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Preface
I	just	love	new	programming	languages.	Perhaps	it’s	the	inevitable	familiarity	and	ennui
with	regard	to	existing	languages	and	the	frustration	with	existing	tools,	syntaxes,	coding
conventions,	and	performance.	Maybe	I’m	just	hunting	for	that	one	“language	to	rule	them
all”.	Whatever	the	reason,	any	time	a	new	or	experimental	language	is	released,	I	have	to
dive	right	in.

This	has	been	a	golden	age	for	new	languages	and	language	design.	Think	about	it:	the	C
language	was	released	in	the	early	1970s—a	time	when	resources	were	so	scarce	that
verbosity,	clarity,	and	syntactical	logic	were	often	eschewed	for	thrift.	And	most	of	the
languages	we	use	today	were	either	originally	written	in	this	era	or	were	directly
influenced	by	those	languages.

Since	the	late	1980s	and	early	1990s,	there	has	been	a	slow	flood	of	powerful	new
languages	and	paradigms—Perl,	Python,	Ruby,	PHP,	and	JavaScript—have	taken	an
expanding	user	base	by	storm	and	has	become	one	of	the	most	popular	languages	(up	there
with	stalwarts	such	as	C,	C++,	and	Java).	Multithreading,	memory	caching,	and	APIs	have
allowed	multiple	processes,	dissonant	languages,	applications,	and	even	separate	operating
systems	to	work	in	congress.

And	while	this	is	great,	there’s	a	niche	that	until	very	recently	was	largely	unserved:
powerful,	compiled,	cross-platform	languages	with	concurrency	support	that	are	geared
towards	systems	programmers.

Very	few	languages	match	these	parameters.	Sure,	there	have	been	lower-level	languages
that	fulfill	some	of	these	characteristics.	Erlang	and	Haskell	fit	the	bill	in	terms	of	power
and	language	design,	but	as	functional	languages	they	pose	a	learning	barrier	for	systems
programmers	coming	from	a	C/Java	background.	Objective-C	and	C#	are	relatively	easy,
powerful,	and	have	concurrency	support—but	they’re	bound	enough	to	a	specific	OS	to
make	programming	for	other	platforms	arduous.	The	languages	we	just	mentioned
(Python,	JavaScript,	and	so	on)—while	extremely	popular—are	largely	interpreted
languages,	forcing	performance	into	a	secondary	role.	You	can	use	most	of	them	for
systems	programming,	but	in	many	ways	it’s	the	proverbial	square	peg	in	a	round	hole.	So
when	Google	announced	Go	in	2009,	my	interest	was	piqued.	When	I	saw	who	was
behind	the	project	(more	on	that	later),	I	was	elated.	When	I	saw	the	language	and	its
design	in	action,	I	was	in	heaven.

For	the	last	few	years	I’ve	been	using	Go	to	replace	systems	applications	I’d	previously
written	in	C,	Java,	Perl,	and	Python.	I	couldn’t	be	happier	with	the	results.	Implementing
Go	has	improved	these	applications	in	almost	every	instance.	The	fact	that	it	plays	nicely
with	C	is	another	huge	selling	point	for	systems	programmers	looking	to	dip	their	toes	in
Go’s	pool.

With	some	of	the	best	minds	in	language	design	(and	programming	in	general)	behind	it,
Go	has	a	bright	future.

For	years—decades,	really—there	have	been	less	than	a	handful	of	options	for	writing



servers	and	network	interfaces.	If	you	were	tasked	with	writing	one,	you	probably	reached
for	C,	C++,	or	Java.	And	while	these	certainly	can	handle	the	task,	and	while	they	all	now
support	concurrency	and	parallelism	in	some	way	or	another,	they	weren’t	designed	for
that.

Google	brought	together	a	team	that	included	some	giants	of	programming—Rob	Pike	and
Ken	Thompson	of	Bell	Labs	fame	and	Robert	Griesemer,	who	worked	on	Google’s
JavaScript	implementation	V8—to	design	a	modern,	concurrent	language	with
development	ease	at	the	forefront.

To	do	this,	the	team	focused	on	some	sore	spots	in	the	alternatives,	which	are	as	follows:

Dynamically	typed	languages	have—in	recent	years—become	incredibly	popular.	Go
eschews	the	explicit,	“cumbersome”	type	systems	of	Java	or	C++.	Go	uses	type
inference,	which	saves	development	time,	but	is	still	also	strongly	typed.
Concurrency,	parallelism,	pointers/memory	access,	and	garbage	collection	are
unwieldy	in	the	aforementioned	languages.	Go	lets	these	concepts	be	as	easy	or	as
complicated	as	you	want	or	need	them	to	be.
As	a	newer	language,	Go	has	a	focus	on	multicore	design	that	was	a	necessary
afterthought	in	languages	such	as	C++.
Go’s	compiler	is	super-fast;	it’s	so	fast	that	there	are	implementations	of	it	that	treat
Go	code	as	interpreted.
Although	Google	designed	Go	to	be	a	systems	language,	it’s	versatile	enough	to	be
used	in	a	myriad	of	ways.	Certainly,	the	focus	on	advanced,	cheap	concurrency
makes	it	ideal	for	network	and	systems	programming.
Go	is	loose	with	syntax,	but	strict	with	usage.	By	this	we	mean	that	Go	will	let	you
get	a	little	lazy	with	some	lexer	tokens,	but	you	still	have	to	produce	fundamentally
tight	code.	As	Go	provides	a	formatting	tool	that	attempts	to	clarify	your	code,	you
can	also	spend	less	time	on	readability	concerns	as	you’re	coding.



What	this	book	covers
Chapter	1,	An	Introduction	to	Concurrency	in	Go,	introduces	goroutines	and	channels,	and
will	compare	the	way	Go	handles	concurrency	with	the	approach	other	languages	use.
We’ll	build	some	basic	concurrent	applications	utilizing	these	new	concepts.

Chapter	2,	Understanding	the	Concurrency	Model,	focuses	on	resource	allocation,	sharing
memory	(and	when	not	to),	and	data.	We	will	look	at	channels	and	channels	of	channels	as
well	as	explain	exactly	how	Go	manages	concurrency	internally.

Chapter	3,	Developing	a	Concurrent	Strategy,	discusses	approach	methods	for	designing
applications	to	best	use	concurrent	tools	in	Go.	We’ll	look	at	some	available	third-party
packages	that	can	play	a	role	in	your	strategy.

Chapter	4,	Data	Integrity	in	an	Application,	looks	at	ensuring	that	delegation	of	goroutines
and	channels	maintain	the	state	in	single	thread	and	multithread	applications.

Chapter	5,	Locks,	Blocks,	and	Better	Channels,	looks	at	how	Go	can	avoid	dead	locks	out
of	the	box,	and	when	and	where	they	can	still	occur	despite	Go’s	language	design.

Chapter	6,	C10K	–	A	Non-blocking	Web	Server	in	Go,	tackles	one	of	the	Internet’s	most
famous	and	esteemed	challenges	and	attempt	to	solve	it	with	core	Go	packages.	We’ll	then
refine	the	product	and	test	it	against	common	benchmarking	tools.

Chapter	7,	Performance	and	Scalability,	focuses	on	squeezing	the	most	out	of	your
concurrent	Go	code,	best	utilizing	resources	and	accounting	for	and	mitigating	third-party
software’s	impact	on	your	own.	We’ll	add	some	additional	functionality	to	our	web	server
and	talk	about	other	ways	in	which	we	can	use	these	packages.

Chapter	8,	Concurrent	Application	Architecture,	focuses	on	when	and	where	to	implement
concurrent	patterns,	when	and	how	to	utilize	parallelism	to	take	advantage	of	advanced
hardware,	and	how	to	ensure	data	consistency.

Chapter	9,	Logging	and	Testing	Concurrency	in	Go,	focuses	on	OS-specific	methods	for
testing	and	deploying	your	application.	We’ll	also	look	at	Go’s	relationship	with	various
code	repositories.

Chapter	10,	Advanced	Concurrency	and	Best	Practices,	looks	at	more	complicated	and
advanced	techniques	including	duplicating	concurrent	features	not	available	in	Go’s	core.





What	you	need	for	this	book
To	work	along	with	this	book’s	examples,	you’ll	need	a	computer	running	Windows,	OS
X,	or	quite	a	few	Linux	variants	that	support	Go.	For	this	book,	our	Linux	examples	and
notes	reference	Ubuntu.

If	you	do	not	already	have	Go	1.3	or	newer	installed,	you	will	need	to	get	it	either	from	the
binaries	download	page	on	http://golang.org/	or	through	your	operating	system’s	package
manager.

To	use	all	of	the	examples	in	this	book,	you’ll	also	need	to	have	the	following	software
installed:

MySQL	(http://dev.mysql.com/downloads/)
Couchbase	(http://www.couchbase.com/download)

Your	choice	of	IDE	is	a	matter	of	personal	preference,	as	anyone	who’s	worked	with
developers	can	attest.	That	said,	there	are	a	few	that	lend	themselves	better	to	some
languages	than	others	and	a	couple	that	have	good	support	for	Go.	This	author	uses
Sublime	Text,	which	plays	very	nice	with	Go,	is	lightweight,	and	allows	you	to	build
directly	from	within	the	IDE	itself.	Anywhere	you	see	screenshots	of	code,	it	will	be	from
within	Sublime	Text.

And	while	there’s	a	good	amount	of	baked-in	support	for	Go	code,	there’s	also	a	nice
plugin	collection	for	Sublime	Text	called	GoSublime,	available	at
https://github.com/DisposaBoy/GoSublime.

Sublime	Text	isn’t	free,	but	there	is	a	free	evaluation	version	available	that	has	no	time
limit.	It’s	available	in	Windows,	OS	X,	and	Linux	variants	at
http://www.sublimetext.com/.

http://golang.org/
http://dev.mysql.com/downloads/
http://www.couchbase.com/download
https://github.com/DisposaBoy/GoSublime
http://www.sublimetext.com/




Who	this	book	is	for
If	you	are	a	systems	or	network	programmer	with	some	knowledge	of	Go	and
concurrency,	but	would	like	to	know	about	the	implementation	of	concurrent	systems
written	in	Go	this	is	the	book	for	you.	The	goal	of	this	book	is	to	enable	you	to	write	high-
performance,	scalable,	resource-thrifty	systems	and	network	applications	in	Go.

In	this	book,	we’ll	write	a	number	of	basic	and	somewhat	less	-	basic	network	and	systems
applications.	It’s	assumed	that	you’ve	worked	with	these	types	of	applications	before.	If
you	haven’t,	some	extracurricular	study	may	be	warranted	to	be	able	to	fully	digest	this
content.





Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“The
setProxy	function	is	called	after	every	request,	and	you	can	see	it	as	the	first	line	in	our
handler.”

A	block	of	code	is	set	as	follows:

package	main

import

(

"net/http"

"html/template"

"time"

"regexp"

"fmt"

"io/ioutil"

"database/sql"

"log"

"runtime"

_	"github.com/go-sql-driver/mysql"

)

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

package	main

import	(

		"fmt"

)

func	stringReturn(text	string)	string	{

		return	text

}

func	main()	{

		myText	:=	stringReturn("Here	be	the	code")

		fmt.Println(myText)

}

Any	command-line	input	or	output	is	written	as	follows:

go	get	github.com/go-sql-driver/mysql

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“If	you	upload	a	file	by
dragging	it	to	the	Drop	files	here	to	upload	box,	within	a	few	seconds	you’ll	see	that	the



file	is	noted	as	changed	in	the	web	interface.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support


Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com


Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com




Chapter	1.	An	Introduction	to
Concurrency	in	Go
While	Go	is	both	a	great	general	purpose	and	low-level	systems	language,	one	of	its
primary	strengths	is	the	built-in	concurrency	model	and	tools.	Many	other	languages	have
third-party	libraries	(or	extensions),	but	inherent	concurrency	is	something	unique	to
modern	languages,	and	it	is	a	core	feature	of	Go’s	design.

Though	there’s	no	doubt	that	Go	excels	at	concurrency—as	we’ll	see	in	this	book—what	it
has	that	many	other	languages	lack	is	a	robust	set	of	tools	to	test	and	build	concurrent,
parallel,	and	distributed	code.

Enough	talk	about	Go’s	marvelous	concurrency	features	and	tools,	let’s	jump	in.



Introducing	goroutines
The	primary	method	of	handling	concurrency	is	through	a	goroutine.	Admittedly,	our	first
piece	of	concurrent	code	(mentioned	in	the	preface)	didn’t	do	a	whole	lot,	simply	spitting
out	alternating	“hello”s	and	“world”s	until	the	entire	task	was	complete.

Here	is	that	code	once	again:

package	main

import	(

		"fmt"

		"time"

)

type	Job	struct	{

		i	int

		max	int

		text	string

}

func	outputText(j	*Job)	{

		for	j.i	<	j.max	{

				time.Sleep(1	*	time.Millisecond)

				fmt.Println(j.text)

				j.i++

		}

}

func	main()	{

		hello	:=	new(Job)

		world	:=	new(Job)

		hello.text	=	"hello"

		hello.i	=	0

		hello.max	=	3

		

		world.text	=	"world"

		world.i	=	0

		world.max	=	5

		go	outputText(hello)

		outputText(world)

}

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.	packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.%20packtpub.com
http://www.packtpub.com/support


But,	if	you	think	back	to	our	real-world	example	of	planning	a	surprise	party	for	your
grandmother,	that’s	exactly	how	things	often	have	to	be	managed	with	limited	or	finite
resources.	This	asynchronous	behavior	is	critical	for	some	applications	to	run	smoothly,
although	our	example	essentially	ran	in	a	vacuum.

You	may	have	noticed	one	quirk	in	our	early	example:	despite	the	fact	that	we	called	the
outputText()	function	on	the	hello	struct	first,	our	output	started	with	the	world	struct’s
text	value.	Why	is	that?

Being	asynchronous,	when	a	goroutine	is	invoked,	it	waits	for	the	blocking	code	to
complete	before	concurrency	begins.	You	can	test	this	by	replacing	the	outputText()
function	call	on	the	world	struct	with	a	goroutine,	as	shown	in	the	following	code:

		go	outputText(hello)

		go	outputText(world)

If	you	run	this,	you	will	get	no	output	because	the	main	function	ends	while	the
asynchronous	goroutines	are	running.	There	are	a	couple	of	ways	to	stop	this	to	see	the
output	before	the	main	function	finishes	execution	and	the	program	exits.	The	classic
method	simply	asks	for	user	input	before	execution,	allowing	you	to	directly	control	when
the	application	finishes.	You	can	also	put	an	infinite	loop	at	the	end	of	your	main	function,
as	follows:

for	{}

Better	yet,	Go	also	has	a	built-in	mechanism	for	this,	which	is	the	WaitGroup	type	in	the
sync	package.

If	you	add	a	WaitGroup	struct	to	your	code,	it	can	delay	execution	of	the	main	function
until	after	all	goroutines	are	complete.	In	simple	terms,	it	lets	you	set	a	number	of	required
iterations	to	get	a	completed	response	from	the	goroutines	before	allowing	the	application
to	continue.	Let’s	look	at	a	minor	modification	to	our	“Hello	World”	application	in	the
following	section.



A	patient	goroutine
From	here,	we’ll	implement	a	WaitGroup	struct	to	ensure	our	goroutines	run	entirely
before	moving	on	with	our	application.	In	this	case,	when	we	say	patient,	it’s	in	contrast	to
the	way	we’ve	seen	goroutines	run	outside	of	a	parent	method	with	our	previous	example.
In	the	following	code,	we	will	implement	our	first	Waitgroup	struct:

package	main

import	(

		"fmt"

		"sync"

		"time"

)

type	Job	struct	{

		i	int

		max	int

		text	string

}

func	outputText(j	*Job,	goGroup	*sync.WaitGroup)	{

		for	j.i	<	j.max	{

				time.Sleep(1	*	time.Millisecond)

				fmt.Println(j.text)

				j.i++

		}

		goGroup.Done()

}

func	main()	{

		goGroup	:=	new(sync.WaitGroup)

		fmt.Println("Starting")

		hello	:=	new(Job)

		hello.text	=	"hello"

		hello.i	=	0

		hello.max	=	2

		world	:=	new(Job)

		world.text	=	"world"

		world.i	=	0

		world.max	=	2

		go	outputText(hello,	goGroup)

		go	outputText(world,	goGroup)

		goGroup.Add(2)

		goGroup.Wait()

}

Let’s	look	at	the	changes	in	the	following	code:



		goGroup	:=	new(sync.WaitGroup)

Here,	we	declared	a	WaitGroup	struct	named	goGroup.	This	variable	will	receive	note	that
our	goroutine	function	has	completed	x	number	of	times	before	allowing	the	program	to
exit.	Here’s	an	example	of	sending	such	an	expectation	in	WaitGroup:

		goGroup.Add(2)

The	Add()	method	specifies	how	many	Done	messages	goGroup	should	receive	before
satisfying	its	wait.	Here,	we	specified	2	because	we	have	two	functions	running
asynchronously.	If	you	had	three	goroutine	members	and	still	called	two,	you	may	see	the
output	of	the	third.	If	you	added	a	value	more	than	two	to	goGroup,	for	example,
goGroup.Add(3),	then	WaitGroup	would	wait	forever	and	deadlock.

With	that	in	mind,	you	shouldn’t	manually	set	the	number	of	goroutines	that	need	to	wait;
this	is	ideally	handled	computationally	or	explicitly	in	a	range.	This	is	how	we	tell
WaitGroup	to	wait:

		goGroup.Wait()

Now,	we	wait.	This	code	will	fail	for	the	same	reason	goGroup.Add(3)	failed;	the	goGroup
struct	never	receives	messages	that	our	goroutines	are	done.	So,	let’s	do	this	as	shown	in
the	following	code	snippet:

func	outputText(j	*Job,	goGroup	*sync.WaitGroup)	{

		for	j.i	<	j.max	{

				time.Sleep(1	*	time.Millisecond)

				fmt.Println(j.text)

				j.i++

		}

		goGroup.Done()

}

We’ve	only	made	two	changes	to	our	outputText()	function	from	the	preface.	First,	we
added	a	pointer	to	our	goGroup	as	the	second	function	argument.	Then,	when	all	our
iterations	were	complete,	we	told	goGroup	that	they	are	all	done.





Implementing	the	defer	control
mechanism
While	we’re	here,	we	should	take	a	moment	and	talk	about	defer.	Go	has	an	elegant
implementation	of	the	defer	control	mechanism.	If	you’ve	used	defer	(or	something
functionally	similar)	in	other	languages,	this	will	seem	familiar—it’s	a	useful	way	of
delaying	the	execution	of	a	statement	until	the	rest	of	the	function	is	complete.

For	the	most	part,	this	is	syntactical	sugar	that	allows	you	to	see	related	operations
together,	even	though	they	won’t	execute	together.	If	you’ve	ever	written	something
similar	to	the	following	pseudocode,	you’ll	know	what	I	mean:

x	=	file.open('test.txt')

int	longFunction()	{

…

}

x.close();

You	probably	know	the	kind	of	pain	that	can	come	from	large	“distances”	separating
related	bits	of	code.	In	Go,	you	can	actually	write	the	code	similar	to	the	following:

package	main

import(

"os"

)

func	main()	{

		

		file,	_	:=	os.Create("/defer.txt")

		defer	file.Close()

		

		for	{

				break

		}

		

}

There	isn’t	any	actual	functional	advantage	to	this	other	than	making	clearer,	more
readable	code,	but	that’s	a	pretty	big	plus	in	itself.	Deferred	calls	are	executed	reverse	of
the	order	in	which	they	are	defined,	or	last-in-first-out.	You	should	also	take	note	that	any
data	passed	by	reference	may	be	in	an	unexpected	state.

For	example,	refer	to	the	following	code	snippet:

func	main()	{

		aValue	:=	new(int)



		defer	fmt.Println(*aValue)

		for	i	:=	0;	i	<	100;	i++	{

				*aValue++

		}

}

This	will	return	0,	and	not	100,	as	it	is	the	default	value	for	an	integer.

Note
Defer	is	not	the	same	as	deferred	(or	futures/promises)	in	other	languages.	We’ll	talk	about
Go’s	implementations	and	alternatives	to	futures	and	promises	in	Chapter	2,
Understanding	the	Concurrency	Model.



Using	Go’s	scheduler
With	a	lot	of	concurrent	and	parallel	applications	in	other	languages,	the	management	of
both	soft	and	hard	threads	is	handled	at	the	operating	system	level.	This	is	known	to	be
inherently	inefficient	and	expensive	as	the	OS	is	responsible	for	context	switching,	among
multiple	processes.	When	an	application	or	process	can	manage	its	own	threads	and
scheduling,	it	results	in	faster	runtime.	The	threads	granted	to	our	application	and	Go’s
scheduler	have	fewer	OS	attributes	that	need	to	be	considered	in	context	to	switching,
resulting	in	less	overhead.

If	you	think	about	it,	this	is	self-evident—the	more	you	have	to	juggle,	the	slower	it	is	to
manage	all	of	the	balls.	Go	removes	the	natural	inefficiency	of	this	mechanism	by	using	its
own	scheduler.

There’s	really	only	one	quirk	to	this,	one	that	you’ll	learn	very	early	on:	if	you	don’t	ever
yield	to	the	main	thread,	your	goroutines	will	perform	in	unexpected	ways	(or	won’t
perform	at	all).

Another	way	to	look	at	this	is	to	think	that	a	goroutine	must	be	blocked	before
concurrency	is	valid	and	can	begin.	Let’s	modify	our	example	and	include	some	file	I/O	to
log	to	demonstrate	this	quirk,	as	shown	in	the	following	code:

package	main

import	(

		"fmt"

		"time"

		"io/ioutil"

)

type	Job	struct	{

		i	int

		max	int

		text	string

}

func	outputText(j	*Job)	{

		fileName	:=	j.text	+	".txt"

		fileContents	:=	""

		for	j.i	<	j.max	{

				time.Sleep(1	*	time.Millisecond)

				fileContents	+=	j.text

				fmt.Println(j.text)

				j.i++

		}

		err	:=	ioutil.WriteFile(fileName,	[]byte(fileContents),	0644)

		if	(err	!=	nil)	{

				panic("Something	went	awry")

		}

}



func	main()	{

		hello	:=	new(Job)

		hello.text	=	"hello"

		hello.i	=	0

		hello.max	=	3

		world	:=	new(Job)

		world.text	=	"world"

		world.i	=	0

		world.max	=	5

		go	outputText(hello)

		go	outputText(world)

}

In	theory,	all	that	has	changed	is	that	we’re	now	using	a	file	operation	to	log	each
operation	to	a	distinct	file	(in	this	case,	hello.txt	and	world.txt).	However,	if	you	run
this,	no	files	are	created.

In	our	last	example,	we	used	a	sync.WaitSync	struct	to	force	the	main	thread	to	delay
execution	until	asynchronous	tasks	were	complete.	While	this	works	(and	elegantly),	it
doesn’t	really	explain	why	our	asynchronous	tasks	fail.	As	mentioned	before,	you	can	also
utilize	blocking	code	to	prevent	the	main	thread	from	completing	before	its	asynchronous
tasks.

Since	the	Go	scheduler	manages	context	switching,	each	goroutine	must	yield	control
back	to	the	main	thread	to	schedule	all	of	these	asynchronous	tasks.	There	are	two	ways	to
do	this	manually.	One	method,	and	probably	the	ideal	one,	is	the	WaitGroup	struct.
Another	is	the	GoSched()	function	in	the	runtime	package.

The	GoSched()	function	temporarily	yields	the	processor	and	then	returns	to	the	current
goroutine.	Consider	the	following	code	as	an	example:

package	main

import(

		"runtime"

		"fmt"

)

func	showNumber(num	int)	{

		fmt.Println(num)

}

func	main()	{

		iterations	:=	10

		

		for	i	:=	0;	i<=iterations;	i++	{

				go	showNumber(i)



		}

		//runtime.Gosched()

		fmt.Println("Goodbye!")

}

Run	this	with	runtime.Gosched()	commented	out	and	the	underscore	before	"runtime"
removed,	and	you’ll	see	only	Goodbye!.	This	is	because	there’s	no	guarantee	as	to	how
many	goroutines,	if	any,	will	complete	before	the	end	of	the	main()	function.

As	we	learned	earlier,	you	can	explicitly	wait	for	a	finite	set	number	of	goroutines	before
ending	the	execution	of	the	application.	However,	Gosched()	allows	(in	most	cases)	for
the	same	basic	functionality.	Remove	the	comment	before	runtime.Gosched(),	and	you
should	get	0	through	10	printed	before	Goodbye!.

Just	for	fun,	try	running	this	code	on	a	multicore	server	and	modify	your	max	processors
using	runtime.GOMAXPROCS(),	as	follows:

func	main()	{

		runtime.GOMAXPROCS(2)

Also,	push	your	runtime.Gosched()	to	the	absolute	end	so	that	all	goroutines	have	a
chance	to	run	before	main	ends.

Got	something	unexpected?	That’s	not	unexpected!	You	may	end	up	with	a	totally	jostled
execution	of	your	goroutines,	as	shown	in	the	following	screenshot:

Although	it’s	not	entirely	necessary	to	demonstrate	how	juggling	your	goroutines	with
multiple	cores	can	be	vexing,	this	is	one	of	the	simplest	ways	to	show	exactly	why	it’s
important	to	have	communication	between	them	(and	the	Go	scheduler).

You	can	debug	the	parallelism	of	this	using	GOMAXPROCS	>	1,	enveloping	your	goroutine
call	with	a	timestamp	display,	as	follows:

		tstamp	:=	strconv.FormatInt(time.Now().UnixNano(),	10)

		fmt.Println(num,	tstamp)

Note
Remember	to	import	the	time	and	strconv	parent	packages	here.



This	will	also	be	a	good	place	to	see	concurrency	and	compare	it	to	parallelism	in	action.
First,	add	a	one-second	delay	to	the	showNumber()	function,	as	shown	in	the	following
code	snippet:

func	showNumber(num	int)	{

		tstamp	:=	strconv.FormatInt(time.Now().UnixNano(),	10)

		fmt.Println(num,tstamp)

		time.Sleep(time.Millisecond	*	10)

}

Then,	remove	the	goroutine	call	before	the	showNumber()	function	with	GOMAXPROCS(0),
as	shown	in	the	following	code	snippet:

		runtime.GOMAXPROCS(0)

		iterations	:=	10

		

		for	i	:=	0;	i<=iterations;	i++	{

				showNumber(i)

		}

As	expected,	you	get	0-10	with	10-millisecond	delays	between	them	followed	by
Goodbye!	as	an	output.	This	is	straight,	serial	computing.

Next,	let’s	keep	GOMAXPROCS	at	zero	for	a	single	thread,	but	restore	the	goroutine	as
follows:

go	showNumber(i)

This	is	the	same	process	as	before,	except	for	the	fact	that	everything	will	execute	within
the	same	general	timeframe,	demonstrating	the	concurrent	nature	of	execution.	Now,	go
ahead	and	change	your	GOMAXPROCS	to	two	and	run	again.	As	mentioned	earlier,	there	is
only	one	(or	possibly	two)	timestamp,	but	the	order	has	changed	because	everything	is
running	simultaneously.

Goroutines	aren’t	(necessarily)	thread-based,	but	they	feel	like	they	are.	When	Go	code	is
compiled,	the	goroutines	are	multiplexed	across	available	threads.	It’s	this	very	reason
why	Go’s	scheduler	needs	to	know	what’s	running,	what	needs	to	finish	before	the
application’s	life	ends,	and	so	on.	If	the	code	has	two	threads	to	work	with,	that’s	what	it
will	use.



Using	system	variables
So	what	if	you	want	to	know	how	many	threads	your	code	has	made	available	to	you?

Go	has	an	environment	variable	returned	from	the	runtime	package	function	GOMAXPROCS.
To	find	out	what’s	available,	you	can	write	a	quick	application	similar	to	the	following
code:

package	main

import	(

		"fmt"

		"runtime"

)

func	listThreads()	int	{

		threads	:=	runtime.GOMAXPROCS(0)

		return	threads

}

func	main()	{

		runtime.GOMAXPROCS(2)

		fmt.Printf("%d	thread(s)	available	to	Go.",	listThreads())

}

A	simple	Go	build	on	this	will	yield	the	following	output:

2	thread(s)	available	to	Go.

The	0	parameter	(or	no	parameter)	delivered	to	GOMAXPROCS	means	no	change	is	made.
You	can	put	another	number	in	there,	but	as	you	might	imagine,	it	will	only	return	what	is
actually	available	to	Go.	You	cannot	exceed	the	available	cores,	but	you	can	limit	your
application	to	use	less	than	what’s	available.

The	GOMAXPROCS()	call	itself	returns	an	integer	that	represents	the	previous	number	of
processors	available.	In	this	case,	we	first	set	it	to	two	and	then	set	it	to	zero	(no	change),
returning	two.

It’s	also	worth	noting	that	increasing	GOMAXPROCS	can	sometimes	decrease	the
performance	of	your	application.

As	there	are	context-switching	penalties	in	larger	applications	and	operating	systems,
increasing	the	number	of	threads	used	means	goroutines	can	be	shared	among	more	than
one,	and	the	lightweight	advantage	of	goroutines	might	be	sacrificed.

If	you	have	a	multicore	system,	you	can	test	this	pretty	easily	with	Go’s	internal
benchmarking	functionality.	We’ll	take	a	closer	look	at	this	functionality	in	Chapter	5,
Locks,	Blocks,	and	Better	Channels,	and	Chapter	7,	Performance	and	Scalability.

The	runtime	package	has	a	few	other	very	useful	environment	variable	return	functions,
such	as	NumCPU,	NumGoroutine,	CPUProfile,	and	BlockProfile.	These	aren’t	just	handy



to	debug,	they’re	also	good	to	know	how	to	best	utilize	your	resources.	This	package	also
plays	well	with	the	reflect	package,	which	deals	with	metaprogramming	and	program	self-
analysis.	We’ll	touch	on	that	in	more	detail	later	in	Chapter	9,	Logging	and	Testing
Concurrency	in	Go,	and	Chapter	10,	Advanced	Concurrency	and	Best	Practices.





Understanding	goroutines	versus
coroutines
At	this	point,	you	may	be	thinking,	“Ah,	goroutines,	I	know	these	as	coroutines.”	Well,
yes	and	no.

A	coroutine	is	a	cooperative	task	control	mechanism,	but	in	its	most	simplistic	sense,	a
coroutine	is	not	concurrent.	While	coroutines	and	goroutines	are	utilized	in	similar	ways,
Go’s	focus	on	concurrency	provides	a	lot	more	than	just	state	control	and	yields.	In	the
examples	we’ve	seen	so	far,	we	have	what	we	can	call	dumb	goroutines.	Although	they
operate	in	the	same	time	and	address	space,	there’s	no	real	communication	between	the
two.	If	you	look	at	coroutines	in	other	languages,	you	may	find	that	they	are	often	not
necessarily	concurrent	or	asynchronous,	but	rather	they	are	step-based.	They	yield	to
main()	and	to	each	other,	but	two	coroutines	might	not	necessarily	communicate	between
each	other,	relying	on	a	centralized,	explicitly	written	data	management	system.

Note
The	original	coroutine

Coroutines	were	first	described	for	COBOL	by	Melvin	Conway.	In	his	paper,	Design	of	a
Separable	Transition-Diagram	Compiler,	he	suggested	that	the	purpose	of	a	coroutine	was
to	take	a	program	broken	apart	into	subtasks	and	allow	them	to	operate	independently,
sharing	only	small	pieces	of	data.

Goroutines	can	sometimes	violate	the	basic	tenets	of	Conway’s	coroutines.	For	example,
Conway	suggested	that	there	should	be	only	a	unidirectional	path	of	execution;	in	other
words,	A	followed	by	B,	then	C,	and	then	D,	and	so	on,	where	each	represents	an
application	chunk	in	a	coroutine.	We	know	that	goroutines	can	be	run	in	parallel	and	can
execute	in	a	seemingly	arbitrary	order	(at	least	without	direction).	To	this	point,	our
goroutines	have	not	shared	any	information	either;	they’ve	simply	executed	in	a	shared
pattern.





Implementing	channels
So	far,	we’ve	dabbled	in	concurrent	processes	that	are	capable	of	doing	a	lot	but	not
effectively	communicating	with	each	other.	In	other	words,	if	you	have	two	processes
occupying	the	same	processing	time	and	sharing	the	same	memory	and	data,	you	must
have	a	way	of	knowing	which	process	is	in	which	place	as	part	of	a	larger	task.

Take,	for	example,	an	application	that	must	loop	through	one	paragraph	of	Lorem	Ipsum
and	capitalize	each	letter,	then	write	the	result	to	a	file.	Of	course,	we	will	not	really	need
a	concurrent	application	to	do	this	(and	in	fact,	it’s	an	endemic	function	of	almost	any
language	that	handles	strings),	but	it’s	a	quick	way	to	demonstrate	the	potential	limitations
of	isolated	goroutines.	Shortly,	we’ll	turn	this	primitive	example	into	something	more
practical,	but	for	now,	here’s	the	beginning	of	our	capitalization	example:

package	main

import	(

		"fmt"

		"runtime"

		"strings"

)

var	loremIpsum	string

var	finalIpsum	string

var	letterSentChan	chan	string

func	deliverToFinal(letter	string,	finalIpsum	*string)	{

		*finalIpsum	+=	letter

}

func	capitalize(current	*int,	length	int,	letters	[]byte,	

		finalIpsum	*string)	{

		for	*current	<	length	{

				thisLetter	:=	strings.ToUpper(string(letters[*current]))

				deliverToFinal(thisLetter,	finalIpsum)

				*current++

		}

}

func	main()	{

		runtime.GOMAXPROCS(2)

		index	:=	new(int)

		*index	=	0

		loremIpsum	=	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	

		elit.	Vestibulum	venenatis	magna	eget	libero	tincidunt,	ac	

		condimentum	enim	auctor.	Integer	mauris	arcu,	dignissim	sit	amet	

		convallis	vitae,	ornare	vel	odio.	Phasellus	in	lectus	risus.	Ut	

		sodales	vehicula	ligula	eu	ultricies.	Fusce	vulputate	fringilla	

		eros	at	congue.	Nulla	tempor	neque	enim,	non	malesuada	arcu	

		laoreet	quis.	Aliquam	eget	magna	metus.	Vivamus	lacinia	

		venenatis	dolor,	blandit	faucibus	mi	iaculis	quis.	Vestibulum	



		sit	amet	feugiat	ante,	eu	porta	justo."

		letters	:=	[]byte(loremIpsum)

		length	:=	len(letters)

		go	capitalize(index,	length,	letters,	&finalIpsum)

		go	func()	{

				go	capitalize(index,	length,	letters,	&finalIpsum)

		}()

		fmt.Println(length,	"	characters.")

		fmt.Println(loremIpsum)

		fmt.Println(*index)

		fmt.Println(finalIpsum)

}

If	we	run	this	with	some	degree	of	parallelism	here	but	no	communication	between	our
goroutines,	we’ll	end	up	with	a	jumbled	mess	of	text,	as	shown	in	the	following
screenshot:

Due	to	the	demonstrated	unpredictability	of	concurrent	scheduling	in	Go,	it	may	take
many	iterations	to	get	this	exact	output.	In	fact,	you	may	never	get	the	exact	output.

This	won’t	do,	obviously.	So	how	do	we	best	structure	this	application?	The	missing	piece
here	is	synchronization,	but	we	could	also	do	with	a	better	design	pattern.

Here’s	another	way	to	break	this	problem	down	into	pieces.	Instead	of	having	two
processes	handling	the	same	thing	in	parallel,	which	is	rife	with	risk,	let’s	have	one
process	that	takes	a	letter	from	the	loremIpsum	string	and	capitalizes	it,	and	then	pass	it
onto	another	process	to	add	it	to	our	finalIpsum	string.

You	can	envision	this	as	two	people	sitting	at	two	desks,	each	with	a	stack	of	letters.
Person	A	is	responsible	to	take	a	letter	and	capitalize	it.	He	then	passes	the	letter	onto
person	B,	who	then	adds	it	to	the	finalIpsum	stack.	To	do	this,	we’ll	implement	a	channel
in	our	code	in	an	application	tasked	with	taking	text	(in	this	case,	the	first	line	of	Abraham



Lincoln’s	Gettysburg	address)	and	capitalizing	each	letter.



Channel-based	sorting	at	the	letter	capitalization
factory
Let’s	take	the	last	example	and	do	something	(slightly)	more	purposeful	by	attempting	to
capitalize	the	preamble	of	Abraham	Lincoln’s	Gettysburg	address	while	mitigating	the
sometimes	unpredictable	effect	of	concurrency	in	Go,	as	shown	in	the	following	code:

package	main

import(

		"fmt"

		"sync"

		"runtime"

		"strings"

)

var	initialString	string

var	finalString	string

var	stringLength	int

func	addToFinalStack(letterChannel	chan	string,	wg	

		*sync.WaitGroup)	{

		letter	:=	<-letterChannel

		finalString	+=	letter

		wg.Done()

}

func	capitalize(letterChannel	chan	string,	currentLetter	string,	

		wg	*sync.WaitGroup)	{

		thisLetter	:=	strings.ToUpper(currentLetter)

		wg.Done()

		letterChannel	<-	thisLetter		

}

func	main()	{

		runtime.GOMAXPROCS(2)

		var	wg	sync.WaitGroup

		initialString	=	"Four	score	and	seven	years	ago	our	fathers	

		brought	forth	on	this	continent,	a	new	nation,	conceived	in	

		Liberty,	and	dedicated	to	the	proposition	that	all	men	are	

		created	equal."

		initialBytes	:=	[]byte(initialString)

		var	letterChannel	chan	string	=	make(chan	string)

		stringLength	=	len(initialBytes)



		for	i	:=	0;	i	<	stringLength;	i++	{

				wg.Add(2)

				go	capitalize(letterChannel,	string(initialBytes[i]),	&wg)

				go	addToFinalStack(letterChannel,	&wg)

				wg.Wait()

		}

		fmt.Println(finalString)

}

You’ll	note	that	we	even	bumped	this	up	to	a	duo-core	process	and	ended	up	with	the
following	output:

go	run	alpha-channel.go

FOUR	SCORE	AND	SEVEN	YEARS	AGO	OUR	FATHERS	BROUGHT	FORTH	ON	THIS	

		CONTINENT,	A	NEW	NATION,	CONCEIVED	IN	LIBERTY,	AND	DEDICATED	TO	THE	

		PROPOSITION	THAT	ALL	MEN	ARE	CREATED	EQUAL.

The	output	is	just	as	we	expected.	It’s	worth	reiterating	that	this	example	is	overkill	of	the
most	extreme	kind,	but	we’ll	parlay	this	functionality	into	a	usable	practical	application
shortly.

So	what’s	happening	here?	First,	we	reimplemented	the	sync.WaitGroup	struct	to	allow
all	of	our	concurrent	code	to	execute	while	keeping	the	main	thread	alive,	as	shown	in	the
following	code	snippet:

var	wg	sync.WaitGroup…

for	i	:=	0;	i	<	stringLength;	i++	{

		wg.Add(2)

		go	capitalize(letterChannel,	string(initialBytes[i]),	&wg)

		go	addToFinalStack(letterChannel,	&wg)

		wg.Wait()

}

We	allow	each	goroutine	to	tell	the	WaitGroup	struct	that	we’re	done	with	the	step.	As	we
have	two	goroutines,	we	queue	two	Add()	methods	to	the	WaitGroup	struct.	Each
goroutine	is	responsible	to	announce	that	it’s	done.

Next,	we	created	our	first	channel.	We	instantiate	a	channel	with	the	following	line	of
code:

		var	letterChannel	chan	string	=	make(chan	string)

This	tells	Go	that	we	have	a	channel	that	will	send	and	receive	a	string	to	various
procedures/goroutines.	This	is	essentially	the	manager	of	all	of	the	goroutines.	It	is	also
responsible	to	send	and	receive	data	to	goroutines	and	manage	the	order	of	execution.	As
we	mentioned	earlier,	the	ability	of	channels	to	operate	with	internal	context	switching	and



without	reliance	on	multithreading	permits	them	to	operate	very	quickly.

There	is	a	built-in	limit	to	this	functionality.	If	you	design	non-concurrent	or	blocking
code,	you	will	effectively	remove	concurrency	from	goroutines.	We	will	talk	more	about
this	shortly.

We	run	two	separate	goroutines	through	letterChannel:	capitalize()	and
addToFinalStack().	The	first	one	simply	takes	a	single	byte	from	a	byte	array
constructed	from	our	string	and	capitalizes	it.	It	then	returns	the	byte	to	the	channel	as
shown	in	the	following	line	of	code:

letterChannel	<-	thisLetter

All	communication	across	a	channel	happens	in	this	fashion.	The	<-	symbol	syntactically
tells	us	that	data	will	be	sent	back	to	(or	back	through)	a	channel.	It’s	never	necessary	to
do	anything	with	this	data,	but	the	most	important	thing	to	know	is	that	a	channel	can	be
blocking,	at	least	per	thread,	until	it	receives	data	back.	You	can	test	this	by	creating	a
channel	and	then	doing	absolutely	nothing	of	value	with	it,	as	shown	in	the	following	code
snippet:

package	main

func	doNothing()(string)	{

		return	"nothing"

}

func	main()	{

		

		var	channel	chan	string	=	make(chan	string)

		channel	<-	doNothing()

}

As	nothing	is	sent	along	the	channel	and	no	goroutine	is	instantiated,	this	results	in	a
deadlock.	You	can	fix	this	easily	by	creating	a	goroutine	and	by	bringing	the	channel	into
the	global	space	by	creating	it	outside	of	main().

Note
For	the	sake	of	clarity,	our	example	here	uses	a	local	scope	channel.	Keeping	these	global
whenever	possible	removes	a	lot	of	cruft,	particularly	if	you	have	a	lot	of	goroutines,	as
references	to	the	channel	can	clutter	up	your	code	in	a	hurry.

For	our	example	as	a	whole,	you	can	look	at	it	as	is	shown	in	the	following	figure:





Cleaning	up	our	goroutines
You	may	be	wondering	why	we	need	a	WaitGroup	struct	when	using	channels.	After	all,
didn’t	we	say	that	a	channel	gets	blocked	until	it	receives	data?	This	is	true,	but	it	requires
one	other	piece	of	syntax.

A	nil	or	uninitialized	channel	will	always	get	blocked.	We	will	discuss	the	potential	uses
and	pitfalls	of	this	in	Chapter	7,	Performance	and	Scalability,	and	Chapter	10,	Advanced
Concurrency	and	Best	Practices.

You	have	the	ability	to	dictate	how	a	channel	blocks	the	application	based	on	a	second
option	to	the	make	command	by	dictating	the	channel	buffer.

Buffered	or	unbuffered	channels
By	default,	channels	are	unbuffered,	which	means	they	will	accept	anything	sent	on	them
if	there	is	a	channel	ready	to	receive.	It	also	means	that	every	channel	call	will	block	the
execution	of	the	application.	By	providing	a	buffer,	the	channel	will	only	block	the
application	when	many	returns	have	been	sent.

A	buffered	channel	is	synchronous.	To	guarantee	asynchronous	performance,	you’ll	want
to	experiment	by	providing	a	buffer	length.	We’ll	look	at	ways	to	ensure	our	execution
falls	as	we	expect	in	the	next	chapter.

Note
Go’s	channel	system	is	based	on	Communicating	Sequential	Processes	(CSP),	a	formal
language	to	design	concurrent	patterns	and	multiprocessing.	You	will	likely	encounter
CSP	on	its	own	when	people	describe	goroutines	and	channels.



Using	the	select	statement
One	of	the	issues	with	first	implementing	channels	is	that	whereas	goroutines	were
formerly	the	method	of	simplistic	and	concurrent	execution	of	code,	we	now	have	a
single-purpose	channel	that	dictates	application	logic	across	the	goroutines.	Sure,	the
channel	is	the	traffic	manager,	but	it	never	knows	when	traffic	is	coming,	when	it’s	no
longer	coming,	and	when	to	go	home,	unless	being	explicitly	told.	It	waits	passively	for
communication	and	can	cause	problems	if	it	never	receives	any.

Go	has	a	select	control	mechanism,	which	works	just	as	effectively	as	a	switch	statement
does,	but	on	channel	communication	instead	of	variable	values.	A	switch	statement
modifies	execution	based	on	the	value	of	a	variable,	and	select	reacts	to	actions	and
communication	across	a	channel.	You	can	use	this	to	orchestrate	and	arrange	the	control
flow	of	your	application.	The	following	code	snippet	is	our	traditional	switch,	familiar	to
Go	users	and	common	among	other	languages:

switch	{

		

		case	'x':

		case	'y':

}

The	following	code	snippet	represents	the	select	statement:

select	{

		

		case	<-	channelA:

		case	<-	channelB:

}

In	a	switch	statement,	the	right-hand	expression	represents	a	value;	in	select,	it
represents	a	receive	operation	on	a	channel.	A	select	statement	will	block	the	application
until	some	information	is	sent	along	the	channel.	If	nothing	is	sent	ever,	the	application
deadlocks	and	you’ll	get	an	error	to	that	effect.

If	two	receive	operations	are	sent	at	the	same	time	(or	if	two	cases	are	otherwise	met),	Go
will	evaluate	them	in	an	unpredictable	fashion.

So,	how	might	this	be	useful?	Let’s	look	at	a	modified	version	of	the	letter	capitalization
application’s	main	function:

package	main

import(

		"fmt"		

		"strings"

)

var	initialString	string



var	initialBytes	[]byte

var	stringLength	int

var	finalString	string

var	lettersProcessed	int

var	applicationStatus	bool

var	wg	sync.WaitGroup

func	getLetters(gQ	chan	string)	{

		for	i	:=	range	initialBytes	{

				gQ	<-	string(initialBytes[i])		

		}

}

func	capitalizeLetters(gQ	chan	string,	sQ	chan	string)	{

		for	{

				if	lettersProcessed	>=	stringLength	{

						applicationStatus	=	false

						break

				}

				select	{

						case	letter	:=	<-	gQ:

								capitalLetter	:=	strings.ToUpper(letter)

								finalString	+=	capitalLetter

								lettersProcessed++

				}

		}

}

func	main()	{

		applicationStatus	=	true;

		getQueue	:=	make(chan	string)

		stackQueue	:=	make(chan	string)

		initialString	=	"Four	score	and	seven	years	ago	our	fathers	brought	forth	

on	this	continent,	a	new	nation,	conceived	in	Liberty,	and	dedicated	to	the	

proposition	that	all	men	are	created	equal."

		initialBytes	=	[]byte(initialString)

		stringLength	=	len(initialString)

		lettersProcessed	=	0

		fmt.Println("Let's	start	capitalizing")

		go	getLetters(getQueue)

		capitalizeLetters(getQueue,stackQueue)

		close(getQueue)

		close(stackQueue)

		for	{



				if	applicationStatus	==	false	{

						fmt.Println("Done")

						fmt.Println(finalString)

						break

				}

		}

}

The	primary	difference	here	is	we	now	have	a	channel	that	listens	for	data	across	two
functions	running	concurrently,	getLetters	and	capitalizeLetters.	At	the	bottom,
you’ll	see	a	for{}	loop	that	keeps	the	main	active	until	the	applicationStatus	variable	is
set	to	false.	In	the	following	code,	we	pass	each	of	these	bytes	as	a	string	through	the	Go
channel:

func	getLetters(gQ	chan	string)	{

		for	i	:=	range	initialBytes	{

				gQ	<-	string(initialBytes[i])		

		}

}

The	getLetters	function	is	our	primary	goroutine	that	fetches	individual	letters	from	the
byte	array	constructed	from	Lincoln’s	line.	As	the	function	iterates	through	each	byte,	it
sends	the	letter	through	the	getQueue	channel.

On	the	receiving	end,	we	have	capitalizeLetters	that	takes	each	letter	as	it’s	sent	across
the	channel,	capitalizes	it,	and	appends	to	our	finalString	variable.	Let’s	take	a	look	at
this:

func	capitalizeLetters(gQ	chan	string,	sQ	chan	string)	{

		for	{

				if	lettersProcessed	>=	stringLength	{

						applicationStatus	=	false

						break

				}

				select	{

						case	letter	:=	<-	gQ:

								capitalLetter	:=	strings.ToUpper(letter)

								finalString	+=	capitalLetter

								lettersProcessed++

				}

		}

}

It’s	critical	that	all	channels	are	closed	at	some	point	or	our	application	will	hit	a	deadlock.
If	we	never	break	the	for	loop	here,	our	channel	will	be	left	waiting	to	receive	from	a
concurrent	process,	and	the	program	will	deadlock.	We	manually	check	to	see	that	we’ve
capitalized	all	letters	and	only	then	break	the	loop.





Closures	and	goroutines
You	may	have	noticed	the	anonymous	goroutine	in	Lorem	Ipsum:

		go	func()	{

				go	capitalize(index,	length,	letters,	&finalIpsum)

		}()

While	it	isn’t	always	ideal,	there	are	plenty	of	places	where	inline	functions	work	best	in
creating	a	goroutine.

The	easiest	way	to	describe	this	is	to	say	that	a	function	isn’t	big	or	important	enough	to
deserve	a	named	function,	but	the	truth	is,	it’s	more	about	readability.	If	you	have	dealt
with	lambdas	in	other	languages,	this	probably	doesn’t	need	much	explanation,	but	try	to
reserve	these	for	quick	inline	functions.

In	the	earlier	examples,	the	closure	works	largely	as	a	wrapper	to	invoke	a	select
statement	or	to	create	anonymous	goroutines	that	will	feed	the	select	statement.

Since	functions	are	first-class	citizens	in	Go,	not	only	can	you	utilize	inline	or	anonymous
functions	directly	in	your	code,	but	you	can	also	pass	them	to	and	from	other	functions.

Here’s	an	example	that	passes	a	function’s	result	as	a	return	value,	keeping	the	state
resolute	outside	of	that	returned	function.	In	this,	we’ll	return	a	function	as	a	variable	and
iterate	initial	values	on	the	returned	function.	The	initial	argument	will	accept	a	string	that
will	be	trimmed	by	word	length	with	each	successive	call	of	the	returned	function.

import(

		"fmt"

		"strings"

)

func	shortenString(message	string)	func()	string	{

		

		return	func()	string	{

				messageSlice	:=	strings.Split(message,"	")

				wordLength	:=	len(messageSlice)

				if	wordLength	<	1	{

						return	"Nothingn	Left!"

				}else	{

						messageSlice	=	messageSlice[:(wordLength-1)]

						message	=	strings.Join(messageSlice,	"	")

						return	message

				}

		}

}

func	main()	{

		

		myString	:=	shortenString("Welcome	to	concurrency	in	Go!	...")

		fmt.Println(myString())

		fmt.Println(myString())		

		fmt.Println(myString())		



		fmt.Println(myString())		

		fmt.Println(myString())		

		fmt.Println(myString())

}

Once	initialized	and	returned,	we	set	the	message	variable,	and	each	successive	run	of	the
returned	method	iterates	on	that	value.	This	functionality	allows	us	to	eschew	running	a
function	multiple	times	on	returned	values	or	loop	unnecessarily	when	we	can	very
cleanly	handle	this	with	a	closure	as	shown.





Building	a	web	spider	using	goroutines
and	channels
Let’s	take	the	largely	useless	capitalization	application	and	do	something	practical	with	it.
Here,	our	goal	is	to	build	a	rudimentary	spider.	In	doing	so,	we’ll	accomplish	the
following	tasks:

Read	five	URLs
Read	those	URLs	and	save	the	contents	to	a	string
Write	that	string	to	a	file	when	all	URLs	have	been	scanned	and	read

These	kinds	of	applications	are	written	every	day,	and	they’re	the	ones	that	benefit	the
most	from	concurrency	and	non-blocking	code.

It	probably	goes	without	saying,	but	this	is	not	a	particularly	elegant	web	scraper.	For
starters,	it	only	knows	a	few	start	points—the	five	URLs	that	we	supply	it.	Also,	it’s
neither	recursive	nor	is	it	thread-safe	in	terms	of	data	integrity.

That	said,	the	following	code	works	and	demonstrates	how	we	can	use	channels	and	the
select	statements:

package	main

import(

		"fmt"

		"io/ioutil"

		"net/http"

		"time"

)

var	applicationStatus	bool

var	urls	[]string

var	urlsProcessed	int

var	foundUrls	[]string

var	fullText	string

var	totalURLCount	int

var	wg	sync.WaitGroup

var	v1	int

First,	we	have	our	most	basic	global	variables	that	we’ll	use	for	the	application	state.	The
applicationStatus	variable	tells	us	that	our	spider	process	has	begun	and	urls	is	our
slice	of	simple	string	URLs.	The	rest	are	idiomatic	data	storage	variables	and/or
application	flow	mechanisms.	The	following	code	snippet	is	our	function	to	read	the
URLs	and	pass	them	across	the	channel:

func	readURLs(statusChannel	chan	int,	textChannel	chan	string)	{

		time.Sleep(time.Millisecond	*	1)

		fmt.Println("Grabbing",	len(urls),	"urls")

		for	i	:=	0;	i	<	totalURLCount;	i++	{



				fmt.Println("Url",	i,	urls[i])

				resp,	_	:=	http.Get(urls[i])

				text,	err	:=	ioutil.ReadAll(resp.Body)

				textChannel	<-	string(text)

				if	err	!=	nil	{

						fmt.Println("No	HTML	body")

				}

				statusChannel	<-	0

		}

}

The	readURLs	function	assumes	statusChannel	and	textChannel	for	communication	and
loops	through	the	urls	variable	slice,	returning	the	text	on	textChannel	and	a	simple	ping
on	statusChannel.	Next,	let’s	look	at	the	function	that	will	append	scraped	text	to	the	full
text:

func	addToScrapedText(textChannel	chan	string,	processChannel	chan	bool)	{

		for	{

				select	{

				case	pC	:=	<-processChannel:

						if	pC	==	true	{

								//	hang	on

						}

						if	pC	==	false	{

								close(textChannel)

								close(processChannel)

						}

				case	tC	:=	<-textChannel:

						fullText	+=	tC

				}

		}

}

We	use	the	addToScrapedText	function	to	accumulate	processed	text	and	add	it	to	a
master	text	string.	We	also	close	our	two	primary	channels	when	we	get	a	kill	signal	on
our	processChannel.	Let’s	take	a	look	at	the	evaluateStatus()	function:

func	evaluateStatus(statusChannel	chan	int,	textChannel	chan	string,	

processChannel	chan	bool)	{

		for	{

				select	{

				case	status	:=	<-statusChannel:



						fmt.Print(urlsProcessed,	totalURLCount)

						urlsProcessed++

						if	status	==	0	{

								fmt.Println("Got	url")

						}

						if	status	==	1	{

								close(statusChannel)

						}

						if	urlsProcessed	==	totalURLCount	{

								fmt.Println("Read	all	top-level	URLs")

								processChannel	<-	false

								applicationStatus	=	false

						}

				}

		}

}

At	this	juncture,	all	that	the	evaluateStatus	function	does	is	determine	what’s	happening
in	the	overall	scope	of	the	application.	When	we	send	a	0	(our	aforementioned	ping)
through	this	channel,	we	increment	our	urlsProcessed	variable.	When	we	send	a	1,	it’s	a
message	that	we	can	close	the	channel.	Finally,	let’s	look	at	the	main	function:

func	main()	{

		applicationStatus	=	true

		statusChannel	:=	make(chan	int)

		textChannel	:=	make(chan	string)

		processChannel	:=	make(chan	bool)

		totalURLCount	=	0

		urls	=	append(urls,	"http://www.mastergoco.com/index1.html")

		urls	=	append(urls,	"http://www.mastergoco.com/index2.html")

		urls	=	append(urls,	"http://www.mastergoco.com/index3.html")

		urls	=	append(urls,	"http://www.mastergoco.com/index4.html")

		urls	=	append(urls,	"http://www.mastergoco.com/index5.html")

		fmt.Println("Starting	spider")

		urlsProcessed	=	0

		totalURLCount	=	len(urls)

		go	evaluateStatus(statusChannel,	textChannel,	processChannel)

		go	readURLs(statusChannel,	textChannel)

		go	addToScrapedText(textChannel,	processChannel)

		for	{

				if	applicationStatus	==	false	{

						fmt.Println(fullText)

						fmt.Println("Done!")



						break

				}

				select	{

				case	sC	:=	<-statusChannel:

						fmt.Println("Message	on	StatusChannel",	sC)

				}

		}

}

This	is	a	basic	extrapolation	of	our	last	function,	the	capitalization	function.	However,
each	piece	here	is	responsible	for	some	aspect	of	reading	URLs	or	appending	its
respective	content	to	a	larger	variable.

In	the	following	code,	we	created	a	sort	of	master	loop	that	lets	you	know	when	a	URL
has	been	grabbed	on	statusChannel:

		for	{

				if	applicationStatus	==	false	{

						fmt.Println(fullText)

						fmt.Println("Done!")

						break

				}

				select	{

						case	sC	:=	<-	statusChannel:

								fmt.Println("Message	on	StatusChannel",sC)

				}

		}

Often,	you’ll	see	this	wrapped	in	go	func()	as	part	of	a	WaitGroup	struct,	or	not	wrapped
at	all	(depending	on	the	type	of	feedback	you	require).

The	control	flow,	in	this	case,	is	evaluateStatus,	which	works	as	a	channel	monitor	that
lets	us	know	when	data	crosses	each	channel	and	ends	execution	when	it’s	complete.	The
readURLs	function	immediately	begins	reading	our	URLs,	extracting	the	underlying	data
and	passing	it	on	to	textChannel.	At	this	point,	our	addToScrapedText	function	takes
each	sent	HTML	file	and	appends	it	to	the	fullText	variable.	When	evaluateStatus
determines	that	all	URLs	have	been	read,	it	sets	applicationStatus	to	false.	At	this
point,	the	infinite	loop	at	the	bottom	of	main()	quits.

As	mentioned,	a	crawler	cannot	come	more	rudimentary	than	this,	but	seeing	a	real-world
example	of	how	goroutines	can	work	in	congress	will	set	us	up	for	safer	and	more
complex	examples	in	the	coming	chapters.





Summary
In	this	chapter,	we	learned	how	to	go	from	simple	goroutines	and	instantiating	channels	to
extending	the	basic	functionality	of	goroutines	and	allowing	cross-channel,	bidirectional
communication	within	concurrent	processes.	We	looked	at	new	ways	to	create	blocking
code	to	prevent	our	main	process	from	ending	before	our	goroutines.	Finally,	we	learned
about	using	select	statements	to	develop	reactive	channels	that	are	silent	unless	data	is	sent
along	a	channel.

In	our	rudimentary	web	spider	example,	we	employed	these	concepts	together	to	create	a
safe,	lightweight	process	that	could	extract	all	links	from	an	array	of	URLs,	grab	the
content	via	HTTP,	and	store	the	resulting	response.

In	the	next	chapter,	we’ll	go	beneath	the	surface	to	see	how	Go’s	internal	scheduling
manages	concurrency	and	start	using	channels	to	really	utilize	the	power,	thrift,	and	speed
of	concurrency	in	Go.





Chapter	2.	Understanding	the
Concurrency	Model
Now	that	we	have	a	sense	of	what	Go	is	capable	of	and	how	to	test	drive	some
concurrency	models,	we	need	to	look	deeper	into	Go’s	most	powerful	features	to
understand	how	to	best	utilize	various	concurrent	tools	and	models.

We	played	with	some	general	and	basic	goroutines	to	see	how	we	can	run	concurrent
processes,	but	we	need	to	see	how	Go	manages	scheduling	in	concurrency	before	we	get
to	communication	between	channels.



Understanding	the	working	of	goroutines
By	this	point,	you	should	be	well-versed	in	what	goroutines	do,	but	it’s	worth
understanding	how	they	work	internally	in	Go.	Go	handles	concurrency	with	cooperative
scheduling,	which,	as	we	mentioned	in	the	previous	chapter,	is	heavily	dependent	on	some
form	of	blocking	code.

The	most	common	alternative	to	cooperative	scheduling	is	preemptive	scheduling,
wherein	each	subprocess	is	granted	a	space	of	time	to	complete	and	then	its	execution	is
paused	for	the	next.

Without	some	form	of	yielding	back	to	the	main	thread,	execution	runs	into	issues.	This	is
because	Go	works	with	a	single	process,	working	as	a	conductor	for	an	orchestra	of
goroutines.	Each	subprocess	is	responsible	to	announce	its	own	completion.	As	compared
to	other	concurrency	models,	some	of	which	allow	for	direct,	named	communication,	this
might	pose	a	sticking	point,	particularly	if	you	haven’t	worked	with	channels	before.

You	can	probably	see	a	potential	for	deadlocks	given	these	facts.	In	this	chapter,	we’ll
discuss	both	the	ways	Go’s	design	allows	us	to	manage	this	and	the	methods	to	mitigate
issues	in	applications	wherein	it	fails.





Synchronous	versus	asynchronous
goroutines
Understanding	the	concurrency	model	is	sometimes	an	early	pain	point	for	programmers
—not	just	for	Go,	but	across	languages	that	use	different	models	as	well.	Part	of	this	is	due
to	operating	in	a	black	box	(depending	on	your	terminal	preferences);	a	developer	has	to
rely	on	logging	or	errors	with	data	consistency	to	discern	asynchronous	and/or	multiple
core	timing	issues.

As	the	concepts	of	synchronous	and	asynchronous	or	concurrent	and	nonconcurrent	tasks
can	sometimes	be	a	bit	abstract,	we	will	have	a	bit	of	fun	here	in	an	effort	to	demonstrate
all	the	concepts	we’ve	covered	so	far	in	a	visual	way.

There	are,	of	course,	a	myriad	of	ways	to	address	feedback	and	logging.	You	can	write	to
files	in	console/terminal/stdout…,	most	of	which	are	inherently	linear	in	nature.	There
is	no	concise	way	to	represent	concurrency	in	a	logfile.	Given	this	and	the	fact	that	we
deal	with	an	emerging	language	with	a	focus	on	servers,	let’s	take	a	different	angle.

Instead	of	simply	outputting	to	a	file,	we’ll	create	a	visual	feedback	that	shows	when	a
process	starts	and	stops	on	a	timeline.



Designing	the	web	server	plan
To	show	how	approaches	differ,	we’ll	create	a	simple	web	server	that	loops	through	three
trivial	tasks	and	outputs	their	execution	marks	on	an	X-second	timeline.	We’ll	do	this
using	a	third-party	library	called	svgo	and	the	built-in	http	package	for	Go.

To	start,	let’s	grab	the	svgo	library	via	go	get:

go	get	github.com/ajstarks/svgo

If	you	try	to	install	a	package	via	the	go	get	command	and	get	an	error	about	$GOPATH	not
being	set,	you	need	to	set	that	environment	variable.	GOPATH	is	where	Go	will	look	to	find
installed	import	packages.

To	set	this	in	Linux	(or	Mac),	type	the	following	in	bash	(or	Terminal):

export	GOPATH=/usr/yourpathhere

This	path	is	up	to	you,	so	pick	a	place	where	you’re	most	comfortable	storing	your	Go
packages.

To	ensure	it’s	globally	accessible,	install	it	where	your	Go	binary	is	installed.

On	Windows,	you	can	right-click	on	My	Computer	and	navigate	to	Properties	|
Advanced	system	settings	|	Environment	Variables…,	as	shown	in	the	following
screenshot:

Here,	you’ll	need	to	create	a	new	variable	called	GOPATH.	As	with	the	Linux	and	Mac
instructions,	this	can	either	be	your	Go	language	root	directory	or	someplace	else	entirely.
In	this	example,	we’ve	used	C:\Go,	as	shown	in	the	following	screenshot:



Note
Note	that	after	taking	these	steps,	you	may	need	to	reopen	the	Terminal,	Command
Prompt,	or	bash	sessions	before	the	value	is	read	as	valid.	On	*nix	systems,	you	can	log	in
and	log	out	to	initiate	this.

Now	that	we	have	installed	gosvg,	we	can	visually	demonstrate	how	the	asynchronous	and
synchronous	processes	will	look	side-by-side	as	well	as	with	multiple	processors.

Note
More	libraries

Why	SVG?	We	didn’t	need	to	use	SVG	and	a	web	server,	of	course,	and	if	you’d	rather
see	an	image	generated	and	open	that	separately,	there	are	other	alternatives	to	do	so.
There	are	some	additional	graphical	libraries	available	for	Go,	which	are	as	follows:

draw2d:	As	the	name	suggests,	this	is	a	two-dimensional	drawing	library	for	doing
vector-style	and	raster	graphics,	which	can	be	found	at
https://code.google.com/p/draw2d/.
graphics-go:	This	project	involves	some	members	of	the	Go	team	itself.	It’s	fairly
limited	in	scope.	You	can	find	more	about	it	at	https://code.google.com/p/graphics-
go/.
go:ngine:	This	is	one	of	the	few	OpenGL	implementations	for	Go.	It	can	be	overkill
for	this	project,	but	if	you	find	yourself	in	need	of	a	three-dimensional	graphics
library,	start	at	http://go-ngine.com/.
Go-SDL:	Another	possible	overkill	method,	this	is	an	implementation	of	the
wonderful	multimedia	library	SDL.	You	can	find	more	about	it	at
https://github.com/banthar/Go-SDL.

Robust	GUI	toolkits	are	also	available,	but	as	they	were	designed	as	systems	languages,	it
isn’t	really	Go’s	forte.

https://code.google.com/p/draw2d/
https://code.google.com/p/graphics-go/
http://go-ngine.com/
https://github.com/banthar/Go-SDL




Visualizing	concurrency
Our	first	attempt	at	visualizing	concurrency	will	have	two	simple	goroutines	running	the
drawPoint	function	in	a	loop	with	100	iterations.	After	running	this,	you	can	visit
localhost:1900/visualize	and	see	what	concurrent	goroutines	look	like.

If	you	run	into	problems	with	port	1900	(either	with	your	firewall	or	through	a	port
conflict),	feel	free	to	change	the	value	on	line	99	in	the	main()	function.	You	may	also
need	to	access	it	through	127.0.0.1	if	your	system	doesn’t	resolve	localhost.

Note	that	we’re	not	using	WaitGroup	or	anything	to	manage	the	end	of	the	goroutines
because	all	we	want	to	see	is	a	visual	representation	of	our	code	running.	You	can	also
handle	this	with	a	specific	blocking	code	or	runtime.Gosched(),	as	shown:

package	main

import	(

				"github.com/ajstarks/svgo"

				"net/http"

				"fmt"

				"log"

				"time"

				"strconv"

)

var	width	=	800

var	height	=	400

var	startTime	=	time.Now().UnixNano()

func	drawPoint(osvg	*svg.SVG,	pnt	int,	process	int)	{

		sec	:=	time.Now().UnixNano()

		diff	:=	(	int64(sec)	-	int64(startTime)	)	/	100000

		pointLocation	:=	0

		

		pointLocation	=	int(diff)

		pointLocationV	:=	0

		color	:=	"#000000"

		switch	{

				case	process	==	1:

						pointLocationV	=	60

						color	=	"#cc6666"

				default:

						pointLocationV	=	180

						color	=	"#66cc66"

		}

		osvg.Rect(pointLocation,pointLocationV,3,5,"fill:"+color+";stroke:

		none;")

		time.Sleep(150	*	time.Millisecond)

}



func	visualize(rw	http.ResponseWriter,	req	*http.Request)	{

		startTime	=	time.Now().UnixNano()

		fmt.Println("Request	to	/visualize")

		rw.Header().Set("Content-Type",	"image/svg+xml")

		

		outputSVG	:=	svg.New(rw)

		outputSVG.Start(width,	height)

		outputSVG.Rect(10,	10,	780,	100,	"fill:#eeeeee;stroke:none")

		outputSVG.Text(20,	30,	"Process	1	Timeline",	"text-

				anchor:start;font-size:12px;fill:#333333")

		outputSVG.Rect(10,	130,	780,	100,	"fill:#eeeeee;stroke:none")				

		outputSVG.Text(20,	150,	"Process	2	Timeline",	"text-

				anchor:start;font-size:12px;fill:#333333")		

		for	i:=	0;	i	<	801;	i++	{

				timeText	:=	strconv.FormatInt(int64(i),10)

				if	i	%	100	==	0	{

						outputSVG.Text(i,380,timeText,"text-anchor:middle;font-

								size:10px;fill:#000000")						

				}else	if	i	%	4	==	0	{

						outputSVG.Circle(i,377,1,"fill:#cccccc;stroke:none")		

				}

				if	i	%	10	==	0	{

						outputSVG.Rect(i,0,1,400,"fill:#dddddd")

				}

				if	i	%	50	==	0	{

						outputSVG.Rect(i,0,1,400,"fill:#cccccc")

				}

		

		}

		for	i	:=	0;	i	<	100;	i++	{

				go	drawPoint(outputSVG,i,1)

				drawPoint(outputSVG,i,2)				

		}

		outputSVG.Text(650,	360,	"Run	without	goroutines",	"text-

				anchor:start;font-size:12px;fill:#333333")						

		outputSVG.End()

}

func	main()	{

		http.Handle("/visualize",	http.HandlerFunc(visualize))

				err	:=	http.ListenAndServe(":1900",	nil)

				if	err	!=	nil	{

								log.Fatal("ListenAndServe:",	err)

				}		

}

When	you	go	to	localhost:1900/visualize,	you	should	see	something	like	the



following	screenshot:

As	you	can	see,	everything	is	definitely	running	concurrently—our	briefly	sleeping
goroutines	hit	on	the	timeline	at	the	same	moment.	By	simply	forcing	the	goroutines	to
run	in	a	serial	fashion,	you’ll	see	a	predictable	change	in	this	behavior.	Remove	the
goroutine	call	on	line	73,	as	shown:

				drawPoint(outputSVG,i,1)

				drawPoint(outputSVG,i,2)		

To	keep	our	demonstration	clean,	change	line	77	to	indicate	that	there	are	no	goroutines	as
follows:

outputSVG.Text(650,	360,	"Run	with	goroutines",	"text-

		anchor:start;font-size:12px;fill:#333333")		

If	we	stop	our	server	and	restart	with	go	run,	we	should	see	something	like	the	following
screenshot:



Now,	each	process	waits	for	the	previous	process	to	complete	before	beginning.	You	can
actually	add	this	sort	of	feedback	to	any	application	if	you	run	into	problems	with	syncing
data,	channels,	and	processes.

If	we	so	desired,	we	could	add	some	channels	and	show	communication	across	them	as
represented.	Later,	we	will	design	a	self-diagnosing	server	that	gives	real-time	analytics
about	the	state	and	status	of	the	server,	requests,	and	channels.

If	we	turn	the	goroutine	back	on	and	increase	our	maximum	available	processors,	we’ll
see	something	similar	to	the	following	screenshot,	which	is	not	exactly	the	same	as	our
first	screenshot:



Your	mileage	will	obviously	vary	depending	on	server	speeds,	the	number	of	processors,
and	so	on.	But	in	this	case,	our	change	here	resulted	in	a	faster	total	execution	time	for	our
two	processes	with	intermittent	sleeps.	This	should	come	as	no	surprise,	given	we	have
essentially	twice	the	bandwidth	available	to	complete	the	two	tasks.





RSS	in	action
Let’s	take	the	concept	of	Rich	Site	Summary	/	Really	Simple	Syndication	(RSS)	and
inject	some	real	potential	delays	to	identify	where	we	can	best	utilize	goroutines	in	an
effort	to	speed	up	execution	and	prevent	blocking	code.	One	common	way	to	bring	real-
life,	potentially	blocking	application	elements	into	your	code	is	to	use	something
involving	network	transmission.

This	is	also	a	great	place	to	look	at	timeouts	and	close	channels	to	ensure	that	our	program
doesn’t	fall	apart	if	something	takes	too	long.

To	accomplish	both	these	requirements,	we’ll	build	a	very	basic	RSS	reader	that	will
simply	parse	through	and	grab	the	contents	of	five	RSS	feeds.	We’ll	read	each	of	these	as
well	as	the	provided	links	on	each,	and	then	we’ll	generate	an	SVG	report	of	the	process
available	via	HTTP.

Note
This	is	obviously	an	application	best	suited	for	a	background	task—you’ll	notice	that	each
request	can	take	a	long	time.	However,	for	graphically	representing	a	real-life	process
working	with	and	without	concurrency,	it	will	work,	especially	with	a	single	end	user.
We’ll	also	log	our	steps	to	standard	output,	so	be	sure	to	take	a	look	at	your	console	as
well.

For	this	example,	we’ll	again	use	a	third-party	library,	although	it’s	entirely	possible	to
parse	RSS	using	Go’s	built-in	XML	package.	Given	the	open-ended	nature	of	XML	and
the	specificity	of	RSS,	we’ll	bypass	them	and	use	go-pkg-rss	by	Jim	Teeuwen,	available
via	the	following	go	get	command:

go	get	github.com/jteeuwen/go-pkg-rss

While	this	package	is	specifically	intended	as	a	replacement	for	the	Google	Reader
product,	which	means	that	it	does	interval-based	polling	for	new	content	within	a	set
collection	of	sources,	it	also	has	a	fairly	neat	and	tidy	RSS	reading	implementation.	There
are	a	few	other	RSS	parsing	libraries	out	there,	though,	so	feel	free	to	experiment.



An	RSS	reader	with	self	diagnostics
Let’s	take	a	look	at	what	we’ve	learned	so	far,	and	use	it	to	fetch	and	parse	a	set	of	RSS
feeds	concurrently	while	returning	some	visual	feedback	about	the	process	in	an	internal
web	browser,	as	shown	in	the	following	code:

package	main

import(

		"github.com/ajstarks/svgo"

		rss	"github.com/jteeuwen/go-pkg-rss"				

		"net/http"

		"log"

		"fmt"

		"strconv"

		"time"

		"os"

		"sync"

		"runtime"

)

type	Feed	struct	{

		url	string

		status	int

		itemCount	int

		complete	bool

		itemsComplete	bool

		index	int

}

Here	is	the	basis	of	our	feed’s	overall	structure:	we	have	a	url	variable	that	represents	the
feed’s	location,	a	status	variable	to	indicate	whether	it’s	started,	and	a	complete	Boolean
variable	to	indicate	it’s	finished.	The	next	piece	is	an	individual	FeedItem;	here’s	how	it
can	be	laid	out:

type	FeedItem	struct	{

		feedIndex	int

		complete	bool

		url	string

}

Meanwhile,	we	will	not	do	much	with	individual	items;	at	this	point,	we	simply	maintain	a
URL,	whether	it’s	complete	or	a	FeedItem	struct’s	index.

var	feeds	[]Feed

var	height	int

var	width	int

var	colors	[]string

var	startTime	int64

var	timeout	int

var	feedSpace	int

var	wg	sync.WaitGroup



func	grabFeed(feed	*Feed,	feedChan	chan	bool,	osvg	*svg.SVG)	{

		startGrab	:=	time.Now().Unix()

		startGrabSeconds	:=	startGrab	-	startTime

		fmt.Println("Grabbing	feed",feed.url,"	

				at",startGrabSeconds,"second	mark")

		if	feed.status	==	0	{

				fmt.Println("Feed	not	yet	read")

				feed.status	=	1

				startX	:=	int(startGrabSeconds	*	33);

				startY	:=	feedSpace	*	(feed.index)

				fmt.Println(startY)

				wg.Add(1)

				rssFeed	:=	rss.New(timeout,	true,	channelHandler,	

						itemsHandler);

				if	err	:=	rssFeed.Fetch(feed.url,	nil);	err	!=	nil	{

						fmt.Fprintf(os.Stderr,	"[e]	%s:	%s",	feed.url,	err)

						return

				}	else	{

						endSec	:=	time.Now().Unix()				

						endX	:=	int(	(endSec	-	startGrab)	)

						if	endX	==	0	{

								endX	=	1

						}

						fmt.Println("Read	feed	in",endX,"seconds")

						osvg.Rect(startX,startY,endX,feedSpace,"fill:	

								#000000;opacity:.4")

						wg.Wait()

						

						endGrab	:=	time.Now().Unix()

						endGrabSeconds	:=	endGrab	-	startTime

						feedEndX	:=	int(endGrabSeconds	*	33);						

						osvg.Rect(feedEndX,startY,1,feedSpace,"fill:#ff0000;opacity:.9")

						feedChan	<-	true

				}

		}else	if	feed.status	==	1{

				fmt.Println("Feed	already	in	progress")

		}

}



The	grabFeed()	method	directly	controls	the	flow	of	grabbing	any	individual	feed.	It	also
bypasses	potential	concurrent	duplication	through	the	WaitGroup	struct.	Next,	let’s	check
out	the	itemsHandler	function:

func	channelHandler(feed	*rss.Feed,	newchannels	[]*rss.Channel)	{

}

func	itemsHandler(feed	*rss.Feed,	ch	*rss.Channel,	newitems	[]*rss.Item)	{

		fmt.Println("Found",len(newitems),"items	in",feed.Url)

		for	i	:=	range	newitems	{

				url	:=	*newitems[i].Guid

				fmt.Println(url)

		}

		wg.Done()

}

The	itemsHandler	function	doesn’t	do	much	at	this	point,	other	than	instantiating	a	new
FeedItem	struct—in	the	real	world,	we’d	take	this	as	the	next	step	and	retrieve	the	values
of	the	items	themselves.	Our	next	step	is	to	look	at	the	process	that	grabs	individual	feeds
and	marks	the	time	taken	for	each	one,	as	follows:

func	getRSS(rw	http.ResponseWriter,	req	*http.Request)	{

		startTime	=	time.Now().Unix()		

		rw.Header().Set("Content-Type",	"image/svg+xml")

		outputSVG	:=	svg.New(rw)

		outputSVG.Start(width,	height)

		feedSpace	=	(height-20)	/	len(feeds)

		for	i:=	0;	i	<	30000;	i++	{

				timeText	:=	strconv.FormatInt(int64(i/10),10)

				if	i	%	1000	==	0	{

						outputSVG.Text(i/30,390,timeText,"text-anchor:middle;font-

								size:10px;fill:#000000")						

				}else	if	i	%	4	==	0	{

						outputSVG.Circle(i,377,1,"fill:#cccccc;stroke:none")		

				}

				if	i	%	10	==	0	{

						outputSVG.Rect(i,0,1,400,"fill:#dddddd")

				}

				if	i	%	50	==	0	{

						outputSVG.Rect(i,0,1,400,"fill:#cccccc")

				}

		

		}



		feedChan	:=	make(chan	bool,	3)

		for	i	:=	range	feeds	{

				outputSVG.Rect(0,	(i*feedSpace),	width,	feedSpace,	

						"fill:"+colors[i]+";stroke:none;")

				feeds[i].status	=	0

				go	grabFeed(&feeds[i],	feedChan,	outputSVG)

				<-	feedChan

		}

		outputSVG.End()

}

Here,	we	retrieve	the	RSS	feed	and	mark	points	on	our	SVG	with	the	status	of	our
retrieval	and	read	events.	Our	main()	function	will	primarily	handle	the	setup	of	feeds,	as
follows:

func	main()	{

		runtime.GOMAXPROCS(2)

		timeout	=	1000

		width	=	1000

		height	=	400

		feeds	=	append(feeds,	Feed{index:	0,	url:	

				"https://groups.google.com/forum/feed/golang-

				nuts/msgs/rss_v2_0.xml?num=50",	status:	0,	itemCount:	0,	

				complete:	false,	itemsComplete:	false})

		feeds	=	append(feeds,	Feed{index:	1,	url:	

				"http://www.reddit.com/r/golang/.rss",	status:	0,	itemCount:	

				0,	complete:	false,	itemsComplete:	false})

		feeds	=	append(feeds,	Feed{index:	2,	url:	

				"https://groups.google.com/forum/feed/golang-

				dev/msgs/rss_v2_0.xml?num=50",	status:	0,	itemCount:	0,	

				complete:	false,	itemsComplete:	false	})

Here	is	our	slice	of	FeedItem	structs:

		colors	=	append(colors,"#ff9999")

		colors	=	append(colors,"#99ff99")

		colors	=	append(colors,"#9999ff")		

In	the	print	version,	these	colors	may	not	be	particularly	useful,	but	testing	it	on	your
system	will	allow	you	to	delineate	between	events	inside	the	application.	We’ll	need	an
HTTP	route	to	act	as	an	endpoint;	here’s	how	we’ll	set	that	up:

		http.Handle("/getrss",	http.HandlerFunc(getRSS))

				err	:=	http.ListenAndServe(":1900",	nil)

				if	err	!=	nil	{

								log.Fatal("ListenAndServe:",	err)

				}		

}



When	run,	you	should	see	the	start	and	duration	of	the	RSS	feed	retrieval	and	parsing,
followed	by	a	thin	line	indicating	that	the	feed	has	been	parsed	and	all	items	read.

Each	of	the	three	blocks	expresses	the	full	time	to	process	each	feed,	demonstrating	the
nonconcurrent	execution	of	this	version,	as	shown	in	the	following	screenshot:

Note	that	we	don’t	do	anything	interesting	with	the	feed	items,	we	simply	read	the	URL.
The	next	step	will	be	to	grab	the	items	via	HTTP,	as	shown	in	the	following	code	snippet:

		url	:=	*newitems[i].Guid

						response,	_,	err	:=	http.Get(url)

						if	err	!=	nil	{

						}

With	this	example,	we	stop	at	every	step	to	provide	some	sort	of	feedback	to	the	SVG	that
some	event	has	occurred.	Our	channel	here	is	buffered	and	we	explicitly	state	that	it	must
receive	three	Boolean	messages	before	it	can	finish	blocking,	as	shown	in	the	following
code	snippet:

		feedChan	:=	make(chan	bool,	3)

		for	i	:=	range	feeds	{

				outputSVG.Rect(0,	(i*feedSpace),	width,	feedSpace,	

						"fill:"+colors[i]+";stroke:none;")

				feeds[i].status	=	0

				go	grabFeed(&feeds[i],	feedChan,	outputSVG)

				<-	feedChan

		}

		outputSVG.End()

By	giving	3	as	the	second	parameter	in	our	channel	invocation,	we	tell	Go	that	this
channel	must	receive	three	responses	before	continuing	the	application.	You	should	use
caution	with	this,	though,	particularly	in	setting	things	explicitly	as	we	have	done	here.



What	if	one	of	the	goroutines	never	sent	a	Boolean	across	the	channel?	The	application
would	crash.

Note	that	we	also	increased	our	timeline	here,	from	800ms	to	60	seconds,	to	allow	for
retrieval	of	all	feeds.	Keep	in	mind	that	if	our	script	exceeds	60	seconds,	all	actions
beyond	that	time	will	occur	outside	of	this	visual	timeline	representation.

By	implementing	the	WaitGroup	struct	while	reading	feeds,	we	impose	some	serialization
and	synchronization	to	the	application.	The	second	feed	will	not	start	until	the	first	feed
has	completed	retrieving	all	URLs.	You	can	probably	see	where	this	might	introduce	some
errors	going	forward:

				wg.Add(1)

				rssFeed	:=	rss.New(timeout,	true,	channelHandler,	

						itemsHandler);

				…

				wg.Wait()

This	tells	our	application	to	yield	until	we	set	the	Done()	command	from	the
itemsHandler()	function.

So	what	happens	if	we	remove	WaitGroups	entirely?	Given	that	the	calls	to	grab	the	feed
items	are	asynchronous,	we	may	not	see	the	status	of	all	of	our	RSS	calls;	instead,	we
might	see	just	one	or	two	feeds	or	no	feed	at	all.



Imposing	a	timeout
So	what	happens	if	nothing	runs	within	our	timeline?	As	you	might	expect,	we’ll	get	three
bars	with	no	activity	in	them.	It’s	important	to	consider	how	to	kill	processes	that	aren’t
doing	what	we	expect	them	to.	In	this	case,	the	best	method	is	a	timeout.	The	Get	method
in	the	http	package	does	not	natively	support	a	timeout,	so	you’ll	have	to	roll	your	own
rssFeed.Fetch	(and	underlying	http.Get())	implementation	if	you	want	to	prevent	these
requests	from	going	into	perpetuity	and	killing	your	application.	We’ll	dig	into	this	a	bit
later;	in	the	mean	time,	take	a	look	at	the	Transport	struct,	available	in	the	core	http
package	at	http://golang.org/pkg/net/http/#Transport.

http://golang.org/pkg/net/http/#Transport




A	little	bit	about	CSP
We	touched	on	CSP	briefly	in	the	previous	chapter,	but	it’s	worth	exploring	a	bit	more	in
the	context	of	how	Go’s	concurrency	model	operates.

CSP	evolved	in	the	late	1970s	and	early	1980s	through	the	work	of	Sir	Tony	Hoare	and	is
still	in	the	midst	of	evolution	today.	Go’s	implementation	is	heavily	based	on	CSP,	but	it
neither	entirely	follows	all	the	rules	and	conventions	set	forth	in	its	initial	description	nor
does	it	follow	its	evolution	since.

One	of	the	ways	in	which	Go	differs	from	true	CSP	is	that	as	it	is	defined,	a	process	in	Go
will	only	continue	so	long	as	there	exists	a	channel	ready	to	receive	from	that	process.
We’ve	already	encountered	a	couple	of	deadlocks	that	were	the	result	of	a	listening
channel	with	nothing	to	receive.	The	inverse	is	also	true;	a	deadlock	can	result	from	a
channel	continuing	without	sending	anything,	leaving	its	receiving	channel	hanging
indefinitely.

This	behavior	is	endemic	to	Go’s	scheduler,	and	it	should	really	only	pose	problems	when
you’re	working	with	channels	initially.

Note
Hoare’s	original	work	is	now	available	(mostly)	free	from	a	number	of	institutions.	You
can	read,	cite,	copy,	and	redistribute	it	free	of	charge	(but	not	for	commercial	gain).	If	you
want	to	read	the	whole	thing,	you	can	grab	it	at
http://www.cs.ucf.edu/courses/cop4020/sum2009/CSP-hoare.pdf.

The	complete	book	itself	is	also	available	at	http://www.usingcsp.com/cspbook.pdf.

As	of	this	publishing,	Hoare	is	working	as	a	researcher	at	Microsoft.

As	per	the	designers	of	the	application	itself,	the	goal	of	Go’s	implementation	of	CSP
concepts	was	to	focus	on	simplicity—you	don’t	have	to	worry	about	threads	or	mutexes
unless	you	really	want	to	or	need	to.

http://www.cs.ucf.edu/courses/cop4020/sum2009/CSP-hoare.pdf
http://www.usingcsp.com/cspbook.pdf


The	dining	philosophers	problem
You	may	have	heard	of	the	dining	philosophers	problem,	which	describes	the	kind	of
problems	concurrent	programming	was	designed	to	solve.	The	dining	philosophers
problem	was	formulated	by	the	great	Edsger	Dijkstra.	The	crux	of	the	problem	is	a	matter
of	resources—five	philosophers	sit	at	a	table	with	five	plates	of	food	and	five	forks,	and
each	can	only	eat	when	he	has	two	forks	(one	to	his	left	and	another	to	his	right).	A	visual
representation	is	shown	as	follows:

With	a	single	fork	on	either	side,	any	given	philosopher	can	only	eat	when	he	has	a	fork	in
both	hands	and	must	put	both	back	on	the	table	when	complete.	The	idea	is	to	coordinate
the	meal	such	that	all	of	the	philosophers	can	eat	in	perpetuity	without	any	starving—two
philosophers	must	be	able	to	eat	at	any	moment	and	there	can	be	no	deadlocks.	They’re
philosophers	because	when	they’re	not	eating,	they’re	thinking.	In	a	programming	analog,
you	can	consider	this	as	either	a	waiting	channel	or	a	sleeping	process.

Go	handles	this	problem	pretty	succinctly	with	goroutines.	Given	five	philosophers	(in	an
individual	struct,	for	example),	you	can	have	all	five	alternate	between	thinking,	receiving
a	notification	when	the	forks	are	down,	grabbing	forks,	dining	with	forks,	and	placing	the
forks	down.

Receiving	the	notification	that	the	forks	are	down	acts	as	the	listening	channel,	dining	and
thinking	are	separate	processes,	and	placing	the	forks	down	operates	as	an	announcement
along	the	channel.

We	can	visualize	this	concept	in	the	following	pseudo	Go	code:

type	Philosopher	struct	{

		leftHand	bool



		rightHand	bool

		status	int

		name	string

}

func	main()	{

		philosophers	:=	[...]Philospher{"Kant",	"Turing",	

				"Descartes","Kierkegaard","Wittgenstein"}

		evaluate	:=	func()	{

				for	{

						select	{

								case	<-	forkUp:

										//	philosophers	think!

								case	<-	forkDown:

										//	next	philospher	eats	in	round	robin

						}

				}

		}

}

This	example	has	been	left	very	abstract	and	nonoperational	so	that	you	have	a	chance	to
attempt	to	solve	it.	We	will	build	a	functional	solution	for	this	in	the	next	chapter,	so	make
sure	to	compare	your	solution	later	on.

There	are	hundreds	of	ways	to	handle	this	problem,	and	we’ll	look	at	a	couple	of
alternatives	and	how	they	can	or	cannot	play	nicely	within	Go	itself.





Go	and	the	actor	model
The	actor	model	is	something	that	you’ll	likely	be	very	familiar	with	if	you’re	an	Erlang
or	Scala	user.	The	difference	between	CSP	and	the	actor	model	is	negligible	but	important.
With	CSP,	messages	from	one	channel	can	only	be	completely	sent	if	another	channel	is
listening	and	ready	for	them.	The	actor	model	does	not	necessarily	require	a	ready	channel
for	another	to	send.	In	fact,	it	stresses	direct	communication	rather	than	relying	on	the
conduit	of	a	channel.

Both	systems	can	be	nondeterministic,	which	we’ve	already	seen	demonstrated	in	Go/CSP
in	our	earlier	examples.	CSP	and	goroutines	are	anonymous	and	transmission	is	specified
by	the	channel	rather	than	the	source	and	destination.	An	easy	way	to	visualize	this	in
pseudocode	in	the	actor	model	is	as	follows:

a	=	new	Actor

b	=	new	Actor

a	->	b("message")

In	CSP,	it	is	as	follows:

a	=	new	Actor

b	=	new	Actor

c	=	new	Channel

a	->	c("sending	something")

b	<-	c("receiving	something")

Both	serve	the	same	fundamental	functionality	but	through	slightly	different	ways.





Object	orientation
As	you	work	with	Go,	you	will	notice	that	there	is	a	core	characteristic	that’s	often
espoused,	which	users	may	feel	is	wrong.	You’ll	hear	that	Go	is	not	an	object-oriented
language,	and	yet	you	have	structs	that	can	have	methods,	those	methods	in	turn	can	have
methods,	and	you	can	have	communication	to	and	from	any	instantiation	of	it.	Channels
themselves	may	feel	like	primitive	object	interfaces,	capable	of	setting	and	receiving
values	from	a	given	data	element.

The	message	passing	implementation	of	Go	is,	indeed,	a	core	concept	of	object-oriented
programming.	Structs	with	interfaces	operate	essentially	as	classes,	and	Go	supports
polymorphism	(although	not	parametric	polymorphism).	Yet,	many	who	work	with	the
language	(and	who	have	designed	it)	stress	that	it	is	not	object	oriented.	So	what	gives?

Much	of	this	definition	ultimately	depends	on	who	you	ask.	Some	believe	that	Go	lacks
some	of	the	requisite	characteristics	of	object-oriented	programming,	and	others	believe	it
satisfies	them.	The	most	important	thing	to	keep	in	mind	is	that	you’re	not	limited	by	Go’s
design.	Anything	that	you	can	do	in	a	true	object-oriented	language	can	be	handled
without	much	struggle	within	Go.



Demonstrating	simple	polymorphism	in	Go
As	mentioned	before,	if	you	expect	polymorphism	to	resemble	object-oriented
programming,	this	may	not	represent	a	syntactical	analogue.	However,	the	use	of
interfaces	as	an	abstraction	of	class-bound	polymorphic	methods	is	just	as	clean,	and	in
many	ways,	more	explicit	and	readable.	Let’s	look	at	a	very	simple	implementation	of
polymorphism	in	Go:

type	intInterface	struct	{

}

type	stringInterface	struct	{

}

func	(number	intInterface)	Add	(a	int,	b	int)	int	{

		return	a	+	b;

}

func	(text	stringInterface)	Add	(a	string,	b	string)	string	{

		return	a	+	b

}

func	main()	{

		number	:=	new	(intInterface)

				fmt.Println(	number.Add(1,2)	)

		text	:=	new	(stringInterface)

				fmt.Println(	text.Add("this	old	man","	he	played	one"))

}

As	you	can	see,	we	use	an	interface	(or	its	Go	analog)	to	disambiguate	methods.	You
cannot	have	generics	the	same	way	you	might	in	Java,	for	example.	This,	however,	boils
down	to	a	mere	matter	of	style	in	the	end.	You	should	neither	find	this	daunting	nor	will	it
impose	any	cruft	or	ambiguity	into	your	code.





Using	concurrency
It	hasn’t	yet	been	mentioned,	but	we	should	be	aware	that	concurrency	is	not	always
necessary	and	beneficial	for	an	application.	There	exists	no	real	rule	of	thumb,	and	it’s	rare
that	concurrency	will	introduce	problems	to	an	application;	but	if	you	really	think	about
applications	as	a	whole,	not	all	will	require	concurrent	processes.

So	what	works	best?	As	we’ve	seen	in	the	previous	example,	anything	that	introduces
potential	latency	or	I/O	blocking,	such	as	network	calls,	disk	reads,	third-party
applications	(primarily	databases),	and	distributed	systems,	can	benefit	from	concurrency.
If	you	have	the	ability	to	do	work	while	other	work	is	being	done	on	an	undetermined
timeline,	concurrency	strategies	can	improve	the	speed	and	reliability	of	an	application.

The	lesson	here	is	you	should	never	feel	compelled	to	shoehorn	concurrency	into	an
application	that	doesn’t	really	require	it.	Programs	with	inter-process	dependencies	(or
lack	of	blocking	and	external	dependencies)	may	see	little	or	no	benefit	from
implementing	concurrency	structures.





Managing	threads
So	far,	you’ve	probably	noticed	that	thread	management	is	not	a	matter	that	requires	the
programmer’s	utmost	concern	in	Go.	This	is	by	design.	Goroutines	aren’t	tied	to	a	specific
thread	or	threads	that	are	handled	by	Go’s	internal	scheduler.	However,	this	doesn’t	mean
that	you	neither	have	access	to	the	threads	nor	the	ability	to	control	what	individual
threads	do.	As	you	know,	you	can	already	tell	Go	how	many	threads	you	have	(or	wish	to
use)	by	using	GOMAXPROCS.	We	also	know	that	using	this	can	introduce	asynchronous
issues	as	it	pertains	to	data	consistency	and	execution	order.

At	this	point,	the	main	issue	with	threads	is	not	how	they’re	accessed	or	utilized,	but	how
to	properly	control	execution	flow	to	guarantee	that	your	data	is	predictable	and
synchronized.





Using	sync	and	mutexes	to	lock	data
One	issue	that	you	may	have	run	into	with	the	preceding	examples	is	the	notion	of	atomic
data.	After	all,	if	you	deal	with	variables	and	structures	across	multiple	goroutines,	and
possibly	processors,	how	do	you	ensure	that	your	data	is	safe	across	them?	If	these
processes	run	in	parallel,	coordinating	data	access	can	sometimes	be	problematic.

Go	provides	a	bevy	of	tools	in	its	sync	package	to	handle	these	types	of	problems.	How
elegantly	you	approach	them	depends	heavily	on	your	approach,	but	you	should	never
have	to	reinvent	the	wheel	in	this	realm.

We’ve	already	looked	at	the	WaitGroup	struct,	which	provides	a	simple	method	to	tell	the
main	thread	to	pause	until	the	next	notification	that	says	a	waiting	process	has	done	what
it’s	supposed	to	do.

Go	also	provides	a	direct	abstraction	to	a	mutex.	It	may	seem	contradictory	to	call
something	a	direct	abstraction,	but	the	truth	is	you	don’t	have	access	to	Go’s	scheduler,
only	an	approximation	of	a	true	mutex.

We	can	use	a	mutex	to	lock	and	unlock	data	and	guarantee	atomicity	in	our	data.	In	many
cases,	this	may	not	be	necessary;	there	are	a	great	many	times	where	the	order	of
execution	does	not	impact	the	consistency	of	the	underlying	data.	However,	when	we	do
have	concerns	about	this	value,	it’s	helpful	to	be	able	to	invoke	a	lock	explicitly.	Let’s	take
the	following	example:

package	main

import(

		"fmt"

		"sync"

)

func	main()	{

		current	:=	0

		iterations	:=	100

		wg	:=	new	(sync.WaitGroup);

		for	i	:=	0;	i	<	iterations;	i++	{

				wg.Add(1)

				go	func()	{

						current++

						fmt.Println(current)

						wg.Done()

				}()

				wg.Wait()

		}

}

Unsurprisingly,	this	provides	a	list	of	0	to	99	in	your	terminal.	What	happens	if	we	change



WaitGroup	to	know	there	will	be	100	instances	of	Done()	called,	and	put	our	blocking
code	at	the	end	of	the	loop?

To	demonstrate	a	simple	proposition	of	why	and	how	to	best	utilize	waitGroups	as	a
mechanism	for	concurrency	control,	let’s	do	a	simple	number	iterator	and	look	at	the
results.	We	will	also	check	out	how	a	directly	called	mutex	can	augment	this	functionality,
as	follows:

func	main()	{

		runtime.GOMAXPROCS(2)

		current	:=	0

		iterations	:=	100

		wg	:=	new	(sync.WaitGroup);

		wg.Add(iterations)

		for	i	:=	0;	i	<	iterations;	i++	{

				go	func()	{

						current++

						fmt.Println(current)

						wg.Done()

				}()

		}

		wg.Wait()

}

Now,	our	order	of	execution	is	suddenly	off.	You	may	see	something	like	the	following
output:

95

96

98

99

100

3

4

We	have	the	ability	to	lock	and	unlock	the	current	command	at	will;	however,	this	won’t
change	the	underlying	execution	order,	it	will	only	prevent	reading	and/or	writing	to	and
from	a	variable	until	an	unlock	is	called.

Let’s	try	to	lock	down	the	variable	we’re	outputting	using	mutex,	as	follows:

		for	i	:=	0;	i	<	iterations;	i++	{

				go	func()	{

						mutex.Lock()

						fmt.Println(current)

						current++

						mutex.Unlock()

						fmt.Println(current)

						wg.Done()

				}()

		}



You	can	probably	see	how	a	mutex	control	mechanism	can	be	important	to	enforce	data
integrity	in	your	concurrent	application.	We’ll	look	more	at	mutexes	and	locking	and
unlocking	processes	in	Chapter	4,	Data	Integrity	in	an	Application.





Summary
In	this	chapter,	we’ve	tried	to	remove	some	of	the	ambiguity	of	Go’s	concurrency	patterns
and	models	by	giving	visual,	real-time	feedback	to	a	few	applications,	including	a
rudimentary	RSS	aggregator	and	reader.	We	examined	the	dining	philosophers	problem
and	looked	at	ways	you	can	use	the	Go	concurrency	topics	to	solve	the	problem	neatly	and
succinctly.	We	compared	the	way	CSP	and	actor	models	are	similar	and	ways	in	which
they	differ.

In	the	next	chapter,	we	will	take	these	concepts	and	apply	them	to	the	process	of
developing	a	strategy	to	maintain	concurrency	in	an	application.





Chapter	3.	Developing	a	Concurrent
Strategy
In	the	previous	chapter,	we	looked	at	the	concurrency	model	that	Go	relies	on	to	make
your	life	as	a	developer	easier.	We	also	saw	a	visual	representation	of	parallelism	and
concurrency.	These	help	us	to	understand	the	differences	and	overlaps	between	serialized,
concurrent,	and	parallel	applications.

However,	the	most	critical	part	of	any	concurrent	application	is	not	the	concurrency	itself
but	communication	and	coordination	between	the	concurrent	processes.

In	this	chapter,	we’ll	look	at	creating	a	plan	for	an	application	that	heavily	factors
communication	between	processes	and	how	a	lack	of	coordination	can	lead	to	significant
issues	with	consistency.	We’ll	look	at	ways	we	can	visualize	our	concurrent	strategy	on
paper	so	that	we’re	better	equipped	to	anticipate	potential	problems.



Applying	efficiency	in	complex
concurrency
When	designing	applications,	we	often	eschew	complex	patterns	for	simplicity,	with	the
assumption	that	simple	systems	are	often	the	fastest	and	most	efficient.	It	seems	only
logical	that	a	machine	with	fewer	moving	parts	will	be	more	efficient	than	one	with	more.

The	paradox	here,	as	it	applies	to	concurrency,	is	that	adding	redundancy	and	significantly
more	movable	parts	often	leads	to	a	more	efficient	application.	If	we	consider	concurrent
schemes,	such	as	goroutines,	to	be	infinitely	scalable	resources,	employing	more	should
always	result	in	some	form	of	efficiency	benefit.	This	applies	not	just	to	parallel
concurrency	but	to	single	core	concurrency	as	well.

If	you	find	yourself	designing	an	application	that	utilizes	concurrency	at	the	cost	of
efficiency,	speed,	and	consistency,	you	should	ask	yourself	whether	the	application	truly
needs	concurrency	at	all.

When	we	talk	about	efficiency,	we	aren’t	just	dealing	with	speed.	Efficiency	should	also
weigh	the	CPU	and	memory	overhead	and	the	cost	to	ensure	data	consistency.

For	example,	should	an	application	marginally	benefit	from	concurrency	but	require	an
elaborate	and/or	computationally	expensive	process	to	guarantee	data	consistency,	it’s
worth	re-evaluating	the	strategy	entirely.

Keeping	your	data	reliable	and	up	to	date	should	be	paramount;	while	having	unreliable
data	may	not	always	have	a	devastating	effect,	it	will	certainly	compromise	the	reliability
of	your	application.





Identifying	race	conditions	with	race
detection
If	you’ve	ever	written	an	application	that	depends	on	the	exact	timing	and	sequencing	of
functions	or	methods	to	create	a	desired	output,	you’re	already	quite	familiar	with	race
conditions.

These	are	particularly	common	anytime	you	deal	with	concurrency	and	far	more	so	when
parallelism	is	introduced.	We’ve	actually	encountered	a	few	of	them	in	the	first	few
chapters,	specifically	with	our	incrementing	number	function.

The	most	commonly	used	educational	example	of	race	conditions	is	that	of	a	bank
account.	Assume	that	you	start	with	$1,000	and	attempt	200	$5	transactions.	Each
transaction	requires	a	query	on	the	current	balance	of	the	account.	If	it	passes,	the
transaction	is	approved	and	$5	is	removed	from	the	balance.	If	it	fails,	the	transaction	is
declined	and	the	balance	remains	unchanged.

This	is	all	well	and	good	until	the	query	happens	at	some	point	during	a	concurrent
transaction	(in	most	cases	in	another	thread).	If,	for	example,	a	thread	asks	“Do	you	have
$5	in	your	account?”	as	another	thread	is	in	the	process	of	removing	$5	but	has	not	yet
completed,	you	can	end	up	with	an	approved	transaction	that	should	have	been	declined.

Tracking	down	the	cause	of	race	conditions	can	be—to	say	the	least—a	gigantic	headache.
With	Version	1.1	of	Go,	Google	introduced	a	race	detection	tool	that	can	help	you	locate
potential	issues.

Let’s	take	a	very	basic	example	of	a	multithreaded	application	with	race	conditions	and
see	how	Golang	can	help	us	debug	it.	In	this	example,	we’ll	build	a	bank	account	that
starts	with	$1,000	and	runs	100	transactions	for	a	random	amount	between	$0	and	$25.

Each	transaction	will	be	run	in	its	own	goroutine,	as	follows:

package	main

import(

		"fmt"

		"time"

		"sync"

		"runtime"

		"math/rand"

)		

var	balance	int

var	transactionNo	int

func	main()	{

		rand.Seed(time.Now().Unix())

		runtime.GOMAXPROCS(2)

		var	wg	sync.WaitGroup

		tranChan	:=	make(chan	bool)



		balance	=	1000

		transactionNo	=	0

		fmt.Println("Starting	balance:	$",balance)

		wg.Add(1)

		for	i	:=	0;	i	<	100;	i++	{

				go	func(ii	int,	trChan	chan(bool))	{

						transactionAmount	:=	rand.Intn(25)

						transaction(transactionAmount)

						if	(ii	==	99)	{

								trChan	<-	true

						}

				}(i,tranChan)

		}

		go	transaction(0)

		select	{

				case	<-	tranChan:

						fmt.Println("Transactions	finished")

						wg.Done()

		}

		wg.Wait()

		close(tranChan)

		fmt.Println("Final	balance:	$",balance)

}

func	transaction(amt	int)	(bool)	{

		approved	:=	false		

		if	(balance-amt)	<	0	{

				approved	=	false

		}else	{

				approved	=	true

				balance	=	balance	-	amt

		}

		approvedText	:=	"declined"

		if	(approved	==	true)	{

				approvedText	=	"approved"

		}else	{

		}

		transactionNo	=	transactionNo	+	1

		fmt.Println(transactionNo,"Transaction	for	$",amt,approvedText)

		fmt.Println("\tRemaining	balance	$",balance)

		return	approved

}

Depending	on	your	environment	(and	whether	you	enable	multiple	processors),	you	might
have	the	previous	goroutine	operate	successfully	with	a	$0	or	more	final	balance.	You



might,	on	the	other	hand,	simply	end	up	with	transactions	that	exceed	the	balance	at	the
time	of	transaction,	resulting	in	a	negative	balance.

So	how	do	we	know	for	sure?

For	most	applications	and	languages,	this	process	often	involves	a	lot	of	running,
rerunning,	and	logging.	It’s	not	unusual	for	race	conditions	to	present	a	daunting	and
laborious	debugging	process.	Google	knows	this	and	has	given	us	a	race	condition
detection	tool.	To	test	this,	simply	use	the	–race	flag	when	testing,	building,	or	running
your	application,	as	shown:

go	run	-race	race-test.go

When	run	on	the	previous	code,	Go	will	execute	the	application	and	then	report	any
possible	race	conditions,	as	follows:

>>	Final	balance:	$0

>>	Found	2	data	race(s)

Here,	Go	is	telling	us	there	are	two	potential	race	conditions	with	data.	It	isn’t	telling	us
that	these	will	surely	create	data	consistency	issues,	but	if	you	run	into	such	problems,	this
may	give	you	some	clue	as	to	why.

If	you	look	at	the	top	of	the	output,	you’ll	get	more	detailed	notes	on	what’s	causing	a	race
condition.	In	this	example,	the	details	are	as	follows:

==================

WARNING:	DATA	RACE

Write	by	goroutine	5:	main.transaction()			/var/go/race.go:75	+0xbd	

		main.func┬╖001()			/var/go/race.go:31	+0x44

Previous	write	by	goroutine	4:	main.transaction()	

		/var/go/race.go:75	+0xbd	main.func┬╖001()			/var/go/race.go:31	

				+0x44

Goroutine	5	(running)	created	at:	main.main()			/var/go/race.go:36	

		+0x21c

Goroutine	4	(finished)	created	at:	main.main()			/var/go/race.go:36	

		+0x21c

We	get	a	detailed,	full	trace	of	where	our	potential	race	conditions	exist.	Pretty	helpful,
huh?

The	race	detector	is	guaranteed	to	not	produce	false	positives,	so	you	can	take	the	results
as	strong	evidence	that	there	is	a	potential	problem	in	your	code.	The	potential	is	stressed
here	because	a	race	condition	can	go	undetected	in	normal	conditions	very	often—an
application	may	work	as	expected	for	days,	months,	or	even	years	before	a	race	condition
can	surface.

Tip
We’ve	mentioned	logging,	and	if	you	aren’t	intimately	familiar	with	Go’s	core	language,
your	mind	might	go	in	a	number	of	directions—stdout,	file	logs,	and	so	on.	So	far	we’ve



stuck	to	stdout,	but	you	can	use	the	standard	library	to	handle	this	logging.	Go’s	log
package	allows	you	to	write	to	io	or	stdout	as	shown:

		messageOutput	:=	os.Stdout

		logOut	:=	log.New(messageOutput,"Message:	",log.

		Ldate|log.Ltime|log.Llongfile);

		logOut.Println("This	is	a	message	from	the	

		application!")

This	will	produce	the	following	output:

Message:	2014/01/21	20:59:11	/var/go/log.go:12:	This	is	a	message	from	the	

application!

So,	what’s	the	advantage	of	the	log	package	versus	rolling	your	own?	In	addition	to	being
standardized,	this	package	is	also	synchronized	in	terms	of	output.

So	what	now?	Well,	there	are	a	few	options.	You	can	utilize	your	channels	to	ensure	data
integrity	with	a	buffered	channel,	or	you	can	use	the	sync.Mutex	struct	to	lock	your	data.



Using	mutual	exclusions
Typically,	mutual	exclusion	is	considered	a	low-level	and	best-known	approach	to
synchronicity	in	your	application—you	should	be	able	to	address	data	consistency	within
communication	between	your	channels.	However,	there	will	be	instances	where	you	need
to	truly	block	read/write	on	a	value	while	you	work	with	it.

At	the	CPU	level,	a	mutex	represents	an	exchange	of	binary	integer	values	across	registers
to	acquire	and	release	locks.	We’ll	deal	with	something	on	a	much	higher	level,	of	course.

We’re	already	familiar	with	the	sync	package	from	our	use	of	the	WaitGroup	struct,	but	the
package	also	contains	the	conditional	variables	struct	Cond	and	Once,	which	will
perform	an	action	just	one	time,	and	the	mutual	exclusion	locks	RWMutex	and	Mutex.	As
the	name	RWMutex	implies,	it	is	open	to	multiple	readers	and/or	writers	to	lock	and	unlock;
there	is	more	on	this	later	in	this	chapter	and	in	Chapter	5,	Locks,	Blocks,	and	Better
Channels.

All	of	these—as	the	package	name	implies—empower	you	to	prevent	race	conditions	on
data	that	may	be	accessed	by	any	number	of	goroutines	and/or	threads.	Using	any	of	the
methods	in	this	package	does	not	ensure	atomicity	within	data	and	structures,	but	it	does
give	you	the	tools	to	manage	atomicity	effectively.	Let’s	look	at	a	few	ways	we	can
solidify	our	account	balance	in	concurrent,	threadsafe	applications.

As	mentioned	previously,	we	can	coordinate	data	changes	at	the	channel	level	whether
that	channel	is	buffered	or	unbuffered.	Let’s	offload	the	logic	and	data	manipulation	to	the
channel	and	see	what	the	–race	flag	presents.

If	we	modify	our	main	loop,	as	shown	in	the	following	code,	to	utilize	messages	received
by	the	channel	to	manage	the	balance	value,	we	will	avoid	race	conditions:

package	main

import(

		"fmt"

		"time"

		"sync"

		"runtime"

		"math/rand"

)		

var	balance	int

var	transactionNo	int

func	main()	{

		rand.Seed(time.Now().Unix())

		runtime.GOMAXPROCS(2)

		var	wg	sync.WaitGroup

		balanceChan	:=	make(chan	int)

		tranChan	:=	make(chan	bool)

		balance	=	1000



		transactionNo	=	0

		fmt.Println("Starting	balance:	$",balance)

		wg.Add(1)

		for	i:=	0;	i<100;	i++	{

				go	func(ii	int)	{

						transactionAmount	:=	rand.Intn(25)

						balanceChan	<-	transactionAmount

						if	ii	==	99	{

								fmt.Println("Should	be	quittin	time")

								tranChan	<-	true

								close(balanceChan)

								wg.Done()

						}

				}(i)

		}

		go	transaction(0)

				breakPoint	:=	false

				for	{

						if	breakPoint	==	true	{

								break

						}

						select	{

								case	amt:=	<-	balanceChan:

										fmt.Println("Transaction	for	$",amt)

										if	(balance	-	amt)	<	0	{

												fmt.Println("Transaction	failed!")

										}else	{

												balance	=	balance	-	amt

												fmt.Println("Transaction	succeeded")

										}

										fmt.Println("Balance	now	$",balance)

								case	status	:=	<-	tranChan:

										if	status	==	true	{

												fmt.Println("Done")

												breakPoint	=	true

												close(tranChan)

												

										}

						}

				}

		wg.Wait()

		fmt.Println("Final	balance:	$",balance)



}

func	transaction(amt	int)	(bool)	{

		approved	:=	false		

		if	(balance-amt)	<	0	{

				approved	=	false

		}else	{

				approved	=	true

				balance	=	balance	-	amt

		}

		approvedText	:=	"declined"

		if	(approved	==	true)	{

				approvedText	=	"approved"

		}else	{

		}

		transactionNo	=	transactionNo	+	1

		fmt.Println(transactionNo,"Transaction	for	$",amt,approvedText)

		fmt.Println("\tRemaining	balance	$",balance)

		return	approved

}

This	time,	we	let	the	channel	manage	the	data	entirely.	Let’s	look	at	what	we’re	doing:

transactionAmount	:=	rand.Intn(25)

balanceChan	<-	transactionAmount

This	still	generates	a	random	integer	between	0	and	25,	but	instead	of	passing	it	to	a
function,	we	pass	the	data	along	the	channel.	Channels	allow	you	to	control	the	ownership
of	data	neatly.	We	then	see	the	select/listener,	which	largely	mirrors	our	transaction()
function	defined	earlier	in	this	chapter:

case	amt:=	<-	balanceChan:

fmt.Println("Transaction	for	$",amt)

if	(balance	-	amt)	<	0	{

		fmt.Println("Transaction	failed!")

}else	{

		balance	=	balance	-	amt

		fmt.Println("Transaction	succeeded")

}

fmt.Println("Balance	now	$",balance)

To	test	whether	we’ve	averted	a	race	condition,	we	can	run	go	run	with	the	-race	flag
again	and	see	no	warnings.

Channels	can	be	seen	as	the	sanctioned	go-to	way	of	handling	synchronized	dataUse
Sync.Mutex().

As	mentioned,	having	a	built-in	race	detector	is	a	luxury	not	afforded	to	developers	in
most	languages,	and	having	it	allows	us	to	test	methodologies	and	get	real-time	feedback
on	each.

We	noted	that	using	an	explicit	mutex	is	discouraged	in	favor	of	channels	of	goroutines.



This	isn’t	always	exactly	true	because	there	is	a	right	time	and	place	for	everything,	and
mutexes	are	no	exclusion.	What’s	worth	noting	is	that	mutexes	are	implemented	internally
by	Go	for	channels.	As	was	previously	mentioned,	you	can	use	explicit	channels	to	handle
reads	and	writes	and	juggle	the	data	between	them.

However,	this	doesn’t	mean	there	is	no	use	for	explicit	locks.	An	application	that	has
many	reads	and	very	few	writes	might	benefit	from	explicit	locks	for	writes;	this	doesn’t
necessarily	mean	that	the	reads	will	be	dirty	reads,	but	it	could	result	in	faster	and/or	more
concurrent	execution.

For	the	sake	of	demonstration,	let’s	remove	our	race	condition	using	an	explicit	lock.	Our
-race	flag	tells	us	where	it	encounters	read/write	race	conditions,	as	shown:

Read	by	goroutine	5:	main.transaction()			/var/go/race.go:62	+0x46

The	previous	line	is	just	one	among	several	others	we’ll	get	from	the	race	detection	report.
If	we	look	at	line	62	in	our	code,	we’ll	find	a	reference	to	balance.	We’ll	also	find	a
reference	to	transactionNo,	our	second	race	condition.	The	easiest	way	to	address	both	is
to	place	a	mutual	exclusion	lock	around	the	contents	of	the	transaction	function	as	this	is
the	function	that	modifies	the	balance	and	transactionNo	variables.	The	transaction
function	is	as	follows:

func	transaction(amt	int)	(bool)	{

		mutex.Lock()

		

		approved	:=	false

		if	(balance-amt)	<	0	{

				approved	=	false

		}else	{

				approved	=	true

				balance	=	balance	-	amt

		}

		approvedText	:=	"declined"

		if	(approved	==	true)	{

				approvedText	=	"approved"

		}else	{

		}

		transactionNo	=	transactionNo	+	1

		fmt.Println(transactionNo,"Transaction	for	$",amt,approvedText)

		fmt.Println("\tRemaining	balance	$",balance)

		mutex.Unlock()

		return	approved

}

We	also	need	to	define	mutex	as	a	global	variable	at	the	top	of	our	application,	as	shown:

var	mutex	sync.Mutex

If	we	run	our	application	now	with	the	-race	flag,	we	get	no	warnings.



The	mutex	variable	is,	for	practical	purposes,	an	alternative	to	the	WaitGroup	struct,	which
functions	as	a	conditional	synchronization	mechanism.	This	is	also	the	way	that	the
channels	operate—data	that	moves	along	channels	is	contained	and	isolated	between
goroutines.	A	channel	can	effectively	work	as	a	first-in,	first-out	tool	in	this	way	by
binding	goroutine	state	to	WaitGroup;	data	accessed	across	the	channel	can	then	be
provided	safety	via	the	lower-level	mutex.

Another	worthwhile	thing	to	note	is	the	versatility	of	a	channel—we	have	the	ability	to
share	a	channel	among	an	array	of	goroutines	to	receive	and/or	send	data,	and	as	a	first-
class	citizen,	we	can	pass	them	along	in	functions.



Exploring	timeouts
Another	noteworthy	thing	we	can	do	with	channels	is	explicitly	kill	them	after	a	specified
amount	of	time.	This	is	an	operation	that	will	be	a	bit	more	involved	should	you	decide	to
manually	handle	mutual	exclusions.

The	ability	to	kill	a	long-running	routine	through	the	channel	is	extremely	helpful;
consider	a	network-dependent	operation	that	should	not	only	be	restricted	to	a	short	time
period	but	also	not	allowed	to	run	for	a	long	period.	In	other	words,	you	want	to	offer	the
process	a	few	seconds	to	complete;	but	if	it	runs	for	more	than	a	minute,	our	application
should	know	that	something	has	gone	wrong	enough	to	stop	attempting	to	listen	or	send
on	that	channel.	The	following	code	demonstrates	using	a	timeout	channel	in	a	select
call:

func	main()	{

		

		ourCh	:=	make(chan	string,1)

		go	func()	{

		}()

		select	{

				case	<-time.After(10	*	time.Second):

						fmt.Println("Enough's	enough")

						close(ourCh)

		}

}

If	we	run	the	previous	simple	application,	we’ll	see	that	our	goroutine	will	be	allowed	to
do	nothing	for	exactly	10	seconds,	after	which	we	implement	a	timeout	safeguard	that
bails	us	out.

You	can	see	this	as	being	particularly	useful	in	network	applications;	even	in	the	days	of
blocking	and	thread-dependent	servers,	timeouts	like	these	were	implemented	to	prevent	a
single	misbehaving	request	or	process	to	gum	up	the	entire	server.	This	is	the	very	basis	of
a	classic	web	server	problem	that	we’ll	revisit	in	more	detail	later.

Importance	of	consistency
In	our	example,	we’ll	build	an	events	scheduler.	If	we	are	available	for	a	meeting	and	we
get	two	concurrent	requests	for	a	meeting	invite,	we’ll	get	double-booked	should	a	race
condition	exist.	Alternately,	locked	data	across	two	goroutines	may	cause	both	the
requests	to	be	denied	or	will	result	in	an	actual	deadlock.

We	want	to	guarantee	that	any	request	for	availability	is	consistent—there	should	neither
be	double-booking	nor	should	a	request	for	an	event	be	blocked	incorrectly	(because	two
concurrent	or	parallel	routines	lock	the	data	simultaneously).





Synchronizing	our	concurrent	operations
The	word	synchronization	literally	refers	to	temporal	existence—things	occurring	at	the
same	time.	It	seems	then	that	the	most	apt	demonstration	of	synchronicity	will	be
something	involving	time	itself.

When	we	think	about	the	ways	time	impacts	us,	it’s	generally	a	matter	of	scheduling,	due
dates,	and	coordination.	Going	back	to	our	preliminary	example	from	the	Preface,	if	one
wishes	to	plan	their	grandmother’s	birthday	party,	the	following	types	of	scheduled	tasks
can	take	several	forms:

Things	that	must	be	done	by	a	certain	time	(the	actual	party)
Things	that	cannot	be	done	until	another	task	is	completed	(putting	up	decorations
before	they’re	purchased)
Things	that	can	be	done	in	any	particular	order	without	impacting	the	outcome
(cleaning	the	house)
Things	that	can	be	done	in	any	order	but	may	well	impact	the	outcome	(buying	a
cake	before	finding	out	what	cake	your	grandmother	likes	the	most)

With	these	in	mind,	we’ll	attempt	to	handle	some	rudimentary	human	scheduling	by
designing	an	appointment	calendar	that	can	handle	any	number	of	people	with	one	hour
timeslots	between	9	a.m.	and	5	p.m.





The	project	–	multiuser	appointment
calendar
What	do	you	do	when	you	decide	to	write	a	program?

If	you’re	like	a	lot	of	people,	you	think	about	the	program;	perhaps	you	and	a	team	will
write	up	a	spec	or	requirements	document,	and	then	you’ll	get	to	coding.	Sometimes,	there
will	be	a	drawing	representing	some	facsimile	of	the	way	the	application	will	work.

Quite	often,	the	best	way	to	nail	down	the	architecture	and	the	inner	workings	of	an
application	is	to	put	pencil	to	paper	and	visually	represent	the	way	the	program	will	work.
For	a	lot	of	linear	or	serial	applications,	this	is	often	an	unnecessary	step	as	things	will
work	in	a	predictable	fashion	that	should	not	require	any	specific	coordination	within	the
application	logic	itself	(although	coordinating	third-party	software	likely	benefits	from
specification).

You	may	be	familiar	with	some	logic	that	looks	something	like	the	following	diagram:



The	logic	here	makes	sense.	If	you	remember	from	our	Preface,	when	humans	draw	out
processes,	we	tend	to	serialize	them.	Visually,	going	from	step	one	to	step	two	with	a	finite
number	of	processes	is	easy	to	understand.

However,	when	designing	a	concurrent	application,	it’s	essential	that	we	at	least	account
for	innumerable	and	concurrent	requests,	processes,	and	logic	to	make	sure	our	application
ends	where	we	want,	with	the	data	and	results	we	expect.

In	the	previous	example,	we	completely	ignore	the	possibility	that	“Is	User	Available”
could	fail	or	report	old	or	erroneous	data.	Does	it	make	more	sense	to	address	such
problems	if	and	when	we	find	them,	or	should	we	anticipate	them	as	part	of	a	control
flow?	Adding	complexity	to	the	model	can	help	us	reduce	the	odds	of	data	integrity	issues
down	the	road.



Let’s	visualize	this	again,	taking	into	account	availability	pollers	that	will	request
availability	for	a	user	with	any	given	request	for	a	time/user	pair.



Visualizing	a	concurrent	pattern
As	we	have	already	discussed,	we	wish	to	create	a	basic	blueprint	of	how	our	application
should	function	as	a	starting	point.	Here,	we’ll	implement	some	control	flow,	which
relates	to	user	activity,	to	help	us	decide	what	functionality	we’ll	need	to	include.	The
following	diagram	illustrates	how	the	control	flow	may	look	like:

In	the	previous	diagram,	we	anticipate	where	data	can	be	shared	using	concurrent	and
parallel	processes	to	locate	points	of	failure.	If	we	design	concurrent	applications	in	such
graphical	ways,	we’re	less	likely	to	find	race	conditions	later	on.

While	we	talked	about	how	Go	helps	you	to	locate	these	after	the	application	has
completed	running,	our	ideal	development	workflow	is	to	attempt	to	cut	these	problems



off	at	the	start.



Developing	our	server	requirements
Now	that	we	have	an	idea	of	how	the	scheduling	process	should	work,	we	need	to	identify
components	that	our	application	will	need.	In	this	case,	the	components	are	as	follows:

A	web	server	handler
A	template	for	output
A	system	for	determining	dates	and	times

Web	server
In	our	visualizing	concurrency	example	from	the	previous	chapter,	we	used	Go’s	built-in
http	package,	and	we’ll	do	the	same	here.	There	are	a	number	of	good	frameworks	out
there	for	this,	but	they	primarily	extend	the	core	Go	functionality	rather	than	reinventing
the	wheel.	The	following	are	a	few	of	these	functionalities,	listed	from	lightest	to	heaviest:

Web.go:	http://webgo.io/

Web.go	is	very	lightweight	and	lean,	and	it	provides	some	routing	functionality	not
available	in	the	net/http	package.

Gorilla:	http://www.gorillatoolkit.org/

Gorilla	is	a	Swiss	army	knife	to	augment	the	net/http	package.	It’s	not	particularly
heavy,	and	it	is	fast,	utilitarian,	and	very	clean.

Revel:	http://robfig.github.io/revel/

Revel	is	the	heaviest	of	the	three,	but	it	focuses	on	a	lot	of	intuitive	code,	caching,
and	performance.	Look	for	it	if	you	need	something	mature	that	will	face	a	lot	of
traffic.

In	Chapter	6,	C10K	–	A	Non-blocking	Web	Server	in	Go,	we’ll	roll	our	own	web	server
and	framework	with	the	sole	goal	of	extreme	high	performance.

The	Gorilla	toolkit

For	this	application,	we’ll	partially	employ	the	Gorilla	web	toolkit.	Gorilla	is	a	fairly
mature	web-serving	platform	that	fulfills	a	few	of	our	needs	here	natively,	namely	the
ability	to	include	regular	expressions	in	our	URL	routing.	(Note:	Web.Go	also	extends
some	of	this	functionality.)	Go’s	internal	HTTP	routing	handler	is	rather	simplistic;	you
can	extend	this,	of	course,	but	we’ll	take	a	shortcut	down	a	well-worn	and	reliable	path
here.

We’ll	use	this	package	solely	for	ease	of	URL	routing,	but	the	Gorilla	web	toolkit	also
includes	packages	to	handle	cookies,	sessions,	and	request	variables.	We’ll	examine	this
package	a	little	closer	in	Chapter	6,	C10K	–	A	Non-blocking	Web	Server	in	Go.

Using	templates
As	Go	is	intended	as	a	system	language,	and	as	system	languages	often	deal	with	the
creation	of	servers	with	clients,	some	care	was	put	into	making	it	a	well-featured
alternative	to	create	web	servers.

http://webgo.io/
http://www.gorillatoolkit.org/
http://robfig.github.io/revel/


Anyone	who’s	dealt	with	a	“web	language”	will	know	that	on	top	of	that	you’ll	need	a
framework,	ideally	one	that	handles	the	presentation	layer	for	the	web.	While	it’s	true	that
if	you	take	on	such	a	project	you’ll	likely	look	for	or	build	your	own	framework,	Go
makes	the	templating	side	of	things	very	easy.

The	template	package	comes	in	two	varieties:	text	and	http.	Though	they	both	serve
different	end	points,	the	same	properties—affording	dynamism	and	flexibility—apply	to
the	presentation	layer	rather	than	strictly	the	application	layer.

Tip
The	text	template	package	is	intended	for	general	plaintext	documents,	while	the	http
template	package	handles	the	generation	of	HTML	and	related	documents.

These	templating	paradigms	are	all	too	common	these	days;	if	you	look	at	the
http/template	package,	you’ll	find	some	very	strong	similarities	to	Mustache,	one	of	the
more	popular	variants.	While	there	is	a	Mustache	port	in	Go,	there’s	nothing	there	that
isn’t	handled	by	default	in	the	template	package.

Note
For	more	information	on	Mustache,	visit	http://mustache.github.io/.

One	potential	advantage	to	Mustache	is	its	availability	in	other	languages.	If	you	ever	feel
the	need	to	port	some	of	your	application	logic	to	another	language	(or	existing	templates
into	Go),	utilizing	Mustache	could	be	advantageous.	That	said,	you	sacrifice	a	lot	of	the
extended	functionality	of	Go	templates,	namely	the	ability	to	take	out	Go	code	from	your
compiled	package	and	move	it	directly	into	template	control	structures.	While	Mustache
(and	its	variants)	has	control	flows,	they	may	not	mirror	Go’s	templating	system.	Take	the
following	example:

<ul>

{{range	.Users}}

<li>A	User	</li>

{{end}}

</ul>

Given	the	familiarity	with	Go’s	logic	structures,	it	makes	sense	to	keep	them	consistent	in
our	templating	language	as	well.

Note
We	won’t	show	all	the	specific	templates	in	this	thread,	but	we	will	show	the	output.	If
you	wish	to	peruse	them,	they’re	available	at	mastergoco.com/chapters/3/templates.

Time
We’re	not	doing	a	whole	lot	of	math	here;	time	will	be	broken	into	hour	blocks	and	each
will	be	set	to	either	occupied	or	available.	At	this	time,	there	aren’t	a	lot	of	external
date/time	packages	for	Go.	We’re	not	doing	any	heavy-date	math,	but	it	doesn’t	really
matter	because	Go’s	time	package	should	suffice	even	if	we	were.

In	fact,	as	we	have	literal	hour	blocks	from	9	a.m.	to	5	p.m.,	we	just	set	these	to	the	24-

http://mustache.github.io/
http://mastergoco.com/chapters/3/templates


hour	time	values	of	9-17,	and	invoke	a	function	to	translate	them	into	linguistic	dates.



Endpoints
We’ll	want	to	identify	the	REST	endpoints	(via	GET	requests)	and	briefly	describe	how
they’ll	work.	You	can	think	of	these	as	modules	or	methods	in	the	model-view-controller
architecture.	The	following	is	a	list	of	the	endpoint	patterns	we’ll	use:

entrypoint/register/{name}:	This	is	where	we’ll	go	to	add	a	name	to	the	list	of
users.	If	the	user	exists,	it	will	fail.
entrypoint/viewusers:	Here,	we’ll	present	a	list	of	users	with	their	timeslots,	both
available	and	occupied.
entrypoint/schedule/{name}/{time}:	This	will	initialize	an	attempt	to	schedule	an
appointment.

Each	will	have	an	accompanying	template	that	will	report	the	status	of	the	intended	action.



Custom	structs
We’ll	deal	with	users	and	responses	(web	pages),	so	we	need	two	structs	to	represent	each.
One	struct	is	as	follows:

type	User	struct	{

		Name	string

		email	string

		times[int]	bool

}

The	other	struct	is	as	follows:

type	Page	struct	{

		Title	string

		Body	string

}

We	will	keep	the	page	as	simple	as	possible.	Rather	than	doing	a	lot	of	iterative	loops,	we
will	produce	the	HTML	within	the	code	for	the	most	part.

Our	endpoints	for	requests	will	relate	to	our	previous	architecture,	using	the	following
code:

func	users(w	http.ResponseWriter,	r	*http.Request)	{

}

func	register(w	http.ResponseWriter,	r	*http.Request)	{

}

func	schedule(w	http.ResponseWriter,	r	*http.Request)	{

}





A	multiuser	Appointments	Calendar
In	this	section,	we’ll	quickly	look	at	our	sample	Appointments	Calendar	application,
which	attempts	to	control	consistency	of	specific	elements	to	avoid	obvious	race
conditions.	The	following	is	the	full	code,	including	the	routing	and	templating:

package	main

import(

		"net/http"

		"html/template"

		"fmt"

		"github.com/gorilla/mux"

		"sync"

		"strconv"

)

type	User	struct	{

		Name	string

		Times	map[int]	bool

		DateHTML	template.HTML

}

type	Page	struct	{

		Title	string

		Body	template.HTML

		Users	map[string]	User

}

var	usersInit	map[string]	bool

var	userIndex	int

var	validTimes	[]int

var	mutex	sync.Mutex

var	Users	map[string]User

var	templates	=	

template.Must(template.New("template").ParseFiles("view_users.html",	

"register.html"))

func	register(w	http.ResponseWriter,	r	*http.Request){

		fmt.Println("Request	to	/register")

		params	:=	mux.Vars(r)

		name	:=	params["name"]

		if	_,ok	:=	Users[name];	ok	{

				t,_	:=	template.ParseFiles("generic.txt")

				page	:=	&Page{	Title:	"User	already	exists",	Body:	

						template.HTML("User	"	+	name	+	"	already	exists")}

				t.Execute(w,	page)

		}		else	{

										newUser	:=	User	{	Name:	name	}

										initUser(&newUser)

										Users[name]	=	newUser

										t,_	:=	template.ParseFiles("generic.txt")



										page	:=	&Page{	Title:	"User	created!",	Body:	

												template.HTML("You	have	created	user	"+name)}

										t.Execute(w,	page)

				}

}

func	dismissData(st1	int,	st2	bool)	{

//	Does	nothing	in	particular	for	now	other	than	avoid	Go	compiler	

		errors

}

func	formatTime(hour	int)	string	{

		hourText	:=	hour

		ampm	:=	"am"

		if	(hour	>	11)	{

				ampm	=	"pm"

		}

		if	(hour	>	12)	{

				hourText	=	hour	-	12;

		}

fmt.Println(ampm)

		outputString	:=	strconv.FormatInt(int64(hourText),10)	+	ampm

		

		return	outputString

}

func	(u	User)	FormatAvailableTimes()	template.HTML	{	HTML	:=	""	

		HTML	+=	"<b>"+u.Name+"</b>	-	"

		for	k,v	:=	range	u.Times	{	dismissData(k,v)

				if	(u.Times[k]	==	true)	{	formattedTime	:=	formatTime(k)	HTML	

						+=	"<a	href='/schedule/"+u.Name+"/"+strconv.FormatInt(int64(k),10)+"'	

class='button'>"+formattedTime+"</a>	"

				}	else	{

				}

	}	return	template.HTML(HTML)

}

func	users(w	http.ResponseWriter,	r	*http.Request)	{

		fmt.Println("Request	to	/users")

		t,_	:=	template.ParseFiles("users.txt")

		page	:=	&Page{	Title:	"View	Users",	Users:	Users}

		t.Execute(w,	page)

}



func	schedule(w	http.ResponseWriter,	r	*http.Request)	{

		fmt.Println("Request	to	/schedule")

		params	:=	mux.Vars(r)

		name	:=	params["name"]

		time	:=	params["hour"]

		timeVal,_	:=	strconv.ParseInt(	time,	10,	0	)

		intTimeVal	:=	int(timeVal)

		createURL	:=	"/register/"+name

		if	_,ok	:=	Users[name];	ok	{

				if	Users[name].Times[intTimeVal]	==	true	{

						mutex.Lock()

						Users[name].Times[intTimeVal]	=	false

						mutex.Unlock()

						fmt.Println("User	exists,	variable	should	be	modified")

						t,_	:=	template.ParseFiles("generic.txt")

						page	:=	&Page{	Title:	"Successfully	Scheduled!",	Body:	

								template.HTML("This	appointment	has	been	scheduled.	<a	

										href='/users'>Back	to	users</a>")}

						t.Execute(w,	page)

				

				}		else	{

												fmt.Println("User	exists,	spot	is	taken!")

												t,_	:=	template.ParseFiles("generic.txt")

												page	:=	&Page{	Title:	"Booked!",	Body:	

														template.HTML("Sorry,	"+name+"	is	booked	for	

														"+time+"	<a	href='/users'>Back	to	users</a>")}

						t.Execute(w,	page)

				}

		}		else	{

										fmt.Println("User	does	not	exist")

										t,_	:=	template.ParseFiles("generic.txt")

										page	:=	&Page{	Title:	"User	Does	Not	Exist!",	Body:	

												template.HTML(	"Sorry,	that	user	does	not	exist.	Click	

														<a	href='"+createURL+"'>here</a>	to	create	it.	<a	

																href='/users'>Back	to	users</a>")}

				t.Execute(w,	page)

		}

		fmt.Println(name,time)

}

func	defaultPage(w	http.ResponseWriter,	r	*http.Request)	{

}

func	initUser(user	*User)	{

		user.Times	=	make(map[int]	bool)

		for	i	:=	9;	i	<	18;	i	++	{

				user.Times[i]	=	true

		}



}

func	main()	{

		Users	=	make(map[string]	User)

		userIndex	=	0

		bill	:=	User	{Name:	"Bill"		}

		initUser(&bill)

		Users["Bill"]	=	bill

		userIndex++

		r	:=	mux.NewRouter()		r.HandleFunc("/",	defaultPage)

				r.HandleFunc("/users",	users)		

						r.HandleFunc("/register/{name:[A-Za-z]+}",	register)

								r.HandleFunc("/schedule/{name:[A-Za-z]+}/{hour:[0-9]+}",	

										schedule)					http.Handle("/",	r)

		err	:=	http.ListenAndServe(":1900",	nil)		if	err	!=	nil	{				//	

				log.Fatal("ListenAndServe:",	err)				}

}

Note	that	we	seeded	our	application	with	a	user,	Bill.	If	you	attempt	to	hit
/register/bill|bill@example.com,	the	application	will	report	that	the	user	exists.

As	we	control	the	most	sensitive	data	through	channels,	we	avoid	any	race	conditions.	We
can	test	this	in	a	couple	of	ways.	The	first	and	easiest	way	is	to	keep	a	log	of	how	many
successful	appointments	are	registered,	and	run	this	with	Bill	as	the	default	user.

We	can	then	run	a	concurrent	load	tester	against	the	action.	There	are	a	number	of	such
testers	available,	including	Apache’s	ab	and	Siege.	For	our	purposes,	we’ll	use	JMeter,
primarily	because	it	permits	us	to	test	against	multiple	URLs	concurrently.

Tip
Although	we’re	not	necessarily	using	JMeter	for	load	testing	(rather,	we	use	it	to	run
concurrent	tests),	load	testers	can	be	extraordinarily	valuable	ways	to	find	bottlenecks	in
applications	at	scales	that	don’t	yet	exist.

For	example,	if	you	built	a	web	application	that	had	a	blocking	element	and	had	5,000-
10,000	requests	per	day,	you	may	not	notice	it.	But	at	5	million-10	million	requests	per
day,	it	might	result	in	the	application	crashing.

In	the	dawn	of	network	servers,	this	is	what	happened;	servers	scaled	until	one	day,
suddenly,	they	couldn’t	scale	further.	Load/stress	testers	allow	you	to	simulate	traffic	in
order	to	better	detect	these	issues	and	inefficiencies.

Given	that	we	have	one	user	and	eight	hours	in	a	day,	we	should	end	our	script	with	no
more	than	eight	total	successful	appointments.	Of	course,	if	you	hit	the	/register
endpoint,	you	will	see	eight	times	as	many	users	as	you’ve	added.	The	following
screenshot	shows	our	benchmark	test	plan	in	JMeter:



When	you	run	your	application,	keep	an	eye	on	your	console;	at	the	end	of	our	load	test,
we	should	see	the	following	message:

Total	registered	appointments:	8

Had	we	designed	our	application	as	per	the	initial	graphical	mockup	representation	in	this
chapter	(with	race	conditions),	it’s	plausible—and	in	fact	likely—that	we’d	register	far
more	appointments	than	actually	existed.

By	isolating	potential	race	conditions,	we	guarantee	data	consistency	and	ensure	that
nobody	is	waiting	on	an	appointment	with	an	otherwise	occupied	attendee.	The	following
screenshot	is	the	list	we	present	of	all	the	users	and	their	available	appointment	times:

The	previous	screenshot	is	our	initial	view	that	shows	us	available	users	and	their
available	time	slots.	By	selecting	a	timeslot	for	a	user,	we’ll	attempt	to	book	them	for	that
particular	time.	We’ll	start	with	Nathan	at	5	p.m.



The	following	screenshot	shows	what	happens	when	we	attempt	to	schedule	with	an
available	user:

However,	if	we	attempt	to	book	again	(even	simultaneously),	we’ll	be	greeted	with	a	sad
message	that	Nathan	cannot	see	us	at	5	p.m,	as	shown	in	the	following	screenshot:

With	that,	we	have	a	multiuser	calendar	app	that	allows	for	creating	new	users,
scheduling,	and	blocking	double-bookings.

Let’s	look	at	a	few	interesting	new	points	in	this	application.

First,	you	will	notice	that	we	use	a	template	called	generic.txt	for	most	parts	of	the
application.	There’s	not	much	to	this,	only	a	page	title	and	body	filled	in	by	each	handler.
However,	on	the	/users	endpoint,	we	use	users.txt	as	follows:

<html>

<head>

		<meta	http-equiv="Content-Type"	content="text/html;	charset=utf-

				8">	

		<title>{{.Title}}</title>

</head>

<body>

<h1>{{.Title}}</h1>

{{range	.Users}}

<div	class="user-row">

		

		{{.FormatAvailableTimes}}

</div>

{{end}}

</body>



</html>

We	mentioned	the	range-based	functionality	in	templates,	but	how	does
{{.FormatAvailableTimes}}	work?	In	any	given	context,	we	can	have	type-specific
functions	that	process	the	data	in	more	complex	ways	than	are	available	strictly	in	the
template	lexer.

In	this	case,	the	User	struct	is	passed	to	the	following	line	of	code:

func	(u	User)	FormatAvailableTimes()	template.HTML	{

This	line	of	code	then	performs	some	conditional	analysis	and	returns	a	string	with	some
time	conversion.

In	this	example,	you	can	use	either	a	channel	to	control	the	flow	of	User.times	or	an
explicit	mutex	as	we	have	here.	We	don’t	want	to	limit	all	locks,	unless	absolutely
necessary,	so	we	only	invoke	the	Lock()	function	if	we’ve	determined	the	request	has
passed	the	tests	necessary	to	modify	the	status	of	any	given	user/time	pair.	The	following
code	shows	where	we	set	the	availability	of	a	user	within	a	mutual	exclusion:

if	_,ok	:=	Users[name];	ok	{

		if	Users[name].Times[intTimeVal]	==	true	{

				mutex.Lock()

				Users[name].Times[intTimeVal]	=	false

				mutex.Unlock()

The	outer	evaluation	checks	that	a	user	by	that	name	(key)	exists.	The	second	evaluation
checks	that	the	time	availability	exists	(true).	If	it	does,	we	lock	the	variable,	set	it	to
false,	and	then	move	onto	output	rendering.

Without	the	Lock()	function,	many	concurrent	connections	can	compromise	the
consistency	of	data	and	cause	the	user	to	have	more	than	one	appointment	in	a	given	hour.





A	note	on	style
You’ll	note	that	despite	preferring	camelCase	for	most	of	our	variables,	we	have	some
uppercase	variables	within	structs.	This	is	an	important	Go	convention	worth	mentioning:
any	struct	variable	that	begins	with	a	capital	letter	is	public.	Any	variable	that	begins	with
a	lowercase	letter	is	private.

If	you	attempt	to	output	a	private	(or	nonexistent)	variable	in	your	template	files,	template
rendering	will	fail.





A	note	on	immutability
Note	that	whenever	possible,	we’ll	avoid	using	the	string	type	for	comparative	operations,
especially	in	multithreaded	environments.	In	the	previous	example,	we	use	integers	and
Booleans	to	decide	availability	for	any	given	user.	In	some	languages,	you	may	feel
empowered	to	assign	the	time	values	to	a	string	for	ease	of	use.	For	the	most	part,	this	is
fine,	even	in	Go;	but	assuming	that	we	have	an	infinitely	scalable,	shared	calendar
application,	we	run	the	risk	of	introducing	memory	issues	if	we	utilize	strings	in	this	way.

The	string	type	is	the	sole	immutable	type	in	Go;	this	is	noteworthy	if	you	end	up
assigning	and	reassigning	values	to	a	string.	Assuming	that	memory	is	yielded	after	a
string	is	converted	to	a	copy,	this	is	not	a	problem.	However,	in	Go	(and	a	couple	of	other
languages),	it’s	entirely	possible	to	keep	the	original	value	in	memory.	We	can	test	this
using	the	following	example:

func	main()	{

		testString	:=	"Watch	your	top	/	resource	monitor"

		for	i:=	0;	i	<	1000;	i++	{

		

				testString	=	string(i)

		}

		doNothing(testString)		

		time.Sleep(10	*	time.Second)

}

When	run	in	Ubuntu,	this	takes	approximately	1.0	MB	of	memory;	some	of	that	no	doubt
overhead,	but	a	useful	reference	point.	Let’s	up	the	ante	a	bit—though	having	1,000
relatively	small	pointers	won’t	have	much	impact—using	the	following	line	of	code:

for	i:=	0;	i	<	100000000;	i++	{

Now,	having	gone	through	100	million	memory	assignments,	you	can	see	the	impact	on
memory	(it	doesn’t	help	that	the	string	itself	is	at	this	point	longer	than	the	initial,	but	it
doesn’t	account	for	the	full	effect).	Garbage	collection	takes	place	here	too,	which	impacts
CPU.	On	our	initial	test	here,	both	CPU	and	memory	spiked.	If	we	substitute	this	for	an
integer	or	a	Boolean	assignment,	we	get	much	smaller	footprints.

This	is	not	exactly	a	real-world	scenario,	but	it’s	worth	noting	in	a	concurrent	environment
where	garbage	collection	must	happen	so	we	can	evaluate	the	properties	and	types	of	our
logic.

It’s	also	entirely	possible,	depending	on	your	current	version	of	Go,	your	machine(s),	and
so	on,	and	this	could	run	as	efficiently	in	either	scenario.	While	that	might	seem	fine,	part
of	our	concurrent	strategy	planning	should	involve	the	possibility	that	our	application	will
scale	in	input,	output,	physical	resources,	or	all	of	them.	Just	because	something	works



well	now	doesn’t	mean	it’s	not	worth	implementing	efficiencies	that	will	keep	it	from
causing	performance	problems	at	a	100x	scale.

If	you	ever	encounter	a	place	where	a	string	is	logical,	but	you	want	or	could	benefit	from
a	mutable	type,	consider	a	byte	slice	instead.

A	constant	is,	of	course,	also	immutable,	but	given	that’s	the	implied	purpose	of	a	constant
variable,	you	should	already	know	this.	A	mutable	constant	variable	is,	after	all,	an
oxymoron.





Summary
This	chapter	has	hopefully	directed	you	towards	exploring	methods	to	plan	and	chart	out
your	concurrent	applications	before	delving	in.	By	briefly	touching	on	race	conditions	and
data	consistency,	we	attempted	to	highlight	the	importance	of	anticipatory	design.	At	the
same	time,	we	utilized	a	few	tools	for	identifying	such	issues,	should	they	occur.

Creating	a	robust	script	flowchart	with	concurrent	processes	will	help	you	locate	possible
pitfalls	before	you	create	them,	and	it	will	give	you	a	better	sense	of	how	(and	when)	your
application	should	be	making	decisions	with	logic	and	data.

In	the	next	chapter,	we’ll	examine	data	consistency	issues	and	look	at	advanced	channel
communication	options	in	an	effort	to	avoid	needless	and	often	expensive	mitigating
functions,	mutexes,	and	external	processes.





Chapter	4.	Data	Integrity	in	an
Application
By	now,	you	should	be	comfortable	with	the	models	and	tools	provided	in	Go’s	core	to
provide	mostly	race-free	concurrency.

We	can	now	create	goroutines	and	channels	with	ease,	manage	basic	communication
across	channels,	coordinate	data	without	race	conditions,	and	detect	such	conditions	as
they	arise.

However,	we	can	neither	manage	larger	distributed	systems	nor	deal	with	potentially
lower-level	consistency	problems.	We’ve	utilized	a	basic	and	simplistic	mutex,	but	we	are
about	to	look	at	a	more	complicated	and	expressive	way	of	handling	mutual	exclusions.

By	the	end	of	this	chapter,	you	should	be	able	to	expand	your	concurrency	patterns	from
the	previous	chapter	into	distributed	systems	using	a	myriad	of	concurrency	models	and
systems	from	other	languages.	We’ll	also	look—at	a	high	level—at	some	consistency
models	that	you	can	utilize	to	further	express	your	precoding	strategies	for	single-source
and	distributed	applications.



Getting	deeper	with	mutexes	and	sync
In	Chapter	2,	Understanding	the	Concurrency	Model,	we	introduced	sync.mutex	and	how
to	invoke	a	mutual	exclusion	lock	within	your	code,	but	there’s	some	more	nuance	to
consider	with	the	package	and	the	mutex	type.

We’ve	mentioned	that	in	an	ideal	world,	you	should	be	able	to	maintain	synchronization	in
your	application	by	using	goroutines	alone.	In	fact,	this	would	probably	be	best	described
as	the	canonical	method	within	Go,	although	the	sync	package	does	provide	a	few	other
utilities,	including	mutexes.

Whenever	possible,	we’ll	stick	with	goroutines	and	channels	to	manage	consistency,	but
the	mutex	does	provide	a	more	traditional	and	granular	approach	to	lock	and	access	data.
If	you’ve	ever	managed	another	concurrent	language	(or	package	within	a	language),	odds
are	you’ve	had	experience	with	either	a	mutex	or	a	philosophical	analog.	In	the	following
chapters,	we’ll	look	at	ways	of	extending	and	exploiting	mutexes	to	do	a	little	more	out	of
the	box.

If	we	look	at	the	sync	package,	we’ll	see	there	are	a	couple	of	different	mutex	structs.

The	first	is	sync.mutex,	which	we’ve	explored—but	another	is	RWMutex.	The	RWMutex
struct	provides	a	multireader,	single-writer	lock.	These	can	be	useful	if	you	want	to	allow
reads	to	resources	but	provide	mutex-like	locks	when	a	write	is	attempted.	They	can	be
best	utilized	when	you	expect	a	function	or	subprocess	to	do	frequent	reads	but	infrequent
writes,	but	it	still	cannot	afford	a	dirty	read.

Let’s	look	at	an	example	that	updates	the	date/time	every	10	seconds	(acquiring	a	lock),
yet	outputs	the	current	value	every	other	second,	as	shown	in	the	following	code:

package	main

import	(

		"fmt"

		"sync"

		"time"

)

type	TimeStruct	struct	{

		totalChanges	int

		currentTime	time.Time

		rwLock	sync.RWMutex

}

var	TimeElement	TimeStruct

func	updateTime()	{

		TimeElement.rwLock.Lock()

		defer	TimeElement.rwLock.Unlock()

		TimeElement.currentTime	=	time.Now()

		TimeElement.totalChanges++

}



func	main()	{

		var	wg	sync.WaitGroup

		TimeElement.totalChanges	=	0

		TimeElement.currentTime	=	time.Now()

		timer	:=	time.NewTicker(1	*	time.Second)

		writeTimer	:=	time.NewTicker(10	*	time.Second)

		endTimer	:=	make(chan	bool)

		wg.Add(1)

		go	func()	{

				for	{

						select	{

						case	<-timer.C:

								fmt.Println(TimeElement.totalChanges,	

										TimeElement.currentTime.String())

						case	<-writeTimer.C:

								updateTime()

						case	<-endTimer:

								timer.Stop()

								return

						}

				}

		}()

		wg.Wait()

		fmt.Println(TimeElement.currentTime.String())

}

Note
We	don’t	explicitly	run	Done()	on	our	WaitGroup	struct,	so	this	will	run	in	perpetuity.

There	are	two	different	methods	for	performing	locks/unlocks	on	RWMutex:

Lock():	This	will	block	variables	for	both	reading	and	writing	until	an	Unlock()
method	is	called
happenedRlock():	This	locks	bound	variables	solely	for	reads

The	second	method	is	what	we’ve	used	for	this	example,	because	we	want	to	simulate	a
real-world	lock.	The	net	effect	is	the	interval	function	that	outputs	the	current	time	that
will	return	a	single	dirty	read	before	rwLock	releases	the	read	lock	on	the	currentTime
variable.	The	Sleep()	method	exists	solely	to	give	us	time	to	witness	the	lock	in	motion.
An	RWLock	struct	can	be	acquired	by	many	readers	or	by	a	single	writer.





The	cost	of	goroutines
As	you	work	with	goroutines,	you	might	get	to	a	point	where	you’re	spawning	dozens	or
even	hundreds	of	them	and	wonder	if	this	is	going	to	be	expensive.	This	is	particularly
true	if	your	previous	experience	with	concurrent	and/or	parallel	programming	was
primarily	thread-based.	It’s	commonly	accepted	that	maintaining	threads	and	their
respective	stacks	can	begin	to	bog	down	a	program	with	performance	issues.	There	are	a
few	reasons	for	this,	which	are	as	follows:

Memory	is	required	just	for	the	creation	of	a	thread
Context	switching	at	the	OS	level	is	more	complex	and	expensive	than	in-process
context	switching
Very	often,	a	thread	is	spawned	for	a	very	small	process	that	could	be	handled
otherwise

It’s	for	these	reasons	that	a	lot	of	modern	concurrent	languages	implement	something	akin
to	goroutines	(C#	uses	the	async	and	await	mechanism,	Python	has	greenlets/green
threads,	and	so	on)	that	simulate	threads	using	small-scale	context	switching.

However,	it’s	worth	knowing	that	while	goroutines	are	(or	can	be)	cheap	and	cheaper	than
OS	threads,	they	are	not	free.	At	a	large	(perhaps	enormous)	measure,	even	cheap	and
light	goroutines	can	impact	performance.	This	is	particularly	important	to	note	as	we
begin	to	look	at	distributed	systems,	which	often	scale	larger	and	at	faster	rates.

The	difference	between	running	a	function	directly	and	running	it	in	a	goroutine	is
negligible	of	course.	However,	keep	in	mind	that	Go’s	documentation	states:

It	is	practical	to	create	hundreds	of	thousands	of	goroutines	in	the	same	address	space.

Given	that	stack	creation	uses	a	few	kilobytes	per	goroutine,	in	a	modern	environment,	it’s
easy	to	see	how	that	could	be	perceived	as	a	nonfactor.	However,	when	you	start	talking
about	thousands	(or	millions)	of	goroutines	running,	it	can	and	likely	will	impact	the
performance	of	any	given	subprocess	or	function.	You	can	test	this	by	wrapping	functions
in	an	arbitrary	number	of	goroutines	and	benchmarking	the	average	execution	time	and—
more	importantly—memory	usage.	At	approximately	5KB	per	goroutine,	you	may	find
that	memory	can	become	a	factor,	particularly	on	low-RAM	machines	or	instances.	If	you
have	an	application	that	runs	heavy	on	a	high-powered	machine,	imagine	it	reaching
criticality	in	one	or	more	lower-powered	machines.	Consider	the	following	example:

for	i:=	0;	i	<	1000000000;	i++	{

		go	someFunction()

}

Even	if	the	overhead	for	the	goroutine	is	cheap,	what	happens	at	100	million	or—as	we
have	here—a	billion	goroutines	running?

As	always,	doing	this	in	an	environment	that	utilizes	more	than	a	single	core	can	actually
increase	the	overhead	of	this	application	due	to	the	costs	of	OS	threading	and	subsequent
context	switching.



These	issues	are	almost	always	the	ones	that	are	invisible	unless	and	until	an	application
begins	to	scale.	Running	on	your	machine	is	one	thing,	running	at	scale	across	a
distributed	system	with	what	amounts	to	low-powered	application	servers	is	quite	another.

The	relationship	between	performance	and	data	consistency	is	important,	particularly	if
you	start	utilizing	a	lot	of	goroutines	with	mutual	exclusions,	locks,	or	channel
communication.

This	becomes	a	larger	issue	when	dealing	with	external,	more	permanent	memory	sources.





Working	with	files
Files	are	a	great	example	of	areas	where	data	consistency	issues	such	as	race	conditions
can	lead	to	more	permanent	and	catastrophic	problems.	Let’s	look	at	a	piece	of	code	that
might	continuously	attempt	to	update	a	file	to	see	where	we	could	run	into	race	conditions,
which	in	turn	could	lead	to	bigger	problems	such	as	an	application	failing	or	losing	data
consistency:

package	main

import(

		"fmt"

		"io/ioutil"

		"strconv"

		"sync"

)

func	writeFile(i	int)	{

		rwLock.RLock();

		ioutil.WriteFile("test.txt",	

				[]byte(strconv.FormatInt(int64(i),10)),	0x777)

		rwLock.RUnlock();

		writer<-true

}

var	writer	chan	bool

var	rwLock	sync.RWMutex

func	main()	{

		

		writer	=	make(chan	bool)

		for	i:=0;i<10;i++	{

				go	writeFile(i)

		}

		<-writer

		fmt.Println("Done!")

}

Code	involving	file	operations	are	rife	for	these	sorts	of	potential	issues,	as	mistakes	are
specifically	not	ephemeral	and	can	be	locked	in	time	forever.

If	our	goroutines	block	at	some	critical	point	or	the	application	fails	midway	through,	we
could	end	up	with	a	file	that	has	invalid	data	in	it.	In	this	case,	we’re	simply	iterating
through	some	numbers,	but	you	can	also	apply	this	situation	to	one	involving	database	or
datastore	writes—the	potential	exists	for	persistent	bad	data	instead	of	temporary	bad	data.



This	is	not	a	problem	that	is	exclusively	solved	by	channels	or	mutual	exclusions;	rather,	it
requires	some	sort	of	sanity	check	at	every	step	to	make	certain	that	data	is	where	you	and
the	application	expect	it	to	be	at	every	step	in	the	execution.	Any	operation	involving
io.Writer	relies	on	primitives,	which	Go’s	documentation	explicitly	notes	that	we	should
not	assume	they	are	safe	for	parallel	execution.	In	this	case,	we	have	wrapped	the	file
writing	in	a	mutex.





Getting	low	–	implementing	C
One	of	the	most	interesting	developments	in	language	design	in	the	past	decade	or	two	is
the	desire	to	implement	lower-level	languages	and	language	features	via	API.	Java	lets
you	do	this	purely	externally,	and	Python	provides	a	C	library	for	interaction	between	the
languages.	It	warrants	mentioning	that	the	reasons	for	doing	this	vary—among	them
applying	Go’s	concurrency	features	as	a	wrapper	for	legacy	C	code—and	you	will	likely
have	to	deal	with	some	of	the	memory	management	associated	with	introducing
unmanaged	code	to	garbage-collected	applications.

Go	takes	a	hybrid	approach,	allowing	you	to	call	a	C	interface	through	an	import,	which
requires	a	frontend	compiler	such	as	GCC:

import	"C"

So	why	would	we	want	to	do	this?

There	are	some	good	and	bad	reasons	to	implement	C	directly	in	your	project.	An	example
of	a	good	reason	might	be	to	have	direct	access	to	the	inline	assembly,	which	you	can	do
in	C	but	not	directly	in	Go.	A	bad	reason	could	be	any	that	has	a	solution	inherent	in
Golang	itself.

To	be	fair,	even	a	bad	reason	is	not	bad	if	you	build	your	application	reliably,	but	it	does
impose	an	additional	level	of	complexity	to	anyone	else	who	might	use	your	code.	If	Go
can	satisfy	the	technical	and	performance	requirements,	it’s	always	better	to	use	a	single
language	in	a	single	project.

There’s	a	famous	quote	from	C++	creator	Bjarne	Stroustrup	on	C	and	C++:

C	makes	it	easy	to	shoot	yourself	in	the	foot;	C++	makes	it	harder,	but	when	you	do,	it
blows	your	whole	leg	off.

Jokes	aside	(Stroustrup	has	a	vast	collection	of	such	quips	and	quotes),	the	fundamental
reasoning	is	that	the	complexity	of	C	often	prevents	people	from	accidentally	doing
something	catastrophic.

As	Stroustrup	says,	C	makes	it	easy	to	make	big	mistakes,	but	the	repercussions	are	often
smaller	due	to	language	design	than	higher-level	languages.	Issues	dealing	with	security
and	stability	are	easy	to	be	introduced	in	any	low-level	language.

By	simplifying	the	language,	C++	provides	abstractions	that	make	low-level	operations
easier	to	carry	out.	You	can	see	how	this	might	apply	to	using	C	directly	in	Go,	given	the
latter	language’s	syntactical	sweetness	and	programmer	friendliness.

That	said,	working	with	C	can	highlight	some	of	the	potential	pitfalls	with	regard	to
memory,	pointers,	deadlocks,	and	consistency,	so	we’ll	touch	upon	a	simple	example	as
follows:

package	main

//	#include	<stdio.h>



//	#include	<string.h>

//		int	string_length	(char*	str)	{

//				return	strlen(str);

//		}

import	"C"

import	"fmt"

func	main()	{

		v	:=	C.CString("Don't	Forget	My	Memory	Is	Not	Visible	To	Go!")

		x	:=	C.string_length(v)

		fmt.Println("A	C	function	has	determined	your	string	

				is",x,"characters	in	length")

}



Touching	memory	in	cgo
The	most	important	takeaway	from	the	preceding	example	is	to	remember	that	anytime
you	go	into	or	out	of	C,	you	need	to	manage	memory	manually	(or	at	least	more	directly
than	with	Go	alone).	If	you’ve	ever	worked	in	C	(or	C++),	you	know	that	there’s	no
automatic	garbage	collection,	so	if	you	request	memory	space,	you	must	also	free	it.
Calling	C	from	Go	does	not	preclude	this.



The	structure	of	cgo
Importing	C	into	Go	will	take	you	down	a	syntactical	side	route,	as	you	probably	noticed
in	the	preceding	code.	The	first	thing	that	will	appear	glaringly	different	is	the	actual
implementation	of	C	code	within	your	application.

Any	code	(in	comments	to	stop	Go’s	compiler	from	failing)	directly	above	the	import	"C"
directive	will	be	interpreted	as	C	code.	The	following	is	an	example	of	a	C	function
declared	above	our	Go	code:

/*

		int	addition(int	a,	int	b)	{

				return	a	+	b;

		}

Bear	in	mind	that	Go	won’t	validate	this,	so	if	you	make	an	error	in	your	C	code,	it	could
lead	to	silent	failure.

Another	related	warning	is	to	remember	your	syntax.	While	Go	and	C	share	a	lot	of
syntactical	overlap,	leave	off	a	curly	bracket	or	a	semicolon	and	you	could	very	well	find
yourself	in	one	of	those	silent	failure	situations.	Alternately,	if	you’re	working	in	the	C
part	of	your	application	and	you	go	back	to	Go,	you	will	undoubtedly	find	yourself
wrapping	loop	expressions	in	parentheses	and	ending	your	lines	with	semicolons.

Also	remember	that	you’ll	frequently	have	to	handle	type	conversions	between	C	and	Go
that	don’t	have	one-to-one	analogs.	For	example,	C	does	not	have	a	built-in	string	type
(you	can,	of	course,	include	additional	libraries	for	types),	so	you	may	need	to	convert
between	strings	and	char	arrays.	Similarly,	int	and	int64	might	need	some	nonimplicit
conversion,	and	again,	you	may	not	get	the	debugging	feedback	that	you	might	expect
when	compiling	these.



The	other	way	around
Using	C	within	Go	is	obviously	a	potentially	powerful	tool	for	code	migration,
implementing	lower-level	code,	and	roping	in	other	developers,	but	what	about	the
inverse?	Just	as	you	can	call	C	from	within	Go,	you	can	call	Go	functions	as	external
functions	within	your	embedded	C.

The	end	game	here	is	the	ability	to	work	with	and	within	C	and	Go	in	the	same
application.	By	far	the	easiest	way	to	handle	this	is	by	using	gccgo,	which	is	a	frontend	for
GCC.	This	is	different	than	the	built-in	Go	compiler;	it	is	possible	to	go	back	and	forth
between	C	and	Go	without	gccgo,	but	using	it	makes	this	process	much	simpler.

gopart.go

The	following	is	the	code	for	the	Go	part	of	the	interaction,	which	the	C	part	will	call	as
an	external	function:

package	main

func	MyGoFunction(num	C.int)	int	{

		squared	:=	num	*	num

		fmt.Println(num,"squared	is",squared)

		return	squared

}

cpart.c

Now	for	the	C	part,	where	we	make	our	call	to	our	Go	application’s	exported	function
MyGoFunction,	as	shown	in	the	following	code	snippet:

#include	<stdio.h>

extern	int	square_it(int)	__asm__	("cross.main.MyGoFunction")

int	main()	{

		

		int	output	=	square_it(5)

		printf("Output:	%d",output)

		return	0;

}

Makefile

Unlike	using	C	directly	in	Go,	at	present,	doing	the	inverse	requires	the	use	of	a	makefile
for	C	compilation.	Here’s	one	that	you	can	use	to	get	an	executable	from	the	earlier	simple
example:

all:	main

main:	cpart.o	cpart.c

				gcc	cpart.o	cpart.c	-o	main

gopart.o:	gopart.go



				gccgo	-c	gopart.go	-o	gopart.o	-fgo-prefix=cross

clean:

				rm	-f	main	*.o

Running	the	makefile	here	should	produce	an	executable	file	that	calls	the	function	from
within	C.

However,	more	fundamentally,	cgo	allows	you	to	define	your	functions	as	external
functions	for	C	directly:

package	output

import	"C"

//export	MyGoFunction

func	MyGoFunction(num	int)	int	{

		squared	:=	num	*	num

		return	squared

}

Next,	you’ll	need	to	use	the	cgo	tool	directly	to	generate	header	files	for	C	as	shown	in	the
following	line	of	code:

go	tool	cgo	goback.go

At	this	point,	the	Go	function	is	available	for	use	in	your	C	application:

#include	<stdio.h>

#include	"_obj/_cgo_export.h"

extern	int	MyGoFunction(int	num);

int	main()	{

		

		int	result	=	MyGoFunction(5);

		printf("Output:	%d",result);

		return	0;

}

Note	that	if	you	export	a	Go	function	that	contains	more	than	one	return	value,	it	will	be
available	as	a	struct	in	C	rather	than	a	function,	as	C	does	not	provide	multiple	variables
returned	from	a	function.

At	this	point,	you	may	be	realizing	that	the	true	power	of	this	functionality	is	the	ability	to
interface	with	a	Go	application	directly	from	existing	C	(or	even	C++)	applications.

While	not	necessarily	a	true	API,	you	can	now	treat	Go	applications	as	linked	libraries
within	C	apps	and	vice	versa.

One	caveat	about	using	//export	directives:	if	you	do	this,	your	C	code	must	reference
these	as	extern-declared	functions.	As	you	may	know,	extern	is	used	when	a	C	application
needs	to	call	a	function	from	another	linked	C	file.



When	we	build	our	Go	code	in	this	manner,	cgo	generates	the	header	file	_cgo_export.h,
as	you	saw	earlier.	If	you	want	to	take	a	look	at	that	code,	it	can	help	you	understand	how
Go	translates	compiled	applications	into	C	header	files	for	this	type	of	use:

/*	Created	by	cgo	-	DO	NOT	EDIT.	*/

#include	"_cgo_export.h"

extern	void	crosscall2(void	(*fn)(void	*,	int),	void	*,	int);

extern	void	_cgoexp_d133c8d0d35b_MyGoFunction(void	*,	int);

GoInt64	MyGoFunction(GoInt	p0)

{

		struct	{

				GoInt	p0;

				GoInt64	r0;

		}	__attribute__((packed))	a;

		a.p0	=	p0;

		crosscall2(_cgoexp_d133c8d0d35b_MyGoFunction,	&a,	16);

		return	a.r0;

}

You	may	also	run	into	a	rare	scenario	wherein	the	C	code	is	not	exactly	as	you	expect,	and
you’re	unable	to	cajole	the	compiler	to	produce	what	you	expect.	In	that	case,	you’re
always	free	to	modify	the	header	file	before	the	compilation	of	your	C	application,	despite
the	DO	NOT	EDIT	warning.

Getting	even	lower	–	assembly	in	Go
If	you	can	shoot	your	foot	off	with	C	and	you	can	blow	your	leg	off	with	C++,	just
imagine	what	you	can	do	with	assembly	in	Go.

It	isn’t	possible	to	use	assembly	directly	in	Go,	but	as	Go	provides	access	to	C	directly	and
C	provides	the	ability	to	call	inline	assembly,	you	can	indirectly	use	it	in	Go.

But	again,	just	because	something	is	possible	doesn’t	mean	it	should	be	done—if	you	find
yourself	in	need	of	assembly	in	Go,	you	should	consider	using	assembly	directly	and
connecting	via	an	API.

Among	the	many	roadblocks	that	you	may	encounter	with	assembly	in	(C	and	then	in)	Go
is	the	lack	of	portability.	Writing	inline	C	is	one	thing—your	code	should	be	relatively
transferable	between	processor	instruction	sets	and	operating	systems—but	assembly	is
obviously	something	that	requires	a	lot	of	specificity.

All	that	said,	it’s	certainly	better	to	have	the	option	to	shoot	yourself	in	the	foot	whether
you	choose	to	take	the	shot	or	not.	Use	great	care	when	considering	whether	you	need	C
or	assembly	directly	in	your	Go	application.	If	you	can	get	away	with	communicating
between	dissonant	processes	through	an	API	or	interprocess	conduit,	always	take	that
route	first.

One	very	obvious	drawback	of	using	assembly	in	Go	(or	on	its	own	or	in	C)	is	you	lose
the	cross-compilation	capabilities	that	Go	provides,	so	you’d	have	to	modify	your	code	for
every	destination	CPU	architecture.	For	this	reason,	the	only	practical	times	to	use	Go	in	C



are	when	there	is	a	single	platform	on	which	your	application	should	run.

Here’s	an	example	of	what	an	ASM-in-C-in-Go	application	might	look	like.	Keep	in	mind
that	we’ve	included	no	ASM	code,	because	it	varies	from	one	processor	type	to	another.
Experiment	with	some	boilerplate	assembly	in	the	following	__asm__	section:

package	main

/*

#include	<stdio.h>

void	asmCall()	{

__asm__(	""	);

				printf("I	come	from	a	%s","C	function	with	embedded	asm\n");

}

*/

import	"C"

func	main()	{

				

				C.asmCall()

}

If	nothing	else,	this	may	provide	an	avenue	for	delving	deeper	into	ASM	even	if	you’re
familiar	with	neither	assembly	nor	C	itself.	The	more	high-level	you	consider	C	and	Go	to
be,	the	more	practical	you	might	see	this.

For	most	uses,	Go	(and	certainly	C)	is	low-level	enough	to	be	able	to	squeeze	out	any
performance	hiccups	without	landing	at	assembly.	It’s	worth	noting	again	that	while	you
do	lose	some	immediate	control	of	memory	and	pointers	in	Go	when	you	invoke	C
applications,	that	caveat	applies	tenfold	with	assembly.	All	of	those	nifty	tools	that	Go
provides	may	not	work	reliably	or	not	work	at	all.	If	you	think	about	the	Go	race	detector,
consider	the	following	application:

package	main

/*

int	increment(int	i)	{

		i++;

		return	i;

}

*/

import	"C"

import	"fmt"

var	myNumber	int

func	main()	{

		fmt.Println(myNumber)

		

		for	i:=0;i<100;i++	{



				myNumber	=	int(	C.increment(C.int(myNumber))	)

				fmt.Println(myNumber)

		}

}

You	can	see	how	tossing	your	pointers	around	between	Go	and	C	might	leave	you	out	in
the	dark	when	you	don’t	get	what	you	expect	out	of	the	program.

Keep	in	mind	that	here	there	is	a	somewhat	unique	and	perhaps	unexpected	kicker	to	using
goroutines	with	cgo;	they	are	treated	by	default	as	blocking.	This	isn’t	to	say	that	you
can’t	manage	concurrency	within	C,	but	it	won’t	happen	by	default.	Instead,	Go	may	well
launch	another	system	thread.	You	can	manage	this	to	some	degree	by	utilizing	the
runtime	function	runtime.LockOSThread().	Using	LockOSThread	tells	Go	that	a	particular
goroutine	should	stay	within	the	present	thread	and	no	other	concurrent	goroutine	may	use
this	thread	until	runtime.UnlockOSThread()	is	called.

The	usefulness	of	this	depends	heavily	on	the	necessity	to	call	C	or	a	C	library	directly;
some	libraries	will	play	happily	as	new	threads	are	created,	a	few	others	may	segfault.

Note
Another	useful	runtime	call	you	should	find	useful	within	your	Go	code	is	NumGcoCall().
This	returns	the	number	of	cgo	calls	made	by	a	current	process.	If	you	need	to	lock	and
unlock	threads,	you	can	also	use	this	to	build	an	internal	queue	report	to	detect	and	prevent
deadlocks.

None	of	this	precludes	the	possibility	of	race	conditions	should	you	choose	to	mix	and
match	Go	and	C	within	goroutines.

Of	course,	C	itself	has	a	few	race	detector	tools	available.	Go’s	race	detector	itself	is	based
on	the	ThreadSanitizer	library.	It	should	go	without	saying	that	you	probably	do	not
want	several	tools	that	accomplish	the	same	thing	within	a	single	project.





Distributed	Go
So	far,	we’ve	talked	quite	a	bit	about	managing	data	within	single	machines,	though	with
one	or	more	cores.	This	is	complicated	enough	as	is.	Preventing	race	conditions	and
deadlocks	can	be	hard	to	begin	with,	but	what	happens	when	you	introduce	more
machines	(virtual	or	real)	to	the	mix?

The	first	thing	that	should	come	to	mind	is	that	you	can	throw	out	a	lot	of	the	inherent
tools	that	Go	provides,	and	to	a	large	degree	that’s	true.	You	can	mostly	guarantee	that	Go
can	handle	internal	locking	and	unlocking	of	data	within	its	own,	singular	goroutines	and
channels,	but	what	about	one	or	more	additional	instances	of	an	application	running?
Consider	the	following	model:

Here	we	see	that	either	of	these	threads	across	either	process	could	be	reading	from	or
writing	to	our	Critical	Data	at	any	given	point.	With	that	in	mind,	there	exists	a	need	to
coordinate	access	to	that	data.

At	a	very	high	level,	there	are	two	direct	strategies	for	handling	this,	a	distributed	lock	or
consistency	hash	table	(consistent	hashing).

The	first	strategy	is	an	extension	of	mutual	exclusions	except	that	we	do	not	have	direct
and	shared	access	to	the	same	address	space,	so	we	need	to	create	an	abstraction.	In	other
words,	it’s	our	job	to	concoct	a	lock	mechanism	that’s	visible	to	all	available	external
entities.

The	second	strategy	is	a	pattern	designed	specifically	for	caching	and	cache
validation/invalidation,	but	it	has	relevancy	here	as	well,	because	you	can	use	it	to	manage
where	data	lives	in	the	more	global	address	space.



However,	when	it	comes	to	ensuring	consistency	across	these	systems,	we	need	to	go
deeper	than	this	general,	high-level	approach.

Split	this	model	down	the	middle	and	it	becomes	easy:	channels	will	handle	the	concurrent
flow	of	data	and	data	structures,	and	where	they	don’t,	you	can	use	mutexes	or	low-level
atomicity	to	add	additional	safeguards.

However,	look	to	the	right.	Now	you	have	another	VM/instance	or	machine	attempting	to
work	with	the	same	data.	How	can	we	make	sure	that	we	do	not	encounter	reader/writer
problems?





Some	common	consistency	models
Luckily,	there	are	some	non-core	Go	solutions	and	strategies	that	we	can	utilize	to
improve	our	ability	to	control	data	consistency.

Let’s	briefly	look	at	a	few	consistency	models	that	we	can	employ	to	manage	our	data	in
distributed	systems.



Distributed	shared	memory
On	its	own,	a	Distributed	Shared	Memory	(DSM)	system	does	not	intrinsically	prevent
race	conditions,	as	it	is	merely	a	method	for	more	than	one	system	to	share	real	or
partitioned	memory.

In	essence,	you	can	imagine	two	systems	with	1	GB	of	memory,	each	allocating	500	MB
to	a	shared	memory	space	that	is	accessible	and	writable	by	each.	Dirty	reads	are	possible
as	are	race	conditions	unless	explicitly	designed.	The	following	figure	is	a	visual
representation	of	how	two	systems	can	coordinate	using	shared	memory:

We’ll	look	at	one	prolific	but	simple	example	of	DSM	shortly,	and	play	with	a	library
available	to	Go	for	test	driving	it.



First-in-first-out	–	PRAM
Pipelined	RAM	(PRAM)	consistency	is	a	form	of	first-in-first-out	methodology,	in	which
data	can	be	read	in	order	of	the	queued	writes.	This	means	that	writes	read	by	any	given,
separate	process	may	be	different.	The	following	figure	represents	this	concept:



Looking	at	the	master-slave	model
The	master-slave	consistency	model	is	similar	to	the	leader/follower	model	that	we’ll	look
at	shortly,	except	that	the	master	manages	all	operations	on	data	and	broadcasts	rather	than
receiving	write	operations	from	a	slave.	In	this	case,	replication	is	the	primary	method	of
transmission	of	changes	to	data	from	the	master	to	the	slave.	In	the	following	diagram,
you	will	find	a	representation	of	the	master-slave	model	with	a	master	server	and	four
slaves:

While	we	can	simply	duplicate	this	model	in	Go,	we	have	more	elegant	solutions	available
to	us.



The	producer-consumer	problem
In	the	classic	producer-consumer	problem,	the	producer	writes	chunks	of	data	to	a
conduit/buffer,	while	a	consumer	reads	chunks.	The	issue	arises	when	the	buffer	is	full:	if
the	producer	adds	to	the	stack,	the	data	read	will	not	be	what	you	intend.	To	avoid	this,	we
employ	a	channel	with	waits	and	signals.	This	model	looks	a	bit	like	the	following	figure:

If	you’re	looking	for	the	semaphore	implementation	in	Go,	there	is	no	explicit	usage	of	the
semaphore.	However,	think	about	the	language	here—fixed-size	channels	with	waits	and
signals;	sounds	like	a	buffered	channel.	Indeed,	by	providing	a	buffered	channel	in	Go,
you	give	the	conduit	here	an	explicit	length;	the	channel	mechanism	gives	you	the
communication	for	waits	and	signals.	This	is	incorporated	in	Go’s	concurrency	model.
Let’s	take	a	quick	look	at	a	producer-consumer	model	as	shown	in	the	following	code:

package	main

import(

		"fmt"

)

var	comm	=	make(chan	bool)

var	done	=	make(chan	bool)

func	producer()	{

		for	i:=0;	i<	10;	i++	{

				comm	<-	true

		}

		done	<-	true

}

func	consumer()	{

		for	{

				communication	:=	<-comm

				fmt.Println("Communication	from	producer	

						received!",communication)

		}

}



func	main()	{

		go	producer()

		go	consumer()

		<-	done

		fmt.Println("All	Done!")

}



Looking	at	the	leader-follower	model
In	the	leader/follower	model,	writes	are	broadcasted	from	a	single	source	to	any	followers.
Writes	can	be	passed	through	any	number	of	followers	or	be	restricted	to	a	single	follower.
Any	completed	writes	are	then	broadcasted	to	the	followers.	This	can	be	visually
represented	as	the	following	figure:

We	can	see	a	channel	analog	here	in	Go	as	well.	We	can,	and	have,	utilized	a	single
channel	to	handle	broadcasts	to	and	from	other	followers.



Atomic	consistency	/	mutual	exclusion
We’ve	looked	at	atomic	consistency	quite	a	bit.	It	ensures	that	anything	that	is	not	created
and	used	at	essentially	the	same	time	will	require	serialization	to	guarantee	the	strongest
form	of	consistency.	If	a	value	or	dataset	is	not	atomic	in	nature,	we	can	always	use	a
mutex	to	force	linearizability	on	that	data.

Serial	or	sequential	consistency	is	inherently	strong,	but	can	also	lead	to	performance
issues	and	degradation	of	concurrency.

Atomic	consistency	is	often	considered	the	strongest	form	of	ensuring	consistency.



Release	consistency
The	release	consistency	model	is	a	DSM	variant	that	can	delay	a	write’s	modifications
until	the	time	of	first	acquisition	from	a	reader.	This	is	known	as	lazy	release	consistency.
We	can	visualize	lazy	release	consistency	in	the	following	serialized	model:

This	model	as	well	as	an	eager	release	consistency	model	both	require	an	announcement
of	a	release	(as	the	name	implies)	when	certain	conditions	are	met.	In	the	eager	model,
that	condition	requires	that	a	write	would	be	read	by	all	read	processes	in	a	consistent
manner.

In	Go,	there	exists	alternatives	for	this,	but	there	are	also	packages	out	there	if	you’re
interested	in	playing	with	it.





Using	memcached
If	you’re	not	familiar	with	memcache(d),	it’s	a	wonderful	and	seemingly	obvious	way	to
manage	data	across	distributed	systems.	Go’s	built-in	channels	and	goroutines	are	fantastic
to	manage	communication	and	data	integrity	within	a	single	machine’s	processes,	but
neither	are	built	for	distributed	systems	out	of	the	box.

Memcached,	as	the	name	implies,	allows	data	sharing	memory	among	multiple	instances
or	machines.	Initially,	memcached	was	intended	to	store	data	for	quick	retrieval.	This	is
useful	for	caching	data	for	systems	with	high	turnover	such	as	web	applications,	but	it’s
also	a	great	way	to	easily	share	data	across	multiple	servers	and/or	to	utilize	shared
locking	mechanisms.

In	our	earlier	models,	memcached	falls	under	DSM.	All	available	and	invoked	instances
share	a	common,	mirrored	memory	space	within	their	respective	memories.

It’s	worth	pointing	out	that	race	conditions	can	and	do	exist	within	memcached,	and	you
still	need	a	way	to	deal	with	that.	Memcached	provides	one	method	to	share	data	across
distributed	systems,	but	does	not	guarantee	data	atomicity.	Instead,	memcached	operates
on	one	of	two	methods	for	invalidating	cached	data	as	follows:

Data	is	explicitly	assigned	a	maximum	age	(after	which,	it	is	removed	from	the	stack)
Or	data	is	pushed	from	the	stack	due	to	all	available	memory	being	used	by	newer
data

It’s	important	to	note	that	storage	within	memcache(d)	is,	obviously,	ephemeral	and	not
fault	resistant,	so	it	should	only	be	used	where	data	should	be	passed	without	threat	of
critical	application	failure.

At	the	point	where	either	of	these	conditions	is	met,	the	data	disappears	and	the	next	call
to	this	data	will	fail,	meaning	the	data	needs	to	be	regenerated.	Of	course,	you	can	work
with	some	elaborate	lock	generation	methods	to	make	memcached	operate	in	a	consistent
manner,	although	this	is	not	standard	built-in	functionality	of	memcached	itself.	Let’s	look
at	a	quick	example	of	memcached	in	Go	using	Brad	Fitz’s	gomemcache	interface
(https://github.com/bradfitz/gomemcache):

package	main

import	(

		"github.com/bradfitz/gomemcache/memcache"

		"fmt"

)

func	main()	{

					mC	:=	memcache.New("10.0.0.1:11211",	"10.0.0.2:11211",	

							"10.0.0.3:11211",	"10.0.0.4:11211")

					mC.Set(&memcache.Item{Key:	"data",	Value:	[]byte("30")	})

					dataItem,	err	:=	mc.Get("data")

}

https://github.com/bradfitz/gomemcache


As	you	might	note	from	the	preceding	example,	if	any	of	these	memcached	clients	are
writing	to	the	shared	memory	at	the	same	time,	a	race	condition	could	still	exist.

The	key	data	can	exist	across	any	of	the	clients	that	have	memcached	connected	and
running	at	the	same	time.

Any	client	can	also	unset	or	overwrite	the	data	at	any	time.

Unlike	a	lot	of	implementations,	you	can	set	some	more	complex	types	through
memcached,	such	as	structs,	assuming	they	are	serialized.	This	caveat	means	that	we’re
somewhat	limited	with	the	data	we	can	share	directly.	We	are	obviously	unable	to	use
pointers	as	memory	locations	will	vary	from	client	to	client.

One	method	to	handle	data	consistency	is	to	design	a	master-slave	system	wherein	only
one	node	is	responsible	for	writes	and	the	other	clients	listen	for	changes	via	a	key’s
existence.

We	can	utilize	any	other	earlier	mentioned	models	to	strictly	manage	a	lock	on	this	data,
although	it	can	get	especially	complicated.	In	the	next	chapter,	we’ll	explore	some	ways
by	which	we	can	build	distributed	mutual	exclusion	systems,	but	for	now,	we’ll	briefly
look	at	an	alternative	option.



Circuit
An	interesting	third-party	library	to	handle	distributed	concurrency	that	has	popped	up
recently	is	Petar	Maymounkov’s	Go’	circuit.	Go’	circuit	attempts	to	facilitate	distributed
coroutines	by	assigning	channels	to	listen	to	one	or	more	remote	goroutines.

The	coolest	part	of	Go’	circuit	is	that	simply	including	the	package	makes	your	application
ready	to	listen	and	operate	on	remote	goroutines	and	work	with	channels	with	which	they
are	associated.

Go’	circuit	is	in	use	at	Tumblr,	which	proves	it	has	some	viability	as	a	large-scale	and
relatively	mature	solutions	platform.

Note
Go’	circuit	can	be	found	at	https://github.com/gocircuit/circuit.

Installing	Go’	circuit	is	not	simple—you	cannot	run	a	simple	go	get	on	it—and	requires
Apache	Zookeeper	and	building	the	toolkit	from	scratch.

Once	done,	it’s	relatively	simple	to	have	two	machines	(or	two	processes	if	running
locally)	running	Go	code	to	share	a	channel.	Each	cog	in	this	system	falls	under	a	sender
or	listener	category,	just	as	with	goroutines.	Given	that	we’re	talking	about	network
resources	here,	the	syntax	is	familiar	with	some	minor	modifications:

homeChannel	:=	make(chan	bool)

circuit.Spawn("etphonehome.example.com",func()	{

		homeChannel	<-	true

})

for	{

		select	{

				case	response	:=	<-	homeChannel:

						fmt.Print("E.T.	has	phoned	home	with:",response)

		}

}

You	can	see	how	this	might	make	the	communication	between	disparate	machines	playing
with	the	same	data	a	lot	cleaner,	whereas	we	used	memcached	primarily	as	a	networked
in-memory	locking	system.	We’re	dealing	with	native	Go	code	directly	here;	we	have	the
ability	to	use	circuits	like	we	would	in	channels,	without	worrying	about	introducing	new
data	management	or	atomicity	issues.	In	fact,	the	circuit	is	built	upon	a	goroutine	itself.

This	does,	of	course,	still	introduce	some	additional	management	issues,	primarily	as	it
pertains	to	knowing	what	remote	machines	are	out	there,	whether	they	are	active,	updating
the	machines’	statuses,	and	so	on.	These	types	of	issues	are	best	suited	for	a	suite	such	as
Apache	Zookeeper	to	handle	coordination	of	distributed	resources.	It’s	worth	noting	that
you	should	be	able	to	produce	some	feedback	from	a	remote	machine	to	a	host:	the	circuit
operates	via	passwordless	SSH.

https://github.com/gocircuit/circuit


That	also	means	you	may	need	to	make	sure	that	user	rights	are	locked	down	and	that	they
meet	with	whatever	security	policies	you	may	have	in	place.

Note
You	can	find	Apache	Zookeeper	at	http://zookeeper.apache.org/.

http://zookeeper.apache.org/




Summary
Equipped	now	with	some	methods	and	models	to	manage	not	only	local	data	across	single
or	multithreaded	systems,	but	also	distributed	systems,	you	should	start	to	feel	pretty
comfortable	with	protecting	the	validity	of	data	in	concurrent	and	parallel	processes.

We’ve	looked	at	both	forms	of	mutual	exclusions	for	read	and	read/write	locks,	and	we
have	started	to	apply	these	to	distributed	systems	to	prevent	blocks	and	race	conditions
across	multiple	networked	systems.

In	the	next	chapter,	we’ll	explore	these	exclusion	and	data	consistency	concepts	a	little
deeper,	building	non-blocking	networked	applications	and	learn	to	work	with	timeouts	and
give	parallelism	with	channels	a	deeper	look.

We’ll	also	dig	a	little	deeper	into	the	sync	and	OS	packages,	in	particular	looking	at	the
sync.atomic	operations.





Chapter	5.	Locks,	Blocks,	and	Better
Channels
Now	that	we’re	starting	to	get	a	good	grasp	of	utilizing	goroutines	in	safe	and	consistent
ways,	it’s	time	to	look	a	bit	more	at	what	causes	code	blocking	and	deadlocks.	Let’s	also
explore	the	sync	package	and	dive	into	some	profiling	and	analysis.

So	far,	we’ve	built	some	relatively	basic	goroutines	and	complementary	channels,	but	we
now	need	to	utilize	some	more	complex	communication	channels	between	our	goroutines.
To	do	this,	we’ll	implement	more	custom	data	types	and	apply	them	directly	to	channels.

We’ve	not	yet	looked	at	some	of	Go’s	lower-level	tools	for	synchronization	and	analysis,
so	we’ll	explore	sync.atomic,	a	package	that—along	with	sync.Mutex—allows	for	more
granular	control	over	state.

Finally,	we’ll	delve	into	pprof,	a	fabulous	tool	provided	by	Go	that	lets	us	analyze	our
binaries	for	detailed	information	about	our	goroutines,	threads,	overall	heap,	and	blocking
profiles.

Armed	with	some	new	tools	and	methods	to	test	and	analyze	our	code,	we’ll	be	ready	to
generate	a	robust,	highly-scalable	web	server	that	can	be	used	to	safely	and	quickly	handle
any	amount	of	traffic	thrown	at	it.



Understanding	blocking	methods	in	Go
So	far,	we’ve	encountered	a	few	pieces	of	blocking	code,	intentional	and	unintentional,
through	our	exploration	and	examples.	At	this	point,	it’s	prudent	to	look	at	the	various
ways	we	can	introduce	(or	inadvertently	fall	victim	to)	blocking	code.

By	looking	at	the	various	ways	Go	code	can	be	blocked,	we	can	also	be	better	prepared	to
debug	cases	when	concurrency	is	not	operating	as	expected	in	our	application.



Blocking	method	1	–	a	listening,	waiting	channel
The	most	concurrently-focused	way	to	block	your	code	is	by	leaving	a	serial	channel
listening	to	one	or	more	goroutines.	We’ve	seen	this	a	few	times	by	now,	but	the	basic
concept	is	shown	in	the	following	code	snippet:

func	thinkAboutKeys()	{

		for	{

				fmt.Println("Still	Thinking")

				time.Sleep(1	*	time.Second)

		}

}

func	main()	{

		fmt.Println("Where	did	I	leave	my	keys?")

		blockChannel	:=	make(chan	int)

		go	thinkAboutKeys()

		<-blockChannel

		fmt.Println("OK	I	found	them!")

}

Despite	the	fact	that	all	of	our	looping	code	is	concurrent,	we’re	waiting	on	a	signal	for
our	blockChannel	to	continue	linear	execution.	We	can,	of	course,	see	this	in	action	by
sending	along	the	channel,	thus	continuing	code	execution	as	shown	in	the	following	code
snippet:

func	thinkAboutKeys(bC	chan	int)	{

		i	:=	0

		max	:=	10

		for	{

				if	i	>=	max	{

						bC	<-	1

				}

				fmt.Println("Still	Thinking")

				time.Sleep(1	*	time.Second)

				i++

		}

}

Here,	we’ve	modified	our	goroutine	function	to	accept	our	blocking	channel	and	deliver
an	end	message	to	it	when	we’ve	hit	our	maximum.	These	kinds	of	mechanisms	are
important	for	long-running	processes	because	we	may	need	to	know	when	and	how	to	kill
them.

Sending	more	data	types	via	channels
Go’s	use	of	channels	(structs	and	functions)	as	first-class	citizens	provides	us	with	a	lot	of
interesting	ways	of	executing,	or	at	least	trying,	new	approaches	of	communication
between	channels.

One	such	example	is	to	create	a	channel	that	handles	translation	through	a	function	itself,



and	instead	of	communicating	directly	through	the	standard	syntax,	the	channel	executes
its	function.	You	can	even	do	this	on	a	slice/array	of	functions	iterating	through	them	in
the	individual	functions.

Creating	a	function	channel

So	far,	we’ve	almost	exclusively	worked	in	single	data	type	and	single	value	channels.	So,
let’s	try	sending	a	function	across	a	channel.	With	first-class	channels,	we	need	no
abstraction	to	do	this;	we	can	just	send	almost	anything	directly	over	a	channel	as	shown
in	the	following	code	snippet:

func	abstractListener(fxChan	chan	func()	string	)	{

		fxChan	<-	func()	string	{

				return	"Sent!"

		}

}

func	main()	{

		fxChan	:=	make	(chan	func()	string)

		defer	close(fxChan)

		go	abstractListener(fxChan)

		select	{

				case	rfx	:=	<-	fxChan:

				msg	:=	rfx()

				fmt.Println(msg)						

				fmt.Println("Received!")

		}

}

This	is	like	a	callback	function.	However,	it	also	is	intrinsically	different,	as	it	is	not	just
the	method	called	after	the	execution	of	a	function,	but	also	serves	as	the	mode	of
communication	between	functions.

Keep	in	mind	that	there	are	often	alternatives	to	passing	functions	across	channels,	so	this
will	likely	be	something	very	specific	to	a	use	case	rather	than	a	general	practice.

Since	your	channel’s	type	can	be	virtually	any	available	type,	this	functionality	opens	up	a
world	of	possibilities,	which	can	be	potentially	confusing	abstractions.	A	struct	or
interface	as	a	channel	type	is	pretty	self-explanatory,	as	you	can	make	application-related
decisions	on	any	of	its	defined	properties.

Let’s	see	an	example	of	using	an	interface	in	this	way	in	the	next	section.

Using	an	interface	channel

As	with	our	function	channel,	being	able	to	pass	an	interface	(which	is	a	complementary
data	type)	across	a	channel	can	be	incredibly	useful.	Let’s	look	at	an	example	of	sending
across	an	interface:



type	Messenger	interface	{

		Relay()	string

}

type	Message	struct	{

		status	string

}

func	(m	Message)	Relay()	string	{

		return	m.status

}

func	alertMessages(v	chan	Messenger,	i	int)	{

		m	:=	new(Message)

		m.status	=	"Done	with	"	+	strconv.FormatInt(int64(i),10)

		v	<-	m

}

func	main	()	{

		

		msg	:=	make(chan	Messenger)

		for	i:=	0;	i	<	10;	i++	{

				go	alertMessages(msg,i)

		}

		select	{

				case	message	:=	<-msg:

						fmt.Println	(message.Relay())

		}

		<-	msg

}

This	is	a	very	basic	example	of	how	to	utilize	interfaces	as	channels;	in	the	previous
example,	the	interface	itself	is	largely	ornamental.	In	actuality,	we’re	passing	newly-
created	message	types	through	the	interface’s	channel	rather	than	interacting	directly	with
the	interface.

Using	structs,	interfaces,	and	more	complex	channels

Creating	a	custom	type	for	our	channel	allows	us	to	dictate	the	way	our	intra-channel
communication	will	work	while	still	letting	Go	dictate	the	context	switching	and	behind-
the-scenes	scheduling.

Ultimately,	this	is	mostly	a	design	consideration.	In	the	previous	examples,	we	used
individual	channels	for	specific	pieces	of	communication	in	lieu	of	a	one-size-fits-all
channel	that	passes	a	multitude	of	data.	However,	you	may	also	find	it	advantageous	to
use	a	single	channel	to	handle	a	large	amount	of	communication	between	goroutines	and
other	channels.

The	primary	consideration	in	deciding	whether	to	segregate	channels	into	individual	bits
of	communication	or	a	package	of	communications	depends	on	the	aggregate	mutability
of	each.



For	example,	if	you’ll	always	want	to	send	a	counter	along	with	a	function	or	string	and
they	will	always	be	paired	in	terms	of	data	consistency,	such	a	method	might	make	sense.
If	any	of	those	components	can	lose	synchronicity	en	route,	it’s	more	logical	to	keep	each
piece	independent.

Note
Maps	in	Go

As	mentioned,	maps	in	Go	are	like	hash	tables	elsewhere	and	immediately	related	to	slices
or	arrays.

In	the	previous	example	we	were	checking	to	see	if	a	username/key	exists	already;	for	this
purpose	Go	provides	a	simple	method	for	doing	so.	When	attempting	to	retrieve	a	hash
with	a	nonexistent	key,	a	zero	value	is	returned,	as	shown	in	the	following	lines	of	code:

if	Users[user.name]	{

		fmt.Fprintln(conn,	"Unfortunately,	that	username	is	in	use!");

}

This	makes	it	syntactically	simple	and	clean	to	test	against	a	map	and	its	keys.

One	of	the	best	features	of	maps	in	Go	is	the	ability	to	make	keys	out	of	any	comparable
type,	which	includes	strings,	integers,	Booleans	as	well	as	any	map,	struct,	slice,	or
channel	that	is	comprised	exclusively	of	those	types.

This	one-to-many	channel	can	work	as	a	master-slave	or	broadcaster-subscriber	model.
We’ll	have	a	channel	that	listens	for	messages	and	routes	them	to	appropriate	users	and	a
channel	that	listens	for	broadcast	messages	and	queues	them	to	all	users.

To	best	demonstrate	this,	we’ll	create	a	simple	multiuser	chat	system	that	allows	Twitter
style	@user	communication	with	a	single	user,	with	the	ability	to	broadcast	standard
messages	to	all	users	and	creates	a	universal	broadcast	chat	note	that	can	be	read	by	all
users.	Both	will	be	simple,	custom	type	struct	channels,	so	we	can	delineate	various
communication	pieces.

Note
Structs	in	Go

As	a	first-class,	anonymous,	and	extensible	type,	a	struct	is	one	of	the	most	versatile	and
useful	data	constructs	available.	It’s	simple	to	create	analogs	to	other	data	structures	such
as	databases	and	data	stores,	and	while	we	hesitate	to	call	them	objects	they	can	certainly
be	viewed	as	such.

The	rule	of	thumb	as	it	pertains	to	using	structs	within	functions	is	to	pass	by	reference
rather	than	by	value	if	the	struct	is	particularly	complex.	Two	points	of	clarification	are	as
follows:

Reference	is	in	quotations	because	(and	this	is	validated	by	Go’s	FAQ)	technically
everything	in	Go	is	passed	by	value.	By	that	we	mean	that	though	a	reference	to	a
pointer	still	exists,	at	some	step	in	the	process	the	value(s)	is	copied.



“Particularly	complex”	is,	understandably,	tough	to	quantify,	so	personal	judgment
might	come	into	play.	However,	we	can	consider	a	simple	struct	one	with	no	more
than	five	methods	or	properties.

You	can	think	of	this	in	terms	of	a	help	desk	system,	and	while	in	the	present	day	we’d	be
unlikely	to	create	a	command-line	interface	for	such	a	thing,	eschewing	the	web	portion
allows	us	to	gloss	over	all	of	the	client-side	code	that	isn’t	necessarily	relevant	to	Go.

You	could	certainly	take	such	an	example	and	extrapolate	it	to	the	Web	utilizing	some
frontend	libraries	for	asynchronous	functionality	(such	as	backbone.js	or	socket.io).

To	accomplish	this,	we’ll	need	to	create	both	a	client	and	a	server	application,	and	we’ll
try	to	keep	each	as	bare	bone	as	possible.	You	can	clearly	and	simply	augment	this	to
include	any	functionality	you	see	fit	such	as	making	Git	comments	and	updating	a
website.

We’ll	start	with	the	server,	which	will	be	the	most	complicated	part.	The	client	application
will	mostly	receive	messages	back	through	the	socket,	so	much	of	the	reading	and	routing
logic	will	be	invisible	to	the	client-side	of	the	process.

The	net	package	–	a	chat	server	with	interfaced	channels
Here,	we’ll	need	to	introduce	a	relevant	package	that	will	be	required	to	handle	most	of
the	communication	for	our	application(s).	We’ve	touched	on	the	net	package	a	bit	while
dabbling	in	the	SVG	output	generation	example	to	show	concurrency—net/http	is	just	a
small	part	of	a	broader,	more	complex,	and	more	feature-full	package.

The	basic	components	that	we’ll	be	using	will	be	a	TCP	listener	(server)	and	a	TCP	dialer
(client).	Let’s	look	at	the	basic	setup	for	these.

Server

Listening	on	a	TCP	port	couldn’t	be	easier.	Simply	initiate	the	net.Listen()	method	and
handle	the	error	as	shown	in	the	following	lines	of	code:

		listener,	err	:=	net.Listen("tcp",	":9000")

		if	err	!=	nil	{

				fmt.Println	("Could	not	start	server!")

		}

If	you	get	an	error	starting	the	server,	check	your	firewall	or	modify	the	port—it’s	possible
that	something	is	utilizing	port	9000	on	your	system.

As	easy	as	that	is,	it’s	just	as	simple	on	our	client/dialer	side.

Client

In	this	case,	we	have	everything	running	on	localhost	as	shown	in	the	following	lines	of
code.	However,	in	a	real-world	application	we’d	probably	have	an	intranet	address	used
here:

		conn,	err	:=	net.Dial("tcp","127.0.0.1:9000")

		if	err	!=	nil	{

				fmt.Println("Could	not	connect	to	server!")



		}

In	this	application,	we	demonstrate	two	different	ways	to	handle	byte	buffers	of	unknown
lengths	on	Read().	The	first	is	a	rather	crude	method	of	trimming	a	string	using
strings.TrimRight().	This	method	allows	you	to	define	characters	you	aren’t	interested
in	counting	as	part	of	the	input	as	shown	in	the	following	line	of	code.	Mostly,	it’s
whitespace	characters	that	we	can	assume	are	unused	parts	of	the	buffer	length.

sendMessage	:=	[]byte(cM.name	+	":	"	+	

		strings.TrimRight(string(buf),"	\t\r\n"))

Dealing	with	strings	this	way	is	often	both	inelegant	and	unreliable.	What	happens	if	we
get	something	we	don’t	expect	here?	The	string	will	be	the	length	of	the	buffer,	which	in
this	case	is	140	bytes.

The	other	way	we	deal	with	this	is	by	using	the	end	of	the	buffer	directly.	In	this	case,	we
assign	the	n	variable	to	the	conn.Read()	function,	and	then	can	use	that	as	a	buffer	length
in	the	string	to	buffer	conversion	as	shown	in	the	following	lines	of	code:

messBuff	:=	make([]byte,1024)

n,	err	:=	conn.Read(messBuff)

if	err	!=	nil	{

}

message	:=	string(messBuff[:n])

Here	we’re	taking	the	first	n	bytes	of	the	message	buffer’s	received	value.

This	is	more	reliable	and	efficient,	but	you	will	certainly	run	into	text	ingestion	cases
where	you	will	want	to	remove	certain	characters	to	create	cleaner	input.

Each	connection	in	this	application	is	a	struct	and	each	user	is	as	well.	We	keep	track	of
our	users	by	pushing	them	to	the	Users	slice	as	they	join.

The	selected	username	is	a	command-line	argument	as	follows:

./chat-client	nathan

chat-client.exe	nathan

We	do	not	check	to	to	ensure	there	is	only	one	user	with	that	name,	so	that	logic	might	be
required,	particularly	if	chats	with	direct	messages	contain	sensitive	information.

Handling	direct	messages

For	the	most	part,	this	chat	client	is	a	simple	echo	server,	but	as	mentioned,	we	also
include	an	ability	to	do	non-globally	broadcast	messages	by	invoking	the	Twitter	style	@
syntax.

We	handle	this	mainly	through	regular	expressions,	wherein	if	a	message	matches	@user
then	only	that	user	will	see	the	message;	otherwise,	it’s	broadcasted	to	all.	This	is
somewhat	inelegant,	because	senders	of	the	direct	message	will	not	see	their	own	direct
message	if	their	usernames	do	not	match	the	intended	names	of	the	users.

To	do	this,	we	direct	every	message	through	a	evalMessageRecipient()	function	before



broadcasting.	As	this	is	relying	on	user	input	to	create	the	regular	expression	(in	the	form
of	the	username),	please	take	note	that	we	should	escape	this	with	the
regexp.QuoteMeta()	method	to	prevent	regex	failures.

Let’s	first	examine	our	chat	server,	which	is	responsible	for	maintaining	all	connections
and	passing	them	to	goroutines	to	listen	and	receive,	as	shown	in	the	following	code:

chat-server.go

package	main

import

(

		"fmt"

		"strings"

		"net"

		"strconv"

		"regexp"

)

var	connectionCount	int

var	messagePool	chan(string)

const	(

		INPUT_BUFFER_LENGTH	=	140

)

We	utilize	a	maximum	character	buffer.	This	restricts	our	chat	messages	to	no	more	than
140	characters.	Let’s	look	at	our	User	struct	to	see	the	information	we	might	keep	about	a
user	that	joins,	as	follows:

type	User	struct	{

		Name	string

		ID	int

		Initiated	bool

The	initiated	variable	tells	us	that	User	is	connected	after	a	connection	and	announcement.
Let’s	examine	the	following	code	to	understand	the	way	we’d	listen	on	a	channel	for	a
logged-in	user:

		UChannel	chan	[]byte

		Connection	*net.Conn

}

The	User	struct	contains	all	of	the	information	we	will	maintain	

		for	each	connection.	Keep	in	mind	here	we	don't	do	any	sanity	

		checking	to	make	sure	a	user	doesn't	exist	–	this	doesn't	

		necessarily	pose	a	problem	in	an	example,	but	a	real	chat	client	

		would	benefit	from	a	response	should	a	user	name	already	be	

		in	use.

func	(u	*User)	Listen()	{

		fmt.Println("Listening	for",u.Name)

		for	{

				select	{

						case	msg	:=	<-	u.UChannel:

								fmt.Println("Sending	new	message	to",u.Name)



								fmt.Fprintln(*u.Connection,string(msg))

				}

		}

}

This	is	the	core	of	our	server:	each	User	gets	its	own	Listen()	method,	which	maintains
the	User	struct’s	channel	and	sends	and	receives	messages	across	it.	Put	simply,	each	user
gets	a	concurrent	channel	of	his	or	her	own.	Let’s	take	a	look	at	the	ConnectionManager
struct	and	the	Initiate()	function	that	creates	our	server	in	the	following	code:

type	ConnectionManager	struct	{

		name						string

		initiated	bool

}

func	Initiate()	*ConnectionManager	{

		cM	:=	&ConnectionManager{

				name:						"Chat	Server	1.0",

				initiated:	false,

		}

		return	cM

}

Our	ConnectionManager	struct	is	initiated	just	once.	This	sets	some	relatively	ornamental
attributes,	some	of	which	could	be	returned	on	request	or	on	chat	login.	We’ll	examine	the
evalMessageRecipient	function	that	attempts	to	roughly	identify	the	intended	recipient	of
any	message	sent	as	follows:

func	evalMessageRecipient(msg	[]byte,	uName	string)	bool	{

		eval	:=	true

		expression	:=	"@"

		re,	err	:=	regexp.MatchString(expression,	string(msg))

		if	err	!=	nil	{

				fmt.Println("Error:",	err)

		}

		if	re	==	true	{

				eval	=	false

				pmExpression	:=	"@"	+	uName

				pmRe,	pmErr	:=	regexp.MatchString(pmExpression,	string(msg))

				if	pmErr	!=	nil	{

						fmt.Println("Regex	error",	err)

				}

				if	pmRe	==	true	{

						eval	=	true

				}

		}

		return	eval

}

This	is	our	router	of	sorts	taking	the	@	part	of	the	string	and	using	it	to	detect	an	intended
recipient	to	hide	from	public	consumption.	We	do	not	return	an	error	if	the	user	doesn’t
exist	or	has	left	the	chat.



Note
The	format	for	regular	expressions	using	the	regexp	package	relies	on	the	re2	syntax,
which	is	described	at	https://code.google.com/p/re2/wiki/Syntax.

Let’s	take	a	look	at	the	code	for	the	Listen()	method	of	the	ConnectionManager	struct:

func	(cM	*ConnectionManager)	Listen(listener	net.Listener)	{

		fmt.Println(cM.name,	"Started")

		for	{

				conn,	err	:=	listener.Accept()

				if	err	!=	nil	{

						fmt.Println("Connection	error",	err)

				}

				connectionCount++

				fmt.Println(conn.RemoteAddr(),	"connected")

				user	:=	User{Name:	"anonymous",	ID:	0,	Initiated:	false}

				Users	=	append(Users,	&user)

				for	_,	u	:=	range	Users	{

						fmt.Println("User	online",	u.Name)

				}

				fmt.Println(connectionCount,	"connections	active")

				go	cM.messageReady(conn,	&user)

		}

}

func	(cM	*ConnectionManager)	messageReady(conn	net.Conn,	user	

		*User)	{

		uChan	:=	make(chan	[]byte)

		for	{

				buf	:=	make([]byte,	INPUT_BUFFER_LENGTH)

				n,	err	:=	conn.Read(buf)

				if	err	!=	nil	{

						conn.Close()

						conn	=	nil

				}

				if	n	==	0	{

						conn.Close()

						conn	=	nil

				}

				fmt.Println(n,	"character	message	from	user",	user.Name)

				if	user.Initiated	==	false	{

						fmt.Println("New	User	is",	string(buf))

						user.Initiated	=	true

						user.UChannel	=	uChan

						user.Name	=	string(buf[:n])

						user.Connection	=	&conn

						go	user.Listen()

						minusYouCount	:=	strconv.FormatInt(int64(connectionCount-1),	

								10)

						conn.Write([]byte("Welcome	to	the	chat,	"	+	user.Name	+	",	

								there	are	"	+	minusYouCount	+	"	other	users"))

https://code.google.com/p/re2/wiki/Syntax


				}	else	{

						sendMessage	:=	[]byte(user.Name	+	":	"	+	

								strings.TrimRight(string(buf),	"	\t\r\n"))

						for	_,	u	:=	range	Users	{

								if	evalMessageRecipient(sendMessage,	u.Name)	==	true	{

										u.UChannel	<-	sendMessage

								}

						}

				}

		}

}geReady	(per	connectionManager)	function	instantiates	new	

		connections	into	a	User	struct,	utilizing	first	sent	message	as	

		the	user's	name.

var	Users	[]*User

This	is	our	unbuffered	array	(or	slice)	of	user	structs.

func	main()	{

		connectionCount	=	0

		serverClosed	:=	make(chan	bool)

		listener,	err	:=	net.Listen("tcp",	":9000")

		if	err	!=	nil	{

				fmt.Println	("Could	not	start	server!",err)

		}

		connManage	:=	Initiate()		

		go	connManage.Listen(listener)

		<-serverClosed

}

As	expected,	main()	primarily	handles	the	connection	and	error	and	keeps	our	server	open
and	nonblocked	with	the	serverClosed	channel.

There	are	a	number	of	methods	we	could	employ	to	improve	the	way	we	route	messages.
The	first	method	would	be	to	invoke	a	map	(or	hash	table)	bound	to	a	username.	If	the
map’s	key	exists,	we	could	return	some	error	functionality	if	a	user	already	exists,	as
shown	in	the	following	code	snippet:

type	User	struct	{

		name	string

}

var	Users	map[string]	*User

func	main()	{

		Users	:=	make(map[string]	*User)

}



Examining	our	client
Our	client	application	is	a	bit	simpler	primarily	because	we	don’t	care	as	much	about
blocking	code.

While	we	do	have	two	concurrent	operations	(wait	for	the	message	and	wait	for	user	input
to	send	the	message),	this	is	significantly	less	complicated	than	our	server,	which	needs	to
concurrently	listen	to	each	created	user	and	distribute	sent	messages,	respectively.

Let’s	now	compare	our	chat	client	to	our	chat	server.	Obviously,	the	client	has	less	overall
maintenance	of	connections	and	users,	and	so	we	do	not	need	to	use	nearly	as	many
channels.	Let’s	take	a	look	at	our	chat	client’s	code:

chat-client.go

package	main

import

(

		"fmt"

		"net"

		"os"

		"bufio"

		"strings"

)

type	Message	struct	{

		message	string

		user	string

}

var	recvBuffer	[140]byte

func	listen(conn	net.Conn)	{

		for	{

						messBuff	:=	make([]byte,1024)

						n,	err	:=	conn.Read(messBuff)

						if	err	!=	nil	{

								fmt.Println("Read	error",err)

						}

						message	:=	string(messBuff[:n])

						message	=	message[0:]

						fmt.Println(strings.TrimSpace(message))

						fmt.Print(">	")

		}

}

func	talk(conn	net.Conn,	mS	chan	Message)	{

						for	{

						command	:=	bufio.NewReader(os.Stdin)

								fmt.Print(">	")								

																line,	err	:=	command.ReadString('\n')



																

																line	=	strings.TrimRight(line,	"	\t\r\n")

								_,	err	=	conn.Write([]byte(line))																							

																if	err	!=	nil	{

																								conn.Close()

																								break

																}

						doNothing(command)		

								}		

}

func	doNothing(bf	*bufio.Reader)	{

		//	A	temporary	placeholder	to	address	io	reader	usage

}

func	main()	{

		messageServer	:=	make(chan	Message)

		userName	:=	os.Args[1]

		fmt.Println("Connecting	to	host	as",userName)

		clientClosed	:=	make(chan	bool)

		conn,	err	:=	net.Dial("tcp","127.0.0.1:9000")

		if	err	!=	nil	{

				fmt.Println("Could	not	connect	to	server!")

		}

		conn.Write([]byte(userName))

		introBuff	:=	make([]byte,1024)				

		n,	err	:=	conn.Read(introBuff)

		if	err	!=	nil	{

		}

		message	:=	string(introBuff[:n])		

		fmt.Println(message)

		go	talk(conn,messageServer)

		go	listen(conn)

		<-	clientClosed

}



Blocking	method	2	–	the	select	statement	in	a	loop
Have	you	noticed	yet	that	the	select	statement	itself	blocks?	Fundamentally,	the	select
statement	is	not	different	from	an	open	listening	channel;	it’s	just	wrapped	in	conditional
code.

The	<-	myChannel	channel	operates	the	same	way	as	the	following	code	snippet:

select	{

		case	mc	:=	<-	myChannel:

				//	do	something

}

An	open	listening	channel	is	not	a	deadlock	as	long	as	there	are	no	goroutines	sleeping.
You’ll	find	this	on	channels	that	are	listening	but	will	never	receive	anything,	which	is
another	method	of	basically	waiting.

These	are	useful	shortcuts	for	long-running	applications	you	wish	to	keep	alive	but	you
may	not	necessarily	need	to	send	anything	along	that	channel.





Cleaning	up	goroutines
Any	channel	that	is	left	waiting	and/or	left	receiving	will	result	in	a	deadlock.	Luckily,	Go
is	pretty	adept	at	recognizing	these	and	you	will	almost	without	fail	end	up	in	a	panic
when	running	or	building	the	application.

Many	of	our	examples	so	far	have	utilized	the	deferred	close()	method	of	immediately
and	cleanly	grouping	together	similar	pieces	of	code	that	should	execute	at	different
points.

While	garbage	collection	handles	a	lot	of	the	cleanup,	we’re	largely	left	to	take	care	of
open	channels	to	ensure	we	don’t	have	a	process	waiting	to	receive	and/or	something
waiting	to	send,	both	waiting	at	the	same	time	for	each	other.	Luckily,	we’ll	be	unable	to
compile	any	such	program	with	a	detectable	deadlock	condition,	but	we	also	need	to
manage	closing	channels	that	are	left	waiting.

Quite	a	few	of	the	examples	so	far	have	ended	with	a	generic	integer	or	Boolean	channel
that	just	waits—this	is	employed	almost	exclusively	for	the	channel’s	blocking	effect	and
allows	us	to	demonstrate	the	effects	and	output	of	concurrent	code	while	the	application	is
still	running.	In	many	cases,	this	generic	channel	is	an	unnecessary	bit	of	syntactical	cruft
as	shown	in	the	following	lines	of	code:

<-youMayNotNeedToDoThis

close(youmayNotNeedToDoThis)

The	fact	that	there’s	no	assignment	happening	is	a	good	indicator	this	is	an	example	of
such	cruft.	If	we	had	instead	modified	that	to	include	an	assignment,	the	previous	code
would	be	changed	to	the	following	instead:

v	:=	<-youMayNotNeedToDoThis

It	might	indicate	that	the	value	is	useful	and	not	just	arbitrary	blocking	code.



Blocking	method	3	–	network	connections	and
reads
If	you	run	the	code	from	our	earlier	chat	server’s	client	without	starting	the	server,	you’ll
notice	that	the	Dial	function	blocks	any	subsequent	goroutine.	We	can	test	this	by
imposing	a	longer-than-normal	timeout	on	the	connection	or	by	simply	closing	the	client
application	after	logging	in,	as	we	did	not	implement	a	method	for	closing	the	TCP
connection.

As	the	network	reader	we’re	using	for	the	connection	is	buffered,	we’ll	always	have	a
blocking	mechanism	while	waiting	for	data	via	TCP.





Creating	channels	of	channels
The	preferred	and	sanctioned	way	of	managing	concurrency	and	state	is	exclusively
through	channels.

We’ve	demonstrated	a	few	more	complex	types	of	channels,	but	we	haven’t	looked	at
what	can	become	a	daunting	but	powerful	implementation:	channels	of	channels.	This
might	at	first	sound	like	some	unmanageable	wormhole,	but	in	some	situations	we	want	a
concurrent	action	to	generate	more	concurrent	actions;	thus,	our	goroutines	should	be
capable	of	spawning	their	own.

As	always,	the	way	you	manage	this	is	through	design	while	the	actual	code	may	simply
be	an	aesthetic	byproduct	here.	Building	an	application	this	way	should	make	your	code
more	concise	and	clean	most	of	the	time.

Let’s	revisit	a	previous	example	of	an	RSS	feed	reader	to	demonstrate	how	we	could
manage	this,	as	shown	in	the	following	code:

package	main

import	(

	"fmt"

)

type	master	chan	Item

var	feedChannel	chan	master

var	done	chan	bool

type	Item	struct	{

	Url		string

	Data	[]byte

}

type	Feed	struct	{

	Url			string

	Name		string

	Items	[]Item

}

var	Feeds	[]Feed

func	process(feedChannel	*chan	master,	done	*chan	bool)	{

	for	_,	i	:=	range	Feeds	{

		fmt.Println("feed",	i)

		item	:=	Item{}

		item.Url	=	i.Url

		itemChannel	:=	make(chan	Item)

		*feedChannel	<-	itemChannel

		itemChannel	<-	item

	}

	*done	<-	true

}

func	processItem(url	string)	{



	//	deal	with	individual	feed	items	here

	fmt.Println("Got	url",	url)

}

func	main()	{

	done	:=	make(chan	bool)

	Feeds	=	[]Feed{Feed{Name:	"New	York	Times",	Url:	

"http://rss.nytimes.com/services/xml/rss/nyt/HomePage.xml"},

		Feed{Name:	"Wall	Street	Journal",	Url:	

"http://feeds.wsjonline.com/wsj/xml/rss/3_7011.xml"}}

	feedChannel	:=	make(chan	master)

	go	func(done	chan	bool,	feedChannel	chan	master)	{

		for	{

			select	{

			case	fc	:=	<-feedChannel:

				select	{

				case	item	:=	<-fc:

					processItem(item.Url)

				}

			default:

			}

		}

	}(done,	feedChannel)

	go	process(&feedChannel,	&done)

	<-done

	fmt.Println("Done!")

}

Here,	we	manage	feedChannel	as	a	custom	struct	that	is	itself	a	channel	for	our	Item	type.
This	allows	us	to	rely	exclusively	on	channels	for	synchronization	handled	through	a
semaphore-esque	construct.

If	we	want	to	look	at	another	way	of	handling	a	lower-level	synchronization,	sync.atomic
provides	some	simple	iterative	patterns	that	allow	you	to	manage	synchronization	directly
in	memory.

As	per	Go’s	documentation,	these	operations	require	great	care	and	are	prone	to	data
consistency	errors,	but	if	you	need	to	touch	memory	directly,	this	is	the	way	to	do	it.	When
we	talk	about	advanced	concurrency	features,	we’ll	utilize	this	package	directly.





Pprof	–	yet	another	awesome	tool
Just	when	you	think	you’ve	seen	the	entire	spectrum	of	Go’s	amazing	tool	set,	there’s
always	one	more	utility	that,	once	you	realize	it	exists,	you’ll	wonder	how	you	ever
survived	without	it.

Go	format	is	great	for	cleaning	up	your	code;	the	-race	flag	is	essential	for	detecting
possible	race	conditions,	but	an	even	more	robust,	hands-in-the-dirt	tool	exists	that	is	used
to	analyze	your	final	application,	and	that	is	pprof.

Google	created	pprof	initially	to	analyze	loop	structures	and	memory	allocation	(and
related	types)	for	C++	applications.

It’s	particularly	useful	if	you	think	you	have	performance	issues	not	uncovered	by	the
testing	tools	provided	in	the	Go	runtime.	It’s	also	a	fantastic	way	to	generate	a	visual
representation	of	the	data	structures	in	any	application.

Some	of	this	functionality	also	exists	as	part	of	the	Go	testing	package	and	its
benchmarking	tools—we’ll	explore	that	more	in	Chapter	7,	Performance	and	Scalability.

Getting	the	runtime	version	of	pprof	to	work	requires	a	few	pieces	of	setup	first.	We’ll
need	to	include	the	runtime.pprof	package	and	the	flag	package,	which	allows
command-line	parsing	(in	this	case,	for	the	output	of	pprof).

If	we	take	our	chat	server	code,	we	can	add	a	couple	of	lines	and	have	the	application
prepped	for	performance	profiling.

Let’s	make	sure	we	include	those	two	packages	along	with	our	other	packages.	We	can	use
the	underscore	syntax	to	indicate	to	the	compiler	that	we’re	only	interested	in	the
package’s	side	effects	(meaning	we	get	the	package’s	initialization	functions	and	global
variables)	as	shown	in	the	following	lines	of	code:

import

(

		"fmt"

...

		_	"runtime/pprof"

)

Next,	in	our	main()	function,	we	include	a	flag	parser	that	will	parse	and	interpret	the	data
produced	by	pprof	as	well	as	create	the	CPU	profile	itself	if	it	does	not	exist	(and	bailing	if
it	cannot	be	created),	as	shown	in	the	following	code	snippet:

var	profile	=	flag.String("cpuprofile",	"",	"output	pprof	data	to	

		file")

func	main()	{

		flag.Parse()

		if	*profile	!=	""	{

				flag,err	:=	os.Create(*profile)

				if	err	!=	nil	{

						fmt.Println("Could	not	create	profile",err)



				}

				pprof.StartCPUProfile(flag)

				defer	pprof.StopCPUProfile()

		}

}

This	tells	our	application	to	generate	a	CPU	profiler	if	it	does	not	exist,	start	the	profiling
at	the	beginning	of	the	execution,	and	defer	the	end	of	the	profiling	until	the	application
exits	successfully.

With	this	created,	we	can	run	our	binary	with	the	cpuprofile	flag,	which	tells	the
program	to	generate	a	profile	file	as	follows:

./chat-server	-cpuprofile=chat.prof

For	the	sake	of	variety	(and	exploiting	more	resources	arbitrarily),	we’ll	abandon	the	chat
server	for	a	moment	and	create	a	loop	generating	scores	of	goroutines	before	exiting.	This
should	give	us	a	more	exciting	demonstration	of	profiling	data	than	a	simple	and	long-
living	chat	server	would,	although	we’ll	return	to	that	briefly:

Here	is	our	example	code	that	generates	more	detailed	and	interesting	profiling	data:

package	main

import	(

		"flag"

		"fmt"

		"math/rand"

		"os"

		"runtime"

		"runtime/pprof"

)

const	ITERATIONS	=	99999

const	STRINGLENGTH	=	300

var	profile	=	flag.String("cpuprofile",	"",	"output	pprof	data	to	

		file")

func	generateString(length	int,	seed	*rand.Rand,	chHater	chan	

		string)	string	{

		bytes	:=	make([]byte,	length)

		for	i	:=	0;	i	<	length;	i++	{

				bytes[i]	=	byte(rand.Int())

		}

		chHater	<-	string(bytes[:length])

		return	string(bytes[:length])

}

func	generateChannel()	<-chan	int	{

		ch	:=	make(chan	int)

		return	ch

}



func	main()	{

		goodbye	:=	make(chan	bool,	ITERATIONS)

		channelThatHatesLetters	:=	make(chan	string)

		runtime.GOMAXPROCS(2)

		flag.Parse()

		if	*profile	!=	""	{

				flag,	err	:=	os.Create(*profile)

				if	err	!=	nil	{

						fmt.Println("Could	not	create	profile",	err)

				}

				pprof.StartCPUProfile(flag)

				defer	pprof.StopCPUProfile()

		}

		seed	:=	rand.New(rand.NewSource(19))

		initString	:=	""

		for	i	:=	0;	i	<	ITERATIONS;	i++	{

				go	func()	{

						initString	=	generateString(STRINGLENGTH,	seed,	

								channelThatHatesLetters)

						goodbye	<-	true

				}()

		}

		select	{

		case	<-channelThatHatesLetters:

		}

		<-goodbye

		fmt.Println(initString)

}

When	we	generate	a	profile	file	out	of	this,	we	can	run	the	following	command:

go	tool	pprof	chat-server	chat-server.prof	

This	will	start	the	pprof	application	itself.	This	gives	us	a	few	commands	that	report	on	the
static,	generated	file	as	follows:

topN:	This	shows	the	top	N	samples	from	the	profile	file,	where	N	represents	the
explicit	number	you	want	to	see.
web:	This	creates	a	visualization	of	data,	exports	it	to	SVG,	and	opens	it	in	a	web
browser.	To	get	the	SVG	output,	you’ll	need	to	install	Graphviz	as	well
(http://www.graphviz.org/).

Note
You	can	also	run	pprof	with	some	flags	directly	to	output	in	several	formats	or	launch
a	browser	as	follows:

http://www.graphviz.org/


--text:	This	generates	a	text	report
--web:	This	generates	an	SVG	and	opens	in	the	browser
--gv:	This	generates	the	Ghostview	postscript
--pdf:	This	generates	the	PDF	to	output
--SVG:	This	generates	the	SVG	to	output
--gif:	This	generates	the	GIF	to	output

The	command-line	results	will	be	telling	enough,	but	it’s	especially	interesting	to	see	the
blocking	profile	of	your	application	presented	in	a	descriptive,	visual	way	as	shown	in	the
following	figure.	When	you’re	in	the	pprof	tool,	just	type	in	web	and	a	browser	will	spawn
with	the	CPU	profiling	detailed	in	SVG	form.



The	idea	here	is	less	about	the	text	and	more	about	the	complexity

And	voila,	we	suddenly	have	an	insight	into	how	our	program	utilizes	the	CPU	time
consumption	and	a	general	view	of	how	our	application	executes,	loops,	and	exits.

In	typical	Go	fashion,	the	pprof	tool	also	exists	in	the	net/http	package,	although	it’s



more	data-centric	than	visual.	This	means	that	rather	than	dealing	exclusively	with	a
command-line	tool,	you	can	output	the	results	directly	to	the	Web	for	analysis.

Like	the	command-line	tool,	you’ll	see	block,	goroutine,	heap,	and	thread	profiles	as	well
as	a	full	stack	outline	directly	through	localhost,	as	shown	in	the	following	screenshot:

To	generate	this	server,	you	just	need	to	include	a	few	key	lines	of	code	in	your
application,	build	it,	and	then	run	it.	For	this	example,	we’ve	included	the	code	in	our	chat
server	application,	which	allows	us	to	get	the	Web	view	of	an	otherwise	command-line-
only	application.

Make	sure	you	have	the	net/http	and	log	packages	included.	You’ll	also	need	the
http/pprof	package.	The	code	snippet	is	as	follows:

import(_(_	

		"net/http/pprof"

		"log"

		"net/http"

)

Then	simply	include	this	code	somewhere	in	your	application,	ideally,	near	the	top	of	the
main()	function,	as	follows:

		go	func()	{

				log.Println(http.ListenAndServe("localhost:6060",	nil))

		}()

As	always,	the	port	is	entirely	a	matter	of	preference.

You	can	then	find	a	number	of	profiling	tools	at	localhost:6060,	including	the	following:

All	tools	can	be	found	at	http://localhost:6060/debug/pprof/
Blocking	profiles	cab	be	found	at	http://localhost:6060/debug/pprof/block?
debug=1

A	profile	of	all	goroutines	can	be	found	at
http://localhost:6060/debug/pprof/goroutine?debug=1

A	detailed	profile	of	the	heap	can	be	found	at
http://localhost:6060/debug/pprof/heap?debug=1



A	profile	of	threads	created	can	be	found	at
http://localhost:6060/debug/pprof/threadcreate?debug=1

In	addition	to	the	blocking	profile,	you	may	find	a	utility	to	track	down	inefficiency	in
your	concurrent	strategy	through	the	thread	creation	profile.	If	you	find	a	seemingly
abnormal	amount	of	threads	created,	you	can	toy	with	the	synchronization	structure	as
well	as	runtime	parameters	to	streamline	this.

Keep	in	mind	that	using	pprof	this	way	will	also	include	some	analyses	and	profiles	that
can	be	attributed	to	the	http	or	pprof	packages	rather	than	your	core	code.	You	will	find
certain	lines	that	are	quite	obviously	not	part	of	your	application;	for	example,	a	thread
creation	analysis	of	our	chat	server	includes	a	few	telling	lines,	as	follows:

#							0x7765e									net/http.HandlerFunc.ServeHTTP+0x3e					

/usr/local/go/src/pkg/net/http/server.go:1149

#							0x7896d									net/http.(*ServeMux).ServeHTTP+0x11d	

/usr/local/go/src/pkg/net/http/server.go:1416

Given	that	we	specifically	eschewed	delivering	our	chat	application	via	HTTP	or	web
sockets	in	this	iteration,	this	should	be	fairly	evident.

On	top	of	that,	there	are	even	more	obvious	smoking	guns,	as	follows:

#							0x139541								runtime/pprof.writeHeap+0x731											

/usr/local/go/src/pkg/runtime/pprof/pprof.go:447

#							0x137aa2								runtime/pprof.(*Profile).WriteTo+0xb2			

/usr/local/go/src/pkg/runtime/pprof/pprof.go:229

#							0x9f55f									net/http/pprof.handler.ServeHTTP+0x23f		

/usr/local/go/src/pkg/net/http/pprof/pprof.go:165

#							0x9f6a5									net/http/pprof.Index+0x135														

/usr/local/go/src/pkg/net/http/pprof/pprof.go:177

Some	system	and	Go	core	mechanisms	we	will	never	be	able	to	reduce	out	of	our	final
compiled	binaries	are	as	follows:

#							0x18d96	runtime.starttheworld+0x126	

		/usr/local/go/src/pkg/runtime/proc.c:451

Note
The	hexadecimal	value	represents	the	address	in	the	memory	of	the	function	when	run.

Tip
A	note	for	Windows	users:	pprof	is	a	breeze	to	use	in	*nix	environments	but	may	take
some	more	arduous	tweaking	under	Windows.	Specifically,	you	may	need	a	bash
replacement	such	as	Cygwin.	You	may	also	find	some	necessary	tweaks	to	pprof	itself	(in
actuality,	a	Perl	script)	may	be	in	order.	For	64-bit	Windows	users,	make	sure	you	install
ActivePerl	and	execute	the	pprof	Perl	script	directly	using	the	64-bit	version	of	Perl.

At	publish	time,	there	are	also	some	issues	running	this	on	64-bit	OSX.





Handling	deadlocks	and	errors
Anytime	you	encounter	a	deadlock	error	upon	compilation	in	your	code,	you’ll	see	the
familiar	string	of	semi-cryptic	errors	explaining	which	goroutine	was	left	holding	the	bag,
so	to	speak.

However,	keep	in	mind	you	always	have	the	ability	to	invoke	your	own	panic	using	Go’s
built-in	panic,	and	this	can	be	incredibly	useful	for	building	your	own	error-catching
safeguards	to	ensure	data	consistency	and	ideal	operation.	The	code	is	as	follows:

package	main

import

(

		"os"

)

func	main()	{

		panic("Oh	No,	we	forgot	to	write	a	program!")

		os.Exit(1)

}

This	can	be	utilized	anywhere	you	wish	to	give	detailed	exit	information	to	either
developers	or	end	users.





Summary
Having	explored	some	new	ways	to	examine	the	way	that	Go	code	can	block	and
deadlock,	we	also	have	some	tools	at	our	disposal	that	can	be	used	to	examine	CPU
profiles	and	resource	usage	now.

Hopefully,	by	this	point,	you	can	build	some	complex	concurrent	systems	with	simple
goroutines	and	channels	all	the	way	up	to	multiplexed	channels	of	structs,	interfaces,	and
other	channels.

We’ve	built	some	somewhat-functional	applications	so	far,	but	next	we’re	going	to	utilize
everything	we’ve	done	to	build	a	usable	web	server	that	solves	a	classic	problem	and	can
be	used	to	design	intranets,	file	storage	systems,	and	more.

In	the	next	chapter,	we’ll	take	what	we’ve	done	in	this	chapter	with	regard	to	extensible
channels	and	apply	it	to	solving	one	of	the	oldest	challenges	the	Internet	has	to	offer:
concurrently	serving	10,000	(or	more)	connections.





Chapter	6.	C10K	–	A	Non-blocking	Web
Server	in	Go
Up	to	this	point,	we’ve	built	a	few	usable	applications;	things	we	can	start	with	and
leapfrog	into	real	systems	for	everyday	use.	By	doing	so,	we’ve	been	able	to	demonstrate
the	basic	and	intermediate-level	patterns	involved	in	Go’s	concurrent	syntax	and
methodology.

However,	it’s	about	time	we	take	on	a	real-world	problem—one	that	has	vexed	developers
(and	their	managers	and	VPs)	for	a	great	deal	of	the	early	history	of	the	Web.

In	addressing	and,	hopefully,	solving	this	problem,	we’ll	be	able	to	develop	a	high-
performance	web	server	that	can	handle	a	very	large	volume	of	live,	active	traffic.

For	many	years,	the	solution	to	this	problem	was	solely	to	throw	hardware	or	intrusive
caching	systems	at	the	problem;	so,	alternately,	solving	it	with	programming	methodology
should	excite	any	programmer.

We’ll	be	using	every	technique	and	language	construct	we’ve	learned	so	far,	but	we’ll	do
so	in	a	more	structured	and	deliberate	way	than	we	have	up	to	now.	Everything	we’ve
explored	so	far	will	come	into	play,	including	the	following	points:

Creating	a	visual	representation	of	our	concurrent	application
Utilizing	goroutines	to	handle	requests	in	a	way	that	will	scale
Building	robust	channels	to	manage	communication	between	goroutines	and	the	loop
that	will	manage	them
Profiling	and	benchmarking	tools	(JMeter,	ab)	to	examine	the	way	our	event	loop
actually	works
Timeouts	and	concurrency	controls—when	necessary—to	ensure	data	and	request
consistency



Attacking	the	C10K	problem
The	genesis	of	the	C10K	problem	is	rooted	in	serial,	blocking	programming,	which	makes
it	ideal	to	demonstrate	the	strength	of	concurrent	programming,	especially	in	Go.

The	proposed	problem	came	from	developer	Dan	Kegel,	who	famously	asked:

	 It’s	time	for	web	servers	to	handle	ten	thousand	clients	simultaneously,	don’t	you	think?	After	all,	the	web	is	a	big
place	now.

	

	 —Dan	Kegel	(http://www.kegel.com/c10k.html)

When	he	asked	this	in	1999,	for	many	server	admins	and	engineers,	serving	10,000
concurrent	visitors	was	something	that	would	be	solved	with	hardware.	The	notion	that	a
single	server	on	common	hardware	could	handle	this	type	of	CPU	and	network	bandwidth
without	falling	over	seemed	foreign	to	most.

The	crux	of	his	proposed	solutions	relied	on	producing	non-blocking	code.	Of	course,	in
1999,	concurrency	patterns	and	libraries	were	not	widespread.	C++	had	some	polling	and
queuing	options	available	via	some	third-party	libraries	and	the	earliest	predecessor	to
multithreaded	syntaxes,	later	available	through	Boost	and	then	C++11.

Over	the	coming	years,	solutions	to	the	problem	began	pouring	in	across	various	flavors	of
languages,	programming	design,	and	general	approaches.	At	the	time	of	publishing	this
book,	the	C10K	problem	is	not	one	without	solutions,	but	it	is	still	an	excellent	platform	to
conduct	a	very	real-world	challenge	to	high-performance	Go.

Any	performance	and	scalability	problem	will	ultimately	be	bound	to	the	underlying
hardware,	so	as	always,	your	mileage	may	vary.	Squeezing	10,000	concurrent	connections
on	a	486	processor	with	500	MB	of	RAM	will	certainly	be	more	challenging	than	doing	so
on	a	barebones	Linux	server	stacked	with	memory	and	multiple	cores.

It’s	also	worth	noting	that	a	simple	echo	server	would	obviously	be	able	to	assume	more
cores	than	a	functional	web	server	that	returns	larger	amounts	of	data	and	accepts	greater
complexity	in	requests,	sessions,	and	so	on,	as	we’ll	be	dealing	with	here.

http://www.kegel.com/c10k.html


Failing	of	servers	at	10,000	concurrent	connections
As	you	may	recall,	when	we	discussed	concurrent	strategies	back	in	Chapter	3,
Developing	a	Concurrent	Strategy,	we	talked	a	bit	about	Apache	and	its	load-balancing
tools.

When	the	Web	was	born	and	the	Internet	commercialized,	the	level	of	interactivity	was
pretty	minimal.	If	you’re	a	graybeard,	you	may	recall	the	transition	from	NNTP/IRC	and
the	like	and	how	extraordinarily	rudimentary	the	Web	was.

To	address	the	basic	proposition	of	[page	request]	→	[HTTP	response],	the	requirements
on	a	web	server	in	the	early	1990s	were	pretty	lenient.	Ignoring	all	of	the	error	responses,
header	readings	and	settings,	and	other	essential	(but	unrelated	to	the	in	→	out
mechanism)	functions,	the	essence	of	the	early	servers	was	shockingly	simple,	at	least
compared	to	the	modern	web	servers.

Note
The	first	web	server	was	developed	by	the	father	of	the	Web,	Tim	Berners-Lee.

Developed	at	CERN	(such	as	WWW/HTTP	itself),	CERN	httpd	handled	many	of	the
things	you	would	expect	in	a	web	server	today—hunting	through	the	code,	you’ll	find	a
lot	of	notation	that	will	remind	you	that	the	very	core	of	the	HTTP	protocol	is	largely
unchanged.	Unlike	most	technologies,	HTTP	has	had	an	extraordinarily	long	shelf	life.

Written	in	C	in	1990,	it	was	unable	to	utilize	a	lot	of	concurrency	strategies	available	in
languages	such	as	Erlang.	Frankly,	doing	so	was	probably	unnecessary—the	majority	of
web	traffic	was	a	matter	of	basic	file	retrieval	and	protocol.	The	meat	and	potatoes	of	a
web	server	were	not	dealing	with	traffic,	but	rather	dealing	with	the	rules	surrounding	the
protocol	itself.

You	can	still	access	the	original	CERN	httpd	site	and	download	the	source	code	for
yourself	from	http://www.w3.org/Daemon/.	I	highly	recommend	that	you	do	so	as	both	a
history	lesson	and	a	way	to	look	at	the	way	the	earliest	web	server	addressed	some	of	the
earliest	problems.

However,	the	Web	in	1990	and	the	Web	when	the	C10K	question	was	first	posed	were	two
very	different	environments.

By	1999,	most	sites	had	some	level	of	secondary	or	tertiary	latency	provided	by	third-
party	software,	CGI,	databases,	and	so	on,	all	of	which	further	complicated	the	matter.	The
notion	of	serving	10,000	flat	files	concurrently	is	a	challenge	in	itself,	but	try	doing	so	by
running	them	on	top	of	a	Perl	script	that	accesses	a	MySQL	database	without	any	caching
layer;	the	challenge	is	immediately	exacerbated.

By	the	mid	1990s,	the	Apache	web	server	had	taken	hold	and	largely	controlled	the	market
(by	2009,	it	had	become	the	first	server	software	to	serve	more	than	100	million	websites).

Apache’s	approach	was	rooted	heavily	in	the	earliest	days	of	the	Internet.	At	its	launch,
connections	were	initially	handled	first	in,	first	out.	Soon,	each	connection	was	assigned	a

http://www.w3.org/Daemon/


thread	from	the	thread	pool.	There	are	two	problems	with	the	Apache	server.	They	are	as
follows:

Blocking	connections	can	lead	to	a	domino	effect,	wherein	one	or	more	slowly
resolved	connections	could	avalanche	into	inaccessibility
Apache	had	hard	limits	on	the	number	of	threads/workers	you	could	utilize,
irrespective	of	hardware	constraints

It’s	easy	to	see	the	opportunity	here,	at	least	in	retrospect.	A	concurrent	server	that	utilizes
actors	(Erlang),	agents	(Clojure),	or	goroutines	(Go)	seems	to	fit	the	bill	perfectly.
Concurrency	does	not	solve	the	C10k	problem	in	itself,	but	it	absolutely	provides	a
methodology	to	facilitate	it.

The	most	notable	and	visible	example	of	an	approach	to	the	C10K	problem	today	is
Nginx,	which	was	developed	using	concurrency	patterns,	widely	available	in	C	by	2002	to
address—and	ultimately	solve—the	C10k	problem.	Nginx,	today,	represents	either	the	#2
or	#3	web	server	in	the	world,	depending	on	the	source.



Using	concurrency	to	attack	C10K
There	are	two	primary	approaches	to	handle	a	large	volume	of	concurrent	requests.	The
first	involves	allocating	threads	per	connection.	This	is	what	Apache	(and	a	few	others)
do.

On	the	one	hand,	allocating	a	thread	to	a	connection	makes	a	lot	of	sense—it’s	isolated,
controllable	via	the	application’s	and	kernel’s	context	switching,	and	can	scale	with
increased	hardware.

One	problem	for	Linux	servers—on	which	the	majority	of	the	Web	lives—is	that	each
allocated	thread	reserves	8	MB	of	memory	for	its	stack	by	default.	This	can	(and	should)
be	redefined,	but	this	imposes	a	largely	unattainable	amount	of	memory	required	for	a
single	server.	Even	if	you	set	the	default	stack	size	to	1	MB,	we’re	dealing	with	a
minimum	of	10	GB	of	memory	just	to	handle	the	overhead.

This	is	an	extreme	example	that’s	unlikely	to	be	a	real	issue	for	a	couple	of	reasons:	first,
because	you	can	dictate	the	maximum	amount	of	resources	available	to	each	thread,	and
second,	because	you	can	just	as	easily	load	balance	across	a	few	servers	and	instances
rather	than	add	10	GB	to	80	GB	of	RAM.

Even	in	a	threaded	server	environment,	we’re	fundamentally	bound	to	the	issue	that	can
lead	to	performance	decreases	(to	the	point	of	a	crash).

First,	let’s	look	at	a	server	with	connections	bound	to	threads	(as	shown	in	the	following
diagram),	and	visualize	how	this	can	lead	to	logjams	and,	eventually,	crashes:

This	is	obviously	what	we	want	to	avoid.	Any	I/O,	network,	or	external	process	that	can



impose	some	slowdown	can	bring	about	that	avalanche	effect	we	talked	about,	such	that
our	available	threads	are	taken	(or	backlogged)	and	incoming	requests	begin	to	stack	up.

We	can	spawn	more	threads	in	this	model,	but	as	mentioned	earlier,	there	are	potential
risks	there	too,	and	even	this	will	fail	to	mitigate	the	underlying	problem.



Taking	another	approach
In	an	attempt	to	create	our	web	server	that	can	handle	10,000	concurrent	connections,
we’ll	obviously	leverage	our	goroutine/channel	mechanism	to	put	an	event	loop	in	front	of
our	content	delivery	to	keep	new	channels	recycled	or	created	constantly.

For	this	example,	we’ll	assume	we’re	building	a	corporate	website	and	infrastructure	for	a
rapidly	expanding	company.	To	do	this,	we’ll	need	to	be	able	to	serve	both	static	and
dynamic	content.

The	reason	we	want	to	introduce	dynamic	content	is	not	just	for	the	purposes	of
demonstration—we	want	to	challenge	ourselves	to	show	10,000	true	concurrent
connections	even	when	a	secondary	process	gets	in	the	way.

As	always,	we’ll	attempt	to	map	our	concurrency	strategy	directly	to	goroutines	and
channels.	In	a	lot	of	other	languages	and	applications,	this	is	directly	analogous	to	an	event
loop,	and	we’ll	approach	it	as	such.	Within	our	loop,	we’ll	manage	the	available
goroutines,	expire	or	reuse	completed	ones,	and	spawn	new	ones	where	necessary.

In	this	example	visualization,	we	show	how	an	event	loop	(and	corresponding	goroutines)
can	allow	us	to	scale	our	connections	without	employing	too	many	hard	resources	such	as
CPU	threads	or	RAM:



The	most	important	step	for	us	here	is	to	manage	that	event	loop.	We’ll	want	to	create	an
open,	infinite	loop	to	manage	the	creation	and	expiration	of	our	goroutines	and	respective
channels.

As	part	of	this,	we	will	also	want	to	do	some	internal	logging	of	what’s	happening,	both
for	benchmarking	and	debugging	our	application.





Building	our	C10K	web	server
Our	web	server	will	be	responsible	for	taking	requests,	routing	them,	and	serving	either
flat	files	or	dynamic	files	with	templates	parsed	against	a	few	different	data	sources.

As	mentioned	earlier,	if	we	exclusively	serve	flat	files	and	remove	much	of	the	processing
and	network	latency,	we’d	have	a	much	easier	time	with	handling	10,000	concurrent
connections.

Our	goal	is	to	approach	as	much	of	a	real-world	scenario	as	we	can—very	little	of	the	Web
operates	on	a	single	server	in	a	static	fashion.	Most	websites	and	applications	utilize
databases,	CDNs	(Content	Delivery	Networks),	dynamic	and	uncached	template	parsing,
and	so	on.	We	need	to	replicate	them	whenever	possible.

For	the	sake	of	simplicity,	we’ll	separate	our	content	by	type	and	filter	them	through	URL
routing,	as	follows:

/static/[request]:	This	will	serve	request.html	directly
/template/[request]:	This	will	serve	request.tpl	after	its	been	parsed	through	Go
/dynamic/[request][number]:	This	will	also	serve	request.tpl	and	parse	it	against
a	database	source’s	record

By	doing	this,	we	should	get	a	better	mixture	of	possible	HTTP	request	types	that	could
impede	the	ability	to	serve	large	numbers	of	users	simultaneously,	especially	in	a	blocking
web	server	environment.

We’ll	utilize	the	html/template	package	to	do	parsing—we’ve	briefly	looked	at	the
syntax	before,	and	going	any	deeper	is	not	necessarily	part	of	the	goals	of	this	book.
However,	you	should	look	into	it	if	you’re	going	to	parlay	this	example	into	something
you	use	in	your	environment	or	have	any	interest	in	building	a	framework.

Tip
You	can	find	Go’s	exceptional	library	to	generate	safe	data-driven	templating	at
http://golang.org/pkg/html/template/.

By	safe,	we’re	largely	referring	to	the	ability	to	accept	data	and	move	it	directly	into
templates	without	worrying	about	the	sort	of	injection	issues	that	are	behind	a	large
amount	of	malware	and	cross-site	scripting.

For	the	database	source,	we’ll	use	MySQL	here,	but	feel	free	to	experiment	with	other
databases	if	you’re	more	comfortable	with	them.	Like	the	html/template	package,	we’re
not	going	to	put	a	lot	of	time	into	outlining	MySQL	and/or	its	variants.

http://golang.org/pkg/html/template/


Benchmarking	against	a	blocking	web	server
It’s	only	fair	to	add	some	starting	benchmarks	against	a	blocking	web	server	first	so	that
we	can	measure	the	effect	of	concurrent	versus	nonconcurrent	architecture.

For	our	starting	benchmarks,	we’ll	eschew	any	framework,	and	we’ll	go	with	our	old
stalwart,	Apache.

For	the	sake	of	completeness	here,	we’ll	be	using	an	Intel	i5	3GHz	machine	with	8	GB	of
RAM.	While	we’ll	benchmark	our	final	product	on	Ubuntu,	Windows,	and	OS	X	here,
we’ll	focus	on	Ubuntu	for	our	example.

Our	localhost	domain	will	have	three	plain	HTML	files	in	/static,	each	trimmed	to	80
KB.	As	we’re	not	using	a	framework,	we	don’t	need	to	worry	about	raw	dynamic	requests,
but	only	about	static	and	dynamic	requests	in	addition	to	data	source	requests.

For	all	examples,	we’ll	use	a	MySQL	database	(named	master)	with	a	table	called
articles	that	will	contain	10,000	duplicate	entries.	Our	structure	is	as	follows:

CREATE	TABLE	articles	(

		article_id	INT	NOT	NULL	AUTO_INCREMENT,

		article_title	VARCHAR(128)	NOT	NULL,

		article_text	VARCHAR(128)	NOT	NULL,

		PRIMARY	KEY	(article_id)

)

With	ID	indexes	ranging	sequentially	from	0-10,000,	we’ll	be	able	to	generate	random
number	requests,	but	for	now,	we	just	want	to	see	what	kind	of	basic	response	we	can	get
out	of	Apache	serving	static	pages	with	this	machine.

For	this	test,	we’ll	use	Apache’s	ab	tool	and	then	gnuplot	to	sequentially	map	the	request
time	as	the	number	of	concurrent	requests	and	pages;	we’ll	do	this	for	our	final	product	as
well,	but	we’ll	also	go	through	a	few	other	benchmarking	tools	for	it	to	get	some	better
details.

Note
Apache’s	AB	comes	with	the	Apache	web	server	itself.	You	can	read	more	about	it	at
http://httpd.apache.org/docs/2.2/programs/ab.html.

You	can	download	it	for	Linux,	Windows,	OS	X,	and	more	from
http://httpd.apache.org/download.cgi.

The	gnuplot	utility	is	available	for	the	same	operating	systems	at	http://www.gnuplot.info/.

So,	let’s	see	how	we	did	it.	Have	a	look	at	the	following	graph:

http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/download.cgi
http://www.gnuplot.info/


Ouch!	Not	even	close.	There	are	things	we	can	do	to	tune	the	connections	available	(and
respective	threads/workers)	within	Apache,	but	this	is	not	really	our	goal.	Mostly,	we	want
to	know	what	happens	with	an	out-of-the-box	Apache	server.	In	these	benchmarks,	we
start	to	drop	or	refuse	connections	at	around	800	concurrent	connections.

More	troubling	is	that	as	these	requests	start	stacking	up,	we	see	some	that	exceed	20
seconds	or	more.	When	this	happens	in	a	blocking	server,	each	request	behind	it	is
queued;	requests	behind	that	are	similarly	queued	and	the	entire	thing	starts	to	fall	apart.

Even	if	we	cannot	hit	10,000	concurrent	connections,	there’s	a	lot	of	room	for
improvement.	While	a	single	server	of	any	capacity	is	no	longer	the	way	we	expect	a	web
server	environment	to	be	designed,	being	able	to	squeeze	as	much	performance	as	possible
out	of	that	server,	ostensibly	with	our	concurrent,	event-driven	approach,	should	be	our
goal.



Handling	requests
In	an	earlier	chapter,	we	handled	URL	routing	with	Gorilla,	a	compact	but	feature-full
framework.	The	Gorilla	toolkit	certainly	makes	this	easier,	but	we	should	also	know	how
to	intercept	the	functionality	to	impose	our	own	custom	handler.

Here	is	a	simple	web	router	wherein	we	handle	and	direct	requests	using	a	custom
http.Server	struct,	as	shown	in	the	following	code:

var	routes	[]string

type	customRouter	struct	{

}

func	(customRouter)	ServeHTTP(rw	http.ResponseWriter,	r	

		*http.Request)	{

		fmt.Println(r.URL.Path);

}

func	main()	{

		var	cr	customRouter;

		server	:=	&http.Server	{

						Addr:	":9000",

						Handler:cr,

						ReadTimeout:	10	*	time.Second,

						WriteTimeout:	10	*	time.Second,

						MaxHeaderBytes:	1	<<	20,

		}

		server.ListenAndServe()

}

Here,	instead	of	using	a	built-in	URL	routing	muxer	and	dispatcher,	we’re	creating	a
custom	server	and	custom	handler	type	to	accept	URLs	and	route	requests.	This	allows	us
to	be	a	little	more	robust	with	our	URL	handling.

In	this	case,	we	created	a	basic,	empty	struct	called	customRouter	and	passed	it	to	our
custom	server	creation	call.

We	can	add	more	elements	to	our	customRouter	type,	but	we	really	don’t	need	to	for	this
simple	example.	All	we	need	to	do	is	to	be	able	to	access	the	URLs	and	pass	them	along	to
a	handler	function.	We’ll	have	three:	one	for	static	content,	one	for	dynamic	content,	and
one	for	dynamic	content	from	a	database.

Before	we	go	so	far	though,	we	should	probably	see	what	our	absolute	barebones	HTTP
server	written	in	Go	does	when	presented	with	the	same	traffic	that	we	sent	Apache’s	way.

By	old	school,	we	mean	that	the	server	will	simply	accept	a	request	and	pass	along	a
static,	flat	file.	You	could	do	this	using	a	custom	router	as	we	did	earlier,	taking	requests,



opening	files,	and	then	serving	them,	but	Go	provides	a	much	simpler	mode	to	handle	this
basic	task	in	the	http.FileServer	method.

So,	to	get	some	benchmarks	for	the	most	basic	of	Go	servers	against	Apache,	we’ll	utilize
a	simple	FileServer	and	test	it	against	a	test.html	page	(which	contains	the	same	80	KB
file	that	we	had	with	Apache).

Note
As	our	goal	with	this	test	is	to	improve	our	performance	in	serving	flat	and	dynamic
pages,	the	actual	specs	for	the	test	suite	are	somewhat	immaterial.	We’d	expect	that	while
the	metrics	will	not	match	from	environment	to	environment,	we	should	see	a	similar
trajectory.	That	said,	it’s	only	fair	we	supply	the	environment	used	for	these	tests;	in	this
case,	we	used	a	MacBook	Air	with	a	1.4	GHz	i5	processor	and	4	GB	of	memory.

First,	we’ll	do	this	with	our	absolute	best	performance	out	of	the	box	with	Apache,	which
had	850	concurrent	connections	and	900	total	requests.

The	results	are	certainly	encouraging	as	compared	to	Apache.	Neither	of	our	test	systems
were	tweaked	much	(Apache	as	installed	and	basic	FileServer	in	Go),	but	Go’s	FileServer
handles	1,000	concurrent	connections	without	so	much	as	a	blip,	with	the	slowest	clocking
in	at	411	ms.

Tip
Apache	has	made	a	great	number	of	strides	pertaining	to	concurrency	and	performance



options	in	the	last	five	years,	but	to	get	there	does	require	a	bit	of	tuning	and	testing.	The
intent	of	this	experiment	is	not	intended	to	denigrate	Apache,	which	is	well	tested	and
established.	Instead,	it’s	to	compare	the	out-of-the-box	performance	of	the	world’s	number
1	web	server	against	what	we	can	do	with	Go.

To	really	get	a	baseline	of	what	we	can	achieve	in	Go,	let’s	see	if	Go’s	FileServer	can	hit
10,000	connections	on	a	single,	modest	machine	out	of	the	box:

ab	-n	10500	-c	10000	-g	test.csv	http://localhost:8080/a.html

We	will	get	the	following	output:

Success!	Go’s	FileServer	by	itself	will	easily	handle	10,000	concurrent	connections,
serving	flat,	static	content.

Of	course,	this	is	not	the	goal	of	this	particular	project—we’ll	be	implementing	real-world
obstacles	such	as	template	parsing	and	database	access,	but	this	alone	should	show	you	the
kind	of	starting	point	that	Go	provides	for	anyone	who	needs	a	responsive	server	that	can
handle	a	large	quantity	of	basic	web	traffic.



Routing	requests
So,	let’s	take	a	step	back	and	look	again	at	routing	our	traffic	through	a	traditional	web
server	to	include	not	only	our	static	content,	but	also	the	dynamic	content.

We’ll	want	to	create	three	functions	that	will	route	traffic	from	our
customRouter:serveStatic()::	read	function	and	serve	a	flat	file	serveRendered():,
parse	a	template	to	display	serveDynamic():,	connect	to	MySQL,	apply	data	to	a	struct,
and	parse	a	template.

To	take	our	requests	and	reroute,	we’ll	change	the	ServeHTTP	method	for	our
customRouter	struct	to	handle	three	regular	expressions.

For	the	sake	of	brevity	and	clarity,	we’ll	only	be	returning	data	on	our	three	possible
requests.	Anything	else	will	be	ignored.

In	a	real-world	scenario,	we	can	take	this	approach	to	aggressively	and	proactively	reject
connections	for	requests	we	think	are	invalid.	This	would	include	spiders	and	nefarious
bots	and	processes,	which	offer	no	real	value	as	nonusers.





Serving	pages
First	up	are	our	static	pages.	While	we	handled	this	the	idiomatic	way	earlier,	there	exists
the	ability	to	rewrite	our	requests,	better	handle	specific	404	error	pages,	and	so	on	by
using	the	http.ServeFile	function,	as	shown	in	the	following	code:

		path	:=	r.URL.Path;

		staticPatternString	:=	"static/(.*)"

		templatePatternString	:=	"template/(.*)"

		dynamicPatternString	:=	"dynamic/(.*)"

		staticPattern	:=	regexp.MustCompile(staticPatternString)

		templatePattern	:=	regexp.MustCompile(templatePatternString)

		dynamicDBPattern	:=	regexp.MustCompile(dynamicPatternString)

		if	staticPattern.MatchString(path)	{

				page	:=	staticPath	+	staticPattern.ReplaceAllString(path,	

					"${1}")	+	".html"

				http.ServeFile(rw,	r,	page)

		}

Here,	we	simply	relegate	all	requests	starting	with	/static/(.*)	to	match	the	request	in
addition	to	the	.html	extension.	In	our	case,	we’ve	named	our	test	file	(the	80	KB
example	file)	test.html,	so	all	requests	to	it	will	go	to	/static/test.

We’ve	prepended	this	with	staticPath,	a	constant	defined	upcode.	In	our	case,	it’s
/var/www/,	but	you’ll	want	to	modify	it	as	necessary.

So,	let’s	see	what	kind	of	overhead	is	imposed	by	introducing	some	regular	expressions,	as
shown	in	the	following	graph:



How	about	that?	Not	only	is	there	no	overhead	imposed,	it	appears	that	the	FileServer
functionality	itself	is	heavier	and	slower	than	a	distinct	FileServe()	call.	Why	is	that?
Among	other	reasons,	not	explicitly	calling	the	file	to	open	and	serve	imposes	an
additional	OS	call,	one	which	can	cascade	as	requests	mount	up	at	the	expense	of
concurrency	and	performance.

Tip
Sometimes	it’s	the	little	things

Other	than	strictly	serving	flat	pages	here,	we’re	actually	doing	one	other	task	per	request
using	the	following	line	of	code:

fmt.Println(r.URL.Path)

While	this	ultimately	may	have	no	impact	on	your	final	performance,	we	should	take	care
to	avoid	unnecessary	logging	or	related	activities	that	may	impart	seemingly	minimal
performance	obstacles	that	become	much	larger	ones	at	scale.



Parsing	our	template
In	our	next	phase,	we’ll	measure	the	impact	of	reading	and	parsing	a	template.	To
effectively	match	the	previous	tests,	we’ll	take	our	HTML	static	file	and	impose	some
variables	on	it.

If	you	recall,	our	goal	here	is	to	mimic	real-world	scenarios	as	closely	as	possible.	A	real-
world	web	server	will	certainly	handle	a	lot	of	static	file	serving,	but	today,	dynamic	calls
make	up	the	vast	bulk	of	web	traffic.

Our	data	structure	will	resemble	the	simplest	of	data	tables	without	having	access	to	an
actual	database:

type	WebPage	struct	{

		Title	string

		Contents	string

}

We’ll	want	to	take	any	data	of	this	form	and	render	a	template	with	it.	Remember	that	Go
creates	the	notion	of	public	or	private	variables	through	the	syntactical	sugar	of	capitalized
(public)	or	lowercase	(private)	values.

If	you	find	that	the	template	fails	to	render	but	you’re	not	given	explicit	errors	in	the
console,	check	your	variable	naming.	A	private	value	that	is	called	from	an	HTML	(or
text)	template	will	cause	rendering	to	stop	at	that	point.

Now,	we’ll	take	that	data	and	apply	it	to	a	template	for	any	calls	to	a	URL	that	begins	with
the	/(.*)	template.	We	could	certainly	do	something	more	useful	with	the	wildcard
portion	of	that	regular	expression,	so	let’s	make	it	part	of	the	title	using	the	following
code:

		}	else	if	templatePattern.MatchString(path)	{

				urlVar	:=	templatePattern.ReplaceAllString(path,	"${1}")

				page	:=	WebPage{	Title:	"This	is	our	URL:	"+urlVar,	Contents:	

						"Enjoy	our	content"	}

				tmp,	_	:=	template.ParseFiles(staticPath+"template.html")

				tmp.Execute(rw,page)

				

		}

Hitting	localhost:9000/template/hello	should	render	a	template	with	a	primary	body
of	the	following	code:

<h1>{{.Title}}</h1>

<p>{{.Contents}}</p>

We	will	do	this	with	the	following	output:



One	thing	to	note	about	templates	is	that	they	are	not	compiled;	they	remain	dynamic.
That	is	to	say,	if	you	create	a	renderable	template	and	start	your	server,	the	template	can	be
modified	and	the	results	are	reflected.

This	is	noteworthy	as	a	potential	performance	factor.	Let’s	run	our	benchmarks	again,	with
template	rendering	as	the	added	complexity	to	our	application	and	its	architecture:

Yikes!	What	happened?	We’ve	gone	from	easily	hitting	10,000	concurrent	requests	to
barely	handling	200.

To	be	fair,	we	introduced	an	intentional	stumbling	block,	one	not	all	that	uncommon	in	the
design	of	any	given	CMS.



You’ll	notice	that	we’re	calling	the	template.ParseFiles()	method	on	every	request.
This	is	the	sort	of	seemingly	cheap	call	that	can	really	add	up	when	you	start	stacking	the
requests.

It	may	then	make	sense	to	move	the	file	operations	outside	of	the	request	handler,	but
we’ll	need	to	do	more	than	that—to	eliminate	overhead	and	a	blocking	call,	we	need	to	set
an	internal	cache	for	the	requests.

Most	importantly,	all	of	our	template	creation	and	parsing	should	happen	outside	the
actual	request	handler	if	you	want	to	keep	your	server	non-blocking,	fast,	and	responsive.
Here’s	another	take:

var	customHTML	string

var	customTemplate	template.Template

var	page	WebPage

var	templateSet	bool

func	main()	{

		var	cr	customRouter;

		fileName	:=	staticPath	+	"template.html"

		cH,_	:=	ioutil.ReadFile(fileName)

		customHTML	=	string(cH[:])

		page	:=	WebPage{	Title:	"This	is	our	URL:	",	Contents:	"Enjoy	

				our	content"	}

		cT,_	:=	template.New("Hey").Parse(customHTML)

		customTemplate	=	*cT

Even	though	we’re	using	the	Parse()	function	prior	to	our	request,	we	can	still	modify
our	URL-specific	variables	using	the	Execute()	method,	which	does	not	carry	the	same
overhead	as	Parse().

When	we	move	this	outside	of	the	customRouter	struct’s	ServeHTTP()	method,	we’re
back	in	business.	This	is	the	kind	of	response	we’ll	get	with	these	changes:





External	dependencies
Finally,	we	need	to	bring	in	our	biggest	potential	bottleneck,	which	is	the	database.	As
mentioned	earlier,	we’ll	simulate	random	traffic	by	generating	a	random	integer	between	1
and	10,000	to	specify	the	article	we	want.

Randomization	isn’t	just	useful	on	the	frontend—we’ll	want	to	work	around	any	query
caching	within	MySQL	itself	to	limit	nonserver	optimizations.

Connecting	to	MySQL
We	can	route	our	way	through	a	custom	connection	to	MySQL	using	native	Go,	but	as	is
often	the	case,	there	are	a	few	third-party	packages	that	make	this	process	far	less	painful.
Given	that	the	database	here	(and	associated	libraries)	is	tertiary	to	the	primary	exercise,
we’ll	not	be	too	concerned	about	the	particulars	here.

The	two	mature	MySQL	driver	libraries	are	as	follows:

Go-MySQL-Driver	(https://github.com/go-sql-driver/mysql)
MyMySQL	(https://github.com/ziutek/mymysql)

For	this	example,	we’ll	go	with	the	Go-MySQL-Driver.	We’ll	quickly	install	it	using	the
following	command:

go	get	github.com/go-sql-driver/mysql

Both	of	these	implement	the	core	SQL	database	connectivity	package	in	Go,	which
provides	a	standardized	method	to	connect	to	a	SQL	source	and	iterate	over	rows.

One	caveat	is	if	you’ve	never	used	the	SQL	package	in	Go	but	have	in	other	languages—
typically,	in	other	languages,	the	notion	of	an	Open()	method	implies	an	open	connection.
In	Go,	this	simply	creates	the	struct	and	relevant	implemented	methods	for	a	database.
This	means	that	simply	calling	Open()	on	sql.database	may	not	give	you	relevant
connection	errors	such	as	username/password	issues	and	so	on.

One	advantage	of	this	(or	disadvantage	depending	on	your	vantage	point)	is	that
connections	to	your	database	may	not	be	left	open	between	requests	to	your	web	server.
The	impact	of	opening	and	reopening	connections	is	negligible	in	the	grand	scheme.

As	we’re	utilizing	a	pseudo-random	article	request,	we’ll	build	a	MySQL	piggyback
function	to	get	an	article	by	ID,	as	shown	in	the	following	code:

func	getArticle(id	int)	WebPage	{

		Database,err	:=	sql.Open("mysql",	"test:test@/master")

		if	err	!=	nil	{

				fmt.Println("DB	error!!!")

		}

		var	articleTitle	string

		sqlQ	:=	Database.QueryRow("SELECT	article_title	from	articles	

				where	article_id=?	LIMIT	1",	1).Scan(&articleTitle)

		switch	{

				case	sqlQ	==	sql.ErrNoRows:

https://github.com/go-sql-driver/mysql
https://github.com/ziutek/mymysql


						fmt.Printf("No	rows!")

				case	sqlQ	!=	nil:

						fmt.Println(sqlQ)

				default:

				

		}

		wp	:=	WebPage{}

		wp.Title	=	articleTitle

		return	wp

}

We	will	then	call	the	function	directly	from	our	ServeHTTP()	method,	as	shown	in	the
following	code:

		}else	if	dynamicDBPattern.MatchString(path)	{

				rand.Seed(9)

				id	:=	rand.Intn(10000)

				page	=	getArticle(id)

				customTemplate.Execute(rw,page)

		}

How	did	we	do	here?	Take	a	look	at	the	following	graph:

Slower,	no	doubt,	but	we	held	up	to	all	10,000	concurrent	requests,	entirely	from	uncached
MySQL	calls.

Given	that	we	couldn’t	hit	1,000	concurrent	requests	with	a	default	installation	of	Apache,
this	is	nothing	to	sneeze	at.





Multithreading	and	leveraging	multiple
cores
You	may	be	wondering	how	performance	may	vary	when	invoking	additional	processor
cores—as	mentioned	earlier,	this	can	sometimes	have	an	unexpected	effect.

In	this	case,	we	should	expect	only	improved	performance	in	our	dynamic	requests	and
static	requests.	Any	time	the	cost	of	context	switching	in	the	OS	might	outweigh	the
performance	advantages	of	additional	cores,	we	can	see	paradoxical	performance
degradation.	In	this	case,	we	do	not	see	this	effect	and	instead	see	a	relatively	similar	line,
as	shown	in	the	following	graph:





Exploring	our	web	server
Our	final	web	server	is	capable	of	serving	static,	template-rendered,	and	dynamic	content
well	within	the	confines	of	the	goal	of	10,000	concurrent	connections	on	even	the	most
modest	of	hardware.

The	code—much	like	the	code	in	this	book—can	be	considered	a	jumping-off	point	and
will	need	refinement	if	put	into	production.	This	server	lacks	anything	in	the	form	of	error
handling	but	can	ably	serve	valid	requests	without	any	issue.	Let’s	take	a	look	at	the
following	server’s	code:

package	main

import

(

"net/http"

"html/template"

"time"

"regexp"

"fmt"

"io/ioutil"

"database/sql"

"log"

"runtime"

_	"github.com/go-sql-driver/mysql"

)

Most	of	our	imports	here	are	fairly	standard,	but	note	the	MySQL	line	that	is	called	solely
for	its	side	effects	as	a	database/SQL	driver:

const	staticPath	string	=	"static/"

The	relative	static/	path	is	where	we’ll	look	for	any	file	requests—as	mentioned	earlier,
this	does	no	additional	error	handling,	but	the	net/http	package	itself	will	deliver	404
errors	should	a	request	to	a	nonexistent	file	hit	it:

type	WebPage	struct	{

		Title	string

		Contents	string

		Connection	*sql.DB

}

Our	WebPage	type	represents	the	final	output	page	before	template	rendering.	It	can	be
filled	with	static	content	or	populated	by	data	source,	as	shown	in	the	following	code:

type	customRouter	struct	{

}

func	serveDynamic()	{

}



func	serveRendered()	{

}

func	serveStatic()	{

}

Use	these	if	you	choose	to	extend	the	web	app—this	makes	the	code	cleaner	and	removes
a	lot	of	the	cruft	in	the	ServeHTTP	section,	as	shown	in	the	following	code:

func	(customRouter)	ServeHTTP(rw	http.ResponseWriter,	r	

		*http.Request)	{

		path	:=	r.URL.Path;

		staticPatternString	:=	"static/(.*)"

		templatePatternString	:=	"template/(.*)"

		dynamicPatternString	:=	"dynamic/(.*)"

		staticPattern	:=	regexp.MustCompile(staticPatternString)

		templatePattern	:=	regexp.MustCompile(templatePatternString)

		dynamicDBPattern	:=	regexp.MustCompile(dynamicPatternString)

		if	staticPattern.MatchString(path)	{

					serveStatic()

				page	:=	staticPath	+	staticPattern.ReplaceAllString(path,	

						"${1}")	+	".html"

				http.ServeFile(rw,	r,	page)

		}else	if	templatePattern.MatchString(path)	{

				

				serveRendered()

				urlVar	:=	templatePattern.ReplaceAllString(path,	"${1}")

				page.Title	=	"This	is	our	URL:	"	+	urlVar

				customTemplate.Execute(rw,page)

				

		}else	if	dynamicDBPattern.MatchString(path)	{

				

				serveDynamic()

				page	=	getArticle(1)

				customTemplate.Execute(rw,page)

		}

}

All	of	our	routing	here	is	based	on	regular	expression	pattern	matching.	There	are	a	lot	of
ways	you	can	do	this,	but	regexp	gives	us	a	lot	of	flexibility.	The	only	time	you	may
consider	simplifying	this	is	if	you	have	so	many	potential	patterns	that	it	could	cause	a
performance	hit—and	this	means	thousands.	The	popular	web	servers,	Nginx	and	Apache,
handle	a	lot	of	their	configurable	routing	through	regular	expressions,	so	it’s	fairly	safe
territory:

func	gobble(s	[]byte)	{



}

Go	is	notoriously	cranky	about	unused	variables,	and	while	this	isn’t	always	the	best
practice,	you	will	end	up,	at	some	point,	with	a	function	that	does	nothing	specific	with
data	but	keeps	the	compiler	happy.	For	production,	this	is	not	the	way	you’d	want	to
handle	such	data.

var	customHTML	string

var	customTemplate	template.Template

var	page	WebPage

var	templateSet	bool

var	Database	sql.DB

func	getArticle(id	int)	WebPage	{

		Database,err	:=	sql.Open("mysql",	"test:test@/master")

		if	err	!=	nil	{

				fmt.Println("DB	error!")

		}

		var	articleTitle	string

		sqlQ	:=	Database.QueryRow("SELECT	article_title	from	articles	

				WHERE	article_id=?	LIMIT	1",	id).Scan(&articleTitle)

		switch	{

				case	sqlQ	==	sql.ErrNoRows:

						fmt.Printf("No	rows!")

				case	sqlQ	!=	nil:

						fmt.Println(sqlQ)

				default:

				

		}

		wp	:=	WebPage{}

		wp.Title	=	articleTitle

		return	wp

}

Our	getArticle	function	demonstrates	how	you	can	interact	with	the	database/sql
package	at	a	very	basic	level.	Here,	we	open	a	connection	and	query	a	single	row	with	the
QueryRow()	function.	There	also	exists	the	Query	command,	which	is	also	usually	a
SELECT	command	but	one	that	could	return	more	than	a	single	row.

func	main()	{

		runtime.GOMAXPROCS(4)

		var	cr	customRouter;

		fileName	:=	staticPath	+	"template.html"

		cH,_	:=	ioutil.ReadFile(fileName)

		customHTML	=	string(cH[:])

		page	:=	WebPage{	Title:	"This	is	our	URL:	",	Contents:	"Enjoy	

				our	content"	}



		cT,_	:=	template.New("Hey").Parse(customHTML)

		customTemplate	=	*cT

		gobble(cH)

		log.Println(page)

		fmt.Println(customTemplate)

		server	:=	&http.Server	{

						Addr:	":9000",

						Handler:cr,

						ReadTimeout:	10	*	time.Second,

						WriteTimeout:	10	*	time.Second,

						MaxHeaderBytes:	1	<<	20,

		}

		server.ListenAndServe()

}

Our	main	function	sets	up	the	server,	builds	a	default	WebPage	and	customRouter,	and
starts	listening	on	port	9000.



Timing	out	and	moving	on
One	thing	we	did	not	focus	on	in	our	server	is	the	notion	of	lingering	connection
mitigation.	The	reason	we	didn’t	worry	much	about	it	is	because	we	were	able	to	hit
10,000	concurrent	connections	in	all	three	approaches	without	too	much	issue,	strictly	by
utilizing	Go’s	powerful	built-in	concurrency	features.

Particularly	when	working	with	third-party	or	external	applications	and	services,	it’s
important	to	know	that	we	can	and	should	be	prepared	to	call	it	quits	on	a	connection	(if
our	application	design	permits	it).

Note	the	custom	server	implementation	and	two	notes-specific	properties:	ReadTimeout
and	WriteTimeout.	These	allow	us	to	handle	this	use	case	precisely.

In	our	example,	this	is	set	to	an	absurdly	high	10	seconds.	For	a	request	to	be	received,
processed,	and	sent,	up	to	20	seconds	can	transpire.	This	is	an	eternity	in	the	Web	world
and	has	the	potential	to	cripple	our	application.	So,	what	does	our	C10K	look	like	with	1
second	on	each	end?	Let’s	take	a	look	at	the	following	graph:

Here,	we’ve	saved	nearly	5	seconds	off	the	tail	end	of	our	highest	volume	of	concurrent
requests,	almost	certainly	at	the	expense	of	complete	responses	to	each.

It’s	up	to	you	to	decide	how	long	it’s	acceptable	to	keep	slow-running	connections,	but	it’s
another	tool	in	the	arsenal	to	keep	your	server	swift	and	responsive.

There	will	always	be	a	tradeoff	when	you	decide	to	kill	a	connection—too	early	and	you’ll
have	a	bevy	of	complaints	about	a	nonresponsive	or	error-prone	server;	too	late	and	you’ll
be	unable	to	cope	with	the	connection	volume	programmatically.	This	is	one	of	those
considerations	that	will	require	QA	and	hard	data.







Summary
The	C10K	problem	may	seem	like	a	relic	today,	but	the	call	to	action	was	symptomatic	of
the	type	of	approaches	to	systems’	applications	that	were	primarily	employed	prior	to	the
rapid	expansion	of	concurrent	languages	and	application	design.

Just	15	years	ago,	this	seemed	a	largely	insurmountable	problem	facing	systems	and	server
developers	worldwide;	now,	it’s	handled	with	only	minor	tweaking	and	consideration	by	a
server	designer.

Go	makes	it	easy	to	get	there	(with	a	little	effort),	but	reaching	10,000	(or	100,000	or	even
1,000,000)	concurrent	connections	is	only	half	the	battle.	We	must	know	what	to	do	when
problems	arise,	how	to	seek	out	maximum	performance	and	responsiveness	out	of	our
servers,	and	how	to	structure	our	external	dependencies	such	that	they	do	not	create
roadblocks.

In	our	next	chapter,	we’ll	look	at	squeezing	even	more	performance	out	of	our	concurrent
applications	by	testing	some	distributed	computing	patterns	and	best	utilizing	memory
management.





Chapter	7.	Performance	and	Scalability
To	build	a	high-powered	web	server	in	Go	with	just	a	few	hundred	lines	of	code,	you
should	be	quite	aware	of	how	concurrent	Go	provides	us	with	exceptional	tools	for
performance	and	stability	out	of	the	box.

Our	example	in	Chapter	6,	C10K	–	A	Non-blocking	Web	Server	in	Go,	also	showed	how
imposing	blocking	code	arbitrarily	or	inadvertently	into	our	code	can	introduce	some
serious	bottlenecks	and	quickly	torpedo	any	plans	to	extend	or	scale	your	application.

What	we’ll	look	at	in	this	chapter	are	a	few	ways	that	can	better	prepare	us	to	take	our
concurrent	application	and	ensure	that	it’s	able	to	continuously	scale	in	the	future	and	that
it	is	capable	of	being	expanded	in	scope,	design,	and/or	capacity.

We’ll	expand	a	bit	on	pprof,	the	CPU	profiling	tool	we	looked	at	briefly	in	previous
chapters,	as	a	way	to	elucidate	the	way	our	Go	code	is	compiled	and	to	locate	possible
unintended	bottlenecks.

Then	we’ll	expand	into	distributed	Go	and	into	ways	to	offer	some	performance-
enhancing	parallel-computing	concepts	to	our	applications.	We’ll	also	look	at	the	Google
App	Engine,	and	at	how	you	can	utilize	it	for	your	Go-based	applications	to	ensure
scalability	is	placed	in	the	hands	of	one	of	the	most	reliable	hosting	infrastructures	in	the
world.

Lastly,	we’ll	look	at	memory	utilization,	preservation,	and	how	Google’s	garbage	collector
works	(and	sometimes	doesn’t).	We’ll	finally	delve	a	bit	deeper	into	using	memory
caching	to	keep	data	consistent	as	well	as	less	ephemeral,	and	we	will	also	see	how	that
dovetails	with	distributed	computing	in	general.



High	performance	in	Go
Up	to	this	point,	we’ve	talked	about	some	of	the	tools	we	can	use	to	help	discover
slowdowns,	leaks,	and	inefficient	looping.

Go’s	compiler	and	its	built-in	deadlock	detector	keep	us	from	making	the	kind	of	mistake
that’s	common	and	difficult	to	detect	in	other	languages.

We’ve	run	time-based	benchmarks	based	on	specific	changes	to	our	concurrency	patterns,
which	can	help	us	design	our	application	using	different	methodologies	to	improve	overall
execution	speed	and	performance.



Getting	deeper	into	pprof
The	pprof	tool	was	first	encountered	in	Chapter	5,	Locks,	Blocks,	and	Better	Channels,
and	if	it	still	feels	a	bit	cryptic,	that’s	totally	understandable.	What	pprof	shows	you	in
export	is	a	call	graph,	and	we	can	use	this	to	help	identify	issues	with	loops	or	expensive
calls	on	the	heap.	These	include	memory	leaks	and	processor-intensive	methods	that	can
be	optimized.

One	of	the	best	ways	to	demonstrate	how	something	like	this	works	is	to	build	something
that	doesn’t.	Or	at	least	something	that	doesn’t	work	the	way	it	should.

You	might	be	thinking	that	a	language	with	garbage	collection	might	be	immune	to	these
kinds	of	memory	issues,	but	there	are	always	ways	to	hide	mistakes	that	can	lead	to
memory	leakage.	If	the	GC	can’t	find	it,	it	can	sometimes	be	a	real	pain	to	do	so	yourself,
leading	to	a	lot	of—often	feckless—debugging.

To	be	fair,	what	constitutes	a	memory	leak	is	sometimes	debated	among	computer	science
members	and	experts.	A	program	that	continuously	consumes	RAM	may	not	be	leaking
memory	by	technical	definition	if	the	application	itself	could	re-access	any	given	pointers.
But	that’s	largely	irrelevant	when	you	have	a	program	that	crashes	and	burns	after
consuming	memory	like	an	elephant	at	a	buffet.

The	basic	premise	of	creating	a	memory	leak	in	a	garbage-collected	language	relies	on
hiding	the	allocation	from	the	compiler—indeed,	any	language	in	which	you	can	access
and	utilize	memory	directly	provides	a	mechanism	for	introducing	leaks.

We’ll	review	a	bit	more	about	garbage	collection	and	Go’s	implementation	later	in	this
chapter.

So	how	does	a	tool	like	pprof	help?	Very	simply	put,	by	showing	you	where	your	memory
and	CPU	utilization	goes.

Let’s	first	design	a	very	obvious	CPU	hog	as	follows	to	see	how	pprof	highlights	this	for
us:

package	main

import	(

"os"

"flag"

"fmt"

"runtime/pprof"

)

const	TESTLENGTH	=	100000

type	CPUHog	struct	{

		longByte	[]byte

}

func	makeLongByte()	[]byte	{

		longByte	:=	make([]byte,TESTLENGTH)



		for	i:=	0;	i	<	TESTLENGTH;	i++	{

				longByte[i]	=	byte(i)

		}

		return	longByte

}

var	profile	=	flag.String("cpuprofile",	"",	"output	pprof	data	to	

		file")

func	main()	{

		var	CPUHogs	[]CPUHog

		flag.Parse()

				if	*profile	!=	""	{

						flag,err	:=	os.Create(*profile)

						if	err	!=	nil	{

								fmt.Println("Could	not	create	profile",err)

						}

						pprof.StartCPUProfile(flag)

						defer	pprof.StopCPUProfile()

				}

		for	i	:=	0;	i	<	TESTLENGTH;	i++	{

				hog	:=	CPUHog{}

				hog.longByte	=	makeLongByte()

				_	=	append(CPUHogs,hog)

		}

}

The	output	of	the	preceding	code	is	shown	in	the	following	diagram:



In	this	case,	we	know	where	our	stack	resource	allocation	is	going,	because	we	willfully
introduced	the	loop	(and	the	loop	within	that	loop).

Imagine	that	we	didn’t	intentionally	do	that	and	had	to	locate	resource	hogs.	In	this	case,
pprof	makes	this	pretty	easy,	showing	us	the	creation	and	memory	allocation	of	simple
strings	comprising	the	majority	of	our	samples.

We	can	modify	this	slightly	to	see	the	changes	in	the	pprof	output.	In	an	effort	to	allocate
more	and	more	memory	to	see	whether	we	can	vary	the	pprof	output,	we	might	consider
heavier	types	and	more	memory.

The	easiest	way	to	accomplish	that	is	to	create	a	slice	of	a	new	type	that	includes	a



significant	amount	of	these	heavier	types	such	as	int64.	We’re	blessed	with	Go:	in	that,	we
aren’t	prone	to	common	C	issues	such	as	buffer	overflows	and	memory	protection	and
management,	but	this	makes	debugging	a	little	trickier	when	we	cannot	intentionally	break
the	memory	management	system.

Tip
The	unsafe	package

Despite	the	built-in	memory	protection	provided,	there	is	still	another	interesting	tool
provided	by	Go:	the	unsafe	package.	As	per	Go’s	documentation:

Package	unsafe	contains	operations	that	step	around	the	type	safety	of	Go	programs.

This	might	seem	like	a	curious	library	to	include—indeed,	while	many	low-level
languages	allow	you	to	shoot	your	foot	off,	it’s	fairly	unusual	to	provide	a	segregated
language.

Later	in	this	chapter,	we’ll	examine	unsafe.Pointer,	which	allows	you	to	read	and	write
to	arbitrary	bits	of	memory	allocation.	This	is	obviously	extraordinarily	dangerous	(or
useful	and	nefarious,	depending	on	your	goal)	functionality	that	you	would	generally	try
to	avoid	in	any	development	language,	but	it	does	allow	us	to	debug	and	understand	our
programs	and	the	Go	garbage	collector	a	bit	better.

So	to	increase	our	memory	usage,	let’s	switch	our	string	allocation	as	follows,	for	random
type	allocation,	specifically	for	our	new	struct	MemoryHog:

type	MemoryHog	struct	{

		a,b,c,d,e,f,g	int64

		h,i,j,k,l,m,n	float64

		longByte	[]byte

}

There’s	obviously	nothing	preventing	us	from	extending	this	into	some	ludicrously	large
set	of	slices,	huge	arrays	of	int64s,	and	so	on.	But	our	primary	goal	is	solely	to	change	the
output	of	pprof	so	that	we	can	identify	movement	in	the	call	graph’s	samples	and	its	effect
on	our	stack/heap	profiles.

Our	arbitrarily	expensive	code	looks	as	follows:

type	MemoryHog	struct	{

		a,b,c,d,e,f,g	int64

		h,i,j,k,l,m,n	float64

		longByte	[]byte

}

func	makeMemoryHog()	[]MemoryHog	{

		memoryHogs	:=	make([]MemoryHog,TESTLENGTH)

		for	i:=	0;	i	<	TESTLENGTH;	i++	{

				m	:=	MemoryHog{}

				_	=	append(memoryHogs,m)

		}



		

		return	memoryHogs

}

var	profile	=	flag.String("cpuprofile",	"",	"output	pprof	data	to	

		file")

func	main()	{

		var	CPUHogs	[]CPUHog

		flag.Parse()

				if	*profile	!=	""	{

						flag,err	:=	os.Create(*profile)

						if	err	!=	nil	{

								fmt.Println("Could	not	create	profile",err)

						}

						pprof.StartCPUProfile(flag)

						defer	pprof.StopCPUProfile()

				}

		for	i	:=	0;	i	<	TESTLENGTH;	i++	{

				hog	:=	CPUHog{}

				hog.mHog	=	makeMemoryHog()

				_	=	append(CPUHogs,hog)

		}

}

With	this	in	place,	our	CPU	consumption	remains	about	the	same	(due	to	the	looping
mechanism	remaining	largely	unchanged),	but	our	memory	allocation	has	increased—
unsurprisingly—by	about	900	percent.	It’s	unlikely	that	you	will	precisely	duplicate	these
results,	but	the	general	trend	of	a	small	change	leading	to	a	major	difference	in	resource
allocation	is	reproducible.	Note	that	memory	utilization	reporting	is	possible	with	pprof,
but	it’s	not	what	we’re	doing	here;	the	memory	utilization	observations	here	happened
outside	of	pprof.

If	we	took	the	extreme	approach	suggested	previously—to	create	absurdly	large	properties
for	our	struct—we	could	carry	that	out	even	further,	but	let’s	see	what	the	aggregate
impact	is	on	our	CPU	profile	on	execution.	The	impact	is	shown	in	the	following	diagram:



On	the	left-hand	side,	we	have	our	new	allocation	approach,	which	invokes	our	larger
struct	instead	of	an	array	of	strings.	On	the	right-hand	side,	we	have	our	initial	application.

A	pretty	dramatic	flux,	don’t	you	think?	While	neither	of	these	programs	is	wrong	in
design,	we	can	easily	toggle	our	methodologies	to	see	where	resources	are	going	and
discern	how	we	can	reduce	their	consumption.



Parallelism’s	and	concurrency’s	impact	on	I/O
pprof
One	issue	you’ll	likely	run	into	pretty	quickly	when	using	pprof	is	when	you’ve	written	a
script	or	application	that	is	especially	bound	to	efficient	runtime	performance.	This
happens	most	frequently	when	your	program	executes	too	quickly	to	properly	profile.

A	related	issue	involves	network	applications	that	require	connections	to	profile;	in	this
case,	you	can	simulate	traffic	either	in-program	or	externally	to	allow	proper	profiling.

We	can	demonstrate	this	easily	by	replicating	something	like	the	preceding	example	with
goroutines	as	follows:

const	TESTLENGTH	=	20000

type	DataType	struct	{

		a,b,c,d,e,f,g	int64

		longByte	[]byte		

}

func	(dt	DataType)	init()	{

}

var	profile	=	flag.String("cpuprofile",	"",	"output	pprof	data	to	

		file")

func	main()	{

		flag.Parse()

				if	*profile	!=	""	{

						flag,err	:=	os.Create(*profile)

						if	err	!=	nil	{

								fmt.Println("Could	not	create	profile",err)

						}

						pprof.StartCPUProfile(flag)

						defer	pprof.StopCPUProfile()

				}

		var	wg	sync.WaitGroup

		numCPU	:=	runtime.NumCPU()

		runtime.GOMAXPROCS(numCPU)

		wg.Add(TESTLENGTH)

		for	i	:=	0;	i	<	TESTLENGTH;	i++	{

				go	func()	{

						for	y	:=	0;	y	<	TESTLENGTH;	y++	{

								dT	:=	DataType{}

								dT.init()

						}

						wg.Done()

				}()

		}



		wg.Wait()

		fmt.Println("Complete.")

}

The	following	diagram	shows	the	pprof	output	of	the	preceding	code:

It’s	not	nearly	as	informative,	is	it?

If	we	want	to	get	something	more	valuable	about	the	stack	trace	of	our	goroutines,	Go—as
usual—provides	some	additional	functionality.

In	the	runtime	package,	there	is	a	function	and	a	method	that	allow	us	to	access	and	utilize
the	stack	traces	of	our	goroutines:

runtime.Lookup:	This	function	returns	a	profile	based	on	name
runtime.WriteTo:	This	method	sends	the	snapshot	to	the	I/O	writer

If	we	add	the	following	line	to	our	program,	we	won’t	see	the	output	in	the	pprof	Go	tool,
but	we	can	get	a	detailed	analysis	of	our	goroutines	in	the	console.

pprof.Lookup("goroutine").WriteTo(os.Stdout,	1)

The	previous	code	line	gives	us	some	more	of	the	abstract	goroutine	memory	location
information	and	package	detail,	which	will	look	something	like	the	following	screenshot:

But	an	even	faster	way	to	get	this	output	is	by	utilizing	the	http/pprof	tool,	which	keeps
the	results	of	our	application	active	via	a	separate	server.	We’ve	gone	with	port	6000	here



as	shown	in	the	following	code,	though	you	can	modify	this	as	necessary:

		go	func()	{

				log.Println(http.ListenAndServe("localhost:6000",	nil))

		}()

While	you	cannot	get	an	SVG	output	of	the	goroutine	stack	call,	you	can	see	it	live	in	your
browser	by	going	to	http://localhost:6060/debug/pprof/goroutine?debug=1.





Using	the	App	Engine
While	not	right	for	every	project,	Google’s	App	Engine	can	open	up	a	world	of	scalability
when	it	comes	to	concurrent	applications,	without	the	hassle	of	VM	provisioning,	reboots,
monitoring,	and	so	on.

The	App	Engine	is	not	entirely	dissimilar	to	Amazon	Web	Services,	DigitalOcean,	and	the
ilk,	except	for	the	fact	that	you	do	not	need	to	necessarily	involve	yourself	in	the	minute
details	of	direct	server	setup	and	maintenance.	All	of	them	provide	a	single	spot	to	acquire
and	utilize	virtual	computing	resources	for	your	applications.

Rather,	it	can	be	a	more	abstract	environment	within	Google’s	architecture	with	which	to
house	and	run	your	code	in	a	number	of	languages,	including—no	surprise	here—the	Go
language	itself.

While	large-scale	apps	will	cost	you,	Google	provides	a	free	tier	with	reasonable	quotas
for	experimentation	and	small	applications.

The	benefits	as	they	relate	to	scalability	here	are	two-fold:	you’re	not	responsible	for
ensuring	uptime	on	the	instances	as	you	would	be	in	an	AWS	or	DigitalOcean	scenario.
Who	else	but	Google	will	have	not	only	the	architecture	to	support	anything	you	can
throw	at	it,	but	also	have	the	fastest	updates	to	the	Go	core	itself?

There	are	some	obvious	limitations	here	that	coincide	with	the	advantages,	of	course,
including	the	fact	that	your	core	application	will	be	available	exclusively	via	http
(although	it	will	have	access	to	plenty	of	other	services).

Tip
To	deploy	apps	to	the	App	Engine,	you’ll	need	the	SDK	for	Go,	available	for	Mac	OS	X,
Linux,	and	Windows,	at
https://developers.google.com/appengine/downloads#Google_App_Engine_SDK_for_Go.

Once	you’ve	installed	the	SDK,	the	changes	you’ll	need	to	make	to	your	code	are	minor—
the	most	noteworthy	point	is	that	for	most	cases,	your	Go	tool	command	will	be
supplanted	by	goapp,	which	handles	serving	your	application	locally	and	then	deploying
it.

https://developers.google.com/appengine/downloads#Google_App_Engine_SDK_for_Go




Distributed	Go
We’ve	certainly	covered	a	lot	about	concurrent	and	parallel	Go,	but	one	of	the	biggest
infrastructure	challenges	for	developers	and	system	architects	today	has	to	do	with
cooperative	computing.

Some	of	the	applications	and	designs	that	we’ve	mentioned	previously	scale	from
parallelism	to	distributed	computing.

Memcache(d)	is	a	form	of	in-memory	caching,	which	can	be	used	as	a	queue	among
several	systems.

Our	master-slave	and	producer-consumer	models	we	presented	in	Chapter	4,	Data
Integrity	in	an	Application,	have	more	to	do	with	distributed	computing	than	single-
machine	programming	in	Go,	which	manages	concurrency	idiomatically.	These	models
are	typical	concurrency	models	in	many	languages,	but	can	be	scaled	to	help	us	design
distributed	systems	as	well,	utilizing	not	just	many	cores	and	vast	resources	but	also
redundancy.

The	basic	premise	of	distributed	computing	is	to	share,	spread,	and	best	absorb	the	various
burdens	of	any	given	application	across	many	systems.	This	not	only	improves
performance	on	aggregate,	but	provides	some	sense	of	redundancy	for	the	system	itself.

This	all	comes	at	some	cost	though,	which	are	as	follows:

Potential	for	network	latency
Creating	slowdowns	in	communication	and	in	application	execution
Overall	increase	in	complexity	both	in	design	and	in	maintenance
Potential	for	security	issues	at	various	nodes	along	the	distributed	route(s)
Possible	added	cost	due	to	bandwidth	considerations

This	is	all	to	say,	simply,	that	while	building	a	distributed	system	can	provide	great
benefits	to	a	large-scale	application	that	utilizes	concurrency	and	ensures	data	consistency,
it’s	by	no	means	right	for	every	example.



Types	of	topologies
Distributed	computing	recognizes	a	slew	of	logical	topologies	for	distributed	design.
Topology	is	an	apt	metaphor,	because	the	positioning	and	logic	of	the	systems	involved
can	often	represent	physical	topology.

Out	of	the	box,	not	all	of	the	accepted	topologies	apply	to	Go.	When	we	design
concurrent,	distributed	applications	using	Go,	we’ll	generally	rely	on	a	few	of	the	simpler
designs,	which	are	as	follows.

Type	1	–	star
The	star	topology	(or	at	least	this	particular	form	of	it),	resembles	our	master-slave	or
producer-consumer	models	as	outlined	previously.

The	primary	method	of	data	passing	involves	using	the	master	as	a	message-passing
conduit;	in	other	words,	all	requests	and	commands	are	coordinated	by	a	single	instance,
which	uses	some	routing	method	to	pass	messages.	The	following	diagram	shows	the	star
topology:

We	can	actually	very	quickly	design	a	goroutine-based	system	for	this.	The	following	code
is	solely	the	master’s	(or	distributed	destination’s)	code	and	lacks	any	sort	of	security
considerations,	but	shows	how	we	can	parlay	network	calls	to	goroutines:



package	main

import

(

		"fmt"

		"net"

		

)

Our	standard,	basic	libraries	are	defined	as	follows:

type	Subscriber	struct	{

		Address	net.Addr

		Connection	net.Conn

		do	chan	Task		

}

type	Task	struct	{

		name	string

}

These	are	the	two	custom	types	we’ll	use	here.	A	Subscriber	type	is	any	distributed
helper	that	comes	into	the	fray,	and	a	Task	type	represents	any	given	distributable	task.
We’ve	left	that	undefined	here	because	it’s	not	the	primary	goal	of	demonstration,	but	you
could	ostensibly	have	Task	do	anything	by	communicating	standardized	commands	across
the	TCP	connection.	The	Subscriber	type	is	defined	as	follows:

var	SubscriberCount	int

var	Subscribers	[]Subscriber

var	CurrentSubscriber	int

var	taskChannel	chan	Task

func	(sb	Subscriber)	awaitTask()	{

		select	{

				case	t	:=	<-sb.do:

						fmt.Println(t.name,"assigned")

		}

}

func	serverListen	(listener	net.Listener)	{

		for	{

				conn,_	:=	listener.Accept()

				SubscriberCount++

				subscriber	:=	Subscriber{	Address:	conn.RemoteAddr(),	

						Connection:	conn	}

				subscriber.do	=	make(chan	Task)

				subscriber.awaitTask()

				_	=	append(Subscribers,subscriber)

		}

}

func	doTask()	{



		for	{

				select	{

						case	task	:=	<-taskChannel:

								fmt.Println(task.name,"invoked")

								Subscribers[CurrentSubscriber].do	<-	task

								if	(CurrentSubscriber+1)	>	SubscriberCount	{

										CurrentSubscriber	=	0

								}else	{

										CurrentSubscriber++

								}

				}

		}

}

func	main()	{

		destinationStatus	:=	make(chan	int)

		SubscriberCount	=	0

		CurrentSubscriber	=	0

		taskChannel	=	make(chan	Task)

		listener,	err	:=	net.Listen("tcp",	":9000")

		if	err	!=	nil	{

				fmt.Println	("Could	not	start	server!",err)

		}

		go	serverListen(listener)		

		go	doTask()

		<-destinationStatus

}

This	essentially	treats	every	connection	as	a	new	Subscriber,	which	gets	its	own	channel
based	on	its	index.	This	master	server	then	iterates	through	existing	Subscriber
connections	using	the	following	very	basic	round-robin	approach:

if	(CurrentSubscriber+1)	>	SubscriberCount	{

		CurrentSubscriber	=	0

}else	{

		CurrentSubscriber++

}

As	mentioned	previously,	this	lacks	any	sort	of	security	model,	which	means	that	any
connection	to	port	9000	would	become	a	Subscriber	and	could	get	network	messages
assigned	to	it	(and	ostensibly	could	invoke	new	messages	too).	But	you	may	have	noticed
an	even	bigger	omission:	this	distributed	application	doesn’t	do	anything.	Indeed,	this	is
just	a	model	for	assignment	and	management	of	subscribers.	Right	now,	it	doesn’t	have
any	path	of	action,	but	we’ll	change	that	later	in	this	chapter.

Type	2	–	mesh
The	mesh	is	very	similar	to	the	star	with	one	major	difference:	each	node	is	able	to
communicate	not	just	through	the	master,	but	also	directly	with	other	nodes	as	well.	This



is	also	known	as	a	complete	graph.	The	following	diagram	shows	a	mesh	topology:

For	practical	purposes,	the	master	must	still	handle	assignments	and	pass	connections	back
to	the	various	nodes.

This	is	actually	not	particularly	difficult	to	add	through	the	following	simple	modification
of	our	previous	server	code:

func	serverListen	(listener	net.Listener)	{

		for	{

				conn,_	:=	listener.Accept()

				SubscriberCount++

				subscriber	:=	Subscriber{	Address:	conn.RemoteAddr(),	

						Connection:	conn	}

				subscriber.awaitTask()

				_	=	append(Subscribers,subscriber)

				broadcast()

		}

}

Then,	we	add	the	following	corresponding	broadcast	function	to	share	all	available
connections	to	all	other	connections:

func	broadcast()	{



		for	i:=	range	Subscribers	{

				for	j:=	range	Subscribers	{

						Subscribers[i].Connection.Write

								([]byte("Subscriber:",Subscriber[j].Address))		

				}

		}

}

The	Publish	and	Subscribe	model
In	both	the	previous	topologies,	we’ve	replicated	a	Publish	and	Subscribe	model	with	a
central/master	handling	delivery.	Unlike	in	a	single-system,	concurrent	pattern,	we	lack
the	ability	to	use	channels	directly	across	separate	machines	(unless	we	use	something	like
Go’s	Circuit	as	described	in	Chapter	4,	Data	Integrity	in	an	Application).

Without	direct	programmatic	access	to	send	and	receive	actual	commands,	we	rely	on
some	form	of	API.	In	the	previous	examples,	there	is	no	actual	task	being	sent	or
executed,	but	how	could	we	do	this?

Obviously,	to	create	tasks	that	can	be	formalized	into	non-code	transmission,	we’ll	need	a
form	of	API.	We	can	do	this	one	of	two	ways:	serialization	of	commands,	ideally	via
JSONDirect	transmission,	and	execution	of	code.

As	we’ll	always	be	dealing	with	compiled	code,	the	serialization	of	commands	option
might	seem	like	you	couldn’t	include	Go	code	itself.	This	isn’t	exactly	true,	but	passing
full	code	in	any	language	is	fairly	high	on	lists	of	security	concerns.

But	let’s	look	at	two	ways	of	sending	data	via	API	in	a	task	by	removing	a	URL	from	a
slice	of	URLs	for	retrieval.	We’ll	first	need	to	initialize	that	array	in	our	main	function	as
shown	in	the	following	code:

type	URL	struct	{

		URI	string

		Status	int

		Assigned	Subscriber

		SubscriberID	int

}

Every	URL	in	our	array	will	include	the	URI,	its	status,	and	the	subscriber	address	to
which	it’s	been	assigned.	We’ll	formalize	the	status	points	as	0	for	unassigned,	1	for
assigned	and	waiting,	and	2	for	assigned	and	complete.

Remember	our	CurrentSubscriber	iterator?	That	represents	the	next-in-line	round	robin
assignment	which	will	fulfill	the	SubscriberID	value	for	our	URL	struct.

Next,	we’ll	create	an	arbitrary	array	of	URLs	that	will	represent	our	overall	job	here.
Some	suspension	of	incredulity	may	be	necessary	to	assume	that	the	retrieval	of	four
URLs	should	require	any	distributed	system;	in	reality,	this	would	introduce	significant
slowdown	by	virtue	of	network	transmission.	We’ve	handled	this	in	a	purely	single-
system,	concurrent	application	before:

		URLs	=	[]URL{	{Status:0,URL:"http://golang.org/"},	

				{Status:0,URL:"http://play.golang.org/"},	



						{Status:0,URL:"http://golang.org/doc/"},	

								{Status:0,URL:"http://blog.golang.org/"}	}

Serialized	data
In	our	first	option	in	the	API,	we’ll	send	and	receive	serialized	data	in	JSON.	Our	master
will	be	responsible	for	formalizing	its	command	and	associated	data.	In	this	case,	we’ll
want	to	transmit	a	few	things:	what	to	do	(in	this	case,	retrieve)	with	the	relevant	data,
what	the	response	should	be	when	it	is	complete,	and	how	to	address	errors.

We	can	represent	this	in	a	custom	struct	as	follows:

type	Assignment	struct	{

		command	string

		data	string

		successResponse	string

		errorResponse	string

}

...

		asmnt	:=	Assignment{command:"process",

				url:"http://www.golang.org",successResponse:"success",

						errorResponse:"error"}

		json,	_	:=	json.Marshal(asmnt	)

		send(string(json))

Remote	code	execution
The	remote	code	execution	option	is	not	necessarily	separate	from	serialization	of
commands,	but	instead	of	structured	and	interpreted	formatted	responses,	the	payload
could	be	code	that	will	be	run	via	a	system	command.

As	an	example,	code	from	any	language	could	be	passed	through	the	network	and
executed	from	a	shell	or	from	a	syscall	library	in	another	language,	like	the	following
Python	example:

from	subprocess	import	call

call([remoteCode])

The	disadvantages	to	this	approach	are	many:	it	introduces	serious	security	issues	and
makes	error	detection	within	your	client	nearly	impossible.

The	advantages	are	you	do	not	need	to	come	up	with	a	specific	format	and	interpreter	for
responses	as	well	as	potential	speed	improvements.	You	can	also	offload	the	response
code	to	another	external	process	in	any	number	of	languages.

In	most	cases,	serialization	of	commands	is	far	preferable	over	the	remote	code	execution
option.

Other	topologies
There	exist	quite	a	few	topology	types	that	are	more	complicated	to	manage	as	part	of	a
messaging	queue.

The	following	diagram	shows	the	bus	topology:



The	bus	topology	network	is	a	unidirectional	transmission	system.	For	our	purposes,	it’s
neither	particularly	useful	nor	easily	managed,	as	each	added	node	needs	to	announce	its
availability,	accept	listener	responsibility,	and	be	ready	to	cede	that	responsibility	when	a
new	node	joins.

The	advantage	of	a	bus	is	quick	scalability.	This	comes	with	serious	disadvantages	though:
lack	of	redundancy	and	single	point	of	failure.

Even	with	a	more	complex	topology,	there	will	always	be	some	issue	with	potentially
losing	a	valuable	cog	in	the	system;	at	this	level	of	modular	redundancy,	some	additional
steps	will	be	necessary	to	have	an	always-available	system,	including	automatic	double	or
triple	node	replication	and	failovers.	That’s	a	bit	more	than	we’ll	get	into	here,	but	it’s
important	to	note	that	the	risk	will	be	there	in	any	event,	although	it	would	be	a	little	more
vulnerable	with	a	topology	like	the	bus.

The	following	diagram	shows	the	ring	topology:



The	ring	topology	looks	similar	to	our	mesh	topology,	but	lacks	a	master.	It	essentially
requires	the	same	communication	process	(announce	and	listen)	as	does	a	bus.	Note	one
significant	difference:	instead	of	a	single	listener,	communication	can	happen	between	any
node	without	the	master.

This	simply	means	that	all	nodes	must	both	listen	and	announce	their	presence	to	other
nodes.

Message	Passing	Interface
There	exists	a	slightly	more	formalized	version	of	what	we	built	previously,	called
Message	Passing	Interface.	MPI	was	borne	from	early	1990s	academia	as	a	standard	for
distributed	communication.

Originally	written	with	FORTRAN	and	C	in	mind,	it	is	still	a	protocol,	so	it’s	largely
language	agnostic.

MPI	allows	the	management	of	topology	above	and	beyond	the	basic	topologies	we	were
able	to	build	for	a	resource	management	system,	including	not	only	the	line	and	ring	but
also	the	common	bus	topology.

For	the	most	part,	MPI	is	used	by	the	scientific	community;	it	is	a	highly	concurrent	and
analogous	method	for	building	large-scale	distributed	systems.	Point-to-point	operations
are	more	rigorously	defined	with	error	handling,	retries,	and	dynamic	spawning	of
processes	all	built	in.

Our	previous	basic	examples	lend	no	prioritization	to	processors,	for	example,	and	this	is	a
core	effect	of	MPI.

There	is	no	official	implementation	of	MPI	for	Go,	but	as	there	exists	one	for	both	C	and
C++,	it’s	entirely	possible	to	interface	with	it	through	that.

Note
There	is	also	a	simple	and	incomplete	binding	written	in	Go	by	Marcus	Thierfelder	that
you	can	experiment	with.	It	is	available	at	https://github.com/marcusthierfelder/mpi.

You	can	read	more	about	and	install	OpenMPI	from	http://www.open-mpi.org/.

Also	you	can	read	more	about	MPI	and	MPICH	implementations	at
http://www.mpich.org/.

https://github.com/marcusthierfelder/mpi
http://www.open-mpi.org/
http://www.mpich.org/




Some	helpful	libraries
There’s	little	doubt	that	Go	provides	some	of	the	best	ancillary	tools	available	to	any
compiled	language	out	there.	Compiling	to	native	code	on	a	myriad	of	systems,	deadlock
detection,	pprof,	fmt,	and	more	allow	you	to	not	just	build	high-performance	applications,
but	also	test	them	and	format	them.

This	hasn’t	stopped	the	community	from	developing	other	tools	that	can	be	used	for
debugging	or	aiding	your	concurrent	and/or	distributed	code.	We’ll	take	a	look	at	a	few
great	tools	that	may	prove	worthy	of	inclusion	in	your	app,	particularly	if	it’s	highly
visible	or	performance	critical.



Nitro	profiler
As	you	are	probably	now	well	aware,	Go’s	pprof	is	extremely	powerful	and	useful,	if	not
exactly	user-friendly.

If	you	love	pprof	already,	or	even	if	you	find	it	arduous	and	confusing,	you	may	love	Nitro
profiler	twice	as	much.	Coming	from	Steve	Francia	of	spf13,	Nitro	profiler	allows	you	to
produce	even	cleaner	analyses	of	your	application	and	its	functions	and	steps,	as	well	as
providing	more	usable	a/b	tests	of	alternate	functions.

Tip
Read	more	about	Nitro	profiler	at	http://spf13.com/project/nitro.

You	can	get	it	via	github.com/spf13/nitro.

As	with	pprof,	Nitro	automatically	injects	flags	into	your	application,	and	you’ll	see	them
in	the	results	themselves.

Unlike	pprof,	your	application	does	not	need	to	be	compiled	to	get	profile	analysis	from	it.
Instead,	you	can	simply	append	-stepAnalysis	to	the	go	run	command.

http://spf13.com/project/nitro
http://github.com/spf13/nitro


Heka
Heka	is	a	data	pipeline	tool	that	can	be	used	to	gather,	analyze,	and	distribute	raw	data.
Available	from	Mozilla,	Heka	is	more	a	standalone	application	rather	than	a	library,	but
when	it	comes	to	acquiring,	analyzing,	and	distributing	data	such	as	server	logfiles	across
multiple	servers,	Heka	can	prove	itself	worthy.

Heka	is	also	written	in	Go,	so	make	sure	to	check	out	the	source	to	see	how	Mozilla
utilizes	concurrency	and	Go	in	real-time	data	analysis.

Tip
You	can	visit	the	Heka	home	page	at	http://heka-docs.readthedocs.org/en/latest/	and	the
Heka	source	page	at	https://github.com/mozilla-services/heka.

http://heka-docs.readthedocs.org/en/latest/
https://github.com/mozilla-services/heka


GoFlow
Finally,	there’s	GoFlow,	a	flow-based	programming	paradigm	tool	that	lets	you	segment
your	application	into	distinct	components,	each	capable	of	being	bound	to	ports,	channels,
the	network,	or	processes.

While	not	itself	a	performance	tool,	GoFlow	might	be	an	appropriate	approach	to
extending	concurrency	for	some	applications.

Tip
Visit	GoFlow	at	https://github.com/trustmaster/goflow.

https://github.com/trustmaster/goflow




Memory	preservation
At	the	time	of	this	writing,	Go	1.2.2’s	compiler	utilizes	a	naive	mark/sweep	garbage
collector,	which	assigns	a	reference	rank	to	objects	and	clears	them	when	they	are	no
longer	in	use.	This	is	noteworthy	only	to	point	out	that	it	is	widely	considered	a	relatively
poor	garbage	collection	system.

So	why	does	Go	use	it?	As	Go	has	evolved;	language	features	and	compiler	speed	have
largely	taken	precedence	over	garbage	collection.	While	it’s	a	long-term	development
timeline	for	Go,	for	the	time	being,	this	is	where	we	are.	The	tradeoff	is	a	good	one,
though:	as	you	well	know	by	now,	compiling	Go	code	is	light	years	faster	than,	say,
compiling	C	or	C++	code.	Good	enough	for	now	is	a	fair	description	for	the	GC.	But	there
are	some	things	you	can	do	to	augment	and	experiment	within	the	garbage	collection
system.



Garbage	collection	in	Go
To	get	an	idea	of	how	the	garbage	collector	is	managing	the	stack	at	any	time,	take	a	look
at	the	runtime.MemProfileRecord	object,	which	keeps	track	of	presently	living	objects	in
the	active	stack	trace.

You	can	call	the	profile	record	when	necessary	and	then	utilize	it	against	the	following
methods	to	get	a	few	interesting	pieces	of	data:

InUseBytes():	This	method	has	the	bytes	used	presently	as	per	the	memory	profile
InUseObjects():This	method	has	the	number	of	live	objects	in	use
Stack():	This	method	has	the	full	stack	trace

You	can	place	the	following	code	in	a	heavy	loop	in	your	application	to	get	a	peek	at	all	of
these:

						var	mem	runtime.MemProfileRecord

						obj	:=	mem.InUseObjects();

						bytes	:=	mem.InUseBytes();

						stack	:=	mem.Stack();

						fmt.Println(i,obj,bytes)





Summary
We	can	now	build	some	pretty	high-performance	applications	and	then	utilize	some	of
Go’s	built-in	tools	and	third-party	packages	to	seek	out	the	most	performance	in	a	single
instance	application	as	well	as	across	multiple,	distributed	systems.

In	the	next	chapter,	we’re	going	to	wrap	everything	together	to	design	and	build	a
concurrent	server	application	that	can	work	quickly	and	independently,	and	easily	scale	in
performance	and	scope.





Chapter	8.	Concurrent	Application
Architecture
By	now,	we’ve	designed	small	bits	of	concurrent	programs,	primarily	in	a	single	piece
keeping	concurrency	largely	isolated.	What	we	haven’t	done	yet	is	tie	everything	together
to	build	something	a	little	more	robust,	complex,	and	more	daunting	to	manage	from	an
administrator’s	perspective.

Simple	chat	applications	and	web	servers	are	fine	and	dandy.	However,	you	will
eventually	need	more	complexity	and	require	external	software	to	meet	all	of	the	more
advanced	requirements.

In	this	case,	we’ll	build	something	that’s	satisfied	by	a	few	dissonant	services:	a	file
manager	with	revision	control	that	supplies	web	and	shell	access.	Services	such	as
Dropbox	and	Google	Drive	allow	users	to	keep	and	share	files	among	peers.	On	the	other
hand,	GitHub	and	its	ilk	allow	for	a	similar	platform	but	with	the	critical	added	benefit	of
revision	control.

Many	organizations	face	problems	with	the	following	sharing	and	distribution	options:

Limitations	on	repositories,	storage,	or	number	of	files
Potential	inaccessibility	if	the	services	are	down
Security	concerns,	particularly	for	sensitive	information

Simple	sharing	applications	such	as	Dropbox	and	Google	Drive	are	great	at	storing	data
without	a	large	amount	of	revision	control	options.	GitHub	is	an	excellent	collaborative
revision	control	and	distribution	system,	but	comes	with	many	costs	and	the	mistakes	by
developers	can	lead	to	large	and	potentially	serious	security	lapses.

We’ll	be	combining	the	aims	of	version	control	(and	the	GitHub	ideal)	with	Dropbox’s	/
Google	Drive’s	simplicity	and	openness.	This	type	of	application	will	be	perfect	as	an
intranet	replacement—wholly	isolated	and	accessible	with	custom	authentication	that
doesn’t	necessarily	rely	on	cloud	services.	The	ability	to	keep	it	all	in-house	removes	any
potential	for	network	security	concerns	and	allows	an	administrator	to	design	permanent
backup	solutions	in	a	way	that	fits	their	organization.

File	sharing	within	the	organization	will	allows	forking,	backups,	file	locking,	and
revision	control	all	from	the	command	line	but	also	through	a	simple	web	interface.



Designing	our	concurrent	application
When	designing	a	concurrent	application,	we	will	have	three	components	running	in
separate	processes.	A	file	listener	will	be	alerted	to	make	changes	to	files	in	specified
locations.	A	web-CLI	interface	will	allow	users	to	augment	or	modify	files,	and	a	backup
process	will	be	bound	to	the	listener	to	provide	automated	copies	of	new	file	changes.
With	that	in	mind,	these	three	processes	will	look	a	bit	like	what	is	shown	in	the	following
diagram:

Our	file	listener	process	will	do	the	following	three	things:

Keep	an	eye	on	any	file	changes
Broadcast	to	our	web/CLI	servers	and	the	backup	process
Maintain	the	state	of	any	given	file	in	our	database	/	data	store

The	backup	process	will	accept	any	broadcasts	from	the	file	listener	(#2)	and	create	a
backup	file	in	an	iterative	design.

Our	general	server	(web	and	CLI)	will	report	details	on	individual	files	and	allow
versioning	forward	and	backward	with	a	customizable	syntax.	This	part	of	the	application
will	also	have	to	broadcast	back	to	the	file	listener	when	new	files	are	committed	or
revisions	are	requested.





Identifying	our	requirements
The	most	critical	step	in	our	architectural	design	process	is	really	zooming	in	on	the
required	features,	packages,	and	technologies	that	we’ll	need	to	implement.	For	our	file
management	and	revision	control	application,	there	are	a	few	key	points	that	will	stand
out:

A	web	interface	that	allows	file	uploads,	downloads,	and	revisions.
A	command-line	interface	that	allows	us	to	roll	back	changes	and	modify	files
directly.
A	filesystem	listener	that	finds	changes	made	to	a	shared	location.
A	data	store	system	that	has	strong	Go	tie-in	and	allows	us	to	maintain	information
about	files	and	users	in	a	mostly	consistent	manner.	This	system	will	also	maintain
user	records.
A	concurrent	log	system	that	maintains	and	cycles	logs	of	changed	files.

We’re	somewhat	complicating	things	by	allowing	the	following	three	different	ways	to
interface	with	the	overall	application:

Via	the	Web	that	requires	a	user	and	login.	This	also	allows	our	users	to	access	and
modify	files	even	if	they	happen	to	be	somewhere	not	connected	to	the	shared	drive.
Via	the	command	line.	This	is	archaic	but	also	extremely	valuable	anytime	a	user	is
traversing	a	filesystem,	particularly	power	users	not	in	a	GUI.
Via	the	filesystem	that	changes	itself.	This	is	the	shared	drive	mechanism	wherein	we
assume	that	any	user	with	access	to	this	will	be	making	valid	modifications	to	any
files.

To	handle	all	of	this,	we	can	identify	a	few	critical	technologies	as	follows:

A	database	or	data	store	to	manage	revisions	to	our	filesystem.	When	choosing
between	transactional,	ACID-compliant	SQL	and	fast	document	stores	in	NoSQL,	the
tradeoff	is	often	performance	versus	consistency.	However,	since	most	of	our	locking
mechanism	will	exist	in	the	application,	duplicating	locks	(even	at	the	row	level)	will
add	a	level	of	potential	slowness	and	cruft	that	we	don’t	need.	So,	we	will	utilize	a
NoSQL	solution.
This	solution	will	need	to	play	well	with	concurrency.
We’ll	be	using	a	web	interface,	one	that	brings	in	powerful	and	clean	routing/muxing
and	plays	well	with	Go’s	robust	built-in	templating	system.
A	filesystem	notification	library	that	allows	us	to	monitor	changes	to	files	as	well	as
backing	up	revisions.

Any	solutions	we	uncover	or	build	to	satisfy	these	requirements	will	need	to	be	highly
concurrent	and	non-blocking.	We’ll	want	to	make	sure	that	we	do	not	allow	simultaneous
changes	to	files,	including	changes	to	our	internal	revisions	themselves.

With	all	of	this	in	mind,	let’s	identify	our	pieces	one-by-one	and	decide	how	they	will	play
in	our	application.



We’ll	also	present	a	few	alternatives	with	options	that	can	be	swapped	without
compromising	the	functionality	or	core	requirements.	This	will	allow	some	flexibility	in
cases	where	platform	or	preference	makes	our	primary	option	unpalatable.	Any	time	we’re
designing	an	application,	it’s	a	good	idea	to	know	what	else	is	out	there	in	case	the
software	(or	terms	of	its	use)	change	or	it	is	no	longer	satisfactory	to	use	at	a	future	scale.

Let’s	start	with	our	data	store.





Using	NoSQL	as	a	data	store	in	Go
One	of	the	biggest	concessions	with	using	NoSQL	is,	obviously,	the	lack	of
standardization	when	it	comes	to	CRUD	operations	(create,	read,	update,	and	delete).	SQL
has	been	standardized	since	1986	and	is	pretty	airtight	across	a	number	of	databases—
from	MySQL	to	SQL	Server	and	from	Microsoft	and	Oracle	all	the	way	down	to
PostgreSQL.

Note
You	can	read	more	about	NoSQL	and	various	NoSQL	platforms	at	http://nosql-
database.org/.

Martin	Fowler	has	also	written	a	popular	introduction	to	the	concept	and	some	use	cases	in
his	book	NoSQL	Distilled	at	http://martinfowler.com/books/nosql.html.

Depending	on	the	NoSQL	platform,	you	can	also	lose	ACID	compliance	and	durability.
This	means	that	your	data	is	not	100	percent	secure—there	can	be	transactional	loss	if	a
server	crashes,	if	reads	happen	on	outdated	or	non-existent	data,	and	so	on.	The	latter	of
which	is	known	as	a	dirty	read.

This	is	all	noteworthy	as	it	applies	to	our	application	and	with	concurrency	specifically
because	we’ve	talked	about	one	of	those	big	potential	third-party	bottlenecks	in	the
previous	chapters.

For	our	file-sharing	application	in	Go,	we	will	utilize	NoSQL	to	store	metadata	about	files
as	well	as	the	users	that	modify/interact	with	those	files.

We	have	quite	a	few	options	when	it	comes	to	a	NoSQL	data	store	to	use	here,	and	almost
all	of	the	big	ones	have	a	library	or	interface	in	Go.	While	we’re	going	to	go	with
Couchbase	here,	we’ll	briefly	talk	about	some	of	the	other	big	players	in	the	game	as	well
as	the	merits	of	each.

The	code	snippets	in	the	following	sections	should	also	give	you	some	idea	of	how	to
switch	out	Couchbase	for	any	of	the	others	without	too	much	angst.	While	we	don’t	go
deeply	into	any	of	them,	the	code	for	maintaining	the	file	and	modifying	information	will
be	as	generic	as	possible	to	ensure	easy	exchange.

http://nosql-database.org/
http://martinfowler.com/books/nosql.html


MongoDB
MongoDB	is	one	of	the	most	popular	NoSQL	platforms	available.	Written	in	2009,	it’s
also	one	of	the	most	mature	platforms,	but	comes	with	a	number	of	tradeoffs	that	have
pushed	it	somewhat	out	of	favor	in	the	recent	years.

Even	so,	Mongo	does	what	it	does	in	a	reliable	fashion	and	with	a	great	deal	of	speed.
Utilizing	indices,	as	is	the	case	with	most	databases	and	data	stores,	improves	query	speed
on	reads	greatly.

Mongo	also	allows	for	some	very	granular	control	of	guarantees	as	they	apply	to	reads,
writes,	and	consistency.	You	can	think	of	this	as	a	very	vague	analog	to	any	language
and/or	engine	that	supports	syntactical	dirty	reads.

Most	importantly,	Mongo	supports	concurrency	easily	within	Go	and	is	implicitly
designed	to	work	in	distributed	systems.

Note
The	biggest	Go	interface	for	Mongo	is	mgo,	which	is	available	at:
http://godoc.org/labix.org/v2/mgo.

Should	you	wish	to	experiment	with	Mongo	in	Go,	it’s	a	relatively	straightforward	process
to	take	your	data	store	record	and	inject	it	into	a	custom	struct.	The	following	is	a	quick
and	dirty	example:

import

(

				"labix.org/v2/mgo"

				"labix.org/v2/mgo/bson"

)

type	User	struct	{

		name	string

}

				

func	main()	{

		servers,	err	:=	mgo.Dial("localhost")

		defer	servers.Close()

		data	:=	servers.DB("test").C("users")

		result	:=	User{}

		err	=	c.Find(bson.M{"name":	"John"}).One(&result)

}

One	downside	to	Mongo	compared	to	other	NoSQL	solutions	is	that	it	does	not	come	with
any	GUI	by	default.	This	means	we	either	need	to	tie	in	another	application	or	web
service,	or	stick	to	the	command	line	to	manage	its	data	store.	For	many	applications,	this
isn’t	a	big	deal,	but	we	want	to	keep	this	project	as	compartmentalized	and	provincial	as
possible	to	limit	points	of	failure.

Mongo	has	also	gotten	a	bit	of	a	bad	rap	as	it	pertains	to	fault	tolerance	and	data	loss,	but

http://godoc.org/labix.org/v2/mgo


this	is	equally	true	of	many	NoSQL	solutions.	In	addition,	it’s	in	many	ways	a	feature	of	a
fast	data	store—so	often	catastrophe	recovery	comes	at	the	expense	of	speed	and
performance.

It’s	also	fair	to	say	this	is	a	generally	overblown	critique	of	Mongo	and	its	peers.	Can
something	bad	happen	with	Mongo?	Sure.	Can	it	also	happen	with	a	managed	Oracle-
based	system?	Absolutely.	Mitigating	massive	failures	in	this	realm	is	more	the
responsibility	of	a	systems	administrator	than	the	software	itself,	which	can	only	provide
the	tools	necessary	to	design	such	a	contingency	plan.

All	that	said,	we’ll	want	something	with	a	quick	and	highly-available	management
interface,	so	Mongo	is	out	for	our	requirements	but	could	easily	be	plugged	into	this
solution	if	those	are	less	highly	valued.



Redis
Redis	is	another	key/value	data	store	and,	as	of	recently,	took	the	number	one	spot	in
terms	of	total	usage	and	popularity.	In	an	ideal	Redis	world,	an	entire	dataset	is	held	in
memory.	Given	the	size	of	many	datasets,	this	isn’t	always	possible;	however,	coupled
with	Redis’	ability	to	eschew	durability,	this	can	result	in	some	very	high	performance
results	when	used	in	concurrent	applications.

Another	useful	feature	of	Redis	is	the	fact	that	it	can	inherently	hold	different	data
structures.	While	you	can	make	abstractions	of	such	data	by	unmarshalling	JSON
objects/arrays	in	Mongo	(and	other	data	stores),	Redis	can	handle	sets,	strings,	arrays,	and
hashes.

There	are	two	major	accepted	libraries	for	Redis	in	Go:

Radix:	This	is	a	minimalist	client	that’s	barebones,	quick,	and	dirty.	To	install	Radix,
run	the	following	command:

go	get	github.com/fzzy/radix/redis

Redigo:	This	more	robust	and	a	bit	more	complex,	but	provides	a	lot	of	the	more
intricate	functionality	that	we’ll	probably	not	need	for	this	project.	To	install	Redigo,
run	the	following	command:

go	get	github.com/garyburd/redigo/redis

We’ll	now	see	a	quick	example	of	getting	a	user’s	name	from	the	data	store	of	Users	in
Redis	using	Redigo:

package	main

import

(

				"fmt"

				"github.com/garyburd/redigo/redis"

)

func	main()	{

		

		connection,_	:=	dial()

		defer	connection.Close()

		data,	err	:=	redis.Values(connection.Do("SORT",	"Users",	"BY",	"User:*-

>name",	

				"GET",	"User:*->name"))

		if	(err)	{

				fmt.Println("Error	getting	values",	err)

		}

		for	i:=	range	data	{

				var	Uname	string

				data,err	:=	redis.Scan(data,	&Uname)



				if	(err)	{

						fmt.Println("Error	getting	value",err)

				}else	{

						fmt.Println("Name	Uname")

				}

		}

}

Looking	over	this,	you	might	note	some	non	programmatic	access	syntax,	such	as	the
following:

		data,	err	:=	redis.Values(connection.Do("SORT",	"Users",	"BY",	"User:*-

>name",	

				"GET",	"User:*->name"))

This	is	indeed	one	of	the	reasons	why	Redis	in	Go	will	not	be	our	choice	for	this	project—
both	libraries	here	provide	an	almost	API-level	access	to	certain	features	with	some	more
detailed	built-ins	for	direct	interaction.	The	Do	command	passes	straight	queries	directly	to
Redis,	which	is	fine	if	you	need	to	use	the	library,	but	a	somewhat	inelegant	solution
across	the	board.

Both	the	libraries	play	very	nicely	with	the	concurrent	features	of	Go,	and	you’ll	have	no
problem	making	non-blocking	networked	calls	to	Redis	through	either	of	them.

It’s	worth	noting	that	Redis	only	supports	an	experimental	build	for	Windows,	so	this	is
mostly	for	use	on	*nix	platforms.	The	port	that	does	exist	comes	from	Microsoft	and	can
be	found	at	https://github.com/MSOpenTech/redis.

https://github.com/MSOpenTech/redis


Tiedot
If	you’ve	worked	a	lot	with	NoSQL,	then	the	preceding	engines	all	likely	seemed	very
familiar	to	you.	Redis,	Couch,	Mongo,	and	so	on	are	all	virtual	stalwarts	in	what	is	a
relatively	young	technology.

Tiedot,	on	the	other	hand,	probably	isn’t	as	familiar.	We’re	including	it	here	only	because
the	document	store	itself	is	written	in	Go	directly.	Document	manipulation	is	handled
primarily	through	a	web	interface,	and	it’s	a	JSON	document	store	like	several	other
NoSQL	solutions.

As	document	access	and	handling	is	governed	via	HTTP,	there’s	a	somewhat
counterintuitive	workflow,	shown	as	follows:

As	that	introduces	a	potential	spot	for	latency	or	failure,	this	keeps	from	being	an	ideal
solution	for	our	application	here.	Keep	in	mind	that	this	is	also	a	feature	of	a	few	of	the
other	solutions	mentioned	earlier,	but	since	Tiedot	is	written	in	Go,	it	would	be
significantly	easier	to	connect	to	it	and	read/modify	data	using	a	package.	While	this	book
was	being	written,	this	did	not	exist.

Unlike	other	HTTP-	or	REST-focused	alternatives	such	as	CouchDB,	Tiedot	relies	on
URL	endpoints	to	dictate	actions,	not	HTTP	methods.

You	can	see	in	the	following	code	how	we	might	handle	something	like	this	through
standard	libraries:

package	main

import

(

		"fmt"

		"json"

		"http"

)

type	Collection	struct	{

		Name	string

}

This,	simply,	is	a	data	structure	for	any	record	you	wish	to	bring	into	your	Go	application
via	data	selects,	queries,	and	so	on.	You	saw	this	in	our	previous	usage	of	SQL	servers
themselves,	and	this	is	not	any	different:

func	main()	{

		Col	:=	Collection{

				Name:	''



		}

		

		data,	err	:=	http.Get("http://localhost:8080/all")

		if	(err	!=	nil)	{

				fmt.Println("Error	accessing	tiedot")

		}

		collections,_	=	json.Unmarshal(data,&Col)

}

While	not	as	robust,	powerful,	or	scalable	as	many	of	its	peers,	Tiedot	is	certainly	worth
playing	with	or,	better	yet,	contributing	to.

Note
You	can	find	Tiedot	at	https://github.com/HouzuoGuo/tiedot.

https://github.com/HouzuoGuo/tiedot


CouchDB
CouchDB	from	Apache	Incubator	is	another	one	of	the	big	boys	in	NoSQL	big	data.	As	a
JSON	document	store,	CouchDB	offers	a	great	deal	of	flexibility	when	it	comes	to	your
data	store	approach.

CouchDB	supports	ACID	semantics	and	can	do	so	concurrently,	which	provides	a	great
deal	of	performance	benefit	if	one	is	bound	to	those	properties.	In	our	application,	that
reliance	on	ACID	consistency	is	somewhat	flexible.	By	design,	it	will	be	failure	tolerant
and	recoverable,	but	for	many,	even	the	possibility	of	data	loss	with	recoverability	is	still
considered	catastrophic.

Interfacing	with	CouchDB	happens	via	HTTP,	which	means	there	is	no	need	for	a	direct
implementation	or	Go	SQL	database	hook	to	use	it.	Interestingly,	CouchDB	uses	HTTP
header	syntax	to	manipulate	data,	as	follows:

GET:	This	represents	read	operations
PUT:	This	represents	creation	operations
DELETE:	This	represents	deletion	and	update	operations

These	are,	of	course,	what	the	header	methods	were	initially	intended	in	HTTP	1.1,	but	so
much	of	the	Web	has	focused	on	GET/POST	that	these	tend	to	get	lost	in	the	fray.

Couch	also	comes	with	a	convenient	web	interface	for	management.	When	CouchDB	is
running,	you’re	able	to	access	this	at	http://localhost:5984/_utils/,	as	shown	in	the
following	screenshot:

That	said,	there	are	a	few	wrappers	that	provide	a	level	of	abstraction	for	some	of	the	more
complicated	and	advanced	features.



Cassandra
Cassandra,	another	Apache	Foundation	project,	isn’t	technically	a	NoSQL	solution	but	a
clustered	(or	cluster-able)	database	management	platform.

Like	many	NoSQL	applications,	there	is	a	limitation	in	the	traditional	query	methods	in
Cassandra,	for	example,	subqueries	and	joins	are	generally	not	supported.

We’re	mentioning	it	here	primarily	because	of	its	focus	on	distributed	computing	as	well
as	the	ability	to	programmatically	tune	whether	data	consistency	or	performance	is	more
important.	Much	of	that	is	equally	expressed	in	our	solution,	Couchbase,	but	Cassandra
has	a	deeper	focus	on	distributed	data	stores.

Cassandra	does,	however,	support	a	subset	of	SQL	that	will	make	it	far	more	familiar	to
developers	who	have	dabbled	in	MySQL,	PostgreSQL,	or	the	ilk.	Cassandra’s	built-in
handling	of	highly	concurrent	integrations	makes	it	in	many	ways	ideal	for	Go,	although	it
is	an	overkill	for	this	project.

The	most	noteworthy	library	to	interface	with	Cassandra	is	gocql,	which	focuses	on	speed
and	a	clean	connection	to	the	Cassandra	connection.	Should	you	choose	to	use	Cassandra
in	lieu	of	Couchbase	(or	other	NoSQL),	you’ll	find	a	lot	of	the	methods	that	can	be	simply
replaced.

The	following	is	an	example	of	connecting	to	a	cluster	and	writing	a	simple	query:

package	main

import

(

				"github.com/gocql/gocql"

				"log"

)

func	main()	{

		

		cass	:=	gocql.NewCluster("127.0.0.1")

		cass.Keyspace	=	"filemaster"

		cass.Consistency	=	gocql.LocalQuorum

		session,	_	:=	cass.CreateSession()

		defer	session.Close()

		var	fileTime	int;

		if	err	:=	session.Query(`SELECT	file_modified_time	FROM	filemaster	

		WHERE	filename	=	?	LIMIT	1`,	

"test.txt").Consistency(gocql.One).Scan(&fileTime);	err	!=	nil	{

				log.Fatal(err)

		}

		fmt.Println("Last	modified",fileTime)

}

Cassandra	may	be	an	ideal	solution	if	you	plan	on	rapidly	scaling	this	application,



distributing	it	widely,	or	are	far	more	comfortable	with	SQL	than	data	store	/	JSON	access.

For	our	purposes	here,	SQL	is	not	a	requirement	and	we	value	speed	over	anything	else,
including	durability.



Couchbase
Couchbase	is	a	relative	newcomer	in	the	field,	but	it	was	built	by	people	from	both
CouchDB	and	memcached.	Written	in	Erlang,	it	shares	many	of	the	same	focuses	on
concurrency,	speed,	and	non-blocking	behavior	that	we’ve	come	to	expect	from	a	great
deal	of	our	Go	applications.

Couchbase	also	supports	a	lot	of	the	other	features	we’ve	discussed	in	the	previous
chapters,	including	easy	distribution-based	installations,	tuneable	ACID	compliance,	and
low-resource	consumption.

One	caveat	on	Couchbase	is	it	doesn’t	run	well	(or	at	all)	on	some	lower-resourced
machines	or	VMs.	Indeed,	64-bit	installations	require	an	absolute	minimum	of	4	GB	of
memory	and	four	cores,	so	forget	about	launching	this	on	tiny,	small,	or	even	medium-
grade	instances	or	older	hardware.

While	most	NoSQL	solutions	presented	here	(or	elsewhere)	offer	performance	benefits
over	their	SQL	counterparts	in	general,	Couchbase	has	done	very	well	against	its	peers	in
the	NoSQL	realm	itself.

Couchbase,	such	as	CouchDB,	comes	with	a	web-based	graphical	interface	that	simplifies
the	process	of	both	setup	and	maintenance.	Among	the	advanced	features	that	you’ll	have
available	to	you	in	the	setup	include	your	base	bucket	storage	engine	(Couchbase	or
memcached),	your	automated	backup	process	(replicas),	and	the	level	of	read-write
concurrency.

In	addition	to	configuration	and	management	tools,	it	also	presents	some	real-time
monitoring	in	the	web	dashboard	as	shown	in	the	following	screenshot:



While	not	a	replacement	for	full-scale	server	management	(what	happens	when	this	server
goes	down	and	you	have	no	insight),	it’s	incredibly	helpful	to	know	exactly	where	your
resources	are	going	without	needing	a	command-line	method	or	an	external	tool.

The	vernacular	in	Couchbase	varies	slightly,	as	it	tends	to	in	many	of	these	solutions.	The
nascent	desire	to	slightly	separate	NoSQL	from	stodgy	old	SQL	solutions	will	pop	its	head
from	time	to	time.

With	Couchbase,	a	database	is	a	data	bucket	and	records	are	documents.	However,	views,
an	old	transactional	SQL	standby,	bring	a	bit	of	familiarity	to	the	table.	The	big	takeaway
here	is	views	allow	you	to	create	more	complex	queries	using	simple	JavaScript,	in	some
cases,	replicating	otherwise	difficult	features	such	as	joins,	unions,	and	pagination.

Each	view	created	in	Couchbase	becomes	an	HTTP	access	point.	So	a	view	that	you	name



select_all_files	will	be	accessible	via	a	URL	such	as
http://localhost:8092/file_manager/_design/select_all_files/_view/Select%20All%20Files?

connection_timeout=60000&limit=10&skip=0.

The	most	noteworthy	Couchbase	interface	library	is	Go	Couchbase,	which,	if	nothing	else,
might	save	you	from	some	of	the	redundancy	of	making	HTTP	calls	in	your	code	to	access
CouchDB.

Note
Go	Couchbase	can	be	found	at	https://github.com/couchbaselabs/go-couchbase.

Go	Couchbase	makes	interfacing	with	Couchbase	through	a	Go	abstraction	simple	and
powerful.	The	following	code	connects	and	grabs	information	about	the	various	data	pools
in	a	lean	way	that	feels	native:

package	main

import

(

		"fmt"

		"github.com/couchbaselabs/go-couchbase"

)

func	main()	{

		

				conn,	err	:=	couchbase.Connect("http://localhost:8091")

				if	err	!=	nil	{

						fmt.Println("Error:",err)

				}

				for	_,	pn	:=	range	conn.Info.Pools	{

								fmt.Printf("Found	pool:		%s	->	%s\n",	pn.Name,	pn.URI)

				}

}

https://github.com/couchbaselabs/go-couchbase


Setting	up	our	data	store
After	installing	Couchbase,	you	can	access	its	administration	panel	by	default	at	localhost
and	port	8091.

You’ll	be	given	an	opportunity	to	set	up	an	administrator,	other	IPs	to	connect	(if	you’re
joining	a	cluster),	and	general	data	store	design.

After	that,	you’ll	need	to	set	up	a	bucket,	which	is	what	we’ll	use	to	store	all	information
about	individual	files.	Here	is	what	the	interface	for	the	bucket	setup	looks	like:



In	our	example,	we’re	working	on	a	single	machine,	so	replicas	(also	known	as	replication
in	database	vernacular)	are	not	supported.	We’ve	named	it	file_manager,	but	this	can
obviously	be	called	anything	that	makes	sense.

We’re	also	keeping	our	data	usage	pretty	low—there’s	no	need	for	much	more	than	256
MB	of	memory	when	we’re	storing	file	operations	and	logging	older	ones.	In	other	words,
we’re	not	necessarily	concerned	with	keeping	the	modification	history	of	test.txt	in
memory	forever.

We’ll	also	stick	with	Couchbase	for	a	storage	engine	equivalent,	although	you	can	flip
back	and	forth	with	memcache(d)	without	much	noticeable	change.

Let’s	start	by	creating	a	seed	document:	one	we’ll	delete	later,	but	that	will	represent	the
schema	of	our	data	store.	We	can	create	this	document	with	an	arbitrary	JSON	structured
object,	as	shown	in	the	following	screenshot:

Since	everything	stored	in	this	data	store	should	be	valid	JSON,	we	can	mix	and	match
strings,	integers,	bools,	arrays,	and	objects.	This	affords	us	some	flexibility	in	what	data
we’re	using.	The	following	is	an	example	document:

{

		"file_name":	"test.txt",

		"hash":	"",

		"created":	1,

		"created_user":	0,

		"last_modified":	"",

		"last_modified_user":	"",

		"revisions":	[],

		"version":	1

}





Monitoring	filesystem	changes
When	it	came	to	NoSQL	options,	we	had	a	vast	variety	of	solutions	at	our	disposal.	This	is
not	the	case	when	it	comes	to	applications	that	monitor	filesystem	changes.	While	Linux
flavors	have	a	fairly	good	built-in	solution	in	inotify,	this	does	restrict	the	portability	of	the
application.

So	it’s	incredibly	helpful	that	a	cross-platform	library	for	handling	this	exists	in	Chris
Howey’s	fsnotify.

Fsnotify	works	on	Linux,	OSX,	and	Windows	and	allows	us	to	detect	when	files	in	any
given	directory	are	created,	deleted,	modified,	or	renamed,	which	is	more	than	enough	for
our	purposes.

Implementing	fsnotify	couldn’t	be	easier,	either.	Best	of	all	it’s	all	non-blocking,	so	if	we
throw	the	listener	behind	a	goroutine,	we	can	have	this	run	as	part	of	the	primary	server
application	code.

The	following	code	shows	a	simple	directory	listener:

package	main

import	(

				"github.com/howeyc/fsnotify""fmt"

		"log""

)

func	main()	{

				scriptDone	:=	make(chan	bool)

				dirSpy,	err	:=	fsnotify.NewWatcher()

				if	err	!=	nil	{

								log.Fatal(err)

				}

				go	func()	{

								for	{

												select	{

												case	fileChange	:=	<-dirSpy.Event:

																log.Println("Something	happened	to	a	file:",	

																		fileChange)

												case	err	:=	<-dirSpy.Error:

																log.Println("Error	with	fsnotify:",	err)

												}

								}

				}()

				err	=	dirSpy.Watch("/mnt/sharedir")

				if	err	!=	nil	{

						fmt.Println(err)

				}



				<-scriptDone

				dirSpy.Close()

}





Managing	logfiles
Like	many	basic	features	in	a	developer’s	toolbox,	Go	provides	a	fairly	complete	solution
built-in	for	logging.	It	handles	many	of	the	basics,	such	as	creating	timestamp-marked	log
items	and	saving	to	disk	or	to	console.

One	thing	the	basic	package	misses	out	on	is	built-in	formatting	and	log	rotation,	which
are	key	requirements	for	our	file	manager	application.

Remember	that	key	requirements	for	our	application	include	the	ability	to	work
seamlessly	in	our	concurrent	environment	and	be	ready	to	scale	to	a	distributed	network	if
need	be.	This	is	where	the	fine	log4go	application	comes	in	handy.	Log4go	allows	logging
to	file,	console,	and	memory	and	handles	log	rotation	inherently.

Note
Log4go	can	be	found	at	https://code.google.com/p/log4go/.

To	install	Log4go,	run	the	following	command:

go	get	code.google.com/p/log4go

Creating	a	logfile	that	handles	warnings,	notices,	debug	information,	and	critical	errors	is
simple	and	appending	log	rotation	to	that	is	similarly	simple,	as	shown	in	the	following
code:

package	main

import

(

		logger	"code.google.com/p/log4go"

)

func	main()	{

		logMech	:=	make(logger.Logger);

		logMech.AddFilter("stdout",	logger.DEBUG,	

				logger.NewConsoleLogWriter())

		fileLog	:=	logger.NewFileLogWriter("log_manager.log",	false)

		fileLog.SetFormat("[%D	%T]	[%L]	(%S)	%M")

		fileLog.SetRotate(true)

		fileLog.SetRotateSize(256)

		fileLog.SetRotateLines(20)

		fileLog.SetRotateDaily(true)

		logMech.AddFilter("file",	logger.FINE,	fileLog)

		logMech.Trace("Received	message:	%s)",	"All	is	well")

		logMech.Info("Message	received:	",	"debug!")

		logMech.Error("Oh	no!","Something	Broke")

}

https://code.google.com/p/log4go/




Handling	configuration	files
When	it	comes	to	configuration	files	and	parsing	them,	you	have	a	lot	of	options,	from
simple	to	complicated.

We	could,	of	course,	simply	store	what	we	want	in	JSON,	but	that	format	is	a	little	tricky
to	work	directly	for	humans—it	will	require	escaping	characters	and	so	on,	which	makes	it
vulnerable	to	errors.

Instead,	we’ll	keep	things	simple	by	using	a	standard	ini	config	file	library	in	gcfg,
which	handles	gitconfig	files	and	traditional,	old	school	.ini	format,	as	shown	in	the
following	code	snippet:

[revisions]

count	=	2

revisionsuffix	=	.rev

lockfiles	=	false

[logs]

rotatelength	=	86400

[alarms]

emails	=	sysadmin@example.com,ceo@example.com

Note
You	can	find	gcfg	at	https://code.google.com/p/gcfg/.

Essentially,	this	library	takes	the	values	of	a	config	file	and	pushes	them	into	a	struct	in
Go.	An	example	of	how	we’ll	do	that	is	as	follows:

package	main

import

(

		"fmt"

		"code.google.com/p/gcfg"

)

type	Configuration	struct	{

		Revisions	struct	{

				Count	int

				Revisionsuffix	string

				Lockfiles	bool

		}

		Logs	struct	{

				Rotatelength	int

		}

		Alarms	struct	{

				Emails	string

		}

}

func	main()	{

https://code.google.com/p/gcfg/


		configFile	:=	Configuration{}

		err	:=	gcfg.ReadFileInto(&configFile,	"example.ini")

		if	err	!=	nil	{

				fmt.Println("Error",err)

		}

		fmt.Println("Rotation	duration:",configFile.Logs.Rotatelength)

}





Detecting	file	changes
Now	we	need	to	focus	on	our	file	listener.	You	may	recall	this	is	the	part	of	the	application
that	will	accept	client	connections	from	our	web	server	and	our	backup	application	and
announce	any	changes	to	files.

The	basic	flow	of	this	part	is	as	follows:

1.	 Listen	for	changes	to	files	in	a	goroutine.
2.	 Accept	connections	and	add	to	the	pool	in	a	goroutine.
3.	 If	any	changes	are	detected,	announce	them	to	the	entire	pool.

All	three	happen	concurrently,	and	the	first	and	the	third	can	happen	without	any
connections	in	the	pool,	although	we	assume	there	will	be	a	connection	that	is	always	on
with	both	our	web	server	and	our	backup	application.

Another	critical	role	the	file	listener	will	fulfill	is	analyzing	the	directory	on	first	load	and
reconciling	it	with	our	data	store	in	Couchbase.	Since	the	Go	Couchbase	library	handles
the	get,	update,	and	add	operations,	we	won’t	need	any	custom	views.	In	the	following
code,	we’ll	examine	the	file	listener	process	and	show	how	we	listen	on	a	folder	for
changes:

package	main

import

(

		"fmt"

		"github.com/howeyc/fsnotify"

		"net"

		"time"

		"io"		

		"io/ioutil"

		"github.com/couchbaselabs/go-couchbase"

		"crypto/md5"

		"encoding/hex"

		"encoding/json"		

		"strings"

		

)

var	listenFolder	=	"mnt/sharedir"

type	Client	struct	{

		ID	int

		Connection	*net.Conn		

}

Here,	we’ve	declared	our	shared	folder	as	well	as	a	connecting	Client	struct.	In	this
application,	Client	is	either	a	web	listener	or	a	backup	listener,	and	we’ll	pass	messages
in	one	direction	using	the	following	JSON-encoded	structure:

type	File	struct	{



		Hash	string	"json:hash"

		Name	string	"json:file_name"

		Created	int64	"json:created"

		CreatedUser		int	"json:created_user"

		LastModified	int64	"json:last_modified"

		LastModifiedUser	int	"json:last_modified_user"

		Revisions	int	"json:revisions"

		Version	int	"json:version"

}

If	this	looks	familiar,	it	could	be	because	it’s	also	the	example	document	format	we	set	up
initially.

Note
If	you’re	not	familiar	with	the	syntactical	sugar	expressed	earlier,	these	are	known	as
struct	tags.	A	tag	is	just	a	piece	of	additional	metadata	that	can	be	applied	to	a	struct	field
for	key/value	lookups	via	the	reflect	package.	In	this	case,	they’re	used	to	map	our	struct
fields	to	JSON	fields.

Let’s	first	look	at	our	overall	Message	struct:

type	Message	struct	{

		Hash	string	"json:hash"

		Action	string	"json:action"

		Location	string	"json:location"		

		Name	string	"json:name"

		Version	int	"json:version"

}

We	compartmentalize	our	file	into	a	message,	which	alerts	our	other	two	processes	of
changes:

func	generateHash(name	string)	string	{

		hash	:=	md5.New()

		io.WriteString(hash,name)

		hashString	:=	hex.EncodeToString(hash.Sum(nil))

		return	hashString

}

This	is	a	somewhat	unreliable	method	to	generate	a	hash	reference	to	a	file	and	will	fail	if
a	filename	changes.	However,	it	allows	us	to	keep	track	of	files	that	are	created,	deleted,
or	modified.



Sending	changes	to	clients
Here	is	the	broadcast	message	that	goes	to	all	existing	connections.	We	pass	along	our
JSON-encoded	Message	struct	with	the	current	version,	the	current	location,	and	the	hash
for	reference.	Our	other	servers	will	then	react	accordingly:

func	alertServers(hash	string,	name	string,	action	string,	location	string,	

version	int)	{

		msg	:=	

Message{Hash:hash,Action:action,Location:location,Name:name,Version:version

}

		msgJSON,_	:=	json.Marshal(msg)

		fmt.Println(string(msgJSON))

		for	i	:=	range	Clients	{

				fmt.Println("Sending	to	clients")

				fmt.Fprintln(*Clients[i].Connection,string(msgJSON))

		}

}

Our	backup	server	will	create	a	copy	of	that	file	with	the	.[VERSION]	extension	in	the
backup	folder.

Our	web	server	will	simply	alert	the	user	via	our	web	interface	that	the	file	has	changed:

func	startServer(listener	net.Listener)	{

		for	{		

				conn,err	:=	listener.Accept()

				if	err	!=	nil	{

				}

				currentClient	:=	Client{	ID:	1,	Connection:	&conn}

				Clients	=	append(Clients,currentClient)

						for	i:=	range	Clients	{

								fmt.Println("Client",Clients[i].ID)

						}				

		}		

}

Does	this	code	look	familiar?	We’ve	taken	almost	our	exact	chat	server	Client	handler
and	brought	it	over	here	nearly	intact:

func	removeFile(name	string,	bucket	*couchbase.Bucket)	{

		bucket.Delete(generateHash(name))

}

The	removeFile	function	does	one	thing	only	and	that’s	removing	the	file	from	our
Couchbase	data	store.	As	it’s	reactive,	we	don’t	need	to	do	anything	on	the	file-server	side
because	the	file	is	already	deleted.	Also,	there’s	no	need	to	delete	any	backups,	as	this
allows	us	to	recover.	Next,	let’s	look	at	our	function	that	updates	an	existing	file:

func	updateExistingFile(name	string,	bucket	*couchbase.Bucket)	int	{



		fmt.Println(name,"updated")

		hashString	:=	generateHash(name)

		

		thisFile	:=	Files[hashString]

		thisFile.Hash	=	hashString

		thisFile.Name	=	name

		thisFile.Version	=	thisFile.Version	+	1

		thisFile.LastModified	=	time.Now().Unix()

		Files[hashString]	=	thisFile

		bucket.Set(hashString,0,Files[hashString])

		return	thisFile.Version

}

This	function	essentially	overwrites	any	values	in	Couchbase	with	new	ones,	copying	an
existing	File	struct	and	changing	the	LastModified	date:

func	evalFile(event	*fsnotify.FileEvent,	bucket	*couchbase.Bucket)	{

		fmt.Println(event.Name,"changed")

		create	:=	event.IsCreate()

		fileComponents	:=	strings.Split(event.Name,"\\")

		fileComponentSize	:=	len(fileComponents)

		trueFileName	:=	fileComponents[fileComponentSize-1]

		hashString	:=	generateHash(trueFileName)

		if	create	==	true	{

				updateFile(trueFileName,bucket)

				alertServers(hashString,event.Name,"CREATE",event.Name,0)

		}

		delete	:=	event.IsDelete()

		if	delete	==	true	{

				removeFile(trueFileName,bucket)

				alertServers(hashString,event.Name,"DELETE",event.Name,0)				

		}

		modify	:=	event.IsModify()

		if	modify	==	true	{

				newVersion	:=	updateExistingFile(trueFileName,bucket)

				fmt.Println(newVersion)

				alertServers(hashString,trueFileName,"MODIFY",event.Name,newVersion)

		}

		rename	:=	event.IsRename()

		if	rename	==	true	{

		}

}

Here,	we	react	to	any	changes	to	the	filesystem	in	our	watched	directory.	We	aren’t
reacting	to	renames,	but	you	can	handle	those	as	well.	Here’s	how	we’d	approach	the
general	updateFile	function:

func	updateFile(name	string,	bucket	*couchbase.Bucket)	{

		thisFile	:=	File{}

		hashString	:=	generateHash(name)

		

		thisFile.Hash	=	hashString

		thisFile.Name	=	name



		thisFile.Created	=	time.Now().Unix()

		thisFile.CreatedUser	=	0

		thisFile.LastModified	=	time.Now().Unix()

		thisFile.LastModifiedUser	=	0

		thisFile.Revisions	=	0

		thisFile.Version	=	1

		Files[hashString]	=	thisFile

		checkFile	:=	File{}

		err	:=	bucket.Get(hashString,&checkFile)

		if	err	!=	nil	{

				fmt.Println("New	File	Added",name)

				bucket.Set(hashString,0,thisFile)

		}

}



Checking	records	against	Couchbase
When	it	comes	to	checking	for	existing	records	against	Couchbase,	we	check	whether	a
hash	exists	in	our	Couchbase	bucket.	If	it	doesn’t,	we	create	it.	If	it	does,	we	do	nothing.
To	handle	shutdowns	more	robustly,	we	should	also	ingest	existing	records	into	our
application.	The	code	for	doing	this	is	as	follows:

var	Clients	[]Client

var	Files	map[string]	File

func	main()	{

		Files	=	make(map[string]File)

		endScript	:=	make(chan	bool)

		couchbaseClient,	err	:=	couchbase.Connect("http://localhost:8091/")

				if	err	!=	nil	{

						fmt.Println("Error	connecting	to	Couchbase",	err)

				}

		pool,	err	:=	couchbaseClient.GetPool("default")

				if	err	!=	nil	{

						fmt.Println("Error	getting	pool",err)

				}

		bucket,	err	:=	pool.GetBucket("file_manager")

				if	err	!=	nil	{

						fmt.Println("Error	getting	bucket",err)

				}		

		files,	_	:=	ioutil.ReadDir(listenFolder)

		for	_,	file	:=	range	files	{

				updateFile(file.Name(),bucket)

		}

				dirSpy,	err	:=	fsnotify.NewWatcher()

				defer	dirSpy.Close()

		listener,	err	:=	net.Listen("tcp",	":9000")

		if	err	!=	nil	{

				fmt.Println	("Could	not	start	server!",err)

		}

		go	func()	{

								for	{

												select	{

												case	ev	:=	<-dirSpy.Event:

																evalFile(ev,bucket)

												case	err	:=	<-dirSpy.Error:

																fmt.Println("error:",	err)

												}

								}

				}()

				err	=	dirSpy.Watch(listenFolder)		

		startServer(listener)



		<-endScript

}

Finally,	main()	handles	setting	up	our	connections	and	goroutines,	including	a	file
watcher,	our	TCP	server,	and	connecting	to	Couchbase.

Now,	let’s	look	at	another	step	in	the	whole	process	where	we	will	automatically	create
backups	of	our	modified	files.





Backing	up	our	files
Since	we’re	sending	our	commands	on	the	wire,	so	to	speak,	our	backup	process	needs	to
listen	on	that	wire	and	respond	with	any	changes.	Given	that	modifications	will	be	sent	via
localhost,	we	should	have	minimal	latency	on	both	the	network	and	the	file	side.

We’ll	also	return	some	information	as	to	what	happened	with	the	file,	although	at	this
point	we’re	not	doing	much	with	that	information.	The	code	for	this	is	as	follows:

package	main

import

(

		"fmt"

		"net"

		"io"

		"os"

		"strconv"

		"encoding/json"

)

var	backupFolder	=	"mnt/backup/"

Note	that	we	have	a	separate	folder	for	backups,	in	this	case,	on	a	Windows	machine.	If
we	happen	to	accidentally	use	the	same	directory,	we	run	the	risk	of	infinitely	duplicating
and	backing	up	files.	In	the	following	code	snippet,	we’ll	look	at	the	Message	struct	itself
and	the	backup	function,	the	core	of	this	part	of	the	application:

type	Message	struct	{

		Hash	string	"json:hash"

		Action	string	"json:action"

		Location	string	"json:location"

		Name	string	"json:name"		

		Version	int	"json:version"

}

func	backup	(location	string,	name	string,	version	int)	{

		newFileName	:=	backupFolder	+	name	+	"."	+	

				strconv.FormatInt(int64(version),10)

		fmt.Println(newFileName)

		org,_	:=	os.Open(location)

		defer	org.Close()

		cpy,_	:=	os.Create(newFileName)

		defer	cpy.Close()

		io.Copy(cpy,org)

}

Here	is	our	basic	file	operation.	Go	doesn’t	have	a	one-step	copy	function;	instead	you
need	to	create	a	file	and	then	copy	the	contents	of	another	file	into	it	with	io.Copy:

func	listen(conn	net.Conn)	{

		for	{



						messBuff	:=	make([]byte,1024)

				n,	err	:=	conn.Read(messBuff)

				if	err	!=	nil	{

				}

				

				resultMessage	:=	Message{}

				json.Unmarshal(messBuff[:n],&resultMessage)

				

				if	resultMessage.Action	==	"MODIFY"	{

						fmt.Println("Back	up	file",resultMessage.Location)

						newVersion	:=	resultMessage.Version	+	1

						backup(resultMessage.Location,resultMessage.Name,newVersion)

				}

				

		}

}

This	code	is	nearly	verbatim	for	our	chat	client’s	listen()	function,	except	that	we	take
the	contents	of	the	streamed	JSON	data,	unmarshal	it,	and	convert	it	to	a	Message{}	struct
and	then	a	File{}	struct.	Finally,	let’s	look	at	the	main	function	and	TCP	initialization:

func	main()	{

		endBackup	:=	make(chan	bool)

		conn,	err	:=	net.Dial("tcp","127.0.0.1:9000")

		if	err	!=	nil	{

				fmt.Println("Could	not	connect	to	File	Listener!")

		}

		go	listen(conn)

		<-	endBackup

}





Designing	our	web	interface
To	interact	with	the	filesystem,	we’ll	want	an	interface	that	displays	all	of	the	current	files
with	the	version,	last	modified	time,	and	alerts	to	changes,	and	allows	drag-and-drop
creation/replacement	of	files.

Getting	a	list	of	files	will	be	simple,	as	we’ll	grab	them	directly	from	our	file_manager
Couchbase	bucket.	Changes	will	be	sent	through	our	file	manager	process	via	TCP,	which
will	trigger	an	API	call,	illuminating	changes	to	the	file	for	our	web	user.

A	few	of	the	methods	we’ve	used	here	are	duplicates	of	the	ones	we	used	in	the	backup
process	and	could	certainly	benefit	from	some	consolidation;	still,	the	following	is	the
code	for	the	web	server,	which	allows	uploads	and	shows	notifications	for	changes:

package	main

import

(

		"net"

		"net/http"

		"html/template"

		"log"

		"io"

		"os"

		"io/ioutil"

		"github.com/couchbaselabs/go-couchbase"

		"time"		

		"fmt"

		"crypto/md5"

		"encoding/hex"

		"encoding/json"

)

type	File	struct	{

		Hash	string	"json:hash"

		Name	string	"json:file_name"

		Created	int64	"json:created"

		CreatedUser		int	"json:created_user"

		LastModified	int64	"json:last_modified"

		LastModifiedUser	int	"json:last_modified_user"

		Revisions	int	"json:revisions"

		Version	int	"json:version"

}

This,	for	example,	is	the	same	File	struct	we	use	in	both	the	file	listener	and	the	backup
process:

type	Page	struct	{

		Title	string

		Files	map[string]	File

}

Our	Page	struct	represents	generic	web	data	that	gets	converted	into	corresponding
variables	for	our	web	page’s	template:



type	ItemWrapper	struct	{

		Items	[]File

		CurrentTime	int64

		PreviousTime	int64

}

type	Message	struct	{

		Hash	string	"json:hash"

		Action	string	"json:action"

		Location	string	"json:location"

		Name	string	"json:name"		

		Version	int	"json:version"

}

The	ItemWrapper	struct	is	simply	a	JSON	wrapper	that	will	keep	an	array	that’s	converted
from	our	Files	struct.	This	is	essential	to	loop	through	the	API’s	JSON	on	the	client	side.
Our	Message	struct	is	a	duplicate	of	the	same	type	we	saw	in	our	file	listener	and	backup
processes.	In	the	following	code	snippet,	we’ll	dictate	some	general	configuration
variables	and	our	hash	generation	function:

var	listenFolder	=	"/wamp/www/shared/"

var	Files	map[string]	File

var	webTemplate	=	template.Must(template.ParseFiles("ch8_html.html"))

var	fileChange	chan	File

var	lastChecked	int64

func	generateHash(name	string)	string	{

		hash	:=	md5.New()

		io.WriteString(hash,name)

		hashString	:=	hex.EncodeToString(hash.Sum(nil))

		return	hashString

}

Our	md5	hashing	method	is	the	same	for	this	application	as	well.	It’s	worth	noting	that	we
derive	a	lastChecked	variable	that	is	the	Unix-style	timestamp	from	each	time	we	get	a
signal	from	our	file	listener.	We	use	this	to	compare	with	file	changes	on	the	client	side	to
know	whether	to	alert	the	user	on	the	Web.	Let’s	now	look	at	the	updateFile	function	for
the	web	interface:

func	updateFile(name	string,	bucket	*couchbase.Bucket)	{

		thisFile	:=	File{}

		hashString	:=	generateHash(name)

		

		thisFile.Hash	=	hashString

		thisFile.Name	=	name

		thisFile.Created	=	time.Now().Unix()

		thisFile.CreatedUser	=	0

		thisFile.LastModified	=	time.Now().Unix()

		thisFile.LastModifiedUser	=	0

		thisFile.Revisions	=	0

		thisFile.Version	=	1



		Files[hashString]	=	thisFile

		checkFile	:=	File{}

		err	:=	bucket.Get(hashString,&checkFile)

		if	err	!=	nil	{

				fmt.Println("New	File	Added",name)

				bucket.Set(hashString,0,thisFile)

		}else	{

				Files[hashString]	=	checkFile

		}

}

This	is	the	same	function	as	our	backup	process,	except	that	instead	of	creating	a	duplicate
file,	we	simply	overwrite	our	internal	File	struct	to	allow	it	represent	its	updated
LastModified	value	when	the	/api	is	next	called.	And	as	with	our	last	example,	let’s
check	out	the	listen()	function:

func	listen(conn	net.Conn)	{

		for	{

						messBuff	:=	make([]byte,1024)

				n,	err	:=	conn.Read(messBuff)

				if	err	!=	nil	{

				}

				message	:=	string(messBuff[:n])

				message	=	message[0:]

				resultMessage	:=	Message{}

				json.Unmarshal(messBuff[:n],&resultMessage)

				

				updateHash	:=	resultMessage.Hash

				tmp	:=	Files[updateHash]

				tmp.LastModified	=	time.Now().Unix()

				Files[updateHash]	=	tmp

		}

}

Here	is	where	our	message	is	read,	unmarshalled,	and	set	to	its	hashed	map’s	key.	This
will	create	a	file	if	it	doesn’t	exist	or	update	our	current	one	if	it	does.	Next,	we’ll	look	at
the	main()	function,	which	sets	up	our	application	and	the	web	server:

func	main()	{

		lastChecked	:=	time.Now().Unix()

		Files	=	make(map[string]File)

		fileChange	=	make(chan	File)

		couchbaseClient,	err	:=	couchbase.Connect("http://localhost:8091/")

				if	err	!=	nil	{

						fmt.Println("Error	connecting	to	Couchbase",	err)

				}

		pool,	err	:=	couchbaseClient.GetPool("default")

				if	err	!=	nil	{

						fmt.Println("Error	getting	pool",err)



				}

		bucket,	err	:=	pool.GetBucket("file_manager")

				if	err	!=	nil	{

						fmt.Println("Error	getting	bucket",err)

				}				

		files,	_	:=	ioutil.ReadDir(listenFolder)

		for	_,	file	:=	range	files	{

				updateFile(file.Name(),bucket)

		}

		conn,	err	:=	net.Dial("tcp","127.0.0.1:9000")

		if	err	!=	nil	{

				fmt.Println("Could	not	connect	to	File	Listener!")

		}

		go	listen(conn)

		http.HandleFunc("/api",	func(w	http.ResponseWriter,	r	

				*http.Request)	{

				apiOutput	:=	ItemWrapper{}

				apiOutput.PreviousTime	=	lastChecked

				lastChecked	=	time.Now().Unix()

				apiOutput.CurrentTime	=	lastChecked

				for	i:=	range	Files	{

						apiOutput.Items	=	append(apiOutput.Items,Files[i])

				}

				output,_	:=	json.Marshal(apiOutput)

				fmt.Fprintln(w,string(output))

		})

		http.HandleFunc("/",	func(w	http.ResponseWriter,	r	

				*http.Request)	{

				output	:=	Page{Files:Files,Title:"File	Manager"}

				tmp,	_	:=	template.ParseFiles("ch8_html.html")

				tmp.Execute(w,	output)

		})

		http.HandleFunc("/upload",	func(w	http.ResponseWriter,	r	

				*http.Request)	{

				err	:=	r.ParseMultipartForm(10000000)

				if	err	!=	nil	{

						return

				}

				form	:=	r.MultipartForm

				files	:=	form.File["file"]

				for	i,	_	:=	range	files	{

						newFileName	:=	listenFolder	+	files[i].Filename

						org,_:=	files[i].Open()

						defer	org.Close()

						cpy,_	:=	os.Create(newFileName)

						defer	cpy.Close()

						io.Copy(cpy,org)

				}

		})		



		log.Fatal(http.ListenAndServe(":8080",nil))

}

In	our	web	server	component,	main()	takes	control	of	setting	up	the	connection	to	the	file
listener	and	Couchbase	and	creating	a	web	server	(with	related	routing).

If	you	upload	a	file	by	dragging	it	to	the	Drop	files	here	to	upload	box,	within	a	few
seconds	you’ll	see	that	the	file	is	noted	as	changed	in	the	web	interface,	as	shown	in	the
following	screenshot:

We	haven’t	included	the	code	for	the	client	side	of	the	web	interface;	the	key	points,
though,	are	retrieval	via	an	API.	We	used	a	JavaScript	library	called	Dropzone.js	that
allows	a	drag-and-drop	upload,	and	jQuery	for	API	access.





Reverting	a	file’s	history	–	command	line
The	final	component	we’d	like	to	add	to	this	application	suite	is	a	command-line	file
revision	process.	We	can	keep	this	one	fairly	simple,	as	we	know	where	a	file	is	located,
where	its	backups	are	located,	and	how	to	replace	the	former	with	the	latter.	As	with
before,	we	have	some	global	configuration	variables	and	a	replication	of	our
generateHash()	function:

var	liveFolder	=	"/mnt/sharedir	"

var	backupFolder	=	"/mnt/backup

func	generateHash(name	string)	string	{

		hash	:=	md5.New()

		io.WriteString(hash,name)

		hashString	:=	hex.EncodeToString(hash.Sum(nil))

		return	hashString

}

func	main()	{

		revision	:=	flag.Int("r",0,"Number	of	versions	back")

		fileName	:=	flag.String("f","","File	Name")

		flag.Parse()

		if	*fileName	==	""	{

				fmt.Println("Provide	a	file	name	to	use!")

				os.Exit(0)

		}

		couchbaseClient,	err	:=	couchbase.Connect("http://localhost:8091/")

				if	err	!=	nil	{

						fmt.Println("Error	connecting	to	Couchbase",	err)

				}

		pool,	err	:=	couchbaseClient.GetPool("default")

				if	err	!=	nil	{

						fmt.Println("Error	getting	pool",err)

				}

		bucket,	err	:=	pool.GetBucket("file_manager")

				if	err	!=	nil	{

						fmt.Println("Error	getting	bucket",err)

				}		

		hashString	:=	generateHash(*fileName)

		checkFile	:=	File{}				

		bucketerr	:=	bucket.Get(hashString,&checkFile)

		if	bucketerr	!=	nil	{

		}else	{

				backupLocation	:=	backupFolder	+	checkFile.Name	+	"."	+	

strconv.FormatInt(int64(checkFile.Version-*revision),10)

				newLocation	:=	liveFolder	+	checkFile.Name



				fmt.Println(backupLocation)

				org,_	:=	os.Open(backupLocation)

						defer	org.Close()

				cpy,_	:=	os.Create(newLocation)

						defer	cpy.Close()

				io.Copy(cpy,org)

				fmt.Println("Revision	complete")

		}

}

This	application	accepts	up	to	two	parameters:

-f:	This	denotes	the	filename
-r:	This	denotes	the	number	of	versions	to	revert

Note	that	this	itself	creates	a	new	version	and	thus	a	backup,	so	-2	would	need	to	become
-3,	and	then	-6,	and	so	on	in	order	to	continuously	back	up	recursively.

As	an	example,	if	you	wished	to	revert	example.txt	back	three	versions,	you	could	use
the	following	command:

fileversion	-f	example.txt	-r	-3



Using	Go	in	daemons	and	as	a	service
A	minor	note	on	running	something	like	this	part	of	the	application—you’ll	ideally	wish	to
keep	these	applications	as	active,	restartable	services	instead	of	standalone,	manually
executed	background	processes.	Doing	so	will	allow	you	to	keep	the	application	active
and	manage	its	life	from	external	or	server	processes.

This	sort	of	application	suite	would	be	best	suited	on	a	Linux	box	(or	boxes)	and	managed
with	a	daemon	manager	such	as	daemontools	or	Ubuntu’s	built-in	Upstart	service.	The
reason	for	this	is	that	any	long-term	downtime	can	result	in	lost	data	and	inconsistency.
Even	storing	file	data	details	in	the	memory	(Couchbase	and	memcached)	provides	a
vulnerability	for	lost	data.





Checking	the	health	of	our	server
Of	the	many	ways	to	check	general	server	health,	we’re	in	a	good	position	here	without
having	to	build	our	own	system,	thanks	in	great	part	to	Couchbase	itself.	If	you	visit	the
Couchbase	web	admin,	under	your	cluster,	server,	and	bucket	views,	clicking	on	any	will
present	some	real-time	statistics,	as	shown	in	the	following	screenshot:

These	areas	are	also	available	via	REST	if	you	wish	to	include	them	in	the	application	to
make	your	logging	and	error	handling	more	comprehensive.





Summary
We	now	have	a	top	to	bottom	application	suite	that	is	highly	concurrent,	ropes	in	several
third-party	libraries,	and	mitigates	potential	failures	with	logging	and	catastrophe
recovery.

At	this	point,	you	should	have	no	issue	constructing	a	complex	package	of	software	with	a
focus	on	maintaining	concurrency,	reliability,	and	performance	in	Go.	Our	file	monitoring
application	can	be	easily	modified	to	do	more,	use	alternative	services,	or	scale	to	a
robust,	distributed	environment.

In	the	next	chapter,	we’ll	take	a	closer	look	at	testing	our	concurrency	and	throughput,
explore	the	value	of	panic	and	recover,	as	well	as	dealing	with	logging	vital	information
and	errors	in	a	safe,	concurrent	manner	in	Go.





Chapter	9.	Logging	and	Testing
Concurrency	in	Go
At	this	stage,	you	should	be	fairly	comfortable	with	concurrency	in	Go	and	should	be	able
to	implement	basic	goroutines	and	concurrent	mechanisms	with	ease.

We	have	also	dabbled	in	some	distributed	concurrency	patterns	that	are	managed	not	only
through	the	application	itself,	but	also	through	third-party	data	stores	for	networked
applications	that	operate	concurrently	in	congress.

Earlier	in	this	book,	we	examined	some	preliminary	and	basic	testing	and	logging.	We
looked	at	the	simpler	implementations	of	Go’s	internal	test	tool,	performed	some	race
condition	testing	using	the	race	tool,	and	performed	some	rudimentary	load	and
performance	testing.

However,	there’s	much	more	to	be	looked	at	here,	particularly	as	it	relates	to	the	potential
black	hole	of	concurrent	code—we’ve	seen	unexpected	behavior	among	code	that	runs	in
goroutines	and	is	non-blocking.

In	this	chapter,	we’ll	further	investigate	load	and	performance	testing,	look	at	unit	testing
in	Go,	and	experiment	with	more	advanced	tests	and	debugging.	We’ll	also	look	at	best
practices	for	logging	and	reporting,	as	well	as	take	a	closer	look	at	panicking	and
recovering.

Lastly,	we’ll	want	to	see	how	all	of	these	things	can	be	applied	not	just	to	our	standalone
concurrent	code,	but	also	to	distributed	systems.

Along	the	way,	we’ll	introduce	a	couple	of	frameworks	for	unit	testing	in	a	variety	of
different	styles.



Handling	errors	and	logging
Though	we	haven’t	specifically	mentioned	it,	the	idiomatic	nature	of	error	handling	in	Go
makes	debugging	naturally	easier	by	mandate.

One	good	practice	for	any	large-scale	function	inside	Go	code	is	to	return	an	error	as	a
return	value—for	many	smaller	methods	and	functions,	this	is	potentially	burdensome	and
unnecessary.	Still,	it’s	a	matter	for	consideration	whenever	we’re	building	something	that
involves	a	lot	of	moving	pieces.

For	example,	consider	a	simple	Add()	function:

func	Add(x	int,	y	int)	int	{

		return	x	+	y

}

If	we	wish	to	follow	the	general	rule	of	“always	return	an	error	value”,	we	may	be	tempted
to	convert	this	function	to	the	following	code:

package	main

import

(

		"fmt"

		"errors"

		"reflect"

)

func	Add(x	int,	y	int)	(int,	error)	{

		var	err	error

		xType	:=	reflect.TypeOf(x).Kind()

		yType	:=	reflect.TypeOf(y).Kind()

		if	xType	!=	reflect.Int	||	yType	!=	reflect.Int	{

				fmt.Println(xType)

				err	=	errors.New("Incorrect	type	for	integer	a	or	b!")

		}

		return	x	+	y,	err

}

func	main()	{

		sum,err	:=	Add("foo",2)

		if	err	!=	nil	{

				fmt.Println("Error",err)

		}

		fmt.Println(sum)

}

You	can	see	that	we’re	(very	poorly)	reinventing	the	wheel.	Go’s	internal	compiler	kills
this	long	before	we	ever	see	it.	So,	we	should	focus	on	things	that	the	compiler	may	not
catch	and	that	can	cause	unexpected	behavior	in	our	applications,	particularly	when	it
comes	to	channels	and	listeners.

The	takeaway	is	to	let	Go	handle	the	errors	that	the	compiler	would	handle,	unless	you



wish	to	handle	the	exceptions	yourself,	without	causing	the	compiler	specific	grief.	In	the
absence	of	true	polymorphism,	this	is	often	cumbersome	and	requires	the	invocation	of
interfaces,	as	shown	in	the	following	code:

type	Alpha	struct	{

}

type	Numeric	struct	{

}

You	may	recall	that	creating	interfaces	and	structs	allows	us	to	route	our	function	calls
separately	based	on	type.	This	is	shown	in	the	following	code:

func	(a	Alpha)	Add(x	string,	y	string)	(string,	error)	{

		var	err	error

		xType	:=	reflect.TypeOf(x).Kind()

		yType	:=	reflect.TypeOf(y).Kind()

		if	xType	!=	reflect.String	||	yType	!=	reflect.String	{

				err	=	errors.New("Incorrect	type	for	strings	a	or	b!")

		}

		finalString	:=	x	+	y

		return	finalString,	err

}

func	(n	Numeric)	Add(x	int,	y	int)	(int,	error)	{

		var	err	error

		xType	:=	reflect.TypeOf(x).Kind()

		yType	:=	reflect.TypeOf(y).Kind()

		if	xType	!=	reflect.Int	||	yType	!=	reflect.Int	{

				err	=	errors.New("Incorrect	type	for	integer	a	or	b!")

		}

		return	x	+	y,	err

}

func	main()	{

		n1	:=	Numeric{}

		a1	:=	Alpha{}

		z,err	:=	n1.Add(5,2)	

		if	err	!=	nil	{

				log.Println("Error",err)

		}

		log.Println(z)

		y,err	:=	a1.Add("super","lative")

		if	err	!=	nil	{

				log.Println("Error",err)

		}

		log.Println(y)

}

This	still	reports	what	will	eventually	be	caught	by	the	compiler,	but	also	handles	some
form	of	error	on	what	the	compiler	cannot	see:	external	input.	We’re	routing	our	Add()
function	through	an	interface,	which	provides	some	additional	standardization	by	directing



the	struct’s	parameters	and	methods	more	explicitly.

If,	for	example,	we	take	user	input	for	our	values	and	need	to	evaluate	the	type	of	that
input,	we	may	wish	to	report	an	error	in	this	way	as	the	compiler	will	never	know	that	our
code	can	accept	the	wrong	type.



Breaking	out	goroutine	logs
One	way	of	handling	messaging	and	logging	that	keeps	a	focus	on	concurrency	and
isolation	is	to	shackle	our	goroutine	with	its	own	logger	that	will	keep	everything	separate
from	the	other	goroutines.

At	this	point,	we	should	note	that	this	may	not	scale—that	is,	it	may	at	some	point	become
expensive	to	create	thousands	or	tens	of	thousands	of	goroutines	that	have	their	own
loggers,	but	at	a	minimal	size,	this	is	totally	doable	and	manageable.

To	do	this	logging	individually,	we’ll	want	to	tie	a	Logger	instance	to	each	goroutine,	as
shown	in	the	following	code:

package	main

import

(

		"log"

		"os"

		"strconv"

)

const	totalGoroutines	=	5

type	Worker	struct	{

		wLog	*log.Logger

		Name	string

}

We’ll	create	a	generic	Worker	struct	that	will	ironically	do	no	work	(at	least	not	in	this
example)	other	than	hold	onto	its	own	Logger	object.	The	code	is	as	follows:

func	main()	{

		done	:=	make(chan	bool)

		for	i:=0;	i<	totalGoroutines;	i++	{

				myWorker	:=	Worker{}

				myWorker.Name	=	"Goroutine	"	+	strconv.FormatInt(int64(i),10)	+	""

				myWorker.wLog	=	log.New(os.Stderr,	myWorker.Name,	1)

				go	func(w	*Worker)	{

								w.wLog.Print("Hmm")

								done	<-	true

				}(&myWorker)

		}

Each	goroutine	is	saddled	with	its	own	log	routine	through	Worker.	While	we’re	spitting
our	output	straight	to	the	console,	this	is	largely	unnecessary.	However,	if	we	want	to
siphon	each	to	its	own	logfile,	we	could	do	so	by	using	the	following	code:

		log.Println("...")



		<-	done

}



Using	the	LiteIDE	for	richer	and	easier	debugging
In	the	earlier	chapters	of	this	book,	we	briefly	addressed	IDEs	and	gave	a	few	examples	of
IDEs	that	have	a	tight	integration	with	Go.

As	we’re	examining	logging	and	debugging,	there’s	one	IDE	we	previously	and
specifically	didn’t	mention	before,	primarily	because	it’s	intended	for	a	very	small
selection	of	languages—namely,	Go	and	Lua.	However,	if	you	end	up	working	primarily
or	exclusively	in	Go,	you’ll	find	it	absolutely	essential,	primarily	as	it	relates	to
debugging,	logging,	and	feedback	capabilities.

LiteIDE	is	cross-platform	and	works	well	on	OS	X,	Linux,	and	Windows.	The	number	of
debugging	and	testing	benefits	it	presents	in	a	GUI	form	are	invaluable,	particularly	if
you’re	already	very	comfortable	with	Go.	That	last	part	is	important	because	developers
often	benefit	most	from	“learning	the	hard	way”	before	diving	in	with	tools	that	simplify
the	programming	process.	It’s	almost	always	better	to	know	how	and	why	something
works	or	doesn’t	work	at	the	core	before	being	presented	with	pretty	icons,	menus,	and
pop-up	windows.	Having	said	that,	LiteIDE	is	a	fantastic,	free	tool	for	the	advanced	Go
programmer.

By	formalizing	a	lot	of	the	tools	and	error	reporting	from	Go,	we	can	easily	plow	through
some	of	the	more	vexing	debugging	tasks	by	seeing	them	onscreen.

LiteIDE	also	brings	context	awareness,	code	completion,	go	fmt,	and	more	into	our
workspace.	You	can	imagine	how	an	IDE	tuned	specifically	for	Go	can	help	you	keep
your	code	clean	and	bug	free.	Refer	to	the	following	screenshot:



LiteIDE	showing	output	and	automatic	code	completion	on	Windows

Tip
LiteIDE	for	Linux,	OS	X,	and	Windows	can	be	found	at
https://code.google.com/p/liteide/.

https://code.google.com/p/liteide/


Sending	errors	to	screen
Throughout	this	book,	we	have	usually	handled	soft	errors,	warnings,	and	general
messages	with	the	fmt.Println	syntax	by	sending	a	message	to	the	console.

While	this	is	quick	and	easy	for	demonstration	purposes,	it’s	probably	ideal	to	use	the	log
package	to	handle	these	sorts	of	things.	This	is	because	we	have	more	versatility,	as	log
relates	to	where	we	want	our	messages	to	end	up.

As	for	our	purposes	so	far,	the	messages	are	ethereal.	Switching	out	a	simple	Println
statement	to	Logger	is	extremely	simple.

We’ve	been	relaying	messages	before	using	the	following	line	of	code:

fmt.Println("Horrible	error:",err)

You’ll	notice	the	change	to	Logger	proves	pretty	similar:

myLogger.Println("Horrible	error:",	err)

This	is	especially	useful	for	goroutines,	as	we	can	create	either	a	global	Logger	interface
that	can	be	accessed	anywhere	or	pass	the	logger’s	reference	to	individual	goroutines	and
ensure	our	logging	is	handled	concurrently.

One	consideration	for	having	a	single	logger	for	use	across	our	entire	application	is	the
possibility	that	we	may	want	to	log	individual	processes	separately	for	clarity	in	analysis.
We’ll	talk	a	bit	more	about	that	later	in	this	chapter.

To	replicate	passing	messages	to	the	command	line,	we	can	simply	use	the	following	line
of	code:

log.Print("Message")

With	defaults	to	stdout	as	its	io.writer—recall	that	we	can	set	any	io.writer	as	the
log’s	destination.

However,	we	will	also	want	to	be	able	to	log	to	file	quickly	and	easily.	After	all,	any
application	running	in	the	background	or	as	a	daemon	will	need	to	have	something	a	little
more	permanent.



Logging	errors	to	file
There	are	a	lot	of	ways	to	send	an	error	to	a	logfile—we	can,	after	all,	handle	this	with
built-in	file	operation	OS	calls.	In	fact,	this	is	what	many	people	do.

However,	the	log	package	offers	some	standardization	and	potential	symbiosis	between
the	command-line	feedback	and	more	permanent	storage	of	errors,	warnings,	and	general
information.

The	simplest	way	to	do	this	is	to	open	a	file	using	the	os.OpenFile()	method	(and	not	the
os.Open()	method)	and	pass	that	reference	to	our	log	instantiation	as	io.Writer.

Let’s	take	a	look	at	such	functionality	in	the	following	example:

package	main

import	(

		"log"

		"os"

)

func	main()	{

		logFile,	_	:=	os.OpenFile("/var/www/test.log",	os.O_RDWR,	0755)

		log.SetOutput(logFile)

		log.Println("Sending	an	entry	to	log!")

		logFile.Close()

}

In	our	preceding	goroutine	package,	we	could	assign	each	goroutine	its	own	file	and	pass
a	file	reference	as	an	io	Writer	(we’ll	need	to	have	write	access	to	the	destination	folder).
The	code	is	as	follows:

		for	i:=0;	i<	totalGoroutines;	i++	{

				myWorker	:=	Worker{}

				myWorker.Name	=	"Goroutine	"	+	strconv.FormatInt(int64(i),10)	

						+	""

				myWorker.FileName	=	"/var/www/"+strconv.FormatInt(int64(i),10)	

						+	".log"

				tmpFile,_	:=			os.OpenFile(myWorker.FileName,	os.O_CREATE,	

						0755)

				myWorker.File	=	tmpFile

				myWorker.wLog	=	log.New(myWorker.File,	myWorker.Name,	1)

				go	func(w	*Worker)	{

								w.wLog.Print("Hmm")

								done	<-	true

				}(&myWorker)

		}



Logging	errors	to	memory
When	we	talk	about	logging	errors	to	memory,	we’re	really	referring	to	a	data	store,
although	there’s	certainly	no	reason	other	than	volatility	and	limited	resources	to	reject
logging	to	memory	as	a	viable	option.

While	we’ll	look	at	a	more	direct	way	to	handle	networked	logging	through	another
package	in	the	next	section,	let’s	delineate	our	various	application	errors	in	a	concurrent,
distributed	system	without	a	lot	of	hassle.	The	idea	is	to	use	shared	memory	(such	as
Memcached	or	a	shared	memory	data	store)	to	pass	our	log	messages.

While	these	will	technically	still	be	logfiles	(most	data	stores	keep	individual	records	or
documents	as	JSON-encoded	hard	files),	it	has	a	distinctively	different	feel	than	traditional
logging.

Going	back	to	our	old	friend	from	the	previous	chapter—CouchDB—passing	our	logging
messages	to	a	central	server	can	be	done	almost	effortlessly,	and	it	allows	us	to	track	not
just	individual	machines,	but	their	individual	concurrent	goroutines.	The	code	is	as
follows:

package	main

import

(

		"github.com/couchbaselabs/go-couchbase"

		"io"

		"time"

		"fmt"

		"os"

		"net/http"

		"crypto/md5"

		"encoding/hex"

)

type	LogItem	struct	{

		ServerID	string	"json:server_id"

		Goroutine	int	"json:goroutine"

		Timestamp	time.Time	"json:time"

		Message	string	"json:message"

		Page	string	"json:page"

}

This	is	what	will	eventually	become	our	JSON	document	that	will	be	sent	to	our
Couchbase	server.	We’ll	use	the	Page,	Timestamp,	and	ServerID	as	a	combined,	hashed
key	to	allow	multiple,	concurrent	requests	to	the	same	document	against	separate	servers
to	be	logged	separately,	as	shown	in	the	following	code:

var	currentGoroutine	int

func	(li	LogItem)	logRequest(bucket	*couchbase.Bucket)	{

		hash	:=	md5.New()

		io.WriteString(hash,li.ServerID+li.Page+li.Timestamp.Format("Jan	

				1,	2014	12:00am"))



		hashString	:=	hex.EncodeToString(hash.Sum(nil))

		bucket.Set(hashString,0,li)

		currentGoroutine	=	0

}

When	we	reset	currentGoroutine	to	0,	we	use	an	intentional	race	condition	to	allow
goroutines	to	report	themselves	by	numeric	ID	while	executing	concurrently.	This	allows
us	to	debug	an	application	that	appears	to	work	correctly	until	it	invokes	some	form	of
concurrent	architecture.	Since	goroutines	will	be	self-identified	by	an	ID,	it	allows	us	to
add	more	granular	routing	of	our	messages.

By	designating	a	different	log	location	by	goroutine	ID,	timestamp,	and	serverID,	any
concurrency	issues	that	arise	can	be	quickly	plucked	from	logfiles.	This	is	done	using	the
following	code:

func	main()	{

		hostName,	_	:=	os.Hostname()

		currentGoroutine	=	0

		

		logClient,	err	:=	couchbase.Connect("http://localhost:8091/")

				if	err	!=	nil	{

						fmt.Println("Error	connecting	to	logging	client",	err)

				}

		logPool,	err	:=	logClient.GetPool("default")

				if	err	!=	nil	{

						fmt.Println("Error	getting	pool",err)

				}

		logBucket,	err	:=	logPool.GetBucket("logs")

				if	err	!=	nil	{

						fmt.Println("Error	getting	bucket",err)

				}

		http.HandleFunc("/",	func(w	http.ResponseWriter,	r	*http.Request)	{

				request	:=	LogItem{}

				request.Goroutine	=	currentGoroutine

				request.ServerID	=	hostName

				request.Timestamp	=	time.Now()

				request.Message	=	"Request	to	"	+	r.URL.Path

				request.Page	=	r.URL.Path

				go	request.logRequest(logBucket)

		})

		http.ListenAndServe(":8080",nil)

}





Using	the	log4go	package	for	robust
logging
As	with	most	things	in	Go,	where	there’s	something	satisfactory	and	extensible	in	the	core
page,	it	can	be	taken	to	the	next	level	by	a	third	party—Go’s	wonderful	logging	package	is
truly	brought	to	life	with	log4go.

Using	log4go	greatly	simplifies	the	process	of	file	logging,	console	logging,	and	logging
via	TCP/UDP.

Tip
For	more	information	on	log4go,	visit	https://code.google.com/p/log4go/.

Each	instance	of	a	log4go	Logger	interface	can	be	configured	by	an	XML	configuration
file	and	can	have	filters	applied	to	it	to	dictate	where	messaging	goes.	Let’s	look	at	a
simple	HTTP	server	to	show	how	we	can	direct	specific	logs	to	location,	as	shown	in	the
following	code:

package	main

import	(

		"code.google.com/p/log4go"

		"net/http"

		"fmt"

		"github.com/gorilla/mux"

)

var	errorLog	log4go.Logger

var	errorLogWriter	log4go.FileLogWriter

var	accessLog	log4go.Logger

var	accessLogWriter	*log4go.FileLogWriter

var	screenLog	log4go.Logger

var	networkLog	log4go.Logger

In	the	preceding	code,	we	created	four	distinct	log	objects—one	that	writes	errors	to	a
logfile,	one	that	writes	accesses	(page	requests)	to	a	separate	file,	one	that	sends	directly	to
console	(for	important	notices),	and	one	that	passes	a	log	message	across	the	network.

The	last	two	obviously	do	not	need	FileLogWriter,	although	it’s	entirely	possible	to
replicate	the	network	logging	using	a	shared	drive	if	we	can	mitigate	issues	with
concurrent	access,	as	shown	in	the	following	code:

func	init()	{

		fmt.Println("Web	Server	Starting")

}

func	pageHandler(w	http.ResponseWriter,	r	*http.Request)	{

		pageFoundMessage	:=	"Page	found:	"	+	r.URL.Path

		accessLog.Info(pageFoundMessage)

https://code.google.com/p/log4go/


		networkLog.Info(pageFoundMessage)

		w.Write([]byte("Valid	page"))

}

Any	request	to	a	valid	page	goes	here,	sending	the	message	to	the	web-access.log	file
accessLog.

func	notFound(w	http.ResponseWriter,	r	*http.Request)	{

		pageNotFoundMessage	:=	"Page	not	found	/	404:	"	+	r.URL.Path

		errorLog.Info(pageNotFoundMessage)

		w.Write([]byte("Page	not	found"))

}

As	with	the	accessLog	file,	we’ll	take	any	404	/	page	not	found	request	and	route	it
directly	to	the	notFound()	method,	which	saves	a	fairly	generic	error	message	along	with
the	invalid	/	missing	URL	requested.	Let’s	look	at	what	we’ll	do	with	extremely	important
errors	and	messages	in	the	following	code:

func	restricted(w	http.ResponseWriter,	r	*http.Request)	{

		message	:=	"Restricted	directory	access	attempt!"

		errorLog.Info(message)

		accessLog.Info(message)

		screenLog.Info(message)

		networkLog.Info(message)

		w.Write([]byte("Restricted!"))

}

The	restricted()	function	and	corresponding	screenLog	represents	a	message	we	deem
as	critical	and	worthy	of	going	to	not	only	the	error	and	the	access	logs,	but	also	to	screen
and	passed	across	the	wire	as	a	networkLog	item.	In	other	words,	it’s	a	message	so
important	that	everybody	gets	it.

In	this	case,	we’re	detecting	attempts	to	get	at	our	.git	folder,	which	is	a	fairly	common
accidental	security	vulnerability	that	people	have	been	known	to	commit	in	automatic	file
uploads	and	updates.	Since	we	have	cleartext	passwords	represented	in	files	and	may
expose	that	to	the	outside	world,	we’ll	catch	this	on	request	and	pass	to	our	critical	and
noncritical	logging	mechanisms.

We	might	also	look	at	this	as	a	more	open-ended	bad	request	notifier—one	worthy	of
immediate	attention	from	a	network	developer.	In	the	following	code,	we’ll	start	creating	a
few	loggers:

func	main()	{

		screenLog	=	make(log4go.Logger)

		screenLog.AddFilter("stdout",	log4go.DEBUG,	log4go.NewConsoleLogWriter())

		errorLogWriter	:=	log4go.NewFileLogWriter("web-errors.log",	

				false)

				errorLogWriter.SetFormat("%d	%t	-	%M	(%S)")

				errorLogWriter.SetRotate(false)

				errorLogWriter.SetRotateSize(0)

				errorLogWriter.SetRotateLines(0)



				errorLogWriter.SetRotateDaily(true)

Since	log4go	opens	up	a	bevy	of	additional	logging	options,	we	can	play	a	bit	with	how
our	logs	rotate	and	are	formatted	without	having	to	draw	that	out	specifically	with
Sprintf	or	something	similar.

The	options	here	are	simple	and	expressive:

SetFormat:	This	allows	us	to	specify	how	our	individual	log	lines	will	look.
SetRotate:	This	permits	automatic	rotation	based	on	the	size	of	the	file	and/or	the
number	of	lines	in	log.	The	SetRotateSize()	option	sets	rotation	on	bytes	in	the
message	and	SetRotateLines()	sets	the	maximum	number	of	lines.The
SetRotateDaily()	function	lets	us	create	new	logfiles	based	on	the	day	regardless	of
our	settings	in	the	previous	functions.	This	is	a	fairly	common	logging	technique	and
can	generally	be	burdensome	to	code	by	hand.

The	output	of	our	logging	format	ends	up	looking	like	the	following	line	of	code:

04/13/14	10:46	-	Page	found%!(EXTRA	string=/valid)	(main.pageHandler:24)

The	%S	part	is	the	source,	and	that	gives	us	the	line	number	and	our	method	trace	for	the
part	of	our	application	that	invoked	the	log:

		errorLog	=	make(log4go.Logger)

		errorLog.AddFilter("file",	log4go.DEBUG,	errorLogWriter)

		networkLog	=	make(log4go.Logger)

		networkLog.AddFilter("network",	log4go.DEBUG,	

log4go.NewSocketLogWriter("tcp",	"localhost:3000"))

Our	network	log	sends	JSON-encoded	messages	via	TCP	to	the	address	we	provide.	We’ll
show	a	very	simple	handling	server	for	this	in	the	next	section	of	code	that	translates	the
log	messages	into	a	centralized	logfile:

		accessLogWriter	=	log4go.NewFileLogWriter("web-access.log",false)

				accessLogWriter.SetFormat("%d	%t	-	%M	(%S)")

				accessLogWriter.SetRotate(true)

				accessLogWriter.SetRotateSize(0)

				accessLogWriter.SetRotateLines(500)

				accessLogWriter.SetRotateDaily(false)

Our	accessLogWriter	is	similar	to	the	errorLogWriter	except	that	instead	of	rotating
daily,	we	rotate	it	every	500	lines.	The	idea	here	is	that	access	logs	would	of	course	be
more	frequently	touched	than	an	error	log—hopefully.	The	code	is	as	follows:

		accessLog	=	make(log4go.Logger)

		accessLog.AddFilter("file",log4go.DEBUG,accessLogWriter)

		rtr	:=	mux.NewRouter()

		rtr.HandleFunc("/valid",	pageHandler)

		rtr.HandleFunc("/.git/",	restricted)

		rtr.NotFoundHandler	=	http.HandlerFunc(notFound)

In	the	preceding	code,	we	used	the	Gorilla	Mux	package	for	routing.	This	gives	us	easier
access	to	the	404	handler,	which	is	less	than	simplistic	to	modify	in	the	basic	http	package



built	directly	into	Go.	The	code	is	as	follows:

		http.Handle("/",	rtr)

		http.ListenAndServe(":8080",	nil)

}

Building	the	receiving	end	of	a	network	logging	system	like	this	is	also	incredibly	simple
in	Go,	as	we’re	building	nothing	more	than	another	TCP	client	that	can	handle	the	JSON-
encoded	messages.

We	can	do	this	with	a	receiving	server	that	looks	remarkably	similar	to	our	TCP	chat
server	from	an	earlier	chapter.	The	code	is	as	follows:

package	main

import

(

		"net"

		"fmt"

)

type	Connection	struct	{

}

func	(c	Connection)	Listen(l	net.Listener)	{

		for	{

				conn,_	:=	l.Accept()

				go	c.logListen(conn)

		}

}

As	with	our	chat	server,	we	bind	our	listener	to	a	Connection	struct,	as	shown	in	the
following	code:

func	(c	*Connection)	logListen(conn	net.Conn)	{

		for	{

				buf	:=	make([]byte,	1024)

				n,	_	:=	conn.Read(buf)

				fmt.Println("Log	Message",string(n))

		}

}

In	the	preceding	code,	we	receive	log	messages	delivered	via	JSON.	At	this	point,	we’re
not	unmarshalling	the	JSON,	but	we’ve	shown	how	to	do	that	in	an	earlier	chapter.

Any	message	sent	will	be	pushed	into	the	buffer—for	this	reason,	it	may	make	sense	to
expand	the	buffer’s	size	depending	on	how	detailed	the	information	is.

func	main()	{

		serverClosed	:=	make(chan	bool)

		listener,	err	:=	net.Listen("tcp",	":3000")

		if	err	!=	nil	{

				fmt.Println	("Could	not	start	server!",err)

		}



		Conn	:=	Connection{}

		go	Conn.Listen(listener)

		<-serverClosed

}

You	can	imagine	how	network	logging	can	be	useful,	particularly	in	server	clusters	where
you	might	have	a	selection	of,	say,	web	servers	and	you	don’t	want	to	reconcile	individual
logfiles	into	a	single	log.



Panicking
With	all	the	discussion	of	capturing	errors	and	logging	them,	we	should	probably	consider
the	panic()	and	recover()	functionality	in	Go.

As	briefly	discussed	earlier,	panic()	and	recover()	operate	as	a	more	basic,	immediate,
and	explicit	error	detection	methodology	than,	say,	try/catch/finally	or	even	Go’s	built-
in	error	return	value	convention.	As	designed,	panic()	unwinds	the	stack	and	leads	to
program	exit	unless	recover()	is	invoked.	This	means	that	unless	you	explicitly	recover,
your	application	will	end.

So,	how	is	this	useful	other	than	for	stopping	execution?	After	all,	we	can	catch	an	error
and	simply	end	the	application	manually	through	something	similar	to	the	following	code:

package	main

import

(

		"fmt"

		"os"

)

func	processNumber(un	int)	{

		if	un	<	1	||	un	>	4	{

				fmt.Println("Now	you've	done	it!")

				os.Exit(1)

		}else	{

				fmt.Println("Good,	you	can	read	simple	instructions.")

		}

}

func	main()	{

		userNum	:=	0

		fmt.Println("Enter	a	number	between	1	and	4.")

		_,err	:=	fmt.Scanf("%d",&userNum)

				if	err	!=	nil	{}

		

		processNumber(userNum)

}

However,	while	this	function	does	sanity	checking	and	enacts	a	permanent,	irreversible
application	exit,	panic()	and	recover()	allow	us	to	reflect	errors	from	a	specific	package
and/or	method,	save	those,	and	then	resume	gracefully.

This	is	very	useful	when	we’re	dealing	with	methods	that	are	called	from	other	methods
that	are	called	from	other	methods,	and	so	on.	The	types	of	deeply	embedded	or	recursive
functions	that	make	it	hard	to	discern	a	specific	error	are	where	panic()	and	recover()
are	most	advantageous.	You	can	also	imagine	how	well	this	functionality	can	play	with
logging.



Recovering
The	panic()	function	on	its	own	is	fairly	simple,	and	it	really	becomes	useful	when	paired
with	recover()	and	defer().

Take,	for	example,	an	application	that	returns	meta	information	about	a	file	from	the
command	line.	The	main	part	of	the	application	will	listen	for	user	input,	pass	this	into	a
function	that	will	open	the	file,	and	then	pass	that	file	reference	to	another	function	that
will	get	the	file’s	details.

Now,	we	can	obviously	stack	errors	as	return	elements	straight	through	the	process,	or	we
can	panic	along	the	way,	recover	back	down	the	steps,	and	gather	our	errors	at	the	bottom
for	logging	and/or	reporting	directly	to	console.

Avoiding	spaghetti	code	is	a	welcomed	side	effect	of	this	approach	versus	the	former	one.
Think	of	this	in	a	general	sense	(this	is	pseudo	code):

func	getFileDetails(fileName	string)	error	{

		return	err

}

func	openFile(fileName	string)	error	{

		details,err	:=	getFileDetails(fileName)

		return	err

}

func	main()	{

		file,err	:=	openFile(fileName)

}

With	a	single	error,	it’s	entirely	manageable	to	approach	our	application	in	this	way.
However,	when	each	individual	function	has	one	or	more	points	of	failure,	we	will	require
more	and	more	return	values	and	a	way	of	reconciling	them	all	into	a	single	overall	error
message	or	messages.	Check	the	following	code:

package	main

import

(

		"os"

		"fmt"

		"strconv"

)

func	gatherPanics()	{

		if	rec	:=	recover();	rec	!=	nil	{

				fmt.Println("Critical	Error:",	rec)

		}

}

This	is	our	general	recovery	function,	which	is	called	before	every	method	on	which	we



wish	to	capture	any	panic.	Let’s	look	at	a	function	to	deduce	the	file’s	details:

func	getFileDetails(fileName	string)	{

		defer	gatherPanics()

		finfo,err	:=	os.Stat(fileName)

		if	err	!=	nil	{

				panic("Cannot	access	file")

		}else	{

				fmt.Println("Size:	",	strconv.FormatInt(finfo.Size(),10))

		}

}

func	openFile(fileName	string)	{

		defer	gatherPanics()

		if	_,	err	:=	os.Stat(fileName);	err	!=	nil	{

				panic("File	does	not	exist")

		}

}

The	two	functions	from	the	preceding	code	are	merely	an	attempt	to	open	a	file	and	panic
if	the	file	does	not	exist.	The	second	method,	getFileDetails(),	is	called	from	the
main()	function	such	that	it	will	always	execute,	regardless	of	a	blocking	error	in
openFile().

In	the	real	world,	we	will	often	develop	applications	where	a	nonfatal	error	stops	just	a
portion	of	the	application	from	working,	but	will	not	cause	the	application	as	a	whole	to
break.	Check	the	following	code:

func	main()	{

		var	fileName	string

		fmt.Print("Enter	filename>")

		_,err	:=	fmt.Scanf("%s",&fileName)

		if	err	!=	nil	{}

		fmt.Println("Getting	info	for",fileName)

		openFile(fileName)

		getFileDetails(fileName)

}

If	we	were	to	remove	the	recover()	code	from	our	gatherPanics()	method,	the
application	would	crash	if/when	the	file	didn’t	exist.

This	may	seem	ideal,	but	imagine	a	scenario	where	a	user	selects	a	nonexistent	file	for	a
directory	that	they	lack	the	rights	to	view.	When	they	solve	the	first	problem,	they	will	be
presented	with	the	second	instead	of	seeing	all	potential	issues	at	one	time.

The	value	of	expressive	errors	can’t	be	overstated	from	a	user	experience	standpoint.
Gathering	and	presenting	expressive	errors	is	made	easier	through	this	methodology—
even	a	try/catch/finally	requires	that	we	(as	developers)	explicitly	do	something	with
the	returned	error	in	the	catch	clause.

Logging	our	panics



In	the	preceding	code,	we	can	integrate	a	logging	mechanism	pretty	simply	in	addition	to
catching	our	panics.

One	consideration	about	logging	that	we	haven’t	discussed	is	the	notion	of	when	to	log.
As	our	previous	examples	illustrate,	we	can	sometimes	run	into	problems	that	should	be
logged	but	may	be	mitigated	by	future	user	action.	As	such,	we	can	choose	to	log	our
errors	immediately	or	save	it	until	the	end	of	execution	or	a	greater	function.

The	primary	benefit	of	logging	immediately	is	that	we’re	not	susceptible	to	an	actual	crash
preventing	our	log	from	being	saved.	Take	the	following	example:

type	LogItem	struct	{

		Message	string

		Function	string

}

var	Logs	[]LogItem

We’ve	created	a	log	struct	and	a	slice	of	LogItems	using	the	following	code:

func	SaveLogs()	{

		logFile	:=	log4go.NewFileLogWriter("errors.log",false)

				logFile.SetFormat("%d	%t	-	%M	(%S)")

				logFile.SetRotate(true)

				logFile.SetRotateSize(0)

				logFile.SetRotateLines(500)

				logFile.SetRotateDaily(false)

		errorLog	:=	make(log4go.Logger)

		errorLog.AddFilter("file",log4go.DEBUG,logFile)

		for	i:=	range	Logs	{

				errorLog.Info(Logs[i].Message	+	"	in	"	+	Logs[i].Function)

		}

}

This,	ostensibly,	is	where	all	of	our	captured	LogItems	will	be	turned	into	a	good
collection	of	line	items	in	a	logfile.	There	is	a	problem,	however,	as	illustrated	in	the
following	code:

func	registerError(block	chan	bool)	{

		Log	:=	LogItem{	Message:"An	Error	Has	Occurred!",	Function:	

"registerError()"}

		Logs	=	append(Logs,Log)

		block	<-	true

}

Executed	in	a	goroutine,	this	function	is	non-blocking	and	allows	the	main	thread’s
execution	to	continue.	The	problem	is	with	the	following	code	that	runs	after	the
goroutine,	which	causes	us	to	log	nothing	at	all:

func	separateFunction()	{

		panic("Application	quitting!")

}



Whether	invoked	manually	or	by	the	binary	itself,	the	application	quitting	prematurely
precludes	our	logfiles	from	being	written,	as	that	method	is	deferred	until	the	end	of	the
main()	method.	The	code	is	as	follows:

func	main()	{

		block	:=	make(chan	bool)

		defer	SaveLogs()

		go	func(block	chan	bool)	{

				registerError(block)

		}(block)

		separateFunction()

}

The	tradeoff	here,	however,	is	performance.	If	we	execute	a	file	operation	every	time	we
want	to	log	something,	we’re	potentially	introducing	a	bottleneck	into	our	application.	In
the	preceding	code,	errors	are	sent	via	goroutine	but	written	in	blocking	code—if	we
introduce	the	log	writing	directly	into	registerError(),	it	can	slow	down	our	final
application.

As	mentioned	previously,	one	opportunity	to	mitigate	these	issues	and	allow	the
application	to	still	save	all	of	our	log	entries	is	to	utilize	either	memory	logging	or	network
logging.



Catching	stack	traces	with	concurrent	code
In	earlier	Go	releases,	the	ability	to	properly	execute	a	stack	trace	from	our	source	was	a
daunting	task,	which	is	emblematic	of	some	of	the	many	complaints	and	concerns	users
had	early	on	about	general	error	handling	in	Go.

While	the	Go	team	has	remained	vigilant	about	the	right	way	to	do	this	(as	they	have	with
several	other	key	language	features	such	as	a	lack	of	generics),	stack	traces	and	stack	info
have	been	tweaked	a	bit	as	the	language	has	grown.





Using	the	runtime	package	for	granular
stack	traces
In	an	effort	to	capture	stack	traces	directly,	we	can	glean	some	helpful	pieces	of
information	from	the	built-in	runtime	package.

Specifically,	Go	provides	a	couple	of	tools	to	give	us	insight	into	the	invocation	and/or
breakpoints	of	a	goroutine.	The	following	are	the	functions	within	the	runtime	package:

runtime.Caller():	This	returns	information	about	the	parent	function	of	a	goroutine
runtime.Stack():	This	allocates	a	buffer	for	the	amount	of	data	in	a	stack	trace	and
then	fills	that	with	the	trace
runtime.NumGoroutine():	This	returns	the	total	number	of	open	goroutines

We	can	utilize	all	three	preceding	tools	to	better	describe	the	inner	workings	of	any	given
goroutine	and	related	errors.

Using	the	following	code,	we’ll	spawn	some	random	goroutines	doing	random	things	and
log	not	only	the	goroutine’s	log	message,	but	also	the	stack	trace	and	the	goroutine’s
caller:

package	main

import

(

		"os"

		"fmt"

		"runtime"

		"strconv"

		"code.google.com/p/log4go"

)

type	LogItem	struct	{

		Message	string

}

var	LogItems	[]LogItem

func	saveLogs()	{

		logFile	:=	log4go.NewFileLogWriter("stack.log",	false)

				logFile.SetFormat("%d	%t	-	%M	(%S)")

				logFile.SetRotate(false)

				logFile.SetRotateSize(0)

				logFile.SetRotateLines(0)

				logFile.SetRotateDaily(true)

		logStack	:=	make(log4go.Logger)

		logStack.AddFilter("file",	log4go.DEBUG,	logFile)

		for	i	:=	range	LogItems	{

				fmt.Println(LogItems[i].Message)

				logStack.Info(LogItems[i].Message)



		}

}

The	saveLogs()	function	merely	takes	our	map	of	LogItems	and	applies	them	to	file	per
log4go,	as	we	did	earlier	in	the	chapter.	Next,	we’ll	look	at	the	function	that	supplies
details	on	our	goroutines:

func	goDetails(done	chan	bool)	{

		i	:=	0

		for	{

				var	message	string

				stackBuf	:=	make([]byte,1024)

				stack	:=	runtime.Stack(stackBuf,	false)

				stack++

				_,	callerFile,	callerLine,	ok	:=	runtime.Caller(0)

				message	=	"Goroutine	from	"	+	string(callerLine)	+	""	+	

						string(callerFile)	+	"	stack:"	+		string(stackBuf)

				openGoroutines	:=	runtime.NumGoroutine()

				if	(ok	==	true)	{

						message	=	message	+	callerFile

				}

				message	=	message	+	strconv.FormatInt(int64(openGoroutines),10)	+	"	

goroutines	

								active"

				li	:=	LogItem{	Message:	message}

				LogItems	=	append(LogItems,li)

				if	i	==	20	{

						done	<-	true

						break

				}

				i++

		}

}

This	is	where	we	gather	more	details	about	a	goroutine.	The	runtime.Caller()	function
provides	a	few	returned	values:	its	pointer,	the	filename	of	the	caller,	the	line	of	the	caller.
The	last	return	value	indicates	whether	the	caller	could	be	found.

As	mentioned	previously,	runtime.NumGoroutine()	gives	us	the	number	of	extant
goroutines	that	have	not	yet	been	closed.

Then,	in	runtime.Stack(stackBuf,	false),	we	fill	our	buffer	with	the	stack	trace.	Note
that	we’re	not	trimming	this	byte	array	to	length.

All	three	are	passed	into	LogItem.Message	for	later	use.	Let’s	look	at	the	setup	in	the
main()	function:

func	main()	{

		done	:=	make(chan	bool)



		go	goDetails(done)

		for	i:=	0;	i	<	10;	i++	{

				go	goDetails(done)

		}

		for	{

				select	{

						case	d	:=	<-done:

								if	d	==	true	{

										saveLogs()

										os.Exit(1)

								}

				}

		}

}

Finally,	we	loop	through	some	goroutines	that	are	doing	loops	themselves	and	exit	upon
completion.

When	we	examine	our	logfile,	we’re	given	far	more	verbose	details	on	our	goroutines	than
we	have	previously,	as	shown	in	the	following	code:

04/16/14	23:25	-	Goroutine	from	+	

/var/log/go/ch9_11_stacktrace.goch9_11_stacktrace.go	stack:goroutine	4	

[running]:

main.goDetails(0xc08400b300)

		/var/log/go/ch9_11_stacktrace.goch9_11_stacktrace.go:41	+0x8e

created	by	main.main

		/var/log/go/ch9_11_stacktrace.goch9_11_stacktrace.go:69	+0x4c

		

		/var/log/go/ch9_11_stacktrace.goch9_11_stacktrace.go14	goroutines	active	

(main.saveLogs:31)

Tip
For	more	information	on	the	runtime	package,	go	to	http://golang.org/pkg/runtime/.

http://golang.org/pkg/runtime/




Summary
Debugging,	testing,	and	logging	concurrent	code	can	be	particularly	cumbersome,	often
when	concurrent	goroutines	fail	in	a	seemingly	silent	fashion	or	fail	to	execute
whatsoever.

We	looked	at	various	methods	of	logging,	from	file	to	console	to	memory	to	network
logging,	and	examined	how	concurrent	application	pieces	can	fit	into	these	various
implementations.

By	now,	you	should	be	comfortable	and	natural	in	creating	robust	and	expressive	logs	that
rotate	automatically,	impose	no	latency	or	bottlenecks,	and	assist	in	debugging	your
applications.

You	should	feel	comfortable	with	the	basics	of	the	runtime	package.	We’ll	dive	into	the
testing	package,	controlling	goroutines	more	explicitly,	and	unit	testing	as	we	dig	deeper
in	the	next	chapter.

In	addition	to	further	examining	the	testing	and	runtime	packages,	in	our	final	chapter,
we’ll	also	broach	the	topic	of	more	advanced	concurrency	topics	in	Go	as	well	as	review
some	overall	best	practices	as	they	relate	to	programming	in	the	Go	language.





Chapter	10.	Advanced	Concurrency	and
Best	Practices
Once	you’re	comfortable	with	the	basic	and	intermediate	usage	of	concurrency	features	in
Go,	you	may	find	that	you’re	able	to	handle	the	majority	of	your	development	use	cases
with	bidirectional	channels	and	standard	concurrency	tools.

In	Chapter	2,	Understanding	the	Concurrency	Model,	and	Chapter	3,	Developing	a
Concurrent	Strategy,	we	looked	at	the	concurrency	models,	not	just	of	Go	but	of	other
languages	as	well,	and	compared	the	way	they—and	distributed	models—can	work.	In
this	chapter,	we’ll	touch	on	those	and	some	higher	level	concepts	with	regard	to	designing
and	managing	your	concurrent	application.

In	particular,	we’re	going	to	look	at	central	management	of	goroutines	and	their	associated
channels—out	of	the	box	you	may	find	goroutines	to	be	a	set-it-and-forget-it	proposition;
however,	there	are	cases	where	we	might	want	more	granular	control	of	a	channel’s	state.

We’ve	also	looked	quite	a	bit	at	testing	and	benchmarking	from	a	high	level,	but	we’ll
look	at	some	more	detailed	and	complex	methods	for	testing.	We’ll	also	explore	a	primer
on	the	Google	App	Engine,	which	will	give	us	access	to	some	specific	testing	tools	we
haven’t	yet	used.

Finally,	we’ll	touch	upon	some	general	best	practices	for	Go,	which	will	surely	pertain	not
just	to	concurrent	application	design	but	your	future	work	in	general	with	the	language.



Going	beyond	the	basics	with	channels
We’ve	talked	about	quite	a	few	different	channel	implementations—channels	of	different
type	(interfaces,	functions,	structs,	and	channels)—and	touched	upon	the	differences	in
buffered	and	unbuffered	channels.	However,	there’s	still	a	lot	more	we	can	do	with	the
design	and	flow	of	our	channels	and	goroutines.

By	design,	Go	wants	you	to	keep	things	simple.	And	that’s	fantastic	for	90	percent	of	what
you’ll	do	with	Go.	But	there	are	other	times	where	you’ll	need	to	dig	a	little	deeper	for	a
solution,	or	when	you’ll	need	to	save	resources	by	preserving	the	amount	of	open
goroutine	processes,	channels,	and	more.

You	may,	at	some	point,	want	some	hands	on	control	of	the	size	and	state,	and	also	the
control	of	a	running	or	closed	goroutine,	so	we’ll	look	at	doing	that.

Just	as	importantly,	designing	your	goroutines	to	work	in	concert	with	the	application
design	as	a	whole	can	be	critical	to	unit	testing,	which	is	a	topic	we’ll	touch	on	in	this	final
chapter.





Building	workers
Earlier	in	this	book,	we	talked	about	concurrency	patterns	and	a	bit	about	workers.	We
even	brought	the	workers	concept	into	play	in	the	previous	chapter,	when	we	were
building	our	logging	systems.

Truly	speaking,	“worker”	is	a	fairly	generic	and	ambiguous	concept,	not	just	in	Go,	but	in
general	programming	and	development.	In	some	languages,	it’s	an	object/instantiated
class,	and	in	others	it’s	a	concurrent	actor.	In	functional	programming	languages,	worker	is
a	graduated	function	return	passed	to	another.

If	we	go	back	to	the	preface,	we	will	see	that	we	have	literally	used	the	Go	gopher	as	an
example	of	a	worker.	In	short,	a	worker	is	something	more	complex	than	a	single	function
call	or	programmatic	action	that	will	perform	a	task	one	or	more	times.

So	why	are	we	talking	about	it	now?	When	we	build	our	channels,	we	are	creating	a
mechanism	to	do	work.	When	we	have	a	struct	or	an	interface,	we’re	combining	methods
and	values	at	a	single	place,	and	then	doing	work	using	that	object	as	both	a	mechanism
for	the	work	as	well	as	a	place	to	store	information	about	that	work.

This	is	particularly	useful	in	application	design,	as	we’re	able	to	delegate	various	elements
of	an	application’s	functionality	to	distinct	and	well-defined	workers.	Consider,	for
example,	a	server	pinging	application	that	has	specific	pieces	doing	specific	things	in	a
self-contained,	compartmentalized	manner.

We’ll	attempt	to	check	for	server	availability	via	the	HTTP	package,	check	the	status	code
and	errors,	and	back	off	if	we	find	problems	with	any	particular	server.	You	can	probably
see	where	this	is	going—this	is	the	most	basic	approach	to	load	balancing.	But	an
important	design	consideration	is	the	way	in	which	we	manage	our	channels.

We’ll	have	a	master	channel,	where	all	important	global	transactions	should	be
accumulated	and	evaluated,	but	each	individual	server	will	also	have	its	own	channels	for
handling	tasks	that	are	important	only	to	that	individual	struct.

The	design	in	the	following	code	can	be	considered	as	a	rudimentary	pipeline,	which	is
roughly	akin	to	the	producer/consumer	model	we	talked	about	in	the	previous	chapters:

package	main

import

(

		"fmt"

		"time"

		"net/http"

)

const	INIT_DELAY	=	3000

const	MAX_DELAY	=	60000

const	MAX_RETRIES	=	4

const	DELAY_INCREMENT	=	5000



The	preceding	code	gives	the	configuration	part	of	the	application,	setting	scope	on	how
frequently	to	check	servers,	the	maximum	amount	of	time	for	backing	off,	and	the
maximum	amount	of	retries	before	giving	up	entirely.

The	DELAY_INCREMENT	value	represents	how	much	time	we	will	add	to	our	server	checking
process	each	time	we	discover	a	problem.	Let’s	take	a	look	at	how	to	create	a	server	in	the
following	section:

var	Servers	[]Server

type	Server	struct	{

		Name	string

		URI	string

		LastChecked	time.Time

		Status	bool

		StatusCode	int

		Delay	int

		Retries	int

		Channel	chan	bool

}

Now,	we	design	the	basic	server	(using	the	following	code),	which	contains	its	current
status,	the	last	time	it	was	checked,	the	present	delay	between	checks,	its	own	channel	for
evaluating	statuses	and	establishing	the	new	status,	and	updated	retry	delay:

func	(s	*Server)	checkServerStatus(sc	chan	*Server)	{

		var	previousStatus	string

				if	s.Status	==	true	{

						previousStatus	=	"OK"

				}else	{

						previousStatus	=	"down"

				}

				fmt.Println("Checking	Server",s.Name)

				fmt.Println("\tServer	was",previousStatus,"on	last	check	

at",s.LastChecked)

				response,	err	:=	http.Get(s.URI)

				if	err	!=	nil	{

						fmt.Println("\tError:	",err)

						s.Status	=	false

						s.StatusCode	=	0

				}else	{

						fmt.Println(response.Status)

						s.StatusCode	=	response.StatusCode

						s.Status	=	true

				}

				s.LastChecked	=	time.Now()

				sc	<-	s

}

The	checkServerStatus()	method	is	the	meat	and	potatoes	of	our	application	here.	We
pass	all	of	our	servers	through	this	method	in	the	main()	function	to	our	cycleServers()



loop,	after	which	it	becomes	self-fulfilling.

If	our	Status	is	set	to	true,	we	send	the	state	to	the	console	as	OK	(otherwise	down)	and	set
our	Server	status	code	with	s.StatusCode	as	either	the	HTTP	code	or	0	if	there	was	a
network	or	other	error.

Finally,	set	the	last-checked	time	of	Server	to	Now()	and	pass	Server	through	the
serverChan	channel.	In	the	following	code,	we’ll	demonstrate	how	we’ll	rotate	through
our	available	servers:

func	cycleServers(sc	chan	*Server)	{

		for	i	:=	0;	i	<	len(Servers);	i++	{

				Servers[i].Channel	=	make(chan	bool)

				go	Servers[i].updateDelay(sc)

				go	Servers[i].checkServerStatus(sc)

		}

}

This	is	our	initial	loop,	called	from	main.	It	simply	loops	through	our	available	servers	and
initializes	its	listening	goroutine	as	well	as	sending	the	first	checkServerStatus	request.

It’s	worth	noting	two	things	here:	first,	the	channel	invoked	by	Server	will	never	actually
die,	but	instead	the	application	will	stop	checking	the	server.	That’s	fine	for	all	practical
purposes	here,	but	if	we	have	thousands	and	thousands	of	servers	to	check,	we’re	wasting
resources	on	what	essentially	amounts	to	an	unclosed	channel	and	a	map	element	that	has
not	been	removed.	Later,	we’ll	broach	the	concept	of	manually	killing	goroutines,
something	we’ve	only	been	able	to	do	through	abstraction	by	stopping	the	communication
channel.	Let’s	now	take	a	look	at	the	following	code	that	controls	a	server’s	status	and	its
next	steps:

func	(s	*Server)	updateDelay(sc	chan	*Server)	{

		for	{

				select	{

						case	msg	:=	<-	s.Channel:

								if	msg	==	false	{

										s.Delay	=	s.Delay	+	DELAY_INCREMENT

										s.Retries++

										if	s.Delay	>	MAX_DELAY	{

												s.Delay	=	MAX_DELAY

										}

								}else	{

										s.Delay	=	INIT_DELAY

								}

								newDuration	:=	time.Duration(s.Delay)

								if	s.Retries	<=	MAX_RETRIES	{

										fmt.Println("\tWill	check	server	again")

										time.Sleep(newDuration	*	time.Millisecond)

										s.checkServerStatus(sc)

								}else	{



										fmt.Println("\tServer	not	reachable	after",MAX_RETRIES,"retries")

								}

						default:

				}

		}

}

This	is	where	each	Server	will	listen	for	changes	in	its	status,	as	reported	by
checkServerStatus().	When	any	given	Server	struct	receives	a	message	that	a	change	in
status	has	been	reported	via	our	initial	loop,	it	will	evaluate	that	message	and	act
accordingly.

If	the	Status	is	set	to	false,	we	know	that	the	server	was	inaccessible	for	some	reason.
The	Server	reference	itself	will	then	add	a	delay	to	the	next	time	it’s	checked.	If	it’s	set	to
true,	the	server	was	accessible	and	the	delay	will	either	be	set	or	reset	to	the	default	retry
value	of	INIT_DELAY.

It	finally	sets	a	sleep	mode	on	that	goroutine	before	reinitializing	the
checkServerStatus()	method	on	itself,	passing	the	serverChan	reference	along	in	the
initial	goroutine	loop	in	the	main()	function:

func	main()	{

		endChan	:=	make(chan	bool)

		serverChan	:=	make(chan	*Server)

Servers	=	[]Server{	{Name:	"Google",	URI:	"http://www.google.com",	Status:	

true,	Delay:	INIT_DELAY},	{Name:	"Yahoo",	URI:	"http://www.yahoo.com",	

Status:	true,	Delay:	INIT_DELAY},	{Name:	"Bad	Amazon",	URI:	

"http://amazon.zom",	Status:	true,	Delay:	INIT_DELAY}	}

One	quick	note	here—in	our	slice	of	Servers,	we	intentionally	introduced	a	typo	in	the
last	element.	You’ll	notice	amazon.zom,	which	will	provoke	an	HTTP	error	in	the
checkServerStatus()	method.	The	following	is	the	function	to	cycle	through	servers	to
find	an	appropriate	match:

		go	cycleServers(serverChan)

		for	{

				select	{

						case	currentServer	:=	<-	serverChan:

								currentServer.Channel	<-	false

						default:

				}

		}

		<-	endChan

		

}

The	following	is	an	example	of	the	output	with	the	typo	included:

Checking	Server	Google



								Server	was	OK	on	last	check	at	0001-01-01	00:00:00	+0000	UTC

								200	OK

								Will	check	server	again

Checking	Server	Yahoo

								Server	was	OK	on	last	check	at	0001-01-01	00:00:00	+0000	UTC

								200	OK

								Will	check	server	again

Checking	Server	Amazon

								Server	was	OK	on	last	check	at	0001-01-01	00:00:00	+0000	UTC

								Error:		Get	http://amazon.zom:	dial	tcp:	GetAddrInfoW:	No	such	host	

is	known.

								Will	check	server	again

Checking	Server	Google

								Server	was	OK	on	last	check	at	2014-04-23	12:49:45.6575639	-0400	

EDT

We’ll	be	taking	the	preceding	code	for	one	last	spin	through	some	concurrency	patterns
later	in	this	chapter,	turning	it	into	something	a	bit	more	practical.





Implementing	nil	channel	blocks
One	of	the	bigger	problems	in	designing	something	like	a	pipeline	or	producer/consumer
model	is	there’s	somewhat	of	a	black	hole	when	it	comes	to	the	state	of	any	given
goroutine	at	any	given	time.

Consider	the	following	loop,	wherein	a	producer	channel	creates	an	arbitrary	set	of
consumer	channels	and	expects	each	to	do	one	and	only	one	thing:

package	main

import	(

		"fmt"

		"time"

)

const	CONSUMERS	=	5

func	main()	{

		Producer	:=	make(chan	(chan	int))

		for	i	:=	0;	i	<	CONSUMERS;	i++	{

				go	func()	{

						time.Sleep(1000	*	time.Microsecond)

						conChan	:=	make(chan	int)

						go	func()	{

								for	{

										select	{

										case	_,ok	:=	<-conChan:

												if	ok		{

														Producer	<-	conChan

												}else	{

														return

												}

										default:

										}

								}

						}()

						conChan	<-	1

						close(conChan)

				}()

		}

Given	a	random	amount	of	consumers	to	produce,	we	attach	a	channel	to	each	and	pass	a
message	upstream	to	the	Producer	via	that	consumer’s	channel.	We	send	just	a	single
message	(which	we	could	handle	with	a	buffered	channel),	but	we	simply	close	the
channel	after.

Whether	in	a	multithreaded	application,	a	distributed	application,	or	a	highly	concurrent
application,	an	essential	attribute	of	a	producer-consumer	model	is	the	ability	for	data	to



move	across	a	queue/channel	in	a	steady,	reliable	fashion.	This	requires	some	modicum	of
mutual	knowledge	to	be	shared	between	both	the	producer	and	consumers.

Unlike	environments	that	are	distributed	(or	multicore),	we	do	possess	some	inherent
awareness	of	the	status	on	both	ends	of	that	arrangement.	We’ll	next	look	at	a	listening
loop	for	producer	messages:

		for	{

				select	{

				case	consumer,	ok	:=	<-Producer:

						if	ok	==	false	{

								fmt.Println("Goroutine	closed?")

								close(Producer)

						}	else	{

								log.Println(consumer)

								//	consumer	<-	1

						}

						fmt.Println("Got	message	from	secondary	channel")

				default:

				}

		}

}

The	primary	issue	is	that	one	of	the	Producer	channel	doesn’t	know	much	about	any	given
Consumer,	including	when	it’s	actively	running.	If	we	uncommented	the	//	consumer	<-
1	line,	we’ll	get	a	panic,	because	we’re	attempting	to	send	a	message	on	a	closed	channel.

As	a	message	is	passed	across	a	secondary	goroutine’s	channel,	upstream	to	the	channel	of
the	Producer,	we	get	an	appropriate	reception,	but	cannot	detect	when	the	downstream
goroutine	is	closed.

Knowing	when	a	goroutine	has	terminated	is	in	many	cases	inconsequential,	but	consider
an	application	that	spawns	new	goroutines	when	a	certain	number	of	tasks	are	complete,
effectively	breaking	a	task	into	mini	tasks.	Perhaps	each	chunk	is	dependent	on	the	total
completion	of	the	last	chunk,	and	a	broadcaster	must	know	the	status	of	the	current
goroutines	before	moving	on.



Using	nil	channels
In	the	earlier	versions	of	Go,	you	could	communicate	across	uninitialized,	thus	nil	or	0-
value	channels	without	a	panic	(although	your	results	would	be	unpredictable).	Starting
from	Go	Version	1,	communication	across	nil	channels	produced	a	consistent	but
sometimes	confusing	effect.

It’s	vital	to	note	that	within	a	select	switch,	transmission	on	a	nil	channel	on	its	own	will
still	cause	a	deadlock	and	panic.	This	is	something	that	will	most	often	creep	up	when
utilizing	global	channels	and	not	ever	properly	initializing	them.	The	following	is	an
example	of	such	transmission	on	a	nil	channel:

func	main()	{

		var	channel	chan	int

				channel	<-	1

		for	{

				select	{

						case	<-	channel:

								

						default:

				}

		}

}

As	the	channel	is	set	to	its	0	value	(nil,	in	this	case),	it	blocks	perpetually	and	the	Go
compiler	will	detect	this,	at	least	in	more	recent	versions.	You	can	also	duplicate	this
outside	of	a	select	statement,	as	shown	in	the	following	code:

		var	done	chan	int

		defer	close(done)

		defer	log.Println("End	of	script")

		go	func()	{

				time.Sleep(time.Second	*	5)

				done	<-	1

		}()

		for	{

				select	{

						case	<-	done:

								log.Println("Got	transmission")

								return

						default:

				}

		}

The	preceding	code	will	block	forever	without	the	panic,	due	to	the	default	in	the	select
statement	keeping	the	main	loop	active	while	waiting	for	communication	on	the	channel.
If	we	initialize	the	channel,	however,	the	application	runs	as	expected.

With	these	two	fringe	cases—closed	channels	and	nil	channels—we	need	a	way	for	a



master	channel	to	understand	the	state	of	a	goroutine.





Implementing	more	granular	control	over
goroutines	with	tomb
As	with	many	such	problems—both	niche	and	common—there	exists	a	third-party	utility
for	grabbing	your	goroutines	by	the	horns.

Tomb	is	a	library	that	provides	diagnostics	to	go	along	with	any	goroutine	and	channel—it
can	tell	a	master	channel	if	another	goroutine	is	dead	or	dying.

In	addition,	it	allows	you	to	explicitly	kill	a	goroutine,	which	is	a	bit	more	nuanced	than
simply	closing	the	channel	it	is	attached	to.	As	previously	mentioned,	closing	the	channel
is	effectively	neutering	a	goroutine,	although	it	could	ultimately	still	be	active.

You	are	about	to	find	a	simple	fetch-and-grab	body	script	that	takes	a	slice	of	URL	structs
(with	status	and	URI)	and	attempts	to	grab	the	HTTP	response	for	each	and	apply	it	to	the
struct.	But	instead	of	just	reporting	information	from	the	goroutines,	we’ll	have	the	ability
to	send	“kill	messages”	to	each	of	a	“master”	struct’s	child	goroutines.

In	this	example,	we’ll	run	the	script	for	10	seconds,	and	if	any	of	the	goroutines	fail	to	do
their	job	in	that	allotted	time,	it	will	respond	that	it	was	unable	to	get	the	URL’s	body	due
to	a	kill	send	from	the	master	struct	that	invoked	it:

package	main

import	(

		"fmt"

		"io/ioutil"

		"launchpad.net/tomb"

		"net/http"

		"strconv"

		"sync"

		"time"

)

var	URLS	[]URL

type	GoTomb	struct	{

		tomb	tomb.Tomb

}

This	is	the	minimum	necessary	structure	required	to	create	a	parent	or	a	master	struct	for
all	of	your	spawned	goroutines.	The	tomb.Tomb	struct	is	simply	a	mutex,	two	channels
(one	for	dead	and	dying),	and	a	reason	error	struct.	The	structure	of	the	URL	struct	looks
like	the	following	code:

type	URL	struct	{

		Status	bool

		URI				string

		Body			string

}



Our	URL	struct	is	fairly	basic—Status,	set	to	false	by	default	and	true	when	the	body
has	been	retrieved.	It	consists	of	the	URI	variable—which	is	the	reference	to	the	URL—
and	the	Body	variable	for	storing	the	retrieved	data.	The	following	function	allows	us	to
execute	a	“kill”	on	a	GoTomb	struct:

func	(gt	GoTomb)	Kill()	{

		gt.tomb.Kill(nil)

}

The	preceding	method	invokes	tomb.Kill	on	our	GoTomb	struct.	Here,	we	have	set	the	sole
parameter	to	nil,	but	this	can	easily	be	changed	to	a	more	descriptive	error,	such	as
errors.New("Time	to	die,	goroutine").	Here,	we’ll	show	the	listener	for	the	GoTomb
struct:

func	(gt	*GoTomb)	TombListen(i	int)	{

		for	{

				select	{

				case	<-gt.tomb.Dying():

						fmt.Println("Got	kill	command	from	tomb!")

						if	URLS[i].Status	==	false	{

								fmt.Println("Never	got	data	for",	URLS[i].URI)

						}

						return

				}

		}

}

We	invoke	TombListen	attached	to	our	GoTomb,	which	sets	a	select	that	listens	for	the
Dying()	channel,	as	shown	in	the	following	code:

func	(gt	*GoTomb)	Fetch()	{

		for	i	:=	range	URLS	{

				go	gt.TombListen(i)

				go	func(ii	int)	{

						timeDelay	:=	5	*	ii

						fmt.Println("Waiting	",	strconv.FormatInt(int64(timeDelay),	10),	"	

seconds	to	get",	URLS[ii].URI)

						time.Sleep(time.Duration(timeDelay)	*	time.Second)

						response,	_	:=	http.Get(URLS[ii].URI)

						URLS[ii].Status	=	true

						fmt.Println("Got	body	for	",	URLS[ii].URI)

						responseBody,	_	:=	ioutil.ReadAll(response.Body)

						URLS[ii].Body	=	string(responseBody)

				}(i)

		}

}

When	we	invoke	Fetch(),	we	also	set	the	tomb	to	TombListen(),	which	receives	those
“master”	messages	across	all	spawned	goroutines.	We	impose	an	intentionally	long	wait	to



ensure	that	our	last	few	attempts	to	Fetch()	will	come	after	the	Kill()	command.	Finally,
our	main()	function,	which	handles	the	overall	setup:

func	main()	{

		done	:=	make(chan	int)

		URLS	=	[]URL{{Status:	false,	URI:	"http://www.google.com",	Body:	""},	

{Status:	false,	URI:	"http://www.amazon.com",	Body:	""},	{Status:	false,	

URI:	"http://www.ubuntu.com",	Body:	""}}

		var	MasterChannel	GoTomb

		MasterChannel.Fetch()

		go	func()	{

				time.Sleep(10	*	time.Second)

				MasterChannel.Kill()

				done	<-	1

		}()

		for	{

				select	{

				case	<-done:

						fmt.Println("")

						return

				default:

				}

		}

}

By	setting	time.Sleep	to	10	seconds	and	then	killing	our	goroutines,	we	guarantee	that
the	5	second	delays	between	Fetch()	prevent	the	last	of	our	goroutines	from	successfully
finishing	before	being	killed.

Tip
For	the	tomb	package,	go	to	http://godoc.org/launchpad.net/tomb	and	install	it	using	the	go
get	launchpad.net/tomb	command.

http://godoc.org/launchpad.net/tomb




Timing	out	with	channels
One	somewhat	critical	point	with	channels	and	select	loops	that	we	haven’t	examined
particularly	closely	is	the	ability—and	often	necessity—to	kill	a	select	loop	after	a
certain	timeout.

Many	of	the	applications	we’ve	written	so	far	are	long-running	or	perpetually-running,	but
there	are	times	when	we’ll	want	to	put	a	finite	time	limit	on	how	long	goroutines	can
operate.

The	for	{	select	{	}	}	switch	we’ve	used	so	far	will	either	live	perpetually	(with	a
default	case)	or	wait	to	be	broken	from	one	or	more	of	the	cases.

There	are	two	ways	to	manage	interval-based	tasks—both	as	part	of	the	time	package,
unsurprisingly.

The	time.Ticker	struct	allows	for	any	given	operation	after	the	specified	period	of	time.
It	provides	C,	a	blocking	channel	that	can	be	used	to	detect	activity	sent	after	that	period
of	time;	refer	to	the	following	code:

package	main

import	(

		"log"

		"time"

)

func	main()	{

		timeout	:=	time.NewTimer(5	*	time.Second)

		defer	log.Println("Timed	out!")

		for	{

				select	{

				case	<-timeout.C:

						return

				default:

				}

		}

}

We	can	extend	this	to	end	channels	and	concurrent	execution	after	a	certain	amount	of
time.	Take	a	look	at	the	following	modifications:

package	main

import	(

		"fmt"

		"time"

)

func	main()	{



		myChan	:=	make(chan	int)

		go	func()	{

				time.Sleep(6	*	time.Second)

				myChan	<-	1

		}()

		for	{

				select	{

						case	<-time.After(5	*	time.Second):

								fmt.Println("This	took	too	long!")

								return

						case	<-myChan:

								fmt.Println("Too	little,	too	late")

				}

		}

}





Building	a	load	balancer	with	concurrent
patterns
When	we	built	our	server	pinging	application	earlier	in	this	chapter,	it	was	probably	pretty
easy	to	imagine	taking	this	to	a	more	usable	and	valuable	space.

Pinging	a	server	is	often	the	first	step	in	a	health	check	for	a	load	balancer.	Just	as	Go
provides	a	usable	out-of-the-box	web	server	solution,	it	also	presents	a	very	clean	Proxy
and	ReverseProxy	struct	and	methods,	which	makes	creating	a	load	balancer	rather
simple.

Of	course,	a	round-robin	load	balancer	will	need	a	lot	of	background	work,	specifically	on
checking	and	rechecking	as	it	changes	the	ReverseProxy	location	between	requests.	We’ll
handle	these	with	the	goroutines	triggered	with	each	request.

Finally,	note	that	we	have	some	dummy	URLs	at	the	bottom	in	the	configuration—
changing	those	to	production	URLs	should	immediately	turn	the	server	that	runs	this	into
a	working	load	balancer.	Let’s	look	at	the	main	setup	for	the	application:

package	main

import	(

		"fmt"

		"log"

		"net/http"

		"net/http/httputil"

		"net/url"

		"strconv"

		"time"

)

const	MAX_SERVER_FAILURES	=	10

const	DEFAULT_TIMEOUT_SECONDS	=	5

const	MAX_TIMEOUT_SECONDS	=	60

const	TIMEOUT_INCREMENT	=	5

const	MAX_RETRIES	=	5

In	the	previous	code,	we	defined	our	constants,	much	like	we	did	previously.	We	have	a
MAX_RETRIES,	which	limits	how	many	failures	we	can	have,	MAX_TIMEOUT_SECONDS,	which
defines	the	longest	amount	of	time	we’ll	wait	before	trying	again,	and	our
TIMEOUT_INCREMENT	for	changing	that	value	between	failures.	Next,	let’s	look	at	the	basic
construction	of	our	Server	struct:

type	Server	struct	{

		Name								string

		Failures				int

		InService			bool

		Status						bool

		StatusCode		int

		Addr								string

		Timeout					int



		LastChecked	time.Time

		Recheck					chan	bool

}

As	we	can	see	in	the	previous	code,	we	have	a	generic	Server	struct	that	maintains	the
present	state,	the	last	status	code,	and	information	on	the	last	time	the	server	was	checked.

Note	that	we	also	have	a	Recheck	channel	that	triggers	the	delayed	attempt	to	check	the
Server	again	for	availability.	Each	Boolean	passed	across	this	channel	will	either	remove
the	server	from	the	available	pool	or	reannounce	that	it	is	still	in	service:

func	(s	*Server)	serverListen(serverChan	chan	bool)	{

		for	{

				select	{

				case	msg	:=	<-s.Recheck:

						var	statusText	string

						if	msg	==	false	{

								statusText	=	"NOT	in	service"

								s.Failures++

								s.Timeout	=	s.Timeout	+	TIMEOUT_INCREMENT

								if	s.Timeout	>	MAX_TIMEOUT_SECONDS	{

										s.Timeout	=	MAX_TIMEOUT_SECONDS

								}

						}	else	{

								if	ServersAvailable	==	false	{

										ServersAvailable	=	true

										serverChan	<-	true

								}

								statusText	=	"in	service"

								s.Timeout	=	DEFAULT_TIMEOUT_SECONDS

						}

						if	s.Failures	>=	MAX_SERVER_FAILURES	{

								s.InService	=	false

								fmt.Println("\tServer",	s.Name,	"failed	too	many	times.")

						}	else	{

								timeString	:=	strconv.FormatInt(int64(s.Timeout),	10)

								fmt.Println("\tServer",	s.Name,	statusText,	"will	check	again	in",	

timeString,	"seconds")

								s.InService	=	true

								time.Sleep(time.Second	*	time.Duration(s.Timeout))

								go	s.checkStatus()

						}

				}

		}

}

This	is	the	instantiated	method	that	listens	on	each	server	for	messages	delivered	on	the
availability	of	a	server	at	any	given	time.	While	running	a	goroutine,	we	keep	a
perpetually	listening	channel	open	to	listen	to	Boolean	responses	from	checkStatus().	If
the	server	is	available,	the	next	delay	is	set	to	default;	otherwise,	TIMEOUT_INCREMENT	is
added	to	the	delay.	If	the	server	has	failed	too	many	times,	it’s	taken	out	of	rotation	by
setting	its	InService	property	to	false	and	no	longer	invoking	the	checkStatus()



method.	Let’s	next	look	at	the	method	for	checking	the	present	status	of	Server:

func	(s	*Server)	checkStatus()	{

		previousStatus	:=	"Unknown"

		if	s.Status	==	true	{

				previousStatus	=	"OK"

		}	else	{

				previousStatus	=	"down"

		}

		fmt.Println("Checking	Server",	s.Name)

		fmt.Println("\tServer	was",	previousStatus,	"on	last	check	at",	

s.LastChecked)

		response,	err	:=	http.Get(s.Addr)

		if	err	!=	nil	{

				fmt.Println("\tError:	",	err)

				s.Status	=	false

				s.StatusCode	=	0

		}	else	{

				s.StatusCode	=	response.StatusCode

				s.Status	=	true

		}

		s.LastChecked	=	time.Now()

		s.Recheck	<-	s.Status

}

Our	checkStatus()	method	should	look	pretty	familiar	based	on	the	server	ping	example.
We	look	for	the	server;	if	it	is	available,	we	pass	true	to	our	Recheck	channel;	otherwise
false,	as	shown	in	the	following	code:

func	healthCheck(sc	chan	bool)	{

		fmt.Println("Running	initial	health	check")

		for	i	:=	range	Servers	{

				Servers[i].Recheck	=	make(chan	bool)

				go	Servers[i].serverListen(sc)

				go	Servers[i].checkStatus()

		}

}

Our	healthCheck	function	simply	kicks	off	the	loop	of	each	server	checking	(and	re-
checking)	its	status.	It’s	run	only	one	time,	and	initializes	the	Recheck	channel	via	the
make	statement:

func	roundRobin()	Server	{

		var	AvailableServer	Server

		if	nextServerIndex	>	(len(Servers)	-	1)	{

				nextServerIndex	=	0

		}

		if	Servers[nextServerIndex].InService	==	true	{

				AvailableServer	=	Servers[nextServerIndex]

		}	else	{

				serverReady	:=	false

				for	serverReady	==	false	{



						for	i	:=	range	Servers	{

								if	Servers[i].InService	==	true	{

										AvailableServer	=	Servers[i]

										serverReady	=	true

								}

						}

				}

		}

		nextServerIndex++

		return	AvailableServer

}

The	roundRobin	function	first	checks	the	next	available	Server	in	the	queue—if	that
server	happens	to	be	down,	it	loops	through	the	remaining	to	find	the	first	available
Server.	If	it	loops	through	all,	it	will	reset	to	0.	Let’s	look	at	the	global	configuration
variables:

var	Servers	[]Server

var	nextServerIndex	int

var	ServersAvailable	bool

var	ServerChan	chan	bool

var	Proxy	*httputil.ReverseProxy

var	ResetProxy	chan	bool

These	are	our	global	variables—our	Servers	slice	of	Server	structs,	the	nextServerIndex
variable,	which	serves	to	increment	the	next	Server	to	be	returned,	ServersAvailable
and	ServerChan,	which	start	the	load	balancer	only	after	a	viable	server	is	available,	and
then	our	Proxy	variables,	which	tell	our	http	handler	where	to	go.	This	requires	a
ReverseProxy	method,	which	we’ll	look	at	now	in	the	following	code:

func	handler(p	*httputil.ReverseProxy)	func(http.ResponseWriter,	

*http.Request)	{

		Proxy	=	setProxy()

		return	func(w	http.ResponseWriter,	r	*http.Request)	{

				r.URL.Path	=	"/"

				p.ServeHTTP(w,	r)

		}

}

Note	that	we’re	operating	on	a	ReverseProxy	struct	here,	which	is	different	from	our
previous	forays	into	serving	webpages.	Our	next	function	executes	the	round	robin	and
gets	our	next	available	server:

func	setProxy()	*httputil.ReverseProxy	{

		nextServer	:=	roundRobin()

		nextURL,	_	:=	url.Parse(nextServer.Addr)

		log.Println("Next	proxy	source:",	nextServer.Addr)

		prox	:=	httputil.NewSingleHostReverseProxy(nextURL)

		return	prox



}

The	setProxy	function	is	called	after	every	request,	and	you	can	see	it	as	the	first	line	in
our	handler.	Next	we	have	the	general	listening	function	that	looks	out	for	requests	we’ll
be	reverse	proxying:

func	startListening()	{

		http.HandleFunc("/index.html",	handler(Proxy))

		_	=	http.ListenAndServe(":8080",	nil)

}

func	main()	{

		nextServerIndex	=	0

		ServersAvailable	=	false

		ServerChan	:=	make(chan	bool)

		done	:=	make(chan	bool)

		fmt.Println("Starting	load	balancer")

		Servers	=	[]Server{{Name:	"Web	Server	01",	Addr:	"http://www.google.com",	

Status:	false,	InService:	false},	{Name:	"Web	Server	02",	Addr:	

"http://www.amazon.com",	Status:	false,	InService:	false},	{Name:	"Web	

Server	03",	Addr:	"http://www.apple.zom",	Status:	false,	InService:	false}}

		go	healthCheck(ServerChan)

		for	{

				select	{

				case	<-ServerChan:

						Proxy	=	setProxy()

						startListening()

						return

				}

		}

		<-done

}

With	this	application,	we	have	a	simple	but	extensible	load	balancer	that	works	with	the
common,	core	components	in	Go.	Its	concurrency	features	keep	it	lean	and	fast,	and	we
wrote	it	in	a	very	small	amount	of	code	using	exclusively	standard	Go.





Choosing	unidirectional	and	bidirectional
channels
For	the	purpose	of	simplicity,	we’ve	designed	most	of	our	applications	and	sample	code
with	bidirectional	channels,	but	of	course	any	channel	can	be	set	unidirectionally.	This
essentially	turns	a	channel	into	a	“read-only”	or	“write-only”	channel.

If	you’re	wondering	why	you	should	bother	limiting	the	direction	of	a	channel	when	it
doesn’t	save	any	resources	or	guarantee	an	issue,	the	reason	boils	down	to	simplicity	of
code	and	limiting	the	potential	for	panics.

By	now	we	know	that	sending	data	on	a	closed	channel	results	in	a	panic,	so	if	we	have	a
write-only	channel,	we’ll	never	accidentally	run	into	that	problem	in	the	wild.	Much	of
this	can	also	be	mitigated	with	WaitGroups,	but	in	this	case	that’s	a	sledgehammer	being
used	on	a	nail.	Consider	the	following	loop:

const	TOTAL_RANDOMS	=	100

func	concurrentNumbers(ch	chan	int)	{

		for	i	:=	0;	i	<	TOTAL_RANDOMS;	i++	{

				ch	<-	i

		}

}

func	main()	{

		ch	:=	make(chan	int)

		go	concurrentNumbers(ch)

		for	{

				select	{

						case	num	:=	<-	ch:

								fmt.Println(num)

								if	num	==	98	{

										close(ch)

								}

						default:

				}

		}

}

Since	we’re	abruptly	closing	our	ch	channel	one	digit	before	the	goroutine	can	finish,	any
writes	to	it	cause	a	runtime	error.

In	this	case,	we	are	invoking	a	read-only	command,	but	it’s	in	the	select	loop.	We	can
safeguard	this	a	bit	more	by	allowing	only	specific	actions	to	be	sent	on	unidirectional
channels.	This	application	will	always	work	up	to	the	point	where	in	the	channel	is	closed
prematurely,	one	shy	of	the	TOTAL_RANDOMS	constant.



Using	receive-only	or	send-only	channels
When	we	limit	the	direction	or	the	read/write	capability	of	our	channels,	we	also	reduce
the	potential	for	closed	channel	deadlocks	if	one	or	more	of	our	processes	inadvertently
sends	on	such	a	channel.

So	the	short	answer	to	the	question	“When	is	it	appropriate	to	use	a	unidirectional
channel?”	is	“Whenever	you	can.”

Don’t	force	the	issue,	but	if	you	can	set	a	channel	to	read/write	only,	it	may	preempt	issues
down	the	road.





Using	an	indeterminate	channel	type
One	trick	that	can	often	come	in	handy,	and	we	haven’t	yet	addressed,	is	the	ability	to
have	what	is	effectively	a	typeless	channel.

If	you’re	wondering	why	that	might	be	useful,	the	short	answer	is	concise	code	and
application	design	thrift.	Often	this	is	a	discouraged	tactic,	but	you	may	find	it	useful	from
time	to	time,	especially	when	you	need	to	communicate	one	or	more	disparate	concepts
across	a	single	channel.	The	following	is	an	example	of	an	indeterminate	channel	type:

package	main

import	(

		"fmt"

		"time"

)

func	main()	{

		acceptingChannel	:=	make(chan	interface{})

		go	func()	{

				acceptingChannel	<-	"A	text	message"

				time.Sleep(3	*	time.Second)

				acceptingChannel	<-	false

		}()

		for	{

				select	{

						case	msg	:=	<-	acceptingChannel:

								switch	typ	:=	msg.(type)	{

										case	string:

												fmt.Println("Got	text	message",typ)

										case	bool:

												fmt.Println("Got	boolean	message",typ)

												if	typ	==	false	{

														return

												}

										default:

										fmt.Println("Some	other	type	of	message")

								}

								

						default:

				}

		}

		<-	acceptingChannel

}





Using	Go	with	unit	testing
As	with	many	of	the	basic	and	intermediate	development	and	deployment	requirements
you	may	have,	Go	comes	with	a	built-in	application	for	handling	unit	tests.

The	basic	premise	behind	testing	is	that	you	create	your	package	and	then	create	a	testing
package	to	run	against	the	initial	application.	The	following	is	a	very	basic	example:

mathematics.go

package	mathematics

func	Square(x	int)	int	{

		

		return	x	*	3

}

mathematics_test.go

package	mathematics

import

(

		"testing"

)

func	Test_Square_1(t	*testing.T)	{

		if	Square(2)	!=	4	{

				t.Error("Square	function	failed	one	test")

		}

}

A	simple	Go	test	in	that	subdirectory	will	give	you	the	response	you’re	looking	for.	While
this	was	admittedly	simple—and	purposefully	flawed—you	can	probably	see	how	easy	it
is	to	break	apart	your	code	and	test	it	incrementally.	This	is	enough	to	do	very	basic	unit
tests	out	of	the	box.

Correcting	this	would	then	be	fairly	simple—the	same	test	would	pass	on	the	following
code:

func	Square(x	int)	int	{

		

		return	x	*	x

}

The	testing	package	is	somewhat	limited;	however,	as	it	provides	basic	pass/fails	without
the	ability	to	do	assertions.	There	are	two	third-party	packages	that	can	step	in	and	help	in
this	regard,	and	we’ll	explore	them	in	the	following	sections.



GoCheck
GoCheck	extends	the	basic	testing	package	primarily	by	augmenting	it	with	assertions
and	verifications.	You’ll	also	get	some	basic	benchmarking	utility	out	of	it	that	works	a
little	more	fundamentally	than	anything	you’d	need	to	engineer	using	Go.

Tip
For	more	details	on	GoCheck	visit	http://labix.org/gocheck	and	install	it	using	go	get
gopkg.in/check.v1.

http://labix.org/gocheck


Ginkgo	and	Gomega
Unlike	GoCheck,	Ginkgo	(and	its	dependency	Gomega)	takes	a	different	approach	to
testing,	utilizing	the	behavior-driven	development	(BDD)	model.	Behavior-driven
development	is	a	general	model	for	making	sure	your	application	does	what	it	should	at
every	step,	and	Ginkgo	formalizes	that	into	some	easily	parseable	properties.

BDD	tends	to	complement	test-driven	development	(for	example,	unit	testing)	rather	than
replacement.	It	seeks	to	answer	a	few	critical	questions	about	the	way	people	(or	other
systems)	will	interact	with	your	application.	In	that	sense,	we’ll	generally	describe	a
process	and	what	we	expect	from	that	process	in	fairly	human-friendly	terms.	The
following	is	a	short	snippet	of	such	an	example:

Describe("receive	new	remote	TCP	connection",	func()	{

				Context("user	enters	a	number",	func()	{

								It("should	be	an	integer",	func()	{

								})

				})

})

This	allows	testing	to	be	as	granular	as	unit	testing,	but	also	expands	the	way	we	handle
application	usage	in	verbose	and	explicit	behaviors.

If	BDD	is	something	you	or	your	organization	is	interested	in,	this	is	a	fantastic,	mature
package	for	implementing	deeper	unit	testing.

Tip
For	more	information	on	Ginkgo	go	to	https://github.com/onsi/ginkgo	and	install	it	using
go	get	github.com/onsi/ginkgo/ginkgo.

For	more	information	on	dependency,	refer	to	go	get	github.com/onsi/gomega.

https://github.com/onsi/ginkgo




Using	Google	App	Engine
If	you’re	unfamiliar	with	Google	App	Engine,	the	short	version	is	it’s	a	cloud	environment
that	allows	for	simple	building	and	deployment	of	Platform-As-A-Service	(paas)
solutions.

Compared	to	a	lot	of	similar	solutions,	Google	App	Engine	allows	you	to	build	and	test
your	applications	in	a	very	simple	and	straightforward	way.	Google	App	Engine	allows
you	to	write	and	deploy	in	Python,	Java,	PHP,	and	of	course,	Go.

For	the	most	part,	Google	App	Engine	provides	a	standard	Go	installation	that	makes	it
easy	to	dovetail	off	of	the	http	package.	But	it	also	gives	you	a	few	noteworthy	additional
packages	that	are	unique	to	Google	App	Engine	itself:

Package Description

appengine/memcache This	provides	a	distributed	memcache	installation	unique	to	Google	App	Engine

appengine/mail This	allows	you	to	send	e-mails	through	an	SMTP-esque	platform

appengine/log Given	your	storage	may	be	more	ephemeral	here,	it	formalizes	a	cloud	version	of	the	log

appengine/user This	opens	both	identity	and	OAuth	capabilities

appengine/search This	gives	your	application	the	power	of	Google	search	on	your	own	data	via	datastore

appengine/xmpp This	provides	Google	Chat-like	capabilities

appengine/urlfetch This	is	a	crawler	functionality

appengine/aetest This	extends	unit	testing	for	Google	App	Engine

While	Go	is	still	considered	beta	for	Google	App	Engine,	you	can	expect	that	if	anyone
was	able	to	competently	deploy	it	in	a	cloud	environment,	it	would	be	Google.





Utilizing	best	practices
The	wonderful	thing	with	Go	when	it	comes	to	best	practices	is	that	even	if	you	don’t
necessarily	do	everything	right,	either	Go	will	yell	at	you	or	provide	you	with	the	tools
necessary	to	fix	it.

If	you	attempt	to	include	code	and	not	use	it,	or	if	you	attempt	to	initialize	a	variable	and
not	use	it,	Go	will	stop	you.	If	you	want	to	clean	up	your	code’s	formatting,	Go	enables	it
with	go	fmt.



Structuring	your	code
One	of	the	easiest	things	you	can	do	when	building	a	package	from	scratch	is	to	structure
your	code	directories	in	an	idiomatic	way.	The	standard	for	a	new	package	would	look
something	like	the	following	code:

/projects/

		thisproject/

				bin/

				pkg/

				src/

						package/

								mypackage.go

Setting	up	your	Go	code	like	this	is	not	just	helpful	for	your	own	organization,	but	allows
you	to	distribute	your	package	more	easily.



Documenting	your	code
For	anyone	who	has	worked	in	a	corporate	or	collaborative	coding	environment,
documentation	is	sacrosanct.	As	you	may	recall	earlier,	using	the	godoc	command	allows
you	to	quickly	get	information	about	a	package	at	the	command	line	or	via	an	ad	hoc
localhost	server.	The	following	are	the	two	basic	ways	you	may	use	godoc:

Using	godoc Description

godoc	fmt This	brings	fmt	documentation	to	the	screen

godoc	-http=:3000 This	hosts	the	documentation	on	port	:3030

Go	makes	it	super	easy	to	document	your	code,	and	you	absolutely	should.	By	simply
adding	single-line	comments	above	each	identifier	(package,	type,	or	function),	you’ll
append	that	to	the	contextual	documentation,	as	shown	in	the	following	code:

//	A	demo	documentation	package

package	documentation

//	The	documentation	struct	object

//	Chapter	int	represents	a	document's	chapter

//	Content	represents	the	text	of	the	documentation

type	Documentation	struct	{

		Chapter	int

		Content	string

}

//		Display()	outputs	the	content	of	any	given	Document	by	chapter

func	(d	Documentation)	Display()	{

}

When	installed,	this	will	allow	anyone	to	run	the	godoc	documentation	on	your	package
and	get	as	much	detailed	information	as	you’re	willing	to	supply.

You’ll	often	see	more	robust	examples	of	this	in	the	Go	core	code	itself,	and	it’s	worth
reviewing	that	to	compare	your	style	of	documentation	to	Google’s	and	the	Go
community’s.



Making	your	code	available	via	go	get
Assuming	you’ve	kept	your	code	in	a	manner	consistent	with	the	organizational
techniques	as	listed	previously,	making	your	code	available	via	code	repositories	and	hosts
should	be	a	cinch.

Using	GitHub	as	the	standard,	here’s	how	we	might	design	our	third-party	application:

1.	 Make	sure	you	stick	to	the	previous	structural	format.
2.	 Keep	your	source	files	under	the	directory	structures	they’ll	live	in	remotely.	In	other

words,	expect	that	your	local	structure	will	reflect	the	remote	structure.
3.	 Perhaps	obviously,	commit	only	the	files	you	wish	to	share	in	the	remote	repository.

Assuming	your	repository	is	public,	anyone	should	be	able	to	get	(go	get)	and	then	install
(go	install)	your	package.



Keeping	concurrency	out	of	your	packages
One	last	point	that	might	seem	somewhat	out	of	place	given	the	context	of	the	book—if
you’re	building	separate	packages	that	will	be	imported,	avoid	including	concurrent	code
whenever	possible.

This	is	not	a	hard-and-fast	rule,	but	when	you	consider	potential	usage,	it	makes	sense—
let	the	main	application	handle	the	concurrency	unless	your	package	absolutely	needs	it.
Doing	so	will	prevent	a	lot	of	hidden	and	difficult-to-debug	behavior	that	may	make	your
library	less	appealing.





Summary
It	is	my	sincere	hope	that	you’ve	been	able	to	explore,	understand,	and	utilize	the	depths
of	Go’s	powerful	abilities	with	concurrency	through	this	book.

We’ve	gone	over	a	lot,	from	the	most	basic,	channel-free	concurrent	goroutines	to
complex	channel	types,	parallelism,	and	distributed	computing,	and	we’ve	brought	some
example	code	along	at	every	step.

By	now,	you	should	be	fully	equipped	to	build	anything	your	heart	desires	in	code,	in	a
manner	that	is	highly	concurrent,	fast,	and	error-free.	Beyond	that,	you	should	be	able	to
produce	well-formed,	properly-structured,	and	documented	code	that	can	be	used	by	you,
your	organization,	or	others	to	implement	concurrency	where	it	is	best	utilized.

Concurrency	itself	is	a	vague	concept;	it’s	one	that	means	slightly	different	things	to
different	people	(and	across	multiple	languages),	but	the	core	goal	is	always	fast,	efficient,
and	reliable	code	that	can	provide	performance	boosts	to	any	application.

Armed	with	a	full	understanding	of	both	the	implementation	of	concurrency	in	Go	as	well
as	its	inner	workings,	I	hope	you	continue	your	Go	journey	as	the	language	evolves	and
grows,	and	similarly	implore	you	to	consider	contributing	to	the	Go	project	itself	as	it
develops.
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