
1.1

1.2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1

3.2

4.1

4.2

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

Table	of	Contents
Introduction

Overview	of	Kafka

Part	I — Architecture
Broker — Kafka	Server
Topics

Messages

Producers

Consumers

Clusters

MetricsReporter

Kafka	Tools

Settings

WorkerGroupMember

ConnectDistributed

KafkaServerStartable

KafkaMetricsReporter

KafkaServer

KafkaConfig

Kafka

KafkaScheduler

ReplicaManager

KafkaController

KafkaApis

AdminManager

LogManager

Part	II — Build	Tips

1



6.1

7.1

Gradle	Tips

Appendix
Further	reading	or	watching

2



Apache	Kafka	Notebook
Welcome	to	Apache	Kafka	Notebook.

I’m	Jacek	Laskowski,	an	independent	consultant	who	offers	development	and	training
services	for	Apache	Spark	(and	Scala,	sbt,	Apache	Kafka	with	a	bit	of	Hadoop	YARN,
Apache	Hive,	Apache	Mesos,	Akka	Actors/Stream/HTTP,	and	Docker).	I	lead	Warsaw	Scala
Enthusiasts	and	Warsaw	Spark	meetups.

Contact	me	at	jacek@japila.pl	or	@jaceklaskowski	to	discuss	Kafka	opportunities,	e.g.
courses,	workshops,	or	other	mentoring	or	development	services.

This	collections	of	notes	(what	some	may	rashly	call	a	"book")	serves	as	the	ultimate	place
of	mine	to	collect	all	the	nuts	and	bolts	of	using	Apache	Kafka.	The	notes	aim	to	help	me
designing	and	developing	better	products	with	Kafka.	It	is	also	a	viable	proof	of	my
understanding	of	Apache	Kafka.	I	do	eventually	want	to	reach	the	highest	level	of	mastery	in
Apache	Kafka.

It	may	become	a	book	one	day,	but	surely	serves	as	the	study	material	for	trainings,
workshops,	videos	and	courses	about	Apache	Kafka.	Follow	me	on	twitter	@jaceklaskowski
to	know	it	early.	You	will	also	learn	about	the	upcoming	events	about	Apache	Kafka.

Expect	text	and	code	snippets	from	different	public	sources.	Attribution	follows.

Introduction

3

https://pl.linkedin.com/in/jaceklaskowski
http://www.meetup.com/WarsawScala/
http://www.meetup.com/Warsaw-Spark
mailto:jacek@japila.pl
https://twitter.com/jaceklaskowski
https://kafka.apache.org
https://twitter.com/jaceklaskowski


Overview	of	Kafka
Apache	Kafka	is	an	open	source	project	for	a	distributed	publish-subscribe	messaging
system	rethought	as	a	distributed	commit	log.

Kafka	stores	messages	in	topics	that	are	partitioned	and	replicated	across	multiple	brokers
in	a	cluster.	Producers	send	messages	to	topics	from	which	consumers	read.

Language	Agnostic — producers	and	consumers	use	binary	protocol	to	talk	to	a	Kafka
cluster.

Messages	are	byte	arrays	(with	String,	JSON,	and	Avro	being	the	most	common	formats).	If
a	message	has	a	key,	Kafka	makes	sure	that	all	messages	of	the	same	key	are	in	the	same
partition.

Consumers	may	be	grouped	in	a	consumer	group	with	multiple	consumers.	Each	consumer
in	a	consumer	group	will	read	messages	from	a	unique	subset	of	partitions	in	each	topic
they	subscribe	to.	Each	message	is	delivered	to	one	consumer	in	the	group,	and	all
messages	with	the	same	key	arrive	at	the	same	consumer.

Durability — Kafka	does	not	track	which	messages	were	read	by	each	consumer.	Kafka
keeps	all	messages	for	a	finite	amount	of	time,	and	it	is	consumers'	responsibility	to	track
their	location	per	topic,	i.e.	offsets.

It	is	worth	to	note	that	Kafka	is	often	compared	to	the	following	open	source	projects:

1.	 Apache	ActiveMQ	and	RabbitMQ	given	they	are	message	broker	systems,	too.

2.	 Apache	Flume	for	its	ingestion	capabilities	designed	to	send	data	to	HDFS	and	Apache
HBase.

Overview	of	Kafka

4

http://kafka.apache.org/
http://activemq.apache.org/
https://www.rabbitmq.com/
http://flume.apache.org/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hbase.apache.org/


Broker — Kafka	Server

Note Given	the	scaladoc	of		KafkaServer		a	Kafka	server,	a	Kafka	broker	and	a
Kafka	node	all	refer	to	the	same	concept	and	are	hence	considered	synonyms.

A	Kafka	broker	is	a	Kafka	server	that	hosts	topics.

You	can	start	a	single	Kafka	broker	using		kafka-server-start.sh		script.

Starting	Kafka	Broker

Start	Zookeeper.

./bin/zookeeper-server-start.sh	config/zookeeper.properties

Only	when	Zookeeper	is	up	and	running	you	can	start	a	Kafka	server	(that	will	connect	to
Zookeeper).

./bin/kafka-server-start.sh	config/server.properties

Tip Read		kafka-server-start.sh		script.

	kafka-server-start.sh		script

	kafka-server-start.sh		starts	a	Kafka	broker.

$	./bin/kafka-server-start.sh

USAGE:	./bin/kafka-server-start.sh	[-daemon]	server.properties	[--override	property=va

lue]*

	kafka-server-start.sh		uses		config/log4j.properties		for	logging	configuration	that	you	can
override	using		KAFKA_LOG4J_OPTS		environment	variable.

KAFKA_LOG4J_OPTS="-Dlog4j.configuration=file:config/log4j.properties"

	kafka-server-start.sh		accepts		KAFKA_HEAP_OPTS		and		EXTRA_ARGS		environment	variables.

Command-line	options:

1.	 	-name	 — defaults	to		kafkaServer		when	in	daemon	mode.

Broker — Kafka	Server

5

https://github.com/apache/kafka/blob/trunk/core/src/main/scala/kafka/server/KafkaServer.scala#L89


2.	 	-loggc	 — enabled	when	in	daemon	mode.

3.	 	-daemon	 — enables	daemon	mode.

4.	 	--override	property=value	 — 	value		that	should	override	the	value	set	for		property		in
	server.properties		file.

Broker — Kafka	Server

6



Topics
Topics	are	virtual	groups	of	partitions	that	a	Kafka	broker	uses	as	a	set	of	logs	to	store
messages.

A	broker	stores	messages	in	a	partition	in	an	ordered	fashion,	i.e.	appends	them	one
message	after	another	and	creates	a	log	file.

Producers	write	messages	to	the	tail	of	these	logs	that	consumers	read	at	their	own	pace.

Kafka	scales	topic	consumption	by	distributing	partitions	among	a	consumer	group,	which	is
a	set	of	consumers	sharing	a	common	group	identifier.

Partitions

Partitions	with	messages — topics	can	be	partitioned	to	improve	read/write	performance
and	resiliency.	You	can	lay	out	a	topic	(as	partitions)	across	a	cluster	of	machines	to	allow
data	streams	larger	than	the	capability	of	a	single	machine.	Partitions	are	log	files	on	disk
with	sequential	write	only.	Kafka	guarantees	message	ordering	in	a	partition.

The	log	end	offset	is	the	offset	of	the	last	message	written	to	a	log.

The	high	watermark	offset	is	the	offset	of	the	last	message	that	was	successfully	copied	to
all	of	the	log’s	replicas.

Note A	consumer	can	only	read	up	to	the	high	watermark	offset	to	prevent	reading
unreplicated	messages.

Topics

7



Messages
Messages	are	the	data	that	brokers	store	in	the	partitions	of	a	topic.

Messages	are	sequentially	appended	to	the	end	of	the	partition	log	file	and	numbered	by
unique	offsets.	They	are	persisted	on	disk	(aka	disk-based	persistence)	and	replicated	within
the	cluster	to	prevent	data	loss.	It	has	an	in-memory	page	cache	to	improve	data	reads.
Messages	are	in	partitions	until	deleted	when	TTL	occurs	or	after	compaction.

Offsets

Offsets	are	message	positions	in	a	topic.

Messages

8



Producers
Multiple	concurrent	producers	that	send	(aka	push)	messages	to	topics	which	is	appending
the	messages	to	the	end	of	partitions.	They	can	batch	messages	before	they	are	sent	over
the	wire	to	a	topic.	Producers	support	message	compression.	Producers	can	send
messages	in	synchronous	(with	acknowledgement)	or	asynchronous	mode.

import	collection.JavaConversions._

import	org.apache.kafka.common.serialization._

import	org.apache.kafka.clients.producer.KafkaProducer

import	org.apache.kafka.clients.producer.ProducerRecord

val	cfg	=	Map(

		"bootstrap.servers"	->	"localhost:9092",

		"key.serializer"	->	classOf[IntegerSerializer],

		"value.serializer"	->	classOf[StringSerializer])

val	producer	=	new	KafkaProducer[Int,	String](cfg)

val	msg	=	new	ProducerRecord(topic	=	"my-topic",	key	=	1,	value	=	"hello")

scala>	val	f	=	producer.send(msg)

f:	java.util.concurrent.Future[org.apache.kafka.clients.producer.RecordMetadata]	=	org

.apache.kafka.clients.producer.internals.FutureRecordMetadata@2e9e8fe

scala>	f.get

res7:	org.apache.kafka.clients.producer.RecordMetadata	=	my-topic-0@1

producer.close

Producers

9



Consumers
Multiple	concurrent	consumers	read	(aka	pull)	messages	from	topics	however	they	want
using	offsets.	Unlike	typical	messaging	systems,	Kafka	consumers	pull	messages	from	a
topic	using	offsets.

Note Kafka	0.9.0.0	was	about	introducing	a	brand	new	Consumer	API	aka	New
Consumer.

When	a	consumer	is	created,	it	requires	bootstrap.servers	which	is	the	initial	list	of	brokers
to	discover	the	full	set	of	alive	brokers	in	a	cluster	from.

A	consumer	has	to	subscribe	to	the	topics	it	wants	to	read	messages	from	called	topic
subscription.

Caution FIXME	Building	a	own	consumption	strategy

Using	Kafka	Consumer	API	requires	the	following	dependency	in	your	project	(with
	0.10.0.1		being	the	latest	Kafka	release):

libraryDependencies	+=	"org.apache.kafka"	%	"kafka-clients"	%	0.10.0.1

Topic	Subscription

Topic	Subscription	is	the	process	of	announcing	the	topics	a	consumer	wants	to	read
messages	from.

void	subscribe(Collection<String>	topics)

void	subscribe(Collection<String>	topics,	ConsumerRebalanceListener	callback)

void	subscribe(Pattern	pattern,	ConsumerRebalanceListener	callback)

Note 	subscribe		method	is	not	incremental	and	you	always	must	include	the	full	list
of	topics	that	you	want	to	consume	from.

You	can	change	the	set	of	topics	a	consumer	is	subscrib	to	at	any	time	and	(given	the	note
above)	any	topics	previously	subscribed	to	will	be	replaced	by	the	new	list	after		subscribe	.

Automatic	and	Manual	Partition	Assignment

Caution FIXME

Consumers

10



KafkaConsumer

Tip

Enable		DEBUG		logging	level	for		org.apache.kafka.clients.consumer.KafkaConsumer	
logger	to	see	what	happens	inside.

Add	the	following	line	to		conf/log4j.properties	:

log4j.logger.org.apache.kafka.clients.consumer.KafkaConsumer=TRACE

Refer	to	Logging.

Creating	Instance

When	created	with	DEBUG	logging	enabled,	you	should	see	the	following	messages:

DEBUG	KafkaConsumer:	Starting	the	Kafka	consumer

A		KafkaConsumer		sets	the	internal		requestTimeoutMs		to	request.timeout.ms	that	has	to	be
greater	than	session.timeout.ms	and	fetch.max.wait.ms	(you	get		ConfigException	
otherwise).

	clientId		property	is	set	to	client.id	if	defined	or	auto-generated.	It	is	used	for	metrics	with
the	tag		client-id		being		clientId	.

	metrics		property	is	set	to	the	configured	metrics	reporters.

	retryBackoffMs		is	set	to	retry.backoff.ms.

Caution FIXME

When	successfully	created,	you	should	see	the	following	DEBUG	in	the	logs:

DEBUG	KafkaConsumer:	Kafka	consumer	created

Any	issues	while	creating	a		KafkaConsumer		are	reported	as		KafkaException	.

org.apache.kafka.common.KafkaException:	Failed	to	construct	kafka	consumer

ConsumerConfig

Consumer	Groups

Consumers

11



A	consumer	group	is	a	set	of	Kafka	consumers	that	share	a	common	link:a	set	of
consumers	sharing	a	common	group	identifier#group_id[group	identifier].

Partitions	in	a	topic	are	assigned	to	exactly	one	member	in	a	consumer	group.

Group	Coordination	Protocol

Caution FIXME

the	new	consumer	uses	a	group	coordination	protocol	built	into	Kafka

For	each	group,	one	of	the	brokers	is	selected	as	the	group	coordinator.	The
coordinator	is	responsible	for	managing	the	state	of	the	group.	Its	main	job	is	to	mediate
partition	assignment	when	new	members	arrive,	old	members	depart,	and	when	topic
metadata	changes.	The	act	of	reassigning	partitions	is	known	as	rebalancing	the	group.

When	a	group	is	first	initialized,	the	consumers	typically	begin	reading	from	either	the
earliest	or	latest	offset	in	each	partition.	The	messages	in	each	partition	log	are	then
read	sequentially.	As	the	consumer	makes	progress,	it	commits	the	offsets	of	messages
it	has	successfully	processed.

When	a	partition	gets	reassigned	to	another	consumer	in	the	group,	the	initial	position	is
set	to	the	last	committed	offset.	If	a	consumer	suddenly	crashed,	then	the	group
member	taking	over	the	partition	would	begin	consumption	from	the	last	committed
offset	(possibly	reprocessing	messages	that	the	failed	consumer	would	have	processed
already	but	not	committed	yet).

Further	reading	or	watching

1.	 Introducing	the	Kafka	Consumer:	Getting	Started	with	the	New	Apache	Kafka	0.9
Consumer	Client

Consumers

12

http://www.confluent.io/blog/tutorial-getting-started-with-the-new-apache-kafka-0-9-consumer-client/


Clusters
A	Kafka	cluster	is	the	central	data	exchange	backbone	for	an	organization.

Clusters

13



MetricsReporter

JmxReporter

	JmxReporter		is	a	metrics	reporter	that	is	always	included	in	metric.reporters	setting	with
	kafka.consumer		metrics	prefix.

MetricsReporter

14



Kafka	Tools

	TopicCommand	

	kafka.admin.TopicCommand	

./bin/kafka-topics.sh	--create	--zookeeper	localhost:2181	--replication-factor	1	--par

titions	1	--topic	my-topic

./bin/kafka-topics.sh	--zookeeper	localhost:2181	--describe	--topic	my-topic

	ConsoleProducer	

	kafka.tools.ConsoleProducer	

./bin/kafka-console-producer.sh	--broker-list	localhost:9092	--topic	my-topic

	ConsoleConsumer	

	kafka.tools.ConsoleConsumer	

./bin/kafka-console-consumer.sh	--bootstrap-server	localhost:9092	--topic	my-topic

Kafka	Tools

15



Kafka	Settings
Table	1.	Settings

Setting Default
Value Importance Description

	bootstrap.servers	 (empty) required

A	comma-separated	list	of
	host:port		pairs	to	establish	the
initial	connection	to	a	Kafka
cluster,	e.g.		localhost:9092
	localhost:9092,another.host:9092

The	client	will	make	use	of	all
servers	irrespective	of	which
servers	are	specified	here	for
bootstrapping	and	only	impacts	the
initial	hosts	used	to	discover	the
full	set	of	alive	servers	in	a	cluster.

Since	these	servers	are	just	used
for	the	initial	connection	to
discover	the	full	cluster
membership	(which	may	change
dynamically),	this	list	does	not
have	to	contain	the	full	set	of
servers	(you	may	want	more	than
one,	though,	in	case	a	server	is
down).

	client.id	
(random-
generated)

A	Consumer	identifier	string	to
pass	to	the	server	when	making
requests.

The	purpose	of	this	is	to	be	able	to
track	the	source	of	requests
beyond	just	ip/port	by	allowing	a
logical	application	name	to	be
included	in	server-side	request
logging.

	fetch.max.wait.ms	

	group.id	

A	unique	string	that	identifies	the
Connect	cluster	group	this	worker
belongs	to.

	heartbeat.interval.ms	

The	expected	time	between
heartbeats	to	the	group
coordinator	when	using	Kafka’s
group	management	facilities.

Settings

16



	key.deserializer	 How	to	deserialize	message	keys.

	metric.reporters	 JmxReporter The	list	of	fully-qualified	classes
names	of	the	metrics	reporters

	metrics.num.samples	
Number	of	samples	to	compute
metrics.

	metrics.sample.window.ms	
Time	window	(in	milliseconds)	a
metrics	sample	is	computed	over.

	rebalance.timeout.ms	

The	maximum	allowed	time	for
each	worker	to	join	the	group	once
a	rebalance	has	begun.

	retry.backoff.ms	

Time	to	wait	before	attempting	to
retry	a	failed	request	to	a	given
topic	partition.

This	avoids	repeatedly	sending
requests	in	a	tight	loop	under
some	failure	scenarios.

	request.timeout.ms	

	session.timeout.ms	 10000 High The	timeout	used	to	detect	worker
failures.

	value.deserializer	
How	to	deserialize	message
values.

Caution FIXME	What’s	worker?

//	requires	org.apache.kafka:connect-runtime:0.10.0.1	dependency

import	org.apache.kafka.connect.runtime.distributed.DistributedConfig

DistributedConfig.SESSION_TIMEOUT_MS_CONFIG

Caution FIXME	How	to	know	the	current	value	of	a	setting	on	a	producer’s	and	a
consumer’s	side?

Settings

17



WorkerGroupMember

Caution FIXME	WorkerCoordinator?	DistributedHerder?

WorkerGroupMember

18



ConnectDistributed
	ConnectDistributed		is	a	command-line	utility	that	runs	Kafka	Connect	in	distributed	mode.

Caution FIXME	Doh,	I’d	rather	not	enter	Kafka	Connect	yet.	Not	interested	in	it	yet.

ConnectDistributed

19

http://docs.confluent.io/3.0.1/connect/intro.html


KafkaServerStartable
	KafkaServerStartable		is	a	thin	management	layer	to	manage	a	single		KafkaServer	
instance,	i.e.	to	start	and	shut	it	down.

Table	1.	KafkaServerStartable’s	Internal	Registries	and	Counters
Name Description

	server	

KafkaServer	instance.

Created	when		KafkaServerStartable		is	created.

	awaitShutdown		Method

Caution FIXME

	shutdown		Method

Caution FIXME

Creating	KafkaServerStartable	Instance

	KafkaServerStartable		takes	the	following	when	created:

1.	 KafkaConfig

2.	 Collection	of	KafkaMetricsReporters

	KafkaServerStartable		creates	a	KafkaServer.

Creating	KafkaServerStartable	From	Properties 
— 	fromProps		Method

fromProps(serverProps:	Properties):	KafkaServerStartable

	fromProps		creates	a		KafkaServerStartable		with	a	custom		serverProps		properties	file.

Caution FIXME

Note 	fromProps		is	used	when		kafka.Kafka		runs	as	a	standalone	command-line
application

KafkaServerStartable

20



	startup		Method

startup():	Unit

	startup		starts	the	managed		KafkaServer		(using		server		handler).

If	starting		KafkaServer		throws	an	exception,		startup		terminates	the	JVM	with	status		1	.
You	should	see	the	following	FATAL	message	in	the	logs	if	that	happens.

FATAL	Fatal	error	during	KafkaServerStartable	startup.	Prepare	to	shutdown

Note 	startup		uses	Java’s	System.exit	to	terminate	a	JVM.

Note 	startup		is	used	when	a	Kafka	Broker	starts	(on	command	line).

KafkaServerStartable

21

https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#exit-int-


KafkaMetricsReporter

Caution FIXME

KafkaMetricsReporter

22



KafkaServer

Caution FIXME

	KafkaServer		acts	as	a	Kafka	broker.

	KafkaServer		registers	itself	in	the	JMX	system	under	kafka.server.

Table	1.	KafkaServer’s	Internal	Registries	and	Counters
Name Description

	reporters	

Collection	of		MetricsReporter	

Used	when… FIXME

	startup		Method

startup():	Unit

	startup		starts	a	single	Kafka	server.

When		startup		starts,	you	should	see	the	following	INFO	message	in	the	logs:

INFO	starting	(kafka.server.KafkaServer)

	startup		starts		KafkaScheduler	.

You	should	see	the	following	INFO	message	in	the	logs:

INFO	Cluster	ID	=	[clusterId]	(kafka.server.KafkaServer)

	startup		notifies	cluster	change	listeners.

	startup		creates	a		ReplicaManager		and	starts	it	right	afterwards.

	startup		creates	a		KafkaController		and	starts	it.

	startup		creates	a		AdminManager	.

	startup		creates	a		KafkaApis	.

In	the	end,	you	should	see	the	following	INFO	message	in	the	logs:

KafkaServer

23



INFO	[Kafka	Server	0],	started	(kafka.server.KafkaServer)

Note
The	INFO	message	above	uses	so-called	log	ident	with	the	value	of
	broker.id		property	and	is	always	in	the	format		[Kafka	Server	[brokerId]],		
after	a	Kafka	server	has	fully	started.

Caution FIXME

Note 	startup		is	used	exclusively	when		KafkaServerStartable		is	started.

	notifyClusterListeners		Method

Caution FIXME

Creating	KafkaServer	Instance

	KafkaServer		takes	the	following	when	created:

1.	 KafkaConfig

2.	 	Time		(defaults	to		Time.SYSTEM	)

3.	 	threadNamePrefix		(defaults	to	no	prefix)

4.	 	kafkaMetricsReporters	 — a	collection	of	KafkaMetricsReporter	(defaults	to	no
reporters)

Caution FIXME

Note 	KafkaServer		is	created	when		KafkaServerStartable		is	created.

KafkaServer

24



KafkaConfig

Caution FIXME

KafkaConfig

25



Kafka — Standalone	Command-Line
Application
	kafka.Kafka		is	a	standalone	command-line	application	to	start	a	Kafka	broker.

Note 	kafka.Kafka		is	started	using		kafka-server-start.sh		shell	script.

	getPropsFromArgs		Method

Caution FIXME

Starting	Kafka	Broker	on	Command	Line — 	main		Method

main(args:	Array[String]):	Unit

	main		merges	properties	and	creates	a		KafkaServerStartable	.

	main		registers	a	JVM	shutdown	hook	to	shut	down		KafkaServerStartable	.

Note 	main		uses	Java’s	Runtime.addShutdownHook	to	register	the	shutdown	hook.

In	the	end,		main		starts	the		KafkaServerStartable		and	waits	till	it	finishes.

	main		terminates	the	JVM	with	status		0		when		KafkaServerStartable		shuts	down	properly
and	with	status		1		in	case	of	any	exception.

Note 	main		uses	Java’s	System.exit	to	terminate	a	JVM.

Kafka

26

https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#addShutdownHook-java.lang.Thread-
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#exit-int-


KafkaScheduler
	KafkaScheduler		is	a	Scheduler	to	schedule	jobs	in	Kafka.

Scheduler	Contract

trait	Scheduler	{

		def	startup():	Unit

		def	shutdown():	Unit

		def	isStarted:	Boolean

		def	schedule(name:	String,	fun:	()	=>	Unit,	delay:	Long	=	0,	period:	Long	=	-1,	unit

:	TimeUnit	=	TimeUnit.MILLISECONDS)

}

Table	1.	Scheduler	Contract
Method Description

	schedule	 Schedules	a	task

KafkaScheduler

27



ReplicaManager
	ReplicaManager		is	created	and	started	right	afterwards	when		KafkaServer		starts.

When	started,		ReplicaManager		schedules	isr-expiration	and	isr-change-propagation	tasks.

Table	1.	ReplicaManager’s	Internal	Registries	and	Counters
Name Description

	FIXME	

Internal	cache	with…FIXME

Used	when… FIXME

	maybeShrinkIsr		Internal	Method

Caution FIXME

	maybePropagateIsrChanges		Method

Caution FIXME

	isr-expiration		Task

Caution FIXME

	isr-change-propagation		Task

Caution FIXME

Creating	ReplicaManager	Instance

	ReplicaManager		takes	the	following	when	created:

1.	 	config	 — KafkaConfig

2.	 	Metrics	

3.	 	Time	

4.	 	ZkUtils	

5.	 	scheduler	 — 	Scheduler	

ReplicaManager

28



6.	 	logManager	 — LogManager

7.	 	isShuttingDown		flag

8.	 	quotaManager	 — 	ReplicationQuotaManager	,

9.	 Optional		threadNamePrefix		(empty	by	default)

	ReplicaManager		initializes	the	internal	registries	and	counters.

Starting	ReplicaManager	(and	Scheduling	ISR-Related
Tasks) — 		startup		Method

startup():	Unit

	startup		schedules	the	ISR-related	tasks:

1.	 isr-expiration

2.	 isr-change-propagation

Note 	startup		uses		Scheduler		that	was	specified	when		ReplicaManager		was
created.

Note 	startup		is	used	exclusively	when		KafkaServer		starts.

ReplicaManager

29



KafkaController

Caution FIXME

	startup		Method

Caution FIXME

Creating	KafkaController	Instance

	KafkaController		takes	the	following	when	created:

1.	 FIXME

KafkaController

30



KafkaApis

Caution FIXME

Creating	KafkaApis	Instance

	KafkaApis		takes	the	following	when	created:

1.	 FIXME

KafkaApis

31



AdminManager

Caution FIXME

Creating	AdminManager	Instance

	AdminManager		takes	the	following	when	created:

1.	 FIXME

AdminManager

32



LogManager

Caution FIXME

LogManager

33



Gradle	Tips

Building	Kafka	Distribution

gradle	-PscalaVersion=2.11.8	clean	releaseTarGz	install

It	takes	around	2	minutes	(after	all	the	dependencies	were	downloaded	once).

After	the	command,	you	can	unpack	the	release	as	follows:

tar	-zxvf	core/build/distributions/kafka_2.11-0.10.1.0-SNAPSHOT.tgz

Executing	Single	Test

gradle	-PscalaVersion=2.11.8	:core:test	--no-rebuild	--tests	"*PlaintextProducerSendTe

st"

Gradle	Tips

34



Further	Reading	or	Watching

Articles

1.	 Apache	Kafka	for	Beginners	-	an	excellent	article	that	you	should	start	your	Kafka
journey	with.

Further	reading	or	watching

35

http://blog.cloudera.com/blog/2014/09/apache-kafka-for-beginners/

	Introduction
	Overview of Kafka
	Broker — Kafka Server
	Topics
	Messages
	Producers
	Consumers
	Clusters
	MetricsReporter
	Kafka Tools
	Settings
	WorkerGroupMember
	ConnectDistributed
	KafkaServerStartable
	KafkaMetricsReporter
	KafkaServer
	KafkaConfig
	Kafka
	KafkaScheduler
	ReplicaManager
	KafkaController
	KafkaApis
	AdminManager
	LogManager
	Gradle Tips
	Further reading or watching

