
ptg7987094

Download from Join eBook (www.joinebook.com)

ptg7987094

Core HTML5 Canvas

Download from Join eBook (www.joinebook.com)

ptg7987094

This page intentionally left blank

Download from Join eBook (www.joinebook.com)

ptg7987094

Core HTML5 Canvas

Graphics, Animation, and Game
Development

David Geary

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Download from Join eBook (www.joinebook.com)

ptg7987094

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382–3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Geary, David M.
 Core HTML5 canvas : graphics, animation, and game development / David
Geary.
 p. cm.
 Includes index.
 ISBN 978-0-13-276161-1 (pbk. : alk. paper)
 1. HTML (Document markup language) 2. Computer games—Programming. 3.
Computer animation. I. Title.
 QA76.76.H94C66 2012
 006.6'6—dc23
 2012006871

Copyright © 2012 David Geary

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-276161-1
ISBN-10: 0-13-276161-0
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, May 2012

Download from Join eBook (www.joinebook.com)

ptg7987094

xv

Preface

xxiii

Acknowledgments . ..

xxv
About the Author

1

Chapter 1: Essentials

1
The canvas Element ..

1.1
5Canvas Element Size vs. Drawing Surface Size1.1.1
7The Canvas API ...1.1.2
8Canvas Contexts . ..1.2
9The 2d Context ..1.2.1

11The WebGL 3d Context ..1.2.1.1
11Saving and Restoring Canvas State . ..1.2.2
12Canonical Examples in This Book . ..1.3
14Getting Started ..1.4
14Specifications . ..1.4.1
15Browsers . ..1.4.2
16Consoles and Debuggers1.4.3
18Performance . ..1.4.4
19Profiles and Timelines ...1.4.4.1
20jsPerf1.4.4.2
22Fundamental Drawing Operations . ..1.5
26Event Handling1.6
26Mouse Events ..1.6.1

26
Translating Mouse Coordinates to Canvas

1.6.1.1 Coordinates ...
31Keyboard Events ...1.6.2
33Touch Events ...1.6.3
33Saving and Restoring the Drawing Surface . ..1.7
36Using HTML Elements in a Canvas1.8
41Invisible HTML Elements . ..1.8.1

Contents

v
Download from Join eBook (www.joinebook.com)

ptg7987094

46Printing a Canvas ..1.9
51Offscreen Canvases ...1.10
53A Brief Math Primer ...1.11
54Solving Algebraic Equations ...1.11.1
54Trigonometry ...1.11.2
54Angles: Degrees and Radians ..1.11.2.1
55Sine, Cosine, and Tangent ..1.11.2.2
56Vectors ..1.11.3
57Vector Magnitude ..1.11.3.1
58Unit Vectors ..1.11.3.2
59Adding and Subtracting Vectors1.11.3.3
60The Dot Product of Two Vectors1.11.3.4
62Deriving Equations from Units of Measure1.11.4
64Conclusion ...1.12

65Chapter 2: Drawing

67The Coordinate System ..2.1
68The Drawing Model2.2
70Drawing Rectangles ..2.3
72Colors and Transparency ...2.4
76Gradients and Patterns ...2.5
76Gradients ..2.5.1
76Linear Gradients ..2.5.1.1
78Radial Gradients ..2.5.1.2
79Patterns ...2.5.2
83Shadows ...2.6
85Inset Shadows . ..2.6.1
88Paths, Stroking, and Filling ...2.7
93Paths and Subpaths ..2.7.1
94The Nonzero Winding Rule for Filling Paths2.7.1.1
95Cutouts ...2.7.2
98Cutout Shapes ..2.7.2.1

103Lines ..2.8
104Lines and Pixel Boundaries ...2.8.1
105Drawing a Grid2.8.2

Contentsvi

Download from Join eBook (www.joinebook.com)

ptg7987094

107Drawing Axes ..2.8.3
110Rubberband Lines ...2.8.4
117Drawing Dashed Lines ...2.8.5

118
Drawing Dashed Lines by Extending
CanvasRenderingContext2D ..

2.8.6

121Line Caps and Joins ..2.8.7
124Arcs and Circles ..2.9
124The arc() Method ..2.9.1
126Rubberband Circles ..2.9.2
127The arcTo() Method . ..2.9.3
130Dials and Gauges ..2.9.4
137Bézier Curves ...2.10
137Quadratic Curves ..2.10.1
141Cubic Curves ...2.10.2
144Polygons ...2.11
147Polygon Objects ...2.11.1
150Advanced Path Manipulation2.12
151Dragging Polygons ...2.12.1
158Editing Bézier Curves ...2.12.2
169Scrolling Paths into View ...2.12.3
170Transformations . ..2.13
171Translating, Scaling, and Rotating ...2.13.1
173Mirroring ...2.13.1.1
174Custom Transformations2.13.2
175Algebraic Equations for Transformations2.13.2.1
176Using transform() and setTransform()2.13.2.2

177
Translating, Rotating, and Scaling with transform()2.13.2.3
and setTransform() ..

179Shear ..2.13.2.4
181Compositing ..2.14
186The Compositing Controversy ...2.14.1
187The Clipping Region ..2.15
187Erasing with the Clipping Region ..2.15.1
194Telescoping with the Clipping Region2.15.2
198Conclusion ...2.16

viiContents

Download from Join eBook (www.joinebook.com)

ptg7987094

201Chapter 3: Text ..

202Stroking and Filling Text3.1
207Setting Font Properties ...3.2
210Positioning Text . ..3.3
210Horizontal and Vertical Positioning . ..3.3.1
214Centering Text ...3.3.2
215Measuring Text3.3.3
217Labeling Axes ..3.3.4
221Labeling Dials . ..3.3.5
223Drawing Text around an Arc . ..3.3.6
225Implementing Text Controls ...3.4
225A Text Cursor ..3.4.1
228Erasing . ..3.4.1.1
230Blinking3.4.1.2
232Editing a Line of Text in a Canvas . ..3.4.2
238Paragraphs ...3.4.3
242Creating and Initializing a Paragraph333...444...333...1

2224442
Positioning the Text Cursor in Response to Mouse2 Clicks ..

3
Inserting Text ...

3.4.3.3
244

New Lines ...
3.4.3.4

245
Backspace . ..

3.4.3.5
252

Conclusion

3.5

253Chapter 4: Images and Video ...

254Drawing Images ..4.1
255Drawing an Image into a Canvas4.1.1
257The drawImage() Method . ..4.1.2
259Scaling Images ...4.2
260Drawing Images outside Canvas Boundaries4.2.1
266Drawing a Canvas into a Canvas ...4.3
270Offscreen Canvases ...4.4
274Manipulating Images ...4.5
274Accessing Image Data ..4.5.1
279ImageData Objects . ..4.5.1.1

Contentsviii

Download from Join eBook (www.joinebook.com)

ptg7987094

280
Image Data Partial Rendering: putImageData’s Dirty

4.5.1.2 Rectangle ..
283Modifying Image Data4.5.2

285
Creating ImageData Objects with
createImageData() ..

4.5.2.1

286The Image Data Array4.5.2.1.1
292Image Data Looping Strategies4.5.2.2
293Filtering Images ...4.5.2.3
295Device Pixels vs. CSS Pixels, Redux4.5.2.4
299Image Processing Web Workers4.5.2.5
302Clipping Images ..4.6
306Animating Images ..4.7
309Animating with an Offscreen Canvas4.7.1
312Security ...4.8
313Performance ...4.9

314

33317

drawImage(HTMLImage) vs. drawImage(HTMLCanvas) vs.
4.9.1 putImageData() . ..

Drawing a Canvas vs. Drawing an Image, into a Canvas; 316
4.9.2 Scaled vs. Unscaled . ..

317
Looping over Image Data ..

4.9.3
Avoid Accessing Object Properties in the Loop: Store

4.9.3.1 Properties in Local Variables Instead
20

Loop over Every Pixel, Not over Every Pixel Value ..
4.9.3.2

Looping Backwards and Bit-Shifting Are Crap 320
4.9.3.3 Shoots

321

Don’t Call getImageData() Repeatedly for Small
4.9.3.4 Amounts of Data ...

321A Magnifying Glass . ..4.10
325Using an Offscreen Canvas4.10.1
326Accepting Dropped Images from the File System4.10.2
328Video Processing4.11
329Video Formats4.11.1
330Converting Formats ..4.11.1.1
331Playing Video in a Canvas4.11.2
333Processing Videos4.11.3
337Conclusion ...4.12

ixContents

Download from Join eBook (www.joinebook.com)

ptg7987094

339Chapter 5: Animation ..

340The Animation Loop ..5.1

343
The requestAnimationFrame() Method: Letting the Browser5.1.1
Set the Frame Rate ..

345Firefox ..5.1.1.1
346Chrome ..5.1.1.2
348Internet Explorer ...5.1.2
348A Portable Animation Loop ..5.1.3
358Calculating Frame Rates ..5.2
359Scheduling Tasks at Alternate Frame Rates ..5.3
360Restoring the Background ...5.4
361Clipping ..5.4.1
363Blitting ..5.4.2
364Double Buffering ...5.5
367Time-Based Motion ..5.6
370Scrolling the Background ..5.7
377Parallax ...5.8
383User Gestures ..5.9
385Timed Animations ..5.10
385Stopwatches5.10.1
389Animation Timers ...5.10.2
390Animation Best Practices5.11
391Conclusion ...5.12

393Chapter 6: Sprites ...

394Sprites Overview6.1
398Painters ...6.2
398Stroke and Fill Painters ..6.2.1
404Image Painters ...6.2.2
406Sprite Sheet Painters ...6.2.3
411Sprite Behaviors ..6.3
412Combining Behaviors ...6.3.1
416Timed Behaviors6.3.2
417Sprite Animators ...6.4
424A Sprite-Based Animation Loop ...6.5
425Conclusion ...6.6

Contentsx

Download from Join eBook (www.joinebook.com)

ptg7987094

427Chapter 7: Physics ..

428Gravity ...7.1
428Falling ...7.1.1
432Projectile Trajectories ...7.1.2
445Pendulums ...7.1.3
450Warping Time ..7.2
456Time-Warp Functions ...7.3
458Warping Motion ..7.4
461Linear Motion: No Acceleration7.4.1
463Ease In: Gradually Accelerate ...7.4.2
465Ease Out: Gradually Decelerate ..7.4.3
468Ease In, Then Ease Out ...7.4.4
469Elasticity and Bouncing7.4.5
473Warping Animation7.5
482Conclusion ...7.6

483Chapter 8: Collision Detection ...

483Bounding Areas ..8.1
484Rectangular Bounding Areas ..8.1.1
485Circular Bounding Areas8.1.2
488Bouncing Off Walls8.2
490Ray Casting ..8.3
494Fine-Tuning ...8.3.1

444999555
The Separating Axis Theorem (SAT) and Minimum Translation Vector8.4 (MTV)

Detecting Collisions with the SAT ...
8.4.1

500
Projection Axes ...

8.4.1.1
503

Projections
8.4.1.2

504
Shapes and Polygons ..

8.4.1.3
511

Collisions between Polygons
8.4.1.4

516
Circles . ..

8.4.1.5
521

Images and Sprites ..
8.4.1.6
Reacting to Collisions with the Minimum Translation 526

8.4.2 Vector ...
526

The MTV
8.4.2.1

531
Sticking . ..

8.4.2.2

xiContents

Download from Join eBook (www.joinebook.com)

ptg7987094

537Bouncing ...8.4.2.3
541Conclusion ...8.5

543Chapter 9: Game Development ..

544A Game Engine9.1
545The Game Loop9.1.1
551Pause ..9.1.1.1
553Time-Based Motion ...9.1.1.2
554Loading Images ...9.1.2
557Multitrack Sound ..9.1.3
558Keyboard Events9.1.4
560High Scores . ..9.1.5
561The Game Engine Listing ..9.1.6
572The Ungame ..9.2
573The Ungame’s HTML ...9.2.1
576The Ungame’s Game Loop ..9.2.2
579Loading the Ungame ..9.2.3
581Pausing ...9.2.4
583Auto-Pause ...9.2.4.1
584Key Listeners ...9.2.5
585Game Over and High Scores ...9.2.6
589A Pinball Game9.3
590The Game Loop9.3.1
593The Ball9.3.2
594Gravity and Friction ...9.3.3
595Flipper Motion ..9.3.4
597Handling Keyboard Events ...9.3.5
601Collision Detection ...9.3.6
601SAT Collision Detection ..9.3.6.1
609The Dome . ..9.3.6.2
611Flipper Collision Detection ..9.3.6.3
614Conclusion ...9.4

615Chapter 10: Custom Controls ..

617Rounded Rectangles ...10.1
625Progress Bars ...10.2

Contentsxii

Download from Join eBook (www.joinebook.com)

ptg7987094

631Sliders ..10.3
643An Image Panner ..10.4
655Conclusion ...10.5

657Chapter 11: Mobile ..

659The Mobile Viewport ...11.1
661The viewport Metatag ..11.1.1
666Media Queries ...11.2
666Media Queries and CSS11.2.1
668Reacting to Media Changes with JavaScript11.2.2
671Touch Events ...11.3
672Touch Event Objects ...11.3.1
672Touch Lists11.3.2
673Touch Objects ..11.3.3
674Supporting Both Touch and Mouse Events11.3.4
675Pinch and Zoom . ..11.3.5
677iOS511.4
678Application Icons and Startup Images11.4.1

Media Queries for iOS5 Application Icons and Startup 679
11.4.2 Images . ..

680
Fullscreen with No Browser Chrome ..

11.4.3
681

Application Status Bar ...
11.4.4

682
A Virtual Keyboard ..

11.5
683A Canvas-Based Keyboard Implementation11.5.1
689The Keys ..11.5.1.1
693The Keyboard ...11.5.1.2
701Conclusion ...11.6

703Index . ..

xiiiContents

Download from Join eBook (www.joinebook.com)

ptg7987094

This page intentionally left blank

Download from Join eBook (www.joinebook.com)

ptg7987094

In the summer of 2001, after 15 years of developing graphical user interfaces and
graphics-intensive applications, I read a best-selling book about implementing
web applications by someone I did not know—Jason Hunter—but whom, unbe-
knownst to me, would soon become a good friend on the No Fluff Just Stuff
(NFJS) tour.

When I finished Jason’s Servlets book,1 I put it in my lap and stared out the win-
dow. After years of Smalltalk, C++, and Java, and after writing a passionate
1622 pages for Graphic Java 2: Swing,2 I thought to myself, am I really going to
implement user interfaces with print statements that generate HTML? Unfortunately,
I was.

From then on, I soldiered on through what I consider the Dark Ages of software
development. I was the second Apache Struts committer and I invented the Struts
Template Library, which ultimately became the popular Tiles project. I spent
more than six years on the JavaServer Faces (JSF) Expert Group, spoke about
server-side Java at more than 120 NFJS symposiums and many other conferences,
and coauthored a book on JSF.3 I got excited about Google Web Toolkit and Ruby
on Rails for a while, but in the end the Dark Ages was mostly concerned with the
dull business of presenting forms to users on the client and processing them on
the server, and I was never again able to capture that passion that I had for
graphics and graphical user interfaces.

In the summer of 2010, with HTML5 beginning its inexorable rise in popularity,
I came across an article about Canvas, and I knew salvation was nigh. I immedi-
ately dropped everything in my professional life and devoted myself fulltime to
write the best Canvas book that I could. From then on, until the book was finalized
in March 2012, I was entirely immersed in Canvas and in this book. It’s by far the
most fun I’ve ever had writing a book.

Canvas gives you all the graphics horsepower you need to implement everything
from word processors to video games. And, although performance varies on
specific platforms, in general, Canvas is fast, most notably on iOS5, which

1. Java Servlet Programming, 2001, by Jason Hunter with William Crawford, published
by O’Reilly.

2. Graphic Java 2, Volume 2, Swing, 1999, by David Geary, published by Prentice Hall.
3. Core JavaServer™ Faces, Third Edition, 2010, by David Geary and Cay Horstmann,

published by Prentice Hall.

Preface

xv
Download from Join eBook (www.joinebook.com)

ptg7987094

hardware accelerates Canvas in Mobile Safari. Browser vendors have also
done a great job adhering to the specification so that well-written Canvas
applications run unmodified in any HTML5-compliant browser with only minor
incompatibilities.

HTML5 is the Renaissance that comes after the Dark Ages of software develop-
ment, and Canvas is arguably the most exciting aspect of HTML5. In this book I
dive deeply into Canvas and related aspects of HTML5, such as the Animation
Timing specification, to implement real-world applications that run across desktop
browsers and mobile devices.

Reading This Book
I wrote this book so that in the Zen tradition you can read it without reading.

I write each chapter over the course of months, constantly iterating over material
without ever writing a word. During that time I work on outlines, code listings,
screenshots, tables, diagrams, itemized lists, notes, tips, and cautions. Those
things, which I refer to as scaffolding, are the most important aspects of this book.
The words, which I write only at the last possible moment after the scaffolding
is complete, are meant to provide context and illustrate highlights of the surround-
ing scaffolding. Then I iterate over the words, eliminating as many of them as I can.

By focusing on scaffolding and being frugal with words, this book is easy to read
without reading. You can skim the material, concentrating on the screenshots,
code listings, diagrams, tables, and other scaffolding to learn a great deal of what
you need to know on any given topic. Feel free to consider the words as
second-class citizens, and, if you wish, consult them only as necessary.

An Overview of This Book
This book has two parts. The first part, which spans the first four chapters of the
book and is nearly one half of the book, covers the Canvas API, showing you how
to draw shapes and text into a canvas, and draw and manipulate images. The last
seven chapters of the book show you how to use that API to implement animations
and animated sprites, create physics simulations, detect collisions, and develop
video games. The book ends with a chapter on implementing custom controls,
such as progress bars, sliders, and image panners, and a chapter that shows you
how to create Canvas-based mobile applications.

The first chapter—Essentials—introduces the canvas element and shows you how
to use it in web applications. The chapter contains a short section on getting

Prefacexvi

Download from Join eBook (www.joinebook.com)

ptg7987094

started with HTML5 development in general, briefly covering browsers, consoles,
debuggers, profilers, and timelines. The chapter then shows you how to implement
Canvas essentials: drawing into a canvas, saving and restoring Canvas parameters
and the drawing surface itself, printing a canvas, and an introduction to offscreen
canvases. The chapter concludes with a brief math primer covering basic algebra,
trigonometry, vector mathematics, and deriving equations from units of measure.

The second chapter—Drawing—which is the longest chapter in the book, provides
an in-depth examination of drawing with the Canvas API, showing you how to
draw lines, arcs, curves, circles, rectangles, and arbitrary polygons in a canvas,
and how to fill them with solid colors, gradients, and patterns. The chapter goes
beyond the mere mechanics of drawing, however, by showing you how to imple-
ment useful, real-world examples of drawing with the Canvas API, such as
drawing temporary rubber bands to dynamically create shapes, dragging shapes
within a canvas, implementing a simple retained-mode graphics subsystem that
keeps track of polygons in a canvas so users users can edit them, and using the
clipping region to erase shapes without disturbing the Canvas background
underneath.

The third chapter—Text—shows you how to draw and manipulate text in a canvas.
You will see how to stroke and fill text, set font properties, and position text within
a canvas. The chapter also shows you how to implement your own text controls
in a canvas, complete with blinking text cursors and editable paragraphs.

The fourth chapter—Images and Video—focuses on images, image manipulation,
and video processing. You’ll see how to draw and scale images in a canvas, and
you’ll learn how to manipulate images by accessing the color components of each
pixel. You will also see more uses for the clipping region and how to animate
images. The chapter then addresses security and performance considerations,
before ending with a section on video processing.

The fifth chapter—Animation—shows you how to implement smooth animations
with a method named requestAnimationFrame() that’s defined in a W3C specifi-
cation titled Timing control for script-based animations. You will see how to calculate
an animation’s frame rate and how to schedule other activities, such as
updating an animation’s user interface at alternate frame rates. The chapter shows
you how to restore the background during an animation with three different
strategies and discusses the performance implications of each. The chapter also
illustrates how to implement time-based motion, scroll an animation’s background,
use parallax to create the illusion of 3D, and detect and react to user gestures
during an animation. The chapter concludes with a look at timed animations and
the implementation of a simple animation timer, followed by a discussion of
animation best practices.

xviiPreface

Download from Join eBook (www.joinebook.com)

ptg7987094

The sixth chapter—Sprites—shows you how to implement sprites (animated ob-
jects) in JavaScript. Sprites have a visual representation, often an image, and you
can move them around in a canvas and cycle through a set of images to animate
them. Sprites are the fundamental building block upon which games are built.

The seventh chapter—Physics—shows you how to simulate physics in your ani-
mations, from modeling falling objects and projectile trajectories to swinging
pendulums. The chapter also shows you how to warp both time and motion in
your animations to simulate real-world movement, such as the acceleration expe-
rienced by a sprinter out of the blocks (ease-in effect) or the deceleration of a
braking automobile (ease-out).

Another essential aspect of most games is collision detection, so the eighth
chapter in the book—Collision Detection—is devoted to the science of detecting
collisions between sprites. The chapter begins with simple collision detection
using bounding boxes and circles, which is easy to implement but not very reliable.
Because simple collision detection is not reliable under many circumstances, much
of this chapter is devoted to the Separating Axis Theorem, which is one of the
best ways to detect collisions between arbitrary polygons in both 2D and 3D;
however, the theorem is not for the mathematically faint of heart, so this chapter
goes to great lengths to present the theorem in layman terms.

The ninth chapter—Game Development—begins with the implementation of a
simple but effective game engine that provides support for everything from
drawing sprites and maintaining high scores to time-based motion and multitrack
sound. The chapter then discusses two games. The first game is a simple Hello
World type of game that illustrates how to use the game engine and provides a
convenient starting point for a game. It also shows you how to implement common
aspects of most games such as asset management, heads-up displays, and a user
interface for high scores. The second game is an industrial-strength pinball game
that draws on much of the previous material in the book and illustrates complex
collision detection in a real-world game.

Many Canvas-based applications require custom controls, so the tenth chapter—
Custom Controls—teaches you how to implement them. The chapter discusses
implementing custom controls in general and then illustrates those techniques
with four custom controls: a rounded rectangle, a progress bar, a slider, and an
image panner.

The final chapter of this book—Mobile—focuses on implementing Canvas-based
mobile applications. You’ll see how to control the size of your application’s
viewport so that your application displays properly on mobile devices, and how
to account for different screen sizes and orientations with CSS3 media queries.

Prefacexviii

Download from Join eBook (www.joinebook.com)

ptg7987094

You’ll also see how to make your Canvas-based applications indistinguishable
from native applications on iOS5 by making them run fullscreen and fitting them
with desktop icons and startup screens. The chapter concludes with the
implementation of a keyboard for iOS5 applications that do not receive text
through a text field.

Prerequisites
To make effective use of this book you must have more than a passing familiarity
with JavaScript, HTML, and CSS. I assume, for example, that you already know
how to implement objects with JavaScript’s prototypal inheritance, and that you
are well versed in web application development in general.

This book also utilizes some mathematics that you may have learned a long time
ago and forgotten, such as basic algebra and trigonometry, vector math, and
deriving equations from units of measure. At the end of the first chapter you will
find a short primer that covers all those topics.

The Book’s Code
All the code in this book is copyrighted by the author and is available for use
under the license distributed with the code. That license is a modified MIT
license that lets you do anything you want with the code, including using it in
software that you sell; however, you may not use the code to create educational
material, such as books, instructional videos, or presentations. See the license that
comes with the code for more details.

When implementing the examples, I made a conscious decision to keep comments
in code listings to a bare minimum. Instead, I made the code itself as readable as
possible; methods average about five lines of code so they are easy to understand.

I also adhered closely to Douglas Crawford’s recommendations in his excellent
book JavaScript, The Good Parts.4 For example, all function-scoped variables are
always declared at the top of the function, variables are declared on a line of their
own, and I always use === and its ilk for equality testing.

Finally, all the code listings in this book are color coded. Function calls are dis-
played in blue, so they stand out from the rest of the listing. As you scan
listings, pay particular attention to the blue function calls; after all, function calls
are the verbs of JavaScript, and those verbs alone reveal most of what you need
to know about the inner workings of any particular example.

4. JavaScript, The Good Parts, 2008, by Douglas Crawford, published by O’Reilly.

xixPreface

Download from Join eBook (www.joinebook.com)

ptg7987094

The Future of Canvas and This Book
The HTML5 APIs are constantly evolving, and much of that evolution consists
of new features. The Canvas specification is no exception; in fact, this book was
just days from going to the printer when the WHATWG Canvas specification
was updated to include several new features:

• An ellipse() method that creates elliptical paths
• Two methods, getLineDash() and setLineDash(), and an attribute

lineDashOffset used for drawing dashed lines
• An expanded TextMetrics object that lets you determine the exact bounding

box for text
• A Path object
• A CanvasDrawingStyles object
• Extensive support for hit regions

At that time, no browsers supported the new features, so it was not yet possible
to write code to test them.

Prior the March 26, 2012 update to the specification, you could draw arcs and
circles with Canvas, but there was no explicit provision for drawing ellipses.
Now, in addition to arcs and circles, you can draw ellipses with the new ellipse()
method of the Canvas 2d context. Likewise, the context now explicitly supports
drawing dashed lines.

The TextMetrics object initially only reported one metric: the width of a string.
However, with the March 26, 2012 update to the specification, you can now de-
termine both the width and height of the rectangle taken up by a string in a canvas.
That augmentation of the TextMetrics object will make it much easier, and more
efficient, to implement Canvas-based text controls.

In addition to ellipses and an improved TextMetrics object, the updated specifi-
cation has also added Path and CanvasDrawingStyles methods. Prior to the up-
dated specification, there was no explicit mechanism for storing paths or drawing
styles. Now, not only are there objects that represent those abstractions, but many
of the Canvas 2d context methods have been duplicated to also take a Path object.
For example, you stroke a context’s path by invoking context.stroke(), which
strokes the current path; however, the context now has a method stroke(Path)
and that method strokes the path you send to the method instead of the context’s
current path. When you modify a path with Path methods such as addText(),
you can specify a CanvasDrawingStyle object, which is used by the path, in this
case to add text to the path.

Prefacexx

Download from Join eBook (www.joinebook.com)

ptg7987094

The updated specification contains extensive support for hit regions. A hit region
is defined by a path, and you can associate an optional mouse cursor and accessi-
bility parameters, such as an Accessible Rich Internet Application (ARIA) role
and a label, with a hit region. A single canvas can have multiple hit regions.
Among other things, hit regions will make it easier and more efficient to implement
collision detection and improve accessiblity.

Finally, both the WHATWG and W3C specifications have included two Canvas
context methods for accessibility, so that applications can draw focus rings around
the current path, letting users navigate with the keyboard in a Canvas. That
functionality was not part of the March 26, 2012 update to the specification, and
in fact, has been in the specification for some time; however, while the book was
being written, no browser vendors supported the feature, so it is not covered in
this book.

As the Canvas specification evolves and browser vendors implement new features,
this book will be updated on a regular basis. In the meantime, you can read about
new Canvas features and preview the coverage of those features in the next edition
of this book, at corehtml5canvas.com.

The Companion Website
This book’s companion website is http://corehtml5canvas.com, where you can
download the book’s code, run featured examples from the book, and find other
HTML5 and Canvas resources.

xxiPreface

Download from Join eBook (www.joinebook.com)

http://corehtml5canvas.com

ptg7987094

This page intentionally left blank

Download from Join eBook (www.joinebook.com)

ptg7987094

Writing books is a team sport, and I was lucky to have great teammates for
this book.

I’d like to start by thanking my longtime editor and good friend Greg Doench,
who believed wholeheartedly in this book from the moment I proposed it and who
gave me the latitude to write the book exactly as I wanted. Greg also oversaw the
book from the moment of conception until, and after, it went to print. I couldn’t
ask for more.

I’m also fortunate that Greg comes with a great team of his own. Julie Nahil did
a wonderful job of managing production and keeping everything on track, and
Alina Kirsanova took my raw docbook XML and turned it into the beautiful color
book you hold in your hands. Alina also did a superb job proofreading, weeding
out small errors and inconsistencies.

Once again I was thrilled to have Mary Lou Nohr copy edit this book. Mary Lou
is the only copy editor I’ve had in 15 years of writing books, and she not only
makes each book better than I possibly could, but she continues to teach me the
craft of writing.

Technical reviewers are vital to the success of any technical book, so I actively
recruit reviewers who I think have an appropriate skill set to make significant
contributions. For this book I was fortunate to land an excellent group of reviewers
who helped me mold, shape, and polish the book’s material. First, I’d like to
thank Philip Taylor for being one of the most knowledgeable and thorough re-
viewers that I’ve ever had. Philip, who has implemented nearly 800 Canvas test
cases—see http://philip.html5.org/tests/canvas/suite/tests—sent me pages of
insightful comments for each chapter that only someone who knows the
most intimate Canvas nuances could provide. Philip went way beyond the call
of duty and single-handedly made this a much better book.

Next, I’d like to thank Scott Davis at thirstyhead.com, one of the foremost
experts in HTML5 and mobile web application development. Scott has spoken
at many conferences on HTML5 and mobile development, cofounded the HTML5
Denver Users Group, and taught mobile development to Yahoo! developers. Like
Philip, Scott went way beyond the call of duty by offering excellent suggestions
in many different areas of the book. I’m deeply indebted to Scott for delaying the
publishing of this book for a full three months, while I entirely rewrote nearly a
quarter of the book as the result of his scathing review. That rewrite took this
book to the next level.

Acknowledgments

xxiii
Download from Join eBook (www.joinebook.com)

http://philip.html5.org/tests/canvas/suite/tests

ptg7987094

Ilmari Heikkinen, of Runfield fame (http://fhtr.org/runfield/runfield), provided
some great insights for the Animation, Sprites, Physics, and Collision Detection
chapters. Ted Neward, Dion Almaer, Ben Galbraith, Pratik Pratel, Doris Chen,
Nate Schutta, and Brian Sam-Bodden also provided great review comments.

I’d also like to thank Mathias Bynens, the creator of jsperf.com, for giving me
permission to use screenshots from that website.

I would like to acknowledge MJKRZAK for the sprite sheet used in the Physics
chapter. That sprite sheet was downloaded from the public domain section of the
People’s Sprites website. I would also like to thank Ilmari Heikkinen for giving
me permission to use his sky image for the parallax example in the Animation
chapter. Some images in Sprites chapter are from the popular open source
Replica Island game.

Finally, I’d like to thank Hiroko, Gaspé, and Tonka for enduring over the past
year and a half while this book utterly consumed my life.

Acknowledgmentsxxiv

Download from Join eBook (www.joinebook.com)

http://fhtr.org/runfield/runfield

ptg7987094

David Geary is a prominent author, speaker, and consultant, who began imple-
menting graphics-based applications and interfaces with C and Smalltalk in the
1980s. David taught C++ and Object-Oriented Software Development for eight
years at Boeing, and was a software engineer at Sun Microsystems from 1994–1997.
He is the author of eight Java books, including two best-selling books on the Java
component frameworks, Swing and JavaServer Faces (JSF). David’s Graphic
Java 2: Swing is the all-time best-selling Swing book, and Core JavaServer™ Faces,
which David wrote with Cay Horstmann, is the best-selling book on JSF.

David is a passionate and prolific public speaker who has spoken at hundreds of
conferences world-wide. He spoke on the No Fluff Just Stuff tour for six years,
speaking at over 120 symposiums, and he is a three-time JavaOne Rock Star.

In 2011, David and Scott Davis co-founded the HTML5 Denver Meetup
group—www.meetup.com/HTML5-Denver-Users-Group—which had grown
to over 500 members when this book was published in 2012.

David can be found on Twitter (@davidgeary) and at the companion website for
this book, http://corehtml5canvas.com.

xxv

About the Author

Download from Join eBook (www.joinebook.com)

www.meetup.com/HTML5-Denver-Users-Group
http://corehtml5canvas.com

ptg7987094

This page intentionally left blank

Download from Join eBook (www.joinebook.com)

ptg7987094

In 1939, Metro-Goldwyn-Mayer Studios released a film that, according to the
American Library of Congress, was destined to become the most watched film
in history. The Wizard of Oz is the story of a young girl named Dorothy and her
dog Toto, who are transported by a violent tornado from Kansas in the central
United States to the magical land of Oz.

The film begins in Kansas and is shot in a bland and dreary black-and-white.
When Dorothy and Toto arrive in the land of Oz however, the film bursts into
vibrant color, and the adventure begins.

For more than a decade, software developers have been implementing bland and
dreary web applications that do little more than present bored-to-death users
with a seemingly unending sequence of banal forms. Finally, HTML5 lets
developers implement exciting desktop-like applications that run in the browser.

In this HTML5 land of Oz, we will use the magical canvas element to do amazing
things in a browser. We will implement image panning, as shown in Figure 1.1;
an interactive magnifying glass; a paint application that runs in any self-
respecting browser and that also runs on an iPad; several animations and
games, including an industrial-strength pinball game; image filters; and many
other web applications that in another era were almost entirely the realm of Flash.

Let’s get started.

1.1 The canvas Element
The canvas element is arguably the single most powerful HTML5 element,
although, as you’ll see shortly, its real power lies in the Canvas context, which

1CHAPTER

Essentials

1
Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 1.1 Canvas offers a powerful graphics API

you obtain from the canvas element itself. Figure 1.2 shows a simple use of the
canvas element and its associated context.

Figure 1.2 Hello canvas

Chapter 1 Essentials2

Download from Join eBook (www.joinebook.com)

ptg7987094

The application shown in Figure 1.2 simply displays a string, approximately
centered in the canvas itself. The HTML for that application is shown in
Example 1.1.

The HTML in Example 1.1 uses a canvas element and specifies an identifier for the
element and the element’s width and height. Notice the text in the body of
the canvas element. That text is known as the fallback content, which the browser
displays only if it does not support the canvas element.

Besides those two elements, the HTML in Example 1.1 uses CSS to set the appli-
cation’s background color and some attributes for the canvas element itself. By
default, a canvas element’s background color matches the background color of
its parent element, so the CSS sets the canvas element’s background color to
opaque white to set it apart from the application’s light gray background.

The HTML is straightforward and not very interesting. As is typically the case
for Canvas-based applications, the interesting part of the application is its
JavaScript. The JavaScript code for the application shown in Figure 1.2 is listed
in Example 1.2.

Example 1.1 example.html

<!DOCTYPE html>
<html>

<head>
<title>A Simple Canvas Example</title>

<style>
 body {

background: #dddddd;
}
#canvas {

margin: 10px;
padding: 10px;
background: #ffffff;
border: thin inset #aaaaaa;

}
</style>

</head>

<body>
<canvas id='canvas' width='600' height='300'>

 Canvas not supported
</canvas>

<script src='example.js'></script>
</body>

</html>

31.1 The canvas Element

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 1.2 example.js

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d');

context.font = '38pt Arial';
context.fillStyle = 'cornflowerblue';
context.strokeStyle = 'blue';

context.fillText('Hello Canvas', canvas.width/2 - 150,
 canvas.height/2 + 15);

context.strokeText('Hello Canvas', canvas.width/2 - 150,
 canvas.height/2 + 15);

The JavaScript in Example 1.2 employs a recipe that you will use in your
Canvas-based applications:

1. Use document.getElementById() to get a reference to a canvas.
2. Call getContext('2d') on the canvas to get the graphics context (note: the

‘d’ in ‘2d’ must be lowercase).
3. Use the context to draw in the canvas.

After obtaining a reference to the canvas’s context, the JavaScript sets the context’s
font, fillStyle, and strokeStyle attributes and fills and strokes the text that
you see in Figure 1.2. The fillText() method fills the characters of the text using
fillStyle, and strokeText() strokes the outline of the characters with
strokeStyle. The fillStyle and strokeStyle attributes can be a CSS color, a
gradient, or a pattern. We briefly discuss those attributes in Section 1.2.1, “The
2d Context,” on p. 9 and take a more in-depth look at both the attributes and
methods in Chapter 2.

The fillText() and strokeText() methods both take three arguments: the text
and an (x, y) location within the canvas to display the text. The JavaScript shown
in Example 1.2 approximately centers the text with constant values, which is not
a good general solution for centering text in a canvas. In Chapter 3, we will look
at a better way to center text.

CAUTION: The suffix px is not valid for canvas width and height

Although it’s widely permitted by browsers that support Canvas, the px suffix for
the canvas width and height attributes is not technically allowed by the Canvas
specification. The values for those attributes, according to the specification, can
only be non-negative integers.

Chapter 1 Essentials4

Download from Join eBook (www.joinebook.com)

ptg7987094

NOTE: The default canvas size is 300 × 150 screen pixels

By default, the browser creates canvas elements with a width of 300 pixels and
a height of 150 pixels.You can change the size of a canvas element by specifying
the width and height attributes.

You can also change the size of a canvas element with CSS attributes; however,
as you will see in the next section, changing the width and height of a canvas
element may have unwanted consequences.

1.1.1 Canvas Element Size vs. Drawing Surface Size
The application in the preceding section sets the size of the canvas element by
setting the element’s width and height attributes. You can also use CSS to set the
size of a canvas element, as shown in Example 1.3; however, using CSS to size a
canvas element is not the same as setting the element’s width and height
attributes.

Example 1.3 Setting element size and drawing surface size to different values

<!DOCTYPE html>
<head>

<title>Canvas element size: 600 x 300,
 Canvas drawing surface size: 300 x 150</title>

<style>
 body {

background: #dddddd;
}
#canvas {

margin: 20px;
padding: 20px;
background: #ffffff;
border: thin inset #aaaaaa;
width: 600px;
height: 300px;

}
</style>

</head>

<body>
<canvas id='canvas'>

 Canvas not supported
</canvas>

<script src='example.js'></script>
</body>

</html>

51.1 The canvas Element

Download from Join eBook (www.joinebook.com)

ptg7987094

The difference between using CSS and setting canvas element attributes lies in
the fact that a canvas actually has two sizes: the size of the element itself and the
size of the element’s drawing surface.

When you set the element’s width and height attributes, you set both the element’s
size and the size of the element’s drawing surface; however, when you use CSS
to size a canvas element, you set only the element’s size and not the drawing
surface.

By default, both the canvas element’s size and the size of its drawing surface is
300 screen pixels wide and 150 screen pixels high. In the listing shown in
Example 1.3, which uses CSS to set the canvas element’s size, the size of the ele-
ment is 600 pixels wide and 300 pixels high, but the size of the drawing surface
remains unchanged at the default value of 300 pixels × 150 pixels.

And here is where things get interesting because when a canvas element’s size
does not match the size of its drawing surface, the browser scales the drawing surface
to fit the element. That effect is illustrated in Figure 1.3.

Figure 1.3 Top: element and coordinate system = 600 × 300; bottom: element = 600 × 300,
coordinate system = 300 × 150

The application shown at the top of Figure 1.3 is the application that we discussed
in the preceding section. It sets the canvas element’s size with the element’s width

Chapter 1 Essentials6

Download from Join eBook (www.joinebook.com)

ptg7987094

and height attributes, setting both the element’s size and the size of the drawing
surface to 600 pixels × 300 pixels.

The application shown at the bottom of Figure 1.3 is the application whose HTML
is shown in Example 1.3. That application is identical to the application in the
preceding section, except that it uses CSS to size the canvas element (and has a
different title in the window’s title bar).

Because the application shown in the bottom screenshot in Figure 1.3 uses
CSS to size the canvas element and does not set the element’s width or height
attributes, the browser scales the drawing surface from 300 pixels × 150 pixels to
600 pixels × 300 pixels.

CAUTION: The browser may automatically scale your canvas

It’s a good idea to use the canvas element’s width and height attributes to
size the element, instead of using CSS. If you use CSS to size the element
without also specifying the width and height attributes of the canvas element,
the element size will not match the canvas’s drawing surface size, and the
browser will scale the latter to fit the former, most likely resulting in surprising
and unwanted effects.

1.1.2 The Canvas API
The canvas element does not provide much of an API; in fact, that API offers
only two attributes and three methods that are summarized in Table 1.1 and
Table 1.2.

Table 1.1 canvas attributes

DefaultAllowed ValuesTypeDescriptionAttribute

300Any valid
non-negative
integer. You may
add a plus sign or
whitespace at the
beginning, but
technically, you
cannot add a px
suffix.

non-negative
integer

The width of the
canvas’s drawing surface.
By default, the browser
makes the canvas
element the same size as
its drawing surface;
however, if you override
the element size with
CSS, then the browser
will scale the drawing
surface to fit the element.

width

(Continues)

71.1 The canvas Element

Download from Join eBook (www.joinebook.com)

ptg7987094

Table 1.1 (Continued)

DefaultAllowed ValuesTypeDescriptionAttribute

150Any valid
non-negative
integer. You may
add a plus sign or
whitespace at the
beginning, but
technically, you
cannot add a px
suffix.

non-negative
integer

The height of the
canvas’s drawing
surface. The browser
may scale the drawing
surface to fit the canvas
element size. See the
width attribute for more
information.

height

Table 1.2 canvas methods

DescriptionMethod

Returns the graphics context associated with the canvas. Each
canvas has one context, and each context is associated with
one canvas.

getContext()

Returns a data URL that you can assign to the src property
of an img element. The first argument specifies the type of
image, such as image/jpeg, or image/png; the latter is the
default if you don’t specify the first argument. The second
argument, which must be a double value from 0 to 1.0,
specifies a quality level for JPEG images.

toDataURL(type,
quality)

Creates a Blob that represents a file containing the canvas’s
image. The first argument to the method is a function that
the browser invokes with a reference to the blob. The second
argument specifies the type of image, such as image/png,
which is the default value. The final arguments represent a
quality level from 0.0 to 1.0 inclusive, for JPEG images.
Other arguments will most likely be added to this method in
the future to more carefully control image characteristics.

toBlob(callback,
type, args...)

1.2 Canvas Contexts
The canvas element merely serves as a container for a context. The context pro-
vides all the graphics horsepower. Although this book focuses exclusively on the
2d context, the Canvas specification embraces other types of contexts as well; for
example, a 3d context specification is already well underway. This section looks
at the attributes of the 2d context, with a brief nod to the 3d context.

Chapter 1 Essentials8

Download from Join eBook (www.joinebook.com)

ptg7987094

1.2.1 The 2d Context
In your JavaScript code, you will find little use for the canvas element itself, other
than occasionally using it to obtain the canvas width or height or a data URL, as
discussed in the preceding section. Additionally, you will use the canvas element
to obtain a reference to the canvas’s context, which provides a capable API for
drawing shapes and text, displaying and manipulating images, etc. Indeed, for the
rest of this book our focus will mainly be on the 2d context.

Table 1.3 lists all of the 2d context attributes. Other than the canvas attribute,
which gives you a reference to the canvas itself, all of the 2d context
attributes pertain to drawing operations.

Table 1.3 CanvasRenderingContext2D attributes

Brief DescriptionAttribute

Refers to the context’s canvas. The most common use of the
canvas attribute is to access the width and height of the
canvas: context.canvas.width and
context.canvas.height, respectively.

canvas

Specifies a color, gradient, or pattern that the context
subsequently uses to fill shapes.

fillStyle

Specifies the font that the context uses when you call
fillText() or strokeText().

font

Is the global alpha setting, which must be a number between
0 (fully transparent), and 1.0 (fully opaque). The browser
multiplies the alpha value of every pixel you draw by the
globalAlpha property, including when you draw images.

globalAlpha

Determines how the browser draws one thing over another.
See Section 2.14 for valid values.

globalComposite-
Operation

Specifies how the browser draws the endpoints of a line.
You can specify one of the following three values: butt,
round, and square. The default value is butt.

lineCap

Determines the width, in screen pixels, of lines that you
draw in a canvas. The value must be a non-negative,
non-infinite double value. The default is 1.0.

lineWidth

Specifies how lines are joined when their endpoints meet.
Valid values are: bevel, round, and miter. The default
value is miter.

lineJoin

(Continues)

91.2 Canvas Contexts

Download from Join eBook (www.joinebook.com)

ptg7987094

Table 1.3 (Continued)

Brief DescriptionAttribute

Specifies how to draw a miter line join. See Section 2.8.7 for
details about this property.

miterLimit

Determines how the browser spreads out shadow; the
higher the number, the more spread out the shadows. The
shadowBlur value is not a pixel value, but a value used in
a Gaussian blur equation. The value must be a positive,
non-infinite double value. The default value is 0.

shadowBlur

Specifies the color the browser uses to draw shadows. The
value for this property is often specified as partially
transparent to let the background show through.

shadowColor

Specifies the horizontal offset, in screen pixels, for shadows.shadowOffsetX

Specifies the vertical offset, in screen pixels, for shadows.shadowOffsetY

Specifies the style used to stroke paths. This value can be
a color, gradient, or pattern.

strokeStyle

Determines horizontal placement of text that you draw with
fillText() or strokeText().

textAlign

Determines vertical placement of text that you draw with
fillText() or strokeText().

textBaseline

The table gives you an overview of all the 2d context attributes. In Chapter 2, we
examine all those attributes on a case-by-case basis.

NOTE: You can extend the 2d context’s capabilities

The context associated with each canvas is a powerful graphics engine that
supports features such as gradients, image compositing, and animation, but it
does have limitations; for example, the context does not provide a method for
drawing dashed lines. Because JavaScript is a dynamic language, however, you
can add new methods or augment existing methods of the context. See Sec-
tion 2.8.6, “Drawing Dashed Lines by Extending CanvasRenderingContext2D,”
on p. 118 for more information.

Chapter 1 Essentials10

Download from Join eBook (www.joinebook.com)

ptg7987094

1.2.1.1 The WebGL 3d Context
The Canvas 2d context has a 3d counterpart, known as WebGL, that closely con-
forms to the OpenGL ES 2.0 API. You can find the WebGL specification, which
is maintained by the Khronos Group, at http://www.khronos.org/registry/
webgl/specs/latest/.

At the time this book was written, browser vendors were just beginning to provide
support for WebGL, and there are still some notable platforms, such as iOS4 and
IE10, that do not provide support. Nonetheless, a 3d Canvas context is an exciting
development that will open the door to all sorts of bleeding edge applications.

1.2.2 Saving and Restoring Canvas State
In Section 1.2.1, “The 2d Context,” on p. 9 we discussed all of the attributes of the
Canvas context. You will often set those attributes for drawing operations. Much
of the time you will want to temporarily set those attributes; for example, you may
draw a grid with thin lines in the background and subsequently draw on top of
the grid with thicker lines. In that case you would temporarily set the lineWidth
attribute while you draw the grid.

The Canvas API provides two methods, named save() and restore(), for saving
and restoring all the canvas context’s attributes. You use those methods like this:

function drawGrid(strokeStyle, fillStyle) {
 controlContext.save(); // Save the context on a stack

 controlContext.fillStyle = fillStyle;
 controlContext.strokeStyle = strokeStyle;

// Draw the grid...

 controlContext.restore(); // Restore the context from the stack
}

The save() and restore() methods may not seem like a big deal, but after using
Canvas for any length of time you will find them indispensable. Those two
methods are summarized in Table 1.4.

NOTE: You can nest calls to save() and restore()

The context’s save() method places the current state of the context onto a
stack. The corresponding call to restore() pops the state from the stack and
restores the context’s state accordingly. That means you can nest calls to
save()/restore().

111.2 Canvas Contexts

Download from Join eBook (www.joinebook.com)

http://www.khronos.org/registry/webgl/specs/latest/
http://www.khronos.org/registry/webgl/specs/latest/

ptg7987094

Table 1.4 CanvasRenderingContext2D state methods

DescriptionMethod

Pushes the current state of the canvas onto a stack of canvas states.
Canvas state includes the current transformation and clipping region
and all attributes of the canvas’s context, including strokeStyle,
fillStyle, globalCompositeOperation, etc.

The canvas state does not include the current path or bitmap. You can
only reset the path by calling beginPath(), and the bitmap is a property
of the canvas, not the context.

Note that although the bitmap is a property of the canvas, you access
the bitmap through the context (via the context’s getImageData()
method).

save()

Pops the top entry off the stack of canvas states. The state that resides
at the top of the stack, after the pop occurs, becomes the current state,
and the browser must set the canvas state accordingly. Therefore, any
changes that you make to the canvas state between save() and
restore() method calls persist only until you invoke the restore()
method.

restore()

NOTE: Saving and restoring the drawing surface

This section shows you how to save and restore context state. It’s also beneficial
to be able to save and restore the drawing surface itself, which we discuss in
Section 1.7, “Saving and Restoring the Drawing Surface,” on p. 33.

1.3 Canonical Examples in This Book
Many of the examples in this book use the following canonical form:

<!-- example.html -->

<!DOCTYPE html>
<html>

<head>
<title>Canonical Canvas used in this book</title>

<style>
 ...

#canvas {
 ...

}
</style>

</head>

Chapter 1 Essentials12

Download from Join eBook (www.joinebook.com)

ptg7987094

<body>
<canvas id='canvas' width='600' height='300'>

 Canvas not supported
</canvas>

<script src='example.js'></script>
</body>

</html>

// example.js

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d');

// Use the context...

The preceding example has one canvas whose ID is canvas, and it uses one
JavaScript file named example.js. That JavaScript file has two variables, one for
the canvas and another for the canvas’s context. The preceding example uses
document.getElementById() to obtain a reference to the canvas and gets a
reference to the canvas’s context.

Most applications in this book that adhere to the preceding canonical form omit
the HTML listings in the interests of brevity. Likewise, for inline code listings,
meaning listings like the preceding listing that do not have an Example heading,
you will often see the variables canvas and context with no code showing their
initialization.

Finally, again in the interests of brevity, not every example in the book is fully
listed. Often examples in the book build upon one other, and when they do, you
will often see the full listing for the last example and partial listings for the other
related examples.

NOTE: A word about User Agents

The Canvas specification refers to the implementor of the canvas element as a
User Agent, which is often abbreviated to UA. The specification uses that term
instead of the word browser because canvas elements can be implemented by
any piece of software, not just browsers.

This book refers to the implementor of the canvas element as a browser because
the term User Agent, or worse, the abbreviation UA, can be foreign and confusing
to readers.

131.3 Canonical Examples in This Book

Download from Join eBook (www.joinebook.com)

ptg7987094

NOTE: URLs referenced in this book

In this book you will occasionally find references to URLs for further reading.
Sometimes, if they are readable and not too long, those URLs will be the actual
URLs. For unwieldy URLs, this book refers to shortened URLs that may be difficult
to remember but are easy to type.

1.4 Getting Started
This section gives you a brief overview of your development environment, from
the browsers in which your application will run to the development tools, such
as profilers and timelines, that you will use during development. Feel free to skim
this section and use it as a reference as necessary.

1.4.1 Specifications
Three specifications are pertinent to this book:

• HTML5 Canvas
• Timing control for script-based animations
• HTML5 video and audio

For historical reasons, there are actually two Canvas specifications that are nearly
identical. One of those specifications is maintained by the W3C and can be found
at http://dev.w3.org/html5/spec; the other specification is maintained by the
WHATWG and can be found at http://bit.ly/qXWjOl. Furthermore, whereas
the Canvas context is included in the WHATWG’s specification, the WC3 has a
separate specification for the context, at http://dev.w3.org/html5/2dcontext.

For a long time, people used window.setInterval() or window.setTimeout() for
web-based animations; however, as you will see in Chapter 5, those methods are
not suitable for performance-critical animations. Instead, you should use
window.requestAnimationFrame(), which is defined in a specification of its own
named Timing control for script-based animations. You can find that specification at
http://www.w3.org/TR/animation-timing.

Finally, this book shows you how to incorporate HTML5 video and audio into
your Canvas-based applications. HTML5 video and audio are covered in the
same specification, which you can find at http://www.w3.org/TR/html5/
video.html.

Chapter 1 Essentials14

Download from Join eBook (www.joinebook.com)

http://www.w3.org/TR/animation-timing
http://www.w3.org/TR/html5/video.html
http://www.w3.org/TR/html5/video.html
http://dev.w3.org/html5/2dcontext
http://bit.ly/qXWjOl
http://dev.w3.org/html5/spec

ptg7987094

1.4.2 Browsers
At the time this book went to press in early 2012, all five major browsers—Chrome,
Internet Explorer, Firefox, Opera, and Safari—provided extensive support for
HTML5 Canvas. Although there are some minor incompatibilities that mostly
stem from different interpretations of the Canvas specification—for example, see
Section 2.14.1, “The Compositing Controversy,” on p. 186, which explains
incompatibilities for compositing—browser vendors have done an admirable
job of both adhering to the specification and providing implementations that
perform well.

Chrome, Firefox, Opera, and Safari have all had HTML5 support for some time.
Microsoft’s Internet Explorer was a bit late to the game and did not provide ex-
tensive support for HTML 5 until IE9. However, Microsoft has done a phenomenal
job with Canvas in IE9 and IE10; in fact, as this book went to press, those
two browsers had the fastest Canvas implementation from among the five major
browsers.

If you are implementing a Canvas-based application and you must support IE6,
IE7, or IE8, you have two choices, depicted in Figure 1.4: explorercanvas, which

Figure 1.4 explorercanvas and Google Chrome Frame for IE6/7/8, from Google

151.4 Getting Started

Download from Join eBook (www.joinebook.com)

ptg7987094

adds Canvas support to those older versions of Internet Explorer, and Google
Chrome Frame, which replaces the IE engine with the Google Chrome engine.
Both explorercanvas and Google Chrome Frame are from Google.

1.4.3 Consoles and Debuggers
All the major browsers that support HTML5 give you access to a console and a
debugger. In fact, because browser vendors often borrow ideas from each other,
the consoles and debuggers provided by WebKit-based browsers—Firefox, Opera,
and IE—are all pretty similar.

Figure 1.5 shows the console and debugger for Safari.

Figure 1.5 The Safari console and debugger

You can write to the console with the console.log() method. Just pass that
method a string, and it will appear in the console. The debugger is standard de-
bugger fare; you can set breakpoints, watch expressions, examine variables and
the call stack, and so on.

A full treatment of the developer tools for various browsers is beyond the scope
of this book. For more information about developer tools for Chrome, take a look

Chapter 1 Essentials16

Download from Join eBook (www.joinebook.com)

ptg7987094

at the Chrome Developer Tools documentation, shown in Figure 1.6. Similar
documentation is available for other browsers.

Figure 1.6 The Chrome Developer Tools documentation

TIP: Start and stop the profiler programmatically

As you can see from Figure 1.6, you can start profiling in WebKit-based browsers
by clicking the filled circle at the bottom of the profiler window.

Controlling the profiler by clicking buttons, however, is often insufficient; for
example, you may want to start and stop profiling at specific lines of code. In
WebKit-based browsers, you can do that with two methods:console.profile()
and console.profileEnd().You use them like this:

console.profile('Core HTML5 Animation,
erasing the background');

//...

console.profileEnd();

171.4 Getting Started

Download from Join eBook (www.joinebook.com)

ptg7987094

1.4.4 Performance
Most of the time the applications that you implement with Canvas will perform
admirably; however, if you are implementing animations or games or if you are
implementing Canvas-based applications for mobile devices, you may need to
make performance optimizations.

In this section we briefly look at the tools you have at your disposal for discovering
performance bottlenecks in your code. To illustrate the use of those tools, we refer
to the application shown in Figure 1.7. That animation, which is discussed in
Chapter 5, simultaneously animates three filled circles.

Figure 1.7 An animation from Chapter 5

We discuss three tools:

• Profilers
• Timelines
• jsPerf

Chapter 1 Essentials18

Download from Join eBook (www.joinebook.com)

ptg7987094

The first two tools in the preceding list are provided by browsers directly or are
offered as add-ons. jsPerf, on the other hand, is a website that lets you create
performance tests and make them public. In the sections that follow we will look
at profiling and timeline tools available in Chrome and Safari, and then we will
take a look at jsPerf.

1.4.4.1 Profiles and Timelines
Profiles and timelines are indispensable for discovering performance bottlenecks
in your code. Figures 1.8 and 1.9 show a timeline and a profile, respectively, for
the animation shown in Figure 1.7.

Figure 1.8 Timelines

Timelines give you a record of significant events that occur in your application,
along with details of those events such as their duration and the area of the win-
dow they affect. In WebKit-based browsers, such as Chrome and Safari, you can
hover the mouse over those events to obtain their associated details, as illustrated
in Figure 1.8.

191.4 Getting Started

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 1.9 Profiles

Profilers give you a much more detailed view of how your code performs at the
function level. As you can see in Figure 1.9, profiles show you how many times
each function in your application is called, and how long those functions take.
You can see what percentage of the total execution time is taken up by each
function, and you can also discover exactly how many milliseconds each function
takes, on average, to execute.

1.4.4.2 jsPerf
jsPerf, shown in Figure 1.10, is a website that lets you create and share JavaScript
benchmarks.

You may wonder, for example, what’s the most efficient way to loop through
pixels in an image that you are processing in a canvas. If you click the “test cases”
link, shown at the top of the screenshot in Figure 1.10, jsPerf displays all of the
publicly available test cases, as shown in Figure 1.11.

In fact, not only are there many Canvas-related tests at jsperf.com, there is a test
case that matches the description in the preceding paragraph, which is highlighted
in Figure 1.11. If you click the link for that test case, jsPerf shows you the code
for the test case, as shown in Figure 1.12. You can run the test case yourself, and
your results will be added to the test case. You can also look at the results for all
the different browsers that users have used to run the test case (not shown in
Figure 1.12).

Chapter 1 Essentials20

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 1.10 jsperf.com homepage

Figure 1.11 Code for a Canvas test case at jsfperf.com

211.4 Getting Started

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 1.12 A test case for looping through image pixels

Now that we’re done with the preliminaries, let’s look at how to draw into a
canvas.

1.5 Fundamental Drawing Operations
In the next chapter we will look closely at drawing in a canvas. For now, however,
to familiarize you with the drawing methods that the Canvas API provides, let’s
begin with the application shown in Figure 1.13, which implements an analog
clock.

The clock application, which is listed in Example 1.4, uses the following drawing
methods from the Canvas API:

• arc()

• beginPath()

• clearRect()

Chapter 1 Essentials22

Download from Join eBook (www.joinebook.com)

ptg7987094

• fill()

• fillText()

• lineTo()

• moveTo()

• stroke()

Figure 1.13 A clock

Like Adobe Illustrator and Apple’s Cocoa, Canvas lets you draw shapes by creat-
ing invisible paths that you subsequently make visible with calls to stroke(),
which strokes the outline of the path, or fill(), which fills the inside of the path.
You begin a path with the beginPath() method.

The clock application’s drawCircle() method draws the circle representing the
clock face by invoking beginPath() to begin a path, and subsequently invokes
arc() to create a circular path. That path is invisible until the application
invokes stroke(). Likewise, the application’s drawCenter() method draws the
small filled circle at the center of the clock with a combination of beginPath(),
arc(), and fill().

The application’s drawNumerals() method draws the numbers around the face
of the clock with the fillText() method, which draws filled text in the canvas.
Unlike the arc() method, fillText() does not create a path; instead, fillText()
immediately renders text in the canvas.

231.5 Fundamental Drawing Operations

Download from Join eBook (www.joinebook.com)

ptg7987094

The clock hands are drawn by the application’s drawHand() method, which uses
three methods to draw the lines that represent the clock hands: moveTo(),
lineTo(), and stroke(). The moveTo() method moves the graphics pen to a
specific location in the canvas, lineTo() draws an invisible path to the location
that you specify, and stroke() makes the current path visible.

The application animates the clock with setInterval(), which invokes the appli-
cation’s drawClock() function once every second. The drawClock() function uses
clearRect() to erase the canvas, and then it redraws the clock.

Example 1.4 A basic clock

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 FONT_HEIGHT = 15,
 MARGIN = 35,
 HAND_TRUNCATION = canvas.width/25,
 HOUR_HAND_TRUNCATION = canvas.width/10,
 NUMERAL_SPACING = 20,
 RADIUS = canvas.width/2 - MARGIN,
 HAND_RADIUS = RADIUS + NUMERAL_SPACING;

// Functions..

function drawCircle() {
 context.beginPath();
 context.arc(canvas.width/2, canvas.height/2,
 RADIUS, 0, Math.PI*2, true);
 context.stroke();

}

function drawNumerals() {
var numerals = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],

 angle = 0,
 numeralWidth = 0;

 numerals.forEach(function(numeral) {
 angle = Math.PI/6 * (numeral-3);
 numeralWidth = context.measureText(numeral).width;
 context.fillText(numeral,
 canvas.width/2 + Math.cos(angle)*(HAND_RADIUS) -
 numeralWidth/2,
 canvas.height/2 + Math.sin(angle)*(HAND_RADIUS) +
 FONT_HEIGHT/3);

});
}

Chapter 1 Essentials24

Download from Join eBook (www.joinebook.com)

ptg7987094

function drawCenter() {
 context.beginPath();
 context.arc(canvas.width/2, canvas.height/2, 5, 0, Math.PI*2, true);
 context.fill();

}

function drawHand(loc, isHour) {
var angle = (Math.PI*2) * (loc/60) - Math.PI/2,

 handRadius = isHour ? RADIUS - HAND_TRUNCATION-HOUR_HAND_TRUNCATION
: RADIUS - HAND_TRUNCATION;

 context.moveTo(canvas.width/2, canvas.height/2);
 context.lineTo(canvas.width/2 + Math.cos(angle)*handRadius,
 canvas.height/2 + Math.sin(angle)*handRadius);
 context.stroke();

}

function drawHands() {
var date = new Date,

 hour = date.getHours();

 hour = hour > 12 ? hour - 12 : hour;

drawHand(hour*5 + (date.getMinutes()/60)*5, true, 0.5);
drawHand(date.getMinutes(), false, 0.5);
drawHand(date.getSeconds(), false, 0.2);

}

function drawClock() {
 context.clearRect(0,0,canvas.width,canvas.height);

drawCircle();
drawCenter();
drawHands();
drawNumerals();

}

// Initialization..

context.font = FONT_HEIGHT + 'px Arial';
loop = setInterval(drawClock, 1000);

NOTE: A closer look at paths, stroking, and filling

The clock example in this section gives you an overview of what it’s like to draw
into a canvas. In Chapter 2, we will take a closer look at drawing and manipulating
shapes in a canvas.

251.5 Fundamental Drawing Operations

Download from Join eBook (www.joinebook.com)

ptg7987094

1.6 Event Handling
HTML5 applications are event driven. You register event listeners with HTML
elements and implement code that responds to those events. Nearly all Canvas-
based applications handle either mouse or touch events—or both—and many
applications also handle various events such as keystrokes and drag and drop.

1.6.1 Mouse Events
Detecting mouse events in a canvas is simple enough: You add an event listener
to the canvas, and the browser invokes that listener when the event occurs. For
example, you can listen to mouse down events, like this:

canvas.onmousedown = function (e) {
// React to the mouse down event

};

Alternatively, you can use the more generic addEventListener() method:

canvas.addEventListener('mousedown', function (e) {
// React to the mouse down event

});

In addition to onmousedown, you can also assign functions to onmousemove,
onmouseup, onmouseover, and onmouseout.

Assigning a function to onmousedown, onmousemove, etc., is a little simpler than
using addEventListener(); however, addEventListener() is necessary when
you need to attach multiple listeners to a single mouse event.

1.6.1.1 Translating Mouse Coordinates to Canvas Coordinates
The mouse coordinates in the event object that the browser passes to your event
listener are window coordinates, instead of being relative to the canvas itself.

Most of the time you need to know where mouse events occur relative to the
canvas, not the window, so you must convert the coordinates. For example,
Figure 1.14 shows a canvas that displays an image known as a sprite sheet. Sprite
sheets are a single image that contains several images for an animation. As an
animation progresses, you display one image at a time from the sprite sheet,
which means that you must know the exact coordinates of each image in the
sprite sheet.

The application shown in Figure 1.14 lets you determine the location of each image
in a sprite sheet by tracking and displaying mouse coordinates. As the user moves

Chapter 1 Essentials26

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 1.14 Sprite sheet inspector

the mouse, the application continuously updates the mouse coordinates above the
sprite sheet and the guidelines.

The application adds a mousemove listener to the canvas, and subsequently, when
the browser invokes that listener, the application converts the mouse coordinates
from the window to the canvas, with a windowToCanvas() method, like this:

function windowToCanvas(canvas, x, y) {
var bbox = canvas.getBoundingClientRect();

return { x: x - bbox.left * (canvas.width / bbox.width),
 y: y - bbox.top * (canvas.height / bbox.height)

};
}

canvas.onmousemove = function (e) {
var loc = windowToCanvas(canvas, e.clientX, e.clientY);

drawBackground();
drawSpritesheet();
drawGuidelines(loc.x, loc.y);
updateReadout(loc.x, loc.y);

};
...

The windowToCanvas() method shown above invokes the canvas’s
getBoundingClientRect() method to obtain the canvas’s bounding box relative
to the window. The windowToCanvas() method then returns an object with x and
y properties that correspond to the mouse location in the canvas.

271.6 Event Handling

Download from Join eBook (www.joinebook.com)

ptg7987094

Notice that not only does windowToCanvas() subtract the left and top of the can-
vas’s bounding box from the x and y window coordinates, it also scales those
coordinates when the canvas element’s size differs from the size of the drawing
surface. See Section 1.1.1, “Canvas Element Size vs. Drawing Surface Size,” on
p. 5 for an explanation of canvas element size versus canvas drawing surface size.

The HTML for the application shown in Figure 1.14 is listed in Example 1.5, and
the JavaScript is listed in Example 1.6.

Example 1.5 A sprite sheet inspector: HTML

<!DOCTYPE html>
<head>

<title>Sprite sheets</title>

<style>
 body {

background: #dddddd;
}

#canvas {
position: absolute;
left: 0px;
top: 20px;
margin: 20px;
background: #ffffff;
border: thin inset rgba(100,150,230,0.5);
cursor: pointer;

}

#readout {
margin-top: 10px;
margin-left: 15px;
color: blue;

}
</style>

</head>

<body>
<div id='readout'></div>

<canvas id='canvas' width='500' height='250'>
 Canvas not supported

</canvas>

<script src='example.js'></script>
</body>

</html>

Chapter 1 Essentials28

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 1.6 A sprite sheet inspector: JavaScript

var canvas = document.getElementById('canvas'),
 readout = document.getElementById('readout'),
 context = canvas.getContext('2d'),
 spritesheet = new Image();

// Functions..

function windowToCanvas(canvas, x, y) {
var bbox = canvas.getBoundingClientRect();
return { x: x - bbox.left * (canvas.width / bbox.width),

 y: y - bbox.top * (canvas.height / bbox.height)
};

}

function drawBackground() {
var VERTICAL_LINE_SPACING = 12,

 i = context.canvas.height;

 context.clearRect(0,0,canvas.width,canvas.height);
 context.strokeStyle = 'lightgray';
 context.lineWidth = 0.5;

while(i > VERTICAL_LINE_SPACING*4) {
 context.beginPath();
 context.moveTo(0, i);
 context.lineTo(context.canvas.width, i);
 context.stroke();
 i -= VERTICAL_LINE_SPACING;

}
}

function drawSpritesheet() {
 context.drawImage(spritesheet, 0, 0);

}

function drawGuidelines(x, y) {
 context.strokeStyle = 'rgba(0,0,230,0.8)';
 context.lineWidth = 0.5;

drawVerticalLine(x);
drawHorizontalLine(y);

}

function updateReadout(x, y) {
 readout.innerText = '(' + x.toFixed(0) + ', ' + y.toFixed(0) + ')';

}

(Continues)

291.6 Event Handling

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 1.6 (Continued)

function drawHorizontalLine (y) {
 context.beginPath();
 context.moveTo(0,y + 0.5);
 context.lineTo(context.canvas.width, y + 0.5);
 context.stroke();

}

function drawVerticalLine (x) {
 context.beginPath();
 context.moveTo(x + 0.5, 0);
 context.lineTo(x + 0.5, context.canvas.height);
 context.stroke();

}

// Event handlers...

canvas.onmousemove = function (e) {
var loc = windowToCanvas(canvas, e.clientX, e.clientY);

drawBackground();
drawSpritesheet();
drawGuidelines(loc.x, loc.y);
updateReadout(loc.x, loc.y);

};

// Initialization...

spritesheet.src = 'running-sprite-sheet.png';
spritesheet.onload = function(e) {

drawSpritesheet();
};

drawBackground();

TIP: x and y vs. clientX and clientY

In pre-HTML5 days, obtaining window coordinates for mouse events from the
event object that the browser passes to your event listeners was a mess. Some
browsers stored those coordinates in x and y, and others stored them in
clientX and clientY. Fortunately, modern browsers that support HTML5 have
finally come to agreement, and they all support clientX and clientY. You
can read more about those event properties at http://www.quirksmode.org/js/
events_mouse.html.

Chapter 1 Essentials30

Download from Join eBook (www.joinebook.com)

http://www.quirksmode.org/js/events_mouse.html
http://www.quirksmode.org/js/events_mouse.html

ptg7987094

TIP: Tell the browser to butt out . . .

When you listen to mouse events, the browser invokes your listener when the
associated event occurs. After you handle the event, the browser also reacts to
the event. Much of the time when you handle mouse events in a canvas, you
don’t want the browser to handle the event after you’re done with it because
you will end up with unwanted effects, such as the browser selecting other HTML
elements or changing the cursor.

Fortunately, the event object comes with a preventDefault() method that, as
its name suggests, prevents the browser from carrying out its default reaction to
the event. Just invoke that method from your event handler, and the browser will
no longer interfere with your event handling.

NOTE: The Canvas context’s drawImage() method

The example shown in Figure 1.14 uses the 2d context’s drawImage() method
to draw the sprite sheet.That single method lets you copy all or part of an image
stored in one place to another place, and if you wish, you can scale the
image along the way.

The sprite sheet application uses drawImage() in the simplest possible way: The
application draws all of an image, unscaled, that is stored in an Image object,
into the application’s canvas. In the Chapter 4 and throughout the rest of this
book, you will see more advanced uses for drawImage().

1.6.2 Keyboard Events
When you press a key in a browser window, the browser generates key events.
Those events are targeted at the HTML element that currently has focus. If no
element has focus, key events bubble up to the window and document objects.

The canvas element is not a focusable element, and therefore in light of the pre-
ceding paragraph, adding key listeners to a canvas is an exercise in futility. Instead,
you will add key listeners to either the document or window objects to detect key
events.

There are three types of key events:

• keydown

• keypress

• keyup

311.6 Event Handling

Download from Join eBook (www.joinebook.com)

ptg7987094

The keydown and keyup events are low-level events that the browser fires for
nearly every keystroke. Note that some keystrokes, such as command sequences,
may be swallowed by the browser or the operating system; however, most
keystrokes make it through to your keydown and keyup event handlers,
including keys such as Alt, Esc, and so on.

When a keydown event generates a printable character, the browser fires a keypress
event before the inevitable keyup event. If you hold a key that generates a printable
character down for an extended period of time, the browser will fire a sequence
of keypress events between the keydown and keyup events.

Implementing key listeners is similar to implementing mouse listeners. You can
assign a function to the document or window object’s onkeydown, onkeyup, or
onkeypress variables, or you can call addEventListener(), with keydown, keyup,
or keypress for the first argument, and a reference to a function for the second
argument.

Determining which key was pressed can be complicated, for two reasons. First,
there is a huge variety of characters among all the languages of the world. When
you must take into consideration the Latin alphabet, Asian ideographic characters,
and the many languages of India, just to mention a few, supporting them all is
mind boggling.

Second, although browsers and keyboards have been around for a long time, key
codes have never been standardized until DOM Level 3, which few browsers
currently support. In a word, detecting exactly what key or combination of keys
has been pressed is a mess.

However, under most circumstances you can get by with the following two simple
strategies:

• For keydown and keyup events, look at the keyCode property of the event object
that the browser passes to your event listener. In general, for printable char-
acters, those values will be ASCII codes. Notice the in general caveat, however.
Here is a good website that you can consult for interpreting key codes among
different browsers: http://bit.ly/o3b1L2. Event objects for key events also
contain the following boolean properties:

• altKey

• ctrlKey

• metaKey

• shiftKey

Chapter 1 Essentials32

Download from Join eBook (www.joinebook.com)

http://bit.ly/o3b1L2

ptg7987094

• For keypress events—which browsers fire only for printable
characters—you can reliably get that character like this:

var key = String.fromCharCode(event.which);

In general, unless you are implementing a text control in a canvas, you will handle
mouse events much more often than you handle key events. One other common
use case for key events, however, is handling keystrokes in games. We discuss
that topic in Chapter 9.

1.6.3 Touch Events
With the advent of smart phones and tablet computers, the HTML specification
has added support for touch events. See Chapter 11 for more information about
handling touch events.

1.7 Saving and Restoring the Drawing Surface
In Section 1.2.2, “Saving and Restoring Canvas State,” on p. 11, you saw how to
save and restore a context’s state. Saving and restoring context state lets you make
temporary state changes, which is something you will do frequently.

Another essential feature of the Canvas context is the ability to save and restore
the drawing surface itself. Saving and restoring the drawing surface lets you draw
on the drawing surface temporarily, which is useful for many things, such as
rubber bands, guidewires, or annotations. For example, the application shown
in Figure 1.15 and discussed in Section 2.13.1, “Translating, Scaling, and Rotating,”
on p. 171, lets users interactively create polygons by dragging the mouse.

Figure 1.15 Drawing guidewires

331.7 Saving and Restoring the Drawing Surface

Download from Join eBook (www.joinebook.com)

ptg7987094

On a mouse down event, the application saves the drawing surface. As the user
subsequently drags the mouse, the application continuously restores the
drawing surface to what it was when the mouse went down and then draws
the polygon and the associated guidewires. When the user releases the mouse, the
application restores the drawing surface one last time and draws a final
representation of the polygon, without guidewires.

The JavaScript from the application shown in Figure 1.15 that pertains to drawing
the guidewires is listed in Example 1.7. See Section 2.11.1, “Polygon Objects,” on
p. 147 for a more complete listing of the application.

NOTE: Image manipulation with getImageData() and putImageData()

The application shown in Figure 1.15 saves and restores the drawing surface
with the context’s getImageData() and putImageData() methods. Like
drawImage(), getImageData() and putImageData() can be used in a
number of different ways; one common use is implementing image filters that
get an image’s data, manipulate it, and put it back into a canvas. You will see
how to implement image filters in Section 4.5.2.3, “Filtering Images,” on p. 293,
among other uses for getImageData() and putImageData().

NOTE: Immediate-mode graphics

Canvas implements what’s known as immediate-mode graphics, meaning that
it immediately draws whatever you specify in the canvas. Then it immediately
forgets what you have just drawn, meaning that canvases do not retain a list of
objects to draw. Some graphics systems, such as SVG, do maintain a list of ob-
jects to draw.Those graphics systems are referred to as retained-mode graphics.

Immediate-mode graphics, because it does not maintain a list of objects to draw,
is more low-level than retained-mode graphics. Immediate-mode graphics is also
more flexible because you draw straight to the screen instead of adjusting objects
that the graphics system draws for you.

Immediate-mode graphics is more suited to applications, such as paint applica-
tions, that do not keep track of what the user has drawn, whereas retained-mode
graphics is more suited to applications, such as drawing applications, that let
you manipulate graphical objects that you create.

In Section 2.11.1, “Polygon Objects,” on p. 147 you will see how to implement
a simple retained-mode graphics system that maintains an array of polygons in
a drawing application, which lets users drag those polygons to reposition them.

Chapter 1 Essentials34

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 1.7 Drawing guidewires by saving and restoring the drawing surface

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ...

// Save and restore drawing surface...................................

function saveDrawingSurface() {
 drawingSurfaceImageData = context.getImageData(0, 0,
 canvas.width,
 canvas.height);

}

function restoreDrawingSurface() {
 context.putImageData(drawingSurfaceImageData, 0, 0);

}

// Event handlers...

canvas.onmousedown = function (e) {
 ...

saveDrawingSurface();
 ...
};

canvas.onmousemove = function (e) {
var loc = windowToCanvas(e);

if (dragging) {
restoreDrawingSurface();

 ...

if (guidewires) {
drawGuidewires(mousedown.x, mousedown.y);

}
}

};

canvas.onmouseup = function (e) {
 ...

restoreDrawingSurface();
};

351.7 Saving and Restoring the Drawing Surface

Download from Join eBook (www.joinebook.com)

ptg7987094

1.8 Using HTML Elements in a Canvas
Canvas is arguably the coolest feature of HTML5, but when you use it to imple-
ment web applications, you will rarely use it alone. Most of the time you will
combine one or more canvases with other HTML controls so that your users can
provide input or otherwise control the application.

To combine other HTML controls with your canvases, you may first be inclined to
embed those controls inside your canvas elements, but that won’t work, because
anything you put in the body of a canvas element is displayed by the browser
only if the browser does not support the canvas element.

Because browsers will display either a canvas element or HTML controls that
you put inside that element, but not both, you must place your controls outside
of your canvas elements.

To make it appear as though HTML controls are inside a canvas, you can use
CSS to place the controls above the canvas. The application shown in Figure 1.16
illustrates that effect.

Figure 1.16 HTML elements above a canvas

Chapter 1 Essentials36

Download from Join eBook (www.joinebook.com)

ptg7987094

The application shown in Figure 1.16 animates 100 balls and provides a link to
start and stop the animation. That link resides in a DIV element that is partially
transparent and floats above the canvas. We refer to that DIV as a glass pane because
it appears to be a pane of glass floating above the canvas.

The HTML for the application shown in Figure 1.16 is listed in Example 1.8.

Example 1.8 HTML controls in a canvas: HTML

<!DOCTYPE html>
<html>

<head>
<title>Bouncing Balls</title>

<style>
 body {

background: #dddddd;
}

#canvas {
margin-left: 10px;
margin-top: 10px;
background: #ffffff;
border: thin solid #aaaaaa;

}

#glasspane {
position: absolute;
left: 50px;
top: 50px;
padding: 0px 20px 10px 10px;
background: rgba(0, 0, 0, 0.3);
border: thin solid rgba(0, 0, 0, 0.6);
color: #eeeeee;
font-family: Droid Sans, Arial, Helvetica, sans-serif;
font-size: 12px;
cursor: pointer;
-webkit-box-shadow: rgba(0,0,0,0.5) 5px 5px 20px;
-moz-box-shadow: rgba(0,0,0,0.5) 5px 5px 20px;
box-shadow: rgba(0,0,0,0.5) 5px 5px 20px;

}

#glasspane h2 {
font-weight: normal;

}

(Continues)

371.8 Using HTML Elements in a Canvas

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 1.8 (Continued)

#glasspane .title {
font-size: 2em;
color: rgba(255, 255, 0, 0.8);

}

#glasspane a:hover {
color: yellow;

}

#glasspane a {
text-decoration: none;
color: #cccccc;
font-size: 3.5em;

}

#glasspane p {
margin: 10px;
color: rgba(65, 65, 220, 1.0);
font-size: 12pt;
font-family: Palatino, Arial, Helvetica, sans-serif;

}
</style>

</head>

<body>
<div id='glasspane'>

<h2 class='title'>Bouncing Balls</h2>

<p>One hundred balls bouncing</p>

Start
</div>

<canvas id='canvas' width='750' height='500'>
 Canvas not supported

</canvas>

<script src='example.js'></script>
</body>

</html>

Chapter 1 Essentials38

Download from Join eBook (www.joinebook.com)

ptg7987094

The HTML shown in Example 1.8 uses CSS absolute positioning to make the glass
pane appear above the canvas, like this:

#canvas {
margin-left: 10px;
margin-top: 10px;
background: #ffffff;
border: thin solid #aaaaaa;

}

#glasspane {
position: absolute;
left: 50px;
top: 50px;

 ...
}

The preceding CSS uses relative positioning for the canvas, which is the default
for the position CSS property, whereas it specifies absolute positioning for the
glass pane. The CSS specification states that elements with absolute positioning
are drawn on top of elements with relative positioning, which is why the glass
pane appears above the canvas in Figure 1.16.

If you also change the canvas’s positioning to absolute, then the canvas will appear
on top of the glass pane, and you won’t see the glass pane because the canvas’s
background is not transparent. In that case, the glass pane is underneath the
canvas because the canvas element comes after the glass pane’s DIV element. If
you switch the order of those elements, then the glass pane will once again appear
above the canvas.

So, you have two options to position the glass pane above the canvas: Use relative
positioning for the canvas and absolute positioning for the glass pane; or use either
relative or absolute positioning for both elements and declare the glass pane’s
DIV after the canvas element.

A third option is to use either relative or absolute positioning for both elements
and manipulate their z-index CSS property. The browser draws elements with
a higher z-index above elements with a lower z-index.

In addition to placing HTML controls where you want them to appear, you also
need to obtain references to those elements in your JavaScript so that you can
access and manipulate their values.

391.8 Using HTML Elements in a Canvas

Download from Join eBook (www.joinebook.com)

ptg7987094

The application shown in Figure 1.16 obtains references to the glass pane and the
button that controls the animation and adds event handlers to them, like this:

var context = document.getElementById('canvas').getContext('2d'),
 startButton = document.getElementById('startButton'),
 glasspane = document.getElementById('glasspane'),
 paused = false,
 ...

startButton.onclick = function(e) {
 e.preventDefault();
 paused = ! paused;
 startButton.innerText = paused ? 'Start' : 'Stop';
};
...

glasspane.onmousedown = function(e) {
 e.preventDefault();
};

The preceding JavaScript adds an onclick handler to the button that starts or
pauses the animation based on the current state of the application, and adds an
onmousedown event handler to the glass pane to prevent the browser from its
default reaction to that mouse click. The onmousedown handler prevents the
browser from reacting to the event to avoid inadvertent selections.

NOTE: You can implement your own Canvas-based controls

The Canvas specification states that you should prefer built-in HTML controls
rather than implementing controls from scratch with the Canvas API, which in
general is good advice. Implementing controls from scratch with the Canvas
API generally involves a good deal of work, and most of the time it’s wise to avoid
a good deal of work when there’s an easier alternative.

However, in some circumstances it makes sense to implement Canvas-based
controls. In Chapter 10, will see both motivations for implementing your own
Canvas-based controls and ways to do so.

NOTE: Drawing a grid

The application discussed in this section draws a grid underneath the bouncing
balls to emphasize that the floating DIV is indeed floating above the canvas.

In Chapter 2, we discuss how to draw a grid, but for now you can safely forge
ahead without knowing grid drawing details.

Chapter 1 Essentials40

Download from Join eBook (www.joinebook.com)

ptg7987094

1.8.1 Invisible HTML Elements
In the preceding section you saw how to combine static HTML controls with a
canvas. In this section we explore a more advanced use of HTML controls that
involves dynamically modifying the size of a DIV as the user drags the mouse.

Figure 1.17 shows an application that uses a technique known as rubberbanding
to select a region of a canvas. That canvas initially displays an image, and when
you select a region of that image, the application reacts by zooming into the region
that you selected.

Figure 1.17 Implementing rubber bands with a DIV

First, let’s take a look at the HTML for the application, which is listed in
Example 1.9.

411.8 Using HTML Elements in a Canvas

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 1.9 Rubber band with a floating DIV

<!DOCTYPE html>
<html>

<head>
<title>Rubber bands with layered elements</title>

<style>
 body {

background: rgba(100, 145, 250, 0.3);
}

#canvas {
margin-left: 20px;
margin-right: 0;
margin-bottom: 20px;
border: thin solid #aaaaaa;
cursor: crosshair;
padding: 0;

}

#controls {
margin: 20px 0px 20px 20px;

}

#rubberbandDiv {
position: absolute;
border: 3px solid blue;
cursor: crosshair;
display: none;

}

</style>
</head>

<body>
<div id='controls'>

<input type='button' id='resetButton' value='Reset'/>
</div>

<div id='rubberbandDiv'></div>

<canvas id='canvas' width='800' height='520'>
 Canvas not supported

</canvas>

<script src='example.js'></script>
</body>

</html>

Chapter 1 Essentials42

Download from Join eBook (www.joinebook.com)

ptg7987094

The HTML uses a DIV that contains a button. If you click that button, the
application draws the entire image as it is displayed when the application starts.

The application uses a second DIV for the rubber band. That DIV is empty, and its
CSS display attribute is set to none, which makes it initially invisible. When you
start dragging the mouse, the application makes that second DIV visible, which
shows the DIV’s border. As you continue dragging the mouse, the application
continuously resizes the DIV to produce the illusion of a rubber band, as shown
in Figure 1.17.

The JavaScript for the application shown in Figure 1.17 is listed in Example 1.10.

Example 1.10 Rubber bands with a DIV

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 rubberbandDiv = document.getElementById('rubberbandDiv'),
 resetButton = document.getElementById('resetButton'),
 image = new Image(),
 mousedown = {},
 rubberbandRectangle = {},
 dragging = false;

// Functions..

function rubberbandStart(x, y) {
 mousedown.x = x;
 mousedown.y = y;

 rubberbandRectangle.left = mousedown.x;
 rubberbandRectangle.top = mousedown.y;

moveRubberbandDiv();
showRubberbandDiv();

 dragging = true;
}

function rubberbandStretch(x, y) {
 rubberbandRectangle.left = x < mousedown.x ? x : mousedown.x;
 rubberbandRectangle.top = y < mousedown.y ? y : mousedown.y;

 rubberbandRectangle.width = Math.abs(x - mousedown.x),
 rubberbandRectangle.height = Math.abs(y - mousedown.y);

moveRubberbandDiv();
resizeRubberbandDiv();

}

(Continues)

431.8 Using HTML Elements in a Canvas

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 1.10 (Continued)

function rubberbandEnd() {
var bbox = canvas.getBoundingClientRect();

try {
 context.drawImage(canvas,
 rubberbandRectangle.left - bbox.left,
 rubberbandRectangle.top - bbox.top,
 rubberbandRectangle.width,
 rubberbandRectangle.height,

0, 0, canvas.width, canvas.height);
}
catch (e) {

// Suppress error message when mouse is released
// outside the canvas

}

resetRubberbandRectangle();

 rubberbandDiv.style.width = 0;
 rubberbandDiv.style.height = 0;

hideRubberbandDiv();

 dragging = false;
}

function moveRubberbandDiv() {
 rubberbandDiv.style.top = rubberbandRectangle.top + 'px';
 rubberbandDiv.style.left = rubberbandRectangle.left + 'px';
}

function resizeRubberbandDiv() {
 rubberbandDiv.style.width = rubberbandRectangle.width + 'px';
 rubberbandDiv.style.height = rubberbandRectangle.height + 'px';
}

function showRubberbandDiv() {
 rubberbandDiv.style.display = 'inline';
}

function hideRubberbandDiv() {
 rubberbandDiv.style.display = 'none';
}

function resetRubberbandRectangle() {
 rubberbandRectangle = { top: 0, left: 0, width: 0, height: 0 };
}

Chapter 1 Essentials44

Download from Join eBook (www.joinebook.com)

ptg7987094

// Event handlers...

canvas.onmousedown = function (e) {
var x = e.clientX,

 y = e.clientY;

 e.preventDefault();
rubberbandStart(x, y);

};

window.onmousemove = function (e) {
var x = e.clientX,

 y = e.clientY;

 e.preventDefault();
if (dragging) {

rubberbandStretch(x, y);
}

};

window.onmouseup = function (e) {
 e.preventDefault();

rubberbandEnd();
};

image.onload = function () {
 context.drawImage(image, 0, 0, canvas.width, canvas.height);
};

resetButton.onclick = function(e) {
 context.clearRect(0, 0, context.canvas.width,
 context.canvas.height);
 context.drawImage(image, 0, 0, canvas.width, canvas.height);
};

// Initialization...

image.src = 'curved-road.png';

Again, we’re getting ahead of ourselves a little bit by using the drawImage()
method to both draw and zoom in on the image. In Section 4.1, “Drawing Images,”
on p. 254, we will look closely at that method, and we will also see an alternative
way to implement rubber bands that involves manipulating the image’s pixels
to draw the rubber band itself.

For now, however, our focus is on the rubberband DIV and how the code
manipulates that DIV as the user drags the mouse.

451.8 Using HTML Elements in a Canvas

Download from Join eBook (www.joinebook.com)

ptg7987094

The onmousedown event handler for the canvas invokes the rubberbandStart()
method, which moves the DIV’s upper left-hand corner to the mouse down location
and makes the DIV visible. Because the rubberband DIV’s CSS position attribute
is absolute, the coordinates for the DIV’s upper left-hand corner must be specified
in window coordinates, and not as coordinates relative to the canvas.

If the user is dragging the mouse, the onmousemove event handler invokes
rubberbandStretch(), which moves and resizes the rubberband DIV.

When the user releases the mouse, the onmouseup event handler invokes
rubberbandEnd(), which draws the scaled image and shrinks and hides the
rubberband DIV.

Finally, notice that all three mouse event handlers invoke preventDefault() on
the event object they are passed. As discussed in Section 1.6.1.1, “Translating
Mouse Coordinates to Canvas Coordinates,” on p. 26, that call prevents the
browser from reacting to the mouse events. If you remove those calls to
preventDefault(), the browser will try to select elements on the page, which
produces undesired effects if the user drags the mouse outside of the canvas.

1.9 Printing a Canvas
It’s often convenient to let users of your application access a canvas as an image.
For example, if you implement a paint application, such as the one discussed in
Chapter 2, users will expect to be able to print their paintings.

By default, although every canvas is a bitmap, it is not an HTML img element,
and therefore users cannot, for example, right-click a canvas and save it to disk,
nor can they drag a canvas to their desktop to print later on. The fact that a canvas
is not an image is illustrated by the popup menu shown in Figure 1.18.

Fortunately, the Canvas API provides a method—toDataURL()—that returns a
reference to a data URL for a given canvas. You can subsequently set the src
attribute of an img element equal to that data URL to create an image of your
canvas.

In Section 1.5, “Fundamental Drawing Operations,” on p. 22, you saw how to
implement an analog clock with the Canvas API. Figure 1.19 shows a modified
version of that application that lets you take a snapshot of the clock and display
it as an image, as described above. As you can see from Figure 1.19, when you
right-click on the ensuing image, you can save the image to disk, and because the
clock image shown in the bottom screenshot is an img element, you can also drag
the image to your desktop.

Chapter 1 Essentials46

Download from Join eBook (www.joinebook.com)

ptg7987094Figure 1.18 The right-click menu for a canvas

The application shown in Figure 1.19 implements a common use case for printing
a canvas: It provides a control—in this case, the Take snapshot button—that lets
users take a snapshot of the canvas. The application displays that snapshot as an
image, so users can right-click the image and save it to disk. Subsequently, when
the user clicks the Return to Canvas button, the application replaces the image
with the original canvas. Here’s a recipe for that use case:

In your HTML page:

• Add an invisible image to the page, and give the image an id, but no src.
• Use CSS to position and size the image to exactly overlap your canvas.
• Add a control to the page for taking a snapshot.

In your JavaScript:

• Get a reference to the invisible image.
• Get a reference to the snapshot control.
• When the user activates the control to take a snapshot:

1. Invoke toDataURL() to get a data URL.
2. Assign the data URL to the invisible image’s src attribute.
3. Make the image visible and the canvas invisible.

471.9 Printing a Canvas

Download from Join eBook (www.joinebook.com)

ptg7987094

• When the user activates the control to return to the Canvas:

1. Make the canvas visible and the image invisible.
2. Redraw the canvas as needed.

Let’s see how to translate that recipe to code. Example 1.11 lists the HTML for
the application shown in Figure 1.19, and Example 1.12 lists the application’s
JavaScript.

Figure 1.19 Using toDataURL()

Chapter 1 Essentials48

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 1.11 Using toDataURL() to print a canvas: HTML

<!DOCTYPE html>
<head>

<title>Clock</title>

<style>
 body {

background: #dddddd;
}

#canvas {
position: absolute;
left: 10px;
top: 1.5em;
margin: 20px;
border: thin solid #aaaaaa;

}

#snapshotImageElement {
position: absolute;
left: 10px;
top: 1.5em;
margin: 20px;
border: thin solid #aaaaaa;

}
</style>

</head>

<body>
<div id='controls'>

<input id='snapshotButton' type='button' value='Take snapshot'/>
</div>

<canvas id='canvas' width='400' height='400'>
 Canvas not supported

</canvas>

<script src='example.js'></script>
</body>

</html>

491.9 Printing a Canvas

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 1.12 Using toDataURL() to print a canvas: JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 snapshotButton = document.getElementById('snapshotButton'),
 snapshotImageElement =
 document.getElementById('snapshotImageElement'),
 loop;

// Clock drawing functions are omitted from this listing
// in the interests of brevity. See Example 1.4 on p. 24
// for a complete listing of those methods.

// Event handlers...

snapshotButton.onclick = function (e) {
var dataUrl;

if (snapshotButton.value === 'Take snapshot') {
 dataUrl = canvas.toDataURL();

clearInterval(loop);
 snapshotImageElement.src = dataUrl;
 snapshotImageElement.style.display = 'inline';
 canvas.style.display = 'none';
 snapshotButton.value = 'Return to Canvas';

}
else {

 canvas.style.display = 'inline';
 snapshotImageElement.style.display = 'none';
 loop = setInterval(drawClock, 1000);
 snapshotButton.value = 'Take snapshot';

}
};

// Initialization..

context.font = FONT_HEIGHT + 'px Arial';
loop = setInterval(drawClock, 1000);

The application accesses the canvas and img elements and uses CSS absolute po-
sitioning to overlap the two elements. When the user clicks the Take snapshot
button, the application obtains a data URL from the canvas and assigns it to the
src attribute of the image. Then it shows the image, hides the canvas, and sets
the text of the button to Return to Canvas.

When the user clicks the Return to Canvas button, the application hides the image,
displays the canvas, and returns the text of the button to Take snapshot.

Chapter 1 Essentials50

Download from Join eBook (www.joinebook.com)

ptg7987094

NOTE: Canvas blobs

As this book was being written, the Canvas specification added a toBlob()
method, so you can, among other things, save a canvas as a file.When the book
went to press, no browsers supported that method.

1.10 Offscreen Canvases
Another essential Canvas feature is the ability to create and manipulate offscreen
canvases. For example, you can, in most cases, considerably boost your perfor-
mance by storing backgrounds in one or more offscreen canvases and copying
parts of those offscreen canvases onscreen.

Another use case for offscreen canvases is the clock that we discussed in the
preceding section. Although that application shows you how to implement a
general solution that requires user interaction to switch from canvas to image,
a clock is a better candidate for an application that does that switching behind
the scenes without user intervention.

An updated version of the clock application is shown in Figure 1.20. Once a sec-
ond, the application draws the clock into the offscreen canvas and assigns the

Figure 1.20 Using an offscreen canvas for an image clock

511.10 Offscreen Canvases

Download from Join eBook (www.joinebook.com)

ptg7987094

canvas’s data URL to the src attribute of an image. The result is an animated
image that reflects the offscreen canvas. See Section 1.9, “Printing a Canvas,” on
p. 46 for more information on canvas data URLs.

The HTML for the application shown in Figure 1.20 is listed in Example 1.13.

Example 1.13 An image clock: HTML

<!DOCTYPE html>
<head>

<title>Image Clock</title>

<style>
 body {

background: #dddddd;
}

#canvas {
display: none;

}

#snapshotImageElement {
position: absolute;
left: 10px;
margin: 20px;
border: thin solid #aaaaaa;

}
</style>

</head>

<body>

<canvas id='canvas' width='400' height='400'>
 Canvas not supported

</canvas>

<script src='example.js'></script>
</body>

</html>

Notice the CSS for the canvas in the HTML—the canvas is invisible because its
display attribute is set to none. That invisibility makes it an offscreen canvas. You
can also programmatically create an offscreen canvas, like this: var offscreen
= document.createElement('canvas');.

The JavaScript pertinent to the offscreen canvas for the application shown in
Figure 1.20 is listed in Example 1.14.

Chapter 1 Essentials52

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 1.14 The image clock: JavaScript (excerpt)

// Some declarations and functions omitted for brevity.
// See Section 1.9 on p. 46 for a complete listing of
// the clock.

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ...

// Functions..

function updateClockImage() {
 snapshotImageElement.src = canvas.toDataURL();

}

function drawClock() {
 context.clearRect(0, 0, canvas.width, canvas.height);

 context.save();

 context.fillStyle = 'rgba(255,255,255,0.8)';
 context.fillRect(0, 0, canvas.width, canvas.height);

drawCircle();
drawCenter();
drawHands();

 context.restore();

drawNumerals();

updateClockImage();
}
...

1.11 A Brief Math Primer
To do anything interesting with Canvas, you need a good understanding of basic
mathematics, especially working with algebraic equations, trigonometry, and
vectors. It also helps, for more complex applications like video games, to be able
to derive equations, given units of measure.

Feel free to skim this section if you’re comfortable with basic algebra and
trigonometry and you can make your way to pixels/frame given pixels/second
and milliseconds/frame. Otherwise, spending time in this section will prove
fruitful throughout the rest of this book.

531.11 A Brief Math Primer

Download from Join eBook (www.joinebook.com)

ptg7987094

Let’s get started with solving algebraic equations and trigonometry, and then
we’ll look at vectors and deriving equations from units of measure.

1.11.1 Solving Algebraic Equations
For any algebraic equation, such as (10x + 5) × 2 = 110, you can do the following,
and the equation will still be true:

• Add any real number to both sides
• Subtract any real number from both sides
• Multiply any real number by both sides
• Divide both sides by any real number
• Multiply or divide one or both sides by 1

For example, for (10x + 5) × 2 = 110, you can solve the equation by dividing both
sides by 2, to get: 10x + 5 = 55; then you can subtract 5 from both sides to get:
10x = 50; and finally, you can solve for x by dividing both sides by 10: x = 5.

The last rule above may seem rather odd. Why would you want to multiply or
divide one or both sides of an equation by 1? In Section 1.11.4, “Deriving Equations
from Units of Measure,” on p. 62, where we derive equations from units of
measure, we will find a good use for that simple rule.

1.11.2 Trigonometry
Even the simplest uses of Canvas require a rudimentary understanding of
trigonometry; for example, in the next chapter you will see how to draw polygons,
which requires an understanding of sine and cosine. Let’s begin with a short
discussion of angles, followed by a look at right triangles.

1.11.2.1 Angles: Degrees and Radians
All the functions in the Canvas API that deal with angles require you to specify
angles in radians. The same is true for the JavaScript functions Math.sin(),
Math.cos(), and Math.tan(). Most people think of angles in terms of degrees, so
you need to know how to convert from degrees to radians.

180 degrees is equal to π radians. To convert from degrees to radians, you can
create an algebraic equation for that relationship, as shown in Equation 1.1.

180 degrees = π radians

Equation 1.1 Degrees and radians

Chapter 1 Essentials54

Download from Join eBook (www.joinebook.com)

ptg7987094

Solving Equation 1.1 for radians, and then degrees, results in Equations 1.2
and 1.3.

radians = (π / 180) × degrees

Equation 1.2 Degrees to radians

degrees = (180 / π) × radians

Equation 1.3 Radians to degrees

π is roughly equal to 3.14, so, for example, 45 degrees is equal to (3.14 / 180) × 45
radians, which works out to 0.7853.

1.11.2.2 Sine, Cosine, and Tangent
To make effective use of Canvas, you must have a basic understanding of sin,
cos, and tan, so if you’re not already familiar with Figure 1.21, you should commit
it to memory.

Figure 1.21 Sine, cosine, and tangent

You can also think of sine and cosine in terms of the X and Y coordinates of a
circle, as illustrated in Figure 1.22.

Given the radius of a circle and a counterclockwise angle from 0 degrees, you can
calculate the corresponding X and Y coordinates on the circumference of the circle
by multiplying the radius times the cosine of the angle, and multiplying the
radius by the sine of the angle, respectively.

551.11 A Brief Math Primer

Download from Join eBook (www.joinebook.com)

ptg7987094
Figure 1.22 Radius, x, and y

NOTE: Soak a toe, ah!

One of many ways to remember how to derive sine, cosine, and tangent from a
right triangle: SOHCAHTOA. SOH stands for sine, opposite, hypotenuse; CAH
stands for cosine, adjacent, hypotenuse; and TOA is tangent, opposite, adjacent.

1.11.3 Vectors
The two-dimensional vectors that we use in this book encapsulate two
values: direction and magnitude; they are used to express all sorts of physical
characteristics, such as forces and motion.

In Chapter 8, “Collision Detection,” we make extensive use of vectors, so in this
section we discuss the fundamentals of vector mathematics. If you’re not interested
in implementing collision detection, you can safely skip this section.

Near the end of Chapter 8 we explore how to react to a collision between two
polygons by bouncing one polygon off another, as illustrated in Figure 1.23.

In Figure 1.23, the top polygon is moving toward the bottom polygon, and the
two polygons are about to collide. The top polygon’s incoming velocity and
outgoing velocity are both modeled with vectors. The edge of the bottom

Chapter 1 Essentials56

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 1.23 Using vectors to bounce one polygon off another

polygon with which the top polygon is about to collide is also modeled as a vector,
known as a edge vector.

Feel free to skip ahead to Chapter 8 if you can’t wait to find out how to calculate
the outgoing velocity, given the incoming velocity and two points on the edge
of the bottom polygon. If you’re not familiar with basic vector math, however,
you might want to read through this section before moving to Chapter 8.

1.11.3.1 Vector Magnitude
Although two-dimensional vectors model two quantities—magnitude and
direction—it’s often useful to calculate one or the other, given a vector. You can
use the Pythagorean theorem, which you may recall from math class in school
(or alternatively, from the movie the Wizard of Oz), to calculate a vector’s
magnitude, as illustrated in Figure 1.24.

The Pythagorean theorem states that the hypotenuse of any right triangle is equal
to the square root of the squares of the other two sides, which is a lot easier to
understand if you look at Figure 1.24. The corresponding JavaScript looks like this:

var vectorMagnitude = Math.sqrt(Math.pow(vector.x, 2) +
 Math.pow(vector.y, 2));

The preceding snippet of JavaScript shows how to calculate the magnitude of a
vector referenced by a variable named vector.

Now that you know how to calculate a vector’s magnitude, let’s look at how you
can calculate a vector’s other quantity, direction.

571.11 A Brief Math Primer

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 1.24 Calculating a vector’s magnitude

1.11.3.2 Unit Vectors
Vector math often requires what’s known as a unit vector. Unit vectors, which
indicate direction only, are illustrated in Figure 1.25.

Figure 1.25 A unit vector

Unit vectors are so named because their magnitude is always 1 unit. To calculate
a unit vector given a vector with an arbitrary magnitude, you need to strip away
the magnitude, leaving behind only the direction. Here’s how you do that in
JavaScript:

var vectorMagnitude = Math.sqrt(Math.pow(vector.x, 2) +
 Math.pow(vector.y, 2)),
 unitVector = new Vector();

 unitVector.x = vector.x / vectorMagnitude;
 unitVector.y = vector.y / vectorMagnitude;

The preceding code listing, given a vector named vector, first calculates the
magnitude of the vector as you saw in the preceding section. The code then creates
a new vector—see Chapter 8 for a listing of a Vector object—and sets that unit

Chapter 1 Essentials58

Download from Join eBook (www.joinebook.com)

ptg7987094

vector’s X and Y values to the corresponding values of the original vector, divided
by the vector’s magnitude.

Now that you’ve seen how to calculate the two components of any
two-dimensional vector, let’s see how you combine vectors.

1.11.3.3 Adding and Subtracting Vectors
It’s often useful to add or subtract vectors. For example, if you have two forces
acting on a body, you can sum two vectors representing those forces together to
calculate a single force. Likewise, subtracting one positional vector from another
yields the edge between the two vectors.

Figure 1.26 shows how to add vectors, given two vectors named A and B.

Figure 1.26 Adding vectors

Adding vectors is simple: You just add the components of the vector together, as
shown in the following code listing:

var vectorSum = new Vector();

vectorSum.x = vectorOne.x + vectorTwo.x;
vectorSum.y = vectorOne.y + vectorTwo.y;

Subtracting vectors is also simple: you subtract the components of the vector,
as shown in the following code listing:

591.11 A Brief Math Primer

Download from Join eBook (www.joinebook.com)

ptg7987094

var vectorSubtraction = new Vector();

vectorSubtraction.x = vectorOne.x - vectorTwo.x;
vectorSubtraction.y = vectorOne.y - vectorTwo.y;

Figure 1.27 shows how subtracting one vector from another yields a third
vector whose direction is coincident with the edge between the two vectors.
In Figure 1.27, the vectors A-B and B-A are parallel to each other and are also
parallel to the edge vector between vectors A and B.

Figure 1.27 Subtracting vectors

Now that you know how to add and subtract vectors and, more importantly,
what it means to do that, let’s take a look at one more vector quantity: the dot
product.

1.11.3.4 The Dot Product of Two Vectors
To calculate the dot product of two vectors you multiply the components of each
vector by each other, and sum the values. Here is how you calculate the dot
product for two two-dimensional vectors:

var dotProduct = vectorOne.x * vectorTwo.x + vectorOne.y * vectorTwo.y;

Calculating the dot product between two vectors is easy; however, understanding
what a dot product means is not so intuitive. First, notice that unlike the result
of adding or subtracting two vectors, the dot product is not a vector—it’s what
engineers refer to as a scalar, which means that it’s simply a number. To
understand what that number means, study Figure 1.28.

Chapter 1 Essentials60

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 1.28 A positive dot product

The dot product of the two vectors in Figure 1.28 is 528. The significance of that
number, however, is not so much its magnitude but the fact that it’s greater than
zero. That means that the two vectors point in roughly the same direction.

Now look at Figure 1.29, where the dot product of the two vectors is –528. Because
that value is less than zero, we can surmise that the two vectors point in roughly
different directions.

Figure 1.29 A negative dot product

611.11 A Brief Math Primer

Download from Join eBook (www.joinebook.com)

ptg7987094

The ability to determine whether or not two vectors point in roughly the same
direction can be critical to how you react to collisions between objects. If a moving
object collides with a stationary object and you want the moving object to
bounce off the stationary object, you need to make sure that the moving
object bounces away from the stationary object, and not toward the station-
ary object’s center. Using the dot product of two vectors, you can do exactly that,
as you’ll see in Chapter 8.

That’s pretty much all you need to know about vectors to implement collision
detection, so let’s move on to the last section in this brief math primer and see
how to derive the equations from units of measure.

1.11.4 Deriving Equations from Units of Measure
As you will see in Chapter 5, motion in an animation should be time based, because
the rate at which an object moves should not change with an animation’s frame
rate. Time-based motion is especially important for multiplayer games; after all,
you don’t want a game to progress more quickly for players with more powerful
computers.

To implement time-based motion, we specify velocity in this book in terms of
pixels per second. To calculate how many pixels to move an object for the current
animation frame, therefore, we have two pieces of information: the object’s veloc-
ity in pixels per second, and the current frame rate of the animation in milliseconds
per frame. What we need to calculate is the number of pixels per frame to move any
given object. To do that, we must derive an equation that has pixels per frame on
the left side of the equation, and pixels per second (the object’s velocity) and
milliseconds per frame (the current frame rate) on the right of the equation, as
shown in Equation 1.4.

Y pixels
×

X ms
≠

pixels

secondframeframe

Equation 1.4 Deriving an equation for time-based motion, part I

In this inequality, X represents the animation’s frame rate in milliseconds/frame,
and Y is the object’s velocity in pixels/second. As that inequality suggests, how-
ever, you cannot just multiply milliseconds/frame times pixels/second, because
you end up with a nonsensical milliseconds-pixels/frame-seconds. So what
do you do?

Recall the last rule we discussed in Section 1.11.1, “Solving Algebraic Equations,”
on p. 54 for solving algebraic equations: You can multiply or divide one or both
sides of an equation by 1. Because of that rule, and because one second is equal

Chapter 1 Essentials62

Download from Join eBook (www.joinebook.com)

ptg7987094

to 1000 ms, and therefore 1 second / 1000 ms is equal to 1, we can multiply the
right side of the equation by that fraction, as shown in Equation 1.5.

Y pixels
×

1 second
×

X ms
=

pixels

second1000 msframeframe

Equation 1.5 Deriving an equation for time-based motion, part 2

And now we are ready to move in for the kill because when you multiply two
fractions together, a unit of measure in the numerator of one fraction cancels out the
same unit of measure in the denominator of the other fraction. In our case, we cancel
units of measure as shown in Equation 1.6.

Y pixels
×

1 second/
×

X ms/
=

pixels

second/1000 ms/frameframe

Equation 1.6 Deriving an equation for time-based motion, part 3

Canceling those units of measure results in Equation 1.7.

Y pixels
×

X
=

pixels

1000frameframe

Equation 1.7 Deriving an equation for time-based motion, part 4

Carrying out the multiplication results in the simplified equation, shown in
Equation 1.8.

X × Y
=

pixels

1000frame

X = frame rate in ms/frame

Y = velocity in pixels/second

Equation 1.8 Deriving an equation for time-based motion, part 5

Whenever you derive an equation, you should plug some simple numbers into
your equation to see if the equation makes sense. In this case, if an object is
moving at 100 pixels per second, and the frame rate is 500 ms per frame, you can
easily figure out, without any equations at all, that the object should move 50 pixels
in that 1/2 second.

631.11 A Brief Math Primer

Download from Join eBook (www.joinebook.com)

ptg7987094

Plugging those numbers into Equation 1.8 results in 500 × 100 / 1000, which
equals 50, so it appears that we have a valid equation for any velocity and any
frame rate.

In general, to derive an equation from variables with known units of measure,
follow these steps:

1. Start with an inequality, where the result is on the left, and the other variables
are on the right.

2. Given the units of measure on both sides of the equation, multiply the right
side of the equation by one or more fractions, each equal to 1, whose units
of measure cancel out the units of measure on the right side of the equation
to yield the units of measure on the left side of the equation.

3. Cancel out the units of measure on the right side of the equation.
4. Multiply the fractions on the right side of the equation.
5. Plug simple values whose result you can easily verify into the equation to

make sure the equation yields the expected value.

1.12 Conclusion
This chapter introduced you to the canvas element and its associated 2d context,
and illustrated some essential features of that context, such as the difference
between canvas element size and the size of the canvas’s drawing surface.

From there we had a quick overview of your development environment, including
browsers, consoles and debuggers, and performance tools.

Then we looked at the essentials of using a canvas, including fundamental
drawing operations, event handling, saving and restoring the drawing surface,
using HTML elements with a canvas, printing canvases, and using offscreen
canvases. You will see the use of those essential features many times throughout
this book, and you will use them yourself as you write Canvas-based applications.

Finally, we ended this chapter with a brief math primer, which you can consult
as needed as you read the rest of the book.

In the next chapter we take a deep-dive into drawing in a canvas. In that chapter
you will learn about the Canvas drawing API, and you’ll see how to put that API
to good use by implementing most of the features of a capable paint application.

Chapter 1 Essentials64

Download from Join eBook (www.joinebook.com)

ptg7987094

The HTML5 Canvas 2d context provides a powerful graphics API for implement-
ing sophisticated and compelling graphics applications that run in a browser.

Figure 2.1 shows a paint application that lets you draw text, lines, rectangles,
circles, bézier curves, and arbitrary paths—both open and closed—that you trace
with the mouse. You erase by selecting the bottom icon and subsequently dragging
the eraser in the drawing area (see Section 2.15.1, “Erasing with the Clipping
Region,” on p. 187). You change drawing attributes with the HTML controls at
the top of the page, and you can take a snapshot of the application so users can
save their painting as an image.

The paint application uses rubber bands for interactive drawing; as the user
drags the mouse to create a new shape, such as a circle or rectangle, the application
continuously draws an outline of the shape. When the user releases the mouse,
the application finalizes the shape by drawing and possibly filling the shape. The
application fills shapes when the user has clicked in the lower-right corner of
the icon representing that shape.

This chapter shows you how to use the Canvas APIs to do everything in the paint
application and more. Here are some of the things you will learn how to do:

• Stroke and fill lines, arcs, circles, curves, and polygons
• Use context attributes to affect the appearance of shapes
• Draw rounded rectangles
• Draw and edit bézier curves
• Extend the 2d context to draw dashed lines
• Stroke and fill shapes with colors, gradients, and patterns
• Give shapes depth with shadows

2CHAPTER

Drawing

65
Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 2.1 A paint application

• Use the clipping region to erase shapes and text, leaving the background intact
• Implement rubber bands so users can interactively draw shapes
• Drag objects in a canvas
• Transform the coordinate system

NOTE: The paint application

The paint application shown in Figure 2.1 is implemented with approximately
1100 lines of JavaScript. That makes it prohibitively long for listing in this book;
however, you can download the application from corehtml5canvas.com.

Although the paint application itself is not listed in this book, much of its function-
ality is illustrated with smaller applications in this chapter, starting with Sec-
tion 2.8.4, “Rubberband Lines,” on p. 110, which shows you how to let users
interactively draw lines with rubber bands, and culminating in Section 2.15.1,
“Erasing with the Clipping Region,” on p. 187, which shows you how to use the
clipping region to let users erase what they have drawn.

Chapter 2 Drawing66

Download from Join eBook (www.joinebook.com)

ptg7987094

NOTE: A mobile paint application

This chapter shows you how to implement the paint application’s features for
devices equipped with a mouse. In Chapter 11, you will see how to modify the
paint application for devices such as cell phones and tablet computers with touch
events instead of mouse events.You will also see how to make other modifications
to the application to make it more suitable for mobile devices.

2.1 The Coordinate System
By default, the Canvas coordinate system, depicted in Figure 2.2, places the origin
at the upper-left corner of the canvas, with X coordinates increasing to the right
and Y coordinates increasing toward the bottom of the canvas. Figure 2.2 shows
the coordinate system for a canvas with a default size of 300 x 150 pixels.

Figure 2.2 The Canvas coordinate system (default size)

The Canvas coordinate system is not fixed, however, as illustrated by Figure 2.3,
which translates and rotates the coordinate system. In fact, you can transform the
coordinate system in the following ways:

• Translate
• Rotate

672.1 The Coordinate System

Download from Join eBook (www.joinebook.com)

ptg7987094

• Scale
• Create custom transformations, such as shear

Figure 2.3 Translating and rotating the coordinate system

Transforming the coordinate system is an essential Canvas feature that’s useful
in many different situations, as you will see in this chapter and throughout the
rest of this book. For example, translating the coordinate system—moving
the origin—can significantly simplify the numerical values that you routinely
calculate when drawing and filling shapes and text.

In Section 2.13, “Transformations,” on p. 170 we will look closely at transforming
the coordinate system. For now, let’s take a look at the Canvas drawing model
and how you can use it to draw simple shapes and text.

2.2 The Drawing Model
At some point when you’re using Canvas, you will need to have a good under-
standing of exactly how Canvas draws shapes, images, and text, which in turn

Chapter 2 Drawing68

Download from Join eBook (www.joinebook.com)

ptg7987094

requires an understanding of shadows, alpha channels, the clipping region, and
compositing; indeed, by the end of this chapter you will have a good grasp of all
of those things. Right now, you don’t need to understand any of them, so feel
free to skip this section on first reading and use it as a reference later on.

When you draw shapes or images into a canvas, the browser does the following:

1. Draws the shape or image into an infinite, transparent bitmap, honoring
the current fill, stroke, and line styles

2. Draws the shadow from the shape or image into a second bitmap, using the
current context shadow settings

3. Multiplies every shadow pixel’s alpha component by the globalAlpha
property of the context

4. Composites the shadow bitmap into the canvas clipped to the clipping region,
using the current composition

5. Multiplies every pixel for the shape or image by the globalAlpha property
of the context

6. Composites the shape or image bitmap into the clipping region over the
current canvas bitmap, using the current composition operator

Note: Steps 2–4 apply only when shadows are enabled.

The browser initially draws your shape or image into an infinite, transparent
bitmap, using properties of the Canvas context that relate to filling and stroking
shapes. Of course, there is no such thing as an infinite bitmap, but the browser
behaves as if it has one.

Next, the browser deals with shadows in steps 2 through 4 above. If you’ve en-
abled shadows, as discussed in Section 2.6, “Shadows,” on p. 83, the browser
renders the shadows into another bitmap, multiplies every pixel within the
shadow by the globalAlpha property, which sets the transparency of the shadow,
and composites the shadow into the canvas element, using the current composition
settings and clipped to the current clipping region.

Finally, the browser composites the shape or image into the canvas element
according to the current composition settings and the clipping region.

If you are new to Canvas and you just read the preceding paragraphs without
understanding much, don’t despair. At sometime in the future, when you have
a good understanding of shadows, alpha channels, clipping regions, and
compositing, come back to this section, and it will all make sense.

Now that we’re done with coordinate system and drawing model preliminaries,
let’s get down to business and start using Canvas to draw simple shapes and text.

692.2 The Drawing Model

Download from Join eBook (www.joinebook.com)

ptg7987094

2.3 Drawing Rectangles
The Canvas API provides three methods for clearing, drawing, and filling
rectangles, respectively:

• clearRect(double x, double y, double w, double h)

• strokeRect(double x, double y, double w, double h)

• fillRect(double x, double y, double w, double h)

Figure 2.4 shows a simple application that uses all three of the preceding methods.

Figure 2.4 Drawing simple rectangles

The application uses strokeRect() to draw the rectangle on the left, and uses
fillRect() to fill the rectangle on the right. If you click anywhere in the canvas,
the application uses clearRect() to clear the entire canvas.

The application shown in Figure 2.4 is listed in Example 2.1.

Normally, as you will often see throughout this book, the strokeRect() method
draws rectangles with square corners; however, the application sets the context’s
lineJoin property to round, and therefore, as you can see in Figure 2.4, the

Chapter 2 Drawing70

Download from Join eBook (www.joinebook.com)

ptg7987094

rectangle on the left has rounded corners. See Section 2.8.7, “Line Caps and Joins,”
on p. 121 for more information about how you can use the lineJoin property to
control the appearance of corners when two lines meet.

Example 2.1 Drawing simple rectangles

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d');

context.lineJoin = 'round';
context.lineWidth = 30;

context.font = '24px Helvetica';
context.fillText('Click anywhere to erase', 175, 40);

context.strokeRect(75, 100, 200, 200);
context.fillRect(325, 100, 200, 200);

context.canvas.onmousedown = function (e) {
 context.clearRect(0, 0, canvas.width, canvas.height);
};

In addition to honoring the lineJoin property, strokeRect() also takes
into account the lineWidth property, which specifies line width in pixels.
The clearRect(), strokeRect(), and fillRect() methods are summarized in
Table 2.1.

Table 2.1 Clearing, stroking, and filling rectangles

DescriptionMethod

Clears all pixels in the intersection of the
specified rectangle and the current clipping
region.

By default, the clipping region is the size of
the canvas, so if you don’t change the clipping
region, the pixels cleared are exactly the pixels
specified by the arguments to the method.

Clearing pixels means turning their color to
fully transparent black. That effectively erases,
or clears, the pixel, allowing the canvas’s
background to show through.

clearRect(double x, double y,
double w, double h)

(Continues)

712.3 Drawing Rectangles

Download from Join eBook (www.joinebook.com)

ptg7987094

Table 2.1 (Continued)

DescriptionMethod

Strokes the specified rectangle, using the
following attributes:

• strokeStyle

• lineWidth

• lineJoin

• miterLimit

If you specify zero for either the width or
the height, the method will draw a vertical or
horizontal line, respectively. The method does
nothing if you specify zero for both width and
height.

strokeRect(double x, double y,
double w, double h)

Fills the specified rectangle with the
fillStyle attribute. If you specify zero for
either the width or the height, this method
thinks you’re an idiot, and therefore does
nothing.

fillRect(double x, double y,
double w, double h)

TIP: Rounded rectangles

The example in this section used the lineJoin property to draw a rounded
rectangle. The Canvas specification describes a detailed procedure for drawing
those rounded corners, which leaves no room for improvisation. To control
properties of the rounded corners, such as the radius of the rounded corner, you
must draw those corners yourself. In Section 2.9.3, “The arcTo() Method,” on
p. 127 you will see how to do that.

2.4 Colors and Transparency
The application in the preceding section (see Figure 2.4) uses the default
color—opaque black—to stroke and fill rectangles. In practice, you will undoubt-
edly want to use other colors, which you can do by setting the strokeStyle and
fillStyle properties of the context. Figure 2.5 shows an application similar to
the application shown in Figure 2.4 that uses colors other than opaque black
for the two rectangles.

Chapter 2 Drawing72

Download from Join eBook (www.joinebook.com)

ptg7987094Figure 2.5 Colors and transparency

The application shown in Figure 2.5 is listed in Example 2.2.

Example 2.2 Colors and transparency

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d');

context.lineJoin = 'round';
context.lineWidth = 30;

context.font = '24px Helvetica';
context.fillText('Click anywhere to erase', 175, 200);

context.strokeStyle = 'goldenrod';
context.fillStyle = 'rgba(0,0,255,0.5)';

context.strokeRect(75, 100, 200, 200);
context.fillRect(325, 100, 200, 200);

context.canvas.onmousedown = function (e) {
 context.clearRect(0, 0, canvas.width, canvas.height);
};

732.4 Colors and Transparency

Download from Join eBook (www.joinebook.com)

ptg7987094

The application uses two colors: goldenrod for stroking and semitransparent blue
for filling. You can see the transparency effect in Figure 2.5, where the text
shows through the semitransparent blue. Notice that the text does not show
through the border of the rectangle on the left because the color is opaque.

The values for strokeStyle and fillStyle can be any valid CSS color string. An
entire specification, which you can read at http://dev.w3.org/csswg/css3-color,
enumerates all of the different ways to specify CSS color strings. You can use
RGB (red/green/blue), RGBA (red/green/blue/alpha), HSL (hue/saturation/
lightness), HSLA (hue/saturation/lightness/alpha), hexadecimal notations for
RGB, or color names such as yellow, silver, or teal. Additionally, you can specify
SVG 1.0 color names such as goldenrod, darksalmon, or chocolate. Here are some
more examples of color strings:

• #ffffff

• #642

• rgba(100,100,100,0.8)

• rgb(255,255,0)

• hsl(20,62%,28%)

• hsla(40,82%,33%,0.6)

• antiquewhite

• burlywood

• cadetblue

TIP: Your browser may not support all SVG 1.0 color names

The CSS3 color specification states:

The Working Group doesn’t expect that all implementations of CSS3 will
implement all properties or values.

Having read that statement, don’t be surprised if some browsers do not support
all the colors in the CSS3 color specification.

Chapter 2 Drawing74

Download from Join eBook (www.joinebook.com)

http://dev.w3.org/csswg/css3-color

ptg7987094

NOTE: HSL color values

The CSS3 color specification states that HSL was added to CSS3 because RGB
has two main drawbacks: It is hardware oriented, based on cathode ray tubes
(CRTs); and it’s nonintuitive.

Like RGB, HSL values have three components, but whereas RGB represents
red, green, and blue, HSL values represent hue, saturation, and lightness. HSL
colors are selected from a color wheel, where red is at angle 0 degrees (and 360
degrees) on the color wheel, green is at 120 degrees, blue is at 240 degrees,
and so forth.

The first value that you specify for HSL colors represents the angle on the color
wheel. The second and third values represent percents for saturation and light-
ness. For saturation, 100% is full saturation, and 0% is a shade of gray. For
lightness, 100% is white and 50% is normal. (Note:The CSS3 color specification
puts the word normal in quotes and does not elaborate on what it means.)

HSL color values are easily converted to RGB, and vice versa. You can decide
for yourself which is more intuitive and which you’d rather use.

NOTE: The globalAlpha property

In addition to specifying semitransparent colors with the alpha component of
rgba() or hsla(), you can also use the globalAlpha property, which the
browser applies to all shapes and images that you draw. The value for that
property must be between 0.0, which is fully transparent, and 1.0, which is fully
opaque. The default value for the globalAlpha property is 1.0.

NOTE: Why strokeStyle and fillStyle instead of strokeColor and

fillColor?

You may wonder why the strokeStyle and fillStyle properties are not
named strokeColor and fillColor, respectively. Although you can indeed
specify CSS3 color strings for the strokeStyle and fillStyle attributes, you
can also specify gradients or patterns for those properties.We explore gradients
and patterns in the next section.

752.4 Colors and Transparency

Download from Join eBook (www.joinebook.com)

ptg7987094

2.5 Gradients and Patterns
In addition to colors, you can specify gradients and patterns for the strokeStyle
and fillStyle attributes. Let’s see how to do that next.

2.5.1 Gradients
The Canvas element supports both linear and radial gradients. Let’s start by
looking at the former.

2.5.1.1 Linear Gradients
Example 2.3 shows several ways to create linear gradients.

Figure 2.6 Linear gradients

The application shown in the Figure 2.6 is listed in Example 2.3.

The code creates a linear gradient with the createLinearGradient() method.
You pass that method the X and Y coordinates of two points, which represent a
line along which the canvas creates a color gradient, and createLinearGradient()

Chapter 2 Drawing76

Download from Join eBook (www.joinebook.com)

ptg7987094

returns an instance of CanvasGradient. Ultimately, the application sets the fill
style to the gradient, and subsequent calls to the fill() method will use the
gradient to fill until you set the fill style to something else.

After creating the gradient, the code adds five color stops by invoking
CanvasGradient’s lone method: addColorStop(). That method takes two param-
eters: a double value that must be between 0 and 1.0, representing the position
of the color stop along the gradient line; and a DOMString value, which is a CSS3
color string.

Example 2.3 Linear gradients

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 gradient = context.createLinearGradient(0, 0, canvas.width, 0);

gradient.addColorStop(0, 'blue');
gradient.addColorStop(0.25, 'white');
gradient.addColorStop(0.5, 'purple');
gradient.addColorStop(0.75, 'red');
gradient.addColorStop(1, 'yellow');

context.fillStyle = gradient;
context.rect(0, 0, canvas.width, canvas.height);

The code creates the gradient shown in the upper-left corner in Figure 2.6. All
the screenshots in Figure 2.6 were created by this application; the only difference
is how the application creates the gradient. Starting with the screenshot in the
upper-right corner and moving clockwise, the screenshots were created with
the following gradients, respectively:

gradient = context.createLinearGradient(0, 0, 0, canvas.height);

The preceding gradient is created with a vertical line, resulting at the screenshot
shown at the upper right in Figure 2.6.

gradient =
 context.createLinearGradient(0, 0, canvas.width, canvas.height);

The screenshot at the lower right in Figure 2.6 is created by the preceding gradient,
whose gradient line is slanted at an angle.

gradient = context.createLinearGradient(0, 0, 0, canvas.height/2);

Finally, the screenshot at the lower left was created with the preceding gradient.
Notice that the gradient line for the preceding gradient is a vertical line from the
top of the canvas to the middle of the canvas. The application fills the entire canvas,

772.5 Gradients and Patterns

Download from Join eBook (www.joinebook.com)

ptg7987094

and the Canvas element fills the bottom half of the canvas with the last color used
in the gradient.

2.5.1.2 Radial Gradients
As you saw in the preceding section, you create linear gradients by specifying a
gradient line. To create radial gradients, you specify two circles, which represent
the ends of a cone. The radial gradient effect is shown in Figure 2.7.

Figure 2.7 Radial gradients

The application shown in Figure 2.7 is listed in Example 2.4.

The code creates a radial gradient with a small circle (10 pixel radius) at the bottom
of the canvas and a larger circle (100 pixel radius) at the top of the canvas. Both
circles are centered horizontally within the canvas.

Like createLinearGradient(), createRadialGradient() returns an instance of
CanvasGradient. The code adds four color stops to the gradient and sets the fill
style to the gradient.

Notice that the code fills the entire canvas with the radial gradient; however,
unlike linear gradients, which fill the area outside the gradient line with the last
gradient color, radial gradients are restricted to the cone described by the two
circles that you pass to the createRadialGradient() method.

Chapter 2 Drawing78

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.4 Radial gradients

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 gradient = context.createRadialGradient(
 canvas.width/2, canvas.height, 10,
 canvas.width/2, 0, 100);

gradient.addColorStop(0, 'blue');
gradient.addColorStop(0.25, 'white');
gradient.addColorStop(0.5, 'purple');
gradient.addColorStop(0.75, 'red');
gradient.addColorStop(1, 'yellow');

context.fillStyle = gradient;
context.rect(0, 0, canvas.width, canvas.height);
context.fill();

The createLinearGradient() and createRadialGradient() methods are
summarized in Table 2.2.

Table 2.2 Gradients

DescriptionMethod

Creates a linear gradient. The parameters
you pass to the method represent two
points which specify the gradient line.
The method returns an instance of
CanvasGradient, to which you can
add color stops with the
CanvasGradient.addColorStop()
method.

CanvasGradient
createLinearGradient(double x0,
double y0, double x1, double y1)

Creates a radial gradient. The parameters
to the method represent two circles at the
opposite ends of a cone. Like
createLinearGradient(), this method
returns an instance of CanvasGradient.

CanvasGradient
createRadialGradient(double x0,
double y0, double r0, double x1,
double y1, double r1)

2.5.2 Patterns
Besides colors and gradients, the Canvas element also lets you stroke and fill both
shapes and text with a pattern. That pattern can be one of three things: an image,
a canvas, or a video element.

792.5 Gradients and Patterns

Download from Join eBook (www.joinebook.com)

ptg7987094

You create patterns with the createPattern() method, which takes two argu-
ments: the pattern itself and a string that specifies how the browser repeats the
pattern. You can specify one of the following values for that second argument:
repeat, repeat-x, repeat-y, or no-repeat. You can see the effects of those values
in the application shown in Figure 2.8, which creates a pattern with an image,
sets the fill style to that pattern, and subsequently fills the entire canvas with the
pattern.

Figure 2.8 Controlling how patterns repeat

The HTML for the application shown in Figure 2.8 is listed in Example 2.5.

The HTML creates the radio buttons, the canvas, and includes the JavaScript
for the example. That JavaScript is listed in Example 2.6.

The JavaScript creates an image, and subsequently creates a pattern with that
image and the repetition argument that you specify when you select the radio
button. The application then uses that pattern to fill the entire canvas.

Chapter 2 Drawing80

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.5 Using patterns: HTML

<!DOCTYPE html>
<head>

<title>Patterns</title>

<style>
#canvas {

background: #eeeeee;
border: thin solid cornflowerblue;

}

#radios {
padding: 10px;

}
</style>

</head>

<body>
<div id='radios'>

<input type='radio'
id='repeatRadio' name='patternRadio' checked/>repeat

<input type='radio'
id='repeatXRadio' name='patternRadio'/>repeat-x

<input type='radio'
id='repeatYRadio' name='patternRadio'/>repeat-y

<input type='radio'
id='noRepeatRadio' name='patternRadio'/>no repeat

</div>

<canvas id='canvas' width='450' height='275'>
 Canvas not supported

</canvas>

<script src='example.js'></script>
</body>

</html>

Notice that the code creates a new CanvasPattern object with createPattern()
every time you click a radio button. Creating a new pattern is necessary because
the CanvasPattern is what’s known as an opaque JavaScript object, meaning it
provides no properties or methods for you to manipulate. If CanvasPattern ob-
jects provided a setPattern() method, you could create a single CanvasPattern
object and simply change the pattern; however, you cannot do that because
CanvasPattern objects are opaque.

812.5 Gradients and Patterns

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.6 Using Patterns: The JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 repeatRadio = document.getElementById('repeatRadio'),
 noRepeatRadio = document.getElementById('noRepeatRadio'),
 repeatXRadio = document.getElementById('repeatXRadio'),
 repeatYRadio = document.getElementById('repeatYRadio'),
 image = new Image();

// Functions..

function fillCanvasWithPattern(repeatString) {
var pattern = context.createPattern(image, repeatString);

 context.clearRect(0, 0, canvas.width, canvas.height);
 context.fillStyle = pattern;
 context.fillRect(0, 0, canvas.width, canvas.height);
 context.fill();

}

// Event handlers...

repeatRadio.onclick = function (e) {
fillCanvasWithPattern('repeat');

};

repeatXRadio.onclick = function (e) {
fillCanvasWithPattern('repeat-x');

};

repeatYRadio.onclick = function (e) {
fillCanvasWithPattern('repeat-y');

};

noRepeatRadio.onclick = function (e) {
fillCanvasWithPattern('no-repeat');

};

// Initialization...

image.src = 'redball.png';
image.onload = function (e) {

fillCanvasWithPattern('repeat');
};

The createPattern() method is described in Table 2.3.

Chapter 2 Drawing82

Download from Join eBook (www.joinebook.com)

ptg7987094

Table 2.3 createPattern() method

DescriptionMethod

Creates a pattern that you can use to stroke
or fill shapes or text in the canvas. The
image used in the pattern, specified with
the first argument to the method, can be an
image, a canvas, or a video element. The
second argument specifies how the browser
repeats the pattern when you use it to
stroke or fill a shape. Valid values for the
second argument are repeat, repeat-x,
repeat-y, and no-repeat.

CanvasPattern
createPattern(HTMLImageElement |
HTMLCanvasElement |
HTMLVideoElement image, DOMString
repetition)

2.6 Shadows
Whenever you draw into a canvas, whether you are drawing shapes, text, or
images, you can also specify a shadow with four context attributes:

• shadowColor: a CSS3 color
• shadowOffsetX: the horizontal offset in pixels, from the shape or text,

to the shadow
• shadowOffsetY: the vertical offset in pixels, from the shape or text, to

the shadow
• shadowBlur: a value, that has nothing to do with pixels, used in a Gaussian

blur equation to smear the shadow

The Canvas context will draw shadows if you

1. Specify a shadowColor that is not fully transparent
2. Specify a nonzero value for one of the other shadow attributes

Figure 2.9 shows some of the icons from the paint application shown in Figure 2.1
on p. 66.

The paint application applies shadows to all its icons to make it appear as though
they’re floating above the page. The application specifies a different shadow
for the selected icon, however. That shadow has higher values for the shadow’s
offsets and blur, which makes it appear to float higher than the other icons, as
you can see from the Text icon in Figure 2.9.

832.6 Shadows

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 2.9 Shadows give the illusion of depth

The paint application sets the icon shadows with the methods shown in
Example 2.7.

Example 2.7 Using shadows to portray depth

var SHADOW_COLOR = 'rgba(0,0,0,0.7)';
...

function setIconShadow() {
 iconContext.shadowColor = SHADOW_COLOR;
 iconContext.shadowOffsetX = 1;
 iconContext.shadowOffsetY = 1;
 iconContext.shadowBlur = 2;
}

function setSelectedIconShadow() {
 iconContext.shadowColor = SHADOW_COLOR;
 iconContext.shadowOffsetX = 4;
 iconContext.shadowOffsetY = 4;
 iconContext.shadowBlur = 5;
}

The icons shown in Figure 2.9 are filled rectangles with shadows, but the Canvas
context also draws shadows when you stroke text or a path. Figure 2.10 illustrates
the difference between shadows applied to a stroke and shadows applied to a fill.

Chapter 2 Drawing84

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 2.10 Shadows for stroking (left) vs. filling (right)

TIP: Use partially transparent colors for shadows

In general, it’s a good idea to use partially transparent colors for shadows so
that the background shows through the shadows.

NOTE: Turning shadows on and off

According to the Canvas specification, the browser should draw shadows
only if you a) specify a color with the shadowColor property, which is not fully
transparent, and b) you specify a nonzero value for one of the other three shadow
properties: shadowBlur, shadowOffsetX, or shadowOffsetY. An easy way to
turn off shadows, therefore, is to set the shadowColor to undefined. However,
at the time this book was written, setting the shadowColor to undefined works
with WebKit browsers but does not work with Firefox or Opera. To ensure that
you turn shadows on or off with all browsers, you should set all the shadow-related
properties, which you can do by hand or by using the context save() and
restore() methods.

At the time this book was written, the browser draws shadows regardless of the
current composition setting, which determines how the browser draws one thing
on top of another. Some browser vendors, however, would like to change that
rule so that the browser draws shadows only when the composition setting is
source-over. See Section 2.14, “Compositing,” on p. 181 for more information
about the composition setting.

2.6.1 Inset Shadows
If you specify nonzero, positive values for shadowOffsetX and shadowOffsetY,
then whatever you draw will appear to float above the canvas. Larger numbers

852.6 Shadows

Download from Join eBook (www.joinebook.com)

ptg7987094

for those properties make it appear as though objects are floating higher above
the canvas.

You can also use negative values for those properties, as illustrated in Figure 2.11.

Figure 2.11 Shadows with negative offsets: Stroking on the left, filling on the right

Shadows with negative offsets can be used to implement inset shadows, as illus-
trated in Figure 2.12, which shows the eraser for the paint application. The eraser
has a faint inset shadow, that makes the eraser surface appear concave.

Figure 2.12 Inset shadows: the paint application’s eraser

Example 2.8 shows the pertinent code from the paint application that draws the
eraser and its inset shadow. The application specifies the inset shadow with X
and Y shadow offsets of –5 pixels, which results in a shadow similar to the ones
depicted in Figure 2.11.

Chapter 2 Drawing86

Download from Join eBook (www.joinebook.com)

ptg7987094

Notice the call to the context’s clip() method. That call restricts, to only the area
within the circle, the subsequent call to stroke() and the shadow it generates.
That means that, unlike the inset shadow for the stroked rectangle in
Figure 2.12, the browser does not draw any shadows outside the circle. We discuss
the clipping region and the clip() method in more detail in Section 2.15, “The
Clipping Region,” on p. 187.

Example 2.8 Drawing inset shadows

var drawingContext =
 document.getElementById('drawingCanvas').getContext('2d'),

 ERASER_LINE_WIDTH = 1,
 ERASER_SHADOW_STYLE = 'blue',
 ERASER_STROKE_STYLE = 'rgba(0,0,255,0.6)',
 ERASER_SHADOW_OFFSET = -5,
 ERASER_SHADOW_BLUR = 20,
 ERASER_RADIUS = 60;

// Eraser..

function setEraserAttributes() {
 drawingContext.lineWidth = ERASER_LINE_WIDTH;
 drawingContext.shadowColor = ERASER_SHADOW_STYLE;
 drawingContext.shadowOffsetX = ERASER_SHADOW_OFFSET;
 drawingContext.shadowOffsetY = ERASER_SHADOW_OFFSET;
 drawingContext.shadowBlur = ERASER_SHADOW_BLUR;
 drawingContext.strokeStyle = ERASER_STROKE_STYLE;

}

function drawEraser(loc) {
 drawingContext.save();

setEraserAttributes();

 drawingContext.beginPath();
 drawingContext.arc(loc.x, loc.y, ERASER_RADIUS,

0, Math.PI*2, false);
 drawingContext.clip();
 drawingContext.stroke();

 drawingContext.restore();
}

The four attributes that control how shadows are drawn are summarized in
Table 2.4.

872.6 Shadows

Download from Join eBook (www.joinebook.com)

ptg7987094

Table 2.4 CanvasRenderingContext2D shadow attributes

DescriptionAttribute

A double value that determines how spread out a shadow
appears. This property’s value is used when the browser performs
a Gaussian blur on the shadow. The value is used in a Gaussian
blur equation and has nothing to do with pixels. The default value
is 0.

shadowBlur

A CSS3 color string. The default value is rgba(0,0,0,0), which
equates to fully transparent black.

shadowColor

The offset, in pixels, in the X direction for the shadow. The default
value is 0.

shadowOffsetX

The offset, in pixels, in the Y direction for the shadow. The default
value is 0.

shadowOffsetY

TIP: Shadows can be expensive to draw

As discussed in Section 2.2, “The Drawing Model,” on p. 68, drawing shadows
requires the browser to use a secondary bitmap to render the shadows, which
it ultimately composites into the onscreen canvas. As a result of that secondary
bitmap, drawing shadows can be an expensive operation.

If you are drawing simple shapes, text, or images, drawing shadows is probably
not much of a performance consideration. However, if you are using shadows
for objects that you animate in a canvas, you’ll almost certainly get better
performance from your animation if you omit the shadows. See Section 5.11,
“Animation Best Practices,” on p. 390 for more information about animation and
shadows.

2.7 Paths, Stroking, and Filling
So far in this chapter the only shapes we’ve drawn are rectangles with the Canvas
context strokeRect() method. We also filled rectangles with fillRect(). Both
of those methods take immediate effect; in fact, those are the only methods imple-
mented by the Canvas context that immediately draw shapes (strokeText() and
fillText() draw immediately, but text is not a shape). Other context methods
that draw more complex shapes such as bézier curves are path based.

Chapter 2 Drawing88

Download from Join eBook (www.joinebook.com)

ptg7987094

Most drawing systems, such as Scalable Vector Graphics (SVG), Apple’s Cocoa,
and Adobe’s Illustrator are path based. With those drawing systems you define
a path that you can subsequently stroke (draw the outline of the path), fill, or both,
as shown in Figure 2.13.

Figure 2.13 Stroking and filling shapes

The application creates nine separate paths, strokes the paths in the left-hand
column, fills the paths in the middle column, and strokes and fills the paths in
the right-hand column.

The rectangular paths in the first row and the arc paths in the bottom row are
closed paths. The arc paths in the middle row are open paths. Notice you can fill a
path whether it’s open or closed. When you fill an open path, as illustrated by
the arc path in the middle row of the right-hand column, the browser fills the
path as if it were closed.

The application shown in Figure 2.13 is listed in Example 2.9.

892.7 Paths, Stroking, and Filling

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.9 Stroking and filling text, rectangles, and arcs

var context = document.getElementById('drawingCanvas').getContext('2d');

// Functions..

function drawGrid(context, color, stepx, stepy) {
// Listing omitted for brevity. See Example 2.13 on p. 106
// for a complete listing.

}

// Initialization...

drawGrid(context, 'lightgray', 10, 10);

// Drawing attributes...

context.font = '48pt Helvetica';
context.strokeStyle = 'blue';
context.fillStyle = 'red';
context.lineWidth = '2'; // Line width set to 2 for text

// Text...

context.strokeText('Stroke', 60, 110);
context.fillText('Fill', 440, 110);

context.strokeText('Stroke & Fill', 650, 110);
context.fillText('Stroke & Fill', 650, 110);

// Rectangles...

context.lineWidth = '5'; // Line width set to 5 for shapes
context.beginPath();
context.rect(80, 150, 150, 100);
context.stroke();

context.beginPath();
context.rect(400, 150, 150, 100);
context.fill();

context.beginPath();
context.rect(750, 150, 150, 100);
context.stroke();
context.fill();

Chapter 2 Drawing90

Download from Join eBook (www.joinebook.com)

ptg7987094

// Open arcs..

context.beginPath();
context.arc(150, 370, 60, 0, Math.PI*3/2);
context.stroke();

context.beginPath();
context.arc(475, 370, 60, 0, Math.PI*3/2);
context.fill();

context.beginPath();
context.arc(820, 370, 60, 0, Math.PI*3/2);
context.stroke();
context.fill();

// Closed arcs..

context.beginPath();
context.arc(150, 550, 60, 0, Math.PI*3/2);
context.closePath();
context.stroke();

context.beginPath();
context.arc(475, 550, 60, 0, Math.PI*3/2);
context.closePath();
context.fill();

context.beginPath();
context.arc(820, 550, 60, 0, Math.PI*3/2);
context.closePath();
context.stroke();
context.fill();

You begin a new path with the beginPath() method. The rect() and arc()
methods both create paths for rectangles and arcs, respectively. Subsequently,
the application strokes or fills those paths with the stroke() and fill() context
methods.

Stroking and filling are governed by the current drawing attributes, such as
lineWidth, strokeStyle, fillStyle, shadow attributes, etc. The application shown
in Example 2.9, for example, sets the lineWidth to 2 for stroking the text and resets
it to 5 for stroking the paths.

The path created by rect() is closed; however, paths created by arc() are not
closed unless you use arc() to create a circular path. To close an arc path, you
must call the closePath() method, as illustrated by Example 2.9.

912.7 Paths, Stroking, and Filling

Download from Join eBook (www.joinebook.com)

ptg7987094

The methods used by this application that pertain to paths are summarized in
Table 2.5.

Table 2.5 CanvasRenderingContext2D path-related methods

DescriptionMethod

Adds a subpath, representing an arc or a circle, to the
current path. You can control the direction of the
subpath (unlike the case with rect()) with a boolean
variable. If that variable is true, arc() creates the
subpath clockwise; otherwise, it creates the subpath
counterclockwise. If a subpath already exists when you
call this method, arc() draws a line from the last point
in the existing subpath to the first point along the
arc’s path.

arc()

Resets the current path by clearing all subpaths from
the current path. See Section 2.7.1 for more information
about subpaths. Call this method when you want to
begin a new path.

beginPath()

Explicitly closes an open path. This method is for open
arc paths and paths created with curves or lines.

closePath()

Fills the inside of the current path with fillStyle.fill()

Creates a rectangular subpath at (x, y) with the
specified width and height. The subpath is implicitly
closed and is always clockwise.

rect(double x, double
y, double width, double
height)

Strokes the outline of the current path with
strokeStyle.

stroke()

NOTE: Paths and invisible ink

A good analogy for creating a path and subsequently stroking or filling that path
is drawing with invisible ink.

Whatever you draw with invisible ink is not immediately visible; you must subse-
quently do something—for example, apply heat, chemicals, or infrared light—to
make whatever you’ve drawn visible.You can read all about invisible ink, if you’re
so inclined, at http://en.wikipedia.org/wiki/Invisible_ink.

Using methods such as rect() or arc() is analogous to drawing with invisible
ink. Those methods create an invisible path that you subsequently make
visible with calls to stroke() or fill().

Chapter 2 Drawing92

Download from Join eBook (www.joinebook.com)

http://en.wikipedia.org/wiki/Invisible_ink

ptg7987094

2.7.1 Paths and Subpaths
At any given time there is only one path for a particular canvas, which the Canvas
specification refers to as the current path. That path, however, can consist of mul-
tiple subpaths. A subpath, in turn, consists of two or more points. For example,
you can draw two rectangles, like this:

context.beginPath(); // Clear all subpaths from
// the current path

context.rect(10, 10, 100, 100); // Add a subpath with four points
context.stroke(); // Stroke the subpath containing

// four points

context.beginPath(); // Clear all subpaths from the
// current path

context.rect(50, 50, 100, 100); // Add a subpath with four points
context.stroke(); // Stroke the subpath containing

// four points

The preceding code begins by calling beginPath(), which clears all subpaths
from the current path. The code then invokes rect(), which adds a subpath
containing four points to the current path. Finally, the code calls stroke(), which
draws an outline of the current path, making the rectangle appear in the canvas.

Next, the code once again invokes beginPath(), which clears the subpath created
by the previous call to rect(), and then calls rect() a second time, which once
again adds a subpath with four points to the current path. Finally, the code strokes
the current path, which makes the second rectangle appear in the canvas.

Now consider what happens if you remove the second call to beginPath(),
like this:

context.beginPath(); // Clear all subpaths from the
// current path

context.rect(10, 10, 100, 100); // Add a subpath with four points
context.stroke(); // Stroke the subpath containing

// four points

context.rect(50, 50, 100, 100); // Add a second subpath with
// four points

context.stroke(); // Stroke both subpaths

The preceding code starts off exactly as the previous code listing: It calls
beginPath() to clear any subpaths from the current path, calls rect() to create
a single subpath containing the rectangle’s four points, and invokes stroke() to
make the rectangle appear in the canvas.

Next, the code calls rect() again, but this time, because the code did not invoke
beginPath() to clear out the previous subpath, the second call to rect() adds a

932.7 Paths, Stroking, and Filling

Download from Join eBook (www.joinebook.com)

ptg7987094

subpath to the current path. Finally, when the code invokes stroke() for the second
time, that call to stroke() strokes both of the subpaths in the current path,
meaning it redraws the first rectangle.

2.7.1.1 The Nonzero Winding Rule for Filling Paths
If the current path loops back over itself or if you have multiple subpaths in
the current path that intersect, the Canvas context must figure out how to fill the
current path when the fill() method is invoked. Canvas uses what’s known as
the nonzero winding rule for filling a path that intersects with itself. Figure 2.14
illustrates the use of that rule.

Figure 2.14 The nonzero winding rule for filling paths

Here’s how the nonzero winding rule works for self-intersecting paths: For any
particular area in the path, draw a straight line from inside the area until the line
is long enough so the second point on the line lies completely outside the path.
That step is depicted in Figure 2.14 with three arrows.

The next step is to initialize a counter to zero, and every time the line crosses a
line or curve on the path itself, add one to the counter for clockwise segments of
the path and subtract one from the counter for counterclockwise path segments.
If the final count is nonzero, then the area lies within the path, and the browser
fills it when you invoke fill(). If the final count is zero, the area does not lie
within the path, and the browser does not fill it.

You can see how the nonzero winding rule works by looking at Figure 2.14. The
arrow on the left first crosses a counterclockwise segment of the path and subse-
quently crosses a clockwise segment of the path. That means its counter is zero,
so that area does not lie within the path, and the browser does not fill it when

Chapter 2 Drawing94

Download from Join eBook (www.joinebook.com)

ptg7987094

you invoke fill(). The counters for the other two arrows, however, are nonzero,
so the areas from which they originate are filled by the browser.

2.7.2 Cutouts
Let’s use our knowledge of paths, shadows, and the nonzero winding rule to
implement cutouts, as shown in Figure 2.15.

Figure 2.15 A cutout with two circles

The JavaScript for the application shown in Figure 2.15 is listed in Example 2.10.

This JavaScript creates a single path that consists of two circles, one inside the
other. Using the last argument of the arc() method, the application draws
the inner circle clockwise and draws the outer circle counterclockwise, as shown
in the top screenshot in Figure 2.16.

After creating the path, the application shown in Figure 2.15 fills it. By applying
the nonzero winding rule, the browser fills the interior of the outer circle but does
not fill the inside of the inner circle. The result is a cutout, and you can cut out
any shapes you like.

952.7 Paths, Stroking, and Filling

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.10 JavaScript for the application shown in Figure 2.14

var context = document.getElementById('canvas').getContext('2d');

// Functions...

function drawGrid(color, stepx, stepy) {
// Listing omitted for brevity. See Example 2.13 on p. 106
// for a complete listing.

}

function drawTwoArcs() {
 context.beginPath();
 context.arc(300, 190, 150, 0, Math.PI*2, false); // Outer: CCW
 context.arc(300, 190, 100, 0, Math.PI*2, true); // Inner: CW

 context.fill();
 context.shadowColor = undefined;
 context.shadowOffsetX = 0;
 context.shadowOffsetY = 0;
 context.stroke();

}

function draw() {
 context.clearRect(0, 0, context.canvas.width,
 context.canvas.height);

drawGrid('lightgray', 10, 10);

 context.save();

 context.shadowColor = 'rgba(0,0,0,0.8)';
 context.shadowOffsetX = 12;
 context.shadowOffsetY = 12;
 context.shadowBlur = 15;

drawTwoArcs();

 context.restore();
}

// Initialization..

context.fillStyle = 'rgba(100,140,230,0.5)';
context.strokeStyle = context.fillStyle;
draw();

Chapter 2 Drawing96

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 2.16 Implementing cutouts with the nonzero winding rule

972.7 Paths, Stroking, and Filling

Download from Join eBook (www.joinebook.com)

ptg7987094

The example shown in Figure 2.16 is an extension of the application shown in
Figure 2.15 that lets you draw both circles in the same direction, adds annotations
showing the directions of the circles and the nonzero winding rule calculations,
and shows you the calls to arc() that create the subpaths for the circles.

NOTE: What’s that horizontal line in Figure 2.16?

Notice the horizontal line between the two circles in Figure 2.16. The same line
is drawn in Figure 2.15; however, the line is more distinct in Figure 2.16 because
that application uses a darker stroke color.

According to the Canvas specification, when you call the arc() method and an
existing subpath is in the current path, the method must connect the last point
in the existing subpath to the first point on the arc.

2.7.2.1 Cutout Shapes
The application shown in Figure 2.17 cuts three shapes out of a rectangle.
Unlike the application discussed in the preceding section, the application shown
in Figure 2.17 uses a fully opaque fill color for the rectangle containing the cutouts.

Figure 2.17 Various cutout shapes

Chapter 2 Drawing98

Download from Join eBook (www.joinebook.com)

ptg7987094

The application has two interesting aspects. First, notice that the shape surround-
ing the cutouts is a rectangle, not a circle. That rectangle illustrates that you can
use any shape, including arbitrary paths, to enclose cutouts. Here’s how the
application creates the cutouts:

function drawCutouts() {
 context.beginPath();

addOuterRectanglePath(); // Clockwise (CW)

addCirclePath(); // Counter-clockwise (CCW)
addRectanglePath(); // CCW
addTrianglePath(); // CCW

 context.fill(); // Cut out shapes
}

The methods addOuterRectanglePath(), addCirclePath(), addRectanglePath(),
and addTrianglePath() add subpaths to the current path representing the cutouts.

The second interesting thing about the application shown in Figure 2.17 is the
rectangle cutout. Whereas arc() lets you control the direction of the arc, the rect()
method is not so accommodating: rect() always creates a clockwise path. How-
ever, in this case we need a counterclockwise rectangular path, so we create one
with a rect() method of our own that, like arc(), lets us control the rectangular
path’s direction:

function rect(x, y, w, h, direction) {
if (direction) { // CCW

 context.moveTo(x, y);
 context.lineTo(x, y + h);
 context.lineTo(x + w, y + h);
 context.lineTo(x + w, y);

}
else {

 context.moveTo(x, y);
 context.lineTo(x + w, y);
 context.lineTo(x + w, y + h);
 context.lineTo(x, y + h);

}
 context.closePath();
}

The preceding code uses the moveTo() and lineTo() methods to create a rectan-
gular path either clockwise or counterclockwise. We look more closely at those
methods in Section 2.8, “Lines,” on p. 103.

992.7 Paths, Stroking, and Filling

Download from Join eBook (www.joinebook.com)

ptg7987094

The application creates the outer rectangle and the cutout rectangle’s paths
differently:

function addOuterRectanglePath() {
 context.rect(110, 25, 370, 335);
}

function addRectanglePath() {
rect(310, 55, 70, 35, true);

}

The addOuterRectanglePath() method uses the context’s rect() method,
which always draws clockwise rectangles, with no option to do otherwise;
addRectanglePath(), which creates the rectangle cutout’s path, uses the rect()
method listed above to draw a counterclockwise rectangle.

The JavaScript for the application shown in Figure 2.17 is listed in Example 2.11.

TIP: Direction matters

The last argument to arc() is a boolean variable that controls the direction of
the arc. If the value is true, which is the default, the browser draws the arc
clockwise; otherwise, the browser draws the arc counterclockwise (or, as it’s
referred to in the Canvas specification, anti-clockwise).

NOTE: arc() lets you control direction—rect() does not

Both context methods arc() and rect() add subpaths to the current path, but
only arc() lets you control the direction in which it draws the path. Fortunately,
you can easily implement a function that creates a rectangular path with a specific
direction, as illustrated by the rect() method in Example 2.11.

TIP: Get rid of the arc() method’s unsightly connecting line

If you call arc() with an existing subpath in the current path, arc() will connect
the last point in the existing subpath to the first point in the arc. Usually, you don’t
want that line to be seen.

You can hide that connection line by invoking beginPath() before stroking the
arc with arc(). The call to beginPath() clears all subpaths from the current
path, so arc() doesn’t stroke the connection line.

Chapter 2 Drawing100

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.11 Refining cutout shapes

var context = document.getElementById('canvas').getContext('2d');

// Functions..

function drawGrid(color, stepx, stepy) {
// Listing omitted for brevity. See Example 2.13 on p. 106
// for a complete listing.

}

function draw() {
 context.clearRect(0, 0, context.canvas.width,
 context.canvas.height);

drawGrid('lightgray', 10, 10);

 context.save();

 context.shadowColor = 'rgba(200,200,0,0.5)';
 context.shadowOffsetX = 12;
 context.shadowOffsetY = 12;
 context.shadowBlur = 15;

drawCutouts();
strokeCutoutShapes();

 context.restore();
}

function drawCutouts() {
 context.beginPath();

addOuterRectanglePath(); // CW

addCirclePath(); // CCW
addRectanglePath(); // CCW
addTrianglePath(); // CCW

 context.fill(); // Cut out shapes
}

function strokeCutoutShapes() {
 context.save();

 context.strokeStyle = 'rgba(0,0,0,0.7)';

 context.beginPath();
addOuterRectanglePath(); // CW

 context.stroke();

 context.beginPath();

(Continues)

1012.7 Paths, Stroking, and Filling

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.11 (Continued)

addCirclePath();
addRectanglePath();
addTrianglePath();

 context.stroke();

 context.restore();
}

function rect(x, y, w, h, direction) {
if (direction) { // CCW

 context.moveTo(x, y);
 context.lineTo(x, y + h);
 context.lineTo(x + w, y + h);
 context.lineTo(x + w, y);
 context.closePath();
}
else {

 context.moveTo(x, y);
 context.lineTo(x + w, y);
 context.lineTo(x + w, y + h);
 context.lineTo(x, y + h);
 context.closePath();
}

}

function addOuterRectanglePath() {
 context.rect(110, 25, 370, 335);

}

function addCirclePath() {
 context.arc(300, 300, 40, 0, Math.PI*2, true);

}

function addRectanglePath() {
rect(310, 55, 70, 35, true);

}

function addTrianglePath() {
 context.moveTo(400, 200);
 context.lineTo(250, 115);
 context.lineTo(200, 200);
 context.closePath();

}

// Initialization...

context.fillStyle = 'goldenrod';
draw();

Chapter 2 Drawing102

Download from Join eBook (www.joinebook.com)

ptg7987094

2.8 Lines
The Canvas context provides two methods with which you can create linear paths:
moveTo() and lineTo(). To make a linear path, more commonly referred to as a
line, appear in the canvas, you subsequently call stroke(), as illustrated in the
application shown in Figure 2.18, which draws two lines in a canvas.

Figure 2.18 Drawing lines

The application shown in Figure 2.18 is listed in Example 2.12.

Example 2.12 Drawing two lines in a canvas

var context = document.getElementById('canvas').getContext('2d');

context.lineWidth = 1;
context.beginPath();
context.moveTo(50, 10);
context.lineTo(450, 10);
context.stroke();
context.beginPath();
context.moveTo(50.5, 50.5);
context.lineTo(450.5, 50.5);
context.stroke();

After setting the lineWidth property to 1 pixel, the code moves to (50, 10) and
draws a horizontal line to (450, 10). That combination of moveTo()/lineTo()
creates a linear path, which the code strokes to make the horizontal line appear
in the canvas.

Next, the application invokes beginPath(), which removes the linear subpath
from the current path. The code then draws another horizontal line beneath the
first line.

1032.8 Lines

Download from Join eBook (www.joinebook.com)

ptg7987094

The code shown in Example 2.12 is simple, but if you look carefully at Figure 2.18,
you will see something strange. The top line is two pixels wide, even though the
code set the lineWidth property to one pixel before drawing the line. The following
section explains why that happens.

Table 2.6 summarizes the moveTo() and lineTo() methods.

Table 2.6 moveTo() and lineTo()

DescriptionMethod

Adds a new subpath to the current path with the point you specify
as the only point in that subpath. Does not clear any subpaths from
the current path.

moveTo(x, y)

If there are no subpaths in the current path, this method behaves
exactly like moveTo(): It creates a new subpath with the point that
you specify. If there are subpaths in the current path, this method
adds the point you specify to that subpath.

lineTo(x, y)

2.8.1 Lines and Pixel Boundaries
If you draw a one-pixel-wide line on a pixel boundary, the line will actually be
two pixels wide, as illustrated in Figure 2.19.

Figure 2.19 Drawing on pixel boundaries

Chapter 2 Drawing104

Download from Join eBook (www.joinebook.com)

ptg7987094

When you draw a one-pixel-wide vertical line on a pixel boundary, the canvas
context tries to draw one half of the pixel on the right side of the middle of the
line and one half of the pixel on the left side of the middle of the line. However,
it’s not possible to draw one half of a pixel, so that line extends to one pixel in
each direction. In Figure 2.19, the dark gray is what you intend to draw, but the
light gray is what the browser actually draws.

On the other hand, consider what happens when you draw between pixels, as
illustrated by Figure 2.20.

Figure 2.20 Drawing between pixels

In Figure 2.20, the vertical line is drawn between pixels, so drawing one half
of the pixel on either side fills exactly one pixel. To draw a true one-pixel line,
therefore, you must draw the line between pixels, and not on a pixel boundary.
Notice that in Figure 2.18, the two-pixel-wide line is drawn on pixel boundaries,
whereas the one-pixel-wide line is drawn between pixels.

Now that you understand how to draw true one-pixel-wide lines, let’s put that
knowledge to use and draw a grid.

2.8.2 Drawing a Grid
Figure 2.21 shows a grid drawn by an application.

The JavaScript for the application shown in Figure 2.21 is listed in Example 2.13.

1052.8 Lines

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 2.21 Drawing a grid

Example 2.13 Drawing a grid

var context = document.getElementById('canvas').getContext('2d');

// Functions...

function drawGrid(context, color, stepx, stepy) {
 context.strokeStyle = color;
 context.lineWidth = 0.5;

for (var i = stepx + 0.5; i < context.canvas.width; i += stepx) {
 context.beginPath();
 context.moveTo(i, 0);
 context.lineTo(i, context.canvas.height);
 context.stroke();

}

for (var i = stepy + 0.5; i < context.canvas.height; i += stepy) {
 context.beginPath();
 context.moveTo(0, i);
 context.lineTo(context.canvas.width, i);
 context.stroke();

}
}

Chapter 2 Drawing106

Download from Join eBook (www.joinebook.com)

ptg7987094

// Initialization..

drawGrid(context, 'lightgray', 10, 10);

Not only does the JavaScript draw lines between pixels as discussed in
the preceding section, but it also draws lines that are only 0.5 pixels wide.
Although not explicitly required by the Canvas specification, all browser
Canvas implementations use anti-aliasing, which can create the illusion of subpixel
lines.

2.8.3 Drawing Axes
Figure 2.22 shows an application that draws graph axes. The JavaScript for that
application is listed in Example 2.14.

Figure 2.22 Drawing axes

1072.8 Lines

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.14 Drawing axes

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

 AXIS_MARGIN = 40,
 AXIS_ORIGIN = { x: AXIS_MARGIN, y: canvas.height-AXIS_MARGIN },

 AXIS_TOP = AXIS_MARGIN,
 AXIS_RIGHT = canvas.width-AXIS_MARGIN,

 HORIZONTAL_TICK_SPACING = 10,
 VERTICAL_TICK_SPACING = 10,

 AXIS_WIDTH = AXIS_RIGHT - AXIS_ORIGIN.x,
 AXIS_HEIGHT = AXIS_ORIGIN.y - AXIS_TOP,

 NUM_VERTICAL_TICKS = AXIS_HEIGHT / VERTICAL_TICK_SPACING,
 NUM_HORIZONTAL_TICKS = AXIS_WIDTH / HORIZONTAL_TICK_SPACING,

 TICK_WIDTH = 10,
 TICKS_LINEWIDTH = 0.5,
 TICKS_COLOR = 'navy',

 AXIS_LINEWIDTH = 1.0,
 AXIS_COLOR = 'blue';

// Functions..

function drawGrid(color, stepx, stepy) {
// Listing omitted for brevity. See Example 2.13 on p. 106
// for a complete listing.

}

function drawAxes() {
 context.save();
 context.strokeStyle = AXIS_COLOR;
 context.lineWidth = AXIS_LINEWIDTH;

drawHorizontalAxis();
drawVerticalAxis();

 context.lineWidth = 0.5;
 context.lineWidth = TICKS_LINEWIDTH;
 context.strokeStyle = TICKS_COLOR;

drawVerticalAxisTicks();
drawHorizontalAxisTicks();

 context.restore();
}

Chapter 2 Drawing108

Download from Join eBook (www.joinebook.com)

ptg7987094

function drawHorizontalAxis() {
 context.beginPath();
 context.moveTo(AXIS_ORIGIN.x, AXIS_ORIGIN.y);
 context.lineTo(AXIS_RIGHT, AXIS_ORIGIN.y);
 context.stroke();

}

function drawVerticalAxis() {
 context.beginPath();
 context.moveTo(AXIS_ORIGIN.x, AXIS_ORIGIN.y);
 context.lineTo(AXIS_ORIGIN.x, AXIS_TOP);
 context.stroke();

}

function drawVerticalAxisTicks() {
var deltaY;

for (var i=1; i < NUM_VERTICAL_TICKS; ++i) {
 context.beginPath();

if (i % 5 === 0) deltaX = TICK_WIDTH;
else deltaX = TICK_WIDTH/2;

 context.moveTo(AXIS_ORIGIN.x - deltaX,
 AXIS_ORIGIN.y - i * VERTICAL_TICK_SPACING);
 context.lineTo(AXIS_ORIGIN.x + deltaX,
 AXIS_ORIGIN.y - i * VERTICAL_TICK_SPACING);
 context.stroke();

}
}

function drawHorizontalAxisTicks() {
var deltaY;

for (var i=1; i < NUM_HORIZONTAL_TICKS; ++i) {
 context.beginPath();

if (i % 5 === 0) deltaY = TICK_WIDTH;
else deltaY = TICK_WIDTH/2;

 context.moveTo(AXIS_ORIGIN.x + i * HORIZONTAL_TICK_SPACING,
 AXIS_ORIGIN.y - deltaY);
 context.lineTo(AXIS_ORIGIN.x + i * HORIZONTAL_TICK_SPACING,
 AXIS_ORIGIN.y + deltaY);
 context.stroke();

}
}
// Initialization..

drawGrid('lightgray', 10, 10);
drawAxes();

1092.8 Lines

Download from Join eBook (www.joinebook.com)

ptg7987094

The JavaScript uses constants to calculate characteristics of the axes, such as axis
width and height, spacing between tick marks, etc. The rest of the code is mostly
concerned with invoking the following sequence of context methods: beginPath(),
moveTo(), lineTo(), and stroke() for both the axes and their tick marks.

Now that you know how to draw lines, let’s take a look at how you can let users
interactively draw them.

2.8.4 Rubberband Lines
The paint application discussed at the beginning of this chapter lets users draw
lines by interactively drawing a line over the background as the user drags the
mouse. The application shown in Figure 2.23 does likewise.

Figure 2.23 Drawing lines with rubber bands

The HTML and JavaScript for the application shown in Figure 2.23 are listed in
Examples 2.15 and 2.16, respectively. Notice the methods in the Rubber bands
section of the code, and the mouse event handlers.

Chapter 2 Drawing110

Download from Join eBook (www.joinebook.com)

ptg7987094

In the onmousedown event handler, the application converts window coordinates
to canvas coordinates, and invokes the event’s preventDefault() method to
inhibit the browser’s default reaction to the event.

The onmousedown event handler then saves the drawing surface, records the loca-
tion of the mouse down event, and sets a boolean flag named dragging to true.

Example 2.15 Rubberband lines: HTML

<!DOCTYPE html>
<html>

<head>
<title>Drawing Lines with Rubber Bands</title>

<style>
 body {

background: #eeeeee;
}

#controls {
position: absolute;
left: 25px;
top: 25px;

}

#canvas {
background: #ffffff;
cursor: pointer;
margin-left: 10px;
margin-top: 10px;
-webkit-box-shadow: 4px 4px 8px rgba(0,0,0,0.5);
-moz-box-shadow: 4px 4px 8px rgba(0,0,0,0.5);
-box-shadow: 4px 4px 8px rgba(0,0,0,0.5);

}
</style>

</head>

<body>
<canvas id='canvas' width='600' height='400'>

 Canvas not supported
</canvas>

(Continues)

1112.8 Lines

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.15 (Continued)

<div id='controls'>
 Stroke color: <select id='strokeStyleSelect'>

<option value='red'>red</option>
<option value='green'>green</option>
<option value='blue'>blue</option>
<option value='orange'>orange</option>
<option value='cornflowerblue' selected>cornflowerblue</option>
<option value='goldenrod'>goldenrod</option>
<option value='navy'>navy</option>
<option value='purple'>purple</option>
</select>

 Guidewires:
<input id='guidewireCheckbox' type='checkbox' checked/>
<input id='eraseAllButton' type='button' value='Erase all'/>

</div>

<script src = 'example.js'></script>
</body>

</html>

Example 2.16 Rubberband lines: JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 eraseAllButton = document.getElementById('eraseAllButton'),
 strokeStyleSelect = document.getElementById('strokeStyleSelect'),
 guidewireCheckbox = document.getElementById('guidewireCheckbox'),
 drawingSurfaceImageData,
 mousedown = {},
 rubberbandRect = {},
 dragging = false,
 guidewires = guidewireCheckbox.checked;

// Functions..

function drawGrid(color, stepx, stepy) {
// Listing omitted for brevity. See Example 2.13 on p. 106
// for a complete listing.

}

function windowToCanvas(x, y) {
var bbox = canvas.getBoundingClientRect();
return { x: x - bbox.left * (canvas.width / bbox.width),

 y: y - bbox.top * (canvas.height / bbox.height) };
}

Chapter 2 Drawing112

Download from Join eBook (www.joinebook.com)

ptg7987094

// Save and restore drawing surface...................................

function saveDrawingSurface() {
 drawingSurfaceImageData = context.getImageData(0, 0,
 canvas.width,
 canvas.height);

}

function restoreDrawingSurface() {
 context.putImageData(drawingSurfaceImageData, 0, 0);

}

// Rubber bands...

function updateRubberbandRectangle(loc) {
 rubberbandRect.width = Math.abs(loc.x - mousedown.x);
 rubberbandRect.height = Math.abs(loc.y - mousedown.y);

if (loc.x > mousedown.x) rubberbandRect.left = mousedown.x;
else rubberbandRect.left = loc.x;

if (loc.y > mousedown.y) rubberbandRect.top = mousedown.y;
else rubberbandRect.top = loc.y;

}

function drawRubberbandShape(loc) {
 context.beginPath();
 context.moveTo(mousedown.x, mousedown.y);
 context.lineTo(loc.x, loc.y);
 context.stroke();

}

function updateRubberband(loc) {
updateRubberbandRectangle(loc);
drawRubberbandShape(loc);

}

// Guidewires...

function drawHorizontalLine (y) {
 context.beginPath();
 context.moveTo(0,y+0.5);
 context.lineTo(context.canvas.width, y+0.5);
 context.stroke();

}

(Continues)

1132.8 Lines

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.16 (Continued)

function drawVerticalLine (x) {
 context.beginPath();
 context.moveTo(x+0.5,0);
 context.lineTo(x+0.5, context.canvas.height);
 context.stroke();

}

function drawGuidewires(x, y) {
 context.save();
 context.strokeStyle = 'rgba(0,0,230,0.4)';
 context.lineWidth = 0.5;

drawVerticalLine(x);
drawHorizontalLine(y);

 context.restore();
}

// Canvas event handlers..

canvas.onmousedown = function (e) {
var loc = windowToCanvas(e.clientX, e.clientY);

 e.preventDefault(); // Prevent cursor change
saveDrawingSurface();

 mousedown.x = loc.x;
 mousedown.y = loc.y;
 dragging = true;
};

canvas.onmousemove = function (e) {
var loc;

if (dragging) {
 e.preventDefault(); // Prevent selections

 loc = windowToCanvas(e.clientX, e.clientY);
restoreDrawingSurface();
updateRubberband(loc);

if(guidewires) {
drawGuidewires(loc.x, loc.y);

}
}

};

Chapter 2 Drawing114

Download from Join eBook (www.joinebook.com)

ptg7987094

canvas.onmouseup = function (e) {
 loc = windowToCanvas(e.clientX, e.clientY);

restoreDrawingSurface();
updateRubberband(loc);

 dragging = false;
};

// Controls event handlers.......................................

eraseAllButton.onclick = function (e) {
 context.clearRect(0, 0, canvas.width, canvas.height);

drawGrid('lightgray', 10, 10); saveDrawingSurface();
};

strokeStyleSelect.onchange = function (e) {
 context.strokeStyle = strokeStyleSelect.value;
};

guidewireCheckbox.onchange = function (e) {
 guidewires = guidewireCheckbox.checked;
};

// Initialization..

context.strokeStyle = strokeStyleSelect.value;
drawGrid('lightgray', 10, 10);

Subsequently, as the user drags the mouse, the application maintains a rectangle
it calls rubberbandRect. That rectangle, which is illustrated in Figure 2.24, is
defined by two corners: the location of the mouse down event and the mouse’s
current location.

For every mouse move event that occurs while the user is dragging the mouse,
the application does three things:

1. Restores the drawing surface
2. Updates rubberbandRect
3. Draws a line from the mouse down location to the current mouse location

The application’s onmousedown event handler saves the drawing surface, so
restoring the drawing surface in the onmousemove event handler effectively
erases the rubberband line.

1152.8 Lines

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 2.24 The rubberband rectangle

NOTE: Future uses for the rubberband rectangle

The application in Example 2.16 maintains a rubberband rectangle while the
user is dragging the mouse. Notice that the function that draws the rubberband
line is named drawRubberbandShape(). Because the application maintains a
rubberband rectangle, we can modify drawRubberbandShape() to support any
shape, such as circles or arbitrary polygons, that fits inside a rectangle.

In fact, we reimplement drawRubberbandShape() to do just that in the pages
that follow.

Chapter 2 Drawing116

Download from Join eBook (www.joinebook.com)

ptg7987094

2.8.5 Drawing Dashed Lines
As this book was written, the Canvas context did not provide methods to draw
dashed or dotted lines; however, it’s easy to implement that functionality yourself.
Figure 2.25 shows an application that draws dashed lines.

Figure 2.25 Dashed lines

The application shown in Figure 2.25 is listed in Example 2.17.

The code calculates the length of the line and, based on the length of each dash,
figures out how many dashes the line will contain. Based on the number of
dashes, the code draws a dashed line by repeatedly drawing short line segments.

1172.8 Lines

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.17 Dashed lines

var context = document.getElementById('canvas').getContext('2d');

function drawDashedLine(context, x1, y1, x2, y2, dashLength) {
 dashLength = dashLength === undefined ? 5 : dashLength;

var deltaX = x2 - x1;
var deltaY = y2 - y1;
var numDashes = Math.floor(

 Math.sqrt(deltaX * deltaX + deltaY * deltaY) / dashLength);

for (var i=0; i < numDashes; ++i) {
 context[i % 2 === 0 ? 'moveTo' : 'lineTo']

(x1 + (deltaX / numDashes) * i, y1 + (deltaY / numDashes) * i);
}

 context.stroke();
};

context.lineWidth = 3;
context.strokeStyle = 'blue';
drawDashedLine(context, 20, 20, context.canvas.width-20, 20);
drawDashedLine(context, context.canvas.width-20, 20,
 context.canvas.width-20, context.canvas.height-20, 10);
drawDashedLine(context, context.canvas.width-20,
 context.canvas.height-20, 20, context.canvas.height-20, 15);
drawDashedLine(context, 20, context.canvas.height-20, 20, 20, 2);

2.8.6 Drawing Dashed Lines by Extending CanvasRenderingContext2D
The drawDashedLine() function in the preceding section draws a dashed line in
a specified context, but what if you want to add a dashedLineTo() method to the
Canvas context that works like lineTo()?

The fundamental roadblock to adding a dashedLineTo() method to the Canvas
context is that there’s no way to get the position that you last passed to
moveTo(). That position is where the line starts, so a CanvasRenderingContext2D.
dashedLineTo() method must have access to that position.

Although the Canvas context does not give you explicit access to the position you
specified the last time you called moveTo(), you can add that functionality to the
context as follows:

Chapter 2 Drawing118

Download from Join eBook (www.joinebook.com)

ptg7987094

1. Obtain a reference to the context’s moveTo() method.
2. Add a property named lastMoveToLocation to the Canvas context.
3. Redefine the context’s moveTo() method to store the point that you pass to

the method in the lastMoveToLocation property.

Once you have access to the last position that you passed to the moveTo()
method, implementing a dashedLineTo() method that you add to the
CanvasRenderingContext2D’s prototype object is easy. Example 2.18 shows
the code described above.

Example 2.18 Extending CanvasRenderingContext2D

var context = document.getElementById('canvas').getContext('2d'),
 moveToFunction = CanvasRenderingContext2D.prototype.moveTo;

CanvasRenderingContext2D.prototype.lastMoveToLocation = {};

CanvasRenderingContext2D.prototype.moveTo = function (x, y) {
 moveToFunction.apply(context, [x,y]);

this.lastMoveToLocation.x = x;
this.lastMoveToLocation.y = y;

};

CanvasRenderingContext2D.prototype.dashedLineTo =
function (x, y, dashLength) {

 dashLength = dashLength === undefined ? 5 : dashLength;

var startX = this.lastMoveToLocation.x;
var startY = this.lastMoveToLocation.y;

var deltaX = x - startX;
var deltaY = y - startY;
var numDashes = Math.floor(Math.sqrt(deltaX * deltaX

+ deltaY * deltaY) / dashLength);

for (var i=0; i < numDashes; ++i) {
this[i % 2 === 0 ? 'moveTo' : 'lineTo']

(startX + (deltaX / numDashes) * i,
 startY + (deltaY / numDashes) * i);

}

this.moveTo(x, y);
};

1192.8 Lines

Download from Join eBook (www.joinebook.com)

ptg7987094

With this modification to CanvasRenderingContext2D, you can draw dashed lines
like this:

context.lineWidth = 3;
context.strokeStyle = 'blue';

context.moveTo(20, 20);
context.dashedLineTo(context.canvas.width-20, 20);
context.dashedLineTo(context.canvas.width-20,
 context.canvas.height-20);
context.dashedLineTo(20, context.canvas.height-20);
context.dashedLineTo(20, 20);
context.dashedLineTo(context.canvas.width-20,
 context.canvas.height-20);
context.stroke();

Figure 2.26 shows the result of the preceding code.

Figure 2.26 Implementing dashed lines by extending the 2d context

Chapter 2 Drawing120

Download from Join eBook (www.joinebook.com)

ptg7987094

CAUTION: Be careful when extending CanvasRenderingContext2D

Although some developers regard JavaScript as a toy language, it’s actually quite
powerful, as the code in this section illustrates.The technique used in this section
goes by many names, such as metaprogramming, monkey patching, and clob-
bering methods, meaning you obtain a reference to an object’s method, redefine
that method, and then optionally use the original method in the redefined method.

However, you should be judicious when it comes to extending the context’s
capabilities. If you extend the context as shown in this section with a
drawDashedLineTo() method and you are unlucky enough that
CanvasRenderingContext2D adds a dashedLineTo() method or a
lastMoveToLocation property in the future, then your addition to the
context could wreak havoc with the new, official capabilities in
CanvasRenderingContext2D.

NOTE: The HTML5 Canvas specification is constantly evolving

As this book went to press, support for dashed lines was added to the Canvas
specification. It’s important to keep in mind that HTML5 specifications are
constantly evolving. Because of that evolution, it’s a good idea to check the
specifications once in a while for changes.

2.8.7 Line Caps and Joins
When you draw lines in a canvas you can control what the endpoints—known
as line caps—of those lines look like, as illustrated by Figure 2.27. Line caps are
controlled by the aptly named lineCap property of the Canvas context.

Figure 2.27 Line caps

The default line cap is butt, which leaves the end of the line untouched. Both
round and square add a cap to the end of the line; round adds a semicircle to the
end of the line with a diameter equal to one half the width of the line; square

1212.8 Lines

Download from Join eBook (www.joinebook.com)

ptg7987094

adds a rectangle to the end of the line whose length is equal to the line width and
whose width is half of the line width.

When you draw lines or rectangles, you can control what the corners look
like where the lines meet, known as the line join, as shown in Figure 2.28. Line
joins are controlled by the lineJoin property.

Figure 2.28 Line joins

A bevel value for the lineJoin property results in a triangle connecting the op-
posite corners of the two lines with a straight line. miter, which is the default
value for the lineJoin property, is the same as bevel, except that miter adds an
extra triangle to square the corner. Finally, a round value for lineJoin results
in a filled arc connecting the two corners. Line joins are further illustrated in
Figure 2.29.

Figure 2.29 Constructing line joins

When you use miter for line joins, you can also specify a miterLimit property,
which is a ratio of miter length divided by one-half of the line width. Miter length is
illustrated in Figure 2.30.

Chapter 2 Drawing122

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 2.30 Miter length

As Figure 2.30 illustrates, the miter length can get pretty long if the angle between
two lines is small enough. If the miter length is long enough that the ratio of
(miter length / ½ of the line width) is greater than the value you specify for the
miterLimit property, the browser treats the line join as if it were a bevel, as
illustrated in Figure 2.31.

Table 2.7 summarizes Canvas context properties that pertain to lines.

Table 2.7 CanvasRenderingContext2D line attributes

DefaultAllowed ValuesTypeDescriptionAttribute

1.0A positive,
nonzero
number

doubleLine width, in pixels.lineWidth

buttbutt, round,
square

DOMStringDetermines how the
browser draws the ends of
lines.

lineCap

bevelround, bevel,
miter

DOMStringDetermines how the
browser joins lines that
meet.

lineJoin

10.0A positive,
nonzero
number

doubleA ratio of the miter length
divided by one-half of the
line width. If the miter
limit is exceeded for a
miter line join, the browser
treats the line join as a
bevel.

miterLimit

1232.8 Lines

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 2.31 Miter limit exceeded, so browser joins the lines with a bevel

2.9 Arcs and Circles
The Canvas context provides two methods for drawing arcs and circles: arc()
and arcTo(). In this section we look at both of those methods.

2.9.1 The arc() Method
The arc() method takes six parameters: arc(x, y, radius, startAngle,
endAngle, counterClockwise). The first two parameters represent a point at the
center of a circle; the third argument represents the radius of the circle; and
the fourth and fifth arguments represent the starting angle and end angle, respec-
tively, of the arc that the browser draws around the circumference of the circle.
The last argument to arc() is optional and represents the direction in which the
browser draws the arc. If that value is false, which is the default, the browser
draws the arc clockwise; if the value is true, the browser draws the arc
counterclockwise. The arc() method is illustrated in Figure 2.32.

Figure 2.32 Drawing an arc with arc(x, y, radius, Math.PI/4, Math.PI, false)

Chapter 2 Drawing124

Download from Join eBook (www.joinebook.com)

ptg7987094

The arc() method may draw more than an arc, however. If there are any subpaths
in the current path, the browser will connect the last point in the subpath to the
first point on the arc, as shown in Figure 2.33.

Figure 2.33 Drawing arcs after clearing subpaths (top) and without clearing subpaths (bottom)

The arc in the top screenshot was created like this:

context.beginPath();
context.arc(canvas.width/2, canvas.height/4, 80, Math.PI/4,
 Math.PI, false);

Before invoking arc(), the preceding code calls beginPath(), which as you know
from Section 2.8, “Lines,” on p. 103, clears any subpaths from the current path.

The bottom screenshot in Figure 2.33 was created like this:

context.beginPath();
context.moveTo(10, 10);
context.arc(canvas.width/2, canvas.height/4, 80, Math.PI/4,
 Math.PI, false);

The preceding code invokes moveTo() before it calls the arc() method. As you
also know from Section 2.8, moveTo() adds a new subpath to the current path
with a single point. In this case, the point is (10, 10), and before drawing the
arc, the browser connects that point to the first point in the arc with a straight line.

1252.9 Arcs and Circles

Download from Join eBook (www.joinebook.com)

ptg7987094

2.9.2 Rubberband Circles
The application shown in Figure 2.34 lets users draw circles by dragging the
mouse. As the user drags the mouse, the application continuously draws the circle.

Figure 2.34 Drawing circles with rubber bands

In Example 2.16 on p. 112, you saw how to draw rubberband lines. Recall that
the application in that section could support other shapes besides lines by
reimplementing the drawRubberbandShape() function. That’s exactly how the
application shown in Figure 2.34 was implemented. The drawRubberbandShape()
function is listed in Example 2.19.

The loc object passed to drawRubberbandShape() contains the current X and Y
mouse coordinates. The location where the mouse down event occurred is stored
in a variable named mousedown, which, like the loc object, stores X and Y
coordinates.

The application calculates the distance between the mouse down location and the
current mouse location, accounting for horizontal lines. The application
subsequently uses that distance for the circle’s radius.

Chapter 2 Drawing126

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.19 Drawing circles with rubber bands

function drawRubberbandShape(loc) {
var angle,

 radius;

if (mousedown.y === loc.y) { // Horizontal line
// Horizontal lines are a special case. See the else
// block for an explanation

 radius = Math.abs(loc.x - mousedown.x);
}
else {

// For horizontal lines, the angle is 0, and Math.sin(0)
// is 0, which means we would be dividing by 0 here to get NaN
// for radius. The if block above catches horizontal lines.

 angle = Math.atan(rubberbandRect.height/rubberbandRect.width),
 radius = rubberbandRect.height / Math.sin(angle);

}

 context.beginPath();
 context.arc(mousedown.x, mousedown.y, radius, 0, Math.PI*2, false);
 context.stroke();

if (fillCheckbox.checked)
 context.fill();
}

CAUTION: Optional arguments are not always optional

The Canvas specification clearly states that the last argument to the arc()
method—a boolean that determines whether to draw the arc clockwise or
counterclockwise—is optional.That means you don’t need to specify that boolean
value, except for the Opera browser. Opera, at the time this book was written,
requires the optional argument, and to add insult to injury, it fails silently if you
don’t specify the optional argument.

2.9.3 The arcTo() Method
In addition to arc(), the Canvas context provides another method for creating
arc paths: arcTo(), which takes five arguments: arcTo(x1, y1, x2, y2, radius).

The arguments to arcTo() represent two points and the radius of the circle. The
method draws an arc from the first point to the second, with the specified radius.
The arc is tangent to the line from the current point to (x1, y1), and is tangent

1272.9 Arcs and Circles

Download from Join eBook (www.joinebook.com)

ptg7987094

to the line from the current point to (x2, y2). Those qualities make arcTo() well
suited for drawing rounded corners, as illustrated in Figure 2.35.

Figure 2.35 Rounded rectangles: Corner radii in pixels, from left to right: 10, 20, 30, 40

The application shown in Figure 2.35 is listed in Example 2.20.

Example 2.20 Using arcTo()

var context = document.getElementById('canvas').getContext('2d');

// Functions..

function roundedRect(cornerX, cornerY,
 width, height, cornerRadius) {

if (width > 0) context.moveTo(cornerX + cornerRadius, cornerY);
else context.moveTo(cornerX - cornerRadius, cornerY);

 context.arcTo(cornerX + width, cornerY,
 cornerX + width, cornerY + height,
 cornerRadius);

 context.arcTo(cornerX + width, cornerY + height,
 cornerX, cornerY + height,
 cornerRadius);

 context.arcTo(cornerX, cornerY + height,
 cornerX, cornerY,
 cornerRadius);

Chapter 2 Drawing128

Download from Join eBook (www.joinebook.com)

ptg7987094

if (width > 0) {
 context.arcTo(cornerX, cornerY,
 cornerX + cornerRadius, cornerY,
 cornerRadius);

}
else {

 context.arcTo(cornerX, cornerY,
 cornerX - cornerRadius, cornerY,
 cornerRadius);

}
}

function drawRoundedRect(strokeStyle, fillStyle, cornerX, cornerY,
 width, height, cornerRadius) {
 context.beginPath();

roundedRect(cornerX, cornerY, width, height, cornerRadius);

 context.strokeStyle = strokeStyle;
 context.fillStyle = fillStyle;

 context.stroke();
 context.fill();

}

// Initialization..

drawRoundedRect('blue', 'yellow', 50, 40, 100, 100, 10);
drawRoundedRect('purple', 'green', 275, 40, -100, 100, 20);
drawRoundedRect('red', 'white', 300, 140, 100, -100, 30);
drawRoundedRect('white', 'blue', 525, 140, -100, -100, 40);

Like arc(), arcTo() draws a straight line from the last point in the most recent
subpath that you added to the current path to the point specified with the first
two arguments to arcTo(). That line is why the roundedRect() method listed in
Example 2.20 does not explicitly draw any lines.

The arc() and arcTo() methods are summarized in Table 2.8.

NOTE: Adding a roundedRect() method to CanvasRenderingContext2D

You can easily add a roundedRect() method to the Canvas context; if you do,
however, you should be aware that there is some risk. See Section 2.8.6,
“Drawing Dashed Lines by Extending CanvasRenderingContext2D,” on p. 118
for more information about adding methods to the Canvas context and the
associated risks.

1292.9 Arcs and Circles

Download from Join eBook (www.joinebook.com)

ptg7987094

Table 2.8 CanvasRenderingContext2D methods for drawing arcs and circles

DescriptionMethod

Creates an arc path at (x, y) with the
specified radius, from startAngle to
endAngle. You specify angles in radians, not
degrees. (180 degrees = π radians). The last
argument is optional; if true, the arc is drawn
counterclockwise, if the argument is false
(which is the default), the arc is drawn
clockwise.

If there are any subpaths in the current path
when you call this method, the browser will
connect the starting point of the arc to the last
point in the subpath with a line.

arc(double x, double y, double
radius, double startAngle,
double endAngle, boolean
counter-clockwise)

Creates an arc path from (x1, x2) to
(x2, y2) with the specified radius. The arc
is tangent to the line from the last point in
current path to (x1, y1), and is tangent to
the line from the current point to (x2, y2).

As is the case for arc(), if there are any
subpaths in the current path when you call
this method, the browser will connect the
starting point of the arc to the last point in
the subpath with a line.

arcTo(double x1, double y1,
double x2, double y2, double
radius)

2.9.4 Dials and Gauges
Arcs, and especially circles, are often used to portray physical objects; for example,
in Section 1.5, “Fundamental Drawing Operations,” on p. 22, you saw how to
implement a clock with a circular face. Figure 2.36 shows an application
that implements a dial with five circles. That dial represents the degrees of a circle
and is used in Section 2.13.1, “Translating, Scaling, and Rotating,” on p. 171 for
interactively rotating polygon objects.

The application shown in Figure 2.36 uses much of what you learned so far in
this chapter. To draw the dial, the application draws circles and lines, uses colors
and transparency, strokes and fills circular paths, and uses shadows to give the
dial some depth. It also implements a cutout—similar to those discussed in Sec-
tion 2.7.2.1, “Cutout Shapes,” on p. 98—that gives the ring around the outside
of the dial its semitransparent color.

Chapter 2 Drawing130

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 2.36 Drawing a dial

An excerpt of the JavaScript for the application shown in Figure 2.36 is listed in
Example 2.21. The application’s drawDial() function invokes other functions to
draw pieces of the dial:

function drawDial() {
var loc = {x: circle.x, y: circle.y};

drawCentroid();
drawCentroidGuidewire(loc);

drawRing();
drawTickInnerCircle();
drawTicks();
drawAnnotations();

}

As you look through the JavaScript in Example 2.21, notice the functions invoked
by drawDial().

1312.9 Arcs and Circles

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.21 Drawing a dial

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

 CENTROID_RADIUS = 10,
 CENTROID_STROKE_STYLE = 'rgba(0,0,0,0.5)',
 CENTROID_FILL_STYLE = 'rgba(80,190,240,0.6)',

 RING_INNER_RADIUS = 35,
 RING_OUTER_RADIUS = 55,

 ANNOTATIONS_FILL_STYLE = 'rgba(0,0,230,0.9)',
 ANNOTATIONS_TEXT_SIZE = 12,

 TICK_WIDTH = 10,
 TICK_LONG_STROKE_STYLE = 'rgba(100,140,230,0.9)',
 TICK_SHORT_STROKE_STYLE = 'rgba(100,140,230,0.7)',

 TRACKING_DIAL_STROKING_STYLE = 'rgba(100,140,230,0.5)',

 GUIDEWIRE_STROKE_STYLE = 'goldenrod',
 GUIDEWIRE_FILL_STYLE = 'rgba(250,250,0,0.6)',

 circle = { x: canvas.width/2,
 y: canvas.height/2,
 radius: 150

};

// Functions..

function drawGrid(color, stepx, stepy) {
 context.save()
 context.shadowColor = undefined;
 context.shadowOffsetX = 0;
 context.shadowOffsetY = 0;
 context.strokeStyle = color;
 context.fillStyle = '#ffffff';
 context.lineWidth = 0.5;
 context.fillRect(0, 0, context.canvas.width,
 context.canvas.height);

for (var i = stepx + 0.5;
 i < context.canvas.width; i += stepx) {
 context.beginPath();
 context.moveTo(i, 0);
 context.lineTo(i, context.canvas.height);
 context.stroke();

}

Chapter 2 Drawing132

Download from Join eBook (www.joinebook.com)

ptg7987094

for (var i = stepy + 0.5;
 i < context.canvas.height; i += stepy) {
 context.beginPath();
 context.moveTo(0, i);
 context.lineTo(context.canvas.width, i);
 context.stroke();

}
 context.restore();
}

function drawDial() {
var loc = {x: circle.x, y: circle.y};

drawCentroid();
drawCentroidGuidewire(loc);
drawRing();
drawTickInnerCircle();
drawTicks();
drawAnnotations();

}

function drawCentroid() {
 context.beginPath();
 context.save();
 context.strokeStyle = CENTROID_STROKE_STYLE;
 context.fillStyle = CENTROID_FILL_STYLE;
 context.arc(circle.x, circle.y,
 CENTROID_RADIUS, 0, Math.PI*2, false);
 context.stroke();
 context.fill();
 context.restore();
}

function drawCentroidGuidewire(loc) {
var angle = -Math.PI/4,

 radius, endpt;

 radius = circle.radius + RING_OUTER_RADIUS;

if (loc.x >= circle.x) {
 endpt = { x: circle.x + radius * Math.cos(angle),
 y: circle.y + radius * Math.sin(angle)

};
}
else {

 endpt = { x: circle.x - radius * Math.cos(angle),
 y: circle.y - radius * Math.sin(angle)

};
}

(Continues)

1332.9 Arcs and Circles

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.21 (Continued)

 context.save();

 context.strokeStyle = GUIDEWIRE_STROKE_STYLE;
 context.fillStyle = GUIDEWIRE_FILL_STYLE;

 context.beginPath();
 context.moveTo(circle.x, circle.y);
 context.lineTo(endpt.x, endpt.y);
 context.stroke();

 context.beginPath();
 context.strokeStyle = TICK_LONG_STROKE_STYLE;
 context.arc(endpt.x, endpt.y, 5, 0, Math.PI*2, false);
 context.fill();
 context.stroke();

 context.restore();
}

function drawRing() {
drawRingOuterCircle();

 context.strokeStyle = 'rgba(0,0,0,0.1)';
 context.arc(circle.x, circle.y,
 circle.radius + RING_INNER_RADIUS,

0, Math.PI*2, false);

 context.fillStyle = 'rgba(100,140,230,0.1)';
 context.fill();
 context.stroke();
}

function drawRingOuterCircle() {
 context.shadowColor = 'rgba(0,0,0,0.7)';
 context.shadowOffsetX = 3,
 context.shadowOffsetY = 3,
 context.shadowBlur = 6,
 context.strokeStyle = TRACKING_DIAL_STROKING_STYLE;
 context.beginPath();
 context.arc(circle.x, circle.y, circle.radius +
 RING_OUTER_RADIUS, 0, Math.PI*2, true);
 context.stroke();
}

Chapter 2 Drawing134

Download from Join eBook (www.joinebook.com)

ptg7987094

function drawTickInnerCircle() {
 context.save();
 context.beginPath();
 context.strokeStyle = 'rgba(0,0,0,0.1)';
 context.arc(circle.x, circle.y,
 circle.radius + RING_INNER_RADIUS - TICK_WIDTH,

0, Math.PI*2, false);
 context.stroke();
 context.restore();
}

function drawTick(angle, radius, cnt) {
var tickWidth = cnt % 4 === 0 ? TICK_WIDTH : TICK_WIDTH/2;

 context.beginPath();
 context.moveTo(circle.x + Math.cos(angle) * (radius - tickWidth),
 circle.y + Math.sin(angle) * (radius - tickWidth));

 context.lineTo(circle.x + Math.cos(angle) * (radius),
 circle.y + Math.sin(angle) * (radius));
 context.strokeStyle = TICK_SHORT_STROKE_STYLE;
 context.stroke();
}

function drawTicks() {
var radius = circle.radius + RING_INNER_RADIUS,

 ANGLE_MAX = 2*Math.PI,
 ANGLE_DELTA = Math.PI/64,
 tickWidth;

 context.save();

for (var angle = 0, cnt = 0; angle < ANGLE_MAX;
 angle += ANGLE_DELTA, cnt++) {

drawTick(angle, radius, cnt++);
}

 context.restore();
}

function drawAnnotations() {
var radius = circle.radius + RING_INNER_RADIUS;

 context.save();
 context.fillStyle = ANNOTATIONS_FILL_STYLE;
 context.font = ANNOTATIONS_TEXT_SIZE + 'px Helvetica';

(Continues)

1352.9 Arcs and Circles

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.21 (Continued)

for (var angle=0; angle < 2*Math.PI; angle += Math.PI/8) {
 context.beginPath();
 context.fillText((angle * 180 / Math.PI).toFixed(0),
 circle.x + Math.cos(angle) * (radius - TICK_WIDTH*2),
 circle.y - Math.sin(angle) * (radius - TICK_WIDTH*2));

}
 context.restore();

}

// Initialization..

context.shadowColor = 'rgba(0,0,0,0.4)';
context.shadowOffsetX = 2;
context.shadowOffsetY = 2;
context.shadowBlur = 4;

context.textAlign = 'center';
context.textBaseline = 'middle';

drawGrid('lightgray', 10, 10);
drawDial();

There are some things to note in general about the JavaScript listed in
Example 2.21. First, as is often the case, the application calls beginPath() before
(nearly) each call to arc() to begin a new path before creating the arc’s path. Recall
that the arc() method connects the first point in the arc to the last point in the
last subpath added to the current path. The calls to beginPath() clear out all
subpaths from the current path, so arc() does not draw unsightly lines.

The application uses the cutout technique to give the ring a translucent background
by using arc() to draw the outer circle of the ring clockwise, and the inner circle
counter-clockwise. In this case, the application does not invoke beginPath() before
the second call to arc() for the cutout.

Second, notice that temporary modifications to context attributes such as
strokeStyle and fillStyle are placed between calls to save() and restore().
The Canvas context’s save() and restore() methods let you implement drawing
functions that stand on their own, without side effects.

Finally, notice how the application draws the text around the dial. By initially
setting the context’s textAlign and textBaseline to center and middle, the ap-
plication is able to easily calculate positions for the text. We discuss that technique
in Section 3.3.5, “Labeling Dials,” on p. 221.

Chapter 2 Drawing136

Download from Join eBook (www.joinebook.com)

ptg7987094

2.10 Bézier Curves
Originally developed by a French physicist and mathematician named Paul de
Casteljau, bézier curves were popularized by a French engineer named Pierre
Bézier.

Bézier curves were originally used to design automobile bodies and today are
used in most computer graphics systems such as Adobe Illustrator, Apple’s Cocoa,
and HTML5 Canvas.

There are two types of bézier curves: quadratic and cubic. Quadratic curves are
second degree curves, meaning they are defined by three points: two anchor
points and one control point. Cubic bézier curves are third-degree curves so they
are defined with four points: two anchor points and two control points.

Canvas supports both quadratic and cubic bézier curves. The sections that follow
explore generating those curves with Canvas.

2.10.1 Quadratic Curves
Quadratic bézier curves are simple curves that curve in one direction. Figure 2.37
shows the use of three quadratic bézier curves that together constitute a checkbox.

Figure 2.37 Using quadratic curves to draw a checkbox

1372.10 Bézier Curves

Download from Join eBook (www.joinebook.com)

ptg7987094

The JavaScript for the application shown in Figure 2.37 is listed in Example 2.22.

Example 2.22 Drawing quadratic curves

var context = document.getElementById('canvas').getContext('2d');

context.fillStyle = 'cornflowerblue';
context.strokeStyle = 'yellow';

context.shadowColor = 'rgba(50,50,50,1.0)';
context.shadowOffsetX = 2;
context.shadowOffsetY = 2;
context.shadowBlur = 4;

context.lineWidth = 20;
context.lineCap = 'round';

context.beginPath();
context.moveTo(120.5, 130);
context.quadraticCurveTo(150.8, 130, 160.6, 150.5);
context.quadraticCurveTo(190, 250.0, 210.5, 160.5);
context.quadraticCurveTo(240, 100.5, 290, 70.5);

context.stroke();

You draw quadratic bézier curves with the quadraticCurveTo() method, which
takes four arguments representing the X and Y coordinates of two points. The
first point is the curve’s control point, which determines the shape of the curve,
and the second point is the anchor point. The quadraticCurveTo() method con-
nects the anchor point to the last point you defined in the current path with a
bézier curve.

You can use quadratic bézier curves for many purposes; for example, the appli-
cation shown in Figure 2.38 draws an arrowhead using quadratic bézier curves
for the three tips of the arrowhead. The application also draws the control and
anchor points for each curve.

The application shown in Figure 2.38 is listed in Example 2.23.

Chapter 2 Drawing138

Download from Join eBook (www.joinebook.com)

ptg7987094
Figure 2.38 Drawing rounded corners with bézier curves: White dots are control points, blue
dots are the anchor points

Example 2.23 An arrow with rounded corners

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ARROW_MARGIN = 30,
 POINT_RADIUS = 7,
 points = [

{ x: canvas.width - ARROW_MARGIN,
 y: canvas.height - ARROW_MARGIN },

{ x: canvas.width - ARROW_MARGIN*2,
 y: canvas.height - ARROW_MARGIN },

{ x: POINT_RADIUS,
 y: canvas.height/2 },

(Continues)

1392.10 Bézier Curves

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.23 (Continued)

{ x: ARROW_MARGIN,
 y: canvas.height/2 - ARROW_MARGIN },

{ x: canvas.width - ARROW_MARGIN,
 y: ARROW_MARGIN },

{ x: canvas.width - ARROW_MARGIN,
 y: ARROW_MARGIN*2 },

];

// Functions..

function drawPoint(x, y, strokeStyle, fillStyle) {
 context.beginPath();
 context.fillStyle = fillStyle;
 context.strokeStyle = strokeStyle;
 context.lineWidth = 0.5;
 context.arc(x, y, POINT_RADIUS, 0, Math.PI*2, false);
 context.fill();
 context.stroke();

}

function drawBezierPoints() {
var i,

 strokeStyle,
 fillStyle;

for (i=0; i < points.length; ++i) {
 fillStyle = i % 2 === 0 ? 'white' : 'blue',
 strokeStyle = i % 2 === 0 ? 'blue' : 'white';

drawPoint(points[i].x, points[i].y,
 strokeStyle, fillStyle);

}
}

function drawArrow() {
 context.strokeStyle = 'white';
 context.fillStyle = 'cornflowerblue';

 context.moveTo(canvas.width - ARROW_MARGIN, ARROW_MARGIN*2);

 context.lineTo(canvas.width - ARROW_MARGIN,
 canvas.height - ARROW_MARGIN*2);

 context.quadraticCurveTo(points[0].x, points[0].y,
 points[1].x, points[1].y);

Chapter 2 Drawing140

Download from Join eBook (www.joinebook.com)

ptg7987094

 context.lineTo(ARROW_MARGIN, canvas.height/2 + ARROW_MARGIN);

 context.quadraticCurveTo(points[2].x, points[2].y,
 points[3].x, points[3].y);

 context.lineTo(canvas.width - ARROW_MARGIN*2, ARROW_MARGIN);

 context.quadraticCurveTo(points[4].x, points[4].y,
 points[5].x, points[5].y);
 context.fill();
 context.stroke();

}

// Initialization...

context.clearRect(0, 0, canvas.width, canvas.height);
drawArrow();
drawBezierPoints();

The quadraticCurve() method is summarized in Table 2.9.

Table 2.9 quadraticCurveTo()

DescriptionMethod

Creates a path for a quadratic bézier curve.
You pass two points to this method; the
first point is a control point for the curve;
the second point is the anchor point.

quadraticCurveTo(double cpx,
double cpy, double x, double y)

2.10.2 Cubic Curves
In the previous section you saw how to create quadratic bézier curves. Those
curves are two-dimensional, which means they curve in a single direction. If you
want a curve that curves in two directions, such as the curve shown in Figure 2.39,
you need a third-order curve, which is referred to as a cubic bézier curve.

The application shown in Figure 2.39 uses the bezierCurveTo() method to create
a path for a cubic bézier curve. The code for that application is listed in
Example 2.24.

In addition to drawing the curve itself, the code also draws filled circles for the
curve’s control and anchor points.

1412.10 Bézier Curves

Download from Join eBook (www.joinebook.com)

ptg7987094Figure 2.39 Cubic curves

Example 2.24 Drawing cubic bézier curves

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 endPoints = [{ x: 130, y: 70 }, { x: 430, y: 270 },],
 controlPoints = [{ x: 130, y: 250 }, { x: 450, y: 70 },];

// Functions..

function drawGrid(color, stepx, stepy) {
// Listing omitted for brevity. See Example 2.13 on p. 106
// for a complete listing.

}

function drawBezierCurve() {
 context.strokeStyle = 'blue';

 context.beginPath();
 context.moveTo(endPoints[0].x, endPoints[0].y);
 context.bezierCurveTo(controlPoints[0].x, controlPoints[0].y,
 controlPoints[1].x, controlPoints[1].y,
 endPoints[1].x, endPoints[1].y);
 context.stroke();

}

Chapter 2 Drawing142

Download from Join eBook (www.joinebook.com)

ptg7987094

function drawEndPoints() {
 context.strokeStyle = 'blue';
 context.fillStyle = 'red';

 endPoints.forEach(function (point) {
 context.beginPath();
 context.arc(point.x, point.y, 5, 0, Math.PI*2, false);
 context.stroke();
 context.fill();

});
}

function drawControlPoints() {
 context.strokeStyle = 'yellow';
 context.fillStyle = 'blue';

 controlPoints.forEach(function (point) {
 context.beginPath();
 context.arc(point.x, point.y, 5, 0, Math.PI*2, false);
 context.stroke();
 context.fill();

});
}

// Initialization...

drawGrid('lightgray', 10, 10);

drawControlPoints();
drawEndPoints();
drawBezierCurve();

The bezierCurveTo() method is summarized in Table 2.10.

Table 2.10 bezierCurveTo()

DescriptionMethod

Creates a path for a cubic bézier curve. You
pass three points to this method; the first two
points are control points for the curve; and
the last point is the anchor point.

bezierCurveTo(double cpx,
double cpy, double cp2x, double
cp2y, double x, double y)

1432.10 Bézier Curves

Download from Join eBook (www.joinebook.com)

ptg7987094

2.11 Polygons
At this point we have run the gamut for all the primitive shapes supported by
the Canvas context: lines, rectangles, arcs, circles, and bézier curves. However,
you will no doubt want to draw other types of shapes in a canvas; for example,
triangles, hexagons, and octagons. In this section you will see how to stroke and
fill arbitrary polygons, with the application shown in Figure 2.40.

Figure 2.40 Polygons

You can use moveTo() and lineTo() combined with some simple trigonometry
to draw polygons with any number of sides. Figure 2.41 illustrates the simple
trigonometry part.

Chapter 2 Drawing144

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 2.41 Calculating polygon vertices

Figure 2.41 shows how to calculate a single polygon vertex, given the middle of
the smallest circle that encloses the polygon, and the radius of that circle.
Example 2.25 is an excerpt of the JavaScript for the application shown in
Figure 2.40. It shows how to use those vertices to draw arbitrary polygons.

Example 2.25 Drawing polygons (excerpt)

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

 sidesSelect = document.getElementById('sidesSelect'),
 startAngleSelect = document.getElementById('startAngleSelect'),

 fillCheckbox = document.getElementById('fillCheckbox'),

 mousedown = {},
 rubberbandRect = {},

(Continues)

1452.11 Polygons

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.25 (Continued)

 Point = function (x, y) {
this.x = x;
this.y = y;

},

// Functions..

function getPolygonPoints(centerX, centerY, radius, sides, startAngle) {
var points = [],

 angle = startAngle || 0;

for (var i=0; i < sides; ++i) {
 points.push(new Point(centerX + radius * Math.sin(angle),
 centerY - radius * Math.cos(angle)));
 angle += 2*Math.PI/sides;

}

return points;
}

function createPolygonPath(centerX, centerY, radius, sides, startAngle) {
var points = getPolygonPoints(centerX, centerY, radius, sides,

 startAngle);
 context.beginPath();
 context.moveTo(points[0].x, points[0].y);

for (var i=1; i < sides; ++i) {
 context.lineTo(points[i].x, points[i].y);

}
 context.closePath();

}

function drawRubberbandShape(loc, sides, startAngle) {
createPolygonPath(mousedown.x, mousedown.y,

 rubberbandRect.width, parseInt(sidesSelect.value),
(Math.PI / 180) * parseInt(startAngleSelect.value));

 context.stroke();

if (fillCheckbox.checked) {
 context.fill();

}
}

Chapter 2 Drawing146

Download from Join eBook (www.joinebook.com)

ptg7987094

The code listed in Example 2.25 begins by obtaining a reference to the Canvas
context and defining a Point object.

The getPolygonPoints() function creates and returns an array of points for a
polygon defined by the five parameters you pass to the function. That function
uses the equations for polygon vertices depicted in Figure 2.41 to create that array
of points.

The createPolygonPath() function calls getPolygonPoints() to obtain the array
of points for the specified polygon, moves to the first point, and then creates a
path encompassing all the polygon’s vertices.

Finally, it’s the drawRubberbandShape() function that actually draws the polygon.
That function is a modification of the drawRubberbandShape() function introduced
in Section 2.8.4, “Rubberband Lines,” on p. 110, and is used by the application in
Figure 2.40 to interactively draw polygons as the user drags the mouse. See
Section 2.8.4 for more information about drawing rubberband shapes in general.

2.11.1 Polygon Objects
Recall that HTML5 Canvas is an immediate-mode graphics system. When you
draw into a canvas, the browser draws immediately and then immediately forgets.
Immediate-mode graphics is fine if you want to implement a paint application
for example, but if you want to implement a drawing application that lets you
create graphical objects that you can manipulate, it would be better to have a list
of objects that you can edit and draw.

In this section, we modify the application in the preceding section to maintain a
list of polygon objects. An excerpt of the modified application is listed in
Example 2.26.

Example 2.26 Using polygon objects

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 startAngleSelect = document.getElementById('startAngleSelect'),
 sidesSelect = document.getElementById('sidesSelect'),

...

 mousedown = {},
 rubberbandRect = {};

(Continues)

1472.11 Polygons

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.26 (Continued)

function drawRubberbandShape(loc, sides, startAngle) {
var polygon = new Polygon(mousedown.x, mousedown.y,

 rubberbandRect.width,
parseInt(sidesSelect.value),
(Math.PI / 180) * parseInt(startAngleSelect.value),

 context.strokeStyle,
 context.fillStyle,
 fillCheckbox.checked);

 context.beginPath();
 polygon.createPath(context);
 polygon.stroke(context);

if (fillCheckbox.checked) {
 polygon.fill(context);

}
else {

 polygons.push(polygon);
}

}

The application calls the drawRubberbandShape() function as the user drags
the mouse to create a polygon. That function creates a polygon object, calls the
polygon’s createPath() method, and then strokes and possibly fills that path.

If the user has finished dragging the mouse, the drawRubberbandShape() function
adds the polygon to the list of polygons the application maintains.

The polygon objects implemented in this section have the following methods:

• points[] getPoints()

• void createPath(context)

• void stroke(context)

• void fill(context)

• void move(x, y)

Example 2.27 shows the implementation of the Polygon object.

Chapter 2 Drawing148

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.27 A polygon object

// Point constructor..

var Point = function (x, y) {
this.x = x;
this.y = y;

};

// Polygon constructor..

var Polygon = function (centerX, centerY, radius,
 sides, startAngle, strokeStyle, fillStyle, filled) {

this.x = centerX;
this.y = centerY;
this.radius = radius;
this.sides = sides;
this.startAngle = startAngle;
this.strokeStyle = strokeStyle;
this.fillStyle = fillStyle;
this.filled = filled;

};

// Polygon prototype..

Polygon.prototype = {
 getPoints: function () {

var points = [],
 angle = this.startAngle || 0;

for (var i=0; i < this.sides; ++i) {
 points.push(new Point(this.x + this.radius * Math.sin(angle),

this.y - this.radius * Math.cos(angle)));
 angle += 2*Math.PI/this.sides;

}
return points;

},

 createPath: function (context) {
var points = this.getPoints();

 context.beginPath();
 context.moveTo(points[0].x, points[0].y);

for (var i=1; i < this.sides; ++i) {
 context.lineTo(points[i].x, points[i].y);

}
 context.closePath();

},

(Continues)

1492.11 Polygons

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.27 (Continued)

 stroke: function (context) {
 context.save();

this.createPath(context);
 context.strokeStyle = this.strokeStyle;
 context.stroke();
 context.restore();

},

 fill: function (context) {
 context.save();

this.createPath(context);
 context.fillStyle = this.fillStyle;
 context.fill();
 context.restore();

},

 move: function (x, y) {
this.x = x;
this.y = y;

}
};

When you create a polygon, you specify the polygon’s location, which corresponds
to the center of the smallest circle that can enclose the polygon. You also specify
the radius of the circle, the number of sides for the polygon, the starting angle
for the first point in the polygon, the polygon’s stroke and fill styles, and whether
the polygon is filled.

Polygons can generate an array of points that represent their vertices, and they
can create a path from those points. They can also stroke that path or fill that path,
and you can move them by invoking their move() method.

2.12 Advanced Path Manipulation
To keep track of what they draw, many applications, such as drawing applications,
computer-aided design systems, and games, maintain a list of display objects.
Often, such applications let users edit their display objects; for example, CAD
applications let users select, move, and resize elements of the design.

Chapter 2 Drawing150

Download from Join eBook (www.joinebook.com)

ptg7987094

Users typically select display objects with either mouse clicks or finger touches.
To facilitate selection, among other things, the Canvas API provides a
pointInPath() method that returns true if a specified point lies within the
current path. In this section, we make use of that method through an extension
of the polygon application discussed in Section 2.11.1, “Polygon Objects,” on
p. 147 that lets users drag polygons.

We also explore, in Section 2.12.2, “Editing Bézier Curves,” on p. 158, an
application that lets users create and edit bézier curves.

2.12.1 Dragging Polygons
In this section you will see how to maintain a list of polygon objects as the user
creates them. That list of polygons lets you implement lots of interesting things;
for example, dragging polygons, as shown in Figure 2.42, or as you will see in
Section 2.13, “Transformations,” on p. 170, rotating polygons.

The application in Figure 2.42 has two modes: draw and edit. Initially, the appli-
cation is in draw mode, so you can create polygons by dragging the mouse.
Subsequently, if you click the Edit checkbox, the application switches to edit
mode, and you can drag polygons around.

The application maintains an array of Polygon objects. When a mouse down event
occurs in edit mode, the application iterates over that array, creates a path for
each polygon, and checks to see whether the mouse down location was in the
path. If so, the application stores a reference to the associated polygon and saves
the X and Y offsets from the upper-left corner of the polygon to the mouse down
location.

From then on, the application’s mouse move event handler moves the selected
polygon in accordance with mouse movement. When you uncheck the Edit
checkbox, the application reverts to draw mode.

The JavaScript that pertains to dragging polygons for the application shown in
Figure 2.42 is listed in Example 2.28. In the interest of brevity, the HTML for the
application is not listed.

1512.12 Advanced Path Manipulation

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 2.42 Dragging polygons

Chapter 2 Drawing152

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.28 Dragging polygons

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 eraseAllButton = document.getElementById('eraseAllButton'),
 strokeStyleSelect = document.getElementById('strokeStyleSelect'),
 fillStyleSelect = document.getElementById('fillStyleSelect'),
 fillCheckbox = document.getElementById('fillCheckbox'),
 editCheckbox = document.getElementById('editCheckbox'),
 sidesSelect = document.getElementById('sidesSelect'),

 drawingSurfaceImageData,

 mousedown = {},
 rubberbandRect = {},

 dragging = false,
 draggingOffsetX,
 draggingOffsetY,

 sides = 8,
 startAngle = 0,

 guidewires = true,
 editing = false,
 polygons = [];

// Functions..

function drawGrid(color, stepx, stepy) {
// Listing omitted for brevity. See Example 2.13 on p. 106
// for a complete listing.

}

function windowToCanvas(x, y) {
var bbox = canvas.getBoundingClientRect();
return { x: x - bbox.left * (canvas.width / bbox.width),

 y: y - bbox.top * (canvas.height / bbox.height)
};

}

// Save and restore drawing surface...................................

function saveDrawingSurface() {
 drawingSurfaceImageData = context.getImageData(0, 0,
 canvas.width,
 canvas.height);

}

(Continues)

1532.12 Advanced Path Manipulation

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.28 (Continued)

function restoreDrawingSurface() {
 context.putImageData(drawingSurfaceImageData, 0, 0);

}

// Draw a polygon...

function drawPolygon(polygon) {
 context.beginPath();
 polygon.createPath(context);
 polygon.stroke(context);

if (fillCheckbox.checked) {
 polygon.fill(context);

}
}

// Rubber bands...

function updateRubberbandRectangle(loc) {
 rubberbandRect.width = Math.abs(loc.x - mousedown.x);
 rubberbandRect.height = Math.abs(loc.y - mousedown.y);

if (loc.x > mousedown.x) rubberbandRect.left = mousedown.x;
else rubberbandRect.left = loc.x;

if (loc.y > mousedown.y) rubberbandRect.top = mousedown.y;
else rubberbandRect.top = loc.y;

}

function drawRubberbandShape(loc, sides, startAngle) {
var polygon = new Polygon(mousedown.x, mousedown.y,

 rubberbandRect.width, parseInt(sidesSelect.value),
(Math.PI / 180) * parseInt(startAngleSelect.value),

 context.strokeStyle,
 context.fillStyle,
 fillCheckbox.checked);

drawPolygon(polygon);

if (!dragging) {
 polygons.push(polygon);

}
}

function updateRubberband(loc, sides, startAngle) {
updateRubberbandRectangle(loc);
drawRubberbandShape(loc, sides, startAngle);

}

Chapter 2 Drawing154

Download from Join eBook (www.joinebook.com)

ptg7987094

// Guidewires...

function drawHorizontalLine (y) {
 context.beginPath();
 context.moveTo(0,y+0.5);
 context.lineTo(context.canvas.width,y+0.5);
 context.stroke();

}

function drawVerticalLine (x) {
 context.beginPath();
 context.moveTo(x+0.5,0);
 context.lineTo(x+0.5,context.canvas.height);
 context.stroke();

}

function drawGuidewires(x, y) {
 context.save();
 context.strokeStyle = 'rgba(0,0,230,0.4)';
 context.lineWidth = 0.5;

drawVerticalLine(x);
drawHorizontalLine(y);

 context.restore();
}

function drawPolygons() {
 polygons.forEach(function (polygon) {

drawPolygon(polygon);
});

}

// Dragging...

function startDragging(loc) {
saveDrawingSurface();

 mousedown.x = loc.x;
 mousedown.y = loc.y;

}

function startEditing() {
 canvas.style.cursor = 'pointer';
 editing = true;

}

function stopEditing() {
 canvas.style.cursor = 'crosshair';
 editing = false;

}

(Continues)

1552.12 Advanced Path Manipulation

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.28 (Continued)

// Event handlers...

canvas.onmousedown = function (e) {
var loc = windowToCanvas(e.clientX, e.clientY);

 e.preventDefault(); // Prevent cursor change

if (editing) {
 polygons.forEach(function (polygon) {
 polygon.createPath(context);

if (context.isPointInPath(loc.x, loc.y)) {
startDragging(loc);

 dragging = polygon;
 draggingOffsetX = loc.x - polygon.x;
 draggingOffsetY = loc.y - polygon.y;

return;
}

});
}

else {
startDragging(loc);

 dragging = true;
}

};

canvas.onmousemove = function (e) {
var loc = windowToCanvas(e.clientX, e.clientY);

 e.preventDefault(); // Prevent selections

if (editing && dragging) {
 dragging.x = loc.x - draggingOffsetX;
 dragging.y = loc.y - draggingOffsetY;
 context.clearRect(0, 0, canvas.width, canvas.height);

drawGrid('lightgray', 10, 10);
drawPolygons();
}

else {
if (dragging) {

restoreDrawingSurface();
updateRubberband(loc, sides, startAngle);

if (guidewires) {
drawGuidewires(mousedown.x, mousedown.y);

}
}

}
};

Chapter 2 Drawing156

Download from Join eBook (www.joinebook.com)

ptg7987094

canvas.onmouseup = function (e) {
var loc = windowToCanvas(e.clientX, e.clientY);

 dragging = false;

if (editing) {
}
else {

restoreDrawingSurface();
updateRubberband(loc);

}
};

eraseAllButton.onclick = function (e) {
 context.clearRect(0, 0, canvas.width, canvas.height);

drawGrid('lightgray', 10, 10); saveDrawingSurface();
};

strokeStyleSelect.onchange = function (e) {
 context.strokeStyle = strokeStyleSelect.value;
};

fillStyleSelect.onchange = function (e) {
 context.fillStyle = fillStyleSelect.value;
};

editCheckbox.onchange = function (e) {
if (editCheckbox.checked) {

startEditing();
}
else {

stopEditing();
}

};

// Initialization...

context.strokeStyle = strokeStyleSelect.value;
context.fillStyle = fillStyleSelect.value;

context.shadowColor = 'rgba(0,0,0,0.4)';
context.shadowOffsetX = 2;
context.shadowOffsetY = 2;
context.shadowBlur = 4;

drawGrid('lightgray', 10, 10);

1572.12 Advanced Path Manipulation

Download from Join eBook (www.joinebook.com)

ptg7987094

2.12.2 Editing Bézier Curves
The ability to drag shapes in a canvas—as we did in Section 2.12.1, “Dragging
Polygons,” on p. 151—opens the doors to many possibilities. For example, the
application shown in Figure 2.43 lets you draw bézier curves and subsequently
edit them by dragging their end- and control points.

Figure 2.43 Editing bézier curves

Chapter 2 Drawing158

Download from Join eBook (www.joinebook.com)

ptg7987094

The top screenshot in Figure 2.43 shows how you draw a curve by dragging the
mouse. The bottom screenshot shows the instructions the application displays
when the user stops dragging the mouse. After dismissing the instructions, you
can adjust the curve by dragging its end- or control point, which is illustrated in
the top screenshot in Figure 2.44.

Figure 2.44 Dragging bézier end- and control points

1592.12 Advanced Path Manipulation

Download from Join eBook (www.joinebook.com)

ptg7987094

Finally, if you click outside the end- or control points, the application finalizes
the curve, as shown in the bottom screenshot in Figure 2.44.

The HTML for the application shown in Figure 2.43 is listed in Example 2.29.

Example 2.29 Dragging bézier curve end- and control points: HTML

<!DOCTYPE html>
<html>

<head>
<title>Drawing Bezier Curves</title>

<style>
 body {

background: #eeeeee;
}

.floatingControls {
position: absolute;
left: 150px;
top: 100px;
width: 300px;
padding: 20px;
border: thin solid rgba(0,0,0,0.3);
background: rgba(0,0,200,0.1);
color: blue;
font: 14px Arial;
-webkit-box-shadow: rgba(0,0,0,0.2) 6px 6px 8px;
-moz-box-shadow: rgba(0,0,0,0.2) 6px 6px 8px;
box-shadow: rgba(0,0,0,0.2) 6px 6px 8px;
display: none;

}

.floatingControls p {
margin-top: 0px;
margin-bottom: 20px;

}

#controls {
position: absolute;
left: 25px;
top: 25px;

}

Chapter 2 Drawing160

Download from Join eBook (www.joinebook.com)

ptg7987094

#canvas {
background: #ffffff;
cursor: pointer;
margin-left: 10px;
margin-top: 10px;
-webkit-box-shadow: 4px 4px 8px rgba(0,0,0,0.5);
-moz-box-shadow: 4px 4px 8px rgba(0,0,0,0.5);
-box-shadow: 4px 4px 8px rgba(0,0,0,0.5);

}
</style>

</head>

<body>
<canvas id='canvas' width='605' height='400'>

 Canvas not supported
</canvas>

<div id='controls'>
 Stroke color: <select id='strokeStyleSelect'>

<option value='red'>red</option>
<option value='green'>green</option>
<option value='blue'>blue</option>
<option value='orange'>orange</option>
<option value='cornflowerblue'>cornflowerblue</option>
<option value='goldenrod'>goldenrod</option>
<option value='navy' selected>navy</option>
<option value='purple'>purple</option>
</select>

 Guidewires:
<input id='guidewireCheckbox' type='checkbox' checked/>
<input id='eraseAllButton' type='button' value='Erase all'/>

</div>

<div id='instructions' class='floatingControls'>
<p>Drag the curve end- and control points to

 change the shape of the curve.</p>

<p>When you are done dragging end- and control points,
 click outside of the points to finalize the curve.</p>

<input id='instructionsOkayButton' type='button'
value='Okay' autofocus/>

<input id='instructionsNoMoreButton' type='button'
value='Do not show these instructions again'/>

</div>

<script src = 'example.js'></script>
</body>

</html>

1612.12 Advanced Path Manipulation

Download from Join eBook (www.joinebook.com)

ptg7987094

For the instructions, the application employs the strategy discussed in Section 1.8,
“Using HTML Elements in a Canvas,” on p. 36 to implement a glass pane that
floats above the canvas. The class for the DIV containing the instructions is
floatingControls, which sets the background and positions the DIV over the
canvas.

The HTML also creates the elements for selecting stroke color, turning guidewires
on and off, and erasing all curves.

The JavaScript for the application shown in Figure 2.43 is listed in Example 2.30.

As you look through the code, notice the cursorInEndPoint() and
cursorInControlPoint() functions, about two thirds of the way through the
listing. Those functions determine whether you clicked the mouse inside an end-
or control point.

Also notice the mouse move event handler. Either you are dragging the mouse
to draw a curve or you are dragging a point, either an endpoint or a control point,
of an existing curve. If you are doing either of those things, the event handler re-
stores the drawing surface and temporarily draws guidewires if they are enabled.

If you are drawing the curve, the mouse move event handler subsequently redraws
the curve and its end- and control points. If you are dragging a point, the appli-
cation updates the location of the point and then redraws the curve’s end- and
control points and the curve itself.

Example 2.30 Dragging bézier curve end- and control points: JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 eraseAllButton = document.getElementById('eraseAllButton'),
 strokeStyleSelect = document.getElementById('strokeStyleSelect'),
 guidewireCheckbox = document.getElementById('guidewireCheckbox'),
 instructions = document.getElementById('instructions'),
 instructionsOkayButton =
 document.getElementById('instructionsOkayButton'),
 instructionsNoMoreButton =
 document.getElementById('instructionsNoMoreButton'),

 showInstructions = true,

 AXIS_MARGIN = 40,
 HORIZONTAL_TICK_SPACING = 10,
 VERTICAL_TICK_SPACING = 10,
 TICK_SIZE = 10,

 AXIS_ORIGIN = { x: AXIS_MARGIN, y: canvas.height-AXIS_MARGIN },
 AXIS_TOP = AXIS_MARGIN,

Chapter 2 Drawing162

Download from Join eBook (www.joinebook.com)

ptg7987094

 AXIS_RIGHT = canvas.width - AXIS_MARGIN,
 AXIS_WIDTH = AXIS_RIGHT - AXIS_ORIGIN.x,
 AXIS_HEIGHT = AXIS_ORIGIN.y - AXIS_TOP,

 NUM_VERTICAL_TICKS = AXIS_HEIGHT / VERTICAL_TICK_SPACING,
 NUM_HORIZONTAL_TICKS = AXIS_WIDTH / HORIZONTAL_TICK_SPACING,

 GRID_STROKE_STYLE = 'lightblue',
 GRID_SPACING = 10,

 CONTROL_POINT_RADIUS = 5,
 CONTROL_POINT_STROKE_STYLE = 'blue',
 CONTROL_POINT_FILL_STYLE = 'rgba(255,255,0,0.5)',

 END_POINT_STROKE_STYLE = 'navy',
 END_POINT_FILL_STYLE = 'rgba(0,255,0,0.5)',

 GUIDEWIRE_STROKE_STYLE = 'rgba(0,0,230,0.4)',

 drawingImageData, // Image data stored on mouse down events

 mousedown = {}, // Cursor location for last mouse down event
 rubberbandRect = {}, // Constantly updated for mouse move events

 dragging = false, // If true, user is dragging the cursor
 draggingPoint = false, // End- or control point user is dragging

 endPoints = [{}, {}], // Endpoint locations (x, y)
 controlPoints = [{}, {}], // Control point locations (x, y)
 editing = false,

// If true, user is editing the curve

 guidewires = guidewireCheckbox.checked;

// Functions. ..

function drawGrid(color, stepx, stepy) {
// Listing omitted for brevity. See Example 2.13 on p. 106
// for a complete listing.

}

function windowToCanvas(x, y) {
var bbox = canvas.getBoundingClientRect();

return { x: x - bbox.left * (canvas.width / bbox.width),
 y: y - bbox.top * (canvas.height / bbox.height)

};
}

// Save and restore drawing surface...................................(Continues)

1632.12 Advanced Path Manipulation

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.30 (Continued)

function saveDrawingSurface() {
 drawingImageData = context.getImageData(0, 0,
 canvas.width, canvas.height);

}

function restoreDrawingSurface() {
 context.putImageData(drawingImageData, 0, 0);

}

// Rubber bands...

function updateRubberbandRectangle(loc) {
 rubberbandRect.width = Math.abs(loc.x - mousedown.x);
 rubberbandRect.height = Math.abs(loc.y - mousedown.y);

if (loc.x > mousedown.x) rubberbandRect.left = mousedown.x;
else rubberbandRect.left = loc.x;

if (loc.y > mousedown.y) rubberbandRect.top = mousedown.y;
else rubberbandRect.top = loc.y;

}

function drawBezierCurve() {
 context.beginPath();
 context.moveTo(endPoints[0].x, endPoints[0].y);
 context.bezierCurveTo(controlPoints[0].x, controlPoints[0].y,
 controlPoints[1].x, controlPoints[1].y,
 endPoints[1].x, endPoints[1].y);
 context.stroke();

}

function updateEndAndControlPoints() {
 endPoints[0].x = rubberbandRect.left;
 endPoints[0].y = rubberbandRect.top;

 endPoints[1].x = rubberbandRect.left + rubberbandRect.width;
 endPoints[1].y = rubberbandRect.top + rubberbandRect.height;

 controlPoints[0].x = rubberbandRect.left;
 controlPoints[0].y = rubberbandRect.top + rubberbandRect.height;

 controlPoints[1].x = rubberbandRect.left + rubberbandRect.width;
 controlPoints[1].y = rubberbandRect.top;

}

function drawRubberbandShape(loc) {
updateEndAndControlPoints();
drawBezierCurve();

}

Chapter 2 Drawing164

Download from Join eBook (www.joinebook.com)

ptg7987094

function updateRubberband(loc) {
updateRubberbandRectangle(loc);
drawRubberbandShape(loc);

}

// Guidewires...

function drawHorizontalGuidewire (y) {
 context.beginPath();
 context.moveTo(0, y + 0.5);
 context.lineTo(context.canvas.width, y + 0.5);
 context.stroke();

}

function drawVerticalGuidewire (x) {
 context.beginPath();
 context.moveTo(x + 0.5, 0);
 context.lineTo(x + 0.5, context.canvas.height);
 context.stroke();

}

function drawGuidewires(x, y) {
 context.save();
 context.strokeStyle = GUIDEWIRE_STROKE_STYLE;
 context.lineWidth = 0.5;

drawVerticalGuidewire(x);
drawHorizontalGuidewire(y);

 context.restore();
}

// Endpoints and control points......................................

function drawControlPoint(index) {
 context.beginPath();
 context.arc(controlPoints[index].x, controlPoints[index].y,
 CONTROL_POINT_RADIUS, 0, Math.PI*2, false);
 context.stroke();
 context.fill();
}
function drawControlPoints() {
 context.save();
 context.strokeStyle = CONTROL_POINT_STROKE_STYLE;
 context.fillStyle = CONTROL_POINT_FILL_STYLE;

drawControlPoint(0);
drawControlPoint(1);

 context.stroke();
 context.fill();
 context.restore();

}

(Continues)

1652.12 Advanced Path Manipulation

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.30 (Continued)

function drawEndPoint(index) {
 context.beginPath();
 context.arc(endPoints[index].x, endPoints[index].y,
 CONTROL_POINT_RADIUS, 0, Math.PI*2, false);
 context.stroke();
 context.fill();
}

function drawEndPoints() {
 context.save();
 context.strokeStyle = END_POINT_STROKE_STYLE;
 context.fillStyle = END_POINT_FILL_STYLE;

drawEndPoint(0);
drawEndPoint(1);

 context.stroke();
 context.fill();
 context.restore();
}

function drawControlAndEndPoints() {
drawControlPoints();
drawEndPoints();

}

function cursorInEndPoint(loc) {
var pt;

 endPoints.forEach(function(point) {
 context.beginPath();
 context.arc(point.x, point.y,
 CONTROL_POINT_RADIUS, 0, Math.PI*2, false);

if (context.isPointInPath(loc.x, loc.y)) {
 pt = point;

}
});

return pt;
}

Chapter 2 Drawing166

Download from Join eBook (www.joinebook.com)

ptg7987094

function cursorInControlPoint(loc) {
var pt;

 controlPoints.forEach(function(point) {
 context.beginPath();
 context.arc(point.x, point.y,
 CONTROL_POINT_RADIUS, 0, Math.PI*2, false);

if (context.isPointInPath(loc.x, loc.y)) {
 pt = point;

} });

return pt;
}

function updateDraggingPoint(loc) {
 draggingPoint.x = loc.x;
 draggingPoint.y = loc.y;

}

// Canvas event handlers..

canvas.onmousedown = function (e) {
var loc = windowToCanvas(e.clientX, e.clientY);

 e.preventDefault(); // Prevent cursor change

if (!editing) {
saveDrawingSurface();

 mousedown.x = loc.x;
 mousedown.y = loc.y;

updateRubberbandRectangle(loc);
 dragging = true;

}
else {

 draggingPoint = cursorInControlPoint(loc);

if (!draggingPoint) {
 draggingPoint = cursorInEndPoint(loc);

} }
};

(Continues)

1672.12 Advanced Path Manipulation

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.30 (Continued)

canvas.onmousemove = function (e) {
var loc = windowToCanvas(e.clientX, e.clientY);

if (dragging || draggingPoint) {
 e.preventDefault(); // Prevent selections

restoreDrawingSurface();

if(guidewires) {
drawGuidewires(loc.x, loc.y);

}
}

if (dragging) {
updateRubberband(loc);
drawControlAndEndPoints();

}
else if (draggingPoint) {

updateDraggingPoint(loc);
drawControlAndEndPoints();
drawBezierCurve();

}
};

canvas.onmouseup = function (e) {
 loc = windowToCanvas(e.clientX, e.clientY);

restoreDrawingSurface();

if (!editing) {
updateRubberband(loc);
drawControlAndEndPoints();

 dragging = false;
 editing = true;

if (showInstructions) {
 instructions.style.display = 'inline';

}
}
else {

if (draggingPoint) drawControlAndEndPoints();
else editing = false;

drawBezierCurve();
 draggingPoint = undefined;

}
};

Chapter 2 Drawing168

Download from Join eBook (www.joinebook.com)

ptg7987094

// Control event handlers...

eraseAllButton.onclick = function (e) {
 context.clearRect(0, 0, canvas.width, canvas.height);

drawGrid(GRID_STROKE_STYLE, GRID_SPACING, GRID_SPACING);

saveDrawingSurface();

 editing = false;
 dragging = false;
 draggingPoint = undefined;
};

strokeStyleSelect.onchange = function (e) {
 context.strokeStyle = strokeStyleSelect.value;
};

guidewireCheckbox.onchange = function (e) {
 guidewires = guidewireCheckbox.checked;
};

// Instructions event handlers..

instructionsOkayButton.onclick = function (e) {
 instructions.style.display = 'none';
};

instructionsNoMoreButton.onclick = function (e) {
 instructions.style.display = 'none';
 showInstructions = false;
};

// Initialization...

context.strokeStyle = strokeStyleSelect.value;
drawGrid(GRID_STROKE_STYLE, GRID_SPACING, GRID_SPACING);

2.12.3 Scrolling Paths into View
As this book was being written, the Canvas specification added a
scrollPathIntoView() method to the Canvas context. The method, which scrolls
the current path into view, was not implemented by any browsers when the book
went to press, so this book does not contain a working example that uses that
method. When browsers implement that feature, you can find a working example
at the book’s companion site at http://corehtml5canvas.com.

1692.12 Advanced Path Manipulation

Download from Join eBook (www.joinebook.com)

http://corehtml5canvas.com

ptg7987094

NOTE: scrollPathIntoView() is primarily for mobile applications

The scrollPathIntoView() method was added to the Canvas specification
primarily for mobile devices that have small screens. With that method,
developers can support scrolling part of the canvas that is offscreen into view.

2.13 Transformations
As mentioned in Section 2.1, “The Coordinate System,” on p. 67, you can translate,
rotate, and scale the Canvas coordinate system, and there are plenty of good
reasons to do one or all of those things.

It’s often useful to translate the origin to someplace other than the upper-left
corner of the canvas, which is its default location. Fundamentally, translating the
origin simplifies the calculations you need to make to position shapes and text
within the canvas. For example, you can draw a rectangle centered in the canvas,
like this:

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 RECTANGLE_WIDTH = 100,
 RECTANGLE_HEIGHT = 100;

context.strokeRect(canvas.width/2 - RECTANGLE_WIDTH/2,
 canvas.height/2 - RECTANGLE_HEIGHT/2,
 RECTANGLE_WIDTH, RECTANGLE_HEIGHT);

The preceding code calculates the X and Y coordinates for the upper left-hand
corner of the rectangle by subtracting half of the rectangle’s width and half of the
rectangle’s height, respectively, from the center of the canvas.

By translating the origin to that point, you simplify the call to strokeRect():

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 RECTANGLE_WIDTH = 100,
 RECTANGLE_HEIGHT = 100;

context.translate(canvas.width/2 - RECTANGLE_WIDTH/2,
 canvas.height/2 - RECTANGLE_HEIGHT/2);

context.strokeRect(0, 0, RECTANGLE_WIDTH, RECTANGLE_HEIGHT);

You may argue that translating the origin simplifies nothing in this case because
the preceding code still has to calculate the same location. The only difference
is that the preceding code passes that location to translate() instead of to
strokeRect(). And you would be correct. However, imagine that you are drawing

Chapter 2 Drawing170

Download from Join eBook (www.joinebook.com)

ptg7987094

several shapes at the center of the canvas. In that case, translating the origin could
significantly simplify the ensuing calculations for drawing the other shapes.

2.13.1 Translating, Scaling, and Rotating
The application shown in Figure 2.45 illustrates translating and rotating the
coordinate system, by letting you interactively rotate polygons.

Figure 2.45 Translating and rotating the coordinate system

If you check the Edit checkbox and subsequently click a polygon, the application
shown in Figure 2.45 annotates the polygon with a dial representing degrees and
adds a guidewire showing the current rotation angle. You can read more about
the implementation of the dial and guidewire in Section 2.9.4, “Dials and Gauges,”
on p. 130.

After you select a polygon to rotate, you can change the rotation angle by moving
the mouse. The guidewire follows the mouse, and the application draws a second
representation of the polygon, rotated at the current rotation angle. When you

1712.13 Transformations

Download from Join eBook (www.joinebook.com)

ptg7987094

subsequently click the mouse, the application removes the rotation annotations
and rotates the polygon to the selected rotation angle.

In the interest of brevity, the application shown in Figure 2.45 is not entirely
listed in this book; however, you can try the example and download the code at
http://corehtml5canvas.com. Example 2.31 lists the function that the application
uses to draw a polygon at a given rotation angle.

Example 2.31 Translating and rotating the coordinate system

function drawPolygon(polygon, angle) {
var tx = polygon.x,

 ty = polygon.y;

 context.save();

 context.translate(tx, ty);

if (angle) {
 context.rotate(angle);

}

 polygon.x = 0;
 polygon.y = 0;

 polygon.createPath(context);
 context.stroke();

if (fillCheckbox.checked) {
 context.fill();

}

 context.restore();

 polygon.x = tx;
 polygon.y = ty;
}

Polygons, as implemented in the application shown in Figure 2.45, maintain their
location, which is at the center of the polygon. To draw a rotated polygon, the
function listed in Example 2.31 temporarily translates the coordinate system to
the polygon’s center and rotates the coordinate system by the specified angle.
The application then invokes the polygon’s createPath() method and strokes
and possibly fills that path. When the function is finished stroking and then filling
the polygon, it restores the context and the X and Y coordinates of the polygon.

The rotate(), scale(), and translate() methods are summarized in Table 2.11.

Chapter 2 Drawing172

Download from Join eBook (www.joinebook.com)

http://corehtml5canvas.com

ptg7987094

Table 2.11 CanvasRenderingContext2D translation and rotation methods

DescriptionMethod

Rotates the coordinate system, by the specified
number of radians. (Note: π radians is equal
to 180 degrees.)

rotate(double angleInRadians)

Scales the coordinate system in the X and Y
directions.

scale(double x, double y)

Translates the coordinate system in the X and
Y directions.

translate(double x, double y)

TIP: Sometimes it’s useful to scale the context during developing

If you are doing some intricate drawing in a canvas—perhaps you are imple-
menting a custom control, such as the slider discussed in Chapter 10—it’s a
good idea to scale the canvas so that you can get a better look at exactly what
you are drawing.The statement context.scale(2.5, 2.5), for example, gives
you a close-up view of your work, and when you are done developing, simply
remove the statement from your code.

If you do scale the context during development, you may find that things slide
out of view because you’ve zoomed in on the context as a whole. If that’s the
case, you can use context.translate() to temporarily translate the context
and bring your desired part of the magnified canvas into view.

2.13.1.1 Mirroring
Coordinate system transformations are useful for many different things. For ex-
ample, you can draw a shape and subsequently mirror that shape horizontally
by invoking scale(-1, 1) (or vertically by calling scale(1, -1)), as illustrated by
the application shown in Figure 2.46.

The application mirrors the arrow like this:

drawArrow(context);

context.translate(canvas.width, 0);
context.scale(-1, 1);

drawArrow(context);

The preceding code invokes a method named drawArrow(), that draws the arrow
on the left in Figure 2.46. To mirror the arrow about the vertical center of the

1732.13 Transformations

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 2.46 Mirroring with scale()

canvas, the application translates the origin to the right edge of the canvas, invokes
scale(-1, 1), and redraws the arrow exactly as it did before. You can see the
implementation of the drawArrow() method in Section 2.10.1, “Quadratic Curves,”
on p. 137.

2.13.2 Custom Transformations
In the previous sections you saw how to use scale(), rotate(), and translate()
to transform the coordinate system. Those three methods are convenience methods
that manipulate the context’s transformation matrix. Whenever you draw anything
into a canvas, whether it’s a shape, text, or an image, the browser applies the
transformation matrix to the object you are drawing. By default, the transformation
matrix is what’s known as an identity matrix, which does nothing to the object
that you are drawing. When you invoke scale(), rotate(), or translate(), you
are modifying the transformation matrix, thereby affecting all future drawing
operations.

Most of the time those three methods will suffice; however, sometimes you may
need to manipulate the transformation matrix directly. For example, applying
shear to objects that you draw is not possible with any combination of those three
methods, so in that case you would need to manipulate the transformation matrix
yourself.

The Canvas context provides two methods that directly manipulate the transfor-
mation matrix: transform(), which applies a transformation to the current
transformation matrix, and setTransform(), which resets the matrix to its original
value—the identity matrix—and then applies the transformation to that identity
matrix. The upshot is that successive calls to transform() are cumulative,
whereas successive calls to setTransform() wipe the transformation matrix slate
clean each time.

Chapter 2 Drawing174

Download from Join eBook (www.joinebook.com)

ptg7987094

Because translate(), rotate(), and scale() all manipulate the transformation
matrix, you can also translate, rotate, and scale with transform() and
setTransform(). There are two advantages to manipulating the transformation
matrix directly with transform() and setTransform():

1. You can achieve effects, such as shear, that are not possible with scale(),
rotate(), and translate() alone.

2. You can combine effects, such as scaling, rotating, translating, and shear, in
one call to transform() or setTransform().

The major drawback to using transform() and setTransform() is that those
methods are not as intuitive as scale(), rotate(), and translate().

Both transform() and setTransform() take six arguments. In this section you
will learn what those arguments are for and how to specify them for any type of
transformation including translating, scaling, rotating, and shearing objects that
you draw in a canvas.

2.13.2.1 Algebraic Equations for Transformations
Let’s begin with some simple algebraic equations for translating, scaling, and
rotating. First, Equation 2.1 shows the equations for translating (x, y) to (x′, y′).

x′ = x + dx
y′ = y + dy

Equation 2.1 Equation for translating

The equations add a delta x, signified as dx, to the x coordinate, and a delta y,
signified as dy, to the y coordinate. For example, if you translate (5, 10) to (10, 20),
delta x would be 5 and delta y would be 10, and you have Equation 2.2.

x′ = 5 + 5
y′ = 10 + 10

Equation 2.2 Translating (5, 10) to (10, 20)

The equations for scaling are shown in Equation 2.3.

x′ = x × sx
y′ = y × sy

Equation 2.3 Equation for scaling

1752.13 Transformations

Download from Join eBook (www.joinebook.com)

ptg7987094

The equations multiply a scale x, signified as sx, by the x coordinate, and a scale
y, signified as sy, by the y coordinate. For example, if you scale (5, 10) to (40, 60),
scale x would be 8 and scale y would be 6, and you have Equation 2.4.

x′ = 5 × 8
y′ = 10 × 6

Equation 2.4 Scaling (5, 5) to (10, 20)

The equations for rotating use some trigonometry, as shown in Equation 2.5.

x′ = x × cos(angle) – (y × sin(angle))
y′ = y × cos(angle) + (x × sin(angle))

Equation 2.5 Equations for rotating

If you rotate (5, 10) 45 degrees about (0, 0), you end up at (3.5, 10.6), as shown in
Equation 2.6.

x′ = 5 × cos(π / 4) – (10 × sin(π / 4))
y′ = 10 × cos(π / 4) + (5 × sin(π / 4))

Equation 2.6 Rotating (5, 5) 45 degrees about (0, 0)

2.13.2.2 Using transform() and setTransform()
Now that you have a good grasp of the fundamental equations for rotating,
scaling, and translating, let’s go back to the six arguments for transform() and
setTransform(). Those two methods look like this:

transform(a, b, c, d, e, f)
setTransform(a, b, c, d, e, f)

Those six arguments are used in equations that encompass all the equations that
we’ve seen for translating, scaling, and rotating. Those equations are shown in
Equation 2.7.

x′ = ax + cy + e
y′ = bx + dy + f

Equation 2.7 Equations for general transformations

In Equation 2.7, the letters a...f represent the six arguments to transform() and
setTransform(). The arguments e and f, when combined with a = 1, b = 0, c = 0,

Chapter 2 Drawing176

Download from Join eBook (www.joinebook.com)

ptg7987094

and d = 1, represent a pure translation. In that case, the equation for x′ becomes
x′ = 1 × x + 0x + e, and the equation for y′ becomes y′= 1 × x + 0x + f. Those
equations simplify as shown in Equation 2.8.

x′ = x + e
y′ = y + f

Equation 2.8 A pure translation with the arguments for transform() and setTransform()

So, if you want to use transform() or setTransform() to translate the coordinate
system, use the fifth argument (e) to translate in the X direction, the sixth argument
(f) to translate in the Y direction, and set a and d to 1 and b and c to 0.

To scale the coordinate system using transform() or setTransform(), you use
the arguments a and d, with all the other arguments set to 0, to scale in the X and
Y directions, respectively. In that case, the equations become x′ = a × x + 0x +
0y + 0 and y′ = 0 × x + dy + 0. Those equations simplify to the equations shown
in Equation 2.9.

x′ = ax
y′ = dy

Equation 2.9 Scaling with the arguments for transform() and setTransform()

To rotate about the origin through an angle (specified in radians), use the
following arguments to transform() and setTransform(): a = cos(angle), b =
sin(angle), c = –sin(angle), d = cos(angle), and 0 for e and f, as shown in
Equation 2.10.

x′ = cos(angle) × x – sin(angle) × y + 0
y′ = sin(angle) × x + cos(angle) × y + 0

Equation 2.10 Rotating with the arguments for transform() and setTransform()

2.13.2.3 Translating, Rotating, and Scaling with transform() and setTransform()
The application shown in Figure 2.47 rotates and scales text like this:

context.clearRect(-origin.x, -origin.y, canvas.width, canvas.height);
context.rotate(clockwise ? angle : -angle);
context.scale(scale, scale);
drawText();

You can achieve the same effect with transform(), like this:

1772.13 Transformations

Download from Join eBook (www.joinebook.com)

ptg7987094

var sin = clockwise ? Math.sin(angle) : Math.sin(-angle),
 cos = clockwise ? Math.cos(angle) : Math.cos(-angle);

if (!paused) {
 context.clearRect(-origin.x, -origin.y,
 canvas.width, canvas.height);
 context.transform(cos, sin, -sin, cos, 0, 0);
 context.transform(scale, 0, 0, scale, 0, 0);

drawText();
}

In the preceding code, the first call to transform() rotates the coordinate system;
the second call scales it.

You can also combine the two calls to transform(), like this:

context.transform(scale*cos, sin, -sin, scale*cos, 0, 0);

Figure 2.47 Spinning text

Chapter 2 Drawing178

Download from Join eBook (www.joinebook.com)

ptg7987094

This section showed you how to use transform() and setTransform() to translate,
scale, and rotate, which you can also achieve with translate(), scale(), and
rotate(), respectively. Now let’s use transform() and setTransform() to do
something that you cannot achieve with translate(), scale(), and rotate().

2.13.2.4 Shear
From Section 2.13.2.2, “Using transform() and setTransform(),” on p. 176, recall
the equations for general transformations, shown in Equation 2.11.

x′ = ax + cy + e
y′ = bx + dy + f

Equation 2.11 Equations for general transformations, redux

Also recall that in Equation 2.11, the letters a...f correspond to the arguments
that you pass to transform() and setTransform():

transform(a, b, c, d, e, f)
setTransform(a, b, c, d, e, f)

Now take a look at the variables c and b in Equation 2.11. Notice that c is multi-
plied by y to generate x′, and b is multiplied by x to generate y′. That means that
the value of x influences the value of y, and vice versa, which means that c and
b can be used to implement shear, as shown in Figure 2.48.

The application shown in Figure 2.48, which is a simple paint program, uses a
separate canvas for the icons. Before drawing those icons, the application
transforms the context for that canvas, like this:

controlsContext.transform(1, 0, 0.75, 1, 0, 0);

If you plug those six arguments into Equation 2.11, you end up with x′ = 1 × x +
0.75 × y + 0 and y′ = 0 × x + 1 × y + 0, which simplifies to

x′ = x + 0.75y
y′ = y

Equation 2.12 Equations for shear in the horizontal direction

The equations shear each x coordinate of every point drawn in the icons, leaving
the y coordinates untouched, as depicted in Figure 2.48. The transform() and
setTransform() methods are summarized in Table 2.12.

1792.13 Transformations

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 2.48 Using shear to implement 3D floating icons

Table 2.12 CanvasRenderingContext2D transformation methods

DescriptionMethod

Applies the transformation specified by
the six arguments

transform(double a, double b,
double c, double d, double e,
double f)

Resets the current transformation to the
identity matrix and applies the
transformation specified by the six
arguments

setTransform(double a, double b,
double c, double d, double e,
double f)

Chapter 2 Drawing180

Download from Join eBook (www.joinebook.com)

ptg7987094

NOTE: Floating Icons

In Figure 2.48, the icons appear to float above the drawing surface. See Sec-
tion 1.8, “Using HTML Elements in a Canvas,” on p. 36 for a discussion on how
to create floating controls.

2.14 Compositing
By default, when you draw one object (the source) on top of another (the destina-
tion) in a canvas, the browser simply draws the source over the destination. That
compositing behavior should not be surprising; after all, that’s exactly what happens
if you draw one thing on top of another on a piece of paper.

However, by setting a Canvas context’s globalCompositeOperation property,
you can change that default compositing behavior to any of the values that you
see in Table 2.13. Those values are known as Porter-Duff operators, which are
described by Thomas Porter and Tom Duff from LucasFilm Ltd., in an article
published in Computer Graphics magazine in July 1984. You can read that article at
http://keithp.com/~keithp/porterduff/p253-porter.pdf.

In addition to listing all the different values for globalCompositeOperation,
Table 2.13 also shows how a source object, depicted by the circle, is composited
with a destination object, shown as a square. The default value, which is
source-over, is emphasized in the table.

To illustrate the use of the globalCompositeOperation, the application shown in
Figure 2.49 draws an orange circle that follows the mouse.

As Figure 2.49 illustrates, the globalCompositeOperation is useful for all sorts
of special effects. The rightmost screenshot uses the lighter composite operation,
making the orange circle look like a spotlight as it moves over the text.

The HTML for the application shown in Figure 2.49 is listed in Example 2.32.

The HTML creates a select element for the globalCompositeOperation values
and also creates the canvas. Using CSS, the HTML positions the canvas to the
right of the select element.

1812.14 Compositing

Download from Join eBook (www.joinebook.com)

http://keithp.com/~keithp/porterduff/p253-porter.pdf

ptg7987094

Table 2.13 CanvasRenderingContext2D composite operations

SampleOperationSampleOperation

source-insource-atop

source-oversource-out

destination-indestination-atop

destination-overdestination-out

copylighter

xor

Chapter 2 Drawing182

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 2.49 Composition modes. Clockwise from top: source-over, source-atop, lighter,
destination-out, and destination-over

Example 2.32 Compositing: HTML

<!DOCTYPE html>
<html>

<head>
<title>Canvas Composite Operations</title>

<style>
#canvas {

border: 1px solid cornflowerblue;
position: absolute;
left: 150px;
top: 10px;
background: #eeeeee;
border: thin solid #aaaaaa;
cursor: pointer;
-webkit-box-shadow: rgba(200,200,255,0.9) 5px 5px 10px;

(Continues)

1832.14 Compositing

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.32 (Continued)

-moz-box-shadow: rgba(200,200,255,0.9) 5px 5px 10px;
box-shadow: rgba(200,200,255,0.9) 5px 5px 10px;

}
</style>

</head>

<body>
<select id='compositingSelect' size='11'>

<option value='source-atop'>source-atop</option>
<option value='source-in'>source-in</option>
<option value='source-out'>source-out</option>
<option value='source-over'>source-over (default)</option>
<option value='destination-atop'>destination-atop</option>
<option value='destination-in'>destination-in</option>
<option value='destination-out'>destination-out</option>
<option value='destination-over'>destination-over</option>
<option value='lighter'>lighter</option>
<option value='copy'>copy</option>
<option value='xor'>xor</option>

</select>

<canvas id='canvas' width='600' height='420'>
 Canvas not supported

</canvas>

<script src='example.js'></script>
</body>

</html>

The JavaScript for the application shown in Figure 2.49 is listed in Example 2.33.

Example 2.33 Compositing: JavaScript

var context = document.getElementById('canvas').getContext('2d'),
 selectElement = document.getElementById('compositingSelect');

// Functions...

function drawText() {
 context.save();

 context.shadowColor = 'rgba(100, 100, 150, 0.8)';
 context.shadowOffsetX = 5;
 context.shadowOffsetY = 5;
 context.shadowBlur = 10;
 context.fillStyle = 'cornflowerblue';

Chapter 2 Drawing184

Download from Join eBook (www.joinebook.com)

ptg7987094

 context.fillText('HTML5', 20, 250);

 context.strokeStyle = 'yellow';
 context.strokeText('HTML5', 20, 250);

 context.restore();
}

// Event handlers...

function windowToCanvas(canvas, x, y) {
var bbox = canvas.getBoundingClientRect();
return { x: x - bbox.left * (canvas.width / bbox.width),

 y: y - bbox.top * (canvas.height / bbox.height)
};

}

context.canvas.onmousemove = function(e) {
var loc = windowToCanvas(context.canvas, e.clientX, e.clientY);

 context.clearRect(0, 0, context.canvas.width,
 context.canvas.height);

drawText();

 context.save();
 context.globalCompositeOperation = selectElement.value;
 context.beginPath();
 context.arc(loc.x, loc.y, 100, 0, Math.PI*2, false);
 context.fillStyle = 'orange';
 context.stroke();
 context.fill();

 context.restore();
}

// Initialization..

selectElement.selectedIndex = 3;
context.lineWidth = 0.5; con-
text.font = '128pt Comic-sans';
drawText();

The JavaScript implements a mouse move event handler that continuously draws
an orange circle that follows the mouse. That event handler sets the Canvas con-
text’s globalCompositeOperation to the compositingSelect element’s value.

As an aside, notice that the drawText() method temporarily enables shadows
when drawing the text by enclosing the code that draws text in between calls to
save() and restore(). Those calls ensure that the text will be drawn with shadows
but the orange circle will not.

1852.14 Compositing

Download from Join eBook (www.joinebook.com)

ptg7987094

2.14.1 The Compositing Controversy
At the time this book was written, browser vendors disagreed on how to imple-
ment five of the values for globalCompositeOperation. Those five values, and
how they are implemented by Safari and Chrome versus Firefox and Opera, are
shown in Table 2.14.

Table 2.14 Nonportable composite operations

Firefox and OperaChrome and SafariComposition Mode

source-in

source-out

destination-in

destination-atop

copy

The bottom line concerning the disagreement about how to implement compositing
is that you cannot portably use the compositing modes shown in Table 2.14.
If you are not interested in the technical details about the two different
implementations, feel free to skip ahead to the next section.

Chapter 2 Drawing186

Download from Join eBook (www.joinebook.com)

ptg7987094

Chrome and Safari implement local compositing, which means they perform
compositing only on the pixels that make up the source. Firefox and Opera,
on the other hand, implement global compositing, which means they perform
compositing on all pixels in a canvas, restricted to the canvas’s clipping region.

The difference between local compositing implemented by Chrome and Safari
versus the global compositing implemented by Firefox and Opera is evident in
Table 2.14: Local compositing leaves the destination untouched, whereas global
compositing erases the destination outside the area encompassed by the source.

At the time this book was written, the Canvas specification specified global
compositing, as implemented by Firefox and Opera. However, there’s a good
chance that in the future the specification will be changed to local compositing,
as implemented by Chrome and Safari.

2.15 The Clipping Region
This section discusses what is arguably the single most powerful Canvas feature:
the clipping region. The clipping region is an area of the canvas, defined by a
path, to which the browser restricts all drawing operations. By default, the
clipping region is the same size as the canvas. Until you explicitly set
the clipping region—by creating a path and subsequently invoking the Canvas
context’s clip() method—the clipping region has no effect on what you draw in
the canvas. However, once you set the clipping region, anything you draw in the
canvas will be restricted to that region, meaning that anything you draw outside
of the clipping region has no effect.

In this section we look at two examples that use the clipping region. The first ex-
ample implements an eraser and the second implements a telescoping animation.

NOTE: Canvas’s Swiss Army knife

The clipping region is Canvas’s Swiss Army knife because the effects you can
create with it are endless. Throughout the rest of this book you will see many
uses for the clipping region, including the implementation of a magnifying glass
discussed in Section 4.10, “A Magnifying Glass,” on p. 321. You will also see
how to use the clipping region to pan a large image inside the canvas in
Chapter 10.

2.15.1 Erasing with the Clipping Region
Figure 2.50 shows an application that uses the clipping region to implement an
eraser.

1872.15 The Clipping Region

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 2.50 Erasing with the clipping region

Using the eraser is simple: As you drag the mouse in the canvas, the application
erases either a circular or rectangular area—depending upon the value the user
selected from the Eraser pulldown—surrounding the mouse cursor.

Implementing the eraser is also simple: As you drag the mouse when the eraser
is rectangular, the application sets the clipping region to the rectangular area
surrounding the mouse cursor and invokes clearRect(0, 0, canvas.width,
canvas.height). As you’ve seen several times in this chapter, and as you will see
many times throughout this book, that call to clearRect() erases the entire canvas
unless you’ve set the clipping region. If you set the clipping region and make that
call to clearRect(), the erasure will be limited to the clipping region only, and
you have an eraser.

Chapter 2 Drawing188

Download from Join eBook (www.joinebook.com)

ptg7987094

The entire JavaScript code for the application shown in Figure 2.50 is listed in
Example 2.34.

Example 2.34 Erasing with the clipping region

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 strokeStyleSelect = document.getElementById('strokeStyleSelect'),
 fillStyleSelect = document.getElementById('fillStyleSelect'),
 drawRadio = document.getElementById('drawRadio'),
 eraserRadio = document.getElementById('eraserRadio'),
 eraserShapeSelect = document.getElementById('eraserShapeSelect'),
 eraserWidthSelect = document.getElementById('eraserWidthSelect'),

 ERASER_LINE_WIDTH = 1,
 ERASER_SHADOW_COLOR = 'rgb(0,0,0)',

 ERASER_SHADOW_STYLE = 'blue',
 ERASER_STROKE_STYLE = 'rgb(0,0,255)',
 ERASER_SHADOW_OFFSET = -5,
 ERASER_SHADOW_BLUR = 20,

 GRID_HORIZONTAL_SPACING = 10,
 GRID_VERTICAL_SPACING = 10,
 GRID_LINE_COLOR = 'lightblue',
 drawingSurfaceImageData,

 lastX,
 lastY,
 mousedown = {},
 rubberbandRect = {},
 dragging = false,
 guidewires = true;

// Functions..

function drawGrid(color, stepx, stepy) {
// Listing omitted for brevity. See Example 2.13 on p. 106
// for a complete listing.

}

function windowToCanvas(x, y) {
var bbox = canvas.getBoundingClientRect();
return { x: x - bbox.left * (canvas.width / bbox.width),

 y: y - bbox.top * (canvas.height / bbox.height)
}

(Continues)

1892.15 The Clipping Region

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.34 (Continued)

// Save and restore drawing surface...................................

function saveDrawingSurface() {
 drawingSurfaceImageData = context.getImageData(0, 0,
 canvas.width,
 canvas.height);

}

function restoreDrawingSurface() {
 context.putImageData(drawingSurfaceImageData, 0, 0);

}

// Rubber bands...

function updateRubberbandRectangle(loc) {
// Listing omitted for brevity. See Example 2.16 on p. 112
// for a complete listing.

}

function drawRubberbandShape(loc) {
var angle = Math.atan(rubberbandRect.height/rubberbandRect.width),

 radius = rubberbandRect.height / Math.sin(angle);

if (mousedown.y === loc.y) {
 radius = Math.abs(loc.x - mousedown.x);

}

 context.beginPath();
 context.arc(mousedown.x, mousedown.y, radius, 0, Math.PI*2, false);
 context.stroke();
 context.fill();

}

function updateRubberband(loc) {
updateRubberbandRectangle(loc);
drawRubberbandShape(loc);

}

// Guidewires...

function drawGuidewires(x, y) {
// Listing omitted for brevity. See Example 2.16 on p. 112
// for a complete listing.

}

Chapter 2 Drawing190

Download from Join eBook (www.joinebook.com)

ptg7987094

// Eraser...

function setDrawPathForEraser(loc) {
var eraserWidth = parseFloat(eraserWidthSelect.value);

 context.beginPath();

if (eraserShapeSelect.value === 'circle') {
 context.arc(loc.x, loc.y,
 eraserWidth/2,

0, Math.PI*2, false);
}
else {

 context.rect(loc.x - eraserWidth/2,
 loc.y - eraserWidth/2,
 eraserWidth, eraserWidth);

}
 context.clip();
}

function setErasePathForEraser() {
var eraserWidth = parseFloat(eraserWidthSelect.value);

 context.beginPath();

if (eraserShapeSelect.value === 'circle') {
 context.arc(lastX, lastY,
 eraserWidth/2 + ERASER_LINE_WIDTH,

0, Math.PI*2, false);
}
else {

 context.rect(lastX - eraserWidth/2 - ERASER_LINE_WIDTH,
 lastY - eraserWidth/2 - ERASER_LINE_WIDTH,
 eraserWidth + ERASER_LINE_WIDTH*2,
 eraserWidth + ERASER_LINE_WIDTH*2);

}
 context.clip();
}

function setEraserAttributes() {
 context.lineWidth = ERASER_LINE_WIDTH;
 context.shadowColor = ERASER_SHADOW_STYLE;
 context.shadowOffsetX = ERASER_SHADOW_OFFSET;
 context.shadowOffsetY = ERASER_SHADOW_OFFSET;
 context.shadowBlur = ERASER_SHADOW_BLUR;
 context.strokeStyle = ERASER_STROKE_STYLE;
}

(Continues)

1912.15 The Clipping Region

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.34 (Continued)

function eraseLast() {
 context.save();

setErasePathForEraser();
drawGrid(GRID_LINE_COLOR,

 GRID_HORIZONTAL_SPACING,
 GRID_VERTICAL_SPACING);

 context.restore();
}

function drawEraser(loc) {
 context.save();

setEraserAttributes();
setDrawPathForEraser(loc);

 context.stroke();

 context.restore();
}

// Canvas event handlers...

canvas.onmousedown = function (e) {
var loc = windowToCanvas(e.clientX, e.clientY);

 e.preventDefault(); // Prevent cursor change

if (drawRadio.checked) {
saveDrawingSurface();

}

 mousedown.x = loc.x;
 mousedown.y = loc.y;

 lastX = loc.x;
 lastY = loc.y;

 dragging = true;
};

Chapter 2 Drawing192

Download from Join eBook (www.joinebook.com)

ptg7987094

canvas.onmousemove = function (e) {
var loc;

if (dragging) {
 e.preventDefault(); // Prevent selections

 loc = windowToCanvas(e.clientX, e.clientY);

if (drawRadio.checked) {
restoreDrawingSurface();
updateRubberband(loc);

if(guidewires) {
drawGuidewires(loc.x, loc.y);

}
}
else {

eraseLast();
drawEraser(loc);

}
 lastX = loc.x;
 lastY = loc.y;

}
};

canvas.onmouseup = function (e) {
 loc = windowToCanvas(e.clientX, e.clientY);

if (drawRadio.checked) {
restoreDrawingSurface();
updateRubberband(loc);

}

if (eraserRadio.checked) {
eraseLast();

}

 dragging = false;
};

// Controls event handlers.......................................

strokeStyleSelect.onchange = function (e) {
 context.strokeStyle = strokeStyleSelect.value;
};

(Continues)

1932.15 The Clipping Region

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.34 (Continued)

fillStyleSelect.onchange = function (e) {
 context.fillStyle = fillStyleSelect.value;
};

// Initialization..

context.strokeStyle = strokeStyleSelect.value;
context.fillStyle = fillStyleSelect.value;
drawGrid(GRID_LINE_COLOR,
 GRID_HORIZONTAL_SPACING,
 GRID_VERTICAL_SPACING);

Take a look at the mouse move event handler in the code listing. When the user
is dragging the mouse, that event handler erases the area that the eraser last
occupied, and draws the eraser at the new location. The application erases by
drawing the entire background, clipped to the eraser’s path.

It’s important to understand that calls to clip() set the clipping region to the inter-
section of the current clipping region and the current path. For a rectangular eraser, if
you comment out the calls to save() and restore() in Example 2.34, all you will
ever erase is one rectangle that’s 60 pixels wide and 40 pixels high, regardless of
how long or how vigorously you drag the mouse within the canvas. That’s because
the first call to clip() sets the clipping region to the initial rectangle and successive
calls to clip() are restricted to that initial rectangle.

Because calls to clip() operate on the clipping region itself as discussed in the
preceding paragraphs, you will hardly, if ever, see calls to clip() that are not
embedded between calls to save() and restore().

Now that you have a good grasp on the clipping region, let’s look at one more
example that uses the clipping region to implement an animation.

2.15.2 Telescoping with the Clipping Region
The application shown in Figure 2.51 implements a telescoping animation. The
top screenshot shows the application as it appears initially. The other screenshots,
going clockwise from the top, show how the application swallows up the text by
manipulating the clipping region.

Chapter 2 Drawing194

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 2.51 Telescoping with the clipping region

After the canvas goes completely dark, the application restores the canvas to its
original state, as shown in the upper screenshot.

The JavaScript for the application shown in Figure 2.51 is listed in Example 2.35.
The animate() function is where all the action happens.

The animate() function, which is called by the onmousedown event handler, loops
100 times at 60 frames per second. Every time through the loop, the animate()
function fills the entire canvas with charcoal and draws the animation frame.
Each frame of the animation fills the canvas with light gray and draws the HTML5
text, all of which is clipped to the telescope.

1952.15 The Clipping Region

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 2.35 A telescoping animation implemented with the clipping region

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d');

// Functions..

function drawText() {
 context.save();
 context.shadowColor = 'rgba(100,100,150,0.8)';
 context.shadowOffsetX = 5;
 context.shadowOffsetY = 5;
 context.shadowBlur = 10;

 context.fillStyle = 'cornflowerblue';
 context.fillText('HTML5', 20, 250);
 context.strokeStyle = 'yellow';
 context.strokeText('HTML5', 20, 250);
 context.restore();

}

function setClippingRegion(radius) {
 context.beginPath();
 context.arc(canvas.width/2, canvas.height/2,
 radius, 0, Math.PI*2, false);
 context.clip();

}

function fillCanvas(color) {
 context.fillStyle = color;
 context.fillRect(0, 0, canvas.width, canvas.height);

}

function endAnimation(loop) {
clearInterval(loop);

setTimeout(function (e) {
 context.clearRect(0, 0, canvas.width, canvas.height);

drawText();
}, 1000);

}

function drawAnimationFrame(radius) {
setClippingRegion(radius);
fillCanvas('lightgray');
drawText();

}

Chapter 2 Drawing196

Download from Join eBook (www.joinebook.com)

ptg7987094

function animate() {
var radius = canvas.width/2,

 loop;

 loop = window.setInterval(function() {
 radius -= canvas.width/100;

fillCanvas('charcoal');

if (radius > 0) {
 context.save();

drawAnimationFrame(radius);
 context.restore();

}
else {

endAnimation(loop);
}

}, 16);
};

// Event handlers...

canvas.onmousedown = function (e) {
animate();

};

// Initialization...

context.lineWidth = 0.5; con-
text.font = '128pt Comic-sans';
drawText();

The clip() method is described in Table 2.15.

Table 2.15 The clip() method

DescriptionMethod

Sets the clipping region to the intersection of the current clipping region
and the current path. Initially, the clipping region is equal to the entire
canvas until you invoke clip() for the first time.

Because calls to clip() set the clipping region to the intersection of the
current clipping region and the current path, calls to clip() are almost
always contained within calls to save() and restore(); otherwise, the
clipping region becomes successively smaller, which is typically not what
you want.

clip()

1972.15 The Clipping Region

Download from Join eBook (www.joinebook.com)

ptg7987094

2.16 Conclusion
This chapter took an in-depth look at drawing in a canvas. We began by discussing
the coordinate system and the Canvas drawing model, and then we looked at
drawing simple rectangles, specifying colors and transparencies, using gradients
and patterns, and applying shadows.

Then we took a look at paths and subpaths, and stroking and filling. We also
looked at the nonzero winding rule that Canvas uses when filling intersecting
subpaths, and you saw how to put that knowledge to practical use by
implementing cutouts.

Then we focused on drawing lines, and you learned how to draw true one-pixel-
wide lines and how to draw lines that appear to be less than one pixel wide. You
saw how to use lines to draw grids and axes, and you learned how to let users
interactively draw lines with rubber bands. You also saw how to draw dashed
lines, which are not explicitly supported by the Canvas context, and then you
saw how to extend the Canvas context so that dashed lines are explicitly
supported. Finally, we wrapped up the section on lines by looking at line caps
and joins, which determines how the Canvas context draws line endpoints.

From there we moved on to arcs and circles, and you saw how to let users inter-
actively create circles by dragging the mouse. You also learned how to draw a
rounded rectangles with the arcTo() method and how to implement dials and
gauges.

From arcs and circles, we moved on to bézier curves, both quadratic and cubic,
and you saw how to use those types of curves to implement a checkmark and an
arrowhead. Then we looked at drawing polygons, implementing polygon
objects and using the Canvas context’s isPointInPath() method to drag
polygons. You also saw how to use isPointInPath() to implement an interactive
editor that creates bézier curves.

From there we moved on to transformations, where you saw how to translate,
rotate, and scale the Canvas coordinate system. You also saw how to create custom
transformations, such as shear.

Finally, we looked at compositing, which determines how Canvas draws shapes
on top of each other. We wrapped up the chapter by looking at the Canvas’s Swiss
Army knife—the clipping region—and you saw how to erase and implement a
telescoping animation with that knife.

Chapter 2 Drawing198

Download from Join eBook (www.joinebook.com)

ptg7987094

At this point you know how to draw pretty much anything you can imagine in
a canvas. In the chapters that follow we will put that knowledge to good use by
exploring images, animation, sprites, physics, collision detection, game develop-
ment, implementing custom controls, and manipulating video frames, as a video
is running, inside the canvas. And we will also explore using Canvas to implement
mobile applications that you can run on smart phones or tablet computers.

Canvas provides a powerful drawing API that’s based on other, proven graphics
system such as Adobe Illustrator and Apple’s Cocoa. In the pages that follow,
we will continue to explore that API.

1992.16 Conclusion

Download from Join eBook (www.joinebook.com)

ptg7987094

This page intentionally left blank

Download from Join eBook (www.joinebook.com)

ptg7987094

Nearly every Canvas-based application deals with text. Some applications
merely configure and display text, whereas other applications provide
sophisticated text editing support.

The canvas element only minimally supports text; at the time this book was
written, it does not offer many of the features that you will find in basic text edi-
tors, features such as text selection, copy and paste, and text scrolling. However,
it does support basic necessities such as stroking and filling text, placing text
within the canvas, and measuring the width, in pixels, of an arbitrary string. The
Canvas context provides three methods pertaining to text:

• strokeText(text, x, y)

• fillText(text, x, y)

• measureText(text)

The measureText() method returns an object with a width property, which
represents the width of the text you pass to the method. Three Canvas context
properties are related to text:

• font

• textAlign

• textBaseline

The font property lets you set the font of text that you subsequently draw, and
textAlign and textBaseline let you position text within the canvas. Let’s take
a closer look at those methods and properties.

3CHAPTER

Text

201
Download from Join eBook (www.joinebook.com)

ptg7987094

3.1 Stroking and Filling Text
Figure 3.1 shows an application that strokes and fills text.

Figure 3.1 Stroking and filling text

This application provides checkboxes that let you control whether the text is
stroked, filled, or drawn with shadows.

The HTML for the application shown in Figure 3.1, which is omitted from the
book in the interests of brevity, creates the checkboxes and canvas and includes
the application’s JavaScript, which is listed in Example 3.1.

This JavaScript obtains references to the three checkboxes and adds an onchange
handler to each that draws the background and text.

The application uses fillText() and strokeText() to fill and stroke the text,
respectively. Each of those methods takes three arguments. The first argument
is the text, and the remaining two arguments specify the text’s location.
Exactly where the text is drawn depends on the textAlign and textBaseline
properties, which we discuss in Section 3.3, “Positioning Text,” on p. 210.

Chapter 3 Text202

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 3.1 Stroking and filling text

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 fillCheckbox = document.getElementById('fillCheckbox'),
 strokeCheckbox = document.getElementById('strokeCheckbox'),
 shadowCheckbox = document.getElementById('shadowCheckbox'),
 text='HTML5';

// Functions. ..

function draw() {
 context.clearRect(0, 0, canvas.width, canvas.height);

drawBackground();

if (shadowCheckbox.checked) turnShadowsOn();
else

turnShadowsOff();

drawText();
}

function drawBackground() { // Ruled paper
var STEP_Y = 12,

 TOP_MARGIN = STEP_Y * 4,
 LEFT_MARGIN = STEP_Y * 3,
 i = context.canvas.height;

// Horizontal lines

 context.strokeStyle = 'lightgray';
 context.lineWidth = 0.5;

while(i > TOP_MARGIN) {
 context.beginPath();
 context.moveTo(0, i);
 context.lineTo(context.canvas.width, i);
 context.stroke();
 i -= STEP_Y;

}

// Vertical line

 context.strokeStyle = 'rgba(100,0,0,0.3)';
 context.lineWidth = 1;
 context.beginPath();
 context.moveTo(LEFT_MARGIN,0);
 context.lineTo(LEFT_MARGIN,context.canvas.height);
 context.stroke();

}
(Continues)

2033.1 Stroking and Filling Text

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 3.1 (Continued)

function turnShadowsOn() {
 context.shadowColor = 'rgba(0,0,0,0.8)';
 context.shadowOffsetX = 5;
 context.shadowOffsetY = 5;
 context.shadowBlur = 10;

}

function turnShadowsOff() {
 context.shadowColor = undefined;
 context.shadowOffsetX = 0;
 context.shadowOffsetY = 0;
 context.shadowBlur = 0;

}

function drawText() {
var TEXT_X = 65,

 TEXT_Y = canvas.height/2 + 35;

 context.strokeStyle = 'blue';

if (fillCheckbox.checked) context.fillText (text, TEXT_X, TEXT_Y);
if (strokeCheckbox.checked) context.strokeText(text, TEXT_X, TEXT_Y);

}

// Event handlers...

fillCheckbox.onchange = draw;
strokeCheckbox.onchange = draw;
shadowCheckbox.onchange = draw;

// Initialization...

context.font = '128px Palatino';
context.lineWidth = 1.0;
context.fillStyle = 'cornflowerblue';

turnShadowsOn();
draw();

Both fillText() and strokeText() take an optional fourth argument that speci-
fies the maximum width, in pixels, of the text. In Figure 3.2, the top screenshot
shows the application in Figure 3.1 drawing text normally. The bottom
screenshot shows the application restricting the width of the text with the optional
fourth argument to strokeText() and fillText().

Chapter 3 Text204

Download from Join eBook (www.joinebook.com)

ptg7987094
Figure 3.2 Setting the maximum width for text

If you use strokeText() or fillText() with the optional fourth argument that
specifies the maximum width of the text, and the text exceeds that width, then
the Canvas specification requires browsers to resize the text so that it fits in the
specified width. Browsers can either change the size of the font or scale the text
horizontally, but in either case the text must still be readable.

When this book was written, support for the maxWidth argument was spotty;
neither Safari nor Chrome supported the argument. Firefox, however, has sup-
ported it since version 5.0, as the screenshots in Figure 3.2 attest to, and Internet
Explorer has had support since IE9.

In addition to filling and stroking text with colors, you can also use patterns and
gradients, just like you can with shapes, as illustrated in Figure 3.3.

The JavaScript for the application shown in Figure 3.3 is listed in Example 3.2.

Example 3.2 creates a linear gradient and a pattern, exactly as we did in Sec-
tion 2.5.1.1, “Linear Gradients,” on p. 76. Before drawing the text at the top
of the page, the application sets the fill style to the gradient, and before drawing the
text at the bottom of the page, the application sets the fill style to the pattern.

2053.1 Stroking and Filling Text

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 3.3 Filling text with patterns and gradients

Example 3.2 Filling text with color gradients and patterns

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 image = new Image(),
 gradient = context.createLinearGradient(0, 0,
 canvas.width, canvas.height),
 text = 'Canvas',
 pattern; // Create pattern after image loads

// Functions..

function drawBackground() {
// Listing omitted for brevity. See Example 3.1 on p. 203
// for a complete listing.

}

function drawGradientText() {
 context.fillStyle = gradient;
 context.fillText(text, 65, 200);
 context.strokeText(text, 65, 200);

}

function drawPatternText() {
 context.fillStyle = pattern;
 context.fillText(text, 65, 450);
 context.strokeText(text, 65, 450);

}

Chapter 3 Text206

Download from Join eBook (www.joinebook.com)

ptg7987094

// Event handlers...

image.onload = function (e) {
 pattern = context.createPattern(image, 'repeat');

drawPatternText();
};

// Initialization...

image.src = 'redball.png';

context.font = '256px Palatino';
context.strokeStyle = 'cornflowerblue';

context.shadowColor = 'rgba(100,100,150,0.8)';
context.shadowOffsetX = 5; context.shadowOffsetY
= 5;
context.shadowBlur = 10;

gradient.addColorStop(0, 'blue');
gradient.addColorStop(0.25, 'blue');
gradient.addColorStop(0.5, 'white');
gradient.addColorStop(0.75, 'red');
gradient.addColorStop(1.0, 'yellow');

drawBackground();
drawGradientText();

Now that you’ve seen how to stroke and fill text, let’s see how to set font
properties.

3.2 Setting Font Properties
You can set the font of the text that you draw in a canvas with the context’s font
property, which is a CSS3 font string consisting of the components in Table 3.1.
From top to bottom, the font components in the table are listed in the order you
use them for the context’s font property.

The default Canvas font is 10px sans-serif. The default values for font-style,
font-variant, and font-weight are all normal.

Figure 3.4 shows an application that fills text with different fonts.

The strings in the application were generated by setting the context’s font prop-
erty and subsequently printing that property using the context’s fillText()
method.

2073.2 Setting Font Properties

Download from Join eBook (www.joinebook.com)

ptg7987094

Table 3.1 Components of the font property

Valid ValuesFont Property

Three values are allowed: normal, italic, oblique.font-style

Two values are allowed: normal, small-caps.font-variant

Determines the thickness of a font’s characters: normal, bold, bolder
(one font weight darker than base font), lighter (one font weight
lighter than base font), 100, 200, 300, . . . , 900. A weight of 400 is
normal, 700 is bold.

font-weight

Values for the size of the font: xx-small, x-small, medium, large,
x-large, xx-large, smaller, larger, length, %.

font-size

The browser always forces this property to its default value, which
is normal. If you set this property, the browser will ignore your
setting.

line-height

Two types of font family names are allowed: family-name, such as
helvetica, verdana, palatino, etc., and generic-family names:
serif, sans-serif, monospace, cursive, and fantasy. You can use
either family-name or generic-family, or both for the font-family
component of the font.

font-family

Figure 3.4 Specifying fonts

Chapter 3 Text208

Download from Join eBook (www.joinebook.com)

ptg7987094

The fonts used for the strings in the left-hand column are all variations of the
Palatino font family. The right-hand column shows some other web-safe fonts.

All the fonts used in the application are web safe. There is nothing inherently
dangerous about fonts; the web-safe moniker simply means that those fonts are
widely available under Windows, Mac, and Linux. Because of their widespread
availability, you can safely assume that those fonts will be properly rendered in
nearly all browsers on the three major operating systems.

The application shown in Figure 3.4 is listed in Example 3.3.

Example 3.3 Setting the font property

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

 LEFT_COLUMN_FONTS = [
'2em palatino', 'bolder 2em palatino',
'lighter 2em palatino', 'italic 2em palatino',
'oblique small-caps 24px palatino', 'bold 14pt palatino',
'xx-large palatino', 'italic xx-large palatino'

],
 RIGHT_COLUMN_FONTS = [

'oblique 1.5em lucida console', 'x-large fantasy',
'italic 28px monaco', 'italic large copperplate',
'36px century', '28px tahoma',
'28px impact', '1.7em verdana'

],

 LEFT_COLUMN_X = 25,
 RIGHT_COLUMN_X = 425,
 DELTA_Y = 50,
 TOP_Y = 50,
 y = 0;

context.fillStyle = 'blue';

LEFT_COLUMN_FONTS.forEach(function (font) {
 context.font = font;
 context.fillText(font, LEFT_COLUMN_X, y += DELTA_Y);
});

y = 0;

RIGHT_COLUMN_FONTS.forEach(function (font) {
 context.font = font;
 context.fillText(font, RIGHT_COLUMN_X, y += DELTA_Y);
});

2093.2 Setting Font Properties

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 3.3 sets the font property and then prints it out. Notice that in every
case what the application prints is exactly what it specified for the font property,
which makes sense.

However, if you set the font property to an invalid value—for example, you
specify the components of the property, such as font-style and font-family, in
the wrong order or you specify an illegal value for the font-style—then the
browser will not change the font and therefore will leave the font unchanged.

NOTE: Specifying fonts with CSS3 vs. Canvas

The context’s font property supports CSS3 font syntax, except for property-
independent stylesheet syntax such as inherit or initial. If you are
unfortunate enough to use inherit or initial, the browser will silently fail
without throwing any exceptions and will not set the font.

There is one other difference between setting a font for Canvas and setting the
font with CSS3: With Canvas, the browser will ignore any value that you set for
line-height. Browsers are required to always set that value to normal.

NOTE: Lists of web-safe fonts

Here are some links to sites that list web-safe fonts:

http://www.speaking-in-styles.com/web-typography/Web-Safe-Fonts

http://www.codestyle.org/css/font-family/sampler-CombinedResultsFull.shtml

http://www.apaddedcell.com/web-fonts

3.3 Positioning Text
Now that you’ve seen how to stroke and fill text, and set fonts, let’s see how to
position text within a canvas.

3.3.1 Horizontal and Vertical Positioning
When you draw text in a canvas with strokeText() or fillText(), you specify
the X and Y coordinates of the text; however, exactly where the browser draws the
text depends on two context properties: textAlign and textBaseline. Those
properties are illustrated in the application shown in Figure 3.5.

Chapter 3 Text210

Download from Join eBook (www.joinebook.com)

http://www.speaking-in-styles.com/web-typography/Web-Safe-Fonts
http://www.codestyle.org/css/font-family/sampler-CombinedResultsFull.shtml
http://www.apaddedcell.com/web-fonts

ptg7987094Figure 3.5 Text alignment/baseline: Defaults are start and alphabetic, respectively

The filled rectangles in Figure 3.5 depict the X and Y coordinates that the applica-
tion passed to the fillText() method. Each string displayed by the application
shows a combination of the textAlign and textBaseline properties.

Valid values for textAlign are as follows:

• start

• center

• end

• left

• right

The default value for textAlign is start, and when the browser displays text
from left to right, meaning the dir attribute of the canvas element is ltr, left is
the same as start, and right is the same as end. Likewise, when the browser
displays text from right to left, meaning the dir attribute’s value is rtl, right is
the same as start and left is the same as end. The application shown in Figure 3.5
displays text from left to right.

2113.3 Positioning Text

Download from Join eBook (www.joinebook.com)

ptg7987094

Valid values for textBaseline are as follows:

• top

• bottom

• middle

• alphabetic

• ideographic

• hanging

The default value for textBaseline is alphabetic, which is used for Latin-based
languages. ideographic is used for languages such as Japanese and Chinese, and
hanging is used for many of the languages of India. The values top, bottom,
and middle do not pertain to any languages; instead, they represent locations
within a bounding box around the text, known as the em square of the font.

The application shown in Figure 3.5 is listed in Example 3.4. The textAlign and
textBaseline context properties are described in Table 3.2.

Example 3.4 Positioning text with textAlign and textBaseline

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 fontHeight = 24,
 alignValues = ['start', 'center', 'end'],
 baselineValues = ['top', 'middle', 'bottom',

'alphabetic', 'ideographic', 'hanging'],
 x, y;

// Functions..

function drawGrid(color, stepx, stepy) {
// Listing omitted for brevity. See Example 2.13 on p. 106
// for more information

}

function drawTextMarker() {
 context.fillStyle = 'yellow';
 context.fillRect (x, y, 7, 7);
 context.strokeRect(x, y, 7, 7);

}

Chapter 3 Text212

Download from Join eBook (www.joinebook.com)

ptg7987094

function drawText(text, textAlign, textBaseline) {
if(textAlign) context.textAlign = textAlign;
if(textBaseline) context.textBaseline = textBaseline;

 context.fillStyle = 'cornflowerblue';
 context.fillText(text, x, y);

}

function drawTextLine() {
 context.strokeStyle = 'gray';
 context.beginPath();
 context.moveTo(x, y);
 context.lineTo(x + 738, y);
 context.stroke();

}

// Initialization...

context.font = 'oblique normal bold 24px palatino';

drawGrid('lightgray', 10, 10);

for (var align=0; align < alignValues.length; ++align) {
for (var baseline=0; baseline < baselineValues.length; ++baseline) {

 x = 20 + align*fontHeight*15;
 y = 20 + baseline*fontHeight*3;

drawText(alignValues[align] + '/' + baselineValues[baseline],
 alignValues[align], baselineValues[baseline]);

drawTextMarker();
drawTextLine();

}
}

Table 3.2 Text align and baseline properties

DescriptionProperty

Specifies how text is aligned horizontally. Valid values are start,
left, center, right, end. The default value is start.

textAlign

Specifies how text is aligned vertically. Valid values are top, bottom,
middle, alphabetic, ideographic, and hanging. The default value
is alphabetic.

textBaseline

2133.3 Positioning Text

Download from Join eBook (www.joinebook.com)

ptg7987094

NOTE: The em square

Before the digital era, when characters were printed on printing presses, the point
size of a font was defined to be the height of the plate from which the character
arises. The plates looked like this:

The height of the plate is the point size, and the width of the letter M was
traditionally known as the em square.

However, over time the meaning of em square has evolved to include languages
that don’t have an M character, and today the em square is generally regarded
as the height of a particular font.

3.3.2 Centering Text
You can center text about a point with the textAlign and textBaseline attributes
of the Canvas context discussed in the preceding section. Figure 3.6 shows an
application that centers text in the middle of a canvas.

An excerpt of the application’s JavaScript is listed in Example 3.5.

Example 3.5 Centering text about a point

function drawText() {
 context.fillStyle = 'blue';
 context.strokeStyle = 'yellow';

 context.fillText(text, canvas.width/2, canvas.height/2);
 context.strokeText(text, canvas.width/2, canvas.height/2);
}

context.textAlign = 'center';
context.textBaseline = 'middle';

The application sets textAlign and textBaseline to center and middle,
respectively, and strokes and fills the text.

The application fills and then strokes the text, and the location it passes to
fillText() and strokeText() is the center of the canvas. Because the application

Chapter 3 Text214

Download from Join eBook (www.joinebook.com)

ptg7987094Figure 3.6 Centering text in the middle of a canvas

also sets textAlign and textBaseline to center and middle, respectively, the
text is drawn in the middle of the canvas, as shown in Figure 3.6.

3.3.3 Measuring Text
To do anything interesting with text, you must be able to measure the width and
height, in pixels, of a string. For example, Figure 3.7 shows a simple text editor
with a text cursor. The editor must know where to place the cursor in the canvas,
and therefore it needs to know the dimensions of the text.

Figure 3.7 Placing a cursor at a pixel location

To place the cursor at the end of a line of text, you must calculate the width of
that text.

2153.3 Positioning Text

Download from Join eBook (www.joinebook.com)

ptg7987094

The Canvas context provides a measureText() method that lets you measure the
width, in pixels, of a string. The measureText() method returns a TextMetrics
object that contains a single property: the width of the string. In Section 3.4.2,
“Editing a Line of Text in a Canvas,” on p. 232, we use measureText() to calculate
the width of a line of text, as shown in Example 3.6.

Example 3.6 Measuring the width of a line of text

TextLine = function (x, y) {
this.text = '';

 ...
};

TextLine.prototype = {
 getWidth: function(context) {

return context.measureText(this.text).width;
},

 ...
};

The measureText() method is summarized in Table 3.3.

Table 3.3 The measureText() method

DescriptionMethod

Returns a TextMetrics object that contains a single
property: the width of the text, in pixels, passed to the
method. That width is based on the current font, and is
the only metric you can get, at the time this book was
written, from the TextMetrics object.

TextMetrics
measureText(DOMString
text)

CAUTION: Set the font before calling measureText()

A common mistake when using measureText() is to set the font after invoking
measureText(). Remember that measureText() measures the width of a
string based on the current font; therefore, if you change the font after you call
measureText(), the width returned by measureText() will not reflect the actual
width of the text in the current font.

Chapter 3 Text216

Download from Join eBook (www.joinebook.com)

ptg7987094

CAUTION: Text measurement is inexact

You can only obtain the width, in pixels, of an arbitrary string with the width
property of the TextMetrics object returned from measureText(). That
TextMetrics object does not (at least as of the time this book was published)
have a corresponding height property. However, there’s a twist to the text
measurement story because as the Canvas specification states:

Glyphs rendered using fillText() and strokeText() can spill out of the
box given by the font size (the em square size) and the width returned by
measureText() (the text width).

That quote from the specification means that the width returned by
measureText() is not exact. Often, it’s not important if that value is inexact;
however, sometimes it’s crucial, as you will see in Section 3.4.2, “Editing a Line
of Text in a Canvas,” on p. 232.

3.3.4 Labeling Axes
In Section 2.8.3, “Drawing Axes,” on p. 107 you saw how to draw graph axes. In
this section we add text labels to those axes, as illustrated in Figure 3.8.

An excerpt of the JavaScript for the application shown in Figure 3.8 is listed
in Example 3.7.

Drawing vertical and horizontal axis labels is straightforward. The application
draws text at positions dependent on the location of the axes, the length of the
tick marks on the axes, and the space between the axes and the labels.

Example 3.7 Adding labels to axes

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

 HORIZONTAL_AXIS_MARGIN = 50,
 VERTICAL_AXIS_MARGIN = 50,

 AXIS_ORIGIN = { x: HORIZONTAL_AXIS_MARGIN,
 y: canvas.height-VERTICAL_AXIS_MARGIN },

 AXIS_TOP = VERTICAL_AXIS_MARGIN,
 AXIS_RIGHT = canvas.width-HORIZONTAL_AXIS_MARGIN,

(Continues)

2173.3 Positioning Text

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 3.8 Axes

Example 3.7 (Continued)

 HORIZONTAL_TICK_SPACING = 10,
 VERTICAL_TICK_SPACING = 10,

 AXIS_WIDTH = AXIS_RIGHT - AXIS_ORIGIN.x,
 AXIS_HEIGHT = AXIS_ORIGIN.y - AXIS_TOP,

 NUM_VERTICAL_TICKS = AXIS_HEIGHT / VERTICAL_TICK_SPACING,
 NUM_HORIZONTAL_TICKS = AXIS_WIDTH / HORIZONTAL_TICK_SPACING,

 TICK_WIDTH = 10,

 SPACE_BETWEEN_LABELS_AND_AXIS = 20;

Chapter 3 Text218

Download from Join eBook (www.joinebook.com)

ptg7987094

// Functions..

function drawAxes() {
 context.save();
 context.lineWidth = 1.0;
 context.fillStyle = 'rgba(100,140,230,0.8)';
 context.strokeStyle = 'navy';

drawHorizontalAxis();
drawVerticalAxis();

 context.lineWidth = 0.5;
 context.strokeStyle = 'navy';

 context.strokeStyle = 'darkred';
drawVerticalAxisTicks();
drawHorizontalAxisTicks();

 context.restore();
}

// Axis drawing methods omitted for brevity. See Example 2.14 on p. 108
// for a complete listing
...

function drawAxisLabels() {
 context.fillStyle = 'blue';

drawHorizontalAxisLabels();
drawVerticalAxisLabels();

}

function drawHorizontalAxisLabels() {
 context.textAlign = 'center';
 context.textBaseline = 'top';

for (var i=0; i <= NUM_HORIZONTAL_TICKS; ++i) {
if (i % 5 === 0) {

 context.fillText(i,
 AXIS_ORIGIN.x + i * HORIZONTAL_TICK_SPACING,
 AXIS_ORIGIN.y + SPACE_BETWEEN_LABELS_AND_AXIS);

} }
}

(Continues)

2193.3 Positioning Text

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 3.7 (Continued)

function drawVerticalAxisLabels() {
 context.textAlign = 'right';
 context.textBaseline = 'middle';

for (var i=0; i <= NUM_VERTICAL_TICKS; ++i) {
if (i % 5 === 0) {

 context.fillText(i,
 AXIS_ORIGIN.x - SPACE_BETWEEN_LABELS_AND_AXIS,
 AXIS_ORIGIN.y - i * VERTICAL_TICK_SPACING);

} }
}

function drawGrid(color, stepx, stepy) {
// Listing omitted for brevity. See Example 2.13 on p. 106
// for more information

}

// Initialization...

context.font = '13px Arial';

drawGrid('lightgray', 10, 10);

context.shadowColor = 'rgba(100,140,230,0.8)';
context.shadowOffsetX = 3;
context.shadowOffsetY = 3; context.shadowBlur
= 5;

drawAxes();
drawAxisLabels();

Notice the application’s settings for the textAlign and textBaseLine. For labels
on the horizontal axis, the application sets those properties to center and top,
and for the vertical axis, right and middle, respectively, as shown in Figure 3.9.

Figure 3.9 Baseline and alignment for axis labels

Chapter 3 Text220

Download from Join eBook (www.joinebook.com)

ptg7987094

3.3.5 Labeling Dials
As you saw in Section 3.3.4, “Labeling Axes,” on p. 217, it’s easy to draw text labels
for horizontal and vertical axes. Labeling along arcs and circles is a little more
challenging because we bring trigonometry into the mix.

Figure 3.10 shows an application that draws a dial representing the degrees of a
circle.

Figure 3.10 Labeling a dial

For each label, the application calculates the label’s location, illustrated by the
yellow dot in Figure 3.11. The application draws each label at their respective
locations with textAlign set to center and textBaseline set to middle.

Figure 3.11 Positioning dial labels, textAlign = 'center' and textBaseline = 'middle'

2213.3 Positioning Text

Download from Join eBook (www.joinebook.com)

ptg7987094

An excerpt of the JavaScript for the application shown in Figure 3.10 is listed in
Example 3.8.

Example 3.8 Labeling a dial

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

...

 DEGREE_ANNOTATIONS_FILL_STYLE = 'rgba(0,0,230,0.9)',
 DEGREE_ANNOTATIONS_TEXT_SIZE = 12;

// Functions...

function drawDegreeAnnotations() {
var radius = circle.radius + DEGREE_DIAL_MARGIN;

 context.save();
 context.fillStyle = DEGREE_ANNOTATIONS_FILL_STYLE;
 context.font = DEGREE_ANNOTATIONS_TEXT_SIZE + 'px Helvetica';

for (var angle=0; angle < 2*Math.PI; angle += Math.PI/8) {
 context.beginPath();

 context.fillText((angle * 180 / Math.PI).toFixed(0),
 circle.x + Math.cos(angle) * (radius - TICK_WIDTH*2),
 circle.y - Math.sin(angle) * (radius - TICK_WIDTH*2));

}
 context.restore();

}

// Initialization..
...

context.textAlign = 'center';
context.textBaseline = 'middle';

drawGrid('lightgray', 10, 10);
drawDial();

Notice the call to fillText() in Example 3.8. The last two parameters that the
application passes to fillText() represent the X and Y coordinates of the text.
An alternative implementation would be to translate the context to the text’s
location, and then fill the text at (0, 0), like this:

Chapter 3 Text222

Download from Join eBook (www.joinebook.com)

ptg7987094

function drawDegreeAnnotations() {
...
for (var angle=0; angle < 2*Math.PI; angle += Math.PI/8) {

...
 context.translate(
 circle.x + Math.cos(angle) * (radius - TICK_WIDTH*2),
 circle.y - Math.sin(angle) * (radius - TICK_WIDTH*2));
 context.fillText((angle * 180 / Math.PI).toFixed(0), 0, 0);

}
}

In the next section we translate the context to draw text around an arc.

3.3.6 Drawing Text around an Arc
You can draw text around an arc, as illustrated in Figure 3.12 and listed in
Example 3.9, with the following steps:

Figure 3.12 Drawing text, rotated, along an arc

2233.3 Positioning Text

Download from Join eBook (www.joinebook.com)

ptg7987094

1. Calculating each character’s position along the arc
2. Translating the context to that position
3. Rotating the context by π – angle
4. Stroking or filling the character (or both)

Example 3.9 Drawing circular text

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

...
 TEXT_FILL_STYLE = 'rgba(100,130,240,0.5)',
 TEXT_STROKE_STYLE = 'rgba(200,0,0,0.7)',
 TEXT_SIZE = 64,

 circle = { x: canvas.width/2,
 y: canvas.height/2,
 radius: 200

};

// Functions..

function drawCircularText(string, startAngle, endAngle) {
var radius = circle.radius,

 angleDecrement = (startAngle - endAngle)/(string.length-1),
 angle = parseFloat(startAngle),
 index = 0,
 character;

 context.save();

 context.fillStyle = TEXT_FILL_STYLE;
 context.strokeStyle = TEXT_STROKE_STYLE;
 context.font = TEXT_SIZE + 'px Lucida Sans';

while (index < string.length) {
 character = string.charAt(index);

 context.save();
 context.beginPath();

 context.translate(circle.x + Math.cos(angle) * radius,
 circle.y - Math.sin(angle) * radius);

 context.rotate(Math.PI/2 - angle);

 context.fillText(character, 0, 0);
 context.strokeText(character, 0, 0);

Chapter 3 Text224

Download from Join eBook (www.joinebook.com)

ptg7987094

 angle -= angleDecrement;
 index++;

 context.restore();
}

 context.restore();
}

// Initialization...

context.textAlign = 'center';
context.textBaseline = 'middle';
...

drawCircularText("Clockwise around the circle", Math.PI*2, Math.PI/8);

The drawCircularText() function implements the four steps listed above.
Note that the application must call translate() and rotate() in that order. If
you rotate about the context’s default origin and then translate, you end up with
a wildly different (and unintelligible) result.

Now that you have a good grasp of drawing text in a canvas, let’s put that
knowledge to use by implementing a simple text editor.

3.4 Implementing Text Controls
Although Canvas does not provide sophisticated text editing capabilities, such
as cursors, text selection, or cut, copy, and paste, it does provide substantial
graphics horsepower to implement that functionality. For the rest of this chapter,
we explore the implementation of a simple text editor with the Canvas APIs.

We begin with a simple text cursor and end with paragraphs that have their own
cursor and contain multiple lines of editable text.

3.4.1 A Text Cursor
Let’s start with a simple text cursor that you can draw but cannot erase, as shown
in Figure 3.13.

The application in Figure 3.13 creates a single cursor and redraws it every time
you click the mouse. The original implementation of the TextCursor object—which
is listed in Example 3.10—lacks an erase() method, so although it may appear
that the application in Figure 3.13 has multiple cursors, it in fact has only one
cursor that’s repeatedly reconfigured and redrawn, but never erased.

2253.4 Implementing Text Controls

Download from Join eBook (www.joinebook.com)

ptg7987094

The application links the HTML controls at the top of the page to the font and
fillColor attributes of the Canvas context, and the cursor uses those attributes.
Cursors, therefore, take on the characteristics of the HTML controls at the top of
the page.

Figure 3.13 Text cursors

Example 3.10 Text cursors

TextCursor = function (width, fillStyle) {
this.fillStyle = fillStyle || 'rgba(0,0,0,0.5)';
this.width = width || 2;
this.left = 0;
this.top = 0;

};

TextCursor.prototype = {
 getHeight: function (context) {

var h = context.measureText('W').width;
return h + h/6;

},

 createPath: function (context) {
 context.beginPath();
 context.rect(this.left, this.top,

this.width, this.getHeight(context));
},

Chapter 3 Text226

Download from Join eBook (www.joinebook.com)

ptg7987094

 draw: function (context, left, bottom) {
 context.save();

this.left = left;
this.top = bottom - this.getHeight(context);

this.createPath(context);

 context.fillStyle = this.fillStyle;
 context.fill();

 context.restore();
},

};

TextCursor is a simple filled rectangle that calculates its height in accordance
with the context’s current font. Recall that the only metric available in the
TextMetric object returned from the context’s measureText() method is the width
of the string that you pass to that method. Text cursors calculate their height as
1 1/6 times the width of the character M.

The TextCursor object is implemented in a file of its own, named text.js. The
application includes that file in its HTML, as shown in Example 3.11.

Example 3.11 A simple text cursor: HTML

<!DOCTYPE html>
<html>

<head>
<title>A Simple Text Cursor</title>

 ...
</head>

<body>
<canvas id='canvas' width='780' height='440'>

 Canvas not supported
</canvas>

 ...

<script src='text.js'></script>
<script src='example.js'></script>

</body>
</html>

An excerpt of the JavaScript for the application shown in Figure 3.13 is listed
in Example 3.12. The application creates a TextCursor and draws that cursor
when and where you click the mouse.

2273.4 Implementing Text Controls

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 3.12 A simple text cursor: JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

...

 cursor = new TextCursor();

function moveCursor(loc) {
 cursor.draw(context, loc.x, loc.y);
}

canvas.onmousedown = function (e) {
var loc = windowToCanvas(e);
moveCursor(loc);

};
...

Admittedly, the text cursor discussed above is nothing to write home about, so
let’s make it a little more interesting with an erase() method.

NOTE: Text height: a rule of thumb

The measureText() method returns a TextMetrics object whose only metric
is the width of the string that you specify. That means you’re on your own if you
need to calculate the height of a string. Fortunately, for most fonts, a little more
than the width of the M character is a close approximation of the font’s height.

3.4.1.1 Erasing
The text cursor in the preceding section sidestepped the most complicated aspect
of implementing text cursors: erasing them. When you draw a cursor, you only
want to draw it temporarily, so you need a way to erase it.

Canvas offers many ways to temporarily draw into a canvas; for example, in the
Section 2.8.4, “Rubberband Lines,” on p. 110, you saw how to draw rubberband
lines as a user interactively creates a line. In that example, we simply saved the
entire drawing surface before drawing a rubberband line and then restored
the drawing surface to erase the line.

To erase cursors, we can take a similar approach. At some point before drawing
cursors, we take a snapshot of the canvas with the context’s getImageData()
method. Then we draw cursors into the canvas, and subsequently erase by
copying the cursor’s rectangle from that image data to the canvas.

Chapter 3 Text228

Download from Join eBook (www.joinebook.com)

ptg7987094

The TextCursor.erase() method takes an image data parameter, and the method
copies the cursor’s rectangle from that data into the canvas. Example 3.13 lists
the TextCursor’s implementation of the erase() method.

Example 3.13 TextCursor with an erase() function

TextCursor.prototype = {
...

 erase: function (context, imageData) {
 context.putImageData(imageData, 0, 0,

this.left, this.top,
this.width, this.getHeight(context));

}
};

The text cursor’s erase() method assumes that the image data it receives
represents the entire canvas. To erase the cursor, the method uses the context’s
putImageData() method. In Section 2.8.4, “Rubberband Lines,” on p. 110, we used
that same method with three arguments, representing the image data and the
destination X and Y location in the canvas. Here, we are adding four arguments
representing the rectangle, inside the image data, that we want to copy to the
canvas.

The point here is to use putImageData() to erase cursors, not to learn about that
method in detail: We will take a close look at getImageData() and putImageData()
in Chapter 4. For now, it’s enough to understand that the erase() method in
Example 3.13 copies a specific rectangle from some image data into the canvas.
That image data is created by the application with the getImageData() method,
as shown in Example 3.14.

Example 3.14 Erasing the cursor

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

...

 drawingSurfaceImageData,
 cursor = new TextCursor();

// Drawing surface...

(Continues)

2293.4 Implementing Text Controls

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 3.14 (Continued)

function saveDrawingSurface() {
 drawingSurfaceImageData = context.getImageData(0, 0,
 canvas.width,
 canvas.height);

}

// Text..
...

function moveCursor(loc) {
 cursor.erase(context, drawingSurfaceImageData);
 cursor.draw(context, loc.x, loc.y);

}

// Event handlers..
...

canvas.onmousedown = function (e) {
var loc = windowToCanvas(e);
moveCursor(loc);

};

// Initialization..
...

drawGrid(GRID_STROKE_STYLE,
 GRID_HORIZONTAL_SPACING,
 GRID_VERTICAL_SPACING);

saveDrawingSurface();

The application listed in Example 3.14 starts by drawing a grid in the background
and then saves the drawing surface with getImageData(). Subsequently, when
the user clicks the mouse, the application erases the cursor at its previous location
and redraws the cursor where the user clicked the mouse.

3.4.1.2 Blinking
Once you can erase a cursor, it’s a simple matter to make it blink, as illustrated
in Example 3.15.

The application listed in Example 3.15 creates a cursor and makes it blink with
the blinkCursor() function. Every second, the application erases the cursor and,
300 ms later, draws it again. That means the cursor is visible for 700 ms out of
every second.

Chapter 3 Text230

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 3.15 A blinking cursor

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

...

 blinkingInterval,
 BLINK_ON = 500,
 BLINK_OFF = 500,

 cursor = new TextCursor();

// Functions..

function blinkCursor(loc) {
 blinkingInterval = setInterval(function (e) {
 cursor.erase(context, drawingSurfaceImageData);

setTimeout(function (e) {
 cursor.draw(context, cursor.left,
 cursor.top + cursor.getHeight(context));

}, BLINK_OFF);
}, BLINK_ON + BLINK_OFF);

}

function moveCursor(loc) {
 cursor.erase(context, drawingSurfaceImageData);
 cursor.draw(context, loc.x, loc.y);

if (!blinkingInterval)
blinkCursor(loc);

}

// Event handlers...

canvas.onmousedown = function (e) {
var loc = windowToCanvas(e);
moveCursor(loc);

};
...

The first time the user clicks the mouse, the application calls blinkCursor(),
which sends the cursor into a never-ending blinking loop. You can stop the
blinking, for example, if you need to hide the cursor completely, by invoking
clearInterval().

Now that we have a blinking cursor that we can move around, let’s use it to insert
some text into a canvas.

2313.4 Implementing Text Controls

Download from Join eBook (www.joinebook.com)

ptg7987094

3.4.2 Editing a Line of Text in a Canvas
Figure 3.14 shows an application that lets you type lines of text into a canvas. The
application adds the characters you type to the end of the current line and
repositions the cursor so that it remains at the end of the line as you type.

You can erase the last character in the line by pressing the Backspace key. If you
click anywhere in the canvas, the application ends the current line, moves
the cursor to the mouse click location, and begins a new line.

Figure 3.14 Single lines of text in a canvas

The application shown in Figure 3.14 implements a TextLine object as listed in
Example 3.16.

Example 3.16 A TextLine Object

// Constructor..

TextLine = function (x, y) {
this.text = ''; this.left
= x; this.bottom = y;
this.caret = 0;

};

Chapter 3 Text232

Download from Join eBook (www.joinebook.com)

ptg7987094

// Prototype..

TextLine.prototype = {
 insert: function (text) {

this.text = this.text.substr(0, this.caret) + text +
this.text.substr(this.caret);

this.caret += text.length;
},

 removeCharacterBeforeCaret: function () {
if (this.caret === 0)

return;

this.text = this.text.substring(0, this.caret-1) +
this.text.substring(this.caret);

this.caret--;
},

 getWidth: function(context) {
return context.measureText(this.text).width;

},

 getHeight: function (context) {
var h = context.measureText('W').width;
return h + h/6;

},

 draw: function(context) {
 context.save();
 context.textAlign = 'start';
 context.textBaseline = 'bottom';

 context.strokeText(this.text, this.left, this.bottom);
 context.fillText(this.text, this.left, this.bottom);

 context.restore();
},

 erase: function (context, imageData) {
 context.putImageData(imageData, 0, 0);

}
};

Each TextLine object maintains a string, the string’s position in the canvas, and
the insertion point for inserting text into that string, referred to as the caret. The
TextLine methods—insert(), draw(), erase(), getWidth(), and getHeight()—let
you insert text at the caret, draw and erase the text, and get the text line’s width
and height, respectively.

2333.4 Implementing Text Controls

Download from Join eBook (www.joinebook.com)

ptg7987094

The application shown in Figure 3.14 creates and manipulates a TextLine object
entirely in the application’s event handlers, which are listed in Example 3.17.

Example 3.17 Drawing lines of text

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

 fontSelect = document.getElementById('fontSelect'),
 sizeSelect = document.getElementById('sizeSelect'),
 strokeStyleSelect = document.getElementById('strokeStyleSelect'),
 fillStyleSelect = document.getElementById('fillStyleSelect'),

 GRID_STROKE_STYLE = 'lightgray',
 GRID_HORIZONTAL_SPACING = 10,
 GRID_VERTICAL_SPACING = 10,

 cursor = new TextCursor(),

 line,

 blinkingInterval,
 BLINK_TIME = 1000,
 BLINK_OFF = 300;

// General-purpose functions.....................................

function drawBackground() { // Ruled paper
// Listing omitted for brevity. See Example 3.2 on p. 206
// for a complete listing.

}

function windowToCanvas(x, y) {
var bbox = canvas.getBoundingClientRect();
return { x: x - bbox.left * (canvas.width / bbox.width),

 y: y - bbox.top * (canvas.height / bbox.height)
};

}

// Drawing surface...

function saveDrawingSurface() {
 drawingSurfaceImageData = context.getImageData(0, 0,
 canvas.width,
 canvas.height);

}

// Text..

Chapter 3 Text234

Download from Join eBook (www.joinebook.com)

ptg7987094

function setFont() {
 context.font = sizeSelect.value + 'px ' + fontSelect.value;

}

function blinkCursor(x, y) {
clearInterval(blinkingInterval);

 blinkingInterval = setInterval(function (e) {
 cursor.erase(context, drawingSurfaceImageData);

setTimeout(function (e) {
if (cursor.left == x &&

 cursor.top + cursor.getHeight(context) == y) {
 cursor.draw(context, x, y);

}
}, 300);

}, 1000);
}

function moveCursor(x, y) {
 cursor.erase(context, drawingSurfaceImageData);

saveDrawingSurface();
 context.putImageData(drawingSurfaceImageData, 0, 0);

 cursor.draw(context, x, y);
blinkCursor(x, y);

}

// Event handlers..

canvas.onmousedown = function (e) {
var loc = windowToCanvas(e.clientX, e.clientY),

 fontHeight = context.measureText('W').width;

 fontHeight += fontHeight/6;
 line = new TextLine(loc.x, loc.y);

moveCursor(loc.x, loc.y);
};

fillStyleSelect.onchange = function (e) {
 cursor.fillStyle = fillStyleSelect.value;
 context.fillStyle = fillStyleSelect.value;

}

strokeStyleSelect.onchange = function (e) {
 cursor.strokeStyle = strokeStyleSelect.value;
 context.strokeStyle = strokeStyleSelect.value;

}

// Key event handlers..

(Continues)

2353.4 Implementing Text Controls

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 3.17 (Continued)

document.onkeydown = function (e) {
if (e.keyCode === 8 || e.keyCode === 13) {

// The call to e.preventDefault() suppresses the browser's
// subsequent call to document.onkeypress(), so
// only suppress that call for Backspace and Enter.

 e.preventDefault();
}

if (e.keyCode === 8) { // Backspace
 context.save();

 line.erase(context, drawingSurfaceImageData);
 line.removeCharacterBeforeCaret();

moveCursor(line.left + line.getWidth(context), line.bottom);

 line.draw(context);
 context.restore();

}
}

document.onkeypress = function (e) {
var key = String.fromCharCode(e.which);

if (e.keyCode !== 8 && !e.ctrlKey && !e.metaKey) {
 e.preventDefault(); // No further browser processing

 context.save();

 line.erase(context, drawingSurfaceImageData);
 line.insert(key);

moveCursor(line.left + line.getWidth(context), line.bottom);

 context.shadowColor = 'rgba(0,0,0,0.5)';
 context.shadowOffsetX = 1;
 context.shadowOffsetY = 1;
 context.shadowBlur = 2;

 line.draw(context);
 context.restore();

}
}

// Initialization..

fontSelect.onchange = setFont;
sizeSelect.onchange = setFont;

Chapter 3 Text236

Download from Join eBook (www.joinebook.com)

ptg7987094

cursor.fillStyle = fillStyleSelect.value;
cursor.strokeStyle = strokeStyleSelect.value;

context.fillStyle = fillStyleSelect.value;
context.strokeStyle = strokeStyleSelect.value;
context.lineWidth = 2.0;

setFont();
drawBackground();
saveDrawingSurface();

When the user clicks the mouse, the application creates a new TextLine object
and moves that text line and the cursor to the mouse click location.

When the application detects a key down event, it checks to see if the key is a
Backspace; if it is, the application erases the line of text, removes the character
before the caret, repositions the cursor, and redraws the line of text. Subsequently,
when the browser invokes the application’s onkeypress() method, the application
inserts the character into the line of text, provided that it was not a Backspace
and the user was not holding down the Ctrl or Meta keys.

Now that you’ve seen how to implement a simple one-line text control, let’s extend
that one line to multiple lines and implement a paragraph.

CAUTION: You must replace the entire Canvas to erase text

Section 3.3.3, “Measuring Text,” on p. 215 discussed the following quote from
the Canvas specification:

Glyphs rendered using fillText() and strokeText() can spill out of the
box given by the font size (the em square size) and the width returned by
measureText() (the text width) . . .

The specification goes on to say:

. . . If the text is to be rendered and removed, care needs to be taken to replace
the entire area of the canvas that the clipping region covers, not just the box
given by the em square height and measured text width.

That last sentence means that the TextLine object implemented in this section
should implement its erase() method so that it replaces the entire canvas
(clipped to the clipping region). That’s in contrast to TextCursor, discussed in
Section 3.4.1.1, “Erasing,” on p. 228, which erased itself by only restoring its
bounding box.

2373.4 Implementing Text Controls

Download from Join eBook (www.joinebook.com)

ptg7987094

3.4.3 Paragraphs
In the preceding sections you saw how to implement blinking cursors and lines
of text. In this section we implement a Paragraph object. Each paragraph
contains an array of TextLine objects and maintains a reference to the line the
user is editing. Paragraphs also keep a cursor in sync with a user’s editing.
Figure 3.15 shows an application that lets you create paragraphs.

Figure 3.15 Paragraphs

Paragraphs logically connect the text lines they contain; for example, if you
backspace when the cursor is at the far left edge of a line, the paragraph object
moves the text in front of the cursor—and the cursor itself—up one line, as
depicted in Figure 3.16. Likewise, if you press Enter while editing a line of text
in a paragraph, the paragraph creates a new text line and inserts the line below
the cursor.

Paragraph provides some key methods that are used by the application shown
in Figures 3.15 and 3.16:

• isPointInside(): Returns true if the specified point is inside the paragraph.
• moveCursorCloseTo(): For X, Y coordinates, moves cursor to the closest cursor

position.

Chapter 3 Text238

Download from Join eBook (www.joinebook.com)

ptg7987094

• addLine(): Adds a TextLine to the paragraph.
• backspace(): Performs a backspace at the current caret.
• newline(): Performs a new line at the current caret.
• insert(): Inserts text at the current caret point.

Figure 3.16 Top: just before the user hits Backspace; bottom: the result

The JavaScript for the application shown in Figure 3.15 is partially listed in
Example 3.18. Notice how the application uses the preceding Paragraph methods.

Example 3.18 Working with paragraphs

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

...
 cursor = new TextCursor(),
 paragraph;
...

function drawBackground() {
// Listing omitted for brevity, see Example 3.1 on p. 203

}

(Continues)

2393.4 Implementing Text Controls

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 3.18 (Continued)

// Drawing surface...

function saveDrawingSurface() {
 drawingSurfaceImageData = context.getImageData(0, 0,
 canvas.width, canvas.height);
}
...

// Event handlers..

canvas.onmousedown = function (e) {
var loc = windowToCanvas(canvas, e.clientX, e.clientY),

 fontHeight,
 line;

 cursor.erase(context, drawingSurfaceImageData);
saveDrawingSurface();

if (paragraph && paragraph.isPointInside(loc)) {
 paragraph.moveCursorCloseTo(loc.x, loc.y);

}
else {

 fontHeight = context.measureText('W').width,
 fontHeight += fontHeight/6;
 paragraph = new Paragraph(context, loc.x, loc.y - fontHeight,
 drawingSurfaceImageData, cursor);
 paragraph.addLine(new TextLine(loc.x, loc.y));

}
} ;
...

// Key event handlers..

document.onkeydown = function (e) {
if (e.keyCode === 8 || e.keyCode === 13) {

// The call to e.preventDefault() suppresses the browser's
// subsequent call to document.onkeypress(), so
// only suppress that call for Backspace and Enter.

 e.preventDefault();
}
if (e.keyCode === 8) { // Backspace

 paragraph.backspace();
}
else if (e.keyCode === 13) { // Enter

 paragraph.newline();
}

}

Chapter 3 Text240

Download from Join eBook (www.joinebook.com)

ptg7987094

document.onkeypress = function (e) {
var key = String.fromCharCode(e.which);

// Only process if user is editing text and they aren't
// holding down the Ctrl or Meta keys.

if (e.keyCode !== 8 && !e.ctrlKey && !e.metaKey) {
 e.preventDefault(); // No further browser processing

 context.fillStyle = fillStyleSelect.value;
 context.strokeStyle = strokeStyleSelect.value;

 paragraph.insert(key);
}

}

// Initialization..
...

cursor.fillStyle = fillStyleSelect.value;
cursor.strokeStyle = strokeStyleSelect.value;

context.lineWidth = 2.0;
setFont();

drawBackground();
saveDrawingSurface();

If the user is editing a paragraph and clicks the mouse somewhere within
that paragraph, the onmousedown() event handler invokes the paragraph’s
moveCursorCloseTo() method to place the cursor in a location that’s closest to
the mouse down location.

If the user is not yet editing a paragraph, or clicks outside the active paragraph,
the application saves the drawing surface, creates a new paragraph, and adds
a text line to the paragraph. The Paragraph’s constructor function takes a reference
to a context, the paragraph’s location, the image data for the drawing surface,
and a cursor.

The application handles the Backspace and Enter keys in the onkeydown() event
handler, which merely invokes the paragraph’s backspace() and newline()
methods, respectively.

The application’s onkeypress() event handler inserts characters into the paragraph
with the paragraph’s insert() method.

In Example 3.19 on p. 246 we look at the code for the Paragraph object, but before
we do, let’s see how Paragraph objects perform some common tasks.

2413.4 Implementing Text Controls

Download from Join eBook (www.joinebook.com)

ptg7987094

3.4.3.1 Creating and Initializing a Paragraph
The application shown in Figure 3.15 on p. 238 creates a paragraph like this:

var cursor = new TextCursor(),
 paragraph = new Paragraph(context, loc.x, loc.y - fontHeight,
 drawingSurfaceImageData, cursor);

Then the application adds a TextLine object to the paragraph:

paragraph.addLine(new TextLine(loc.x, loc.y));

The Paragraph’s constructor function looks like this:

Paragraph = function (context, left, top, imageData, cursor) {
this.context = context;
this.drawingSurface = imageData;
this.left = left;
this.top = top;
this.lines =[]
this.activeLine = undefined;
this.cursor = cursor;
this.blinkingInterval = undefined;

};

Paragraphs maintain references to a Canvas context, the image data for the canvas
when the paragraph was created, an array of TextLine objects, and a cursor.
Paragraphs also keep track of their location and the TextLine object that the user
is currently editing.

The Paragraph’s addLine() method pushes the new line onto the TextLine object
array, sets the paragraph’s active line, and moves the cursor to the beginning of
the new line:

Paragraph.prototype = {
 addLine: function (line) {

this.lines.push(line);
this.activeLine = line;
this.moveCursor(line.left, line.bottom);

},
 ...
}

Notice the moveCursor() method in the previous list. Let’s look at that next.

3.4.3.2 Positioning the Text Cursor in Response to Mouse Clicks
Paragraphs provide a moveCursor() method that moves the cursor to a specific
location in the canvas:

Chapter 3 Text242

Download from Join eBook (www.joinebook.com)

ptg7987094

moveCursor: function (x, y) {
this.cursor.erase(this.context, this.drawingSurface);
this.cursor.draw(this.context, x, y);
this.blinkCursor(x, y);

},

The moveCursor() method erases the cursor at its current location and draws the
cursor at its new location. Then the moveCursor() method invokes blinkCursor().

Paragraphs place cursors between characters with Paragraph.moveCursor-
CloseTo(). That method places the cursor at a space between two characters
that is closest to the specified location in the canvas. The moveCursorCloseTo()
method is implemented like this:

moveCursorCloseTo: function (x, y) {
var line = this.getLine(y);

if (line) {
 line.caret = this.getColumn(line, x);

this.activeLine = line;
this.moveCursor(line.getCaretX(context), line.bottom);

}
},

getLine: function (y) {
var line;

for (i=0; i < this.lines.length; ++i) {
 line = this.lines[i];

if (y > line.bottom - line.getHeight(context) &&
 y < line.bottom) {

return line;
}

}
return undefined;

},

3.4.3.3 Inserting Text
Paragraph objects provide an insert() method that inserts text into a paragraph:

insert: function (text) {
var t = this.activeLine.text.substring(0, this.activeLine.caret),

 w = this.context.measureText(t).width;

this.activeLine.erase(this.context, this.drawingSurface);
this.activeLine.insert(text);
this.moveCursor(this.activeLine.left + w, this.activeLine.bottom);
this.activeLine.draw(this.context);

}

2433.4 Implementing Text Controls

Download from Join eBook (www.joinebook.com)

ptg7987094

The insert() method erases the active line, inserts the text into that line, and
then redraws the line. The method also moves the cursor to the caret location inside
the line. Recall that a line’s erase() method restores the entire canvas to what it
was before the paragraph was created, effectively erasing the entire paragraph.

3.4.3.4 New Lines
When you type Enter in a paragraph in the application shown in Figure 3.15 on
p. 238, the application invokes the paragraph’s newline() method, which is
implemented like this:

newline: function () {
var textBeforeCursor =

this.activeLine.text.substring(0, this.activeLine.caret),
 textAfterCursor =

this.activeLine.text.substring(this.activeLine.caret),
 height = this.context.measureText('W').width +

this.context.measureText('W').width/6,
 bottom = this.activeLine.bottom + height,
 activeIndex,
 line;

// Erase paragraph and set active line's text

this.erase(this.context, this.drawingSurface);
this.activeLine.text = textBeforeCursor;

// Create a new line that contains the text after the cursor

 line = new TextLine(this.activeLine.left, bottom);
 line.insert(textAfterCursor);

// Splice in new line, set active line, and reset caret

 activeIndex = this.lines.indexOf(this.activeLine);
this.lines.splice(activeIndex+1, 0, line);

this.activeLine = line;
this.activeLine.caret = 0;

// Starting at the new line, loop over remaining lines

 activeIndex = this.lines.indexOf(this.activeLine);

for(var i=activeIndex+1; i < this.lines.length; ++i) {
 line = this.lines[i];
 line.bottom += height; // Move line down one row

}

Chapter 3 Text244

Download from Join eBook (www.joinebook.com)

ptg7987094

this.draw();
this.cursor.draw(this.context, this.activeLine.left,

this.activeLine.bottom);
},

The newline() method erases the cursor and the paragraph itself, creates a
new TextLine object, and inserts it into the array of TextLine maintained by
the paragraph. The newline() method then iterates over all the lines below the
newly created line and moves them each down one line. Finally, the newline()
method draws the updated paragraph and the cursor.

3.4.3.5 Backspace
Paragraphs handle the Backspace key with a backspace() method, which is
implemented like this:

backspace: function () {
var lastActiveLine,

 activeIndex,
 t, w;

this.context.save();

if (this.activeLine.caret === 0) {
if (! this.activeLineIsTopLine(); {

this.erase();
this.moveUpOneLine();
this.draw();

}
}
else { // Active line has text

this.context.fillStyle = fillStyleSelect.value;
this.context.strokeStyle = strokeStyleSelect.value;

this.activeLine.erase(this.context, drawingSurfaceImageData);
this.activeLine.removeCharacterBeforeCaret();

 t = this.activeLine.text.slice(0, this.activeLine.caret);
 w = this.context.measureText(t).width;

this.moveCursor(this.activeLine.left + w,
this.activeLine.bottom);

this.activeLine.draw(this.context);
}

 context.restore();
}

The backspace() method checks a) that the insertion caret the current line is
at the left edge of the line and b) the line is not the first line in the paragraph; if

2453.4 Implementing Text Controls

Download from Join eBook (www.joinebook.com)

ptg7987094

so, the method erases the paragraph, moves all lines below the active line up one
line, and redraws the modified paragraph. Otherwise, the backspace() method
removes the character before the caret in the active line and redraws that line.

The Paragraph object is listed in its entirety in Example 3.19.

Example 3.19 A paragraph object

// Constructor...

Paragraph = function (context, left, top, imageData, cursor) {
this.context = context;
this.drawingSurface = imageData;
this.left = left;
this.top = top;
this.lines = [];
this.activeLine = undefined;
this.cursor = cursor;
this.blinkingInterval = undefined;

};

// Prototype...

Paragraph.prototype = {
 isPointInside: function (loc) {

var c = this.context;

 c.beginPath();
 c.rect(this.left, this.top,

this.getWidth(), this.getHeight());

return c.isPointInPath(loc.x, loc.y);
},

 getHeight: function () {
var h = 0;

this.lines.forEach(function (line) {
 h += line.getHeight(this.context);

});

return h;
},

Chapter 3 Text246

Download from Join eBook (www.joinebook.com)

ptg7987094

 getWidth: function () {
var w = 0,

 widest = 0;

this.lines.forEach(function (line) {
 w = line.getWidth(this.context);

if (w > widest) {
 widest = w;

}
});

return widest;
},

 draw: function () {
this.lines.forEach(function (line) {

 line.draw(this.context);
});

},

 erase: function (context, imageData) {
 context.putImageData(imageData, 0, 0);

},

 addLine: function (line) {
this.lines.push(line);
this.activeLine = line;
this.moveCursor(line.left, line.bottom);

},

 insert: function (text) {
this.erase(this.context, this.drawingSurface);
this.activeLine.insert(text);

var t = this.activeLine.text.substring(0, this.activeLine.caret),
 w = this.context.measureText(t).width;

this.moveCursor(this.activeLine.left + w,
this.activeLine.bottom);

this.draw(this.context);
},

(Continues)

2473.4 Implementing Text Controls

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 3.19 (Continued)

 blinkCursor: function (x, y) {
var self = this,

 BLINK_OUT = 200,
 BLINK_INTERVAL = 900;

this.blinkingInterval = setInterval(function (e) {
 cursor.erase(context, self.drawingSurface);

setTimeout(function (e) {
 cursor.draw(context, cursor.left,
 cursor.top + cursor.getHeight(context));

}, BLINK_OUT);
}, BLINK_INTERVAL);

},

 moveCursorCloseTo: function (x, y) {
var line = this.getLine(y);

if (line) {
 line.caret = this.getColumn(line, x);

this.activeLine = line;
this.moveCursor(line.getCaretX(context), line.bottom);

}
},

 moveCursor: function (x, y) {
this.cursor.erase(this.context, this.drawingSurface);
this.cursor.draw(this.context, x, y);

if (! this.blinkingInterval)
this.blinkCursor(x, y);

},

 moveLinesDown: function (start) {
for (var i=start; i < this.lines.length; ++i) {

 line = this.lines[i];
 line.bottom += line.getHeight(this.context);

}
},

 newline: function () {
var textBeforeCursor =

this.activeLine.text.substring(0, this.activeLine.caret),
 textAfterCursor =

this.activeLine.text.substring(this.activeLine.caret),
 height = this.context.measureText('W').width +

this.context.measureText('W').width/6,

Chapter 3 Text248

Download from Join eBook (www.joinebook.com)

ptg7987094

 bottom = this.activeLine.bottom + height,
 activeIndex,
 line;

// Erase paragraph and set active line's text

this.erase(this.context, this.drawingSurface);
this.activeLine.text = textBeforeCursor;

// Create a new line that contains the text after the cursor

 line = new TextLine(this.activeLine.left, bottom);
 line.insert(textAfterCursor);

// Splice in new line, set active line, and reset caret

 activeIndex = this.lines.indexOf(this.activeLine);
this.lines.splice(activeIndex+1, 0, line);

this.activeLine = line;
this.activeLine.caret = 0;

// Starting at the new line, loop over remaining lines

 activeIndex = this.lines.indexOf(this.activeLine);

for(var i=activeIndex+1; i < this.lines.length; ++i) {
 line = this.lines[i];
 line.bottom += height; // Move line down one row

}

this.draw();
this.cursor.draw(this.context, this.activeLine.left,

this.activeLine.bottom);
},

 getLine: function (y) {
var line;
for (i=0; i < this.lines.length; ++i) {

 line = this.lines[i];
if (y > line.bottom - line.getHeight(context) &&

 y < line.bottom) {
return line;

}
}
return undefined;

},

(Continues)

2493.4 Implementing Text Controls

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 3.19 (Continued)

 getColumn: function (line, x) {
var found = false,

 before,
 after,
 closest,
 tmpLine,
 column;

 tmpLine = new TextLine(line.left, line.bottom);
 tmpLine.insert(line.text);

while (! found && tmpLine.text.length > 0) {
 before = tmpLine.left + tmpLine.getWidth(context);
 tmpLine.removeLastCharacter();
 after = tmpLine.left + tmpLine.getWidth(context);

if (after < x) {
 closest = x - after < before - x ? after : before;
 column = closest === before ?
 tmpLine.text.length + 1 : tmpLine.text.length;
 found = true;

}
}
return column;

},

 activeLineIsOutOfText: function () {
return this.activeLine.text.length === 0;

},

 activeLineIsTopLine: function () {
return this.lines[0] === this.activeLine;

},

 moveUpOneLine: function () {
var lastActiveText, line, before, after;

 lastActiveLine = this.activeLine;
 lastActiveText = '' + lastActiveLine.text;

 activeIndex = this.lines.indexOf(this.activeLine);
this.activeLine = this.lines[activeIndex - 1];
this.activeLine.caret = this.activeLine.text.length;

this.lines.splice(activeIndex, 1);

Chapter 3 Text250

Download from Join eBook (www.joinebook.com)

ptg7987094

this.moveCursor(
this.activeLine.left + this.activeLine.getWidth(this.context),
this.activeLine.bottom);

this.activeLine.text += lastActiveText;

for (var i=activeIndex; i < this.lines.length; ++i) {
 line = this.lines[i];
 line.bottom -= line.getHeight(this.context);

}
},

 backspace: function () {
var lastActiveLine,

 activeIndex,
 t, w;

this.context.save();

if (this.activeLine.caret === 0) {
if (! this.activeLineIsTopLine()) {

this.erase(this.context, this.drawingSurface);
this.moveUpOneLine();
this.draw();

}
}

else { // Active line has text
this.context.fillStyle = fillStyleSelect.value;
this.context.strokeStyle = strokeStyleSelect.value;

this.erase(this.context, this.drawingSurface);
this.activeLine.removeCharacterBeforeCaret();

 t = this.activeLine.text.slice(0, this.activeLine.caret),
 w = this.context.measureText(t).width;

this.moveCursor(this.activeLine.left + w,
this.activeLine.bottom);

this.draw(this.context);

 context.restore();
}

}
};

2513.4 Implementing Text Controls

Download from Join eBook (www.joinebook.com)

ptg7987094

NOTE: WHATWG Canvas specification best practice: Don’t implement text

controls

The WHATWG Canvas specification contains a short section on best practices.
One of those best practices encourages you not to implement text editing controls
with the Canvas element, but instead use the HTML input or textarea ele-
ments, in combination with the HTML5 contenteditable attribute. (The same
note is absent from the W3C’s Canvas 2d context specification)

Why? Because according to the WHATWG, it’s too much work to implement text
controls. To effectively implement a text editing control, you have to implement
features such as copy and paste, drag and drop, text selection, and scrolling,
none of which is built into the canvas element by default.

However, just because the WHATWG does not believe it’s a good idea to imple-
ment text editing controls, doesn’t mean you should blindly follow their advice.
In fact, people have implemented text editing controls; the Bespin editor is one
example.As with all best practices, take this one with a grain of salt and decide for
yourself if it’s worth the effort. Just be aware that the canvas element’s support
for text is minimal and that you may have to put in some extra work to implement
text controls.

3.5 Conclusion
Canvas provides the fundamentals for manipulating text; however, it does not
provide explicit support for sophisticated text handling, such as drawing text
along an arc or enabling editing for a line of text.

In this chapter you learned how to apply the minimal text API that Canvas pro-
vides to implement sophisticated text handling, including drawing text along an
arc. You also saw how to draw text labels for axes and dials and how to set text
parameters such as alignment and fonts.

The last half of this chapter showed you how to implement text controls, starting
with text cursors, followed by editable lines of text, and finally paragraphs. Those
objects are a good starting point if you decide to implement your own text controls.

In the next chapter we explore displaying and manipulating images in a canvas.

Chapter 3 Text252

Download from Join eBook (www.joinebook.com)

ptg7987094

HTML5 Canvas provides extensive support for images. You can draw all or part
of an image, scaled or unscaled, anywhere inside a canvas, and you can access
and manipulate the color and transparency of each pixel. And by combining image
manipulation with other aspects of the Canvas API such as clipping regions
and offscreen canvases, you can create stunning effects, such as animations and
multiplayer games, data visualization, or particle physics simulations.

Figure 4.1 shows a magnifying glass that demonstrates some of what’s possible
with Canvas image manipulation. As you drag the magnifying glass, the applica-
tion scales the pixels underneath the magnifying glass, and draws them back
into the canvas, clipped to the magnifying glass lens.

The Canvas context provides four methods for drawing and manipulating images:

• drawImage()

• getImageData()

• putImageData()

• createImageData()

As you might suspect, drawImage() lets you draw an image into a canvas. As you
might not suspect, that method also lets you draw another canvas into a canvas,
or a video frame into a canvas. That’s a large can of whoopass.

The image data methods let you access, and manipulate, the individual pixels
of an image. getImageData() gives you access to the underlying pixels of an
image, and putImageData() lets you put pixels back into an image. In the mean-
time, so the thinking goes, you will manipulate those pixels in some manner,
although that is not always the case, as you will see in Section 4.5.1, “Accessing
Image Data,” on p. 274.

4CHAPTER

Images and Video

253
Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 4.1 A magnifying glass that scales pixels and uses the clipping region

You can also create blank image data objects with createImageData(). You can
pass that method either the width and height of the image data in CSS pixels, or
you can pass the method an existing ImageData object, in which case the method
returns a new blank ImageData object with the same width and height as the object
you passed to the method.

4.1 Drawing Images
The drawImage() method lets you draw all or part of an image, anywhere inside
a canvas, and it lets you scale the image along the way. You can also draw into an
offscreen canvas, which lets you do clever things with images, such as panning
an image, or fading an image into a canvas. We discuss several uses for offscreen
canvases in this chapter.

Chapter 4 Images and Video254

Download from Join eBook (www.joinebook.com)

ptg7987094

4.1.1 Drawing an Image into a Canvas
Let’s start by drawing an image into a canvas, as shown in Figure 4.2 and listed
in Example 4.1.

Figure 4.2 Drawing an image into a canvas

Example 4.1 Drawing an image

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 image = new Image();

image.src = 'fence.png';
image.onload = function(e) {
 context.drawImage(image, 0, 0);
};

Example 4.1 creates an image, sets the source of the image, and, after waiting for
the image to load, draws the image into the canvas’s upper-left corner.

2554.1 Drawing Images

Download from Join eBook (www.joinebook.com)

ptg7987094

This is the simplest use of drawImage()—drawing an entire image, unscaled, into
a canvas—and the only pitfall here is that you must wait for the image to load
before you draw it into the canvas. If you draw the image before it’s loaded, then
according to the Canvas specification, drawImage() should fail silently.

CAUTION: Images cannot be drawn before they are loaded

The drawImage() method draws images into a canvas, but if the image hasn’t
been loaded, drawImage() is supposed to do nothing. When you use
drawImage(), make sure the image has been loaded, typically by putting
the call to drawImage() in an onload callback.

CAUTION: According to the Canvas specification

According to the Canvas specification, drawImage() should fail silently if you
try to draw an image that hasn’t been loaded; however, many browsers throw an
exception instead. See http://bit.ly/ilW6ET for verification.

In general, it’s important to remember that browsers do not always adhere exactly
to the Canvas specification. That’s why it’s a good idea to have a test suite that
tests a browser’s adherence to the specification. See http://w3c-test.org for more
information.

TIP: Shadows, clipping, and composition are applied when you draw an

image

The drawImage() method draws images without respect to the current path,
and takes into account the globalAlpha setting, shadow effects, the clipping
region, and global composition operators.

TIP: Loading images

Before they begin, some applications need to load more than a few images.
Games are the prototypical application. In Section 9.1.2, “Loading Images,” on
p. 554 you’ll see how to load multiple images and display a progress bar while
the images are loading.

Now that you know how to draw an image into a canvas, let’s take a closer look
at the drawImage() method.

Chapter 4 Images and Video256

Download from Join eBook (www.joinebook.com)

http://bit.ly/ilW6ET
http://w3c-test.org

ptg7987094

4.1.2 The drawImage() Method
The drawImage() method is illustrated in Figure 4.3.

Figure 4.3 drawImage() lets you draw all or part of an image, scaled or unscaled, into
a canvas

The drawImage() method draws an image, referred to as the source image, into
a canvas, referred to as the destination canvas. In Figure 4.3, the variables begin-
ning with ‘s’ correspond to source, and variables beginning with ‘d’ correspond
to destination. The drawImage() method can take three different argument sets:

• drawImage(image, dx, dy)

• drawImage(image, dx, dy, dw, dh)

• drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh)

2574.1 Drawing Images

Download from Join eBook (www.joinebook.com)

ptg7987094

The first argument in all three cases is an image (HTMLImageElement), but
that argument can also be another canvas (HTMLCanvasElement) or a video
(HTMLVideoElement). So you can effectively treat a canvas or video as though it
were an image, which opens doors to many possibilities, such as video-editing
software.

The first use of drawImage() listed above draws an entire image at a specified
location in the destination canvas.

The second use of drawImage() also draws an entire image at a specified location,
scaled to a specific width and height.

The third use of drawImage() draws all or part of an image into the destination
canvas at a specified location, scaled to a specific width and height.

The drawImage() method is summarized in Table 4.1.

Table 4.1 The drawImage() method

DescriptionMethod

Draws an image into a canvas. That
image can also be a video
(HTMLVideoElement)—in which case
drawImage() draws the video’s current
frame—or another canvas
(HTMLCanvasElement).

The image can be either an entire image
or a subset of the image into a canvas,
possibly scaling the image. The image’s
subset is specified with the sx, sy, sw, and
sh parameters, and the browser scales the
image to the dw and dh parameters. Only
the first three arguments are required.

drawImage(HTMLImageElement image,
double sx, double sy, double sw,
double sh, double dx, double dy,
double dw, double dh);

TIP: You can draw images, canvases, and videos into a canvas

The drawImage() method is flexible:You can draw either part or all of one of the
following into a canvas: an image, a canvas, or a video frame. You can place
the image, canvas, or video anywhere you want in the canvas, at any scale
you wish.

Chapter 4 Images and Video258

Download from Join eBook (www.joinebook.com)

ptg7987094

4.2 Scaling Images
We’ve seen how to use drawImage() to draw an image, unscaled, into a canvas.
Now we’ll see how to use that method to draw and scale an image, as shown in
Figure 4.4.

Figure 4.4 Scaling an image

The image shown in Figure 4.4 is initially smaller than the canvas in which it re-
sides, as you can see from the top picture. However, when the user checks the
checkbox, the application redraws the image, scaled to fit the canvas, as shown
in the bottom picture.

2594.2 Scaling Images

Download from Join eBook (www.joinebook.com)

ptg7987094

The function that draws the image in Figure 4.4 is shown in Example 4.2.

Example 4.2 Scaling an image

function drawImage() {
 context.clearRect(0, 0, canvas.width, canvas.height);

if (scaleCheckbox.checked) {
 context.drawImage(image, 0, 0, canvas.width, canvas.height);

}
else {

 context.drawImage(image, 0, 0);
}

}

If the checkbox is checked, the function draws the image, scaled to fit the canvas;
otherwise, the function draws the image unscaled. In both cases, the function
draws the entire image at location (0, 0) in the canvas.

4.2.1 Drawing Images outside Canvas Boundaries
The application listed in Example 4.2 placed the image at (0, 0) in canvas coor-
dinates, but you can place an image anywhere in a canvas by specifying nonzero
values for the destination coordinate, as illustrated by the application shown in
Figure 4.5.

The application contains a slider that lets the user adjust the image’s scale. As the
user moves the slider, the application clears the canvas and then repaints the image
at the specified scale. Notice that the application also keeps the image centered
in the canvas.

Besides scaling the image, the application shown in Figure 4.5 has another inter-
esting aspect: The scale readout in the upper-left corner scales along with the
image as the user moves the slider. You can see how that’s implemented in
Example 4.5.

Not only can you place images at specific locations inside a canvas, but you can
also place images outside a canvas. That’s what the application shown in Figure 4.5
does to keep the image centered, as illustrated in Figure 4.6.

Chapter 4 Images and Video260

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 4.5 Scaling and centering an image

Figure 4.6 shows how the application shown in Figure 4.5 draws the image at a
specific scale, in this case, 2.0. To illustrate which parts of the image are displayed
in the canvas and which parts are not, Figure 4.6 shows the part of the image
displayed in the canvas as fully opaque, whereas the rest of the image, which lies
outside the boundaries of the canvas, appears faded.

This application scales the image by multiplying the canvas width and height by
the selected scale and calculates the upper-left corner of the image, as shown in
Example 4.3.

2614.2 Scaling Images

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 4.6 The entire image shown in Figure 4.5; the darkened portion of the image is
outside the canvas

Example 4.3 Scaling and centering an image

function drawImage() {
var w = canvas.width,

 h = canvas.height,
 sw = w * scale,
 sh = h * scale;

 context.clearRect(0, 0, w, h);
 context.drawImage(image, -sw/2 + w/2, -sh/2 + h/2, sw, sh);
}

Example 4.4 shows the HTML for the application shown in Figure 4.5, and the
JavaScript for the application is shown in Example 4.5.

Chapter 4 Images and Video262

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.4 Scaling images: HTML

<!DOCTYPE html>
<html>

<head>
<title>Scaling images</title>

<style>
 body {

background: rgba(100, 145, 250, 0.3);
}

#scaleSlider {
vertical-align: 10px;
width: 100px;
margin-left: 90px;

}

#canvas {
margin: 10px 20px 0px 20px;
border: thin solid #aaaaaa;
cursor: crosshair;

}

#controls {
margin-left: 15px;
padding: 0;

}

#scaleOutput {
position: absolute;
width: 60px;
height: 30px;
margin-left: 10px;
vertical-align: center;
text-align: center;
color: blue;
font: 18px Arial;
text-shadow: 2px 2px 4px rgba(100, 140, 250, 0.8);

}

</style>
</head>

(Continues)

2634.2 Scaling Images

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.4 (Continued)

<body>
<div id='controls'>

<output id='scaleOutput'>1.0</output>
<input id='scaleSlider' type='range'

min='1' max='3.0' step='0.01' value='1.0'/>
</div>

<canvas id='canvas' width='800' height='520'>
 Canvas not supported

</canvas>

<script src='example.js'></script>
</body>

</html>

Example 4.5 Scaling images: JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 image = new Image(),

 scaleSlider = document.getElementById('scaleSlider'),
 scale = 1.0,
 MINIMUM_SCALE = 1.0,
 MAXIMUM_SCALE = 3.0;

// Functions...

function drawImage() {
var w = canvas.width,

 h = canvas.height,
 sw = w * scale,
 sh = h * scale;

 context.clearRect(0, 0, canvas.width, canvas.height);
 context.drawImage(image, -sw/2 + w/2, -sh/2 + h/2, sw, sh);

}

function drawScaleText(value) {
var text = parseFloat(value).toFixed(2);
var percent = parseFloat(value - MINIMUM_SCALE) /

parseFloat(MAXIMUM_SCALE - MINIMUM_SCALE);

 scaleOutput.innerText = text;
 percent = percent < 0.35 ? 0.35 : percent;
 scaleOutput.style.fontSize = percent*MAXIMUM_SCALE/1.5 + 'em';

}

Chapter 4 Images and Video264

Download from Join eBook (www.joinebook.com)

ptg7987094

// Event handlers..

scaleSlider.onchange = function(e) {
 scale = e.target.value;

if (scale < MINIMUM_SCALE) scale = MINIMUM_SCALE;
else if (scale > MAXIMUM_SCALE) scale = MAXIMUM_SCALE;

drawScaleText(scale);
drawImage();

};

// Initialization..

context.fillStyle = 'cornflowerblue';
context.strokeStyle = 'yellow';
context.shadowColor = 'rgba(50, 50, 50, 1.0)';
context.shadowOffsetX = 5; context.shadowOffsetY
= 5;
context.shadowBlur = 10;

image.src = 'waterfall.png';

image.onload = function(e) {
drawImage();
drawScaleText(scaleSlider.value);

};

TIP: You can draw images outside of a canvas

You can draw images inside or outside a canvas. For example, the application
listed in Example 4.5 specifies a location in the canvas that lies outside of the
canvas for all scales greater than 1.0.

When you draw an image into a canvas and part of that image lies outside
the bounds of the canvas, the browser ignores the content outside of the canvas.

Being able to draw images outside the boundaries of the canvas is an important
feature. For example, Section 5.7, “Scrolling the Background,” on p. 370,
discusses scrolling backgrounds that are implemented by drawing outside the
boundaries of the canvas, and translating the canvas coordinate system to scroll
that content into view.

2654.2 Scaling Images

Download from Join eBook (www.joinebook.com)

ptg7987094

TIP: Render unto Canvas

In Example 4.5, the application scales the readout in the upper-left corner as
the user adjusts the scale slider.You might be tempted to implement that readout
with a canvas that uses fillText() and scales the canvas to match the slider’s
scale. However, the Canvas specification states:

Authors should not use the canvas element in a document when a more suitable
element is available. For example, it is inappropriate to use a canvas element
to render a page heading.

For the application shown in Example 4.5, an output element is more
appropriate than a canvas element and is considerably easier to implement.

4.3 Drawing a Canvas into a Canvas
The application shown in Figure 4.7 draws an image into a canvas, and then
draws some text, known as a watermark, on top of the image.

When the user adjusts the scale with the slider in the upper-left corner, the appli-
cation scales both the image and the text. You could scale the image and text
together by drawing them into an offscreen canvas at the specified scale and
subsequently copying the offscreen canvas back into the onscreen canvas; in this
case, however, an offscreen canvas is not strictly necessary because drawImage()
can draw a canvas back into itself, like this:

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 scaleWidth = ..., // Calculate scales for width and height
 scaleHeight = ...;

...
context.drawImage(canvas, 0, 0, scaleWidth, scaleHeight);
...

The preceding code draws a canvas into itself, scaling the canvas along the way.
When the user changes the scale, the application clears the canvas and draws
the image, scaled to canvas width and height, into the canvas. Then it draws the
watermark on top of the image.

Chapter 4 Images and Video266

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 4.7 A watermark

However, the user never sees the canvas in that state, because the application
immediately draws the canvas back into itself, scaled at the scale specified by the
user. That has the effect of scaling not only the image, but also the watermark
along with it.

Although it’s convenient in this case to draw the canvas back into itself, it’s not
very efficient. Every time the user modifies the scale, the application draws the
image and the watermark, and then subsequently redraws the entire canvas,
scaled. That means the application ends up drawing everything twice every time
the scale changes, as you can see from the full listing of the application’s JavaScript
in Example 4.6.

2674.3 Drawing a Canvas into a Canvas

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.6 Watermarks: JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 image = new Image(),

 scaleOutput = document.getElementById('scaleOutput');
 scaleSlider = document.getElementById('scaleSlider'),
 scale = scaleSlider.value,
 scale = 1.0,

 MINIMUM_SCALE = 1.0,
 MAXIMUM_SCALE = 3.0;

// Functions...

function drawScaled() {
var w = canvas.width,

 h = canvas.height,
 sw = w * scale,
 sh = h * scale;

// Clear the canvas, and draw the image scaled to canvas size

 context.clearRect(0, 0, canvas.width, canvas.height);
 context.drawImage(image, 0, 0, canvas.width, canvas.height);

// Draw the watermark on top of the image

drawWatermark();

// Finally, draw the canvas scaled according to the current
// scale, back into itself. Note that the source and
// destination canvases are the same canvas.

 context.drawImage(canvas, 0, 0, canvas.width, canvas.height,
-sw/2 + w/2, -sh/2 + h/2, sw, sh);

}

function drawScaleText(value) {
var text = parseFloat(value).toFixed(2);
var percent = parseFloat(value - MINIMUM_SCALE) /

parseFloat(MAXIMUM_SCALE - MINIMUM_SCALE);

 scaleOutput.innerText = text;
 percent = percent < 0.35 ? 0.35 : percent;
 scaleOutput.style.fontSize = percent*MAXIMUM_SCALE/1.5 + 'em';
}

Chapter 4 Images and Video268

Download from Join eBook (www.joinebook.com)

ptg7987094

function drawWatermark() {
var lineOne = 'Copyright',

 lineTwo = 'Acme Inc.',
 textMetrics,
 FONT_HEIGHT = 128;

 context.save();
 context.font = FONT_HEIGHT + 'px Arial';

 textMetrics = context.measureText(lineOne);

 context.globalAlpha = 0.6;
 context.translate(canvas.width/2,
 canvas.height/2-FONT_HEIGHT/2);

 context.fillText(lineOne, -textMetrics.width/2, 0);
 context.strokeText(lineOne, -textMetrics.width/2, 0);

 textMetrics = context.measureText(lineTwo);
 context.fillText(lineTwo, -textMetrics.width/2, FONT_HEIGHT);
 context.strokeText(lineTwo, -textMetrics.width/2, FONT_HEIGHT);

 context.restore();
}

// Event handlers..

scaleSlider.onchange = function(e) {
 scale = e.target.value;

if (scale < MINIMUM_SCALE) scale = MINIMUM_SCALE;
else if (scale > MAXIMUM_SCALE) scale = MAXIMUM_SCALE;

drawScaled();
drawScaleText(scale);

}

// Initialization..

context.fillStyle = 'cornflowerblue';
context.strokeStyle = 'yellow';
context.shadowColor = 'rgba(50, 50, 50, 1.0)';
context.shadowOffsetX = 5; context.shadowOffsetY
= 5;
context.shadowBlur = 10;

var glassSize = 150;
var scale = 1.0;

(Continues)

2694.3 Drawing a Canvas into a Canvas

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.6 (Continued)

image.src = 'lonelybeach.png';
image.onload = function(e) {
 context.drawImage(image, 0, 0, canvas.width, canvas.height);

drawWatermark();
drawScaleText(scaleSlider.value);

};

Although an offscreen canvas requires a little more code, in this case it is worth
the effort because it’s much more efficient. Let’s see how to implement the
watermark example with an offscreen canvas.

TIP: You can draw a canvas into itself, but beware

The drawImage() method can draw one canvas into another.You can also draw
a canvas into itself. Although for some use cases, such as scaling a canvas as
in Example 4.6, it’s convenient to draw a canvas into itself, it’s not very efficient
because the browser creates an intermediate offscreen canvas to scale the
canvas.

4.4 Offscreen Canvases
Offscreen canvases, which are often used as temporary holding places for images,
are useful in many different scenarios. For example, the magnifying glass
application shown in Figure 4.1 uses an offscreen canvas to scale part of the on-
screen canvas, and then subsequently copies the contents of the offscreen canvas
back to the onscreen canvas.

Figure 4.8 illustrates another use of an offscreen canvas. In this case, the offscreen
canvas contains an unscaled version of an image and a watermark. As the user
manipulates the scale slider, the application copies the offscreen canvas to the
onscreen canvas, scaling the offscreen canvas in the process.

Using an offscreen canvas typically involves four steps:

1. Create the offscreen canvas element.
2. Set the offscreen canvas’s width and height.
3. Draw into the offscreen canvas.
4. Copy all, or part of, the offscreen canvas onscreen.

The preceding steps are illustrated in the code listed in Example 4.7.

Chapter 4 Images and Video270

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 4.8 An offscreen canvas

Example 4.7 A recipe for offscreen canvases

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 offscreenCanvas = document.createElement('canvas'),
 offscreenContext = offscreenCanvas.getContext('2d'),
...

// Set the offscreen canvas's size to match the onscreen canvas

offscreenCanvas.width = canvas.width;
offscreenCanvas.height = canvas.height;
...

// Draw into the offscreen context

offscreenContext.drawImage(anImage, 0, 0);
...
// Draw the offscreen context into the onscreen canvas

context.drawImage(offscreenCanvas, 0, 0,
 offscreenCanvas.width, offscreenCanvas.height);

2714.4 Offscreen Canvases

Download from Join eBook (www.joinebook.com)

ptg7987094

You create an offscreen canvas like this: var offscreenCanvas = document.
createElement('canvas');. That line of code creates a new canvas that is not
attached to any DOM element and therefore will not be visible; thus the term
offscreen.

By default, the offscreen canvas’s size will be the default size for canvases:
300 pixels wide by 150 pixels high. Usually those dimensions will not suffice for
your particular use case, so you will need to resize the canvas.

After you have created an offscreen canvas and set its size, you typically draw
into the offscreen canvas and subsequently draw some, or all, of the offscreen
canvas onscreen.

The application shown in Figure 4.8 is listed in Example 4.8.

Example 4.8 Using an offscreen canvas

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

 offscreenCanvas = document.createElement('canvas'),
 offscreenContext = offscreenCanvas.getContext('2d'),

 image = new Image(),

 scaleOutput = document.getElementById('scaleOutput'),
 canvasRadio = document.getElementById('canvasRadio'),
 imageRadio = document.getElementById('imageRadio'),

 scale = scaleSlider.value,
 scale = 1.0,

 MINIMUM_SCALE = 1.0,
 MAXIMUM_SCALE = 3.0;

// Functions...

function drawScaled() {
var w = canvas.width,

 h = canvas.height,
 sw = w * scale,
 sh = h * scale;

 context.drawImage(offscreenCanvas, 0, 0,
 offscreenCanvas.width, offscreenCanvas.height,

-sw/2 + w/2, -sh/2 + h/2, sw, sh);
}

Chapter 4 Images and Video272

Download from Join eBook (www.joinebook.com)

ptg7987094

function drawScaleText(value) {
var text = parseFloat(value).toFixed(2);
var percent = parseFloat(value - MINIMUM_SCALE) /

parseFloat(MAXIMUM_SCALE - MINIMUM_SCALE);

 scaleOutput.innerText = text;
 percent = percent < 0.35 ? 0.35 : percent;
 scaleOutput.style.fontSize = percent*MAXIMUM_SCALE/1.5 + 'em';

}

function drawWatermark(context) {
var lineOne = 'Copyright',

 lineTwo = 'Acme, Inc.',
 textMetrics = null,
 FONT_HEIGHT = 128;

 context.save();
 context.fillStyle = 'rgba(100,140,230,0.5);';
 context.strokeStyle = 'yellow';
 context.shadowColor = 'rgba(50, 50, 50, 1.0)';
 context.shadowOffsetX = 5;
 context.shadowOffsetY = 5;
 context.shadowBlur = 10;

 context.font = FONT_HEIGHT + 'px Arial';
 textMetrics = context.measureText(lineOne);
 context.translate(canvas.width/2, canvas.height/2);
 context.fillText(lineOne, -textMetrics.width/2, 0);
 context.strokeText(lineOne, -textMetrics.width/2, 0);

 textMetrics = context.measureText(lineTwo);
 context.fillText(lineTwo, -textMetrics.width/2, FONT_HEIGHT);
 context.strokeText(lineTwo, -textMetrics.width/2, FONT_HEIGHT);
 context.restore();

}

// Event handlers..

scaleSlider.onchange = function(e) {
 scale = e.target.value;

if (scale < MINIMUM_SCALE) scale = MINIMUM_SCALE;
else if (scale > MAXIMUM_SCALE) scale = MAXIMUM_SCALE;

drawScaled();
drawScaleText(scale);

}

(Continues)

2734.4 Offscreen Canvases

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.8 (Continued)

// Initialization..

offscreenCanvas.width = canvas.width;
offscreenCanvas.height = canvas.height;

image.src = 'lonelybeach.png';
image.onload = function(e) {
 context.drawImage(image, 0, 0, canvas.width, canvas.height);
 offscreenContext.drawImage(image, 0, 0,
 canvas.width, canvas.height);

drawWatermark(context); drawWatermark(offscreenContext);
drawScaleText(scaleSlider.value);

};

TIP: Increase performance with offscreen canvases

Offscreen canvases take up some memory, but they can greatly increase
performance.

Notice how much more efficient the drawScaled() method is in Example 4.8

than in Example 4.6.The example listed in Example 4.8 draws from the offscreen
canvas. The application listed in Example 4.6, on the other hand, had to clear
the canvas, draw the image, draw the watermark, and finally, copy the canvas
into itself.

Now that you’ve seen how to draw images, scale them, and draw them into an
offscreen canvas, let’s see how to access and manipulate the individual pixels of
an image.

4.5 Manipulating Images
The getImageData() and putImageData() methods let you access the pixels of
an image and insert pixels into an image, respectively. In the meantime, if you
wish, you can modify those pixels, so those two methods let you perform just
about any image manipulation you can imagine.

4.5.1 Accessing Image Data
Let’s start with a common use case, selecting a region of a canvas with a rubber
band, as shown in Figure 4.9.

Chapter 4 Images and Video274

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 4.9 Rubber bands

In Figure 4.9, the user selects an area of the canvas with a rubber band, and the
application subsequently redraws the canvas and displays the selected area,
scaled to the canvas width and height.

Every time the user drags the mouse, the application calculates the rubber band’s
bounding box, captures the pixels of the image within that bounding box, and
then draws the rubber band. The next time the user drags the mouse, the
application restores the pixels of the image that it captured the last time the user
dragged the mouse, thereby erasing the rubber band, and the process begins
anew.

The application shown in Figure 4.9 and listed in Example 4.9 does not manipu-
late the pixels of the image, rather it simply captures and restores the pixels as
the user drags the rubber band.

2754.5 Manipulating Images

Download from Join eBook (www.joinebook.com)

ptg7987094

Notice that the application’s rubberbandEnd() method uses the nine-argument
version of drawImage() to draw, and scale, the part of the image selected by
the user.

Also realize that it’s easy for users to size the rubberband rectangle so that either
its width or height is zero. According to the Canvas specification, if you specify
zero for either the width or height, getImageData() must throw an exception.
When that happens in the application shown in Example 4.9, the image data for
the current rubberband rectangle is not updated the next time the user moves the
mouse, and so leaves remnants of the rubberband rectangle that the application
does not erase.

In light of the possible exception that may be thrown by getImageData(),
the rubberbandStretch() method checks to make sure that it doesn’t call
getImageData() when the width or height is zero. In fact, rubberbandStretch()
doesn’t restore captured pixels or update the rubberband rectangle unless the
rectangle is large enough to accommodate the rubber band itself, taking the
context’s line width into account.

Example 4.9 Rubber bands implemented with getImageData() and putImageData()

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

 resetButton = document.getElementById('resetButton'),

 image = new Image(),
 imageData,

 mousedown = {},
 rubberbandRectangle = {},
 dragging = false;

// Functions...

function windowToCanvas(canvas, x, y) {
var canvasRectangle = canvas.getBoundingClientRect();
return { x: x - canvasRectangle.left,

 y: y - canvasRectangle.top };
}

function captureRubberbandPixels() {
 imageData = context.getImageData(rubberbandRectangle.left,
 rubberbandRectangle.top,
 rubberbandRectangle.width,
 rubberbandRectangle.height);

}

Chapter 4 Images and Video276

Download from Join eBook (www.joinebook.com)

ptg7987094

function restoreRubberbandPixels() {
 context.putImageData(imageData, rubberbandRectangle.left,
 rubberbandRectangle.top);
}

function drawRubberband() {
 context.strokeRect(rubberbandRectangle.left + context.lineWidth,
 rubberbandRectangle.top + context.lineWidth,
 rubberbandRectangle.width - 2*context.lineWidth,
 rubberbandRectangle.height - 2*context.lineWidth);
}

function setRubberbandRectangle(x, y) {
 rubberbandRectangle.left = Math.min(x, mousedown.x);
 rubberbandRectangle.top = Math.min(y, mousedown.y);
 rubberbandRectangle.width = Math.abs(x - mousedown.x),
 rubberbandRectangle.height = Math.abs(y - mousedown.y);
}

function updateRubberband() {
captureRubberbandPixels();
drawRubberband();

}

function rubberbandStart(x, y) {
 mousedown.x = x;
 mousedown.y = y;

 rubberbandRectangle.left = mousedown.x;
 rubberbandRectangle.top = mousedown.y;

 dragging = true;
}

function rubberbandStretch(x, y) {
if (rubberbandRectangle.width > 2*context.lineWidth &&

 rubberbandRectangle.height > 2*context.lineWidth) {
if (imageData !== undefined) {

restoreRubberbandPixels();
}

}

setRubberbandRectangle(x, y);

if (rubberbandRectangle.width > 2*context.lineWidth &&
 rubberbandRectangle.height > 2*context.lineWidth) {

updateRubberband();
}

}

(Continues)

2774.5 Manipulating Images

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.9 (Continued)

function rubberbandEnd() {
// Draw and scale image to the onscreen canvas.

 context.drawImage(canvas,
 rubberbandRectangle.left + context.lineWidth*2,
 rubberbandRectangle.top + context.lineWidth*2,
 rubberbandRectangle.width - 4*context.lineWidth,
 rubberbandRectangle.height - 4*context.lineWidth,

0, 0, canvas.width, canvas.height);
 dragging = false;
 imageData = undefined;

}

// Event handlers..

canvas.onmousedown = function (e) {
var loc = windowToCanvas(canvas, e.clientX, e.clientY);

 e.preventDefault();
rubberbandStart(loc.x, loc.y);

};

canvas.onmousemove = function (e) {
var loc;

if (dragging) {
 loc = windowToCanvas(canvas, e.clientX, e.clientY);

rubberbandStretch(loc.x, loc.y);
}

};

canvas.onmouseup = function (e) {
rubberbandEnd();

};

// Initialization..

image.src = 'arch.png'; im-
age.onload = function () {
 context.drawImage(image, 0, 0, canvas.width, canvas.height);
};

resetButton.onclick = function(e) {
 context.clearRect(0, 0, canvas.width, canvas.height);
 context.drawImage(image, 0, 0, canvas.width, canvas.height);
};

context.strokeStyle = 'navy';
context.lineWidth = 1.0;

Chapter 4 Images and Video278

Download from Join eBook (www.joinebook.com)

ptg7987094

TIP: Rubberband alternatives

Section 1.8.1, “Invisible HTML Elements,” on p. 41 discussed an application that
implemented rubber bands by floating an empty span with a visible border on
top of a canvas. As the user drags the mouse, that application resizes the span
to produce the rubberband effect.

The rubberbanding implementation in this section is a little more complicated
and a little less efficient than the span rubberbanding implementation. By imple-
menting rubberbanding in the canvas itself, however, we can add other effects,
such as modifying the transparency of the selected pixels, as illustrated in
Figure 4.11 on p. 284.

4.5.1.1 ImageData Objects
The rubberband application discussed in Section 4.5.1, “Accessing Image Data,”
on p. 274 calls getImageData() to obtain a reference to an ImageData object. The
application subsequently passes that object to putImageData() to erase the last
rubber band.

ImageData objects returned from getImageData() have the following three
properties:

• width: the width of the image data, in device pixels
• height: the height of the image data, also in device pixels
• data: an array of values representing device pixels

The width and height properties are both read-only unsigned longs. The data
attribute is an array of 8-bit integer values representing color components for
each device pixel in the image data. We look more closely at ImageData objects
in Section 4.5.2, “Modifying Image Data,” on p. 283.

NOTE: Device pixels vs. CSS pixels

For higher image fidelity, browsers may use multiple device pixels for each CSS
pixel. For example, you may have a 200-pixel square canvas, for a total of
40,000 CSS pixels, but if the browser represents each CSS pixel with 2 device
pixels, you would have 160,000 (400×400) device pixels. You can find out how
many device pixels you have with the ImageData object’s width and height
properties.

2794.5 Manipulating Images

Download from Join eBook (www.joinebook.com)

ptg7987094

4.5.1.2 Image Data Partial Rendering: putImageData’s Dirty Rectangle
For every mouse move event as the user drags the mouse, the rubberband
application discussed in Section 4.5.1, “Accessing Image Data,” on p. 274 calls
putImageData() to erase the previous rubber band, and then, before the application
draws the rubber band, it calls getImageData() to capture pixels at the new mouse
location.

That’s a valid implementation, but it has one drawback: getImageData() can be
slow, and the rubberband application calls it every time the user moves the
mouse. Under most circumstances the canvas will be fast enough that calling
getImageData() repeatedly is inconsequential; however, if the application is
running on a low-powered device, such as a cell phone or a tablet computer, the
price that you pay for calling getImageData() could become a performance
concern.

There is a more efficient implementation: Call getImageData() only once for each
mouse down event and capture all the pixels in the canvas. Subsequently, invoke
putImageData() for every mouse move event, copying only the pertinent rectangle
from the image data to the canvas. That implementation results in a substantial
reduction in the number of calls to getImageData().

The more efficient implementation is made possible by four optional arguments
to putImageData() that let you specify a dirty rectangle, meaning a rectangle,
within the image data, that the browser copies to the canvas: putImageData(
HTMLImage, dx, dy, dirtyX, dirtyY, dirtyWidth, dirtyHeight).

Figure 4.10 shows how the seven-argument version of putImageData() copies a
subset of an image’s data into a canvas.

The dx and dy arguments to putImageData() represent the destination X and Y
offsets, in CSS pixels, from the top-left corner of the canvas. The browser places
the upper-left corner of the image data at those offsets, and from there it calculates
the location in the canvas of the dirty rectangle within the image data.

The last four arguments to putImageData() represent the dirty rectangle in device
pixels. When the browser copies the dirty rectangle into the canvas, it converts
those device pixels into CSS pixels, as illustrated in Figure 4.10.

You can easily modify the rubberband application discussed in Section 4.5.1,
“Accessing Image Data,” on p. 274 to capture all the canvas’s pixels for each
mouse down event, and then subsequently copy only the rubberband rectangle
from those pixels as the user drags the mouse. Example 4.10 shows the necessary
modifications to captureRubberbandPixels() and restoreRubberbandPixels().

Chapter 4 Images and Video280

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 4.10 putImageData()’s dirty rectangle

Example 4.10 Capturing a canvas’s pixels

function captureRubberbandPixels() {
// Capture the entire canvas

 imageData = context.getImageData(0, 0, canvas.width, canvas.height);
}

function restoreRubberbandPixels() {
var deviceWidthOverCSSPixels = imageData.width / canvas.width,

 deviceHeightOverCSSPixels = imageData.height / canvas.height;

// Put data for the rubberband rectangle, scaled to device pixels

 context.putImageData(imageData, 0, 0,
 rubberbandRectangle.left,
 rubberbandRectangle.top,
 rubberbandRectangle.width * deviceWidthOverCSSPixels,
 rubberbandRectangle.height * deviceHeightOverCSSPixels);
}

2814.5 Manipulating Images

Download from Join eBook (www.joinebook.com)

ptg7987094

The getImageData() and putImageData() methods are summarized in Table 4.2.

Table 4.2 CanvasRenderingContext2D image manipulation methods

DescriptionMethod

Returns an ImageData object that
contains a data array of 4×w×h
integers, where w and h are the
width and height of the image in
device pixels. You can find out the
width and height with ImageData’s
width and height attributes.

An ImageData object’s data array
contains four integers per pixel, one
each for red, green, blue, and the
transparency of each pixel, known
as the alpha value.

Realize that the width of the
ImageData object returned from
getImageData() is not necessarily
the same as the width that you pass
to getImageData(). That’s because
the former represents device pixels,
whereas the latter represents CSS
pixels.

getImageData(in double sx, in double
sy, in double sw, in double sh)

Puts image data into a canvas at
(dx,dy), where (dx,dy) are in CSS
pixels. The dirty rectangle represents
the region of the image data that the
browser will copy to the onscreen
canvas. You specify that rectangle in
device pixels.

putImageData(in ImageData imagedata,
in double dx, in double dy, in
optional double dirtyX, in double
dirtyY, in double dirtyWidth, in
double dirtyHeight);

TIP: putImageData() is not affected by global settings

When you put image data into a canvas with putImageData(), that image
data is unaffected by global canvas settings, such as globalAlpha and
globalCompositeOperation.The browser also does not perform compositing,
alpha blending, or application of shadows.That’s the opposite of drawImage(),
which is affected by all those things.

Chapter 4 Images and Video282

Download from Join eBook (www.joinebook.com)

ptg7987094

TIP: The putImageData() method’s optional arguments

The last four arguments to putImageData() represent a dirty rectangle within
that image data. The idea is that the dirty rectangle has been modified in some
manner and subsequently needs to be copied to a location inside a canvas.

Those arguments are optional, so they have defaults when you do not specify
them. Here is a summary of those arguments, and their default values:

• The horizontal offset from the upper-left corner of the image data, in device
pixels. Default: 0.

• The vertical offset from the upper-left corner of the image data, in device
pixels. Default: 0.

• The width of the dirty rectangle, in device pixels. Default: Width of the
image data.

• The height of the dirty rectangle, in device pixels. Default: Height of the
image data.

CAUTION: putImageData() requires both device and CSS pixels

When you call putImageData() with all seven arguments, you specify both an
offset into the canvas (with the second and third arguments), and a dirty
rectangle inside the image data that you want to copy into the canvas (the final
four arguments).

You specify the canvas offset in CSS pixels, whereas you specify the image
data’s dirty rectangle in device pixels. If you inadvertently use the same units
for both, putImageData() may not work as you expect.

4.5.2 Modifying Image Data
You’ve seen how to use getImageData() and putImageData() to store and retrieve
image data. Now let’s look at how you can modify image data.

Figure 4.11 shows a rubberband implementation that modifies the transparency
of every pixel in the rubberband rectangle.

To temporarily increase the transparency of pixels within the rubberband rectan-
gle, the application shown in Figure 4.11 uses two ImageData objects, both of
which are the same size as the canvas.

2834.5 Manipulating Images

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 4.11 Rubber bands, with effects

One of the ImageData objects contains a snapshot of the canvas when the user
last pressed the mouse. The other ImageData object contains a copy of that snap-
shot; however, the transparency of the copy is double the transparency of the
original snapshot, as shown in Figure 4.12.

As the user drags the mouse, the application does three things:

1. Restores the entire canvas from the background snapshot (Figure 4.12, top)
to erase the previous rubber band

2. Copies the rubberband rectangle from the more transparent copy (Figure 4.12,
bottom) to the onscreen canvas

3. Strokes the rubberband rectangle

Chapter 4 Images and Video284

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 4.12 Two image data objects. Top: the image used for the background; bottom: the
image used for the rubberband rectangle

4.5.2.1 Creating ImageData Objects with createImageData()
When the application shown in Figure 4.11 starts, it calls createImageData() to
create an ImageData object. Subsequently, when the user presses the mouse,
the application initializes that image data in captureCanvasPixels() as shown
in Example 4.11.

When it detects a mouse down event, the application calls getImageData() to
grab all the pixels in the canvas. Then the copyCanvasPixels() function copies
those pixels into the previously allocated imageDataCopy, doubling the trans-
parency of each pixel along the way. So, after each mouse down event, the appli-
cation has image data for the canvas and a more transparent copy of that data.

2854.5 Manipulating Images

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.11 Creating and initializing an ImageData object

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

 image = new Image(),
 imageData,
 imageDataCopy = context.createImageData(canvas.width, canvas.height),
 ...

// Functions...
...

function copyCanvasPixels() {
// Copy imageData into imageDataCopy, doubling the transparency
// of each pixel in the array.

}

function captureCanvasPixels() {
 imageData = context.getImageData(0, 0, canvas.width, canvas.height);

copyCanvasPixels();
}

...

function rubberbandStart(x, y) {
 ...

captureCanvasPixels();
}

// Event handlers..

canvas.onmousedown = function (e) {
var loc = windowToCanvas(canvas, e.clientX, e.clientY);

 e.preventDefault();
rubberbandStart(loc.x, loc.y);

};
...

In Example 4.11, it’s the copyCanvasPixels() method that modifies image data
to create a more transparent copy of the pixels in the canvas. In the next section,
we look more closely at that method.

4.5.2.1.1 The Image Data Array
The data property of an ImageData object is a reference to an array of 8-bit integers,
with values from 0 to 255, each representing the red, green, blue, and alpha values
of a pixel, as shown in Figure 4.13.

Chapter 4 Images and Video286

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 4.13 The image data array whose length is n

The application shown in Figure 4.11 on p. 284 copies image data representing
the entire canvas to a separate ImageData object, with the following function:

function copyCanvasPixels() {
var i=0;

// Copy red, green, and blue components of the first pixel

for (i=0; i < 3; i++) {
 imageDataCopy.data[i] = imageData.data[i];

}

// Starting with the alpha component of the first pixel,
// copy imageData, but make the copy more transparent

for (i=3; i < imageData.data.length - 4; i+=4) {
 imageDataCopy.data[i] = imageData.data[i] / 2; // Alpha
 imageDataCopy.data[i+1] = imageData.data[i+1]; // Red
 imageDataCopy.data[i+2] = imageData.data[i+2]; // Green
 imageDataCopy.data[i+3] = imageData.data[i+3]; // Blue

}
}

2874.5 Manipulating Images

Download from Join eBook (www.joinebook.com)

ptg7987094

The preceding code copies each pixel’s red, green, and blue components and
doubles the transparency of each pixel. The code loops through the array, jumping
over four integers every time through the loop. In the body of the loop, the code
copies the next four values from the array, cutting the alpha value for each pixel
in half.

The complete JavaScript for the application shown in Figure 4.11 on p. 284 is
listed in Example 4.12.

Example 4.12 A rubber band that modifies image data

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

 resetButton = document.getElementById('resetButton'),

 image = new Image(),
 imageData,
 imageDataCopy = context.createImageData(canvas.width, canvas.height),

 mousedown = {},
 rubberbandRectangle = {},
 dragging = false;

// Functions...

function windowToCanvas(canvas, x, y) {
var canvasRectangle = canvas.getBoundingClientRect();
return { x: x - canvasRectangle.left,

 y: y - canvasRectangle.top };
}

function copyCanvasPixels() {
var i=0;

// Copy red, green, and blue components of the first pixel
for (i=0; i < 3; i++) {

 imageDataCopy.data[i] = imageData.data[i];
}

// Starting with the alpha component of the first pixel,
// copy imageData, and make the copy more transparent
for (i=3; i < imageData.data.length - 4; i+=4) {

 imageDataCopy.data[i] = imageData.data[i] / 2; // Alpha
 imageDataCopy.data[i+1] = imageData.data[i+1]; // Red
 imageDataCopy.data[i+2] = imageData.data[i+2]; // Green
 imageDataCopy.data[i+3] = imageData.data[i+3]; // Blue

}
}

Chapter 4 Images and Video288

Download from Join eBook (www.joinebook.com)

ptg7987094

function captureCanvasPixels() {
 imageData = context.getImageData(0, 0, canvas.width, canvas.height);

copyCanvasPixels();
}

function restoreRubberbandPixels() {
var deviceWidthOverCSSPixels = imageData.width / canvas.width,

 deviceHeightOverCSSPixels = imageData.height / canvas.height;

// Restore the canvas to what it looked like when the mouse went down

 context.putImageData(imageData, 0, 0);

// Put the more transparent image data into the rubberband rectangle

 context.putImageData(imageDataCopy, 0, 0,

 rubberbandRectangle.left + context.lineWidth,
 rubberbandRectangle.top + context.lineWidth,

(rubberbandRectangle.width - 2*context.lineWidth)
* deviceWidthOverCSSPixels,

(rubberbandRectangle.height - 2*context.lineWidth)
* deviceHeightOverCSSPixels);

}

function setRubberbandRectangle(x, y) {
 rubberbandRectangle.left = Math.min(x, mousedown.x);
 rubberbandRectangle.top = Math.min(y, mousedown.y);
 rubberbandRectangle.width = Math.abs(x - mousedown.x),
 rubberbandRectangle.height = Math.abs(y - mousedown.y);
}

function drawRubberband() {
 context.strokeRect(rubberbandRectangle.left + context.lineWidth,
 rubberbandRectangle.top + context.lineWidth,
 rubberbandRectangle.width - 2*context.lineWidth,
 rubberbandRectangle.height - 2*context.lineWidth);
}

function rubberbandStart(x, y) {
 mousedown.x = x;
 mousedown.y = y;

 rubberbandRectangle.left = mousedown.x;
 rubberbandRectangle.top = mousedown.y;

(Continues)

2894.5 Manipulating Images

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.12 (Continued)

 rubberbandRectangle.width = 0;
 rubberbandRectangle.height = 0;

 dragging = true;

captureCanvasPixels();
}

function rubberbandStretch(x, y) {
if (rubberbandRectangle.width > 2*context.lineWidth &&

 rubberbandRectangle.height > 2*context.lineWidth) {
if (imageData !== undefined) {

restoreRubberbandPixels();
}

}

setRubberbandRectangle(x, y);

if (rubberbandRectangle.width > 2*context.lineWidth &&
 rubberbandRectangle.height > 2*context.lineWidth) {

drawRubberband();
}

}

function rubberbandEnd() {
 context.putImageData(imageData, 0, 0);

// Draw the canvas back into itself, scaling along the way
 context.drawImage(canvas,
 rubberbandRectangle.left + context.lineWidth*2,
 rubberbandRectangle.top + context.lineWidth*2,
 rubberbandRectangle.width - 4*context.lineWidth,
 rubberbandRectangle.height - 4*context.lineWidth,

0, 0, canvas.width, canvas.height);

 dragging = false;
 imageData = undefined;

}

// Event handlers..

canvas.onmousedown = function (e) {
var loc = windowToCanvas(canvas, e.clientX, e.clientY);

 e.preventDefault();
rubberbandStart(loc.x, loc.y);

};

Chapter 4 Images and Video290

Download from Join eBook (www.joinebook.com)

ptg7987094

canvas.onmousemove = function (e) {
var loc;

if (dragging) {
 loc = windowToCanvas(canvas, e.clientX, e.clientY);

rubberbandStretch(loc.x, loc.y);
}

};

canvas.onmouseup = function (e) {
rubberbandEnd();

};

// Initialization..

image.src = 'arch.png'; im-
age.onload = function () {
 context.drawImage(image, 0, 0, canvas.width, canvas.height);
};

resetButton.onclick = function(e) {
 context.clearRect(0, 0, canvas.width, canvas.height);
 context.drawImage(image, 0, 0, canvas.width, canvas.height);
};

context.strokeStyle = 'navy';
context.lineWidth = 1.0;

NOTE: Canvas specification update: Image data is an ArrayBuffer

In this section you saw how to access an array of eight-bit integers representing
the red, green, blue, and alpha color components for pixels in an image. You
reference that array through the data property of the ImageData object returned
from getImageData().

As this book went to press, the W3C changed the type of that reference to a
TypedArray. Typed arrays are data buffers that can be read by views. The idea
is that one data buffer can be read in different formats.

Technically, the image data array must be an ArrayBuffer, and the reference
to the array must be a Uint8ClampedArray. You can read more about typed
arrays at https://developer.mozilla.org/en/JavaScript_typed_arrays.

In practice, the change to the Canvas specification will not cause you to rewrite
your code, because you will continue to access the image data array as an array.
But under the covers, the array will be more flexible and efficient.

2914.5 Manipulating Images

Download from Join eBook (www.joinebook.com)

https://developer.mozilla.org/en/JavaScript_typed_arrays

ptg7987094

4.5.2.2 Image Data Looping Strategies
Given the following:

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 imagedata = context.getImageData(0,0,canvas.width,canvas.height),
 data = imagedata.data,
 length = imagedata.data.length,
 width = imagedata.width,
 index = 0,
 value;

Here are some ways to loop through image data:

Loop over every pixel:

for (var index=0; index < length; ++i) {
 value = data[index];
}

Loop backwards:

index = length-1;
while (index >= 0) {
 value = data[index];
 index--;
}

Only process alpha, not red, green, or blue:

for(index=3; index < length-4; index+=4) {
 data[index] = ...; // Alpha
}

Process red, green, and blue, but not alpha:

for(index=0; index < length-4; index+=4) {
 data[index] = ...; // Red
 data[index+1] = ...; // Green
 data[index+2] = ...; // Blue
}

See Section 4.9, “Performance,” on p. 313 for more information about looping
over image data and performance.

Chapter 4 Images and Video292

Download from Join eBook (www.joinebook.com)

ptg7987094

4.5.2.3 Filtering Images
Now that you know how to manipulate the individual pixels of an image, let’s
see how to implement image filters. Figure 4.14 shows two filters, a negative filter
and black-and-white filter, which are listed in Examples 4.13 and 4.14, respectively.

Figure 4.14 Top: original image; bottom: negative and black-and-white filters

Both the negative and black-and-white filters loop over the image data by leaping
over four values at a time, which consistently lands on the red value of a particular
pixel. Inside the loop, the filters change the red, green, and blue values of the pixel.
That algorithm leaves the alpha values of all the pixels unchanged.

The negative filter sets the red, green, and blue values of each pixel to 255
minus the current value; that setting inverts the colors.

The black-and-white filter takes the average of the red, green, and blue values of
each pixel, and assigns that average to each of the values; that process drains the
color from the image.

2934.5 Manipulating Images

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.13 A negative filter

var image = new Image(),
 canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 negativeButton = document.getElementById('negativeButton');

negativeButton.onclick = function() {
var imagedata =

 context.getImageData(0, 0, canvas.width, canvas.height),
 data = imagedata.data;

for(i=0; i <= data.length - 4; i+=4) {
 data[i] = 255 - data[i]
 data[i+1] = 255 - data[i+1];
 data[i+2] = 255 - data[i+2];

}
 context.putImageData(imagedata, 0, 0);
};

image.src = 'curved-road.png';
image.onload = function() {
 context.drawImage(image, 0, 0, image.width, image.height, 0, 0,
 context.canvas.width, context.canvas.height);
};

Example 4.14 A black-and-white filter

var image = new Image(),
 canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 drawInColorToggleCheckbox =
 document.getElementById('drawInColorToggleCheckbox');

function drawInBlackAndWhite() {
var data = undefined,

 i = 0;

 imagedata = context.getImageData(0, 0, canvas.width, canvas.height);
 data = imagedata.data;

for(i=0; i < data.length - 4; i+=4) {
 average = (data[i] + data[i+1] + data[i+2]) / 3;
 data[i] = average;
 data[i+1] = average;
 data[i+2] = average;

}
 context.putImageData(imagedata, 0, 0);
}

Chapter 4 Images and Video294

Download from Join eBook (www.joinebook.com)

ptg7987094

function drawInColor() {
 context.drawImage(image, 0, 0,
 image.width, image.height, 0, 0,
 context.canvas.width, context.canvas.height);
}

colorToggleCheckbox.onclick = function() {
if (colorToggleCheckbox.checked) {

drawInColor();
}
else {

drawInBlackAndWhite();
}

};

image.src = 'curved-road.png';
image.onload = function() {

drawInColor();
};

4.5.2.4 Device Pixels vs. CSS Pixels, Redux
Some image filters, such as the embossing filter shown in Figure 4.15, take into
account the width of the image data they filter. For example, the embossing filter

Figure 4.15 An embossing filter

2954.5 Manipulating Images

Download from Join eBook (www.joinebook.com)

ptg7987094

calculates pixel colors with a simple equation that uses the color values of the
current pixel, the pixel to the current pixel’s immediate right, and the pixel in
the next row underneath the current pixel. The width of the image data is needed
to calculate the location, in the image data array, of that pixel in the next row.

The gist of the application shown in Figure 4.15 is this:

function emboss() {
var imagedata, data, length, width;

 imagedata = context.getImageData(0, 0, canvas.width, canvas.height);
 data = imagedata.data;
 width = imagedata.width;
 length = data.length;

for (i=0; i < length; i++) {
if ((i+1) % 4 !== 0) {

// Use imagedata.width instead of the width you pass
// to getImageData(). Most of the time the two values
// are the same, but if the browser uses multiple device
// pixels per CSS pixel, only imagedata.width represents
// the true width of the image data.

 data[i] = 255/2 // Average value
+ 2*data[i] // Current pixel
- data[i+4] // Next pixel
- data[i+width*4]; // Pixel underneath

}
}

 context.putImageData(imagedata, 0, 0);
}

The preceding function smears all the pixels in the image to a muddy gray, and
then uses a technique known as edge detection to intensify that gray when a
sudden change in color—an edge—is detected. The algorithm that implements
the edge detection calculates pixel colors with the current pixel, the pixel to the
right of the current pixel, and the pixel underneath the current pixel.

However, the preceding function does not account for boundary conditions. For
example, the last row of pixels does not have another row underneath it, and the
rightmost pixel in a row does not have another pixel to the right of it. The emboss()
function listed in Example 4.15, which is the JavaScript for the application shown
in Figure 4.15, takes those boundary conditions into account.

Chapter 4 Images and Video296

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.15 An embossing filter

var image = new Image(),
 canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 embossButton = document.getElementById('embossButton'),
 embossed = false;

// Functions. ...

function emboss() {
var imagedata, data, length, width, index=3;

 imagedata = context.getImageData(0, 0, canvas.width, canvas.height);
 data = imagedata.data;
 width = imagedata.width;
 length = data.length;

for (i=0; i < length; i++) { // Loop through every pixel

// If we won't overrun the bounds of the array

if (i <= length-width*4) {

// If it's not an alpha

if ((i+1) % 4 !== 0) {

// If it's the last pixel in the row, there is no pixel
// to the right, so copy previous pixel's values.

if ((i+4) % (width*4) == 0) {
 data[i] = data[i-4];
 data[i+1] = data[i-3];
 data[i+2] = data[i-2];
 data[i+3] = data[i-1];
 i+=4;

}
else { // Not the last pixel in the row

 data[i] = 255/2
// Average value

+ 2*data[i]
// Current pixel

- data[i+4] // Next pixel
- data[i+width*4]; // Pixel underneath

}
}

}

(Continues)

2974.5 Manipulating Images

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.15 (Continued)

else { // Last row, no pixels underneath, so copy pixel above
if ((i+1) % 4 !== 0) {

 data[i] = data[i-width*4];
}

}
}

 context.putImageData(imagedata, 0, 0);
}

function drawOriginalImage() {
 context.drawImage(image, 0, 0,
 image.width, image.height,

0, 0, canvas.width, canvas.height);
}

embossButton.onclick = function() {
if (embossed) {

 embossButton.value = 'Emboss';
drawOriginalImage();

 embossed = false;
}
else {

 embossButton.value = 'Original image';
emboss();

 embossed = true;
}

};

// Initialization..

image.src = 'curved-road.png';
image.onload = function() {

drawOriginalImage();
};

The image manipulation examples that we’ve looked at in this chapter use small,
simple images, and therefore they have no performance issues. However, if you
are using complicated algorithms on relatively large images, you don’t want to
lock up the browser while you are performing those algorithms. Let’s see what
we can do to fix that case.

Chapter 4 Images and Video298

Download from Join eBook (www.joinebook.com)

ptg7987094

4.5.2.5 Image Processing Web Workers
It’s quite possible that you may run into performance issues when you process
images; for example, you may be processing large images on an underpowered
cell phone. If performance is an issue, you may want to consider offloading image
processing to web workers.

Browsers execute JavaScript on the main thread, which means that long running
scripts can make an application feel sluggish. Fortunately, HTML5 lets you use
web workers to execute code on a different thread. The application shown in
Figure 4.16 and listed in Example 4.16 applies a sunglass filter to its image, using
a web worker to do the actual image manipulation.

Figure 4.16 A sunglass filter

The main thread creates the worker with the statement sunglassFilter = new
Worker('sunglassFilter.js'). The filename passed to the Worker constructor
specifies a file that contains the worker’s JavaScript.

2994.5 Manipulating Images

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.16 The main thread

var image = new Image(),
 canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 sunglassButton = document.getElementById('sunglassButton'),
 sunglassesOn = false,
 sunglassFilter = new Worker('sunglassFilter.js');

// Functions...

function putSunglassesOn() {
 sunglassFilter.postMessage(
 context.getImageData(0, 0, canvas.width, canvas.height);

 sunglassFilter.onmessage = function (event) {
 context.putImageData(event.data, 0, 0);

};
}

function drawOriginalImage() {
 context.drawImage(image, 0, 0,
 image.width, image.height, 0, 0,
 canvas.width, canvas.height);

}

// Event handlers..

sunglassButton.onclick = function() {
if (sunglassesOn) {

 sunglassButton.value = 'Sunglasses';
drawOriginalImage();

 sunglassesOn = false;
}
else {

 sunglassButton.value = 'Original picture';
putSunglassesOn();

 sunglassesOn = true;
}

};

// Initialization..

image.src = 'curved-road.png';
image.onload = function() {

drawOriginalImage();
};

Chapter 4 Images and Video300

Download from Join eBook (www.joinebook.com)

ptg7987094

The main thread interacts with the worker in putSunglassesOn(), which posts a
message to the worker, passing the worker the image data from the canvas, and
then sets the worker’s onmessage property. Subsequently, after the worker manip-
ulates the pixels of the image and posts a message of its own, the browser invokes
the worker’s onmessage() method. In our case, that method puts the image data
modified by the worker back into the canvas.

The worker is listed in Example 4.17. It implements an image filter that darkens
color and sharpens contrast. After filtering the image data that it was passed, the
web worker posts the modified image data, which is received by the main thread.

Example 4.17 sunglassFilter.js: the web worker

onmessage = function (event) {
var imagedata = event.data,

 data = imagedata.data,
 length = data.length,
 width = imagedata.width;

for (i=0; i < length; ++i) {
if ((i+1) % 4 != 0) {

if ((i+4) % (width*4) == 0) { // Last pixel in a row
 data[i] = data[i-4];
 data[i+1] = data[i-3];
 data[i+2] = data[i-2];
 data[i+3] = data[i-1];
 i+=4;

}
else {

 data[i] = 2*data[i] - data[i+4] - 0.5*data[i+4];
}

}
}

postMessage(imagedata);
};

Recall that workers are useful because you can put long-running code on another
thread, which helps to keep the browser responsive. But image manipulation
web workers are useful for another reason: They encapsulate an image manipu-
lation algorithm, and therefore they are reusable. In fact, let’s see how to reuse
the web worker listed in Example 4.17.

3014.5 Manipulating Images

Download from Join eBook (www.joinebook.com)

ptg7987094

4.6 Clipping Images
The application shown in Figure 4.17 takes the application shown in Figure 4.16
to its logical conclusion.

The sunglasses application, which is listed in Example 4.18, uses web workers,
image manipulation, an offscreen canvas, clipping, and the Canvas drawing APIs.
At a high level, here’s how it works:

var sunglassFilter = new Worker('sunglassFilter.js');
...
imagedata = context.getImageData(0, 0, canvas.width, canvas.height);
sunglassFilter.postMessage(imagedata);

sunglassFilter.onmessage = function(event) {
 offscreenContext.putImageData(event.data, 0, 0);

drawLenses(leftLensLocation, rightLensLocation);
drawWire(center);
drawConnectors(center);

};
...

The application gets the image data from the canvas and subsequently posts it
to the sunglass web worker listed in Example 4.17.

The web worker filters the image data, making the image darker with higher
contrast, and subsequently posts the modified image data. That post causes the
browser to call the worker’s onmessage() method. That method, as you can see
in the preceding code snippet, copies the modified pixels into an offscreen canvas
and then draws the lens, the wire, and the connectors.

The drawLenses() method saves the context and begins a path. Then it adds the
two circles representing the lenses to the path, sets the clipping region to that
path, and draws the offscreen canvas onscreen. Because clipping is set to the two
circles, that’s the only part of the canvas that’s affected when the offscreen canvas
is drawn on screen. The drawLenses() method ends by restoring the context, and
that resets the clipping region to whatever it was before the call to context.clip().

The drawWire() and drawConnectors() methods in Example 4.18 use the Canvas
drawing APIs to draw the wire and connectors, respectively.

Chapter 4 Images and Video302

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 4.17 Sunglasses

Example 4.18 Sunglasses: image manipulation, an offscreen canvas, and clipping

var image = new Image(),
 canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

 offscreenCanvas = document.createElement('canvas'),
 offscreenContext = offscreenCanvas.getContext('2d'),

 sunglassButton = document.getElementById('sunglassButton'),
 sunglassesOn = false,
 sunglassFilter = new Worker('sunglassFilter.js'),

 LENS_RADIUS = canvas.width/5;

// Functions...

(Continues)

3034.6 Clipping Images

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.18 (Continued)

function drawLenses(leftLensLocation, rightLensLocation) {
 context.save();
 context.beginPath();

 context.arc(leftLensLocation.x, leftLensLocation.y,
 LENS_RADIUS, 0, Math.PI*2, false);
 context.stroke();

moveTo(rightLensLocation.x, rightLensLocation.y);

 context.arc(rightLensLocation.x, rightLensLocation.y,
 LENS_RADIUS, 0, Math.PI*2, false);
 context.stroke();

 context.clip();

 context.drawImage(offscreenCanvas, 0, 0,
 canvas.width, canvas.height);
 context.restore();
}

function drawWire(center) {
 context.beginPath();
 context.moveTo(center.x - LENS_RADIUS/4, center.y - LENS_RADIUS/2);

 context.quadraticCurveTo(center.x, center.y - LENS_RADIUS+20,
 center.x + LENS_RADIUS/4,
 center.y - LENS_RADIUS/2);
 context.stroke();
}

function drawConnectors(center) {
 context.beginPath();

 context.fillStyle = 'silver';
 context.strokeStyle = 'rgba(0,0,0,0.4)';
 context.lineWidth = 2;

 context.arc(center.x - LENS_RADIUS/4, center.y - LENS_RADIUS/2,
4, 0, Math.PI*2, false);

 context.fill();
 context.stroke();

 context.beginPath();
 context.arc(center.x + LENS_RADIUS/4, center.y - LENS_RADIUS/2,

4, 0, Math.PI*2, false);
 context.fill();
 context.stroke();
}

Chapter 4 Images and Video304

Download from Join eBook (www.joinebook.com)

ptg7987094

function putSunglassesOn() {
var imagedata,

 center = {
 x: canvas.width/2,
 y: canvas.height/2

},
 leftLensLocation = {
 x: center.x - LENS_RADIUS - 10,
 y: center.y

},
 rightLensLocation = {
 x: center.x + LENS_RADIUS + 10,
 y: center.y

},

 imagedata = context.getImageData(0, 0,
 canvas.width, canvas.height);

 sunglassFilter.postMessage(imagedata);

 sunglassFilter.onmessage = function(event) {
 offscreenContext.putImageData(event.data, 0, 0);

drawLenses(leftLensLocation, rightLensLocation);
drawWire(center);
drawConnectors(center);

};
}

function drawOriginalImage() {
 context.drawImage(image, 0, 0, image.width, image.height,

0, 0, canvas.width, canvas.height);
}

// Event handlers..

sunglassButton.onclick = function() {
if (sunglassesOn) {

 sunglassButton.value = 'Sunglasses';
drawOriginalImage();

 sunglassesOn = false;
}
else {

 sunglassButton.value = 'Original picture';
putSunglassesOn();

 sunglassesOn = true;
}

};

(Continues)

3054.6 Clipping Images

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.18 (Continued)

offscreenCanvas.width = canvas.width;
offscreenCanvas.height = canvas.height;

// Initialization..

image.src = 'curved-road.png';
image.onload = function() {

drawOriginalImage();
};

Now that you know how to manipulate images with the Canvas API, let’s see
how we can put image manipulation into motion.

4.7 Animating Images
You can animate images by successively applying image filters over a period of
time. For example, the application in Figure 4.18 fades an image.

The application uses setInterval() to repeatedly decrease the alpha channel
of every pixel in the image until the image fades from view.

When the user clicks the Fade Out button, the application starts an animation
that cycles 25 times. Each cycle runs at 60 frames per second, so the entire
animation takes about 1/2 second.

The tricky part about the fadeout animation is that different pixels may have
different alpha values to begin with, and therefore, for every step in the animation,
the application must decrease the alpha value for different pixels differently,
depending on their initial value. To facilitate this variable-alpha-channel
reduction, the application takes a snapshot of all the image’s original pixels with
getImageData(), and subsequently consults those initial values when calculating
how much to decrease a pixel’s alpha for a given step in the animation.

The application shown in Figure 4.18 listed in Example 4.19.

Chapter 4 Images and Video306

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 4.18 Fading an image out of a canvas

Example 4.19 Fading an image out of a canvas

var image = new Image(),
 canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 fadeButton = document.getElementById('fadeButton'),
 originalImageData = null,
 interval = null;

// Functions...

(Continues)

3074.7 Animating Images

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.19 (Continued)

function increaseTransparency(imagedata, steps) {
var alpha, currentAlpha, step, length = imagedata.data.length;

for (var i=3; i < length; i+=4) { // For every alpha component
 alpha = originalImageData.data[i];

if (alpha > 0 && imagedata.data[i] > 0) { // Not transparent yet
 currentAlpha = imagedata.data[i];
 step = Math.ceil(alpha/steps);

if (currentAlpha - step > 0) { // Not too close to the end
 imagedata.data[i] -= step; // Increase transparency

}
else {

 imagedata.data[i] = 0; // End: totally transparent
}

}
}

}

function fadeOut(context, imagedata, x, y,
 steps, millisecondsPerStep) {

var frame = 0,
 length = imagedata.data.length;

 interval = setInterval(function () { // Once every millisecondsPerStep
 frame++;

if (frame > steps) { // Animation is over
clearInterval(interval); // End animation
animationComplete(); // Put picture back in 1s

}
else {
increaseTransparency(imagedata, steps);

 context.putImageData(imagedata, x, y);
}

}, millisecondsPerStep);
}

// Animation...

function animationComplete() {
setTimeout(function() {

 context.drawImage(image, 0, 0, canvas.width, canvas.height);
}, 1000);

}

Chapter 4 Images and Video308

Download from Join eBook (www.joinebook.com)

ptg7987094

// Event handlers..

fadeButton.onclick = function() {
fadeOut(context,

 context.getImageData(0, 0, canvas.width, canvas.height),
0, 0, 20, 1000/60);

};

// Initialization..

image.src = 'log-crossing.png';
image.onload = function() {
 context.drawImage(image, 0, 0, canvas.width, canvas.height);
 originalImageData = context.getImageData(0, 0,
 canvas.width, canvas.height);
};

TIP: There are easier ways to fade an image

The application shown in Figure 4.18 fades an image by manipulating the alpha
values of each pixel in the image.As is typically the case, there are several ways
to accomplish the same thing with canvas; for example, you could fade the image
by setting the context’s globalAlpha variable and simply drawing the image.

4.7.1 Animating with an Offscreen Canvas
The application shown in Figure 4.18 faded an image from view by repeatedly
increasing the transparency of every pixel in the image. An image’s pixels
may have varying levels of transparencies to begin with, however, so after initially
drawing the image, the application calls getImageData() to capture the image’s
pixels. The application subsequently uses the pixel’s original transparency value
(the alpha value), stored in the image data, to calculate how much to decrease a
pixel’s transparency for each step of the animation.

It would be convenient to use the same algorithm for fading images into view,
by initially taking a snapshot of the image’s pixels and using those alpha values
to determine how much to increase each pixel’s transparency for each step of the
animation. However, when fading an image into view, the image is not initially
displayed, and therefore you cannot capture its pixels.

To capture the image’s pixels before the image is displayed, the application shown
in Figure 4.19 draws the image into an offscreen canvas and captures the pixels
from that canvas.

3094.7 Animating Images

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 4.19 Fading an image into a canvas

Example 4.20 lists the application shown in Figure 4.19 in its entirety.

Example 4.20 Fading an image into a canvas

var image = new Image(),
 canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 offscreenCanvas = document.createElement('canvas'),
 offscreenContext = offscreenCanvas.getContext('2d'),
 fadeButton = document.getElementById('fadeButton'),
 imagedata,
 imagedataOffscreen,
 interval = null;

// Functions...

Chapter 4 Images and Video310

Download from Join eBook (www.joinebook.com)

ptg7987094

function increaseTransparency(imagedata, steps) {
var alpha,

 currentAlpha,
 step,
 length = imagedata.data.length;

for (var i=3; i < length; i+=4) { // For every alpha component
 alpha = imagedataOffscreen.data[i];

if (alpha > 0) {
 currentAlpha = imagedata.data[i];
 step = Math.ceil(alpha/steps);

if (currentAlpha + step <= alpha) { // Not at original alpha yet
 imagedata.data[i] += step; // Increase transparency

}
else {

 imagedata.data[i] = alpha; // End: original transparency
} }

}
}

function fadeIn(context, imagedata, steps, millisecondsPerStep) {
var frame = 0;

for (var i=3; i < imagedata.data.length; i+=4) { // For every alpha
 imagedata.data[i] = 0;

}

 interval = setInterval(function () { // Every millisecondsPerStep
 frame++;

if (frame > steps) {
clearInterval(interval);
}

else {
increaseTransparency(imagedata, steps);

 context.putImageData(imagedata, 0, 0);
}

}, millisecondsPerStep);
}

// Animation...

(Continues)

3114.7 Animating Images

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.20 (Continued)

function animationComplete() {
setTimeout(function() {

 context.clearRect(0, 0, canvas.width, canvas.height);
}, 1000);

}

// Event handlers..

fadeButton.onclick = function() {
 imagedataOffscreen = offscreenContext.getImageData(0, 0,
 canvas.width, canvas.height);

fadeIn(context,
 offscreenContext.getImageData(0, 0,
 canvas.width, canvas.height),

50,
1000 / 60);

};

// Initialization..

image.src = 'log-crossing.png';
image.onload = function() {
 offscreenCanvas.width = canvas.width;
 offscreenCanvas.height = canvas.height;
 offscreenContext.drawImage(image,0,0);
};

4.8 Security
Images are often security risks; for example, you may want to restrict access
to pictures you post to a social network, or a corporation may wish to keep product
prototype pictures under wraps. Or you may be a politician.

So, because of security concerns, the HTML5 Canvas specification lets you draw
images that are not your own (meaning images from other domains), but you
cannot save or manipulate cross-domain images with the Canvas API.

Here’s how Canvas image security works:

Every canvas has a flag called origin-clean whose value is originally true. If
you use drawImage() to draw a cross-domain image, the origin-clean flag is set
to false. Likewise, if you use drawImage() to draw another canvas whose
origin-clean flag is set to false, then the canvas that you are drawing into will
also have its origin-clean flag set to false.

Chapter 4 Images and Video312

Download from Join eBook (www.joinebook.com)

ptg7987094

In and of itself, setting up a canvas’s origin-clean flag to false does not result in
any immediate action, such as throwing an exception. However, if you call
toDataURL() or getImageData() for a canvas whose origin-clean flag is false,
the browser will throw a SECURITY_ERR exception.

The browser considers your file system to be a different domain from the domain
in which your application runs, so, by default, you cannot save or manipulate
images from your own file system. That restriction is not practical during devel-
opment, however, so most browsers provide a workaround. For example, Chrome
lets you specify a command-line argument, --allow-file-access-from-files,
when you start the browser. That argument circumvents that restriction and lets
you save or manipulate cross-domain images. With Firefox, you can call the
following function:

netscape.security.PrivilegeManager.enablePrivilege(
"UniversalBrowserRead");

If you start Chrome from the command line with the --allow-file-access-
from-files command-line argument, your entire application can save or manip-
ulate cross-domain images. If, however, you call the enablePrivilege() method
on Firefox’s PrivilegeManager, requesting the UniversalBrowserRead privilege,
you will only be able to save or manipulate cross-domain images in the same
method in which you made the call to enablePrivilege().

TIP: Running this book’s examples

You can download the code for all of the examples in this book from
corehtml5canvas.com, or you can run many of the book’s examples online
from that website. If you choose to download the code and run the examples on
your file system, be aware that you will have to take one of the steps mentioned
in this section to relax the cross-domain restrictions to run any of the book’s
examples that use toDataURL() or getImageData() to create or manipulate
images.

4.9 Performance
Performance can be an important consideration when you are manipulating
images. This section discusses three benchmarks from jsperf.com that address
the following performance concerns:

• Looping through image data
• Using drawImage() vs. putImageData()

3134.9 Performance

Download from Join eBook (www.joinebook.com)

ptg7987094

• Drawing a canvas instead of an image with drawImage()
• Scaling when you draw images with drawImage()

As always, be aware that the results of any benchmark can change significantly
over time and across different browsers. You should regard all the performance
recommendations that follow as guidelines for your own code, not as fundamental
principles. It’s also a good idea to go to jsperf.com to look the current state of the
benchmarks.

4.9.1 drawImage(HTMLImage) vs. drawImage(HTMLCanvas) vs.
putImageData()

Both drawImage() and putImageData() can draw images into a canvas. At
the time this book was written, drawImage() was considerably faster than
putImageData().

As an added bonus to its performance advantage, drawImage() can do something
that putImageData() cannot: It can draw one canvas into another. The test dis-
cussed in this section illustrates that, on average, you do not pay too high of a
performance penalty drawing a canvas versus drawing an image.

• Prefer drawImage() to putImageData().

• On average, drawing a canvas is on par with drawing an image.

Here’s the setup code:

<canvas width=364 height=126 id="c1"></canvas>
<canvas width=364 height=126 id="c2"></canvas>

<script>
var c1 = document.getElementById('c1').getContext('2d');
var c2 = document.getElementById('c2').getContext('2d');
var c2_c = document.getElementById('c2');
var img = document.getElementById('imgd');

 c1.drawImage(img, 0, 0);
var imgData = c1.getImageData(0, 0, parseInt(img.width),

parseInt(img.height));

function execute(drawMethod) {
for(var i=0; i< 100; i++) {

drawMethod(i);
}

}
</script>

Chapter 4 Images and Video314

Download from Join eBook (www.joinebook.com)

ptg7987094

The test creates a couple of canvases and an image, draws the image in one
of the canvases, and gets a reference to the corresponding image data. The setup
code also implements a function that calls one of three test methods.

The test cases and results are shown in Figure 4.20.

Figure 4.20 drawImage(HTMLImage) vs. drawImage(HTMLCanvas) vs. putImageData();
higher numbers indicate better performance

As you can see from the test cases, putImageData() is almost always slower than
drawImage(), often in a big way. In general then, it’s best to prefer the former
over the latter, all other things being equal.

3154.9 Performance

Download from Join eBook (www.joinebook.com)

ptg7987094

4.9.2 Drawing a Canvas vs. Drawing an Image, into a Canvas; Scaled vs. Unscaled
In Section 4.3, “Drawing a Canvas into a Canvas,” on p. 266 you saw how to draw
a canvas into itself, scaling the canvas’s image along the way. As it turns out,
drawing a canvas into itself is expensive, and scaling the canvas’s image along
the way is even more expensive.

• Drawing a canvas into itself is expensive.

• Scaling a canvas can be expensive.

Here’s the setup for this simple test:

<script>
var c = document.createElement('canvas');

 c.width = 256;
 c.height = 256;

var ctx = c.getContext('2d');
 ctx.clearRect(0, 0, c.width, c.height);

var img = new Image(),
 img.src = c.toDataURL();
</script>

Figure 4.21 Drawing a canvas into itself; higher numbers translate to better performance

Chapter 4 Images and Video316

Download from Join eBook (www.joinebook.com)

ptg7987094

The setup code creates a canvas and clears part of it with clear black. Then the
code creates an image and sets the image’s source to the image from the canvas.

The test cases are shown in Figure 4.21.

4.9.3 Looping over Image Data
Image manipulation, by its very nature, is performance intensive. Looping through
an array that can contain a huge amount of data is an expensive operation. Fortu-
nately, there are some things you can do to increase performance when you
manipulate image data in a canvas:

• Avoid accessing object properties in the loop: Store properties in local variables instead.

• Loop over every pixel, not every pixel value.

• Looping backwards and bit-shifting are crap shoots.

• Don’t call getImageData() repeatedly for small amounts of data.

Let’s take a look at a jsPerf test that benchmarks various ways to loop through
image data. First, the setup code:

var canvas = document.createElement('canvas');
canvas.width = 256;
canvas.height = 256;

var ctx = canvas.getContext('2d');
ctx.fillRect(0, 0, 256, 256);

var id = ctx.getImageData(0, 0, 256, 256);
var pixels = id.data;
var length = pixels.length;
var width = id.width;
var height = id.height;

The preceding code creates a canvas element, sets the canvas’s width and height,
and fills the canvas with clear black. The code subsequently uses getImageData()
to get a reference to the canvas’s image data. Finally, the code stores image data
parameters, such as the length and width of the image data array, into local
variables.

Figure 4.22 and Figure 4.23 show the various test cases.

4.9.3.1 Avoid Accessing Object Properties in the Loop: Store Properties in Local Variables Instead
The first four test cases in Figure 4.22 contrast repeatedly accessing image data
properties, such as width and height, versus storing those values in local variables.

3174.9 Performance

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 4.22 Looping over image data (http://bit.ly/novcmK)

Chapter 4 Images and Video318

Download from Join eBook (www.joinebook.com)

http://bit.ly/novcmK

ptg7987094

Figure 4.23 Looping over image data statistics; higher numbers indicate better performance

3194.9 Performance

Download from Join eBook (www.joinebook.com)

ptg7987094

They also show the difference between looping over the image data with one
loop versus two.

If you loop over the image data in one loop, it makes no difference whether you
access properties or store them in local variables. If you loop over the data in two
loops, however, local variables are much faster than properties. As a result, it
appears that storing properties in local variables is a good strategy.

4.9.3.2 Loop over Every Pixel, Not over Every Pixel Value
Recall that image data for each pixel is represented by four 8-bit integer values,
one each for the red, green, blue, and alpha components of the pixel, ranging
from 0 to 255. Also recall that browsers may represent each pixel with multiple
pixel values for higher image fidelity.

If you loop over every one of those values, you are looping four times more than
you need to. It’s better to loop over pixel boundaries, instead of the individual
pixel components; that’s why you see the number 4 in several of the test cases.

You might suspect that looping four times more than necessary will significantly
degrade performance, and you would be correct. The results of the tests shown
in Figure 4.23 validate that performance degradation, with the exception of iPad
and Safari.

The test cases local variables 1d and local variables 1d hack one in
Figure 4.22 contrast looping over every pixel (local variables 1d) vs. looping
over every pixel component (local variables 1d hack one). Notice that
looping over every pixel is, in general, faster, sometimes considerably so.

4.9.3.3 Looping Backwards and Bit-Shifting Are Crap Shoots
The prevailing conventional wisdom concerning looping through arrays in
JavaScript is to loop backwards, and to use bit-shifting to calculate array offsets.
The tests in Figure 4.23 indicate that bit-shifting makes no significant difference
and that looping backwards can, in some cases significantly, degrade performance.
Looping backwards (test case local variables 1d hack three) is astoundingly
slow on Chrome, makes no difference on Firefox, and is a little faster than looping
forward (test case local variables 1d hack one) on Safari and iPad. In other
words, a crap shoot.

Before you loop backwards or use bit-shifting, it’s a good idea to do some
benchmarking of your own. Hopefully, you will always have better opportunities
to increase performance other than restoring to looping backwards and using
bit-shifting.

Chapter 4 Images and Video320

Download from Join eBook (www.joinebook.com)

ptg7987094

4.9.3.4 Don’t Call getImageData() Repeatedly for Small Amounts of Data
Instead of calling getImageData() once to get all of the pixels in an image, the
last test case in Figure 4.23 calls getImageData() repeatedly to access each pixel
in the image data array.

Although it’s risky to make dogmatic statements about performance, it’s probably
safe to assume that getImageData() is relatively expensive, and that calling it
once for every pixel in an image data array is a strategy that you should avoid at
all costs.

4.10 A Magnifying Glass
Figure 4.24 shows the magnifying glass application that was introduced at the
beginning of this chapter. You can drag the magnifying glass to magnify different
parts of the image, and you can change the size of the magnifying glass lens and
the magnification scale with the sliders at the top of the application.

Figure 4.24 A magnifying glass

Here’s how the magnifying glass works:

3214.10 A Magnifying Glass

Download from Join eBook (www.joinebook.com)

ptg7987094

As the user drags the mouse, the application captures the pixels of the smallest
rectangle that encloses the magnifying glass lens.

Then the application sets the clipping region to the magnifying glass lens and
draws the canvas into itself, scaling the canvas pixels along the way with the
nine-argument version of drawImage().

Besides drawing the magnified pixels in the magnifying glass, the application
also erases the magnifying glass as the user drags it around the canvas. Every
time the mouse moves while the user is dragging the magnifying glass, the appli-
cation calls putImageData() to restore the background that the application saved
with getImageData() the last time the user moved the mouse.

So every time the user moves the mouse while dragging the magnifying glass,
the application performs the following steps:

1. Call putImageData() to restore the background at the previous magnifying
glass location.

2. Call getImageData() to save pixels underneath the glass at its new location.
3. Set the clipping region to the magnifying glass lens.
4. Call drawImage() to draw the magnified pixels back into the canvas.
5. Draw the magnifying glass lens.

Here’s the application’s mouse move event handler:

canvas.onmousemove = function (e) {
if (dragging) {

eraseMagnifyingGlass();
drawMagnifyingGlass(windowToCanvas(e.clientX, e.clientY));

}
};

The eraseMagnifyingGlass() method performs the first step listed above.

function eraseMagnifyingGlass() { // Called when the mouse moves
if (imageData != null) {

 context.putImageData(imageData,
 magnifyRectangle.x, magnifyRectangle.y);

}
}

The first time the application calls eraseMagnifyingGlass(), there’s nothing to
erase; thus, the check for imageData != null; otherwise, the application calls
putImageData() to erase the previous drawing of the magnifying glass.

After erasing the magnifying glass, the application’s mouse move event handler
invokes drawMagnifyingGlass(), which is implemented like this:

Chapter 4 Images and Video322

Download from Join eBook (www.joinebook.com)

ptg7987094

function drawMagnifyingGlass(mouse) {
var scaledMagnifyRectangle = null;

 magnifyingGlassX = mouse.x;
 magnifyingGlassY = mouse.y;

calculateMagnifyRectangle(mouse);

 imageData = context.getImageData(magnifyRectangle.x,
 magnifyRectangle.y,
 magnifyRectangle.width,
 magnifyRectangle.height);
 context.save();

 scaledMagnifyRectangle = {
 width: magnifyRectangle.width * magnificationScale,
 height: magnifyRectangle.height * magnificationScale

};

setClip();

 context.drawImage(canvas,
 magnifyRectangle.x, magnifyRectangle.y,
 magnifyRectangle.width, magnifyRectangle.height,

 magnifyRectangle.x + magnifyRectangle.width/2 -
 scaledMagnifyRectangle.width/2,

 magnifyRectangle.y + magnifyRectangle.height/2 -
 scaledMagnifyRectangle.height/2,

 scaledMagnifyRectangle.width,
 scaledMagnifyRectangle.height);

 context.restore();

drawMagnifyingGlassCircle(mouse);
}

function setClip() {
 context.beginPath();
 context.arc(magnifyingGlassX, magnifyingGlassY,
 magnifyingGlassRadius, 0, Math.PI*2, false);

 context.clip();
}

The drawMagnifyingGlass() function calculates the smallest rectangle enclosing
the magnifying glass at its new location and captures the pixels for that rectangle
so that the application can erase the magnifying glass.

3234.10 A Magnifying Glass

Download from Join eBook (www.joinebook.com)

ptg7987094

Then the application calculates the scaled width and height for the magnified
pixels and sets the clipping region to the magnifying glass lens.

Finally, drawMagnifyingGlass() draws the canvas into itself, scaling pixels along
the way. Figure 4.25 illustrates how the call to drawImage() works.

Figure 4.25 Copying magnified pixels to the magnifying glass lens. Top: unclipped; bottom:
clipped

The top screenshot in Figure 4.25 was taken with the call to setClip() commented
out. Without setting the clipping region, you can see all of the magnified pixels
drawn by the call to drawImage() in drawMagnifyingGlass().

Chapter 4 Images and Video324

Download from Join eBook (www.joinebook.com)

ptg7987094

The bottom screenshot shows the application with the call to setClip() restored.
With clipping, the magnified pixels are restricted to the inside of the magnifying
glass lens.

NOTE: The magnifying glass application’s sliders

The magnifying glass application places sliders at the top of the page so that
you can change the magnification scale and the size of the magnifying glass
lens. Those sliders are custom controls, implemented in a canvas of their own,
and they are discussed in Chapter 10.

4.10.1 Using an Offscreen Canvas
The magnifying glass implementation discussed in Section 4.10, “A Magnifying
Glass,” on p. 321 draws a canvas into itself, scaling along the way. Alternatively,
you can use an offscreen canvas to scale the pixels, and subsequently draw from
that offscreen canvas back into the onscreen canvas, as illustrated in Example 4.21.

Example 4.21 Using offscreen canvases

var ...
 offscreenCanvas = document.createElement('canvas'),
 offscreenContext = offscreenCanvas.getContext('2d');
...

function drawMagnifyingGlass(mouse) {
var scaledMagnifyRectangle = null;

 magnifyingGlassX = mouse.x;
 magnifyingGlassY = mouse.y;

calculateMagnifyRectangle(mouse);

 imageData = context.getImageData(magnifyRectangle.x,
 magnifyRectangle.y,
 magnifyRectangle.width,
 magnifyRectangle.height);
 context.save();

 scaledMagnifyRectangle = {
 width: magnifyRectangle.width * magnificationScale,
 height: magnifyRectangle.height * magnificationScale

};

setClip();

(Continues)

3254.10 A Magnifying Glass

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.21 (Continued)

 offscreenContext.drawImage(canvas,
 magnifyRectangle.x, magnifyRectangle.y,
 magnifyRectangle.width, magnifyRectangle.height,

0, 0,
 scaledMagnifyRectangle.width,
 scaledMagnifyRectangle.height);

 context.drawImage(offscreenCanvas, 0, 0,
 scaledMagnifyRectangle.width,
 scaledMagnifyRectangle.height,

 magnifyRectangle.x + magnifyRectangle.width/2 -
 scaledMagnifyRectangle.width/2,

 magnifyRectangle.y + magnifyRectangle.height/2 -
 scaledMagnifyRectangle.height/2,

 scaledMagnifyRectangle.width,
 scaledMagnifyRectangle.height);

 context.restore();

drawMagnifyingGlassCircle(mouse);
}

For the magnifying glass application, drawing the canvas into itself rather than
using an offscreen canvas resulted in slightly better performance.

4.10.2 Accepting Dropped Images from the File System
The magnifying glass application uses the HTML5 Drag and Drop and FileSystem
APIs, so you can drag an image from your desktop and drop it onto the applica-
tion. Figure 4.26 shows the application accepting an image that a user dragged
from the desktop and dropped on the application. When the user drops the
image, the application responds by displaying the image, as shown in the bottom
screenshot in Figure 4.26.

At the time this book was written, Chrome was the only browser that supported
the FileSystem API. Example 4.22 shows how the magnifying glass application
uses that API.

The magnifying glass application implements drag enter and drag over event
listeners to prevent the browser from its default reaction to dragging and to
indicate that drops are allowed.

Chapter 4 Images and Video326

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 4.26 Top: user drops image (note drag-and-drop icon in the upper-right corner);
bottom: app displays dropped image

The application also has a drop listener that uses the FileSystem API to request
5 MB of disk space on the file system. The application then creates an image file
and sets the image element’s src attribute to a URL obtained from the file system.

Example 4.22 Using the FileSystem API

canvas.addEventListener('dragenter', function (e) {
 e.preventDefault();
 e.dataTransfer.effectAllowed = 'copy';
}, false);

canvas.addEventListener('dragover', function (e) {
 e.preventDefault();
}, false);

window.requestFileSystem =
 window.requestFileSystem || window.webkitRequestFileSystem;

(Continues)

3274.10 A Magnifying Glass

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.22 (Continued)

canvas.addEventListener('drop', function (e) {
var file = e.dataTransfer.files[0];

 window.requestFileSystem(window.TEMPORARY, 5*1024*1024,
function (fs) {

 fs.root.getFile(file.name, {create: true},
function (fileEntry) {

 fileEntry.createWriter(function (writer) {
 writer.write(file);

});
 image.src = fileEntry.toURL();

},

function (e) {
alert(e.code);

}
);

},

function (e) {
alert(e.code);

}
);

}, false);

4.11 Video Processing
Videos are big business. In 2006, Google acquired YouTube for $1.65 billion, and
today according to Google, YouTube accounts for more than 20 percent of Internet
traffic worldwide. Once almost exclusively the realm of Flash, the landscape of
video on the web has tilted drastically toward HTML5.

HTML5 provides a video element that lets you play and control videos. And the
Canvas API lets you process videos, frame by frame, as the video plays.

Recall from Section 4.1.2, “The drawImage() Method,” on p. 257 that besides
drawing images, drawImage() can draw a video frame into a canvas, like this:

var video = document.getElementById('video'); // A <video> element
...

context.drawImage(video, 0, 0); // Draw video frame

The video argument to drawImage() in the preceding code listing is an
HTMLVideoElement. Once you can draw a video frame into a canvas, you can

Chapter 4 Images and Video328

Download from Join eBook (www.joinebook.com)

ptg7987094

combine animation with the video and canvas elements to do video processing
on the fly. Section 4.11.3, “Processing Videos,” on p. 333 shows how to do that.

4.11.1 Video Formats
As this book went to press, three video formats were in widespread use, as shown
in Table 4.3.

Table 4.3 Browser support for video formats

First Supported inFormat

IE9.0, Chrome 3.0 (to be removed), Safari 3.1H.264 (MPEG-4)

Firefox 3.5, Chrome 3.0, Opera 10.5Ogg Theora

Firefox 4.0, Chrome 6.0, Opera 10.6VP8 (WebM)

Notice that none of the three formats are supported by all major browsers. Because
of that restriction, you must specify multiple formats to ensure that your videos
run on all platforms. You can do that by embedding source elements in video
elements, like this:

<video>
 <source src='video.ogg'/>
 <source src='video.mp4'/>
</video>

NOTE: A short history of video formats

The HTML5 specification originally required the Ogg Theora format for video
because it was freely available and open source and because the specification’s
authors believed it was better to specify a single format rather than many.
Mozilla and Opera are big supporters of Ogg Theora.

However, some companies, such as Apple and Nokia, were concerned about
patent issues (see the note below), and Apple didn’t think it was a good idea to
directly specify a video format in the specification.

As a result, the specification was rewritten, and the requirement for Ogg Theora
removed.

Subsequently, in 2010, Google acquired On2’s VP8 format and released the
software under an irrevocable free patent, BSD-like license. In January 2011,
Google announced that it would end native support for MPEG-4 in Chrome.

3294.11 Video Processing

Download from Join eBook (www.joinebook.com)

ptg7987094

NOTE: Submarine patents and patent ambushes

Until 1995, US patent terms were measured from the date of issuance, instead
of from the original filing date. Although it was somewhat expensive, one could
file for a patent, and file a succession of continuation applications to delay the
patent’s issuance. Such patents are known as submarine patents.

Subsequently, when a wealthy corporation violates a submarine patent, whoever
filed the patent originally stops filing continuations, the patent is issued, and the
patent holder sues the unsuspecting corporation, presumably for a large payoff.

Submarine patents are just one aspect of the arcane world of software patents.
Another strategy is a patent ambush, where someone who’s company is about
to file a patent joins a software standards body and influences the standard to
violate the patent.

Even though no known patents violate the free and open source Ogg format,
both Apple and Nokia objected to Ogg, partially because of concerns for
submarine patents and patent ambushes.

4.11.1.1 Converting Formats
Because none of the three most widely used video formats are used by all
major browsers, you must provide multiple formats of all your videos to ensure
portability across all platforms. Because of that requirement, sooner or later you
will need to convert videos from one format to another.

There are many ways to convert videos from one format to another. Figure 4.27
shows a Firefox extension that does just that.

Figure 4.27 Converting formats

Chapter 4 Images and Video330

Download from Join eBook (www.joinebook.com)

ptg7987094

4.11.2 Playing Video in a Canvas
Ultimately our goal in exploring Canvas’s video support is to implement on-the-
fly video processing. The first step is to simply play a video in a canvas. Figure 4.28
shows an application that draws frames from an invisible video element into a
visible canvas element, scaling each video frame to fit the canvas.

Figure 4.28 Playing a video in a canvas

The HTML for the application shown in Figure 4.28 is listed in Example 4.23.

Notice the CSS for the video element in the listing. The video’s display attribute
makes it invisible.

The application plays the invisible video and in an animation loop—implemented
with the requestNextAnimationFrame() polyfill function discussed in Section 5.1.3,
“A Portable Animation Loop,” on p. 348—continually draws the current video
frame into the canvas. As a result, the video plays in the canvas. The application’s
JavaScript is listed in Example 4.24.

When the video loads, the code plays the video and initiates the animation loop
by calling requestNextAnimationFrame(). When the browser is ready to draw

3314.11 Video Processing

Download from Join eBook (www.joinebook.com)

ptg7987094

the next animation frame, it invokes the animate() function, which—if the video
is still playing—draws the current video frame into the canvas and perpetuates
the animation by again invoking requestNextAnimationFrame(). If the video has
ended, the animate() function does not invoke requestNextAnimationFrame(),
and thus ends the animation.

Example 4.23 Playing video: HTML

<!DOCTYPE html>
<head>

<title>Video</title>

<style>
 body {

background: #dddddd;
}

#canvas {
background: #ffffff;
border: thin solid darkgray;

}

#video {
display: none;

}
</style>

</head>

<body>
<video id='video' poster>

<source src='dog-stealing.mp4'/>
<source src='dog-stealing.ogg'/>

</video>

<canvas id='canvas' width='720' height='405'>
 Canvas not supported

</canvas>

<script src='requestNextAnimationFrame.js'></script>
<script src='example.js'></script>

</body>
</html>

Notice that the code uses the five-argument version of drawImage(), discussed
in Section 4.1.2, “The drawImage() Method,” on p. 257, to scale the video to fit
the canvas.

Chapter 4 Images and Video332

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.24 Playing video: The JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 video = document.getElementById('video');

function animate() {
if (!video.ended) {

 context.drawImage(video, 0, 0, canvas.width, canvas.height);
 window.requestNextAnimationFrame(animate);

}
}

video.onload = function (e) {
 video.play();
 window.requestNextAnimationFrame(animate);
};

Now that we can capture each frame of a video and display it in a canvas, let’s
see how we can process frames before displaying them.

4.11.3 Processing Videos
The application shown in Figure 4.29, like the application discussed in the pre-
ceding section, displays frames from an invisible video element in a visible canvas
element. Additionally, the application shown in Figure 4.29 optionally processes
each video frame before displaying it in the canvas.

The application provides two checkboxes to control the video’s color and
orientation and lets the user start the video with the Play button.

The HTML for the application shown in Figure 4.29 is listed in Example 4.25.

The application’s JavaScript, which is listed in Example 4.26, implements the
animation that continuously draws frames from the invisible video element into
the visible canvas element.

The nextVideoFrame() function, which the browser invokes when it’s ready to
draw the next animation frame, is where all the action takes place. If the video
has ended, that function simply replaces the text of the button to Play, and
the method does not invoke requestNextAnimationFrame() to perpetuate the
animation.

If the video has not ended, nextVideoFrame() draws the current video frame into
an offscreen canvas, and optionally removes the color and flips the orientation
of the frame before drawing the frame into the onscreen canvas.

3334.11 Video Processing

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.25 Video controls: HTML

<!DOCTYPE html>
<head>

<title>Video</title>

<style>
 body {

background: #dddddd;
}

.floatingControls {
position: absolute;
left: 175px;
top: 300px;

}

#canvas {
background: #ffffff;
border: thin solid #aaaaaa;

}

#video {
display: none;

}
</style>

</head>

<body>
<video id='video' controls src='dog-stealing.mp4'></video>

<canvas id='canvas' width='480' height='270'>
 Canvas not supported

</canvas>

<div id='controls' class='floatingControls'>
<input id='controlButton' type='button' value='Play'/>
<input id='colorCheckbox' type='checkbox' checked> Color
<input id='flipCheckbox' type='checkbox'> Flip

</div>

<script src='requestNextAnimationFrame.js'></script>
<script src='example.js'></script>

</body>
</html>

Chapter 4 Images and Video334

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 4.29 Processing video

Example 4.26 Video controls: JavaScript

var canvas = document.getElementById('canvas'),
 offscreenCanvas = document.createElement('canvas'),
 offscreenContext = offscreenCanvas.getContext('2d'),
 context = canvas.getContext('2d'),
 video = document.getElementById('video'),
 controlButton = document.getElementById('controlButton'),
 flipCheckbox = document.getElementById('flipCheckbox'),
 colorCheckbox = document.getElementById('colorCheckbox'),
 imageData,
 poster = new Image();

// Functions...

(Continues)

3354.11 Video Processing

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 4.26 (Continued)

function removeColor() {
var data,

 width,
 average;

 imageData = offscreenContext.getImageData(0, 0,
 offscreenCanvas.width, offscreenCanvas.height);
 data = imageData.data;
 width = data.width;

for (i=0; i < data.length-4; i += 4) {
 average = (data[i] + data[i+1] + data[i+2]) / 3;
 data[i] = average;
 data[i+1] = average;
 data[i+2] = average;

}

 offscreenContext.putImageData(imageData, 0, 0);
}

function drawFlipped() {
 context.save();

 context.translate(canvas.width/2, canvas.height/2);
 context.rotate(Math.PI);
 context.translate(-canvas.width/2, -canvas.height/2);
 context.drawImage(offscreenCanvas, 0, 0);

 context.restore();
}

function nextVideoFrame() {
if (video.ended) {

 controlButton.value = 'Play';
}
else {

 offscreenContext.drawImage(video, 0, 0);

if (!colorCheckbox.checked)
removeColor();

if (flipCheckbox.checked)
drawFlipped();

else
 context.drawImage(offscreenCanvas, 0, 0);

requestNextAnimationFrame(nextVideoFrame);
}

}

Chapter 4 Images and Video336

Download from Join eBook (www.joinebook.com)

ptg7987094

function startPlaying() {
requestNextAnimationFrame(nextVideoFrame);

 video.play();
}

function stopPlaying() {
 video.pause();

}

// Event handlers..

controlButton.onclick = function(e) {
if (controlButton.value === 'Play') {

startPlaying();
 controlButton.value = 'Pause';

}
else {

stopPlaying();
 controlButton.value = 'Play';

}
};

poster.onload = function() {
 context.drawImage(poster, 0, 0);
};

// Initialization...

poster.src = 'dog-stealing-poster.png';

offscreenCanvas.width = canvas.width;
offscreenCanvas.height = canvas.height;

4.12 Conclusion
The Canvas API packs a lot of functionality into four Canvas context methods:
drawImage(), which lets you draw into a canvas other canvases or video frames
in addition to images; getImageData(), which lets you grab a rectangle of pixels
from a canvas; putImageData(), which lets you insert a rectangle of pixels into a
canvas; and createImageData(), which lets you create a blank array of pixel color
values.

With those four methods, you can implement sophisticated image manipulation
such as image filters and magnifying glasses.

In this chapter you saw how to draw and scale images, implement image filters,
and process images in offscreen canvases and with web workers. Additionally,

3374.12 Conclusion

Download from Join eBook (www.joinebook.com)

ptg7987094

you learned how to combine image manipulation with other aspects of HTML5
Canvas, such as clipping and the Canvas drawing API, and how to combine image
manipulation with other aspects of HTML5 outside of Canvas, such as web
workers. By encapsulating image filters in a web worker, you can offload work
from the main browser UI thread, and you can reuse those web workers in mul-
tiple contexts. And you also learned some performance tips for drawing and
manipulating images.

Then we looked at the implementation of a magnifying glass that used a great
deal of what we covered in this chapter. The application also illustrated how you
can use the Drag and Drop and FileSystem APIs to accept dropped images that
the user dragged from the desktop.

Finally, we looked at processing videos by using video and canvas elements
together, along with some animation and the drawImage() method.

In the next chapter we see how to put images and drawings into motion with
an exploration of Canvas animation.

Chapter 4 Images and Video338

Download from Join eBook (www.joinebook.com)

ptg7987094

Human beings are drawn to animation. Our visual apparatus continuously pro-
cesses a never-ending animation that we call reality, so animations are a natural
and intuitive communication medium.

Animations are also big business. From advertisements to video games, animations
play a huge role in money-changing hands. Not only that, but implementing
animations is about as much fun as you’re going to have writing software.

Flash-based animations have dominated the web; however, that landscape is
rapidly changing, and the new upstart that is unseating Flash is HTML5 Canvas.
So it may surprise you to hear that Canvas has no explicit support for animation.
Canvas provides the underlying graphics horsepower necessary to create anima-
tion frames, but the animation loop itself is specified in another W3C specification.
In this chapter we look at how to incorporate that animation loop with the Canvas
graphics API.

The first section of this chapter, “The Animation Loop,” on p. 340, discusses
the various options for implementing animation loops, from old-school
window.setTimeout() to the newer and far more capable window.request-
AnimationFrame(). That section culminates in Section 5.1.3, “A Portable Animation
Loop,” on p. 348, by implementing a portable solution that uses window.
requestAnimationFrame().

After discussing the animation loop, this chapter concentrates on implementing
smooth animations. You’ll see the different options for repairing damage to the
background and the performance ramifications of those options. You’ll also see
how to implement time-based motion, how to scroll backgrounds, and how to
simulate three dimensions with parallax.

5CHAPTER

Animation

339
Download from Join eBook (www.joinebook.com)

ptg7987094

5.1 The Animation Loop
Fundamentally, implementing animations with Canvas is simple: You continu-
ously update and draw whatever you are animating. For example, the application
shown in Figure 5.1 continuously animates three discs.

Figure 5.1 Basic animation

That continuous updating and redrawing is referred to as the animation loop,
and it’s central to every animation. Let’s see how it works.

Animations are continuous loops, but it’s not possible to implement a continuous
loop, at least not in the traditional sense, in JavaScript running in a browser. For
instance, Example 5.1 is valid JavaScript, but it will lock up any respectable
browser.

The while loop in Example 5.1 is an endless loop. Because browsers run JavaScript
on the main thread, that endless loop will lock up the browser, including the an-
imation. Instead, you must let the browser breathe, by periodically giving it
control for short amounts of time.

Chapter 5 Animation340

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 5.1 Locking up the browser: Do not do this

function animate() {
// Update and draw animation objects

}

while(true) { // Locks up the browser: don't do this
animate();

}

One way to let the browser breathe is with either window.setInterval() or
window.setTimeout() as shown in Examples 5.2 and 5.3, respectively.

Example 5.2 Using setInterval() in an animation loop

function animate() {
// Update and draw animation objects

}
...

// Start the animation at 60 frames/second

setInterval(animate, 1000 / 60);

Example 5.3 Using setTimeout() in an animation loop

// Approximating setInterval() with setTimeout()

function animate() {
var start = +new Date(),

 finish;

// Update and draw animation objects

 finish = +new Date();

setTimeout(animate, (1000 / 60) - (finish - start));
}
...

animate(); // Start the animation

3415.1 The Animation Loop

Download from Join eBook (www.joinebook.com)

ptg7987094

The setInterval() method repeatedly invokes a method at a specific interval,
whereas setTimeout() simply invokes a method once, at a specified time in the
future. Because of that discrepancy between the two methods, you call
setInterval() once, but you must call setTimeout() repeatedly. Notice that be-
cause setTimeout() forces you to explicitly tell the browser when to make the
next call to your animation method, you must calculate the time of that call; on
the other hand, for setInterval(), you simply specify the interval once.

The setTimeout() and setInterval() methods suffice for many purposes, but
they were not made for animations. The preferred way to implement your anima-
tion loop is with a W3C standard method named requestAnimationFrame(),
which we discuss next.

CAUTION: Do not use window.setInterval() or window.setTimeout()

to implement animations

It’s important to understand that window.setInterval() and window.
setTimeout() are not precise timing mechanisms for animation. Instead,
they are general-purpose methods that let applications run some code at an
approximate time in the future.

For example, according to the HTML5 specification, browsers can pad timeouts
to optimize power usage. In browser lingo, it’s known as clamping the timeout
interval. And browsers do indeed clamp the interval. Firefox, for example, at the
time this book was written, used a minimum of 10 ms for a single call to
setTimeout() and a minimum of 5 ms for subsequent calls. So, for example,
you can call setTimeout() with a timeout of 3 ms, but the browser may overrule
that number, and make you wait 10 ms instead.

NOTE: You should not tell the browser when to draw the next animation

frame: It should tell you

When you call setTimeout() or setInterval() you specify the time, however
imprecise it may be, that you want to draw the next animation frame.

However, you don’t really know the best time to draw the next animation; most
likely, you have no idea.The browser, on the other hand, can undoubtedly select
the best time to draw the next animation frame better than you can.

So instead of telling the browser when you want to draw the next animation
frame, as is the case with setTimeout() and setInterval(), it’s much better
to let the browser call you when it’s ready to draw the next animation frame.You
do that with requestAnimationFrame().

Chapter 5 Animation342

Download from Join eBook (www.joinebook.com)

ptg7987094

5.1.1 The requestAnimationFrame() Method: Letting the Browser Set
the Frame Rate
If you use window.setInterval() or window.setTimeout(), your animations may
not be as smooth as you would like, and they may use more resources than
necessary. That’s because setInterval() and setTimeout()

• Are general-purpose methods; they were not meant for animations
• Are not millisecond-precise, despite your sending them millisecond values
• Do not optimize the manner in which they invoke your methods
• Blindly call your methods at approximate times, without regard to when it’s

best to animate

The fundamental problem with window.setInterval() and window.setTimeout()
is that they are at the wrong level of abstraction. What we want from the
browser is an animation API that takes care of mundane details such as optimal
frame rates and choosing the best time to draw the next frame. Because window.
setInterval() and window.setTimeout() know nothing about animation, those
details are left to the developer.

Fortunately, the browser development community recognized the need for ani-
mation support and specified a method, requestAnimationFrame(), that you
should use to drive your animations, as illustrated in Example 5.4.

Example 5.4 Animating with window.requestAnimationFrame()

function animate(time) {
// Update and draw animation objects

requestAnimationFrame(animate); // Sustain the animation
}
...

requestAnimationFrame(animate); // Start the animation

To start an animation, you invoke requestAnimationFrame(), passing a refer-
ence to a function that the browser calls when it’s time to draw the first
animation frame. Typically, inside that function you will conditionally invoke
requestAnimationFrame() again to keep the animation loop running.

Notice that unlike window.setTimeout() and window.setInterval(), request-
AnimationFrame() does not let you specify a frame rate; instead, the browser
selects the optimal frame rate.

3435.1 The Animation Loop

Download from Join eBook (www.joinebook.com)

ptg7987094

The W3C also added a cancelRequestAnimationFrame() method that cancels
a given callback. requestAnimationFrame() returns a long object that serves
as a handle to the callback. Subsequently, you can pass that handle to
cancelRequestAnimationFrame() to cancel the callback.

The requestAnimationFrame() and cancelRequestAnimationFrame() methods
are summarized in Table 5.1.

CAUTION: Browser-specific implementations of requestAnimationFrame()

The requestAnimationFrame() method is specified in a W3C specification
named Timing control for script-based animations. See http://webstuff.
nfshost.com/anim-timing/Overview.html.

At the time this book went to press, the specification was a relative newcomer
in the fast moving world of HTML5 specifications, and so browsers supported
only their own browser-specific implementations of requestAnimationFrame(),
as shown in the following table.

MethodBrowser

window.webkitRequestAnimationFrame(
FrameRequestCallback callback,
Element element)

Chrome 10

window.mozkitRequestAnimationFrame(
FrameRequestCallback callback)

Firefox (Gecko) 4.0 (2.0)

window.msRequestAnimationFrame(
FrameRequestCallback callback)

Internet Explorer 10,
Platform Preview 2

Chrome and IE also provide methods to cancel the next animation
frame—webkitCancelAnimationFrame() and msCancelAnimationFrame(),
respectively. Firefox does not have a similar method.

Because support for the W3C’s requestAnimationFrame() and cancel-
RequestAnimationFrame() methods may not be universal when you use them,
you should use a polyfill method instead of the standard methods directly. Sec-
tion 5.1.3, “A Portable Animation Loop,” on p. 348 discusses an implementation
of that polyfill method.

Chapter 5 Animation344

Download from Join eBook (www.joinebook.com)

http://webstuff.nfshost.com/anim-timing/Overview.html
http://webstuff.nfshost.com/anim-timing/Overview.html

ptg7987094

Table 5.1 The W3C’s requestAnimationFrame() and cancelRequestAnimationFrame()
methods

DescriptionMethod

Requests that the browser invoke the
specified callback when it’s time to
draw the next animation frame. Returns
a handle that you can pass to
cancelRequestAnimationFrame().

long window.requestAnimationFrame(
FrameRequestCallback callback)

Lets you cancel a callback that you have
previously registered with
requestAnimationFrame(). You must
call this method before the browser
invokes your callback.

void
window.cancelRequestAnimationFrame(
long handle)

NOTE: requestAnimationFrame() and time

Animations are typically time based, so requestAnimationFrame() passes
the time—as the number of milliseconds since January 1, 1970—to your
animation function.

NOTE: Feel free to skip ahead

If you’re not interested in the history behind requestAnimationFrame()
or details of the browser-specific implementations of that method, feel
free to skip ahead to Section 5.1.3, “A Portable Animation Loop,” on p. 348,
where a polyfill method for requestAnimationFrame() is discussed.

5.1.1.1 Firefox
Firefox 4.0 had the first implementation of a browser-specific variant of
requestAnimationFrame(): mozRequestAnimationFrame(). You use that method
just like requestAnimationFrame(), as shown in Example 5.5.

Example 5.5 Firefox callbacks

function animate(time) {
// Update and draw animation objects

 window.mozRequestAnimationFrame(animate);
}

window.mozRequestAnimationFrame(animate);

3455.1 The Animation Loop

Download from Join eBook (www.joinebook.com)

ptg7987094

Firefox’s mozRequestAnimationFrame() method adheres to the following rules:

• Firefox calls the animation callback a maximum of 60 times per second.
• Firefox calls the animation callback once per second or less when the

animation’s tab is not visible.
• Firefox doesn’t invoke callbacks faster than the page is rendering.

Like requestAnimationFrame(), Firefox passes to your animation callback method,
the time at which your animation frame will be drawn.

CAUTION: Firefox 4.0’s window.mozRequestAnimationFrame() has a bug

A bug in Firefox 4.0 restricts animation frame rates to around 30 or
40 frames per second for most animations, when you use
window.mozRequestAnimationFrame(). That bug was addressed in Firefox
5.0. If you plan to support animations on Firefox 4.0, avoid using
mozRequestAnimationFrame().

The mozRequestAnimationFrame() method is described in Table 5.2.

Table 5.2 Firefox’s mozRequestAnimationFrame()

DescriptionMethod

Requests that the browser invoke the specified
callback when it’s time to draw the next animation
frame. The callback argument is optional because
Firefox gives you the option of specifying the
callback by adding an event listener to the window
object instead.

window.
mozRequestAnimationFrame(
FrameRequestCallback)

5.1.1.2 Chrome
Chrome adopted the callback model invented by Firefox, naming its function
window.webkitRequestAnimationFrame(). The use of that method is identical
to Firefox’s window.mozRequestAnimationFrame(), as shown by the code in
Example 5.6.

The rules that Chrome follows for calling your animation callback are also
nearly identical to Firefox:

• Chrome calls the animation callback a maximum of 60 times per second.

Chapter 5 Animation346

Download from Join eBook (www.joinebook.com)

ptg7987094

• Chrome does not invoke the callback unless the tab is visible.
• Chrome does not invoke callbacks faster than the page is rendering.

Example 5.6 Chrome callbacks

function animate(time) {
if (time == undefined)

 time = +new Date();

// Update and draw animation objects

 window.webkitRequestAnimationFrame(animate);
}
...

window.webkitRequestAnimationFrame(animate);

The webkitRequestAnimationFrame() and webkitCancelAnimationFrame()
methods are summarized in Table 5.3.

Table 5.3 Chrome’s webkitRequestAnimationFrame()

DescriptionMethod

Schedules a request to invoke the
callback function when it’s time to draw
the next animation frame. Returns a
handle that you can pass to
webkitCancelRequestAnimationFrame()
to cancel the next animation frame.

The optional element argument,
which does not exist for the Firefox
implementation, specifies the element
performing the animation. If the element
is not visible, Chrome will not invoke the
callback.

long window.
webkitRequestAnimationFrame(
FrameRequestCallback callback,
optional Element element)

If you register a callback with
webkitRequestAnimationFrame(), this
method lets you subsequently cancel the
callback, provided that you call this
method before the browser invokes your
callback.

void window.
webkitCancelRequestAnimationFrame(
long handle)

3475.1 The Animation Loop

Download from Join eBook (www.joinebook.com)

ptg7987094

NOTE: webkitRequestAnimationFrame() method’s optional element

argument

The webkitRequestAnimationFrame() method takes an optional second
argument that’s a reference to an HTML element.When the element is not visible,
webkitRequestAnimationFrame() will not invoke the animation callback.
Typically, you pass a reference to the canvas in which your animation is running
to webkitRequestAnimationFrame().

CAUTION: Time bug in Chrome 10

Like Firefox, Chrome also passes, to your animation callback method, the time
at which your animation frame will be drawn. However, Chrome first provided
support for webkitRequestAnimationFrame() in version 10, and that initial
implementation did not pass the time to the animation callback method, so the
time variable in your animation function will be undefined. In that case, you can
assign the time yourself, as shown in Example 5.6.

5.1.2 Internet Explorer
Starting with Internet Explorer 10, Platform Preview 2, Microsoft
provides msRequestAnimationFrame() and msCancelRequestAnimationFrame()
methods that are similar to the W3C standard methods. You use
msRequestAnimationFrame() as shown in Example 5.7.

Example 5.7 Internet Explorer callbacks

function animate(time) {
// Update and draw animation objects

 window.msRequestAnimationFrame(animate);
}
window.msRequestAnimationFrame(animate);

5.1.3 A Portable Animation Loop
As you saw in Section 5.1.1, “The requestAnimationFrame() Method: Letting the
Browser Set the Frame Rate,” on p. 343, the W3C defines a standard request-
AnimationFrame() method that you can, and should, use to drive your animations.

However, until all the browsers that you support have implemented that
method, you need a way to call the method as it exists but fall back to a default
implementation when the method is not available.

Chapter 5 Animation348

Download from Join eBook (www.joinebook.com)

ptg7987094

Let’s look at a portable solution that uses the W3C’s implementation when it’s
available; otherwise, it falls back on a proprietary solution. And finally, if neither
the W3C’s implementation nor proprietary solutions are available, the portable
solution falls back to an implementation that does its best to drive animations at
60 frames per second using setTimeout().

The portable solution is a method named window.requestNextAnimationFrame()
(notice the addition of the word “Next” to the method name) that you use
just like webkitRequestAnimationFrame(), mozRequestAnimationFrame(), and
requestAnimationFrame():

function animate(time) {
// Update and draw animation objects

 window.requestNextAnimationFrame(animate);
}

window.requestNextAnimationFrame(animate);

Here’s a first attempt at implementing requestNextAnimationFrame():

window.requestNextAnimationFrame =
(function () {

return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.msRequestAnimationFrame ||

function (callback, element) { // Assume element is visible
var self = this,

 start,
 finish;

 window.setTimeout(function () {
 start = +new Date();

callback(start);
 finish = +new Date();

 self.timeout = 1000 / 60 - (finish - start);

}, self.timeout);
};

}
)

();

The preceding code assigns a value to a requestNextAnimationFrame property
of the window object. The value is a function that’s returned from what’s known
in JavaScript as a self-executing function.

3495.1 The Animation Loop

Download from Join eBook (www.joinebook.com)

ptg7987094

If the W3C standard methods or any of the proprietary implementations are
available, the preceding code assigns window.requestNextAnimationFrame() to
the standard or proprietary function.

If neither the W3C standard methods nor any of the proprietary implementations
are supported, code.requestNextAnimationFrame() falls back to a function that
uses window.setTimeout() to drive the animation at approximately 60 frames
per second.

The preceding implementation of window.requestNextAnimationFrame() will
work well under most conditions, but has two problems:

1. If your animation is running on Chrome 10, you will get an undefined object
for the time in your animate() function. If you use time-based motion, dis-
cussed in Section 5.6, “Time-Based Motion,” on p. 367, passing that undefined
object to your update() will wreak havoc with your animation.

2. As mentioned previously in Section 5.1.1.1, “Firefox,” on p. 345, Firefox 4.0’s
implementation of window.mozRequestAnimationFrame() has a bug that re-
stricts frame rates for most animations to around 30 to 40 frames per second,
which for most animations is unacceptably slow. If you’re going to support
Firefox 4.0, you will have to deal with that bug.

Example 5.8 shows a final version of window.requestNextAnimationFrame() that
takes those two problems into account. If your animation is running on Chrome 10,
the call to window.webkitRequestAnimationFrame() is wrapped in a function that
makes sure that the callback function is passed a valid time. If your animation is
running on Firefox 4.0, the code unplugs window.mozRequestAnimationFrame()
and falls back to the setTimeout() implementation.

NOTE: Polyfills

The word polyfill is a portmanteau of polymorphically backfill. Like polymorphism
in object-oriented languages, a polyfill conditionally executes code at runtime.
Polyfills also backfill functionality into browsers that do not yet implement
a particular specification. For example, the requestNextAnimationFrame()
polyfill discussed in this section executes code at runtime that depends on the
browser’s support for requestAnimationFrame(), backfilling as needed with
a setTimeout() implementation for browsers that do not support the Timing
control for script-based animations specification.

Polyfills represent an important paradigm shift: Instead of programming to the
lowest common denominator—a common strategy in the past for cross-platform
software—polyfills let you access new advances when they are available, falling
back to the lowest common denominator only when necessary.

Chapter 5 Animation350

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 5.8 A requestAnimationFrame() polyfill

window.requestNextAnimationFrame =
(function () {

var originalWebkitMethod,
 wrapper = undefined,
 callback = undefined,
 geckoVersion = 0,
 userAgent = navigator.userAgent,
 index = 0,
 self = this;

// Workaround for Chrome 10 bug where Chrome
// does not pass the time to the animation function

if (window.webkitRequestAnimationFrame) {
// Define the wrapper

 wrapper = function (time) {
if (time === undefined) {

 time = +new Date();
}

 self.callback(time);
};

// Make the switch

 originalWebkitMethod = window.webkitRequestAnimationFrame;

 window.webkitRequestAnimationFrame =
function (callback, element) {

 self.callback = callback;

// Browser calls wrapper; wrapper calls callback

originalWebkitMethod(wrapper, element);
}

}

// Workaround for Gecko 2.0, which has a bug in
// mozRequestAnimationFrame() that restricts animations
// to 30-40 fps.

(Continues)

3515.1 The Animation Loop

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 5.8 (Continued)

if (window.mozRequestAnimationFrame) {
// Check the Gecko version. Gecko is used by browsers
// other than Firefox. Gecko 2.0 corresponds to
// Firefox 4.0.

 index = userAgent.indexOf('rv:');

if (userAgent.indexOf('Gecko') != -1) {
 geckoVersion = userAgent.substr(index + 3, 3);

if (geckoVersion === '2.0') {
// Forces the return statement to fall through
// to the setTimeout() function.

 window.mozRequestAnimationFrame = undefined;
}

}
}

return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||

function (callback, element) {
var start,

 finish;

 window.setTimeout(function () {
 start = +new Date();

callback(start);
 finish = +new Date();

 self.timeout = 1000 / 60 - (finish - start);

}, self.timeout);
};

}
)

();

Chapter 5 Animation352

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 5.2 shows an application that uses the requestNextAnimationFrame()
function discussed in Example 5.8.

Figure 5.2 A requestAnimationFrame() polyfill

The application shown in Figure 5.2 animates three discs, similar to the application
shown in Figure 5.1, except that the application shown in Figure 5.2 erases the
background before drawing each animation frame.

The HTML and JavaScript for the application shown in Figure 5.2 are listed in
Examples 5.9 and 5.10, respectively. Notice that the HTML page includes a
JavaScript file named requestNextAnimationFrame.js. That file contains
the implementation of the requestNextAnimationFrame() polyfill listed in
Example 5.8.

Most of the application is concerned with defining and drawing the discs; all the
animation code is encapsulated in the animate() method and the Animate button’s
onclick handler at the end of the listing.

3535.1 The Animation Loop

Download from Join eBook (www.joinebook.com)

ptg7987094

When you click the Animate button, the click handler invokes requestNext-
AnimationFrame() to start the animation, passing it a reference to the animate()
function. The animate() function, in turn, erases the canvas, draws the next ani-
mation frame, and calls requestNextAnimationFrame() once again to keep the
animation going.

Example 5.9 Using requestAnimationFrame(): HTML

<!DOCTYPE html>
<head>

<title>Using requestAnimationFrame()</title>

<style>
 body {

background: #dddddd;
}

#canvas {
background: #ffffff;
cursor: pointer;
margin-left: 10px;
margin-top: 10px;
-webkit-box-shadow: 3px 3px 6px rgba(0,0,0,0.5);
-moz-box-shadow: 3px 3px 6px rgba(0,0,0,0.5);
box-shadow: 3px 3px 6px rgba(0,0,0,0.5);

}

#controls {
margin-top: 10px;
margin-left: 15px;

}
</style>

</head>

<body>
<div id='controls'>

<input id='animateButton' type='button' value='Animate'/>
</div>

<canvas id='canvas' width='750' height='500'>
 Canvas not supported

</canvas>

<script src='requestNextAnimationFrame.js'></script>
<script src='example.js'></script>

</body>
</html>

Chapter 5 Animation354

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 5.10 Using requestAnimationFrame(): JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 paused = true,
 discs = [

{
 x: 150,
 y: 250,
 lastX: 150,
 lastY: 250,
 velocityX: -3.2,
 velocityY: 3.5,
 radius: 25,
 innerColor: 'rgba(255,255,0,1)',
 middleColor: 'rgba(255,255,0,0.7)',
 outerColor: 'rgba(255,255,0,0.5)',
 strokeStyle: 'gray',

},

{
 x: 50,
 y: 150,
 lastX: 50,
 lastY: 150,
 velocityX: 2.2,
 velocityY: 2.5,
 radius: 25,
 innerColor: 'rgba(100,145,230,1.0)',
 middleColor: 'rgba(100,145,230,0.7)',
 outerColor: 'rgba(100,145,230,0.5)',
 strokeStyle: 'blue'

},

{
 x: 150,
 y: 75,
 lastX: 150,
 lastY: 75,
 velocityX: 1.2,
 velocityY: 1.5,
 radius: 25,
 innerColor: 'rgba(255,0,0,1.0)',
 middleColor: 'rgba(255,0,0,0.7)',
 outerColor: 'rgba(255,0,0,0.5)',
 strokeStyle: 'orange'

},
],

(Continues)

3555.1 The Animation Loop

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 5.10 (Continued)

 numDiscs = discs.length,
 animateButton = document.getElementById('animateButton');

// Functions..

function drawBackground() {
// Listing omitted for brevity See Example 3.1 on p. 203
// for a complete listing

}

function update() {
var disc = null;

for(var i=0; i < numDiscs; ++i) {
 disc = discs[i];

if (disc.x + disc.velocityX + disc.radius >
 context.canvas.width ||
 disc.x + disc.velocityX - disc.radius < 0)
 disc.velocityX = -disc.velocityX;

if (disc.y + disc.velocityY + disc.radius >
 context.canvas.height ||
 disc.y + disc.velocityY - disc.radius < 0)
 disc.velocityY= -disc.velocityY;

 disc.x += disc.velocityX;
 disc.y += disc.velocityY;

}
}

function draw() {
var disc = discs[i];

for(var i=0; i < numDiscs; ++i) {
 disc = discs[i];

 gradient = context.createRadialGradient(disc.x, disc.y, 0,
 disc.x, disc.y, disc.radius);
 gradient.addColorStop(0.3, disc.innerColor);
 gradient.addColorStop(0.5, disc.middleColor);
 gradient.addColorStop(1.0, disc.outerColor);

Chapter 5 Animation356

Download from Join eBook (www.joinebook.com)

ptg7987094

 context.save();
 context.beginPath();
 context.arc(disc.x, disc.y, disc.radius, 0, Math.PI*2, false);
 context.fillStyle = gradient;
 context.strokeStyle = disc.strokeStyle;
 context.fill();
 context.stroke();
 context.restore();

}
}

// Animation..

function animate(time) {
if (!paused) {

 context.clearRect(0,0,canvas.width,canvas.height);
drawBackground();
update();
draw();

 window.requestNextAnimationFrame(animate);
}

}

// Event handlers...

animateButton.onclick = function (e) {
 paused = paused ? false : true;

if (paused) {
 animateButton.value = 'Animate';

}
else {

 window.requestNextAnimationFrame(animate);
 animateButton.value = 'Pause';

}
};

// Initialization...

context.font = '48px Helvetica';

3575.1 The Animation Loop

Download from Join eBook (www.joinebook.com)

ptg7987094

5.2 Calculating Frame Rates
Animations are a sequence of images, known as frames, that are displayed at a
rate known as the frame rate. It’s often necessary to calculate an animation’s
frame rate; for example, you may use an animation’s frame rate to implement
time-based motion, as discussed in Section 5.6, “Time-Based Motion,” on p. 367,
or you may simply want to ensure that your animation’s frame rate is sufficient
for smooth animation.

The application shown in Figure 5.3 calculates the animation’s frame rate and
displays it in the canvas.

Figure 5.3 Calculating frames per second

The code that calculates the frame rate is listed in Example 5.11, along with the
application’s animation loop. Using a simple equation, the application calculates
frames per second, given the elapsed time for the most recent animation frame.

The application subtracts the current time from the last time it drew an animation
frame to get a time delta, in milliseconds. Then the application divides 1000 by
the time delta to get the frame rate in frames per second.

Chapter 5 Animation358

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 5.11 Calculating frame rates

var lastTime = 0;

function calculateFps() {
var now = (+new Date),

 fps = 1000 / (now - lastTime);

 lastTime = now;

return fps;
}

function animate(time) {
eraseBackground();
drawBackground();
update();
draw();

 context.fillStyle = 'cornflowerblue';
 context.fillText(calculateFps().toFixed() + ' fps', 20, 60);

 window.requestNextAnimationFrame(animate);
}

window.requestNextAnimationFrame(animate);

NOTE: 3D Monster Maze: 6 frames per second

The first 3D first-person shooter game for PCs was 3D Monster Maze released
in 1981 for the Sinclair ZX81. It ran at approximately 6 frames per second.

5.3 Scheduling Tasks at Alternate Frame Rates
Many animations do other things besides animation. For example, an animation
may display narrative text as the animation proceeds, play music, or update a
game scoreboard. Most of those types of activities do not need to be carried out
60 times per second so it’s important to be able to schedule tasks at alternate frame
rates.

The code listed in Example 5.12 shows an animation loop for an application that
updates a frames-per-second display once per second, by keeping track of the
last time the display was updated.

3595.3 Scheduling Tasks at Alternate Frame Rates

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 5.12 Scheduling tasks

var lastFpsUpdateTime = 0,
 lastFpsUpdate = 0;

function animate(time) {
var fps = 0;

if (time == undefined) {
 time = +new Date;

}

if (!paused) {
eraseBackground();
drawBackground();
update(time);
draw();

 fps = calculateFps();

// Once per second, update the frame rate

if (now - lastFpsUpdateTime > 1000) {
 lastFpsUpdateTime = now;
 lastFpsUpdate = fps;

}

 context.fillStyle = 'cornflowerblue';
 context.fillText(lastFpsUpdate.toFixed() + ' fps', 50, 48);

}
}

5.4 Restoring the Background
Most aspects of implementing animations are relatively easy. It’s easy to period-
ically call your animate() method with requestAnimationFrame(), and it’s typi-
cally easy to calculate a new location for whatever it is that you’re animating and
draw that object at the new location. The challenging aspect of animation is how
you deal with the background. Fundamentally, you have three choices:

• Erase and redraw everything.
• Clip to damaged areas.
• Blit to damaged areas from offscreen buffers.

Erasing and redrawing everything is the most straightforward approach. Clipping
to damaged areas also entails erasing and redrawing the entire background, but

Chapter 5 Animation360

Download from Join eBook (www.joinebook.com)

ptg7987094

clipped to areas of the screen that have actually changed. Finally, copying from
an offscreen buffer to damaged areas of the background (also known as blitting)
is a third option.

We’ve seen how to erase and redraw everything in the preceding sections, so let’s
focus on clipping and blitting.

TIP: Redraw everything for every frame?

It may seem counterintuitive, but sometimes you get the best performance by
redrawing everything, for every frame of your animation. Generally, if your
background is simple and the objects that you are animating are also relatively
simple, it may be a good idea to erase the background and redraw everything
for every animation frame.

5.4.1 Clipping
Erasing the background and subsequently redrawing the next frame of an anima-
tion can work well for simple backgrounds. If, however, you have a complex
background, the cost of redrawing the entire background for every frame
could become prohibitively expensive. In that case, you might consider using
the clipping region to restrict your drawing to a specific region of the canvas.

As you saw in Section 2.15, “The Clipping Region,” on p. 187, you can restrict all
your drawing operations to an arbitrary path, known as the clipping region. After
you set the clipping region, subsequent drawing commands will affect only the
inside of that region.

Figure 5.4 shows an animation that uses the clipping region to restore the back-
ground as the discs animate. Normally, you would initially draw the entire
background and use clipping to repair the damaged areas as the discs animate.
In this case, however, the application does not initially draw the background, so
you can see how clipping fills in the background behind the discs.

The following is a recipe for using the clipping region to repair damage to the
background during animation.

1. Save the state of the onscreen canvas with a call to context.save().
2. Begin a path (by calling beginPath()).
3. Set the path with context methods (arc(), rect(), etc.).
4. Clip the onscreen canvas to the path (with context.clip()).
5. Erase the onscreen canvas (clipped to the clipping region).

3615.4 Restoring the Background

Download from Join eBook (www.joinebook.com)

ptg7987094

6. Draw the background into the onscreen canvas (clipped to the clipping
region).

7. Restore the state of the onscreen canvas, primarily to reset the clipping region.

Figure 5.4 Clipping animations

The application shown in Figure 5.4 implements the preceding recipe, like this:

function draw() {
var numDiscs,

 disc,
 i;

for(i=0; i < numDiscs; ++i) {
drawDiscBackground(discs[i]);

}
 ...

for(i=0; i < numDiscs; ++i) {
drawDisc(discs[i]);

}
 ...
}

Chapter 5 Animation362

Download from Join eBook (www.joinebook.com)

ptg7987094

function drawDiscBackground(disc) {
 context.save();

 context.beginPath();
 context.arc(disc.lastX, disc.lastY,
 disc.radius+1, 0, Math.PI*2, false);

 context.clip();

eraseBackground();
drawBackground();

 context.restore();
}

The draw() method erases all the discs at their previous locations and then draws
them at their current locations.

When drawDiscBackground() draws the background over a disc at its previous
location, it sets the clipping region to the path that the disk occupied at that loca-
tion; it then erases and draws the background. Subsequently, the method
restores the context, thereby resetting the clipping region. If the context were
not restored then every call to context.clip() would set the clipping region to
the union of the current clipping region and the current path, and that would
quickly shrink the clipping region to nothing, rendering all graphics operations
ineffective.

TIP: Clipping can be fast, or not

Drawing the entire background clipped to a small region of the screen can be
considerably faster than drawing the entire background to the screen.Therefore,
for a small number of objects, clipping may be preferable to redrawing the
background. However, as you increase the number of objects that you animate,
you increase the number of times you must draw the background per frame.
Eventually, the cost of all that background drawing will catch up with you, and
the performance advantage that clipping affords for a small number of objects
will disappear.

5.4.2 Blitting
In the preceding section, you saw how to use the clipping region to avoid redraw-
ing the entire background to the screen for every frame of an animation. Although
using the clipping region restricts drawing to a region in a canvas, you still have
to draw the entire background for every animation frame.

3635.4 Restoring the Background

Download from Join eBook (www.joinebook.com)

ptg7987094

Another approach is to draw the background—once—into an offscreen canvas and
subsequently to copy from the offscreen canvas to the onscreen display,
as necessary to repair damage to the background.

Blitting the background from an offscreen canvas involves the same seven steps
that we discussed in the preceding section, except that step 6—drawing the
background, clipped to the clipping region—is replaced by copying the region
from an offscreen canvas, like this:

function drawDiscBackground(context, disc) {
var x = disc.lastX,

 y = disc.lastY,
 r = disc.radius,
 w = r*2,
 h = r*2;

 context.save();

 context.beginPath();
 context.arc(x, y, r+1, 0, Math.PI*2, false);
 context.clip();

 context.clearRect(0, 0, canvas.width, canvas.height);
 context.drawImage(offscreenCanvas,
 x-r, y-r, w, h, x-r, y-r, w, h);

 context.restore();
}

TIP: Clipping vs. Blitting

Both clipping and blitting repair the damaged regions of the background instead
of redrawing the entire thing. Clipping redraws the damaged regions, whereas
blitting copies the damaged regions from an offscreen canvas. As a general
rule, blitting is faster than clipping, but requires an offscreen canvas, which, in
turn, requires more memory.

5.5 Double Buffering
So far in this chapter, we’ve used an animation loop that looks something like this:

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ...

Chapter 5 Animation364

Download from Join eBook (www.joinebook.com)

ptg7987094

function animate(time) {
 context.clearRect(0, 0, canvas.width, canvas.height);

// Update and draw animation objects...

requestNextAnimationFrame(time); // Keep the animation going
}

requestNextAnimationFrame(time); // Start the animation

The preceding animation loop first erases the canvas and then draws the next
animation frame. If the animation were single buffered, meaning that it immedi-
ately drew directly into the onscreen canvas, then erasing the background would
cause flicker if we perceive that momentary blanking of the canvas.

One way to eliminate flickering is to use double buffering. With double buffering,
instead of drawing directly to the onscreen canvas, you draw everything into an
offscreen canvas, then subsequently copy the offscreen canvas—all at once—into
the onscreen canvas, as illustrated in Example 5.13.

Example 5.13 Double buffering

// For illustration only. Do not do this.

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

// Create an offscreen canvas

 offscreenCanvas = document.createElement('canvas'),
 offscreenContext = offscreenCanvas.getContext('2d'),
 ...

offscreenCanvas.width = canvas.width;
offscreenCanvas.height = canvas.height;

function animate(now) {
 offscreenContext.clearRect(

0, 0, offscreenCanvas.width, offscreenCanvas.height);

// Update and draw animation objects into the offscreen canvas...

// Clear the onscreen canvas and draw the offscreen
// into the onscreen canvas

 context.clearRect(0, 0, canvas.width, canvas.height);
 context.drawImage(offscreenCanvas, 0, 0);
}

3655.5 Double Buffering

Download from Join eBook (www.joinebook.com)

ptg7987094

Double buffering is so effective at eliminating flickering that browsers automatically
double buffer canvas elements, so you don’t have to. In fact, you will degrade your
animation’s performance by manually implementing double buffering as illus-
trated in Example 5.13. In that case, you are paying the cost of copying the
offscreen buffer onscreen for every animation frame, with no benefit.

If you’ve ever stepped through Canvas code in a debugger, you may have doubts
that the browser automatically double buffers canvas elements. After all, when
you step through the code in the debugger, you immediately see the effect of each
call to the Canvas API. However, the debugger runs in a different thread, so it
appears that Canvas API calls take immediate effect, when in reality, they are
double buffered.

You can verify that the browser double buffers canvas elements with some code
that looks like this:

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 sum = 0,
 ...

function animate(now) {
eraseBackground(); // Erase the onscreen canvas

// Erased background, starting busy work

for (var i=0; i < 500000; ++i) {
 sum += i;

}

// Done with busy work

drawBackground(); // Draw the background into onscreen canvas
draw(); // Draw animation objects into onscreen canvas

requestNextAnimationFrame(time); // Keep the animation going
}

requestNextAnimationFrame(time); // Start the animation

The preceding code erases the canvas background and then goes into a loop to
complete some busy work.

If the canvas was not double buffered, meaning that each Canvas API command
took immediate effect, most of the time the preceding code should produce a
blank canvas because the code erases the canvas, does some busy work for a
perceivable amount of time, draws the background and discs, and repeats the
process. However, that’s not what happens; in fact, you never see a blank canvas
at all. The call to erase the canvas does not immediately take effect, because that

Chapter 5 Animation366

Download from Join eBook (www.joinebook.com)

ptg7987094

call, like all Canvas API calls, is double buffered by the browser. Therefore, the
browser does not actually erase the background before it performs its busy work.
That erasing takes place at a later time, when the browser copies its offscreen buffer
onscreen.

CAUTION: Canvas is automatically double buffered by the browser

Browser vendors across the board implement double buffering for canvas ele-
ments, so it’s counterproductive for you to do the same thing.Your manual double
buffering will incur a performance penalty by copying your offscreen buffer on-
screen, with no benefit because the browser is already double buffering for you.

That does not mean you should not use multiple buffers. Section 5.4.2, “Blitting,”
on p. 363 illustrated that copying from an offscreen background buffer can
increase performance for complex backgrounds. However, traditional double
buffering, where you draw everything into an offscreen canvas and then sub-
sequently copy the offscreen canvas, is unnecessary and counterproductive for
canvas elements.

5.6 Time-Based Motion
Imagine two players in a multiplayer shooter game traveling down intersecting
corridors. At their current rate of travel, they will converge at the intersection of
the corridors at the same time. If one player has a more powerful computer
than the other, and therefore the game’s animation runs faster on that player’s
computer, you don’t want the player with a faster computer to arrive at the
intersection early.

Animations should run at a steady speed, regardless of the underlying frame
rate. And it’s not too difficult to lower an animation’s frame rate, as evidenced
by Figures 5.5 and 5.6. Multiple animations running concurrently will almost
undoubtedly slow them all.

The application shown in Figure 5.5 has two modes. If the checkbox at the top
of the application is selected, the application uses time-based motion, meaning
the disc’s speed, measured in pixels/second, is constant. If the checkbox is not
selected, the application does not use time-based motion, and the disc’s speed
fluctuates with the animation’s frame rate.

With time-based motion, the discs all run at the same speed, but that doesn’t
mean that they look good. At approximately 30 frames per second, the animations
will not be able to keep up with the monitor refresh rate, and therefore certain
frames of the animation will not be drawn (a phenomenon known as

3675.6 Time-Based Motion

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 5.5 One animation running at 60 fps

dropping frames), and the discs will suddenly jump from one location to the next,
making the animations choppy.

However, at 30 frames per second, regardless of whether they use time-based
motion, animations are going to drop frames, and therefore they will be choppy.
So all other things being equal, it’s better to use time-based motion so that the
animations run at the same speed.

To make an animation run at a steady rate regardless of the animation’s frame
rate, you calculate the number of pixels an object moves for a given frame from
the frame rate itself, given the object’s velocity, like this:

Chapter 5 Animation368

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 5.6 Multiple animations mean slower frame rates

frame
/

pixels
=

pixels

secondsecondframe

Or . . .

second
×

pixels
=

pixels

framesecondframe

The preceding equation calculates the number of pixels an object should move for a
given frame. When in time-based mode, the application shown in Figure 5.5 uses
that equation to calculate the number of pixels to move each disc for every frame,
as shown in Example 5.14.

3695.6 Time-Based Motion

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 5.14 Animating at a constant speed, regardless of frame rate

function updateTimeBased(time) {
var disc = null,

 elapsedTime = time - lastTime,

for(var i=0; i < discs.length; ++i) {
 disc = discs[i];
 deltaX = disc.velocityX

 deltaX = disc.velocityX * (elapsedTime / 1000);
 deltaY = disc.velocityY * (elapsedTime / 1000);

if (disc.x + deltaX + disc.radius > topContext.canvas.width ||
 disc.x + deltaX - disc.radius < 0) {
 disc.velocityX = -disc.velocityX;
 deltaX = -deltaX;

}

if (disc.y + deltaY + disc.radius > topContext.canvas.height ||
 disc.y + deltaY - disc.radius < 0) {
 disc.velocityY= -disc.velocityY;
 deltaY = -deltaY;

}

 disc.x = disc.x + deltaX;
 disc.y = disc.y + deltaY;

 lastTime = time;
}

}

The application multiplies the disc’s velocity, measured in pixels per second,
by the elapsed time of the last frame, measured in seconds, to come up with the
number of pixels to move each disc per frame. The discs move the same number
of pixels per second, regardless of frame rate.

5.7 Scrolling the Background
So far in this chapter, you’ve seen how to animate objects without disturbing the
static background underneath. Many animations also animate the backgrounds
themselves; for example, you might have drifting clouds, as shown in Figure 5.7,
or you might implement an animated background for a side-scroller video game.

Chapter 5 Animation370

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 5.7 Simulating drifting clouds: From top to bottom, clouds move right to left

3715.7 Scrolling the Background

Download from Join eBook (www.joinebook.com)

ptg7987094

The application shown in Figure 5.7 scrolls the background by translating the
canvas’s context, like this:

var SKY_VELOCITY = 30, // 30 pixels/second
 skyOffset = 0; // Translate by this offset
 ...

function draw() {
 skyOffset = skyOffset < canvas.width ?
 skyOffset + SKY_VELOCITY/fps : 0;

 context.save();
 context.translate(-skyOffset, 0);
 context.drawImage(sky, 0, 0);
 context.drawImage(sky, sky.width, 0);
 context.restore();
}

The application draws the sky image at the same location for each frame of the
animation, but because the application also translates the context, it appears as
though the clouds are moving from right to left, as illustrated in Figure 5.7.

The context is translated only while the application draws the background, because
the application saves the context before translating and restores it afterwards.

The application draws the sky image twice: once at (0, 0) and again at
(canvas.width, 0). Initially, that means that the entire background image drawn
at (0, 0) is visible, whereas the image drawn at (sky.width, 0) is entirely
invisible, as shown in the top picture in Figure 5.8.

As the application translates the context, the image that’s initially offscreen scrolls
into view, and the image that’s initially displayed scrolls out of view, as illustrated
from top to bottom in Figure 5.8.

It’s not readily apparent, but the left and right edges of the sky image are identical.
Figure 5.9 shows the right edge (on the left side), and the left edge (on the right
side) next to each other, and now the effect is easily identifiable. Because the left
and right edges of the background image are identical, there is no discontinuity
as the image flows from offscreen to onscreen.

In this example, the background image that’s initially offscreen and the back-
ground image that’s initially onscreen are identical. However, that does not need
to be the case; the only requirement is that the left and right edges of the two (or
more) background images are identical. As long as those edges match up, the

Chapter 5 Animation372

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 5.8 Scrolling the background by translating the context

rest of the background image can vary as much as you like, and you will still
have a smooth scrolling background.

The HTML for the application shown in Figure 5.7 is listed in Example 5.15, and
the JavaScript is listed in Example 5.16.

3735.7 Scrolling the Background

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 5.15 Scrolling the background: HTML

<!DOCTYPE html>
<head>

<title>Scrolling Backgrounds</title>

<style>
 body {

background: #dddddd;
}

#canvas {
position: absolute;
top: 30px;
left: 10px;
background: #ffffff;
cursor: crosshair;
margin-left: 10px;
margin-top: 10px;
-webkit-box-shadow: 4px 4px 8px rgba(0,0,0,0.5);
-moz-box-shadow: 4px 4px 8px rgba(0,0,0,0.5);
box-shadow: 4px 4px 8px rgba(0,0,0,0.5);

}

 input {
margin-left: 15px;

}

</style>
</head>

<body>
<canvas id='canvas' width='1024' height='512'>

 Canvas not supported
</canvas>

<input id='animateButton' type='button' value='Animate'/>

<script src='requestNextAnimationFrame.js'></script>
<script src='example.js'></script>

</body>
</html>

Chapter 5 Animation374

Download from Join eBook (www.joinebook.com)

ptg7987094Figure 5.9 The left and right edges of the background image are identical

Example 5.16 Scrolling the background: JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 controls = document.getElementById('controls'),
 animateButton = document.getElementById('animateButton'),
 sky = new Image(),

 paused = true,
 lastTime = 0,
 fps = 0,

 skyOffset = 0,
 SKY_VELOCITY = 30; // 30 pixels/second

// Functions..

function erase() {
 context.clearRect(0, 0, canvas.width, canvas.height);

}

(Continues)

3755.7 Scrolling the Background

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 5.16 (Continued)

function draw() {
 context.save();

 skyOffset = skyOffset < canvas.width ?
 skyOffset + SKY_VELOCITY/fps : 0;

 context.save();
 context.translate(-skyOffset, 0);

 context.drawImage(sky, 0, 0);
 context.drawImage(sky, sky.width-2, 0);

 context.restore();
}

function calculateFps(now) {
var fps = 1000 / (now - lastTime);

 lastTime = now;
return fps;

}

function animate(now) {
if (now === undefined) {

 now = +new Date;
}

 fps = calculateFps(now);

if (!paused) {
erase();
draw();

}

requestNextAnimationFrame(animate);
}

// Event handlers...

animateButton.onclick = function (e) {
 paused = paused ? false : true;

if (paused) {
 animateButton.value = 'Animate';

}
else {

 animateButton.value = 'Pause';
}

};

Chapter 5 Animation376

Download from Join eBook (www.joinebook.com)

ptg7987094

// Initialization...

canvas.width = canvas.width;
canvas.height = canvas.height;

sky.src = 'sky.png';
sky.onload = function (e) {

draw();
};

requestNextAnimationFrame(animate);

5.8 Parallax
Nobody knows why birds bob their heads up and down when they walk, but
one popular theory is that it gives them stereo vision. The rapid vertical movement
may give them two slightly different perspectives nearly simultaneously,
producing something known as motion parallax, letting them perceive depth.

Luckily for us, our eyes have overlapping vision, so we get parallax, and depth
perception, without looking ridiculous. Parallax is the perceived difference
in position of an object, when that object is viewed from a different line of sight,
and is the reason that things far away appear to move more slowly than things
that are close by.

Animators implement parallax effects by scrolling multiple layers of an animation
at different speeds. For example, the application shown in Figure 5.10 has four
layers, as you can see in Figure 5.11. In that animation, the sky and clouds are
much further away from the observer than anything else, so the sky scrolls very
slowly from right to left. The next closest objects in the animation are the small
trees in the background. Those trees move considerably faster than the sky, but
not quite as fast as the larger trees, which are even closer to the observer. Finally,
the grass in the forefront of the animation scrolls more rapidly than any other
objects in the animation.

When combined, the four layers of the animation scrolling by at different speeds
create an illusion of three dimensions that cannot be captured in a book. To access
the example online, go to corehtml5canvas.com.

3775.8 Parallax

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 5.10 Using parallax to simulate three dimensions: From top to bottom, the bigger
trees in front, moving right to left, overtake the smaller ones in back

Chapter 5 Animation378

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 5.11 The parallax layers

The JavaScript for the parallax example shown in Figure 5.10 is listed in
Example 5.17. Pay attention to the draw() method, which calculates translation
offsets for each of the four layers, and then subsequently saves the context,
translates it, draws the objects in the layer, and restores the context. The
save/translate/draw/restore cycle relieves us of any responsibility for calculating
the positions of the objects that we’re scrolling—we just draw the objects at the
same coordinates every frame, and the translation of the context gives them
apparent motion.

3795.8 Parallax

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 5.17 Parallax

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 controls = document.getElementById('controls'),
 animateButton = document.getElementById('animateButton'),

 tree = new Image(),
 nearTree = new Image(),
 grass = new Image(),
 grass2 = new Image(),
 sky = new Image(),

 paused = true,
 lastTime = 0,
 lastFpsUpdate = { time: 0, value: 0 },
 fps=60,

 skyOffset = 0,
 grassOffset = 0,
 treeOffset = 0,
 nearTreeOffset = 0,

 TREE_VELOCITY = 20,
 FAST_TREE_VELOCITY = 40,
 SKY_VELOCITY = 8,
 GRASS_VELOCITY = 75;

// Functions..

function erase() {
 context.clearRect(0, 0, canvas.width, canvas.height);

}

function draw() {
 context.save();

 skyOffset = skyOffset < canvas.width ?
 skyOffset + SKY_VELOCITY/fps : 0;

 grassOffset = grassOffset < canvas.width ?
 grassOffset + GRASS_VELOCITY/fps : 0;

 treeOffset = treeOffset < canvas.width ?
 treeOffset + TREE_VELOCITY/fps : 0;

 nearTreeOffset = nearTreeOffset < canvas.width ?
 nearTreeOffset + FAST_TREE_VELOCITY/fps : 0;

Chapter 5 Animation380

Download from Join eBook (www.joinebook.com)

ptg7987094

 context.save();
 context.translate(-skyOffset, 0);
 context.drawImage(sky, 0, 0);
 context.drawImage(sky, sky.width-2, 0);
 context.restore();

 context.save();
 context.translate(-treeOffset, 0);
 context.drawImage(tree, 100, 240);
 context.drawImage(tree, 1100, 240);
 context.drawImage(tree, 400, 240);
 context.drawImage(tree, 1400, 240);
 context.drawImage(tree, 700, 240);
 context.drawImage(tree, 1700, 240);
 context.restore();

 context.save();
 context.translate(-nearTreeOffset, 0);
 context.drawImage(nearTree, 250, 220);
 context.drawImage(nearTree, 1250, 220);
 context.drawImage(nearTree, 800, 220);
 context.drawImage(nearTree, 1800, 220);
 context.restore();

 context.save();
 context.translate(-grassOffset, 0);

 context.drawImage(grass, 0,
 canvas.height-grass.height);

 context.drawImage(grass, grass.width-5,
 canvas.height-grass.height);

 context.drawImage(grass2, 0,
 canvas.height-grass2.height);

 context.drawImage(grass2, grass2.width,
 canvas.height-grass2.height);

 context.restore();

}

function calculateFps(now) {
var fps = 1000 / (now - lastTime);

 lastTime = now;
return fps;

}

(Continues)

3815.8 Parallax

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 5.17 (Continued)

function animate(now) {
if (now === undefined) {

 now = +new Date;
}

 fps = calculateFps(now);

if (!paused) {
erase();
draw();

}

requestNextAnimationFrame(animate);
}

// Event handlers...

animateButton.onclick = function (e) {
 paused = paused ? false : true;

if (paused) {
 animateButton.value = 'Animate';

}
else {

 animateButton.value = 'Pause';
}

};

// Initialization...

context.font = '48px Helvetica';

tree.src = 'smalltree.png';
nearTree.src = 'tree-twotrunks.png';
grass.src = 'grass.png'; grass2.src
= 'grass2.png';
sky.src = 'sky.png';
sky.onload = function (e) {

draw();
};

requestNextAnimationFrame(animate);

Chapter 5 Animation382

Download from Join eBook (www.joinebook.com)

ptg7987094

5.9 User Gestures
Some animations run on their own, but others require some kind of user inter-
action. Users typically interact with animations by user gestures, usually with
mouse or fingers, on the desktop or mobile devices, respectively.

The application shown in Figure 5.12 is the same magnifying glass application
discussed in Section 4.10, “A Magnifying Glass,” on p. 321. However, this version
of the magnifying glass lets the user throw the magnifying glass by quickly drag-
ging and releasing it. Once the user throws it, the magnifying glass continues to
move in the direction of the throw, at a speed relative to the speed of the throw.
When the magnifying glass reaches an edge of the canvas, it bounces off the edge
and continues animating. Figure 5.12 shows the magnifying glass animating.

Figure 5.12 User gestures: an animated magnifying glass (moving from bottom-left to
top-right)

3835.9 User Gestures

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 5.18 is a partial listing of the application shown in Figure 5.12. That
listing shows how the application implements the throwing gesture.

When the user drags the mouse, the application records the time and location of
both the mouse down and mouse up events. After the mouse up event ends the
drag, the application’s didThrow() method evaluates the user’s gesture by using
a simple equation that takes into account the cursor’s velocity. If the velocity is
sufficiently high enough, the application determines that the user threw the
magnifying glass and subsequently starts the animation.

Example 5.18 Implementing a user gesture to start an animation (partial listing)

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ...

 animating = false,
 dragging = false,
 mousedown = null,
 mouseup = null;

// Functions..

function didThrow() {
var elapsedTime = mouseup.time - mousedown.time;
var elapsedMotion = Math.abs(mouseup.x - mousedown.x) +

 Math.abs(mouseup.y - mousedown.y);
return (elapsedMotion / elapsedTime * 10) > 3;

}

// Event handlers...

canvas.onmousedown = function (e) {
var mouse = windowToCanvas(e.clientX, e.clientY);

 mousedown = { x: mouse.x, y: mouse.y, time: (new Date).getTime() };
 e.preventDefault(e);

if (animating) { // Stop the current animation
 animating = false;

clearInterval(animationLoop);
eraseMagnifyingGlass();

}
else { // Start dragging

 dragging = true;
 context.save();

}
};

Chapter 5 Animation384

Download from Join eBook (www.joinebook.com)

ptg7987094

canvas.onmousemove = function (e) {
if (dragging) {

eraseMagnifyingGlass();
drawMagnifyingGlass(

windowToCanvas(e.clientX, e.clientY));
}

};

canvas.onmouseup = function (e) {
var mouse = windowToCanvas(canvas, e.clientX, e.clientY);

 mouseup = { x: mouse.x, y: mouse.y, time: (new Date).getTime() };

if (dragging) {
if (didThrow()) {

 velocityX = (mouseup.x-mousedown.x)/100;
 velocityY = (mouseup.y-mousedown.y)/100;

animate(mouse, { vx: velocityX, vy: velocityY });
}
else {
eraseMagnifyingGlass();

}
}

 dragging = false;
};

5.10 Timed Animations
All of the animations so far in this chapter run continuously; however, most
animations run for a specific amount of time. In this section you’ll see how to use
stopwatches to run animations for various periods of time, and you’ll also see how
to encapsulate a stopwatch in a simple Animation object.

5.10.1 Stopwatches
Figure 5.13 shows an application that simulates a stopwatch. You set the duration
of the stopwatch with the application’s input field, and you start the stopwatch
by clicking the Start button. As the stopwatch runs, the application smoothly
winds the one hand of the stopwatch toward zero.

The application shown in Figure 5.13 uses a Stopwatch object, which has the
following methods:

• void start()

• void stop()

3855.10 Timed Animations

Download from Join eBook (www.joinebook.com)

ptg7987094

• Number getElapsedTime()

• Boolean isRunning()

• void reset()

Figure 5.13 Stopwatches

You can start and stop a stopwatch, get its elapsed time, determine whether it’s
running, and reset its value to zero. The Stopwatch implementation is shown in
Example 5.19.

An excerpt of the JavaScript for the application shown in Figure 5.13 is listed in
Example 5.20.

The Start button serves two purposes: It both starts and stops the stopwatch. If
you click the button when its text is Start, the application starts the stopwatch,
sets the button’s text to Stop, disables the seconds input, and requests the next
animation frame to kick off the stopwatch animation.

If you click the button when its text is Stop, the application stops the stopwatch,
resets the button’s text to Start, and enables the seconds input. Notice that the
application does not call requestNextAnimationFrame() when you stop the stop-
watch, so clicking the Stop button stops the animation in addition to the stopwatch.

Chapter 5 Animation386

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 5.19 A stopwatch implementation

// Stopwatch..
//
// Like the real thing, you can start and stop a stopwatch, and you
// can find out the elapsed time the stopwatch has been running.
// After you stop a stopwatch, its getElapsedTime() method returns
// the elapsed time between the start and stop.
//
// Stopwatches are used primarily for timing animations.

// Constructor..

Stopwatch = function () { };

// Prototype..

Stopwatch.prototype = {
 startTime: 0,
 running: false,
 elapsed: undefined,

 start: function () {
this.startTime = +new Date();
this.elapsedTime = undefined;
this.running = true;

},

 stop: function () {
this.elapsed = (+new Date()) - this.startTime;
this.running = false;

},

 getElapsedTime: function () {
if (this.running) {

return (+new Date()) - this.startTime;
}
else {

return this.elapsed;
}

},

 isRunning: function() {
return this.running;

},

 reset: function() {
this.elapsed = 0;

}
};

3875.10 Timed Animations

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 5.20 Using a stopwatch

var stopwatch = new Stopwatch(),
 secondsInput = document.getElementById('secondsInput'),
 startStopButton = document.getElementById('startStopButton');
...

startStopButton.onclick = function (e) {
var value = startStopButton.value;
if (value === 'Start') {

 stopwatch.start();
 startStopButton.value = 'Stop';

requestNextAnimationFrame(animate);
 secondsInput.disabled = true;

}
else {

 stopwatch.stop();
 timerSetting = parseFloat(secondsInput.value);
 startStopButton.value = 'Start';
 secondsInput.disabled = false;

}
 stopwatch.reset();
};

function animate() {
if (stopwatch.isRunning() &&

 stopwatch.getElapsedTime() > timerSetting*1000) {

// Animation is over

 stopwatch.stop();
 startStopButton.value = 'Start';
 secondsInput.disabled = false;
 secondsInput.value = 0;

}
else if (stopwatch.isRunning()) { // Animation is running

redraw();
requestNextAnimationFrame(animate);

}
}

As long as the stopwatch’s elapsed time is less than the timer setting, the animate()
function redraws the stopwatch and recursively calls itself by invoking
requestNextAnimationFrame(). When the stopwatch’s elapsed time exceeds the
timer setting, the application stops the stopwatch and shuts down the animation.

Chapter 5 Animation388

Download from Join eBook (www.joinebook.com)

ptg7987094

5.10.2 Animation Timers
In Example 5.20 you saw how to control the duration of an animation with a
stopwatch. Although stopwatches are useful for controlling animations, it’s more
convenient to work at a higher level of abstraction so this section implements an
AnimationTimer, as listed in Example 5.21.

Example 5.21 Animation timer

// Constructor..

AnimationTimer = function (duration) {
this.duration = duration;

};

// Prototype..

AnimationTimer.prototype = {
 duration: undefined,
 stopwatch: new Stopwatch(),

 start: function () {
this.stopwatch.start();

},

 stop: function () {
this.stopwatch.stop();

},

 getElapsedTime: function () {
var elapsedTime = this.stopwatch.getElapsedTime();

if (!this.stopwatch.running)
return undefined;

else
return elapsedTime;

},

 isRunning: function() {
return this.stopwatch.isRunning();

},

 isOver: function () {
return this.stopwatch.getElapsedTime() > this.duration;

},
};

3895.10 Timed Animations

Download from Join eBook (www.joinebook.com)

ptg7987094

The AnimationTimer object is a thin wrapper around the Stopwatch object dis-
cussed in the preceding section. AnimationTimer mostly delegates directly to a
stopwatch, but adds one new method: isOver(). That method tells you whether
the animation’s elapsed time is greater than its duration. If you find that an
animation is over, you typically will want to stop it—animations do not stop
themselves.

You use AnimationTimers just like you use stopwatches, except that you have
the advantage of the isOver() method. Notice that AnimationTimer doesn’t
actually animate anything; it is simply a time construct. In Section 7.2, “Warping
Time,” on p. 450, we will exploit the fact that Animation deals with a single
abstraction—time—by extending that object to incorporate time warping,
which allows all sorts of nonlinear effects, including nonlinear motion such as
easing and elasticity.

5.11 Animation Best Practices
As you create your own animations, here are some best practices to keep in mind:

• Use a requestAnimationFrame() polyfill method.
• Separate updating and drawing.
• Use time-based motion.
• Use clipping or blitting for restoring complex backgrounds.
• Keep one or more offscreen buffers for backgrounds.
• Don’t implement traditional double buffering: the browser does it for you.
• Avoid CSS shadows and rounded corners.
• Avoid Canvas shadows.
• Do not allocate memory during animations.
• Use profiling and timelines to monitor and improve performance.

You should use a requestAnimationFrame() polyfill function for your animations.
That polyfill function should take into account the bugs specific to Firefox 4.0
and Chrome 10, as discussed in this chapter. requestAnimationFrame() is
preferable to setTimeout() or setInterval() because requestAnimationFrame()
is implemented specifically for animations.

It’s always a good idea to separate updating the objects that you animate from
the actual drawing of those objects, because modifying one object can affect
another.

You should also use time-based motion to make sure that all of your animations
run at the same rate, regardless of the underlying animation’s frame rate. For

Chapter 5 Animation390

Download from Join eBook (www.joinebook.com)

ptg7987094

most animations, especially games, it’s essential that the animations proceed at
a steady rate, even if the application slows down. As you saw in this chapter, it’s
easy to implement time-based motion that’s frame rate independent, at least for
simple cases of motion.

Keep in mind that the browser automatically implements double buffering for
you in Canvas elements. Because the browser double buffers the display, you
don’t need to implement double buffering yourself, but it’s often useful to use
one or more offscreen buffers, especially for complicated backgrounds. Remember
that all other things being equal, you will generally get better performance by
copying complicated backgrounds from offscreen buffers rather than redrawing
those backgrounds for every animation frame.

Shadows, along with gradients, whether they are of the CSS Canvas variety, can
be performance killers, especially on mobile devices. Be sure to test your applica-
tions both with and without shadows and gradients if your application is running
slowly.

Finally, you should try to avoid allocating memory during your animations so
the browser does not run the garbage collector, or at least that it collects garbage
as infrequently as possible. You can also use profiling and timelines to locate
performance bottlenecks.

5.12 Conclusion
In this chapter, you’ve seen how to implement Canvas animations. You saw
that, although it’s possible to implement animations with setTimeout() or
setInterval(), you should prefer requestAnimationFrame(), or one of the
browser-specific variants of that method, for your animations.

You saw how to implement time-based motion, to keep your animations running
at a constant speed, regardless of the animation’s underlying frame rate.

You learned how to scroll an animation’s background and how to take advantage
of parallax—the fact that things close to you appear to be moving faster than
things far away—to simulate three dimensions.

Finally, you saw how to detect user gestures to control animations, and then we
wrapped up the chapter by discussing some best practices for implementing
Canvas-based animations. In the next chapter, we take a short detour to encapsu-
late some of what you learned in this chapter, so that implementing animations
doesn’t require you to start from scratch every time.

3915.12 Conclusion

Download from Join eBook (www.joinebook.com)

ptg7987094

This page intentionally left blank

Download from Join eBook (www.joinebook.com)

ptg7987094

In the last chapter you learned how to implement animations in a canvas. You
saw how to use requestAnimationFrame() to implement smooth animations, and
you saw how to incorporate clipping and offscreen canvases into your anima-
tions. You also learned how to implement time-based motion and how to time
animations with stopwatches and animation timers.

Now that you know the fundamentals of implementing Canvas-based animations,
it’s a good idea to encapsulate those fundamentals in some JavaScript objects so
that you don’t have to start from scratch every time you implement an animation.
This chapter explores the implementation of sprites, which are graphical objects
that you can incorporate into animations. You’ll see how to move sprites without
disturbing the background underneath and how to give them behaviors; for
example, you could add a bouncing behavior to a ball or an exploding behavior
to a bomb. You’ll see how to implement behaviors that repeat indefinitely and
behaviors that persist only for a specific amount of time.

Sprites can also change their appearance over time to simulate things like
explosions. You’ll see how to do that with sprite animators, which are objects
that animate sprites by periodically changing a sprite’s appearance.

NOTE: The history of sprites

The word sprite, which originally meant Greek fairy, was coined by an implementer
of the Texas Instruments 9918(A) video display processor. Sprites can be imple-
mented in either software or hardware; for example, the Commodore Amiga in
1985 had support for eight hardware sprites.You can read more about the history
of sprites on Wikipedia at http://en.wikipedia.org/wiki/Sprite_(computer_graphics).

6CHAPTER

Sprites

393
Download from Join eBook (www.joinebook.com)

http://en.wikipedia.org/wiki/Sprite_(computer_graphics)

ptg7987094

NOTE: Sprites are not part of the Canvas API

The Canvas API does not explicitly support sprites; however, it does provide
all the graphics capabilities that you need to implement your own sprites. All
of the objects discussed in this chapter, such as sprites, painters, and animators,
are not part of the Canvas API but are derived from it.

There are countless ways to implement the sprites, sprite behaviors, and sprite
animations discussed in this chapter. You can use the implementations in this
chapter directly, modify them to suit your tastes, or use the concepts for your
own sprite implementation.

NOTE: Design patterns, behaviors, and animators

This chapter implements three design patterns: Strategy, Command, and
Flyweight. The Strategy pattern is used to decouple sprites from their painters,
the Command pattern is used to implement behaviors, and the Flyweight pattern
is used to represent many sprites with a single instance.

This chapter also implements concepts from two open source projects. First, the
idea for behaviors comes from Replica Island, which is a popular open
source Android game. Second, the idea for sprite animators, and their final im-
plementation discussed in Chapter 7, come from Animator.js, which is a popular
low-level animation library.

You can read more about Replica Island and Animator.js at http://bit.ly/kNzDVc
and http://bit.ly/krLIo6, respectively.

6.1 Sprites Overview
For sprites to be useful, you must be able to paint them, place them at specific
locations in an animation, and move them from one place to another at a specified
velocity. Sprites may also be called upon to perform certain activities such as
falling, bouncing, flying, exploding, colliding with other sprites, etc. Table 6.1
lists Sprite properties.

The painter property refers to an object that paints sprites with a paint(sprite,
context) method. The behaviors property refers to an array of objects, each of
which manipulates a sprite in some manner with an execute(sprite, context,
time) method. Example 6.1 shows the implementation of the Sprite object.

Sprites have two methods: paint() and update(). The update() method executes
each of the sprite’s behaviors—in the order they were added to the sprite,—and

Chapter 6 Sprites394

Download from Join eBook (www.joinebook.com)

http://bit.ly/kNzDVc
http://bit.ly/krLIo6

ptg7987094

Table 6.1 Sprite properties

DescriptionProperty

The Y location of the sprite’s upper left-hand corner (ulhc)top

The X location of the sprite’s ulhcleft

The sprite’s widthwidth

The sprite’s heightheight

The sprite’s velocity in the X directionvelocityX

The sprite’s velocity in the Y directionvelocityY

An array of behaviors that are invoked when a sprite is updatedbehaviors

The object that paints the spritepainter

A boolean that indicates whether the sprite is visiblevisible

A boolean that indicates whether the sprite is animatinganimating

paint() delegates painting to the sprite’s painter, but only if the sprite actually
has a painter and the sprite is visible.

The Sprite constructor takes three arguments: the sprite’s name, its painter, and
an array of behaviors.

Example 6.1 Sprites

// Constructor..

var Sprite = function (name, painter, behaviors) {
if (name !== undefined) this.name = name;
if (painter !== undefined) this.painter = painter;

this.top = 0;
this.left = 0;
this.width = 10;
this.height = 10;
this.velocityX = 0;
this.velocityY = 0;
this.visible = true;
this.animating = false;
this.behaviors = behaviors || [];

return this;
};

(Continues)

3956.1 Sprites Overview

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 6.1 (Continued)

// Prototype..

Sprite.prototype = {
 paint: function (context) {

if (this.painter !== undefined && this.visible) {
this.painter.paint(this, context);

}
},

 update: function (context, time) {
for (var i = 0; i < this.behaviors.length; ++i) {

this.behaviors[i].execute(this, context, time);
}

}
};

Now that we’ve seen how to implement sprites, let’s see how to use them.
Figure 6.1 shows an application that displays a simple sprite.

Figure 6.1 A simple sprite

Chapter 6 Sprites396

Download from Join eBook (www.joinebook.com)

ptg7987094

The JavaScript for the application shown in Figure 6.1 is listed in Example 6.2.

Example 6.2 A simple sprite: JavaScript

var context = document.getElementById('canvas').getContext('2d'),
 RADIUS = 75,
 ball = new Sprite('ball',

{
 paint: function(sprite, context) {
 context.beginPath();
 context.arc(sprite.left + sprite.width/2,
 sprite.top + sprite.height/2,
 RADIUS, 0, Math.PI*2, false);
 context.clip();

 context.shadowColor = 'rgb(0,0,0)';
 context.shadowOffsetX = -4;
 context.shadowOffsetY = -4;
 context.shadowBlur = 8;

 context.lineWidth = 2;
 context.strokeStyle = 'rgb(100,100,195)';
 context.fillStyle = 'rgba(30,144,255,0.15)';
 context.fill();
 context.stroke();

}
}

);

function drawGrid(color, stepx, stepy) {
// Draws a grid. See Section 2.8.2 on p. 105
// for a full listing

}

drawGrid('lightgray', 10, 10);

ball.left = 320;
ball.top = 160;
ball.paint(context);

Example 6.2 creates a sprite named ball with a painter that paints the ball. The
ball sprite is easy to implement, but it’s mostly uninteresting because it has
no behaviors. In Section 6.3, “Sprite Behaviors,” on p. 411, we see how to add
behaviors to sprites.

3976.1 Sprites Overview

Download from Join eBook (www.joinebook.com)

ptg7987094

6.2 Painters
Sprites are decoupled from the objects that paint them. That way, you can assign
painters to a sprite at runtime, which gives you a great deal of flexibility. For
example, you could implement a sprite animator that swaps out a sprite’s
painter at a specified time interval; in fact, you will see the implementation of
just such an animator in Section 6.4, “Sprite Animators,” on p. 417.

Painters are required to implement a single method: void paint(sprite,
context). Painters can be categorized into three types:

• Stroke and fill
• Image
• Sprite sheet

A stroke and fill painter uses the Canvas graphics API to paint a sprite, whereas
an image painter paints an image. Finally, a sprite sheet painter paints individual
sprites from a sprite sheet. Let’s look at each type of painter.

NOTE: Painters and strategies

Sprites do not paint themselves; instead, they delegate painting to another
object. Painters are essentially interchangeable painting algorithms that you
can assign to sprites at runtime, which means that painters are an example
of the Strategy design pattern. See http://bit.ly/k94Fro for more information
about the Strategy pattern.

NOTE: sprites.js

The Sprite implementation, along with the implementation of other sprite-related
classes, such as ImagePainter, reside in a file named sprites.js. All the
examples in this chapter include that file in their HTML page.

6.2.1 Stroke and Fill Painters
Stroke and fill painters paint their sprites with Canvas graphics calls, including
stroke() and fill(); for example, Figure 6.2 shows a clock that uses a sprite to
paint the clock hands.

First, the application creates an object that paints the sprite and then passes that
painter to the Sprite constructor:

Chapter 6 Sprites398

Download from Join eBook (www.joinebook.com)

http://bit.ly/k94Fro

ptg7987094

Figure 6.2 A sprite clock at 11:17:45

var ballPainter = {
 paint: function (sprite, context) {

var x = sprite.left + sprite.width/2,
 y = sprite.top + sprite.height/2,

...
 radius = sprite.width/2;

 context.save();
 context.beginPath();
 context.arc(x, y, radius, 0, Math.PI*2, false);
 context.clip();

// Continue drawing the sprite...

 context.restore();
}

},
...
ball = new Sprite('ball', ballPainter);

3996.2 Painters

Download from Join eBook (www.joinebook.com)

ptg7987094

Subsequently, the application uses the ball sprite to paint the clock hands,
like this:

function drawHand(loc, isHour) {
// Move ball to the appropriate location
...

 ball.paint(context);
}

function drawHands() {
var date = new Date(),

 hour = date.getHours();

// Seconds

 ball.width = 20;
 ball.height = 20;

drawHand(date.getSeconds(), false);

// Minutes

 hour = hour > 12 ? hour - 12 : hour;
 ball.width = 35;
 ball.height = 35;

drawHand(date.getMinutes(), false);

// Hours

 ball.width = 50;
 ball.height = 50;

drawHand(hour*5 + (date.getMinutes()/60)*5, true);

// Centerpiece

 ball.width = 10;
 ball.height = 10;
 ball.left = canvas.width/2 - ball.width/2;
 ball.top = canvas.height/2 - ball.height/2;
 ballPainter.paint(ball, context);
}

The complete JavaScript for the application shown in Figure 6.2 is listed in
Example 6.3.

Chapter 6 Sprites400

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 6.3 A sprite clock: JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

 CLOCK_RADIUS = canvas.width/2 - 15,
 HOUR_HAND_TRUNCATION = 35,

// Painter..

 ballPainter = {
 paint: function (sprite, context) {

var x = sprite.left + sprite.width/2,
 y = sprite.top + sprite.height/2,
 width = sprite.width,
 height = sprite.height,
 radius = sprite.width/2;

 context.save();
 context.beginPath();
 context.arc(x, y, radius, 0, Math.PI*2, false);
 context.clip();

 context.shadowColor = 'rgb(0,0,0)';
 context.shadowOffsetX = -4;
 context.shadowOffsetY = -4;
 context.shadowBlur = 8;

 context.fillStyle = 'rgba(218,165,32,0.1)';
 context.fill();

 context.lineWidth = 2;
 context.strokeStyle = 'rgb(100,100,195)';
 context.stroke();

 context.restore();
} },

// Sprite...

 ball = new Sprite('ball', ballPainter);

// Functions..

(Continues)

4016.2 Painters

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 6.3 (Continued)

function drawGrid(color, stepx, stepy) {
// Omitted for brevity. See Example 2.13 on p. 106
// for a complete listing.
...

}

function drawHand(loc, isHour) {
var angle = (Math.PI*2) * (loc/60) - Math.PI/2,

 handRadius = isHour ? CLOCK_RADIUS - HOUR_HAND_TRUNCATION
: CLOCK_RADIUS,

 lineEnd = {
 x: canvas.width/2 +
 Math.cos(angle)*(handRadius - ball.width/2),

 y: canvas.height/2 +
 Math.sin(angle)*(handRadius - ball.width/2)

};

 context.beginPath();
 context.moveTo(canvas.width/2, canvas.height/2);
 context.lineTo(lineEnd.x, lineEnd.y);
 context.stroke();

 ball.left = canvas.width/2 +
 Math.cos(angle)*handRadius - ball.width/2;

 ball.top = canvas.height/2 +
 Math.sin(angle)*handRadius - ball.height/2;

 ball.paint(context);
}

function drawClock() {
drawClockFace();
drawHands();

}

function drawHands() {
var date = new Date(),

 hour = date.getHours();

 ball.width = 20;
 ball.height = 20;

drawHand(date.getSeconds(), false);

 hour = hour > 12 ? hour - 12 : hour;
 ball.width = 35;
 ball.height = 35;

drawHand(date.getMinutes(), false);

Chapter 6 Sprites402

Download from Join eBook (www.joinebook.com)

ptg7987094

 ball.width = 50;
 ball.height = 50;

drawHand(hour*5 + (date.getMinutes()/60)*5);

 ball.width = 10;
 ball.height = 10;
 ball.left = canvas.width/2 - ball.width/2;
 ball.top = canvas.height/2 - ball.height/2;
 ballPainter.paint(ball, context);

}

function drawClockFace() {
 context.beginPath();
 context.arc(canvas.width/2, canvas.height/2,
 CLOCK_RADIUS, 0, Math.PI*2, false);

 context.save();
 context.strokeStyle = 'rgba(0,0,0,0.2)';
 context.stroke();
 context.restore();

}

// Animation..

function animate() {
 context.clearRect(0, 0, canvas.width, canvas.height);

drawGrid('lightgray', 10, 10);
drawClock();

 window.requestNextAnimationFrame(animate);
}

// Initialization...

context.lineWidth = 0.5;
context.strokeStyle = 'rgba(0,0,0,0.2)';
context.shadowColor = 'rgba(0,0,0,0.5)';
context.shadowOffsetX = 2;
context.shadowOffsetY = 2;
context.shadowBlur = 4; con-
text.stroke();

window.requestNextAnimationFrame(animate);

drawGrid('lightgray', 10, 10);

Now that you’ve seen how to use stroke and fill painters, let’s see how to
implement an image painter.

4036.2 Painters

Download from Join eBook (www.joinebook.com)

ptg7987094

TIP: Flyweight sprites

Although it may look as though four sprites are in the application shown in
Figure 6.2 on p. 399, there’s actually only one.As you can see from Example 6.3,
the application uses the same sprite to paint all three hands and the pivot
in the center of the clock.

Using one object to represent several is known as the Flyweight design pattern.
That pattern reduces the number of objects that you create, which reduces the
amount of memory that you use. That reduction is important for performance
in animations and video games.

TIP: Controlling animations with window.requestNextAnimationFrame()

The application shown in Figure 6.2 uses window.requestNextAnimation-
Frame(), which is a polyfill method discussed in Section 5.1.3, “A Portable
Animation Loop,” on p. 348. That method is implemented in request-
NextAnimationFrame.js, which is included by the application’s HTML page.

6.2.2 Image Painters
Image painters maintain a reference to an image, and they use the context
they receive in their paint() method to draw that image. The image painter’s
implementation is straightforward, as illustrated in Example 6.4.

Example 6.4 A sprite image painter

var ImagePainter = function (imageUrl) {
this.image = new Image();
this.image.src = imageUrl;

};

ImagePainter.prototype = {
 paint: function (sprite, context) {

if (this.image.complete) {
 context.drawImage(this.image, sprite.left, sprite.top,
 sprite.width, sprite.height);

}
}

};

When you create an image painter, you pass the ImagePainter constructor a ref-
erence to the image URL. Subsequently, the image painter’s paint() method
draws the image only if it’s been loaded.

Chapter 6 Sprites404

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 6.3 shows a sprite equipped with an image painter.

Figure 6.3 An image painter

The JavaScript for the application shown in Figure 6.3 is listed in Example 6.5. The
application is a simple animation that repeatedly draws the bomb sprite.

Example 6.5 Using an image painter: JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 bomb = new Sprite('bomb', new ImagePainter('bomb.png')),
 BOMB_LEFT = 220,
 BOMB_TOP = 80,
 BOMB_WIDTH = 180,
 BOMB_HEIGHT = 130;

function animate() {
 context.clearRect(0, 0, canvas.width, canvas.height);
 bomb.paint(context);
 window.requestNextAnimationFrame(animate);
}

bomb.left = BOMB_LEFT;
bomb.top = BOMB_TOP;
bomb.width = BOMB_WIDTH;
bomb.height = BOMB_HEIGHT;

window.requestNextAnimationFrame(animate);

4056.2 Painters

Download from Join eBook (www.joinebook.com)

ptg7987094

CAUTION: Image loading

Notice that the application listed in Example 6.5 does not just draw a sprite, it
repeatedly draws a sprite, because it uses the sprite in an animation. It just so
happens that the animation in Example 6.5 is not very interesting; however, it
is an animation just the same.

Because image painters repeatedly draw a sprite’s image, they are not concerned
about loading the image. If you call an image painter’s draw() method and the
image is not loaded, the method does nothing, expecting that it will be called
again in the next few milliseconds when the image has been loaded; if not, the
cycle continues until the image is available, and then it appears.

That rather cavalier image loading policy does not always suffice. Sometimes,
for example, you must load all your images up-front before you draw any of them.
In Section 9.1.2, “Loading Images,” on p. 554 we discuss an image loader that
addresses that need.

6.2.3 Sprite Sheet Painters
To save space and reduce download times, animation frames for the small, ani-
mated objects known as sprites are stored in a single image, like the one shown
in Figure 6.4. That single image, which contains all of the frames of an animation,
is known as a sprite sheet.

Figure 6.4 A sprite sheet

When you draw an animation frame, you copy the appropriate rectangles from
the sprite sheet to the display. Copying multiple rectangles from a single image

Chapter 6 Sprites406

Download from Join eBook (www.joinebook.com)

ptg7987094

is considerably faster than copying multiple images, and storing multiple images
in a single file can significantly reduce the number of HTTP requests your
application makes. So sprite sheets are a good idea all around.

Sprite sheet painters paint animation cells from sprite sheets. They also keep track
of an index into the array of animation cells contained in the sprite sheet. You
can advance that index with the advance() method, which is implemented in
Example 6.6.

Example 6.6 A sprite sheet painter

SpriteSheetPainter = function (cells) {
this.cells = cells || [];
this.cellIndex = 0;

};

SpriteSheetPainter.prototype = {
 advance: function () {

if (this.cellIndex == this.cells.length-1) {
this.cellIndex = 0;

}
else {

this.cellIndex++;
}

},

 paint: function (sprite, context) {
var cell = this.cells[this.cellIndex];

 context.drawImage(spritesheet, cell.x, cell.y, cell.w, cell.h,
 sprite.left, sprite.top, cell.w, cell.h);

}
};

Figure 6.5 shows an application with a simple sprite sheet at the top of the page
and an animation of that sprite underneath. The application uses a sprite sheet
painter to paint the sprite sheet cells.

The JavaScript for the application shown in Figure 6.5 is listed in Example 6.7.
The application sets the frame rate for the animation to 10 frames/second because
at 60 frames/second, those nine images fly by pretty quickly. The application also
uses the nine-argument version of the drawImage() method to draw the appropri-
ate rectangle from the sprite sheet to the canvas. See Section 4.1.2, “The
drawImage() Method,” on p. 257 for more information about drawImage().

4076.2 Painters

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 6.5 A sprite sheet animation

Chapter 6 Sprites408

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 6.7 Animation with a sprite sheet painter: JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 animateButton = document.getElementById('animateButton'),
 spritesheet = new Image(),
 runnerCells = [

{ left: 0, top: 0, width: 47, height: 64 },
{ left: 55, top: 0, width: 44, height: 64 },
{ left: 107, top: 0, width: 39, height: 64 },
{ left: 150, top: 0, width: 46, height: 64 },
{ left: 208, top: 0, width: 49, height: 64 },
{ left: 265, top: 0, width: 46, height: 64 },
{ left: 320, top: 0, width: 42, height: 64 },
{ left: 380, top: 0, width: 35, height: 64 },
{ left: 425, top: 0, width: 35, height: 64 },

],
 sprite = new Sprite('runner', new SpriteSheetPainter(runnerCells)),
 interval,
 lastAdvance = 0,
 paused = false,
 PAGEFLIP_INTERVAL = 100;

// Functions..

function drawBackground() {
var STEP_Y = 12,

 i = context.canvas.height;

while(i < STEP_Y*4) {
 context.beginPath();
 context.moveTo(0, i);
 context.lineTo(context.canvas.width, i);
 context.stroke();
 i -= STEP_Y;

}
}

function pauseAnimation() {
 animateButton.value = 'Animate';
 paused = true;

}

function startAnimation() {
 animateButton.value = 'Pause';
 paused = false;
 lastAdvance = +new Date();
 window.requestNextAnimationFrame(animate);

}

(Continues)

4096.2 Painters

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 6.7 (Continued)

// Event handlers...

animateButton.onclick = function (e) {
if (animateButton.value === 'Animate') startAnimation();
else

pauseAnimation();};

// Animation..

function animate(time) {
if (! paused) {

 context.clearRect(0, 0, canvas.width, canvas.height);
drawBackground();

 context.drawImage(spritesheet, 0, 0);

 sprite.paint(context);

if (time - lastAdvance > PAGEFLIP_INTERVAL) {
 sprite.painter.advance();
 lastAdvance = time;

}
 window.requestNextAnimationFrame(animate);

}
}

// Initialization...

spritesheet.src = 'running-sprite-sheet.png';
spritesheet.onload = function(e) {
 context.drawImage(spritesheet, 0, 0);
};

sprite.left = 200;
sprite.top = 100;

context.strokeStyle = 'lightgray';
context.lineWidth = 0.5;

drawBackground();

The application’s animate() method clears the canvas, draws the background,
and then draws the sprite sheet at the top of the page. Then it paints the sprite.

After painting the sprite, the animate() method advances the sprite painter if
the painter has not been advanced for PAGEFLIP_INTERVAL milliseconds. Finally, the
application requests the next animation frame from the window, which ultimately
results in a subsequent call to animate(), and the cycle starts again.

Chapter 6 Sprites410

Download from Join eBook (www.joinebook.com)

ptg7987094

6.3 Sprite Behaviors
Now that we’ve seen how to paint sprites, let’s see how give them some
personality by assigning behaviors to them.

Behaviors are nothing more than objects that implement an execute(sprite,
context, time) method. That method typically modifies the sprite in some
manner, perhaps moving the sprite or changing its appearance.

Sprites maintain an array of behaviors. A sprite’s update() method iterates over
that array, giving each behavior a chance to execute. That lets you encapsulate
behaviors as objects that you can assign, at runtime, to various sprites. The appli-
cation listed in Example 6.8 illustrates implementing behaviors by encapsulating
running in place, as shown in Figure 6.5.

Example 6.8 Running in place

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

...

 runInPlace = {
 lastAdvance: 0,
 PAGEFLIP_INTERVAL: 1000,

 execute: function (sprite, context, now) {
if (now - this.lastAdvance > this.PAGEFLIP_INTERVAL) {

 sprite.painter.advance();
this.lastAdvance = now;

}
}

},
 sprite = new Sprite('runner',

new SpriteSheetPainter(runnerCells), [runInPlace]);
...

function animate(time) {
 context.clearRect(0, 0, canvas.width, canvas.height);

drawBackground();

 context.drawImage(spritesheet, 0, 0);

 sprite.update(context, time);
 sprite.paint(context);

 window.requestNextAnimationFrame(animate);
}
...

4116.3 Sprite Behaviors

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 6.8 creates a runInPlace object that has an execute() method, which
means that the object qualifies as a behavior. The application then creates a sprite
and passes the runInPlace object as the lone member of the sprite’s array of be-
haviors. Subsequently, the animation loop repeatedly calls the sprite’s update()
method, which invokes the runInPlace object’s execute() method, and the sprite
appears to run in place.

NOTE: Behaviors are commands

Behaviors, which encapsulate a command of some sort, are an example of the
Command design pattern. Behaviors can be executed as well as stored in a
queue, as is the case for a sprite’s array of behaviors.You can read more about
the Command pattern at Wikipedia at http://bit.ly/lhIa5q.

6.3.1 Combining Behaviors
Sprites have an array of behaviors, so you can assign as many behaviors as you
want to any particular sprite. The sprite’s update() method invokes each behav-
ior’s execute() method, starting with the first behavior in the sprite’s behavior
array and ending with the last.

The application shown in Figure 6.6 combines the running-in-place behavior
discussed in Section 6.3, “Sprite Behaviors,” on p. 411 with a behavior that moves
the sprite from right to left. The resulting effect is that the sprite appears to run
from the right side of the page to the left.

The application creates the sprite like this:

sprite = new Sprite('runner',
new SpriteSheetPainter(runnerCells),
[runInPlace, moveLeftToRight]),

Sprites can have as many behaviors as you want, and you can add and remove
behaviors at runtime by directly manipulating the sprite’s behaviors array. It
would be a simple matter, for example, to endow the sprite shown in Figure 6.6
with a jumping behavior that’s triggered by user input.

The JavaScript for the application shown in Figure 6.6 is listed in Example 6.9.

Chapter 6 Sprites412

Download from Join eBook (www.joinebook.com)

http://bit.ly/lhIa5q

ptg7987094

Figure 6.6 Combining sprite behaviors: run in place and move left to right

4136.3 Sprite Behaviors

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 6.9 Combining behaviors: JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 spritesheet = new Image(),
 runnerCells = [

{ left: 0, top: 0, width: 47, height: 64 },
{ left: 55, top: 0, width: 44, height: 64 },
{ left: 107, top: 0, width: 39, height: 64 },
{ left: 150, top: 0, width: 46, height: 64 },
{ left: 208, top: 0, width: 49, height: 64 },
{ left: 265, top: 0, width: 46, height: 64 },
{ left: 320, top: 0, width: 42, height: 64 },
{ left: 380, top: 0, width: 35, height: 64 },
{ left: 425, top: 0, width: 35, height: 64 },

];

// Behaviors...

 runInPlace = {
 lastAdvance: 0,
 PAGEFLIP_INTERVAL: 100,

 execute: function (sprite, context, time) {
if (time - this.lastAdvance > this.PAGEFLIP_INTERVAL) {

 sprite.painter.advance();
this.lastAdvance = time;

}
}

},

 moveLeftToRight = {
 lastMove: 0,

 execute: function (sprite, context, time) {
if (this.lastMove !== 0) {

 sprite.left -= sprite.velocityX *
((time - this.lastMove) / 1000);

if (sprite.left < 0) {
 sprite.left = canvas.width;

}
}

this.lastMove = time;
}

},

// Sprite..

Chapter 6 Sprites414

Download from Join eBook (www.joinebook.com)

ptg7987094

 sprite = new Sprite('runner', new SpriteSheetPainter(runnerCells),
[runInPlace, moveLeftToRight]);

// Functions...

function drawBackground() {
var STEP_Y = 12,

 i = context.canvas.height;

while(i > STEP_Y*4) {
 context.beginPath();

 context.moveTo(0, i);
 context.lineTo(context.canvas.width, i);
 context.stroke();

 i -= STEP_Y;
}

}

// Animation. ...

function animate(time) {
 context.clearRect(0,0,canvas.width,canvas.height);

drawBackground();

 context.drawImage(spritesheet, 0, 0);

 sprite.update(context, time);
 sprite.paint(context);

 window.requestNextAnimationFrame(animate);
}

// Initialization..

spritesheet.src = 'running-sprite-sheet.png';

spritesheet.onload = function(e) {
 context.drawImage(spritesheet, 0, 0);
};

sprite.velocityX = 50; // pixels/second
sprite.left = 200;
sprite.top = 100;

context.strokeStyle = 'lightgray';
context.lineWidth = 0.5;

window.requestNextAnimationFrame(animate);

4156.3 Sprite Behaviors

Download from Join eBook (www.joinebook.com)

ptg7987094

6.3.2 Timed Behaviors
When you add a behavior to a sprite, that behavior is invoked by the sprite’s
update() method, which you typically call repeatedly from your animation loop.
In effect, once you add a behavior to a sprite, the sprite exhibits that behavior
until you remove it from the sprite’s behavior array.

However, sometimes you want a behavior to last only for a specific period of
time. For example, you may want to apply thrust to a moving object for a short
period of time after some input from the user.

The application shown in Figure 6.7 uses a timed behavior that persists for a
specific time. Each time you click either the left or right arrows, the application
moves the ball in that direction for 200 ms.

Figure 6.7 Timed behaviors

The ball’s motion is time-based, so the ball’s velocity is specified in pixels per
second—110 pixels/second to be exact. Therefore, 200 ms of movement equates
to exactly 22 pixels (200 ms is 1/5 of a second, and 1/5 of 110 is 22).

The ledge upon which the ball rests is 44 pixels wide, so clicking on either arrow
when the ball is in the middle puts the ball on the edge of the ledge, as shown in
Figure 6.7. If the user pushes the ball off the edge, the application puts it back in
the center.

When the user clicks on one of the arrows, the application starts an animation
timer—see Section 5.10.2, “Animation Timers,” on p. 389 for more about
animation timers—and sets a flag that indicates direction. Subsequently, the
ball’s moveBall behavior moves the ball, like this:

Chapter 6 Sprites416

Download from Join eBook (www.joinebook.com)

ptg7987094

var ANIMATION_DURATION = 200,
 pushAnimationTimer = new AnimationTimer(ANIMATION_DURATION),

 moveBall = {
 execute: function (sprite, context, time) {

if (pushAnimationTimer.isRunning()) {
if (arrow === LEFT) ball.left -= ball.velocityX / fps;
else ball.left += ball.velocityX / fps;

if (isBallOnLedge()) {
if (pushAnimationTimer.isOver()) {

 pushAnimationTimer.stop();
}

}
else {

 pushAnimationTimer.stop();
 ball.left = LEDGE_LEFT + LEDGE_WIDTH/2 - BALL_RADIUS;
 ball.top = LEDGE_TOP - BALL_RADIUS*2;

}
}

}
},

 ball = new Sprite('ball', painter, [moveBall]);
...

If the animation timer is running, the moveBall behavior moves the ball either
left or right, depending on which arrow the user clicked last.

The application implements time-based motion by dividing the ball’s velocity,
which is measured in pixels per second, by the animation’s frame rate, which is
measured in frames per second. The result is the number of pixels the ball must
travel for the current frame. See Section 5.6, “Time-Based Motion,” on p. 367 for
more information on time-based motion.

After adjusting the ball’s position, the moveBall behavior checks to see if the
ball is still on the ledge; if it is, and if the ball has been moving for more
than 200 ms, the behavior stops the animation timer. Otherwise, if the ball has
fallen off the ledge, the behavior stops the animation timer and places the ball
in the middle of the ledge.

Now that you’ve seen how to implement timed behaviors, let’s see how to
generalize and encapsulate that concept with sprite animators.

6.4 Sprite Animators
Not only is it common to move sprites from one location to another, it’s also
common to animate sprite images, as shown in Figure 6.8.

4176.4 Sprite Animators

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 6.8 Two sprite animators, one for the fuse and another for the explosion. From top,
clockwise: Fuse burns, bomb explodes, and reappears.

The application shown in Figure 6.8 contains a button and a sprite. If you
click the button, the application animates the sprite’s image to make it look as
though the fuse were burning.

After the fuse has burned all the way down, the application animates the sprite’s
image through a sequence of images that makes it appear as if the bomb were
exploding.

Finally, the application restores the original sprite in two steps: drawing the bomb
without the fuse and adding the fuse shortly thereafter.

Chapter 6 Sprites418

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 6.9 and Figure 6.10 show the sequence of images for the fuse-burning and
explosion animations.

Figure 6.9 Fuse animation cells (left to right, top row to bottom)

Figure 6.10 Explosion animation cells (left to right, top to bottom)

Sprite animator objects control a sprite’s animations. The SpriteAnimator object
is listed in Example 6.10.

The SpriteAnimator object maintains an array of sprite painters, which, as you
saw in Section 6.2, “Painters,” on p. 398, are simply objects that paint sprites with
a paint(sprite, context) method. Every sprite has a single sprite painter that
paints it.

Sprite animators cycle through an array of painters assigning each one in turn,
for a specific period of time, to a single sprite.

When you create a SpriteAnimator, you pass the constructor function the anima-
tor’s painters, and an optional callback that the animator will invoke when the
animation is finished.

You start an animation with the SpriteAnimator.start() method. You pass to
that method the sprite that you want to animate, and the animation’s duration
in milliseconds.

4196.4 Sprite Animators

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 6.10 A sprite animator

// Constructor..

var SpriteAnimator = function (painters, elapsedCallback) {
this.painters = painters || []; this.elapsedCallback =
elapsedCallback;
this.duration = 1000;
this.startTime = 0;
this.index = 0;

};

// Prototype..

SpriteAnimator.prototype = {
 end: function (sprite, originalPainter) {
 sprite.animating = false;

if (this.elapsedCallback) this.elapsedCallback(sprite);
else sprite.painter = originalPainter;

},

 start: function (sprite, duration) {
var endTime = +new Date() + duration,

 period = duration / (this.painters.length),
 animator = this,
 originalPainter = sprite.painter,
 lastUpdate = 0;

this.index = 0;
 sprite.animating = true;
 sprite.painter = this.painters[this.index];

requestNextAnimationFrame(function spriteAnimatorAnimate(time) {
if (time < endTime) {

if ((time - lastUpdate) > period) {
 sprite.painter = animator.painters[++animator.index];
 lastUpdate = time;

}
requestNextAnimationFrame(spriteAnimatorAnimate);
}

else {
 animator.end(sprite, originalPainter);

} });
},

};

Chapter 6 Sprites420

Download from Join eBook (www.joinebook.com)

ptg7987094

To perform the animation, the animator’s start() method calculates the anima-
tion’s end time by adding the animation’s duration to the current time. Then it
calculates the animation’s period, which is the amount of time allotted to each
image in the animation.

Finally, the SpriteAnimator.start() method invokes window.requestNext-
AnimationFame(), which is a polyfill method discussed in Section 5.1.3, “A Portable
Animation Loop,” on p. 348 for the standard requestAnimationFrame() function.
The application passes requestNextAnimationFrame() a function that updates
the sprite’s painter. If you specify a callback function when you create a
SpriteAnimator, the animator invokes the callback when the animation is com-
plete. If you do not specify a callback, the animator restores the sprite’s original
painter.

The application shown in Figure 6.8 is listed in Example 6.11.

Example 6.11 Using sprite animators

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 explosionButton = document.getElementById('explosionButton'),

 BOMB_LEFT = 100,
 BOMB_TOP = 80,
 BOMB_WIDTH = 180,
 BOMB_HEIGHT = 130,

 NUM_EXPLOSION_PAINTERS = 9,
 NUM_FUSE_PAINTERS = 9,

// Painters..

 bombPainter = new ImagePainter('bomb.png'),
 bombNoFusePainter = new ImagePainter('bomb-no-fuse.png'),
 fuseBurningPainters = [],
 explosionPainters = [],

// Animators...

 fuseBurningAnimator = new SpriteAnimator(
 fuseBurningPainters,

function () { bomb.painter = bombNoFusePainter; });

 explosionAnimator = new SpriteAnimator(
 explosionPainters,

function () { bomb.painter = bombNoFusePainter; });

(Continues)

4216.4 Sprite Animators

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 6.11 (Continued)

// Bomb...

 bomb = new Sprite('bomb', bombPainter),

// Functions..

function resetBombNoFuse() {
 bomb.painter = bombNoFusePainter;

}

// Event handlers...

explosionButton.onclick = function (e) {
if (bomb.animating) // Not now...

return;

// Burn fuse for 2 seconds

 fuseBurningAnimator.start(bomb, 2000);

// Wait for 3 seconds, then explode for 1 second

setTimeout(function () {
 explosionAnimator.start(bomb, 1000);

// Wait for 2 seconds, then reset to the original bomb image

setTimeout(function () {
 bomb.painter = bombPainter;

}, 2000);
}, 3000);

};

// Animation..

function animate(now) {
 context.clearRect(0, 0, canvas.width, canvas.height);
 bomb.paint(context);
 window.requestNextAnimationFrame(animate);

}

// Initialization...

bomb.left = BOMB_LEFT;
bomb.top = BOMB_TOP;

Chapter 6 Sprites422

Download from Join eBook (www.joinebook.com)

ptg7987094

bomb.width = BOMB_WIDTH;
bomb.height = BOMB_HEIGHT;

for (var i=0; i < NUM_FUSE_PAINTERS; ++i) {
 fuseBurningPainters.push(

new ImagePainter('fuse-0' + i + '.png'));
}

for (var i=0; i < NUM_EXPLOSION_PAINTERS; ++i) {
 explosionPainters.push(

new ImagePainter('explosion-0' + i + '.png'));
}

window.requestNextAnimationFrame(animate);

The application creates two animators: fuseBurningAnimator and explosion-
Animator. Each animator originally contains an empty array of sprite painters;
the application later initializes those arrays with image painters.

The button’s click handler is where most of the action in the application takes
place. If the bomb sprite is already animating, that click handler simply returns;
otherwise, it starts the fuse-burning animator, which runs for 2 seconds. When
the fuse is done burning, the fuse-burning animator’s elapsed callback sets the
bomb sprite’s painter to a painter that paints the bomb without the fuse.

Subsequently, after a delay of one second, the bomb explodes for one second. At
the end of the explosion animation, the explosion animator sets the ball sprite’s
painter to the painter that paints the bomb without the fuse.

Finally, one second after the bomb finishes exploding, the application sets the
bomb’s painter to a painter that paints the bomb with the fuse.

NOTE: Support for nonlinear animations

The SpriteAnimator listed in Example 6.10 on p. 420 divides the animation’s
duration by the number of painters to calculate the period of time that it displays
each painter. For linear animations, meaning animations that progress at a steady
rate, that’s exactly what you want; however, many animations are nonlinear. For
instance, in Figure 6.9 on p. 419 the fuse burns at a constant rate. But when
fuses are short they appear to burn faster than when they are long, so you may
want the fuse-burning animation to speed up as it progresses.

In Chapter 7, we explore moving and animating sprites in a nonlinear fashion.

4236.4 Sprite Animators

Download from Join eBook (www.joinebook.com)

ptg7987094

6.5 A Sprite-Based Animation Loop
Occasionally, you may paint sprites directly, as we’ve done so far in this chapter;
however, most of the time you will probably paint them from a reusable
sprite-based animation loop, that looks something like this:

var sprites = [new Sprite(...), ...], // An array of sprites
 context = ...;
...
function animate(time) {

var i;
...

 context.clearRect(0, 0, context.canvas.width,
 context.canvas.height);

drawBackground();

for (i=0; i < sprites.length; ++i) {
 sprites.update(context, time);

}

for (i=0; i < sprites.length; ++i) {
 sprites.paint(context);

}
...

 window.requestNextAnimationFrame(animate);
}

Given an array of sprites, the preceding animation loop iterates over the array
twice, first to update all the sprites and subsequently to paint them.

The separation between updating and painting is deliberate. Updating one sprite
may affect another; for example, if the sprite that you are updating collides with
another sprite, then both sprites are likely to have their locations modified by the
collision.

If you interleave updating and painting, it’s possible to paint a sprite at one loca-
tion, and subsequently have its location modified when a related sprite is updated,
and therefore the original sprite would be out of position. So, because of possible
dependencies between sprites, you must update all the sprites first, and then
paint them.

Chapter 6 Sprites424

Download from Join eBook (www.joinebook.com)

ptg7987094

6.6 Conclusion
Sprites are an essential ingredient for creating interesting animations. In this
chapter, you have seen how to encapsulate sprites, sprite painters, sprite behaviors,
and sprite animations in objects of their own that you can reuse. Those objects
let you write code at a higher level of abstraction and therefore greatly simplify
the code that you need to write.

In the next chapter we look at another essential animation ingredient: physics.

4256.6 Conclusion

Download from Join eBook (www.joinebook.com)

ptg7987094

This page intentionally left blank

Download from Join eBook (www.joinebook.com)

ptg7987094

Physics, or some approximation thereof, often plays a role in sprite-based anima-
tions, especially games. This chapter discusses fundamental physics used in a
wide variety of animations:

• Gravity
• Nonlinear motion
• Nonlinear animation

From Sonic the Hedgehog to Cut the Rope, gravity is prevalent in video games,
so we start with three of the most common applications of gravity: falling,
projectile trajectories, and gravity applied to harmonic motion.

Harmonic motion provides the mathematical dropback for things such as springs
and swinging pendulums. After an introduction to harmonic motion, we explore
warping time to implement effects such as ease in, ease out, oscillations, and
bouncing.

Let’s begin by looking at the weakest force in the universe.

7CHAPTER

Physics

427
Download from Join eBook (www.joinebook.com)

ptg7987094

NOTE: The weakest force

Gravity is by far the weakest force in the universe. There are four fundamental
forces that we currently know about (from strongest to weakest): strong nuclear,
electromagnetic, weak nuclear, and gravity.

The strong nuclear force, which keeps the nuclei of atoms together, is
by far the strongest force. The electromagnetic force, the tug on a magnet,
is about 100 times weaker than strong nuclear force. The weak nuclear
force, which is responsible for radioactive decay, is about 100 billion times
weaker than the electromagnetic force. Finally, gravity is approximately
100,000,000,000,000,000,000,000,000,000,000,000,000 times weaker than
the electromagnetic force.

7.1 Gravity
Like light (which, although neutrinos may prove otherwise, sets the cosmic speed
limit and can behave either as a wave or a particle) and water (the elixir of life
and one of the few known substances that expands when it freezes), gravity is
one of the most fascinating things in the universe. Unfathomably weaker than
the tiny tug that you feel on a small magnet close to metal, gravity is weak weak
weak. But without gravity, nothing as we know it would exist.

In the real world, anything that falls close to the earth accelerates at a rate of
9.81 m/s/s, or if you prefer, 32 ft/s/s. To simulate gravity in software, you just
need to make falling sprites accelerate at that rate. It sounds easy, and for the
most part, it is.

7.1.1 Falling
Figure 7.1 shows an application that simulates falling. The ball starts out in the
middle of the ledge, but if you click the arrow a couple of times in a row, you can
push the ball off the ledge and make it fall out of sight. As the ball is falling, the
application calculates its vertical velocity with the simple formula shown in
Equation 7.1.1

vy = gt

Equation 7.1 Vertical velocity of a falling body at time t, with gravitational constant g

1. Wikipedia: Equations for a Falling Body, http://bit.ly/jURRlf.

Chapter 7 Physics428

Download from Join eBook (www.joinebook.com)

http://bit.ly/jURRlf

ptg7987094

Figure 7.1 Falling off a platform

It’s not difficult to translate Equation 7.1 to JavaScript. Because the gravitational
constant is expressed in meters or feet, however, and not in pixels, the challenge
when simulating gravity is simply to convert from meters to pixels. Example 7.1
shows how the application in Figure 7.1 does it.

The application creates a ball sprite with a single behavior that moves the ball.
It also creates an animation timer that keeps track of the animation’s elapsed time.
See Section 5.10.2, “Animation Timers,” on p. 389 for more information about
animation timers.

4297.1 Gravity

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 7.1 Falling

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ...

 GRAVITY_FORCE = 9.81, // 9.81 m/s/s
 PLATFORM_HEIGHT_IN_METERS = 10, // 10 meters

 pixelsPerMeter = (canvas.height - LEDGE_TOP) /
 PLATFORM_HEIGHT_IN_METERS,
 ...

// moveBall is a behavior -- an object with an
// execute(sprite, context, time) method -- that's
// attached to the ball. When the application calls
// ball.update(), the ball sprite executes the moveBall
// behavior. The sprite passed to execute() is the ball.

 moveBall = {
 execute: function (sprite, context, time) {
 ...

if (fallingAnimationTimer.isRunning()) { // Ball is falling

// Reposition the ball at a steady pixels/second rate

 sprite.top += sprite.velocityY / fps;

// Recalculate the ball's velocity

 sprite.velocityY = GRAVITY_FORCE *
(fallingAnimationTimer.getElapsedTime()/1000) *

 pixelsPerMeter;

if (sprite.top > canvas.height) {
stopFalling();

}
}

}
},

function stopFalling() {
 fallingAnimationTimer.stop();
 ...

 ball.left = LEDGE_LEFT + LEDGE_WIDTH/2 - BALL_RADIUS;
 ball.top = LEDGE_TOP - BALL_RADIUS*2;

 ball.velocityY = 0;
},

Chapter 7 Physics430

Download from Join eBook (www.joinebook.com)

ptg7987094

 ...

// Create the animation timer and the ball sprite.

 fallingAnimationTimer = new AnimationTimer(),

 ball = new Sprite(
'ball', // Name
{ paint: function(sprite, context) { ... } }, // Painter
[moveBall]), // Behaviors

 ...
}

The application arbitrarily sets the distance from the ledge to the bottom of the
canvas to 10 meters. Given the height of the canvas in pixels, the application cal-
culates a pixels/meter ratio that it subsequently uses to convert the ball’s velocity
from meters/second to pixels/second.

As the animation timer is running, meaning the ball is falling, the moveBall
behavior’s execute() method continuously updates the ball’s position, like this:

ball.top += ball.velocityY / fps;

Dividing the velocity (pixels/second) by the animation rate (frames/second)
yields the number of pixels the ball moves for the current animation frame
(pixels/frame). The method then calculates the ball’s vertical velocity, like this:

ball.velocityY = GRAVITY_FORCE *
(fallingTimer.getElapsedTime()/1000) * pixelsPerMeter;

The preceding line of code multiplies the force of gravity (9.81 m/s/s) by the
elapsed time, in seconds, that the ball has been falling. Because the seconds cancel
out (see Section 1.11.4, “Deriving Equations from Units of Measure,” on p. 62 for
more about deriving equations from units of measure), we end up with a velocity
specified in meters/second. However, the application specifies the ball’s
velocity in pixels/second, so it converts the velocity from meters/second to
pixels/second by multiplying that velocity by pixelsPerMeter.

NOTE: Sprites

The examples in this chapter use the sprites implemented in Chapter 6, which
lets us concentrate on the physics aspects of the examples, instead of animation
details. As is the case for the application shown in Figure 7.1, the interesting
code in this chapter’s examples are in sprite behaviors, such as the moveBall
behavior in Example 7.1.

4317.1 Gravity

Download from Join eBook (www.joinebook.com)

ptg7987094

NOTE: Friction

Assuming your proximity to the earth is constant, gravity is a constant force that
pulls objects toward the center of the earth.

Assuming that an object is sliding on a homogeneous surface, friction is also a
constant force. However, instead of always acting in one direction like gravity,
friction always acts in the opposite direction of an object’s motion.

In Example 7.1, you saw how to adjust a sprite’s velocity to account for the
acceleration due to gravity. Accounting for deceleration due to friction is very
similar; see Section 9.3.3, “Gravity and Friction,” on p. 594 for an example of
incorporating friction into a pinball game.

7.1.2 Projectile Trajectories
In the previous section you saw how to adjust a falling object’s vertical velocity
to account for gravity. This section adds horizontal motion, thereby simulating
projectile trajectories.

The application shown in Figure 7.2 is a simple game in which the player tries
to shoot balls into a bucket. As the user moves the mouse, the application

Figure 7.2 The bucket game

Chapter 7 Physics432

Download from Join eBook (www.joinebook.com)

ptg7987094

continuously draws a guidewire from the middle of the ball to the mouse cursor.
That guidewire represents the angle and velocity at which the application shoots
the ball—the longer the guidewire the greater the force applied when the
application launches the ball.

Besides continuously updating the guidewire as the user moves the mouse, the
application also constantly updates the launch velocity and angle that are
displayed by the heads-up display.

The application shows the current score in the upper-right corner. You get two
points for shots that go in the bucket but do not leave the canvas bounds, as de-
picted in the upper screenshot in Figure 7.3. You get three points for shots that
escape the bounds of the canvas and ultimately return to go into the bucket, as
shown in the bottom screenshot.

The application creates a ball sprite, like this:

ball = new Sprite('ball', ballPainter, [lob]),

The application defines the canvas width to be 10 meters and subsequently
calculates the corresponding number of pixels per meter:

ARENA_LENGTH_IN_METERS = 10,
pixelsPerMeter = canvas.width / ARENA_LENGTH_IN_METERS,

The ball sprite has a single behavior—listed in Example 7.2—that lobs the ball
through the air.

If the ball is in flight, the lob behavior calculates the elapsed time for the last an-
imation frame and the elapsed flight time for the ball. Subsequently, it uses those
values to update the ball’s position and to apply gravity to the ball’s velocity,
respectively.

To update the ball position, the lob behavior multiplies the ball’s velocity
(m/s) by the number of seconds it took for the last animation frame to execute.
That multiplication results in the ball’s displacement, in meters, for the current
animation frame. Finally, the lob behavior multiplies that displacement by
pixelsPerMeter to obtain the displacement in pixels.

To apply gravity to the ball’s vertical velocity, the lob behavior uses Equation 7.2.2

vy = vy0 – gt

Equation 7.2 Velocity of a projectile

2. Wikipedia: Trajectory of a Projectile, http://bit.ly/lwNcox.

4337.1 Gravity

Download from Join eBook (www.joinebook.com)

http://bit.ly/lwNcox

ptg7987094

Figure 7.3 A two-pointer (top) and a three-pointer (bottom)

Chapter 7 Physics434

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 7.2 Lobbing a ball

lob = {
 lastTime: 0,
 GRAVITY_FORCE: 9.81, // m/s/s

 applyGravity: function (elapsed) {
 ball.velocityY = (this.GRAVITY_FORCE * elapsed) -

(launchVelocity * Math.sin(launchAngle));
},

 updateBallPosition: function (updateDelta) {
 ball.left += ball.velocityX * (updateDelta) * pixelsPerMeter;
 ball.top += ball.velocityY * (updateDelta) * pixelsPerMeter;

},

 checkForThreePointer: function () {
if (ball.top < 0) {

 threePointer = true;
}

},

 checkBallBounds: function () {
if (ball.top > canvas.height || ball.left > canvas.width) {

reset();
}

},

 execute: function (ball, context, time) {
var updateDelta,

 elapsedFlightTime;

if (ballInFlight) {
 elapsedFrameTime = (time - this.lastTime)/1000;
 elapsedFlightTime = (time - launchTime)/1000;

this.applyGravity(elapsedFlightTime);
this.updateBallPosition(elapsedFrameTime);
this.checkForThreePointer();
this.checkBallBounds();

}
this.lastTime = time;

}
},

4357.1 Gravity

Download from Join eBook (www.joinebook.com)

ptg7987094

Notice the similarities between Equation 7.1 on p. 428, which calculates the ver-
tical velocity of a falling body, and Equation 7.2, which calculates the vertical
velocity of a projectile. The difference between the two is that the latter takes into
account the projectile’s initial vertical velocity (vy0).

The HTML for the application shown in Figure 7.2 is listed in Example 7.3 and
the JavaScript is listed in Example 7.4. Besides illustrating how to implement
projectile trajectories, the bucket application has many of the ingredients for a
more industrial-strength game, including a scoreboard, a heads-up display, and
feedback when the user scores.

Example 7.3 Bucket game: HTML

<!DOCTYPE html>
<html>

<head>
<title>Bucket</title>

<style>
 output {

color: blue;
}

.floatingControls {
background: rgba(0,0,0,0.1);
border: thin solid skyblue;
-webkit-box-shadow: rgba(0,0,0,0.3) 2px 2px 4px;
-moz-box-shadow: rgba(100,140,230,0.5) 2px 2px 6px;
box-shadow: rgba(100,140,230,0.5) 2px 2px 6px;
padding: 15px;
font: 12px Arial;

}

#canvas {
background: skyblue;
-webkit-box-shadow: 4px 4px 8px rgba(0,0,0,0.5);
-moz-box-shadow: 4px 4px 8px rgba(0,0,0,0.5);
box-shadow: 4px 4px 8px rgba(0,0,0,0.5);
cursor: pointer;

}

#scoreboard {
background: rgba(255,255,255,0.5);
position: absolute;
left: 755px;
top: 20px;
color: blue;
font-size: 18px;
padding: 5px;

}

Chapter 7 Physics436

Download from Join eBook (www.joinebook.com)

ptg7987094

#controls {
position: absolute;
left: 285px;
top: 20px;

}
</style>

</head>

<body>
<canvas id='canvas' width='800' height='450'>

 Canvas not supported
</canvas>

<div id='scoreboard' class='floatingControls'>0</div>

<div id='controls' class='floatingControls'>
 Launch velocity (m/s):

<output id='launchVelocityOutput'></output> m/s

 Launch angle (degrees):
<output id='launchAngleOutput'></output> degrees

</div>

<script src = 'requestNextAnimationFrame.js'></script>
<script src = 'sprites.js'></script>
<script src = 'example.js'></script>

</body>
</html>

In addition to the canvas element, the bucket game’s HTML creates two DIVs:
scoreboard and controls. The application’s CSS positions the scoreboard in the
upper right of the canvas, and the controls in the upper middle.

The bucket game’s HTML also includes three JavaScript files. The
requestNextAnimationFrame.js file contains the implementation of the
requestAnimationFrame() polyfill method discussed in Section 5.1.3, “A Portable
Animation Loop,” on p. 348; the sprites.js file contains the implementation of
sprites as discussed in Chapter 6; and finally, the HTML includes the JavaScript
for the application itself, which is listed in Example 7.4.

NOTE: requestAnimationFrame() polyfill

The examples in this chapter use the requestAnimationFrame() polyfill method
discussed in Section 5.1.3, “A Portable Animation Loop,” on p. 348. That polyfill
method is named requestNextAnimationFrame(); it behaves just like
requestAnimationFrame() by invoking a callback method when it’s time to
draw the next animation frame.

4377.1 Gravity

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 7.4 Bucket game: JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 scoreboard = document.getElementById('scoreboard'),
 launchAngleOutput = document.getElementById('launchAngleOutput'),
 launchVelocityOutput =
 document.getElementById('launchVelocityOutput'),

 elapsedTime = undefined,
 launchTime = undefined,

 score = 0,
 lastScore = 0,
 lastMouse = { left: 0, top: 0 },

 threePointer = false,
 needInstructions = true,

 LAUNCHPAD_X = 50,
 LAUNCHPAD_Y = context.canvas.height-50,
 LAUNCHPAD_WIDTH = 50,
 LAUNCHPAD_HEIGHT = 12,
 BALL_RADIUS = 8,
 ARENA_LENGTH_IN_METERS = 10,
 INITIAL_LAUNCH_ANGLE = Math.PI/4,

 launchAngle = INITIAL_LAUNCH_ANGLE,
 pixelsPerMeter = canvas.width / ARENA_LENGTH_IN_METERS,

// Launch pad...

 launchPadPainter = {
 LAUNCHPAD_FILL_STYLE: 'rgb(100,140,230)',

 paint: function (ledge, context) {
 context.save();
 context.fillStyle = this.LAUNCHPAD_FILL_STYLE;
 context.fillRect(LAUNCHPAD_X, LAUNCHPAD_Y,
 LAUNCHPAD_WIDTH, LAUNCHPAD_HEIGHT);
 context.restore();

} },

 launchPad = new Sprite('launchPad', launchPadPainter),

// Ball...

Chapter 7 Physics438

Download from Join eBook (www.joinebook.com)

ptg7987094

 ballPainter = {
 BALL_FILL_STYLE: 'rgb(255,255,0)',
 BALL_STROKE_STYLE: 'rgb(0,0,0,0.4)',

 paint: function (ball, context) {
 context.save();
 context.shadowColor = undefined;
 context.lineWidth = 2;
 context.fillStyle = this.BALL_FILL_STYLE;
 context.strokeStyle = this.BALL_STROKE_STYLE;

 context.beginPath();
 context.arc(ball.left, ball.top,
 ball.radius, 0, Math.PI*2, false);

 context.clip();
 context.fill();
 context.stroke();
 context.restore();

} },

// Lob behavior...

 lob = {
 lastTime: 0,
 GRAVITY_FORCE: 9.81, // m/s/s

 applyGravity: function (elapsed) {
 ball.velocityY = (this.GRAVITY_FORCE * elapsed) -

(launchVelocity * Math.sin(launchAngle));

},

 updateBallPosition: function (updateDelta) {
 ball.left +=
 ball.velocityX * (updateDelta) * pixelsPerMeter;

 ball.top +=
 ball.velocityY * (updateDelta) * pixelsPerMeter;

},

 checkForThreePointer: function () {
if (ball.top < 0) {

 threePointer = true;
}

},

(Continues)

4397.1 Gravity

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 7.4 (Continued)

 checkBallBounds: function () {
if (ball.top > canvas.height || ball.left > canvas.width) {

reset();
}

},

 execute: function (ball, context, time) {
var updateDelta,

 elapsedFlightTime;

if (ballInFlight) {
 elapsedFrameTime = (time - this.lastTime)/1000;
 elapsedFlightTime = (time - launchTime)/1000;

this.applyGravity(elapsedFlightTime);
this.updateBallPosition(elapsedFrameTime);
this.checkForThreePointer();
this.checkBallBounds();

}
this.lastTime = time;

}
},

 ball = new Sprite('ball', ballPainter, [lob]),
 ballInFlight = false,

// Bucket...

 catchBall = {
 ballInBucket: function() {

return ball.left > bucket.left + bucket.width/2 &&
 ball.left < bucket.left + bucket.width &&
 ball.top > bucket.top && ball.top <
 bucket.top + bucket.height/3;

},

 adjustScore: function() {
if (threePointer) lastScore = 3;
else lastScore = 2;

 score += lastScore;
 scoreboard.innerText = score;

},

Chapter 7 Physics440

Download from Join eBook (www.joinebook.com)

ptg7987094

 execute: function (bucket, context, time) {
if (ballInFlight && this.ballInBucket()) {

reset();
this.adjustScore();

}
}

},

 BUCKET_X = 668,
 BUCKET_Y = canvas.height - 100,
 bucketImage = new Image(),

 bucket = new Sprite('bucket',
{

 paint: function (sprite, context) {
 context.drawImage(bucketImage, BUCKET_X, BUCKET_Y);

} },

[catchBall]
);

// Functions..

function windowToCanvas(x, y) {
var bbox = canvas.getBoundingClientRect();

return { x: x - bbox.left * (canvas.width / bbox.width),
 y: y - bbox.top * (canvas.height / bbox.height)

};
}

function reset() {
 ball.left = LAUNCHPAD_X + LAUNCHPAD_WIDTH/2;
 ball.top = LAUNCHPAD_Y - ball.height/2;
 ball.velocityX = 0;
 ball.velocityY = 0;
 ballInFlight = false;
 needInstructions = false;
 lastScore = 0;

}

(Continues)

4417.1 Gravity

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 7.4 (Continued)

function showText(text) {
var metrics;

 context.font = '42px Helvetica';
 metrics = context.measureText(text);

 context.save();
 context.shadowColor = undefined;
 context.strokeStyle = 'rgb(80,120,210)';
 context.fillStyle = 'rgba(100,140,230,0.5)';

 context.fillText(text,
 canvas.width/2 - metrics.width/2,
 canvas.height/2);

 context.strokeText(text,
 canvas.width/2 - metrics.width/2,
 canvas.height/2);
 context.restore();
}

function drawGuidewire() {
 context.moveTo(ball.left, ball.top);
 context.lineTo(lastMouse.left, lastMouse.top);
 context.stroke();
};

function updateBackgroundText() {
if (lastScore == 3) showText('Three pointer!');
else if (lastScore == 2) showText('Nice shot!');
else if (needInstructions) showText('Click to launch ball');

};

function resetScoreLater() {
setTimeout(function () {

 lastScore = 0;
}, 1000);

};

function updateSprites(time) {
 bucket.update(context, time);
 launchPad.update(context, time);
 ball.update(context, time);
}

Chapter 7 Physics442

Download from Join eBook (www.joinebook.com)

ptg7987094

function paintSprites() {
 launchPad.paint(context);
 bucket.paint(context);
 ball.paint(context);

}

// Event handlers...

canvas.onmousedown = function(e) {
var rect;

 e.preventDefault();

if (! ballInFlight) {
 ball.velocityX = launchVelocity * Math.cos(launchAngle);
 ball.velocityY = launchVelocity * Math.sin(launchAngle);
 ballInFlight = true;
 threePointer = false;
 launchTime = +new Date();

}
};

canvas.onmousemove = function (e) {
var rect;

 e.preventDefault();

if (! ballInFlight) {
 loc = windowToCanvas(e.clientX, e.clientY);
 lastMouse.left = loc.x;
 lastMouse.top = loc.y;

 deltaX = Math.abs(lastMouse.left - ball.left);
 deltaY = Math.abs(lastMouse.top - ball.top);

 launchAngle =
 Math.atan(parseFloat(deltaY) / parseFloat(deltaX));

 launchVelocity =
4 * deltaY / Math.sin (launchAngle) / pixelsPerMeter;

 launchVelocityOutput.innerText = launchVelocity.toFixed(2);
 launchAngleOutput.innerText =

(launchAngle * 180/Math.PI).toFixed(2);
}

};

(Continues)

4437.1 Gravity

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 7.4 (Continued)

// Animation loop...

function animate(time) {
 elapsedTime = (time - launchTime) / 1000;
 context.clearRect(0, 0, canvas.width, canvas.height);

if (!ballInFlight) {
drawGuidewire();
updateBackgroundText();

if (lastScore !== 0) { // Just scored
resetScoreLater();

}
}

updateSprites(time);
paintSprites();

 window.requestNextAnimationFrame(animate);
}

// Initialization...

ball.width = BALL_RADIUS*2;
ball.height = ball.width;
ball.left = LAUNCHPAD_X + LAUNCHPAD_WIDTH/2;
ball.top = LAUNCHPAD_Y - ball.height/2;
ball.radius = BALL_RADIUS;

context.lineWidth = 0.5;
context.strokeStyle = 'rgba(0,0,0,0.5)';
context.shadowColor = 'rgba(0,0,0,0.5)';
context.shadowOffsetX = 2;
context.shadowOffsetY = 2;
context.shadowBlur = 4; con-
text.stroke();

bucketImage.src = 'bucket.png';
bucketImage.onload = function (e) {
 bucket.left = BUCKET_X;
 bucket.top = BUCKET_Y;
 bucket.width = bucketImage.width;
 bucket.height = bucketImage.height;
};

window.requestNextAnimationFrame(animate);

Chapter 7 Physics444

Download from Join eBook (www.joinebook.com)

ptg7987094

7.1.3 Pendulums
To complete this section on gravity, let’s see how to simulate gravity’s effects on
a pendulum.

The simple equations that we used in the preceding sections to calculate the
velocity of a falling body or a projectile were linear, meaning that the velocity
was directly proportional to the amount of time the object had been moving.

Pendulums, on the other hand are a nonlinear system, so we cannot simply
multiply time by the gravitational constant, as we have previously. Instead, we
use Equation 7.3 to calculate the pendulum’s given the elapsed time of the
animation.3

θ = θ0 × cos(√g / l × t)

Equation 7.3 Equation for simple pendulum motion

In Equation 7.3, θ represents the pendulum’s angle, and θ0 is the pendulum’s
initial angle, g is the force of gravity, l is the length of the pendulum’s rod, and t
is elapsed time. It’s interesting to note that the mass of the weight at the end of
the pendulum does not enter into the equation; it doesn’t matter how much the
weight weighs.

Figure 7.4 shows an application that simulates a pendulum.

The application creates a sprite for the pendulum:

pendulum = new Sprite('pendulum', pendulumPainter, [swing]),

The pendulum sprite has a single swing behavior. That behavior calculates the
pendulum angle, with Equation 7.3, like this:

swing = {
 GRAVITY_FORCE: 32, // 32 ft/s/s,
 ROD_LENGTH: 0.8, // 0.8 ft

 execute: function(pendulum, context, time) {
 pendulum.angle =
 pendulum.initialAngle * Math.cos(
 Math.sqrt(this.GRAVITY_FORCE/this.ROD_LENGTH) *
 elapsedTime);

3. Wikipedia: Motion Equations for a Pendulum, http://bit.ly/mvpGu7.

4457.1 Gravity

Download from Join eBook (www.joinebook.com)

http://bit.ly/mvpGu7

ptg7987094

 pendulum.weightX =
 pendulum.x + Math.sin(pendulum.angle) * pendulum.rodLength;

 pendulum.weightY =
 pendulum.y + Math.cos(pendulum.angle) * pendulum.rodLength;

}
};

From the pendulum’s angle, the swing behavior calculates the location of the
pendulum’s weight.

Figure 7.4 A pendulum: nonlinear motion

Chapter 7 Physics446

Download from Join eBook (www.joinebook.com)

ptg7987094

The JavaScript for the application shown in Figure 7.4 is listed in Example 7.5.

Example 7.5 A pendulum

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

 elapsedTime = undefined,
 startTime = undefined,

 PIVOT_Y = 20,
 PIVOT_RADIUS = 7,
 WEIGHT_RADIUS = 25,
 INITIAL_ANGLE = Math.PI/5,
 ROD_LENGTH_IN_PIXELS = 300,

// Pendulum painter...

 pendulumPainter = {
 PIVOT_FILL_STYLE: 'rgba(0,0,0,0.2)',
 WEIGHT_SHADOW_COLOR: 'rgb(0,0,0)',
 PIVOT_SHADOW_COLOR: 'rgb(255,255,0)',
 STROKE_COLOR: 'rgb(100,100,195)',

 paint: function (pendulum, context) {
this.drawPivot(pendulum);
this.drawRod(pendulum);
this.drawWeight(pendulum, context);

},

 drawWeight: function (pendulum, context) {
 context.save();
 context.beginPath();
 context.arc(pendulum.weightX, pendulum.weightY,
 pendulum.weightRadius, 0, Math.PI*2, false);
 context.clip();

 context.shadowColor = this.WEIGHT_SHADOW_COLOR;
 context.shadowOffsetX = -4;
 context.shadowOffsetY = -4;
 context.shadowBlur = 8;

 context.lineWidth = 2;
 context.strokeStyle = this.STROKE_COLOR;
 context.stroke();

(Continues)

4477.1 Gravity

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 7.5 (Continued)

 context.beginPath();
 context.arc(pendulum.weightX, pendulum.weightY,
 pendulum.weightRadius/2, 0, Math.PI*2, false);

 context.clip();

 context.shadowColor = this.PIVOT_SHADOW_COLOR;
 context.shadowOffsetX = -4;
 context.shadowOffsetY = -4;
 context.shadowBlur = 8;
 context.stroke();

 context.restore();
},

 drawPivot: function (pendulum) {
 context.save();
 context.beginPath();
 context.shadowColor = undefined;
 context.fillStyle = 'white';
 context.arc(pendulum.x + pendulum.pivotRadius,
 pendulum.y, pendulum.pivotRadius/2,

0, Math.PI*2, false);
 context.fill();
 context.stroke();

 context.beginPath();
 context.fillStyle = this.PIVOT_FILL_STYLE;
 context.arc(pendulum.x + pendulum.pivotRadius,
 pendulum.y, pendulum.pivotRadius,

0, Math.PI*2, false);
 context.fill();
 context.stroke();
 context.restore();

},

 drawRod: function (pendulum) {
 context.beginPath();

 context.moveTo(
 pendulum.x + pendulum.pivotRadius +
 pendulum.pivotRadius*Math.sin(pendulum.angle),

 pendulum.y + pendulum.pivotRadius *
 Math.cos(pendulum.angle)
);

Chapter 7 Physics448

Download from Join eBook (www.joinebook.com)

ptg7987094

 context.lineTo(
 pendulum.weightX -
 pendulum.weightRadius*Math.sin(pendulum.angle),

 pendulum.weightY -
 pendulum.weightRadius*Math.cos(pendulum.angle)
);

 context.stroke();
} },

// Swing behavior...

 swing = {
// For a gravity force of 32 ft/s/s, and a rod
// length of 0.8 ft (about 10 inches), the time period
// for the pendulum is about one second. Make the rod
// longer for a longer time period.

 GRAVITY_FORCE: 32, // 32 ft/s/s,
 ROD_LENGTH: 0.8, // 0.8 ft

 execute: function(pendulum, context, time) {
 pendulum.angle = pendulum.initialAngle * Math.cos(
 Math.sqrt(this.GRAVITY_FORCE/this.ROD_LENGTH) *
 elapsedTime);

 pendulum.weightX = pendulum.x +
 Math.sin(pendulum.angle) * pendulum.rodLength;

 pendulum.weightY = pendulum.y +
 Math.cos(pendulum.angle) * pendulum.rodLength;

} };

// Pendulum...

 pendulum = new Sprite('pendulum', pendulumPainter, [swing]);

// Animation loop...

function animate(time) {
 elapsedTime = (time - startTime) / 1000;
 context.clearRect(0, 0, canvas.width, canvas.height);
 pendulum.update(context, time);
 pendulum.paint(context);
 window.requestNextAnimationFrame(animate);

}

(Continues)

4497.1 Gravity

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 7.5 (Continued)

// Initialization...

pendulum.x = canvas.width/2;
pendulum.y = PIVOT_Y; pendulum.weightRadius =
WEIGHT_RADIUS; pendulum.pivotRadius =
PIVOT_RADIUS; pendulum.initialAngle =
INITIAL_ANGLE; pendulum.angle =
INITIAL_ANGLE; pendulum.rodLength =
ROD_LENGTH_IN_PIXELS;

context.lineWidth = 0.5;
context.strokeStyle = 'rgba(0,0,0,0.5)';
context.shadowColor = 'rgba(0,0,0,0.5)';
context.shadowOffsetX = 2;
context.shadowOffsetY = 2;
context.shadowBlur = 4; con-
text.stroke();

startTime = + new Date();
animate(startTime);

7.2 Warping Time
Section 7.1.3, “Pendulums,” on p. 445 used a nonlinear equation to calculate a
pendulum’s angle. As it turns out, nonlinear systems are quite common, from
springs and pendulums to bouncing balls, so it’s important to be able to simulate
nonlinear systems in your animations.

The pendulum’s motion in Section 7.1.3 is nonlinear, but you might want to animate
other aspects of your animations besides motion in a nonlinear fashion. For exam-
ple, if you were simulating someone blushing, you would show an initial rush
of red that slowly fades away. In that case, it is the change in color, not the change
in location, that is nonlinear.

Fundamentally, we want to depict changes to any property over time—whether
that property is location, color, or some other property—in a nonlinear manner,
so it’s time, and not those individual properties, that we want to manipulate.

Section 5.10.2, “Animation Timers,” on p. 389 discussed the implementation of a
simple AnimationTimer that you can use to control animations. You use
AnimationTimers like this:

Chapter 7 Physics450

Download from Join eBook (www.joinebook.com)

ptg7987094

var ANIMATION_DURATION = 1000, // One second

// Create an animation timer
 animationTimer = new AnimationTimer(ANIMATION_DURATION);
 ...

function animate() {
var elapsed;

 ...
if (! animationTimer.isOver()) {

// Update the animation, based on the
// animation timer's elapsed time

updateAnimation(animationTimer.getElapsedTime());
 ...

}

// Keep the animation going

requestNextAnimationFrame(animate);
}
...
animationTimer.start(); // Start the animation timer
requestNextAnimationFrame(animate); // Start the animation

You create an animation timer, start it, and until the animation is over, you
periodically get the animation’s elapsed time and update the animation
correspondingly.

Animation timers are nothing special; they are just timers that maintain an ani-
mation’s duration, and therefore they can tell you whether an animation is over.

The real utility of animation timers lies in the fact that you can implement
AnimationTimer.getElapsedTime() to return something other than the actual elapsed
time; by doing so, you can effectively warp time.

For example, you could implement getElapsedTime() so that it initially returns
an elapsed time that is much less than the actual elapsed time. Over the duration
of the animation, you could steadily decrease the gap between the actual elapsed
time and the value that you return from getElapsedTime(); as a result, time would
initially move very slowly and steadily speed up throughout the animation.

That algorithm—starting slowly, and gradually accelerating—is known as an
ease-in effect; it is illustrated in Figure 7.5.

The application shown in Figure 7.5 animates a sprite through a sequence of im-
ages that make it look like the sprite is running. The application also moves the
sprite from right to left; otherwise, the sprite would appear to run in place.

4517.2 Warping Time

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 7.5 The ease-in effect

The application uses the animation’s real elapsed time to place the vertical line;
however, it uses the warped elapsed time that AnimationTimer.getElapsedTime()
returns to position the sprite.

For the ease-in effect shown in Figure 7.5, the sprite initially lags behind the
timeline, but the application slowly closes the gap between the two until the end
of the animation, when they finally align.

Chapter 7 Physics452

Download from Join eBook (www.joinebook.com)

ptg7987094

Contrast the ease-in motion shown in Figure 7.5 to the linear motion shown in
Figure 7.6. With linear motion, the sprite moves at a constant velocity, in concert
with the timeline.

Figure 7.6 The linear effect

The ease-in effect shown in Figure 7.5 is one of many time-warping effects that
you can create. Other common time-warping effects are ease out, ease in/out,

4537.2 Warping Time

Download from Join eBook (www.joinebook.com)

ptg7987094

elastic, and bounce. Section 7.4, “Warping Motion,” on p. 458 discusses the appli-
cation shown in Figure 7.5 so you can see how to implement those effects.

To implement time-warping, we need to modify the behavior of AnimationTimer.
getElapsedTime() for each case. One way to do that is to let the developer
provide a time-warping function that AnimationTimer.getElapsedTime() applies
to the actual elapsed time, as shown in Figure 7.7.

Figure 7.7 Warping time with a function

Example 7.6 shows an implementation of AnimationTimer that lets you specify
a time-warp function. When you call getElapsedTime(), the animation timer
passes the real elapsed time through your time-warp function.

The most interesting line of code is in the getElapsedTime() method: return
elapsedTime * (this.timeWarp(percentComplete) / percentComplete). Let’s
see what it means.

The implementation of AnimationTimer.getElapsedTime() gets the animation’s
elapsed time and divides the elapsed time by the duration to determine what
percent of the animation is complete.

The getElapsedTime() method passes the animation’s completion percentage—a
number from 0.0 to 1.0—to the time-warp function that you supply when you
create an AnimationTimer. The time-warp function presumably returns a different
value between 0.0 to 1.0 that represents the warped completion percentage.

Armed with the actual completion percentage and the warped completion per-
centage, getElapsedTime() returns the warped time, which is the actual elapsed
time multiplied by the ratio of warped completion percentage / actual completion
percentage.

Here’s an example: Suppose that an animation’s duration is 100 seconds and the
elapsed time is 17 seconds. In real time, the anima- tion is 17% complete, so
AnimationTimer.getElapsedTime() passes 0.17 to the time-warp function. Let’s
say the time-warp function squares the percent, so it returns a warped percent

Chapter 7 Physics454

Download from Join eBook (www.joinebook.com)

ptg7987094

of 0.034, meaning only 3.4% complete instead of 17%. That means the warped
percent (3.4%) is one-fifth (0.034 / 0.17 = 0.2) of the actual percent (17%). So
AnimationTimer.getElapsedTime() returns 3.4, which is one-fifth of the actual
time, by multiplying the actual time by (warped percent / actual percent).

Example 7.6 AnimationTimer, refactored to support time-warping

// Constructor..

AnimationTimer = function (duration, timeWarp) {
if (timeWarp !== undefined) this.timeWarp = timeWarp;
if (duration !== undefined) this.duration = duration;
this.stopwatch = new Stopwatch();

};

// Prototype..

AnimationTimer.prototype = {
 start: function () {

this.stopwatch.start();
},

 stop: function () {
this.stopwatch.stop();

},

 getElapsedTime: function () {
var elapsedTime = this.stopwatch.getElapsedTime(),

 percentComplete = elapsedTime / this.duration;

if (!this.stopwatch.running) return undefined;
if (this.timeWarp == undefined) return elapsedTime;

return elapsedTime *
(this.timeWarp(percentComplete) / percentComplete);

},

 isRunning: function() {
return this.stopwatch.running;

},

 isOver: function () {
return this.stopwatch.getElapsedTime() > this.duration;

},
};

4557.2 Warping Time

Download from Join eBook (www.joinebook.com)

ptg7987094

Here’s how you use a time-warp function with an animation timer:

var ANIMATION_DURATION = 1000, // One second
 animation = new AnimationTimer(ANIMATION_DURATION,

function (percentComplete) {
return Math.pow(percentComplete, 2);

});
 ...

function animate() { // Repeatedly called from animation loop
 ...

if (! animation.isOver()) {
 elapsed = animation.getElapsedTime();

// Update the animation, based on the elapsed time
update(elapsed);

}
 ...

}
 ...

In the preceding code listing, the time-warping function squares the actual elapsed
time. As it turns out, squaring the value results in an implementation of the ease-in
effect discussed previously. When the value is small—for example, 0.2—the
squared value is much smaller—0.2 squared is 0.04, whereas larger values, such
as 0.9, when squared, are very close to the original value—0.9 squared is 0.81. As
a result of the time-warp function, time initially flows slowly and gradually
speeds up.

7.3 Time-Warp Functions
The AnimationTimer object listed in Example 7.6 also has some built-in time-warp
functions, as shown in Example 7.7.

You can use the methods listed in Example 7.7 to implement a time-warp. For
example, to implement the ease-in effect, you could do the following:

var ANIMATION_DURATION = 1000, // One second
 animation = new AnimationTimer(ANIMATION_DURATION,
 AnimationTimer.makeEaseIn(1));
 ...

The value that the preceding listing passes to AnimationTimer.makeEaseIn()
controls the strength of the effect. In the next section, we show how that strength
variable works, and we take a look at each of the effects implemented in
Example 7.7.

Chapter 7 Physics456

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 7.7 Time-warping functions

var DEFAULT_ELASTIC_PASSES = 3;

AnimationTimer.makeEaseIn = function (strength) {
return function (percentComplete) {

return Math.pow(percentComplete, strength*2);
};

};

AnimationTimer.makeEaseOut = function (strength) {
return function (percentComplete) {

return 1 - Math.pow(1 - percentComplete, strength*2);
};

};

AnimationTimer.makeEaseInOut = function () {
return function (percentComplete) {

return percentComplete - Math.sin(percentComplete*2*Math.PI) /
(2*Math.PI);

};
};

AnimationTimer.makeElastic = function (passes) {
 passes = passes || DEFAULT_ELASTIC_PASSES;

return function (percentComplete) {
return ((1-Math.cos(percentComplete * Math.PI * passes)) *

(1 - percentComplete)) + percentComplete;
};

};

AnimationTimer.makeBounce = function (bounces) {
var fn = AnimationTimer.makeElastic(bounces);
return function (percentComplete) {

 percentComplete = fn(percentComplete);
return percentComplete <= 1 ? percentComplete : 2-percentComplete;

};
};

AnimationTimer.makeLinear = function () {
return function (percentComplete) {

return percentComplete;
};

};

4577.3 Time-Warp Functions

Download from Join eBook (www.joinebook.com)

ptg7987094

NOTE: Tweening

You may recognize the time-warping discussed in this chapter as tweening in
Flash or CSS3.You define keyframes in an animation, and either Flash or CSS3
generates the frames in between, using a time-warping (tweening) function that
you specify.

Canvas does not provide any native tweening functionality that you find in
higher-level abstractions such as CSS3 and Flash, so in this section we’ve
implemented it ourselves.

7.4 Warping Motion
Now that you’ve seen how to use animation timers with time-warp functions to
manipulate the flow of time through your animations, let’s look at some classic
examples of motion tweening with an application, shown in Figure 7.8, that lets
you apply those time-warp functions to the movement of a ball.

Figure 7.8 Various motion tweening algorithms

The following time-warp functions are supported by the application:

• Linear: Move at constant velocity
• Ease In: Start slowly, gradually accelerate
• Ease Out: Start quickly, gradually decelerate
• Ease In/Out: Start slowly; accelerate; decelerate

Chapter 7 Physics458

Download from Join eBook (www.joinebook.com)

ptg7987094

• Elastic: Oscillate about a point
• Bounce: Bounce off a point

If you select a function and click one of the arrows, the application animates the
ball with the selected function. Example 7.8 illustrates how the application moves
the ball.

Using the time-warp functions listed in Example 7.7, the application creates six
functions, one for each radio button. The application sets the animation duration
to 3.6 seconds and creates an animation timer with that duration. Because the
application does not specify a time-warp function when it creates the animation
timer, the animation timer uses the default time-warp function, which is linear.

The application creates a sprite named ball with a single moveBall behavior.
If the animation timer is running, that behavior’s execute() method moves the
ball according to the animation timer’s elapsed time.

Example 7.8 Animating a ball

var linear = AnimationTimer.makeLinear(),
 easeIn = AnimationTimer.makeEaseIn(1),
 easeOut = AnimationTimer.makeEaseOut(1),
 easeInOut = AnimationTimer.makeEaseInOut(1),
 elastic = AnimationTimer.makeElastic(5),
 bounce = AnimationTimer.makeBounce(5),

 PUSH_ANIMATION_DURATION = 3600,

 pushAnimationTimer = new AnimationTimer(PUSH_ANIMATION_DURATION),
 ...

// Move ball behavior...

 moveBall = {
 lastTime: undefined,

 resetBall: function () {
 ball.left = LEDGE_LEFT - BALL_RADIUS;
 ball.top = LEDGE_TOP - BALL_RADIUS*2;

},

 updateBallPosition: function (elapsed) {
if (arrow === LEFT)

 ball.left -= ball.velocityX * (elapsed/1000);
else

 ball.left += ball.velocityX * (elapsed/1000);
},

(Continues)

4597.4 Warping Motion

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 7.8 (Continued)

 execute: function (ball, context, time) {
if (pushAnimationTimer.isRunning()) {

var animationElapsed = pushAnimationTimer.getElapsedTime(),
 elapsed;

if (this.lastTime !== undefined) {
 elapsed = animationElapsed - this.lastTime;

this.updateBallPosition(elapsed);

if (isBallOnLedge()) {
if (pushAnimationTimer.isOver()) {

 pushAnimationTimer.stop();
}
}

else { // Ball fell off the ledge
 pushAnimationTimer.stop();

this.resetBall();
}

}
}

this.lastTime = animationElapsed;
}

},

// Ball sprite..

 ball = new Sprite('ball', ..., [moveBall]);

Notice that the behavior’s execute() method knows nothing about any possible
time-warping that takes place in the animation timer; the method just obtains the
elapsed time from the timer and uses that time to position the ball.

When you select a radio button, the application assigns the appropriate time-warp
function to the animation timer like this:

var
linearRadioButton = document.getElementById('linearRadioButton'),
easeInRadioButton = document.getElementById('easeInRadioButton'),
easeOutRadioButton = document.getElementById('easeOutRadioButton'),
easeInOutRadioButton = document.getElementById('easeInOutRadioButton'),
elasticRadioButton = document.getElementById('elasticRadioButton'),
bounceRadioButton = document.getElementById('bounceRadioButton');

Chapter 7 Physics460

Download from Join eBook (www.joinebook.com)

ptg7987094

linearRadioButton.onchange = function (e) {
 pushAnimationTimer.timeWarp = linear;
};

easeInRadioButton.onchange = function (e) {
 pushAnimationTimer.timeWarp = easeIn;
};

easeOutRadioButton.onchange = function (e) {
 pushAnimationTimer.timeWarp = easeOut;
};

easeInOutRadioButton.onchange = function (e) {
 pushAnimationTimer.timeWarp = easeInOut;
};

elasticRadioButton.onchange = function (e) {
 pushAnimationTimer.timeWarp = elastic;
};

bounceRadioButton.onchange = function (e) {
 pushAnimationTimer.timeWarp = bounce;
};

linearRadioButton.onchange = function (e) {
 pushAnimationTimer.timeWarp = linear;
};

As the preceding event handlers illustrate, to warp time you just need to assign
the appropriate time-warp function to an animation timer and subsequently use
that timer to drive the animation.

The sections that follow briefly discuss the different algorithms for warping time
that AnimationTimer supports.

7.4.1 Linear Motion: No Acceleration
Newtonian mechanics states that a moving body will continue moving at its
current velocity and direction in the absence of air resistance, friction, or collisions
with other bodies. That movement, which has no acceleration, is known as linear
motion; it is depicted in Figure 7.9.

In Figure 7.9, the ball moves at a constant velocity from left to right. Mathemati-
cally, the function that describes linear motion is simple: Given the actual elapsed
time of the animation, you return that elapsed time, as shown in Equation 7.4.

f(x) = x

Equation 7.4 Linear motion

4617.4 Warping Motion

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 7.9 Linear motion (each ball represents one frame of the animation)

Figure 7.10 Linear motion graph

Chapter 7 Physics462

Download from Join eBook (www.joinebook.com)

ptg7987094

The function that implements Equation 7.4 is equally simple:

function (percentComplete) {
return percentComplete;

};

If you plot a graph of actual elapsed percent on the horizontal axis versus the
warped percent on the vertical axis, you will get a straight line at a 45 degree
angle, as shown in Figure 7.10.

7.4.2 Ease In: Gradually Accelerate
In the real world, most things don’t move indefinitely at a constant velocity. Many
times, things start slowly and accelerate, from a sprinter who starts out at 0 mph
and accelerates out of the blocks, or a diver who starts with no vertical velocity,
but acquires a good deal of it as she plunges toward the water.

In animation terms, gradual acceleration is referred to as easing in, as
depicted in Figure 7.11.

Figure 7.11 Ease in

The equation for easing in is a power function. In Equation 7.5, that power is two,
but you are not restricted to that number; for example, you could raise that
exponent to the fourth or fifth power to exaggerate the ease-in effect.

f(x) = x2

Equation 7.5 Ease in

4637.4 Warping Motion

Download from Join eBook (www.joinebook.com)

ptg7987094

Here’s the JavaScript that implements Equation 7.5:

function (percentComplete) {
return Math.pow(percentComplete, 2);

};

The power curve implemented with the preceding JavaScript is depicted
graphically in Figure 7.12.

Figure 7.12 Ease-in graph

In Figure 7.12 the horizontal axis represents the percent of the animation that has
elapsed in real time. The vertical axis represents the warped time that an animation
system uses to advance an animation’s properties; in our case, it’s the value
returned by AnimationTimer.getElapsedTime().

The line representing linear motion is shown as a reference in Figure 7.12. It’s the
curve that shows the squared power curve. That curve shows the warped elapsed
time (vertical axis) versus the actual elapsed time (horizontal axis). For example,
0.5 on the horizontal axis, which represents halfway through the animation in
real time, equates to a warped elapsed time of 0.25, so the corresponding animation
would appear as if it were only one-fourth of the way through the animation.

Chapter 7 Physics464

Download from Join eBook (www.joinebook.com)

ptg7987094

Both axes in the graph in Figure 7.12 represent time, and the slopes of the line
and the curve represent the movement of time. The slope of the line in Figure 7.12
is constant, so time moves along at a steady pace; however, the slope of the
curve changes continuously—that’s what makes it a curve. Initially, the slope of
the curve is very small, so time moves very slowly. As you move further
along the curve from left to right, the curve’s slope steadily increases, which
means time moves faster as you move along the curve.

Power curves like the one shown in Figure 7.12 are prevalent in all kinds of
systems, from springs to economics, and of course, animations.

Figure 7.13 shows two other power curves in addition to x2: x3 and x4. Notice
the slopes of those curves. The higher the exponent, the more exaggerated the
ease-in effect. The x4 curve is initially much flatter than the x2 curve, and its slope
is much steeper in the second half of the animation.

Figure 7.13 Ease-in power curves

7.4.3 Ease Out: Gradually Decelerate
The preceding section discussed the ease-in effect, where time initially moves
slowly and then gradually accelerates. The opposite effect is known as ease out,

4657.4 Warping Motion

Download from Join eBook (www.joinebook.com)

ptg7987094

where time initially moves quickly and gradually decelerates, as shown in
Figure 7.14.

Figure 7.14 Ease out

Figure 7.15 Ease-out graph

Chapter 7 Physics466

Download from Join eBook (www.joinebook.com)

ptg7987094

An equation for the ease-out effect is shown in Equation 7.6, and the correspond-
ing graph is shown in Figure 7.15. The slope of the curve is initially steep, and
the slope gradually decreases until it is nearly 0; therefore, time will initially move
quickly and gradually decelerate.

f(x) = 1 – (1 – x)2

Equation 7.6 Ease out

Here’s the JavaScript implementation of Equation 7.6:

function (percentComplete) {
return 1 - Math.pow(1 - percentComplete, 2);

}

As for ease-in power curves, Figure 7.16 illustrates third- and fourth-order power
curves for the ease-out effect. As was the case for ease-in, the higher the order,
the more pronounced the effect.

Figure 7.16 Ease-out power curves

4677.4 Warping Motion

Download from Join eBook (www.joinebook.com)

ptg7987094

7.4.4 Ease In, Then Ease Out
Once again, imagine a sprinter accelerating out of the blocks. The sprinter accel-
erates, reaches maximum velocity, and at some point thereafter, gradually slows
down until he comes to a stop. That type of motion is a combination of ease in
and ease out, and is depicted in Figure 7.17.

Figure 7.17 Ease in, then out

Ease in/out is periodic in nature, so we can represent it with a sine wave, as
shown in Equation 7.7 and depicted in Figure 7.18.

f(x) = x – sin(x × 2π) / (2π)

Equation 7.7 Ease in/out

The graph for Equation 7.7 is shown in Figure 7.18.

Here’s the JavaScript implementation of Equation 7.7:

function (percentComplete) {
return percentComplete

- Math.sin(percentComplete*2*Math.PI) / (2*Math.PI);
};

Chapter 7 Physics468

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 7.18 Ease in/out graph

7.4.5 Elasticity and Bouncing
Two other common effects are elasticity and bouncing, which are illustrated in
Figures 7.19 and 7.21.

The equation for elasticity is shown in Equation 7.8.

f(x) = (1 – cos(x × Npasses × π) × (1 – x)) + x

Equation 7.8 Elastic motion

Unlike the previous equations in this section, Equation 7.8 contains a variable
besides x (x represents the animation completion percentage). In terms of motion,
that variable represents the number of passes the object makes about a central
pivot. For example, Npasses is 3 for the motion shown in Figure 7.19.

Figure 7.20 shows the graph for Equation 7.8.

4697.4 Warping Motion

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 7.19 Elastic motion (from top to bottom)

Figure 7.20 Elastic motion graph

Chapter 7 Physics470

Download from Join eBook (www.joinebook.com)

ptg7987094

Like the equation, the corresponding graph is different from the graphs we have
seen so far because the vertical axis goes up to 2.0 instead of 1.0, and the curve
extends beyond 1.0.

In practical terms, if you are using the time on the vertical axis to drive motion,
the object will go past where it normally would be at the end of the anima-
tion, and then, as the curve goes down, the object goes in the opposite direction,
once again past the endpoint, and the cycle repeats. In Figure 7.20 the curve
crosses 1.0 three times because the number of passes (Npasses) is 3.

Bouncing, which is similar to elasticity, is depicted in Figure 7.21. Initially, the
ball is in the center of the ledge and moving left, and it bounces once it reaches
the left edge of the ledge.

Figure 7.21 Bouncing motion

For bouncing, we employ two equations. The first, listed in Equation 7.9, is the
same as the elasticity equation shown in Equation 7.8. The value produced by
that equation is used by the bounce algorithm if the value is less than or equal to
1.0; otherwise, the bounce algorithm uses Equation 7.10.

4717.4 Warping Motion

Download from Join eBook (www.joinebook.com)

ptg7987094

f(x) = (1 – cos(x × Nbounces × π) × (1 – x)) + x

Equation 7.9 Bounce equation #1, for x ≤ 1

f(x) = 2 - (((1 - cos(x × π × Nbounces)) × (1 - x)) + x)

Equation 7.10 Bounce equation #2, for x > 1

Figure 7.22 Bouncing graphs

Chapter 7 Physics472

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 7.22 shows the graphs for Equations 7.9 and 7.10. The smaller graph in
the back shows both equations, as does the larger graph in front; however, the
larger graph only shows the portions of the curves that are used by the bounce
algorithm.

In this section you saw how to warp time, and how to use that warped time to
drive motion. But you can use warped time to drive other properties of objects
besides movement. For example, you may want to apply effects such as ease in,
ease out, etc. to an animation’s cells, so that the animation speeds up or slows
down. We will see how to do that in the next section.

7.5 Warping Animation
Now that you’ve seen how to warp time and subsequently motion, let’s see how
to warp other properties based on time.

The application shown in Figure 7.23 warps time according to the algorithm that
you select with the radio buttons at the top of the page. Figure 7.23 shows the
ease-out effect, where the warped time, which is represented by the sprite’s
movement, steadily outruns real time, which is represented by the vertical timeline
for the first three-quarters of the animation, and then, in the last quarter, warped
time slows dramatically until real time and warped time align at the end of the
animation.

Real time and warped time in Figure 7.23 are illustrated by the timeline and sprite,
respectively. Something that’s not illustrated by Figure 7.23 is the rate at which
the sprite animates in accordance with its motion. When the effect is ease out, the
sprite quickly animates through its cells for the first three-quarters of the anima-
tion, running frenetically as it bursts ahead of the timeline. In the last quarter
of the animation, however, the sprite’s speed and its animation rate drop quickly,
and the timeline catches up at the end.

The application creates a sprite with two behaviors: moveRightToLeft and
runInPlace:

sprite = new Sprite('runner',
new SpriteSheetPainter(runnerCells),
[moveRightToLeft, runInPlace]);

If the elapsed time since the last time the sprite’s painter advanced is greater than
1/10 of a second, the runInPlace.execute() method advances the sprite’s painter
and resets the time for the last advance.

4737.5 Warping Animation

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 7.23 Warping movement and animation

Chapter 7 Physics474

Download from Join eBook (www.joinebook.com)

ptg7987094

runInPlace = {
 execute: function() {

var elapsed = animationTimer.getElapsedTime();

if (lastAdvance === 0) { // Skip first time
 lastAdvance = elapsed;

}
else if (lastAdvance !== 0 &&

 elapsed - lastAdvance > PAGEFLIP_INTERVAL) {
 sprite.painter.advance();
 lastAdvance = elapsed;

}
}

},

The moveRightToLeft.execute() method moves the sprite by multiplying the
sprite’s velocity by the elapsed time since the last time the method moved
the sprite.

moveRightToLeft = {
 lastMove: 0,
 reset: function () {

this.lastMove = 0;
},

 execute: function(sprite, context, time) {
var elapsed = animationTimer.getElapsedTime(),

 advanceElapsed = elapsed - this.lastMove;

if (this.lastMove === 0) { // Skip first time
this.lastMove = elapsed;

}
else {

 sprite.left -= (advanceElapsed / 1000) * sprite.velocityX;
this.lastMove = elapsed;

}
}

},

If the animation timer’s getElapsedTime() method returns the actual elapsed
time for the animation, then both the sprite’s motion and the rate at which it ani-
mates through its cells will be linear. In fact, that’s the case when the application
first starts, when the linear algorithm is initially selected. However, when you
click one of the radio buttons, the application changes the animation timer’s
time-warp function, for example:

4757.5 Warping Animation

Download from Join eBook (www.joinebook.com)

ptg7987094

easeInRadioButton.onchange = function (e) {
 animationTimer.timeWarp = AnimationTimer.makeEaseIn(1);
};

The sprite’s motion and the rate at which it cycles through its animation cells, are
ultimately controlled by that animation timer’s time-warp function.

The application shown in Figure 7.23 is listed in Examples 7.9 and 7.10. Notice
that the application uses a sprite sheet painter, which is discussed in Section 6.2.3,
“Sprite,” on p. 406, to paint the sprite’s individual animation cells.

Example 7.9 Warping motion and animation rate: HTML

<!DOCTYPE html>
<html>

<head>
<title>Warping Time</title>

<style>
 body {

background: #cdcdcd;
}

.controls {
position: absolute;
left: 150px;
top: 10px;
font: 12px Arial;

}

#canvas {
position: absolute;
left: 0px;
top: 20px;
margin: 20px;
border: thin inset rgba(100,150,230,0.8);
background: #efefef;

}

#animateButton {
margin-left: 15px;
margin-bottom: 10px;

}
</style>

</head>

Chapter 7 Physics476

Download from Join eBook (www.joinebook.com)

ptg7987094

<body>
<input id='animateButton' type='button' value='Animate'/>

<canvas id='canvas' width='420' height='100'>
 Canvas not supported

</canvas>

<div id='motionControls' class='controls'>
<div id='motionRadios'>

<input type='radio' name='motion'
id='linearRadio' checked/>Linear

<input type='radio' name='motion'
id='easeInRadio'/>Ease In

<input type='radio' name='motion'
id='easeOutRadio'/>Ease Out

<input type='radio' name='motion'
id='easeInOutRadio'/>Ease In/Out

</div>
</div>

<script src='stopwatch.js'></script>
<script src='animationTimer.js'></script>
<script src='requestNextAnimationFrame.js'></script>
<script src='sprites.js'></script>
<script src='example.js'></script>

</body>
</html>

Example 7.10 Warping motion and animation rate: JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

 linearRadio = document.getElementById('linearRadio'),
 easeInRadio = document.getElementById('easeInRadio'),
 easeOutRadio = document.getElementById('easeOutRadio'),
 easeInOutRadio = document.getElementById('easeInOutRadio'),

 animateButton = document.getElementById('animateButton'),
 spritesheet = new Image(),

(Continues)

4777.5 Warping Animation

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 7.10 (Continued)

 runnerCells = [
{ left: 0, top: 0, width: 47, height: 64 },
{ left: 55, top: 0, width: 44, height: 64 },
{ left: 107, top: 0, width: 39, height: 64 },
{ left: 152, top: 0, width: 46, height: 64 },
{ left: 208, top: 0, width: 49, height: 64 },
{ left: 265, top: 0, width: 46, height: 64 },
{ left: 320, top: 0, width: 42, height: 64 },
{ left: 380, top: 0, width: 35, height: 64 },
{ left: 425, top: 0, width: 35, height: 64 },

],

 interval,
 lastAdvance = 0.0,

 SPRITE_LEFT = canvas.width - runnerCells[0].width;
 SPRITE_TOP = 10,

 PAGEFLIP_INTERVAL = 100,
 ANIMATION_DURATION = 3900,

 animationTimer = new AnimationTimer(ANIMATION_DURATION,
 AnimationTimer.makeLinear(1)),

 LEFT = 1.5,
 RIGHT = canvas.width - runnerCells[0].width,
 BASELINE = canvas.height - 9.5,
 TICK_HEIGHT = 8.5,
 WIDTH = RIGHT-LEFT,

 runInPlace = {
 execute: function() {

var elapsed = animationTimer.getElapsedTime();

if (lastAdvance === 0) { // Skip first time
 lastAdvance = elapsed;

}
else if (lastAdvance !== 0 &&

 elapsed - lastAdvance > PAGEFLIP_INTERVAL) {
 sprite.painter.advance();
 lastAdvance = elapsed;

}
}

},

Chapter 7 Physics478

Download from Join eBook (www.joinebook.com)

ptg7987094

 moveRightToLeft = {
 lastMove: 0,
 reset: function () {

this.lastMove = 0;
},

 execute: function(sprite, context, time) {
var elapsed = animationTimer.getElapsedTime(),

 advanceElapsed = elapsed - this.lastMove;

if (this.lastMove === 0) { // Skip first time
this.lastMove = elapsed;
}

else {
 sprite.left -= (advanceElapsed / 1000) * sprite.velocityX;

this.lastMove = elapsed;
}

}
},

 sprite = new Sprite('runner',
new SpriteSheetPainter(runnerCells),
[moveRightToLeft, runInPlace]);

// Functions..

function endAnimation() {
 animateButton.value = 'Animate';
 animateButton.style.display = 'inline';
 animationTimer.stop();

 lastAdvance = 0;
 sprite.painter.cellIndex = 0;
 sprite.left = SPRITE_LEFT;
 animationTimer.reset();
 moveRightToLeft.reset();

}

function startAnimation() {
 animationTimer.start();
 animateButton.style.display = 'none';
 window.requestNextAnimationFrame(animate);

}

(Continues)

4797.5 Warping Animation

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 7.10 (Continued)

function drawAxis() {
 context.lineWidth = 0.5;
 context.strokeStyle = 'cornflowerblue';

 context.moveTo(LEFT, BASELINE);
 context.lineTo(RIGHT, BASELINE);
 context.stroke();

for (var i=0; i <= WIDTH; i+=WIDTH/20) {
 context.beginPath();
 context.moveTo(LEFT + i, BASELINE-TICK_HEIGHT/2);
 context.lineTo(LEFT + i, BASELINE+TICK_HEIGHT/2);
 context.stroke();

}

for (i=0; i < WIDTH; i+=WIDTH/4) {
 context.beginPath();
 context.moveTo(LEFT + i, BASELINE-TICK_HEIGHT);
 context.lineTo(LEFT + i, BASELINE+TICK_HEIGHT);
 context.stroke();

}

 context.beginPath();
 context.moveTo(RIGHT, BASELINE-TICK_HEIGHT);
 context.lineTo(RIGHT, BASELINE+TICK_HEIGHT);
 context.stroke();
}

function drawTimeline() {
var realElapsed = animationTimer.getRealElapsedTime(),

 realPercent = realElapsed / ANIMATION_DURATION;

 context.lineWidth = 0.5;
 context.strokeStyle = 'rgba(0,0,255,0.5)';

 context.beginPath();

 context.moveTo(WIDTH - realPercent*(WIDTH), 0);
 context.lineTo(WIDTH - realPercent*(WIDTH), canvas.height);
 context.stroke();
}

Chapter 7 Physics480

Download from Join eBook (www.joinebook.com)

ptg7987094

// Event handlers...

animateButton.onclick = function (e) {
if (animateButton.value === 'Animate') startAnimation();
else

endAnimation();};

linearRadio.onclick = function (e) {
 animationTimer.timeWarp = AnimationTimer.makeLinear(1);
};

easeInRadio.onclick = function (e) {
 animationTimer.timeWarp = AnimationTimer.makeEaseIn(1);
};

easeOutRadio.onclick = function (e) {
 animationTimer.timeWarp = AnimationTimer.makeEaseOut(1);
};

easeInOutRadio.onclick = function (e) {
 animationTimer.timeWarp = AnimationTimer.makeEaseInOut();
};

// Animation. ..

function animate(time) {
if (animationTimer.isRunning()) {

 elapsed = animationTimer.getElapsedTime();

 context.clearRect(0, 0, canvas.width, canvas.height);
 sprite.update(context, time);
 sprite.paint(context);

drawTimeline();
drawAxis();

if (animationTimer.isOver()) {
endAnimation();

}
 window.requestNextAnimationFrame(animate);

}
}

(Continues)

4817.5 Warping Animation

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 7.10 (Continued)

// Initialization...

spritesheet.src = 'running-sprite-sheet.png';
sprite.left = SPRITE_LEFT;
sprite.top = SPRITE_TOP;
sprite.velocityX = 100; // pixels/second

drawAxis();

spritesheet.onload = function () {
 sprite.paint(context);
};

7.6 Conclusion
In this chapter we discussed fundamental physics that you can use in animations
and games, beginning with modeling gravity. You saw how to model falling ob-
jects, things flying through the air, and nonlinear motion, such as pendulums.

Most movement is nonlinear, from cars that accelerate away from stoplights, to
bouncing balls, so we explored warping time to create effects such as ease in and
ease out. Because we warped time, we can warp its derivatives, such as motion
and animation rate, as depicted by the last example in this chapter, which modifies
not only the rate at which a sprite moves but also the rate at which the sprite
animates through its animation cells.

In the next chapter we explore some more physics in the form of collision detection.

Chapter 7 Physics482

Download from Join eBook (www.joinebook.com)

ptg7987094

Collision detection, in one form or another, is a staple of many animations and
nearly all games. In this chapter you will see how to implement collision detection,
from simple strategies involving bounding areas and intersecting rays, to detecting
collisions between arbitrary polygons, circles, images, and sprites.

Most of this chapter deals with implementing the separating axis theorem (SAT),
which is a highly accurate and widely used method for detecting collisions be-
tween polygons, both in two and three dimensions. You will see how to implement
the SAT with Canvas, and how to extend it for circles, images, and sprites.

This chapter concludes with a look at a byproduct of the SAT, the minimum
translation vector (MTV), that coincides with the shortest distance you must
move a colliding object so that it’s no longer colliding. You can use that vector to
decouple colliding objects, make objects stick to each other, and make objects
bounce off each other.

8.1 Bounding Areas
Two-dimensional collision detection makes extensive use of bounding areas
(bounding volumes for 3D), so we begin our discussion of collision detection by
looking at a couple of examples that use bounding areas.

8CHAPTER

Collision Detection

483
Download from Join eBook (www.joinebook.com)

ptg7987094

8.1.1 Rectangular Bounding Areas
Rectangles are often used as bounding areas and are more commonly known as
bounding boxes; the application shown in Figure 8.1 illustrates their use. You
can control the horizontal movement of the ball that’s initially on the top ledge
with the arrows; if you push the ball far enough to the left, it will fall off the ledge
and land on the bottom ledge, provided that the ball and bottom ledge collide.

Figure 8.1 Rectangular bounding areas

The application determines whether the ball will hit the bottom ledge with the
method listed below:

Chapter 8 Collision Detection484

Download from Join eBook (www.joinebook.com)

ptg7987094

ballWillHitLedge: function (ledge) {
var ballRight = ball.left + ball.width,

 ledgeRight = ledge.left + ledge.width,
 ballBottom = ball.top + ball.height,
 nextBallBottomEstimate = ballBottom + ball.velocityY / fps;

return ballRight > ledge.left &&
 ball.left < ledgeRight &&
 ballBottom < ledge.top &&
 nextBallBottomEstimate > ledge.top;
}

The ballWillHitLedge() method calculates the bottom edge of the ball. Then,
based on the ball’s velocity and the current frame rate of the animation, the method
estimates where the bottom of the ball will be for the next animation frame.

The ballWillHitLedge() method returns true if the ball is currently above the
ledge, and the method estimates that it will fall below the ledge the next animation
frame.

Besides using bounding boxes for collision detection, the application shown in
Figure 8.1 implements a priori collision detection, meaning that it detects collisions
before they happen. You can also implement collision detection a posteriori, which
means you detect collisions after they happen. The next section illustrates how
to implement a posteriori collision detection.

NOTE: Your a priori estimate may be off

In the preceding example, the application’s estimate of where the ball will be in
the next animation frame is fallible because the estimate is based on the current
frame rate; if the frame rate suddenly changes, the estimate will be off.

If the ball is directly above the ledge and the application estimates that it will not
collide with the ledge in the next animation frame, but it does, then the application
will miss the collision.

The inaccuracy in the estimate is one of the drawbacks to a priori collision
detection.

8.1.2 Circular Bounding Areas
Sometimes circular bounding areas are a better fit than rectangular bounding
areas, as illustrated in Figure 8.2, which shows a ball falling into a bucket. If the
ball collides with the circular bounding area inside the bucket, the application
knows that the ball landed in the bucket.

4858.1 Bounding Areas

Download from Join eBook (www.joinebook.com)

ptg7987094Figure 8.2 Collision between circles: The distance between centers is less than the combined
radii

Figure 8.2 also illustrates how easy it is to check for collisions with circular
bounding areas. If the distance between the centers of the two circles is less than
the combined radii of those circles, then the circles have collided. The simplicity
of that calculation makes circular bounding areas attractive.

Figure 8.3 shows the application that detects collisions between the ball and
bucket shown in Figure 8.2.

The application determines whether the ball has landed in the bucket with the
following method:

isBallInBucket: function() {
var ballCenter = { x: ball.left + BALL_RADIUS,

 y: ball.top + BALL_RADIUS
},

 distance = Math.sqrt(
 Math.pow(bucketHitCenter.x - ballCenter.x, 2) +
 Math.pow(bucketHitCenter.y - ballCenter.y, 2));

return distance < BALL_RADIUS + bucketHitRadius;
}

Chapter 8 Collision Detection486

Download from Join eBook (www.joinebook.com)

ptg7987094Figure 8.3 Circular bounding areas

In the preceding method, the bucketHitCenter object contains the coordinates
for the center of the circular bounding area, and the method uses the Pythagorean
theorem to calculate the distance between the center of the ball and the center
of the circular bounding area, with Equation 8.1.

c = √a2 + b2

Equation 8.1 Distance between two points

The application shown in Figure 8.3 implements a posteriori collision detection,
meaning it detects collisions after they have occurred.

Like the application in Figure 8.1, the collision detection implemented by the
application shown in Figure 8.2 is not perfect. If the ball is moving fast enough,
it can blow by the circular bounding area in one animation frame, and therefore
the application will not detect the collision. The easiest way to solve that problem
is to limit the velocity of small objects in your animations. Additionally, there are
also more accurate collision detection methods which we explore later in this
chapter.

4878.1 Bounding Areas

Download from Join eBook (www.joinebook.com)

ptg7987094

TIP: A priori vs. a posteriori

A priori collision detection detects collisions before they occur, whereas a
posteriori detects them after they occur.

With a priori collision detection you calculate where an object will be in the future,
which means that a priori collision detection must take into account all of the
things such as the object’s velocity, etc., that are required for calculating that lo-
cation. On the other hand, a posteriori collision detection requires no such calcu-
lation—you just check to see if the objects have already collided.

However, with a posteriori detection, you must deal with the aftermath of the
collision. In general, dealing with the aftermath of a collision is about as compli-
cated as determining an object’s position in the future, so neither collision
detection method is dramatically simpler than the other.

8.2 Bouncing Off Walls
Figure 8.4 shows an application that animates a ball and bounces it off the edges
of a canvas.

If you’re using bounding boxes for collision detection, it’s a simple matter to
bounce off the edges of the canvas by manipulating an object’s position and
velocity, as shown in Example 8.1.

Example 8.1 Bouncing off walls

handleEdgeCollisions: function() {
var bbox = getBoundingBox(ball),

 right = bbox.left + bbox.width,
 bottom = bbox.top + bbox.height;

if (right > canvas.width || bbox.left < 0) {
 velocityX = -velocityX;

if (right > canvas.width) {
 ball.left -= right-canvas.width;

}

if (bbox.left < 0) {
 ball.left -= bbox.left;

}
}

Chapter 8 Collision Detection488

Download from Join eBook (www.joinebook.com)

ptg7987094

if (bottom > canvas.height || bbox.top < 0) {
 velocityY = -velocityY;

if (bottom > canvas.height) {
 ball.top -= bottom-canvas.height;

}
if (bbox.top < 0) {

 ball.top -= bbox.top;
}

}
};

Figure 8.4 Bouncing off walls

Example 8.1 obtains the ball’s bounding box and checks to see if the ball has
moved out of the canvas bounds. If it has, the method reverses the ball’s velocity
in either the horizontal or vertical directions, and updates the ball’s position so
that it once again lies within the canvas boundaries.

Now that you have a good handle on using bounding areas to implement collision
detection, let’s look at a more rigorous approach: ray casting.

4898.2 Bouncing Off Walls

Download from Join eBook (www.joinebook.com)

ptg7987094

8.3 Ray Casting
As an alternative to bounding areas, you can use ray casting, which is more precise
than bounding areas, to detect collisions. The application shown in Figure 8.5
uses ray casting to determine if the ball falls into the bucket. The application
consists of a simple launch pad on the left and the bucket on the right. When the
application starts, the ball rests on the launch pad. When a user clicks the mouse,
the application launches the ball in the direction of the mouse cursor, with a
velocity proportional to the distance from the cursor to the launch pad.

Ray casting is simple: You cast a ray from an object coincident with the object’s
velocity vector. Then you cast another ray from another object and see where the
two rays intersect.

The application shown in Figure 8.5 creates a ray, labeled ray #1 in Figure 8.5,
that’s coincident with the ball’s velocity vector. The application creates a second
ray, labeled ray #2, and calculates the intersection of those two rays.

Figure 8.5 Ray casting

As the ball flies through the air, the application continuously erases and redraws
ray #1, from the ball to where it intersects ray #2. You can see the effect in
Figure 8.6.

Chapter 8 Collision Detection490

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 8.6 Constantly updating the ball’s ray

4918.3 Ray Casting

Download from Join eBook (www.joinebook.com)

ptg7987094

The application knows that the ball fell in the bucket when two conditions are met:

• The intersection of ray #1 and ray #2 is between the edges of the bucket.
• The ball is below ray #2.

The preceding conditions are depicted in the image on the far right in Figure 8.7.

Figure 8.7 Ray casting closeups: The picture on the right is a score

To implement ray casting collision detection, let’s start with the point-slope
equation of a line, shown in Equation 8.2.

y = mx + b

Equation 8.2 Point-slope equation of a line

In Equation 8.2, b is the y-intercept, meaning the place where the line crosses the
Y axis.

We’re trying to find the intersection of two lines, which by definition is the same
point on both lines. Therefore, we can take the equation for ray #1 and set it equal
to the equation for ray #2. Then we can solve for x (remember that x1 and x2 are
equal), as Equation 8.3 illustrates.

mx1 + b1 = mx2 + b2

mx1 – mx2 = b2 – b1

x(m1 – m2) = b2 – bx1

x = (b2 – b1) / (m1 – m2)

Equation 8.3 The intersection of two lines (derivation)

Once you have solved for x, you can plug that value into either ray’s point-slope
equation, and solve for y. The result of that calculation is shown in code in
Example 8.2, which shows how the application in Figure 8.5 implements collision
detection.

Chapter 8 Collision Detection492

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.2 An object that implements collision detection with ray casting

catchBall = {
 intersectionPoint: { x: 0, y: 0 },

 isBallInBucket: function() { // A posteriori
if (lastBallPosition.left === ball.left ||

 lastBallPosition.top === ball.top) {
return;

}
// (x1, y1) = Last ball position
// (x2, y2) = Current ball position
// (x3, y3) = Bucket left
// (x4, y4) = Bucket right

var x1 = lastBallPosition.left,
 y1 = lastBallPosition.top,
 x2 = ball.left,
 y2 = ball.top,
 x3 = BUCKET_LEFT + BUCKET_WIDTH/4,
 y3 = BUCKET_TOP,
 x4 = BUCKET_LEFT + BUCKET_WIDTH,
 y4 = y3,

// m1 = slope of (x1, y1) to (x2, y2)

 m1 = (ball.top - lastBallPosition.top) /
(ball.left - lastBallPosition.left),

// m2 = slope of (x3, y3) to (x4, y4)

 m2 = (y4 - y3) / (x4 - x3), // Zero, but calculate
// anyway for illustration

// b1 = y-intercept for (x1, y1) to (x2, y2)

 b1 = y1 - m1*x1,

// b2 = y-intercept for (x3, y3) to (x4, y4)

 b2 = y3 - m2*x3;

this.intersectionPoint.x = (b2 - b1) / (m1 - m2);
this.intersectionPoint.y = m1*this.intersectionPoint.x + b1;

return this.intersectionPoint.x > x3 &&
this.intersectionPoint.x < x4 &&

 ball.top + ball.height > y3 &&
 ball.left + ball.width < x4;

}
};

4938.3 Ray Casting

Download from Join eBook (www.joinebook.com)

ptg7987094

CAUTION: Horizontal and vertical lines

The isBallInBucket() method disregards purely horizontal and purely vertical
ball movement. That’s because the slope of a ball moving horizontally is zero,
and the slope of the ball moving vertically is infinite, neither of which is conducive
to the calculations the method makes.

If you use the client-slope equation of a line, be aware that you will need special
handling for horizontal and vertical lines.

8.3.1 Fine-tuning
Ray casting is more accurate than bounding areas. No matter how fast the ball is
moving in Figure 8.5, the application will still detect collisions. However, like all
collision detection, ray casting is not perfect, as Figure 8.8 illustrates.

Figure 8.8 An edge case

In Figure 8.8, the intersection between the ball’s ray and the bucket’s ray lies be-
tween the edges of the bucket (just barely), and the ball is below the top of the
bucket; however, the ball is not in the bucket.

To account for that edge case, we can modify the return statement in Example 8.2,
like this:

return intersectionPoint.x > x3 &&
 intersectionPoint.x < x4 &&
 ball.top + ball.height > y3 &&
 ball.left + ball.width < x4;

Now that we’ve looked at some simple techniques for collision detection, let’s
see how to detect collisions between polygons, circles, images, and sprites with
the separating axis theorem and the minimum translation vector.

Chapter 8 Collision Detection494

Download from Join eBook (www.joinebook.com)

ptg7987094

8.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector
(MTV)
So far in this chapter you’ve seen how to implement simple collision detection
with bounding areas such as rectangles and circles. You’ve also seen how to detect
collisions by casting rays. Although those techniques suffice for many use cases
and are relatively easy to implement, they are not well suited for detecting
collisions between arbitrarily shaped polygons.

The rest of this chapter shows you how to implement a much more precise collision
detection algorithm based on the separating axis theorem (SAT). The SAT detects
collisions between polygons, but you’ll see how to use it with circles, images, and
sprites, too.

You will also see how to use the SAT to calculate a minimum translation vector
(MTV) that lets you react to collisions.

NOTE: Convex polygons only

The SAT only works for convex polygons, meaning polygons whose interior angles
are all less than 180 degrees. Vertices of convex polygons point outward from
the center of the polygon. Examples are rectangles, triangles, squares, etc. Any
shape with an interior angle of more than 180 degrees has a dent, like Pac-Man,
and is concave. You cannot detect collisions between concave polygons with
the SAT.

8.4.1 Detecting Collisions with the SAT
Figure 8.9 shows two polygons in the Canvas coordinate system. The polygons
on the right are colliding.

Conceptually, the SAT is easy to understand. To detect collisions, the SAT performs
the mathematical equivalent of shining a light on the two polygons in question
and examining the shadows they cast on the walls behind them, as illustrated in
Figures 8.10 and 8.11.

Mathematically, shadows are known as projections, and walls are axes. Figure 8.12
shows the polygons from Figures 8.10 and 8.11, the X and Y axes, and the projec-
tions along those axes.

4958.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 8.9 Two polygons, collision on the right

Figure 8.10 Shine a light on the polygons and look for separation in the shadows

Separation between projections on any axis means no collision. In Figure 8.12 you
can see the separation on the X axis for the polygons on the left that are not col-
liding, whereas there is no separation along either axis for the polygons on the
right that are colliding. Separation means no collision; collision means no separation.

Figure 8.12 may lead you to believe that testing along the X and Y axes is sufficient
to detect collisions; however, as Figure 8.13 reveals, that is not the case.

Chapter 8 Collision Detection496

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 8.11 Any separation between shadows means no collision

Figure 8.12 Projections on the X and Y axes

In Figure 8.13 the polygons are not colliding, however there is no separation along
either the X or Y axes, so it’s not sufficient to test for separation between projec-
tions only along the X and Y axes—you must shine the light from other directions
as well.

Figure 8.14 shows all of the axes that you must test with the SAT.

4978.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 8.13 No separation along the X and Y axes, but no collision

Figure 8.14 The SAT tests all polygon axes until it finds separation on any axis

Chapter 8 Collision Detection498

Download from Join eBook (www.joinebook.com)

ptg7987094

To detect collisions with the SAT, you must test all axes of both polygons as illus-
trated in Figure 8.14, until you find separation between projections along any axis.

The number of axes for a given polygon is the same as the number of polygon
sides, so for example, in Figure 8.14, you must test up to seven axes for the
three-sided triangle and the four sided-polygon.

Depending upon the number of sides for each polygon, you could potentially
test many axes, which could be expensive from a performance perspective.
However, because separation between projections along any axis indicates no
collision, you can quit testing axes when you find separation between projections
along any axis.

Figure 8.15 shows all of the axes, and their respective projections, when the two
polygons collide.

Figure 8.15 No separation on any axis for collisions

At a high level, for any two polygons, here’s some pseudocode that implements
the SAT:

4998.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

// Returns true if the polygon1 and polygon2 have collided

function polygonsCollide(polygon1, polygon2) {
var axes, projection1, projection2;

 axes = polygon1.getAxes();
 axes.push(polygon2.getAxes()); // axes is an axis array

for (each axis in axes) {
 projection1 = polygon1.project(axis);
 projection2 = polygon2.project(axis);

if (! projection1.overlaps(projection2))
return false; // Separation means no collision

}
return true; // No separation on any axis means collision

}

Before we can implement the preceding pseudocode, we have to answer some
questions:

• How do you get a polygon’s axes?
• How do you project a polygon onto an axis?
• How do you detect overlap between projections?

In the sections that follow, we answer those questions and show you how to
implement the separating axis theorem with Canvas.

8.4.1.1 Projection Axes
To detect collisions between two polygons with the SAT, you need to get all of
the axes for each polygon given a polygon face. Figure 8.16 shows how to
create the corresponding projection axis of an arbitrary polygon edge.

In Figure 8.16, an edge of the polygon is defined by a vector from p1 to p2. That
vector is known as the edge vector.

The corresponding projection axis for collision detection with the SAT is the edge
normal vector, which is normal (that is, perpendicular) to the edge vector.

Figure 8.16 shows the projection axis below and to the right of the polygon. It
doesn’t matter, however, where the axis is located in space because the axis is
infinitely long and the polygon projection will always span the same segment of
the axis regardless of the axis’ location in space. It’s only the direction of the
axis that’s significant.

Here’s some code that creates an axis (which is a vector), given the points p1
and p2:

Chapter 8 Collision Detection500

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 8.16 Projecting along a single axis corresponding to an edge of the polygon

// Getting an axis to project onto. That axis
// is normal to the edge from p1 to p2

var v1 = new Vector(p1.x, p1.y);
 v2 = new Vector(p2.x, p2.y);
 axis = v1.edge(v2).normal();

A Vector object with the preceding methods is implemented in Example 8.3.

Vectors have a magnitude that’s calculated with the Pythagorean theorem, which
states that the square of a right triangle’s hypotenuse is equal to the sum of
the squares of the other two sides of the triangle.

You can add or subtract vectors, and you can multiply them together. Vector
multiplication is more commonly referred to as the dot product because a dot is
often used to signify multiplication. You can also get the edge between two vectors
by subtracting one from the other.

5018.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.3 Vectors

// Constructor..

var Vector = function(x, y) {
this.x = x;
this.y = y;

};

// Prototype..

Vector.prototype = {
 getMagnitude: function () {

return Math.sqrt(Math.pow(this.x,
2) +

 Math.pow(this.y, 2));
},

 add: function (vector) {
var v = new Vector();

 v.x = this.x + vector.x;
 v.y = this.y + vector.y;

return v;
},

 subtract: function (vector) {
var v = new Vector();

 v.x = this.x - vector.x;
 v.y = this.y - vector.y;

return v;
},

 dotProduct: function (vector) {
return this.x * vector.x +

this.y * vector.y;
},

 edge: function (vector) { return
this.subtract(vector);

},

 perpendicular: function () {
var v = new Vector();

 v.x = this.y;
 v.y = 0-this.x;

return v;
},

Chapter 8 Collision Detection502

Download from Join eBook (www.joinebook.com)

ptg7987094

 normalize: function () {
var v = new Vector(0, 0),

 m = this.getMagnitude();

if (m != 0) {
 v.x = this.x / m;
 v.y = this.y / m;

}
return v;

},

 normal: function () {
var p = this.perpendicular();
return p.normalize();

}
};

Finally, you can get a perpendicular vector with perpendicular() or a perpendic-
ular vector that’s been normalized with normal(). Normalization is the process
of stripping a vector of its magnitude—the magnitude of a normalized vector is
1, and for that reason, normalized vectors are known as unit vectors.

Unit vectors, because they have a magnitude of 1, indicate direction only; for ex-
ample, the axis variable in the preceding code listing refers to a unit vector that
indicates axis direction.

At this point, given two consecutive points on a polygon, we can create a vector
that represents a projection axis for the polygon face defined by those two points.
All that remains is to create projection axes for every face of each of the two
polygons, project each polygon onto each axis, and check for separation between
projections. If we find separation, there was no collision; otherwise, we know
that a collision occurred. To do all of that, we need projections.

8.4.1.2 Projections
Projections, as you can see from Example 8.4, are simple: They just maintain
minimum and maximum values along an axis. Projections can tell you whether
they overlap with another projection, and that’s all they can do.

Now that we are armed with vectors and projections and know how to create a
projection axis, given a polygon face, we are ready to explore implementing
collision detection with the SAT for shapes and polygons.

5038.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.4 Projections

var Projection = function (min, max) {
this.min = min;
this.max = max;

};

Projection.prototype = {
 overlaps: function (projection) {

return this.max > projection.min && projection.max > this.min;
}

};

8.4.1.3 Shapes and Polygons
Ultimately, our goal in this chapter is to implement collision detection by using
the SAT for polygons, circles, images, and sprites. To do that, we begin by
implementing a Shape object that has the following methods:

• boolean collidesWith(anotherShape)

• Vector[] getAxes()

• boolean separationOnAxes(axes, anotherShape)

• Projection project(axis)

Here’s how you use the collidesWith() method:

if (shape1.collidesWith(shape2)) {
...

}

In the preceding code, collidesWith() returns true if shape1 collides with shape2.

Figure 8.17 depicts the axes and associated projections for a single shape. Recall
that each axis is parallel to a vector that’s perpendicular to a corresponding
polygon edge, as illustrated in Figure 8.16.

The Shape.getAxes() method returns an array of vectors representing the
axes, and Shape.project(axis) returns a projection that represents the shape’s
projection onto a specific axis.

Example 8.5 shows the implementation of the four Shape methods listed above.

Chapter 8 Collision Detection504

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.5 Shape collision detection methods

Shape.prototype = {
...
// This shape collides with otherShape if there is no separation
// along either of the shape's axes.

 collidesWith: function (otherShape) {
var axes = this.getAxes().concat(otherShape.getAxes());
return !this.separationOnAxes(axes, otherShape);

},

// Is there separation between this shape and
// otherShape along any of the specified axes?

 separationOnAxes: function (axes, otherShape) {
for (var i=0; i < axes.length; ++i) {

 axis = axes[i];
 projection1 = otherShape.project(axis);
 projection2 = this.project(axis);

if (! projection1.overlaps(projection2)) {
return true;

}
}
return false;

},

// Get this shape's axes, to be used for collision detection by SAT

 getAxes: function () {
throw 'getAxes() not implemented';

},
...

// Project this shape onto the specified axis

 project: function (axis) {
throw 'project(axis) not implemented';

}
};

5058.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 8.17 Shape.getAxes() returns a polygon’s axes, and Shape.project() projects a
polygon face onto an axis

The collidesWith() method calls getAxes() for each shape, and then passes
those axes to separationOnAxes(), which projects both shapes onto each axis
with the project() method. separationOnAxis() returns true as soon as it
finds separation between projections on any single axis; otherwise, if it finds no
separation, separationOnAxes() returns false.

The getAxes() and project() methods are implemented differently for polygons
and circles, so it’s up to the Polygon and Circle objects to implement those
methods. Here’s how Polygon implements them:

// Polygons have an array of points

var Polygon = function () {
this.points = [];
...

};
...

// Polygons are shapes

Polygon.prototype = new Shape();
...

Chapter 8 Collision Detection506

Download from Join eBook (www.joinebook.com)

ptg7987094

// Projects each point in the polygon onto the
// specified axis and then returns a projection
// with the minimum and maximum of those projected points.

Polygon.prototype.project = function (axis) {
var scalars = [],

 v = new Vector();

this.points.forEach(function (point) {
 v.x = point.x;
 v.y = point.y;
 scalars.push(v.dotProduct(axis));

});

return new Projection(Math.min.apply(Math, scalars),
 Math.max.apply(Math, scalars));
};

// Returns all of the polygon's axes needed for
// collision detection testing with SAT

Polygon.prototype.getAxes = function () {
var v1 = new Vector(),

 v2 = new Vector(),
 axes = [];

for (var i=0; i < this.points.length-1; i++) {
 v1.x = this.points[i].x;
 v1.y = this.points[i].y;

 v2.x = this.points[i+1].x;
 v2.y = this.points[i+1].y;

 axes.push(v1.edge(v2).normal());
}

return axes;
};

Polygons are Shapes with meaningful implementations of project() and
getAxes(). That means polygons are collision detection enabled.

The Circle implementations of project() and getAxes() are discussed in
Section 8.4.1.5, “Circles,” on p. 516.

The Shape and Polygon objects are listed in their entirety in Examples 8.6 and 8.7.

5078.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.6 Shapes

// Constructor..

var Shape = function () {
this.x = undefined;
this.y = undefined;
this.strokeStyle = 'rgba(255, 253, 208, 0.9)';
this.fillStyle = 'rgba(147, 197, 114, 0.8)';

};

// Prototype..

Shape.prototype = {
// Collision detection methods.....................................

 collidesWith: function (shape) {
var axes = this.getAxes().concat(shape.getAxes());
return !this.separationOnAxes(axes, shape);

},

 separationOnAxes: function (axes, shape) {
for (var i=0; i < axes.length; ++i) {

 axis = axes[i];
 projection1 = shape.project(axis);
 projection2 = this.project(axis);

if (! projection1.overlaps(projection2)) {
return true; // Don't have to test remaining axes

}
}
return false;

},

 project: function (axis) {
throw 'project(axis) not implemented';

},

 getAxes: function () {
throw 'getAxes() not implemented';

},

 move: function (dx, dy) {
throw 'move(dx, dy) not implemented';

},

Chapter 8 Collision Detection508

Download from Join eBook (www.joinebook.com)

ptg7987094

// Drawing methods...

 createPath: function (context) {
throw 'createPath(context) not implemented';

},

 fill: function (context) {
 context.save();
 context.fillStyle = this.fillStyle;

this.createPath(context);
 context.fill();
 context.restore();

},

 stroke: function (context) {
 context.save();
 context.strokeStyle = this.strokeStyle;

this.createPath(context);
 context.stroke();
 context.restore();

},

 isPointInPath: function (context, x, y) {
this.createPath(context);
return context.isPointInPath(x, y);

},
};

Example 8.7 Polygons (and points)

// Constructor..

var Point = function (x, y) {
this.x = x;
this.y = y;

};

var Polygon = function () {
this.points = [];
this.strokeStyle = 'blue';
this.fillStyle = 'white';

};

(Continues)

5098.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.7 (Continued)

// Prototype..

Polygon.prototype = new Shape();

Polygon.prototype.getAxes = function () {
var v1 = new Vector(),

 v2 = new Vector(),
 axes = [];

for (var i=0; i < this.points.length-1; i++) {
 v1.x = this.points[i].x;
 v1.y = this.points[i].y;

 v2.x = this.points[i+1].x;
 v2.y = this.points[i+1].y;

 axes.push(v1.edge(v2).normal());
}

 v1.x = this.points[this.points.length-1].x;
 v1.y = this.points[this.points.length-1].y;

 v2.x = this.points[0].x;
 v2.y = this.points[0].y;

 axes.push(v1.edge(v2).normal());

return axes;
};

Polygon.prototype.project = function (axis) {
var scalars = [],

 v = new Vector();

this.points.forEach(function (point) {
 v.x = point.x;
 v.y = point.y;
 scalars.push(v.dotProduct(axis));

});

return new Projection(Math.min.apply(Math, scalars),
 Math.max.apply(Math, scalars));
};

Polygon.prototype.addPoint = function (x, y) {
this.points.push(new Point(x,y));

};

Chapter 8 Collision Detection510

Download from Join eBook (www.joinebook.com)

ptg7987094

Polygon.prototype.createPath = function (context) {
if (this.points.length === 0)

return;

 context.beginPath();
 context.moveTo(this.points[0].x,

this.points[0].y);

for (var i=0; i < this.points.length; ++i) {
 context.lineTo(this.points[i].x,

this.points[i].y);
}

 context.closePath();
};

Polygon.prototype.move = function (dx, dy) {
for (var i=0, point; i < this.points.length; ++i) {

 point = this.points[i];
 point.x += dx;
 point.y += dy;

}
};

NOTE: Polygon paths are implicitly closed

Notice that the Polygon.createPath() method listed in Example 8.7 closes
the path by invoking the Canvas context’s closePath() method.

Polygons close their paths for two reasons. First, so you don’t have to remember
to close the path yourself by adding an extra point that coincides with the
polygon’s first point. Second, closing a path by adding an extra point to a polygon
that coincides with the polygon’s first point is not a good idea in the first place,
because it will cause problems rendering the line join between the first and last
(identical) points.

8.4.1.4 Collisions between Polygons
Now that we have all the necessary ingredients to detect collisions with the SAT,
let’s look at an application, shown in Figure 8.18, that detects collisions between
polygons.

The application creates three draggable polygons. If you drag one polygon over
or under another polygon, the application displays the word collision in the upper-
left corner of the canvas with the color of the stationary polygon in the collision.

5118.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 8.18 Collisions between polygons

Here’s how the application performs collision detection:

function detectCollisions() {
var textY = 30,

 numShapes = shapes.length,
 shape,
 i;

if (shapeBeingDragged) {
for(i = 0; i < numShapes; ++i) {

 shape = shapes[i];

if (shape !== shapeBeingDragged) {
if (shapeBeingDragged.collidesWith(shape)) {

 context.fillStyle = shape.fillStyle;
 context.fillText('collision', 20, textY);
 textY += 40;

}
}

}
}

}

Chapter 8 Collision Detection512

Download from Join eBook (www.joinebook.com)

ptg7987094

If you drag a shape, the application sets a shapeBeingDragged variable to that
shape, so when it’s time to detect collisions, the detectCollisions() method
listed above checks to see if that variable has been set. If it has, the method knows
that you are dragging a shape.

If the shapeBeingDragged variable is set, the detectCollisions() method iterates
over all the shapes, checking to see if the shape you are dragging has collided
with another shape.

The complete JavaScript for the application is listed in Example 8.8.

Example 8.8 Colliding polygons: JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 shapes = [],
 polygonPoints = [

// The paths described by these point arrays
// are open. They are explicitly closed by
// Polygon.createPath()

[new Point(250, 150), new Point(250, 250),
new Point(350, 250)],

[new Point(100, 100), new Point(100, 150),
new Point(150, 150), new Point(150, 100)],

[new Point(400, 100), new Point(380, 150),
new Point(500, 150), new Point(520, 100)]

],

 polygonStrokeStyles = ['blue', 'yellow', 'red'],
 polygonFillStyles = ['rgba(255,255,0,0.7)',

'rgba(100,140,230,0.6)',
'rgba(255,255,255,0.8)'],

 mousedown = { x: 0, y: 0 },
 lastdrag = { x: 0, y: 0 },
 shapeBeingDragged = undefined;

// Functions..

function windowToCanvas(x, y) {
var bbox = canvas.getBoundingClientRect();
return { x: x - bbox.left * (canvas.width / bbox.width),

 y: y - bbox.top * (canvas.height / bbox.height)
};

}

(Continues)

5138.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.8 (Continued)

function drawShapes() {
 shapes.forEach(function (shape) {
 shape.stroke(context);
 shape.fill(context);

});
}

function detectCollisions() {
var textY = 30,

 numShapes = shapes.length,
 shape,
 i;

if (shapeBeingDragged) {
for(i = 0; i < numShapes; ++i) {

 shape = shapes[i];

if (shape !== shapeBeingDragged) {
if (shapeBeingDragged.collidesWith(shape)) {

 context.fillStyle = shape.fillStyle;
 context.fillText('collision', 20, textY);
 textY += 40;

} }
}

}
}

// Event handlers...

canvas.onmousedown = function (e) {
var location = windowToCanvas(e.clientX, e.clientY);

 shapes.forEach(function (shape) {
if (shape.isPointInPath(context, location.x, location.y)) {

 shapeBeingDragged = shape;
 mousedown.x = location.x;
 mousedown.y = location.y;
 lastdrag.x = location.x;
 lastdrag.y = location.y;

} });
};

canvas.onmousemove = function (e) {
var location,

 dragVector;

Chapter 8 Collision Detection514

Download from Join eBook (www.joinebook.com)

ptg7987094

if (shapeBeingDragged !== undefined) {
 location = windowToCanvas(e.clientX, e.clientYe);
 dragVector = { x: location.x - lastdrag.x,
 y: location.y - lastdrag.y

};

 shapeBeingDragged.move(dragVector.x, dragVector.y);

 lastdrag.x = location.x;
 lastdrag.y = location.y;

 context.clearRect(0, 0, canvas.width, canvas.height);
drawShapes();
detectCollisions();

}
};

canvas.onmouseup = function (e) {
 shapeBeingDragged = undefined;
};

// Initialization...

for (var i=0; i < polygonPoints.length; ++i) {
var polygon = new Polygon(),

 points = polygonPoints[i];

 polygon.strokeStyle = polygonStrokeStyles[i];
 polygon.fillStyle = polygonFillStyles[i];

 points.forEach(function (point) {
 polygon.addPoint(point.x, point.y);

});

 shapes.push(polygon);
}

context.shadowColor = 'rgba(100,140,255,0.5)';
context.shadowBlur = 4; context.shadowOffsetX
= 2; context.shadowOffsetY = 2;
context.font = '38px Arial';

drawShapes();

context.save();
context.fillStyle = 'cornflowerblue';
context.font = '24px Arial';
context.fillText('Drag shapes over each other', 10, 25);
context.restore();

5158.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Now that you’ve seen how to use the SAT to detect collisions between polygons,
let’s extend that algorithm to include circles.

8.4.1.5 Circles
As you’ve seen, to detect collisions between polygons, the SAT projects each
polygon onto a set of axes and looks for separation between projections. The axes
correspond to the polygon faces.

Circles present a problem for the SAT because a circle has an infinite number of
faces, so testing them all is impossible. However, as it turns out, you only need
to test one axis for circles. That axis is defined by a line from the center of circle
to the polygon point that’s closest to the circle, as shown in Figure 8.19.

Figure 8.19 Collisions between polygons and circles

The circle and polygon on the right in Figure 8.19 are not colliding—however,
there is no separation between their projections on the circle axis. That means
that it’s not enough to test only the circle axis; in fact, you must test not only the
circle axis but the polygon axes also. If you test all required axes for the circle and
polygon on the right in Figure 8.19, you will find separation, indicating no
collision, as illustrated in Figure 8.20.

Example 8.9 lists a Circle object. The first thing to notice is that circles return
undefined from their getAxes() method. That’s because circles, by themselves,
do not have an axis for collision detection. The circle axis for collision detection
illustrated in Figure 8.19 can only be determined from the circle and the polygon.

Chapter 8 Collision Detection516

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 8.20 Testing all axes for a circle and polygon reveals separation when there’s no
collision

Example 8.9 Circles

// Constructor..

var Circle = function (x, y, radius) {
this.x = x;
this.y = y;
this.radius = radius;
this.strokeStyle = 'rgba(255, 253, 208, 0.9)';
this.fillStyle = 'rgba(147, 197, 114, 0.8)';

}

// Prototype..

Circle.prototype = new Shape();

(Continues)

5178.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.9 (Continued)

Circle.prototype.collidesWith = function (shape) {
var point, length, min=10000, v1, v2,

 edge, perpendicular, normal,
 axes = shape.getAxes(), distance;

if (axes === undefined) { // Circle
 distance = Math.sqrt(Math.pow(shape.x - this.x, 2) +
 Math.pow(shape.y - this.y, 2));

return distance < Math.abs(this.radius + shape.radius);
}
else { // Polygon

return polygonCollidesWithCircle(shape, this);
}

};

Circle.prototype.getAxes = function () {
return undefined; // Circles have an infinite number of axes

};

Circle.prototype.project = function (axis) {
var scalars = [],

 point = new Point(this.x, this.y);
 dotProduct = new Vector(point).dotProduct(axis);

 scalars.push(dotProduct);
 scalars.push(dotProduct + this.radius);
 scalars.push(dotProduct - this.radius);

return new Projection(Math.min.apply(Math, scalars),
 Math.max.apply(Math, scalars));
};

Circle.prototype.move = function (dx, dy) {
this.x += dx;
this.y += dy;

};
Circle.prototype.createPath = function (context) {
 context.beginPath();
 context.arc(this.x, this.y, this.radius, 0, Math.PI*2, false);
};

Circles also reimplement their collidesWith() method. That method checks to
see if the collision axes associated with the shape passed to the method are
undefined; if so, that object is a circle, and Circle.collidesWith() uses the
circle-to-circle collision detection discussed in Section 8.1.2, “Circular Bounding
Areas,” on p. 485.

Chapter 8 Collision Detection518

Download from Join eBook (www.joinebook.com)

ptg7987094

If the shape that you pass to Circle.collidesWith() has collision axes, then
the object is a polygon, and Circle.collidesWith() invokes a method named
polygonCollidesWithCircle(). That method is listed in Example 8.10.

Example 8.10 Collisions between polygons and circles

function getPolygonPointClosestToCircle(polygon, circle) {
var min = 10000,

 length,
 testPoint,
 closestPoint;

for (var i=0; i < polygon.points.length; ++i) {
 testPoint = polygon.points[i];
 length = Math.sqrt(Math.pow(testPoint.x - circle.x, 2),
 Math.pow(testPoint.y - circle.y, 2));

if (length < min) {
 min = length;
 closestPoint = testPoint;

}
}

return closestPoint;
};

function polygonCollidesWithCircle (polygon, circle) {
var min=10000, v1, v2,

 edge, perpendicular, normal,
 axes = polygon.getAxes(),
 closestPoint = getPolygonPointClosestToCircle(polygon, circle);

 v1 = new Vector(new Point(circle.x, circle.y));
 v2 = new Vector(new Point(closestPoint.x, closestPoint.y));

 axes.push(v1.subtract(v2).normalize());

return !polygon.separationOnAxes(axes, circle);
};

In Example 8.10, polygonCollidesWithCircle() returns true if the polygon and
circle that you pass to the method have collided. That method creates the circle
axis from the circle center to the closest polygon point, and tests that axis, along
with the polygon’s axes, for separation between projections.

Although we now have circles that know how to collide with polygons, the inverse
is not true: Polygons do not know how to collide with circles. We can fix that by
refactoring the Polygon.collidesWith() method, as shown in Example 8.11.

5198.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.11 Polygon.collidesWith() refactored

Polygon.prototype.collidesWith = function (shape) {
var axes = shape.getAxes();

if (axes === undefined) {
return polygonCollidesWithCircle(this, shape);

}
else {

 axes.concat(this.getAxes());
return !this.separationOnAxes(axes, shape);

}
};
...

Figure 8.21 shows an application that uses the SAT to detect collisions between
polygons and circles.

Figure 8.21 Collisions between polygons and circles

Chapter 8 Collision Detection520

Download from Join eBook (www.joinebook.com)

ptg7987094

The code for the application shown in Figure 8.21 is identical to the application
shown in Figure 8.18 on p. 512 and listed in Example 8.8 on p. 513 that
detects collisions between polygons, except that the application in Figure 8.21
creates two circles and pushes them onto the array of shapes maintained by the
application.

...
circle1 = new Circle(150, 75, 20);
circle2 = new Circle(350, 25, 30);
...
shapes.push(circle1);
shapes.push(circle2);
...

Now that you’ve seen how to use the SAT to detect collisions between polygons
and circles, let’s see how to use the SAT to detect collisions with images and
sprites.

8.4.1.6 Images and Sprites
It’s important to be able to detect collisions between arbitrary shapes such as
polygons and circles, but it’s also important to detect collisions for images and
sprites.

Figure 8.22 shows an application that displays polygons, along with an image
(the tennis ball) and a sprite (the golf ball). All of the objects are draggable, and

Figure 8.22 Using the SAT with images and sprites

5218.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

the application detects collisions between the object you are dragging and the
other objects in the application.

The application creates three polygons, an ImageShape, and a SpriteShape, and
pushes all five of them onto an array of shapes, like this:

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 shapes = [],

 ballSprite = new Sprite('ball',
new ImagePainter('tennis-ball.png')),

 polygonPoints = [
[new Point(250, 150), new Point(250, 250),

new Point(350, 250), new Point(250, 150)],

[new Point(100, 100), new Point(100, 150),
new Point(150, 150), new Point(150, 100),
new Point(100, 100)],

[new Point(400, 100), new Point(380, 150),
new Point(500, 150), new Point(520, 100),
new Point(400, 100)]

],

 polygonStrokeStyles = ['blue', 'yellow', 'red'],
 polygonFillStyles = ['rgba(255,255,0,0.7)',

'rgba(100,140,230,0.6)',
'rgba(255,255,255,0.8)'];

for (var i=0; i < polygonPoints.length; ++i) {
var polygon = new Polygon(),

 points = polygonPoints[i];

 polygon.strokeStyle = polygonStrokeStyles[i];
 polygon.fillStyle = polygonFillStyles[i];

 points.forEach(function (point) {
 polygon.addPoint(point.x, point.y);

});

 shapes.push(polygon);
}
...

shapes.push(new ImageShape('golfball.png', 50, 50));
shapes.push(new SpriteShape(ballSprite, 100, 100));
...

Chapter 8 Collision Detection522

Download from Join eBook (www.joinebook.com)

ptg7987094

The application’s function to detect collisions is unchanged from Example 8.8 on
p. 513, and is listed again here for convenience:

function detectCollisions() {
var textY = 30,

 numShapes = shapes.length,
 shape,
 i;

if (shapeBeingDragged) {
for(i = 0; i < numShapes; ++i) {

 shape = shapes[i];

if (shape !== shapeBeingDragged) {
if (shapeBeingDragged.collidesWith(shape)) {

 context.fillStyle = shape.fillStyle;
 context.fillText('collision', 20, textY);
 textY += 40;

}
}

}
}

}

The ImageShape and SpriteShape objects are listed in Examples 8.12 and 8.13,
respectively.

Example 8.12 Image shapes

// Constructor..

var ImageShape = function(imageSource, x, y, w, h) {
var self = this;

this.image = new Image();
this.imageLoaded = false;
this.points = [new Point(x,y)];
this.x = x;
this.y = y;

this.image.src = imageSource;

this.image.addEventListener('load', function (e) {
 self.setPolygonPoints();
 self.imageLoaded = true;

}, false);
}

(Continues)

5238.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.12 (Continued)

// Prototype..

ImageShape.prototype = new Polygon();

ImageShape.prototype.fill = function (context) { }; // Nothing to do

ImageShape.prototype.setPolygonPoints = function() {
this.points.push(new Point(this.x + this.image.width, this.y));
this.points.push(new Point(this.x + this.image.width,

this.y + this.image.height));
this.points.push(new Point(this.x, this.y + this.image.height));

};

ImageShape.prototype.drawImage = function (context) {
 context.drawImage(this.image, this.points[0].x, this.points[0].y);
};

ImageShape.prototype.stroke = function (context) {
var self = this;

if (this.imageLoaded) {
 context.drawImage(this.image,

this.points[0].x, this.points[0].y);
}

else {
this.image.addEventListener('load', function (e) {

 self.drawImage(context);
}, false);

}
};

Both ImageShape and SpriteShape are polygons that represent bounding boxes
around an image or sprite, respectively. Given an image source or a sprite, you
can create the corresponding ImageShape or SpriteShape and detect collisions
between those shapes.

Chapter 8 Collision Detection524

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.13 Sprite shapes

// Constructor..

var SpriteShape = function (sprite, x, y) {
this.sprite = sprite;
this.x = x;
this.y = y;

 sprite.left = x;
 sprite.top = y;

this.setPolygonPoints();
};

// Prototype...

SpriteShape.prototype = new Polygon();

SpriteShape.prototype.move = function (dx, dy) {
var point, x;
for(var i=0; i < this.points.length; ++i) {

 point = this.points[i];
 point.x += dx;
 point.y += dy;

}
this.sprite.left = this.points[0].x;
this.sprite.top = this.points[0].y;

};

SpriteShape.prototype.fill = function (context) { };

SpriteShape.prototype.setPolygonPoints = function() {
this.points.push(new Point(this.x, this.y));
this.points.push(new Point(this.x + this.sprite.width, this.y));
this.points.push(new Point(this.x + this.sprite.width,

this.y + this.sprite.height));
this.points.push(new Point(this.x, this.y + this.sprite.height));

};

SpriteShape.prototype.stroke = function (context) {
this.sprite.paint(context);

};

5258.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

8.4.2 Reacting to Collisions with the Minimum Translation Vector
Now that you can detect collisions among polygons, circles, images, and sprites,
you need to react to those collisions.

Typically, if each participant survives the collision, reacting to a collision involves
decoupling the colliding objects. Once decoupled, the formerly colliding
objects may bounce away from each other, stick to each other, or implement any
behavior that you desire. But the first step is typically decoupling the colliding
objects, and for that, we need the MTV.

8.4.2.1 The MTV
The MTV represents the shortest distance you can move a colliding object so that
it is no longer colliding. Figure 8.23 illustrates the MTV for two colliding polygons.

Figure 8.23 The minimum translation vector (MTV) for two colliding polygons

Example 8.14 shows a simple implementation of the MTV in JavaScript.

Chapter 8 Collision Detection526

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.14 Minimum translation vector

var MinimumTranslationVector = function (axis, overlap) {
this.axis = axis; // axis is a vector
this.overlap = overlap; // overlap is a scalar (single value)

};

The MinimumTranslationVector consists of an axis, which is a unit vector
indicating direction, and a value representing the overlap along that axis.

You can calculate the MTV as you are testing for separation on the SAT axes.
Recall the Shape.separationOnAxes() method from Example 8.5 on p. 505, that
iterated over axes, projected polygons onto those axes, and looked for separation
between projections, like this:

Shape.prototype = {
...

 separationOnAxes: function (axes, shape) {
for (var i=0; i < axes.length; ++i) {

 axis = axes[i];
 projection1 = shape.project(axis);
 projection2 = this.project(axis);

if (! projection1.overlaps(projection2)) {
return true;

}
}
return false;

}
...

}

The separationOnAxes() method returns a boolean indicating whether there was
any separation between projections on any of the specified axes.

Example 8.15 shows an alternative implementation of separationOnAxes() that
calculates the minimum translation vector. That method, which is renamed to
minimumTranslationVector, returns a MinimumTranslationVector object instead
of a boolean value.

Like separationOnAxes(), the minimumTranslationVector() method projects
the polygons onto each axis and checks for overlap. The difference is that
minimumTranslationVector() keeps tabs on the axis with the smallest overlap.

5278.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.15 Shape.minimumTranslationVector(axes, shape)

Shape.prototype = {
...
 minimumTranslationVector: function (axes, shape) {

var minimumOverlap = 100000,
 overlap,
 axisWithSmallestOverlap;

for (var i=0; i < axes.length; ++i) {
 axis = axes[i];
 projection1 = shape.project(axis);
 projection2 = this.project(axis);
 overlap = projection1.overlap(projection2);

if (overlap === 0) {
return { axis: undefined, // No collision

 overlap: 0
};

}
else {

if (overlap < minimumOverlap) {
 minimumOverlap = overlap;
 axisWithSmallestOverlap = axis;

}
}

}
return { axis: axisWithSmallestOverlap, // Collision

 overlap: minimumOverlap
};

}
...

}

If there is separation on any axis, there is no collision, and therefore no
minimum translation vector. So, minimumTranslationVector() returns a
MinimumTranslationVector object with an undefined axis and an overlap of zero.
Otherwise, minimumTranslationVector() returns a MinimumTranslationVector
object representing the axis with the smallest overlap.

Using Shape.minimumTranslationVector(), the methods listed in Example 8.16
can not only determine whether a collision occurred but can also obtain a reference
to the MTV.

Chapter 8 Collision Detection528

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.16 Detecting collisions and determining the MTV

// Collision between two polygons

function polygonCollidesWithPolygon (p1, p2) {
var mtv1 = p1.minimumTranslationVector(p1.getAxes(), p2),

 mtv2 = p1.minimumTranslationVector(p2.getAxes(), p2);

if (mtv1.overlap === 0 && mtv2.overlap === 0)
return { axis: undefined, overlap: 0 };

else
return mtv1.overlap < mtv2.overlap ? mtv1 : mtv2;

}

// Collision between two circles

function circleCollidesWithCircle (c1, c2) {
var distance = Math.sqrt(Math.pow(c2.x - c1.x, 2) +

 Math.pow(c2.y - c1.y, 2)),
 overlap = Math.abs(c1.radius + c2.radius) - distance;

return overlap < 0 ?
new MinimumTranslationVector(undefined, 0) :
new MinimumTranslationVector(undefined, overlap);

}

// Collision between a polygon and a circle

function polygonCollidesWithCircle (polygon, circle) {
var axes = polygon.getAxes(),

 closestPoint = getPolygonPointClosestToCircle(polygon, circle);

 axes.push(getCircleAxis(circle, polygon, closestPoint));

return polygon.minimumTranslationVector(axes, circle);
}

Example 8.17 shows refactored versions of the collidesWith() method for circles
and polygons. The refactored methods use the minimumTranslationVector()
function listed in Example 8.15.

Now that you know how to detect collisions and calculate a minimum translation
vector, let’s see how to put that vector to good use. If you have two shapes that
have collided, you can decouple the shapes, given the MTV, as illustrated in
Example 8.18.

5298.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.17 collidesWith() refactored

// Circles..

Circle.prototype.collidesWith = function (shape) {
if (shape.radius === undefined) {

return polygonCollidesWithCircle(shape, this);
}
else {

return circleCollidesWithCircle(this, shape);
}

};

// Polygons...

Polygon.prototype.collidesWith = function (shape) {
if (shape.radius !== undefined) {

return polygonCollidesWithCircle(this, shape);
}
else {

return polygonCollidesWithPolygon(this, shape);
}

};

The separate() method listed in Example 8.18 works with polygons and circles.
Circles have an MTV with an undefined axis, as discussed in Section 8.4.1.5,
“Circles,” on p. 516. If that’s the case, the separate() method creates an axis along
the velocity unit vector.

Because position is based on velocity, using the velocity unit vector will move
the circle away from the collision. The MTV for that axis may not be the
minimum translation vector; however, it’s a good approximation, and it’s still a
translation vector, which will get us out of collision even if we have to move
a little bit further than necessary.

Separating objects that have collided is the most fundamental thing you can do
with the MTV. Let’s take a look at two other use cases, sticking objects together
and bouncing them off one another.

Chapter 8 Collision Detection530

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.18 Separating two colliding shapes

// Move the shape that's moving (shapeMoving) out of collision

function separate(shapeMoving, mtv) {
var dx,

 dy,
 velocityMagnitude,
 point;

if (mtv.axis === undefined) { // circle
 point = new Point();
 velocityMagnitude = Math.sqrt(Math.pow(velocity.x, 2) +
 Math.pow(velocity.y, 2));

 point.x = velocity.x / velocityMagnitude;
 point.y = velocity.y / velocityMagnitude;

 mtv.axis = new Vector(point);
}

 dy = mtv.axis.y * mtv.overlap;
 dx = mtv.axis.x * mtv.overlap

if ((dx < 0 && velocity.x < 0) || // Don't move in same direction
(dx > 0 && velocity.x > 0)) {

 dx = -dx;
}

if ((dy < 0 && velocity.y < 0) || // Don't move in same direction
(dy > 0 && velocity.y > 0)) {

 dy = -dy;
}

 shapeMoving.move(dx, dy);
}

8.4.2.2 Sticking
Figure 8.24 shows an application that contains circles and polygons. If you click
a shape, the application animates it, bouncing it off the sides of the canvas until
it collides with another shape.

5318.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

When a collision occurs, the application stops the moving shape, and one half
second later, moves the two colliding objects out of collision. Because the previ-
ously moving shape is no longer moving, the shapes appear to stick together, as
illustrated in the bottom picture in Figure 8.24.

Figure 8.24 Sticking with MTV

The JavaScript for the application shown in Figure 8.24 is listed in
Example 8.19. The application uses the window.requestNextAnimationFrame()
discussed in Section 5.1.3, “A Portable Animation Loop,” on p. 348 to perform
the animation, and it uses the shapes discussed in this chapter.

When the detectCollisions() function in Example 8.19 detects a collision, it
invokes stick(), passing the MTV returned from the shape’s collidesWith()
method.

The stick() function checks to see if the mtv.axis is undefined. If it is, then the
moving object is a circle, and the stick() function sets the MTV’s axis to
coincide with the circle’s velocity.

Subsequently, the stick() function calculates the necessary displacement in the
X and Y direction and moves the moving object out of collision 500 ms later.

Chapter 8 Collision Detection532

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.19 Sticking shapes with MTV

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 shapes = [],
 polygonPoints = [

[new Point(250, 150), new Point(250, 200),
new Point(300, 200)],

[new Point(100, 100), new Point(100, 125),
new Point(125, 125), new Point(125, 100)],

[new Point(400, 100), new Point(380, 150),
new Point(500, 150), new Point(520, 100)],

],

 polygonStrokeStyles = ['blue', 'yellow', 'red'],
 polygonFillStyles = ['rgba(255,255,0,0.7)',

'rgba(100,140,230,0.6)',
'rgba(255,255,255,0.8)'],

 shapeMoving = undefined,
 c1 = new Circle(150, 275, 20),
 c2 = new Circle(350, 350, 30),

 lastTime = undefined,
 velocity = { x: 350, y: 190 },
 lastVelocity = { x: 350, y: 190 },
 STICK_DELAY = 500,
 stuck = false;
 showInstructions = true;

// Functions..

function windowToCanvas(e) {
var x = e.x || e.clientX,

 y = e.y || e.clientY,
 bbox = canvas.getBoundingClientRect();

return { x: x - bbox.left * (canvas.width / bbox.width),
 y: y - bbox.top * (canvas.height / bbox.height)

};
};

function drawShapes() {
 shapes.forEach(function (shape) {
 shape.stroke(context);
 shape.fill(context);

});
}

(Continues)

5338.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.19 (Continued)

function stick(mtv) {
var dx,

 dy,
 velocityMagnitude,
 point;

if (mtv.axis === undefined) { // The moving object is a circle.
 point = new Point();
 velocityMagnitude = Math.sqrt(Math.pow(velocity.x, 2) +
 Math.pow(velocity.y, 2));

// Point the MTV axis in the direction of the circle's velocity.

 point.x = velocity.x / velocityMagnitude;
 point.y = velocity.y / velocityMagnitude;

 mtv.axis = new Vector(point);
}

// Calculate delta X and delta Y. The mtv.axis is a unit vector
// indicating direction, and the overlap is the magnitude of
// the translation vector.

 dx = mtv.axis.x * mtv.overlap;
 dy = mtv.axis.y * mtv.overlap;

// If deltas and velocity are in the same direction,
// turn deltas around.

if ((dx < 0 && velocity.x < 0) || (dx > 0 && velocity.x > 0))
 dx = -dx;

if ((dy < 0 && velocity.y < 0) || (dy > 0 && velocity.y > 0))
 dy = -dy;

// In STICK_DELAY (500) ms, move the moving shape out of collision

setTimeout(function () {
 shapeMoving.move(dx, dy);

}, STICK_DELAY);

// Reset pertinent variables

Chapter 8 Collision Detection534

Download from Join eBook (www.joinebook.com)

ptg7987094

 lastVelocity.x = velocity.x;
 lastVelocity.y = velocity.y;
 velocity.x = velocity.y = 0;

// Don't stick again before STICK_DELAY expires
 stuck = true;

}

function collisionDetected(mtv) {
return mtv.axis != undefined || mtv.overlap !== 0;

}

function detectCollisions() {
var textY = 30, bbox, mtv;

if (shapeMoving) {
 shapes.forEach(function (shape) {

if (shape !== shapeMoving) {
 mtv = shapeMoving.collidesWith(shape);

if (collisionDetected(mtv)) {
if (!stuck)

stick(mtv);
}

}
});

 bbox = shapeMoving.boundingBox();
if (bbox.left + bbox.width > canvas.width || bbox.left < 0) {

 velocity.x = -velocity.x;
}
if (bbox.top + bbox.height > canvas.height || bbox.top < 0) {

 velocity.y = -velocity.y;
} }

};

// Event handlers...

canvas.onmousedown = function (e) {
var location = windowToCanvas(e);

if (showInstructions)
 showInstructions = false;

 velocity.x = lastVelocity.x;
 velocity.y = lastVelocity.y;

(Continues)

5358.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.19 (Continued)

 shapeMoving = undefined;
 stuck = false;

 shapes.forEach(function (shape) {
if (shape.isPointInPath(context, location.x, location.y)) {

 shapeMoving = shape;
} });

};

// Animation..

function animate(time) {
var elapsedTime, deltaX;

if (lastTime === 0) {
if (time !== undefined)

 lastTime = time;

 window.requestNextAnimationFrame(animate);
return;

}

 context.clearRect(0, 0, canvas.width, canvas.height);

if (shapeMoving !== undefined) {
 elapsedTime = parseFloat(time - lastTime) / 1000;
 shapeMoving.move(velocity.x * elapsedTime,
 velocity.y * elapsedTime);

}

detectCollisions();
drawShapes();

 lastTime = time;

if (showInstructions) {
 context.fillStyle = 'cornflowerblue';
 context.font = '24px Arial';
 context.fillText('Click on a shape to animate it', 20, 40);

}
 window.requestNextAnimationFrame(animate);
};

// Initialization...

Chapter 8 Collision Detection536

Download from Join eBook (www.joinebook.com)

ptg7987094

for (var i=0; i < polygonPoints.length; ++i) {
var polygon = new Polygon(),

 points = polygonPoints[i];

 polygon.strokeStyle = polygonStrokeStyles[i];
 polygon.fillStyle = polygonFillStyles[i];

 points.forEach(function (point) {
 polygon.addPoint(point.x, point.y);

});

 shapes.push(polygon);
}

c1.fillStyle = 'rgba(200, 50, 50, 0.5)';

shapes.push(c1);
shapes.push(c2);

context.shadowColor = 'rgba(100,140,255,0.5)';
context.shadowBlur = 4;
context.shadowOffsetX = 2;
context.shadowOffsetY = 2;
context.font = '38px Arial';

window.requestNextAnimationFrame(animate);

8.4.2.3 Bouncing
Figure 8.25 shows an application containing several shapes. If you click a shape,
it will animate, bouncing off the sides of the canvas and the other shapes.

To bounce one shape off another, you need to reflect the incoming velocity about
the edge normal vector of the edge you are colliding with, as illustrated in
Figure 8.26.

To bounce one shape off the edge of another, you can use Equation 8.4, which
reflects a vector about an axis. In this case, the vector is the incoming velocity
vector, and the axis is the edge normal vector or the edge with which you are
colliding.

θoutgoing = 2 × (V ⋅ L) / (L ⋅ L) × L – V

Equation 8.4 Reflection of one vector (V) about another (L)

5378.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 8.25 Bouncing with MTV

Figure 8.26 Bouncing vectors

Chapter 8 Collision Detection538

Download from Join eBook (www.joinebook.com)

ptg7987094

The application shown in Figure 8.25 has much in common with the application
shown in Section 8.4.2.2, “Sticking,” on p. 531. So, Example 8.20 lists only the
code for the application that’s pertinent to bouncing one shape off another.
The bounce() method implements Equation 8.4.

Example 8.20 Bouncing with MTV

function detectCollisions() {
if (shapeMoving) {

handleShapeCollisions();
handleEdgeCollisions();

}
};

function handleShapeCollisions() {
var mtv;

 shapes.forEach(function (shape) {
if (shape !== shapeMoving) {

 mtv = shapeMoving.collidesWith(shape);
if (collisionDetected(mtv)) {

bounce(mtv, shapeMoving, shape);
}

}
});

}

function collisionDetected(mtv) {
return mtv.axis != undefined || mtv.overlap !== 0;

}

function separate(mtv) {
var dx, dy, velocityMagnitude, point;

if (mtv.axis === undefined) {
 point = new Point();
 velocityMagnitude = Math.sqrt(Math.pow(velocity.x, 2) +
 Math.pow(velocity.y, 2));

 point.x = velocity.x / velocityMagnitude;
 point.y = velocity.y / velocityMagnitude;

 mtv.axis = new Vector(point);
}

 dy = mtv.axis.y * mtv.overlap;
 dx = mtv.axis.x * mtv.overlap

(Continues)

5398.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 8.20 (Continued)

if ((dx < 0 && velocity.x < 0) ||
(dx > 0 && velocity.x > 0)) {

 dx = -dx;
}

if ((dy < 0 && velocity.y < 0) ||
(dy > 0 && velocity.y > 0)) {

 dy = -dy;
}

 shapeMoving.move(dx, dy);
}

function checkMTVAxisDirection(mtv, collider, collidee) {
var centroid1, centroid2, centroidVector, centroidUnitVector;

if (mtv.axis === undefined)
return;

 centroid1 = new Vector(collider.centroid()),
 centroid2 = new Vector(collidee.centroid()),
 centroidVector = centroid2.subtract(centroid1),
 centroidUnitVector = (new Vector(centroidVector)).normalize();

if (centroidUnitVector.dotProduct(mtv.axis) > 0) {
 mtv.axis.x = -mtv.axis.x;
 mtv.axis.y = -mtv.axis.y;

}
};

function bounce(mtv, collider, collidee) {
var dotProductRatio, vdotl, ldotl, point,

 velocityVector = new Vector(new Point(velocity.x, velocity.y)),
 velocityUnitVector = velocityVector.normalize(),
 velocityVectorMagnitude = velocityVector.getMagnitude(),
 perpendicular;

if (shapeMoving) {
checkMTVAxisDirection(mtv, collider, collidee)

 point = new Point();

if (mtv.axis !== undefined) {
 perpendicular = mtv.axis.perpendicular();

}
else {

 perpendicular = new Vector(new Point(-velocityUnitVector.y,
 velocityUnitVector.x));

}

Chapter 8 Collision Detection540

Download from Join eBook (www.joinebook.com)

ptg7987094

 vdotl = velocityUnitVector.dotProduct(perpendicular);
 ldotl = perpendicular.dotProduct(perpendicular);
 dotProductRatio = vdotl / ldotl;

 point.x = 2 * dotProductRatio * perpendicular.x -
 velocityUnitVector.x;

 point.y = 2 * dotProductRatio * perpendicular.y -
 velocityUnitVector.y;

separate(mtv);

 velocity.x = point.x * velocityVectorMagnitude;
 velocity.y = point.y * velocityVectorMagnitude;

}
}

8.5 Conclusion
Collision detection is a deep topic. Indeed, entire books are dedicated to the
subject. In this chapter, you have seen simple strategies for collision detection
that are easy to implement, including bounding boxes, bounding circles, and
intersecting rays.

However, most of this chapter is dedicated to implementing the separating axis
theorem (SAT), and the related minimum translation vector (MTV), which is an
industrial-strength collision detection implementation that should suffice for
nearly all of your collision detection needs.

In the next chapter, we use much of what we have covered in this chapter along
with material from the preceding chapters to implement Canvas-based games.

5418.5 Conclusion

Download from Join eBook (www.joinebook.com)

ptg7987094

This page intentionally left blank

Download from Join eBook (www.joinebook.com)

ptg7987094

Game development is the most fun you can have with a computer, but that doesn’t
mean it’s easy. You need to have a fundamental understanding of mathematics,
including algebra, trigonometry, and vectors, and you have to come to grips with
some pretty complicated topics, such as implementing animations and collision
detection. In the end, however, there’s nothing quite as satisfying for soft-
ware developers as being able to make the vision they originally had for a game
come to life on screen.

Fortunately, we’ve been through all of that—mathematics, implementing anima-
tions, collision detection, etc.—in previous chapters in this book. After all that
hard work, it’s time to have some fun implementing games.

This chapter is divided into three sections:

• A game engine
• The ungame
• Pinball

The first section discusses a simple game engine (approximately 450 lines of
JavaScript) that provides the fundamental tools you need to implement games,
such as support for time-based motion, pausing the game, high scores, etc. The
game engine is listed in its entirety in Example 9.9 on p. 561.

The second section discusses the ungame, the simplest of games that nonetheless
embodies most of the fundamental things that you need to implement, not includ-
ing the actual game itself. You can think of the ungame as a sort of Hello World
for games.

Finally, this chapter discusses an industrial-strength pinball game that uses the
game engine and many of the techniques from previous chapters.

9CHAPTER

Game Development

543
Download from Join eBook (www.joinebook.com)

ptg7987094

9.1 A Game Engine
The game engine discussed in this chapter has the following features:

• Implements an animation loop: start()
• Draws sprites: addSprite(), getSprite()
• Supports time-based motion: pixelsPerFrame()
• Invokes callbacks: startAnimate(), paintUnderSprites(), paintOver-

Sprites(), endAnimate()
• Pauses the game: togglePaused()
• Processes keystrokes: addKeyListener()
• Plays multitrack sound: canPlaySound(), playSound()
• Tracks frame rate: fps
• Tracks game time: gameTime
• Maintains high scores: setHighScore(), getHighScores(), clearHighScores()

The preceding list of functionality shows the corresponding properties and
methods in the GameEngine object. For example, you can add sprites to the game
engine with the addSprite() method, and you can obtain a reference to a sprite
with the getSprite() method.

Fundamentally, the game engine uses window.requestAnimationFrame() (via the
window.requestNextAnimationFrame() method discussed in Section 5.1.3, “A
Portable Animation Loop,” on p. 348) to implement a game loop. The game engine
provides callbacks into that game loop so that you can interject functionality:
when an animation frame starts, just before and after the game engine paints
sprites, and when the animation ends.

The game engine has one simple method, pixelsPerFrame(), which returns the
number of pixels an object should move for the current animation frame, given
that object’s velocity in pixels per second.

You can also access the current frame rate and the game time, which is the amount
of time the game has been running minus the amount of time game has been
paused. You pause and unpause the game with a togglePaused() method.

The game engine also provides fundamental support for high scores, key
processing, and sound.

Example 9.1 shows the general procedure for implementing a game with the
game engine: You create a game and some sprites, add sprites to the game,
implement appropriate animation callbacks, and start the game.

Chapter 9 Game Development544

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.1 Implementing a game with the game engine

// Create the game
var game = new Game('nameOfYourGame', 'canvasElementId'),

// Create some sprites, and add them to the
// game with game.addSprite()

 s1 = new Sprite(...),
 s2 = new Sprite(...); // s2 will be drawn on top of s1

game.addSprite(s1);
game.addSprite(s2);

// Implement animation callbacks

game.paintUnderSprites = function () {
drawBackground(); // Implement this
// Paint under sprites...

};

game.paintOverSprites = function () {
// Paint over sprites...

};

game.startAnimate = function () {
// Things to do at the beginning of the animation frame

};

game.endAnimate = function () {
// Things to do at the end of the animation frame

};

// Start the game
game.start();

When you create a Game object, you specify the game’s name and the identifier
of the canvas element in which the game will reside. The game engine uses the
game’s name to store high scores in local storage.

The following sections take a closer look at the game engine features.

9.1.1 The Game Loop
Here are the steps for the game loop:

1. If the game is paused, skip the following steps and invoke the game loop
again in 100 ms.

5459.1 A Game Engine

Download from Join eBook (www.joinebook.com)

ptg7987094

2. Update the frame rate.
3. Set the game time.
4. Clear the screen.
5. Invoke animation start callback.
6. Paint under sprites.
7. Update sprites.
8. Paint sprites.
9. Paint over sprites.
10. Invoke animation end callback.
11. Request the next animation frame.

You can pause and unpause a game with the game engine’s togglePaused()
method. Initially, games are not paused, so the first call to togglePaused() will
pause the game, and the next call will unpause the game.

If the game is paused, the game loop does nothing other than reschedule another
call to the game loop in 100 ms. That time span is considerably longer than 16 ms,
which equates to 60 frames per second and is the frame rate for many video
games. That means that the game engine reduces CPU usage when a game is
paused.

Many things, such as motion, depend on a game’s frame rate, so if the game is
not paused, the first thing the game loop does is update the frame rate and game
time. The game loop then clears the screen in preparation for the next animation
frame.

After clearing the screen, the game engine invokes the game’s startAnimate()
and paintUnderSprites() callbacks. The former takes care of housekeeping at
the start of every animation frame; for instance, many games will invoke collision
detection in their startAnimate() method. The paintUnderSprites() method
typically paints the background and perhaps other parts of the game’s world.

After giving the game an opportunity to paint underneath sprites, the game loop
paints all of the game’s visible sprites, and subsequently gives the game a chance
to paint over the sprites by invoking the game’s paintOverSprites() method.

Finally, the game loop invokes the game’s endAnimation() method and requests
the next animation frame with the polyfill method discussed in Section 5.1.3, “A
Portable Animation Loop,” on p. 348: window.requestNextAnimationFrame().

The code that implements the preceding steps is listed in Example 9.2.

Chapter 9 Game Development546

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.2 The game loop

var Game = function (gameName, canvasId) {
var canvas = document.getElementById(canvasId),

 self = this; // Used by key event handlers below

// General

this.context = canvas.getContext('2d');
this.sprites = [];
...

// Time

this.startTime = 0;
this.lastTime = 0;
this.gameTime = 0;
this.fps = 0;
this.STARTING_FPS = 60;

this.paused = false;
this.startedPauseAt = 0;
this.PAUSE_TIMEOUT = 100;
...

return this;
};

// Game methods...

Game.prototype = {
...

// Game loop...

 start: function () {
var self = this;

// The this variable is the game
this.startTime = getTimeNow(); // Record game's startTime

Starts the animation

 window.requestNextAnimationFrame(
function (time) {

// The this variable in this function is the window.

 self.animate.call(self, time); // self is the game
});

},
(Continues)

5479.1 A Game Engine

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.2 (Continued)

// Drives the game's animation. This method is called by the
// browser when it's time for the next animation frame.

 animate: function (time) {
var self = this;

if (this.paused) {
// In PAUSE_TIMEOUT (100) ms, call this method again to see
// if the game is still paused. There's no need to check
// more frequently.

setTimeout(function () {
 self.animate.call(self, time);

}, this.PAUSE_TIMEOUT);
}

else { // Game is not paused
this.tick(time); // Update fps, game time
this.clearScreen(); // Prepare for next frame

this.startAnimate(time); // Override as you wish
this.paintUnderSprites(); // Override as you wish

this.updateSprites(time); // Invoke sprite behaviors
this.paintSprites(time); // Paint sprites in the canvas

this.paintOverSprites(); // Override as you wish
this.endAnimate(); // Override as you wish

// Call this method again when it's time for
// the next animation frame

 window.requestNextAnimationFrame(
function (time) {

 self.animate.call(self, time);
});

}
},

// Update the frame rate, game time, and the last time the
// application drew an animation frame.

 tick: function (time) {
this.updateFrameRate(time);
this.gameTime = (getTimeNow()) - this.startTime;
this.lastTime = time;

},

Chapter 9 Game Development548

Download from Join eBook (www.joinebook.com)

ptg7987094

// Update the frame rate, based on the amount of time it took
// for the last animation frame only.

 updateFrameRate: function (time) {
if (this.lastTime === 0) this.fps = this.STARTING_FPS;
else this.fps = 1000 / (time - this.lastTime);

},

// Clear the entire canvas.

 clearScreen: function () {
this.context.clearRect(0, 0,

this.context.canvas.width, this.context.canvas.height);
},

// Update all sprites. The sprite update() method invokes all
// of a sprite's behaviors.

 updateSprites: function (time) {
for(var i=0; i < this.sprites.length; ++i) {

var sprite = this.sprites[i];
 sprite.update(this.context, time);

};
},

// Paint all visible sprites.

 paintSprites: function (time) {
for(var i=0; i < this.sprites.length; ++i) {

var sprite = this.sprites[i];
if (sprite.visible)

 sprite.paint(this.context);
};

},
...

// Override the following methods as desired. animate() calls
// the methods in the order they are listed.

 startAnimate: function (time) { },
 paintUnderSprites: function () { },
 paintOverSprites: function () { },
 endAnimate: function () { }
};

5499.1 A Game Engine

Download from Join eBook (www.joinebook.com)

ptg7987094

You create and start a game like this:

var game = new Game('gameName', 'canvasId');
...
game.start();

When you call the game engine’s start() method, the this variable in the start()
method is the game, which you would expect.

However, the this variable in the function that you pass to request-
NextAnimationFrame() is the window object, not the game. If you try to in-
voke the game engine’s animate() method in the function you pass to

Table 9.1 Game engine methods pertaining to the game loop

DescriptionMethod

Starts the game by setting the game start time and
requesting the first animation frame.

start()

Implements the game loop.animate(time)

Updates frame rate and game time, at the start of every
animation frame.

tick(time)

Updates the game’s current frame rate.updateFrameRate(time)

Uses context.clearRect() to clear the screen.clearScreen()

Updates all sprites.updateSprites(time)

Paints all visible sprites.paintSprites(time)

The game engine calls this method at the start of the
animation frame. This method does nothing by default:
left for games to implement.

startAnimate()

The game engine calls this method before sprites are
drawn. This method does nothing by default: left for
games to implement.

paintUnderSprites(time)

The game engine calls this method after sprites are
drawn. This method does nothing by default: left for
games to implement.

paintOverSprites(time)

The game engine calls this method after it paints the
current animation frame. This method does nothing
by default: left for games to implement.

endAnimate()

Chapter 9 Game Development550

Download from Join eBook (www.joinebook.com)

ptg7987094

requestNextAnimationFrame() with the this variable—this.animate(time)—you
will be trying to invoke the presumably nonexistent animate() method on
the window object.

The game engine’s start() method uses JavaScript’s built-in call() method
to ensure that the this variable in the function that start() passes to
requestNextAnimationFrame() refers to the game and not the window object.
When you call start(), the this variable is the game, so the start() method
stores that variable in a variable named self. The start() method subsequently
uses that self variable when it invokes call().

The game engine’s animate() method implements the 11 steps outlined at the
beginning of this section. Then animate() invokes requestNextAnimationFrame(),
using the technique used by start() to ensure that the this variable in the
animate() is the game and not the window object.

The methods implemented by the game engine that constitute the game loop are
listed in Table 9.1.

9.1.1.1 Pause
The game engine maintains a paused property that you can check to see
whether the game is currently paused. If it is, the game engine does not execute
the game loop, so nothing happens while the game engine’s paused property
is set.

Example 9.3 shows how the game engine pauses and unpauses a game.

When the ungame is paused, its animate() method calls setTimeout() to schedule
another call to animate() in approximately 100 ms. To occasionally check whether
the game is still paused, this use of setTimeout() is appropriate and simpler than
using requestNextAnimationFrame().

When togglePaused() pauses a game, it records the time, which it uses when
you subsequently unpause the game.

When togglePaused() restarts a paused game, it subtracts the amount of time
the game was paused from the game’s start time. That means the game picks up
exactly where it left off, instead of making a (potentially huge) leap forward in
time. Notice that the game engine’s startTime may not actually represent the time
that the game started; instead, the game engine uses the startTime property to
adjust game time after a pause. If, for some reason, you need to know the exact
time when your game started, you’ll have to keep track of that yourself.

5519.1 A Game Engine

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.3 Toggling paused state

var Game = function (gameName, canvasId) {
var canvas = document.getElementById(canvasId),

 self = this; // Used by key event handlers below
... this.startTime = 0; this.lastTime = 0;

this.paused = false;
this.startedPauseAt = 0;
this.PAUSE_TIMEOUT = 100;
...
return this;

};

// Game methods...

Game.prototype = {

 start: function () {
this.startTime = getTimeNow(); // Record game's startTime
...

 window.requestNextAnimationFrame(
function (time) {

 self.animate.call(self, time); // self is the game
});

},

 animate: function (time) {
var self = this;

if (this.paused) {
// After PAUSE_TIMEOUT (100) ms, call this method again
// to see if the game is still paused. There's no need to
// check more frequently.

setTimeout(function () {
 self.animate.call(self, time); // self is the game

}, this.PAUSE_TIMEOUT); // PAUSE_TIMEOUT is 100 ms
}
else { // Game is not paused

// Paint the next animation frame
...

 window.requestNextAnimationFrame(
function (time) {

 self.animate.call(self, time);
});

}
},

Chapter 9 Game Development552

Download from Join eBook (www.joinebook.com)

ptg7987094

 togglePaused: function () {
var now = getTimeNow();

this.paused = !this.paused;

if (this.paused) {
this.startedPauseAt = now;

}
else { // Not paused

// Adjust start time, so game starts where it left off when
// the user paused it.

this.startTime = this.startTime + now - this.startedPauseAt;
this.lastTime = now;

}
},

};

Now that you’ve seen how the game engine controls time to pause and unpause
a game, let’s see how it uses time to tell you how far to move an object for the
current animation frame.

9.1.1.2 Time-Based Motion
Section 5.6, “Time-Based Motion,” on p. 367 discussed the benefits and the imple-
mentation of time-based motion. The game engine implements time-based motion
with a simple but crucial method: pixelsPerFrame(), as listed in Example 9.4.

Example 9.4 Game engine support for time-based motion

pixelsPerFrame: function (time, velocity) {
// This method returns the amount of pixels an object should move
// for the current animation frame, given the current time and
// the object's velocity. Velocity is measured in pixels/second.
//
// Note: (pixels/second) * (second/frame) = pixels/second:

return velocity / game.fps;
},

You pass pixelsPerFrame() the current time and a velocity, specified in pixels
per second, and the method returns the number of pixels you should move an
object for the current frame to maintain that velocity.

You will typically use pixelsPerFrame() in your startAnimate() or endAnimate()
callbacks or in a sprite’s update() method.

5539.1 A Game Engine

Download from Join eBook (www.joinebook.com)

ptg7987094

9.1.2 Loading Images
Many games are image intensive, and most of those games load images when
the game starts. Image loading takes time, so it’s best to display feedback to the
user as the game loads images.

The game engine supports loading multiple images and keeps track of how many
images have been loaded at any given time. Example 9.5 shows the pertinent
code from the game engine that loads images. Games use the following three
methods to load images and track image-loading progress:

• queueImage(imageUrl): Places an image in the image loading queue.
• loadImages(): You call this method repeatedly, until it returns 100 (percent

of images processed).
• getImage(imageUrl): Returns an image. You should only call this method

after loadImages() returns 100 percent.

You call queueImage() for each image that you want to load, and then you subse-
quently call loadImages() repeatedly until it returns 100. You can use the values
returned by loadImages() to update the game’s user interface to reflect loading
progress, like this:

var game = new Game('gameName', 'canvasId');
...

game.queueImage('images/image1.png');
game.queueImage('images/image2.png');
...

interval = setInterval(function (e) {
 loadingPercentComplete = game.loadImages();

if (loadingPercentComplete === 100) {
clearInterval(interval);

// Done loading images, update user interface accordingly
}

 progressbar.draw(loadingPercentComplete);
}, 16);

Realize that some images may fail to load. You can check to see whether all images
loaded by looking at the imagesFailedToLoad property, which represents the
number of images that failed to load. However, regardless of whether some images
fail to load, loadImages() returns 100 (percent) when it’s done processing all the
images.

Chapter 9 Game Development554

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.5 Loading images

var getTimeNow = function () {
return +new Date();

};

var Game = function (gameName, canvasId) {
var canvas = document.getElementById(canvasId),
...

// Image loading

this.imageLoadingProgressCallback;
this.images = {};
this.imageUrls = [];
this.imagesLoaded = 0;
this.imagesFailedToLoad = 0;
this.imagesIndex = 0;
...

return this;
};

// Game methods...

Game.prototype = {
// Given a URL, return the associated image

 getImage: function (imageUrl) {
return this.images[imageUrl];

},

// This method is called by loadImage() when
// an image loads successfully.

 imageLoadedCallback: function (e) {
this.imagesLoaded++;

},

// This method is called by loadImage() when
// an image does not load successfully.

 imageLoadErrorCallback: function (e) {
this.imagesFailedToLoad++;

},

// Loads a particular image

(Continues)

5559.1 A Game Engine

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.5 (Continued)

 loadImage: function (imageUrl) {
var image = new Image(),

 self = this;

 image.src = imageUrl;

 image.addEventListener('load',
function (e) {

 self.imageLoadedCallback(e);
});

 image.addEventListener('error',
function (e) {

 self.imageLoadErrorCallback(e);
});

this.images[imageUrl] = image;
},

// You call this method repeatedly to load images that have been
// queued (by calling queueImage()). This method returns the
// percent of the game's images that have been processed. When
// the method returns 100, all images are loaded, and you can
// quit calling this method.

 loadImages: function () {

// If there are images left to load

if (this.imagesIndex < this.imageUrls.length) {
this.loadImage(this.imageUrls[this.imagesIndex]);
this.imagesIndex++;

}

// Return the percent complete

return (this.imagesLoaded + this.imagesFailedToLoad) /
this.imageUrls.length * 100;

},

// Call this method to add an image to the queue. The image
// will be loaded by loadImages().

 queueImage: function (imageUrl) {
this.imageUrls.push(imageUrl);

},
...

};

Chapter 9 Game Development556

Download from Join eBook (www.joinebook.com)

ptg7987094

Every time you call the game engine’s queueImage() method, the game engine
adds the image URL to an array. Every time you subsequently call loadImages(),
that method loads the next image in the array and returns the percent of
images that have been processed.

Notice that loadImage() uses the same technique as the game engine’s start()
and animate() methods to ensure that the this variables in the image load and
image error callbacks refer to the game and not the window object.

9.1.3 Multitrack Sound
Games typically play several sounds at once; for example, a game may play music
at the same time it produces sound effects, so the game engine implements support
for multitrack sound, as shown in Example 9.6.

You can use the canPlay...() methods to determine whether the browser can
play a particular sound format. You then use the playSound() method to play a
sound.

The Game constructor function creates ten Audio elements and adds them to an
array. When you call playSound(), the game engine uses the first available audio
track to play the specified sound.

The playSound() method takes an element identifier that must correspond to an
audio element. Given that element, the method plays its sound on the first
available sound channel.

Example 9.6 Sound support

var Game = function (gameName, canvasId) {
...

this.soundOn = true;
this.soundChannels = [];
this.audio = new Audio();
this.NUM_SOUND_CHANNELS = 10;

for (var i=0; i < this.NUM_SOUND_CHANNELS; ++i) {
var audio = new Audio();
this.soundChannels.push(audio);

}

...

return this;
};

(Continues)

5579.1 A Game Engine

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.6 (Continued)

Game.prototype = {

 canPlayOggVorbis: function () {
return "" != this.audio.canPlayType('audio/ogg; codecs="vorbis"');

},

 canPlayMp4: function () {
return "" != this.audio.canPlayType('audio/mp4');

},

 getAvailableSoundChannel: function () {
var audio;

for (var i=0; i < this.NUM_SOUND_CHANNELS; ++i) {
 audio = this.soundChannels[i];

if (audio.played && audio.played.length > 0) {
if (audio.ended)

return audio;
}
else {

if (!audio.ended)
return audio;

}
}
return undefined; // All tracks in use

},

 playSound: function (id) {
var track = this.getAvailableSoundChannel(),

 element = document.getElementById(id);

if (track && element) {
 track.src = element.src === '' ?
 element.currentSrc : element.src;
 track.load();
 track.play();

}
},

};

9.1.4 Keyboard Events
Many games require interaction with the keyboard, so the game engine supports
key listeners, as shown in Example 9.7.

You use addKeyListener() to add key listeners to your game. The object that you
pass to that method must have properties named key and listener that represent

Chapter 9 Game Development558

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.7 Key listeners and throttling events

var Game = function (gameName, canvasId) {
var canvas = document.getElementById(canvasId);
...
this.keyListeners = [];
...

};

Game.prototype = {

// Key listeners...

 addKeyListener: function (keyAndListener) {
 game.keyListeners.push(keyAndListener);

},

 findKeyListener: function (key) {
var listener = undefined;

 game.keyListeners.forEach(function (keyAndListener) {
var currentKey = keyAndListener.key;
if (currentKey === key) {

 listener = keyAndListener.listener;
}

});
return listener;

},

 keyPressed: function (e) {
var listener = undefined,

 key = undefined;

switch (e.keyCode) {
// Add more keys as needed
case 32: key = 'space'; break;
case 83: key = 's'; break;
case 80: key = 'p'; break;
case 37: key = 'left arrow'; break;
case 39: key = 'right arrow'; break;
case 38: key = 'up arrow'; break;
case 40: key = 'down arrow'; break;

}

 listener = game.findKeyListener(key);
if (listener) { // Listener is a function

listener(); // Invoke the listener function
}

},
};

5599.1 A Game Engine

Download from Join eBook (www.joinebook.com)

ptg7987094

the key you want to listen to, and a function you want the game engine to invoke
when that key is pressed, respectively.

By default, the game engine supports the keys you see listed in Example 9.7
(space, s, etc.). You can easily add support for other keys, see http://bit.ly/
tvU2NS for a list of JavaScript key codes.

9.1.5 High Scores
The game engine uses JavaScript Object Notation (JSON) and local storage to
maintain an array of high scores, as shown in Example 9.8.

Example 9.8 Game engine support for high scores

var Game = function (gameName, canvasId) {
var canvas = document.getElementById(canvasId);
...
this.HIGH_SCORES_SUFFIX = '_highscores';
...

};

Game.prototype = {

// High scores...

 getHighScores: function () {
var key = game.gameName + game.HIGH_SCORES_SUFFIX,

 highScoresString = localStorage[key];

if (highScoresString == undefined) {
 localStorage[key] = JSON.stringify([]);

}
return JSON.parse(localStorage[key]);

},

 setHighScore: function (highScore) {
var key = game.gameName + game.HIGH_SCORES_SUFFIX,

 highScoresString = localStorage[key];

 highScores.unshift(highScore);
 localStorage[key] = JSON.stringify(highScores);

},

 clearHighScores: function () {
 localStorage[game.gameName + game.HIGH_SCORES_SUFFIX] =
 JSON.stringify([]);

},
};

Chapter 9 Game Development560

Download from Join eBook (www.joinebook.com)

http://bit.ly/tvU2NS
http://bit.ly/tvU2NS

ptg7987094

The getHighScores() method appends _highscores to the game’s name. It then
uses the resulting string as a key to access the game’s high scores in local storage.

The setHighScore() method retrieves high scores from local storage, adds a high
score to the beginning of that list, and puts the resulting list back in local storage.

Finally, the clearHighScores() method sets the list of high scores in local
storage to an empty array.

The methods listed in Example 9.8 are summarized in Table 9.2.

Table 9.2 Game engine high score methods

DescriptionMethod

local storage.
Adds the high score to the game’s list of high scores insetHighScore(highScore)

Returns the game’s list of high scores from local
storage.

getHighScores()

Clears the game’s high scores in local storage.clearHighScores()

9.1.6 The Game Engine Listing
The game engine is listed in Example 9.9.

Example 9.9 Game engine (gameEngine.js)

var getTimeNow = function () {
return +new Date();

};

// Game...

// This game engine implements a game loop that draws sprites.
//
// The game engine also has support for:
//
// Time-based motion (game.pixelsPerFrame())
// Pause (game.togglePaused())
// High scores (game.[get][clear]HighScores(), game.setHighScore())
// Sound (game.canPlaySound(), game.playSound())
// Accessing frame rate (game.fps)
// Accessing game time (game.gameTime)
// Key processing (game.addKeyListener())
//

(Continues)

5619.1 A Game Engine

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.9 (Continued)

// The game engine's animate() method invokes the following methods,
// in the order listed:
//
// game.startAnimate()
// game.paintUnderSprites()
// game.paintOverSprites()
// game.endAnimate()
//
// Those four methods are implemented by the game engine to do nothing.
// You override those methods to make the game come alive.

var Game = function (gameName, canvasId) {
var canvas = document.getElementById(canvasId),

 self = this; // Used by key event handlers below

// General

this.context = canvas.getContext('2d');
this.gameName = gameName;
this.sprites = [];
this.keyListeners = [];

// High scores

this.HIGH_SCORES_SUFFIX = '_highscores';

// Image loading

this.imageLoadingProgressCallback;
this.images = {};
this.imageUrls = [];
this.imagesLoaded = 0;
this.imagesFailedToLoad = 0;
this.imagesIndex = 0;

// Time

this.startTime = 0;
this.lastTime = 0;
this.gameTime = 0;
this.fps = 0;
this.STARTING_FPS = 60;

this.paused = false;
this.startedPauseAt = 0;
this.PAUSE_TIMEOUT = 100;

Chapter 9 Game Development562

Download from Join eBook (www.joinebook.com)

ptg7987094

// Sound

this.soundOn = true;
this.soundChannels = [];
this.audio = new Audio();
this.NUM_SOUND_CHANNELS = 10;

for (var i=0; i < this.NUM_SOUND_CHANNELS; ++i) {
var audio = new Audio();
this.soundChannels.push(audio);

}

// The this object in the following event handlers is the
// DOM window, which is why the functions call
// self.keyPressed() instead of this.keyPressed(e).

 window.onkeypress = function (e) { self.keyPressed(e) };
 window.onkeydown = function (e) { self.keyPressed(e); };

return this;
};

// Game methods...

Game.prototype = {
// Given a URL, return the associated image

 getImage: function (imageUrl) {
return this.images[imageUrl];

},

// This method is called by loadImage() when
// an image loads successfully.

 imageLoadedCallback: function (e) {
this.imagesLoaded++;

},

// This method is called by loadImage() when
// an image does not load successfully.

 imageLoadErrorCallback: function (e) {
this.imagesFailedToLoad++;

},

// Loads a particular image

(Continues)

5639.1 A Game Engine

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.9 (Continued)

 loadImage: function (imageUrl) {
var image = new Image(),

 self = this;

 image.src = imageUrl;

 image.addEventListener('load',
function (e) {

 self.imageLoadedCallback(e);
});

 image.addEventListener('error',
function (e) {

 self.imageLoadErrorCallback(e);
});

this.images[imageUrl] = image;
},

// You call this method repeatedly to load images that have been
// queued (by calling queueImage()). This method returns the
// percent of the game's images that have been processed. When
// the method returns 100, all images are loaded, and you can
// quit calling this method.

 loadImages: function () {

// If there are images left to load

if (this.imagesIndex < this.imageUrls.length) {
this.loadImage(this.imageUrls[this.imagesIndex]);
this.imagesIndex++;

}

// Return the percent complete

return (this.imagesLoaded + this.imagesFailedToLoad) /
this.imageUrls.length * 100;

},

// Call this method to add an image to the queue. The image
// will be loaded by loadImages().

 queueImage: function (imageUrl) {
this.imageUrls.push(imageUrl);

},

Chapter 9 Game Development564

Download from Join eBook (www.joinebook.com)

ptg7987094

// Game loop...

// Starts the animation by calling window.requestNextAnimationFrame().
//
// window.requestNextAnimationFrame() is a polyfill method
// implemented in requestNextAnimationFrame.js. You pass
// requestNextAnimationFrame() a reference to a function
// that the browser calls when it's time to draw the next
// animation frame.
//
// When it's time to draw the next animation frame, the
// browser invokes the function that you pass to
// requestNextAnimationFrame(). Because that function is
// invoked by the browser (the window object, to be more exact),
// the this variable in that function will be the window object.
// We want the this variable to be the game instead, so we use
// JavaScript's built-in call() function to call the function,
// with the game specified as the this variable.

 start: function () {
var self = this;

// The this variable is the game
this.startTime = getTimeNow(); // Record game's startTime

 window.requestNextAnimationFrame(
function (time) {

// The this variable in this function is the window,
// not the game, which is why we do not simply
// do this: animate.call(time).

 self.animate.call(self, time); // self is the game
});

},

// Drives the game's animation. This method is called by the
// browser when it's time for the next animation frame.
//
// If the game is paused, animate() reschedules another call to
// animate() in PAUSE_TIMEOUT (100) ms.
//
// If the game is not paused, animate() paints the next animation
// frame and reschedules another call to animate() when it's time
// to draw the next animation frame.
//
// The implementations of this.startAnimate(),
// this.paintUnderSprites(), this.paintOverSprites(), and
// this.endAnimate() do nothing. You override those methods to
// create the animation frame.

(Continues)

5659.1 A Game Engine

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.9 (Continued)

 animate: function (time) {
var self = this;

if (this.paused) {
// In PAUSE_TIMEOUT (100) ms, call this method again to see
// if the game is still paused. There's no need to check
// more frequently.

setTimeout(function () {
 self.animate.call(self, time);

}, this.PAUSE_TIMEOUT);
}
else { // Game is not paused

this.tick(time); // Update fps, game time
this.clearScreen(); // Prepare for the next frame

this.startAnimate(time); // Override as you wish
this.paintUnderSprites(); // Override as you wish

this.updateSprites(time); // Invoke sprite behaviors
this.paintSprites(time); // Paint sprites in the canvas

this.paintOverSprites(); // Override as you wish
this.endAnimate(); // Override as you wish

// Keep the animation going.

 window.requestNextAnimationFrame(
function (time) {

 self.animate.call(self, time);
});

}
},

// Update the frame rate, game time, and the last time the
// application drew an animation frame.

 tick: function (time) {
this.updateFrameRate(time);
this.gameTime = (getTimeNow()) - this.startTime;
this.lastTime = time;

},

// Update the frame rate, based on the amount of time it took
// for the last animation frame only.

Chapter 9 Game Development566

Download from Join eBook (www.joinebook.com)

ptg7987094

 updateFrameRate: function (time) {
if (this.lastTime === 0) this.fps = this.STARTING_FPS;
else this.fps = 1000 / (time - this.lastTime);

},

// Clear the entire canvas.

 clearScreen: function () {
this.context.clearRect(0, 0,

this.context.canvas.width, this.context.canvas.height);
},

// Update all sprites. The sprite update() method invokes all
// of a sprite's behaviors.

 updateSprites: function (time) {
for(var i=0; i < this.sprites.length; ++i) {

var sprite = this.sprites[i];
 sprite.update(this.context, time);

};
},

// Paint all visible sprites.

 paintSprites: function (time) {
for(var i=0; i < this.sprites.length; ++i) {

var sprite = this.sprites[i];
if (sprite.visible)

 sprite.paint(this.context);
};

},

// Toggle the paused state of the game. If, after
// toggling, the paused state is unpaused, the
// application subtracts the time spent during
// the pause from the game's start time. That
// means the game picks up where it left off,
// without a potentially large jump in time.

 togglePaused: function () {
var now = getTimeNow();

this.paused = !this.paused;

if (this.paused) {
this.startedPauseAt = now;

}

(Continues)

5679.1 A Game Engine

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.9 (Continued)

else { // Not paused
// Adjust start time, so game starts where it left off when
// the user paused it.

this.startTime = this.startTime + now - this.startedPauseAt;
this.lastTime = now;

}
},

// Given a velocity of some object, calculate the number of pixels
// to move that object for the current frame.

 pixelsPerFrame: function (time, velocity) {
// Sprites move a certain amount of pixels per frame
// (pixels/frame). This methods returns the amount of
// pixels a sprite should move for a given frame. Sprite
// velocity is measured in pixels/second,
// so: (pixels/second) * (second/frame) = pixels/frame:

return velocity / this.fps; // pixels/frame
},

// High scores...

// Returns an array of high scores from local storage.

 getHighScores: function () {
var key = this.gameName + this.HIGH_SCORES_SUFFIX,

 highScoresString = localStorage[key];

if (highScoresString == undefined) {
 localStorage[key] = JSON.stringify([]);

}
return JSON.parse(localStorage[key]);

},

// Sets the high score in local storage.

 setHighScore: function (highScore) {
var key = this.gameName + this.HIGH_SCORES_SUFFIX,

 highScoresString = localStorage[key];

 highScores.unshift(highScore);
 localStorage[key] = JSON.stringify(highScores);

},

Chapter 9 Game Development568

Download from Join eBook (www.joinebook.com)

ptg7987094

// Removes the high scores from local storage.

 clearHighScores: function () {
 localStorage[this.gameName + this.HIGH_SCORES_SUFFIX] =
 JSON.stringify([]);

},

// Key listeners...

// Add a (key, listener) pair to the keyListeners array.

 addKeyListener: function (keyAndListener) {
this.keyListeners.push(keyAndListener);

},

// Given a key, return the associated listener.

 findKeyListener: function (key) {
var listener = undefined;

for(var i=0; i < this.keyListeners.length; ++i) {
var keyAndListener = this.keyListeners[i],

 currentKey = keyAndListener.key;
if (currentKey === key) {

 listener = keyAndListener.listener;
}

};
return listener;

},

// This method is the callback for key down and key press events.

 keyPressed: function (e) {
var listener = undefined,

 key = undefined;

switch (e.keyCode) {
// Add more keys as needed

case 32: key = 'space'; break;
case 68: key = 'd'; break;
case 75: key = 'k'; break;
case 83: key = 's'; break;
case 80: key = 'p'; break;
case 37: key = 'left arrow'; break;
case 39: key = 'right arrow'; break;
case 38: key = 'up arrow'; break;
case 40: key = 'down arrow'; break;

}

(Continues)

5699.1 A Game Engine

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.9 (Continued)

 listener = this.findKeyListener(key);
if (listener) { // Listener is a function

listener(); // Invoke the listener function
}

},

// Sound...

// Returns true if the browser can play sounds in ogg file format.

 canPlayOggVorbis: function () {
return "" != this.audio.canPlayType('audio/ogg; codecs="vorbis"');

},

// Returns true if the browser can play sounds in mp3 file format.

 canPlayMp3: function () {
return "" != this.audio.canPlayType('audio/mpeg');

},

// Returns the first sound available channel.

 getAvailableSoundChannel: function () {
var audio;

for (var i=0; i < this.NUM_SOUND_CHANNELS; ++i) {
 audio = this.soundChannels[i];

if (audio.played && audio.played.length > 0) {
if (audio.ended)

return audio;
}

else {
if (!audio.ended)

return audio;
}

}
return undefined; // All channels in use

},

// Given an identifier, play the associated sound.

Chapter 9 Game Development570

Download from Join eBook (www.joinebook.com)

ptg7987094

 playSound: function (id) {
var channel = this.getAvailableSoundChannel(),

 element = document.getElementById(id);

if (channel && element) {
 channel.src = element.src === '' ?
 element.currentSrc : element.src;
 channel.load();
 channel.play();

} },

// Sprites...

// Add a sprite to the game. The game engine will update the sprite
// and paint it (if it's visible) in the animate() method.

 addSprite: function (sprite) {
this.sprites.push(sprite);

},

// It's probably a good idea not to access sprites directly,
// because it's better to write generalized code that deals with
// all sprites, so this method should be used sparingly.

 getSprite: function (name) {
for(i in this.sprites) {

if (this.sprites[i].name === name)
return this.sprites[i];
}

return null;
},

// The following methods, which do nothing, are called by animate()
// in the order they are listed. Override them as you wish.

 startAnimate:
function (time) { },

 paintUnderSprites: function () { },
 paintOverSprites: function () { },
 endAnimate: function () { }
};

Now that you’ve seen how the game engine is implemented, let’s put it to use.

5719.1 A Game Engine

Download from Join eBook (www.joinebook.com)

ptg7987094

9.2 The Ungame
This section illustrates the use of the game engine discussed at the beginning of
this chapter with the implementation of an ungame, shown in Figure 9.1.

Figure 9.1 Playing the ungame

Chapter 9 Game Development572

Download from Join eBook (www.joinebook.com)

ptg7987094

Like the undead, who are not really dead, the ungame is not really a game. Its
purpose is not to entertain you, but to show you how to use the game engine to
implement your own games.

Playing the ungame consists of gazing at the scrolling background and clicking
the Lose a life button. The ungame begins with three lives, which are depicted
in the heads-up display in the game’s upper-right corner.

The ungame embodies many of the characteristics that you find in most games,
including

• A loading screen
• Asset management
• Sound
• A scrolling background with parallax
• Lives indicator
• High scores
• Key processing
• Pause and auto-pause
• Game-over sequence

Let’s start by looking at the ungame’s HTML.

9.2.1 The Ungame’s HTML
The ungame’s HTML is listed in Example 9.10. That HTML defines the
following DIVs:

• loadingToast

• scoreToast

• pausedToast

• gameOverToast

• highScoreToast

• loseLifeToast

A toast is something you present to a user, that, in more mundane terms, could
be described as a dialog box. The ungame has six of them, all listed above. When
the game starts, only the loadingToast is displayed; all the other toasts are
hidden by the ungame’s CSS (not listed in the book for brevity’s sake), which sets
the toasts’ display attribute to none.

5739.2 The Ungame

Download from Join eBook (www.joinebook.com)

ptg7987094

The ungame has two canvases, one for the game’s background and scrolling
clouds and another for the lives indicator in the game’s upper-right corner. The
ungame also has two audio elements that the browser loads upfront. Those sounds
are used by the ungame’s JavaScript.

Example 9.10 The ungame: HTML

<!DOCTYPE html>
<html>

<head>
<title>Ungame</title>
<link rel="stylesheet" type="text/css" href="ungame.css"/>

</head>

<body>
<!-- Game canvas.. -->

<canvas id="gameCanvas" width="550" height="750">
 Canvas not supported

</canvas>

<!-- Loading Toast.. -->

<div id='loadingToast' class='toast'>
The Ungame

<p>This game is an ungame, sort of like the undead:

 The undead are not really dead, and this is not really
 a game; however, it implements essential functionality
 pertient to most games.</p>

<p>The ungame comes with:</p>

This loading screen
Asset management
Music and Sounds
A scrolling background with parallax
Lives indicator (upper right corner)
Score indicator (appears when the ungame starts)
High score functionality
Key processing (including throttling)
Pause (press 'p' key once the ungame starts)
Auto-Pause (when the window loses focus)

<p>The ungame is implemented with a
 simple game engine (~200 lines of JavaScript).</p>

Chapter 9 Game Development574

Download from Join eBook (www.joinebook.com)

ptg7987094

<input type='button' id='loadButton' value='Load Game...'

autofocus='true'/>
Loading...

<div id='progressDiv'></div>
</div>

<!-- Scores... -->

<div id='scoreToast' class='toast'></div>

<!-- Lives.. -->

<canvas id='livesCanvas' width='90' height='40'>
 Canvas not supported

</canvas>

<!-- Paused... -->

<div id='pausedToast' class='toast'>
<p class='title' style='margin-left: 45px;'>Paused</p>
<p>Click anywhere to start</p>

</div>

<!-- Game Over.. -->

<div id='gameOverToast' class='toast'>
<p class='title'>Game Over</p>

<p><input id='clearHighScoresCheckbox' type='checkbox'/>

 clear high scores</p>
<input id='newGameButton' type='button' value='new game'

autofocus='true'/>
</div>

<!-- High scores.. -->

<p id='highScoreParagraph'></p>

<div id='highScoreToast' width='400' style='display: none'>
<p class='title'>High score!</p>

<p>What's your name?</p>

<input id='nameInput' type='text' autofocus='true'>
<input id='addMyScoreButton' type='button' value='add my score'

disabled='true'>

(Continues)

5759.2 The Ungame

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.10 (Continued)

<input id='newGameFromHighScoresButton' type='button'
value='new game'>

<p class='title' id='previousHighScoresTitle' display='none'>
 Previous High Scores

</p>

<!-- The following ordered list is populated
 by JavaScript in ungame.js -->

<ol id='highScoreList'>
</div>

<!-- Lose Life... -->

<div id='loseLifeToast' class='toast'>
<input id='loseLifeButton' type='button' value='Lose a life'

autofocus='true'/>
</div>

<!-- Sounds.. -->

<audio id='pop' preload='auto'>
<source src='sounds/pop.ogg' type='audio/ogg'>
<source src='sounds/pop.mp3' type='audio/mp3'>

</audio>

<audio id='whoosh' preload='auto'>
<source src='sounds/whoosh.ogg' type='audio/ogg'>
<source src='sounds/whoosh.mp3' type='audio/mp3'>

</audio>

<script src = 'requestNextAnimationFrame.js'></script>
<script src = 'progressbar.js'></script>
<script src = 'gameEngine.js'></script>
<script src = 'ungame.js'></script>

</body>
</html>

Next, let’s look at the ungame’s game loop.

9.2.2 The Ungame’s Game Loop
The ungame creates a Game instance and reimplements paintUnderSprites() and
paintOverSprites(). The ungame doesn’t have any sprites, but the game engine

Chapter 9 Game Development576

Download from Join eBook (www.joinebook.com)

ptg7987094

invokes paintUnderSprites() and paintOverSprites() anyway, as shown in
Example 9.11.

Example 9.11 Painting over and under sprites

var game = new Game('ungame', 'gameCanvas'),
...

game.paintOverSprites = function () {
paintNearCloud(game.context, 120, 20);
paintNearCloud(game.context, game.context.canvas.width+120, 20);

};

game.paintUnderSprites = function () {

// Background erased by game engine's clearScreen()

if (!gameOver && livesLeft === 0) {
over();

}
else {

paintSun(game.context);
paintFarCloud(game.context, 20, 20);
paintFarCloud(game.context, game.context.canvas.width+20, 20);

if (!gameOver) {
updateScore();

}

updateLivesDisplay();
}

};
...

game.start();

The paintUnderSprites() method paints the sun and far (larger) cloud, and up-
dates the score and lives display if the game is not over. paintOverSprites()
paints the near (smaller) cloud. Both methods paint their cloud twice at fixed lo-
cations. As Example 9.12 illustrates, the ungame translates the context to make
it appear as though the clouds are moving from left to right.

The scrollBackground() function, which the ungame calls for every animation
frame, translates the context by a small amount. When the translate offset becomes
greater than the width of the canvas, scrollBackground() resets the offset so it
appears as though the background is continuously scrolling.

5779.2 The Ungame

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.12 Background scrolling

var game = new Game('ungame', 'gameCanvas'),
...

// Scrolling the background...

translateDelta = 0.025,
translateOffset = 0,

scrollBackground = function () {
 translateOffset = (translateOffset + translateDelta) %
 game.canvas.width;
 game.context.translate(-translateOffset, 0);
},

// Paint Methods..

paintClouds = function (context) {
paintFarCloud(game.context, 0, 20); paintNearCloud(game.context,
game.context.canvas.width + 120, 20);

},

paintSun = function (context) {
...

},

paintFarCloud = function (context, x, y) {
 context.save();

scrollBackground();

// Paint far cloud with quadratic curves...

 context.restore();
},

paintNearCloud = function (context, x, y) {
 context.save();

scrollBackground();
scrollBackground();

// Paint near cloud with quadratic curves...

 context.restore();
},

Chapter 9 Game Development578

Download from Join eBook (www.joinebook.com)

ptg7987094

NOTE: The ungame and parallax

The ungame’s scrollBackground() function is invoked once by paintFar-
Cloud() and twice by paintNearCloud(). As a result, the near cloud moves
twice as fast as the far cloud, creating a mild parallax effect. See Section 5.8,
“Parallax,” on p. 377 for a discussion of a more pronounced parallax effect.

9.2.3 Loading the Ungame
When the ungame starts, it displays the loading screen shown in the upper-left
corner of Figure 9.2. The loading screen contains a short description of the ungame,
and a button that loads the game. When the user clicks the button, the ungame
replaces the button with a progress bar, and the ungame loads its resources.

The onclick handler for the Load Game button is listed in Example 9.13.

The ungame doesn’t use any images—it draws the sun and clouds
directly—however, for illustration, it loads 12 images and displays the progress
bar as they are loading. You can read more about loading images in Section 9.1.2,
“Loading Images,” on p. 554 and about progress bars in Section 10.2, “Progress
Bars,” on p. 625.

When the game engine is finished loading images, the onclick handler, listed in
Example 9.13, uses window.setTimeout() to progressively make elements of the
loading screen disappear. First, the progress bar disappears, followed by the text,
and finally the loading toast itself.

Example 9.13 Loading

loadButton.onclick = function (e) {
var interval,

 loadingPercentComplete = 0;

 e.preventDefault();

 progressDiv.style.display = 'block';
 loadButton.style.display = 'none';

 loadingMessage.style.display = 'block';
 progressDiv.appendChild(progressbar.domElement);

// The following images are not used. The ungame loads
// to illustrate loading images at the beginning of a game.

 game.queueImage('images/image1.png');

(Continues)

5799.2 The Ungame

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.13 (Continued)

 game.queueImage('images/image2.png');
 game.queueImage('images/image3.png');
 game.queueImage('images/image4.png');
 game.queueImage('images/image5.png');
 game.queueImage('images/image6.png');
 game.queueImage('images/image7.png');
 game.queueImage('images/image8.png');
 game.queueImage('images/image9.png');
 game.queueImage('images/image10.png');
 game.queueImage('images/image11.png');
 game.queueImage('images/image12.png');

 interval = setInterval(function (e) {
 loadingPercentComplete = game.loadImages();

if (loadingPercentComplete === 100) {
clearInterval(interval);
setTimeout(function (e) {

 loadingMessage.style.display = 'none';
 progressDiv.style.display = 'none';

setTimeout(function (e) {
 loadingToastBlurb.style.display = 'none';
 loadingToastTitle.style.display = 'none';

setTimeout(function (e) {
 loadingToast.style.display = 'none';
 loseLifeToast.style.display = 'block';
 game.playSound('sounds/pop');

setTimeout(function (e) {
 loading = false;
 score = 10;
 scoreToast.innerText = '10';
 scoreToast.style.display = 'inline';
 game.playSound('pop');

}, 1000);
}, 500);

}, 500);
}, 500);

}
 progressbar.draw(loadingPercentComplete);

}, 16);
};

// Start game...

game.start();

Chapter 9 Game Development580

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 9.2 Loading

9.2.4 Pausing
In Section 9.1.1.1, “Pause,” on p. 551 you saw how the game engine pauses and
unpauses the game. As Figure 9.3 illustrates, when you pause the ungame, it
displays a toast.

5819.2 The Ungame

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 9.3 Pausing

Example 9.14 shows the ungame’s togglePaused() method, which in turn invokes
the game engine’s method of the same name and displays the paused toast if the
game is paused. You can unpause the game by clicking the toast. You can also
press the P key to pause and unpause the game; see Section 9.2.5, “Key Listeners,”
on p. 584 for more information.

Chapter 9 Game Development582

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.14 Pausing

var game = new Game('ungame', 'gameCanvas'),
...

pausedToast = document.getElementById('pausedToast'),
...

// Paused...

togglePaused = function () {
 game.togglePaused();
 pausedToast.style.display = game.paused ? 'inline' : 'none';
},

pausedToast.onclick = function (e) {
 pausedToast.style.display = 'none';

togglePaused();
},

9.2.4.1 Auto-Pause
From Section 5.1.3, “A Portable Animation Loop,” on p. 348 you know that you
should use window.requestAnimationFrame() to drive your animations, in short,
because the browser knows better than you do when to draw the next animation
frame.

Additionally, window.requestAnimationFrame() typically clamps your animation’s
frame rate pretty severely if you open a new browser tab or move to another
window. Browsers implement that clamping to save resources, both CPU cycles
and battery life.

However, clamping the frame rate for your animations can have another unwanted
consequence: Slow frame rates can wreak havoc for collision detection algorithms,
and therefore it’s best if you can avoid the browser’s clamping behavior when
the user opens a new tab or navigates to another window.

You can’t change the browser’s clamping behavior, but you can change your
game’s behavior so that your game automatically pauses when the window loses
focus. When the window regains focus, you can automatically unpause the game
or provide a means for the user to do so.

Example 9.15 shows how the ungame implements auto-pause.

5839.2 The Ungame

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.15 Auto-pause

var game = new Game('ungame', 'gameCanvas'),
...
window.onblur = function windowOnBlur() {

if (!gameOver && !game.paused) {
togglePaused();

}
},

window.onfocus = function windowOnFocus() {
if (game.paused) {

togglePaused();
}

},

9.2.5 Key Listeners
In Section 9.1.4, “Keyboard Events,” on p. 558, you saw how the game engine
implements support for key listeners. The ungame uses that support to implement
a key listener for the P key, as shown in Example 9.16.

Example 9.16 Key Listeners

var game = new Game('ungame', 'gameCanvas'),
...

// Key listeners..

game.addKeyListener(
{

 key: 'p',
 listener: function () {
 game.togglePaused();

} }
);
...

The ungame toggles the paused state of the game when you press the P key.

Now that you’ve seen how the ungame uses the game engine during the game,
let’s look at how it uses the game engine when the game is over.

Chapter 9 Game Development584

Download from Join eBook (www.joinebook.com)

ptg7987094

9.2.6 Game Over and High Scores
Nearly all games implement high scores in the same manner. If you have the
highest score when the game ends, the game displays the current high scores and
gives you a chance to record yours.

Figure 9.4 Ungame high scores

5859.2 The Ungame

Download from Join eBook (www.joinebook.com)

ptg7987094

The ungame follows suit, as you can see from the screenshot in the upper-left
corner of Figure 9.4, which shows how the ungame implements a high score
heads-up display.

The bottom screenshot in Figure 9.4 shows the Game Over toast that the ungame
displays when the game ends and you have not achieved the high score. Unlike
most games, the ungame lets you clear the current high score list when you start
a new game.

Figure 9.5 shows the names of the pertinent HTML elements for the high score
heads-up display. Those names are used by the code in Example 9.17, which
illustrates how the ungame implements high scores.

Figure 9.5 Heads-up display

Notice that the code in Example 9.17 is all about the user interface. The underlying
grunt work of maintaining high scores in local storage is implemented by the
game engine, as discussed in Section 9.1.5, “High Scores,” on p. 560.

Chapter 9 Game Development586

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.17 High scores

var game = new Game('ungame', 'gameCanvas'),
...

 score = 0,
 lastScore = 0,
 lastScoreUpdate = undefined,

// High score..

 HIGH_SCORES_DISPLAYED = 10,

 highScoreToast = document.getElementById('highScoreToast'),
 highScoreParagraph = document.getElementById('highScoreParagraph'),
 highScoreList = document.getElementById('highScoreList'),
 nameInput = document.getElementById('nameInput'),
 addMyScoreButton = document.getElementById('addMyScoreButton'),
 newGameButton = document.getElementById('newGameButton'),

 previousHighScoresTitle =
 document.getElementById('previousHighScoresTitle'),

 newGameFromHighScoresButton =
 document.getElementById('newGameFromHighScoresButton'),

 clearHighScoresCheckbox =
 document.getElementById('clearHighScoresCheckbox'),

// Game over...

 gameOverToast = document.getElementById('gameOverToast'),
 gameOver = false,

// Game over...

 over = function () {
var highScore;

 highScores = game.getHighScores();

if (highScores.length == 0 || score > highScores[0].score) {
showHighScores();
}

else {
 gameOverToast.style.display = 'inline';

}
 gameOver = true;
 lastScore = score;
 score = 0;

};

(Continues)

5879.2 The Ungame

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.17 (Continued)

// High scores...

// Change game display to show high scores when
// player bests the high score.

 showHighScores = function () {
 highScoreParagraph.style.display = 'inline';
 highScoreParagraph.innerText = score;
 highScoreToast.style.display = 'inline';

updateHighScoreList();
};

// The game shows the list of high scores in
// an ordered list. This method creates that
// list element and populates it with the
// current high scores.

 updateHighScoreList = function () {
var el,

 highScores = game.getHighScores(),
 length = highScores.length,
 highScore,
 listParent = highScoreList.parentNode;

 listParent.removeChild(highScoreList);
 highScoreList = document.createElement('ol');
 highScoreList.id = 'highScoreList'; // So CSS takes effect
 listParent.appendChild(highScoreList);

if (length > 0) {
 previousHighScoresTitle.style.display = 'block';

 length = length > 10 ? 10 : length;

for (var i=0; i < length; ++i) {

 highScore = highScores[i];
 el = document.createElement('li');
 el.innerText = highScore.score +

' by ' + highScore.name;
 highScoreList.appendChild(el);

}
}

else {
 previousHighScoresTitle.style.display = 'none';

} }

Chapter 9 Game Development588

Download from Join eBook (www.joinebook.com)

ptg7987094

Now that you’ve seen how to implement a simple but capable game engine
and how to put that game engine to use for a minimal game, let’s take a look at
a more industrial-strength game.

9.3 A Pinball Game
We end this chapter with a pinball game, shown in Figure 9.6, that uses the game
engine discussed at the beginning of this chapter.

Figure 9.6 Poker pinball

5899.3 A Pinball Game

Download from Join eBook (www.joinebook.com)

ptg7987094

Pinball games are challenging to implement because developers must

• Model gravity and friction for realistic ball motion
• Implement flipper motion, which is nonlinear
• Detect collisions, sometimes at high speed, between the ball and other objects
• Detect collisions between the ball and flippers, both of which may be moving

at the same time
• Detect, and react properly to, collisions between the ball and the concave

dome at the top of the game

The preceding list, which is formidable enough by itself, does not include any of
the usual aspects of a game, such as loading resources, handling keystrokes,
or implementing high scores. Fortunately, we have the ungame, discussed in
Section 9.2, “The Ungame,” on p. 572 and upon which the pinball game is based,
that handles all those mundane details for us so we can get down to the business
of implementing pinball.

Besides standing on the shoulders of the ungame and the underlying game engine,
the pinball game uses a good deal of what we covered in Chapters 4–8.

Let’s start by taking a look at the pinball game’s game loop.

NOTE: The pinball game’s source

The pinball game’s implementation is rather lengthy, at just under 1500 lines of
code. Because it would span approximately 30 pages, the full listing of the pinball
game is omitted from this book. The sections that follow discuss crucial aspects
of the game’s implementation and show the corresponding code only for those
aspects. You can download the pinball game in its entirety, along with all the
other examples from this book, at corehtml5canvas.com.

9.3.1 The Game Loop
Example 9.18 lists the pertinent code for the pinball game’s game loop.

Recall from the discussion of the game engine in Section 9.1, “A Game Engine,”
on p. 544 that the game engine implements a game loop, with four callbacks that
give you a chance to interject functionality into the loop:

• startAnimate()

• paintUnderSprites()

• paintOverSprites()

• endAnimate()

Chapter 9 Game Development590

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.18 The pinball game loop

var game = new Game('pinball', 'gameCanvas'),
... // Declarations omitted for brevity

game.startAnimate = function () {
var collisionOccurred;

if (loading || game.paused || launching)
return;

if (!gameOver && livesLeft === 0) {
over();
return;

}

if (ballOutOfPlay) {
 ballOutOfPlay = false;

prepareForLaunch();
brieflyShowTryAgainImage(2000);

 livesLeft--;
return;

}

adjustRightFlipperCollisionPolygon();
adjustLeftFlipperCollisionPolygon();

 collisionOccurred = detectCollisions();

if (!collisionOccurred && applyGravityAndFriction) {
applyFrictionAndGravity(); // Modifies ball velocity

}
};

game.paintUnderSprites = function () {
if (loading)

return;

updateLeftFlipper();
updateRightFlipper();

if (showPolygonsOnly) {
drawCollisionShapes();

}
else {

if (!showingHighScores) {
 game.context.drawImage(backgroundImage,0,0);

drawLitBumper();

(Continues)

5919.3 A Pinball Game

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.18 (Continued)

if (showTryAgain) {
brieflyShowTryAgainImage(2000); // Show image for 2 seconds

}

paintLeftFlipper();
paintRightFlipper();

for (var i=0; i < livesLeft-1; ++i) {
drawExtraBall(i);

}
}

}
};

The preceding methods are listed in the order that they are invoked by the game
engine. The pinball game implements two of those methods: startAnimate()
and paintUnderSprites().

The startAnimate() method, which the game engine invokes when it starts a
new animation frame, does nothing if the game is over, loading, paused, or
launching the ball. Otherwise, the method checks to see if the ball is out of play
and reacts accordingly.

Subsequently, startAnimate() adjusts each flipper’s collision polygon (when
flippers are in motion) and invokes the detectCollisions() method, which de-
tects, and reacts to, collisions. Finally, the method applies friction and gravity if
no collisions occurred and gravity and friction are currently being applied
(gravity and friction are turned off while the ball is being launched). See Sec-
tion 9.3.3, “Gravity and Friction,” on p. 594 and Section 9.3.6, “Collision Detection,”
on p. 601 for more information about how the pinball game implements friction
and gravity, and detects collisions, respectively.

The pinball game’s paintUnderSprites() method paints the background and
extra balls, and, when the ball has collided with a bumper, the method lights up
the bumper.

The paintUnderSprites() method also updates and paints both flippers. The
updateLeftFlipper() and updateRightFlipper() methods adjust the flipper’s
angle when the flippers are in motion.

Finally, notice that the startAnimate() method invokes a method named
brieflyShowTryAgainImage() if the corresponding showTryAgain property is
true. The brieflyShowTryAgainImage() method shows the Try Again image
when the ball goes out of play, as illustrated in Figure 9.7.

Chapter 9 Game Development592

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 9.7 Try again

9.3.2 The Ball
The pinball game only has two sprites: the ball and the actuator used to launch
the ball. The ball’s implementation is listed in Example 9.19.

Example 9.19 The ball

var game = new Game('pinball', 'gameCanvas'),
... // Declarations omitted for brevity

 lastBallPosition = new Point(),

 ballMover = {
 execute: function (sprite, context, time) {

if (!game.paused && !loading) {
 lastBallPosition.x = sprite.left;
 lastBallPosition.y = sprite.top;

if (!launching && sprite.left < ACTUATOR_LEFT &&
(sprite.top > FLIPPER_BOTTOM || sprite.top < 0)) {

 ballOutOfPlay = true;
}

 sprite.left += game.pixelsPerFrame(time, sprite.velocityX);
 sprite.top += game.pixelsPerFrame(time, sprite.velocityY);

}
},

},

 ballSprite = new Sprite('ball',
new ImagePainter('images/ball.png'),
[ballMover]),

...

5939.3 A Pinball Game

Download from Join eBook (www.joinebook.com)

ptg7987094

The ball sprite is created with an image painter, which is responsible for
painting the image corresponding to the URL that you pass to its constructor. See
Chapter 6 for more information about sprites and image painters.

The most interesting aspect of the ball is its behavior, which is implemented
by the ballMover object. The ballMover’s execute() method records the current
ball position and then moves the ball. The game uses the lastBallPosition to
create a displacement vector for collision detection.

Notice that ballMover.execute() uses the game engine’s pixelsPerFrame()
method to calculate the number of pixels to move the ball in the X and Y directions.
If the ball is out of play, the ball mover sets the game’s ballOutOfPlay property
to true, and the game subsequently places the ball on the launcher the next time
startAnimate() is called by the game engine.

Also notice that the ball mover does not take gravity or friction into account when
it moves the ball. That’s left up to the applyFrictionAndGravity() method, which
we look at next.

9.3.3 Gravity and Friction
Recall from Section 9.3.1, “The Game Loop,” on p. 590 that the pinball
game’s startAnimate() method, which is invoked by the game engine
at the start of every animation frame, applies gravity and friction by invoking
the applyFrictionAndGravity() method, like this:

if (!collisionOccurred && applyGravityAndFriction) {
applyFrictionAndGravity(parseFloat(time - game.lastTime));

}

The startAnimate() method passes the elapsed time, in milliseconds, for the last
animation frame, to applyFrictionAndGravity(), which is listed in Example 9.20.

Example 9.20 Gravity and friction

applyFrictionAndGravity = function (time) {
var lastElapsedTime = time / 1000,

 gravityVelocityIncrease = GRAVITY * seconds * 0.5;

if (Math.abs(ballSprite.velocityX) > MIN_BALL_VELOCITY) {
 ballSprite.velocityX *= Math.pow(0.2, lastElapsedTime);

}

 ballSprite.velocityY += gravityVelocityIncrease *
parseFloat(game.context.canvas.height / GAME_HEIGHT_IN_METERS);

},

Chapter 9 Game Development594

Download from Join eBook (www.joinebook.com)

ptg7987094

Given the time, in milliseconds, that it took for the last animation frame to execute,
applyFrictionAndGravity() calculates the effects of friction and gravity.

To account for friction, applyFrictionAndGravity() reduces the ball’s velocity
at a rate of 50% per second. That rate was determined empirically, to approximate
the feel of a ball rolling on a table.

To account for gravity, applyFrictionAndGravity() increases the ball’s vertical
velocity. That increase in velocity is calculated by multiplying the force of gravity
(9.8 m/s/s) by the elapsed time of the last animation frame (in seconds), multiplied
by 0.1. Multiplying by 0.1 applies only one-tenth of the gravity force because the
slope of a pinball machine is much closer to horizontal than vertical, so gravity’s
role is greatly diminished.

Ball motion for the pinball game is relatively easy to implement. Flipper motion,
however, is another story. Let’s take a look at that next.

9.3.4 Flipper Motion
A pinball game’s flippers move in a nonlinear fashion. When a flipper rises, it
starts out quickly, but its velocity erodes as it rises; after all, in a real pinball game,
the flippers cannot be moving at full velocity and instantaneously come to a halt
when they reach their apex. Likewise, as flippers fall, they gain velocity as gravity
constantly pulls down on them.

You may recognize those two forms of nonlinear motion as ease out for rising
flippers and ease in for falling flippers. Those two forms of motion were discussed
in Section 7.2, “Warping Time,” on p. 450. In that chapter, we implemented ease-in
and ease-out motion with a simple animation timer to which you can attach a
time-warp function. Consequently, if you use the timer to control movement
(which you should—see Section 5.6, “Time-Based Motion,” on p. 367), using an
animation timer that warps time results in nonlinear movement.

Example 9.21 shows how the pinball game uses animation timers to control the
movement of the left flipper. The application creates two timers: one for raising
the flipper and one for lowering it. The former’s duration is 25 ms, whereas the
latter’s duration is 175 ms. That means that the flipper rises quickly and falls
slowly in comparison.

Notice the lines of code in Example 9.21 that set the flipper angle. The application
uses the timers to access the elapsed time that the flipper has been rising or falling,
thereby resulting in ease-out or ease-in motion, respectively.

Example 9.21 also refers to constants for the left flipper’s pivot and the pivot’s
offset, which are depicted in Figure 9.8.

5959.3 A Pinball Game

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.21 Flipper motion

var game = new Game('pinball', 'gameCanvas'),
... // Some declarations omitted for brevity

 FLIPPER_RISE_DURATION = 25, // Milliseconds
 FLIPPER_FALL_DURATION = 175, // Milliseconds
 MAX_FLIPPER_ANGLE = Math.PI/4, // 45 degrees

...

 leftFlipperRiseTimer =
new AnimationTimer(FLIPPER_RISE_DURATION,

 AnimationTimer.makeEaseOut(3)),
 leftFlipperFallTimer =

new AnimationTimer(FLIPPER_FALL_DURATION,
 AnimationTimer.makeEaseIn(3)),

 leftFlipperAngle = 0,
...

function updateLeftFlipper() {
if (leftFlipperRiseTimer.isRunning()) { // Flipper is rising

if (leftFlipperRiseTimer.isOver()) { // Finished rising
 leftFlipperRiseTimer.stop(); // Stop rise timer
 leftFlipperAngle = MAX_FLIPPER_ANGLE; // Set flipper angle
 leftFlipperFallTimer.start(); // Start falling

}
else { // Flipper is still rising

 leftFlipperAngle =
 MAX_FLIPPER_ANGLE/FLIPPER_RISE_DURATION *
 leftFlipperRiseTimer.getElapsedTime();

}
}
else if (leftFlipperFallTimer.isRunning()) { // Flipper is falling

if (leftFlipperFallTimer.isOver()) { // Finished falling
 leftFlipperFallTimer.stop(); // Stop fall timer
 leftFlipperAngle = 0; // Set flipper angle

}
else { // Flipper is still falling

 leftFlipperAngle = MAX_FLIPPER_ANGLE -
 MAX_FLIPPER_ANGLE/FLIPPER_FALL_DURATION *
 leftFlipperFallTimer.getElapsedTime();

}
}

};

Chapter 9 Game Development596

Download from Join eBook (www.joinebook.com)

ptg7987094

function paintLeftFlipper() {
if (leftFlipperRiseTimer.isRunning() ||

 leftFlipperFallTimer.isRunning()) {
 game.context.save();
 game.context.translate(LEFT_FLIPPER_PIVOT_X,
 LEFT_FLIPPER_PIVOT_Y);

 game.context.rotate(-leftFlipperAngle);

 game.context.drawImage(game.getImage('images/leftFlipper.png'),
-LEFT_FLIPPER_PIVOT_OFFSET_X,
-LEFT_FLIPPER_PIVOT_OFFSET_Y);

 game.context.restore();
}
else {

 game.context.drawImage(game.getImage('images/leftFlipper.png'),
 LEFT_FLIPPER_PIVOT_X - LEFT_FLIPPER_PIVOT_OFFSET_X,
 LEFT_FLIPPER_PIVOT_Y - LEFT_FLIPPER_PIVOT_OFFSET_Y);

}
};

Figure 9.8 Flipper pivots and offsets

9.3.5 Handling Keyboard Events
The pinball game handles keyboard events as follows.

• K activates right flipper and plays flipper sound.
• D activates left flipper and plays flipper sound.
• P toggles the game’s paused state.
• ↑ moves the actuator up.
• ↓ moves the actuator down.

5979.3 A Pinball Game

Download from Join eBook (www.joinebook.com)

ptg7987094

• Space launches the ball.

With the help of the game engine, the pinball game implements key listeners as
illustrated in Example 9.22.

Example 9.22 Key listeners

var game = new Game('pinball', 'gameCanvas'),
...

lastKeyListenerTime = 0, // For throttling

game.addKeyListener(
{

 key: 'p',
 listener: function () {

togglePaused();
}

}
);

game.addKeyListener(
{

 key: 'k',
 listener: function () {

if (!launching && !gameOver) {
 rightFlipperAngle = 0;
 rightFlipperRiseTimer.start();
 game.playSound('flipper');

}
}

}
);

game.addKeyListener(
{

 key: 'd',
 listener: function () {

if (!launching && !gameOver) {
 leftFlipperAngle = 0;
 leftFlipperRiseTimer.start();
 game.playSound('flipper');

}
}

}
);

Chapter 9 Game Development598

Download from Join eBook (www.joinebook.com)

ptg7987094

game.addKeyListener(
{

 key: 'up arrow',
 listener: function () {

var now;

if (!launching || launchStep === 1)
return;

 now = +new Date();

if (now - lastKeyListenerTime > 80) { // Throttle
 lastKeyListenerTime = now;

 launchStep--;

 ballSprite.top = BALL_LAUNCH_TOP + (launchStep-1) * 9;

 actuatorSprite.painter.image =
 launchImages[launchStep-1];

adjustActuatorPlatformShape();
}

}
}

);

game.addKeyListener(
{

 key: 'down arrow',
 listener: function () {

var now;

if (!launching || launchStep === LAUNCH_STEPS)
return;

 now = +new Date();

if (now - lastKeyListenerTime > 80) { // Throttle
 lastKeyListenerTime = now;
 launchStep++;
 actuatorSprite.painter.image = launchImages[launchStep-1];
 ballSprite.top = BALL_LAUNCH_TOP + (launchStep-1) * 9;

adjustActuatorPlatformShape();
}

}
}

);

(Continues)

5999.3 A Pinball Game

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.22 (Continued)

game.addKeyListener(
{

 key: 'space',
 listener: function () {

if (!launching && ballSprite.left === BALL_LAUNCH_LEFT &&
 ballSprite.velocityY === 0) {
 launching = true;
 ballSprite.velocityY = 0;
 applyGravityAndFriction = false;
 launchStep = 1;

}
if (launching) {

 ballSprite.velocityY = -300 * launchStep;
 launching = false;
 launchStep = 1;

setTimeout(function (e) {
 actuatorSprite.painter.image = launchImages[0];

adjustActuatorPlatformShape();
}, 50);

setTimeout(function (e) {
 applyGravityAndFriction = true;

adjustRightBoundaryAfterLaunch();
}, 2000);

}
}

}
);

The P key toggles the paused state of the game by invoking the pinball game’s
togglePaused() method. That method, in turn, invokes the game engine’s method
of the same name and displays a paused toast, as shown in Figure 9.9.

The D and K keys, which activate the left and right flippers respectively, set the
flipper angle to zero, start the flipper’s rise timer, and play the flipper sound
(thunk).

The ↑ and ↓ keys move the ball up and down, respectively, on the actuator. The
pinball game throttles those events, so the game handles them only once every
80 ms. That throttling controls the rate of ascent and descent for the actuator when
players hold down the ↑ or ↓ keys.

Chapter 9 Game Development600

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 9.9 Pausing the pinball game

Finally, when a player presses the Space key, the pinball game launches the ball
from the actuator. That key handler turns gravity and friction off for 50 ms fol-
lowing the launch so that the ball rolls smoothly along the edge of the dome. Two
seconds after the launch, the key handler turns gravity and friction back on.

9.3.6 Collision Detection
The pinball game implements a posteriori (i.e., after the fact) collision detection
primarily with the separating axis theorem (SAT), as discussed in Section 8.4,
“The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV),”
on p. 495. The SAT is great for slow-moving polygons that are relatively large,
but it’s not optimal for small, fast moving objects. Because of that deficiency, the
pinball game augments the SAT collision detection with ray casting to detect
collisions between the ball and moving flippers.

First, let’s look at how the pinball game uses the SAT to detect collisions between
the ball and everything except moving flippers.

9.3.6.1 SAT Collision Detection
Because the pinball game uses the separating axis theorem for collision detection,
it creates polygons for the objects with which the ball can collide, as shown in
Figure 9.10.

6019.3 A Pinball Game

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 9.10 Pinball collision polygons: before launching the ball (left) and after the ball has
been launched (right)

The pinball game provides a Polygons Only checkbox in the upper-right corner.
When that checkbox is checked, the pinball game draws only collision detection
polygons and the heads-up display.

When displaying collision detection polygons only, the pinball game is fully
functional. Although showing collision detection polygons is not very interesting
for the game’s players, it’s useful for developers because it lets them see exactly
how collisions take place.

When the Polygons Only checkbox is checked, the pinball game draws collision
shapes with the following method:

Chapter 9 Game Development602

Download from Join eBook (www.joinebook.com)

ptg7987094

function drawCollisionShapes() {
var centroid;

 shapes.forEach(function (shape) {
 shape.stroke(game.context);
 game.context.beginPath();
 centroid = shape.centroid();
 game.context.arc(centroid.x, centroid.y, 1.5, 0,
 Math.PI*2, false);
 game.context.stroke();

});
}

The preceding method invokes the shape’s stroke() method, which draws the
polygon. Then the method draws a tiny (1.5 pixel radius) circle to represent the
approximate location of the shape’s centroid.

To detect collisions, the pinball game first creates a circle or polygon for each
object with which the ball can collide, like this:

var game = new Game('pinball', 'gameCanvas'),
...
// Collision Detection...

 shapes = [],
...

 fiveHundredBumper = new Circle(256, 187, 40),
 oneHundredBumperRight = new Circle(395, 328, 40),
 oneHundredBumperLeft = new Circle(116, 328, 40),
 fiftyBumper = new Circle(255, 474, 40),

 leftBoundary = new Polygon(),
 rightBoundary = new Polygon(),

...

leftBoundary.points.push(new Point(45, 235));
leftBoundary.points.push(new Point(45, game.context.canvas.height));
leftBoundary.points.push(new Point(-450, game.context.canvas.height));
leftBoundary.points.push(new Point(-450, 235));
leftBoundary.points.push(new Point(45, 235));

rightBoundary.points.push(new Point(508, 235));
rightBoundary.points.push(new Point(508, game.context.canvas.height));
rightBoundary.points.push(new Point(508*2, game.context.canvas.height));
rightBoundary.points.push(new Point(508*2, 235))
rightBoundary.points.push(new Point(508, 235));
...
shapes.push(leftBoundary);
shapes.push(rightBoundary);
...

6039.3 A Pinball Game

Download from Join eBook (www.joinebook.com)

ptg7987094

For polygons, the application adds points representing each of the polygon’s
vertices. Then the application pushes each shape onto an array of shapes.

From Section 9.3.1, “The Game Loop,” on p. 590, recall the pinball game’s
startAnimate() method, which looks like this:

game.startAnimate = function () {
var collisionOccurred;
...

adjustRightFlipperCollisionPolygon();
adjustLeftFlipperCollisionPolygon();

 collisionOccurred = detectCollisions();

if (!collisionOccurred && applyGravityAndFriction) {
applyFrictionAndGravity(); // Modifies ball velocity

}
};

At the start of each animation frame, the pinball game’s startAnimate()
method adjusts the collision detection polygons for each flipper (in case they
are moving) and invokes the game’s detectCollisions() method, listed in
Example 9.23, which detects and reacts to collisions.

For every shape except the ball itself, the detectCollisions() method passes the
shape and the ball’s displacement vector to the ball shape’s collidesWith()
method, which uses the SAT to determine whether a collision occurred.

The ball shape’s collidesWith() method returns a MinimumTranslationVector
instance, which, as discussed in Section 8.4.2, “Reacting to Collisions with the
Minimum Translation Vector,” on p. 526, represents the minimum displacement
required to move the ball out of collision. The pinball game’s detectCollisions()
method passes that vector to the game’s bounce() method, which bounces the
ball off the shape with which it collided.

The SAT, which is implemented by the ball shape’s collidesWith() method,
easily detects collisions between the ball and the flippers, provided the flippers
are not in motion. However, because the ball may be moving rapidly (at a maxi-
mum of 400 pixels per second), and the flippers have a significant angular veloc-
ity when they’re moving, the SAT may miss collisions between the ball and
moving flippers. Therefore, the game’s detectCollisions() method invokes a
detectFlipperCollision() method for each flipper that uses ray casting to detect
collisions between the ball and the flipper. See Example 9.26 on p. 612 for more
information about the detectFlipperCollision() method.

Chapter 9 Game Development604

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.23 Detecting collisions with the SAT

function collisionDetected(mtv) {
return mtv.axis !== undefined && mtv.overlap !== 0;

};

function detectCollisions() {
var mtv, shape, displacement, position, lastPosition;

if (!launching && !loading && !game.paused) {
 ballShape.x = ballSprite.left;
 ballShape.y = ballSprite.top;
 ballShape.points = [];
 ballShape.setPolygonPoints();

 position = new Vector(new Point(ballSprite.left,
 ballSprite.top));

 lastPosition = new Vector(new Point(lastBallPosition.x,
 lastBallPosition.y));

 displacement = position.subtract(lastPosition);

for (var i=0; i < shapes.length; ++i) {
 shape = shapes[i];

if (shape !== ballShape) {
 mtv = ballShape.collidesWith(shape, displacement);

if (collisionDetected(mtv)) {
updateScore(shape);

setTimeout (function (e) {
 bumperLit = undefined;

}, 100);

if (shape === twoXBumperLeft ||
 shape === twoXBumperRight ||
 shape === fiveXBumperRight ||
 shape === fiveXBumperLeft ||
 shape === fiftyBumper ||
 shape === oneHundredBumperLeft ||
 shape === oneHundredBumperRight ||
 shape === fiveHundredBumper) {
 game.playSound('bumper');

bounce(mtv, shape, 4.5);
 bumperLit = shape;

return true;
}

(Continues)

6059.3 A Pinball Game

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.23 (Continued)

else if (shape === rightFlipperShape) {
if (rightFlipperAngle === 0) {

bounce(mtv, shape, 1 + rightFlipperAngle);
return true;

}
}
else if (shape === leftFlipperShape) {

if (leftFlipperAngle === 0) {
bounce(mtv, shape, 1 + leftFlipperAngle);
return true;

}
}
else if (shape === actuatorPlatformShape) {

bounce(mtv, shape, 0.2);
return true;

}
else {

bounce(mtv, shape, 0.96);
return true;

}
}

}
}

detectFlipperCollision(LEFT_FLIPPER);
detectFlipperCollision(RIGHT_FLIPPER);

return flipperCollisionDetected;
}
return false;

}

Our immediate concern, however, is the bounce() method, which bounces the
ball off the shape with which it has collided. That method, along with its support
methods, is listed in Example 9.24.

Given the ball’s velocity, the bounce() method creates a velocity unit vector that
it ultimately reflects around another vector that’s perpendicular to the MTV.
However, there are two such perpendicular vectors, so the game must determine
which of those vectors to use.

Chapter 9 Game Development606

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.24 Bouncing the ball

function clampBallVelocity() {
if (ballSprite.velocityX > MAX_BALL_VELOCITY)

 ballSprite.velocityX = MAX_BALL_VELOCITY;
else if (ballSprite.velocityX < -MAX_BALL_VELOCITY)

 ballSprite.velocityX = -MAX_BALL_VELOCITY;

if(ballSprite.velocityY > MAX_BALL_VELOCITY)
 ballSprite.velocityY = MAX_BALL_VELOCITY;

else if (ballSprite.velocityY < -MAX_BALL_VELOCITY)
 ballSprite.velocityY = -MAX_BALL_VELOCITY;
};

function separate(mtv) {
var dx, dy, velocityMagnitude, point, theta=0,

 velocityVector = new Vector(new Point(ballSprite.velocityX,
 ballSprite.velocityY)),
 velocityUnitVector = velocityVector.normalize();

if (mtv.axis.x === 0) {
 theta = Math.PI/2;

}
else {

 theta = Math.atan(mtv.axis.y / mtv.axis.x);
}

 dy = mtv.overlap * Math.sin(theta);
 dx = mtv.overlap * Math.cos(theta);

if (mtv.axis.x < 0 && dx > 0 || mtv.axis.x > 0 && dx < 0) dx = -dx;
if (mtv.axis.y < 0 && dy > 0 || mtv.axis.y > 0 && dy < 0) dy = -dy;

 ballSprite.left += dx;
 ballSprite.top += dy;
}

function checkMTVAxisDirection(mtv, shape) {
var flipOrNot,

 centroid1 = new Vector(ballShape.centroid()),
 centroid2 = new Vector(shape.centroid()),
 centroidVector = centroid2.subtract(centroid1),
 centroidUnitVector = (new Vector(centroidVector)).normalize();

if (centroidUnitVector.dotProduct(mtv.axis) > 0) {
 mtv.axis.x = -mtv.axis.x;
 mtv.axis.y = -mtv.axis.y;

}
}

(Continues)

6079.3 A Pinball Game

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.24 (Continued)

function bounce(mtv, shape, bounceCoefficient) {
var velocityVector = new Vector(new Point(ballSprite.velocityX,

 ballSprite.velocityY)),
 velocityUnitVector = velocityVector.normalize(),
 velocityVectorMagnitude = velocityVector.getMagnitude(),
 reflectAxis, point;

checkMTVAxisDirection(mtv, shape);

if (!loading && !game.paused) {
if (mtv.axis !== undefined) {

 reflectAxis = mtv.axis.perpendicular();
}

separate(mtv);

 point = velocityUnitVector.reflect(reflectAxis);

if (shape === leftFlipperShape || shape === rightFlipperShape) {
if (velocityVectorMagnitude < MIN_BALL_VELOCITY_OFF_FLIPPERS)

 velocityVectorMagnitude = MIN_BALL_VELOCITY_OFF_FLIPPERS;
}

 ballSprite.velocityX = point.x * velocityVectorMagnitude *
 bounceCoefficient;

 ballSprite.velocityY = point.y * velocityVectorMagnitude *
 bounceCoefficient;

clampBallVelocity();
}

}

Determining the vector around which to reflect the ball’s velocity is the responsi-
bility of checkMTVAxisDirection(), which uses the dot product of the MTV axis
and a vector from the ball’s centroid to the centroid of the shape with which the
ball collided. If the dot product between those two vectors is greater than zero,
then the angle between the two vectors is acute, meaning the two vectors are
pointing in roughly the same direction.

We want the ball to bounce away from the center of the centroid of the shape with
which the ball collided, so if the dot product is greater than zero, we turn the
MTV axis around so the ball will bounce away from the shape that it collided with.

Chapter 9 Game Development608

Download from Join eBook (www.joinebook.com)

ptg7987094

After deciding on an axis about which to reflect the ball’s velocity, the bounce()
method invokes the separate() method, which uses the MTV to separate the ball
from the shape with which it collided.

Next, the bounce() method sets the ball’s velocity for bouncing. However, the
method makes two adjustments to the ball’s velocity. First, if the ball has collided
with one of the flippers and is moving very slowly, the method sets the velocity
vector to a minimum value. That ensures that the ball will bounce lively off the
flippers, even when it is nearly at rest on top of a flipper. Finally, the method
clamps the ball’s velocity to a maximum value; otherwise, the ball could end up
moving so fast that you can hardly see it, and collision detection may fail.

9.3.6.2 The Dome
As Figure 9.11 illustrates, the pinball game implements collision detection with
the concave dome at the top of the game with triangles. The pinball game detects
collisions between the ball and those triangles.

The pinball game creates the dome triangles like this:

var DOME_SIDES = 15,
 DOME_X = 275,
 DOME_Y = 235,
 DOME_RADIUS = 232,
 domePolygons = createDomePolygons(DOME_X, DOME_Y,
 DOME_RADIUS, DOME_SIDES);

domePolygons.forEach(function (polygon) {
 shapes.push(polygon);
});

The createDomePolygons() method, listed in Example 9.25, creates the triangles,
and the game subsequently pushes each of those triangles on its array of collision
detection shapes.

Example 9.25 is straightforward: It loops over the 15 triangles, creates a polygon
for each triangle, and calculates each triangle’s vertices. It pushes the triangles
onto an array and returns that array.

One interesting aspect of the code is the midPointRadius, which the method uses
to calculate the triangle vertice farthest from the dome’s surface. That value has to
be large enough to push the centroids of each triangle away from the surface of
the dome. If you were to use a smaller value—say, radius*1.05 instead of
radius*1.5—the triangles would look like those in Figure 9.12.

6099.3 A Pinball Game

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 9.11 The pinball dome consists of triangles

Figure 9.12 Dome triangles that are too small for accurate collision detection

Because the pinball game implements collision detection a posteriori, meaning
it detects collisions after they have already occurred, it’s possible for the centroid
of the ball to move past the centroid of the triangle before the game detects the
collision. If that happens, the centroid vector used to calculate how the ball bounces
off triangles will point in the wrong direction, which means the ball’s velocity
will also point in the wrong direction—toward the triangle instead of away from
it—and the ball will stick to the surface of the dome. To guarantee that the ball
doesn’t stick to the dome, you must push those triangle centroids farther away
from the surface of the dome by using taller triangles, as illustrated in Figure 9.11.

Chapter 9 Game Development610

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 9.25 Creating dome polygons

function createDomePolygons(centerX, centerY, radius, sides) {
var polygon,

 polygons = [],
 startTheta = 0,
 endTheta,
 midPointTheta,
 thetaDelta = Math.PI/sides,
 midPointRadius = radius*1.5;

for (var i=0; i < sides; ++i) {
 polygon = new Polygon();

 endTheta = startTheta + thetaDelta;
 midPointTheta = startTheta + (endTheta - startTheta)/2;

 polygon.points.push(
new Point(centerX + radius * Math.cos(startTheta),

 centerY - radius * Math.sin(startTheta)));

 polygon.points.push(
new Point(centerX + midPointRadius * Math.cos(midPointTheta),

 centerY - midPointRadius * Math.sin(midPointTheta)));

 polygon.points.push(
new Point(centerX + radius * Math.cos(endTheta),

 centerY - radius * Math.sin(endTheta)));

 polygon.points.push(
new Point(centerX + radius * Math.cos(startTheta),

 centerY - radius * Math.sin(startTheta)));

 polygons.push(polygon);

 startTheta += thetaDelta;
}
return polygons;

}

9.3.6.3 Flipper Collision Detection
The pinball game uses the SAT to detect collisions between the ball and stationary
flippers. However, when the flippers are rising and the ball is moving at high
speed, the SAT will miss collisions between the ball and the rising flipper.

6119.3 A Pinball Game

Download from Join eBook (www.joinebook.com)

ptg7987094

Because the SAT is not optimal for small objects moving at high speed, the pinball
game augments SAT collision detection with ray casting, which was introduced
in Section 8.3, “Ray Casting,” on p. 490. Example 9.26 shows the implementation
of the pinball game’s detectFlipperCollision() method, which is invoked by
detectCollisions() when no collisions between the ball and stationary objects
were detected.

Example 9.26 Flipper collision detection

function detectFlipperCollision(flipper) {
var v1, v2, l1, l2, surface, ip, bbox = {}, riseTimer;

 bbox.top = 725;
 bbox.bottom = 850;

if (flipper === LEFT_FLIPPER) {
 v1 = new Vector(leftFlipperBaselineShape.points[0].rotate(
 LEFT_FLIPPER_ROTATION_POINT,
 leftFlipperAngle));

 v2 = new Vector(leftFlipperBaselineShape.points[1].rotate(
 LEFT_FLIPPER_ROTATION_POINT,
 leftFlipperAngle));

 bbox.left = 170;
 bbox.right = 265;
 riseTimer = leftFlipperRiseTimer;

}
else if (flipper === RIGHT_FLIPPER) {

 v1 = new Vector(rightFlipperBaselineShape.points[0].rotate(
 RIGHT_FLIPPER_ROTATION_POINT,
 rightFlipperAngle));

 v2 = new Vector(rightFlipperBaselineShape.points[1].rotate(
 RIGHT_FLIPPER_ROTATION_POINT,
 rightFlipperAngle));

 bbox.left = 245;
 bbox.right = 400;
 riseTimer = rightFlipperRiseTimer;

}

Chapter 9 Game Development612

Download from Join eBook (www.joinebook.com)

ptg7987094

if (! flipperCollisionDetected && riseTimer.isRunning() &&
 ballSprite.top + ballSprite.height > bbox.top &&
 ballSprite.left < bbox.right) {

 surface = v2.subtract(v1);
 l1 = new Line(new Point(ballSprite.left, ballSprite.top),
 lastBallPosition),
 l2 = new Line(new Point(v2.x, v2.y), new Point(v1.x, v1.y)),
 ip = l1.intersectionPoint(l2);

if (ip.x > bbox.left && ip.x < bbox.right) {
reflectVelocityAroundVector(surface.perpendicular());

 ballSprite.velocityX = ballSprite.velocityX * 3.5;
 ballSprite.velocityY = ballSprite.velocityY * 3.5;

if (ballSprite.velocityY > 0)
 ballSprite.velocityY = -ballSprite.velocityY;

if (flipper === LEFT_FLIPPER && ballSprite.velocityX < 0)
 ballSprite.velocityX = -ballSprite.velocityX;

else if (flipper === RIGHT_FLIPPER &&
 ballSprite.velocityX > 0)
 ballSprite.velocityX = -ballSprite.velocityX;

}
}

}

The detectFlipperCollision() method creates two vectors: one in the direction
from the origin to the first point on the surface of the flipper, and another from
the origin to the second point on the surface of the flipper. The method subse-
quently subtracts the first vector from the second to obtain a vector along the
flipper’s edge.

The method also creates two lines, one from the ball’s last position to the ball’s
current position, and another along the edge of the flipper. Then it checks to see
where those two lines intersect.

Finally, if the ball is sufficiently close to the flipper and the intersection of the two
lines is between the left and right edges of the flipper, a collision has occurred,
and the method adjusts the ball’s velocity accordingly.

6139.3 A Pinball Game

Download from Join eBook (www.joinebook.com)

ptg7987094

9.4 Conclusion
After some significant preparation in the previous chapters, this chapter showed
you how to implement games with HTML5 Canvas.

We began by discussing the implementation of a simple game engine, about
450 lines of JavaScript, that, despite its small size, implements most of the funda-
mentals you need to create a game, including a game loop and support for things
such as time-based motion, pausing the game, keeping track of high scores,
playing sounds, and implementing key listeners.

With a simple but capable game engine, we then turned our attention to the
ungame, a Hello World for games that shows you how to implement many aspects
of a game, without much of an actual game itself.

Finally, we discussed creating an industrial-strength pinball game. That game
tackled some advanced aspects of game design, such as implementing angular
motion, modeling gravity and friction, and using the SAT and ray casting for
collision detection.

Chapter 9 Game Development614

Download from Join eBook (www.joinebook.com)

ptg7987094

Throughout this book you’ve seen how to implement Canvas-based applications
with one or more canvas elements combined with standard HTML controls, such
as text inputs and buttons. Standard HTML controls are sufficient for many
Canvas-based applications; however, some applications require custom controls,
typically because either the controls are not available as standard HTML
controls or the control is not supported by all browsers. Another reason to imple-
ment your own controls is when you require the same look-and-feel across
HTML5-capable browsers.

In this chapter we discuss four controls, implemented from scratch:

• Rounded rectangle
• Progress bar
• Slider
• Image panner

The controls implemented in this chapter do the following:

• Reside in a global object named COREHTML5
• Draw into a canvas with a draw() method
• Put the canvas into a DIV and expose that DIV to the developer through the

domElement property
• Implement an appendTo(element) method that appends the control’s DOM

element to an HTML element and then resizes the DOM element and its canvas
to fit the enclosing element

10CHAPTER

Custom Controls

615
Download from Join eBook (www.joinebook.com)

ptg7987094

In general, it’s a good idea to keep newly created JavaScript objects out of the
global namespace. In accordance with that goal, the controls implemented in this
chapter all exist in a single object named COREHTML5. To instantiate an object you
must go through that COREHTML5 object; for example, you create a rounded
rectangle, which we discuss in Section 10.1, “Rounded Rectangles,” on p. 617,
like this:

roundedRectangle = new COREHTML5.RoundedRectangle(
'rgba(0,0,0,0.2)', 'darkgoldenrod', 90, 25);

The COREHTML5 object is known as a namespace. Namespaces reduce the possibil-
ity that someone else will implement a global object with the same name as one
of your objects, thus overriding your object. It’s quite likely that someone else
may implement a Slider object, for example, but it’s highly unlikely that someone
else would implement a COREHTML5.Slider object.

Because the controls discussed in this chapter are Canvas-based, they all create
a canvas element and subsequently draw the control into that canvas. You draw a
control with its draw() method, which takes an optional context argument. That
argument must be a Canvas context. If you specify the context argument, the
control’s draw() method draws the control into that context. If you do not specify
a context, the draw() method draws into its own context.

To use the controls implemented in this chapter, you create an instance of the
control and append the control’s DOM element to an HTML element in your
DOM tree. You can do that with the control’s appendTo(element) method. Controls
also expose their DOM element through the domElement property. That means
that you can programmatically control the DOM element’s style, like this:

roundedRectangle.domElement.style.position = 'absolute';
roundedRectangle.domElement.style.top = '50px';
roundedRectangle.domElement.style.left = '50px';

Or you could create a CSS class and programmatically assign that class to the
control’s DOM element:

roundedRectangle.domElement.className = 'customRectangle';

The preceding characteristics of the controls in this chapter are implemented
with the methods listed in Table 10.1. All the controls in this chapter implement
those methods.

Chapter 10 Custom Controls616

Download from Join eBook (www.joinebook.com)

ptg7987094

Table 10.1 Custom control methods

DescriptionMethod

Appends the control’s DOM element to the element
passed to the method and resizes both the control’s
DOM element and canvas to fit the enclosing DOM
element.

appendTo(element)

Creates the control’s DOM element.createDOMElement()

Creates the control’s canvas element.createCanvas()

Draws the control. The context is optional; if you
specify it, the control draws into that context, otherwise
it draws into its own context.

draw(context)

Erases the control’s canvas.erase()

Resizes the control’s canvas.resize(width, height)

NOTE: Exposing a DIV

The controls in this chapter create a canvas and a DIV, append the canvas to
the DIV, and expose the DIV to developers with a domElement property.
Developers can append that DIV to another element anywhere in the DOM tree.

Controls also implement an appendTo() method that appends the DIV to an
element and resizes both the DIV and the canvas to fit the enclosing element.

10.1 Rounded Rectangles
Rounded rectangles, illustrated by the application in Figure 10.1, are the simplest
of the four controls discussed in this chapter and are used by two other controls:
progress bar and slider.

The application shown in Figure 10.1 contains a single rounded rectangle and
two sliders that control the width and height of the rectangle. As you move the
sliders, the rectangle continuously changes its size to match the sliders.

The HTML for the application, which is listed in Example 10.1, creates the two
sliders and a DIV named roundedRectangleDiv.

61710.1 Rounded Rectangles

Download from Join eBook (www.joinebook.com)

ptg7987094Figure 10.1 Rounded rectangles

Example 10.1 The rounded rectangle application: HTML

<!DOCTYPE html>
<head>

<title>Rounded Rectangles</title>

<style>
 body {

background: bisque;
}

#roundedRectangleDiv {
position: absolute;
left: 50px;
top: 70px;
width: 450px;
height: 80px;

}

.range {
vertical-align: -5px;

}

Chapter 10 Custom Controls618

Download from Join eBook (www.joinebook.com)

ptg7987094

#controls {
color: blue;
margin-top: 20px;
margin-left: 65px;

}

#widthRangeDiv {
margin-right: 30px;
display: inline;

}
</style>

</head>

<body>
<div id='controls'>

<div id='widthRangeDiv'>
 Width: <input id='widthRange' class='range' type='range'

minimum='5' maximum='100'/>
</div>

 Height: <input id='heightRange' class='range' type='range'
minimum='5' maximum='100'/>

</div>

<div id='roundedRectangleDiv'></div>

<script src='roundedRectangle.js'></script>
<script src='example.js'></script>

</body>
</html>

The application’s JavaScript, which is listed in Example 10.2, creates a rounded
rectangle and appends the rectangle’s DIV to the roundedRectangleDiv with
the rounded rectangle’s appendTo() method. The application also adds a change
event handler to the sliders that resizes and redraws the rectangle when the user
changes a slider’s value.

The application creates the rounded rectangle with all four arguments to the
COREHTML5.RoundedRectangle constructor, which is listed in Example 10.3. The first
two arguments represent the stroke and fill styles that the control uses when it
draws the rounded rectangle. The last two arguments represent the size of the
rounded rectangle relative to the size of the DOM element in which it resides.
The values can range between 0 and 1.0 or between 0 and 100 and represent the
percent of the rectangle’s enclosing DOM element, in the horizontal and vertical
directions, taken up by the rounded rectangle. The application in Figure 10.1 sets
those arguments to match the initial values for the corresponding sliders. The
application’s original configuration is shown in Figure 10.2.

61910.1 Rounded Rectangles

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 10.2 The rounded rectangle application: JavaScript

var widthRange = document.getElementById('widthRange'),
 heightRange = document.getElementById('heightRange'),
 roundedRectangle = new COREHTML5.RoundedRectangle(

'rgba(0,0,0,0.2)', 'darkgoldenrod',
 widthRange.value, heightRange.value);

// Event handlers...

function resize() {
 roundedRectangle.horizontalSizePercent = widthRange.value/100;
 roundedRectangle.verticalSizePercent = heightRange.value/100;

 roundedRectangle.resize(roundedRectangle.domElement.offsetWidth,
 roundedRectangle.domElement.offsetHeight);

 roundedRectangle.erase();
 roundedRectangle.draw();

}

// Initialization...

widthRange.onchange = resize;
heightRange.onchange = resize;

roundedRectangle.appendTo(
 document.getElementById('roundedRectangleDiv'));

roundedRectangle.draw();

Example 10.3 The rounded rectangle object

var COREHTML5 = COREHTML5 || {};

// Constructor..

COREHTML5.RoundedRectangle = function(strokeStyle, fillStyle,
 horizontalSizePercent,
 verticalSizePercent) {

this.strokeStyle = strokeStyle ? strokeStyle : 'gray';
this.fillStyle = fillStyle ? fillStyle : 'skyblue';

 horizontalSizePercent = horizontalSizePercent || 100;
 verticalSizePercent = verticalSizePercent || 100;

this.SHADOW_COLOR = 'rgba(100,100,100,0.8)';
this.SHADOW_OFFSET_X = 3;
this.SHADOW_OFFSET_Y = 3; this.SHADOW_BLUR =
3;

Chapter 10 Custom Controls620

Download from Join eBook (www.joinebook.com)

ptg7987094

this.setSizePercents(horizontalSizePercent, verticalSizePercent);
this.createCanvas();
this.createDOMElement();

return this;
}

// Prototype..

COREHTML5.RoundedRectangle.prototype = {

// General functions ..

 createCanvas: function () {
var canvas = document.createElement('canvas');
this.context = canvas.getContext('2d'); return
canvas;

},

 createDOMElement: function () {
this.domElement = document.createElement('div');
this.domElement.appendChild(this.context.canvas);

},

 appendTo: function (element) {
 element.appendChild(this.domElement);

this.domElement.style.width = element.offsetWidth + 'px';
this.domElement.style.height = element.offsetHeight + 'px';
this.resize(element.offsetWidth, element.offsetHeight);

},

 resize: function (width, height) {
this.HORIZONTAL_MARGIN = (width - width *

this.horizontalSizePercent)/2;
this.VERTICAL_MARGIN = (height - height *

this.verticalSizePercent)/2;

this.cornerRadius = (this.context.canvas.height/2 -
2*this.VERTICAL_MARGIN)/2;

this.top = this.VERTICAL_MARGIN;
this.left = this.HORIZONTAL_MARGIN;
this.right = this.left + width - 2*this.HORIZONTAL_MARGIN;
this.bottom = this.top + height - 2*this.VERTICAL_MARGIN;

this.context.canvas.width = width;
this.context.canvas.height = height;

},

(Continues)

62110.1 Rounded Rectangles

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 10.3 (Continued)

 setSizePercents: function (h, v) {
// horizontalSizePercent and verticalSizePercent
// represent the size of the rounded rectangle in terms
// of horizontal and vertical percents of the rectangle's
// enclosing DOM element.

this.horizontalSizePercent = h > 1 ? h/100 : h;
this.verticalSizePercent = v > 1 ? v/100 : v;

},

// Drawing functions...

 fill: function () {
var radius = (this.bottom - this.top) / 2;

this.context.save();
this.context.shadowColor = this.SHADOW_COLOR;
this.context.shadowOffsetX = this.SHADOW_OFFSET_X;
this.context.shadowOffsetY = this.SHADOW_OFFSET_Y;
this.context.shadowBlur = 6;

this.context.beginPath();

this.context.moveTo(this.left + radius, this.top);

this.context.arcTo(this.right, this.top, this.right,
this.bottom, radius);

this.context.arcTo(this.right, this.bottom,
this.left, this.bottom, radius);

this.context.arcTo(this.left, this.bottom,
this.left, this.top, radius);

this.context.arcTo(this.left, this.top,
this.right, this.top, radius);

this.context.closePath();

this.context.fillStyle = this.fillStyle;
this.context.fill();
this.context.shadowColor = undefined;

},

Chapter 10 Custom Controls622

Download from Join eBook (www.joinebook.com)

ptg7987094

 overlayGradient: function () {
var gradient =

this.context.createLinearGradient(this.left, this.top,
this.left, this.bottom);

 gradient.addColorStop(0, 'rgba(255,255,255,0.4)');
 gradient.addColorStop(0.2, 'rgba(255,255,255,0.6)');
 gradient.addColorStop(0.25, 'rgba(255,255,255,0.7)');
 gradient.addColorStop(0.3, 'rgba(255,255,255,0.9)');
 gradient.addColorStop(0.40, 'rgba(255,255,255,0.7)');
 gradient.addColorStop(0.45, 'rgba(255,255,255,0.6)');
 gradient.addColorStop(0.60, 'rgba(255,255,255,0.4)');
 gradient.addColorStop(1, 'rgba(255,255,255,0.1)');

this.context.fillStyle = gradient;
this.context.fill();

this.context.lineWidth = 0.4;
this.context.strokeStyle = this.strokeStyle;
this.context.stroke();

this.context.restore();
},

 draw: function (context) {
var originalContext;

if (context) {
 originalContext = this.context;

this.context = context;
}

this.fill();
this.overlayGradient();

if (context) {
this.context = originalContext;

}
},

 erase: function() {
// Erase the entire canvas

this.context.clearRect(0, 0, this.context.canvas.width,
this.context.canvas.height);

}
};

62310.1 Rounded Rectangles

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 10.2 The application’s original configuration

Notice the first line of Example 10.3: var COREHTML5 = COREHTML5 || {};. That
line of code creates a global COREHTML5 object if the object does not already
exist. Subsequently, Example 10.3 adds a RoundedRectangle function and a
corresponding prototype object to the global COREHTML5 object.

The COREHTML5.RoundedRectangle methods are divided into two sections: The
first section contains general functions, such as appendTo() and resize(), that
manipulate the control’s canvas and DIV. The second section draws the rounded
rectangle. As you read through the listing, pay particular attention to the
appendTo() and draw() methods.

The appendTo() method appends the rounded rectangle’s DOM element to the
specified HTML element; for example, the application shown in Figure 10.1
appends a rounded rectangle to a DIV named roundedRectangleDiv, as illustrated
in Figure 10.3.

Figure 10.3 Appending a rounded rectangle to a DIV. Note: All three elements are the
same size

Subsequently, the appendTo() method sets the size of the rounded rectangle’s
DOM element to match the size of the parent DOM element and calls resize(),
which resizes the control’s canvas to also match the size of the DOM element. For
example, if you append a rounded rectangle to a DIV element that is 500 pixels
wide and 400 pixels high then the rounded rectangle’s appendTo() method resizes
the rectangle’s DOM element and its canvas to 500 pixels by 400 pixels—provided

Chapter 10 Custom Controls624

Download from Join eBook (www.joinebook.com)

ptg7987094

that the rectangle takes up all of the surrounding element’s space. Recall that the
amount of space the rectangle takes up can be specified with the last two
arguments to the COREHTML5.RoundedRectangle constructor.

When you draw a rounded rectangle you can pass the draw() method a Canvas
context so that the rounded rectangle will draw into that context. That feature is
useful for drawing controls into offscreen canvases; in fact, Section 10.2, “Progress
Bars,” on p. 625 shows such a strategy implemented by the progress bar control.

If you do not pass a Canvas context to a rounded rectangle’s draw() method, as
is the case for the application shown in Figure 10.1 on p. 618, then the rounded
rectangle draws into its own canvas.

Rounded rectangles are drawn in two steps. First, the draw() method fills
the rounded rectangle with a solid shape, as shown in the top screenshot in
Figure 10.4. Next, the draw() method overlays a white gradient on top of the
solid fill, resulting in the illusion of curvature and overhead lighting, as illustrated
in the bottom screenshot.

Figure 10.4 Translucent overlays

TIP: Adapt the rounded rectangle control

The rounded rectangle control discussed in this section serves two useful
purposes. First, it serves to encapsulate functionality that is used by other con-
trols; for example, both the progress bar and slider controls discussed in this
chapter use rounded rectangles.

Second, you can use the rounded rectangle control to implement your own
unrelated controls by retaining much of the general functionality in
COREHTML5.RoundedRectangle, such as the appendTo() and resize()
methods, and reimplementing the drawing code. In fact, that’s exactly how the
remaining controls in this chapter were implemented.

10.2 Progress Bars
The preceding section illustrated implementing Canvas-based controls with a
simple rounded rectangle. In this section we explore composite controls—meaning

62510.2 Progress Bars

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 10.5 A progress bar progressing

controls that contain other controls—with a progress bar that uses a rounded
rectangle. Figure 10.5 shows a progress bar in action.

The HTML for the application shown in Figure 10.5 is listed in Example 10.4.

The HTML creates the Start button and the loading span. The span is initially
invisible, as shown in the top screenshot in Figure 10.5. The HTML also adds a
DIV named progressbarDiv to the page.

The HTML loads the JavaScript for the COREHTML5.Progressbar and
COREHTML5.RoundedRectangle controls. Because progress bars contain a rounded
rectangle, the JavaScript file for the latter is necessary for the former. The
HTML also loads the JavaScript for an animation polyfill method named
requestNextAnimationFrame(), which is discussed in Section 5.1.3, “A Portable
Animation Loop,” on p. 348. That polyfill method drives the progress bar
animation.

Example 10.5 lists the application’s JavaScript.

The application creates a progress bar with a nearly translucent black stroke style
and a teal fill style. The progress bar takes up 90 percent of its enclosing DOM

Chapter 10 Custom Controls626

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 10.4 The progress bar application: HTML

<!DOCTYPE html>
<head>

<title>Progress bars</title>

<style>
 body {

background: linen;
}

#loadingSpan {
font: 20px Arial;
font-align: center;
position: absolute;
left: 250px;
color: teal;
text-shadow: 1px 1px rgba(0,0,0,0.1);

}

#progressbarDiv {
position: absolute;
left: 35px;
top: 50px;
width: 500px;
height: 70px;

}
</style>

</head>

<body>
<input type='button' id='startButton' value='Start'/>
Loading...

<div id='progressbarDiv'></div>

<script src='roundedRectangle.js'></script>
<script src='progressbar.js'></script>
<script src='requestNextAnimationFrame.js'></script>
<script src='example.js'></script>

</body>
</html>

element’s width and 70 percent of the element’s height. The application then
appends the progress bar to the progressbarDiv.

The application also implements an onclick event handler that animates the
progress bar when a user clicks the Start button.

The COREHTML5.Progressbar object is listed in Example 10.6.

62710.2 Progress Bars

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 10.5 The progress bar application: JavaScript

var startButton = document.getElementById('startButton'),
 loadingSpan = document.getElementById('loadingSpan'),
 progressbar = new COREHTML5.Progressbar('rgba(0,0,0,0.2)',

'teal', 90, 70),
 percentComplete = 0;

// Event handlers...

startButton.onclick = function (e) {
 loadingSpan.style.display = 'inline';
 startButton.style.display = 'none';

 percentComplete += 1.0;

if (percentComplete > 100) {
 percentComplete = 0;
 loadingSpan.style.display = 'none';
 startButton.style.display = 'inline';

}
else {

 progressbar.erase();
 progressbar.draw(percentComplete);

requestNextAnimationFrame(startButton.onclick);
}

};

// Initialization...

progressbar.appendTo(document.getElementById('progressbarDiv'));

Progress bars create four things:

• An instance of COREHTML5.RoundedRectangle
• An onscreen canvas
• An offscreen canvas
• A DOM element (a DIV)

The progress bar’s appendTo() method draws the rounded rectangle into the
offscreen canvas. Subsequently, the progress bar’s draw() method copies
the appropriate part of that offscreen canvas—based on the progress bar’s
percentComplete property—to the onscreen canvas.

So far in this chapter, you’ve seen how to implement simple controls and how to
implement controls that use other controls. Next, we will look at a more
complicated control that handles events.

Chapter 10 Custom Controls628

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 10.6 Progress bar objects

var COREHTML5 = COREHTML5 || {};

// Constructor. ..

COREHTML5.Progressbar = function(strokeStyle, fillStyle,
 horizontalSizePercent,
 verticalSizePercent) {

this.trough = new COREHTML5.RoundedRectangle(strokeStyle,
 fillStyle,
 horizontalSizePercent,
 verticalSizePercent);

this.SHADOW_COLOR = 'rgba(255,255,255,0.5)';
this.SHADOW_BLUR = 3;
this.SHADOW_OFFSET_X = 2;
this.SHADOW_OFFSET_Y = 2;

this.percentComplete = 0;
this.createCanvases();
this.createDOMElement();

return this;
}

// Prototype..

 COREHTML5.Progressbar.prototype = {
 createDOMElement: function () {

this.domElement = document.createElement('div');
this.domElement.appendChild(this.context.canvas);

},

 createCanvases: function () {
this.context = document.createElement('canvas').

getContext('2d');

this.offscreen = document.createElement('canvas').
getContext('2d');

},

 appendTo: function (element) {
 element.appendChild(this.domElement);

this.domElement.style.width = element.offsetWidth + 'px';
this.domElement.style.height = element.offsetHeight + 'px';

this.resize(); // Erases everything in the canvases

(Continues)

62910.2 Progress Bars

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 10.6 (Continued)

this.trough.resize(element.offsetWidth, element.offsetHeight);
this.trough.draw(this.offscreen);

},

 setCanvasSize: function () {
var domElementParent = this.domElement.parentNode;

this.context.canvas.width = domElementParent.offsetWidth;
this.context.canvas.height = domElementParent.offsetHeight;

},

 resize: function () {
var domElementParent = this.domElement.parentNode,

 w = domElementParent.offsetWidth,
 h = domElementParent.offsetHeight;

this.setCanvasSize();

this.context.canvas.width = w;
this.context.canvas.height = h;

this.offscreen.canvas.width = w;
this.offscreen.canvas.height = h;

},

 draw: function (percentComplete) {
if (percentComplete > 0) {

// Copy the appropriate region of the foreground canvas
// to the same region of the onscreen canvas

this.context.drawImage(
this.offscreen.canvas, 0, 0,
this.offscreen.canvas.width*(percentComplete/100),
this.offscreen.canvas.height,
0, 0,
this.offscreen.canvas.width*(percentComplete/100),
this.offscreen.canvas.height);

}
},

 erase: function() {
this.context.clearRect(0, 0,

this.context.canvas.width,
this.context.canvas.height);

},
};

Chapter 10 Custom Controls630

Download from Join eBook (www.joinebook.com)

ptg7987094

10.3 Sliders
Many controls fire events to registered listeners, so it’s important that you know
how to implement event handling in your Canvas-based controls. In this section
we incorporate event handling into a slider, which is shown in Figure 10.6.

Figure 10.6 Using sliders

The application shown in Figure 10.6 is a simple color picker with three sliders
for the color’s red, green, and blue components, and a fourth slider for the color’s
opacity. As a user changes a slider’s value by dragging the knob, the application
not only modifies the color of the color patch on the right but also adjusts the
color of the slider’s rounded rectangle. Figure 10.7 shows how the application
adjusts slider colors for various values.

The HTML for the application shown in Figure 10.6 is listed in Example 10.7.

The HTML creates a DIV for each slider and a canvas for the color patch. The
application’s JavaScript creates four sliders and appends each of them to
the appropriate DIV. Figure 10.8 shows the element structure for the blue slider.

63110.3 Sliders

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 10.7 Various colors

Example 10.7 The sliders application: HTML

<!DOCTYPE html>
<head>

<title>Sliders</title>

<style>
 body {

background: #dddddd;
}

#colorPatchCanvas {
position: absolute;
top: 75px;
left: 410px;
-webkit-box-shadow: rgba(0,0,0,0.5) 2px 2px 4px;
-moz-box-shadow: rgba(0,0,0,0.5) 2px 2px 4px;
box-shadow: rgba(0,0,0,0.5) 2px 2px 4px;
border: thin solid rgba(0,0,0,0.2);

}

Chapter 10 Custom Controls632

Download from Join eBook (www.joinebook.com)

ptg7987094

.slider {
width: 324px;
height: 50px;

}

#redSliderDiv {
position: absolute;
left: 40px;
top: 50px;

}

#greenSliderDiv {
position: absolute;
left: 40px;
top: 115px;

}

#blueSliderDiv {
position: absolute;
left: 40px;
top: 180px;

}

#alphaSliderDiv {
position: absolute;
left: 40px;
top: 300px;

}
</style>

</head>

<body>
<div id='redSliderDiv' class='slider'></div>
<div id='greenSliderDiv' class='slider'></div>
<div id='blueSliderDiv' class='slider'></div>
<div id='alphaSliderDiv' class='slider'></div>

<canvas id='colorPatchCanvas' width='220' height='120'>
 Canvas not supported

</canvas>

<script src='roundedRectangle.js'></script>
<script src='slider.js'></script>
<script src='example.js'></script>

</body>
</html>

63310.3 Sliders

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 10.8 Sliders: An HTML5 Canvas in a DIV (blueSlider.domElement) in a DIV
(blueSliderDiv)

The application’s JavaScript is listed in Example 10.8.

Example 10.8 The sliders application: JavaScript

var colorPatchContext = document.getElementById('colorPatchCanvas').
getContext('2d'),

 redSlider = new COREHTML5.Slider('rgb(0,0,0)',
'rgba(255,0,0,0.8)', 0),

 blueSlider = new COREHTML5.Slider('rgb(0,0,0)',
'rgba(0,0,255,0.8)', 1.0),

 greenSlider = new COREHTML5.Slider('rgb(0,0,0)',
'rgba(0,255,0,0.8)', 0.25),

 alphaSlider = new COREHTML5.Slider('rgb(0,0,0)',
'rgba(255,255,255,0.8)', 0.5);

redSlider.appendTo('redSliderDiv');
blueSlider.appendTo('blueSliderDiv');
greenSlider.appendTo('greenSliderDiv');
alphaSlider.appendTo('alphaSliderDiv');

// Functions..

function updateColor() {
var alpha = new Number((alphaSlider.knobPercent).toFixed(2));
var color = 'rgba('

+ parseInt(redSlider.knobPercent * 255) + ','
+ parseInt(greenSlider.knobPercent * 255) + ','
+ parseInt(blueSlider.knobPercent * 255) + ','
+ alpha + ')';

 colorPatchContext.fillStyle = color;

Chapter 10 Custom Controls634

Download from Join eBook (www.joinebook.com)

ptg7987094

 colorPatchContext.clearRect(0, 0, colorPatchContext.canvas.width,
 colorPatchContext.canvas.height);

 colorPatchContext.fillRect(0, 0, colorPatchContext.canvas.width,
 colorPatchContext.canvas.height);

 colorPatchContext.font = '18px Arial';
 colorPatchContext.fillStyle = 'white';
 colorPatchContext.fillText(color, 10, 40);

 alpha = (alpha + 0.2 > 1.0) ? 1.0 : alpha + 0.2;
 alphaSlider.opacity = alpha;

}

// Event handlers...

redSlider.addChangeListener(function() {
updateColor();

 redSlider.fillStyle = 'rgb(' +
(redSlider.knobPercent * 255).toFixed(0) + ', 0, 0)';

});

greenSlider.addChangeListener(function() {
updateColor();

 greenSlider.fillStyle = 'rgb(0, ' +
(greenSlider.knobPercent * 255).toFixed(0) + ', 0)';

});

blueSlider.addChangeListener(function () {
updateColor();

 blueSlider.fillStyle = 'rgb(0, 0, ' +
(blueSlider.knobPercent * 255).toFixed(0) + ')';

});

alphaSlider.addChangeListener(function() {
updateColor();

 alphaSlider.fillStyle = 'rgba(255, 255, 255, ' +
(alphaSlider.knobPercent * 255).toFixed(0) + ')';

 alphaSlider.opacity = alphaSlider.knobPercent;
});

// Initialization...

redSlider.fillStyle = 'rgb(' +
(redSlider.knobPercent * 255).toFixed(0) + ', 0, 0)';

(Continues)

63510.3 Sliders

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 10.8 (Continued)

greenSlider.fillStyle = 'rgb(0, ' +
(greenSlider.knobPercent * 255).toFixed(0) + ', 0)';

blueSlider.fillStyle = 'rgb(0, 0, ' +
(blueSlider.knobPercent * 255).toFixed(0) + ')';

alphaSlider.fillStyle = 'rgba(255, 255, 255, ' +
(alphaSlider.knobPercent * 255).toFixed(0) + ')';

alphaSlider.opacity = alphaSlider.knobPercent;

alphaSlider.draw();
redSlider.draw();
greenSlider.draw();
blueSlider.draw();

The application creates four sliders and adds a change event listener to each.
Whenever a slider’s value changes, the slider invokes all change listeners that
have registered with the addChangeListener() method. All four of the
application’s event handlers update the color of the color patch and their slider.

The COREHTML5.Slider object is listed in Example 10.9. As you read through the
code, focus on the event handlers and the support for change events; that support
distinguishes sliders from progress bars and rounded rectangles.

Example 10.9 Slider objects

var COREHTML5 = COREHTML5 || {};

// Constructor..

COREHTML5.Slider = function(strokeStyle, fillStyle,
 knobPercent, hpercent, vpercent) {

this.trough = new COREHTML5.RoundedRectangle(strokeStyle, fillStyle,
 hpercent || 95, // Horizontal size percent
 vpercent || 55); // Vertical size percent

this.knobPercent = knobPercent || 0; this.strokeStyle
= strokeStyle ? strokeStyle : 'gray'; this.fillStyle =
fillStyle ? fillStyle : 'skyblue';

this.SHADOW_COLOR = 'rgba(100,100,100,0.8)';
this.SHADOW_OFFSET_X = 3;
this.SHADOW_OFFSET_Y = 3;

Chapter 10 Custom Controls636

Download from Join eBook (www.joinebook.com)

ptg7987094

this.HORIZONTAL_MARGIN = 2 * this.SHADOW_OFFSET_X;
this.VERTICAL_MARGIN = 2 * this.SHADOW_OFFSET_Y;

this.KNOB_SHADOW_COLOR = 'yellow';
this.KNOB_SHADOW_OFFSET_X = 1;
this.KNOB_SHADOW_OFFSET_Y = 1;
this.KNOB_SHADOW_BLUR = 0;

this.KNOB_FILL_STYLE = 'rgba(255,255,255,0.45)';
this.KNOB_STROKE_STYLE = 'rgba(0,0,150,0.45)';

this.context = document.createElement('canvas').getContext('2d');
this.changeEventListeners = [];

this.createDOMElement();
this.addMouseHandlers();

return this;
}

// Prototype..

COREHTML5.Slider.prototype = {

// General functions to override...................................

 createDOMElement: function () {
this.domElement = document.createElement('div');
this.domElement.appendChild(this.context.canvas);

},

 appendTo: function (elementName) {
 document.getElementById(elementName).

appendChild(this.domElement);

this.setCanvasSize();
this.resize();

},

 setCanvasSize: function () {
var domElementParent = this.domElement.parentNode;

this.context.canvas.width = domElementParent.offsetWidth;
this.context.canvas.height = domElementParent.offsetHeight;

},

(Continues)

63710.3 Sliders

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 10.9 (Continued)

 resize: function() {
this.cornerRadius = (this.context.canvas.height/2 -

2*this.VERTICAL_MARGIN)/2;

this.top = this.HORIZONTAL_MARGIN;
this.left = this.VERTICAL_MARGIN;

this.right = this.left + this.context.canvas.width
-2*this.HORIZONTAL_MARGIN;

this.bottom = this.top + this.context.canvas.height -
2*this.VERTICAL_MARGIN;

this.trough.resize(this.context.canvas.width,
this.context.canvas.height);

this.knobRadius = this.context.canvas.height/2 -
this.context.lineWidth*2;

},

// Event handlers..

 addMouseHandlers: function() {
var slider = this; // Let DIV's event handlers access this object

this.domElement.onmouseover = function(e) {
 slider.context.canvas.style.cursor = 'crosshair';

};

this.domElement.onmousedown = function(e) {
var mouse = slider.windowToCanvas(e.clientX, e.clientY);

 e.preventDefault();

if (slider.mouseInTrough(mouse) ||
 slider.mouseInKnob(mouse)) {

 slider.knobPercent = slider.knobPositionToPercent(mouse.x);
 slider.fireChangeEvent(e);
 slider.erase();
 slider.draw();
 slider.dragging = true;

}
};

Chapter 10 Custom Controls638

Download from Join eBook (www.joinebook.com)

ptg7987094

 window.addEventListener('mousemove', function(e) {
var mouse = null,

 percent = null;

 e.preventDefault();

if (slider.dragging) {
 mouse = slider.windowToCanvas(e.clientX, e.clientY);
 percent = slider.knobPositionToPercent(mouse.x);

if (percent >= 0 && percent <= 1.0) {
 slider.fireChangeEvent(e);
 slider.erase();
 slider.draw(percent);

} }
}, false);

 window.addEventListener('mouseup', function(e) {
var mouse = null;

 e.preventDefault();

if (slider.dragging) {
 slider.fireChangeEvent(e);
 slider.dragging = false;

}
}, false);

},

// Change events...

 fireChangeEvent: function(e) {
for (var i=0; i < this.changeEventListeners.length; ++i) {

this.changeEventListeners[i](e);
}

},

 addChangeListener: function (listenerFunction) {
this.changeEventListeners.push(listenerFunction);

},

(Continues)

63910.3 Sliders

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 10.9 (Continued)

// Utility functions...

 mouseInKnob: function(mouse) {
var position = this.knobPercentToPosition(this.knobPercent);
this.context.beginPath();
this.context.arc(position, this.context.canvas.height/2,

this.knobRadius, 0, Math.PI*2);

return this.context.isPointInPath(mouse.x, mouse.y);
},

 mouseInTrough: function(mouse) {
this.context.beginPath();
this.context.rect(this.left, 0,

this.right - this.left, this.bottom);

return this.context.isPointInPath(mouse.x, mouse.y);
},

 windowToCanvas: function(x, y) {
var bbox = this.context.canvas.getBoundingClientRect();

return {
 x: x - bbox.left * (this.context.canvas.width / bbox.width),
 y: y - bbox.top * (this.context.canvas.height / bbox.height)

};
},

 knobPositionToPercent: function(position) {
var troughWidth = this.right - this.left - 2*this.knobRadius;
return (position - this.left - this.knobRadius)/ troughWidth;

},

 knobPercentToPosition: function(percent) {
if (percent > 1) percent = 1;
if (percent < 0) percent = 0;
var troughWidth = this.right - this.left - 2*this.knobRadius;
return percent * troughWidth + this.left + this.knobRadius;

},

// Drawing functions...

Chapter 10 Custom Controls640

Download from Join eBook (www.joinebook.com)

ptg7987094

 fillKnob: function (position) {
this.context.save();

this.context.shadowColor = this.KNOB_SHADOW_COLOR;
this.context.shadowOffsetX = this.KNOB_SHADOW_OFFSET_X;
this.context.shadowOffsetY = this.KNOB_SHADOW_OFFSET_Y;
this.context.shadowBlur = this.KNOB_SHADOW_BLUR;

this.context.beginPath();

this.context.arc(position,
this.top + ((this.bottom - this.top) / 2),
this.knobRadius, 0, Math.PI*2, false);

this.context.clip();

this.context.fillStyle = this.KNOB_FILL_STYLE;
this.context.fill();
this.context.restore();

},

 strokeKnob: function () {
this.context.save();
this.context.lineWidth = 1;
this.context.strokeStyle = this.KNOB_STROKE_STYLE;
this.context.stroke();
this.context.restore();

},

 drawKnob: function (percent) {
if (percent < 0) percent = 0;
if (percent > 1) percent = 1;

this.knobPercent = percent;
this.fillKnob(this.knobPercentToPosition(percent));
this.strokeKnob();

},

 drawTrough: function () {
this.context.save();
this.trough.fillStyle = this.fillStyle;
this.trough.strokeStyle = this.strokeStyle;
this.trough.draw(this.context);
this.context.restore();

},

(Continues)

64110.3 Sliders

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 10.9 (Continued)

 draw: function (percent) {
this.context.globalAlpha = this.opacity;

if (percent === undefined) {
 percent = this.knobPercent;

}

this.drawTrough();
this.drawKnob(percent);

},

 erase: function() {
this.context.clearRect(

this.left - this.knobRadius, 0 - this.knobRadius,
this.context.canvas.width + 4*this.knobRadius,
this.context.canvas.height + 3*this.knobRadius);

}
};

Like progress bars, sliders create and use an instance of COREHTML5.
RoundedRectangle.

When a slider detects a mouse down event, it converts the window coordinates
stored in the event object to canvas coordinates and checks whether the cursor is
in the slider trough or knob; if it is, the event handler adjusts the knob’s position
to coincide with the X coordinate of the mouse event. The event handler then
fires a change event, redraws the slider, and sets a flag to indicate that the user
has begun to drag the slider’s knob.

As the user subsequently drags the mouse, the slider’s mouse move event handler
continuously fires change events and redraws the slider. When the slider detects
a mouse up event, it fires a final change event and sets the dragging property to
false.

The COREHTML5.Slider constructor creates an empty array named
changeEventListeners. Sliders manipulate that array in two methods:
addChangeListener() and fireChangeEvent(), which add a change listener
function to a slider and invoke all the slider’s change listeners, respectively.

One other interesting thing about sliders is the lighting effect they implement, as
illustrated in Figure 10.9: The slider’s knob looks like a light that illuminates the
trough below. The slider creates the lighting effect by filling the knob with
semitransparent white and applying a yellow shadow. See the fillKnob()method
in Example 10.9.

Chapter 10 Custom Controls642

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 10.9 Shadows as light

10.4 An Image Panner
By now you have a good understanding of how to implement Canvas-based
controls. We conclude this chapter with an example of an image panner—shown
in Figure 10.10—that uses what you have learned in this chapter, along with

Figure 10.10 An image panner control

64310.4 An Image Panner

Download from Join eBook (www.joinebook.com)

ptg7987094

much of what you have learned elsewhere in this book, such as drawing, shadows,
and image manipulation.

The image panner control displays a scaled-down version of a much larger image
and furnishes a draggable viewport, as illustrated in Figure 10.10. As a user drags
the viewport, the image panner displays the portion of the image within the
viewport in an associated canvas, as illustrated by the application in Figure 10.11.

Figure 10.11 Panning an image

When you create an image panner, you specify the associated canvas and image,
like this:

var pan = new COREHTML5.Pan(context.canvas, image);

The user drags the viewport to view different portions of the image, as shown in
Figure 10.12.

The sliders at the top of the application let you adjust the size and opacity of the
image panner, as shown in Figure 10.13, but they are not part of the image panner

Chapter 10 Custom Controls644

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 10.12 Dragging the image panner’s viewport

control. The image panner, in fact, is unaware of the sliders; it is the application
that links them.

Example 10.10 lists the HTML for the application shown in Figure 10.11.

The HTML in Example 10.10 creates DIVs for the sliders at the top of the applica-
tion and a canvas element where the application displays the image. The HTML
subsequently includes the JavaScript for rounded rectangles, sliders, and
the image panner control. Finally, the HTML includes the JavaScript for the
application, which is listed in Example 10.11.

The HTML also creates two span elements for the slider displays. The application’s
JavaScript sets the values for those elements.

Finally, notice that the CSS in the HTML file declares a class named pan; however,
if you study the HTML, you’ll see that none of the elements declare a class with
that name. It’s the application’s JavaScript that assigns the pan class to the image
panner control.

64510.4 An Image Panner

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 10.13 Controlling the size and opacity of the inset canvas

Example 10.10 Panning images: HTML

<!DOCTYPE html>
<html>

<head>
<title>Panning Images</title>

<style>
 body {

background: rgba(100,145,250,0.3);
}

Chapter 10 Custom Controls646

Download from Join eBook (www.joinebook.com)

ptg7987094

#canvas {
position: absolute;
left: 0px;
top: 50px;
margin-left: 20px;
margin-right: 0;
margin-bottom: 20px;
padding: 0;
-webkit-box-shadow: rgba(60,60,70,0.7) 5px 5px 7px;
-moz-box-shadow: rgba(60,60,70,0.7) 5px 5px 7px;
box-shadow: rgba(60,60,70,0.7) 5px 5px 7px;
border: 1px solid rgba(100,140,130,0.5);
cursor: crosshair;

}

.pan {
position: absolute;
left: 50px;
top: 70px;
-webkit-box-shadow: rgba(60,60,70,0.7) 5px 5px 7px;
-moz-box-shadow: rgba(60,60,70,0.7) 5px 5px 7px;
box-shadow: rgba(60,60,70,0.7) 5px 5px 7px;
cursor: pointer;

}

#sizeSliderDiv {
position: absolute;
left: 20px;
top: -5px;
margin-left: 10px;
display: inline;
width: 175px;
height: 45px;

}

#alphaSliderDiv {
position: absolute;
left: 270px;
top: -5px;
margin-left: 10px;
display: inline;
width: 175px;
height: 45px;

}

(Continues)

64710.4 An Image Panner

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 10.10 (Continued)

#controls {
position: absolute;
left: 10px;
margin-left: 35px;
margin-bottom: 25px;

}

#alphaSpan {
position: absolute;
left: 240px;
vertical-align: center;
color: rgb(80,100,190);
font: 18px Arial;
text-shadow: 2px 2px 4px rgba(100,140,250,0.8);

}

#sizeSpan {
position: absolute;
left: -20px;
vertical-align: center;
color: rgb(80,100,190);
font: 18px Arial;
text-shadow: 2px 2px 4px rgba(100,140,250,0.8);

}
</style>

</head>

<body id='body'>

<div id='controls'>
0
<div id='alphaSliderDiv'></div>

0
<div id='sizeSliderDiv'></div>

</div>

<canvas id='canvas' width='1000' height='600'>
 Canvas not supported

</canvas>

<script src='roundedRectangle.js'></script>
<script src='slider.js'></script>
<script src='pan.js'></script>
<script src='example.js'></script>

</body>
</html>

Chapter 10 Custom Controls648

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 10.11 Panning Images: JavaScript

var context = document.getElementById('canvas').getContext('2d'),
 image = new Image(),

 alphaSpan = document.getElementById('alphaSpan'),
 sizeSpan = document.getElementById('sizeSpan'),

 sizeSlider = new COREHTML5.Slider('blue', 'cornflowerblue',
0.85, // Knob percent
90, // Take up % of width
50), // Take up % of height

 alphaSlider = new COREHTML5.Slider('blue', 'cornflowerblue',
0.50, // Knob percent
90, // Take up % of width
50), // Take up % of height

 pan = new COREHTML5.Pan(context.canvas, image),
 e = pan.domElement,

 ALPHA_MAX = 1.0,
 SIZE_MAX = 12;

// Event handlers...

sizeSlider.addChangeListener(function (e) {
var size = (parseFloat(sizeSlider.knobPercent) * 12);

 size = size < 2 ? 2 : size;
 sizeSpan.innerHTML = size.toFixed(1) + '%';

 pan.imageContext.setTransform(1,0,0,1,0,0); // Identity matrix
 pan.viewportPercent = size;

 pan.erase();
 pan.initialize();
 pan.draw();
});

alphaSlider.addChangeListener(function (e) {
 alphaSpan.innerHTML =

parseFloat(alphaSlider.knobPercent * 100).toFixed(0) + '%';
 alphaSpan.style.opacity = parseFloat(alphaSlider.knobPercent);
 pan.panCanvasAlpha = alphaSlider.knobPercent;
 pan.erase();
 pan.draw();
});

(Continues)

64910.4 An Image Panner

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 10.11 (Continued)

// Initialization..

image.src = 'pencilsAndBrush.jpg';
document.getElementById('body').appendChild(e);
e.className = 'pan';

alphaSlider.appendTo('alphaSliderDiv');
sizeSlider.appendTo('sizeSliderDiv');

pan.viewportPercent = sizeSlider.knobPercent * SIZE_MAX;
pan.panCanvasAlpha = alphaSlider.knobPercent * ALPHA_MAX;

sizeSpan.innerHTML = pan.viewportPercent.toFixed(0) + '%';
alphaSpan.innerHTML = (pan.panCanvasAlpha * 100).toFixed(0) + '%';

alphaSlider.draw();
sizeSlider.draw();

The application’s JavaScript creates two sliders. Both sliders have a blue stroke
style and a cornflowerblue fill style, and both of their troughs take up 90% of
the width of the slider’s surrounding element and 50% of its height. The applica-
tion initially positions the size slider at 85% (of the difference between the slider’s
minimum and maximum values) and the alpha slider at 50%.

The application adds change listeners to each slider. The change listener for the
size slider changes the size of the image panner corresponding to the slider’s
value. That listener also sets the inner HTML for the size span element to reflect
the slider’s value. Finally, the listener erases, initializes, and redraws the image.

The change listener for the alpha slider changes the opacity of the image panner’s
canvas and sets the alpha span’s inner HTML to coincide with the slider’s value.

The COREHTML5.Pan object is listed in Example 10.12.

Example 10.12 The pan control

var COREHTML5 = COREHTML5 || { };

// Constructor..

COREHTML5.Pan = function(imageCanvas, image,
 viewportPercent, panCanvasAlpha) {

var self = this;

// Store arguments in member variables

Chapter 10 Custom Controls650

Download from Join eBook (www.joinebook.com)

ptg7987094

this.imageCanvas = imageCanvas;
this.image = image;
this.viewportPercent = viewportPercent || 10;
this.panCanvasAlpha = panCanvasAlpha || 0.5;

// Get a reference to the image canvas's context
// and create the pan canvas and the DOM element.
// Put the pan canvas in the DOM element.

this.imageContext = imageCanvas.getContext('2d');
this.panCanvas = document.createElement('canvas');
this.panContext = this.panCanvas.getContext('2d');

this.domElement = document.createElement('div');
this.domElement.appendChild(this.panCanvas);

// If the image is not loaded, initialize when the image loads;
// otherwise, initialize now.

if (image.width == 0 || image.height == 0) { // Image not loaded
 image.onload = function(e) {
 self.initialize();

};
}
else {

this.initialize();
}
return this;

};

// Prototype..

COREHTML5.Pan.prototype = {
 initialize: function () {

var width = this.image.width * (this.viewportPercent/100),
 height = this.image.height * (this.viewportPercent/100);

this.addEventHandlers();
this.setupViewport (width, height);
this.setupDOMElement(width, height);
this.setupPanCanvas (width, height);
this.draw();

},

 setupPanCanvas: function (w, h) {
this.panCanvas.width = w;
this.panCanvas.height = h;

},

(Continues)

65110.4 An Image Panner

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 10.12 (Continued)

 setupDOMElement: function (w, h) {
this.domElement.style.width = w + 'px';
this.domElement.style.height = h + 'px';
this.domElement.className = 'pan';

},

 setupViewport: function (w, h) {
this.viewportLocation = { x: 0, y: 0 };
this.viewportSize = { width: 50, height: 50 };
this.viewportLastLocation = { x: 0, y: 0 };

this.viewportSize.width = this.imageCanvas.width *
this.viewportPercent/100;

this.viewportSize.height = this.imageCanvas.height *
this.viewportPercent/100;

},

 moveViewport: function(mouse, offset) {
this.viewportLocation.x = mouse.x - offset.x;
this.viewportLocation.y = mouse.y - offset.y;

var delta = {
 x: this.viewportLastLocation.x - this.viewportLocation.x,
 y: this.viewportLastLocation.y - this.viewportLocation.y

};

this.imageContext.translate(
 delta.x * (this.image.width / this.panCanvas.width),
 delta.y * (this.image.height / this.panCanvas.height));

this.viewportLastLocation.x = this.viewportLocation.x;
this.viewportLastLocation.y = this.viewportLocation.y;

},

 isPointInViewport: function (x, y) {
this.panContext.beginPath();
this.panContext.rect(this.viewportLocation.x,

this.viewportLocation.y,
this.viewportSize.width,
this.viewportSize.height);

return this.panContext.isPointInPath(x, y);
},

Chapter 10 Custom Controls652

Download from Join eBook (www.joinebook.com)

ptg7987094

 addEventHandlers: function() {
var pan = this;

 pan.domElement.onmousedown = function(e) {
var mouse = pan.windowToCanvas(e.clientX, e.clientY),

 offset = null;

 e.preventDefault();

if (pan.isPointInViewport(mouse.x, mouse.y)) {
 offset = { x: mouse.x - pan.viewportLocation.x,
 y: mouse.y - pan.viewportLocation.y };

 pan.panCanvas.onmousemove = function(e) {
 pan.erase();

 pan.moveViewport(
 pan.windowToCanvas(e.clientX, e.clientY), offset);

 pan.draw();
};

 pan.panCanvas.onmouseup = function(e) {
 pan.panCanvas.onmousemove = undefined;
 pan.panCanvas.onmouseup = undefined;

};
}

};
},

 erase: function() {
this.panContext.clearRect(0, 0,

this.panContext.canvas.width,
this.panContext.canvas.height);

},

 drawPanCanvas: function(alpha) {
this.panContext.save();
this.panContext.globalAlpha = alpha;
this.panContext.drawImage(this.image,

0, 0,
this.image.width,
this.image.height,
0, 0,
this.panCanvas.width,
this.panCanvas.height);

this.panContext.restore();
},

(Continues)

65310.4 An Image Panner

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 10.12 (Continued)

 drawImageCanvas: function() {
this.imageContext.drawImage(this.image,

0, 0,
this.image.width,
this.image.height);

},

 drawViewport: function () {
this.panContext.shadowColor = 'rgba(0,0,0,0.4)';
this.panContext.shadowOffsetX = 2;
this.panContext.shadowOffsetY = 2;
this.panContext.shadowBlur = 3;

this.panContext.lineWidth = 3;
this.panContext.strokeStyle = 'white';
this.panContext.strokeRect(this.viewportLocation.x,

this.viewportLocation.y,
this.viewportSize.width,
this.viewportSize.height);

},

 clipToViewport: function() {
this.panContext.beginPath();
this.panContext.rect(this.viewportLocation.x,

this.viewportLocation.y,
this.viewportSize.width,
this.viewportSize.height);

this.panContext.clip();
},

 draw: function() {
this.drawImageCanvas();
this.drawPanCanvas(this.panCanvasAlpha);

this.panContext.save();
this.clipToViewport();
this.drawPanCanvas(1.0);
this.panContext.restore();

this.drawViewport();
},

Chapter 10 Custom Controls654

Download from Join eBook (www.joinebook.com)

ptg7987094

 windowToCanvas: function(x, y) {
var bbox = this.panCanvas.getBoundingClientRect();

return {
 x: x - bbox.left * (this.panCanvas.width / bbox.width),
 y: y - bbox.top * (this.panCanvas.height / bbox.height)

};
},

};

10.5 Conclusion
Although standard HTML controls suffice for many applications, there are many
good reasons to implement your own Canvas-based controls; for example, you
may need a control that’s not covered by the HTML standard, or you may require
a consistent look-and-feel across browsers.

In this chapter you have seen how to implement Canvas-based controls. You saw
how to implement controls that create a canvas element, wrap that element in a
DIV, and expose that DIV to developers. Because developers have access to that DIV,
they can attach it to any element in the DOM tree.

You also saw how to implement composite controls, meaning controls that use
other controls, such as the progress bar and slider. Finally, you saw how to incor-
porate event handling into controls and how to fire events to registered event
listeners.

In the next chapter, we will look at implementing Canvas-based mobile web
applications.

65510.5 Conclusion

Download from Join eBook (www.joinebook.com)

ptg7987094

This page intentionally left blank

Download from Join eBook (www.joinebook.com)

ptg7987094

In the 1990s, Java gained immense popularity because developers could write
one application that ran on multiple operating systems. In the early 2000s, HTML5
is doing the same on the mobile front, letting developers implement a single
application that runs on the desktop and multiple mobile operating systems.

In this chapter you will see how to get Canvas-based applications running on
mobile devices; specifically, you will see how to configure the magnifying glass
and paint applications discussed earlier in this book to run, indistinguishably
from native applications, on the iPad.

The application shown in Figure 11.1 is the magnifying glass application discussed
in Section 4.10, “A Magnifying Glass,” on p. 321, running on both Mac OS X and
iOS5 on the iPad. Visually, the application is identical on both operating systems,
except for the title bar. The application supports both mouse and touch events,
so the same code runs on either operating system.

This chapter illustrates how to make Canvas-based applications run on mobile
devices by showing you how to do the following:

• Use the viewport metatag to optimally set the size of your application for
particular devices and orientations: “The viewport Metatag,” on p. 661

• Use CSS media queries for a different look on mobile devices: “Media Queries,”
on p. 666

• React to device orientation changes with media query listeners in JavaScript:
“Reacting to Media Changes with JavaScript,” on p. 668

• Handle touch events: “Touch Events,” on p. 671
• Disable inertial scrolling: “Supporting Both Touch and Mouse Events,” on

p. 674

11CHAPTER

Mobile

657
Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 11.1 An application that runs on the desktop (top) and on an iPad (bottom)

• Prevent user zooming and DIV flashing: “The Mobile Viewport,” on p. 659
and “Supporting Both Touch and Mouse Events,” on p. 674

• Implement pinch and zoom: “Pinch and Zoom,” on p. 675
• Implement a Canvas-based keyboard control for tablet computers: “A Virtual

Keyboard,” on p. 682

You will also see how to make Canvas-based applications indistinguishable from
native applications on iOS5 by

• Creating application icons and startup images: “Application Icons and Startup
Images,” on p. 678

• Using media queries to select startup images and application icons: “Media
Queries for iOS5 Application Icons and Startup Images,” on p. 679

Chapter 11 Mobile658

Download from Join eBook (www.joinebook.com)

ptg7987094

• Making your HTML5 application run fullscreen without any browser chrome:
“Fullscreen with No Browser Chrome,” on p. 680

• Setting the status bar’s background color: “Application Status Bar,” on p. 681

NOTE: HTML5 vs. native applications

As this book went to press there was much debate about whether HTML5 or
native applications would win out on mobile devices. As this chapter shows,
you can implement HTML5 applications that run on the iPad and that are
indistinguishable from native applications.

Such implementations are only one aspect of the debate. Another aspect is ac-
cess to native functionality such as gyroscopes and GPS positioning. HTML5
specifications are constantly being updated to include such functionality;
moreover, you can always use a framework such as PhoneGap to access that
functionality.

In any event, using HTML5 instead of implementing native applications can sig-
nificantly reduce your software development costs if you plan to support multiple
mobile devices and operating systems.

NOTE: Canvas performance on mobile devices

As most of this book was being written, Canvas performance on mobile devices
was dismal. Whereas Canvas-based animations run smoothly on the desktop,
the same animations on most mobile devices were choppy. However, as this
book was nearing completion, iOS5 came out with hardware acceleration for
Canvas, which entirely changed the game on the world’s most popular mobile
devices.That hardware acceleration dramatically improved performance, making
it possible to implement smooth animations and video games.

11.1 The Mobile Viewport
As Figure 11.2 illustrates, mobile web browsers typically display webpages on
screens smaller than those of their desktop counterparts. At the same resolution,
mobile devices display a fraction of the webpage.

Most mobile browsers, however, do not initially display webpages as illustrated
in Figure 11.2. If they did, nearly everyone would immediately zoom out to see
the entire width of the page, as shown in Figure 11.3, so most mobile browsers
automatically zoom out for you when they initially display a page.

65911.1 The Mobile Viewport

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 11.2 Mobile browsers have a smaller viewport than desktop browsers

Chapter 11 Mobile660

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 11.3 How most mobile browsers initially display webpages by default

It’s important to understand how mobile web browsers, including those that run
on tablet computers like the iPad, initially scale webpages to fit the display.

Mobile web browsers initially draw webpages into an offscreen viewport, known
as the layout viewport, to ensure that the page’s CSS machinations produce a page
that is proportionately similar to the page as it appears in a desktop browser. In
fact, you can think of the webpage in Figure 11.2 as the layout viewport. The
screen of the mobile device is referred to as the visible viewport.

The layout viewport is a fixed size for specific devices; for example, the iPad uses
a layout viewport whose width is 980 pixels, and the width of the layout viewport
on Android is 800 pixels, but in any event the width is similar to a typical window
width on the desktop.

After initially drawing the webpage into the offscreen layout viewport, mobile
web browsers copy the contents of the layout viewport to the visible viewport on
the device, scaling the layout viewport along the way.

11.1.1 The viewport Metatag
The size of a mobile device’s visible viewport is fixed whereas the size of the layout
viewport is infinitely adjustable. With the viewport metatag, you can adjust not
only the size of the browser’s layout viewport, but other viewport properties,
such as whether the user can scale the viewport, and the minimum and maximum
scales.

66111.1 The Mobile Viewport

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 11.4 shows an application running on an iPad. The application contains
a single DIV, 500 pixels wide by 50 pixels high. The top screenshot shows the ap-
plication as it appears by default, without using the viewport metatag. The middle
screenshot shows the viewport width set to 500 pixels, like this:

<meta name='viewport' content='width=500'/>

The bottom screenshot shows the application with a viewport width of 100 pixels.

Figure 11.4 The mobile viewport

Chapter 11 Mobile662

Download from Join eBook (www.joinebook.com)

ptg7987094

In the top screenshot in Figure 11.4, the iPad draws the webpage into the default
layout viewport with a width of 980 pixels and scales the layout viewport to fit
the visible viewport. The iPad’s width is 1040 pixels in landscape mode, which
is nearly the size of the layout viewport (980 pixels), so the two viewports are at
approximately the same scale. Because the visible and layout viewports are
nearly the same size, the 500-pixel-wide DIV element, which is about one half the
width of the layout viewport, takes up approximately one half of the width of
the iPad’s display in landscape mode. None of those things are true for the other
two screenshots, however.

As the viewport’s width becomes smaller, the application zooms in on the DIV as
it scales from successively smaller layout viewports to the fixed-size visible
viewport. When the viewport width is 500, it’s the same as the width of the DIV,
so the DIV fits snugly on the screen in the horizontal direction. When the layout
viewport width is 100 pixels, the browser crams the 500-pixel-wide DIV into
100 pixels, and then scales those 100 pixels to 1040, which magnifies the DIV
considerably.

When you set the viewport’s width, the browser determines the scale in the ver-
tical direction by maintaining the ratio between the DIV’s width and height.
Although it’s much more common to set the width of the viewport, you can also
set its height; if you do, the browser will automatically set the scale in the
horizontal direction, once again maintaining the width/height ratio.

The HTML for the application shown in Figure 11.4 is listed in Example 11.1.

The application uses the viewport metatag to set the viewport’s width to 500
pixels. That value, along with the text displayed in the DIV, were modified for
each of the three screenshots in Figure 11.4.

Here are some uses of the viewport metatag:

<meta name="viewport" content="width=480"/>
<meta name="viewport" content="width=device-width,
 initial-scale=1.0, user-scalable=yes"/>
<meta name="viewport"
 content="width=device-width, initial-scale=1.0,
 maximum-scale=1.0, user-scalable=no"/>

The first use of the viewport metatag above sets the viewport’s width to 480 pixels.
You may want to hardcode the viewport’s width to a numerical value when you
have a narrow site that’s displayed on a wider device. For example, if you have
a site that’s designed for iPhones whose width is 480 pixels, and that site is dis-
played on an iPhone with retina display, you probably want your application to
fill the width of the device, like in the middle screenshot in Figure 11.4,—by
specifying a viewport width of 480—instead of only filling part of the width, as
in the top screenshot.

66311.1 The Mobile Viewport

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 11.1 Using the viewport metatag

<!DOCTYPE html>
<html>

<head>
<title>

 The Mobile Viewport: Element is 500px wide by 50px high
</title>

<meta name='viewport' content='width=500'/>

<style>

 body {
margin: 0px;
padding: 0px;

}

#box {
background: goldenrod;
border: 2px solid navy;
color: blue;
width: 500px;
height: 50px;

}
</style>

</head>

<body>
<div id='box'>Viewport width: 500</div>

</body>
</html>

The second use of the viewport metatag sets the layout viewport’s width to
device-width, which equates to the width of the physical device, meaning the
width is the same whether a device is in portrait or landscape mode. For web
applications that were originally intended to run in desktop browsers—and are
therefore typically as wide or wider than most mobile displays—it’s a good idea
to set the viewport width to device-width. The second use also sets the initial
scale to 1.0 and lets the user scale the application.

The third use of the viewport metatag also sets the width and initial scale to
device-width and 1.0, respectively. Additionally, the maximum scale is set to 1.0,
and user scaling is disallowed.

The properties that you can specify in the content attribute of the viewport
metatag are listed in Table 11.1.

Chapter 11 Mobile664

Download from Join eBook (www.joinebook.com)

ptg7987094

Table 11.1 viewport metatag content attributes

Valid ValuesContent Properties

Non-negative numbers between 1 and 10000 representing
pixels. You can also specify device-width, which represents
the physical width of the device. Unknown keywords and
values resolve to 1px.

width

Non-negative numbers, between 1 and 10000, and
device-height. You can specify device-height, which
represents the physical height of the device. As with the width
property, unknown keywords and values resolve to 1px.

height

Non-negative numbers between 0.1 and 10. You can also
specify:

• device-width or device-height, which resolve to 10

• yes and no, which resolve to 1 and 0.1, respectively

initial-scale,
minimum-scale,
maximum-scale

yes and no: yes typically means the user can pinch and zoom
your application to adjust the scale; no disallows that
adjustment.

user-scalable

Numbers between 70 and 400 represent dpi (dots per inch).
You can also specify:

• device-width or device-height, which resolve to 10

• yes and no, which resolve to 1 and 0.1, respectively

Although most browsers accept target-densitydpi for this
property, the specification capitalizes the second d.

target-densityDpi

Now that you have a good understanding of viewports on mobile devices and how
they affect the layout of your application, let’s see how to select CSS, startup icons,
and splash screens for different devices.

TIP: Set the viewport’s width to device-width instead of a numerical value

For web applications that were originally implemented for the desktop, it’s a good
idea to set the viewport’s width to device-width instead of a numerical value.
That way, the offscreen layout viewport’s width will be the same as the device
width.

66511.1 The Mobile Viewport

Download from Join eBook (www.joinebook.com)

ptg7987094

TIP: Don’t blow up on the iPad

If you set a viewport’s initial-scale to 1.0, the browser fits webpages
horizontally, which is what you want most of the time. However, mobile Safari
takes the term initial scale literally, and only sets the scale when you initially load
the page. If you rotate the device from portrait to landscape mode, mobile Safari
will scale the page as it maintains the width of the page. In that case you
may want to set maximum-scale to 1.0 to make sure your webpage doesn’t
blow up when the user rotates from portrait to landscape.

11.2 Media Queries
Media queries, which are new for CSS3, let you select resources such as CSS and
images according to the type of device upon which your application runs. You
can also create media query listeners that the browser invokes when media
parameters such as device orientation change.

11.2.1 Media Queries and CSS
In your CSS stylesheets you can declare sections for different types of devices
with @media by detecting media features such as orientation or screen width,
as illustrated in Example 11.2.

Example 11.2 Selectively applying CSS with media queries

<!DOCTYPE html>
<html>

<head>
 ...

<style>
...

 @media all and (min-device-width: 481px) and
(max-device-width: 1024px) and
(orientation:portrait) {
#controls {

...
}
...

 }

Chapter 11 Mobile666

Download from Join eBook (www.joinebook.com)

ptg7987094

 @media all and (min-device-width: 481px)
 and (max-device-width: 1024px)
 and (orientation:landscape) {

#controls {
...

}
...

 }
...

</style>
</head>

<body>
 ...

</body>
</html>

The CSS in Example 11.2 uses the min-device-width, max-device-width, and
orientation media features to distinguish portrait and landscape modes on the
iPad. Table 11.2 lists all the media features.

Table 11.2 Media features

DescriptionAccepts min-/max- PrefixesMedia Feature

The viewport width.yeswidth

The viewport height.yesheight

The screen width.yesdevice-width

The screen height.yesdevice-height

Either portrait or landscape.noorientation

The width/height ratio.yesaspect-ratio

The
device-width/device-height
ratio.

yesdevice-aspect-ratio

The number of bits per color
component.

yescolor

The number of entries in the
color lookup table.

yescolor-index

(Continues)

66711.2 Media Queries

Download from Join eBook (www.joinebook.com)

ptg7987094

Table 11.2 (Continued)

DescriptionAccepts min-/max- PrefixesMedia Feature

The number of bits per pixel in a
monochrome frame buffer.

yesmonochrome

The pixel density of the device.yesresolution

The scanning process for TV
devices.

noscan

Valid values are 1, signifying a
grid-based device, such as a tty
terminal, and 0 for non-grid
devices, such as a computer
monitor.

nogrid

CAUTION: Don’t change canvas size with media queries and CSS

There may be times when you use media queries to set the size of the canvas
depending upon device media features. If you do that, recall from Section 1.1.1,
“Canvas Element Size vs. Drawing Surface Size,” on p. 5 that changing the size
of the canvas with CSS only changes that element size and not the size of the
canvas’s drawing surface.

If you need to change the size of the canvas for different devices, you should
implement a media query list listener that changes the canvas size in JavaScript.

11.2.2 Reacting to Media Changes with JavaScript
Sometimes you need to handle media feature changes dynamically at runtime;
for example, you may need to change the size of one or more canvases when a
media feature, such as orientation, changes. In that case, it’s not enough to simply
specify conditional CSS for different orientations because you must programmat-
ically change the size of the canvas in addition to changing its size with CSS to
ensure that the drawing surface matches the size of the canvas element. See Sec-
tion 1.1.1, “Canvas Element Size vs. Drawing Surface Size,” on p. 5 for more details
about changing canvas size at runtime.

The magnifying glass application, shown in portrait mode in Figure 11.5, resizes
the application’s canvas when a user changes the device orientation.

Chapter 11 Mobile668

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 11.5 Detecting orientation changes on the iPad

Example 11.3 shows how the application reacts to orientation changes. First, the
code checks to see if the window.matchMedia() method exists; if so, the application
invokes that method to create a media query list with a single media query
pertaining to the device’s orientation.

66911.2 Media Queries

Download from Join eBook (www.joinebook.com)

ptg7987094

The application subsequently implements a media query list listener that the
browser notifies when the orientation changes. When that happens, the applica-
tion’s media query list listener resizes both the application’s canvas and the
magnifying glass lens.

Example 11.3 Media query listeners

if (window.matchMedia && screen.width < 1024) {
var m = window.matchMedia("(orientation:portrait)"),

 lw = 0,
 lh = 0,
 lr = 0;

function listener (mql) {
var cr = canvas.getBoundingClientRect();

if (mql.matches) { // Portrait
// Save landscape size to reset later

 lw = canvas.width;
 lh = canvas.height;
 lr = magnifyingGlassRadius;

// Resize for portrait
 canvas.width = screen.width - 2*cr.left;
 canvas.height = canvas.width*canvasRatio;

 magnifyingGlassRadius *=
(canvas.width + canvas.height) / (lw + lh);

}
else if (lw !== 0 && lh !== 0) { // Landscape

// Reset landscape size
 canvas.width = lw;
 canvas.height = lh;

 magnifyingGlassRadius = lr;
}

// Setting canvas width and height resets and
// erases the canvas, making a redraw necessary

draw();
}

 m.addListener(listener);
}

Chapter 11 Mobile670

Download from Join eBook (www.joinebook.com)

ptg7987094

11.3 Touch Events
The most obvious difference between mobile and desktop web applications
is the predominant use of touches—typically a finger or stylus—for the former
and a mouse for the latter. Touch events and mouse events are similar, except for
two major differences:

• There’s only one mouse cursor, but there can be multiple touch points.
• The mouse can hover, but touch points cannot.

Handling touch events is, in many respects, analogous to handling mouse events;
for example, you can add a touch start listener to a canvas by assigning a function
to its ontouchstart property, like this:

canvas.ontouchstart = function (e) {
alert('touch start');

};

You can also add a touch start listener with the addEventListener() method:

canvas.addEventListener('touchstart', function (e) {
alert('touch start');

});

Table 11.3 lists the touch event types.

Table 11.3 Touch events

Default ActionDescriptionBubblesCan CancelEvent

UndefinedThe user placed
a touch point on
the touch surface.

YesYestouchstart

UndefinedThe user moved
a touch point along
the touch surface.

YesYestouchmove

Varies: mousemove,
mousedown,
mouseup, click

A touch point has left
the touch area.

YesYestouchend

NoneA touch point has
been disrupted, or
there are more touch
points than the device
can handle.

YesNotouchcancel

67111.3 Touch Events

Download from Join eBook (www.joinebook.com)

ptg7987094

11.3.1 Touch Event Objects
The browser passes touch event listeners an event object that has the attributes
listed in Table 11.4.

Table 11.4 Touch event object attributes

DescriptionTypeAttribute

surface.
The touches that are currently touching theTouchListtouches

The touches that changed since the last touch
event. For touchstart events, the touches that
have changed are the ones that became active.
For touchmove events, it’s the touches that have
moved, and for touchend and touchcancel
events, it’s the touches that were removed from
the surface.

TouchListchangedTouches

The touches that are currently touching the
surface and reside in the element in which they
began. Until a touch is dragged out of the
element in which it began, this list is the same
as the touches list.

TouchListtargetTouches

true if the associated key (Alt, Ctrl, Meta, or
Shift) was held down during the touch event.
Since many mobile devices do not have physical
keyboards, these attributes are of dubious value.

booleanaltKey, ctrlKey,
metaKey, shiftKey

Most of the time you will only be concerned with the touches and changedTouches
attributes. Both of those attributes represent touch lists, which are lists of touch
objects. Let’s take a look at those lists next.

11.3.2 Touch Lists
Touch lists have two properties:

• length

• Touch identifiedTouch(identifier)

Given a touch list, you can find out how many touches are in the list, with the
length property, like this:

Chapter 11 Mobile672

Download from Join eBook (www.joinebook.com)

ptg7987094

canvas.ontouchstart = function (e) {
alert(e.touches.length + ' touches on the device');

};

You can access each touch in the list by treating the touch list like an array:

canvas.ontouchstart = function (e) {
for(var i=0; i < e.touches.length; ++i) {

alert('Touch at: ' + e.touches[i].pageX + ',' +
e.touches[i].pageY);

 }
};

Each touch has a unique identifier, and the identifiedTouch() method returns
the touch with the specified identifier, if it exists in the list. That method can be
useful when you need to know whether the same touch has contributed to multiple
touch events.

11.3.3 Touch Objects
Ultimately, touch event listeners need to examine the touch objects themselves.
Table 11.5 lists touch object attributes.

Table 11.5 Touch object attributes

DescriptionTypeAttribute

The X coordinate, relative to the viewport,
excluding scrolling.

longclientX

The Y coordinate, relative to the viewport,
excluding scrolling.

longclientY

A unique identifier for a given touch. Touches
retain their identity across events.

longidentifier

The X coordinate, relative to the viewport,
including scrolling.

longpageX

The Y coordinate, relative to the viewport,
including scrolling.

longpageY

The X coordinate, relative to the screen.longscreenX

The Y coordinate, relative to the screen.longscreenY

The element in which a touch started. If you drag
a touch out of its initial element, the target
property still refers to the initial element.

EventTargettarget

67311.3 Touch Events

Download from Join eBook (www.joinebook.com)

ptg7987094

11.3.4 Supporting Both Touch and Mouse Events
Although touch and mouse events are similar, you must handle them separately.
If you are implementing an application that runs in both desktop and mobile
browsers, you may wish to equate touch and mouse events and encapsulate event
handling in methods that do not need to know whether the event was a mouse
or touch event. That strategy is illustrated in Example 11.4.

Example 11.4 A template for supporting touch and mouse events

// Touch event handlers..

canvas.ontouchstart = function (e) {
 e.preventDefault(e); // Optional

mouseDownOrTouchStart(windowToCanvas(e.pageX, e.pageY));
};

canvas.ontouchmove = function (e) {
 e.preventDefault(e); // Optional

mouseMoveOrTouchMove(windowToCanvas(e.pageX, e.pageX));
};

canvas.ontouchend = function (e) {
 e.preventDefault(e); // Optional

mouseUpOrTouchEnd(windowToCanvas(e.pageX, e.pageX));
};

// Mouse event handlers..

canvas.onmousedown = function (e) {
 e.preventDefault(e); // Optional

mouseDownOrTouchStart(windowToCanvas(e.clientX, e.clientY));
};

canvas.onmousemove = function (e) {
 e.preventDefault(e); // Optional

mouseMoveOrTouchMove(windowToCanvas(e.clientX, e.clientY));
};

canvas.onmouseup = function (e) {
 e.preventDefault(e); // Optional

mouseUpOrTouchEnd(windowToCanvas(e.clientX, e.clientY));
};

// General functions...

Chapter 11 Mobile674

Download from Join eBook (www.joinebook.com)

ptg7987094

function mouseDownOrTouchStart(location) {
// IMPLEMENT

};

function mouseMoveOrTouchMove(location) {
// IMPLEMENT

};

function mouseUpOrTouchEnd(location) {
// IMPLEMENT

};

This JavaScript implements short touch and mouse event handler functions that
delegate to touch- and mouse-agnostic functions. The event handlers also invoke
the event’s preventDefault() method, which prevents the browser from
interfering with the user’s touch gestures and mouse events.

Notice the event handlers use the windowToCanvas() method discussed in Sec-
tion 1.6.1.1, “Translating Mouse Coordinates to Canvas Coordinates,” on p. 26 to
determine the touch locations. For touch events, the application passes the touch’s
pageX and pageY attributes, which account for scrolling offsets, to that function.

TIP: Prevent scrolling, among other things

You can inhibit default browser actions—such as scrolling—by calling the event’s
preventDefault() method. That method can prevent all sorts of unwanted
browser interaction, such as zooming, accidental selections, and DIV flashing.

11.3.5 Pinch and Zoom
The HTML5 API for handling touch events gives you all the tools you need to
implement portable pinch and zoom. The excerpt from the magnifying glass ap-
plication in Example 11.5 shows how the magnifying glass lets users pinch and
zoom to adjust the magnifying glass’s magnification scale.

For touch start and touch move events, if there are two touches currently touching
the device and one or more of them has changed, the user is pinching. If the user
is pinching, the magnifying glass application’s touch start event handler calculates
the distance and the ratio of the current magnification scale divided by the
distance.

Consequently, the touch move event handler also calculates the distance between
the two touches and sets the magnification scale based on the previously calculated
ratio.

67511.3 Touch Events

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 11.5 Implementing pinch and zoom

var magnificationScale = scaleOutput.innerHTML,
 pinchRatio,

...

function isPinching (e) {
var changed = e.changedTouches.length,

 touching = e.touches.length;

return changed === 1 || changed === 2 && touching === 2;
}

function isDragging (e) {
var changed = e.changedTouches.length,

 touching = e.touches.length;

return changed === 1 && touching === 1;
}

canvas.ontouchstart = function (e) {
var changed = e.changedTouches.length,

 touching = e.touches.length,
 distance;

 e.preventDefault(e);

if (isDragging(e)) {
mouseDownOrTouchStart(windowToCanvas(e.pageX, e.pageY));

}
else if (isPinching(e)) {

var touch1 = e.touches.item(0),
 touch2 = e.touches.item(1),
 point1 = windowToCanvas(touch1.pageX, touch1.pageY),
 point2 = windowToCanvas(touch2.pageX, touch2.pageY);

 distance = Math.sqrt(Math.pow(point2.x - point1.x, 2) +
 Math.pow(point2.x - point1.x, 2));
 pinchRatio = magnificationScale / distance;

}
};

canvas.ontouchmove = function (e) {
var changed = e.changedTouches.length,

 touching = e.touches.length,
 distance, touch1, touch2;

 e.preventDefault(e);

Chapter 11 Mobile676

Download from Join eBook (www.joinebook.com)

ptg7987094

if (isDragging(e)) {
mouseMoveOrTouchMove(windowToCanvas(e.pageX, e.pageY));

}
else if (isPinching(e)) {

var touch1 = e.touches.item(0),
 touch2 = e.touches.item(1),
 point1 = windowToCanvas(touch1.pageX, touch1.pageY),
 point2 = windowToCanvas(touch2.pageX, touch2.pageY),
 scale;

 distance = Math.sqrt(Math.pow(point2.x - point1.x, 2) +
 Math.pow(point2.x - point1.x, 2));

 scale = pinchRatio * distance;

if (scale > 1 && scale < 3) {
 magnificationScale =

parseFloat(pinchRatio * distance).toFixed(2);

draw();
}

}
};

canvas.ontouchend = function (e) {
 e.preventDefault(e);

mouseUpOrTouchEnd(windowToCanvas(e.pageX, e.pageY));
};

11.4 iOS5
Apple has invested heavily in native application infrastructure for iOS5,
but they are also committed to ensuring that HTML5 applications can
run—indistinguishably from native applications—on iOS5 devices. In this
section we look at how you can make your HTML5 applications look like native
iOS5 applications.

NOTE: iOS5 and Android

Apple’s iOS5 supports home screen icons, startup splash screens, and fullscreen
mode, for HTML5 applications. When this book went to press Android also sup-
ported home screen icons, but did not yet support startup splash screens in
fullscreen mode.

67711.4 iOS5

Download from Join eBook (www.joinebook.com)

ptg7987094

11.4.1 Application Icons and Startup Images
iOS5 lets you easily specify an icon and a splash screen for your HTML5
applications, like this:

<link rel='apple-touch-startup-image'
 href='startup-iPad-landscape.png'/>

<link rel='apple-touch-icon-precomposed' sizes='72x72'
 href='icon-ipad.png'/>

That’s all there is to specifying icons and splash screens on iOS5. You can
see the icons for the magnifying glass and paint applications in Figure 11.6, and
the magnifying glass application’s splash screen in Figure 11.7.

Figure 11.6 Application icons on iOS5

NOTE: iOS5 icons must be sized correctly

If you use the apple-touch-icon-precomposed link to set your application’s
home screen icon, and the icon does not appear, you may need to resize your
image. See http://bit.ly/yNkfHy for more information about icon sizes for iOS5.

Chapter 11 Mobile678

Download from Join eBook (www.joinebook.com)

http://bit.ly/yNkfHy

ptg7987094

Figure 11.7 A startup image on iOS5

11.4.2 Media Queries for iOS5 Application Icons and Startup Images
You can combine media queries and iOS5’s support for icons and splash screens
to select those features for different devices, as shown in Example 11.6.

Example 11.6 iOS5 application icons and startup images

<!-- 320x460 for iPhone 3GS -->

<link rel='apple-touch-startup-image'
 media='(max-device-width: 480px)
 and not (-webkit-min-device-pixel-ratio: 2)'
 href='startup-iphone.png' />

<!-- 640x920 for retina display -->

<link rel='apple-touch-startup-image'
 media='(max-device-width: 480px)
 and (-webkit-min-device-pixel-ratio: 2)'
 href='startup-iphone4.png' />

(Continues)

67911.4 iOS5

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 11.6 (Continued)

<!-- iPad Portrait 768x1004 -->

<link rel='apple-touch-startup-image'
 media='(min-device-width: 768px) and (orientation: portrait)'
 href='startup-iPad-portrait.png' />

<!-- iPad Landscape 1024x748 -->

<link rel='apple-touch-startup-image'
 media='(min-device-width: 768px) and (orientation: landscape)'
 href='startup-iPad-landscape.png' />

<link rel='apple-touch-icon-precomposed' sizes='72x72'
 href='icon-ipad.png' />

11.4.3 Fullscreen with No Browser Chrome
As Figure 11.8 illustrates, you can add icons for URLs to your home screen on
the iPad.

Figure 11.8 Adding the paint application to the home screen

Chapter 11 Mobile680

Download from Join eBook (www.joinebook.com)

ptg7987094

If you add the following metatag to your web application, the application will
run in fullscreen mode when the user starts it from the home screen.

<meta name='apple-mobile-web-app-capable' content='yes'/>

Figure 11.9 shows the paint application running in fullscreen mode.

Figure 11.9 The paint application—fullscreen—on the iPad

11.4.4 Application Status Bar
iOS5 also lets you control the look of the status bar, as shown in Figure 11.10.

To set the look of the status bar, use the following metatag:

<meta name='apple-mobile-web-app-status-bar-style'
 content='black-translucent'/>

You can use the following three values for the content attribute:

• default

• black

• black-translucent

68111.4 iOS5

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 11.10 Black vs. black-translucent status bars

The default and black modes are the same, and are depicted in the top screenshot
in Figure 11.10. black-translucent is a partially transparent version of the black
status bar.

If you look closely at the screenshots in Figure 11.10, you will see that the controls
are closer to the top of the screen when the status bar is black-translucent. When
the status bar is opaque, meaning either black or default, iOS5 positions the top
of the webpage at the bottom of the status bar. When the status bar is translucent,
iOS5 positions the top of the webpage at the top of the status bar.

11.5 A Virtual Keyboard
The iPad comes with a built-in virtual keyboard, but it only displays its keyboard
when a user taps in a text field. Short of going native, there is no way to show
the keyboard and capture keystrokes on the iPad if your application lets users
enter text without tapping in a text field. In fact, the paint application discussed
in this chapter and throughout this book is just such an application. After you
activate the text icon, you can click anywhere in the drawing canvas, and a cursor

Chapter 11 Mobile682

Download from Join eBook (www.joinebook.com)

ptg7987094

will appear. Subsequently you can type—provided that you have a keyboard—and
the paint application draws the text, as depicted in Figure 11.11.

Figure 11.11 Entering text in the paint application

Because iOS5 only shows the keyboard when a user physically taps into a text
field—programmatically giving a text field focus does not show the key-
board—most developers are stuck if they are developing an application that has
an alternate text input strategy. However, for developers familiar with Canvas,
it’s possible to implement your own keyboard and show it yourself. The next
section illustrates how to do that.

11.5.1 A Canvas-Based Keyboard Implementation
In this section we implement a Canvas-based keyboard, shown in Figure 11.12,
that will work on any device. You can

• Show and hide the keyboard
• Make the keyboard translucent
• Attach the keyboard to any DIV
• Wire the keyboard to the underlying application

68311.5 A Virtual Keyboard

Download from Join eBook (www.joinebook.com)

ptg7987094

The keyboard automatically

• Supports both mouse and touch events
• Activates keys and makes them flash when you touch them
• Resizes the keyboard and its keys to fit the keyboard’s enclosing DIV
• Notifies event listeners when a key is activated

The keyboard reiterates some of the things you have learned in this book:

• Using invisible HTML elements with a canvas, discussed in Section 1.8.1,
“Invisible HTML Elements,” on p. 41

• Applying colors and shadows for filling and stroking shapes, discussed in
Section 2.4, “Colors and Transparency,” on p. 72

• Creating linear gradients, discussed in Section 2.5, “Gradients and Patterns,”
on p. 76

• Implementing rounded rectangles, discussed in Section 2.9.3, “The arcTo()
Method,” on p. 127

• Implementing custom controls, discussed in Chapter 10
• Supporting event listeners for custom controls, discussed in Section 10.3,

“Sliders,” on p. 631

Figure 11.12 A keyboard with opaque keys on the iPad

Chapter 11 Mobile684

Download from Join eBook (www.joinebook.com)

ptg7987094

• Handling both mouse and touch events, discussed in Section 11.3.4,
“Supporting Both Touch and Mouse Events,” on p. 674

You can also make the keyboard translucent, which, in turn, makes all of the keys
translucent, as illustrated in Figure 11.13.

Figure 11.13 A keyboard with translucent keys on the iPad

The paint application makes the keyboard opaque when the text cursor is in the
top half of the drawing canvas; otherwise, the application makes the keyboard
translucent so the user can see the text as they type.

Like the custom controls discussed in Chapter 10, you attach the keyboard to a
DOM element, typically a DIV. When you make that attachment, the keyboard
resizes to fit its enclosing DOM element, as illustrated in Figure 11.14.

Before we take a look at the keyboard’s implementation, let’s see how the paint
application uses the keyboard. Example 11.7 shows an excerpt from the
paint application’s HTML. That HTML includes an invisible DIV whose id is
keyboard. The keyboard DIV is initially invisible by virtue of its CSS, which sets
its height to zero pixels.

68511.5 A Virtual Keyboard

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 11.7 An excerpt from the paint application’s HTML

<!DOCTYPE html>
<html>

<head>
 ...

<style>
...

#keyboard {
position: absolute;
left: 25px;
top: 0px;
width: 1000px;
height: 0px;

background: rgba(129,129,138,0.4);

-webkit-box-shadow: rgba(0,0,0,0.2) 3px 3px 4px;
-moz-box-shadow: rgba(0,0,0,0.2) 3px 3px 4px;
box-shadow: rgba(0,0,0,0.2) 3px 3px 4px;

}

</style>
</head>

<body>
 ...

<canvas id='iconCanvas' width='75' height='685'>
 Canvas not supported

</canvas>

<canvas id='drawingCanvas' width='915' height='685'>
 Canvas not supported

</canvas>

<div id='keyboard'></div>
 ...

<script src='keyboard.js'></script>
<script src='example.js'></script>

</body>
</html>

The paint application’s JavaScript shows and hides the keyboard as appropriate.
Example 11.8 lists that JavaScript.

Chapter 11 Mobile686

Download from Join eBook (www.joinebook.com)

ptg7987094

Figure 11.14 The keyboard resizes to fit its enclosing HTML element

Example 11.8 Using the keyboard in the drawing application

var keyboard = new COREHTML5.Keyboard();
...

// Keyboard. ..

function showKeyboard() {
var keyboardElement = document.getElementById('keyboard');

 keyboardElement.style.height = '370px';
 keyboardElement.style.top = '375px';
 keyboardElement.style.border = 'thin inset rgba(0,0,0,0.5)';
 keyboardElement.style.borderRadius = '20px';

 keyboard.resize(1000, 368);
 keyboard.translucent = mousedown.y > drawingCanvas.height/2;
 keyboard.draw();

}

(Continues)

68711.5 A Virtual Keyboard

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 11.8 (Continued)

function hideKeyboard() {
var keyboardElement = document.getElementById('keyboard');

 keyboardElement.style.height = '0px';
 keyboardElement.style.top = '760px';
 keyboardElement.style.border = '';
 keyboardElement.style.borderRadius = '';

 keyboard.resize(1000, 0);
}
...

// Text..

function startDrawingText() {
 drawingText = true;
 currentText = '';

drawTextCursor();
showKeyboard();

}
...

// Event handling functions......................................

function mouseDownOrTouchStartInControlCanvas(loc) {
if (drawingText) {

 drawingText = false;
eraseTextCursor();
hideKeyboard();

}
...

};
...

// Initialization..

keyboard.appendTo('keyboard');
...

When the paint application starts, it creates a new keyboard and appends the
keyboard to the keyboard element.

Chapter 11 Mobile688

Download from Join eBook (www.joinebook.com)

ptg7987094

The paint application implements two methods—showKeyboard() and
hideKeyboard()—to show and hide the keyboard, respectively. Those methods
obtain a reference to the keyboard DIV and resize the DIV’s height to make it visible
or invisible, respectively.

The paint application shows the keyboard when the user starts drawing text and
hides the keyboard when the user subsequently taps an icon.

NOTE: The keyboard implemented here is incomplete

In the interests of brevity, the keyboard implemented in this chapter is not very
full-featured; for example, the keyboard does not have numeric keys, nor any
provision for them.

The keyboard illustrates how to implement a keyboard control and integrate it
into an HTML5 application running on a tablet computer, such as the iPad. Feel
free to extend the keyboard’s functionality and use it in your own applications.

The keyboard is implemented with two JavaScript objects: Key and Keyboard.
Both of those objects exist in a global JavaScript object named COREHTML5 to reduce
the possibility of name collisions, as discussed in Chapter 10.

Now that you’ve seen how to use the keyboard, let’s see how it’s implemented.
We start by looking at the implementation of the keys.

11.5.1.1 The Keys
Keys are simple objects with—as you can see from the Key constructor listed in
Example 11.9—three properties. Keys have text that they display, and keys can
be selected and translucent.

Example 11.9 Key constructor

COREHTML5.Key = function (text) {
this.text = text;
this.selected = false;
this.translucent = false;

}

The Key object’s methods are implemented in its prototype, which is listed in
Example 11.10.

68911.5 A Virtual Keyboard

Download from Join eBook (www.joinebook.com)

ptg7987094

Keys draw a rounded rectangle filled with a gradient, and they draw text centered
in that rectangle. That drawing is done by the draw() method, which also creates
the key gradient and sets context properties for the rectangle and the text. You
can erase a key, redraw a key, make a key opaque or translucent, and select a key,
which makes the key’s gradient darker than the other keys.

Example 11.10 Key methods

COREHTML5.Key.prototype = {
 createPath: function (context) {
 context.beginPath();

if (this.width > 0)
 context.moveTo(this.left + this.cornerRadius, this.top);

else
 context.moveTo(this.left - this.cornerRadius, this.top);

 context.arcTo(this.left + this.width, this.top,
this.left + this.width,
this.top + this.height,
this.cornerRadius);

 context.arcTo(this.left + this.width,
this.top + this.height,
this.left, this.top + this.height,
this.cornerRadius);

 context.arcTo(this.left, this.top + this.height,
this.left, this.top,
this.cornerRadius);

if (this.width > 0) {
 context.arcTo(this.left, this.top,

this.left + this.cornerRadius, this.top,
this.cornerRadius);

}
else {

 context.arcTo(this.left, this.top,
this.left - this.cornerRadius, this.top,
this.cornerRadius);

}
},

Chapter 11 Mobile690

Download from Join eBook (www.joinebook.com)

ptg7987094

 createKeyGradient: function (context) {
var keyGradient = context.createLinearGradient(

this.left, this.top,
this.left, this.top + this.height);

if (this.selected) {
 keyGradient.addColorStop(0, 'rgb(208,208,210)');
 keyGradient.addColorStop(1.0, 'rgb(162,162,166)');

}
else if (this.translucent) {

 keyGradient.
 addColorStop(0, 'rgba(298,298,300,0.20)');
 keyGradient.
 addColorStop(1.0, 'rgba(255,255,255,0.20)');

}
else {

 keyGradient.addColorStop(0, 'rgb(238,238,240)');
 keyGradient.addColorStop(1.0, 'rgb(192,192,196)');

}

return keyGradient;
},

 setKeyProperties: function (context, keyGradient) {
 context.shadowColor = 'rgba(0,0,0,0.8)';
 context.shadowOffsetX = 1;
 context.shadowOffsetY = 1;
 context.shadowBlur = 1;

 context.lineWidth = 0.5;

 context.strokeStyle = 'rgba(0,0,0,0.7)';
 context.fillStyle = keyGradient;

},

 setTextProperties: function (context) {
 context.shadowColor = undefined;
 context.shadowOffsetX = 0;

 context.font = '100 ' + this.height/3 + 'px Helvetica';
 context.fillStyle = 'rgba(0,0,0,0.4)';
 context.textAlign = 'center';
 context.textBaseline = 'middle';

},

(Continues)

69111.5 A Virtual Keyboard

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 11.10 (Continued)

 draw: function (context) {
var keyGradient = this.createKeyGradient(context);

 context.save();

this.createPath(context);

this.setKeyProperties(context, keyGradient);
 context.stroke();
 context.fill();

this.setTextProperties(context);
 context.fillText(this.text, this.left + this.width/2,

this.top + this.height/2);

 context.restore();
},

 erase: function(context) {
 context.clearRect(this.left-2, this.top-2,

this.width+6, this.height+6);
},

 redraw: function (context) {
this.erase(context);
this.draw(context);

},

 toggleSelection: function (context) {
this.selected = !this.selected;

},

 isPointInKey: function (context, x, y) {
this.createPath(context);
return context.isPointInPath(x, y);

},

 select: function () {
this.selected = true;

},

 deselect: function () {
this.selected = false;

},
}

The Key object is used by the Keyboard object. Let’s take a look at that next.

Chapter 11 Mobile692

Download from Join eBook (www.joinebook.com)

ptg7987094

11.5.1.2 The Keyboard
The Keyboard object is a custom control, as defined in Chapter 10. Like the custom
controls discussed in that chapter, you create keyboards and append them to an
existing DOM element, typically a DIV.

The Keyboard constructor is listed in Example 11.11. That constructor creates a
two-dimensional array with 4 rows and 11 columns, filled with Key objects. The
constructor subsequently creates the keyboard’s canvas and places that canvas
into a DOM element.

Example 11.11 Keyboard constructor

// Constructor. ...

COREHTML5.Keyboard = function() {
var keyboard = this;

this.keys = [
[new COREHTML5.Key('Q'), new COREHTML5.Key('W'),
new COREHTML5.Key('E'), new COREHTML5.Key('R'),
new COREHTML5.Key('T'), new COREHTML5.Key('Y'),
new COREHTML5.Key('U'), new COREHTML5.Key('I'),
new COREHTML5.Key('O'), new COREHTML5.Key('P'),
new COREHTML5.Key('<')],

[new COREHTML5.Key('A'), new COREHTML5.Key('S'),
new COREHTML5.Key('D'), new COREHTML5.Key('F'),
new COREHTML5.Key('G'), new COREHTML5.Key('H'),
new COREHTML5.Key('J'), new COREHTML5.Key('K'),
new COREHTML5.Key('L'), new COREHTML5.Key('Enter')],

[new COREHTML5.Key('^'), new COREHTML5.Key('Z'),
new COREHTML5.Key('X'), new COREHTML5.Key('C'),
new COREHTML5.Key('V'), new COREHTML5.Key('B'),
new COREHTML5.Key('N'), new COREHTML5.Key('M'),
new COREHTML5.Key(','), new COREHTML5.Key('.'),
new COREHTML5.Key('^')],

[new COREHTML5.Key(';'), new COREHTML5.Key(':'),
new COREHTML5.Key(' '), new COREHTML5.Key('?'),
new COREHTML5.Key('!')]

];

this.createCanvas();
this.createDOMElement();

this.translucent = false;

(Continues)

69311.5 A Virtual Keyboard

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 11.11 (Continued)

this.shifted = false;
this.keyListenerFunctions = [];

this.context.canvas.onmousedown = function (e) {
 keyboard.mouseDownOrTouchStart(keyboard.context,
 keyboard.windowToCanvas(keyboard.context.canvas,
 e.clientX, e.clientY));

// Prevents inadvertent selections on desktop

 e.preventDefault();
};

this.context.canvas.ontouchstart = function (e) {
 keyboard.mouseDownOrTouchStart(keyboard.context,
 keyboard.windowToCanvas(keyboard.context.canvas,
 e.touches[0].clientX,
 e.touches[0].clientY));

 e.preventDefault(); // Prevents flashing on iPad
};

return this;
}

By default, keyboards are not translucent, meaning their keys are opaque.
Also by default, keyboards are not shifted, meaning the user has not activated
the Shift key. And every keyboard is created with an empty array of key listeners
that the keyboard notifies when the user activates its keys.

Finally, the Keyboard constructor adds two event handlers to the keyboard’s
canvas, one for mouse down events and the other for touch start events. Those
event handlers invoke a method that responds to both events.

Example 11.12 lists the Keyboard object’s methods.

The keyboard’s methods are split up into five logical groupings:

• General methods, which most custom controls implement
• Drawing methods, which draw the keyboard and its keys
• Key methods, which deal with keys, such as creating and activating keys
• Key listener methods, which support registering and firing events to listeners
• An event handler that handles both mouse and touch events

Chapter 11 Mobile694

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 11.12 Keyboard methods

// Prototype..

COREHTML5.Keyboard.prototype = {

// General functions ..

 windowToCanvas: function (canvas, x, y) {
var bbox = canvas.getBoundingClientRect();
return { x: x - bbox.left * (canvas.width / bbox.width),

 y: y - bbox.top * (canvas.height / bbox.height)
};

},

 createCanvas: function () {
var canvas = document.createElement('canvas');
this.context = canvas.getContext('2d');

},

 createDOMElement: function () {
this.domElement = document.createElement('div');
this.domElement.appendChild(this.context.canvas);

},

 appendTo: function (elementName) {
var element = document.getElementById(elementName);

 element.appendChild(this.domElement);
this.domElement.style.width = element.offsetWidth + 'px';
this.domElement.style.height = element.offsetHeight + 'px';
this.resize(element.offsetWidth, element.offsetHeight);
this.createKeys();

},

 resize: function (width, height) {
this.domElement.style.width = width + 'px';
this.domElement.style.height = height + 'px';

this.context.canvas.width = width;
this.context.canvas.height = height;

},

// Drawing functions...

(Continues)

69511.5 A Virtual Keyboard

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 11.12 (Continued)

 drawRoundedRect: function (context, cornerX, cornerY,
 width, height, cornerRadius) {

if (width > 0)
this.context.moveTo(cornerX + cornerRadius, cornerY);

else
this.context.moveTo(cornerX - cornerRadius, cornerY);

 context.arcTo(cornerX + width, cornerY,
 cornerX + width, cornerY + height,
 cornerRadius);

 context.arcTo(cornerX + width, cornerY + height,
 cornerX, cornerY + height,
 cornerRadius);

 context.arcTo(cornerX, cornerY + height,
 cornerX, cornerY,
 cornerRadius);

if (width > 0) {
 context.arcTo(cornerX, cornerY,
 cornerX + cornerRadius, cornerY,
 cornerRadius);

}
else {

 context.arcTo(cornerX, cornerY,
 cornerX - cornerRadius, cornerY,
 cornerRadius);

}

 context.stroke();
 context.fill();

},

 drawKeys: function () {
for (var row=0; row < this.keys.length; ++row) {

for (var col=0; col < this.keys[row].length; ++col) {
 key = this.keys[row][col];

 key.translucent = this.translucent;
 key.draw(this.context);

}
}

},

Chapter 11 Mobile696

Download from Join eBook (www.joinebook.com)

ptg7987094

 draw: function (context) {
var originalContext, key;

if (context) {
 originalContext = this.context;

this.context = context;
}

this.context.save();
this.drawKeys();

if (context) {
this.context = originalContext;

}

this.context.restore();
},

 erase: function() {
// Erase the entire canvas
this.context.clearRect(0, 0, this.context.canvas.width,

this.context.canvas.height);
},

// Keys..

 adjustKeyPosition: function (key, keyTop, keyMargin,
 keyWidth, spacebarPadding) {

var key = this.keys[row][col],
 keyMargin = this.domElement.clientWidth /

(this.KEY_COLUMNS*8),

 keyWidth = ((this.domElement.clientWidth - 2*keyMargin) /
this.KEY_COLUMNS) - keyMargin,

 keyLeft = keyMargin + col * keyWidth + col * keyMargin;

if (row === 1) keyLeft += keyWidth/2;
if (row === 3) keyLeft += keyWidth/3;

 key.left = keyLeft + spacebarPadding;
 key.top = keyTop;

},

(Continues)

69711.5 A Virtual Keyboard

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 11.12 (Continued)

 adjustKeySize: function (key, keyMargin, keyWidth, keyHeight) {
if (key.text === 'Enter') key.width = keyWidth * 1.5;
else if (key.text === ' ') key.width = keyWidth * 7;
else key.width = keyWidth;

 key.height = keyHeight;
 key.cornerRadius = 5;

},

 createKeys: function() {
var key,

 keyMargin,
 keyWidth,
 keyHeight,
 spacebarPadding = 0;

for (row=0; row < this.keys.length; ++row) {
for (col=0; col < this.keys[row].length; ++col) {

 key = this.keys[row][col];

 keyMargin = this.domElement.clientWidth /
(this.KEY_COLUMNS*8);

 keyWidth = ((this.domElement.clientWidth - 2*keyMargin) /
this.KEY_COLUMNS) - keyMargin;

 keyHeight = ((this.KEYBOARD_HEIGHT - 2*keyMargin) /
this.KEY_ROWS) - keyMargin;

 keyTop = keyMargin + row * keyHeight + row * keyMargin;

this.adjustKeyPosition(key, keyTop, keyMargin,
 keyWidth, spacebarPadding);

this.adjustKeySize(key, keyMargin, keyWidth, keyHeight);

if (this.keys[row][col].text === ' ') {
 spacebarPadding = keyWidth*6; // Pad from now on

}
}

}
},

Chapter 11 Mobile698

Download from Join eBook (www.joinebook.com)

ptg7987094

 getKeyForLocation: function (context, loc) {
var key;

for (var row=0; row < this.keys.length; ++row) {
for (var col=0; col < this.keys[row].length; ++col) {

 key = this.keys[row][col];

if (key.isPointInKey(context, loc.x, loc.y)) {
return key;

}
}

}
return null;

},

 shiftKeyPressed: function (context) {
for (var row=0; row < this.keys.length; ++row) {

for (var col=0; col < this.keys[row].length; ++col) {
 nextKey = this.keys[row][col];

if (nextKey.text === '^') {
 nextKey.toggleSelection();
 nextKey.redraw(context);

this.shifted = nextKey.selected;
}

}
}

},

 activateKey: function (key, context) {
 key.select(); setTimeout(

function (e) {
 key.deselect();
 key.redraw(context);

}, 200);

 key.redraw(context);

this.fireKeyEvent(key);
},

// Key listeners...

 addKeyListener: function (listenerFunction) {
this.keyListenerFunctions.push(listenerFunction);

},

(Continues)

69911.5 A Virtual Keyboard

Download from Join eBook (www.joinebook.com)

ptg7987094

Example 11.12 (Continued)

 fireKeyEvent: function (key) {
for (var i=0; i < this.keyListenerFunctions.length; ++i) {

this.keyListenerFunctions[i](
this.shifted ? key.text : key.text.toLowerCase());

}
},

// Event handlers..

 mouseDownOrTouchStart: function (context, loc) {
var key = this.getKeyForLocation(context, loc);

if (key) {
if (key.text === '^') {

this.shiftKeyPressed(context);
}
else {

if (this.shifted) this.activateKey(key, context);
else

this.activateKey(key, context);}
}

}
};

The general methods create the keyboard’s canvas and DOM element, and append
that element to an existing element in the DOM tree. The keyboard appendTo()
method invokes resize(), which resizes the keyboard’s canvas and DOM elements
to fit into the enclosing DOM element. For more information about those methods,
see the implementation of the other custom controls in Chapter 10.

The Keyboard object’s drawing methods are straightforward. The draw() method
takes an optional Canvas context; if you pass that optional context, the keyboard
will draw into that context instead of its own. Either way, that drawing consists
of drawing the keyboard’s keys.

The key methods encapsulate most of the Keyboard object’s grunt work, such as
creating the keys, returning a key given a location in the keyboard’s canvas, and
activating keys.

The key listener methods—addKeyListener() and fireKeyEvent()—let you
register key listeners with the keyboard and fire key events, respectively.

Finally, the mouseDownOrTouchStart() method reacts to mouse down and touch
start events, by activating the key that was pressed, if any.

Chapter 11 Mobile700

Download from Join eBook (www.joinebook.com)

ptg7987094

11.6 Conclusion
In this chapter you saw how to make your Canvas-based applications run on
mobile devices. We began by looking at the mobile viewport and the associated
viewport metatag, which lets you configure the offscreen layout viewport used
by multiple browsers. Then we looked at media queries, how you can use them
to customize CSS that you use for particular devices, and how you can use media
query list listeners in JavaScript to react to media feature changes, such as device
orientation changes.

You also saw how to handle touch events and how to portably implement pinch
and zoom using the touch events API.

Then we took a short detour to examine how to make your HTML5 applications
indistinguishable from native applications on iOS5, including creating application
icons and startup images and running your applications fullscreen, with no
browser chrome.

Finally, we concluded by examining the implementation of a virtual keyboard,
which called upon several of the techniques that you have learned earlier in
this book.

70111.6 Conclusion

Download from Join eBook (www.joinebook.com)

ptg7987094

This page intentionally left blank

Download from Join eBook (www.joinebook.com)

ptg7987094

Numbers
3d

Canvas context, 11
simulating with parallax, 377–378

3D Monster Maze game, 359

A
acceleration. See ease in
add() method (Vector), 501–502
addChangeListener() method (Slider),

636, 642
addCirclePath() function (cutouts

example), 99–103
addColorStop() method

(CanvasGradient), 77–79
addEventListener() method (window), 26,

32, 671
addKeyListener() method

of Game object, 544, 558–560, 598–601
of Keyboard object, 700

addLine() method (Paragraph), 239, 242
addOuterRectanglePath() function

(cutouts example), 99–103
addRectanglePath() function (cutouts

example), 99–103
addSprite() method (Game), 544
addTrianglePath() function (cutouts

example), 99–103
Adobe Illustrator, 23

bézier curves in, 137
paths in, 89

advance() method (SpriteSheetPainter),
407

air resistance, 461
algebraic equations, 54, 175–176
Alt key, 32, 672
altKey browser attribute, 32, 672
Android

home screen icons on, 677
layout viewport on, 661

angles, 54–55

animate() function, 195, 332, 353–354, 360,
410

locking up browser with, 341
time parameter of, 348, 350

animate() method (Game), 550–551
animation frames

dropping, 368
ending, 544–546, 550
number of pixels to move objects for.

See time-based motion
starting, 544–546, 550

animation loop, 340–357, 416
implementing, 544
portable. See

requestNextAnimationFrame()
sprite-based, 424

animation timers, 389–390, 429
for warping time, 595
starting, 416

animations, 14, 306–312, 339–391
allocating memory during, 390–391
best practices for, 390–391
callback for, 421–423
completion percentage of, 454
Flash-based, 339
linear vs. nonlinear, 423
performance of, 18–22, 366, 390–391, 404
period of, 421
separating updating and drawing in,

390
time-based, 345
timed, 385–390
warping, 473–482

AnimationTimer object, 389–390, 450–456
getElapsedTime() method, 386, 389,

451, 454–455, 464, 475
isOver() method, 389–390
isRunning() method, 386
makeBounce() method, 457
makeEaseIn() method, 456–457
makeEaseInOut() method, 457

703

Index

Download from Join eBook (www.joinebook.com)

ptg7987094

AnimationTimer object (cont.)
makeEaseOut() method, 457
makeElastic() method, 457
makeLinear() method, 457
reset() method, 386

Animator.js library, 394
anti-aliasing, 107
appendTo() method

for custom controls, 616–617
of Keyboard object, 700
of Slider object, 619, 624–625, 628

Apple, 329–330
Apple’s Cocoa graphics system, 23

bézier curves in, 137
paths in, 89

apple-mobile-web-app-status-bar-style
metatag, 681

apple-touch-icon-precomposed link, 678
applications

desktop vs. mobile, 657–659, 671
fullscreen mode of, 677, 680–681
home screen icon of, 677–680
native, 677
splash screen of, 677–680
status bar of, 681–682

applyFrictionAndGravity() method
(Pinball), 594–595

arc() method (Canvas context), 22–23,
91–92, 95–103, 124–125, 130, 136, 361

optional argument of, 127
arcs, 124–136

direction of, 99–100, 124, 127
drawing, 91–92
for text placement, 223–225

arcTo() method (Canvas context), 127–130
ArrayBuffer object, 291
aspect-ratio media feature, 667
audio. See sound
auto-pause, 583–584
axes, 495–525

direction of, 503

B
background, 360–364

blitting from offscreen, 360–361,
363–364, 367, 390

canvas for, 574

clipping to damaged areas, 360–364, 390
color of, 3
erasing, 360–361, 364–367
painting, 546, 592
redrawing, 360–361
restoring, 71, 322
scrolling, 265, 370–377, 577–579
scrollBackground() function,

577–579
Backspace key, 232, 237–241, 245–251
backspace() method (Paragraph),

239–241, 245–251
ballMover object, 593–594
execute() method, 594

ballWillHitLedge() function (bounding
areas example), 485

beginPath() method (Canvas context), 12,
22–23, 91–94, 100, 103, 110, 125, 136,
361

behaviors, 394–395, 411–417
combining, 412–415
execute() method, 394, 411–417, 431,

459, 473, 475, 594
timed, 416–417

Bespin text editor, 252
bézier curves, 137–143

cubic, 141–143
cursorInControlPoint() function, 162
cursorInEndPoint() function, 162
drawing, 158–159
editing, 158–169
for rounded corners, 138–139
quadratic, 137–141

Bézier, Pierre, 137
bezierCurveTo() method (Canvas

context), 141–143
bit-shifting, 317, 320
blinkCursor() function (blinking cursor

example), 230–231, 243
blitting, 360–361, 363–364, 367, 390
blushing (in animations), 450
bomb exploding application, 417–423
bounce() function (pinball game), 539, 604,

609
bouncing, 459, 469, 471–472, 537–541

after collisions between objects, 606
and velocity, 609

Index704

Download from Join eBook (www.joinebook.com)

ptg7987094

handleEdgeCollisions() function,
488–489

off stationary objects, 62, 488–489
bounding areas, 483–488

accuracy of, 494
ballWillHitLedge() function, 485
circular, 485–488
rectangular, 484–485

bounding volumes, 483
brieflyShowTryAgainImage() method

(Pinball), 592
browsers, 13, 15–16

backfilling functionality into, 350
clamping in, 342, 583
composition operations in, 85, 186–187
custom controls in, 615
desktop, 660
domains in, 313
double buffering in, 366–367, 390–391
executing JavaScript in, 299–301, 340
fallback content for, 3
FileSystem API support in, 326
font string values in, 210
garbage collecting in, 391
ignoring content outside canvas in, 265
image loading in, 256
line height in, 208, 210
locking up with animate(), 341
maximum width of text in, 205
mobile, 659–666
no scrolling into view in, 169
px units in, 4
reacting to events in, 31, 111
scaling canvas in, 6–8
scrolling in, 675
setting frame rate in, 343–348
shadows in, 85
sound formats in, 557–558
SVG support in, 74
touch events in, 672
video formats in, 329–330
WebKit-based, 16–17, 19, 85
web-safe fonts in, 209
window coordinates in, 26, 30–31, 46,

111, 673
window focus of, 583
z-index of elements in, 39

bucket game, 485–487, 490–494
isBallInBucket() method, 486–487,

493–494

C
CAD (computer-aided design systems),

150
call() method (Function), 551
cancelRequestAnimationFrame() method

(window), 344–345
canPlay...() methods (Game), 557–558
canPlaySound() method (Game), 544
canvas element (HTML), 1–8

background color of, 3
dir attribute, 211
drawing:

into canvas, 253, 258, 266–270,
314–317, 325–326

into itself, 266, 270, 274, 316–317, 322,
324–325

outside boundaries of, 260–266,
370–377

erasing, 24
getContext() method, 4, 8
hardware acceleration for, 659
inappropriate uses of, 266
offscreen, 51–53, 266, 270–274, 302,

325–326, 628
and performance, 274
blitting from, 360–361, 363–364, 367,

390
created programmatically, 52
for double buffering, 365
invisibility of, 52

onscreen, 628
opacity of, 646, 650
playing video in, 331–333
printing, 46–51
saving, 51
scaling, 270–272, 316–317, 324–325
size of, 4–8, 28

changing, 646, 650, 668–670
default, 5–6, 67, 272
in CSS, 5–7

state of, 12
using HTML elements in, 36–46
width and height attributes, 7

705Index

Download from Join eBook (www.joinebook.com)

ptg7987094

Canvas context, 9–11
arc() method, 22–23, 91–92, 95–103,

124–125, 127, 130, 136, 361
arcTo() method, 127–130
beginPath() method, 12, 22–23, 91–94,

100, 103, 110, 125, 136, 361
bezierCurveTo() method, 141–143
canvas attribute, 9
clearRect() method, 22, 24, 70–71, 188
clip() method, 87, 187–197, 302
closePath() method, 91–92, 511
createImageData() method, 254,

285–286
createLinearGradient() method, 76–79
createPattern() method, 80–83
createRadialGradient() method, 78–79
drawImage() method, 253–258, 266, 270,

276, 282, 312–315, 322–324, 328, 332,
407

extending, 10, 118–120, 129
fill() method, 23, 77, 91–92, 94–95, 148,

398
fillRect() method, 88
fillStyle attribute, 4, 9, 12, 72–75,

91–92, 136
fillText() method, 4, 9–10, 23, 88, 201,

210–211, 215, 222, 237, 266
font attribute, 9
getImageData() method, 12, 34,

228–230, 253, 274–301, 306, 309, 313,
317, 321–322

globalAlpha attribute, 9, 69, 75, 256, 282,
306–312

globalCompositeOperation attribute,
9, 12, 181–187, 282

lineCap attribute, 9, 121, 123
lineJoin attribute, 9, 70–72, 122–123
lineTo() method, 23–24, 99, 103–104,

110, 144
lineWidth attribute, 9, 11, 71–72, 91,

103–104, 123
measureText() method, 201, 216–217,

227–228, 237
miterLimit attribute, 10, 72, 122–124
moveTo() method, 23–24, 99, 103–104,

110, 118–119, 125, 144

pointInPath() method, 151
putImageData() method, 34, 229, 253,

274–301, 314, 322
quadraticCurveTo() method, 138–141
rect() function, 91–94, 99–100, 361
restore() method, 11–12, 85, 136, 185,

194, 197
rotate() method, 172–175, 225
roundedRect() extension function,

128–129
save() method, 11–12, 85, 136, 185, 194,

197, 361
scale() method, 172–175
scrollPathIntoView() method, 169–170
setClip() method, 324–325
setTransform() method, 174–181
shadowBlur attribute, 10, 83–85, 88
shadowColor attribute, 10, 83–85, 88
shadowOffsetX and shadowOffsetY

attributes, 10, 83–88
stroke() method, 23–24, 91–94, 103, 110,

148, 398, 603
strokeRect() method, 88, 170
strokeStyle attribute, 4, 10, 12, 72–75,

91–92, 136
strokeText() method, 4, 9–10, 88,

201–207, 210, 215, 237
textAlign attribute, 10, 136, 201–202,

210–215, 220–221
textBaseline attribute, 10, 136, 201–202,

210–215, 220–221
toBlob() method, 8, 51
toDataURL() method, 8, 46–51, 313
transform() method, 174–181
translate() method, 170–175, 225

Canvas specification. See HTML5 Canvas
specification

CanvasGradient object, 77–79
addColorStop() method, 77–79

CanvasPattern object, 81
CanvasRenderingContext2D object. See

Canvas context
captureCanvasPixels() function (rubber

bands example), 285
captureRubberbandPixels() function

(rubber bands example), 276, 280–281

Index706

Download from Join eBook (www.joinebook.com)

ptg7987094

caret, 233, 239
cell phones

performance of, 280
touch events in, 67

changedTouches browser attribute, 672
checkboxes, 137
checkMTVAxisDirection() function

(pinball game), 608
Chrome browser, 15

composition operations in, 186–187
cross-domain images in, 313
documentation for, 17
FileSystem API support in, 326
looping backwards in, 320
maximum width of text in, 205
requestAnimationFrame() in, 344,

346–348
time bug in, 348, 350
timelines in, 19
video formats in, 329

circles, 124–136
axes for, 516
colliding with polygons, 516–521
drawing, 92
MTV for, 530
rubberband, 126–127

circular text, 223–225
drawCircularText() function, 224

clamping, 342
clearHighScores() method (Game), 544,

560–561
clearInterval() method (window), 231
clearRect() method (Canvas context), 22,

24, 70–71, 188
clearScreen() method (Game), 550
clientX and clientY browser attributes,

30, 673
clip() method (Canvas context), 87,

187–197, 302, 361
clipping region, 187–197

and drawing images, 256, 302
applying filters with, 302
compositing shadows into, 69
default size of, 71, 187
draw() method, 362–363
drawDiscBackground() function, 363

erasing with, 187–194
for background areas, 360–364, 390
setting, 322, 324
telescoping with, 194–197

clobbering, 121
clock application, 22–25, 398–404
drawCenter() function, 23
drawCircle() function, 23
drawClock() function, 24
drawNumerals() function, 23
making snapshots of, 46–51
using offscreen canvases for, 51–53

closePath() method (Canvas context),
91–92, 511

collidesWith() method (Shape), 504–508,
518–520, 529–530, 532, 604

collision detection, 56, 483–541, 546, 592,
601–614

a posteriori, 485–488, 601, 610
a priori, 485, 488
and clamping, 583
and velocity, 461
between ball and:

flippers, 604, 611–614
triangles, 609–611

detectCollisions() function, 512, 532
displacement vector for, 594
separation after, 488, 526–541, 609
techniques:

bounding areas, 483–485
circular bounding areas, 485–488
ray casting, 490–494
SAT, 495–541

color media feature, 667
color picker application, 631–643
color wheel, 75
color-index media feature, 667
colors, 72–75

changing at edges, 296
CSS strings for, 74
inverting, 293
lookup table for, 667
names for, 74

Command design pattern (sprites), 394,
412

Commodore Amiga computer, 393

707Index

Download from Join eBook (www.joinebook.com)

ptg7987094

compositing, 181–187
and shadows, 85
controversy of, 186–187
global vs. local, 187
operations for, 69, 181–187, 256

console object, 16
log() method, 16
profile() function, 17
profileEnd() function, 17

contenteditable attribute (HTML5), 252
contexts, 8–12

2d. See Canvas context
3d, 11

controls
checkboxes, 137
custom. See custom controls
input element, 252, 615
textarea element, 252

coordinate system
canvas vs. window, 26, 30–31, 46, 111,

674–675
origin of, 67, 170
rotating, 171–173, 176
scaling, 173–176
transforming, 67–68, 170–181
translating, 26–31, 171–175, 222
windowToCanvas() function, 27–28,

111, 195, 674–675
copyCanvasPixels() function (rubber

bands example), 285–286
COREHTML5 object, 615–616, 624, 689
cos() method (Math), 54, 445–446
cosine, 55–56, 445
createCanvas() method

(RoundedRectangle), 617
createDOMElement() method (custom

controls), 617
createDomePolygons() method (Pinball),

609–611
createImageData() method (Canvas

context), 254, 285–286
createLinearGradient() method (Canvas

context), 76–79
createPath() method (Shape), 148, 172,

511
createPattern() method (Canvas

context), 80–83

createPolygonPath() function (polygon
example), 147

createRadialGradient() method (Canvas
context), 78–79

CRTs (cathode ray tubes), 75
CSS (Cascading Style Sheets)

absolute positioning in, 39, 46, 50
changing canvas size with, 668
color strings in, 74, 77, 88
font strings in, 207, 210
pixels in, 279–283, 295–299
selecting with media queries, 666–668
shadows in, 390
tweening in, 458

Ctrl key, 237, 672
ctrlKey browser attribute, 32, 672
cursor, 225–231
blinkCursor() function, 230–231
blinking, 230–231
erasing, 228–230
moving, 242–243
positioning, 215–216, 232–237

cursorInControlPoint() function (bézier
curves example), 162

cursorInEndPoint() function (bézier
curves example), 162

custom controls, 40, 615–655, 693–700
appending to HTML elements,

616–617
composite, 626
draw() method, 616
erase() method, 617
floating, 181
for text, 225–252
image panner, 643–655
positioning with CSS, 36
progress bars, 579, 625–630
rounded rectangles, 617–625
sliders, 631–643
virtual keyboard, 682–700

Cut the Rope game, 427
cutouts, 95–103, 136
addCirclePath() function, 99–103
addOuterRectanglePath() function,

99–103
addRectanglePath() function, 99–103
addTrianglePath() function, 99–103

Index708

Download from Join eBook (www.joinebook.com)

ptg7987094

D
dashed lines, 10, 117–121
dashedLineTo() function, 118–120
drawDashedLine() function, 118

de Casteljau, Paul, 137
debuggers, 16

and double buffering, 366
deceleration. See ease out
degrees, 54–55
depth perception, 377
detectCollisions() function (collision

detection), 512, 532, 592, 604
detectFlipperCollision() function

(pinball game), 604, 611–614
device-aspect-ratio media feature, 667
device-height

content attribute (viewport), 665
media feature, 667

devices
grid-based, 668
mobile. See mobile devices
orientation of, 666–670

and layout viewport, 663–664
pixels in, 279–283, 295–299, 668

device-width
content attribute (viewport), 664–665
media feature, 667, 679–680

dials
annotating polygons with, 171
drawDial() function, 131
drawing, 130–136
labeling, 221–223

didThrow() function (user gestures
example), 384

dir attribute (canvas), 211
dirty rectangles, 280–283
display context attribute, 52
DIV element (HTML), 37–46
document object
getElementById() method, 4, 13

DOM Level 3, 32
domElement browser property, 616–617
dot product, 60–62, 501, 608
dotProduct() method (Vector), 501–502
double buffering, 364–367, 390–391
Drag and Drop API, 326

drawArrow() function (mirroring example),
139, 173

drawCenter() function (clock application),
23

drawCircle() function (clock application),
23

drawCircularText() function (circular
text example), 224–225

drawClock() function (clock application),
24

drawCollisionShapes() method (Game),
603

drawConnectors() function (sunglasses
example), 302

drawDashedLine() function (dashed lines
example), 118

drawDial() function (dials example), 131
drawDiscBackground() function (clipping

animations example), 363
drawGrid() function (grid drawing

example), 105–107
drawImage() method (Canvas context), 31,

45, 253–258, 266, 270, 312–315, 328
and global settings, 282
and origin-clean flag, 312
five-argument version of, 257–258, 332
nine-argument version of, 257–258, 276,

322–324, 407
drawing, 22–25, 65–199

immediate vs. retained, 34, 147
outside canvas boundaries, 260–266,

370–377
scaling context during development for,

173
separated from updating, 390
temporarily, 228
using rubber bands for, 65

drawing surface
saving/restoring, 12, 33–35, 115, 228
size of, 5–8, 28

default, 6–8
in CSS, 5–7

drawLenses() function (sunglasses
example), 302

drawMagnifyingGlass() function
(magnifying glass example), 322–324

709Index

Download from Join eBook (www.joinebook.com)

ptg7987094

drawNumerals() function (clock
application), 23

drawRubberbandShape() function (rubber
bands example), 116, 126–127, 147–148

drawScaled() function (watermarks
example), 272–274

drawText() function (text positioning
example), 185, 212–214

drawWatermark() function (watermarks
example), 266–270

drawWire() function (sunglasses example),
302

drifting clouds, 370–377
dropping frames, 368

E
ease in, 451, 456–458, 463–465, 595
ease in/out, 458, 468–469
ease out, 458, 465–467, 595
edge detection, 296
edge() method (Vector), 502
elapsed time, 386, 433, 452
elastic motion, 469, 471
electromagnetic force, 428
em square, 211, 214
embossing filter, 295–299
emboss() function, 296–298

enablePrivilege() function
(PrivilegeManager), 313

endAnimate() method (Game), 544–546, 550,
553, 590, 592

endless loops, 340
Enter key, 238, 241, 244–245
eraseMagnifyingGlass() function

(magnifying glass example), 322
erasing

entire background, 360–361, 364–367
paragraphs, 244
text, 228–230, 239, 245–251
with clipping region, 187–194

Esc key, 32
event handlers, 26–33
onchange, 202, 619, 636, 650
onclick, 40, 353, 423, 627
onkeydown, 31–32, 241
onkeypress, 31–33, 237, 241
onkeyup, 31–32

onload, 256
onmessage, 301–302
onmousedown, 26, 40, 46, 111–115, 151,

195, 241
onmousemove, 26–27, 46, 115, 151, 162,

171, 185, 194, 280, 322, 642
onmouseout, 26
onmouseover, 26
onmouseup, 26, 46, 642
preventDefault() function, 31, 46, 111,

675
execute() method (behavior), 394,

411–417, 431, 459, 473, 475, 594
explorercanvas, 15–16
explosionAnimator sprite animator, 423

F
fallback content, 3
falling, 427–431, 436
FileSystem API, 326–328
fill() method (Canvas context), 23, 77,

91–92, 94–95, 148, 398
fillColor context attribute, 226
filling, 88–103

and shadows, 84
text, 201–207
with gradients/patterns, 75, 205–207

fillKnob() method (Slider), 642
fillRect() method (Canvas context), 88
fillStyle context attribute, 4, 9, 12, 72–75,

91–92, 136
fillText() method (Canvas context), 4,

9–10, 23, 88, 201, 210–211, 215, 222,
237, 266

optional argument of, 204–205
filters, 293–295

black-and-white, 293–295
embossing, 295–299
negative, 293–294
sunglasses, 299–301

fireChangeEvent() method (Slider), 642
Firefox, 15

clamping in, 342
composition operations in, 186–187
console and debugger for, 16
cross-domain images in, 313
frame rate bug in, 346, 350

Index710

Download from Join eBook (www.joinebook.com)

ptg7987094

looping backwards in, 320
maximum width of text in, 205
requestAnimationFrame() in, 344–346,

350
shadows in, 85
video formats in, 329–330

fireKeyEvent() method (Keyboard), 700
Flash, 328, 339

tweening in, 458
flippers (pinball game), 595–597
Flyweight design pattern (sprites), 394,

404
font context attribute, 4, 9, 201, 207–210,

226
font-family context attribute, 208–209
fonts

em square of, 211, 214
height of, 228
properties of, 207–210
web-safe, 209

font-size context attribute, 208
font-style context attribute, 207–208
font-variant context attribute, 207–208
font-weight context attribute, 207–208
fps() method (Game), 544
frame rate, 544

calculating, 358–359
clamping, 583
for tasks, 359–360
setting, 343–348, 544
updating, 546, 550

friction, 432, 461, 592, 594–595
fuseBurningAnimator sprite animator, 423

G
Game object, 544–572
addKeyListener() method, 544,

558–560, 598–601
addSprite() method, 544
animate() method, 550–551
canPlay...() methods, 557–558
canPlaySound() method, 544
clearHighScore() method, 544, 560–561
clearScreen() method, 550
drawCollisionShapes() method, 603
endAnimate() method, 544–546, 550,

553, 590, 592

fps() method, 544
getHighScore() method, 544, 560–561
getImage() method, 554
getSprite() method, 544
loadImages() method, 554–557
paintOverSprites() and

paintUnderSprites() methods,
544–546, 550, 576–577, 590–592

paintSprites() method, 550
pixelsPerFrame() method, 544, 553, 594
playSound() method, 544, 557–558
queueImage() method, 554–557
setHighScore() method, 544, 560–561
start() method, 544, 550–551
startAnimate() method, 544–546, 550,

553, 590–592, 594, 604
tick() method, 550
togglePaused() method, 544, 546,

551–553, 582, 600
updateFrameRate() method, 550
updateSprites() method, 550

game engine, 544–572
adding sprites to, 544
full listing of, 561–572

game loop, 544
Game Over toast, 585–589
game time, 544

setting, 544, 546
updating, 550

games, 543–614
3D Monster Maze, 359
auto-pause in, 583–584
Bucket, 432–444, 485–487, 490–494
Cut the Rope, 427
heads-up display in, 433, 436–437,

585–589
multiplayer, 62, 367
naming, 545
Pac-Man, 495
pausing, 544–546, 551–553
performance of, 18–22, 404
Pinball, 589–614
Replica Island, 394
scoreboard in, 433, 436–437, 585–589
Sonic the Hedgehog, 427
starting, 550, 554
Ungame, 572–589

711Index

Download from Join eBook (www.joinebook.com)

ptg7987094

Gaussian blur, 10, 88
getAxes() method (Shape), 504–511, 516
getBoundingClientRect() method

(window), 27
getContext() method (Canvas), 4, 8
getElapsedTime() method

(AnimationTimer), 386, 389, 451,
454–455, 464, 475

getElementById() method (document), 4,
13

getHeight() method
of TextCursor object, 226
of TextLine object, 233

getHighScores() method (Game), 544,
560–561

getImage() method (Game), 554
getImageData() method (Canvas context),

12, 34, 228–230, 253, 274–301, 306, 309,
322

and origin-clean flag, 313
calling repeatedly, 317, 321
slowness of, 280

getMagnitude() method (Vector), 501–502
getPoints() method (Polygon), 148
getPolygonPointClosestToCircle()

function (polygon example), 519
getPolygonPoints() function (polygon

example), 147
getSprite() method (Game), 544
getWidth() method (TextLine), 216, 233
glass pane, 37–40
globalAlpha context attribute, 9, 69, 75,

256
and putImageData(), 282
fading images with, 306–312

globalCompositeOperation context
attribute, 9, 12, 181–187

and putImageData(), 282
Google, 16, 328–329
Google Chrome Frame, 15–16
GPS positioning, 659
gradients, 76–79

and performance, 391
color stops in, 77–79
for stroke or fill, 75, 205–207
linear, 76–78, 205
radial, 78–79

graph axes
drawing, 107–110
labeling, 217–220

gravity, 427–450, 592, 594–595
and nonlinear systems, 445–450
applied to vertical velocity, 433
constant of, 428, 431

grid, 11
drawGrid() function, 105–107
drawing, 40, 105–107

grid media feature, 668
guidewires

annotating polygons with, 171
drawing, 433
temporary drawing surface for, 33–35
turning on/off, 162

gyroscopes, 659

H
H.264 video format, 329
handleEdgeCollisions() function

(bouncing off walls example), 488–489
hardware acceleration, 659
heads-up display, 433, 436–437, 585–589
height

content attribute (viewport), 665
context attribute, 4–8
media feature, 667

hideKeyboard() function (keyboard
example), 689

high scores, 436–437, 545, 560–561, 585–589
HSL (hue/saturation/lightness), 74–75
hsl() color definition (CSS), 74
HSLA (hue/saturation/lightness/alpha),

74
hsla() color definition (CSS), 74
HTML elements

appending custom controls to, 616–617
canvas. See canvas element
DIV, 37–46
img, 8, 46, 50
input, 252, 615
invisible, 41–46
meta, 661–666, 681
output, 266
source, 329
span, 279

Index712

Download from Join eBook (www.joinebook.com)

ptg7987094

standard controls in, 615
textarea, 252
using in canvas, 36–46
video, 329, 331–333

HTML5 Canvas specification, 14
best practices of, 252
constantly evolving, 121
drawing unloaded images in, 256
glyph rendering in, 237
immediate-mode graphics of, 34, 147
no explicit support for animation in, 339
rectangles with zero width or height in,

276
text width in, 217
uses for canvas element in, 266
vs. native applications, 659, 677

HTML5 video and audio specification, 14
HTMLCanvasElement object, 258
HTMLImageElement object, 258
HTMLVideoElement object, 258, 329

I
icons

floating, 181
selected, 83

identifiedTouch() method (TouchList),
672

identifier browser attribute, 673
image data

accessing, 274–283
arrays of, 286–291, 295
blank, 254
looping over, 292, 317–320
modifying, 283–285, 301–302
partial rendering, 280–283
updating, 276

image painters, 398, 404–406, 594
image loading policy of, 406

image panner application, 643–655
ImageData object, 254, 280–283

creating, 285–286
ImagePainter object
draw() method, 406

images, 253–327
animating, 306–312
centering, 260–266
clipping, 302–306

colliding, 521–525
cross-domain, 312–313
dragging from desktop, 326–328
drawing, 69, 253–258, 314–317
fading, 306–312
filtering, 293–295, 306–312
loading, 255–256, 406, 554–557, 579–581

failed, 554
manipulating, 274–301

and performance, 298–301
scaling, 258–265, 316–317
security risks of, 312–313
startup. See applications, splash screens

of
zooming into, 41–46

img element (HTML), 8, 46, 50
initial-scale content attribute

(viewport), 665–666
input element (HTML), 252, 615
insert() method

of Paragraph object, 239, 241, 243–244
of TextLine object, 233

Internet Explorer
console and debugger for, 16
HTML5 support in, 15
maximum width of text in, 205
older versions of, 15–16
requestAnimationFrame() in, 344, 348
video formats in, 329
WebGL support in, 11

invisible ink, 92
iOS4, no WebGL support in, 11
iOS5, 677–682

fullscreen mode on, 677, 680–681
hardware acceleration for Canvas in,

659
home screen icons on, 677–680
splash screens on, 677–680
status bars on, 681–682
title bar on, 657

iPad
device orientation on, 667–670
home screen icons on, 680–681
layout viewport on, 661–663, 666
looping backwards on, 320
title bar on, 657
virtual keyboard on, 682–700

713Index

Download from Join eBook (www.joinebook.com)

ptg7987094

iPhone, 663
isBallInBucket() method (bucket game),

486–487, 493–494
isOver() method (AnimationTimer),

389–390
isPointInside() method (Paragraph), 238
isRunning() method (AnimationTimer),

386

J
JavaScript

benchmarks in, 20–22
call() method, 551
changing canvas size with, 668–670
executed on main thread, 299–301, 340
key codes in, 560
loops in:

backward, 317, 320
endless, 340

opague objects in, 81
self variable, 551
self-executing functions in, 349
this variable, 550–551

JPEG image format, 8
JSON (JavaScript Object Notation), 560
jsPerf, 19–22, 317–319

K
Key object, 689–692
key codes, 32
key events, 31–33, 237, 544, 558–560,

597–601
firing, 700
keydown, 31–32, 241
keypress, 31–33, 237, 241
keyup, 31–32
throttling, 600

key listeners, 234–237, 584, 598–601
adding, 558–560, 700

Keyboard object, 689, 693–700
addKeyListener() method, 700
appendTo() method, 700
draw() method, 690, 700
fireKeyEvent() method, 700
mouseDownOrTouchStart() method, 700
resize() method, 700

keyboard, virtual. See virtual keyboard

keyCode browser property, 32
Khronos Group, 11

L
length property (TouchList), 672–673
lighting effect, 642
lineCap context attribute, 9, 121, 123
line-height context attribute, 208, 210
lineJoin context attribute, 9, 70–72,

122–123
lines, 103–123

dashed, 10, 117–121
endpoints of, 9, 121
joins of, 122–124
width of, 9, 11, 104–105

lineTo() method (Canvas context), 23–24,
99, 103–104, 110, 144

lineWidth context attribute, 9, 11, 71–72,
91, 103–104, 123

loadImages() method (Game), 554–557
lob behavior, 433
local storage, 545, 560–561
local variables, 317–320
log() method (console), 16

M
Mac OS X, 657
magnifying glass application, 253–254,

321–328
drag and drop in, 326–328
drawMagnifyingGlass() function,

322–324
eraseMagnifyingGlass() function, 322
home screen icon of, 678
orientation of, 668–670
pinch and zoom in, 675–677
splash screen of, 679
throwing in, 383–385
using offscreen canvas in, 270, 325–326

makeBounce() method (AnimationTimer),
457

makeEaseIn() method (AnimationTimer),
456–457

makeEaseInOut() method
(AnimationTimer), 457

makeEaseOut() method (AnimationTimer),
457

Index714

Download from Join eBook (www.joinebook.com)

ptg7987094

makeElastic() method (AnimationTimer),
457

makeLinear() method (AnimationTimer),
457

matchMedia() method (window), 669
Math object
cos() function, 54, 445–446
sin() function, 54, 446
tan() function, 54

mathematics, 53–64
algebraic equations, 54, 175–176
angles, degrees, radians, 54–55
Pythagorean theorem, 57, 487
scalars, 60
trigonometry, 54–56, 145, 176, 221–223,

445, 468
vectors, 56–62

max-device-width. See device-width
maximum-scale content attribute

(viewport), 665–666
measureText() method (Canvas context),

201, 216–217, 227–228, 237
media features, 667–668
media queries, 666–670

changing canvas size with, 668
for icons and splash screens, 679–680

@media CSS annotation, 666–668
meta element (HTML), 661–666, 681
Meta key, 237, 672
metaKey browser attribute, 32, 672
metaprogramming, 121
min-device-width. See device-width
minimum-scale content attribute

(viewport), 665
minimumTranslationVector() method

(Shape), 527–529
mirroring, 173
drawArrow() function, 139, 173

miterLimit context attribute, 10, 72,
122–124

mobile devices, 657–701
battery life of, 583
performance of, 18–22
pinch and zoom in, 675–677
scrolling into view in, 170
touch events in, 67

monitors, 668
refresh rate of, 367

monkey patching, 121
monochrome media feature, 668
motion

bouncing, 459, 469, 471–472
ease in, 451, 456–458, 463–465, 595
ease in/out, 458, 468–469
ease out, 458, 465–467, 595
elastic, 459, 469, 471
harmonic, 427
linear, 453, 458, 461–463
nonlinear, 427, 445, 458–473, 595–597
running in place, 411–417
time-based, 62–64, 350, 358–359,

367–370, 390–391, 416–417
warping, 458–473

mouse events, 26–31, 671
mousedown, 26, 40, 46, 111–115, 151, 195,

241, 642, 694
mousemove, 26–27, 46, 115, 151, 162, 171,

185, 194, 280, 322, 642
mouseout, 26
mouseover, 26
mouseup, 26, 46, 642
supporting together with touch events,

674–675, 684, 694
translating to canvas coordinates, 26,

30–31, 46, 111, 195, 674–675
mouseDownOrTouchStart() method

(Keyboard), 700
move() method (Shape), 148, 150
moveCursor() method

of Paragraph object, 242–243
of TextCursor object, 228

moveCursorCloseTo() method
(Paragraph), 238, 241, 243

moveTo() method (Canvas context), 23–24,
99, 103–104, 110, 125, 144

position last passed to, 118–119
Mozilla, 329
mozkitRequestAnimationFrame() method

(window), 344–346, 350
MPEG-4 video format, 329
msCancelAnimationFrame() method

(window), 344, 348

715Index

Download from Join eBook (www.joinebook.com)

ptg7987094

msRequestAnimationFrame() method
(window), 344, 348

MTV (minimum translation vector),
526–541

sticking with, 531–537

N
namespaces, 616, 689
native applications, 659
newline() method (Paragraph), 239–241,

244–245
Newtonian mechanics, 461
nextVideoFrame() function (video

processing example), 333
Nokia, 329–330
nonlinear systems, 445–473
nonzero winding rule, 94–95
normal() method (Vector), 502–503
normalize() method (Vector), 502
nuclear force, 428

O
Ogg Theora video format, 329–330
onkeydown() method (window), 241
onkeypress() method (window), 237, 241
onmousedown() method (window), 241
ontouchstart browser property, 671
OpenGL ES 2.0 API, 11
Opera, 15
arc() method in, 127
composition operations in, 186–187
console and debugger for, 16
shadows in, 85
video formats in, 329

orientation media feature, 667, 679–680
origin-clean flag (Canvas), 312–313
output element (HTML), 266

P
Pac-Man game, 495
pageX and pageY browser attributes, 673
paint application, 65–67

eraser in, 86
hideKeyboard() function, 689
home screen icon of, 678
icons in, 83, 179–181

rubber bands in, 110–116
showKeyboard() function, 689
virtual keyboard for, 682–700

paint() method (Sprite), 394–398, 404
paintOverSprites() method (Game),

544–546, 550, 576–577, 590
paintSprites() method (Game), 550
paintUnderSprites() method (Game),

544–546, 550, 576–577, 590–592
Paragraph object, 238–252
addLine() method, 239, 242
backspace() method, 239–241, 245–251
insert() method, 239, 241, 243–244
isPointInside() method, 238
moveCursor() method, 242–243
moveCursorCloseTo() method, 238, 241,

243
newline() method, 239–241, 244–245

paragraphs, 238–252
creating, 242
erasing, 244
inserting text into, 243–244

parallax, 377–382, 579
draw() method, 379

patent issues, 329–330
paths, 88–103

arc, 89
circular, 23
closed, 89, 91–92, 511
current, 93, 256
direction of, 92, 99–100
drawing, 91
filling, 84, 94–95
manipulating, 150–170
open, 89, 91–92
rectangular, 89
resetting, 12
scrolling into view, 169–170
self-intersecting, 94–95
stroking, 10, 84
subpaths of, 92–94

patterns, 79–83
creating, 81
for stroke or fill, 75, 205–207
repeating, 80–83

Paused toast, 600

Index716

Download from Join eBook (www.joinebook.com)

ptg7987094

pendulums, 427
nonlinear motion of, 445–450
weight of, 445

percentComplete browser property, 628
performance, 18–22, 313–321, 390–391

and double buffering, 366
and getImageData(), 280
and gradients, 391
and image manipulations, 298–301
and number of objects, 404
and offscreen canvases, 274
and shadows, 88, 390–391
bottlenecks of, 20–22
for drawing canvas into itself vs. from

offscreen canvas, 326
monitoring, 390–391

perpendicular() method (Vector),
502–503

physics, 427–482
pinball game, 589–614
bounce() function, 609
collision detection for, 601–614
detectCollisions() function, 592, 604
flipper motion in, 595–597
game loop of, 590–593
key events for, 597–601
pausing, 600
separate() function, 609
See also game engine

Pinball object
applyFrictionAndGravity() method,

594–595
bounce() function, 604
brieflyShowTryAgainImage() method,

592
checkMTVAxisDirection() function, 608
createDomePolygons() method, 609–611
detectFlipperCollision() function,

604, 611–614
updateLeftFlipper() method, 592
updateRightFlipper() method, 592

pinch and zoom, 675–677
pixels

boundaries of, 104–105
capturing, 280–283
clearing, 71

CSS vs. device, 279–283, 295–299
density of, 668
edge detection for, 296
looping over, 317, 320
manipulating, 253, 274–301
modifying transparency of, 283–285
scaling, 325
to move, per animation frame. See

time-based motion
pixelsPerFrame() method (Game), 544,

553, 594
playSound() method (Game), 544, 557–558
pointInPath() method (Canvas context),

151
polyfill method. See

requestNextAnimationFrame()
Polygon object, 147–150

arrays of, 151–157
createPath() method, 511
getPoints() method, 148
move() method, 150

polygons, 144–150
closed paths for, 511
colliding, 601–609
polygonCollidesWithCircle()

function, 519
polygonsCollide() function, 500
with circles, 516–521
with polygons, 56, 495, 500, 504–516,

526
concave vs. convex, 495
createPolygonPath() function, 147
dragging, 34, 151–157
drawing, 33–35, 144–147
getPolygonPoints() function, 147
manipulating, 147–150
rotating, 151, 171–172

polymorphism, 350
Porter-Duff operators, 181
power curves, 464–465, 467
preventDefault() function (Event), 31,

46, 111, 675
PrivilegeManager object
enablePrivilege() function, 313

profile() function (console), 17
profileEnd() function (console), 17

717Index

Download from Join eBook (www.joinebook.com)

ptg7987094

profilers, 20–22, 390–391
starting/stopping, 17

progress bars, 579, 625–630
Progressbar object
draw() method, 628

projectile trajectories, 427, 432–444
applying gravity to, 433
vs. falling, 436

Projection object
project() function, 504–511
prototype() method, 504

projections, 495–525
overlapping, 503–504, 527
separation on, 527

putImageData() method (Canvas context),
34, 229, 253, 274–301, 314, 322

and global settings, 282
seven-argument version of, 280–283

putSunglassesOn() function (sunglasses
example), 301

px units, 4, 7–8
Pythagorean theorem, 57, 487, 501

Q
quadraticCurveTo() method (Canvas

context), 138–141
queueImage() method (Game), 554–557

R
radians, 54–55
radioactive decay, 428
ray casting, 490–494, 601, 604, 611–614

accuracy of, 494
intersection of lines for, 492

rect() method (Canvas context), 91–94,
99–100, 361

rectangles
direction of, 99–100
drawing, 91
rounded, 71–72, 128, 138–139, 390,

617–625
appending to HTML elements, 624
resizing, 624

with square corners, 70
with zero width or height, 276

Replica Island game, 394

requestAnimationFrame() method
(window), 14, 342–345, 348, 360, 390,
437, 544, 583

browser-specific implementations of,
344–348

requestNextAnimationFrame() method
(window), 331–333, 349–357, 388, 404,
421, 437, 532, 544, 546, 550–551, 626

reset() method (AnimationTimer), 386
resize() method

for custom controls, 617
of Keyboard object, 700
of RoundedRectangle object, 624–625

resolution media feature, 668
restore() method (Canvas context),

11–12, 85, 136, 185, 194, 197
restoreRubberbandPixels() function

(rubber bands example), 280–281
RGB (red/green/blue), 74–75
rgb() color definition (CSS), 74
RGBA (red/green/blue/alpha), 74
rgba() color definition (CSS), 74
rotate() method (Canvas context),

172–175, 225
rotating

after translating, 225
coordinate system, 171–173, 176
polygons, 151, 171–172
text, 177–179

roundedRect() function (rounded
rectangles example), 128–129

RoundedRectangle object
draw() method, 625
resize() method, 624–625

rubber bands, 110–116
bounding box of, 275
captureCanvasPixels() function, 285
captureRubberbandPixels() function,

276, 280–281
circular, 126–127
copyCanvasPixels() function, 285–286
drawRubberbandShape() function, 116,

126–127, 147–148
erasing, 115
for interactive drawing, 65
modifying transparency with, 283–285

Index718

Download from Join eBook (www.joinebook.com)

ptg7987094

restoreRubberbandPixels() function,
280–281

rubberbandEnd() function, 46, 276
rubberbandStart() function, 46
rubberbandStretch() function, 46, 276
selecting with, 274–283
temporary drawing surface for, 33
zooming with, 41–46

S
Safari, 15

composition operations in, 186–187
console and debugger for, 16
layout viewport on, 666
looping backwards in, 320
maximum width of text in, 205
timelines in, 19
video formats in, 329

SAT (separating axis theorem), 495–541,
601–609

for circles, 516–521
for images and sprites, 521–525
for polygons, 504–516
not for small fast objects, 611
pseudocode for, 499–500
using MTV for, 526–541

save() method (Canvas context), 11–12,
85, 136, 185, 194, 197, 361

scalars, 60
scale() method (Canvas context), 172–175
scaling

canvas, 270–272, 316–317
coordinate system, 173–176
during development, 173
images, 258–265
text, 177–179
video frames, 331

scan media feature, 668
screen

clearing, 544, 546, 550, 579
height of, 667
width of, 659, 666–667

screenX and screenY browser attributes,
673

scrollBackground() method (background
scrolling example), 577–579

scrollPathIntoView() method (Canvas
context), 169–170

security, 312–313
SECURITY_ERR exception, 313
self variable (JavaScript), 551
separate() function (separating colliding

shapes example), 530–531, 609
separationOnAxes() method (Shape),

504–508, 527
setClip() method (Canvas context),

324–325
setHighScore() method (Game), 544,

560–561
setInterval() method (window), 14, 24,

306, 341–343, 390
setTimeout() method (window), 14,

341–343, 349–350, 390, 551, 579
clamping, 342

setTransform() method (Canvas context),
174–181

shadowBlur context attribute, 10, 83–85, 88
shadowColor context attribute, 10, 83–85,

88
undefined, 85

shadowOffsetX and shadowOffsetY context
attributes, 10, 83–88

shadows, 83–88
and performance, 88, 390–391
applying to text, 202
color of, 10
enabling, 69, 185
partially transparent colors for, 85
settings for, 69, 256
spreading out, 10
turning on/off, 85
with negative offset, 85–87

Shape
collidesWith() method, 504–508,

518–520, 529–530, 532, 604
createPath() method, 148, 172
getAxes() method, 504–511, 516
minimumTranslationVector() method,

527–529
move() method, 148
separationOnAxes() method, 504–508,

527

719Index

Download from Join eBook (www.joinebook.com)

ptg7987094

shear, 179–181
Shift key, 672, 694
shiftKey browser attribute, 32, 672
showKeyboard() function (keyboard

example), 689
sin() method (Math), 54, 446
Sinclair ZX81 computer, 359
sine, 55–56, 468
Slider object, 634, 636
addChangeListener() method, 636, 642
appendTo() method, 619, 624–625, 628
fireChangeEvent() method, 642

sliders, 173, 325, 631–643
fillKnob() method, 642

smart phones, 33
social network, 312
Sonic the Hedgehog game, 427
sound

formats of, 557–558
multitrack, 544, 557–558

source element (HTML), 329
span element (HTML), 279
springs, 427
Sprite object, 394–397
paint() method, 394–398, 404
properties of, 395
update() method, 394, 411, 416–417,

553
sprite sheets, 26–30

painters for, 398, 406–410, 476
SpriteAnimator object, 419–423
start() method, 419–421

sprites, 393–425, 431
adding to game engine, 544
animating, 417–423
colliding, 521–525
creating, 397, 594
painters for, 394–395, 397–410, 419, 421

advancing, 407, 410
decoupling from, 394

painting, 394, 424
under/over, 544–546, 550, 576,

577
updating, 424, 544–546, 550

SpriteSheetPainter object
advance() method, 407

src HTML attribute, 8, 46

start() method
of Game object, 544, 550–551
of SpriteAnimator object, 419–421
of Stopwatch object, 385

startAnimate() method (Game), 544–546,
550, 553, 590–592, 594, 604

stick() function (sticking with MTV
example), 532–537

sticking, 531–537
Stopwatch object
start() method, 385
stop() method, 385

stopwatches, 385–388
Strategy design pattern (sprites), 394, 398
stroke and fill painters, 398–404
stroke() method (Canvas context), 23–24,

91–94, 103, 110, 148, 398, 603
strokeRect() method (Canvas context),

88
simplifying by translating the origin,

170
strokeStyle context attribute, 4, 10, 12,

72–75, 91–92, 136
strokeText() method (Canvas context),

4, 9–10, 88, 201–207, 210, 215, 237
optional argument of, 204–205

stroking, 88–103
and shadows, 84
text, 201–207
with gradients/patterns, 75, 205–207

subtract() method (Vector), 501–502
sunglasses application, 299–306
drawConnectors() function, 302
drawLenses() function, 302
drawWire() function, 302
putSunglassesOn() function, 301

SVG (Scalable Vector Graphics)
color names in, 74
list of objects in, 34
paths in, 89

swing behavior, 445–446

T
tablet computers, 33

performance of, 280
touch events in, 67

tan() method (Math), 54

Index720

Download from Join eBook (www.joinebook.com)

ptg7987094

tangent, 55–56
target browser attribute, 673
target-densityDpi content attribute

(viewport), 665
targetTouches browser attribute, 672
telescoping animation, 194–197
Texas Instruments 9918(A) video display

processor, 393
text, 201–252

applying shadows to, 202
centering, 3–4, 214–215
drawing around arc, 223–225
editing, 232–237, 252
erasing, 239, 245–251
filling, 84, 201–207
font properties of, 201, 207–210
inserting, 239, 243–244
maximum width of, 204–205
measuring, 201, 215–216, 227–228
new lines in, 244–245
paragraphs of, 238–252
positioning, 136, 201, 210–225
drawText() function, 212–214

rotating, 177–179
scaling, 177–179, 205
stroking, 84, 201–207

textAlign context attribute, 10, 136,
201–202, 210–215, 220–221

textarea element (HTML), 252
textBaseline context attribute, 10, 136,

201–202, 210–215, 220–221
TextCursor object, 225–231
erase() method, 228–230
getHeight() method, 226
moveCursor() method, 228

TextLine object, 232–238, 242
draw() method, 233
erase() method, 233, 237, 244
getHeight() method, 233
getWidth() method, 216, 233
insert() method, 233

TextMetrics object, 216–217
this variable (JavaScript), 550–551
tick() method (Game), 550
time

elapsed, 386, 433, 452
warping, 390, 427, 450–456, 595

time-based motion, 62–64, 350, 358–359,
367–370, 390–391, 416–417, 544, 553,
594

timelines, 19, 390–391
Timing control for script-based animations

specification, 14, 344
toasts, 573

Game Over, 585–589
Paused, 600
Try Again, 592

toBlob() method (Canvas context), 8, 51
toDataURL() method (Canvas context), 8,

46–51
and origin-clean flag, 313

togglePaused() method (Game), 544, 546,
551–553, 582–583, 600

touch events, 33, 67, 671–677
supporting together with mouse events,

674–675, 684, 694
touchcancel, 671–672
touchend, 671–672
touchmove, 671–672, 675
touchstart, 671–672, 675, 694

touch objects, 673
touches browser attribute, 672
TouchList object, 672
identifiedTouch() method, 672
length property, 672

transform() method (Canvas context),
174–181

translate() method (Canvas context),
170–175, 225, 372

translating
before rotating, 225
coordinate system, 171–175

translucent overlays, 625
transparency, 9, 72–75
trigonometry, 54–56, 145, 445, 468

for positioning circular text, 221–223
for rotating, 176

Try Again toast, 592
tty terminals, 668
TypedArray object, 291

U
UA (User Agents), 13
Uint8ClampedArray object, 291

721Index

Download from Join eBook (www.joinebook.com)

ptg7987094

ungame, 572–589
game loop of, 576–579
loading, 579–581
pausing, 581–584
See also game engine

units of measure, 62–64, 431
update() method (Sprite), 350, 394, 411,

416–417, 553
updateFrameRate() method (Game), 550
updateLeftFlipper() method (Pinball),

592
updateRightFlipper() method (Pinball),

592
updateSprites() method (Game), 550
user gestures, 383–385
didThrow() function, 384

user-scalable content attribute
(viewport), 665

V
Vector object
add() method, 501–502
dotProduct() method, 501–502
edge() method, 502
getMagnitude() method, 501–502
normal() method, 502–503
normalize() method, 502
perpendicular() method, 502–503
subtract() method, 501–502

vectors, 56–62
adding, 59–60
direction of, 58–59
displacement, 594, 604
dot product of, 60–62, 501, 608
edge, 57, 60, 500
edge normal, 500
magnitude of, 57, 501–503
multiplicating, 501
normalized. See vectors, unit
perpendicular, 503
reflecting, 537–541
subtracting, 59–60, 501
unit, 58–59, 503, 530, 606

velocity
and air resistance, 461
and collisions, 461, 530

and current frame rate, 62
and friction, 461, 595
clamping, 609
constant vs. nonlinear, 463–469
for bouncing, 537–541, 609
initial, 436
limiting, for small objects, 487
vertical, 428–432, 595

applying gravity to, 433
video element (HTML), 328–329

invisible, 331–333
videos, 328–337

formats of, 329–330
frames of, 328–337

drawing into canvas, 253, 258, 328
scaling, 331

playing in canvas, 331–333
processing, 333–337
nextVideoFrame() function, 333

viewport metatag, 661–666
device-height attribute, 665
device-width attribute, 664–665
height attribute, 665
initial-scale attribute, 665–666
maximum-scale attribute, 665–666
minimum-scale attribute, 665
target-densityDpi attribute, 665
user-scalable attribute, 665
width attribute, 665

viewports
draggable, 644
height of, 667
layout, 661

set to device-width, 664
mobile, 659–666
scaling, 661–666
visible, 661
width of, 667

hardcoded, 663
virtual keyboard, 682–700
hideKeyboard() function, 689
resizing, 684–685, 700
showKeyboard() function, 689
translucent, 685, 694
visibility of, 689

VP8 video format, 329

Index722

Download from Join eBook (www.joinebook.com)

ptg7987094

W
W3C (World Wide Web Consortium), 14
warping

animation, 473–482
motion, 458–473
time, 390, 427, 450–456, 595

with functions, 454–458
watermarks, 266–274
drawScaled() function, 272–274
drawWatermark() function, 266–270

web browsers. See browsers
web workers, 299–301
WebGL 3d context, 11
webkitCancelAnimationFrame() method

(window), 344, 347
webkitRequestAnimationFrame() method

(window), 344, 346–348, 350
WebM video format, 329
WHATWG (Web Hypertext Application

Technology Working Group), 14, 252
while loop (JavaScript), 340
width

content attribute (viewport), 665
context attribute, 4–7
media feature, 667

window object
cancelRequestAnimationFrame()

method, 344–345
clearInterval() method, 231
getBoundingClientRect() method, 27
matchMedia() method, 669
mozkitRequestAnimationFrame()

method, 344–346, 350
msCancelAnimationFrame() method,

344, 348
msRequestAnimationFrame() method,

344, 348
onkeydown() method, 241
onkeypress() method, 237, 241
onmousedown() method, 241
requestAnimationFrame() method, 14,

342–348, 360, 390, 437, 544, 583
requestNextAnimationFrame() method,

331–333, 349–357, 388, 404, 421, 437,
532, 544, 546, 550–551, 626

setInterval() method, 14, 24, 306,
341–343, 390

setTimeout() method, 14, 341–343,
349–350, 390, 551, 579

webkitCancelAnimationFrame()
method, 344, 347

webkitRequestAnimationFrame()
method, 344, 346–348, 350

windowToCanvas() function (translating
coordinates example), 27–28, 111, 195,
674–675

Worker object
onmessage() method, 301–302

X
x browser attribute, 30

Y
y browser attribute, 30
YouTube, 328

Z
z-index property (CSS), 39
zooming in, with rubber bands, 41–46

723Index

Download from Join eBook (www.joinebook.com)

	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 1: Essentials
	1.1 The canvas Element
	1.1.1 Canvas Element Size vs. Drawing Surface Size
	1.1.2 The Canvas API

	1.2 Canvas Contexts
	1.2.1 The 2d Context
	1.2.2 Saving and Restoring Canvas State

	1.3 Canonical Examples in This Book
	1.4 Getting Started
	1.4.1 Specifications
	1.4.2 Browsers
	1.4.3 Consoles and Debuggers
	1.4.4 Performance

	1.5 Fundamental Drawing Operations
	1.6 Event Handling
	1.6.1 Mouse Events
	1.6.2 Keyboard Events
	1.6.3 Touch Events

	1.7 Saving and Restoring the Drawing Surface
	1.8 Using HTML Elements in a Canvas
	1.8.1 Invisible HTML Elements

	1.9 Printing a Canvas
	1.10 Offscreen Canvases
	1.11 A Brief Math Primer
	1.11.1 Solving Algebraic Equations
	1.11.2 Trigonometry
	1.11.3 Vectors
	1.11.4 Deriving Equations from Units of Measure

	1.12 Conclusion

	Chapter 2: Drawing
	2.1 The Coordinate System
	2.2 The Drawing Model
	2.3 Drawing Rectangles
	2.4 Colors and Transparency
	2.5 Gradients and Patterns
	2.5.1 Gradients
	2.5.2 Patterns

	2.6 Shadows
	2.6.1 Inset Shadows

	2.7 Paths, Stroking, and Filling
	2.7.1 Paths and Subpaths
	2.7.2 Cutouts

	2.8 Lines
	2.8.1 Lines and Pixel Boundaries
	2.8.2 Drawing a Grid
	2.8.3 Drawing Axes
	2.8.4 Rubberband Lines
	2.8.5 Drawing Dashed Lines
	2.8.6 Drawing Dashed Lines by Extending CanvasRenderingContext2D
	2.8.7 Line Caps and Joins

	2.9 Arcs and Circles
	2.9.1 The arc() Method
	2.9.2 Rubberband Circles
	2.9.3 The arcTo() Method
	2.9.4 Dials and Gauges

	2.10 Bézier Curves
	2.10.1 Quadratic Curves
	2.10.2 Cubic Curves

	2.11 Polygons
	2.11.1 Polygon Objects

	2.12 Advanced Path Manipulation
	2.12.1 Dragging Polygons
	2.12.2 Editing Bézier Curves
	2.12.3 Scrolling Paths into View

	2.13 Transformations
	2.13.1 Translating, Scaling, and Rotating
	2.13.2 Custom Transformations

	2.14 Compositing
	2.14.1 The Compositing Controversy

	2.15 The Clipping Region
	2.15.1 Erasing with the Clipping Region
	2.15.2 Telescoping with the Clipping Region

	2.16 Conclusion

	Chapter 3: Text
	3.1 Stroking and Filling Text
	3.2 Setting Font Properties
	3.3 Positioning Text
	3.3.1 Horizontal and Vertical Positioning
	3.3.2 Centering Text
	3.3.3 Measuring Text
	3.3.4 Labeling Axes
	3.3.5 Labeling Dials
	3.3.6 Drawing Text around an Arc

	3.4 Implementing Text Controls
	3.4.1 A Text Cursor
	3.4.2 Editing a Line of Text in a Canvas
	3.4.3 Paragraphs

	3.5 Conclusion

	Chapter 4: Images and Video
	4.1 Drawing Images
	4.1.1 Drawing an Image into a Canvas
	4.1.2 The drawImage() Method

	4.2 Scaling Images
	4.2.1 Drawing Images outside Canvas Boundaries

	4.3 Drawing a Canvas into a Canvas
	4.4 Offscreen Canvases
	4.5 Manipulating Images
	4.5.1 Accessing Image Data
	4.5.2 Modifying Image Data

	4.6 Clipping Images
	4.7 Animating Images
	4.7.1 Animating with an Offscreen Canvas

	4.8 Security
	4.9 Performance
	4.9.1 drawImage(HTMLImage) vs. drawImage(HTMLCanvas) vs. putImageData()
	4.9.2 Drawing a Canvas vs. Drawing an Image, into a Canvas; Scaled vs. Unscaled
	4.9.3 Looping over Image Data

	4.10 A Magnifying Glass
	4.10.1 Using an Offscreen Canvas
	4.10.2 Accepting Dropped Images from the File System

	4.11 Video Processing
	4.11.1 Video Formats
	4.11.2 Playing Video in a Canvas
	4.11.3 Processing Videos

	4.12 Conclusion

	Chapter 5: Animation
	5.1 The Animation Loop
	5.1.1 The requestAnimationFrame() Method: Letting the Browser Set the Frame Rate
	5.1.2 Internet Explorer
	5.1.3 A Portable Animation Loop

	5.2 Calculating Frame Rates
	5.3 Scheduling Tasks at Alternate Frame Rates
	5.4 Restoring the Background
	5.4.1 Clipping
	5.4.2 Blitting

	5.5 Double Buffering
	5.6 Time-Based Motion
	5.7 Scrolling the Background
	5.8 Parallax
	5.9 User Gestures
	5.10 Timed Animations
	5.10.1 Stopwatches
	5.10.2 Animation Timers

	5.11 Animation Best Practices
	5.12 Conclusion

	Chapter 6: Sprites
	6.1 Sprites Overview
	6.2 Painters
	6.2.1 Stroke and Fill Painters
	6.2.2 Image Painters
	6.2.3 Sprite Sheet Painters

	6.3 Sprite Behaviors
	6.3.1 Combining Behaviors
	6.3.2 Timed Behaviors

	6.4 Sprite Animators
	6.5 A Sprite-Based Animation Loop
	6.6 Conclusion

	Chapter 7: Physics
	7.1 Gravity
	7.1.1 Falling
	7.1.2 Projectile Trajectories
	7.1.3 Pendulums

	7.2 Warping Time
	7.3 Time-Warp Functions
	7.4 Warping Motion
	7.4.1 Linear Motion: No Acceleration
	7.4.2 Ease In: Gradually Accelerate
	7.4.3 Ease Out: Gradually Decelerate
	7.4.4 Ease In, Then Ease Out
	7.4.5 Elasticity and Bouncing

	7.5 Warping Animation
	7.6 Conclusion

	Chapter 8: Collision Detection
	8.1 Bounding Areas
	8.1.1 Rectangular Bounding Areas
	8.1.2 Circular Bounding Areas

	8.2 Bouncing Off Walls
	8.3 Ray Casting
	8.3.1 Fine-Tuning

	8.4 The Separating Axis Theorem (SAT) and Minimum Translation Vector (MTV)
	8.4.1 Detecting Collisions with the SAT
	8.4.2 Reacting to Collisions with the Minimum Translation Vector

	8.5 Conclusion

	Chapter 9: Game Development
	9.1 A Game Engine
	9.1.1 The Game Loop
	9.1.2 Loading Images
	9.1.3 Multitrack Sound
	9.1.4 Keyboard Events
	9.1.5 High Scores
	9.1.6 The Game Engine Listing

	9.2 The Ungame
	9.2.1 The Ungame’s HTML
	9.2.2 The Ungame’s Game Loop
	9.2.3 Loading the Ungame
	9.2.4 Pausing
	9.2.5 Key Listeners
	9.2.6 Game Over and High Scores

	9.3 A Pinball Game
	9.3.1 The Game Loop
	9.3.2 The Ball
	9.3.3 Gravity and Friction
	9.3.4 Flipper Motion
	9.3.5 Handling Keyboard Events
	9.3.6 Collision Detection

	9.4 Conclusion

	Chapter 10: Custom Controls
	10.1 Rounded Rectangles
	10.2 Progress Bars
	10.3 Sliders
	10.4 An Image Panner
	10.5 Conclusion

	Chapter 11: Mobile
	11.1 The Mobile Viewport
	11.1.1 The viewport Metatag

	11.2 Media Queries
	11.2.1 Media Queries and CSS
	11.2.2 Reacting to Media Changes with JavaScript

	11.3 Touch Events
	11.3.1 Touch Event Objects
	11.3.2 Touch Lists
	11.3.3 Touch Objects
	11.3.4 Supporting Both Touch and Mouse Events
	11.3.5 Pinch and Zoom

	11.4 iOS5
	11.4.1 Application Icons and Startup Images
	11.4.2 Media Queries for iOS5 Application Icons and Startup Images
	11.4.3 Fullscreen with No Browser Chrome
	11.4.4 Application Status Bar

	11.5 A Virtual Keyboard
	11.5.1 A Canvas-Based Keyboard Implementation

	11.6 Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

