	that	we	throw	at	it:

ALTER	TABLE	`users`

		ADD	COLUMN	`user_image`	MEDIUMBLOB	NOT	NULL	AFTER	`user_email`;

With	our	image	column	now	in	place,	we	can	accept	data.	Add	another	field	to	our	form
for	image	data:

<div	class="form-group">

<label	for="createLast">Image</label>

<input	type="file"	class="form-control"	name="image"	id="createImage"	

placeholder="Image">

</div>

And	in	our	server,	we	can	make	a	few	quick	modifications	to	accept	this.	First,	we	should
get	the	file	data	itself	from	the	form,	as	follows:

				f,	_,	err	:=	r.FormFile("image1")

				if	err	!=	nil	{	

						fmt.Println(err.Error())

				}

Next,	we	want	to	read	this	entire	file	and	convert	it	to	a	string:

				fileData,_	:=	ioutil.ReadAll(f)

Then,	we’ll	pack	it	into	a	base64	encoded	text	representation	of	our	image	data:

				fileString	:=	base64.StdEncoding.EncodeToString(fileData)

And	then	finally,	we	prepend	our	query	with	the	inclusion	of	the	new	user	image	data:

sql	:=	"INSERT	INTO	users	set	user_image='"	+	fileString	+	"',		

user_nickname='"

Note
We’ll	come	back	to	a	couple	of	these	SQL	statements	that	are	assembled	here	in	our	last
chapter	on	security.

Summary
Three	chapters	in	and	we’ve	got	the	skeleton	of	a	simple	social	networking	application
that	we	can	replicate	in	REST	as	well	as	JSON-RPC.	We’ve	also	spent	some	time	on
properly	relaying	errors	to	the	client	in	REST.

In	our	next	chapter,	Designing	APIs	in	Go,	we’ll	really	begin	to	flesh	out	our	social
network	as	well	as	explore	other	Go	packages	that	will	be	relevant	to	have	a	strong,	robust
API.

In	addition,	we’ll	bring	in	a	few	other	libraries	and	external	services	to	help	give	verbose
responses	to	connections	between	our	users	and	their	relationships.

We’ll	also	start	to	experiment	with	web	sockets	for	a	more	interactive	client	experience	on
the	Web.	Finally,	we’ll	handle	binary	data	to	allow	our	clients	to	upload	images	through
our	API.

Chapter	4.	Designing	APIs	in	Go
We’ve	now	barreled	through	the	basics	of	REST,	handling	URL	routing,	and	multiplexing
in	Go,	either	directly	or	through	a	framework.

Hopefully,	creating	the	skeleton	of	our	API	has	been	useful	and	informative,	but	we	need
to	fill	in	some	major	blanks	if	we’re	going	to	design	a	functioning	REST-compliant	web
service.	Primarily,	we	need	to	handle	versions,	all	endpoints,	and	the	OPTIONS	headers	as
well	as	multiple	formats	in	an	elegant,	easy	way	that	can	be	managed	going	forward.

We’re	going	to	flesh	out	the	endpoints	we	want	to	lay	out	for	an	API-based	application
that	allows	clients	to	get	all	of	the	information	they	need	about	our	application	as	well	as
create	and	update	users,	with	valuable	error	information	relating	to	both	the	endpoints.

By	the	end	of	this	chapter,	you	should	also	be	able	to	switch	between	REST	and
WebSocket	applications	as	we’ll	build	a	very	simple	WebSocket	example	with	a	built-in
client-side	testing	interface.

In	this	chapter,	we’ll	cover	the	following	topics:

Outlining	and	designing	our	complete	social	network	API
Handling	code	organization	and	the	basics	of	API	versioning
Allowing	multiple	formats	(XML	and	JSON)	for	our	API
A	closer	look	at	WebSockets	and	implementing	them	in	Go
Creating	more	robust	and	descriptive	error	reporting
Updating	user	records	via	the	API

At	the	end	of	this	chapter,	you	should	be	able	to	elegantly	handle	multiple	formats	and
versions	of	your	REST	Web	Services	and	have	a	better	understanding	of	utilizing
WebSockets	within	Go.

Designing	our	social	network	API
Now	that	we’ve	gotten	our	feet	wet	a	bit	by	making	Go	output	data	in	our	web	service,
one	important	step	to	take	now	is	to	fully	flesh	out	what	we	want	our	major	project’s	API
to	do.

Since	our	application	is	a	social	network,	we	need	to	focus	not	only	on	user	information
but	also	on	connections	and	messaging.	We’ll	need	to	make	sure	that	new	users	can	share
information	with	certain	groups,	make	and	modify	connections,	and	handle	authentication.

With	this	in	mind,	let’s	scope	out	our	following	potential	API	endpoints,	so	that	we	can
continue	to	build	our	application:

Endpoints Method Description

/api/users GET Return	a	list	of	users	with	optional	parameters

/api/users POST Create	a	user

/api/users/XXX PUT Update	a	user’s	information

/api/users/XXX DELETE Delete	a	user

/api/connections GET Return	a	list	of	connections	based	on	users

/api/connections POST Create	a	connection	between	users

/api/connections/XXX PUT Modify	a	connection

/api/connections/XXX DELETE Remove	a	connection	between	users

/api/statuses GET Get	a	list	of	statuses

/api/statuses POST Create	a	status

/api/statuses/XXX PUT Update	a	status

/api/statuses/XXX DELETE Delete	a	status

/api/comments GET Get	list	of	comments

/api/comments POST Create	a	comment

/api/comments/XXX PUT Update	a	comment

/api/comments/XXX DELETE Delete	a	comment

In	this	case,	any	place	where	XXX	exists	is	where	we’ll	supply	a	unique	identifier	as	part	of
the	URL	endpoint.

You’ll	notice	that	we’ve	moved	to	all	plural	endpoints.	This	is	largely	a	matter	of
preference	and	a	lot	of	APIs	use	both	(or	only	singular	endpoints).	The	advantages	of

pluralized	endpoints	relate	to	consistency	in	the	naming	structure,	which	allows
developers	to	have	predictable	calls.	Using	singular	endpoints	work	as	a	shorthand	way	to
express	that	the	API	call	will	only	address	a	single	record.

Each	of	these	endpoints	reflects	a	potential	interaction	with	a	data	point.	There	is	another
set	of	endpoints	that	we’ll	include	as	well	that	don’t	reflect	interaction	with	our	data,	but
rather	they	allow	our	API	clients	to	authenticate	through	OAuth:

Endpoint Method Description

/api/oauth/authorize GET Returns	a	list	of	users	with	optional	parameters

/api/oauth/token POST Creates	a	user

/api/oauth/revoke PUT Updates	a	user’s	information

If	you’re	unfamiliar	with	OAuth,	don’t	worry	about	it	for	now	as	we’ll	dig	in	a	bit	deeper
later	on	when	we	introduce	authentication	methods.

Tip
OAuth,	short	for	Open	Authentication,	was	born	from	a	need	to	create	a	system	for
authenticating	users	with	OpenID,	which	is	a	decentralized	identity	system.

By	the	time	OAuth2	came	about,	the	system	had	been	largely	retooled	to	be	more	secure
as	well	as	focus	less	on	specific	integrations.	Many	APIs	today	rely	on	and	require	OAuth
to	access	and	make	changes	on	behalf	of	users	via	a	third	party.

The	entire	specification	document	(RFC6749)	from	the	Internet	Engineering	Task	Force
can	be	found	at	http://tools.ietf.org/html/rfc6749.

The	endpoints	mentioned	earlier	represent	everything	that	we’ll	need	to	build	a
minimalistic	social	network	that	operates	entirely	on	a	web	service.	We	will	be	building	a
basic	interface	for	this	too,	but	primarily,	we’re	focusing	on	building,	testing,	and	tuning
our	application	at	the	web	service	level.

One	thing	that	we	won’t	address	here	is	the	PATCH	requests,	which	as	we	mentioned	in	the
previous	chapter,	refer	to	partial	updates	of	data.

In	the	next	chapter,	we	will	augment	our	web	service	to	allow	the	PATCH	updates,	and	we’ll
outline	all	our	endpoints	as	part	of	our	OPTIONS	response.

http://tools.ietf.org/html/rfc6749

Handling	our	API	versions
If	you	spend	any	amount	of	time	dealing	with	web	services	and	APIs	across	the	Internet,
you’ll	discover	a	great	amount	of	variation	as	to	how	various	services	handle	their	API
versions.

Not	all	of	these	methods	are	particularly	intuitive	and	often	they	break	forward	and
backward	compatibility.	You	should	aim	to	avoid	this	in	the	simplest	way	possible.

Consider	an	API	that,	by	default,	uses	versioning	as	part	of	the	URI:	/api/v1.1/users.

You	will	find	this	to	be	pretty	common;	for	example,	this	is	the	way	Twitter	handles	API
requests.

There	are	some	pluses	and	minuses	to	this	approach,	so	you	should	consider	the	potential
downsides	for	your	URI	methodology.

With	API	versions	being	explicitly	defined,	there	is	no	default	version,	which	means	that
users	always	have	the	version	they’ve	asked	for.	The	good	part	of	this	is	that	you	won’t
necessarily	break	anyone’s	API	by	upgrading.	The	bad	part	is	that	users	may	not	know
which	version	is	the	latest	without	checking	explicitly	or	validating	descriptive	API
messages.

As	you	may	know,	Go	doesn’t	allow	conditional	imports.	Although	this	is	a	design
decision	that	enables	tools	such	as	go	fmt	and	go	fix	to	work	quickly	and	elegantly,	it
can	sometimes	hamper	application	design.

For	example,	something	like	this	is	not	directly	possible	in	Go:

if	version	==	1	{

		import	"v1"

}	else	if	version	==	2	{

		import	"v2"

}

We	can	improvise	around	this	a	bit	though.	Let’s	assume	that	our	application	structure	is
as	follows:

socialnetwork.go

/{GOPATH}/github.com/nkozyra/gowebservice/v1.go

/{GOPATH}/github.com/nkozyra/gowebservice/v2.go

We	can	then	import	each	as	follows:

import	"github.com/nkozyra/gowebservice/v1"

import	"github.com/nkozyra/gowebservice/v2"

This,	of	course,	also	means	that	we	need	to	use	these	in	our	application,	otherwise	Go	will
trigger	a	compile	error.

An	example	of	maintaining	multiple	versions	can	be	seen	as	follows:

package	main

import

(

		"nathankozyra.com/api/v1"

		"nathankozyra.com/api/v2"

)

func	main()	{

		v	:=	1

		if	v	==	1	{

				v1.API()

				//	do	stuff	with	API	v1

		}	else	{

				v2.API()

				//	do	stuff	with	API	v2

		}

		

}

The	unfortunate	reality	of	this	design	decision	is	that	your	application	will	break	one	of
programming	cardinal	rules:	don’t	duplicate	code.

This	isn’t	a	hard	and	fast	rule	of	course,	but	duplicating	code	leads	to	functionality	creep,
fragmentation,	and	other	headaches.	As	long	as	we	make	primary	methods	to	do	the	same
things	across	versions,	we	can	mitigate	these	problems	to	some	degree.

In	this	example,	each	of	our	API	versions	will	import	our	standard	API	serving-and-
routing	file,	as	shown	in	the	following	code:

package	v2

import

(

		"nathankozyra.com/api/api"

)

type	API	struct	{

		

}

func	main()	{

		api.Version	=	1

		api.StartServer()

}

And,	of	course,	our	v2	version	will	look	nearly	identical	to	a	different	version.	Essentially,
we	use	these	as	wrappers	that	bring	in	our	important	shared	data	such	as	database
connections,	data	marshaling,	and	so	on.

To	demonstrate	this,	we	could	put	a	couple	of	our	essential	variables	and	functions	into
our	api.go	file:

package	api

import	(

		"database/sql"

		"encoding/json"

		"fmt"

		_	"github.com/go-sql-driver/mysql"

		"github.com/gorilla/mux"

		"net/http"

		"log"

)

var	Database	*sql.DB

type	Users	struct	{

		Users	[]User	`json:"users"`

}

type	User	struct	{

		ID	int	"json:id"

		Name		string	"json:username"

		Email	string	"json:email"

		First	string	"json:first"

		Last		string	"json:last"

}

func	StartServer()	{

		db,	err	:=	sql.Open("mysql",	"root@/social_network")

		if	err	!=	nil	{

		}

		Database	=	db

		routes	:=	mux.NewRouter()

		http.Handle("/",	routes)

		http.ListenAndServe(":8080",	nil)

}

If	this	looks	familiar,	this	is	because	it’s	the	core	of	what	we	had	in	our	first	attempt	at	the
API	from	the	last	chapter,	with	a	few	of	the	routes	stripped	for	space	here.

Now	is	also	a	good	time	to	mention	an	intriguing	third-party	package	for	handling	JSON-
based	REST	APIs—JSON	API	Server	(JAS).	JAS	sits	on	top	of	HTTP	(like	our	API)	but
automates	a	lot	of	the	routing	by	directing	requests	to	resources	automatically.

Tip
JSON	API	Server	or	JAS	allows	a	simple	set	of	JSON-specific	API	tools	on	top	of	the
HTTP	package	to	augment	your	web	service	with	minimal	impact.

You	can	read	more	about	this	at	https://github.com/coocood/jas.

You	can	install	it	via	Go	by	using	this	command:	go	get	github.com/coocood/jas.
Delivering	our	API	in	multiple	formats

At	this	stage,	it	makes	sense	to	formalize	the	way	we	approach	multiple	formats.	In	this
case,	we’re	dealing	with	JSON,	RSS,	and	generic	text.

https://github.com/coocood/jas

We’ll	get	to	generic	text	in	the	next	chapter	when	we	talk	about	templates,	but	for	now,	we
need	to	be	able	to	separate	our	JSON	and	RSS	responses.

The	easiest	way	to	do	this	is	to	treat	any	of	our	resources	as	an	interface	and	then	negotiate
marshaling	of	the	data	based	on	a	request	parameter.

Some	APIs	define	the	format	directly	in	the	URI.	We	can	also	do	this	fairly	easily	(as
shown	in	the	following	example)	within	our	mux	routing:

		Routes.HandleFunc("/api.{format:json|xml|txt}/user",	

UsersRetrieve).Methods("GET")

The	preceding	code	will	allow	us	to	extract	the	requested	format	directly	from	URL
parameters.	However,	this	is	also	a	bit	of	a	touchy	point	when	it	comes	to	REST	and	URIs.
And	though	it’s	one	with	some	debate	on	either	side,	for	our	purpose,	we’ll	use	the	format
simply	as	a	query	parameter.

In	our	api.go	file,	we’ll	need	to	create	a	global	variable	called	Format:

var	Format	string

And	a	function	that	we	can	use	to	ascertain	the	format	for	each	respective	request:

func	GetFormat(r	*http.Request)	{

		Format	=	r.URL.Query()["format"][0]

}

We’ll	call	this	with	each	request.	Although	the	preceding	option	automatically	restricts	to
JSON,	XML,	or	text,	we	can	build	it	into	the	application	logic	as	well	and	include	a
fallback	to	Format	if	it	doesn’t	match	the	acceptable	options.

We	can	use	a	generic	SetFormat	function	to	marshal	data	based	on	the	currently	requested
data	format:

func	SetFormat(data	interface{})		[]byte	{

		var	apiOutput	[]byte

		if	Format	==	"json"	{

				output,_	:=	json.Marshal(data)

				apiOutput	=	output

		}else	if	Format	==	"xml"	{

				output,_	:=	xml.Marshal(data)

				apiOutput	=	output

		}

		return	apiOutput

}

Within	any	of	our	endpoint	functions,	we	can	return	any	data	resource	that	is	passed	as	an
interface	to	SetFormat():

func	UsersRetrieve(w	http.ResponseWriter,	r	*http.Request)	{

		log.Println("Starting	retrieval")

		GetFormat(r)

		start	:=	0

		limit	:=	10

		next	:=	start	+	limit

		w.Header().Set("Pragma","no-cache")

		w.Header().Set("Link","<http://localhost:8080/api/users?

start="+string(next)+";	rel=\"next\"")

		rows,_	:=	Database.Query("SELECT	*	FROM	users	LIMIT	10")

		Response:=	Users{}

		for	rows.Next()	{

				user	:=	User{}

				rows.Scan(&user.ID,	&user.Name,	&user.First,	&user.Last,	&user.Email)

				Response.Users	=	append(Response.Users,	user)

		}

				output	:=	SetFormat(Response)

		fmt.Fprintln(w,string(output))

}

This	allows	us	to	remove	the	marshaling	from	the	response	function(s).	Now	that	we	have
a	pretty	firm	grasp	of	marshaling	our	data	into	XML	and	JSON,	let’s	revisit	another
protocol	for	serving	a	web	service.

Concurrent	WebSockets
As	mentioned	in	the	previous	chapter,	a	WebSocket	is	a	method	to	keep	an	open
connection	between	the	client	and	the	server,	which	is	typically	meant	to	replace	multiple
HTTP	calls	from	a	browser	to	a	client,	but	also	between	two	servers	that	may	need	to	stay
in	a	semi-reliable	constant	connection.

The	advantages	of	using	WebSockets	for	your	API	are	reduced	latency	for	the	client	and
server	and	a	generally	less	complex	architecture	for	building	a	client-side	solution	for
long-polling	applications.

To	outline	the	advantages,	consider	the	following	two	representations;	the	first	of	the
standard	HTTP	request:

Now	compare	this	with	the	more	streamlined	WebSocket	request	over	TCP,	which
eliminates	the	overhead	of	multiple	handshakes	and	state	control:

You	can	see	how	traditional	HTTP	presents	levels	of	redundancy	and	latency	that	can
hamper	a	long-lived	application.

Granted,	it’s	only	HTTP	1	that	has	this	problem	in	a	strict	sense.	HTTP	1.1	introduced
keep-alives	or	persistence	in	a	connection.	And	while	that	worked	on	the	protocol	side,
most	nonconcurrent	web	servers	would	struggle	with	resource	allocation.	Apache,	for
example,	by	default	left	keep-alive	timeouts	very	low	because	long-lived	connections
would	tie	up	threads	and	prevent	future	requests	from	completing	in	a	reasonable	manner
of	time.

The	present	and	future	of	HTTP	offers	some	alternatives	to	WebSockets,	namely	some	big
options	that	have	been	brought	to	the	table	by	the	SPDY	protocol,	which	was	developed
primarily	by	Google.

While	HTTP	2.0	and	SPDY	offer	concepts	of	multiplexing	connections	without	closing
them,	particularly	in	the	HTTP	pipelining	methodology,	there	is	no	wide-ranging	client-
side	support	for	them	yet.	For	the	time	being,	if	we	approach	an	API	from	a	web	client,
WebSockets	provide	far	more	client-side	predictability.

It	should	be	noted	that	SPDY	support	across	web	servers	and	load	balancers	is	still	largely
experimental.	Caveat	emptor.

While	REST	remains	our	primary	target	for	our	API	and	demonstrations,	you’ll	find	a
very	simple	WebSocket	example	in	the	following	code	that	accepts	a	message	and	returns
the	length	of	that	message	along	the	wire:

package	main

import	(

				"fmt"

				"net/http"

				"code.google.com/p/go.net/websocket"

				"strconv"

)

var	addr	=	":12345"

func	EchoLengthServer(ws	*websocket.Conn)	{

				

				var	msg	string

				for	{

						websocket.Message.Receive(ws,	&msg)

						fmt.Println("Got	message",msg)

						length	:=	len(msg)

						if	err	:=	websocket.Message.Send(ws,	strconv.FormatInt(int64(length),	

10))		;	err	!=	nil	{

										fmt.Println("Can't	send	message	length")

										break

								}

				}

Note	the	loop	here;	it’s	essential	to	keep	this	loop	running	within	the	EchoLengthServer
function,	otherwise	your	WebSocket	connection	will	close	immediately	on	the	client	side,
preventing	future	messages.

}

func	websocketListen()	{

				http.Handle("/length",	websocket.Handler(EchoLengthServer))

				err	:=	http.ListenAndServe(addr,	nil)

				if	err	!=	nil	{

								panic("ListenAndServe:	"	+	err.Error())

				}

}

This	is	our	primary	socket	router.	We’re	listening	on	port	12345	and	evaluating	the
incoming	message’s	length	and	then	returning	it.	Note	that	we	essentially	cast	the	http
handler	to	a	websocket	handler.	This	is	shown	here:

func	main()	{

				http.HandleFunc("/websocket",	func(w	http.ResponseWriter,	r	

*http.Request)	{

								http.ServeFile(w,	r,	"websocket.html")

				})

				websocketListen()

}

This	last	piece,	in	addition	to	instantiating	the	WebSocket	portion,	also	serves	a	flat	file.
Due	to	some	cross-domain	policy	issues,	it	can	be	cumbersome	to	test	client-side	access
and	functionality	of	a	WebSocket	example	unless	the	two	are	running	on	the	same	domain
and	port.

To	manage	cross-domain	requests,	a	protocol	handshake	must	be	initiated.	This	is	beyond
the	scope	of	the	demonstration,	but	if	you	choose	to	pursue	it,	know	that	this	particularly
package	does	provide	the	functionality	with	a	serverHandshaker	interface	that	references
the	ReadHandshake	and	AcceptHandshake	methods.

Tip
The	source	for	handshake	mechanisms	of	websocket.go	can	be	found	at
https://code.google.com/p/go/source/browse/websocket/websocket.go?repo=net.

Since	this	is	a	wholly	WebSocket-based	presentation	at	the	/length	endpoint,	if	you
attempt	to	reach	it	via	HTTP,	you’ll	get	a	standard	error,	as	shown	in	the	following
screenshot:

Hence,	the	flat	file	will	be	returned	to	the	same	domain	and	port.	In	the	preceding	code,
we	simply	include	jQuery	and	the	built-in	WebSocket	support	that	exists	in	the	following
browsers:

Chrome:	Version	21	and	higher	versions
Safari:	Version	6	and	higher	versions
Firefox:	Version	21	and	higher	versions
IE:	Version	10	and	higher	versions
Opera:	Versions	22	and	higher	versions

Modern	Android	and	iOS	browsers	also	handle	WebSockets	now.

The	code	for	connecting	to	the	WebSocket-side	of	the	server	and	testing	some	messages	is
as	follows.	Note	that	we	don’t	test	for	WebSocket	support	here:

<html>

<head>

		<script	

https://code.google.com/p/go/source/browse/websocket/websocket.go?repo=net

src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js">

</script>

</head>

<body>

<script>

		var	socket;

		function	update(msg)	{

				$('#messageArea').html(msg)

		}

This	code	returns	the	message	that	we	get	from	the	WebSocket	server:

		function	connectWS(){

				var	host	=	"ws://localhost:12345/length";

				socket	=	new	WebSocket(host);

				socket.onopen	=	function()	{

						update("Websocket	connected")

				}

				socket.onmessage	=	function(message){

						update('Websocket	counted	'+message.data+'	characters	in	your	

message');

				}

				socket.onclose	=	function()	{

						update('Websocket	closed');

				}

		}

		function	send()	{

				socket.send($('#message').val());

		}

		function	closeSocket()	{

				socket.close();

		}

		connectWS();

</script>

<div>

		<h2>Your	message</h2>

		<textarea	style="width:50%;height:300px;font-size:20px;"	id="message">

</textarea>

		<div><input	type="submit"	value="Send"	onclick="send()"	/>	<input	

type="button"	onclick="closeSocket();"	value="Close"	/></div>

</div>

<div	id="messageArea"></div>

</body>

</html>

When	we	visit	the	/websocket	URL	in	our	browser,	we’ll	get	the	text	area	that	allows	us
to	send	messages	from	the	client	side	to	the	WebSocket	server,	as	shown	in	the	following
screenshot:

Separating	our	API	logic
As	we	mentioned	in	the	section	on	versioning	earlier,	the	best	way	for	us	to	achieve
consistency	across	versions	and	formats	is	to	keep	our	API	logic	separate	from	our	overall
version	and	delivery	components.

We’ve	seen	a	bit	of	this	in	our	GetFormat()	and	SetFormat()	functions,	which	span	all
the	endpoints	and	versions.

Expanding	our	error	messages
In	the	last	chapter,	we	briefly	touched	on	sending	error	messages	via	our	HTTP	status
codes.	In	this	case,	we	passed	along	a	409	status	conflict	when	a	client	attempted	to	create
a	user	with	an	e-mail	address	that	already	existed	in	the	database.

The	http	package	provides	a	noncomprehensive	set	of	status	codes	that	you	can	use	for
standard	HTTP	issues	as	well	as	REST-specific	messages.	The	codes	are
noncomprehensive	because	there	are	some	additional	messages	that	go	along	with	some	of
these	codes,	but	the	following	list	satisfies	the	RFC	2616	proposal:

Error Number

StatusContinue 100

StatusSwitchingProtocols 101

StatusOK 200

StatusCreated 201

StatusAccepted 202

StatusNonAuthoritativeInfo 203

StatusNoContent 204

StatusResetContent 205

StatusPartialContent 206

StatusMultipleChoices 300

StatusMovedPermanently 301

StatusFound 302

StatusSeeOther 303

StatusNotModified 304

StatusUseProxy 305

StatusTemporaryRedirect 307

StatusBadRequest 400

StatusUnauthorized 401

StatusPaymentRequired 402

StatusForbidden 403

StatusNotFound 404

StatusMethodNotAllowed 405

StatusNotAcceptable 406

StatusProxyAuthRequired 407

StatusRequestTimeout 408

StatusConflict 409

StatusGone 410

StatusLengthRequired 411

StatusPreconditionFailed 412

StatusRequestEntityTooLarge 413

StatusRequestURITooLong 414

StatusUnsupportedMediaType 415

StatusRequestedRangeNotSatisfiable 416

StatusExpectationFailed 417

StatusTeapot 418

StatusInternalServerError 500

StatusNotImplemented 501

StatusBadGateway 502

StatusServiceUnavailable 503

StatusGatewayTimeout 504

StatusHTTPVersionNotSupported 505

You	may	recall	that	we	hard	coded	this	error	message	before;	our	error-handling	should
still	be	kept	above	the	context	of	API	versions.	For	example,	in	our	api.go	file,	we	had	a
switch	control	in	our	ErrorMessage	function	that	explicitly	defined	our	409	HTTP	status
code	error.	We	can	augment	this	with	constants	and	global	variables	that	are	defined	in	the
http	package	itself:

func	ErrorMessages(err	int64)	(int,	int,	string)	{

		errorMessage	:=	""

		statusCode	:=	200;

		errorCode	:=	0

		switch	(err)	{

				case	1062:

						errorMessage	=	http.StatusText(409)

						errorCode	=	10

						statusCode	=	http.StatusConflict

		}

		return	errorCode,	statusCode,	errorMessage

}

You	may	recall	that	this	does	some	translation	of	errors	in	other	components	of	the
application;	in	this	case	1062	was	a	MySQL	error.	We	can	also	directly	and	automatically
implement	the	HTTP	status	codes	here	as	a	default	in	the	switch:

				default:

						errorMessage	=	http.StatusText(err)

						errorCode	=	0

						statusCode	=	err

Updating	our	users	via	the	web	service
We	have	an	ability	here	to	present	another	point	of	potential	error	when	we	allow	users	to
be	updated	via	the	web	service.

To	do	this,	we’ll	add	an	endpoint	to	the	/api/users/XXX	endpoint	by	adding	a	route:

		Routes.HandleFunc("/api/users/{id:[0-9]+}",	UsersUpdate).Methods("PUT")

And	in	our	UsersUpdate	function,	we’ll	first	check	to	see	if	the	said	user	ID	exists.	If	it
does	not	exist,	we’ll	return	a	404	error	(a	document	not	found	error),	which	is	the	closest
approximation	of	a	resource	record	not	found.

If	the	user	does	exist,	we’ll	attempt	to	update	their	e-mail	ID	through	a	query;	if	that	fails,
we’ll	return	the	conflict	message	(or	another	error).	If	it	does	not	fail,	we’ll	return	200	and
a	success	message	in	JSON.	Here’s	the	beginning	of	the	UserUpdates	function:

func	UsersUpdate(w	http.ResponseWriter,	r	*http.Request)	{

		Response	:=	UpdateResponse{}

		params	:=	mux.Vars(r)

		uid	:=	params["id"]

		email	:=	r.FormValue("email")

		

		var	userCount	int

		err	:=	Database.QueryRow("SELECT	COUNT(user_id)	FROM	users	WHERE	

user_id=?",	uid).Scan(&userCount)

		if	userCount	==	0	{

						error,	httpCode,	msg	:=	ErrorMessages(404)

						log.Println(error)

						log.Println(w,	msg,	httpCode)

						Response.Error	=	msg

						Response.ErrorCode	=	httpCode

						http.Error(w,	msg,	httpCode)

		}else	if	err	!=	nil	{

				log.Println(error)

		}	else	{

				_,uperr	:=	Database.Exec("UPDATE	users	SET	user_email=?WHERE	

user_id=?",email,uid)

				if	uperr	!=	nil	{

						_,	errorCode	:=	dbErrorParse(uperr.Error())

						_,	httpCode,	msg	:=	ErrorMessages(errorCode)

						Response.Error	=	msg

						Response.ErrorCode	=	httpCode

						http.Error(w,	msg,	httpCode)

				}	else	{

						Response.Error	=	"success"

						Response.ErrorCode	=	0

						output	:=	SetFormat(Response)

						fmt.Fprintln(w,string(output))

				}

		}

}

We’ll	expand	on	this	a	bit,	but	for	now,	we	can	create	a	user,	return	a	list	of	users,	and
update	users’	e-mail	addresses.

Tip
While	working	with	APIs,	now	is	a	good	time	to	mention	two	browser-based	tools:
Postman	and	Poster,	that	let	you	work	directly	with	REST	endpoints	from	within	a
browser.

For	more	information	on	Postman	in	Chrome,	go	to
https://chrome.google.com/webstore/detail/postman-rest-
client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en.

For	more	information	on	Poster	in	Firefox,	go	to	https://addons.mozilla.org/en-
US/firefox/addon/poster/.

Both	tools	do	essentially	the	same	thing;	they	allow	you	to	interface	with	an	API	directly
without	having	to	develop	a	specific	HTML	or	script-based	tool	or	using	cURL	directly
from	the	command	line.

https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en
https://addons.mozilla.org/en-US/firefox/addon/poster/

Summary
Through	this	chapter,	we	have	the	guts	of	our	social	networking	web	service	scoped	out
and	ready	to	fill	in.	We’ve	shown	you	how	to	create	and	outlined	how	to	update	our	users
as	well	as	return	valuable	error	information	when	we	cannot	update	our	users.

This	chapter	has	dedicated	a	lot	of	time	to	the	infrastructure—the	formats	and	endpoints—
of	such	an	application.	On	the	former,	we	looked	at	XML	and	JSON	primarily,	but	in	the
next	chapter,	we’ll	explore	templates	so	that	you	can	return	data	in	any	arbitrary	format	in
which	you	deem	necessary.

We’ll	also	delve	into	authentication,	either	via	OAuth	or	a	simple	HTTP	basic
authentication,	which	will	allow	our	clients	to	connect	securely	to	our	web	service	and
make	requests	that	protect	sensitive	data.	To	do	this,	we’ll	also	lock	our	application	down
to	HTTPS	for	some	of	our	requests.

In	addition,	we’ll	focus	on	a	REST	aspect	that	we’ve	only	touched	on	briefly—outlining
our	web	service’s	behavior	via	the	OPTIONS	HTTP	verb.	Finally,	we’ll	look	more	closely	at
the	way	headers	can	be	used	to	approximate	state	on	both	the	server	and	receiving	end	of	a
web	service.

Chapter	5.	Templates	and	Options	in	Go
With	the	basics	of	our	social	networking	web	service	fleshed	out,	it’s	time	we	take	our
project	from	a	demo	toy	to	something	that	can	actually	be	used,	and	perhaps	eventually	in
production	as	well.

To	do	this,	we	need	to	focus	on	a	number	of	things,	some	of	which	we’ll	address	in	this
chapter.	In	the	last	chapter,	we	looked	at	scoping	out	the	primary	functions	of	our	social
network	application.	Now,	we	need	to	make	sure	that	each	of	those	things	is	possible	from
a	REST	standpoint.

In	order	to	accomplish	that,	in	this	chapter,	we’ll	look	at:

Using	OPTIONS	to	provide	built-in	documentation	and	a	REST-friendly	explanation	of
our	resources’	endpoints	purposes
Considering	alternative	output	formats	and	an	introduction	on	how	to	implement
them
Implementing	and	enforcing	security	for	our	API
Allowing	user	registration	to	utilize	secure	passwords
Allowing	users	to	authenticate	from	a	web-based	interface
Approximating	an	OAuth-like	authentication	system
Allowing	external	applications	to	make	requests	on	behalf	of	other	users

After	the	implementation	of	these	things,	we	will	have	the	foundation	of	a	service	that	will
allow	users	to	interface	with	it,	either	directly	via	an	API	or	through	a	third-party	service.

Sharing	our	OPTIONS
We’ve	hinted	a	bit	at	the	value	and	purpose	of	the	OPTIONS	HTTP	verb	as	it	relates	to	the
HTTP	specification	and	the	best	practices	of	REST.

As	per	RFC	2616,	the	HTTP/1.1	specification,	responses	to	the	OPTIONS	requests	should
return	information	about	what	the	client	can	do	with	the	resource	and/or	requested
endpoint.

Note
You	can	find	the	HTTP/1.1	Request	for	Comments	(RFC)	at
https://www.ietf.org/rfc/rfc2616.txt.

In	other	words,	in	our	early	examples,	calls	to	/api/users	with	OPTIONS	should	return	an
indication	that	GET,	POST,	PUT,	and	DELETE	are	presently	available	options	at	that	REST
resource	request.

At	present,	there’s	no	predefined	format	for	what	the	body	content	should	resemble	or
contain	although	the	specification	indicates	that	this	may	be	outlined	in	a	future	release.
This	gives	us	some	leeway	in	how	we	present	available	actions;	in	most	such	cases	we
will	want	to	be	as	robust	and	informative	as	possible.

The	following	code	is	a	simple	modification	of	our	present	API	that	includes	some	basic
information	about	the	OPTIONS	request	that	we	outlined	earlier.	First,	we’ll	add	the
method-specific	handler	for	the	request	in	our	exported	Init()	function	of	the	api.go	file:

func	Init()	{

		Routes	=	mux.NewRouter()

		Routes.HandleFunc("/api/users",	UserCreate).Methods("POST")

		Routes.HandleFunc("/api/users",	UsersRetrieve).Methods("GET")	

		Routes.HandleFunc("/api/users/{id:[0-9]+}",UsersUpdate).Methods("PUT")

		Routes.HandleFunc("/api/users",	UsersInfo).Methods("OPTIONS")

}

And	then,	we’ll	add	the	handler:

func	UsersInfo(w	http.ResponseWriter,	r	*http.Request)	{

		w.Header().Set("Allow","DELETE,GET,HEAD,OPTIONS,POST,PUT")

}

Calling	this	with	cURL	directly	gives	us	what	we’re	looking	for.	In	the	following
screenshot,	you’ll	notice	the	Allow	header	right	at	the	top	of	the	response:

https://www.ietf.org/rfc/rfc2616.txt

This	alone	would	satisfy	most	generally	accepted	requirements	for	the	OPTIONS	verb	in	the
REST-based	world,	but	remember	that	there	is	no	format	for	the	body	and	we	want	to	be
as	expressive	as	we	can.

One	way	in	which	we	can	do	this	is	by	providing	a	documentation-specific	package;	in
this	example,	it	is	called	specification.	Keep	in	mind	that	this	is	wholly	optional,	but	it	is	a
nice	treat	for	any	developers	who	happen	to	stumble	across	it.	Let’s	take	a	look	at	how	we
can	set	this	up	for	self-documented	APIs:

package	specification

type	MethodPOST	struct	{

		POST	EndPoint

}

type	MethodGET	struct	{

		GET	EndPoint

}

type	MethodPUT	struct	{

		PUT	EndPoint

}

type	MethodOPTIONS	struct	{

		OPTIONS	EndPoint

}

type	EndPoint	struct	{

		Description	string	`json:"description"`

		Parameters	[]Param	`json:"parameters"`

}

type	Param	struct	{

		Name	string	"json:name"

		ParameterDetails	Detail	`json:"details"`

}

type	Detail	struct	{

		Type	string	"json:type"

		Description	string	`json:"description"`

		Required	bool	"json:required"

}

var	UserOPTIONS	=	MethodOPTIONS{	OPTIONS:	EndPoint{	Description:	"This	

page"	}	}

var	UserPostParameters	=	[]Param{	{Name:	"Email",	ParameterDetails:	

Detail{Type:"string",	Description:	"A	new	user's	email	address",	Required:	

false}	}	}

var	UserPOST	=	MethodPOST{	POST:	EndPoint{	Description:	"Create	a	user",	

Parameters:	UserPostParameters	}	}

var	UserGET	=	MethodGET{	GET:	EndPoint{	Description:	"Access	a	user"	}}

You	can	then	reference	this	directly	in	our	api.go	file.	First,	we’ll	create	a	generic	slice	of
interfaces	that	will	encompass	all	the	available	methods:

type	DocMethod	interface	{

}

Then,	we	can	compile	our	various	methods	within	our	UsersInfo	method:

func	UsersInfo(w	http.ResponseWriter,	r	*http.Request)	{

		w.Header().Set("Allow","DELETE,GET,HEAD,OPTIONS,POST,PUT")

		UserDocumentation	:=	[]DocMethod{}

		UserDocumentation	=	append(UserDocumentation,	Documentation.UserPOST)

		UserDocumentation	=	append(UserDocumentation,	Documentation.UserOPTIONS)

		output	:=	SetFormat(UserDocumentation)

		fmt.Fprintln(w,string(output))

}

Your	screen	should	look	similar	to	this:

Implementing	alternative	formats
When	looking	at	the	world	of	API	formats,	you	know	by	now	that	there	are	two	big
players:	XML	and	JSON.	As	human-readable	formats,	these	two	have	owned	the	format
world	for	more	than	a	decade.

As	is	often	the	case,	developers	and	technologists	rarely	settle	happily	for	something	for
long.	XML	was	number	one	for	a	very	long	time	before	the	computational	complexity	of
encoding	and	decoding	as	well	as	the	verbosity	of	schema	pushed	many	developers
towards	JSON.

JSON	is	not	without	its	faults	either.	It’s	not	all	that	readable	by	humans	without	some
explicit	spacing,	which	then	increases	the	size	of	the	document	excessively.	It	doesn’t
handle	commenting	by	default	either.

There	are	a	number	of	alternative	formats	that	are	sitting	on	the	sideline.	YAML,	which
stands	for	YAML	Ain’t	Markup	Language,	is	a	whitespace-delimited	format	that	uses
indentation	to	make	it	extremely	readable	for	humans.	An	example	document	would	look
something	like	this:

api:

		name:	Social	Network

		methods:

				-	GET

				-	POST

				-	PUT

				-	OPTIONS

				-	DELETE

The	indentation	system	as	a	method	of	simulating	code	blocks	will	look	familiar	to	anyone
with	experience	in	Python.

Tip
There	are	a	number	of	YAML	implementations	for	Go.	The	most	noteworthy	is	go-yaml
and	this	is	available	at	https://github.com/go-yaml/yaml.

TOML,	or	Tom’s	Obvious,	Minimal	Language,	takes	an	approach	that	will	look	very
familiar	to	anyone	who	has	worked	with	the	.ini	style	config	files.

https://github.com/go-yaml/yaml

Rolling	our	own	data	representation
format
TOML	is	a	good	format	to	look	at	with	regard	to	building	our	own	data	format,	primarily
because	its	simplicity	lends	itself	to	multiple	ways	of	accomplishing	the	output	within	this
format.

You	may	be	immediately	tempted	to	look	at	Go’s	text	template	format	when	devising
something	as	simple	as	TOML	because	the	control	mechanisms	to	present	it	are	largely
there	inherently.	Take	this	structure	and	loop,	for	example:

type	GenericData	struct	{

		Name	string

		Options	GenericDataBlock

}

type	GenericDataBlock	struct	{

		Server	string

		Address	string

}

func	main()	{

		Data	:=	GenericData{	Name:	"Section",	Options:	GenericDataBlock{Server:	

"server01",	Address:	"127.0.0.1"}}

}

And,	when	the	structure	is	parsed	against	the	text	template,	it	will	generate	precisely	what
we	want	as	follows:{{.Name}}.

{{range	$index,	$value	:=	Options}}

		$index	=	$value

{{end}}

One	big	problem	with	this	method	is	that	you	have	no	inherent	system	for	unmarshalling
data.	In	other	words,	you	can	generate	the	data	in	this	format,	but	you	can’t	unravel	it	back
into	Go	structures	the	other	way.

Another	issue	is	that	as	the	format	increases	in	complexity,	it	becomes	less	reasonable	to
use	the	limited	control	structures	in	the	Go	template	library	to	fulfill	all	of	the	intricacies
and	quirks	of	such	a	format.

If	you	choose	to	roll	your	own	format,	you	should	avoid	text	templates	and	look	at	the
encoding	package	that	allows	you	to	both	produce	and	consume	structured	data	formats.

We’ll	look	at	the	encoding	package	closely	in	the	following	chapter.

Introducing	security	and	authentication
A	critical	aspect	of	any	web	service	or	API	is	the	ability	to	keep	information	secure	and
only	allow	access	to	specific	users	to	do	specific	things.

Historically,	there	have	been	a	number	of	ways	to	accomplish	this	and	one	of	the	earliest	is
HTTP	digest	authentication.

Another	common	one	is	inclusion	of	developer	credentials,	namely	an	API	key.	This	isn’t
recommended	much	anymore,	primarily	because	the	security	of	the	API	relies	exclusively
on	the	security	of	these	credentials.	It	is,	however,	largely	a	self-evident	method	for
allowing	authentication	and	as	a	service	provider,	it	allows	you	to	keep	track	of	who	is
making	specific	requests	and	it	also	enables	the	throttling	of	requests.

The	big	player	today	is	OAuth	and	we’ll	look	at	this	shortly.	However,	first	things	first,	we
need	to	ensure	that	our	API	is	accessible	only	via	HTTPS.

Forcing	HTTPS
At	this	point,	our	API	is	starting	to	enable	clients	and	users	to	do	some	things,	namely
create	users,	update	their	data,	and	include	image	data	for	these	users.	We’re	beginning	to
dabble	in	things	that	we	would	not	want	to	leave	open	in	a	real-world	environment.

The	first	security	step	we	can	look	at	is	forcing	HTTPS	instead	of	HTTP	on	our	API.	Go
implements	HTTPS	via	TLS	rather	than	SSL	since	TLS	is	considered	as	a	more	secure
protocol	from	the	server	side.	One	of	the	driving	factors	was	vulnerabilities	in	SSL	3.0,
particularly	the	Poodlebleed	Bug	that	was	exposed	in	2014.

Tip
You	can	read	more	about	Poodlebleed	at	https://poodlebleed.com/.

Let’s	look	at	how	we	can	reroute	any	nonsecure	request	to	its	secure	counterpoint	in	the
following	code:

package	main

import

(

		"fmt"

		"net/http"

		"log"

		"sync"

)

const	(

		serverName	=	"localhost"

		SSLport	=	":443"

		HTTPport	=	":8080"

		SSLprotocol	=	"https://"

		HTTPprotocol	=	"http://"

)

func	secureRequest(w	http.ResponseWriter,	r	*http.Request)	{

		fmt.Fprintln(w,"You	have	arrived	at	port	443,	but	you	are	not	yet	

secure.")

}

This	is	our	(temporarily)	correct	endpoint.	It’s	not	yet	TSL	(or	SSL),	so	we’re	not	actually
listening	for	HTTPS	connections,	hence	the	message.

func	redirectNonSecure(w	http.ResponseWriter,	r	*http.Request)	{

		log.Println("Non-secure	request	initiated,	redirecting.")

		redirectURL	:=	SSLprotocol	+	serverName	+	r.RequestURI

		http.Redirect(w,	r,	redirectURL,	http.StatusOK)

}

This	is	our	redirection	handler.	You’ll	probably	take	note	with	the	http.StatusOK	status
code—obviously	we’d	want	to	send	a	301	Moved	Permanently	error	(or	an
http.StatusMovedPermanently	constant).	However,	if	you’re	testing	this,	there’s	a
chance	that	your	browser	will	cache	the	status	and	automatically	attempt	to	redirect	you.

https://poodlebleed.com/

func	main()	{

		wg	:=	sync.WaitGroup{}

		log.Println("Starting	redirection	server,	try	to	access	@	http:")

		wg.Add(1)

		go	func()	{

				http.ListenAndServe(HTTPport,http.HandlerFunc(redirectNonSecure))

				wg.Done()

		}()

		wg.Add(1)

		go	func()	{

				http.ListenAndServe(SSLport,http.HandlerFunc(secureRequest))

				wg.Done()

		}()

		wg.Wait()

}

So,	why	have	we	wrapped	these	methods	in	anonymous	goroutines?	Well,	take	them	out
and	you’ll	see	that	because	the	ListenAndServe	function	is	blocking,	we’ll	never	run	the
two	simultaneously	by	simply	calling	the	following	statements:

http.ListenAndServe(HTTPport,http.HandlerFunc(redirectNonSecure))

http.ListenAndServe(SSLport,http.HandlerFunc(secureRequest))

Of	course,	you	have	options	in	this	regard.	You	could	simply	set	the	first	as	a	goroutine
and	this	would	allow	the	program	to	move	on	to	the	second	server.	This	method	provides
some	more	granular	control	for	demonstration	purposes.

Adding	TLS	support
In	the	preceding	example,	we	were	obviously	not	listening	for	HTTPS	connections.	Go
makes	this	quite	easy;	however,	like	most	SSL/TLS	matters,	the	complication	arises	while
handling	your	certificates.

For	these	examples,	we’ll	be	using	self-signed	certificates,	and	Go	makes	this	easy	as
well.	Within	the	crypto/tls	package,	there	is	a	file	called	generate_cert.go	that	you
can	use	to	generate	your	certificate	keys.

By	navigating	to	your	Go	binary	directory	and	then	src/pkg/crypto/tls,	you	can
generate	a	key	pair	that	you	can	utilize	for	testing	by	running	this:

go	run	generate_cert.go	--host	localhost	--ca	true

You	can	then	take	those	files	and	move	them	wherever	you	want,	ideally	in	the	directory
where	our	API	is	running.

Next,	let’s	remove	our	http.ListenAndServe	function	and	change	it	to
http.ListenAndServeTLS.	This	requires	a	couple	of	additional	parameters	that	encompass
the	location	of	the	keys:

http.ListenAndServeTLS(SSLport,	"cert.pem",	"key.pem",	

http.HandlerFunc(secureRequest))

For	the	sake	of	being	more	explicit,	let’s	also	modify	our	secureRequest	handler	slightly:

fmt.Fprintln(w,"You	have	arrived	at	port	443,	and	now	you	are	marginally	

more	secure.")

If	we	run	this	now	and	go	to	our	browser,	we’ll	hopefully	see	a	warning,	assuming	that	our
browser	would	keep	us	safe:

Assuming	we	trust	ourselves,	which	is	not	always	advisable,	click	through	and	we’ll	see
our	message	from	the	secure	handler:

Note
And	of	course,	if	we	again	visit	http://localhost:8080,	we	should	now	be	automatically
redirected	with	a	301	status	code.

Creating	self-signed	certificates	is	otherwise	fairly	easy	when	you	have	access	to	an	OS
that	supports	OpenSSL.

You	can	get	a	signed	(but	not	verified)	certificate	for	free	through	a	number	of	services	for
a	one-year	period	if	you’d	like	to	experiment	with	real	certificates	and	not	self-signed
ones.	One	of	the	more	popular	ones	is	StartSSL	(https://www.startssl.com/),	which	makes
getting	free	and	paid	certificates	a	painless	process.

https://www.startssl.com/

Letting	users	register	and	authenticate
You	may	recall	that	as	part	of	our	API	application	we	have	a	self-contained	interface	that
allows	us	to	serve	a	HTML	interface	for	the	API	itself.	Any	discussion	of	security	goes
out	the	door	if	we	don’t	lock	down	our	users.

Of	course,	the	absolute	simplest	way	of	implementing	user	authentication	security	is
through	the	storage	and	use	of	a	password	with	a	hashing	mechanism.	It’s	tragically
common	for	servers	to	store	passwords	in	clear	text,	so	we	won’t	do	that;	but,	we	want	to
implement	at	least	one	additional	security	parameter	with	our	passwords.

We	want	to	store	not	just	the	user’s	password,	but	at	least	a	salt	to	go	along	with	it.	This	is
not	a	foolproof	security	measure,	although	it	severely	limits	the	threat	of	dictionary	and
rainbow	attacks.

To	do	this,	we’ll	create	a	new	package	called	password	as	part	of	our	suite,	which	allows
us	to	generate	random	salts	and	then	encrypt	that	value	along	with	the	password.

We	can	use	GenerateHash()	to	both	create	and	validate	passwords.

A	quick	hit	–	generating	a	salt
Getting	a	password	is	simple,	and	creating	a	secure	hash	is	also	fairly	easy.	What	we’re
missing	to	make	our	authentication	process	more	secure	is	a	salt.	Let’s	look	at	how	we	can
do	this.	First,	let’s	add	both	a	password	and	a	salt	field	to	our	database:

ALTER	TABLE	`users`

		ADD	COLUMN	`user_password`	VARCHAR(1024)	NOT	NULL	AFTER	`user_nickname`,

		ADD	COLUMN	`user_salt`	VARCHAR(128)	NOT	NULL	AFTER	`user_password`,

		ADD	INDEX	`user_password_user_salt`	(`user_password`,	`user_salt`);

With	this	in	place,	let’s	take	a	look	at	our	password	package	that	will	contain	the	salt	and
hash	generation	functions:

package	password

import

(

		"encoding/base64"

		"math/rand"

		"crypto/sha256"

		"time"

)

const	randomLength	=	16

func	GenerateSalt(length	int)	string	{

		var	salt	[]byte

		var	asciiPad	int64

		if	length	==	0	{

				length	=	randomLength

		}

		asciiPad	=	32

		for	i:=	0;	i	<	length;	i++	{

				salt	=	append(salt,	byte(rand.Int63n(94)	+	asciiPad))

		}

		return	string(salt)

}

Our	GenerateSalt()	function	produces	a	random	string	of	characters	within	a	certain	set
of	characters.	In	this	case,	we	want	to	start	at	32	in	the	ASCII	table	and	go	up	to	126.

func	GenerateHash(salt	string,	password	string)	string	{

		var	hash	string

		fullString	:=	salt	+	password

		sha	:=	sha256.New()

		sha.Write([]byte(fullString))

		hash	=	base64.URLEncoding.EncodeToString(sha.Sum(nil))

		return	hash

}

Here,	we	generate	a	hash	based	on	a	password	and	a	salt.	This	is	useful	not	just	for	the
creation	of	a	password	but	also	for	validating	it.	The	following	ReturnPassword()
function	primarily	operates	as	a	wrapper	for	other	functions,	allowing	you	to	create	a
password	and	return	its	hashed	value:

func	ReturnPassword(password	string)	(string,	string)	{

		rand.Seed(time.Now().UTC().UnixNano())

		salt	:=	GenerateSalt(0)

		

		hash	:=	GenerateHash(salt,password)

		return	salt,	hash

}

On	our	client	side,	you	may	recall	that	we	sent	all	of	our	data	via	AJAX	in	jQuery.	We	had
a	single	method	on	a	single	Bootstrap	tab	that	allowed	us	to	create	users.	First,	let’s
remind	ourselves	of	the	tab	setup.

And	now,	the	userCreate()	function,	wherein	we’ve	added	a	few	things.	First,	there’s	a
password	field	that	allows	us	to	send	that	password	along	when	we	create	a	user.	We	may
have	been	less	comfortable	about	doing	this	before	without	a	secure	connection:

		function	userCreate()	{

				action	=	"https://localhost/api/users";

				postData	=	{};

				postData.email	=	$('#createEmail').val();

				postData.user	=	$('#createUsername').val();

				postData.first	=	$('#createFirst').val();

				postData.last=	$('#createLast').val();

				postData.password	=	$('#createPassword').val();

Next,	we	can	modify	our	.ajax	response	to	react	to	different	HTTP	status	codes.
Remember	that	we	are	already	setting	up	a	conflict	if	a	username	or	an	e-mail	ID	already
exists.	So,	let’s	handle	this	as	well:

var	formData	=	new	FormData($('form')[0]);

$.ajax({

				url:	action,		//Server	script	to	process	data

				dataType:	'json',

				type:	'POST',

				statusCode:	{

						409:	function()	{

								$('#api-messages').html('Email	address	or	nickname	already	

exists!');

								$('#api-messages').removeClass('alert-success').addClass('alert-

warning');

								$('#api-messages').show();

								},

						200:	function()	{

								$('#api-messages').html('User	created	successfully!');

								$('#api-messages').removeClass('alert-warning').addClass('alert-

success');

								$('#api-messages').show();

								}

						},

Now,	if	we	get	a	response	of	200,	we	know	our	API-side	has	created	the	user.	If	we	get
409,	we	report	to	the	user	that	the	e-mail	address	or	username	is	taken	in	the	alert	area.

Examining	OAuth	in	Go
As	we	briefly	touched	on	in	Chapter	4,	Designing	APIs	in	Go,	OAuth	is	one	of	the	more
common	ways	of	allowing	an	application	to	interact	with	a	third-party	app	using	another
application’s	user	authentication.

It’s	extraordinarily	popular	in	social	media	services;	Facebook,	Twitter,	and	GitHub	all	use
OAuth	2.0	to	allow	applications	to	interface	with	their	APIs	on	behalf	of	users.

It’s	noteworthy	here	because	while	there	are	many	API	calls	that	we	are	comfortable
leaving	unrestricted,	primarily	the	GET	requests,	there	are	others	that	are	specific	to	users,
and	we	need	to	make	sure	that	our	users	authorize	these	requests.

Let’s	quickly	review	the	methods	that	we	can	implement	to	enable	something	akin	to
OAuth	with	our	server:

Endpoint

/api/oauth/authorize

/api/oauth/token

/api/oauth/revoke

Given	that	we	have	a	small,	largely	demonstration-based	service,	our	risk	in	keeping
access	tokens	active	for	a	long	time	is	minimal.	Long-lived	access	tokens	obviously	open
up	more	opportunities	for	unwanted	access	by	keeping	the	said	access	open	to	clients,	who
may	not	be	observing	the	best	security	protocols.

In	normal	conditions,	we’d	want	to	set	an	expiry	on	a	token,	which	we	can	do	pretty
simply	by	using	a	memcache	system	or	a	keystore	with	expiration	times.	This	allows
values	to	die	naturally,	without	having	to	explicitly	destroy	them.

The	first	thing	we’ll	need	to	do	is	add	a	table	for	client	credentials,	namely	consumer_key
and	consumer_token:

CREATE	TABLE	`api_credentials`	(

		`user_id`	INT(10)	UNSIGNED	NOT	NULL,

		`consumer_key`	VARCHAR(128)	NOT	NULL,

		`consumer_secret`	VARCHAR(128)	NOT	NULL,

		`callback_url`	VARCHAR(256)	NOT	NULL

		CONSTRAINT	`FK__users`	FOREIGN	KEY	(`user_id`)	REFERENCES	`users`	

(`user_id`)	ON	UPDATE	NO	ACTION	ON	DELETE	NO	ACTION

)

We’ll	check	the	details	against	our	newly	created	database	to	verify	credentials,	and	if	they
are	correct,	we’ll	return	an	access	token.

An	access	token	can	be	of	any	format;	given	our	low	security	restrictions	for	a
demonstration,	we’ll	return	an	MD5	hash	of	a	randomly	generated	string.	In	the	real
world,	this	probably	wouldn’t	be	sufficient	even	for	a	short-lived	token,	but	it	will	serve
its	purpose	here.

Tip
Remember,	we	implemented	a	random	string	generator	as	part	of	our	password	package.

You	can	create	a	quick	key	and	secret	value	in	api.go	by	calling	the	following	statements:

		fmt.Println(Password.GenerateSalt(22))

		fmt.Println(Password.GenerateSalt(41))

If	you	feed	this	key	and	secret	value	into	the	previously	created	table	and	associate	it	with
an	existing	user,	you’ll	have	an	active	API	client.	Note	that	this	may	generate	invalid	URL
characters,	so	we’ll	restrict	our	access	to	the	/oauth/token	endpoint	to	POST.

Our	pseudo	OAuth	mechanism	will	go	into	its	own	package,	and	it	will	strictly	generate
tokens	that	we’ll	keep	in	a	slice	of	tokens	within	our	API	package.

Within	our	core	API	package,	we’ll	add	two	new	functions	to	validate	credentials	and	the
pseudoauth	package:

		import(

		Pseudoauth	"github.com/nkozyra/gowebservice/pseudoauth"	

)

The	functions	that	we’ll	add	are	CheckCredentials()	and	CheckToken().	The	first	will
accept	a	key,	a	nonce,	a	timestamp,	and	an	encryption	method,	which	we’ll	then	hash
along	with	the	consumer_secret	value	to	see	that	the	signature	matches.	In	essence,	all	of
these	request	parameters	are	combined	with	the	mutually	known	but	unbroadcasted	secret
to	create	a	signature	that	is	hashed	in	a	mutually	known	way.	If	those	signatures
correspond,	the	application	can	issue	either	a	request	token	or	an	access	token	(the	latter	is
often	issued	in	exchange	for	a	request	token	and	we’ll	discuss	more	on	this	shortly).

In	our	case,	we’ll	accept	a	consumer_key	value,	a	nonce,	a	timestamp,	and	a	signature	and
for	the	time	being	assume	that	HMAC-SHA1	is	being	used	as	the	signature	method.	SHA1
is	losing	some	favor	do	to	the	increased	feasibility	of	collisions,	but	for	the	purpose	of	a
development	application,	it	will	do	and	can	be	simply	replaced	later	on.	Go	also	provides
SHA224,	SHA256,	SHA384,	and	SHA512	out	of	the	box.

The	purpose	of	the	nonce	and	timestamp	is	exclusively	added	security.	The	nonce	works
almost	assuredly	as	a	unique	identifying	hash	for	the	request,	and	the	timestamp	allows	us
to	expire	data	periodically	to	preserve	memory	and/or	storage.	We’re	not	going	to	do	this
here,	although	we	will	check	to	make	sure	that	a	nonce	has	not	been	used	previously.

To	begin	authenticating	the	client,	we	look	up	the	shared	secret	in	our	database:

func	CheckCredentials(w	http.ResponseWriter,	r	*http.Request)		{

		var	Credentials	string

		Response	:=	CreateResponse{}

		consumerKey	:=	r.FormValue("consumer_key")

		fmt.Println(consumerKey)

		timestamp	:=	r.FormValue("timestamp")

		signature	:=	r.FormValue("signature")

		nonce	:=	r.FormValue("nonce")

		err	:=	Database.QueryRow("SELECT	consumer_secret	from	api_credentials	

where	consumer_key=?",	consumerKey).Scan(&Credentials)

				if	err	!=	nil	{

				error,	httpCode,	msg	:=	ErrorMessages(404)

				log.Println(error)	

				log.Println(w,	msg,	httpCode)

				Response.Error	=	msg

				Response.ErrorCode	=	httpCode

				http.Error(w,	msg,	httpCode)

				return

		}

Here,	we’re	taking	the	consumer_key	value	and	looking	up	our	shared	consumer_secret
token,	which	we’ll	pass	along	to	our	ValidateSignature	function	as	follows:

		token,err	:=	

Pseudoauth.ValidateSignature(consumerKey,Credentials,timestamp,nonce,signat

ure,0)

		if	err	!=	nil	{

				error,	httpCode,	msg	:=	ErrorMessages(401)

				log.Println(error)	

				log.Println(w,	msg,	httpCode)

				Response.Error	=	msg

				Response.ErrorCode	=	httpCode

				http.Error(w,	msg,	httpCode)

				return

		}

If	we	find	our	request	to	be	invalid	(either	due	to	incorrect	credentials	or	an	existing
nonce),	we’ll	return	an	unauthorized	error	and	a	401	status	code:

		AccessRequest	:=	OauthAccessResponse{}

		AccessRequest.AccessToken	=	token.AccessToken

		output	:=	SetFormat(AccessRequest)

		fmt.Fprintln(w,string(output))

}

Otherwise,	we’ll	return	the	access	code	in	a	JSON	body	response.	Here’s	the	code	for	the
pseudoauth	package	itself:

package	pseudoauth

import

(

		"crypto/hmac"

		"crypto/sha1"

		"errors"

		"fmt"

		"math/rand"

		"strings"

		"time"

)

Nothing	too	surprising	here!	We’ll	need	some	crypto	packages	and	math/rand	to	allow	us
to	seed:

type	Token	struct	{

		Valid	bool

		Created	int64

		Expires	int64

		ForUser	int

		AccessToken	string

}

There’s	a	bit	more	here	than	what	we’ll	use	at	the	moment,	but	you	can	see	that	we	can
create	tokens	with	specific	access	rights:

var	nonces	map[string]	Token

func	init()	{

		nonces	=	make(map[string]	Token)

}

func	ValidateSignature(consumer_key	string,	consumer_secret	string,	

timestamp	string,		nonce	string,	signature	string,	for_user	int)	(Token,	

error)	{

		var	hashKey	[]byte

		t	:=	Token{}

		t.Created	=	time.Now().UTC().Unix()

		t.Expires	=	t.Created	+	600

		t.ForUser	=	for_user

		qualifiedMessage	:=	[]string{consumer_key,	consumer_secret,	timestamp,	

nonce}

		fullyQualified	:=	strings.Join(qualifiedMessage,"	")

		fmt.Println(fullyQualified)

		mac	:=	hmac.New(sha1.New,	hashKey)

		mac.Write([]byte(fullyQualified))

		generatedSignature	:=	mac.Sum(nil)

		//nonceExists	:=	nonces[nonce]

		if	hmac.Equal([]byte(signature),generatedSignature)	==	true	{

				t.Valid	=	true

				t.AccessToken	=	GenerateToken()

				nonces[nonce]	=	t

				return	t,	nil

		}	else	{

				err	:=	errors.New("Unauthorized")

				t.Valid	=	false

				t.AccessToken	=	""

				nonces[nonce]	=	t

				return	t,	err

		}

		

}

This	is	a	rough	approximation	of	how	services	like	OAuth	attempt	to	validate	signed
requests;	a	nonce,	a	public	key,	a	timestamp,	and	the	shared	private	key	are	evaluated
using	the	same	encryption.	If	they	match,	the	request	is	valid.	If	they	don’t	match,	an	error
should	be	returned.

We	can	use	the	timestamp	later	to	give	a	short	window	for	any	given	request	so	that	in
case	of	an	accidental	signature	leak,	the	damage	can	be	minimized:

func	GenerateToken()	string	{

		var	token	[]byte

		rand.Seed(time.Now().UTC().UnixNano())

		for	i:=	0;	i	<	32;	i++	{

				token	=	append(token,	byte(rand.Int63n(74)	+	48))

		}

		return	string(token)

}

Making	requests	on	behalf	of	users
When	it	comes	to	making	requests	on	behalf	of	users,	there	is	a	critical	middle	step	that	is
involved	in	the	OAuth2	process,	and	that’s	authentication	on	the	part	of	the	user.	This
cannot	happen	within	a	consumer	application,	obviously,	because	it	would	open	a	security
risk	wherein,	maliciously	or	not,	user	credentials	could	be	compromised.

Thus,	this	process	requires	a	few	redirects.

First,	the	initial	request	that	will	redirect	users	to	a	login	location	is	required.	If	they’re
already	logged	in,	they’ll	have	the	ability	to	grant	access	to	the	application.	Next,	our
service	will	take	a	callback	URL	and	send	the	user	back	along	with	their	request	token.
This	will	enable	a	third-party	application	to	make	requests	on	behalf	of	the	user,	unless
and	until	the	user	restricts	access	to	the	third-party	application.

To	store	valid	tokens,	which	are	essentially	permissive	connections	between	a	user	and	a
third-party	developer,	we’ll	create	a	database	for	this:

CREATE	TABLE	`api_tokens`	(

		`api_token_id`	INT(10)	UNSIGNED	NOT	NULL	AUTO_INCREMENT,

		`application_user_id`	INT(10)	UNSIGNED	NOT	NULL,

		`user_id`	INT(10)	UNSIGNED	NOT	NULL,

		`api_token_key`	VARCHAR(50)	NOT	NULL,

		PRIMARY	KEY	(`api_token_id`)

)

We’ll	need	a	few	pieces	to	make	this	work,	first,	a	login	form	for	users	who	are	not
presently	logged	in,	by	relying	on	a	sessions	table.	Let’s	create	a	very	simple
implementation	in	MySQL	now:

CREATE	TABLE	`sessions`	(

		`session_id`	VARCHAR(128)	NOT	NULL,

		`user_id`	INT(10)	NOT	NULL,

		UNIQUE	INDEX	`session_id`	(`session_id`)

)

Next,	we’ll	need	an	authorization	form	for	users	who	are	logged	in	that	allows	us	to	create
a	valid	API	access	token	for	the	user	and	service	and	redirects	the	user	to	the	callback.

The	template	can	be	a	very	simple	HTML	template	that	can	be	placed	at	/authorize.	So,
we	need	to	add	that	route	to	api.go:

		Routes.HandleFunc("/authorize",	ApplicationAuthorize).Methods("POST")

		Routes.HandleFunc("/authorize",	ApplicationAuthenticate).Methods("GET")

Requests	to	POST	will	check	confirmation	and	if	all	is	well,	pass	this:

<!DOCTYPE	html>

<html>

		<head>

				<title>{{.Title}}</title>

		</head>

		<body>

		{{if	.Authenticate}}

						<h1>{{.Title}}</h1>

						<form	action="{{.Action}}"	method="POST">

						<input	type="hidden"	name="consumer_key"	value="{.ConsumerKey}"	/>

						Log	in	here

						<div><input	name="username"	type="text"	/></div>

						<div><input	name="password"	type="password"	/></div>

						Allow	{{.Application}}	to	access	your	data?

						<div><input	name="authorize"	value="1"	type="radio">	Yes</div>

						<div><input	name="authorize"	value="0"	type="radio">	No</div>

						<input	type="submit"	value="Login"	/>

		{{end}}

		</form>

		</body>

</html>

Go’s	templating	language	is	largely,	but	not	completely,	without	logic.	We	can	use	an	if
control	structure	to	keep	both	pages’	HTML	code	in	a	single	template.	For	brevity,	we’ll
also	create	a	very	simple	Page	struct	that	allows	us	to	construct	very	basic	response	pages:

type	Page	struct	{

		Title	string

		Authorize	bool

		Authenticate	bool

		Application	string

		Action	string

		ConsumerKey	string

}

We’re	not	going	to	maintain	login	state	for	now,	which	means	each	user	will	need	to	log	in
anytime	they	wish	to	give	a	third	party	access	to	make	API	requests	on	their	behalf.	We’ll
fine-tune	this	as	we	go	along,	particularly	in	using	secure	session	data	and	cookies	that	are
available	in	the	Gorilla	toolkit.

So,	the	first	request	will	include	a	login	attempt	with	a	consumer_key	value	to	identify	the
application.	You	can	also	include	the	full	credentials	(nonce,	and	so	on)	here,	but	since	this
will	only	allow	your	application	access	to	a	single	user,	it’s	probably	not	necessary.

func	ApplicationAuthenticate(w	http.ResponseWriter,	r	*http.Request)	{

		Authorize	:=	Page{}

		Authorize.Authenticate	=	true

		Authorize.Title	=	"Login"

		Authorize.Application	=	""

		Authorize.Action	=	"/authorize"

		tpl	:=	template.Must(template.New("main").ParseFiles("authorize.html"))

		tpl.ExecuteTemplate(w,	"authorize.html",	Authorize)

}

All	requests	will	be	posted	to	the	same	address,	which	will	then	allow	us	to	validate	the
login	credentials	(remember	GenerateHash()	from	our	password	package),	and	if	they
are	valid,	we	will	create	the	connection	in	api_connections	and	then	return	the	user	to	the
callback	URL	associated	with	the	API	credentials.

Here	is	the	function	that	determines	whether	the	login	credentials	are	correct	and	if	so,

redirects	to	the	callback	URL	with	the	request_token	value	that	we	created:

func	ApplicationAuthorize(w	http.ResponseWriter,	r	*http.Request)	{

		username	:=	r.FormValue("username")

		password	:=	r.FormValue("password")

		allow	:=	r.FormValue("authorize")

		var	dbPassword	string

		var	dbSalt	string

		var	dbUID	string

		uerr	:=	Database.QueryRow("SELECT	user_password,	user_salt,	user_id	from	

users	where	user_nickname=?",	username).Scan(&dbPassword,	&dbSalt,	&dbUID)

		if	uerr	!=	nil	{

		}

With	the	user_password	value,	the	user_salt	value,	and	a	submitted	password	value,	we
can	verify	the	validity	of	the	password	by	using	our	GenerateHash()	function	and	doing	a
direct	comparison,	as	they	are	Base64	encoded.

		consumerKey	:=	r.FormValue("consumer_key")

		fmt.Println(consumerKey)

		var	CallbackURL	string

		var	appUID	string

		err	:=	Database.QueryRow("SELECT	user_id,callback_url	from	

api_credentials	where	consumer_key=?",	consumerKey).Scan(&appUID,	

&CallbackURL)

		if	err	!=	nil	{

				fmt.Println(err.Error())

				return

		}

		expectedPassword	:=	Password.GenerateHash(dbSalt,	password)

		if	dbPassword	==	expectedPassword	&&	allow	==	"1"	{

				requestToken	:=	Pseudoauth.GenerateToken()

				authorizeSQL	:=	"INSERT	INTO	api_tokens	set	application_user_id="	+	

appUID	+	",	user_id="	+	dbUID	+	",	api_token_key='"	+	requestToken	+	"'	ON	

DUPLICATE	KEY	UPDATE	user_id=user_id"

				q,	connectErr	:=	Database.Exec(authorizeSQL)

				if	connectErr	!=	nil	{

				}	else	{

						fmt.Println(q)

				}

				redirectURL	:=	CallbackURL	+	"?request_token="	+	requestToken

				fmt.Println(redirectURL)

				http.Redirect(w,	r,	redirectURL,	http.StatusAccepted)

After	checking	expectedPassword	against	the	password	in	the	database,	we	can	tell

whether	the	user	authenticated	correctly.	If	they	did,	we	create	the	token	and	redirect	the
user	back	to	the	callback	URL.	It	is	then	the	responsibility	of	the	other	application	to	store
the	token	for	future	use.

		}	else	{

				fmt.Println(dbPassword,	expectedPassword)

				http.Redirect(w,	r,	"/authorize",	http.StatusUnauthorized)

		}

}

Now	that	we	have	the	token	on	the	third-party	side,	we	can	make	API	requests	with	that
token	and	our	client_token	value	to	make	requests	on	behalf	of	individual	users,	such	as
creating	connections	(friends	and	followers),	sending	automated	messages,	or	setting
status	updates.

Summary
We	began	this	chapter	by	looking	at	ways	to	bring	in	more	REST-style	options	and
features,	better	security,	and	template-based	presentation.	Towards	this	goal,	we	examined
a	basic	abstraction	of	the	OAuth	security	model	that	allows	us	to	enable	external	clients	to
work	within	a	user’s	domain.

With	our	application	now	accessible	via	OAuth-style	authentication	and	secured	by
HTTPS,	we	can	now	expand	the	third-party	integration	of	our	social	networking
application,	allowing	other	developers	to	utilize	and	augment	our	service.

In	the	next	chapter,	we’ll	look	more	at	the	client-side	and	consumer-side	of	our
application,	expanding	our	OAuth	options	and	empowering	more	actions	via	the	API	that
will	include	creating	and	deleting	connections	between	users	as	well	as	creating	status
updates.

Chapter	6.	Accessing	and	Using	Web
Services	in	Go
In	the	previous	chapter,	we	briefly	touched	on	the	OAuth	2.0	process	and	emulated	this
process	within	our	own	API.

We’re	going	to	explore	this	process	a	bit	further	in	this	chapter	by	connecting	our	users	to
a	few	existing	ubiquitous	services	that	offer	OAuth	2.0	connectivity	and	allowing	actions
in	our	application	to	create	actions	in	their	applications.

An	example	of	this	is	when	you	post	something	on	one	social	network	and	are	given	the
option	to	similarly	post	or	cross-post	it	on	another	one.	This	is	precisely	the	type	of	flow
with	which	we’ll	be	experimenting	here.

In	order	to	really	wrap	our	heads	around	this,	we’ll	connect	existing	users	in	our
application	to	another	one	that	utilizes	OAuth	2.0	(such	as	Facebook,	Google+,	and
LinkedIn)	and	then	share	resources	between	our	system	and	the	others.

While	we	can’t	make	these	systems	return	the	favor,	we’ll	continue	down	the	road	and
simulate	another	application	that	is	attempting	to	work	within	the	infrastructure	of	our
application.

In	this	chapter,	we’ll	look	at:

Connecting	to	other	services	via	OAuth	2.0	as	a	client
Letting	our	users	share	information	from	our	application	to	another	web	application
Allowing	our	API	consumers	to	make	requests	on	behalf	of	our	users
How	to	ensure	that	we	are	making	safe	connections	outside	of	OAuth	requests

By	the	end	of	this	chapter,	as	a	client,	you	should	be	comfortable	using	OAuth	to	connect
user	accounts	to	other	services.	You	should	also	be	comfortable	at	making	secure	requests,
creating	ways	to	allow	other	services	to	connect	to	your	services,	and	making	third-party
requests	on	behalf	of	your	users.

Connecting	our	users	to	other	services
To	get	a	better	understanding	of	how	the	OAuth	2.0	process	works	in	practice,	let’s
connect	to	a	few	popular	social	networks,	specifically	Facebook	and	Google+.	This	isn’t
merely	a	project	for	experimentation;	it’s	how	a	great	deal	of	modern	social	networks
operate	by	allowing	intercommunication	and	sharing	among	services.

Not	only	is	this	common,	but	it	also	tends	to	induce	a	higher	degree	of	adoption	when	you
allow	seamless	connections	between	dissonant	applications.	The	ability	to	share	from	such
sources	on	services	such	as	Twitter	and	Facebook	has	helped	to	expedite	their	popularity.

As	we	explore	the	client	side	of	things,	we’ll	get	a	good	grasp	of	how	a	web	service	like
ours	can	allow	third-party	applications	and	vendors	to	work	within	our	ecosystem	and
broaden	the	depth	of	our	application.

To	start	this	process,	we’re	going	to	get	an	existing	OAuth	2.0	client	for	Go.	There	are	a
few	that	are	available,	but	to	install	Goauth2,	run	a	go	get	command	as	follows:

go	get	code.google.com/p/goauth2/oauth

If	we	want	to	compartmentalize	this	access	to	OAuth	2.0	services,	we	can	create	a
standalone	file	in	our	imports	directory	that	lets	us	create	a	connection	to	our	OAuth
provider	and	get	the	relevant	details	from	it.

In	this	brief	example,	we’ll	connect	a	Facebook	service	and	request	an	authentication
token	from	Facebook.	After	this,	we’ll	return	to	our	web	service	to	grab	and	likely	store
the	token:

package	main

import	(

		"code.google.com/p/goauth2/oauth"

		"fmt"

)

This	is	all	we’ll	need	to	create	a	standalone	package	that	we	can	call	from	elsewhere.	In
this	case,	we	have	just	one	service;	so,	we’ll	create	the	following	variables	as	global
variables:

var	(

		clientID					=	"[Your	client	ID	here]"

		clientSecret	=	"[Your	client	secret	here]"

		scope								=	""

		redirectURL		=	"http://www.mastergoco.com/codepass"

		authURL						=	"https://www.facebook.com/dialog/oauth"

		tokenURL					=	"https://graph.facebook.com/oauth/access_token"

		requestURL			=	"https://graph.facebook.com/me"

		code									=	""

)

You	will	get	these	endpoints	and	variables	from	the	provider,	but	they’re	obviously
obscured	here.

The	redirectURL	variable	represents	a	place	where	you’ll	catch	the	sent	token	after	a	user
logs	in.	We’ll	look	closely	at	the	general	flow	shortly.	The	main	function	is	written	as
follows:

func	main()	{

		oauthConnection	:=	&oauth.Config{

				ClientId:					clientID,

				ClientSecret:	clientSecret,

				RedirectURL:		redirectURL,

				Scope:								scope,

				AuthURL:						authURL,

				TokenURL:					tokenURL,

		}

		url	:=	oauthConnection.AuthCodeURL("")

		fmt.Println(url)

}

If	we	take	the	URL	that’s	generated	and	visit	it	directly,	it’ll	take	us	to	the	login	page	that
is	similar	to	the	rough	version	that	we	built	on	the	last	page.	Here’s	an	authentication	page
that	is	presented	by	Facebook:

If	the	user	(in	this	case,	me)	accepts	this	authentication	and	clicks	on	Okay,	the	page	will
redirect	back	to	our	URL	and	pass	an	OAuth	code	along	with	it,	which	will	be	something
like	this:

http://www.mastergoco.com/codepass?code=h9U1_YNL1paTy-
IsvQIor6u2jONwtipxqSbFMCo3wzYsSK7BxEVLsJ7ujtoDc

We	can	use	this	code	as	a	semipermanent	user	acceptance	code	for	future	requests.	This
will	not	work	if	a	user	rescinds	access	to	our	application	or	if	we	choose	to	change	the
permissions	that	our	application	wishes	to	use	in	a	third-party	service.

You	can	start	to	see	the	possibilities	of	a	very	connected	application	and	why	third-party
authentication	systems	that	has	the	ability	to	sign	up	and	sign	in	via	Twitter,	Facebook,
Google+,	and	so	on,	have	become	viable	and	appealing	prospects	in	recent	years.

In	order	to	do	anything	useful	with	this	as	a	tie-on	to	our	API	(assuming	that	the	terms	of
services	of	each	social	network	allow	it),	we	need	to	do	three	things:

First,	we	need	to	make	this	less	restrictive	than	just	one	service.	To	do	this,	we’ll	create	a
map	of	the	OauthService	struct:

type	OauthService	struct	{

		clientID	string

		clientSecret	string

		scope	string

		redirectURL	string

		authURL	string

		tokenURL	string

		requestURL	string

		code	string

}

We	can	then	add	this	as	per	our	need:

		OauthServices	:=	map[string]	OauthService{}

		

		OauthServices["facebook"]	=	OauthService	{

				clientID:		"***",

				clientSecret:	"***",

				scope:	"",

				redirectURL:	"http://www.mastergoco.com/connect/facebook",

				authURL:	"https://www.facebook.com/dialog/oauth",

				tokenURL:	"https://graph.facebook.com/oauth/access_token",

				requestURL:	"https://graph.facebook.com/me",

				code:	"",

		}

		OauthServices["google"]	=	OauthService	{

				clientID:		"***.apps.googleusercontent.com",

				clientSecret:	"***",

				scope:	"https://www.googleapis.com/auth/plus.login",

				redirectURL:	"http://www.mastergoco.com/connect/google",

				authURL:	"https://accounts.google.com/o/oauth2/auth",

				tokenURL:	"https://accounts.google.com/o/oauth2/token",

				requestURL:	"https://graph.facebook.com/me",

				code:	"",

http://www.mastergoco.com/codepass?code=h9U1_YNL1paTy-IsvQIor6u2jONwtipxqSbFMCo3wzYsSK7BxEVLsJ7ujtoDc

		}

The	next	thing	that	we’ll	need	to	do	is	make	this	an	actual	redirect	instead	of	something
that	spits	the	code	into	our	console.	With	this	in	mind,	it’s	time	to	integrate	this	code	into
the	api.go	file.	This	will	allow	our	registered	users	to	connect	their	user	information	on
our	social	network	to	others,	so	that	they	can	broadcast	their	activity	on	our	app	more
globally.	This	brings	us	to	our	following	last	step,	which	is	to	accept	the	code	that	each
respective	web	service	returns:

func	Init()	{

		Routes	=	mux.NewRouter()

		Routes.HandleFunc("/interface",	APIInterface).Methods("GET",	"POST",	

"PUT",	"UPDATE")

		Routes.HandleFunc("/api/users",	UserCreate).Methods("POST")

		Routes.HandleFunc("/api/users",	UsersRetrieve).Methods("GET")

		Routes.HandleFunc("/api/users/{id:[0-9]+}",	UsersUpdate).Methods("PUT")

		Routes.HandleFunc("/api/users",	UsersInfo).Methods("OPTIONS")

		Routes.HandleFunc("/authorize",	ApplicationAuthorize).Methods("POST")

		Routes.HandleFunc("/authorize",	ApplicationAuthenticate).Methods("GET")

		Routes.HandleFunc("/authorize/{service:[a-z]+}",	

ServiceAuthorize).Methods("GET")

		Routes.HandleFunc("/connect/{service:[a-z]+}",	

ServiceConnect).Methods("GET")

		Routes.HandleFunc("/oauth/token",	CheckCredentials).Methods("POST")

}

We’ll	add	two	endpoint	routes	to	our	Init()	function;	one	allows	a	service	to	authorize
(that	is,	send	off	to	that	site’s	OAuth	authentication)	and	the	other	allows	us	to	keep	the
resulting	information	as	follows:

func	ServiceAuthorize(w	http.ResponseWriter,	r	*http.Request)	{

		params	:=	mux.Vars(r)

		service	:=	params["service"]

		redURL	:=	OauthServices.GetAccessTokenURL(service,	"")

		http.Redirect(w,	r,	redURL,	http.StatusFound)

}

Here,	we’ll	set	up	a	Google+	authentication	conduit.	It	goes	without	saying,	but	don’t
forget	to	replace	your	clientID,	clientSecret,	and	redirectURL	variables	with	your
values:

OauthServices["google"]	=	OauthService	{

		clientID:		"***.apps.googleusercontent.com",

		clientSecret:	"***",

		scope:	"https://www.googleapis.com/auth/plus.login",

		redirectURL:	"http://www.mastergoco.com/connect/google",

		authURL:	"https://accounts.google.com/o/oauth2/auth",

		tokenURL:	"https://accounts.google.com/o/oauth2/token",

		requestURL:	"https://accounts.google.com",

		code:	"",

}

By	visiting	http://localhost/authorize/google,	we’ll	get	kicked	to	the	interstitial

authentication	page	of	Google+.	Here’s	an	example	that	is	fundamentally	similar	to	the
Facebook	authentication	that	we	saw	earlier:

When	a	user	clicks	on	Accept,	we’ll	be	returned	to	our	redirect	URL	with	the	code	that
we’re	looking	for.

Tip
For	most	OAuth	providers,	a	client	ID	and	a	client	secret	will	be	provided	from	a
dashboard.

However,	on	Google+,	you’ll	retrieve	your	client	ID	from	their	Developers	console,	which
allows	you	to	sign	up	new	apps	and	request	access	to	different	services.	They	don’t	openly
present	a	client	secret	though,	so	you’ll	need	to	download	a	JSON	file	that	contains	not
only	the	secret,	but	also	other	relevant	data	that	you	might	need	to	access	the	service	in	a
format	similar	to	this:
{"web":

{"auth_uri":"https://accounts.google.com/o/oauth2/auth","client_secret":"***","token_uri":"https://accounts.google.com/o/oauth2/token","client_email":"***@developer.gserviceaccount.com","client_x509_cert_url":"https://www.googleapis.com/robot/v1/metadata/x509/***@developer.gserviceaccount.com","client_id":"***.apps.googleusercontent.com","auth_provider_x509_cert_url":"https://www.googleapis.com/oauth2/v1/certs"}}

You	can	grab	the	pertinent	details	directly	from	this	file.

Of	course,	to	ensure	that	we	know	who	made	the	request	and	how	to	store	it,	we’ll	need
some	sense	of	state.

Saving	the	state	with	a	web	service
There	are	quite	a	few	ways	to	save	state	within	a	single	web	request.	However,	things	tend
to	get	more	complicated	in	a	situation	like	this	wherein	our	client	makes	one	request,	he	or
she	is	then	redirected	to	another	URL,	and	then	comes	back	to	our.

We	can	pass	some	information	about	the	user	in	our	redirect	URL,	for	example,
http://mastergoco.com/connect/google?uid=1;	but	this	is	somewhat	inelegant	and	opens	a
small	security	loophole	wherein	a	man-in-the-middle	attacker	could	find	out	about	a	user
and	an	external	OAuth	code.

The	risk	here	is	small	but	real	enough;	therefore,	we	should	look	elsewhere.	Luckily,
Gorilla	also	provides	a	nice	library	for	secure	sessions.	We	can	use	these	whenever	we’ve
verified	the	identity	of	a	user	or	client	and	store	the	information	in	a	cookie	store.

To	get	started,	let’s	create	a	sessions	table:

CREATE	TABLE	IF	NOT	EXISTS	`sessions`	(

		`session_id`	varchar(128)	NOT	NULL,

		`user_id`	int(10)	NOT	NULL,

		`session_start_time`	int(11)	NOT	NULL,

		`session_update_time`	int(11)	NOT	NULL,

		UNIQUE	KEY	`session_id`	(`session_id`)

)

Next,	include	the	sessions	package:

go	get	github.com/gorilla/sessions

Then,	move	it	into	the	import	section	of	our	api.go	file:

import	(

		...

		"github.com/gorilla/mux"

		"github.com/gorilla/sessions"

Right	now	we’re	not	authenticating	the	service,	so	we’ll	enforce	that	on	our
ApplicationAuthorize	(GET)	handler:

func	ServiceAuthorize(w	http.ResponseWriter,	r	*http.Request)	{

		params	:=	mux.Vars(r)

		service	:=	params["service"]

		loggedIn	:=	CheckLogin()

		if	loggedIn	==	false	{

				redirect	=	url.QueryEscape("/authorize/"	+	service)

				http.Redirect(w,	r,	"/authorize?redirect="+redirect,	

http.StatusUnauthorized)

				return

		}

		redURL	:=	OauthServices.GetAccessTokenURL(service,	"")

		http.Redirect(w,	r,	redURL,	http.StatusFound)

http://mastergoco.com/connect/google?uid=1

}

Now,	if	a	user	attempts	to	connect	to	a	service,	we’ll	check	for	an	existing	login	and	if	it
does	not	exist,	redirect	the	user	to	our	login	page.	Here’s	the	test	code	to	check	this:

func	CheckLogin(w	http.ResponseWriter,	r	*http.Request)	bool	{

		cookieSession,	err	:=	r.Cookie("sessionid")

		if	err	!=	nil	{

				fmt.Println("no	such	cookie")

				Session.Create()

				fmt.Println(Session.ID)

				currTime	:=	time.Now()

				Session.Expire	=	currTime.Local()

				Session.Expire.Add(time.Hour)

				return	false

		}	else	{

				fmt.Println("found	cookki")

				tmpSession	:=	UserSession{UID:	0}

				loggedIn	:=	Database.QueryRow("select	user_id	from	sessions	where	

session_id=?",	cookieSession).Scan(&tmpSession.UID)

				if	loggedIn	!=	nil	{

						return	false

				}	else	{

						if	tmpSession.UID	==	0	{

								return	false

						}	else	{

								return	true

						}

				}

		}

}

This	is	a	pretty	standard	test	that	looks	for	a	cookie.	If	it	doesn’t	exist,	create	a	Session
struct	and	save	a	cookie,	and	return	false.	Otherwise,	return	true	if	the	cookie	has	been
saved	in	the	database	already	after	a	successful	login.

This	also	relies	on	a	new	global	variable,	Session,	which	is	of	the	new	struct	type
UserSession:

var	Database	*sql.DB

var	Routes	*mux.Router

var	Format	string

type	UserSession	struct	{

		ID														string

		GorillaSesssion	*sessions.Session

		UID													int

		Expire										time.Time

}

var	Session	UserSession

func	(us	*UserSession)	Create()	{

		us.ID	=	Password.GenerateSessionID(32)

}

At	the	moment,	there	is	an	issue	with	our	login	page	and	this	exists	only	to	allow	a	third-
party	application	to	allow	our	users	to	authorize	its	use.	We	can	fix	this	by	simply
changing	our	authentication	page	to	set	an	auth_type	variable	based	on	whether	we	see
consumer_key	or	redirect_url	in	the	URL.	In	our	authorize.html	file,	make	the
following	change:

<input	type="hidden"	name="auth_type"	value="{{.PageType}}"	/>

And	in	our	ApplicationAuthenticate()	handler,	make	the	following	change:

		if	len(r.URL.Query()["consumer_key"])	>	0	{

				Authorize.ConsumerKey	=	r.URL.Query()["consumer_key"][0]

		}	else	{

				Authorize.ConsumerKey	=	""

		}

		if	len(r.URL.Query()["redirect"])	>	0	{

				Authorize.Redirect	=	r.URL.Query()["redirect"][0]

		}	else	{

				Authorize.Redirect	=	""

		}

if	Authorize.ConsumerKey	==	""	&&	Authorize.Redirect	!=	""	{

		Authorize.PageType	=	"user"

}	else	{

		Authorize.PageType	=	"consumer"

}

This	also	requires	a	modification	of	our	Page{}	struct:

type	Page	struct	{

		Title								string

		Authorize				bool

		Authenticate	bool

		Application		string

		Action							string

		ConsumerKey		string

		Redirect					string

		PageType					string

}

If	we	receive	an	authorization	request	from	a	Page	type	of	user,	we’ll	know	that	this	is	just
a	login	attempt.	If,	instead,	it	comes	from	a	client,	we’ll	know	it’s	another	application
attempting	to	make	a	request	for	our	user.

In	the	former	scenario,	we’ll	utilize	a	redirect	URL	to	pass	the	user	back	around	after	a
successful	authentication,	assuming	that	the	login	is	successful.

Gorilla	offers	a	flash	message;	this	is	essentially	a	single-use	session	variable	that	will	be
removed	as	soon	as	it’s	read.	You	can	probably	see	how	this	is	valuable	here.	We’ll	set	the
flash	message	before	redirecting	it	to	our	connecting	service	and	then	read	that	value	on
return,	at	which	point	it	will	be	disposed	of.	Within	our	ApplicationAuthorize()	handler
function,	we	delineate	between	client	and	user	logins.	If	the	user	logs	in,	we’ll	set	a	flash
variable	that	can	be	retrieved.

		if	dbPassword	==	expectedPassword	&&	allow	==	"1"	&&	authType	==	"client"	

{

				requestToken	:=	Pseudoauth.GenerateToken()

				authorizeSQL	:=	"INSERT	INTO	api_tokens	set	application_user_id="	+	

appUID	+	",	user_id="	+	dbUID	+	",	api_token_key='"	+	requestToken	+	"'	ON	

DUPLICATE	KEY	UPDATE	user_id=user_id"

				q,	connectErr	:=	Database.Exec(authorizeSQL)

				if	connectErr	!=	nil	{

								}	else	{

						fmt.Println(q)

				}

				redirectURL	:=	CallbackURL	+	"?request_token="	+	requestToken

				fmt.Println(redirectURL)

				http.Redirect(w,	r,	redirectURL,	http.StatusAccepted)

		}else	if	dbPassword	==	expectedPassword	&&	authType	==	"user"	{

				UserSession,	_	=	store.Get(r,	"service-session")

								UserSession.AddFlash(dbUID)

				http.Redirect(w,	r,	redirect,	http.StatusAccepted)

		}

But	this	alone	will	not	keep	a	persistent	session,	so	we’ll	integrate	this	now.	When	a
successful	login	happens	in	the	ApplicationAuthorize()	method,	we’ll	save	the	session
in	our	database	and	allow	some	persistent	connection	for	our	users.

Using	data	from	other	OAuth	services
Having	successfully	connected	to	another	service	(or	services,	depending	on	which	OAuth
providers	you’ve	brought	in),	we	can	now	cross-pollinate	multiple	services	against	ours.

For	example,	posting	a	status	update	within	our	social	network	may	also	warrant	posting	a
status	update	on,	say,	Facebook.

To	do	this,	let’s	first	set	up	a	table	for	statuses:

CREATE	TABLE	`users_status`	(

		`users_status_id`	INT	NOT	NULL	AUTO_INCREMENT,

		`user_id`	INT(10)	UNSIGNED	NOT	NULL,

		`user_status_timestamp`	INT(11)	NOT	NULL,

		`user_status_text`	TEXT	NOT	NULL,

		PRIMARY	KEY	(`users_status_id`),

		CONSTRAINT	`status_users`	FOREIGN	KEY	(`user_id`)	REFERENCES	`users`	

(`user_id`)	ON	UPDATE	NO	ACTION	ON	DELETE	NO	ACTION

)

Our	statuses	will	consist	of	the	user’s	information,	a	timestamp,	and	the	text	of	the	status
message.	Nothing	too	fancy	for	now!

Next,	we’ll	need	to	add	API	endpoints	for	creating,	reading,	updating,	and	deleting	the
statuses.	So,	in	our	api.go	file,	let’s	add	these:

func	Init()	{

		Routes	=	mux.NewRouter()

		Routes.HandleFunc("/interface",	APIInterface).Methods("GET",	"POST",	

"PUT",	"UPDATE")

		Routes.HandleFunc("/api/users",	UserCreate).Methods("POST")

		Routes.HandleFunc("/api/users",	UsersRetrieve).Methods("GET")

		Routes.HandleFunc("/api/users/{id:[0-9]+}",	UsersUpdate).Methods("PUT")

		Routes.HandleFunc("/api/users",	UsersInfo).Methods("OPTIONS")

		Routes.HandleFunc("/api/statuses",StatusCreate).Methods("POST")

		Routes.HandleFunc("/api/statuses",StatusRetrieve).Methods("GET")

		Routes.HandleFunc("/api/statuses/{id:[0-

9]+}",StatusUpdate).Methods("PUT")

		Routes.HandleFunc("/api/statuses/{id:[0-

9]+}",StatusDelete).Methods("DELETE")

		Routes.HandleFunc("/authorize",	ApplicationAuthorize).Methods("POST")

		Routes.HandleFunc("/authorize",	ApplicationAuthenticate).Methods("GET")

		Routes.HandleFunc("/authorize/{service:[a-z]+}",	

ServiceAuthorize).Methods("GET")

		Routes.HandleFunc("/connect/{service:[a-z]+}",	

ServiceConnect).Methods("GET")

		Routes.HandleFunc("/oauth/token",	CheckCredentials).Methods("POST")

}

For	now,	we’ll	create	some	dummy	handlers	for	the	PUT/Update	and	DELETE	methods:

func	StatusDelete(w	http.ResponseWriter,	r	*http.Request)	{

		fmt.Fprintln(w,	"Nothing	to	see	here")

}

func	StatusUpdate(w	http.ResponseWriter,	r	*http.Request)	{

		fmt.Fprintln(w,	"Coming	soon	to	an	API	near	you!")

}

Remember,	without	these	we’ll	be	unable	to	test	without	receiving	compiler	errors	in	the
meantime.	In	the	following	code,	you’ll	find	the	StatusCreate	method	that	allows	us	to
make	requests	for	users	who	have	granted	us	a	token.	Since	we	already	have	one	of	the
users,	let’s	create	a	status:

func	StatusCreate(w	http.ResponseWriter,	r	*http.Request)	{

		Response	:=	CreateResponse{}

		UserID	:=	r.FormValue("user")

		Status	:=	r.FormValue("status")

		Token	:=	r.FormValue("token")

		ConsumerKey	:=	r.FormValue("consumer_key")

		vUID	:=	ValidateUserRequest(ConsumerKey,Token)

We’ll	use	a	test	of	the	key	and	the	token	to	get	a	valid	user	who	is	allowed	to	make	these
types	of	requests:

		if	vUID	!=	UserID	{

				Response.Error	=	"Invalid	user"

				http.Error(w,	Response.Error,	401)

		}	else		{

				_,inErr	:=	Database.Exec("INSERT	INTO	users_status	set	

user_status_text=?,	user_id=?",	Status,	UserID)

				if	inErr	!=	nil	{

						fmt.Println(inErr.Error())

						Response.Error	=	"Error	creating	status"

						http.Error(w,	Response.Error,	500)

						fmt.Fprintln(w,	Response)

				}	else	{

						Response.Error	=	"Status	created"

						fmt.Fprintln(w,	Response)

				}

		}

}

If	a	user	is	confirmed	as	valid	through	the	key	and	token,	the	status	will	be	created.

With	a	knowledge	of	how	OAuth	works	in	general	and	by	having	an	approximate,	lower-
barrier	version	baked	into	our	API	presently,	we	can	start	allowing	external	services	to
request	access	to	our	users’	accounts	to	execute	within	our	services	on	behalf	of	individual
users.

We	touched	on	this	briefly	in	the	last	chapter,	but	let’s	do	something	usable	with	it.

We’re	going	to	allow	another	application	from	another	domain	make	a	request	to	our	API
that	will	create	a	status	update	for	our	user.	If	you	use	a	separate	HTML	interface,	either
like	the	one	that	we	used	in	earlier	chapters	or	something	else,	you	can	avoid	the	cross-
domain	policy	issues	that	you’ll	encounter	when	you	return	a	cross-origin	resource	sharing
header.

To	do	this,	we	can	return	the	Access-Control-Allow-Origin	header	with	the	domains
that	we	wish	to	allow	to	access	to	our	API.	If,	for	example,	we	want	to	allow
http://www.example.com	to	access	our	API	directly	through	the	client	side,	we	can	create
a	slice	of	allowed	domains	at	the	top	of	our	api.go	file:

var	PermittedDomains	[]string

Then,	we	can	add	these	on	the	Init()	function	of	our	api.go	file:

func	Init(allowedDomains	[]string)	{

		for	_,	domain	:=	range	allowedDomains	{

				PermittedDomains	=	append(PermittedDomains,domain)

		}

Routes	=	mux.NewRouter()

Routes.HandleFunc("/interface",	APIInterface).Methods("GET",	"POST",	"PUT",	

"UPDATE")

And	then,	we	can	call	them	from	our	present	version	of	the	API,	currently	at	v1.	So,	in
v1.go,	we	need	to	invoke	the	list	of	domains	when	calling	api.Init():

func	API()	{

		api.Init([]string{"http://www.example.com"})

And	finally,	within	any	handler	where	you	wish	to	observe	these	domain	rules,	add	a	loop
through	those	domains	with	the	pertinent	header	set:

func	UserCreate(w	http.ResponseWriter,	r	*http.Request)	{

...

		for	_,domain	:=	range	PermittedDomains	{

				fmt.Println	("allowing",domain)

				w.Header().Set("Access-Control-Allow-Origin",	domain)

		}

To	start	with,	let’s	create	a	new	user,	Bill	Johnson,	through	either	of	the	aforementioned
methods.	In	this	case,	we’ll	go	back	to	Postman	and	just	do	a	direct	request	to	the	API:

After	the	creation	of	the	new	user,	we	can	follow	our	pseudo-OAuth	process	to	allow	Bill
Johnson	to	give	our	application	access	and	generate	a	status.

First,	we	pass	the	user	to	/authorize	with	our	consumer_key	value.	On	successful	login
and	after	agreeing	to	allow	the	application	to	access	the	user’s	data,	we’ll	create	a
token_key	value	and	pass	it	to	the	redirect	URL.

With	this	key,	we	can	make	a	status	request	programmatically	as	before	by	posting	to	the
/api/statuses	endpoint	with	our	key,	the	user,	and	the	status.

Connecting	securely	as	a	client	in	Go
You	may	encounter	situations	when	instead	of	using	an	OAuth	client;	you’re	forced	to
make	requests	securely	on	your	own.	Normally,	the	http	package	in	Go	will	ensure	that
the	certificates	included	are	valid	and	it	will	prevent	you	from	testing.

package	main

import

(

		"net/http"

		"fmt"

)

const	(

		URL	=	"https://localhost/api/users"

)

func	main()	{

		

		_,	err	:=	http.Get(URL)

		if	err	!=	nil	{

				fmt.Println(err.Error())

		}

}

type	Client	struct	{

								//	Transport	specifies	the	mechanism	by	which	individual

								//	HTTP	requests	are	made.

								//	If	nil,	DefaultTransport	is	used.

								Transport	RoundTripper

This	allows	us	to	inject	a	custom	Transport	client	and	thus	override	error	handling;	in	the
interactions	with	our	(or	any)	API	via	the	browser,	this	is	not	suggested	beyond	testing	and
it	can	introduce	security	issues	with	untrusted	sources.

package	main

import

(

		"crypto/tls"

		"net/http"

		"fmt"

)

const	(

		URL	=	"https://localhost/api/users"

)

func	main()	{

		customTransport	:=	&http.Transport{	TLSClientConfig:	

&tls.Config{InsecureSkipVerify:	true}	}

		customClient	:=	&http.Client{	Transport:	customTransport	}

		response,	err	:=	customClient.Get(URL)

		if	err	!=	nil	{

				fmt.Println(err.Error())

		}	else	{

				fmt.Println(response)

		}

}

We	then	get	a	valid	response	(with	header,	in	struct):

		&{200	OK	200	HTTP/1.1	1	1	map[Link:[<http://localhost:8080/api/users?

start=	;	rel="next"]	Pragma:[no

		-cache]	Date:[Tue,	16	Sep	2014	01:51:50	GMT]	Content-Length:[256]	

Content-Type:[text/plain;	charset=

		utf-8]	Cache-Control:[no-cache]]	0xc084006800	256	[]	false	map[]	

0xc084021dd0}

This	is	something	that	is	best	employed	solely	in	testing,	as	the	security	of	the	connection
can	clearly	be	a	dubious	matter	when	a	certificate	is	ignored.

Summary
We	took	our	initial	steps	for	third-party	integration	of	our	application	in	the	last	chapter.	In
this	chapter,	we	looked	a	bit	at	the	client	side	to	see	how	we	can	incorporate	a	clean	and
simple	flow.

We	authenticated	our	users	with	other	OAuth	2.0	services,	which	allowed	us	to	share
information	from	our	social	network	with	others.	This	is	the	basis	of	what	makes	social
networks	so	developer	friendly.	Permitting	other	services	to	play	with	the	data	of	our	users
and	other	users	also	creates	a	more	immersive	experience	for	users	in	general.

In	the	next	chapter,	we’ll	look	at	integrating	Go	with	web	servers	and	caching	systems	to
construct	a	platform	for	a	performant	and	scalable	architecture.

We’ll	also	push	the	functionality	of	our	API	in	the	process,	which	will	allow	more
connections	and	functionality.

Chapter	7.	Working	with	Other	Web
Technologies
In	our	last	chapter,	we	looked	at	how	our	web	service	can	play	nicely	and	integrate	with
other	web	services	through	APIs	or	OAuth	integrations.

Continuing	that	train	of	thought,	we’ll	take	a	pit	stop	as	we	develop	the	technology	around
our	social	network	service	to	see	how	we	can	also	integrate	other	technologies	with	it,
independent	of	other	services.

Very	few	applications	run	on	a	stack	that’s	limited	to	just	one	language,	one	server	type,	or
even	one	set	of	code.	Often,	there	are	multiple	languages,	operating	systems,	and
designated	purposes	for	multiple	processes.	You	may	have	web	servers	running	with	Go
on	Ubuntu,	which	is	a	database	server	that	runs	PostgreSQL.

In	this	chapter,	we’ll	look	at	the	following	topics:

Serving	our	web	traffic	through	a	reverse	proxy	to	leverage	the	more	advanced
features	provided	by	mature	HTTP	products
Connecting	to	NoSQL	or	key/value	datastores,	which	we	can	utilize	as	our	core	data
provider	or	with	which	we	can	do	ancillary	work	such	as	caching
Enabling	sessions	for	our	API	and	allowing	clients	and	users	to	make	requests
without	specifying	credentials	again
Allowing	users	to	connect	with	each	other	by	way	of	friending	or	adding	other	users
to	their	network

When	we’ve	finished	all	of	this,	you	should	have	an	idea	about	how	to	connect	your	web
service	with	NoSQL	and	database	solutions	that	are	different	to	MySQL.	We	will	utilize
datastores	later	on	to	give	us	a	performance	boost	in	Chapter	10,	Maximizing
Performance.

You	will	hopefully	also	be	familiar	enough	with	some	out-of-the-box	solutions	for
handling	APIs,	be	able	to	bring	middleware	into	your	web	service,	and	be	able	to	utilize
message	passing	to	communicate	between	dissonant	or	segregated	systems.

Let’s	get	started	by	looking	at	ways	in	which	we	can	connect	with	other	web	servers	to
impose	some	additional	functionality	and	failure	mitigation	into	our	own	service	that	is
presently	served	solely	by	Go’s	net/http	package.

Serving	Go	through	a	reverse	proxy
One	of	the	most	prominent	features	of	Go’s	internal	HTTP	server	might	have	also
triggered	an	immediate,	skeptical	response:	if	it’s	so	easy	to	start	serving	applications	with
Go,	then	is	it	fully	featured	as	it	relates	to	web	serving?

This	is	an	understandable	question,	particularly	given	Go’s	similarity	to	interpreted
scripting	languages.	After	all,	Ruby	on	Rails,	Python,	NodeJS,	and	even	PHP	all	come
with	out-of-the-box	simple	web	servers.	Rarely	are	these	simple	servers	suggested	as
production-grade	servers	due	to	their	limitations	in	feature	set,	security	updates,	and	so	on.

That	being	said,	Go’s	http	package	is	robust	enough	for	many	production-level	projects;
however,	you	may	find	not	only	some	missing	features	but	also	some	reliability	by
integrating	Go	with	a	reverse	proxy	that	has	a	more	mature	web	server.

A	“reverse	proxy”	is	a	misnomer	or	at	least	a	clunky	way	to	illustrate	an	internal,
incoming	proxy	that	routes	client	requests	opaquely	through	one	system	to	another	server,
either	within	the	same	machine	or	network.	In	fact,	it’s	often	referred	to	simply	as	a
gateway	for	this	reason.

The	potential	advantages	are	myriad.	These	include	being	able	to	employ	a	well-known,
well-supported,	fully	featured	web	server	(versus	only	having	the	building	blocks	to	build
your	own	in	Go),	having	a	large	community	for	support,	and	having	a	lot	of	pre-built,
available	plugins	and	tools.

Whether	it’s	necessary	or	advantageous	or	has	a	good	return	on	investment	is	a	matter	of
preference	and	the	situation	you’re	in,	but	it	can	often	help	in	logging	and	debugging	web
apps.

Using	Go	with	Apache
Apache’s	web	server	is	the	elder	statesman	in	web	serving.	First	released	in	1996,	it
quickly	became	a	stalwart	and	as	of	2009,	it	has	served	more	than	100	million	websites.	It
has	remained	in	the	most	popular	web	server	in	the	world	since	shortly	after	its	inception,
although	some	estimates	have	placed	Nginx	as	the	new	number	1	(we	will	talk	a	little
more	about	this	in	some	time).

Putting	Go	behind	Apache	is	super	easy	but	there	is	one	caveat;	Apache,	as	it	comes
installed,	is	a	blocking,	nonconcurrent	web	server.	This	is	different	to	Go,	which
delineates	requests	as	goroutines	or	NodeJS	or	even	Nginx.	Some	of	these	are	bound	to
threads	and	some	aren’t.	Go	is	obviously	not	bound,	and	this	ultimately	impacts	how
performant	the	servers	can	be.

To	start,	let’s	create	a	simple	hello	world	web	application	in	Go,	which	we’ll	call	proxy-
me.go:

package	main

import	(

								"fmt"

								"log"

								"net/http"

)

func	ProxyMe(w	http.ResponseWriter,	r	*http.Request)	{

								fmt.Fprintln(w,	"hello	world")

}

func	main()	{

								http.HandleFunc("/hello",	ProxyMe)

								log.Fatal(http.ListenAndServe(":8080",	nil))

}

There	is	nothing	too	complicated	here.	We	listen	on	port	8080	and	we	have	one	very
simple	route,	/hello,	which	just	says	hello	world.	To	get	Apache	to	serve	this	as	a
reverse	proxy	in	pass-through,	we	edit	our	default	server	configuration	as	follows:

ProxyRequests	Off

ProxyPreserveHost	On

<VirtualHost	*:80>

								ServerAdmin	webmaster@localhost

								DocumentRoot	/var/www/html

								ProxyPass	/		http://localhost:8080/

								ProxyPassReverse	/		http://localhost:8080/

								ErrorLog	${APACHE_LOG_DIR}/error.log

								CustomLog	${APACHE_LOG_DIR}/access.log	combined

</VirtualHost>

Tip
The	default	server	configuration	is	generally	stored	at	/etc/apache2/sites-enabled/	for
Linux	and	[Drive]:/[apache	install	directory]/conf/	in	Windows.

We	can	verify	that	we’re	seeing	the	page	served	by	Apache	rather	than	directly	through
Go	by	viewing	the	headers	on	a	request	to	the	/hello	route.

When	we	do	this,	we’ll	see	not	only	the	Server	as	Apache/2.4.7,	but	also	our	custom
header	that	was	passed	along.	Typically,	we’d	use	the	X-Forwarded-For	header	for
another	purpose,	but	it’s	analogous	enough	to	use	as	a	demonstration,	as	shown	in	the
following	screenshot:

Go	and	NGINX	as	reverse	proxies
While	Apache	is	the	old	king	of	web	serving,	in	recent	years,	it	has	been	surpassed	in
popularity	by	Nginx	at	least	by	some	measurements.

Nginx	was	initially	written	as	an	approach	to	the	C10K	problem—serving	10,000
concurrent	connections.	It’s	not	an	impossible	task,	but	one	that	previously	required
expensive	solutions	to	address	it.

Since	Apache,	by	default,	spawns	new	threads	and/or	processes	to	handle	new	requests,	it
often	struggles	under	heavy	load.

On	the	other	hand,	Nginx	was	designed	with	an	event	model	that	is	asynchronous	and
does	not	spawn	new	processes	for	each	request.	In	many	ways	this	makes	it
complementary	to	the	way	Go	works	with	concurrency	in	the	HTTP	package.

Like	Apache,	the	benefits	of	putting	Nginx	instead	of	Go	are	as	follows:

It	has	access	and	error	logs.	This	is	something	that	you’ll	need	to	build	using	the	log
package	in	Go.	While	it’s	easy	enough	to	do,	it’s	one	fewer	hassle.
It	has	extraordinarily	fast	static	file	serving.	In	fact,	Apache	users	often	use	Nginx
exclusively	to	serve	static	files.
It	has	SPDY	support.	SPDY	is	a	new	and	somewhat	experimental	protocol	that
manipulates	the	HTTP	protocol	to	introduce	some	speed	and	security	features.	There
are	some	attempts	to	implement	Go’s	HTTP	and	TLS	at	package	libraries	for	SPDY,
but	nothing	has	been	built	natively	into	the	net/HTTP	package.
It	has	built-in	caching	options	and	hooks	for	popular	caching	engines.
It	has	the	flexibility	to	delegate	some	requests	to	other	processes.

We	will	discuss	the	usage	of	SPDY	directly	in	both	Nginx	and	within	Go	in	Chapter	10,
Maximizing	Performance.

It’s	worth	noting	that	asynchronous,	nonblocking,	and	concurrent	HTTP	serving	will
almost	always	be	bound	to	the	constraints	of	technical	externalities	such	as	network
latency,	file	and	database	blocking,	and	so	on.

With	that	in	mind,	let’s	take	a	look	at	the	setup	for	quickly	putting	Nginx	instead	of	Go	as
a	reverse	proxy.

Nginx	allows	a	pass	through	very	simply	by	modifying	the	default	configuration	file.
Nginx	has	no	native	support	for	Windows	yet;	so,	in	most	*nix	solutions,	this	file	can	be
found	by	navigating	to	/etc/nginx/sites-enabled.

Tip
Alternately,	you	can	do	a	proxy	globally	by	making	the	change	within	the	.conf	file
available	at	/etc/nginx/nginx.conf.

Let’s	look	at	a	sample	Nginx	configuration	operation	that	will	let	us	proxy	our	server.

server	{

								listen	80	default_server;

								listen	[::]:80	default_server	ipv6only=on;

								root	/usr/share/nginx/html;

								index	index.html	index.htm;

								#	Make	site	accessible	from	http://localhost/

								server_name	localhost;

								location	/	{

																proxy_set_header	X-Real-IP	$remote_addr;

																proxy_set_header	X-Forwarded-For	$remote_addr;

																proxy_set_header	Host	$host;

																proxy_pass	http://127.0.0.1:8080;

																#							try_files	$uri	$uri/	=404;

								}

With	this	modification	in	place,	you	can	start	Nginx	by	running	/etc/init.d/nginx,	and
then	start	the	Go	server	with	go	run	proxy-me.go.

If	we	hit	our	localhost	implementation,	we’ll	see	something	that	looks	a	lot	like	our	last
request’s	headers	but	with	Nginx	instead	of	Apache	as	our	proxy	server:

Enabling	sessions	for	the	API
Mostly,	we	expose	APIs	for	machines	to	use.	In	other	words,	we	expect	that	some
applications	will	be	directly	interfacing	with	our	web	service	rather	than	the	users.

However,	this	is	not	always	the	case.	Sometimes,	users	interact	with	APIs	using	the
browser,	either	directly	or	through	a	conduit	like	JavaScript	with	JSONP	and/or	AJAX
requests.

In	fact,	the	fundamentals	of	the	aesthetics	of	Web	2.0	were	rooted	in	providing	users	a
seamless,	desktop-like	experience.	This	has	come	to	fruition	today	and	includes	a	lot	of
JavaScript	MVC	frameworks	that	handle	presentation	layers.	We’ll	tackle	this	in	our	next
chapter.

The	term	Web	2.0	has	largely	been	supplanted	and	it	is	now	usually	referred	to	as	a	Single
Page	App	or	SPA.	What	was	once	a	mixture	of	server-generated	(or	served)	HTML	pages
with	some	pieces	built	or	updated	through	XML	and	JavaScript	has	ceded	to	JavaScript
frameworks	that	build	entire	client-side	applications.

Almost	all	of	these	rely	on	an	underlying	API,	which	is	generally	accessible	through
stateless	requests	over	HTTP/HTTPS,	although	some	newer	models	use	web	sockets	to
enable	real-time	communication	between	the	server	and	the	presentation	model.	This	is
something	that	we’ll	look	at	in	the	next	chapter	as	well.

Irrespective	of	the	model,	you	cannot	simply	expose	this	API	to	the	world	without	some
authentication.	If,	for	example,	an	API	is	accessible	from	a	/admin	request	without
authentication,	it’s	probably	also	accessible	from	outside.	You	cannot	rely	on	a	user’s
information	such	as	an	HTTP	referer.

Tip
Grammarians	may	note	the	misspelling	of	referrer	in	the	previous	sentence.	However,	it’s
not	a	typo.	In	the	initial	HTTP	request	for	comments	proposal,	the	term	was	included
without	the	double	r	in	the	spelling	and	it	has	largely	stuck	ever	since.

However,	relying	on	every	OAuth	request	is	overkill	when	it’s	a	user	who	is	making	many
requests	per	page.	You	could	cache	tokens	in	local	storage	or	cookies,	but	browser	support
for	the	former	is	still	limited	and	the	latter	limits	the	revocability	of	a	token.

A	traditional	and	simple	solution	for	this	is	to	allow	sessions	for	authentication	that	are
based	on	cookies.	You	may	still	want	to	leave	an	API	open	for	access	from	outside	a	main
application	so	that	it	can	be	authenticated	via	an	API	key	or	OAuth,	but	it	should	also
enable	users	to	interface	with	it	directly	from	client-side	tools	to	provide	a	clean	SPA
experience.

Sessions	in	a	RESTful	design
It’s	worth	noting	that	because	sessions	typically	enforce	some	sense	of	state,	they	are	not
inherently	considered	as	a	part	of	a	RESTful	design.	However,	it	can	also	be	argued	that
sessions	can	be	used	solely	for	authentication	and	not	state.	In	other	words,	an
authentication	and	a	session	cookie	can	be	used	elusively	as	a	method	for	verifying
identity.

Of	course,	you	can	also	do	this	by	passing	a	username	and	password	along	with	every
secure	request.	This	is	not	an	unsafe	practice	on	its	own,	but	it	means	that	users	will	need
to	supply	this	information	with	every	request,	or	the	information	will	need	to	be	stored
locally.	This	is	the	problem	that	sessions	that	are	stored	in	cookies	attempt	to	solve.

As	mentioned	earlier,	this	will	never	apply	to	third-party	applications,	which	for	the	most
part	need	some	sort	of	easily	revokable	key	to	work	and	rarely	have	a	username	and	a
password	(although	ours	are	tied	to	users,	so	they	technically	do).

The	easiest	way	to	do	this	is	to	allow	a	username	and	a	password	to	go	directly	into	the
URL	request,	and	you	may	see	this	sometimes.	The	risk	here	is	that	if	a	user	shares	the
URL	in	full	accidentally,	the	data	will	be	compromised.	In	fact,	this	happens	often	with
newer	GitHub	users,	as	it’s	possible	to	automatically	push	config	files	that	contain	GitHub
passwords.

To	reduce	this	risk,	we	should	mandate	that	a	username	and	a	password	be	passed	via	a
header	field,	although	it	should	still	be	in	cleartext.	Assuming	that	a	solid	TSL	(or	SSL)
option	is	in	place,	cleartext	in	the	header	of	the	request	is	not	inherently	a	problem,	but
could	be	one	if	an	application	can	at	any	point	switch	to	(or	be	accessed	by)	unsecure
protocols.	This	is	a	problem	that	time-restricted	token	systems	attempt	to	address.

We	can	store	session	data	anywhere.	Our	application	presently	uses	MySQL,	but	session
data	will	be	read	frequently.	So,	it’s	not	ideal	to	encumber	our	database	with	information
that	has	very	little	in	terms	of	relational	information.

Remember,	we’ll	be	storing	an	active	user,	their	session’s	start	time,	the	last	update	time
(changed	with	every	request),	and	perhaps	where	they	are	within	the	application.	This	last
piece	of	information	can	be	used	in	our	application	to	tell	users	what	their	friends	are
currently	doing	within	our	social	network.

With	these	conditions	in	mind,	relying	on	our	primary	datastore	is	not	an	ideal	solution.
What	we	want	is	something	more	ephemeral,	faster,	and	more	concurrent	that	enables
many	successive	requests	without	impacting	our	datastore.

One	of	the	most	popular	solutions	today	for	handling	sessions	in	this	regard	is	to	yield
relational	databases	to	NoSQL	solutions	that	include	document	and	column	stores	or	key-
value	datastores.

Using	NoSQL	in	Go
Long	ago,	the	world	of	data	storage	and	retrieval	was	relegated	almost	exclusively	to	the
realm	of	relational	databases.	In	our	application,	we	are	using	MySQL,	largely	because	it’s
been	a	lingua	franca	for	quick	applications	and	SQL	translates	fairly	easily	across	similar
databases	(Microsoft’s	SQL	Server,	PostgreSQL,	Oracle,	and	so	on).

In	recent	years,	however,	a	big	push	has	been	made	toward	NoSQL.	More	accurately,	the
push	has	been	towards	data	storage	solutions	that	rely	less	on	typical	relational	database
structures	and	schemas	and	more	on	highly	performant,	key-value	stores.

A	key-value	store	is	exactly	what	anyone	who	works	with	associative	arrays,	hashes,	and
maps	(in	Go)	would	expect,	that	is,	some	arbitrary	data	associated	with	a	key.	Many	of
these	solutions	are	very	fast	because	of	the	lack	of	indexed	relationships,	mitigation	of
locking,	and	a	de-emphasis	of	consistency.	In	fact,	many	solutions	guarantee	no	ACIDity
out	of	the	box	(but	some	offer	methods	for	employing	it	optionally).

Note
ACID	refers	to	the	properties	that	developers	expect	in	a	database	application.	Some	or	all
of	these	may	be	missing	or	may	be	optional	parameters	in	any	given	NoSQL	or	key-value
datastore	solution.	The	term	ACID	can	be	elaborated	as	follows:

Atomicity:	This	indicates	that	all	parts	of	a	transaction	must	succeed	for	any	part	to
succeed
Consistency:	This	refers	to	the	database’s	state	at	the	start	of	a	transaction	does	not
change	before	the	completion	of	a	transaction
Isolation:	This	refers	to	the	table	or	row	locking	mechanism	that	prevents	access	to
data	that	is	presently	in	the	state	of	transaction
Durability:	This	ensures	that	a	successful	transaction	can	and	will	survive	a	system
or	application	failure

NoSQL	solutions	can	be	used	for	a	lot	of	different	things.	They	can	be	outright
replacements	for	SQL	servers.	They	can	supplement	data	with	some	data	that	requires	less
consistency.	They	can	work	as	quickly	accessible,	automatically	expiring	cache	structures.
We’ll	look	at	this	in	a	moment.

If	you	choose	to	introduce	a	NoSQL	solution	into	your	application,	be	thoughtful	about
the	potential	impact	this	could	bring	to	your	application.	For	example,	you	can	consider
whether	the	potential	tradeoff	for	ACID	properties	will	be	outweighed	by	performance
boosts	and	horizontal	scalability	that	a	new	solution	provides.

While	almost	any	SQL	or	traditional	relational	database	solution	out	there	has	some
integration	with	Go’s	database/sql	package,	this	is	not	often	the	case	with	key-value
stores	that	need	some	sort	of	package	wrapper	around	them.

Now,	we’ll	briefly	look	at	a	few	of	the	most	popular	solutions	for	key-value	stores	and
when	we	talk	about	caching	in	the	next	section,	we’ll	come	back	and	use	NoSQL	as	a
basic	caching	solution.

Note
NoSQL	is,	despite	the	recent	resurgence,	not	a	new	concept.	By	definition,	anything	that
eschews	SQL	or	relational	database	concepts	qualifies	as	NoSQL,	and	there	have	been
dozens	of	such	solutions	since	the	1960s.	It	probably	bears	to	be	mentioned	that	we’re	not
spending	any	time	on	these	solutions—like	Ken	Thompson’s	DBM	or	BerkeleyDB—but
instead	the	more	modern	stories.

Before	we	start	exploring	the	various	NoSQL	solutions	that	we	can	use	to	handle	sessions,
let’s	enable	them	in	our	application	by	providing	an	alternative	username/password
authentication.

You	may	recall	that	back	when	we	enabled	third-party	authentication	proxies,	we	enabled
sessions	and	stored	them	in	our	MySQL	database	in	the	CheckLogin()	function.	This
function	was	only	called	in	response	to	a	POST	request	to	the	ApplicationAuthorize
function.	We’ll	open	this	up	to	more	methods.	First,	let’s	create	a	new	function	called
CheckSession(),	if	it	doesn’t	exist,	which	will	validate	the	cookie’s	session	ID,	and	then
validate	against	our	session	store	if	it	does:

func	CheckSession(w	http.ResponseWriter,	r	*http.Request)	bool	{

		

}

You	may	recall	that	we	also	had	a	basic	session	struct	and	a	method	within	api.go.	We’ll
move	these	to	sessions	as	well:

var	Session	UserSession

This	command	becomes	the	following:

var	Session	Sessions.UserSession

To	create	our	session	store,	we’ll	make	a	new	package	called	sessions.go	within	our
API’s	subdirectory/sessions.	This	is	the	skeleton	without	any	NoSQL	specific	methods:

package	SessionManager

import

(

		"log"

		"time"

		"github.com/gorilla/sessions"

		Password	"github.com/nkozyra/api/password"

)

var	Session	UserSession

type	UserSession	struct	{

		ID														string

		GorillaSesssion	*sessions.Session

		UID													int

		Expire										time.Time

}

func	(us	*UserSession)	Create()	{

		us.ID	=	Password.GenerateSessionID(32)

}

type	SessionManager	struct	{

}

func	GetSession()	{

		

		log.Println("Getting	session")

}

func	SetSession()	{

		log.Println("Setting	session")

}

Let’s	look	at	a	few	simple	NoSQL	models	that	have	strong	third-party	integrations	with
Go	to	examine	how	we	can	keep	these	sessions	segregated	and	enable	client-side	access	to
our	APIs	in	a	way	that	they	remain	secure.

Memcached
We’ll	start	with	Memcached,	specifically	because	it’s	not	really	a	datastore	like	our	other
options.	While	it	is	still	a	key-value	store	in	a	sense,	it’s	a	general	purpose	caching	system
that	maintains	data	exclusively	in	memory.

Developed	by	Brad	Fitzpatrick	for	the	once	massively	popular	LiveJournal	site,	it	was
designed	and	intended	to	reduce	the	amount	of	direct	access	to	the	database,	which	is	one
of	the	most	common	bottlenecks	in	web	development.

Memcached	was	originally	written	in	Perl	but	has	since	been	rewritten	in	C	and	it	has
reached	a	point	of	large-scale	usage.

The	pros	and	cons	of	this	are	already	apparent—you	get	the	speed	of	memory	without	the
drag	of	disk	access.	This	is	obviously	huge,	but	it	precludes	using	data	that	should	be
consistent	and	fault	tolerant	without	some	redundancy	process.

For	this	reason,	it’s	ideal	for	caching	pieces	of	the	presentation	layer	and	sessions.
Sessions	are	already	ephemeral	in	nature,	and	Memcached’s	built-in	expiration	feature
allows	you	to	set	a	maximum	age	for	any	single	piece	of	data.

Perhaps	Memcached’s	biggest	advantage	is	its	distributed	nature.	This	allows	multiple
servers	to	share	data	in-memory	values	across	a	network.

Note
It’s	worth	noting	here	that	Memcached	operates	as	a	first-in,	first	out	system.	Expiration	is
only	necessary	for	programmatic	purposes.	In	other	words,	there’s	no	need	to	force	a
maximum	age	unless	you	need	something	to	expire	at	a	certain	time.

In	the	api.go	file,	we’ll	check	a	cookie	against	our	Memcached	session	proxy,	or	we’ll
create	a	session:

func	CheckSession(w	http.ResponseWriter,	r	*http.Request)	bool	{

		cookieSession,	err	:=	r.Cookie("sessionid")

		if	err	!=	nil	{

				fmt.Println("Creating	Cookie	in	Memcache")

				Session.Create()

				Session.Expire	=	time.Now().Local()

				Session.Expire.Add(time.Hour)

				Session.SetSession()

		}	else	{

				fmt.Println("Found	cookie,	checking	against	Memcache")

				ValidSession,err	:=	Session.GetSession(cookieSession.Value)

				fmt.Println(ValidSession)

				if	err	!=	nil	{

						return	false

				}	else	{

						return	true

				}

				

		}

		return	true

}

And	then,	here	is	our	sessions.go	file:

package	SessionManager

import

(

		"encoding/json"

		"errors"

		"time"

		"github.com/bradfitz/gomemcache/memcache"

		"github.com/gorilla/sessions"	

		Password	"github.com/nkozyra/api/password"	

)

var	Session	UserSession

type	UserSession	struct	{

		ID														string	`json:"id"`

		GorillaSesssion	*sessions.Session	`json:"session"`

		SessionStore		*memcache.Client	`json:"store"`

		UID													int	`json:"uid"`

		Expire										time.Time	`json:"expire"`

}

func	(us	*UserSession)	Create()	{

		us.SessionStore	=	memcache.New("127.0.0.1:11211")

		us.ID	=	Password.GenerateSessionID(32)

}

func	(us	*UserSession)	GetSession(key	string)	(UserSession,	error)	{

		session,err	:=	us.SessionStore.Get(us.ID)

		if	err	!=	nil	{

				return	UserSession{},errors.New("No	such	session")

		}	else	{

				var	tempSession	=	UserSession{}

				err	:=	json.Unmarshal(session.Value,tempSession)

				if	err	!=	nil	{

				}

				return	tempSession,nil

		}

}

GetSession()	attempts	to	grab	a	session	by	key.	If	it	exists	in	memory,	it	will	pass	its
value	to	the	referenced	UserSession	directly.	Note	that	we	make	one	minor	change	when
we	verify	a	session	in	the	following	code.	We	increase	the	cookie’s	expiry	time	by	one
hour.	This	is	optional,	but	it	allows	a	session	to	remain	active	if	a	user	leaves	one	hour
after	their	last	action	(and	not	their	first	one):

func	(us	*UserSession)	SetSession()	bool	{

		jsonValue,_	:=	json.Marshal(us)

		us.SessionStore.Set(&memcache.Item{Key:	us.ID,	Value:	[]byte(jsonValue)})

		_,err	:=	us.SessionStore.Get(us.ID)

		if	err	!=	nil	{

						return	false

		}

				Session.Expire	=	time.Now().Local()

				Session.Expire.Add(time.Hour)

				return	true

}

Note
Brad	Fitzpatrick	has	joined	the	Go	team	at	Google,	so	it	should	come	as	no	surprise	that
he	has	written	a	Memcached	implementation	in	Go.	It	should	also	come	as	no	surprise	that
this	is	the	implementation	that	we’ll	use	for	this	example.

You	can	read	more	about	this	at	https://github.com/bradfitz/gomemcache	and	install	it
using	the	go	get	github.com/bradfitz/gomemcache/memcache	command.

https://github.com/bradfitz/gomemcache

MongoDB
MongoDB	is	one	of	the	earlier	big	names	in	the	latter	day	NoSQL	solutions;	it	is	a
document	store	that	relies	on	JSON-esque	documents	with	open-ended	schemas.	Mongo’s
format	is	called	BSON,	for	Binary	JSON.	So,	as	you	can	imagine,	this	opens	up	some
different	data	types,	namely	BSON	object	and	BSON	array,	which	are	both	stored	as
binary	data	rather	than	string	data.

Note
You	can	read	more	about	the	Binary	JSON	format	at	http://bsonspec.org/.

As	a	superset,	BSON	wouldn’t	provide	much	in	the	way	of	a	learning	curve,	and	we	won’t
be	using	binary	data	for	session	storage	anyway,	but	there	are	places	where	storing	data
can	be	useful	and	thrifty.	For	example,	BLOB	data	in	SQL	databases.

MongoDB	has	earned	some	detractors	in	recent	years	as	newer,	more	feature-rich	NoSQL
solutions	have	come	to	the	forefront,	but	you	can	still	appreciate	and	utilize	the	simplicity
it	provides.

There	are	a	couple	of	decent	packages	for	MongoDB	and	Go	out	there,	but	the	most
mature	is	mgo.

Note
More	information	and	download	links	for	MongoDB	are	available	at
http://www.mongodb.org/
mgo	can	be	found	at	https://labix.org/mgo	and	it	can	installed	using	the	go	get
gopkg.in/mgo.v2	command

Mongo	does	not	come	with	a	built-in	GUI,	but	there	are	a	number	of	third-party	interfaces
and	quite	a	few	of	them	are	HTTP-based.	Here,	I’ll	recommend	Genghis
(http://genghisapp.com/)	that	uses	just	a	single	file	for	either	PHP	or	Ruby.

Let’s	look	at	how	we	can	jump	from	authentication	into	session	storage	and	retrieval	using
Mongo.

We’ll	supplant	our	previous	example	with	another.	Create	a	second	file	and	another
package	subdirectory	called	sessions2.go.

In	our	api.go	file,	change	the	import	call	from	Sessions
"github.com/nkozyra/api/sessions"	to	Sessions
"github.com/nkozyra/api/sessionsmongo".

We’ll	also	need	to	replace	the	"github.com/bradfitz/gomemcache/memcache"	import
with	the	mgo	version,	but	since	we’re	just	modifying	the	storage	platform,	much	of	the
rest	remains	the	same:

package	SessionManager

import

(

http://bsonspec.org/
http://www.mongodb.org/
https://labix.org/mgo
http://genghisapp.com/

		"encoding/json"

		"errors"

		"log"

		"time"

		mgo	"gopkg.in/mgo.v2"

		_	"gopkg.in/mgo.v2/bson"

		"github.com/gorilla/sessions"

		Password	"github.com/nkozyra/api/password"

)

var	Session	UserSession

type	UserSession	struct	{

		ID														string	`bson:"_id"`

		GorillaSesssion	*sessions.Session	`bson:"session"`

		SessionStore		*mgo.Collection	`bson:"store"`

		UID													int	`bson:"uid"`

		Value									[]byte	`bson:"Valid"`

		Expire										time.Time	`bson:"expire"`

}

The	big	change	to	our	struct	in	this	case	is	that	we’re	setting	our	data	to	BSON	instead	of
JSON	in	the	string	literal	attribute.	This	is	not	actually	critical	and	it	will	still	work	with
the	json	attribute	type.

func	(us	*UserSession)	Create()	{

		s,	err	:=	mgo.Dial("127.0.0.1:27017/sessions")

		defer	s.Close()

		if	err	!=	nil	{

				log.Println("Can't	connect	to	MongoDB")

		}	else	{

				us.SessionStore	=	s.DB("sessions").C("sessions")

		}

		us.ID	=	Password.GenerateSessionID(32)

}

Our	method	of	connection	obviously	changes,	but	we	also	need	to	work	within	a
collection	(that	is	analogous	to	a	table	in	database	nomenclature),	so	we	connect	to	our
database	and	then	the	collection	that	are	both	named	session:

func	(us	*UserSession)	GetSession(key	string)	(UserSession,	error)	{

		var	session	UserSession

		err	:=	us.SessionStore.Find(us.ID).One(session)

		if	err	!=	nil	{

				return	UserSession{},errors.New("No	such	session")

		}	

				var	tempSession	=	UserSession{}

				err	:=	json.Unmarshal(session.Value,tempSession)

				if	err	!=	nil	{

				}

				return	tempSession,nil

				

}

GetSession()	works	in	almost	exactly	the	same	way,	aside	from	the	datastore	method
being	switched	to	Find().	The	mgo.One()	function	assigns	the	value	of	a	single	document
(row)	to	an	interface.

func	(us	*UserSession)	SetSession()	bool	{

		jsonValue,_	:=	json.Marshal(us)

		err	:=	us.SessionStore.Insert(UserSession{ID:	us.ID,	Value:	

[]byte(jsonValue)})

		if	err	!=	nil	{

						return	false

		}	else	{

				return	true

		}

}

Enabling	connections	using	a	username
and	password
To	permit	users	to	enter	a	username	and	password	for	their	own	connections	instead	of
relying	on	a	token	or	leaving	the	API	endpoint	open,	we	can	create	a	piece	of	middleware
that	can	be	called	directly	into	any	specific	function.

In	this	case,	we’ll	do	several	authentication	passes.	Here’s	an	example	in	the	/api/users
GET	function,	which	was	previously	open:

		authenticated	:=	CheckToken(r.FormValue("access_token"))

		

		loggedIn	:=	CheckLogin(w,r)

		if	loggedIn	==	false	{

				authenticated	=	false

				authenticatedByPassword	:=	MiddlewareAuth(w,r)

				if	authenticatedByPassword	==	true	{

								authenticated	=	true

				}

		}	else	{

				authenticated	=	true

		}

		if	authenticated	==	false	{

				Response	:=	CreateResponse{}

				_,	httpCode,	msg	:=	ErrorMessages(401)

				Response.Error	=	msg

				Response.ErrorCode	=	httpCode

				http.Error(w,	msg,	httpCode)

			return	

		}

You	can	see	the	passes	that	we	make	here.	First,	we	check	for	a	token	and	then	we	check
for	an	existing	session.	If	this	doesn’t	exist,	we	check	for	a	login	username	and	password
and	validate	them.

If	all	these	three	fail,	then	we	return	an	unauthorized	error.

Now,	we	already	have	the	MiddlewareAuth()	function	in	another	part	of	the	code	in
ApplicationAuthorize(),	so	let’s	move	it:

func	MiddlewareAuth(w	http.ResponseWriter,	r	*http.Request)	(bool,	int)	{

		username	:=	r.FormValue("username")

		password	:=	r.FormValue("password")

		var	dbPassword	string

		var	dbSalt	string

		var	dbUID	string

		uerr	:=	Database.QueryRow("SELECT	user_password,	user_salt,	user_id	from	

users	where	user_nickname=?",	username).Scan(&dbPassword,	&dbSalt,	&dbUID)

		if	uerr	!=	nil	{

		}

		expectedPassword	:=	Password.GenerateHash(dbSalt,	password)

		if	(dbPassword	==	expectedPassword)	{

				return	true,	dbUID

		}	else	{

				return	false,	0

		}

}

If	users	access	the	/api/users	endpoint	via	a	GET	method,	they	will	now	need	a	username
and	password	combination,	an	access_token,	or	a	valid	session	in	cookie	data.

We	also	return	the	expected	user_id	on	a	valid	authentication,	which	will	otherwise	return
a	value	of	0.

Allowing	our	users	to	connect	to	each
other
Let’s	take	a	step	back	into	our	application	and	add	some	functionality	that’s	endemic	to
social	networks—the	ability	to	create	connections	such	as	friending.	In	most	social
networks,	this	grants	read	access	to	the	data	among	those	connected	as	friends.

Since	we	already	have	a	valid	view	to	see	users,	we	can	create	some	new	routes	to	allow
users	to	initiate	connections.

First,	let’s	add	a	few	endpoints	to	our	Init()	function	in	the	api.go	file:

for	_,	domain	:=	range	allowedDomains	{

		PermittedDomains	=	append(PermittedDomains,	domain)

}

Routes	=	mux.NewRouter()

Routes.HandleFunc("/interface",	APIInterface).Methods("GET",	"POST",	"PUT",	

"UPDATE")

Routes.HandleFunc("/api/users",	UserCreate).Methods("POST")

Routes.HandleFunc("/api/users",	UsersRetrieve).Methods("GET")

Routes.HandleFunc("/api/users/{id:[0-9]+}",	UsersUpdate).Methods("PUT")

Routes.HandleFunc("/api/users",	UsersInfo).Methods("OPTIONS")

Routes.HandleFunc("/api/statuses",	StatusCreate).Methods("POST")

Routes.HandleFunc("/api/statuses",	StatusRetrieve).Methods("GET")

Routes.HandleFunc("/api/statuses/{id:[0-9]+}",	StatusUpdate).Methods("PUT")

Routes.HandleFunc("/api/statuses/{id:[0-9]+}",	

StatusDelete).Methods("DELETE")

Routes.HandleFunc("/api/connections",	ConnectionsCreate).Methods("POST")

Routes.HandleFunc("/api/connections",	ConnectionsDelete).Methods("DELETE")

Routes.HandleFunc("/api/connections",	ConnectionsRetrieve).Methods("GET")

Note
Note	that	we	don’t	have	a	PUT	request	method	here.	Since	our	connections	are	friendships
and	binary,	they	won’t	be	changed	but	they	will	be	either	created	or	deleted.	For	example,
if	we	add	a	mechanism	for	blocking	a	user,	we	can	create	that	as	a	separate	connection
type	and	allow	changes	to	be	made	to	it.

Let’s	set	up	a	database	table	to	handle	these:

CREATE	TABLE	IF	NOT	EXISTS	`users_relationships`	(

		`users_relationship_id`	int(13)	NOT	NULL,

		`from_user_id`	int(10)	NOT	NULL,

		`to_user_id`	int(10)	NOT	NULL,

		`users_relationship_type`	varchar(10)	NOT	NULL,

		`users_relationship_timestamp`	timestamp	NOT	NULL	DEFAULT	

CURRENT_TIMESTAMP,

		`users_relationship_accepted`	tinyint(1)	NOT	NULL	DEFAULT	'0',

		PRIMARY	KEY	(`users_relationship_id`),

		KEY	`from_user_id`	(`from_user_id`),

		KEY	`to_user_id`	(`to_user_id`),

		KEY	`from_user_id_to_user_id`	(`from_user_id`,`to_user_id`),

		KEY	`from_user_id_to_user_id_users_relationship_type`	

(`from_user_id`,`to_user_id`,`users_relationship_type`)

)

With	this	in	place,	we	can	now	duplicate	the	code	that	we	used	to	ensure	that	the	users	are
authenticated	for	our	/api/connections	POST	method	and	allow	them	to	initiate	friend
requests.

Let’s	look	at	the	ConnectionsCreate()	method:

func	ConnectionsCreate(w	http.ResponseWriter,	r	*http.Request)	{

		log.Println("Starting	retrieval")

		var	uid	int

		Response	:=	CreateResponse{}

		authenticated	:=	false

		accessToken	:=	r.FormValue("access_token")

		if	accessToken	==	""	||	CheckToken(accessToken)	==	false	{

				authenticated	=	false

		}	else	{

				authenticated	=	true

		}

		loggedIn	:=	CheckLogin(w,r)

		if	loggedIn	==	false	{

				authenticated	=	false

				authenticatedByPassword,uid	:=	MiddlewareAuth(w,r)

				if	authenticatedByPassword	==	true	{

								fmt.Println(uid)

								authenticated	=	true

				}

		}	else	{

				uid	=	Session.UID

				authenticated	=	true

		}

		if	authenticated	==	false	{

				_,	httpCode,	msg	:=	ErrorMessages(401)

				Response.Error	=	msg

				Response.ErrorCode	=	httpCode

				http.Error(w,	msg,	httpCode)

				return

		}

This	is	the	same	code	as	our	/api/users	GET	function.	We’ll	come	back	to	this	after	we
look	at	the	full	example.

		toUID	:=	r.FormValue("recipient")

		var	count	int

		Database.QueryRow("select	count(*)	as	ucount	from	users	where	

user_id=?",toUID).Scan(&count)

		if	count	<	1	{

				fmt.Println("No	such	user	exists")

				_,	httpCode,	msg	:=	ErrorMessages(410)

				Response.Error	=	msg

				Response.ErrorCode	=	httpCode

				http.Error(w,	msg,	httpCode)

				return

Here,	we	check	for	an	existing	user.	If	we	are	trying	to	connect	to	a	user	that	doesn’t	exist,
we	return	a	410:	Gone	HTTP	error.

		}	else	{

				var	connectionCount	int

				Database.QueryRow("select	count(*)	as	ccount	from	users_relationships	

where	from_user_id=?	and	to_user_id=?",uid,	toUID).Scan(&connectionCount)

				if	connectionCount	>	0	{

						fmt.Println("Relationship	already	exists")

						_,	httpCode,	msg	:=	ErrorMessages(410)

												Response.Error	=	msg

						Response.ErrorCode	=	httpCode

						http.Error(w,	msg,	httpCode)

						return

Here,	we	check	whether	such	a	request	has	been	initiated.	If	it	has,	then	we	also	pass	a
Gone	reference	error.	If	neither	of	these	error	conditions	is	met,	then	we	can	create	a
relationship:

				}	else	{

						fmt.Println("Creating	relationship")

						rightNow	:=	time.Now().Unix()

						Response.Error	=	"success"

						Response.ErrorCode	=	0

						_,err	:=	Database.Exec("insert	into	users_relationships	set	

from_user_id=?,	to_user_id=?,	users_relationship_type=?,	

users_relationship_timestamp=?",uid,	toUID,	"friend",	rightNow)

						if	err	!=	nil	{

								fmt.Println(err.Error())

						}	else	{

								output	:=	SetFormat(Response)

								fmt.Fprintln(w,	string(output))

						}

				}

		}

}

With	a	successful	call,	we	create	a	pending	user	relationship	between	the	authenticated
user	and	the	intended	one.

You	may	have	noted	the	duplication	of	code	in	this	function.	This	is	something	that’s
typically	settled	with	middleware	and	Go	has	some	options	that	are	available	to	inject	in
the	process.	In	the	next	chapter,	we’ll	look	at	some	frameworks	and	packages	that	can
assist	in	this	as	well	to	build	our	own	middleware.

Summary
We	now	have	a	featured	social	network	that	is	available	through	web	services	with	forced
TLS,	authentication	from	users,	and	it	has	the	ability	to	interact	with	other	users.

In	this	chapter,	we	also	looked	at	offloading	our	session	management	to	NoSQL	databases
and	putting	other	web	servers	instead	of	Go	to	provide	additional	features	and	failover
protections.

In	the	next	chapter,	we’ll	flesh	out	our	social	network	even	more	as	we	try	to	interact	with
our	API	from	the	client	side.	With	the	foundation	in	place	that	allows	this,	we	can	then	let
users	directly	authenticate	and	interact	with	the	API	through	a	client-side	interface	without
needing	API	tokens,	while	simultaneously	retaining	the	ability	to	use	third-party	tokens.

We’ll	also	peek	at	using	Go	with	complementary	frontend	frameworks	like	Go	and	Meteor
to	provide	a	more	responsive,	app-like	web	interface.

Chapter	8.	Responsive	Go	for	the	Web
If	you	spend	any	time	developing	applications	on	the	Web	(or	off	it,	for	that	matter)	it
won’t	be	long	before	you	find	yourself	facing	the	prospect	of	interacting	with	an	API	from
within	a	website	itself.

In	this	chapter,	we’ll	bridge	the	gap	between	the	client	and	the	server	by	allowing	the
browser	to	work	as	a	conduit	for	our	web	service	directly	via	a	few	technologies	that
includes	Google’s	own	AngularJS.

Earlier	in	this	book,	we	created	a	stopgap	client-side	interface	for	our	API.	This	existed
almost	exclusively	for	the	purpose	of	viewing	the	details	and	output	of	our	web	service
through	a	simple	interface.

However,	it’s	important	to	keep	in	mind	that	it’s	not	only	machines	that	are	processing
APIs,	but	also	client-side	interfaces	that	are	initiated	directly	by	the	users.	For	this	reason,
we’re	going	to	look	at	applying	our	own	API	in	this	format.	We	will	keep	it	locked	down
by	domain	and	enable	RESTful	and	non-RESTful	attributes	that	will	allow	a	website	to	be
responsive	(not	necessarily	in	the	mobile	sense)	and	operate	exclusively	via	an	API	using
HTML5	features.

In	this	chapter,	we’ll	look	at:

Using	client-side	frameworks	like	jQuery	and	AngularJS	to	dovetail	with	our	server-
side	endpoints
Using	server-side	frameworks	to	create	web	interfaces
Allowing	our	users	to	log	in,	view	other	users,	create	connections,	and	post	messages
via	a	web	interface	to	our	API
Extending	the	functionality	of	our	web	service,	and	expanding	it	to	allow	direct
access	via	an	interface	that	we’ll	build	in	Go
Employing	HTML5	and	several	JavaScript	frameworks	to	complement	our	server-
side	frameworks	for	Go

Creating	a	frontend	interface
Before	we	get	started,	we’ll	need	to	address	a	couple	of	issues	with	the	way	browsers
restrict	information	flow	from	the	client	to	the	server.

We’ll	also	need	to	create	an	example	site	that	works	with	our	API.	This	should	ideally	be
done	on	localhost	on	a	different	port	or	another	machine	because	you	will	run	into
additional	problems	simply	by	using	the	file://	access.

Tip
For	the	sake	of	building	an	API,	it’s	entirely	unnecessary	to	bundle	an	interface	with	the
API,	as	we	did	for	a	simple	demonstration	earlier.

In	fact,	this	may	introduce	cruft	and	confusion	as	a	web	service	grows.	In	this	example,
we’ll	build	our	interface	application	separately	and	run	it	on	port	444.	You	can	choose	any
available	port	that	you	like,	assuming	that	it	doesn’t	interfere	with	our	web	service	(443).
Note	that	on	many	systems	access	to	ports	1024	and	below	require	root/sudo.

As	is,	if	we	attempt	to	run	the	interface	on	a	different	port	than	our	secure	web	service,
we’ll	run	into	cross-origin	resource	sharing	issues.	Make	sure	that	any	endpoint	method
that	we	expose	for	client-side	and/or	JavaScript	consumption	includes	a	header	for
Access-Control-Allow-Origin.

Note
You	can	read	more	about	the	nature	and	mechanism	of	Access-Control-Allow-Origin	at
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS.

You	may	be	tempted	to	just	use	the	*	wildcard	for	this,	but	this	will	cause	a	lot	of	browser
issues,	particularly	with	the	frontend	frameworks	that	we’ll	be	looking	at.	As	an	example,
let’s	see	what	happens	if	we	attempt	to	access	the	/api/users	endpoint	via	GET:

The	results	can	be	unreliable	and	some	frameworks	reject	the	wildcard	entirely.	Using	a
wildcard	also	disables	some	key	features	that	you	may	be	interested	in	such	as	cookies.

You	can	see	the	following	code	that	we	used	to	attempt	to	access	the	web	service	to	induce
this	error.	The	code	is	built	in	Angular,	which	we’ll	look	at	in	more	detail	shortly:

<html>

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

<head>

		<title>CORS	Test</title>

		<script	

src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.26/angular.js"></script>

		<script	src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.26/angular-

route.min.js"></script>

		<script>

				var	app	=	angular.module('testCORS',	['ngRoute']);

				app.controller('testWildcard',	['$scope',	'$http',	'$location',	

'$routeParams',	function($scope,$http,$location,$routeParams)	{

						$scope.messageFromAPI	=	'';

						$scope.users	=	[];

						$scope.requestAPI	=	function()	{

								

$http.get("https://localhost/api/users").success(function(data,status,heade

rs,config)	{

										angular.forEach(data.users,	function(val,key)	{

										$scope.users.push({name:	val.Name});

				})

		});

Here,	we’re	making	a	GET	request	to	our	API	endpoint.	If	this	succeeds,	we’ll	add	users	to
our	$scope.users	array	that	is	iterated	though	an	AngularJS	loop,	which	is	shown	in	the
following	code.	Without	a	domain	origin	allowance	for	our	client,	this	will	fail	due	to
cross-origin	policies	in	the	browser:

						};

						

						$scope.requestAPI();

				

				}]);

		</script>

</head>

<body	ng-app="testCORS">

		<div	ng-controller="testWildcard">

				<h1	ng-model="messageFromAPI">Users</h1>

				<div	ng-repeat="user	in	users">

						{{user.name}}

				</div>

This	is	the	way	AngularJS	deals	with	loops	by	allowing	you	to	specify	a	JavaScript	array
that	is	associated	directly	with	a	DOM-specific	variable	or	a	loop.

		</div>

</body>

</html>

In	this	example,	we	will	get	zero	users	due	to	the	permissions’	issue.

Luckily,	we	have	previously	addressed	this	issue	in	our	application	by	introducing	a	very
high-level	configuration	setting	inside	our	v1.go	file:

		

api.Init([]string{"http://www.example.com","http://www.mastergoco.com","htt

p://localhost"})

You	may	recall	that	the	Init()	function	accepts	an	array	of	allowed	domains	to	which	we
can	then	set	the	Access-Control-Allow-Origin	header:

func	Init(allowedDomains	[]string)	{

		for	_,	domain	:=	range	PermittedDomains	{

				fmt.Println("allowing",	domain)

				w.Header().Set("Access-Control-Allow-Origin",	domain)

		}

As	mentioned	earlier,	if	we	set	a	*	wildcard	domain,	some	browsers	and	libraries	will
disagree	and	the	wildcard	origin	precludes	the	ability	to	neither	set	cookies	nor	honor	SSL
credentials.	We	can	instead	specify	the	domains	more	explicitly:

requestDomain	:=	r.Header.Get("Origin")

if	requestDomain	!=	""	{

		w.Header.Set("Access-Control-Allow-Origin",	requestDomain)

}

This	permits	you	to	retain	the	settings	of	the	cookie	and	SSL	certificate	that	are	honoring
the	aspects	of	a	non-wildcard	access	control	header.	It	does	open	up	some	security	issues
that	are	related	to	cookies,	so	you	must	use	this	with	caution.

If	this	loop	is	called	within	any	function	that	can	be	accessible	via	a	web	interface,	it	will
prevent	the	cross-origin	issue.

Logging	in
As	before,	we’ll	use	Twitter’s	Bootstrap	as	a	basic	CSS	framework,	which	allows	us	to
quickly	replicate	a	site	structure	that	we	might	see	anywhere	online.

Remember	that	our	earlier	examples	opened	a	login	interface	that	simply	passed	a	token	to
a	third	party	for	short-term	use	to	allow	the	said	application	to	perform	actions	on	behalf
of	our	users.

Since	we’re	now	attempting	to	allow	our	users	to	interface	directly	with	our	API	(through
a	browser	conduit),	we	can	change	the	way	that	operates	and	allow	sessions	to	serve	as	the
authentication	method.

Previously,	we	were	posting	login	requests	directly	via	JavaScript	to	the	API	itself,	but
since	we’re	now	using	a	full	web	interface,	there’s	no	reason	to	do	that;	we	can	post
directly	to	the	web	interface	itself.	This	primarily	means	eschewing	the
onsubmit="return	false"	or	onsubmit="userCreate();"	methods	and	just	sending	the
form	data	to	/interface/login	instead:

func	Init(allowedDomains	[]string)	{

		for	_,	domain	:=	range	allowedDomains	{

			PermittedDomains	=	append(PermittedDomains,	domain)

		}

		Routes	=	mux.NewRouter()

		Routes.HandleFunc("/interface",	APIInterface).Methods("GET",	"POST",	

"PUT",	"UPDATE")

		Routes.HandleFunc("/interface/login",	APIInterfaceLogin).Methods("GET")

		Routes.HandleFunc("/interface/login",	

APIInterfaceLoginProcess).Methods("POST")

		Routes.HandleFunc("/interface/register",	

APIInterfaceRegister).Methods("GET")

		Routes.HandleFunc("/interface/register",	

APIInterfaceRegisterProcess).Methods("POST")

This	gives	us	enough	to	allow	a	web	interface	to	create	and	login	to	our	accounts	utilizing
existing	code	and	still	through	the	API.

Using	client-side	frameworks	with	Go
While	we’ve	spent	the	bulk	of	this	book	building	a	backend	API,	we’ve	also	been	building
a	somewhat	extensible,	basic	framework	for	the	server-side.

When	we	need	to	access	an	API	from	the	client	side,	we’re	bound	by	the	limitations	of
HTML,	CSS,	and	JavaScript.	Alternatively,	we	can	render	pages	on	the	server	side	as	a
consumer	and	we’ll	show	that	in	this	chapter	as	well.

However,	most	modern	web	applications	operate	on	the	client-side,	frequently	in	the
single-page	application	or	SPA.	This	attempts	to	reduce	the	number	of	“hard”	page
requests	that	a	user	has	to	make,	which	makes	a	site	appear	less	like	an	application	and
more	like	a	collection	of	documents.

The	primary	way	this	is	done	is	through	asynchronous	JavaScript	data	requests,	which
allow	an	SPA	to	redraw	a	page	in	response	to	user	actions.

At	first,	there	were	two	big	drawbacks	to	this	approach:

First,	the	application	state	was	not	preserved,	so	if	a	user	took	an	action	and
attempted	to	reload	the	page,	the	application	would	reset.
Secondly,	JavaScript-based	applications	fared	very	poorly	in	search	engine
optimization	because	a	traditional	web	scraper	would	not	render	the	JavaScript
applications.	It	will	only	render	the	raw	HTML	applications.

But	recently,	some	standardization	and	hacks	have	helped	to	mitigate	these	issues.

On	state,	SPAs	have	started	utilizing	a	new	feature	in	HTML5	that	enables	them	to	modify
the	address	bar	and/or	history	in	browsers	without	requiring	reloads,	often	by	utilizing
inline	anchors.	You	can	see	this	in	an	URL	in	Gmail	or	Twitter,	which	may	look	something
like	https://mail.google.com/mail/u/0/#inbox/1494392317a0def6.

This	enables	the	user	to	share	or	bookmark	a	URL	that	is	built	through	a	JavaScript
controller.

On	SEO,	this	largely	relegated	SPAs	to	admin-type	interfaces	or	areas	where	search
engine	accessibility	was	not	a	key	factor.	However,	as	search	engines	have	begun	parsing
JavaScript,	the	window	is	open	for	widespread	usage	without	negatively	impacting	the
effects	on	SEO.

https://mail.google.com/mail/u/0/#inbox/1494392317a0def6

jQuery
If	you	do	any	frontend	work	or	have	viewed	the	source	of	any	of	the	most	popular
websites	on	the	planet,	then	you’ve	encountered	jQuery.

According	to	SimilarTech,	jQuery	is	used	by	just	about	67	million	websites.

jQuery	evolved	as	a	method	of	standardizing	an	API	among	browsers	where	consistency
was	once	an	almost	impossible	task.	Between	the	brazen	self-determination	of	Microsoft’s
Internet	Explorer	and	browsers	that	stuck	to	standards	at	variable	levels,	writing	cross-
browser	code	was	once	a	very	complicated	matter.	In	fact,	it	was	not	uncommon	to	see
this	website	best	viewed	with	tags	because	there	was	no	guarantee	of	functionality	even
with	the	latest	versions	of	any	given	browser.

When	jQuery	took	hold	(following	other	similar	frameworks	such	as	Prototype,	Moo
Tools,	and	Dojo),	the	world	of	web	development	finally	found	a	way	to	cover	most	of	the
available,	modern	web	browsers	with	a	single	interface.

Consuming	APIs	with	jQuery
Working	with	our	API	using	jQuery	couldn’t	be	much	simpler.	When	jQuery	first	started
to	come	to	fruition,	the	notion	of	AJAX	was	really	taking	hold.	AJAX	or	Asynchronous
JavaScript	and	XML	were	the	first	iteration	towards	a	web	technology	that	utilized	the
XMLHttpRequest	object	to	get	remote	data	and	inject	it	into	the	DOM.

It’s	with	some	degree	of	irony	that	Microsoft,	which	is	often	considered	as	the	greatest
offender	of	web	standards,	laid	the	groundwork	for	XMLHttpRequest	in	the	Microsoft
Exchange	Server	that	lead	to	AJAX.

Today,	of	course,	XML	is	rarely	a	part	of	the	puzzle,	as	most	of	what	is	consumed	in	these
types	of	libraries	is	JSON.	You	can	still	use	XML	as	source	data,	but	it’s	likely	that	your
responses	will	be	more	verbose	than	necessary.

Doing	a	simple	GET	request	couldn’t	be	easier	as	jQuery	provides	a	simple	shorthand
function	called	getJSON,	which	you	can	use	to	get	data	from	our	API.

We’ll	now	iterate	through	our	users	and	create	some	HTML	data	to	inject	into	an	existing
DOM	element:

<script>

		$(document).ready(function()	{

				$.getJSON('/api/users',function()	{

								html	=	'';

						$(data.users).each(function()	{

								html	+=	'<div	class="row">';

								html	+=	'<div	class="col-lg-3">'+	image	+	'</div>';

								html	+=	'<div	class="col-lg-9">'+	

this.first	+	'	'	+	this.last	+	'</div>';

								html	+=	'</div>';

						});

				});

		});

</script>

The	GET	requests	will	only	“get”	us	so	far	though.	To	be	fully	compliant	with	a	RESTful
web	service,	we	need	to	be	able	to	do	the	GET,	POST,	PUT,	DELETE,	and	OPTIONS	header
requests.	In	fact,	the	last	method	will	be	important	to	allow	requests	across	disparate
domains.

As	we	mentioned	earlier,	getJSON	is	a	shorthand	function	for	the	built-in	ajax()	method,
which	allows	more	specificity	in	your	requests.	For	example,	$.getJSON('/api/users')
translates	into	the	following	code:

$.ajax({

		url:	'/api/users',

		cache:	false,

		type:	'GET',	//	or	POST,	PUT,	DELETE

});

This	means	that	we	can	technically	handle	all	endpoints	and	methods	in	our	API	by	setting

the	HTTP	method	directly.

While	XMLHttpRequest	accepts	all	of	these	headers,	HTML	forms	(at	least	through	HTML
4)	only	accept	the	GET	and	POST	requests.	Despite	this,	it’s	always	a	good	idea	to	do	some
cross-browser	testing	if	you’re	going	to	be	using	PUT,	DELETE,	OPTIONS,	or	TRACE	requests
in	client-side	JavaScript.

Note
You	can	download	and	read	the	very	comprehensive	documentation	that	jQuery	provides
at	http://jquery.com/.	There	are	a	few	common	CDNs	that	allow	you	to	include	the	library
directly	and	the	most	noteworthy	is	Google	Hosted	Libraries,	which	is	as	follows:
<script	src="//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js">

</script>

The	latest	version	of	the	library	is	available	at
https://developers.google.com/speed/libraries/devguide#jquery.

http://jquery.com/
https://developers.google.com/speed/libraries/devguide#jquery

AngularJS
If	we	go	beyond	the	basic	toolset	that	jQuery	provides,	we’ll	start	delving	into	legitimate,
fully	formed	frameworks.	In	the	last	five	years	these	have	popped	up	like	weeds.	Many	of
these	are	traditional	Model-View-Controller	(MVC)	systems,	some	are	pure	templating
systems,	and	some	frameworks	work	on	both	the	client-	and	server-side,	providing	a
unique	push-style	interface	through	websockets.

Like	Go,	Angular	(or	AngularJS)	is	a	project	maintained	by	Google	and	it	aims	to	provide
full-featured	MVC	on	the	client	side.	Note	that	over	time,	Angular	has	moved	somewhat
away	from	MVC	as	a	design	pattern	and	it	has	moved	more	towards	MVVM	or	Model
View	ViewModel,	which	is	a	related	pattern.

Angular	goes	far	beyond	the	basic	functionality	that	jQuery	provides.	In	addition	to
general	DOM	manipulation,	Angular	provides	true	controllers	as	part	of	a	larger
app/application	as	well	as	for	robust	unit	testing.

Among	other	things,	Angular	makes	interfacing	with	APIs	from	the	client	side	quick,
easy,	and	pleasant.	The	framework	provides	a	lot	more	MVC	functionality	that	includes
the	ability	to	bring	in	separate	templates	from	.html/template	files.

Note
Actual	push	notifications	are	expected	by	many	to	become	a	standard	feature	in	HTML5
as	the	specifications	mature.

The	W3C	had	a	working	draft	for	the	Push	API	at	the	time	of	writing	this	book.	You	can
read	more	about	it	at	http://www.w3.org/TR/2014/WD-push-api-20141007/.

For	now,	workarounds	include	libraries	such	as	Meteor	(which	will	be	discussed	later)	and
others	that	utilize	WebSockets	in	HTML5	to	emulate	real-time	communication	without
being	able	to	work	within	the	confines	of	other	browser-related	restraints	such	as	dormant
processes	in	inactive	tabs,	and	so	on.

http://www.w3.org/TR/2014/WD-push-api-20141007/

Consuming	APIs	with	Angular
Enabling	an	Angular	application	to	work	with	a	REST	API	is,	as	with	jQuery,	built
directly	into	the	bones	of	the	framework.

Compare	this	call	to	the	/api/users	endpoint	that	we	just	looked	at:

$http.$get('/api/users'.

		success(function(data,	status,	headers,	config)	{

				html	+=	'<div	class="row">';

				html	+=	'<div	class="col-lg-3">'+	image	+	'</div>';

				html	+=	'<div	class="col-lg-9">'+	

this.first	+	'	'	+	this.last	+	'</div>';

				html	+=	'</div>';	

		}).

		error(function(data,	status,	headers,	config)	{

				alert('error	getting	API!')

		});

Except	syntax,	Angular	isn’t	all	that	different	from	jQuery;	it	also	has	a	method	that
accepts	a	callback	function	or	a	promise	as	a	second	parameter.	However,	instead	of
setting	the	property	for	the	method	similar	to	jQuery,	Angular	provides	short	methods	for
most	of	the	HTTP	verbs.

This	means	that	we	can	do	our	PUT	or	DELETE	requests	directly:

$http.$delete("/api/statuses/2").success(function(data,headers,config)	{

		console.log('Date	of	response:',	headers('Date'))

		console.log(data.message)

}).error(function(data,headers,config)	{

		console.log('Something	went	wrong!');

		console.log('Got	this	error:',	headers('Status'));

});

Note	that	in	the	preceding	example,	we’re	reading	header	values.	To	make	this	work
across	domains,	you	need	to	also	set	a	header	that	enables	these	headers	to	be	shared	for
other	domains:

Access-Control-Expose-Headers:	[custom	values]

Since	domains	are	explicitly	whitelisted	with	the	Access-Control-Allow-Origin	header,
this	controls	the	specific	header	keys	that	will	be	available	to	clients	and	not	domains.	In
our	case,	we	will	set	something	for	the	Last-Modified	and	Date	values.

Note
You	can	read	more	about	Angular	and	download	it	from	https://angularjs.org/.	You	can
also	include	the	library	directly	from	Google	Hosted	Libraries	CDN,	which	is	as	follows:

<script	

src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.26/angular.min.js">

</script>

You	can	find	the	most	recent	version	of	the	library	at
https://developers.google.com/speed/libraries/devguide#angularjs.

https://angularjs.org/
https://developers.google.com/speed/libraries/devguide#angularjs

Setting	up	an	API-consuming	frontend
For	the	purpose	of	consuming	an	API,	a	frontend	will	be	almost	entirely	free	of	internal
logic.	After	all,	the	entirety	of	the	application	is	called	via	HTML	into	a	SPA,	so	we	don’t
need	much	beyond	a	template	or	two.

Here	is	our	header.html	file,	which	contains	the	basic	HTML	code:

<html>

		<head>Social	Network</title>

				

				<link	

href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.0/css/bootstrap.min.css"	

rel="stylesheet">

				<script	

src="//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>

				<script	

src="//maxcdn.bootstrapcdn.com/bootstrap/3.3.0/js/bootstrap.min.js">

</script>

				<script	

src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.26/angular.min.js">

</script>

				<script	

src="//cdnjs.cloudflare.com/ajax/libs/react/0.12.0/react.min.js"></script>

				<script	src="/js/application.js"></script>

		</head>

		

		<body	ng-app="SocialNetwork">

		

				<div	ng-view></div>

		</body>

The	line	with	application.js	is	noteworthy	because	that’s	where	all	the	logic	will	exist
and	utilize	one	of	the	frontend	frameworks	below.

The	ng-view	directive	is	no	more	than	a	placeholder	that	will	be	replaced	with	the	values
within	a	controller’s	routing.	We’ll	look	at	that	soon.

Note	that	we’re	calling	AngularJS,	jQuery,	and	React	all	in	this	header.	These	are	options
and	you	shouldn’t	necessarily	import	all	of	them.	In	all	likelihood,	this	will	cause
conflicts.	Instead,	we’ll	explore	how	to	handle	our	API	with	each	of	them.

As	you	might	expect,	our	footer	will	be	primarily	closing	tags:

</body>

</html>

We’ll	utilize	Go’s	http	template	system	to	generate	our	basic	template.	The	example	here
shows	this:

<div	ng-controller="webServiceInterface">

		<h1>{{Page.Title}}</h1>

		<div	ng-model="webServiceError"	style="display:none;"></div>

		<div	id="webServiceBody"	ng-model="body">

				<!--	nothing	here,	yet	-->

		

		</div>

</div>

The	heart	of	this	template	will	not	be	hardcoded,	but	instead,	it	will	be	built	by	the
JavaScript	framework	of	choice.

Creating	a	client-side	Angular	application	for	a
web	service
As	mentioned	earlier,	the	ng-view	directive	within	an	ng-app	element	refers	to	dynamic
content	that	is	brought	in	according	to	the	router	that	pairs	URLs	with	controllers.

More	accurately,	it	joins	the	pseudo-URL	fragments	(which	we	mentioned	earlier)	that	are
built	on	top	of	the	#	anchor	tag.	Let’s	first	set	up	the	application	itself	by	using	the
following	code	snippet.

var	SocialNetworkApp	=	angular.module('SocialNetwork',	

['ngSanitize','ngRoute']);

SocialNetworkApp.config(function($routeProvider)	{

		$routeProvider

		.when('/login',

				{

						controller:	'Authentication',

						templateUrl:	'/views/auth.html'

				}

).when('/users',

				{

						controller:	'Users',

						templateUrl:	'/views/users.html'

				}

).when('/statuses',

				{

						controller:	'Statuses',

						templateUrl:	'/views/statuses.html'

				}

);

});

Each	one	of	these	URLs,	when	they	are	accessed,	tells	Angular	to	pair	a	controller	with	a
template	and	put	them	together	within	the	ng-view	element.	This	is	what	allows	users	to
navigate	across	a	site	without	doing	hard	page	loads.

Here	is	auth.html,	which	is	held	in	our	/views/	directory	and	allows	us	to	log	in	and
perform	a	user	registration:

<div	class="container">

		<div	class="row">

				<div	class="col-lg-5">

						<h2>Login</h2>

						<form>

								<input	type="email"	name=""	class="form-control"	

placeholder="Email"	ng-model="loginEmail"	/>

								<input	type="password"	name=""	class="form-control"	

placeholder="Password"	ng-model="loginPassword"	/>

								<input	type="submit"	value="Login"	class="btn"	ng-click="login()"	

/>

						</form>

				</div>

				

				<div	class="col-lg-2">

						<h3>-	or	-</h3>

				</div>

				

				<div	class="col-lg-5">

						<h2>Register</h2>

						<form>

								<input	type="email"	name=""	class="form-control"	ng-

model="registerEmail"	placeholder="Email"	ng-

keyup="checkRegisteredEmail();"	/>

								<input	type="text"	name=""	class="form-control"	ng-

model="registerFirst"	placeholder="First	Name"	/>

								<input	type="text"	name=""	class="form-control"	ng-

model="registerLast"	placeholder="Last	Name"	/>

								<input	type="password"	name=""	class="form-control"	ng-

model="registerPassword"	placeholder="Password"	ng-keyup="checkPassword();"	

/>

								<input	type="submit"	value="Register"	class="btn"	ng-

click="register()"	/>

						</form>

				</div>

		</div>

</div>

The	JavaScript	used	to	control	this,	as	mentioned	earlier,	is	merely	a	thin	wrapper	around
our	API.	Here’s	the	Login()	process:

$scope.login	=	function()	{

		postData	=	{	email:	$scope.loginEmail,	password:	$scope.loginPassword	};

		$http.$post('https://localhost/api/users',	

postData).success(function(data)	{

		

				$location.path('/users');

		

		}).error(function(data,headers,config)	{

				alert	("Error:	"	+	headers('Status'));

		});

};

And,	here	is	the	Register()	process:

$scope.register	=	function()	{

		postData	=	{	user:	$scope.registerUser,	email:	$scope.registerEmail,	

first:	$scope.registerFirst,	last:	$scope.registerLast,	password:	

$scope.registerPassword	};

		$http.$post('https://localhost/api/users',	

postData).success(function(data)	{

		

				$location.path('/users');

		

		}).error(function(data,headers,config)	{

				alert	("Error:	"	+	headers('Status'));

		});

};

		Routes.HandleFunc("/api/user",UserLogin).Methods("POST","GET")

		Routes.HandleFunc("/api/user",APIDescribe).Methods("OPTIONS")

We	will	like	to	make	a	note	about	the	OPTIONS	header	here.	This	is	an	important	part	of
how	the	CORS	standard	operates;	essentially,	requests	are	buffered	with	a	preflight	call
using	the	OPTIONS	verb	that	returns	information	on	allowed	domains,	resources,	and	so	on.
In	this	case,	we	include	a	catchall	called	APIDescribe	within	api.go:

func	APIDescribe(w	http.ResponseWriter,	r	*http.Request)	{

		w.Header().Set("Access-Control-Allow-Headers",	"Origin,	X-Requested-With,	

Content-Type,	Accept")

		w.Header().Set("Access-Control-Allow-Origin",	"*")

}

Viewing	other	users
Once	we	are	logged	in,	we	should	be	able	to	surface	other	users	to	an	authenticated	user	to
allow	them	to	initiate	a	connection.

Here’s	how	we	can	quickly	view	other	users	within	our	users.html	Angular	template:

<div	class="container">

		<div	class="row">

				<div	ng-repeat="user	in	users">

						<div	class="col-lg-3">{{user.Name}}	<a	ng-

click="createConnection({{user.ID}});">Connect</div>

						<div	class="col-lg-8">{{user.First}}	{{user.Last}}</div>

				</div>

		

		</div>

</div>

We	make	a	call	to	our	/api/users	endpoint,	which	returns	a	list	of	users	who	are	logged
in.	You	may	recall	that	we	put	this	behind	the	authentication	wall	in	the	last	chapter.

There’s	not	a	lot	of	flair	with	this	view.	This	is	just	a	way	to	see	people	who	you	may	be
interested	in	connecting	with	or	friending	in	our	social	application.

Rendering	frameworks	on	the	server	side
in	Go
For	the	purposes	of	building	pages,	rendering	frameworks	is	largely	academic	and	it	is
similar	to	having	prerendered	pages	from	JavaScript	and	returning	them.

For	this	reason,	our	total	code	for	an	API	consumer	is	extraordinarily	simple:

package	main

import

(

		"github.com/gorilla/mux"

		"fmt"

		"net/http"

		"html/template"

)

var	templates	=	template.Must(template.ParseGlob("templates/*"))

Here,	we	designate	a	directory	to	use	for	template	access,	which	is	the	idiomatic	template
in	this	case.	We	don’t	use	views	because	we’ll	use	that	for	our	Angular	templates,	and
those	chunks	of	HTML	are	called	by	templateUrl.	Let’s	first	define	our	SSL	port	and	add
a	handler.

const	SSLport	=	":444"

func	SocialNetwork(w	http.ResponseWriter,	r	*http.Request)	{

		fmt.Println("got	a	request")

		templates.ExecuteTemplate(w,	"socialnetwork.html",	nil)

}

That’s	it	for	our	endpoint.	Now,	we’re	simply	showing	the	HTML	page.	This	can	be	done
simply	in	any	language	and	still	interface	with	our	web	service	easily:

func	main()	{

		Router	:=	mux.NewRouter()

		Router.HandleFunc("/home",	SocialNetwork).Methods("GET")

		Router.PathPrefix("/js/").Handler(http.StripPrefix("/js/",	

http.FileServer(http.Dir("js/"))))

		Router.PathPrefix("/views/").Handler(http.StripPrefix("/views/",	

http.FileServer(http.Dir("views/"))))

These	last	two	lines	allow	serving	files	from	a	directory.	Without	these,	we’ll	get	error	404
when	we	attempt	to	call	JavaScript	or	HTML	include	files.	Let’s	add	our	SSLPort	and
certificates	next.

		http.ListenAndServeTLS(SSLport,	"cert.pem",	"key.pem",	Router)

		}

As	mentioned	earlier,	the	choice	of	the	port	and	even	HTTP	or	HTTPS	is	wholly	optional,
given	that	you	allow	the	resulting	domain	to	be	in	your	list	of	permitted	domains	within

v1.go.

Creating	a	status	update
Our	last	example	allows	a	user	to	view	their	latest	status	updates	and	create	another	one.
It’s	slightly	different	because	it	calls	upon	two	different	API	endpoints	in	a	single	view—
the	loop	for	the	latest	statuses	and	the	ability	to	post,	that	is,	to	create	a	new	one.

The	statuses.html	file	looks	a	little	like	this:

<div	class="container">

		<div	class="row">

				<div	class="col-lg-12">

							<h2>New	Status:</h2>

							<textarea	class="form-control"	rows="10"	ng-mode="newStatus">

</textarea>

							Post

Here,	we	call	on	a	createStatus()	function	within	the	controller	to	post	to	the
/api/statuses	endpoint.	The	rest	of	the	code	shown	here	shows	a	list	of	previous	statuses
through	the	ng-repeat	directive:

				</div>

		</div>

		<div	class="row">

				<div	class="col-lg-12">

						<h2>Previous	Statuses:</h2>

						<div	ng-repeat="status	in	statuses">

								<div>{{status.text}}></div>

						</div>

		</div>

</div>

The	preceding	code	simply	displays	the	text	as	it	is	returned.

SocialNetworkApp.controller('Statuses',['$scope',	'$http',	'$location',	

'$routeParams',	function($scope,$http,$location,$routeParams)	{

		

		$scope.statuses	=	[];

		$scope.newStatus;

		

		$scope.getStatuses	=	function()	{

				

$http.get('https://www.mastergoco.com/api/statuses').success(function(data)	

{

				

				});

		};

		

		$scope.createStatus	=	function()	{

				$http({

						url:	'https://www.mastergoco.com/api/statuses',

						method:	'POST',

						data:	JSON.stringify({	status:	$scope.newStatus	}),

												headers:	{'Content-Type':	'application/json'}

				

		}).success(function(data)	{

						$scope.statuses	=	[];

						$scope.getStatuses();

				});

		}

		

		$scope.getStatuses();

}]);

Here,	we	can	see	a	simple	demonstration	where	previous	status	messages	are	displayed
below	a	form	for	adding	new	status	messages.

Summary
We’ve	touched	on	the	very	basics	of	developing	a	simple	web	service	interface	in	Go.
Admittedly,	this	particular	version	is	extremely	limited	and	vulnerable	to	attack,	but	it
shows	the	basic	mechanisms	that	we	can	employ	to	produce	usable,	formalized	output	that
can	be	ingested	by	other	services.

Having	superficially	examined	some	of	the	big	framework	players	for	the	Web	as	well	as
general	purpose	libraries	such	as	jQuery,	you	have	more	than	enough	options	to	test	your
API	against	a	web	interface	and	create	a	single-page	application.

At	this	point,	you	should	have	the	basic	tools	at	your	disposal	that	are	necessary	to	start
refining	this	process	and	our	application	as	a	whole.	We’ll	move	forward	and	apply	a
fuller	design	to	our	API	as	we	push	forward,	as	two	randomly	chosen	API	endpoints	will
obviously	not	do	much	for	us.

In	the	next	chapter	we’ll	dive	in	deeper	with	API	planning	and	design,	the	nitty-gritty	of
RESTful	services,	and	look	at	how	we	can	separate	our	logic	from	our	output.	We’ll
briefly	touch	on	some	logic/view	separation	concepts	and	move	toward	more	robust
endpoints	and	methods	in	Chapter	3,	Routing	and	Bootstrapping.

Chapter	9.	Deployment
When	all	is	said	and	done,	and	you’re	ready	to	launch	your	web	service	or	API,	there	are
always	considerations	that	need	to	be	taken	into	account	with	regards	to	launching,	from
code	repository,	to	staging,	to	live	environments,	to	stop,	start,	and	update	policies.

Deploying	compiled	applications	always	carries	a	little	more	complexity	than	doing	so
with	interpreted	applications.	Luckily,	Go	is	designed	to	be	a	very	modern,	compiled
language.	By	this,	we	mean	that	a	great	deal	of	thought	has	been	devoted	to	the	kinds	of
problems	that	traditionally	plagued	servers	and	services	built	in	C	or	C++.

With	this	in	mind,	in	this	chapter,	we’re	going	to	look	at	some	tools	and	strategies	that	are
available	to	us	for	painlessly	deploying	and	updating	our	application	with	minimal
downtime.

We’re	also	going	to	examine	some	things	that	we	can	do	to	reduce	the	internal	load	of	our
web	service,	such	as	offloading	image	storage	and	messaging	as	part	of	our	deployment
strategy.

By	the	end	of	this	chapter,	you	should	have	some	Go-specific	and	general	tips	that	will
minimize	some	of	the	heartache	that	is	endemic	to	deploying	APIs	and	web	services,
particularly	those	that	are	frequently	updated	and	require	the	least	amount	of	downtime.

In	this	chapter,	we’ll	look	at:

Application	design	and	structure
Deployment	options	and	strategies	for	the	cloud
Utilization	of	messaging	systems
Decoupling	image	hosting	from	our	API	server	and	connecting	it	with	a	cloud-based
CDN

Project	structures
Though	the	design	and	infrastructure	of	your	application	is	a	matter	of	institutional	and
personal	preference,	the	way	you	plan	its	architecture	can	have	a	very	real	impact	on	the
approach	that	you	use	to	deploy	your	application	to	the	cloud	or	anywhere	in	production.

Let’s	quickly	review	the	structure	that	we	have	for	our	application,	keeping	in	mind	that
we	won’t	need	package	objects	unless	we	intend	to	produce	our	application	for	mass
cross-platform	usage:

bin/

		api	#	Our	API	binary

pkg/

src/

		github.com/

				nkozyra/

				api/

						/api/api.go

								/interface/interface.go

								/password/password.go

								/pseudoauth/pseudoauth.go

								/services/services.go

								/specification/specification.go

								/v1/v1.go

								/v2/v2.go

The	structure	of	our	application	may	be	noteworthy	depending	on	how	we	deploy	it	to	the
cloud.

If	there’s	a	conduit	process	before	deployment	that	handles	the	build,	dependency
management,	and	push	to	the	live	servers,	then	this	structure	is	irrelevant	as	the	source	and
Go	package	dependencies	can	be	eschewed	in	lieu	of	the	binary.

However,	in	scenarios	where	the	entire	project	is	pushed	to	each	application	server	or
servers	or	NFS/file	servers,	the	structure	remains	essential.	In	addition,	as	noted	earlier,
any	place	where	cross-platform	distribution	is	a	consideration,	the	entire	structure	of	the
Go	project	should	be	preserved.

Even	when	this	is	not	critical,	if	the	build	machine	(or	machines)	are	not	exactly	like	the
target	machines,	this	impacts	your	process	for	building	the	binary,	although	it	does	not
preclude	solely	dealing	with	that	binary.

In	an	example	GitHub	repository,	it	might	also	require	to	obfuscate	the	nonbinary	code	if
there	is	any	open	directory	access,	similar	to	our	interface.go	application.

Using	process	control	to	keep	your	API
running
The	methods	for	handling	version	control	and	development	processes	are	beyond	the
scope	of	this	book,	but	a	fairly	common	issue	with	building	and	deploying	compiled	code
for	the	Web	is	the	process	of	installing	and	restarting	the	said	processes.

Managing	the	way	updates	happen	while	minimizing	or	removing	downtime	is	critical	for
live	applications.

For	scripting	languages	and	languages	that	rely	on	an	external	web	server	to	expose	the
application	via	the	Web,	this	process	is	easy.	The	scripts	either	listen	for	changes	and
restart	their	internal	web	serving	or	they	are	interpreted	when	they	are	uncached	and	the
changes	work	immediately.

This	process	becomes	more	complicated	with	long-running	binaries,	not	only	for	updating
and	deploying	our	application	but	also	for	ensuring	that	our	application	is	alive	and	does
not	require	manual	intervention	if	the	service	stops.

Luckily,	there	are	a	couple	of	easy	ways	to	handle	this.	The	first	is	just	strict	process
management	for	automatic	maintenance.	The	second	is	a	Go-specific	tool.	Let’s	look	at
process	managers	first	and	how	they	work	with	a	Go	web	service.

Using	supervisor
There	are	a	few	big	solutions	here	for	*nix	servers,	from	the	absurdly	simple	to	the	more
complex	and	granular.	There’s	not	a	lot	of	difference	in	the	way	they	operate,	so	we’ll	just
briefly	examine	how	we	can	manage	our	web	service	with	one:	Supervisor.	Supervisor	is
readily	available	on	most	Linux	distributions	as	well	as	on	OS	X,	so	it	is	a	good	example
for	testing	locally.

Note
Some	other	process	managers	of	note	are	as	follows:

Upstart:	http://upstart.ubuntu.com/
Monit:	http://mmonit.com/monit/
Runit:	http://smarden.org/runit/

The	basic	premise	of	these	direct	supervision	init	daemon	monitoring	process	managers	is
to	listen	for	running	applications	if	there	are	no	live	attempts	to	restart	them	based	on	a	set
of	configured	rules.

It’s	worth	pointing	out	here	that	these	systems	have	no	real	distributed	methods	that	allow
you	to	manage	multiple	servers’	processes	in	aggregate,	so	you’ll	generally	have	to	yield
to	a	load	balancer	and	network	monitoring	for	that	type	of	feedback.

In	the	case	of	Supervisor,	after	installing	it,	all	we	need	is	a	simple	configuration	file	that
can	be	typically	located	by	navigating	to	/etc/supervisor/conf.d/	on	*nix	distros.
Here’s	an	example	of	such	a	file	for	our	application:

[program:socialnetwork]

command=/var/app/api

autostart=true

autorestart=true

stderr_logfile=/var/log/api.log

stdout_logfile=/var/log/api.log

While	you	can	get	more	complex—for	example,	grouping	multiple	applications	together
to	allow	synchronous	restarts	that	are	useful	for	upgrades—that’s	all	you	should	need	to
keep	our	long-running	API	going.

When	it’s	time	for	updates,	say	from	GIT	to	staging	to	live,	a	process	that	restarts	the
service	can	be	triggered	either	manually	or	programmatically	through	a	command	such	as
the	following	one:

supervisorctl	restart	program:socialnetwork

This	allows	you	to	not	only	keep	your	application	running,	but	it	also	imposes	a	full
update	process	that	pushes	your	code	live	and	triggers	a	restart	of	the	process.	This
ensures	the	least	possible	amount	of	downtime.

http://upstart.ubuntu.com/
http://mmonit.com/monit/
http://smarden.org/runit/

Using	Manners	for	more	graceful	servers
While	init	replacement	process	managers	work	very	well	on	their	own,	they	do	lack	some
control	from	within	the	application.	For	example,	simply	killing	or	restarting	the	web
server	would	almost	surely	drop	any	active	requests.

On	its	own,	Manners	lacks	some	of	the	listening	control	of	a	process	such	as	goagain,
which	is	a	library	that	corrals	your	TCP	listeners	in	goroutines	and	allows	outside	control
for	restarts	via	SIGUSR1/SIGUSR2	interprocess	custom	signals.

However,	you	can	use	the	two	together	to	create	such	a	process.	Alternatively,	you	can
write	the	internal	listener	directly,	as	goagain	may	end	up	being	a	slight	overkill	for	the
aim	of	gracefully	restarting	a	web	server.

An	example	of	using	Manners	as	a	drop-in	replacement/wrapper	around	net/http	will
look	something	like	this:

package	main

import

(

		"github.com/braintree/manners"

		"net/http"

		"os"

		"os/signal"

)

var	Server	*GracefulServer

func	SignalListener()	{

		sC	:=	make(chan	os.signal,	1)

		signal.Notify(sC,	syscall.SIGUSR1,	syscall.SIGUSR2)

		s	:=	<-	sC

		Server.Shutdown	<-	true

}

After	running	within	a	goroutine	and	blocking	with	the	channel	that	is	listening	for
SIGUSR1	or	SIGUSR2,	we	will	pass	our	Boolean	along	the	Server.Shutdown	channel
when	such	a	signal	is	received.

func	Init(allowedDomains	[]string)	{

		for	_,	domain	:=	range	allowedDomains	{

				PermittedDomains	=	append(PermittedDomains,	domain)

		}

		Routes	=	mux.NewRouter()

		Routes.HandleFunc("/interface",	APIInterface).Methods("GET",	"POST",	

"PUT",	"UPDATE")

		Routes.HandleFunc("/api/user",UserLogin).Methods("POST","GET")

		...

}

This	is	just	a	rehash	of	our	Init()	function	within	api.go.	This	registers	the	Gorilla	router
that	we’ll	need	for	our	Manners	wrapper.

func	main()	{

		

		go	func()	{

				SignalListener()

		}()

		Server	=	manners.NewServer()

		Server.ListenAndServe(HTTPport,	Routes)

}

In	the	main()	function,	instead	of	just	starting	our	http.ListenAndServe()	function,	we
use	the	Manners	server.

This	will	prevent	open	connections	from	breaking	when	we	send	a	shutdown	signal.

Note
You	can	install	Manners	with	go	get	github.com/braintree/manners.
You	can	read	more	about	Manners	at	https://github.com/braintree/manners.
You	can	install	goagain	with	go	get	github.com/rcrowley/goagain.
You	can	read	more	about	goagain	at	https://github.com/rcrowley/goagain.

https://github.com/braintree/manners
https://github.com/rcrowley/goagain

Deploying	with	Docker
In	the	last	few	years,	there	have	been	very	few	server-side	products	that	have	made	as	big
a	wave	as	Docker	in	the	tech	world.

Docker	creates	something	akin	to	easily	deployable,	preconfigured	virtual	machines	that
have	a	much	lower	impact	on	the	host	machine	than	traditional	VM	software	such	as
VirtualBox,	VMWare,	and	the	like.

It	is	able	to	do	this	with	much	less	overall	weight	than	VMs	by	utilizing	Linux	Containers,
which	allows	the	user	space	to	be	contained	while	retaining	access	to	a	lot	of	the	operating
system	itself.	This	prevents	each	VM	from	needing	to	be	a	full	image	of	the	OS	and	the
application	for	all	practical	purposes.

In	order	to	be	used	in	Go,	this	is	generally	a	good	fit,	particularly	if	we	create	builds	for
multiple	target	processors	and	wish	to	easily	deploy	Docker	containers	for	any	or	all	of
them.	It	is	even	better	that	the	setup	aspect	is	largely	handled	out	of	the	box	now,	as
Docker	has	created	language	stacks	and	included	Go	within	them.

While	at	its	core	Docker	is	essentially	just	an	abstraction	of	a	typical	Linux	distribution
image,	using	it	can	make	upgrading	and	quickly	provisioning	a	breeze,	and	it	may	even
provide	additional	security	benefits.	The	last	point	depends	a	bit	on	your	application	and
its	dependencies.

Docker	operates	with	the	use	of	very	simple	configuration	files,	and	using	a	language
stack,	you	can	easily	create	a	container	that	can	be	launched	and	has	everything	we	need
for	our	API.

Take	a	look	at	this	Docker	file	example	to	see	how	we’d	get	all	the	necessary	packages	for
our	social	networking	web	service:

FROM	golang:1.3.1-onbuild

RUN	go	install	github.com/go-sql-driver/mysql

RUN	go	install	github.com/gorilla/mux

RUN	go	install	github.com/gorilla/sessions

RUN	go	install	github.com/nkozyra/api/password

RUN	go	install	github.com/nkozyra/api/pseudoauth

RUN	go	install	github.com/nkozyra/api/services

RUN	go	install	github.com/nkozyra/api/specification

RUN	go	install	github.com/nkozyra/api/api

EXPOSE	80	443

The	file	can	then	be	built	and	run	using	simple	commands:

docker	build	-t	api	.

docker	run	--name	api-running	api	-it	--rm

You	can	see	how,	at	bare	minimum,	this	would	greatly	speed	up	the	Go	update	procedure
across	multiple	instances	(or	containers	in	this	case).

Complete	Docker	the	base	images	are	also	available	for	the	Google	Cloud	Platform.	These

are	useful	for	quickly	deploying	the	most	recent	version	of	Go	if	you	use	or	would	like	to
test	Google	Cloud.

Deploying	in	cloud	environments
For	those	who	remember	the	days	of	rooms	full	of	physical	single-purpose	servers,
devastating	hardware	faults,	and	insanely	slow	rebuild	and	backup	times,	the	emergence	of
cloud	hosting	has	in	all	likelihood	been	a	godsend.

Nowadays,	a	full	architecture	can	often	be	built	from	templates	in	short	order,	and
autoscaling	and	monitoring	are	easier	than	ever.	Now,	there	are	a	lot	of	players	in	the
market	too,	from	Google,	Microsoft,	and	Amazon	to	smaller	companies	such	as	Linode
and	Digital	Ocean	that	focus	on	simplicity,	thrift,	and	ease	of	usage.

Each	web	service	comes	with	its	own	feature	set	as	well	as	disadvantages,	but	most	share
a	very	common	workflow.	For	the	sake	of	exploring	additional	functionality	that	may	be
available	via	APIs	within	Golang	itself,	we’ll	look	at	Amazon	Web	Services.

Note
Note	that	similar	tools	exist	for	other	cloud	platforms	in	Go.	Even	Microsoft’s	platform,
Azure,	has	a	client	library	that	is	written	for	Go.

Amazon	Web	Services
As	with	many	of	the	aforementioned	cloud	services,	deploying	to	Amazon	Web	Service	or
AWS	is	by	and	large	no	different	than	deploying	it	to	any	standard	physical	server’s
infrastructure.

There	are	a	few	differences	with	AWS	though.	The	first	is	the	breadth	of	services	provided
by	it.	Amazon	does	not	strictly	deal	with	only	static	virtual	servers.	It	also	deals	with	an
array	of	supportive	services	such	as	DNS,	e-mail,	and	SMS	services	(via	their	SNS
service),	long-term	storage,	and	so	on.

Despite	all	that	has	been	said	so	far,	note	that	many	of	the	alternate	cloud	services	provide
similar	functionality	that	may	prove	analogous	to	that	provided	with	the	following
examples.

Using	Go	to	interface	directly	with	AWS
While	some	cloud	services	do	offer	some	form	of	an	API	with	their	service,	none	are	as
robust	as	Amazon	Web	Services.

The	AWS	API	provides	direct	access	to	every	possible	action	in	its	environment,	from
adding	instances,	to	provisioning	IP	addresses,	to	adding	DNS	entries	and	much	more.

As	you	might	expect,	interfacing	directly	with	this	API	can	open	up	a	lot	of	possibilities
since	it	relates	to	automating	the	health	of	your	application	as	well	as	managing	updates
and	bug	fixes.

To	interface	with	AWS	directly,	we’ll	initiate	our	application	with	the	goamz	package:

package	main

import	(

				"launchpad.net/goamz/aws"

				"launchpad.net/goamz/ec2"

)

Tip
To	grab	the	two	dependencies	to	run	this	example,	run	the	go	get
launchpad.net/goamz/aws	command	and	the	go	get	launchpad.net/goamz/ec2
command.

You	can	find	additional	documentation	about	this	at
http://godoc.org/launchpad.net/goamz.	The	goamz	package	also	includes	a	package	for	the
Amazon	S3	storage	service	and	some	additional	experimental	packages	for	Amazon’s
SNS	service	and	Simple	Database	Service.

Starting	a	new	instance	based	on	an	image	is	simple.	Perhaps	it	is	too	simple	if	you’re
used	to	deploying	it	manually	or	through	a	controlled,	automated,	or	autoscaled	process.

				AWSAuth,	err	:=	aws.EnvAuth()

				if	err	!=	nil	{

								fmt.Println(err.Error())

				}

http://godoc.org/launchpad.net/goamz

				instance	:=	ec2.New(AWSAuth,	aws.USEast)

				instanceOptions	:=	ec2.RunInstances({

								ImageId:						"ami-9eaa1cf6",

								InstanceType:	"t2.micro",

				})

In	this	instance	ami-9eaa1cf6	refers	to	Ubuntu	Server	14.04.

Having	an	interface	to	Amazon’s	API	will	be	important	in	our	next	section	where	we’ll
take	our	image	data	and	move	it	out	of	our	relational	database	and	into	a	CDN.

Handling	binary	data	and	CDNs
You	may	recall	that	way	back	in	Chapter	3,	Routing	and	Bootstrapping,	we	looked	at	how
to	store	binary	data,	specifically	image	data,	for	our	application	in	a	database	in	the	BLOB
format.

At	that	time,	we	handled	this	in	a	very	introductory	way	to	simply	get	binary	image	data
into	some	sort	of	a	storage	system.

Amazon	S3	is	part	of	the	content	distribution/delivery	network	aspect	of	AWS,	and	it
operates	on	the	notion	of	buckets	as	collections	of	data,	with	each	bucket	having	its	own
set	of	access	control	rights.	It	should	be	noted	that	AWS	also	presents	a	true	CDN	called
Cloudfront,	but	S3	can	be	used	for	this	purpose	as	a	storage	service.

Let’s	first	look	at	using	the	goamz	package	to	list	up	to	100	items	in	a	given	bucket:

Tip
Replace	–––—	in	the	code	with	your	credentials.

package	main

import

(

		"fmt"

				"launchpad.net/goamz/aws"

				"launchpad.net/goamz/s3"

)

func	main()	{

		Auth	:=	aws.Auth	{	AccessKey:	`-----------`,	SecretKey:	`-----------`,	}

		AWSConnection	:=	s3.New(Auth,	aws.USEast)

		Bucket	:=	AWSConnection.Bucket("social-images")

				bucketList,	err	:=	Bucket.List("",	"",	"",	100)

				fmt.Println(AWSConnection,Bucket,bucketList,err)		

				if	err	!=	nil	{

								fmt.Println(err.Error())

				}

				for	_,	item	:=	range	bucketList.Contents	{

								fmt.Println(item.Key)

				}

}

In	our	social	network	example,	we’re	handling	this	as	part	of	the	/api/user/:id:
endpoint.

	func	UsersUpdate(w	http.ResponseWriter,	r	*http.Request)	{

		Response	:=	UpdateResponse{}

		params	:=	mux.Vars(r)

		uid	:=	params["id"]

		email	:=	r.FormValue("email")

		img,	_,	err	:=	r.FormFile("user_image")

		if	err	!=	nil	{

				fmt.Println("Image	error:")

				fmt.Println(err.Error())

Return	uploaded,	instead	we	either	check	for	the	error	and	continue	attempting	to	process
the	image	or	we	move	on.	We’ll	show	how	to	handle	an	empty	value	here	in	a	bit:

		}

		imageData,	ierr	:=	ioutil.ReadAll(img)

		if	err	!=	nil	{

				fmt.Println("Error	reading	image:")

				fmt.Println(err.Error())

At	this	point	we’ve	attempted	to	read	the	image	and	extract	the	data—if	we	cannot,	we
print	the	response	through	fmt.Println	or	log.Println	and	skip	the	remaining	steps,	but
do	not	panic	as	we	can	continue	editing	in	other	ways.

		}	else	{

				mimeType,	_,	mimerr	:=	mime.ParseMediaType(string(imageData))

				if	mimerr	!=	nil	{

						fmt.Println("Error	detecting	mime:")

						fmt.Println(mimerr.Error())

				}	else	{

						Auth	:=	aws.Auth	{	AccessKey:	`-----------`,	SecretKey:	`-----------

`,	}

						AWSConnection	:=	s3.New(Auth,	aws.USEast)

						Bucket	:=	AWSConnection.Bucket("social-images")

						berr	:=	Bucket.Put("FILENAME-HERE",	imageData,	"",	"READ")

						if	berr	!=	nil	{

								fmt.Println("Error	saving	to	bucket:")

								fmt.Println(berr.Error())

						}

				}

		}

In	Chapter	3,	Routing	and	Bootstrapping,	we	took	the	data	as	it	was	uploaded	in	our	form,
converted	it	into	a	Base64-encoded	string,	and	saved	it	in	our	database.

Since	we’re	now	going	to	save	the	image	data	directly,	we	can	skip	this	final	step.	We	can
instead	read	anything	from	the	FormFile	function	in	our	request	and	take	the	entire	data
and	send	it	to	our	S3	bucket,	as	follows:

				f,	_,	err	:=	r.FormFile("image1")

				if	err	!=	nil	{

						fmt.Println(err.Error())

				}

				fileData,_	:=	ioutil.ReadAll(f)

It	would	make	sense	for	us	to	ensure	that	we	have	a	unique	identifier	for	this	image—one
that	avoids	race	conditions.

Checking	for	the	existence	of	a	file	upload
The	FormFile()function	actually	calls	ParseMultipartForm()	under	the	hood	and	returns
default	values	for	the	file,	the	file	header,	and	a	standard	error	if	nothing	exists.

Sending	e-mails	with	net/smtp
Decoupling	our	API	and	social	network	from	ancillary	tools	is	a	good	idea	to	create	a
sense	of	specificity	in	our	system,	reduce	conflicts	between	these	systems,	and	provide
more	appropriate	system	and	maintenance	rules	for	each.

It	would	be	simple	enough	to	equip	our	e-mail	system	with	a	socket	client	that	allows	the
system	to	listen	directly	for	messages	from	our	API.	In	fact,	this	could	be	accomplished
with	just	a	few	lines	of	code:

package	main

import

(

		"encoding/json"

		"fmt"

		"net"

)

const

(

		port	=	":9000"

)

type	Message	struct	{

		Title	string	`json:"title"`

		Body	string	`json:"body"`

		To	string	`json:"recipient"`

		From	string	`json:"sender"`

}

func	(m	Message)	Send()	{

}

func	main()	{

		

		emailQueue,_	:=	net.Listen("tcp",port)

		for	{

				conn,	err	:=	emailQueue.Accept()

				if	err	!=	nil	{

				}

				var	message	[]byte

				var	NewEmail	Message

				fmt.Fscan(conn,message)

				json.Unmarshal(message,NewEmail)

				NewEmail.Send()

		}

}

Let’s	look	at	the	actual	send	function	that	will	deliver	our	message	from	the	registration
process	in	our	API	to	the	e-mail	server:

func	(m	Message)	Send()	{

		mailServer	:=	"mail.example.com"

		mailServerQualified	:=	mailServer	+	":25"

		mailAuth	:=	smtp.PlainAuth(

								"",

								"[email]",

								"[password]",

								mailServer,

)

		recip	:=	mail.Address("Nathan	Kozyra","nkozyra@gmail.com")

		body	:=	m.Body

		mailHeaders	:=	make(map[string]	string)

		mailHeaders["From"]	=	m.From

		mailHeaders["To"]	=	recip.toString()

		mailHeaders["Subject"]	=	m.Title

		mailHeaders["Content-Type"]	=	"text/plain;	charset=\"utf-8\""

		mailHeaders["Content-Transfer-Encoding"]	=	"base64"

		fullEmailHeader	:=	""

		for	k,	v	:=	range	mailHeaders	{

				fullEmailHeader	+=	base64.StdEncoding.EncodeToString([]byte(body))

		}

		err	:=	smtp.SendMail(mailServerQualified,	mailAuth,	m.From,	m.To,	

[]byte(fullEmailHeader))

		if	err	!=	nil	{

				fmt.Println("could	not	send	email")

				fmt.Println(err.Error())

		}

}

While	this	system	will	work	well,	as	we	can	listen	on	TCP	and	receive	messages	that	tell
us	what	to	send	and	to	what	address,	it’s	not	particularly	fault	tolerant	on	its	own.

We	can	address	this	problem	easily	by	employing	a	message	queue	system,	which	we’ll
look	at	next	with	RabbitMQ.

RabbitMQ	with	Go
An	aspect	of	web	design	that’s	specially	relevant	to	APIs,	but	is	a	part	of	almost	any	web
stack,	is	the	idea	of	a	message	passing	between	servers	and	other	systems.

It	is	commonly	referred	to	as	Advanced	Message	Queuing	Protocol	or	AMQP.	It	can	be
an	essential	piece	to	an	API/web	service	since	it	allows	services	that	are	otherwise
separated	to	communicate	with	each	other	without	utilizing	yet	another	API.

By	message	passing,	we’re	talking	here	about	generic	things	that	can	or	should	be	shared
between	dissonant	systems	getting	moved	to	the	relevant	recipient	whenever	something
important	happens.

To	draw	another	analogy,	it’s	like	a	push	notification	on	your	phone.	When	a	background
application	has	something	to	announce	to	you,	it	generates	the	alert	and	passes	it	through	a
message	passing	system.

The	following	diagram	is	a	basic	representation	of	this	system.	The	sender	(S),	in	our	case
the	API,	will	add	messages	to	the	stack	that	will	then	be	retrieved	by	the	receiver	(R)	or
the	e-mail	sending	process:

We	believe	that	these	processes	are	especially	important	to	APIs	because	often,	there’s	a
institutional	desire	to	segregate	an	API	from	the	rest	of	the	infrastructure.	Although	this	is
done	to	keep	an	API	resource	from	impacting	a	live	site	or	to	allow	two	different
applications	to	operate	on	the	same	data	safely,	it	can	also	be	used	to	allow	one	service	to
accept	many	requests	while	permitting	a	second	service	or	system	to	process	them	as
resources	permit.

This	also	provides	a	very	basic	data	glue	for	applications	written	in	different	programming
languages.

In	our	web	service,	we	can	use	an	AMQP	solution	to	tell	our	e-mail	system	to	generate	a
welcome	e-mail	upon	successful	registration.	This	frees	our	core	API	from	having	to
worry	about	doing	that	and	it	can	instead	focus	on	the	core	of	our	system.

There	are	a	number	of	ways	in	which	we	can	formalize	the	requests	between	system	A	and
system	B,	but	the	easiest	way	to	demonstrate	a	simple	e-mail	message	is	by	setting	a
standard	message	and	title	and	passing	it	in	JSON:

type	EmailMessage	struct	{

		Recipient	string	`json:"to"`

		Sender	string	`json:"from"`

		Title	string	`json:"title"`

		Body	string	`json:"body"`

		SendTime	time.Time	`json:"sendtime"`

		ContentType	string	`json:"content-type"`

}

Receiving	e-mails	in	this	way	instead	of	via	an	open	TCP	connection	enables	us	to	protect
the	integrity	of	the	messages.	In	our	previous	example,	any	message	that	would	be	lost	due
to	failure,	crash,	or	shutdown	would	be	lost	forever.

Message	queues,	on	the	other	hand,	operate	like	mailboxes	with	levels	of	configurable
durability	that	allow	us	to	dictate	how	messages	should	be	saved,	when	they	expire,	and
what	processes	or	users	should	have	access	to	them.

In	this	case,	we	use	a	literal	message	that	is	delivered	as	part	of	a	package	that	will	be
ingested	by	our	mail	service	through	the	queue.	In	the	case	of	a	catastrophic	failure,	the
message	will	still	be	there	for	our	SMTP	server	to	process.

Another	important	feature	is	its	ability	to	send	a	“receipt”	to	the	message	initiator.	In	this
case,	an	e-mail	system	would	tell	the	API	or	web	service	that	the	e-mail	message	was
successfully	taken	from	the	queue	by	the	e-mail	process.

This	is	something	that	is	not	inconsequential	to	replicate	within	our	simple	TCP	process.
The	number	of	fail-safes	and	contingencies	that	we’d	have	to	build	in	would	make	it	a
very	heavy,	standalone	product.

Luckily,	integrating	a	message	queue	is	pretty	simple	within	Go:

func	Listen()	{

		qConn,	err	:=	amqp.Dial("amqp://user:pass@domain:port/")

		if	err	!=	nil	{

				log.Fatal(err)

		}

This	is	just	our	connection	to	the	RabbitMQ	server.	If	any	error	with	the	connection	is
detected,	we	will	stop	the	process.

		qC,err	:=	qConn.Channel()

		if	err	!=	nil	{

				log.Fatal(err)

		}

		queue,	err	:=	qC.QueueDeclare("messages",	false,	false,	false,	false,	

nil)

		if	err	!=	nil	{

				log.Fatal(err)

		}

The	name	of	the	queue	here	is	somewhat	arbitrary	like	a	memcache	key	or	a	database
name.	The	key	is	to	make	sure	that	both	the	sending	and	receiving	mechanisms	search	for
the	same	queue	name:

		messages,	err	:=	qC.Consume(queue.Name,	"",	true,	false,	false,	false,	

nil)

		waitChan	:=	make(chan	int)

		go	func()	{

				for	m	:=	range	messages	{

						var	tmpM	Message

						json.Unmarshal(d.Body,tmpM)

						log.Println(tmpM.Title,"message	received")

						tmpM.Send()

				}

In	our	loop	here,	we	listen	for	messages	and	invoke	the	Send()	method	when	we	receive
one.	In	this	case,	we’re	passing	JSON	that	is	then	unmarshalled	into	a	Message	struct,	but
this	format	is	entirely	up	to	you:

		}()

		<-	waitChan

}

And,	in	our	main()	function,	we	need	to	make	sure	that	we	replace	our	infinite	TCP
listener	with	the	Listen()	function	that	calls	the	AMQP	listener:

func	main()	{

		Listen()

Now,	we	have	the	ability	to	take	messages	(in	the	e-mail	sense)	from	the	queue	of
messages	(in	the	message	queue	sense),	which	means	that	we’d	simply	need	to	include
this	functionality	in	our	web	service	as	well.

In	the	example	usage	that	we	discussed,	a	newly	registered	user	would	receive	an	e-mail
that	prompts	for	the	activation	of	the	account.	This	is	generally	done	to	prevent	sign	ups
with	fake	e-mail	addresses.	This	is	not	an	airtight	security	mechanism	by	any	means,	but	it
ensures	that	our	application	can	communicate	with	a	person	who	ostensibly	has	access	to	a
real	e-mail	address.

Sending	to	the	queue	is	also	easy.

Given	that	we’re	sharing	credentials	across	two	separate	applications,	it	makes	sense	to
formalize	this	into	a	separate	package:

package	emailQueue

import

(

		"fmt"

		"log"

		"github.com/streadway/amqp"

)

const

(

		QueueCredentials	=	"amqp://user:pass@host:port/"

		QueueName	=	"email"

)

func	Listen()	{

		

}

func	Send(Recipient	string,	EmailSubject	string,	EmailBody	string)	{

		

}

In	this	way,	both	our	API	and	our	listener	can	import	our	emailQueue	package	and	share
these	credentials.	In	our	api.go	file,	add	the	following	code:

func	UserCreate(w	http.ResponseWriter,	r	*http.Request)	{

		

		...

		q,	err	:=	Database.Exec("INSERT	INTO	users	set	user_nickname=?,	

user_first=?,	user_last=?,	user_email=?,	user_password=?,	

user_salt=?",NewUser.Name,NewUser.First,	

NewUser.Last,NewUser.Email,hash,salt)

		if	err	!=	nil	{

				errorMessage,	errorCode	:=	dbErrorParse(err.Error())

				fmt.Println(errorMessage)

				error,	httpCode,	msg	:=	ErrorMessages(errorCode)

				Response.Error	=	msg

								Response.ErrorCode	=	error

				http.Error(w,	"Conflict",	httpCode)

		}	else	{

				emailQueue.Send(NewUser.Email,"Welcome	to	the	Social	Network","Thanks	

for	joining	the	Social	Network!		Your	personal	data	will	help	us	become	

billionaires!")

		}

And	in	our	e-mail.go	process:

emailQueue.Listen()

Note
AMQP	is	a	more	generalized	message	passing	interface	with	RabbitMQ	extensions.	You
can	read	more	about	it	at	https://github.com/streadway/amqp.

More	information	on	Grab	Rabbit	Hole	is	available	at
https://github.com/michaelklishin/rabbit-hole	or	can	be	downloaded	using	the	go	get
github.com/michaelklishin/rabbit-hole	command.

https://github.com/streadway/amqp
https://github.com/michaelklishin/rabbit-hole

Summary
By	separating	the	logic	of	our	API	from	our	hosted	environment	and	ancillary,	supportive
services,	we	can	reduce	the	opportunity	for	feature	creep	and	crashes	due	to	non-essential
features.

In	this	chapter,	we	moved	image	hosting	out	of	our	database	and	into	the	cloud	and	stored
raw	image	data	and	the	resulting	references	to	S3,	a	service	that	is	often	used	as	a	CDN.
We	then	used	RabbitMQ	to	demonstrate	how	message	passing	can	be	utilized	in
deployment.

At	this	point,	you	should	have	a	grasp	of	offloading	these	services	as	well	as	a	better
understanding	of	the	available	strategies	for	deployment,	updates,	and	graceful	restarts.

In	our	next	chapter,	we’ll	begin	to	round	out	the	final,	necessary	requirements	of	our
social	network	and	in	doing	so,	explore	some	ways	to	increase	the	speed,	reliability,	and
overall	performance	of	our	web	service.

We’ll	also	introduce	a	secondary	service	that	allows	us	to	chat	within	our	social	network
from	the	SPA	interface	as	well	as	expand	our	image-to-CDN	workflow	to	allow	users	to
create	galleries.	We’ll	look	at	ways	in	which	we	can	maximize	image	presentation	and
acquisition	through	both	the	interface	and	the	API	directly.

Chapter	10.	Maximizing	Performance
With	concepts	relating	to	deploying	and	launching	our	application	behind	us,	we’ll	lock	in
high-performance	tactics	within	Go	and	related	third-party	packages	in	this	chapter.

As	your	web	service	or	API	grows,	performance	issues	may	come	to	the	fore.	One	sign	of
a	successful	web	service	is	a	need	for	more	and	more	horsepower	behind	your	stack;
however,	reducing	this	need	through	programmatic	best	practices	is	an	even	better
approach	than	simply	providing	more	processing	power	to	your	application.

In	this	chapter,	we’ll	look	at:

Introducing	middleware	to	reduce	redundancy	in	our	code	and	pave	the	way	for	some
performance	features
Designing	caching	strategies	to	keep	content	fresh	and	provide	it	as	quickly	as
possible
Working	with	disk-based	caching
Working	with	memory	caching
Rate-limiting	our	API	through	middleware
Google’s	SPDY	protocol	initiative

By	the	end	of	this	chapter,	you	should	know	how	to	build	your	own	middleware	into	your
social	network	(or	any	other	web	service)	to	bring	in	additional	features	that	introduce
performance	speedups.

Using	middleware	to	reduce	cruft
When	working	with	the	Web	in	Go,	the	built-in	approaches	to	routing	and	using	handlers
don’t	always	lend	themselves	to	very	clean	methods	for	middleware	out	of	the	box.

For	example,	although	we	have	a	very	simple	UsersRetrieve()	method,	if	we	want	to
prevent	consumers	from	getting	to	that	point	or	run	something	before	it,	we	will	need	to
include	these	calls	or	parameters	multiple	times	in	our	code:

func	UsersRetrieve(w	http.ResponseWriter,	r	*http.Request)	{

		CheckRateLimit()

And	an	other	call	is:

func	UsersUpdate(w	http.ResponseWriter,	r	*http.Request)	{

		CheckRateLimit()

		CheckAuthentication()

}

Middleware	allows	us	to	more	cleanly	direct	the	internal	patterns	of	our	application,	as	we
can	apply	checks	against	rate	limits	and	authentication	as	given	in	the	preceding	code.	We
can	also	bypass	calls	if	we	have	some	external	signal	that	tells	us	that	the	application
should	be	temporarily	offline	without	stopping	the	application	completely.

Considering	the	possibilities,	let’s	think	about	useful	ways	in	which	we	can	utilize
middleware	in	our	application.

The	best	way	to	approach	this	is	to	find	places	where	we’ve	inserted	a	lot	of	needless	code
through	duplication.	An	easy	place	to	start	is	our	authentication	steps	that	exist	as	a
potential	block	in	a	lot	of	sections	of	code	in	our	api.go	file.	Refer	to	the	following:

func	UserLogin(w	http.ResponseWriter,	r	*http.Request)	{

		CheckLogin(w,r)

We	call	the	CheckLogin()	function	multiple	times	throughout	the	application,	so	we	can
offload	this	to	middleware	to	reduce	the	cruft	and	duplicate	code	throughout.

Another	method	is	the	access	control	header	setting	that	allows	or	denies	requests	based
on	the	permitted	domains.	We	use	this	for	a	few	things,	particularly	for	our	server-side
requests	that	are	bound	to	CORS	rules:

func	UserCreate(w	http.ResponseWriter,	r	*http.Request)	{

		w.Header().Set("Access-Control-Allow-Origin",	"*")

		for	_,	domain	:=	range	PermittedDomains	{

				fmt.Println("allowing",	domain)

				w.Header().Set("Access-Control-Allow-Origin",	domain)

		}

This	too	can	be	handled	by	middleware	as	it	doesn’t	require	any	customization	that	is
based	on	request	type.	On	any	request	in	which	we	wish	to	set	the	permitted	domains,	we
can	move	this	code	into	middleware.

Overall,	this	represents	good	code	design,	but	it	can	sometimes	be	tricky	without	custom
middleware	handlers.

One	popular	approach	to	middleware	is	chaining,	which	works	something	like	this:

firstFunction().then(nextFunction()).then(thirdFunction())

This	is	extremely	common	within	the	world	of	Node.js,	where	the	next(),	then(),	and
use()	functions	pepper	the	code	liberally.	And	it’s	possible	to	do	this	within	Go	as	well.

There	are	two	primary	approaches	to	this.	The	first	is	by	wrapping	handlers	within
handlers.	This	is	generally	considered	to	be	ugly	and	is	not	preferred.

Dealing	with	wrapped	handler	functions	that	return	to	their	parent	can	be	a	nightmare	to
parse.

So,	let’s	instead	look	at	the	second	approach:	chaining.	There	are	a	number	of	frameworks
that	include	middleware	chaining,	but	introducing	a	heavy	framework	simply	for	the
purpose	of	middleware	chaining	is	unnecessary.	Let’s	look	at	how	we	can	do	this	directly
within	a	Go	server:

package	main

import

(

		"fmt"

		"net/http"

)

func	PrimaryHandler(w	http.ResponseWriter,	r	*http.Request)	{

		fmt.Fprintln(w,	"I	am	the	final	response")

}

func	MiddlewareHandler(h	http.HandlerFunc)	http.HandlerFunc	{

		fmt.Println("I	am	middleware")

		return	func(w	http.ResponseWriter,	r	*http.Request)	{

				h.ServeHTTP(w,	r)

		}

}

func	middleware(ph	http.HandlerFunc,	middleHandlers	

..func(http.HandlerFunc)	(http.HandlerFunc))	http.HandlerFunc	{

		var	next	http.HandlerFunc	=	ph

		for	_,	mw	:=	range	middleHandlers	{

				next	=	mw(ph)

		}

		return	next

}

func	main()	{

		http.HandleFunc("/middleware",	

middleware(PrimaryHandler,MiddlewareHandler))

		http.ListenAndServe(":9000",nil)

}

As	mentioned	earlier,	there	are	a	couple	of	places	in	our	code	and	most	server-based
applications	where	middleware	would	be	very	helpful.	Later	in	this	chapter,	we’ll	look	at
moving	our	authentication	model(s)	into	middleware	to	reduce	the	amount	of	repetitious
calls	that	we	make	within	our	handlers.

However,	for	performance’s	sake,	another	function	for	a	middleware	of	this	kind	can	be
used	as	a	blocking	mechanism	for	cache	lookups.	If	we	want	to	bypass	potential
bottlenecks	in	our	GET	requests,	we	can	put	a	caching	layer	between	the	request	and	the
response.

We’re	using	a	relational	database,	which	is	one	of	the	most	common	sources	of	web-based
bottlenecks;	so,	in	situations	where	stale	or	infrequently	changing	content	is	acceptable,
placing	the	resulting	queries	behind	such	a	barrier	can	drastically	improve	our	API’s
overall	performance.

Given	that	we	have	two	primary	types	of	requests	that	can	benefit	from	middleware	in
different	ways,	we	should	spec	how	we’ll	approach	the	middleware	strategy	for	various
requests.

The	following	diagram	is	a	model	of	how	we	can	architect	middleware.	It	can	serve	as	a
basic	guide	for	where	to	implement	specific	middleware	handlers	for	certain	types	of	API
calls:

All	requests	should	be	subject	to	some	degree	of	rate-limiting,	even	if	certain	requests
have	much	higher	limits	than	others.	So,	the	GET,	PUT,	POST,	and	DELETE	requests	will	run
through	at	least	one	piece	of	middleware	on	every	request.

Any	requests	with	other	verbs	(for	example,	OPTIONS)	should	bypass	this.

The	GET	requests	should	be	subject	to	caching,	which	we	also	described	as	making	the
data	they	return	amenable	to	some	degree	of	staleness.

On	the	other	hand,	PUT,	POST,	and	DELETE	requests	obviously	cannot	be	cached,	as	this
will	either	force	our	responses	to	be	inaccurate	or	it	will	lead	to	duplicate	attempts	to
create	or	remove	data.

Let’s	start	with	the	GET	requests	and	look	at	two	related	ways	in	which	we	can	bypass	a
bottleneck	when	it	is	possible	to	deliver	server-cached	results	instead	of	hitting	our
relational	database.

Caching	requests
There	are,	of	course,	more	than	one	or	two	methods	for	inducing	caching	across	the
lifetime	of	any	given	request.	We’ll	explore	a	few	of	them	in	this	section	to	introduce	the
highest	level	of	nonredundant	caching.

There	is	client-side	caching	at	a	script	or	a	browser	level	that	is	ostensibly	bound	to	the
rules	that	are	sent	to	it	from	the	server	side.	By	this,	we	mean	yielding	to	HTTP	response
headers	such	as	Cache-Control,	Expires,	If-None-Match,	If-Modified-Since,	and	so
on.

These	are	the	simplest	forms	of	cache	control	that	you	can	enforce,	and	they	are	also
pretty	important	as	part	of	a	RESTful	design.	However,	they’re	also	a	bit	brittle	as	they	do
not	allow	any	enforcement	of	those	directives	and	clients	that	can	readily	dismiss	them.

Next,	there	is	proxy-based	caching—typically	third-party	applications	that	either	serve	a
cached	version	of	any	given	request	or	pass-through	to	the	originating	server	application.
We	looked	at	a	precursor	to	this	when	we	talked	about	using	Apache	or	Nginx	in	front	of
our	API.

Finally,	there	is	server-level	caching	at	the	application	level.	This	is	typically	done	in	lieu
of	proxy	caching	because	the	two	tend	to	operate	on	the	same	rule	sets.	In	most	cases,
appealing	to	a	standalone	proxy	cache	is	the	wisest	option,	but	there	are	times	when	those
solutions	are	unable	to	accommodate	specific	edge	cases.

There’s	also	some	merit	in	designing	these	from	scratch	to	better	understand	caching
strategies	for	your	proxy	cache.	Let’s	briefly	look	at	building	server-side	application
caching	for	our	social	network	in	both	disk-based	and	memory-based	ways,	and	see	how
we	can	utilize	this	experience	to	better	define	caching	rules	at	the	proxy	level.

Simple	disk-based	caching
Not	all	that	long	ago,	the	way	most	developers	handled	caching	requests	was	typically
through	disk-based	caching	at	the	application	level.

In	this	approach,	some	parameters	were	set	around	the	caching	mechanisms	and	qualifiers
of	any	given	request.	Then,	the	results	of	the	request	were	saved	to	a	string	and	then	to	a
lock	file.	Finally,	the	lock	file	was	renamed.	The	process	was	pretty	steady	although	it	was
archaic	and	worked	well	enough	to	be	reliable.

There	were	a	number	of	downsides	that	were	somewhat	insurmountable	at	the	time	in	the
early	days	of	the	Web.

Note	that	disks,	particularly	mechanical	magnetic	disks,	have	been	notoriously	and
comparatively	slow	for	storage	and	access,	and	they	are	bound	to	cause	a	lot	of	issues	with
filesystems	and	OS	operations	with	regard	to	lookups,	finds,	and	sorting.

Distributed	systems	also	pose	an	obvious	challenge	where	a	shared	cache	is	necessary	to
ensure	consistency	across	balanced	requests.	If	server	A	updates	its	local	cache	and	the
next	request	returns	a	cache	hit	from	server	B,	you	can	see	varying	results	depending	on
the	server.	Using	a	network	file	server	may	reduce	this,	but	it	introduces	some	issues	with
permissions	and	network	latency.

On	the	other	hand,	nothing	is	simpler	than	saving	a	version	of	a	request	to	a	file.	That,
along	with	disk-based	caching’s	long	history	in	other	sectors	of	programming,	made	it	a
natural	early	choice.

Moreover,	it’s	not	entirely	fair	to	suggest	that	disk-based	caching’s	days	are	over.	Faster
drives,	often	SSDs,	have	reopened	the	potential	for	using	non-ephemeral	storage	for	quick
access.

Let’s	take	a	quick	look	at	how	we	can	design	a	disk-based	cache	middleware	solution	for
our	API	to	reduce	load	and	bottlenecks	in	heavy	traffic.

The	first	consideration	to	take	into	account	is	what	to	cache.	We	would	never	want	to
allow	the	PUT,	POST,	and	DELETE	requests	to	cache	for	obvious	reasons,	as	we	don’t	want
duplication	of	data	nor	erroneous	responses	to	DELETE	or	POST	requests	that	indicate	that	a
resource	has	been	created	or	deleted	when	in	fact	it	hasn’t.

So,	we	know	that	we’re	only	caching	the	GET	requests	or	listings	of	data.	This	is	the	only
data	we	have	that	can	be	“outdated”	in	the	sense	that	we	can	accept	some	staleness
without	making	major	changes	in	the	way	the	application	operates.

Let’s	start	with	our	most	basic	request,	/api/users,	which	returns	a	list	of	users	in	our
system,	and	introduce	some	middleware	for	caching	to	a	disk.	Let’s	set	it	up	as	a	skeleton
to	explain	how	we	evaluate:

package	diskcache

import

(

)

type	CacheItem	struct	{

		

}

Our	CacheItem	struct	is	the	only	real	element	in	the	package.	It	consists	of	either	a	valid
cache	hit	(and	information	about	the	cached	element	including	the	last	modification	time,
contents,	and	so	on)	or	a	cache	miss.	A	cache	miss	will	return	to	our	API	that	either	the
item	does	not	exist	or	has	surpassed	the	time-to-live	(TTL).	In	this	case,	the	diskcache
package	will	then	set	the	cache	to	file:

func	SetCache()	{

		

}

Here	is	where	we’ll	do	this.	If	a	request	has	no	cached	response	or	the	cache	is	invalid,
we’ll	need	to	get	the	results	back	so	that	we	can	save	it.	This	makes	the	middleware	part	a
little	trickier,	but	we’ll	show	you	how	to	handle	this	shortly.	The	following	GetCache()
function	looks	into	our	cache	directory	and	either	finds	and	returns	a	cache	item	(whether
valid	or	not)	or	produces	a	false	value:

func	GetCache()	(bool,	CacheItem)	{

		

}

The	following	Evaluate()	function	will	be	our	primary	point	of	entry,	passing	to
GetCache()	and	possibly	SetCache()	later,	if	we	need	to	create	or	recreate	our	cache
entry:

func	Evaluate(context	string,	value	string,	in…[]string)	(bool,	CacheItem)	

{

		

}

In	this	structure,	we’ll	utilize	a	context	(so	that	we	can	delineate	between	request	types),
the	resulting	value	(for	saving),	and	an	open-ended	variadic	of	strings	that	we	can	use	as
qualifiers	for	our	cache	entry.	By	this,	we	mean	the	parameters	that	force	a	unique	cache
file	to	be	produced.	Let’s	say	we	designate	page	and	search	as	two	such	qualifiers.	Page	1
requests	will	be	different	than	page	2	requests	and	they	will	be	cached	separately.	Page	1
requests	for	a	search	for	Nathan	will	be	different	from	page	1	requests	for	a	search	for
Bob,	and	so	on.

This	point	is	very	strict	for	hard	files	because	we	need	to	name	(and	look	up)	our	cache
files	in	a	reliable	and	consistent	way,	but	it’s	also	important	when	we	save	caches	in	a
datastore.

With	all	of	this	in	mind,	let’s	examine	how	we	will	discern	a	cacheable	entry

Enabling	filtering
Presently	our	API	does	not	accept	any	specific	parameters	against	any	of	our	GET	requests,

which	return	lists	of	entities	or	specific	details	about	an	entity.	Examples	here	include	a
list	of	users,	a	list	of	status	updates,	or	a	list	of	relationships.

You	may	note	that	our	UsersRetrieve()	handler	presently	returns	the	next	page	in
response	to	a	start	value	and	a	limit	value.	Right	now	this	is	hard-coded	at	a	start	value
of	0	and	a	limit	value	of	10.

In	addition,	we	have	a	Pragma:	no-cache	header	that	is	being	set.	We	obviously	don’t
want	that.	So,	to	prepare	for	caching,	let’s	add	a	couple	of	additional	fields	that	clients	can
use	to	find	particular	users	they’re	looking	for	by	attributes.

The	first	is	a	start	and	a	limit,	which	dictates	a	pagination	of	sorts.	What	we	now	have	is
this:

		start	:=	0

		limit	:=	10

		next	:=	start	+	limit

Let’s	make	this	responsive	to	the	request	first	by	accepting	a	start:

		start	:=	0

		if	len(r.URL.Query()["start"])	>	0	{

				start	=	r.URL.Query()["start"][0]

		}

		limit	:=	10

		if	len(r.URL.Query()["limit"])	>	0	{

				start	=	r.URL.Query()["limit"][0]

		}

		if	limit	>	50	{

				limit	=	50

		}

Now,	we	can	accept	a	start	value	as	well	as	a	limit	value.	Note	that	we	also	put	a	cap	on
the	number	of	results	that	we’ll	return.	Any	results	that	are	more	than	50	will	be	ignored
and	a	maximum	of	50	results	will	be	returned.

Transforming	a	disk	cache	into	middleware
Now	we’ll	take	the	skeleton	of	diskcache,	turn	it	into	a	middleware	call,	and	begin	to
speed	up	our	GET	requests:

package	diskcache

import

(

		"errors"

		"io/ioutil"

		"log"

		"os"

		"strings"

		"sync"

		"time"

)

const(

		CACHEDIR	=	"/var/www/cache/"

)

This	obviously	represents	a	strict	location	for	cache	files,	but	it	can	also	be	branched	into
subdirectories	that	are	based	on	a	context,	for	example,	our	API	endpoints	in	this	case.	So,
/api/users	in	a	GET	request	would	map	to	/var/www/cache/users/get/.	This	reduces
the	volume	of	data	in	a	single	directory:

var	MaxAge	int64		=	60

var(

		ErrMissingFile	=	errors.New("File	Does	Not	Exist")

		ErrMissingStats	=	errors.New("Unable	To	Get	File	Stats")

		ErrCannotWrite	=	errors.New("Cannot	Write	Cache	File")

		ErrCannotRead	=	errors.New("Cannot	Read	Cache	File")

)

type	CacheItem	struct	{

		Name	string

		Location	string

		Cached	bool

		Contents	string

		Age	int64

}

Our	generic	CacheItem	struct	consists	of	the	file’s	name,	its	physical	location,	the	age	in
seconds,	and	the	contents,	as	mentioned	in	the	following	code:

func	(ci	*CacheItem)	IsValid(fn	string)	bool	{

		lo	:=	CACHEDIR	+	fn

		ci.Location	=	lo

		f,	err	:=	os.Open(lo)

		defer	f.Close()

		if	err	!=	nil	{

				log.Println(ErrMissingFile)

				return	false

		}

		st,	err	:=	f.Stat()

		if	err	!=	nil	{

				log.Println(ErrMissingStats)

				return	false

		}

		ci.Age	:=	int64(time.Since(st.ModTime()).Seconds())

		return	(ci.Age	<=	MaxAge)

}

Our	IsValid()	method	first	determines	whether	the	file	exists	and	is	readable,	if	it’s	older
than	the	MaxAge	variable.	If	it	cannot	be	read	or	if	it’s	too	old,	then	we	return	false,	which
tells	our	Evaluate()	entry	point	to	create	the	file.	Otherwise,	we	return	true,	which	directs
the	Evaluate()	function	to	perform	a	read	of	the	existing	cache	file.

func	(ci	*CacheItem)	SetCache()	{

		f,	err	:=	os.Create(ci.Location)

		defer	f.Close()

		if	err	!=	nil	{

				log.Println(err.Error())

		}	else	{

				FileLock.Lock()

				defer	FileLock.Unlock()

				_,	err	:=	f.WriteString(ci.Contents)

				if	err	!=	nil	{

						log.Println(ErrCannotWrite)

				}	else	{

						ci.Age	=	0

				}

		}

		log.Println(f)

}

In	our	imports	section,	you	may	note	that	the	sync	package	is	called;	SetCache()	should,
in	production	at	least,	utilize	a	mutex	to	induce	locking	on	file	operations.	We	use	Lock()
and	Unlock()	(in	a	defer)	to	handle	this.

func	(ci	*CacheItem)	GetCache()	error	{

		var	e	error

		d,	err	:=	ioutil.ReadFile(ci.Location)

		if	err	==	nil	{

				ci.Contents	=	string(d)

		}

		return	err

}

func	Evaluate(context	string,	value	string,	expireAge	int64,	qu…string)	

(error,	CacheItem)	{

		

		var	err	error

		var	ci	CacheItem

		ci.Contents	=	value

		ci.Name	=	context	+	strings.Join(qu,"-")

		valid	:=	ci.IsValid(ci.Name)

Note	that	our	filename	here	is	generated	by	joining	the	parameters	in	the	qu	variadic
parameter.	If	we	want	to	fine-tune	this,	we	will	need	to	sort	the	parameters	alphabetically
and	this	will	prevent	cache	misses	if	the	parameters	are	supplied	in	a	different	order.

Since	we	control	the	originating	call,	that’s	low-risk.	However,	since	this	is	built	as	a
shared	library,	it’s	important	that	the	behavior	should	be	fairly	consistent.

		if	!valid	{

				ci.SetCache()

				ci.Cached	=	false

		}	else	{

				err	=	ci.GetCache()

				ci.Cached	=	true

		}

		return	err,	ci

}

We	can	test	this	pretty	simply	using	a	tiny	example	that	just	writes	files	by	value:

package	main

import

(

		"fmt"

		"github.com/nkozyra/api/diskcache"

)

func	main()	{

		err,c	:=	diskcache.Evaluate("test","Here	is	a	value	that	will	only	live	

for	1	minute",60)

		fmt.Println(c)

		if	err	!=	nil	{

				fmt.Println(err)

		}

		fmt.Println("Returned	value	is",c.Age,"seconds	old")

		fmt.Println(c.Contents)

}

If	we	run	this,	then	change	the	value	of	Here	is	a	value…,	and	run	it	again	within	60
seconds,	we’ll	get	our	cached	value.	This	shows	that	our	diskcache	package	saves	and
returns	values	without	hitting	what	could	otherwise	be	a	backend	bottleneck.

So,	let’s	now	put	this	in	front	of	our	UsersRetrieve()	handler	with	some	optional
parameters.	By	setting	our	cache	by	page	and	search	as	cacheable	parameters,	we’ll
mitigate	any	load-based	impact	on	our	database.

Caching	in	distributed	memory
Similar	to	disk-based	caching,	we’re	bound	to	a	single	entity	key	with	simple	in-memory
caching	although	this	is	still	a	useful	alternative	to	disk	caching.

Replacing	the	disk	with	something	like	Memcache(d)	will	allow	us	to	have	very	fast
retrieval,	but	will	provide	us	with	no	benefit	in	terms	of	keys.	In	addition,	the	potential	for
large	amounts	of	duplication	means	that	our	memory	storage	that	is	generally	smaller	than
physical	storage	might	become	an	issue.

However,	there	are	a	number	of	ways	to	sneak	into	in-memory	or	distributed	memory
caching.	We	won’t	be	showing	you	that	drop-in	replacement,	but	through	a	segue	with	one
NoSQL	solution,	you	can	easily	translate	two	types	of	caching	into	a	strict,	memory-only
caching	option.

Using	NoSQL	as	a	cache	store
Unlike	Memcache(d),	with	a	datastore	or	a	database	we	have	the	ability	to	do	more
complex	lookups	based	on	non-chained	parameters.

For	example,	in	our	diskcache	package,	we	chain	together	parameters	such	as	page	and
search	in	such	a	way	that	our	key	(in	this	case	a	filename)	is	something	like
getusers_1_nathan.cache.

It	is	essential	that	these	keys	are	generated	in	a	consistent	and	reliable	way	for	lookup
since	any	change	results	in	a	cache	miss	instead	of	an	expected	hit,	and	we	will	need	to
rebuild	our	cached	request,	which	will	completely	eliminate	the	intended	benefit.

For	databases,	we	can	do	very	high-detail	column	lookups	for	cache	requests,	but,	given
the	nature	of	relational	databases,	this	is	not	a	good	solution.	After	all,	we	built	the
caching	layer	very	specifically	to	avoid	hitting	common	bottlenecks	such	as	a	RDBMS.

For	the	sake	of	an	example,	we’ll	again	utilize	MongoDB	as	a	way	to	compile	and	lookup
our	cache	files	with	high	throughput	and	availability	and	with	the	extra	flexibility	that	is
afforded	to	parameter-dependent	queries.

In	this	case,	we’ll	add	a	basic	document	with	just	a	page,	search,	contents,	and	a	modified
field.	The	last	field	will	serve	as	our	timestamp	for	analysis.

Despite	page	being	a	seemingly	obvious	integer	field,	we’ll	create	it	as	a	string	in
MongoDB	to	avoid	type	conversion	when	we	do	queries.

package	memorycache

For	obvious	reasons,	we’ll	call	this	memorycache	instead	of	memcache	to	avoid	any
potential	confusion.

import

(

		"errors"

		"log"

		mgo	"gopkg.in/mgo.v2"

		bson	"gopkg.in/mgo.v2/bson"

		_	"strings"

		"sync"

		"time"

)

We’ve	supplanted	any	OS	and	disk-based	packages	with	the	MongoDB	ones.	The	BSON
package	is	also	included	as	part	of	making	specific	Find()	requests.

Tip
In	a	production	environment,	when	looking	for	a	key-value	store	or	a	memory	store	for
such	intents,	one	should	be	mindful	of	the	locking	mechanisms	of	the	solution	and	their
impact	on	your	read/write	operations.

const(

		MONGOLOC	=	"localhost"

)

var	MaxAge	int64		=	60

var	Session	mgo.Session

var	Collection	*mgo.Collection

var(

		ErrMissingFile	=	errors.New("File	Does	Not	Exist")

		ErrMissingStats	=	errors.New("Unable	To	Get	File	Stats")

		ErrCannotWrite	=	errors.New("Cannot	Write	Cache	File")

		ErrCannotRead	=	errors.New("Cannot	Read	Cache	File")

		FileLock	sync.RWMutex

)

type	CacheItem	struct	{

		Name	string

		Location	string

		Contents	string

		Age	int64

		Parameters	map[string]	string

}

It’s	worth	noting	here	that	MongoDB	has	a	time-to-live	concept	for	data	expiration.	This
might	remove	the	necessity	to	manually	expire	content	but	it	may	not	be	available	in
alternative	store	platforms.

type	CacheRecord	struct	{

		Id	bson.ObjectId	`json:"id,omitempty"	bson:"_id,omitempty"`

		Page	string

		Search	string

		Contents	string

		Modified	int64

}

Note	the	literal	identifiers	in	the	CacheRecord	struct;	these	allow	us	to	generate	MongoDB
IDs	automatically.	Without	this,	MongoDB	will	complain	about	duplicate	indices	on	_id_.
The	following	IsValid()	function	literally	returns	information	about	a	file	in	our
diskcache	package.	In	a	memorycache	version,	we	will	only	return	one	piece	of
information,	whether	or	not	a	record	exists	within	the	requested	age.

func	(ci	*CacheItem)	IsValid(fn	string)	bool	{

		now	:=	time.Now().Unix()

		old	:=	now	-	MaxAge

		var	cr	CacheRecord

		err	:=	Collection.Find(bson.M{"page":"1",	"modified":	bson.M{"$gt":old}	

}).One(&cr)

		if	err	!=	nil	{

				return	false

		}	else	{

				ci.Contents	=	cr.Contents

				return	true

		}

		return	false

}

Note	also	that	we’re	not	deleting	old	records.	This	may	be	the	logical	next	step	to	keep
cache	records	snappy.

func	(ci	*CacheItem)	SetCache()	{

		err	:=	Collection.Insert(&CacheRecord{Id:	bson.NewObjectId(),	

Page:ci.Parameters["page"],Search:ci.Parameters["search"],Contents:ci.Conte

nts,Modified:time.Now().Unix()})

		if	err	!=	nil	{

				log.Println(err.Error())

		}

}

Whether	or	not	we	find	a	record,	we	insert	a	new	one	in	the	preceding	code.	This	gives	us
the	most	recent	record	when	we	do	a	lookup	and	it	also	allows	us	to	have	some	sense	of
revision	control	in	a	way.	You	can	also	update	the	record	to	eschew	revision	control.

func	init()	{

		Session,	err	:=	mgo.Dial(MONGOLOC)

		if	err	!=	nil	{

				log.Println(err.Error())

		}

		Session.SetMode(mgo.Monotonic,	true)

		Collection	=	Session.DB("local").C("cache")

		defer	Session.Ping()

}

func	Evaluate(context	string,	value	string,	expireAge	int64,	param	

map[string]string)	(error,	CacheItem)	{

		

		MaxAge	=	expireAge

		defer	Session.Close()

		var	ci	CacheItem

		ci.Parameters	=	param

		ci.Contents	=	value

		valid	:=	ci.IsValid("bah:")

		if	!valid	{

				ci.SetCache()

		}

		var	err	error

		return	err,	ci

}

This	operates	in	much	the	same	way	as	diskcache	except	that,	instead	of	a	list	of
unstructured	parameter	names,	we	provide	key/value	pairs	in	the	param	hash	map.

So,	the	usage	changes	a	little	bit.	Here’s	an	example:

package	main

import

(

		"fmt"

		"github.com/nkozyra/api/memorycache"

)

func	main()	{

		parameters	:=	make(map[string]string)

		parameters["page"]	=	"1"

		parameters["search"]	=	"nathan"

		err,c	:=	memorycache.Evaluate("test","Here	is	a	value	that	will	only	live	

for	1	minute",60,parameters)

		fmt.Println(c)

		if	err	!=	nil	{

				fmt.Println(err)

		}

		fmt.Println("Returned	value	is",c.Age,"seconds	old")

		fmt.Println(c.Contents)

}

When	we	run	this,	we’ll	set	our	content	in	the	datastore	and	this	will	last	for	60	seconds
before	it	becomes	invalid	and	recreates	the	cache	contents	in	a	second	row.

Implementing	a	cache	as	middleware
To	place	this	cache	in	the	middleware	chain	for	all	of	our	GET	requests,	we	can	implement
the	strategy	that	we	outlined	above	and	add	a	caching	middleware	element.

Using	our	example	from	earlier,	we	can	implement	this	at	the	front	of	the	chain	using	our
middleware()	function:

		Routes.HandleFunc("/api/users",	middleware(DiskCache,	UsersRetrieve,	

DiskCacheSave)).Methods("GET")

This	allows	us	to	execute	a	DiskCache()	handler	before	the	UsersRetrieve()	function.
However,	we’ll	also	want	to	save	our	response	if	we	don’t	have	a	valid	cache,	so	we’ll
also	call	DiskCacheSave()	at	the	end.	The	DiskCache()	middleware	handler	will	block
the	chain	if	it	receives	a	valid	cache.	Here’s	how	that	works:

func	DiskCache(h	http.HandlerFunc)	http.HandlerFunc	{

		start	:=	0

		q	:=	r.URL.Query()

		if	len(r.URL.Query()["start"])	>	0	{

				start	=	r.URL.Query()["start"][0]

		}

		limit	:=	10

		if	len(r.URL.Query()["limit"])	>	0	{

				limit	=	q["limit"][0]

		}

		valid,	check	:=	diskcache.Evaluate("GetUsers",	"",	MaxAge,	start,	limit)

		fmt.Println("Cache	valid",valid)

		if	check.Cached		{

				return	func(w	http.ResponseWriter,	r	*http.Request)	{

						fmt.Fprintln(w,	check.Contents)

				}

		}	else	{

				return	func(w	http.ResponseWriter,	r	*http.Request)	{

						h.ServeHTTP(w,	r)

				}

		}

}

If	we	get	check.Cached	as	true,	we	simply	serve	the	contents.	Otherwise,	we	continue	on.

One	minor	modification	to	our	primary	function	is	necessary	to	transfer	the	contents	to	our
next	function	right	before	writing	the	function:

		r.CacheContents	=	string(output)

		fmt.Fprintln(w,	string(output))

}

And	then,	DiskCacheSave()	can	essentially	be	a	duplicate	of	DiskCache,	except	that	it
will	set	the	actual	contents	from	the	http.Request	function:

func	DiskCacheSave(h	http.HandlerFunc)	http.HandlerFunc	{

		start	:=	0

		if	len(r.URL.Query()["start"])	>	0	{

				start	=	r.URL.Query()["start"][0]

		}

		limit	:=	10

		if	len(r.URL.Query()["limit"])	>	0	{

				start	=	r.URL.Query()["limit"][0]

		}

		valid,	check	:=	diskcache.Evaluate("GetUsers",	r.CacheContents,	MaxAge,	

start,	limit)

		fmt.Println("Cache	valid",valid)

		return	func(w	http.ResponseWriter,	r	*http.Request)	{

				h.ServeHTTP(w,	r)

		}

}

Using	a	frontend	caching	proxy	in	front	of	Go
Another	tool	in	our	toolbox	is	utilizing	front-end	caching	proxies	(as	we	did	in	Chapter	7,
Working	with	Other	Web	Technologies)	as	our	request-facing	cache	layer.

In	addition	to	traditional	web	servers	such	as	Apache	and	Nginx,	we	can	also	employ
services	that	are	intended	almost	exclusively	for	caching,	either	in	place	of,	in	front	of,	or
in	parallel	with	the	said	servers.

Without	going	too	deeply	into	this	approach,	we	can	replicate	some	of	this	functionality
with	better	performance	from	outside	the	application.	We’d	be	remiss	if	we	didn’t	at	least
broach	this.	Tools	such	as	Nginx,	Varnish,	Squid,	and	Apache	have	built-in	caching	for
reverse-proxy	servers.

For	production-level	deployments,	these	tools	are	probably	more	mature	and	better	suited
for	handling	this	level	of	caching.

Tip
You	can	find	more	information	on	Nginx	and	reverse	proxy	caching	at
http://nginx.com/resources/admin-guide/caching/.

Varnish	and	Squid	are	both	built	primarily	for	caching	at	this	level	as	well.	More	detail	on
Varnish	and	Squid	can	be	found	at	https://www.varnish-cache.org/	and	http://www.squid-
cache.org/	respectively.

http://nginx.com/resources/admin-guide/caching/
https://www.varnish-cache.org/
http://www.squid-cache.org/

Rate	limiting	in	Go
Introducing	caching	to	our	API	is	probably	the	simplest	way	to	demonstrate	effective
middleware	strategy.	We’re	able	to	now	mitigate	the	risk	of	heavy	traffic	and	move	toward

One	particularly	useful	place	for	this	kind	of	middleware	functionality	in	a	web	service	is
rate	limiting.

Rate	limiting	exists	in	APIS	with	high	traffic	to	allow	consumers	to	use	the	application
without	potentially	abusing	it.	Abuse	in	this	case	can	just	mean	excessive	access	that	can
impact	performance,	or	it	can	mean	creating	a	deterrent	for	large-scale	data	acquisition.

Often,	people	will	utilize	APIs	to	create	local	indices	of	entire	data	collections,	effectively
spidering	a	site	through	an	API.	With	most	applications,	you’ll	want	to	prevent	this	kind
of	access.

In	either	case,	it	makes	sense	to	impose	some	rate	limiting	on	certain	requests	within	our
application.	And,	importantly,	we’ll	want	this	to	be	flexible	enough	so	that	we	can	do	it
with	varying	limits	depending	on	the	request	time.

We	can	do	this	using	a	number	of	factors,	but	the	two	most	common	methods	are	as
follows:

Through	the	corresponding	API	user	credentials
Through	the	IP	address	of	the	request

In	theory,	we	can	also	introduce	rate	limits	on	the	underlying	user	by	making	a	request	per
proxy.	In	a	real-world	scenario,	this	would	reduce	the	risk	of	a	third-party	application
being	penalized	for	its	user’s	usage.

The	important	factor	is	that	we	discover	rate-limit-exceeded	notations	before	delving	into
more	complex	calls,	as	we	want	to	break	the	middleware	chain	at	precisely	that	point	if	the
rate	limit	has	been	exceeded.

For	this	rate-limiting	middleware	example,	we’ll	again	use	MongoDB	as	a	request	store
and	a	limit	based	on	a	calendar	day	from	midnight	to	midnight.	In	other	words,	our	limit
per	user	resets	every	day	at	12:01	a.m.

Storing	actual	requests	is	just	one	approach.	We	can	also	read	from	web	server	logs	or
store	them	in	memory.	However,	the	most	lightweight	approach	is	keeping	them	in	a
datastore.

package	ratelimit

import

(

		"errors"

		"log"

		mgo	"gopkg.in/mgo.v2"

		bson	"gopkg.in/mgo.v2/bson"

		_	"strings"

		"time"

)

const(

		MONGOLOC	=	"localhost"

)

This	is	simply	our	MongoDB	host	or	hosts.	Here,	we	have	a	struct	with	boundaries	for	the
beginning	and	end	of	a	calendar	day:

type	Requester	struct	{

		Id	bson.ObjectId	`json:"id,omitempty"	bson:"_id,omitempty"`

		IP	string

		APIKey	string

		Requests	int

		Timestamp	int64

		Valid	bool

}

type	DateBounds	struct	{

		Start	int64

		End	int64

}

The	following	CreateDateBounds()	function	calculates	today’s	date	and	then	adds	86400
seconds	to	the	returned	Unix()	value	(effectively	1	day).

var	(

		MaxDailyRequests	=	15

		TooManyRequests	=	errors.New("You	have	exceeded	your	daily	limit	of	

requests.")

		Bounds	DateBounds

		Session	mgo.Session

		Collection	*mgo.Collection

)

func	createDateBounds()	{

		today	:=	time.Now()

		Bounds.Start	=	time.Date(today.Year(),	today.Month(),	today.Day(),	0,	0,	

0,	0,	time.UTC).Unix()

		Bounds.End	=	Bounds.Start	+	86400

}

With	the	following	RegisterRequest()	function,	we’re	simply	logging	another	request	to
the	API.	Here	again,	we’re	only	binding	the	request	to	the	IP,	adding	an	authentication
key,	user	ID,	or

func	(r	*Requester)	CheckDaily()	{

		count,	err	:=	Collection.Find(bson.M{"ip":	r.IP,	"timestamp":	

bson.M{"$gt":Bounds.Start,	"$lt":Bounds.End	}	}).Count()

		if	err	!=	nil	{

				log.Println(err.Error())

		}

		r.Valid	=	(count	<=	MaxDailyRequrests)

}

func	(r	Requester)	RegisterRequest()	{

		err	:=	Collection.Insert(&Requester{Id:	bson.NewObjectId(),	IP:	r.IP,	

Timestamp:	time.Now().Unix()})

		if	err	!=	nil	{

				log.Println(err.Error())

		}

}

The	following	code	is	a	simple,	standard	initialization	setup,	except	for	the
createDateBounds()	function,	which	simply	sets	the	start	and	end	of	our	lookup:

func	init()	{

		Session,	err	:=	mgo.Dial(MONGOLOC)

		if	err	!=	nil	{

				log.Println(err.Error())

		}

		Session.SetMode(mgo.Monotonic,	true)

		Collection	=	Session.DB("local").C("requests")

		defer	Session.Ping()

		createDateBounds()

}

The	following	CheckRequest()	function	acts	as	the	coordinating	function	for	the	entire
process;	it	determines	whether	any	given	request	exceeds	the	daily	limit	and	returns	the
Valid	status	property:

func	CheckRequest(ip	string)	(bool)	{

		req	:=	Requester{	IP:	ip	}

		req.CheckDaily()

		req.RegisterRequest()

		return	req.Valid

}

Implementing	rate	limiting	as	middleware
Unlike	the	cache	system,	turning	the	rate	limiter	into	middleware	is	much	easier.	Either
the	IP	address	is	rate-limited,	or	it’s	not	and	we	move	on.

Here’s	an	example	for	updating	users:

		Routes.HandleFunc("/api/users/{id:[0-9]+}",	

middleware(RateLimit,UsersUpdate)).Methods("PUT")

And	then,	we	can	introduce	a	RateLimit()	middleware	call:

func	RateLimit(h	http.HandlerFunc)	http.HandlerFunc	{

		return	func(w	http.ResponseWriter,	r	*http.Request)	{

				if	(ratelimit.CheckRequest(r.RemoteAddr)	==	false	{

						fmt.Fprintln(w,"Rate	limit	exceeded")

				}	else	{

						h.ServeHTTP(w,r)

				}

		}

}

This	allows	us	to	block	the	middleware	chain	if	our	ratelimit.CheckRequest()	call	fails
and	prevents	any	more	processing-intensive	parts	of	our	API	from	being	called.

Implementing	SPDY
If	there’s	one	thing	you	can	say	about	Google’s	vast	ecosystem	of	products,	platforms,	and
languages,	it’s	that	there’s	a	perpetual,	consistent	focus	on	one	thing	that	spans	all	of	them
—a	need	for	speed.

Note
We	briefly	mentioned	the	SPDY	pseudo-protocol	in	Chapter	7,	Working	with	Other	Web
Technologies.	You	can	read	more	about	SPDY	from	its	whitepaper	at
http://www.chromium.org/spdy/spdy-whitepaper.

As	Google	(the	search	engine)	quickly	scaled	from	being	a	student	project	to	the	most
popular	site	on	Earth	to	the	de	facto	way	people	find	anything	anywhere,	scaling	the
product	and	its	underlying	infrastructure	became	key.

And,	if	you	think	about	it,	this	search	engine	is	heavily	dependent	on	sites	being	available;
if	the	sites	are	fast,	Google’s	spiders	and	indexers	will	be	faster	and	the	results	will	be
more	current.

Much	of	this	is	behind	Google’s	Let’s	Make	the	Web	Faster	campaign,	which	aims	to	help
developers	on	both	the	backend	and	frontend	by	being	cognizant	of	and	pushing	toward
speed	as	the	primary	consideration.

Google	is	also	behind	the	SPDY	pseudo-protocol	that	augments	HTTP	and	operates	as	a
stopgap	set	of	improvements,	many	of	which	are	finding	their	way	into	the	standardization
of	HTTP/2.

There	are	a	lot	of	SPDY	implementations	that	are	written	for	Go,	and	SPDY	seems	to	be	a
particularly	popular	project	to	embrace	as	it’s	not	yet	supported	directly	in	Go.	Most
implementations	are	interchangeable	drop-in	replacements	for	http	in	net/http.	In	most
practical	cases,	you	can	get	these	benefits	by	simply	leaving	SPDY	to	a	reverse	proxy	such
as	HAProxy	or	Nginx.

Note
Here	are	a	few	SPDY	implementations	that	implement	both	secure	and	nonsecure
connections	and	that	are	worth	checking	out	and	comparing:

The	spdy.go	file	from	Solomon	Hykes:	https://github.com/shykes/spdy-go

The	spdy	file	from	Jamie	Hall:	https://github.com/SlyMarbo

We’ll	first	look	at	spdy.go	from	the	preceding	list.	Switching	our	ListenAndServe
function	is	the	easiest	first	step,	and	this	approach	to	implement	SPDY	is	fairly	common.

Here’s	how	to	use	spdy.go	as	a	drop-in	replacement	in	our	api.go	file:

		wg.Add(1)

		go	func()	{

				//http.ListenAndServeTLS(SSLport,	"cert.pem",	"key.pem",	Routes)

				spdy.ListenAndServeTLS(SSLport,	"cert.pem",	"key.pem",	Routes)

http://www.chromium.org/spdy/spdy-whitepaper
https://github.com/shykes/spdy-go
https://github.com/SlyMarbo

				wg.Done()

		}()

Pretty	simple,	huh?	Some	SPDY	implementations	make	serving	pages	through	the	SPDY
protocol	in	lieu	of	HTTP/HTTP	semantically	indistinguishable.

For	some	Go	developers,	this	counts	as	an	idiomatic	approach.	For	others,	the	protocols
are	different	enough	that	having	separate	semantics	is	logical.	The	choice	here	depends	on
your	preference.

However,	there	are	a	few	other	considerations	to	take	into	account.	First,	SPDY	introduces
some	additional	features	that	we	can	utilize.	Some	of	these	are	baked-in	like	header
compression.

Detecting	SPDY	support
For	most	clients,	detecting	SPDY	is	not	something	that	you	need	to	worry	about	too	much,
as	SPDY	support	relies	on	TLS/SSL	support.

Summary
In	this	chapter,	we	worked	at	a	few	concepts	that	are	important	to	highly-performant	APIs.
These	primarily	included	rate	limiting	and	disk	and	memory	caching	that	were	executed
through	the	use	of	custom-written	middleware.

Utilizing	the	examples	within	this	chapter,	you	can	implement	any	number	of	middleware-
reliant	services	to	keep	your	code	clean	and	introduce	better	security,	faster	response
times,	and	more	features.

In	the	next	and	final	chapter,	we’ll	focus	on	security-specific	concepts	that	should	lock	in
additional	concerns	with	rate	limits,	denial-of-service	detection,	and	mitigating	and
preventing	attempts	at	code	and	SQL	injections.

Chapter	11.	Security
Before	we	begin	this	chapter,	it’s	absolutely	essential	to	point	out	one	thing—though
security	is	the	topic	of	the	last	chapter	of	this	book,	it	should	never	be	the	final	step	in
application	development.	As	you	develop	any	web	service,	security	should	be	considered
prominently	at	every	step.	By	considering	security	as	you	design,	you	limit	the	impact	of
top-to-bottom	security	audits	after	an	application’s	launch.

With	that	being	said,	the	intent	here	is	to	point	out	some	of	the	larger	and	more	rampant
security	flaws	and	look	at	ways	in	which	we	can	allay	their	impact	on	our	web	service
using	standard	Go	and	general	security	practices.

Of	course,	out	of	the	box,	Go	provides	some	wonderful	security	features	that	are	disguised
as	solely	good	programming	practices.	Using	all	the	included	packages	and	handling	all
the	errors	are	not	only	useful	for	developing	good	habits,	but	they	also	help	you	to	secure
your	application.

However,	no	language	can	offer	perfect	security	nor	can	it	stop	you	from	shooting	yourself
in	the	foot.	In	fact,	the	most	expressive	and	utilitarian	languages	often	make	that	as	easy	as
possible.

There’s	also	a	large	trade-off	when	it	comes	to	developing	your	own	design	as	opposed	to
using	an	existing	package	(as	we’ve	done	throughout	this	book),	be	it	for	authentication,
database	interfaces,	or	HTTP	routing	or	middleware.	The	former	can	provide	quick
resolution	and	less	exposure	of	errors	and	security	flaws.

There	is	also	some	security	through	obscurity	that	is	offered	by	building	your	own
application,	but	swift	responses	to	security	updates	and	a	whole	community	whose	eyes
are	on	your	code	beats	a	smaller,	closed-source	project.

In	this	chapter,	we’ll	look	at:

Handling	error	logging	for	security	purposes
Preventing	brute-force	attempts
Logging	authentication	attempts
Input	validation	and	injection	mitigation
Output	validation

Lastly,	we’ll	look	at	a	few	production-ready	frameworks	to	look	at	the	way	they	handle
API	and	web	service	integrations	and	associated	security.

Handling	error	logging	for	security
A	critical	step	on	the	path	to	a	secure	application	involves	the	use	of	comprehensive
logging.	The	more	data	you	have,	the	better	you	can	analyze	potential	security	flaws	and
look	at	the	way	your	application	is	used.

Even	so,	the	“log	it	all”	approach	can	be	somewhat	difficult	to	utilize.	After	all,	finding
the	needles	in	the	haystack	can	be	particularly	difficult	if	you	have	all	the	hay.

Ideally,	we’d	want	to	log	all	errors	to	file	and	have	the	ability	to	segregate	other	types	of
general	information	such	as	SQL	queries	that	are	tied	to	users	and/or	IP	addresses.

In	the	next	section,	we’ll	look	at	logging	authentication	attempts	but	only	in	memory/an
application’s	lifetime	to	detect	brute-force	attempts.	Using	the	log	package	more
extensively	allows	us	to	maintain	a	more	persistent	record	of	such	attempts.

The	standard	way	to	create	log	output	is	to	simply	set	the	output	of	the	general	log,
Logger,	like	this:

dbl,	err	:=	os.OpenFile("errors.log",	os.O_CREATE	|	os.RDWR	|	os.O_APPEND,	

0666)

		if	err	!=	nil	{

				log.Println("Error	opening/creating	database	log	file")

		}

defer	dbl.Close()

log.SetOutput(dbl)

This	allows	us	to	specify	a	new	file	instead	of	our	default	stdout	class	for	logging	our
database	errors	for	analyzing	later.

However,	if	we	want	multiple	log	files	for	different	errors	(for	example,	database	errors
and	authentication	errors),	we	can	break	these	into	separate	loggers:

package	main

import	(

		"log"

		"os"

)

var	(

		Database							*log.Logger

		Authentication	*log.Logger

		Errors									*log.Logger

)

func	LogPrepare()	{

		dblog,	err	:=	os.OpenFile("database.log",	

os.O_CREATE|os.O_APPEND|os.O_WRONLY,	0666)

		if	err	!=	nil	{

				log.Println(err)

		}

		authlog,	err	:=	os.OpenFile("auth.log",	

os.O_CREATE|os.O_APPEND|os.O_WRONLY,	0666)

		if	err	!=	nil	{

				log.Println(err)

		}

		errlog,	err	:=	os.OpenFile("errors.log",	

os.O_CREATE|os.O_APPEND|os.O_WRONLY,	0666)

		if	err	!=	nil	{

				log.Println(err)

		}

		Database	=	log.New(dblog,	"DB:",	log.Ldate|log.Ltime)

		Authentication	=	log.New(authlog,	"AUTH:",	log.Ldate|log.Ltime)

		Errors	=	log.New(errlog,	"ERROR:",	log.Ldate|log.Ltime|log.Lshortfile)

}

Here,	we	instantiate	separate	loggers	with	specific	formats	for	our	log	files:

func	main()	{

		LogPrepare()

		Database.Println("Logging	a	database	item")

		Authentication.Println("Logging	an	auth	attempt	item")

		Errors.Println("Logging	an	error")

}

By	building	separate	logs	for	elements	of	an	application	in	this	manner,	we	can	divide	and
conquer	the	debugging	process.

As	for	logging	SQL,	we	can	make	use	of	the	sql.Prepare()	function	instead	of	using
sql.Exec()	or	sql.Query()	to	keep	a	reference	to	the	query	before	executing	it.

The	sql.Prepare()	function	returns	a	sql.Stmt	struct,	and	the	query	itself,	which	is
represented	by	the	variable	query,	is	not	exported.	You	can,	however,	use	the	struct’s	value
itself	in	your	log	file:

		d,	_	:=	db.Prepare("SELECT	fields	FROM	table	where	column=?")

		Database.Println(d)

This	will	leave	a	detailed	account	of	the	query	in	the	log	file.	For	more	detail,	IP	addresses
can	be	appended	to	the	Stmt	class	for	more	information.

Storing	every	transactional	query	to	a	file	may,	however,	end	up	becoming	a	drag	on
performance.	Limiting	this	to	data-modifying	queries	and/or	for	a	short	period	of	time	will
allow	you	to	identify	potential	issues	with	security.

Note
There	are	some	third-party	libraries	for	more	robust	and/or	prettier	logging.	Our	favorite	is
go-logging,	which	implements	multiple	output	formats,	partitioned	debugging	buckets,
and	expandable	errors	with	attractive	formatting.	You	can	read	more	about	these	at
https://github.com/op/go-logging	or	download	the	documentation	via	the	go	get
github.com/op/go-logging	command.

https://github.com/op/go-logging

Preventing	brute-force	attempts
Perhaps	the	most	common,	lowest-level	attempt	at	circumventing	the	security	of	any	given
system	is	the	brute-force	approach.

From	the	point	of	view	of	an	attacker,	this	makes	some	sense.	If	an	application	designer
allows	an	infinite	amount	of	login	attempts	without	penalty,	then	the	odds	of	this
application	enforcing	a	good	password-creation	policy	are	low.

This	makes	it	a	particularly	vulnerable	application.	And,	even	if	the	password	rules	are	in
place,	there	is	still	a	likelihood	to	use	dictionary	attacks	to	get	in.

Some	attackers	will	look	at	rainbow	tables	in	order	to	determine	a	hashing	strategy,	but
this	is	at	least	in	some	way	mitigated	by	the	use	of	unique	salts	per	account.

Brute-force	login	attacks	were	actually	often	easier	in	the	offline	days	because	most
applications	did	not	have	a	process	in	place	to	automatically	detect	and	lock	account
access	attempts	with	invalid	credentials.	They	could	have,	but	then	there	would	also	need
to	be	a	retrieval	authority	process—something	like	“e-mail	me	my	password”.

With	services	such	as	our	social	network,	it	makes	a	great	deal	of	sense	to	either	lock
accounts	or	temporarily	disable	logins	after	a	certain	point.

The	first	is	a	more	dramatic	approach,	requiring	direct	user	action	to	restore	an	account;
often,	this	also	entails	greater	support	systems.

The	latter	is	beneficial	because	it	thwarts	brute-force	attempts	by	greatly	slowing	the	rate
of	attempts,	and	rendering	most	attacks	useless	for	all	practical	purposes	without
necessarily	requiring	user	action	or	support	to	restore	access.

Knowing	what	to	log
One	of	the	hardest	things	to	do	when	it	comes	to	logging	is	deciding	what	it	is	that	you
need	to	know.	There	are	several	approaches	to	this,	ranging	from	logging	everything	to
logging	only	fatal	errors.	All	the	approaches	come	with	their	own	potential	issues,	which
are	largely	dependent	on	a	trade-off	between	missing	some	data	and	wading	through	an
impossible	amount	of	data.

The	first	consideration	that	we’ll	need	to	make	is	what	we	should	log	in	memory—only
failed	authentications	or	attempts	against	API	keys	and	other	credentials.

It	may	also	be	prudent	to	note	login	attempts	against	nonexistent	users.	This	will	tell	us
that	someone	is	likely	doing	something	nefarious	with	our	web	service.

Next,	we’ll	want	to	set	a	lower	threshold	or	the	maximum	amount	of	login	attempts	before
we	act.

Let’s	start	by	introducing	a	bruteforcedetect	package:

package	bruteforcedetect

import

(

)

var	MaxAttempts	=	3

We	can	set	this	directly	as	a	package	variable	and	modify	it	from	the	calling	application,	if
necessary.	Three	attempts	are	likely	lower	than	what	we’d	like	for	a	general	invalid	login
threshold,	particularly	one	that	automatically	bans	the	IP:

type	Requester	struct	{

		IP	string

		LoginAttempts	int

		FailedAttempts	int

		FailedInvalidUserAttempts	int

}

Our	Requester	struct	will	maintain	all	incremental	values	associated	with	any	given	IP	or
hostname,	including	general	attempts	at	a	login,	failed	attempts,	and	failed	attempts
wherein	the	requested	user	does	not	actually	exist	in	our	database:

func	Init()	{

		

}

func	(r	Requester)	Check()	{

		

}

We	don’t	need	this	as	middleware	as	it	needs	to	react	to	just	one	thing—authentication
attempts.	As	such,	we	have	a	choice	as	it	relates	to	storage	of	authentication	attempts.	In	a
real-world	environment,	we	may	wish	to	grant	this	process	more	longevity	than	we	will

here.	We	could	store	these	attempts	directly	into	memory,	a	datastore,	or	even	to	disk.

However,	in	this	case,	we’ll	just	let	this	data	live	in	the	memory	space	of	this	application
by	creating	a	map	of	the	bruteforce.Requester	struct.	This	means	that	if	our	server
reboots,	we	lose	these	attempts.	Similarly,	it	means	that	multiple	server	setups	won’t
necessarily	know	about	attempts	on	other	servers.

Both	these	problems	can	be	easily	solved	by	putting	less	ephemeral	storage	behind	the
logging	of	bad	attempts,	but	we’ll	keep	it	simple	for	this	demonstration.

In	our	api.go	file,	we’ll	bring	in	bruteforce	and	create	our	map	of	Requesters	when	we
start	the	application:

package	main

import	(

…

				"github.com/nkozyra/api/bruteforce"

)

var	Database	*sql.DB

var	Routes	*mux.Router

var	Format	string

var	Logins	map[string]	bruteforce.Requester

And	then,	of	course,	to	take	this	from	being	a	nil	map,	we’ll	initialize	it	when	our	server
starts:

func	StartServer()	{

		LoginAttempts	=	make(map[string]	bruteforce.Requester)

		OauthServices.InitServices()

We’re	now	ready	to	start	logging	our	attempts.

If	you’ve	decided	to	implement	middleware	for	login	attempts,	make	the	adjustment	here
by	simply	putting	these	changes	into	the	middleware	handler	instead	of	the	separate
function	named	CheckLogin()	that	we	originally	called.

No	matter	what	happens	with	our	authentication—be	it	a	valid	user,	valid	authentication;	a
valid	user,	invalid	authentication;	or	an	invalid	user—we	want	to	add	this	to	our
LoginAttempts	function	of	the	respective	Requester	struct.

We’ll	bind	each	Requester	map	to	either	our	IP	or	hostname.	In	this	case,	we	will	use	the
IP	address.

Note
The	net	package	has	a	function	called	SplitHostPort	that	properly	explodes	our
RemoteAddr	value	from	the	http.Request	handler,	as	follows:

ip,_,_	:=	net.SplitHostPort(r.RemoteAddr)

You	can	also	just	use	the	entire	r.RemoteAddr	value,	which	may	be	more	comprehensive:

func	CheckLogin(w	http.ResponseWriter,	r	*http.Request)	bool	{

		if	val,	ok	:=	Logins[r.RemoteAddr];	ok	{

				fmt.Println("Previous	login	exists",val)

		}	else	{

				Logins[r.RemoteAddr]	=	bruteforce.Requester{IP:	r.RemoteAddr,	

LoginAttempts:0,	FailedAttempts:	0,	FailedValidUserAttempts:	0,	}

		}

		Logins[r.RemoteAddr].LoginAttempts	+=	1

This	means	that	no	matter	what,	we	invoke	another	attempt	to	the	tally.

Since	CheckLogin()	will	always	create	the	map’s	key	if	it	doesn’t	exist,	we’re	free	to
safely	evaluate	on	this	key	further	down	the	authentication	pipeline.	For	example,	in	our
UserLogin()	handler,	which	processes	an	e-mail	address	and	a	password	from	a	form	and
checks	against	our	database,	we	first	call	UserLogin()	before	checking	the	submitted
values:

func	UserLogin(w	http.ResponseWriter,	r	*http.Request)	{

		w.Header().Set("Access-Control-Allow-Origin",	"*")

		fmt.Println("Attempting	User	Login")

		Response	:=	UpdateResponse{}

	CheckLogin(w,r)

If	we	check	against	our	maximum	login	attempts	following	the	CheckLogin()	call,	we’ll
never	allow	database	lookups	after	a	certain	point.

In	the	following	code	of	the	UserLogin()	function,	we	compare	the	hash	from	the
submitted	password	to	the	one	stored	in	the	database	and	return	an	error	on	an
unsuccessful	match.	Let’s	use	that	to	increment	the	FailedAttempts	value:

		if	(dbPassword	==	expectedPassword)	{

				//	...

		}	else	{

				fmt.Println("Incorrect	password!")

				_,	httpCode,	msg	:=	ErrorMessages(401)

				Response.Error	=	msg

				Response.ErrorCode	=	httpCode

				Logins[r.RemoteAddr].FailedAttempts	=	

Logins[r.RemoteAddr].FailedAttempts	+	1

				http.Error(w,	msg,	httpCode)

		}

This	simply	increases	our	general	FailedAttempts	integer	value	with	each	invalid	login
per	IP.

However,	we’re	not	yet	doing	anything	with	this.	To	inject	it	as	a	blocking	element,	we’ll
need	to	evaluate	it	after	the	CheckLogin()	call	to	initialize	the	map’s	hash	if	it	does	not
exist	yet:

Tip
In	the	preceding	code,	you	may	notice	that	the	mutable	FailedAttempts	value	that	is

bound	by	RemoteAddr	could	theoretically	be	susceptible	to	a	race	condition,	causing
unnatural	increments	and	premature	blocking.	A	mutex	or	similar	locking	mechanism	may
be	used	to	prevent	this	behavior.

func	UserLogin(w	http.ResponseWriter,	r	*http.Request)	{

		w.Header().Set("Access-Control-Allow-Origin",	"*")

		fmt.Println("Attempting	User	Login")

if	Logins[r.RemoteAddr].Check()	==	false	{

		return

}

This	call	to	Check()	prevents	banned	IPs	from	even	accessing	our	database	at	the	login
endpoint,	which	can	still	cause	additional	strain,	bottlenecks,	and	potential	service
disruptions:

		Response	:=	UpdateResponse{}

		CheckLogin(w,r)

		if	Logins[r.RemoteAddr].Check()	==	false	{

				_,	httpCode,	msg	:=	ErrorMessages(403)

				Response.Error	=	msg

				Response.ErrorCode	=	httpCode

				http.Error(w,	msg,	httpCode)

				return

		}

And,	to	update	our	Check()	method	from	a	brute-force	attack,	we	will	use	the	following
code:

func	(r	Requester)	Check()	bool	{

		return	r.FailedAttempts	<=	MaxAttempts

}

This	supplies	us	with	an	ephemeral	way	to	store	information	about	login	attempts,	but
what	if	we	want	to	find	out	whether	someone	is	simply	testing	account	names	along	with
passwords,	ala	“guest”	or	“admin?”

To	do	this,	we’ll	just	add	an	additional	check	to	UserLogin()	to	see	whether	the	requested
e-mail	account	exists.	If	it	does,	we’ll	just	continue.	If	it	does	not	exist,	we’ll	increment
FailedInvalidUserAttempts.	We	can	then	make	a	decision	about	whether	we	should
block	access	to	the	login	portion	of	UserLogin()	at	a	lower	threshold:

		var	dbPassword	string

		var	dbSalt	string

		var	dbUID	int

		var	dbUserCount	int

		uexerr	:=	Database.QueryRow("SELECT	count(*)	from	users	where	

user_email=?",email).Scan(&dbUserCount)

		if	uexerr	!=	nil	{

		}

		if	dbUserCount	>	0	{

				Logins[r.RemoteAddr].FailedInvalidUserAttempts	=	

Logins[r.RemoteAddr].FailedInvalidUserAttempts	+	1

		}

If	we	decide	that	the	traffic	is	represented	by	fully	failed	authenticated	attempts	(for
example,	invalid	users),	we	can	also	pass	that	information	to	IP	tables	or	our	front-end
proxy	to	block	the	traffic	from	even	getting	to	our	application.

Handling	basic	authentication	in	Go
One	area	at	which	we	didn’t	look	too	deeply	in	the	authentication	section	of	Chapter	7,
Working	with	Other	Web	Technologies,	was	basic	authentication.	It’s	worth	talking	about
as	a	matter	of	security,	particularly	as	it	can	be	a	very	simple	way	to	allow	authentication
in	lieu	of	OAuth,	direct	login	(with	sessions),	or	keys.	Even	in	the	latter,	it’s	entirely
possible	to	utilize	API	keys	as	part	of	basic	authentication.

The	most	critical	aspect	of	basic	authentication	is	an	obvious	one—TLS.	Unlike	methods
that	involve	passing	keys,	there’s	very	little	obfuscation	involved	in	the	basic
authentication	header	method,	as	beyond	Base64	encoding,	everything	is	essentially
cleartext.

This	of	course	enables	some	very	simple	man-in-the-middle	opportunities	for	nefarious
parties.

In	Chapter	7,	Working	with	Other	Web	Technologies,	we	explored	the	concept	of	creating
transaction	keys	with	shared	secrets	(similar	to	OAuth)	and	storing	valid	authentication
via	sessions.

We	can	grab	usernames	and	passwords	or	API	keys	directly	from	the	Authorization
header	and	measure	attempts	on	the	API	by	including	a	check	for	this	header	at	the	top	of
our	CheckLogin()	call:

func	CheckLogin(w	http.ResponseWriter,	r	*http.Request)	{

		bauth	:=	strings.SplitN(r.Header["Authorization"][0],	"	",	2)

		if	bauth[0]	==	"Basic"	{

				authdata,	err	:=	base64.StdEncoding.DecodeString(bauth[1])

				if	err	!=	nil	{

						http.Error(w,	"Could	not	parse	basic	auth",	http.StatusUnauthorized)

						return

				}

						authparts	:=	strings.SplitN(string(authdata),":",2)

						username	:=	authparts[0]

						password	:=	authparts[1]

				}else	{

						//	No	basic	auth	header

				}

In	this	example,	we	can	allow	our	CheckLogin()	function	to	utilize	either	the	data	posted
to	our	API	to	obtain	username	and	password	combinations,	API	keys,	or	authentication
tokens,	or	we	can	also	ingest	that	data	directly	from	the	header.

Handling	input	validation	and	injection
mitigation
If	a	brute-force	attack	is	a	rather	inelegant	exercise	in	persistence,	one	in	which	the
attacker	has	no	access,	input	or	injection	attacks	are	the	opposite.	At	this	point,	the
attacker	has	some	level	of	trust	from	the	application,	even	if	it	is	minimal.

SQL	injection	attacks	can	happen	at	any	level	in	the	application	pipeline,	but	cross-site
scripting	and	cross-site	request	forgeries	are	aimed	less	at	the	application	and	more	at
other	users,	targeting	vulnerabilities	to	expose	their	data	or	bring	other	security	threats
directly	to	the	application	or	browser.

In	this	next	section,	we’ll	examine	how	to	keep	our	SQL	queries	safe	through	input
validation,	and	then	move	onto	other	forms	of	input	validation	as	well	as	output	validation
and	sanitization.

Using	best	practices	for	SQL
There	are	a	few	very	big	security	loopholes	when	it	comes	to	using	a	relational	database,
and	most	of	them	apply	to	other	methods	of	data	storage.	We’ve	looked	at	a	few	of	these
loopholes	such	as	properly	and	uniquely	salting	passwords	and	using	secure	sessions.
Even	in	the	latter,	there	is	always	some	risk	of	session	fixation	attacks,	which	allow	shared
or	persistent	shared	sessions	to	be	hijacked.

One	of	the	more	pervasive	attack	vectors,	which	modern	database	adapters	tend	to
eliminate,	are	injection	attacks.

Injection	attacks,	particularly	SQL	injections,	are	among	the	most	prevalent	and	yet	most
avoidable	loopholes	that	can	expose	sensitive	data,	compromise	accountability,	and	even
make	you	lose	control	of	entire	servers.

A	keen	eye	may	have	caught	it,	but	earlier	in	this	book,	we	deliberately	built	an	unsafe
query	into	our	api.go	file	that	can	allow	SQL	injection.

Here	is	the	line	in	our	original	CreateUser()	handler:

		sql	:=	"INSERT	INTO	users	set	user_nickname='"	+	NewUser.Name	+	"',	

user_first='"	+	NewUser.First	+	"',	user_last='"	+	NewUser.Last	+	"',	

user_email='"	+	NewUser.Email	+	"'"

		q,	err	:=	database.Exec(sql)

It	goes	without	saying,	but	constructing	queries	as	a	straight,	direct	SQL	command	is
frowned	upon	in	almost	all	languages.

A	good	general	rule	of	thumb	is	to	treat	all	externally	produced	data,	including	user	input,
internal	or	administrator	user	input,	and	external	APIs	as	malicious.	By	being	as
suspicious	as	possible	of	user-supplied	data,	we	improve	the	odds	of	catching	potentially
harmful	injections.

Most	of	our	other	queries	utilized	the	parameterized	Query()	function	that	allows	you	to
add	variadic	parameters	that	correspond	to	the	?	tokens.

Remember	that	since	we	store	the	user’s	unique	salt	in	the	database	(at	least	in	our
example),	losing	access	to	the	MySQL	database	means	that	we	also	lose	the	security
benefits	of	having	a	password	salt	in	the	first	place.

This	doesn’t	mean	that	all	accounts’	passwords	are	exposed	in	this	scenario,	but	at	this
point,	having	direct	login	credentials	for	users	would	only	be	useful	for	exploiting	other
services	if	the	users	maintain	poor	personal	password	standards,	that	is,	sharing	passwords
across	services.

Validating	output
Normally,	the	idea	of	output	validation	seems	foreign,	particularly	when	the	data	is
sanitized	on	the	input	side.

Preserving	the	values	as	they	were	sent	and	only	sanitizing	them	when	they	are	output
may	make	some	sense,	but	it	increases	the	odds	that	said	values	might	not	be	sanitized	on
the	way	out	to	the	API	consumer.

There	are	two	main	ways	in	which	a	payload	can	be	delivered	to	the	end	user,	either	in	a
stored	attack	where	we,	as	the	application,	keep	the	vector	verbatim	on	our	server,	or	in	a
reflected	attack	wherein	some	code	is	appended	via	another	method	such	as	an	e-mail
message	that	includes	the	payload.

APIs	and	web	services	can	sometimes	be	especially	susceptible	to	not	only	XSS	(short
form	for	Cross-Site	Scripting)	but	also	CSRF	(short	form	for	Cross-Site	Request
Forgery).

We’ll	briefly	look	at	both	of	these	and	the	ways	in	which	we	can	limit	their	efficacy	within
our	web	service.

Protection	against	XSS
Anytime	we’re	dealing	with	user	input	that	will	later	be	translated	into	output	for	the
consumption	of	other	users,	we	need	to	be	wary	of	Cross-Site	Scripting	or	Cross-Site
Request	Forgery	in	the	resulting	data	payload.

This	isn’t	necessarily	a	matter	solely	for	output	validation.	It	can	and	should	be	addressed
at	the	input	stage	as	well.	However,	our	output	is	our	last	line	of	defense	between	one
user’s	arbitrary	text	and	another	user’s	consumption	of	that	text.

Traditionally,	this	is	best	illustrated	through	something	like	the	following	nefarious	piece
of	hypothetical	code.	A	user	hits	our	/api/statuses	endpoint	with	a	POST	request,	after
authenticating	it	via	whatever	method	is	selected,	and	posts	the	following	status:

url	-X	POST	-H	"Authorization:	Basic	dGVzdDp0ZXN0"	-H	"Cache-Control:	no-

cache"	-H	"Postman-Token:	c2b24964-c12d-c183-dd7f-5c1365f5ae81"	-H	

"Content-Type:	multipart/form-data;	boundary=----

WebKitFormBoundary7MA4YWxkTrZu0gW"	-F	"status=Having	a	great	day!	<iframe	

src='somebadsite/somebadscript'></iframe>"	https://localhost/api/statuses

If	presented	in	a	template,	as	in	our	interface	example,	then	this	is	a	problem	that	will	be
mitigated	automatically	by	using	Go’s	template	engine.

Let’s	take	the	preceding	example	data	and	see	what	it	looks	like	on	our	interface’s	user
profile	page:

The	html/template	package	automatically	escapes	the	HTML	output	to	prevent	code

injection,	and	it	requires	an	override	to	allow	any	HTML	tags	to	come	through	as
originally	entered.

However,	as	an	API	provider,	we	are	agnostic	towards	the	type	of	consuming	application
language	and	support	or	care	given	to	sanitation	of	input.

The	onus	on	escaping	data	is	a	matter	that	needs	some	consideration,	that	is,	should	the
data	that	your	application	provides	to	clients	come	pre-sanitized	or	should	it	come	with	a
usage	note	about	sanitizing	data?	The	answer	in	almost	all	cases	is	the	first	option,	but
depending	on	your	role	and	the	type	of	data,	it	could	go	either	way.	On	the	other	hand,
unsanitizing	the	data	in	certain	situations	(for	example,	APIs)	on	the	frontend	means
potentially	having	to	reformat	data	in	many	different	ways.

Earlier	in	this	chapter,	we	showed	you	some	input	validation	techniques	for	allowing	or
disallowing	certain	types	of	data	(such	as	characters,	tags,	and	so	on),	and	you	can	apply
some	of	these	techniques	to	an	endpoint	such	as	/statuses.

It	makes	more	sense,	however,	to	allow	this	data;	but,	sanitize	it	either	before	saving	it	to	a
database/datastore	or	returning	it	via	an	API	endpoint.	Here	are	two	ways	in	which	we	can
use	the	http/template	package	to	do	either.

First,	when	we	accept	data	via	the	/api/statuses	endpoint,	we	can	utilize	one	or	more	of
the	functions	in	html/template	to	prevent	certain	types	of	data	from	being	stored.	The
functions	are	as	follows:

template.HTMLEscapeString:	This	encodes	HTML	tags	and	renders	the	resulting
string	as	non-HTML	content
template.JSEscapeString():	This	encodes	JavaScript-specific	pieces	of	a	string	to
prevent	proper	rendering

For	the	purpose	of	keeping	this	simple	for	potential	output	through	HTML,	we	can	just
apply	HTMLEscapeString()	to	our	data,	which	will	disable	any	JavaScript	calls	from
executing:

func	StatusCreate(w	http.ResponseWriter,	r	*http.Request)	{

		Response	:=	CreateResponse{}

		UserID	:=	r.FormValue("user")

		Status	:=	r.FormValue("status")

		Token	:=	r.FormValue("token")

		ConsumerKey	:=	r.FormValue("consumer_key")

		Status	=	template.HTMLEscapeString(Status)

This	makes	the	data	escape	on	the	input	(StatusCreate)	side.	If	we	want	to	add	JavaScript
escaping	(which,	as	noted	earlier,	may	not	be	necessary),	it	should	come	before	the	HTML
escaping,	as	noted	here:

		Status	=	template.JSEscapeString(Status)

		Status	=	template.HTMLEscapeString(Status)

If	in	lieu	of	escaping	on	the	input	side,	we	wish	to	do	it	on	the	output	side,	the	same

template	escape	calls	can	be	made	as	part	of	the	respective	status	request	API	calls,	like
/api/statuses:

func	StatusRetrieve(w	http.ResponseWriter,	r	*http.Request)	{

		var	Response	StatusResponse

		w.Header().Set("Access-Control-Allow-Origin",	"*")

		loggedIn	:=	CheckLogin(w,	r)

		if	loggedIn	{

		}	else	{

				statuses,_	:=	Database.Query("select	*	from	user_status	where	user_id=?	

order	by	user_status_timestamp	desc",Session.UID)

				for	statuses.Next()	{

						status	:=	Status{}

						statuses.Scan(&status.ID,	&status.UID,	&status.Time,	&status.Text)

						status.Text	=	template.JSEscapeString(status.Text)

						status.Text	=	template.HTMLEscapeString(status.Text)

						Response.Statuses	=	append(Response.Statuses,	status)

		}

If	we	want	to	attempt	to	detect	and	log	attempts	to	pass	specific	HTML	elements	into
input	elements,	we	can	create	a	new	logger	for	XSS	attempts	and	capture	any	text	that
matches	a	<script>	element,	a	<iframe>	element,	or	any	other	element.

Doing	this	can	be	as	complex	as	a	tokenizer	or	a	more	advanced	security	package	or	as
simple	as	a	regular	expression	match,	as	we	will	see	in	the	following	examples.	First,	we
will	look	at	the	code	in	our	logging	setup:

var	(

		Database							*log.Logger

		Authentication	*log.Logger

		Errors									*log.Logger

		Questionable	*log.Logger

)

And	the	changes	in	our	initialization	code	are	as	follows:

		questlog,	err	:=	os.OpenFile("injections.log",	

os.O_CREATE|os.O_APPEND|os.O_WRONLY,	0666)

		if	err	!=	nil	{

				log.Println(err)

		}

		Questionable	=	log.New(questlog,	"XSS:",	log.Ldate|log.Ltime)

And	then,	make	the	following	changes	back	in	our	application’s	StatusCreate	handler:

		isinject,	_	:=	regexp.MatchString("<(script|iframe).*",Status)

		if	isinject		{

		

		}

Detecting	tags	this	way,	through	regular	expressions,	is	not	airtight	nor	is	it	intended	to	be.
Remember	that	we’ll	be	sanitizing	the	data	either	on	the	input	side	or	the	output	side,	so	if
we	can	catch	attempts	through	this	method,	it	will	give	us	some	insight	into	potentially

malicious	attempts	against	our	application.

If	we	want	to	be	more	idiomatic	and	comprehensive,	we	can	simply	sanitize	the	text	and
compare	it	with	the	original.	If	the	two	values	do	not	match,	we	can	surmise	that	HTML
was	included.

This	does	mean	that	we’ll	get	a	positive	for	innocuous	HTML	tags	such	as	bold	tags	or
table	tags.

Using	server-side	frameworks	in	Go
We	would	be	remiss	if,	while	detailing	how	to	build	a	web	service	from	scratch,	we	didn’t
at	least	touch	upon	integrating	or	exclusively	using	some	existing	frameworks.

Although	you’ll	never	get	the	same	experience	by	plugging	in	such	a	framework	as	you
would	by	designing	one	from	scratch,	for	practical	purposes,	there’s	often	no	reason	to
reinvent	the	wheel	when	you	want	to	start	a	project.

Go	has	quite	a	few	readily	available	and	mature	web/HTML	frameworks,	but	it	also	has	a
handful	of	noteworthy	frameworks	that	are	specifically	designed	for	web	services	with
some	of	the	delivery	methods	and	additional	hooks	that	you	might	expect	to	see.

By	some	measurements,	it’s	fair	to	describe	Gorilla	as	a	framework;	however,	as	the	name
implies,	it’s	a	little	basic.

Whether	you	use	an	existing	framework	or	choose	to	build	your	own	(either	for	the
experience	or	to	completely	customize	it	due	to	business	requirements),	you	should
probably	consider	doing	a	bit

We’ll	briefly	look	at	a	few	of	these	frameworks	and	how	they	can	simplify	the
development	of	small	web-based	projects.

Tiger	Tonic
Tiger	Tonic	is	specifically	an	API-centric	framework,	so	we’ll	mention	it	first	in	this
section.	This	takes	a	very	idiomatic	Go	approach	to	developing	JSON	web	services.

Responses	are	primarily	intended	to	be	in	JSON	only	and	multiplexing	should	seem	pretty
familiar	to	the	style	introduced	by	Gorilla.

Tiger	Tonic	also	provides	some	quality	logging	features	that	allow	you	to	funnel	logs
directly	into	the	Apache	format	for	more	detailed	analysis.	Most	importantly,	it	handles
middleware	in	a	way	that	allows	some	conditional	operations	based	on	the	results	of	the
middleware	itself.

Note
You	can	read	more	about	Tiger	Tonic	at	https://github.com/rcrowley/go-tigertonic	or
download	the	documentation	using	the	go	get	github.com/rcrowley/go-tigertonic
command.

https://github.com/rcrowley/go-tigertonic

Martini
The	web	framework	Martini	is	one	of	the	more	popular	web	frameworks	for	the	relatively
young	Go	language,	largely	due	to	its	similarity	in	design	to	both	the	Node.js	framework
Express	and	the	popular	Ruby-on-Rails	framework	Sinatra.

Martini	also	plays	extraordinarily	well	with	middleware,	so	much	so	that	it’s	often	brought
in	exclusively	for	this	purpose.	It	also	comes	with	a	few	standard	middleware	handlers	like
Logger()	that	takes	care	of	logging	in	and	out	and	Recovery()	that	recovers	from	panics
and	returns	HTTP	errors.

Martini	is	built	for	a	large	swath	of	web	projects,	and	it	may	include	more	than	what	is
necessary	for	a	simple	web	service;	however,	it	is	an	excellent	all-inclusive	framework
that’s	worth	checking	out.

Note
You	can	read	more	about	Martini	at	https://github.com/go-martini/martini	or	download	the
documentation	using	the	go	get	github.com/go-martini/martini	command.

https://github.com/go-martini/martini

Goji
Unlike	Martini,	which	is	quite	comprehensive	and	far-reaching,	the	Goji	framework	is
minimalistic	and	lean.	The	primary	advantages	of	Goji	are	its	incredibly	quick	routing
system,	a	low	overhead	for	additional	garbage	collection,	and	robust	middleware
integrations.

Goji	uses	Alice	for	middleware,	which	we	briefly	touched	on	in	an	earlier	chapter.

Note
You	can	read	more	about	the	Goji	micro	framework	at	https://goji.io/	and	download	it	with
the	go	get	github.com/zenazn/goji	and	go	get	github.com/zenazn/goji/web
commands.

https://goji.io/

Beego
Beego	is	a	more	complex	type	of	framework	that	has	quickly	become	one	of	the	more
popular	Go	frameworks	for	web	projects.

Beego	has	a	lot	of	features	that	can	come	in	handy	for	a	web	service,	despite	the	additional
feature	set	that	is	largely	intended	for	rendered	web	pages.	The	framework	comes	with	its
own	sessions,	routing,	and	cache	modules,	and	also	includes	a	live	monitoring	process	that
allows	you	to	analyze	your	project	dynamically.

Note
You	can	read	more	about	Beego	at	http://beego.me/	or	download	it	using	the	go	get
github.com/astaxie/beego	command.

http://beego.me/

Summary
In	this	final	chapter,	we	looked	at	how	to	keep	our	web	service	as	airtight	as	possible	from
common	security	issues	and	looked	at	solutions	to	mitigate	issues	if	and	when	a	breach
happens.

As	APIs	scale	both	in	popularity	and	scope,	it	is	paramount	to	ensure	that	users	and	their
data	are	safe.

We	hope	you	have	been	(and	will	be)	able	to	utilize	these	security	best	practices	and	tools
to	improve	the	overall	reliability	and	speed	of	your	application.

While	our	primary	project—the	social	network—is	by	no	means	a	complete	or
comprehensive	project,	we’ve	broken	down	aspects	of	such	a	project	to	demonstrate
routing,	caching,	authentication,	display,	performance,	and	security.

If	you	wish	to	continue	expanding	the	project,	feel	free	to	augment,	fork,	or	clone	the
example	at	https://github.com/nkozyra/masteringwebservices.	We’d	love	to	see	the	project
continue	to	serve	as	a	demonstration	of	features	and	best	practices	related	to	web	services
and	APIs	in	Go.

https://github.com/nkozyra/masteringwebservices

Index
A

Access-Control-Allow-Origin
about	/	Creating	a	frontend	interface
reference	link	/	Creating	a	frontend	interface

ACID	/	Using	NoSQL	in	Go
Advanced	Message	Queuing	Protocol	(AMP)	/	RabbitMQ	with	Go
Amazon	Web	Services

about	/	Amazon	Web	Services
Go	to	interface,	using	/	Using	Go	to	interface	directly	with	AWS

AngularJS
about	/	AngularJS
API,	consuming	/	Consuming	APIs	with	Angular
URL	/	Consuming	APIs	with	Angular

Apache
Go,	using	/	Using	Go	with	Apache

Apache	JMeter
about	/	Apache	JMeter
URL	/	Apache	JMeter

API
architectures	/	Other	API	architectures
versions,	handling	/	Handling	API	versions,	Handling	our	API	versions
logic,	separating	/	Separating	our	API	logic
sessions,	enabling	/	Enabling	sessions	for	the	API
consuming,	with	jQuery	/	Consuming	APIs	with	jQuery
consuming,	with	AngularJS	/	Consuming	APIs	with	Angular

API-consuming	frontend
setting	up	/	Setting	up	an	API-consuming	frontend
client-side	Angular	application,	creating	/	Creating	a	client-side	Angular
application	for	a	web	service

API	access
services,	using	/	Using	services	for	API	access
simple	interface,	using	/	Using	a	simple	interface	for	API	access

App	Engine	SDK
URL	/	Installing	Go

application
designing	/	Designing	our	application

Asynchronous	Javascript	(AJAX)
about	/	Consuming	APIs	with	jQuery

authentication	/	Introducing	security	and	authentication
handling	/	Handling	basic	authentication	in	Go

B
Beego

about	/	Beego
URL	/	Beego

binary	data
handling	/	Handling	binary	data,	Handling	binary	data	and	CDNs

Binary	JSON	format
URL	/	MongoDB

brute-force	attempts
preventing	/	Preventing	brute-force	attempts
log	/	Knowing	what	to	log

C
caching

requests	/	Caching	requests
disk-based	caching	/	Simple	disk-based	caching
in	distributed	memory	/	Caching	in	distributed	memory
NoSQL,	using	as	cache	store	/	Using	NoSQL	as	a	cache	store
implementing,	as	middleware	/	Implementing	a	cache	as	middleware,	Using	a
frontend	caching	proxy	in	front	of	Go
frontend	caching	proxy,	using	in	Go	/	Using	a	frontend	caching	proxy	in	front	of
Go
URL	/	Using	a	frontend	caching	proxy	in	front	of	Go

CDNs
handling	/	Handling	binary	data	and	CDNs

client
secure	connection	/	Connecting	securely	as	a	client	in	Go

client-side	Angular	application
creating,	for	web	service	/	Creating	a	client-side	Angular	application	for	a	web
service

client-side	frameworks
using	/	Using	client-side	frameworks	with	Go

client-side	tools
about	/	Some	client-side	tools

cloud	environments
deploying	in	/	Deploying	in	cloud	environments

Comma	Separated	Values	(CSV)	/	CSV
connections

enabling,	username	used	/	Enabling	connections	using	a	username	and	password
enabling,	password	used	/	Enabling	connections	using	a	username	and	password

Couchbase
about	/	Couchbase
URL	/	Couchbase

Cross-Site	Request	Forgery	(CSRF)
log	/	Validating	output

CRUD
about	/	Bringing	in	CRUD

D
data

setting,	via	HTTP	/	Setting	data	via	HTTP
serving,	from	datastore	to	client	/	Serving	data	from	the	datastore	to	the	client
using,	from	other	OAuth	services	/	Using	data	from	other	OAuth	services

database
setting	up	/	Setting	up	our	database

datasets
predefined	datasets,	using	/	Using	predefined	datasets
dummy	dataset,	URL	/	Using	predefined	datasets

disk-based	caching
about	/	Simple	disk-based	caching
filtering,	enabling	/	Enabling	filtering
transforming,	into	middleware	/	Transforming	a	disk	cache	into	middleware

Docker
deploying	with	/	Deploying	with	Docker

E
e-mails

sending,	net/smtp	used	/	Sending	e-mails	with	net/smtp
Eclipse

about	/	Eclipse
URL	/	Eclipse

endpoints
adding	/	Adding	more	endpoints

error	logging
handling,	for	security	/	Handling	error	logging	for	security
URL	/	Handling	error	logging	for	security

error	messages
expanding	/	Expanding	our	error	messages

Exec()	method	/	Serving	data	from	the	datastore	to	the	client

F
file	upload

existence,	checking	/	Checking	for	the	existence	of	a	file	upload
formats

selecting	/	Choosing	formats
JSON	/	JSON
XML	/	XML
YAML	/	YAML
Comma	Separated	Values	(CSV)	/	CSV

frontend	caching	proxy
using,	in	Go	/	Using	a	frontend	caching	proxy	in	front	of	Go

frontend	interface
creating	/	Creating	a	frontend	interface
logging	in	/	Logging	in

G
Genghis

URL	/	MongoDB
Go

installing	/	Installing	Go
URL	/	Installing	Go
language	support	plugin,	URL	/	IntelliJ	IDEA
custom	routers,	writing	/	Writing	custom	routers	in	Go
OAuth	/	Examining	OAuth	in	Go
client,	secure	connection	/	Connecting	securely	as	a	client	in	Go
serving,	through	reverse	proxy	/	Serving	Go	through	a	reverse	proxy
using,	with	Apache	/	Using	Go	with	Apache
and	NGINX,	as	reverse	proxy	/	Go	and	NGINX	as	reverse	proxies
NoSQL,	using	/	Using	NoSQL	in	Go
client-side	frameworks,	using	/	Using	client-side	frameworks	with	Go
server	side	frameworks,	rendering	/	Rendering	frameworks	on	the	server	side	in
Go
RabbitMQ	used	/	RabbitMQ	with	Go
rate	limiting	/	Rate	limiting	in	Go
authentication,	handling	/	Handling	basic	authentication	in	Go
server-side	frameworks	/	Using	server-side	frameworks	in	Go

go-av
URL	/	Using	services	for	API	access

go-curl
URL	/	Using	services	for	API	access

goagain
URL	/	Using	Manners	for	more	graceful	servers

Goclipse	plugin
URL	/	Eclipse

Goji
about	/	Goji
URL	/	Goji

Gorilla
about	/	Gorilla
URL	/	Gorilla
advanced	routers,	using	/	Using	more	advanced	routers	in	Gorilla
using,	for	JSON-RPC	/	Using	Gorilla	for	JSON-RPC

Gorilla	web	toolkit	/	Adding	more	endpoints
goyaml

URL	/	YAML

H
HATEOAS

about	/	HATEOAS
headers

setting,	to	add	clients	detail	/	Setting	headers	to	add	detail	for	clients
HTTP

data,	setting	via	/	Setting	data	via	HTTP
HTTP	actions

and	methods,	comparing	/	Comparing	the	HTTP	actions	and	methods
HTTP	package

about	/	Introducing	the	HTTP	package
hello	world	/	Quick	hitter	–	saying	Hello,	World	via	API

HTTPS
forcing	/	Forcing	HTTPS

Hypertext	Application	Language	(HAL)	/	Allowing	pagination	with	the	link	header

I
IDE

selecting	/	Choosing	an	IDE
Eclipse	/	Eclipse
Sublime	Text	/	Sublime	Text
LiteIDE	/	LiteIDE
IntelliJ	IDEA	/	IntelliJ	IDEA
client-side	tools	/	Some	client-side	tools

idempotence	/	Bringing	in	CRUD
injection	mitigation

handling	/	Handling	input	validation	and	injection	mitigation
input	validation

handling	/	Handling	input	validation	and	injection	mitigation
IntelliJ	IDEA

about	/	IntelliJ	IDEA
URL	/	IntelliJ	IDEA

Internet	Engineering	Task	Force
URL	/	Designing	our	social	network	API

J
jQuery

about	/	jQuery
used,	for	consuming	API	/	Consuming	APIs	with	jQuery
URL	/	Consuming	APIs	with	jQuery

JSON	/	JSON
about	/	Implementing	alternative	formats

JSON-RPC
URL	/	RPC
Gorilla,	using	/	Using	Gorilla	for	JSON-RPC

JSON	API	Server	(JAS)
URL	/	Handling	our	API	versions

L
link	header	/	Allowing	pagination	with	the	link	header
LiteIDE

about	/	LiteIDE
URL	/	LiteIDE

M
Manners

using	/	Using	Manners	for	more	graceful	servers
URL	/	Using	Manners	for	more	graceful	servers

Martini
about	/	Martini
URL	/	Martini

Memcached
about	/	Memcached
URL	/	Memcached

mgo
URL	/	MongoDB

middleware
using,	to	reduce	crunt	/	Using	middleware	to	reduce	cruft
disk	cache,	transforming	into	/	Transforming	a	disk	cache	into	middleware
caching,	implementing	as	/	Implementing	a	cache	as	middleware
rate	limiting,	implementing	as	/	Implementing	rate	limiting	as	middleware

Model-View-Controller	(MVC)
about	/	AngularJS

MongoDB
about	/	MongoDB
URL	/	MongoDB

multiplexer
URL	/	Gorilla

MySQL
installing	/	Installing	and	using	MySQL
URL	/	Installing	and	using	MySQL
connecting	to	/	Connecting	to	MySQL

N
Nginx

about	/	Nginx
commands	/	Nginx

NoSQL
using,	in	Go	/	Using	NoSQL	in	Go
Memcached	/	Memcached
MongoDB	/	MongoDB
using,	as	cache	store	/	Using	NoSQL	as	a	cache	store

O
OAuth

about	/	Examining	OAuth	in	Go
OAuth	code

URL	/	Connecting	our	users	to	other	services,	Saving	the	state	with	a	web
service

OAuth	services
data,	using	from	/	Using	data	from	other	OAuth	services

Open	Authentication	(OAuth)
about	/	Designing	our	social	network	API

OPTIONS
sharing	/	Sharing	our	OPTIONS

output
validating	/	Validating	output

P
pagination

with	link	header,	allowing	/	Allowing	pagination	with	the	link	header
PATCH	method

versus	PUT	verb	method	/	The	PATCH	method	versus	the	PUT	method
Poodlebleed

URL	/	Forcing	HTTPS
Poster

URL	/	Updating	our	users	via	the	web	service
Postman

URL	/	Updating	our	users	via	the	web	service
process	control

using,	to	keep	API	running	/	Using	process	control	to	keep	your	API	running
supervisor,	using	/	Using	supervisor
Manners,	using	for	servers	/	Using	Manners	for	more	graceful	servers

project
structures	/	Project	structures

Push	API
URL	/	AngularJS

PUT	verb	method
versus	PATCH	method	/	The	PATCH	method	versus	the	PUT	method

Q
Query()	method	/	Serving	data	from	the	datastore	to	the	client
QueryRow()	method	/	Serving	data	from	the	datastore	to	the	client

R
RabbitMQ

with	Go	/	RabbitMQ	with	Go
URL	/	RabbitMQ	with	Go

rate	limiting
about	/	Rate	limiting	in	Go
implementing,	as	middleware	/	Implementing	rate	limiting	as	middleware

Redis
about	/	Redis
URL	/	Redis

Remote	procedure	calls	(RPC)	/	RPC
Request	for	Comments	(RFC)

URL	/	Sharing	our	OPTIONS
requests

creating,	on	users	behalf	/	Making	requests	on	behalf	of	users
REST

about	/	Looking	at	REST
self-description	/	Self-description
Roy	Fielding’s	blog,	URL	/	HATEOAS

RESTful	design
sessions	/	Sessions	in	a	RESTful	design

reverse	proxy
Go,	serving	through	/	Serving	Go	through	a	reverse	proxy
Go,	using	as	/	Go	and	NGINX	as	reverse	proxies
NGINX,	using	as	/	Go	and	NGINX	as	reverse	proxies

route
building	/	Building	our	first	route
URL	/	Routes

routers
custom	routers,	writing	/	Writing	custom	routers	in	Go
advanced	routers,	using	in	Gorilla	/	Using	more	advanced	routers	in	Gorilla

routes
about	/	Routes

S
salt

generating	/	A	quick	hit	–	generating	a	salt
security	/	Introducing	security	and	authentication

error	logging,	handling	/	Handling	error	logging	for	security
server-side	frameworks

using	/	Using	server-side	frameworks	in	Go
Tiger	Tonic	/	Tiger	Tonic
Martini	/	Martini
Goji	/	Goji
Beego	/	Beego

server	side	frameworks
rendering,	in	Go	/	Rendering	frameworks	on	the	server	side	in	Go

services
using,	for	API	access	/	Using	services	for	API	access

sessions
enabling,	for	API	/	Enabling	sessions	for	the	API
in	RESTful	design	/	Sessions	in	a	RESTful	design

single-page	application	(SPA)
about	/	Using	client-side	frameworks	with	Go

social	network	API
designing	/	Designing	our	social	network	API

SPDY
about	/	Implementing	SPDY
URL	/	Implementing	SPDY
support,	detecting	/	Detecting	SPDY	support

spdy.go	file
URL	/	Implementing	SPDY

SQL
best	practices	/	Using	best	practices	for	SQL

Squid
URL	/	Using	a	frontend	caching	proxy	in	front	of	Go

StartSSL
URL	/	Adding	TLS	support

state
saving,	with	web	service	/	Saving	the	state	with	a	web	service

status	update
creating	/	Creating	a	status	update

Sublime	Text
about	/	Sublime	Text
URL	/	Sublime	Text

supervisor
using	/	Using	supervisor

T
Tiger	Tonic

about	/	Tiger	Tonic
URL	/	Tiger	Tonic

TLS
support,	addding	/	Adding	TLS	support

TOML
about	/	Rolling	our	own	data	representation	format

U
URI

about	/	The	importance	of	a	URI
user	authentication

allowing	/	Letting	users	register	and	authenticate
user	registration

allowing	/	Letting	users	register	and	authenticate
users

updating,	via	web	service	/	Updating	our	users	via	the	web	service
connecting,	to	other	services	/	Connecting	our	users	to	other	services
allowing,	to	connect	/	Allowing	our	users	to	connect	to	each	other
viewing	/	Viewing	other	users

V
valuable	error	information

returning	/	Returning	valuable	error	information
Varnish

URL	/	Using	a	frontend	caching	proxy	in	front	of	Go

W
web	service

used,	for	updating	users	/	Updating	our	users	via	the	web	service
used,	for	saving	state	/	Saving	the	state	with	a	web	service

websocket.go
URL	/	Concurrent	WebSockets

WebSockets
about	/	Concurrent	WebSockets
advantages	/	Concurrent	WebSockets
browsers	/	Concurrent	WebSockets

World	Wide	Web	Consortium	(W3C)	/	Looking	at	REST

X
XML	/	XML

about	/	Implementing	alternative	formats
XSS

protecting	against	/	Protection	against	XSS

Y
YAML	/	YAML
YAML	Ain’t	Markup	Language	(YAML)

about	/	Implementing	alternative	formats
URL	/	Implementing	alternative	formats

	Mastering Go Web Services
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Our First API in Go
	Understanding requirements and dependencies
	Installing Go
	Installing and using MySQL
	Redis
	Couchbase
	Nginx
	Apache JMeter
	Using predefined datasets
	Choosing an IDE
	Eclipse
	Sublime Text
	LiteIDE
	IntelliJ IDEA
	Some client-side tools
	Looking at our application
	Setting up our database
	Introducing the HTTP package
	Quick hitter – saying Hello, World via API
	Building our first route
	Gorilla
	Routes
	Setting data via HTTP
	Connecting to MySQL
	Serving data from the datastore to the client
	Setting headers to add detail for clients
	Summary
	2. RESTful Services in Go
	Designing our application
	Looking at REST
	Making a representation in an API
	Self-description
	The importance of a URI
	HATEOAS
	Other API architectures
	RPC
	Choosing formats
	JSON
	XML
	YAML
	CSV
	Comparing the HTTP actions and methods
	The PATCH method versus the PUT method
	Bringing in CRUD
	Adding more endpoints
	Handling API versions
	Allowing pagination with the link header
	Summary
	3. Routing and Bootstrapping
	Writing custom routers in Go
	Using more advanced routers in Gorilla
	Using Gorilla for JSON-RPC
	Using services for API access
	Using a simple interface for API access
	Returning valuable error information
	Handling binary data
	Summary
	4. Designing APIs in Go
	Designing our social network API
	Handling our API versions
	Concurrent WebSockets
	Separating our API logic
	Expanding our error messages
	Updating our users via the web service
	Summary
	5. Templates and Options in Go
	Sharing our OPTIONS
	Implementing alternative formats
	Rolling our own data representation format
	Introducing security and authentication
	Forcing HTTPS
	Adding TLS support
	Letting users register and authenticate
	A quick hit – generating a salt
	Examining OAuth in Go
	Making requests on behalf of users
	Summary
	6. Accessing and Using Web Services in Go
	Connecting our users to other services
	Saving the state with a web service
	Using data from other OAuth services
	Connecting securely as a client in Go
	Summary
	7. Working with Other Web Technologies
	Serving Go through a reverse proxy
	Using Go with Apache
	Go and NGINX as reverse proxies
	Enabling sessions for the API
	Sessions in a RESTful design
	Using NoSQL in Go
	Memcached
	MongoDB
	Enabling connections using a username and password
	Allowing our users to connect to each other
	Summary
	8. Responsive Go for the Web
	Creating a frontend interface
	Logging in
	Using client-side frameworks with Go
	jQuery
	Consuming APIs with jQuery
	AngularJS
	Consuming APIs with Angular
	Setting up an API-consuming frontend
	Creating a client-side Angular application for a web service
	Viewing other users
	Rendering frameworks on the server side in Go
	Creating a status update
	Summary
	9. Deployment
	Project structures
	Using process control to keep your API running
	Using supervisor
	Using Manners for more graceful servers
	Deploying with Docker
	Deploying in cloud environments
	Amazon Web Services
	Using Go to interface directly with AWS
	Handling binary data and CDNs
	Checking for the existence of a file upload
	Sending e-mails with net/smtp
	RabbitMQ with Go
	Summary
	10. Maximizing Performance
	Using middleware to reduce cruft
	Caching requests
	Simple disk-based caching
	Enabling filtering
	Transforming a disk cache into middleware
	Caching in distributed memory
	Using NoSQL as a cache store
	Implementing a cache as middleware
	Using a frontend caching proxy in front of Go
	Rate limiting in Go
	Implementing rate limiting as middleware
	Implementing SPDY
	Detecting SPDY support
	Summary
	11. Security
	Handling error logging for security
	Preventing brute-force attempts
	Knowing what to log
	Handling basic authentication in Go
	Handling input validation and injection mitigation
	Using best practices for SQL
	Validating output
	Protection against XSS
	Using server-side frameworks in Go
	Tiger Tonic
	Martini
	Goji
	Beego
	Summary
	Index

