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Preface
Learning Apache Mahout is aimed at providing a strong foundation in machine 
learning using Mahout. This book is ideal for learning the core concepts of machine 
learning and the basics of Mahout. This book will go from the basics of Mahout and 
machine learning, to feature engineering and the implementation of various machine 
learning algorithms in Mahout. Algorithm usage examples will be explained using 
both the Mahout command line and its Java API. We will conclude the book with 
two chapters of end-to-end case studies. Ideally, chapters 1, 2 and 3 should be read 
sequentially, chapters 4 to 8 in any order, and chapters 9 and 10 after chapter 1 to 8 
have been completed.

What this book covers
Chapter 1, Introduction to Mahout, covers the setup of the learning environment, 
installation, and the configuration of the various tools required for this book.  
It will discuss the need for a machine learning library such as Mahout and  
introduce the basics of Mahout with command line and code examples.

Chapter 2, Core Concepts in Machine Learning, covers the fundamental concepts  
in machine learning. It will discuss the important steps involved in a machine 
learning project, such as data processing, model training, and efficacy, and  
provides an intuitive explanation of different algorithms.

Chapter 3, Feature Engineering, covers the most important phase of a machine  
learning project, feature extraction and representation. It will discuss common  
data preprocessing tasks, manual and automated feature transformation, feature 
selection, and dimensionality reduction.
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Chapter 4, Classification with Mahout, covers classification algorithms implemented 
in Mahout. It will discuss the important phases of building a classifier, such as 
preprocessing data, creating a train and test set, and measuring model efficacy.  
The algorithms that will be covered are logistic regression, random forest, and  
naïve Bayes.

Chapter 5, Frequent Pattern Mining and Topic Modeling, covers algorithms for frequent 
pattern mining and topic modeling. This chapter will provide an intuitive explanation 
of the algorithms and include both command line and code examples, while also 
providing practical examples.

Chapter 6, Recommendation with Mahout, covers algorithms to build recommender 
systems in Mahout. It will discuss item-based and user-based recommenders.  
This chapter will provide an intuitive explanation of the algorithms and include  
both command line and code examples, while also providing practical examples.

Chapter 7, Clustering with Mahout, covers algorithms to perform clustering in Mahout. 
It will discuss algorithms such as k-means, fuzzy k-means, streaming k-means, and 
so on. This chapter will provide an intuitive explanation of the algorithm and include 
both command line and code examples, while also providing practical examples.

Chapter 8, New Paradigm in Mahout, covers the porting of Mahout on top of Apache 
Spark. It will discuss the installation and configuration of Mahout and Spark,  
explain the important concepts of Spark and Mahout binding, and cover some  
basic examples.

Chapter 9, Case Study – Churn Analytics and Customer Segmentation, covers the steps 
involved in a machine learning project from start to finish. It will discuss all the 
important steps that need to be performed for a successful machine learning project. 
It will take a couple of use cases from customer analytics, churn analytics, and 
customer segmentation, to walk through the process.

Chapter 10, Case Study – Text Analytics, covers the steps involved in a text analytics 
project. It will discuss the vector space model of representing text, text clustering, 
and classification.

What you need for this book
For this book, you will need the following software:

• Java 1.6 or higher
• Maven 2.0 or higher
• Hadoop 1.2.1
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• Eclipse with Maven plug-in
• Mahout 0.9
• Python
• R

We will cover every software needed for this book in the corresponding chapters.  
All the examples in the book have been coded using the Ubuntu 12.04 LTS release.

Who this book is for
If you are a Java developer and want to use Mahout and machine learning to solve 
Big Data Analytics use cases, then this book is ideal for you. This book is good for 
self-learners who want to learn the fundamental concepts of machine learning and 
the practical implementations of Mahout. Some familiarity with shell scripts, Python, 
and R is assumed, but no prior experience is required.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"The output of the sed command is saved to the new file adult.data.csv."

Any command-line input or output is written as follows:

sudo pip install pandas

New terms and important words are shown in bold. Words that you see on  
the screen, in menus or dialog boxes for example, appear in the text like this:  
"Once the search results are displayed hit Install and follow the instructions."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
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Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.





[ 1 ]

Introduction to Mahout
Mahout is an open source machine learning library from Apache. Mahout primarily 
implements clustering, recommender engines (collaborative filtering), classification, 
and dimensionality reduction algorithms but is not limited to these.

The aim of Mahout is to provide a scalable implementation of commonly used 
machine learning algorithms. Mahout is the machine learning tool of choice if the 
data to be used is large. What we generally mean by large is that the data cannot  
be processed on a single machine. With Big Data becoming an important focus area, 
Mahout fulfils the need for a machine learning tool that can scale beyond a single 
machine. The focus on scalability differentiates Mahout from other tools such as R, 
Weka, and so on.

The learning implementations in Mahout are written in Java, and major portions,  
but not all, are built upon Apache's Hadoop distributed computation project using 
the MapReduce paradigm. Efforts are on to build Mahout on Apache Spark using 
Scala DSL. Programs written in Scala DSL will be automatically optimized and 
executed in parallel on Apache Spark. Commits of new algorithms in MapReduce 
have been stopped and the existing MapReduce implementation will be supported.

The purpose of this chapter is to understand the fundamental concepts behind 
Mahout. In particular, we will cover the following topics:

• Why Mahout
• When Mahout
• How Mahout
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Why Mahout
We already have many good open source machine learning software tools.  
The statistical language R has a very large community, good IDE, and a large 
collection of machine learning packages already implemented. Python has a  
strong community and is multipurpose, and in Java we have Weka.

So what is the need for a new machine learning framework?

The answer lies in the scale of data. Organizations are generating terabytes  
of data daily and there is a need for a machine learning framework that can  
process that amount of data.

That begs a question, can't we just sample the data and use existing tools for  
our analytics use cases?

Simple techniques and more data is better
Collecting and processing data is much easier today than, say, a decade ago. IT 
infrastructure has seen an enormous improvement; ETL tools, click stream providers 
such as Google analytics, stream processing frameworks such as Kafka, Storm, and 
so on have made collecting data much easier. Platforms like Hadoop, Cassandra, and 
MPP databases such as Teradata have made storing and processing huge amount of 
data much easier than earlier. From a large-scale production algorithm standpoint, 
we have seen that simpler algorithms on very large amounts of data produce 
reasonably good results.

Sampling is difficult
Sampling may lead to over-fitting and increases the complexity of preparing data to 
build models to solve the problem at hand. Though sampling tends to simplify things 
by allowing scientists to work on a small sample instead of the whole population 
and helps in using existing tools like R to scale up to the task, getting a representative 
sample is tricky.

I'd say when you have the choice of getting more data, take it. Never discard data. 
Throw more (commodity) hardware at the data by using platforms and tools such  
as Hadoop and Mahout.
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Community and license
Another advantage of Mahout is its license. Mahout is Apache licensed, which  
means that you can incorporate pieces of it into your own software regardless  
of whether you want to release your source code. However, other ML software,  
such as Weka, are under the GPL license, which means that incorporating them  
into your software forces you to release source code for any software you package 
with Weka components.

When Mahout
We have discussed the advantages of using Mahout, let's now discuss the scenarios 
where using Mahout is a good choice.

Data too large for single machine
If the data is too large to process on a single machine then it would be a good starting 
point to think about a distributed system. Rather than scaling and buying bigger 
hardware, it could be a better option to scale out, buy more machines, and distribute 
the processing.

Data already on Hadoop
A lot of enterprises have adopted Hadoop as their Big Data platform and have used 
it to store and aggregate data. Mahout has been designed to run algorithms on top of 
Hadoop and has a relatively straightforward configuration.

If your data or the bulk of it is already on Hadoop, then Mahout is a natural choice to 
run machine learning algorithms.

Algorithms implemented in Mahout
Do check whether the use case that needs to be implemented has a corresponding 
algorithm implemented in Mahout, or you have the required expertise to extend 
Mahout to implement your own algorithms.
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How Mahout
In this section, you will learn how to install and configure Mahout.

Setting up the development environment 
For any development work involving Mahout, and to follow the examples in this 
book, you will require the following setup:

• Java 1.6 or higher
• Maven 2.0 or higher
• Hadoop 1.2.1
• Eclipse with Maven plugin
• Mahout 0.9

I prefer to try out the latest version, barring when there are known compatibility 
issues. To configure Hadoop, follow the instructions on this page http://hadoop.
apache.org/docs/r1.2.1/single_node_setup.html. We will focus on configuring 
Maven, Eclipse with the Maven plugin, and Mahout.

Configuring Maven
Maven can be downloaded from one of the mirrors of the Apache website http://
maven.apache.org/download.cgi. We use Apache Maven 3.2.5 and the same can 
be downloaded using this command:

wget http://apache.mirrors.tds.net/maven/maven-3/3.2.5/binaries/apache-
maven-3.2.5-bin.tar.gz
cd /usr/local
sudo tar xzf $HOME/Downloads/ /usr/local/apache-maven-3.2.5-bin.tar.gz
sudo mv apache-maven-3.2.5 maven
sudo chown -R $USER maven

Configuring Mahout
Mahout can be configured to be run with or without Hadoop. Currently, efforts 
are on to port Mahout on Apache Spark but it is in a nascent stage. We will discuss 
Mahout on Spark in Chapter 8, New Paradigm in Mahout. In this chapter, you are  
going to learn how to configure Mahout on top of Hadoop.

We will have two configurations for Mahout. The first we will use for practicing 
command line examples of Mahout and the other, compiled from source, will be 
used to develop Mahout code using Java API and Eclipse.

http://hadoop.apache.org/docs/r1.2.1/single_node_setup.html
http://hadoop.apache.org/docs/r1.2.1/single_node_setup.html
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
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Though we can use one Mahout configuration, I will take this opportunity to discuss 
both approaches.

Download the latest Mahout version using one of the mirrors listed at the Apache 
Mahout website https://mahout.apache.org/general/downloads.html. The 
current release version is mahout-distribution-0.9.tar.gz. After the download 
completes, the archive should be in the Downloads folder under the user's home 
directory. Type the following on the command line. The first command moves the 
shell prompt to the /usr/local directory:

cd /usr/local

Extract the downloaded file to the directory mahout-distribution-0.9.tar.gz 
under the /usr/local directory. The command tar is used to extract the archive:

sudo tar xzf $HOME/Downloads/mahout-distribution-0.9.tar.gz

The third command mv renames the directory from mahout-distribution-0.9  
to mahout:

sudo mv mahout-distribution-0.9 mahout

The last command chown changes the ownership of the file from the root user to 
the current user. The Linux command chown is used for changing the ownership of 
files and directories. The argument –R instructs the chown command to recursively 
change the ownership of subdirectories and $USER holds the value of the logged in 
user's username:

sudo chown -R $USER mahout

We need to update the .bashrc file to export the required variables and update the 
$PATH variable:

cd $HOME
vi .bashrc

At the end of the file, copy the following statements:

#Statements related to Mahout
export MAVEN_HOME=/usr/local/maven
export MAHOUT_HOME=/usr/local/mahout
PATH=$PATH:/bin:$MAVEN_HOME/bin:$MAHOUT_HOME/bin
###end of mahout statement

Exit from all existing terminals, start a new terminal, and enter the following command:

echo $PATH

Check whether the output has the path recently added to Maven and Mahout.

https://mahout.apache.org/general/downloads.html
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Type the following commands on the command line; both commands should be 
recognized:

mvn –-version
mahout

Configuring Eclipse with the Maven plugin  
and Mahout
Download Eclipse from the Eclipse mirror mentioned on the home page. We have 
used Eclipse Kepler SR2 for this book. The downloaded archive should be in the 
Downloads folder of the user's home directory. Open a terminal and enter the 
following command:

cd /usr/local
sudo tar xzf $HOME/Downloads/eclipse-standard-kepler-SR2-linux-
gtk-x86_64.tar.gz
sudo chown -R $USER eclipse

Go into the Eclipse directory and open up the Eclipse GUI. We will now install the 
Maven plugin. Click on Help then Eclipse Marketplace and then in the search panel 
type m2e and search. Once the search results are displayed hit Install and follow the 
instructions. To complete the installation hit the Next button and press the Accept 
button whenever prompted. Once the installation is done, Eclipse will prompt for a 
restart. Hit OK and let Eclipse restart.
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Now to add Mahout dependency to any Maven project we need, add the following 
dependency in the pom.xml file:

    <dependency>
      <groupId>org.apache.mahout</groupId>
      <artifactId>mahout-core</artifactId>
      <version>0.9</version>
    </dependency>
    <dependency>
      <groupId>org.apache.mahout</groupId>
      <artifactId>mahout-examples</artifactId>
      <version>0.9</version>
    </dependency>
    <dependency>
      <groupId>org.apache.mahout</groupId>
      <artifactId>mahout-math</artifactId>
      <version>0.9</version>
    </dependency>

Eclipse will download and add all the dependencies.

Now we should import the code repository of this book to Eclipse. Open Eclipse and 
follow the following sequence of steps. The pom.xml file has all the dependencies 
included in it and Eclipse will download and resolve the dependencies.

Go to File | Import | Maven | Existing Maven Projects | Next | Browse to the 
location of the source folder that comes with this book | Finish.

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you 
can visit http://www.packtpub.com/support and register 
to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
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Mahout command line
Mahout provides an option for the command line execution of machine learning 
algorithms. Using the command line, an initial prototype of the model can be  
built quickly.

A few examples of command line are discussed. A great place to start is to go 
through Mahout's example scripts, the example scripts; are located under the 
Mahout home folder in the examples folder:

cd $MAHOUT_HOME
cd examples/bin
ls --ltr

The Mahout example scripts are as follows:

Open the file README.txt in vi editor and read the description of the scripts.  
We will be discussing them in the subsequent sections of this chapter:

vi README.txt
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The description of the example script is as follows:

It is a good idea to try out a few command line Mahout algorithms 
before writing Mahout Java code. This way we can shortlist a few 
algorithms that might work on the given data and problem, and 
save a lot of time.

A clustering example
In this section, we will discuss the command line implementation of clustering in 
Mahout and use the example script as reference.

On the terminal please type:

vi cluster-reuters.sh

This script clusters the Reuters dataset using a variety of algorithms. It downloads 
the dataset automatically, parses and copies it to HDFS (Hadoop Distributed File 
System), and based upon user input, runs the corresponding clustering algorithm.
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On the vi terminal type the command:

:set number

This will display the line numbers of the lines in the file. The algorithms implemented 
are kmeans, fuzzykmeans, lda, and streamingkmeans; line 42 of the code has a list of 
all algorithms implemented in the script:

algorithm=( kmeansfuzzykmeansldastreamingkmeans) #A list of all 
algorithms implemented in the script

Input is taken from the user in line 51 by the read statement:

read -p "Enter your choice : " choice

Line 57 sets the temp working directory variable:

WORK_DIR=/tmp/mahout-work-${USER}

On line 79, the curl statement downloads the Reuters data to the working directory, 
first checking whether the file is already present in the working directory between 
lines 70 to 73:

curl http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.tar.gz -o 
${WORK_DIR}/reuters21578.tar.gz

From line 89, the Reuters tar is extracted to the reuters-sgm folder under the 
working directory:

tar xzf ${WORK_DIR}/reuters21578.tar.gz -C ${WORK_DIR}/reuters-sgm

Reuter's raw data file
Let's have a look at one of the raw files. Open the reut2-000.sgm file in a text editor 
such as vi or gedit.
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The Reuter's raw file looks like this:

The Reuters data is distributed in 22 files, each of which contains 1,000 documents, 
except for the last (reut2-021.sgm), which contains 578 documents. The files are 
in the SGML (standard generalized markup language) format, which is similar to 
XML. The SGML file needs to be parsed.

On line 93, the Reuters data is parsed using Lucene. Lucene has built-in classes and 
functions to process different file formats. The logic of parsing the Reuters dataset 
is implemented in the ExtractReuters class. The SGML file is parsed and the text 
elements are extracted from it.

Apache Lucene is a free/open source information 
retrieval software library.

We will use the ExtractReuters class to extract the sgm file to text format.

$MAHOUT org.apache.lucene.benchmark.utils.ExtractReuters ${WORK_DIR}/
reuters-sgm ${WORK_DIR}/reuters-out
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Now let's look at the Reuters processed file. The following figure is a snapshot 
taken from the text file extracted from the sgm files we saw previously by the 
ExtractReuters class:

On lines 95 to 101, data is loaded from a local directory to HDFS, deleting the 
reuters-sgm and reuters-out folders if they already exist:

  echo "Copying Reuters data to Hadoop"
  $HADOOP dfs -rmr ${WORK_DIR}/reuters-sgm
  $HADOOP dfs -rmr ${WORK_DIR}/reuters-out
  $HADOOP dfs -put ${WORK_DIR}/reuters-sgm ${WORK_DIR}/reuters-sgm
  $HADOOP dfs -put ${WORK_DIR}/reuters-out ${WORK_DIR}/reuters-out

On line 105, the files are converted into sequence files. Mahout works with  
sequence files.

Sequence files are the standard input of Mahout machine 
learning algorithms.

$MAHOUT seqdirectory -i ${WORK_DIR}/reuters-out -o ${WORK_DIR}/reuters-
out-seqdir -c UTF-8 -chunk 64 -xm sequential
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On lines 109 to 111, the sequence file is converted to a vector representation.  
Text needs to be converted into a vector representation so that a machine learning 
algorithm can process it. We will talk about text vectorization in details in Chapter 10, 
Case Study – Text Analytics.

 $MAHOUT seq2sparse -i ${WORK_DIR}/reuters-out-seqdir/ 
  -o ${WORK_DIR}/reuters-out-seqdir-sparse-kmeans --maxDFPercent 85 –
namedVector

From here on, we will only explain the k-means algorithm execution; we encourage 
you to read and understand the other three implementations too. A detailed 
discussion of clustering will be covered in Chapter 7, Clustering with Mahout.

Clustering is the process of partitioning a bunch of data points into related groups 
called clusters. K-means clustering partitions a dataset into a specified number  
of clusters by minimizing the distance between each data point and the center of  
the cluster using a distance metric. A distance metric is a way to define how far or 
near a data point is from another. K-means requires users to provide the number  
of clusters and optionally user-defined cluster centroids.

To better understand how data points are clustered together, please have a look at 
the sample figure displaying three clusters. Notice that the points that are nearby 
are grouped together into three distinct clusters. A few points don't belong to any 
clusters, those points represent outliers and should be removed prior to clustering.



Introduction to Mahout

[ 14 ]

Here is an example of the command line for k-means clustering:

Parameter Description
--input (-i) This is the path to the job input directory.
--clusters (-c) These are the input centroids and they must be a 

SequenceFile of type Writable or Cluster/Canopy. 
If k is also specified, then a random set of vectors will be 
selected and written out to this path first.

--output (-o) This is the directory pathname for the output.
--distanceMeasure This is the class name of DistanceMeasure; the default is 

SquaredEuclidean.
--convergenceDelta This is the convergence delta value; the default is 0.5.
--maxIter (-x) This is the maximum number of iterations.
--maxRed (-r) This is the number of reduce tasks; this defaults to 2.
--k (-k) This is the k in k-means. If specified, then a random 

selection of k vectors will be chosen as the Centroid  
and written to the cluster's input path.

--overwrite (-ow) If this is present, overwrite the output directory before 
running the job.

--help (-h) This prints out Help.
--clustering (-cl) If this is present, run clustering after the iterations have 

taken place.

Lines 113 to 118 take the sparse matrix and runs the k-means clustering algorithm 
using the cosine distance metric. We pass –k the number of clusters as 20 and –x  
the maximum number of iterations as 10:

     $MAHOUT kmeans \
    -i ${WORK_DIR}/reuters-out-seqdir-sparse-kmeans/tfidf-vectors/ \
    -c ${WORK_DIR}/reuters-kmeans-clusters \
    -o ${WORK_DIR}/reuters-kmeans \
    -dm org.apache.mahout.common.distance.CosineDistanceMeasure \
    -x 10 -k 20 -ow --clustering \

Lines 120 to 125 take the cluster dump utility, read the clusters in sequence file 
format, and convert them to text files:

 $MAHOUT clusterdump \
    -i ${WORK_DIR}/reuters-kmeans/clusters-*-final \
    -o ${WORK_DIR}/reuters-kmeans/clusterdump \
    -d ${WORK_DIR}/reuters-out-seqdir-sparse-kmeans/dictionary.file-0 \
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    -dt sequencefile -b 100 -n 20 --evaluate -dm org.apache.mahout.
common.distance.CosineDistanceMeasure -sp 0 \ 
    --pointsDir ${WORK_DIR}/reuters-kmeans/clusteredPoints \
&& \    
  cat ${WORK_DIR}/reuters-kmeans/clusterdump

The clusterdump utility outputs the center of each cluster and the top terms in the 
cluster. A sample of the output is shown here:

A classification example
In this section, we will discuss the command line implementation of classification in 
Mahout and use the example script as a reference.

Classification is the task of identifying which set of predefined classes a data point 
belongs to. Classification involves training a model with a labeled (previously 
classified) dataset and then predicting new unlabeled data using that model.  
The common workflow for a classification problem is:

1. Data preparation
2. Train model
3. Test model
4. Performance measurement

Repeat steps until the desired performance is achieved, or the best possible solution 
is achieved or the project's time is up.
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On the terminal, please type:

vi classify-20newsgroups.sh

On the vi terminal, type the following command to show the line numbers for lines 
in the script:

:set number

The algorithms implemented in the script are cnaivebayes, naivebayes, sgd, and a 
last option clean, which cleans up the work directory

Line 44 creates a working directory for the dataset and all input/output:

export WORK_DIR=/tmp/mahout-work-${USER}

Lines 64 to 74 download and extract the 20news-bydate.tar.gz file after making 
sure it is not already downloaded:

  if [ ! -e ${WORK_DIR}/20news-bayesinput ]; then
    if [ ! -e ${WORK_DIR}/20news-bydate ]; then
      if [ ! -f ${WORK_DIR}/20news-bydate.tar.gz ]; then
        echo "Downloading 20news-bydate"
        curl http://people.csail.mit.edu/jrennie/20Newsgroups/20news-
bydate.tar.gz -o ${WORK_DIR}/20news-bydate.tar.gz
      fi
      mkdir -p ${WORK_DIR}/20news-bydate
      echo "Extracting..."
      cd ${WORK_DIR}/20news-bydate && tar xzf ../20news-bydate.tar.gz && 
cd ..&&cd ..
    fi
  fi

The 20 newsgroups dataset consists of messages, one per file. Each file begins with 
header lines that specify things such as who sent the message, how long it is, what 
kind of software was used, and the subject. A blank line follows, and then the 
message body follows as unformatted text.

Lines 90 to 101 prepare the directory and copy the data to the Hadoop directory:

  echo "Preparing 20newsgroups data"
  rm -rf ${WORK_DIR}/20news-all
  mkdir ${WORK_DIR}/20news-all
  cp -R ${WORK_DIR}/20news-bydate/*/* ${WORK_DIR}/20news-all

  if [ "$HADOOP_HOME" != "" ] && [ "$MAHOUT_LOCAL" == "" ] ; then
    echo "Copying 20newsgroups data to HDFS"
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    set +e
    $HADOOP dfs -rmr ${WORK_DIR}/20news-all
    set -e
    $HADOOP dfs -put ${WORK_DIR}/20news-all ${WORK_DIR}/20news-all
  fi

A snapshot of the raw 20newsgroups data file is provided below.

Lines 104 to 106 convert the full 20 newsgroups dataset into sequence files:

$ mahout seqdirectory  -i ${WORK_DIR}/20news-all –o ${WORK_DIR}/20news-
seq -ow

Lines 109 to 111 convert the sequence files to vectors calculating the term frequency 
and inverse document frequency. Term frequency and inverse document frequency 
are ways of representing text using numeric representation:

./bin/mahout seq2sparse \
-i ${WORK_DIR}/20news-seq \
-o ${WORK_DIR}/20news-vectors -lnorm -nv  -wt tfidf
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Lines 114 to 118 split the preprocessed dataset into training and testing sets. The test 
set will be used to test the performance of the model trained using the training sets:

./bin/mahout split \
-i ${WORK_DIR}/20news-vectors/tfidf-vectors \
--trainingOutput ${WORK_DIR}/20news-train-vectors \
--testOutput ${WORK_DIR}/20news-test-vectors  \
--randomSelectionPct 40 --overwrite --sequenceFiles -xm sequential

Lines 120 to 125 train the classifier using the training sets:

./bin/mahout trainnb \
-i ${WORK_DIR}/20news-train-vectors -el \
-o ${WORK_DIR}/model \
-li ${WORK_DIR}/labelindex \
-ow $c

Lines 129 to 133 test the classifier using the test sets:

./bin/mahout testnb \
-i ${WORK_DIR}/20news-train-vectors\
-m ${WORK_DIR}/model \
-l ${WORK_DIR}/labelindex \
-ow -o ${WORK_DIR}/20news-testing $c

Mahout API – a Java program example
Though using Mahout from the command line is convenient, fast, and serves the 
purpose in many scenarios, learning the Mahout API is important too. The reason 
being, using the API gives you more flexibility in terms of creating your machine 
learning application, and not all algorithms can be easily called from the command 
line. Working with the Mahout API helps to understand the internals of a machine 
learning algorithm.

Mahout core JAR files have the implementation of the main machine learning 
classes and the Mahout examples JAR file has some example code and wrappers 
built around the Mahout core classes. It is worth spending time going through the 
documentation and getting an overall understanding. The documentation for the 
version you are using can be found in the Mahout installation directory.
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The Mahout documentation directory looks like this:

We will now look at a Mahout code example. We will write a classification example 
in which we will train an algorithm to predict whether a client has subscribed to 
a term deposit. Classification refers to the process of labeling a particular instance 
or row to a particular predefined category, called a class label. The purpose of the 
following example is to give you a hang of the development using Mahout, Eclipse, 
and Maven.

The dataset
We will use the bank-additional-full.csv file present in the 
learningApacheMahout/data/chapter4 directory as the input for our  
example. First, let's have a look at the structure of the data and try to understand  
it. The following table shows various input variables along with their data types:

Column Name Description Variable Type
Age Age of the client Numeric
Job Type of job, for example, entrepreneur, 

housemaid, or management
Categorical

Marital Marital status Categorical
Education Education level Categorical
Default Has the client defaulted on credit? Categorical
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Column Name Description Variable Type
Housing Does the client have housing loan? Categorical
Loan Does the client have personal loan? Categorical
Contact Contact communication type Categorical
Month Last contact month of year Categorical
day_of_week Last contact day of the week Categorical
duration Last contact duration, in seconds Numeric
campaign Number of contacts Numeric
Pdays Number of days that passed since last contact Numeric
previous Number of contacts performed before this 

campaign
Numeric

poutcome outcome of the previous marketing campaign Categorical
emp.var.rate Employment variation rate - quarterly indicator Numeric
cons.price.idx Consumer price index - monthly indicator Numeric
cons.conf.idx Consumer confidence index - monthly indicator Numeric
euribor3m Euribor 3 month rate - daily indicator Numeric
nr.employed Number of employees - quarterly indicator Numeric
Y Has the client subscribed a term deposit Categorical/

target

Based on many attributes of the customer, we try to predict the target variable y  
(has the client subscribed to a term deposit?), which has a set of two predefined 
values, Yes and No. We need to remove the header line to use the data.

We will use logistic regression to build the model; logistic regression is a statistical 
technique that computes the probability of an unclassified item belonging to a 
predefined class.

You might like to run the example with the code in the source code that ships with 
this book; I will explain the important steps in the following section. In Eclipse, open 
the code file OnlineLogisticRegressionTrain.java from the package chapter4.
logistic.src, which is present in the directory learningApacheMahout/src/
main/java/chapter4/src/logistic in the code folder that comes with this book.

The first step is to identify the source and target folders:

String inputFile = "data/chapter4/train_data/input_bank_data.csv";
String outputFile = "data/chapter4/model";
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Once we know where to get the data from, we need to tell the algorithm about how 
to interpret the data. We pass the column name and the corresponding column type; 
here, n denotes the numeric column and w, the categorical columns of the data:

List<String> predictorList =Arrays.asList("age","job","marital","educat
ion","default","housing","loan","contact","month","day_of_week","durati
on","campaign","pdays","previous","poutcome","emp.var.rate","cons.price.
idx","cons.conf.idx","euribor3m","nr.employed");

List<String> typeList = Arrays.asList("n","w","w","w","w","w","w","w","w"
,"w","n","n","n","n","w","n","n","n","n","n");

Set the classifier parameters. LogisticModelParameters is a wrapper class, in 
Mahout's example distribution, used to set the parameters for training logistic 
regression and to return the instance of a CsvRecordFactory:

LogisticModelParameters lmp = new LogisticModelParameters();
        lmp.setTargetVariable("y");
        lmp.setMaxTargetCategories(2);
        lmp.setNumFeatures(20);
        lmp.setUseBias(false);
        lmp.setTypeMap(predictorList,typeList);
        lmp.setLearningRate(0.5);
        int passes = 50;

We set the the target variable y to be used for training, the maximum number of 
target categories to be 2 (Yes, No), the number of features or columns in the data 
excluding the target variable (which is 20), and some other settings (which we  
will learn about later in this book). The variable passed has been given a value  
of 50, which means the maximum number of iteration over the data will be 50.

The CsvRecordFactory class returns an object to parse the CSV file based  
on the parameters passed. The LogisticModelParameters class takes care of 
passing the parameters to the constructor of CsvRecordFactory. We use the  
class RandomAccessSparseVector to encode the data into vectors and train  
the model using lr.train(targetValue, input):

CsvRecordFactory csv = lmp.getCsvRecordFactory();
lr = lmp.createRegression();
for (int pass = 0; pass < passes; pass++) {
                BufferedReader in = new BufferedReader(new 
FileReader(inputFile));

                
                csv.firstLine(in.readLine());
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                String line = in.readLine();
                int lineCount = 2;
                while (line != null) {
                  
                  Vector input = new RandomAccessSparseVector(lmp.
getNumFeatures());
                  int targetValue = csv.processLine(line, input);

                  // update model
                  lr.train(targetValue, input);
                  k++;

                  line = in.readLine();
                  lineCount++;
                }
                in.close();
              }

The output after running the code would be an equation denoting the logistic 
regression. Excerpts of the equation are copied here:

y ~ -97.230*age + -12.713*campaign + . . .

You will learn about logistic regression, how to interpret the equation, and how  
to evaluate the results in detail in Chapter 4, Classification with Mahout.

Parallel versus in-memory execution mode
Mahout has both parallel and in-memory execution for many machine learning 
algorithms. In-memory execution can be used when the data size is smaller or to try 
out different algorithms quickly without installing Hadoop. In-memory execution 
is restricted to one machine whereas the parallel are designed to run on different 
machines. The parallel execution is implemented over Hadoop using the MapReduce 
paradigm, and for parallel execution; we call the code via the driver class to run 
the Hadoop MapReduce job. Let's see which algorithms have single machine and 
parallel execution. We have grouped the algorithms according to the paradigm such 
as collaborative filtering, classification, and so on. The first column of the table is the 
name of the column, the second column indicates whether the algorithm has a single 
machine implementation, and the third column indicates whether the algorithm has 
a parallel execution implementation.
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The collaborative filtering table is as follows:

Algorithm Single machine Parallel
User-based collaborative filtering Y N
Item-based collaborative filtering Y Y
Matrix factorization with alternating least squares Y Y
Matrix factorization with alternating least squares 
on implicit feedback

Y Y

Weighted matrix factorization Y N

The classification table is as follows:

Algorithm Single machine Parallel
Logistic regression Y N
Naïve Bayes/Complementary naïve Bayes N Y
Random forest N Y
Hidden Markov models Y N
Multilayer perceptron Y N

The clustering table is as follows:

Algorithm Single machine Parallel
Canopy clustering Y Y
k-means clustering Y Y
Fuzzy k-means Y Y
Streaming k-means Y Y
Spectral clustering N Y

The dimensionality reduction table is as follows:

Algorithm Single machine Parallel
Singular value decomposition Y N
Lanczos algorithm Y Y
Stochastic SVD Y Y
Principal component analysis Y Y
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The topic models table is as follows:

Algorithm Single machine Parallel
Latent Dirichlet allocation Y Y

The miscellaneous table is as follows:

Algorithm Single machine Parallel
Frequent pattern mining N Y
RowSimilarityJob N Y
ConcatMatrices N Y
Collocations N Y

Summary
In this chapter, we discussed the guiding principle of Mahout and tried out some 
examples to get a hands-on feel of Mahout. We discussed why, when, and how  
to use Mahout and walked through the installation steps of the required tools and 
software. We then learned how to use Mahout from the command line and from  
the code, and finally concluded with a comparison between the parallel and the 
single-machine execution of Mahout.

This is the beginning of what will hopefully be an exciting journey. In the forthcoming 
chapters, we will discuss a lot of practical applications for Mahout. In the next chapter, 
we will discuss the core concepts of machine learning. A clear understanding of the 
concepts of different machine learning algorithms is of paramount importance for a 
successful career in data analytics.
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Core Concepts in  
Machine Learning

The purpose of this chapter is to understand the core concepts of machine learning. 
We will focus on understanding the steps involved in, resolving different types of 
problems and application areas in machine learning. In particular we will cover the 
following topics:

• Supervised learning
• Unsupervised learning
• The recommender system
• Model efficacy

A wide range of software applications today try to replace or augment human 
judgment. Artificial Intelligence is a branch of computer science that has long been 
trying to replicate human intelligence. A subset of AI, referred to as machine learning, 
tries to build intelligent systems by using the data. For example, a machine learning 
system can learn to classify different species of flowers or group-related news items 
together to form categories such as news, sports, politics, and so on, and for each of 
these tasks, the system will learn using data. For each of the tasks, the corresponding 
algorithm would look at the data and try to learn from it. In the next few sections,  
you will learn about the major concepts and paradigms related to machine learning.
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Supervised learning
Supervised learning deals with training algorithms with labeled data, inputs for 
which the outcome or target variables are known, and then predicting the outcome/
target with the trained model for unseen future data. For example, historical e-mail 
data will have individual e-mails marked as ham or spam; this data is then used for 
training a model that can predict future e-mails as ham or spam. Supervised learning 
problems can be broadly divided into two major areas, classification and regression.

Classification deals with predicting categorical variables or classes; for example, 
whether an e-mail is ham or spam or whether a customer is going to renew a 
subscription or not, for example a postpaid telecom subscription. This target  
variable is discrete, and has a predefined set of values.

Regression deals with a target variable, which is continuous. For example, when we 
need to predict house prices, the target variable price is continuous and doesn't have 
a predefined set of values.

In order to solve a given problem of supervised learning, one has to perform the 
following steps.

Determine the objective
The first major step is to define the objective of the problem. Identification of class 
labels, what is the acceptable prediction accuracy, how far in the future is prediction 
required, is insight more important or is accuracy of classification the driving factor, 
these are the typical objectives that need to be defined. For example, for a churn 
classification problem, we could define the objective as identifying customers who 
are most likely to churn within three months. In this case, the class label from the 
historical data would be whether a customer has churned or not, with insights into 
the reasons for the churn and a prediction of churn at least three months in advance.

Decide the training data
After the objective of the problem has been defined, the next step is to decide what 
training data should be used. The training data is directly guided by the objective of 
the problem to be solved. For example, in the case of an e-mail classification system, 
it would be historical e-mails, related metadata, and a label marking each e-mail as 
spam or ham. For the problem of churn analysis, different data points collected about 
a customer such as product usage, support case, and so on, and a target label for 
whether a customer has churned or is active, together form the training data.
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Churn Analytics is a major problem area for a lot of businesses 
domains such as BFSI, telecommunications, and SaaS. Churn is 
applicable in circumstances where there is a concept of term-bound 
subscription. For example, postpaid telecom customers subscribe for  
a monthly term and can choose to renew or cancel their subscription. 
A customer who cancels this subscription is called a churned customer.

Create and clean the training set
The next step in a machine learning project is to gather and clean the dataset. The 
sample dataset needs to be representative of the real-world data, though all available 
data should be used, if possible. For example, if we assume that 10 percent of e-mails 
are spam, then our sample should ideally start with 10 percent spam and 90 percent 
ham. Thus, a set of input rows and corresponding target labels are gathered from data 
sources such as warehouses, or logs, or operational database systems. If possible, it is 
advisable to use all the data available rather than sampling the data. Cleaning data for 
data quality purposes forms part of this process. For example, training data inclusion 
criteria should also be explored in this step. An example of this in the case of customer 
analytics is to decide the minimum age or type of customers to use in the training set, 
for example including customers aged at least six months.

Feature extraction
Determine and create the feature set from the training data. Features or  
predictor variables are representations of the training data that is used as input  
to a model. Feature extraction involves transforming and summarizing that data. 
The performance of the learned model depends strongly on its input feature set. 
This process is primarily called feature extraction and requires good understanding 
of data and is aided by domain expertise. For example, for churn analytics, we 
use demography information from the CRM, product adoption (phone usage in 
case of telecom), age of customer, and payment and subscription history as the 
features for the model. The number of features extracted should neither be too large 
nor too small; feature extraction is more art than science and, optimum feature 
representation can be achieved after some iterations. Typically, the dataset is 
constructed such that each row corresponds to one variable outcome. For example, 
in the churn problem, the training dataset would be constructed so that every row 
represents a customer.
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Train the models
We need to try out different supervised learning algorithms. This step is called training 
the model and is an iterative process where you might try building different training 
samples and try out different combinations of features. For example, we may choose 
to use support vector machines or decision trees depending upon the objective of the 
study, the type of problem, and the available data. Machine learning algorithms can 
be bucketed into groups based on the ability of a user to interpret how the predictions 
were arrived at. If the model can be interpreted easily, then it is called a white box, for 
example decision tree and logistic regression, and if the model cannot be interpreted 
easily, they belong to the black box models, for example support vector machine 
(SVM). If the objective is to gain insight, a white box model such as decision tree or 
logistic regression can be used, and if robust prediction is the criteria, then algorithms 
such as neural networks or support vector machines can be used.

While training a model, there are a few techniques that we should keep in mind,  
like bagging and boosting.

Bagging
Bootstrap aggregating, which is also known as bagging, is a technique where the data 
is taken from the original dataset S times to make S new datasets. The datasets are 
the same size as the original. Each dataset is built by randomly selecting an example 
from the original with replacement. By with replacement we mean that you can select 
the same example more than once. This property allows you to have values in the 
new dataset that are repeated, and some values from the original won't be present 
in the new set. Bagging helps in reducing the variance of a model and can be used to 
train different models using the same datasets. The final conclusion is arrived at after 
considering the output of each model.

For example, let's assume our data is a, b, c, d, e, f, g, and h. By sampling our data five 
times, we can create five different samples as follows:

• Sample 1: a, b, c, c, e, f, g, h
• Sample 2: a, b, c, d, d, f, g, h
• Sample 3: a, b, c, c, e, f, h, h
• Sample 4: a, b, c, e, e, f, g, h
• Sample 5: a, b, b, e, e, f, g, h
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As we sample with replacement, we get the same examples more than once.  
Now we can train five different models using the five sample datasets. Now,  
for the prediction; as each model will provide the output, let's assume classes  
are yes and no, and the final outcome would be the class with maximum votes.  
If three models say yes and two no, then the final prediction would be class yes.

Boosting
Boosting is a technique similar to bagging. In boosting and bagging, you always 
use the same type of classifier. But in boosting, the different classifiers are trained 
sequentially. Each new classifier is trained based on the performance of those  
already trained, but gives greater weight to examples that were misclassified  
by the previous classifier. Boosting focuses new classifiers in the sequence on 
previously misclassified data.

Boosting also differs from bagging in its approach of calculating the final prediction. 
The output is calculated from a weighted sum of all classifiers, as opposed to the 
method of equal weights used in bagging. The weights assigned to the classifier output 
in boosting are based on the performance of the classifier in the previous iteration.

Validation
After collecting the training set and extracting the features, you need to train the 
model and validate it on unseen samples. There are many approaches for creating 
the unseen sample called the validation set. We will be discussing a couple of  
them shortly.

Holdout-set validation
One approach to creating the validation set is to divide the feature set into train  
and test samples. We use the train set to train the model and test set to validate it. 
The actual percentage split varies from case to case but commonly it is split at 70 
percent train and 30 percent test. It is also not uncommon to create three sets, train, 
test and validation set. Train and test set is created from data out of all considered 
time periods but the validation set is created from the most recent data.

K-fold cross validation
Another approach is to divide the data into k equal size folds or parts and then use 
k-1 of them for training and one for testing. The process is repeated k times so that 
each set is used as a validation set once and the metrics are collected over all the 
runs. The general standard is to use k as 10, which is called 10-fold cross-validation.
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Evaluation
The objective of evaluation is to test the generalization of a classifier. By generalization, 
we mean how good the model performs on future data. Ideally, evaluation should be 
done on an unseen sample, separate to the validation sample or by cross-validation. 
There are standard metrics to evaluate a classifier against. We will discuss them in the 
model efficacy section. There are a few things to consider while training a classifier that 
we should keep in mind. We will discuss those in this section.

Bias-variance trade-off
 The first aspect to keep in mind is the trade-off between bias and variance.

To understand the meaning of bias and variance, let's assume that we have several 
different, but equally good, training datasets for a specific supervised learning 
problem. We train different models using the same technique; for example, build 
different decision trees using the different training datasets available.

Bias measures how far off in general a model's predictions are from the correct value. 
Bias can be measured as the average difference between a predicted output and its 
actual value. A learning algorithm is biased for a particular input X if, when trained 
on different training sets, it is incorrect when predicting the correct output for X.

Variance is how greatly the predictions for a given point vary between different 
realizations of the model. A learning algorithm has high variance for a particular input 
X if it predicts different output values for X when trained on different training sets.

Generally, there will be a trade-off between bias and variance. A learning algorithm 
with low bias must be flexible so that it can fit the data well. But if the learning 
algorithm is too flexible, it will fit each training dataset differently, and hence have 
high variance. A key aspect of many supervised learning methods is that they are 
able to adjust this trade-off between bias and variance. The plot on the top left is 
the scatter plot of the original data. The plot on the top right is a fit with high bias; 
the error in prediction in this case will be high. The bottom left image is a fit with 
high variance; the model is very flexible, and error on the training set is low but the 
prediction on unseen data will have a much higher degree of error as compared to 
the training set. The bottom right plot is an optimum fit with a good trade-off of bias 
and variance. The model explains the data well and will perform in a similar way for 
unseen data too.
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If the bias-variance trade-off is not optimized, it leads to problems of under-fitting and 
over-fitting. The plot shows a visual representation of the bias-variance trade-off.

Over-fitting occurs when an estimator is too flexible and tries to fit the data too 
closely. High variance and low bias leads to over-fitting of data.

Under-fitting occurs when a model is not flexible enough to capture the underlying 
trends in the observed data. Low variance and high bias leads to under-fitting of data.
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Function complexity and amount of training data
The second aspect to consider is the amount of training data needed to properly 
represent the learning task. The amount of data required is proportional to the 
complexity of the data and learning task at hand. For example, if the features in  
the data have low interaction and are smaller in number, we could train a model 
with a small amount of data. In this case, a learning algorithm with high bias and 
low variance is better suited.

But if the learning task at hand is complex and has a large number of features  
with higher degree of interaction, then a large amount of training data is required.  
In this case, a learning algorithm with low bias and high variance is better suited.

It is difficult to actually determine the amount of data needed, but the complexity  
of the task provides some indications.

Dimensionality of the input space
A third aspect to consider is the dimensionality of the input space. By dimensionality, 
we mean the number of features the training set has. If the input feature set has a very 
high number of features, any machine learning algorithm will require a huge amount 
of data to build a good model.

In practice, it is advisable to remove any extra dimensionality before training the 
model; this is likely to improve the accuracy of the learned function. Techniques like 
feature selection and dimensionality reduction can be used for this. We will discuss 
in details the problems of higher dimensionality and a few of the techniques for 
dimensionality reduction in Chapter 3, Feature Engineering.

Noise in data
The fourth issue is noise. Noise refers to inaccuracies in data due to various issues. 
Noise can be present either in the predictor variables, or in the target variable.  
Both lead to model inaccuracies and reduce the generalization of the model.

In practice, there are several approaches to alleviate noise in the data; first would 
be to identify and then remove the noisy training examples prior to training the 
supervised learning algorithm, and second would be to have an early stopping 
criteria to prevent over-fitting.
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Unsupervised learning
Unsupervised learning deals with unlabeled data. The objective is to observe 
structure in data and find patterns. Tasks like cluster analysis, association rule 
mining, outlier detection, dimensionality reduction, and so on can be modeled as 
unsupervised learning problems. As the tasks involved in unsupervised learning 
vary vastly, there is no single process outline that we can follow. We will follow  
the process of some of the most common unsupervised learning problems.

Cluster analysis
Cluster analysis is a subset of unsupervised learning that aims to create groups 
of similar items from a set of items. Real life examples could be clustering movies 
according to various attributes like genre, length, ratings, and so on. Cluster 
analysis helps us identify interesting groups of objects that we are interested in. 
It could be items we encounter in day-to-day life such as movies, songs according 
to taste, or interests of users in terms of their demography or purchasing patterns. 
Let's consider a small example so you understand what we mean by interesting 
groups and understand the power of clustering. We will use the Iris dataset, which 
is a standard dataset used for academic research and it contains five variables: sepal 
length, sepal width, petal length, petal width, and species with 150 observations. 
The first plot we see shows petal length against petal width. Each color represents  
a different species. The second plot is the groups identified by clustering the data.
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Looking at the plot, we can see that the plot of petal length against petal width 
clearly separates the species of the Iris flower and in the process, it clusters the 
group's flowers of the same species together. Cluster analysis can be used to  
identify interesting patterns in data.

The process of clustering involves these four steps. We will discuss each of them  
in the section ahead.

• Objective
• Feature representation
• Algorithm for clustering
• A stopping criteria

Objective
What do we want to cluster? This is an important question. Let's assume we have a 
large customer base for some kind of an e-commerce site and we want to group them 
together. How do we want to group them? Do we want to group our users according 
to their demography, such as age, location, income, and so on or are we interested in 
grouping them together? A clear objective is a good start, though it is not uncommon 
to start without an objective and see what can be done with the available data.

Feature representation
As with any machine learning task, feature representation is important for  
cluster analysis too. Creating derived features, summarizing data, and converting 
categorical variables to continuous variables are some of the common tasks. The 
feature representation needs to represent the objective of clustering. For example, 
if the objective is to cluster users based upon purchasing behavior, then features 
should be derived from purchase transaction and user demography information.  
If the objective is to cluster documents, then features should be extracted from the 
text of the document.

Feature normalization
To compare the feature vectors, we need to normalize them. Normalization could be 
across rows or across columns. In most cases, both are normalized.
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Row normalization
The objective of normalizing rows is to make the objects to be clustered, comparable. 
Let's assume we are clustering organizations based upon their e-mailing behavior. 
Now organizations are very large and very small, but the objective is to capture the 
e-mailing behavior, irrespective of size of the organization. In this scenario, we need 
to figure out a way to normalize rows representing each organization, so that they 
can be compared. In this case, dividing by user count in each respective organization 
could give us a good feature representation. Row normalization is mostly driven by 
the business domain and requires domain expertise.

Column normalization
The range of data across columns varies across datasets. The unit could be different or 
the range of columns could be different, or both. There are many ways of normalizing 
data. Which technique to use varies from case to case and depends upon the objective. 
A few of them are discussed here.

Rescaling
The simplest method is to rescale the range of features to make the features 
independent of each other. The aim is scale the range in [0, 1] or [−1, 1]:

( )
( ) ( )
min

max min
x x

x
x x
−

′ =
−

Here x is the original value and x', the rescaled valued.

Standardization
Feature standardization allows for the values of each feature in the data to have 
zero-mean and unit-variance. In general, we first calculate the mean and standard 
deviation for each feature and then subtract the mean in each feature. Then, we 
divide the mean subtracted values of each feature by its standard deviation:  
Xs = (X – mean(X)) / standard deviation(X).

A notion of similarity and dissimilarity
Once we have the objective defined, it leads to the idea of similarity and dissimilarity 
of object or data points. Since we need to group things together based on similarity, 
we need a way to measure similarity. Likewise to keep dissimilar things apart, 
we need a notion of dissimilarity. This idea is represented in machine learning by 
the idea of a distance measure. Distance measure, as the name suggests, is used to 
measure the distance between two objects or data points.
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Euclidean distance measure
Euclidean distance measure is the most commonly used and intuitive  
distance measure:

( ) ( ) ( ) ( ) ( )2 2 2 2
1 1 2 2, i i n nd p q p q p q p q p q= − + − + + − + + −… …

Squared Euclidean distance measure
The standard Euclidean distance, when squared, places progressively greater weight 
on objects that are farther apart as compared to the nearer objects. The equation to 
calculate squared Euclidean measure is shown here:

( ) ( ) ( ) ( ) ( )2 2 2 22
1 1 2 2, i i n nd p q p q p q p q p q= − + − + + − + + −… …

Manhattan distance measure
Manhattan distance measure is defined as the sum of the absolute difference of the 
coordinates of two points. The distance between two points measured along axes at 
right angles. In a plane with p1 at (x1, y1) and p2 at (x2, y2), it is |x1 - x2| + |y1 - y2|:

( )1 1
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Cosine distance measure
The cosine distance measure measures the angle between two points. When this 
angle is small, the vectors must be pointing in the same direction, and so in some 
sense the points are close. The cosine of this angle is near one when the angle is 
small, and decreases as it gets larger. The cosine distance equation subtracts the 
cosine value from one in order to give a proper distance, which is 0 when close  
and larger otherwise.

The cosine distance measure doesn't account for the length of the two vectors;  
all that matters is that the points are in the same direction from the origin. Also  
note that the cosine distance measure ranges from 0.0, if the two vectors are along  
the same direction, to 2.0, when the two vectors are in opposite directions:
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Tanimoto distance measure
The Tanimoto distance measure, like the cosine distance measure, measures the 
angle between two points, as well as the relative distance between the points:
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Apart from the standard distance measure, we can also define our own distance 
measure. Custom distance measure can be explored when existing ones are not  
able to measure the similarity between items.

Algorithm for clustering
The type of clustering algorithm to be used is driven by the objective of the problem at 
hand. There are several options and the predominant ones are density-based clustering, 
distance-based clustering, distribution-based clustering, and hierarchical clustering. 
The choice of algorithm to be used depends upon the objective of the problem.

A stopping criteria
We need to know when to stop the clustering process. The stopping criteria could be 
decided in different ways: one way is when the cluster centroids don't move beyond 
a certain margin after multiple iterations, a second way is when the density of the 
clusters have stabilized, and third way could be based upon the number of iterations, 
for example stopping the algorithm after 100 iterations. The stopping criteria depends 
upon the algorithm used, the goal being to stop when we have good enough clusters.

Frequent pattern mining
Frequent pattern mining is a popular and well-researched method to uncover 
interesting relationships between variables in large databases. It is intended to identify 
strong rules discovered in databases using different measures of interestingness. For 
example, the rule {onions, potatoes}→{burger} found in the sales data of a supermarket 
would indicate that if a customer buys onions and potatoes together, he or she is likely 
to also buy hamburger meat. Such information can be used as the basis for decisions 
about marketing activities, such as promotional pricing or product placements. In 
addition to the preceding example, from the market basket analysis, association rules 
are employed today in many application areas including web usage mining, intrusion 
detection, continuous production, and bioinformatics.



Core Concepts in Machine Learning

[ 38 ]

Measures for identifying interesting rules
The rules that are discovered in a database should be filtered by some criteria  
of interest, otherwise we will be flooded by a large number of insignificant rules. 
There are a few ways of defining the degree of interest and we will use a table to 
explain them:

Transaction Item1 Item2 Item3 Item4
1 1 1 0 0
2 0 0 1 0
3 0 0 0 1
4 1 1 1 0
5 0 1 0 0

Support
The support supp(x) of an itemset X is defined as the proportion of transactions in 
the dataset, which contain the itemset. In the example database, the itemset {Item1, 
Item2, Item3} has a support of 1/5=0.2 since it occurs in 20 percent of all transactions 
(1 out of 5 transactions).

Confidence
The confidence of a rule is defined as conf(x → y) = supp(x U y) / supp(x). For example, 
the rule {Item3, Item2} → {Item1} has a confidence of 0.2/0.2=1.0 in the database, 
which means that 100 percent of the transactions containing Item3 and Item2 also 
contain Item1. Here sup(x U y) means support for occurrences of transactions where 
X and Y both appear

Lift
The lift of a rule is defined as lift(X → Y) = supp(X U Y) / (supp(X) *supp(Y)) or  
the ratio of the observed support to that expected if X and Y were independent.  
The rule {Item1, Item2} → {Item3} has a lift of 0.2/ (0.4 * 0.4) = 1.25.

Conviction
The conviction of a rule is defined as conv(X → Y) = (1- supp(Y)) / (1 - conf(X → Y)). 
The rule {Item1, Item2} → {Item3} has a conviction of (1 - 0.4)/ (1 - 0.5) = 1.2, and 
it can be interpreted as the ratio of the expected frequency that X occurs without Y 
(that is to say, the frequency that the rule makes an incorrect prediction) if X and Y 
were independently divided by the observed frequency of incorrect predictions.
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In this example, the conviction value of 1.2 shows that the rule {Item1, Item2} 
→ {Item3} would be incorrect 20 percent more often (1.2 times as often) if the 
association between X and Y was a purely random chance.

Things to consider
For an association rule mining project to be successful, we need to consider a couple 
of things, which are discussed here.

Actionable rules
While filtering the association rules, focus should be on looking at actionable rules. 
Many a time, the algorithm will churn out simple rules such {Car} → {Car Insurance}, 
which though true, are as simple as a person buying a car is bound to buy car 
insurance. Similarly, we could get inexplicable rules, which might provide some 
insight, but are not very actionable.

What association to look for
Many rule mining implementations allow you to define the left or the right-hand side 
of the association to look for. Even if the particular implementation you are working 
on doesn't have that capability, you can always post-process the rules. This approach 
is particularly helpful when the data is very large and generates a lot of rules. The 
associations to look for could be defined in a discussion with the business users; for 
example, are they aware of the products that loyal customers buy and do they want 
to push some more related products to them? Or are they interested in identifying 
products that are not doing well and they want to replace it with some other products 
to push sales? In the former case, the known items would be on the right-hand side of 
the association and you could look at the left-hand side of the rules for insight; in the 
latter case, the product would be on the right-hand side and you could look at the left-
hand side to find products to club together.

Recommender system
There is a lot of interest in recommending items to a user. Suppose a user goes  
to an e-commerce site, what should be recommended to the user? Items might be 
recommended based upon what a user previously liked, bought, or what their 
friends liked. Recommenders deal with discovering new items for which a user 
could have a higher preference.
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Recommender systems typically produce a list of recommendations in one of two 
ways—through collaborative or content-based filtering. Collaborative filtering 
based approaches build a model for recommendation from a user's past behavior; 
for example, based on items previously purchased or selected by the user, based on 
ratings given to items previously purchased or selected by the user, based on decisions 
made by users similar to the current user. The model built using past behavior can 
then be used to recommend items to the user. Content-based filtering approaches 
utilize a series of discrete characteristics of an item, in order to recommend additional 
items with similar properties. These approaches are often combined to build a hybrid 
recommendation system.

Collaborative filtering
The first approach to a recommendation system that we will discuss is collaborative 
filtering. This approach is based on collecting and analyzing large amount of data 
based on the user's behavior, preferences, and activities such as browsing history, 
purchase history, and so on. The recommendations are generated for items that  
a user has not yet disclosed any preference, based upon similar users or similar 
items. A key point to note is that collaborative filtering doesn't take into account  
the attributes or characteristics of the item itself. We don't need to know anything 
about a book to recommend it.

The data points that are generally considered are as follows:

• History of the user's preference of items on a predefined scale,  
for example zero to five

• History of the user's searches and browsing history
• Items that the user has liked
• Items bought by the user over a period of time
• Information from the user's social network to discover similarity in likes  

and dislikes

There are a few common issues to keep in mind while creating a recommender 
system, they are as follows.

Cold start
Collaborative filtering often requires a large amount of existing data on a user, in 
order to make accurate recommendations. While designing a new system, we won't 
have data for user item interactions.
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Scalability
Collaborative filtering algorithms normally need to analyze millions of records of 
different users and product. Scaling a recommender system to handle large volumes 
of data is a big challenge.

Sparsity
Sparse data, irrespective of the learning problem and algorithm, is always hard to 
model. The recommender system generally builds recommendations around a large 
number of items, whereas user activity typically is concentrated around a smaller 
subset of the items. For example, an e-commerce site sells a large number of items 
but the users would have provided preferences for a very small number of items. 
Addressing this scenario is not simple.

Content-based filtering
An alternative to collaborative filtering is content-based filtering, also called 
cognitive filtering. In contrast to collaborative filtering, content-based filtering 
depends on the understanding of the items to be recommended. Attributes are 
derived from the items that recommend the described items. A user profile is built 
that describes the interests of a user and recommendations are provided based on 
matching user and item descriptions. For example, if a user expresses an interest 
in action-based movies, then highly rated movies of the action genre could be 
recommended. We will be focusing on collaborative filtering in this book and 
content-based filtering will not be covered hereafter.

Model efficacy
The main goal of model building in machine learning is generalization, which is how 
well the model will perform its intended objective. Generalization means how the 
model would perform on new unseen data, typically data in production. To estimate 
the generalization of a model, we need to test its performance based on unseen data. 
The mechanism to do it varies, depending upon the task at hand.

Classification
In this section, we will discuss the common ways to evaluate the efficacy of a 
classification model.
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Confusion matrix
One of the most common and basic ways of evaluating a model's performance is 
by creating a confusion matrix and computing various metrics such as accuracy, 
precision, recall, and so on. We will start with an example for two class classifiers  
to understand the concepts, and then extend it to problems involving more than  
two classes.

The confusion matrix is as follows:

Classifier
Predicted
Negative Positive

Actual
Negative A B
Positive C D

We label one class as positive and the other as negative. To illustrate some specific 
problems with an unbalanced dataset, we will consider examples with unbalanced 
class labels, where negative is ham and positive is spam.

The entries in the confusion matrix have the following meaning in the context of  
our study:

• A is the number of correct predictions that an instance is negative, where 
ham is predicted as ham.

• B is the number of incorrect predictions that an instance is positive, where 
ham is predicted as spam.

• C is the number of incorrect predictions that an instance is negative, where 
spam is predicted as ham.

• D is the number of correct predictions that an instance is positive, where 
spam is predicted as spam.

The performance metric derived from the confusion matrix is as follows:

• The accuracy (AC) is the proportion of the total number of predictions that 
were correct. It is determined using the equation:

a dAC
a b c d

+
=

+ + +
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• The recall or true positive rate (TP) is the proportion of positive cases that 
were correctly identified, as calculated using the equation:

dTP
c d

=
+

• The false positive rate (FP) is the proportion of negative cases that were 
incorrectly classified as positive, as calculated using the equation:

bFP
a b

=
+

• The true negative rate (TN) is defined as the proportion of negatives cases 
that were classified correctly, as calculated using the equation:

aTN
a b

=
+

• The false negative rate (FN) is the proportion of positive cases that were 
incorrectly classified as negative, as calculated using the equation:

cFN
c d

=
+

• Finally, precision (P) is the proportion of the predicted positive cases that 
were correct, as calculated using the equation:

dP
b d

=
+

Another way of measuring a model's accuracy is to compute the F-score. The balanced 
F-score is the harmonic mean of precision and recall:

1 2 precision recallF
precision recall

⋅
= ⋅

+
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For unbalanced class problems, the accuracy may not be an adequate performance 
measure when the number of negative cases is much greater than the number of 
positive cases. Suppose there are 1000 cases, 995 of which are negative cases and  
five are positive cases; if the system classifies them all as negative, the accuracy 
would be 99.5 percent, even though the classifier missed all positive cases. In this 
scenario, we could use the general formula, as follows:

( ) ( )
2

2
1 precision recallF

precision recallβ β
β

⋅
= + ⋅

⋅ +

β has a value from 0 to infinity and is used to control the weight assigned to TP and 
P. Typically, we can use the ratio of positive to negative cases as the value of β.

ROC curve and AUC
The ROC curve is an alternative way to evaluate the performance of classifiers.  
The ROC curve plots the false positive rate against the true positive rate. Typically, 
the false positive rate is plotted on the x axis and true positive rate is plotted on the 
y axis. The point (0, 1) represents the perfect classifier as the false positive rate is 
zero and true positive rate is 1. A similar deduction can be derived for (0,0), which 
denotes all cases as negative (1,0) and (1,1).

Features of ROC graphs
The features of the ROC graph are as follows:

• The ROC curve is independent of the class distribution of the data or the 
relative error costs of the classes

• The ROC graph represents all the information that can be derived from the 
confusion matrix and additionally, provides a visual representation of the 
performance of a classifier

• ROC curves provide a visual tool for examining the trade-off between the 
ability of a classifier to correctly identify positive cases and the number of 
negative cases that are incorrectly classified
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The red line plots the ROC curve.

Evaluating classifier using the ROC curve
Once we have built the ROC curve, there are a few standard ways to summarize a 
model performance from it.

Area-based accuracy measure
The area under the ROC curve, commonly known as AUC, can be used to estimate 
the performance of a model. AUC ranges between zero and one. The higher the 
value, the better the performance of a classifier. Generally, an AUC greater than eight 
is considered excellent and values between six and eight are considered good, but 
the thresholds should depend upon the task at hand. One point to note about AUC is 
that it is very important to look at the ROC curve itself, as two very different curves 
can have a similar AUC. AUC gives a good representative number for a model's 
performance but cannot replace the value of actually visualizing it on an ROC curve.

Euclidian distance comparison
As noted earlier, there could be scenarios where the cost of misclassification is 
not equal for each class and you learned how to address those scenarios using 
the F-measure. We could do the same using the ROC curve by measuring the 
Euclidean distance between the perfect classifier (0,1) and the current classifier.  
We include the weight factor W as having a range between zero and one and 
assign the weights W to the true positive and 1 - W to the false positive rate.  
This gives us the following formula:

( ) ( )2 21 1 1dAC W TP W FP= − ∗ − + − ∗
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The value of ACd ranges from 0 for the perfect classifier to the square root of two for 
a classifier that classifies all cases incorrectly.

Example
Consider two algorithms A and B that perform adequately against most datasets. 
However, assume both A and B misclassify all positive cases in a particular dataset 
and A classifies 10 times the number of infrequent item sets as potentially frequent 
compared to B. Algorithm B is the better algorithm in this case, because it has wasted 
less effort counting infrequent item sets.

Regression
In this section, we will discuss the common ways to evaluate the efficacy of a 
regression model.

Mean absolute error
Mean absolute error is defined as the mean of the magnitude of difference between 
the actual and the predicted values. While calculating absolute mean value, we 
don't consider the +- sign in its value. The mean absolute error has the same unit 
as the original data, and it can only be compared between models whose errors are 
measured in the same units.

1

n

i i
i
p a

MAE
n

=

−
=
∑

Here p is the predicted value, a the actual value, and n the number of samples.

An alternative is a relative absolute error, which can be compared between models 
whose errors are measured in the different units. It is defined as the ratio of mean 
absolute error to the mean value of the measured quantity.
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Root mean squared error
RMSE is a popular formula used to measure the error rate of a regression model. 
However, it can only be compared between models whose errors are measured  
in the same units.
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Here p is the predicted value, a the actual value and n the number of samples.  
An alternative is to use relative squared error (RSE). The relative squared error can 
be compared between models whose errors are measured in the different units.
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R-square
A common way to summarize how well a linear regression model fits the data is via 
the coefficient of determination, or R2. This can be calculated as the square of the 
correlation between the observed y values and the predicted ŷ values. Alternatively, 
it can also be calculated as follows where the summations are overall observations:
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Thus, the proportion of variation in the forecast variable is accounted for (or 
explained) by the regression model.

If the predictions are close to the actual values, we would expect R2 to be close to 
one. On the other hand, if the predictions are unrelated to the actual values, then 
R2=0. In all cases, R2 lies between zero and one.
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Adjusted R-square
The use of an adjusted R2 (often written as \bar R^2 and pronounced R bar squared) 
is an attempt to take account of the phenomenon of the R2 value automatically and 
spuriously increasing when extra explanatory variables are added to the model. It is 
a modification for each class of R2 that adjusts the number of explanatory terms in 
a model relative to the number of data points. The adjusted R2 can be negative, and 
its value will always be less than or equal to that of R2. Unlike R2, on inclusion of a 
new explanator, the adjusted R2 value will only increase if the improvement seen 
is not by chance. If a set of explanatory variables with a predetermined hierarchy of 
importance is introduced into a regression, one variable at a time, with the adjusted 
R2 computed each time, the level at which the adjusted R2 reaches a maximum, and 
decreases afterward, would be the regression with the ideal combination of having 
the best fit without excess/unnecessary terms. The adjusted R2 is defined as follows 
where p is the total number of regressors in the linear model (not counting the 
constant term), and n is the sample size.:

( ) ( )2 2 2 211 1 1
1 1

n pR R R R
n p n p
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Recommendation system
Evaluation of recommenders follows the same paradigm as for the supervised 
learning evaluation; keep aside a test dataset from the training data and evaluate  
the recommender based on the test data.

Score difference
We keep aside a test sample, where items already rated are kept aside as a test set. 
The training sample doesn't include the test ratings and the recommender estimates 
the ratings for those example ratings. The evaluation is based upon the difference 
between the actual ratings and predicted ratings. The difference can be defined in 
various ways, depending upon the requirement. Average difference or root mean 
square difference (to match below) are the most commonly used methods. Average 
difference is straightforward and intuitive, whereas root mean square differences  
can be used if we need to penalize larger difference in rating.

An illustration of the score difference is as follows:

Ratings Item 1 Item 2 Item 3
Actual 4 5 3
Predicted 3 4 5
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Ratings Item 1 Item 2 Item 3
Difference 1 1 2

Average difference = (1 + 1+ 2)/3 = 1.33

Root mean square difference = sqrt((1*1 + 1*1 + 2*2)/3) = 1.414

As you can see the rms difference is higher as one difference is greater.

For a recommender that only provides binary outcomes, approach based on score 
difference cannot be used for providing future prediction, we need a different 
approach which is discussed next.

Precision and recall
In scenarios where preference rating is not required and just a list of recommendations 
is generated, we could use the previously discussed metric's precisions and recall 
can be used to measure the performance of a recommender. Let's assume that the 
recommender system provides a list of recommendations.

Precision is the proportion of top recommendations given that are good, and recall is 
the proportion of good recommendations that appear in the top recommendations.

We have to define good before we can calculate the metrics. Good can be a user-defined 
threshold value or it can be a default value. The default is an average preference value 
per user plus one standard deviation.

Clustering
Typical objective functions in clustering formalize the goal of attaining high  
intra-cluster similarity (documents within a cluster are similar) and low inter-cluster 
similarity (documents from different clusters are dissimilar). Inter-cluster distances 
are maximized, intra-cluster distances are minimized.

The internal evaluation
When a clustering result is evaluated based on the data that was clustered itself, 
this is called internal evaluation. These methods usually assign the best score to 
the algorithm that produces clusters with high similarity within a cluster and low 
similarity between clusters.
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The intra-cluster distance
The intra-cluster distance is the sum of the square distance from the items of  
each cluster to its centroid.

The inter-cluster distance
The inter-cluster distance is the sum of the square distance between each  
cluster centroid.

The Davies–Bouldin index
The Davies–Bouldin index can be calculated using the following formula:
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Here, n is the number of clusters, c_x is the centroid of cluster x, \sigma_x is the 
average distance of all elements in cluster x to centroid c_x, and d(c_i,c_j) is the 
distance between centroids c_i and c_j. Since algorithms that produce clusters with 
low intra-cluster distances (high intra-cluster similarity) and high inter-cluster 
distances (low inter-cluster similarity) will have a low Davies–Bouldin index,  
the clustering algorithm that produces a collection of clusters with the smallest 
Davies–Bouldin index is considered the best algorithm, based on this criterion.

The Dunn index
The Dunn index aims to identify dense and well-separated clusters. It is defined 
as the ratio between the minimum inter-cluster distance to maximum intra-cluster 
distance. For each cluster partition, the Dunn index can be calculated by the 
following formula:
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Here, d(i,j) represents the distance between clusters i and j, and d^{'}(k) measures 
the intra-cluster distance of cluster k. The inter-cluster distance d(i,j) between two 
clusters may be any number of distance measures, such as the distance between 
the centroids of the clusters. Similarly, the intra-cluster distance d^{'}(k) may be 
measured in a variety of ways, such as the maximum distance between any pair of 
elements in cluster k. Since internal criterion seek clusters with high intra-cluster 
similarity and low inter-cluster similarity, algorithms that produce clusters with  
a high Dunn index are more desirable.

The external evaluation
External evaluation is a form of clustering in which the results are evaluated based 
on data that was not used for clustering. This data can be known class labels or other 
external benchmarks. The benchmarks can consist of a set of preclassified items, 
and these sets are often created by human experts. Hence, the set benchmarks can 
be thought of as a gold standard for evaluation. These evaluation methods measure 
how close the clustering is to the predetermined benchmark classes. However, it 
has recently been discussed among experts whether this is adequate for real data, or 
only on synthetic datasets with a factual ground truth. Since such classes can contain 
internal structures, the attributes present may not allow separation of clusters, or 
the classes themselves might contain anomalies. Additionally, from a knowledge 
discovery point of view, the reproduction of known knowledge may not necessarily 
be the intended result.

Some of the quality measures of a cluster algorithm using an external criterion are 
mentioned here.

The Rand index
The Rand index computes how similar the clusters (returned by the clustering 
algorithm) are to the benchmark classifications. One can also view the Rand index  
as a measure of the percentage of correct decisions made by the algorithm. It can  
be computed using the following formula:

TP TNRI
TP FP FN TN

+
=

+ + +

Here, TP is the number of true positives, TN is the number of true negatives, FP is  
the number of false positives, and FN is the number of false negatives. One issue with 
the Rand index is that false positives and false negatives are equally weighted. This 
may be an undesirable characteristic for some clustering applications. The F-measure 
addresses this concern.
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F-measure
The F-measure can be used to balance the contribution of false negatives by weighting 
recall through a parameter β. Let precision and recall be defined as follows:

TPP
TP FP

=
+

TPR
TP FN

=
+

Here, P is the precision rate and R is the recall rate. We can calculate the F-measure 
by using the following formula:
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Notice that when 0β = , 0F P= . In other words, recall has no impact on the F-measure 
when 0β = , and increasing β  allocates an increasing amount of weight to recall in 
the final F-measure.

Summary
Machine learning adoption has increased in leaps and bounds in the last few years. 
Availability of data in the digital age, scalable platforms to process large amount 
of data, focus on intelligent applications, and the realization of the business values 
of machine learning has driven the growth. Machine learning is a vast field that 
requires continuing education to gain expertise. This chapter has introduced a few 
important concepts in machine learning but the knowledge gained is just the tip of 
the iceberg. I would encourage the reader to keep exploring and augmenting their 
knowledge. In the next chapter, we will discuss one of the first and most important 
parts of a machine learning project, feature engineering. Feature engineering deals 
with transforming and presenting data to the learning algorithm. We will cover  
some common techniques for feature extraction and dimensionality reduction.
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Feature Engineering
This chapter discusses arguably the most important step in solving a machine learning 
problem. Feature engineering involves the preparation and representation of data on 
which the models can be trained. A good feature set is compulsory for the success of a 
modeling project. In this chapter, we are going to cover the following topics:

• Feature construction
• Feature extraction
• Feature selection
• Dimensionality reduction

Feature engineering
Let's start by understanding what is meant by feature engineering. Feature 
engineering is performed after data cleansing and preparation, before or even 
during model training. It aims to provide better representation of the data to 
the machine learning algorithm. Feature engineering as a process has multiple 
outcomes and can impact the overall modeling exercise in many ways. Feature 
engineering can be focused to increase model accuracy and generalization, decrease 
the computation requirements for large and wide datasets, and make the model 
simpler. Generally, a practitioner aims to do all of these. Feature engineering can 
be divided into four major tasks: feature construction, feature extraction, feature 
selection, and dimensionality reduction. We will discuss the four tasks shortly.
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Before we discuss feature engineering, let's revisit the definition of features first:

•  Raw data comes with many attributes. For example, for structured data such 
as a database table, the attributes would be the columns and for unstructured 
data, such as text, the attributes could be the words in the text.

•  A feature is an attribute that is useful or meaningful to your machine 
learning problem. Some columns in a table could be meaningful and others, 
not. Similarly, for text classifications, stop words such as and, the, and so on 
are not useful and hence not used as features.

Now, let's briefly go through all the four tasks, and then we will discuss them in 
detail, giving examples.

• Manual feature construction: This is the process of constructing new 
features from raw data and existing features. For example, creating 
features such as sum, averages, and change percentages are constructed 
features. Quite a few times multiple features are combined to come up with 
constructed features. For example, we have two features, total number of 
transactions and successful transactions. An interesting feature that can be 
constructed is percentage of successful transactions. This new feature is an 
example of feature construction.

• Automated feature extraction: This is the process of building a set of new 
features from existing featuring. Some functional mappings between the old 
and new features are defined in order to create the new features out of existing 
features. Projecting data into a different dimension, as used by SVM kernels, is 
an example of feature extraction. Please note that sometimes the terminology 
is flexible and practitioners frequently use the same term feature extraction for 
both automated feature extraction and manual feature construction.

• Feature selection: This is the process of selecting a subset of relevant  
features from the existing features. There are two major strategies for  
feature selection, filter based and wrapper based. We will discuss these 
strategies later in the chapter.

• Dimensionality reduction: This is the process of reducing the number  
of features to be considered in the modeling process. The reasons for  
this are to improve computation performance and to address the curse  
of dimensionality. We can achieve dimensionality reduction by means  
of either feature selection or feature extraction.
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Many of the techniques discussed in this chapter do not have direct support in 
Mahout and hence we will be discussing those using Python. In a real life scenario, 
one could sample a subset of the data and then use Python or any other tool of choice 
to experiment with the feature engineering and build a POC model and then build a 
full-fledged project in Mahout.

Feature construction
We refer to feature construction as a process in which the dataset is manually 
enhanced by either creating new features from existing ones or transforming the 
existing features. The constructed features may reflect the domain knowledge a 
practitioner has about the problem at hand, a rule of thumb that the practitioner tries 
regularly, or some common standard transformations of data. Manually constructed 
features created after understanding the data and the problem domain can lead to a 
good representation of the data and result in a simpler model with improved accuracy. 
Feature construction could lead to an increase in dimensionality of the features as we 
add new features.

Some examples of manual feature constructions are discussed here. We will use a 
common dataset for each of the examples, the Abalone dataset. The dataset has been 
downloaded from https://archive.ics.uci.edu/ml/datasets/Abalone. You can 
download the data from the site or use the data in the source code folder supplied with 
this book. Headers have been added to the file to make it easier to understand.

Here is a description of the Abalone dataset:

Name Data Type Measurement Description
Sex nominal M,F,I (infant)
Length continuous mm Longest shell measurement
Diameter continuous mm Perpendicular to length
Height continuous mm Height with meat in shell
WholeWeight continuous grams Whole abalone weight
ShuckedWeight continuous grams Weight of only meat
VisceraWeight continuous grams Gut weight (after bleeding)
ShellWeight continuous grams Weight after being dried

Rings integer
Adding 1.5 to the value gives 
the age in years

https://archive.ics.uci.edu/ml/datasets/Abalone
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An abalone is a species of snail and in the dataset we have some measurements 
about each snail. Let's assume the objective of the study is to predict the sex, given 
the measurements. We will discuss how we can apply feature engineering, keeping 
the previously stated objective in mind.

The other dataset that we are going to consider is the adult dataset, mainly because  
it has a lot of categorical variables, so we can use it to discuss the feature construction 
techniques of categorical variables. You can either download the data from https://
archive.ics.uci.edu/ml/datasets/Adult or use the file adult.data.csv present 
in the directory learningApacheMahout/data/chapter3 that comes with this 
book's source code folder. A header line has been added to the data file that comes 
with this book repository.

The adult.data.csv file has already been preprocessed, but if you wish to use the 
original file adult.data.txt from the UCI repository then please follow the steps to 
prepare the instruction. Even if you wish to use the adult.data.csv file, it's a good 
idea to read through the process of cleaning the file. Let's look firstly at the raw file. 
Execute the head command displaying the first 5 lines of data.

head -5 adult.data.txt

The output is copied as follows. Note that the data has no header line and has white 
spaces between words that need to be removed:

39, State-gov, 77516, Bachelors, 13, Never-married, Adm-clerical, Not-in-
family, White, Male, 2174, 0, 40, United-States, <=50K
50, Self-emp-not-inc, 83311, Bachelors, 13, Married-civ-spouse, Exec-
managerial, Husband, White, Male, 0, 0, 13, United-States, <=50K
38, Private, 215646, HS-grad, 9, Divorced, Handlers-cleaners, Not-in-
family, White, Male, 0, 0, 40, United-States, <=50K
53, Private, 234721, 11th, 7, Married-civ-spouse, Handlers-cleaners, 
Husband, Black, Male, 0, 0, 40, United-States, <=50K
28, Private, 338409, Bachelors, 13, Married-civ-spouse, Prof-specialty, 
Wife, Black, Female, 0, 0, 40, Cuba, <=50K

To remove the white spaces, we will use Sed. Sed is a command line editor in Linux. 
Sed can perform pattern matching and search and replace operations. By default, 
Sed doesn't modify the original file, the output is directed to the standard output 
of Linux. We pass the search pattern \s that represents white spaces, the replace 
pattern is blank and the search and replace is done globally. The output of the sed 
command is saved to the new file adult.data.csv:

sed 's/\s//g' adult.data.txt > adult.data.csv

https://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/Adult
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The next step is to encode the target variable. We will replace the value >50K  
with the value True and <=50K with False. To do this, we will again use the  
sed command, this time with the –i flag, which directs sed to make the changes 
directly in the input file:

sed -i 's/>50K/True/g' adult.data.csv
sed -i 's/<=50K/False/g' adult.data.csv

Let's view the file again, to see if the changes are being made as per our expectation. 
We run the head command, again this time on the file adult.data.csv:

head -5 adult.data.csv

As we can see in the output copied here, the white spaces have been removed and 
the target variable, which is the last column, is properly encoded:

39,State-gov,77516,Bachelors,13,Never-married,Adm-clerical,Not-in-
family,White,Male,2174,0,40,United-States,False
50,Self-emp-not-inc,83311,Bachelors,13,Married-civ-spouse,Exec-managerial
,Husband,White,Male,0,0,13,United-States,False
38,Private,215646,HS-grad,9,Divorced,Handlers-cleaners,Not-in-
family,White,Male,0,0,40,United-States,False
53,Private,234721,11th,7,Married-civ-spouse,Handlers-cleaners,Husband,Bla
ck,Male,0,0,40,United-States,False
28,Private,338409,Bachelors,13,Married-civ-spouse,Prof-specialty,Wife,Bla
ck,Female,0,0,40,Cuba,False

The last step is to add the header file. The preceding 1 in the match pattern instructs 
Sed to match only the first line. The caret sign ^ represent the start of line. So the 
command replaces the start of first line with the replacement text:

sed -i '1s/^/age,workclass,fnlwgt,education,education-num,marital-sta
tus,occupation,relationship,race,sex,capital-gain,capital-loss,hours-
perweek,native-country,IncomeGreaterThan50K\n/' adult.data.csv

We repeat a similar process for the Abalone dataset. For this file, we need to remove 
white spaces, if present, and add the header line. The downloaded file name is 
abalone.data.txt and the following commands will prepare the file for processing:

sed 's/\s//g' abalone.data.txt > abalone.data.csv
sed -i '1s/^/Sex,Length,Diameter,Height,WholeWeight,ShuckedWeight,Viscera
Weight,ShellWeight,Rings\n/' abalone.data.csv

The files are now ready for further processing; we can copy the file back to the data 
directory learningApacheMahout/data/chapter3 of the code repository.
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Here is a description of the adult dataset:

Name Data Type Description
Age continuous Age of the adult
workclass categorical Working class of the adult
fnlwgt continuous Final derived weight of the adult
education categorical Education level of the adult
education-num continuous Education level of the adult encoded as integer
marital-status categorical Marital Status of the adult
occupation categorical Occupation of the adult
relationship categorical Relationship of the adult
Race categorical Race of the adult
Sex categorical Gender of the adult
capital-gain continuous Capital gained by the adult
capital-loss continuous Capital lost by the adult
hours-per-week continuous Hours worked per week
native-country categorical Native country of the adult

IncomeGreaterThan50K categorical

This column contains the value True or 
False according to whether the income of 
adult is greater than or less than 50 thousand 
per year.

The dataset has information about adults and the target variable is a categorical 
feature IncomeGreaterThan50K, which informs whether an adult has income  
above 50,000 or not.

Categorical features
As we have already discussed in Chapter 2, Core Concepts in Machine Learning, features 
that can only take few predefined and mostly fixed values are called categorical 
features. Let's discuss some feature construction techniques for categorical features.
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Merging categories
Features such as zip code and industry can have a large number of distinct values. 
For a country like India, the number of distinct zip codes is around 150,000. There are 
a few problems with having a feature with this many values. First of all, any machine 
learning algorithm is going to struggle to derive insight from so many values. The 
training example for each distinct value might also be very few. To make the feature 
usable, we will have to reduce the number of categories, either by merging the 
different categories together or by creating different models for different subsets of 
categories. The second problem is that so many categorical values add unnecessary 
detail to the dataset. For example, to analyze the churn for a telecom subscriber, 
having data for an individual zip code is not helpful, when instead we could use  
the zip code data for the state level.

In the adults, data file, the feature education has 16 categories, which are as follows:

10th 11th 12th 1st-4th 5th-6th 7th-8th 9th Preschool Assoc-acdm Assoc-voc 
Some-college HS-grad Bachelors Masters Prof-school Doctorate

Although 16 categories is not a large number of categories, and hence not very 
problematic, closer inspection reveals some natural grouping within these categories. 
The following categories: 10th, 11th, 12th, 1st-4th, 5th-6th, 7th-8th, 9th, 
Preschool can be naturally grouped together as lower education and categories 
Prof-school and Doctorate can be grouped as higher education. Let's investigate 
this variable in detail. Open the file CategoricalFeatureMerge.py in the directory 
learningApacheMahout/src/python/chapter3/src in your favorite text editor.  
To run the script, execute the following command from the same directory:

python CategoricalFeatureMerge.py

The code file imports pandas with the alias pd. pandas is an open source Python 
library providing high performance, easy-to-use data structures for data processing 
and analysis. It provides in-built functions for common data processing tasks, a 
few of which we will use in this chapter. To install pandas, execute the following 
command on the command line:

sudo pip install numpy pandas

Now, let's look at the code file. The script starts by importing the required packages 
and defining the class:

import pandas as pd
class CategoricalFeatureMerge:
def __init__(self):
pass
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The next step is to read the csv into a data frame, for which we use pandas's read_
csv function; pandas, which is referred to by the alias pd. A data frame is like a 
matrix that can contain columns of different data types:

df = pd.read_csv("../../../../data/chapter3/adult.data.csv")

We then use the crosstab function in panda to tabulate the education against the 
target variable IncomeGreaterThan50K:

print pd.crosstab(df['IncomeGreaterThan50K'],df['education'])

The output calculates the count of False and True in the IncomeGreaterThan50K 
variable for each category in education.

Here is a comparison of the education level with the target variable:

We will convert the counts to percentages to make it easier to interpret. The apply 
function applies the defined operation to all the columns:

print pd.crosstab(df['IncomeGreaterThan50K'],df['education']).
apply(lambda r: r/r.sum(), axis=0)
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The output is shown in the following figure:

Comparison of education level with the target variable

The categories Bachelors Masters can be marked as Medium as around 50 percent 
of adults earn less than 50K. The categories Prof-school and Doctorate can be 
marked as High, as less than 70 percent adults earn more than 50K. With this, we 
have merged the categories into four different broad buckets with the potential of 
improving the model interpretability and performance. The following lines of code 
perform the merging of the categories for creating four different lists with their 
respective categories:

list_very_low_income_edu = ["10th","11th","12th","1st-4th","5th-
6th","7th-8th","9th","Preschool"]
list_low_income_edu = ["Assoc-acdm", "Assoc-voc", "Some-college", "HS-
grad"]
list_medium_income_edu = ["Bachelors", "Masters"]
list_high_income_edu = ["Prof-school", "Doctorate"]

If the current category is in the list, substitute it with the corresponding  
broader category:

df['education'].loc[df['education'].isin(list_very_low_income_edu)] = 
'VeryLow'
df['education'].loc[df['education'].isin(list_low_income_edu)] = 'Low'
df['education'].loc[df['education'].isin(list_medium_income_edu)] = 
'Medium'
df['education'].loc[df['education'].isin(list_high_income_edu)] = 'High'
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Check whether the categories have been substituted:

print df['education'].unique()

The output is as follows:

['Medium' 'Low' 'VeryLow' 'High']

The last step is to save the modified file with the merged education categories to 
another csv file. The file adult.data.merged.csv is used for subsequent examples:

df.to_csv("../../../../data/chapter3/adult.data.merged.csv", index=False)

The preceding code and the codes discussed further in the chapter are very simplistic. 
The goal is to explain the concepts with easy-to-follow examples and hence simplicity 
is preferred.

Converting to binary variables
We can convert the categories in to a categorical variable to multiple binary variables. 
If a categorical feature has five categories, then we can create five features with zero 
representing the absence of that particular value and one representing the presence of 
that particular value. Conversion of categorical variables to binary variables is required 
if the particular learning algorithm doesn't support more than two categories.

We will use Python to convert the feature gender in adult.data.csv to binary 
features; any tool of choice can be used, but because Python is easy to use and explain, 
and this is an important skill for a data analyst to have, so we will use Python. Open 
the file CategoricalFeatureToBinary.py in the learningApacheMahout/src/
python/chapter3/src directory in your favorite text editor. To execute the script,  
run the following command from the same directory.

python CategoricalFeatureToBinary.py

The first couple of lines import the required packages. To install patsy, please run 
the following command on the command line:

sudo pip install six patsy

The patsy library is a Python library that describes statistical models, and has some 
good functions for common data processing tasks:

import pandas as pd
import patsy
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We then define the class CategoricalFeatureToBinary:

class CategoricalFeatureToBinary:
def __init__(self):
pass

We read the adult.data.set.csv into the data frame df:

df = pd.read_csv("../../../../data/chapter3/adult.data.csv")

Next, we print the column headers of the csv read:

print df.columns.values

The output is the following list of columns:

['age' 'workclass' 'fnlwgt' 'education' 'education-num' 'marital-status'
'occupation' 'relationship' 'race' 'sex' 'capital-gain' 'capital-loss'
'hours-per-week' 'native-country' 'IncomeGreaterThan50K']

Next, we convert the selected feature sex to binary features, we use the dmatrix 
function of the patsy package for it. The function takes the column name and returns 
a data frame based on the third parameter. The second parameter is the data frame 
itself. To convert multiple columns, use the + operator. For example, to convert sex 
and workclass, we need to pass sex + workclass -1 as the first argument:

df_converted = patsy.dmatrix('sex - 1', df, return_type='dataframe')

The original file has the first five values of the feature sex, as follows:

Sex
 Male
 Male
 Male
 Male
 Female

We print the output of the converted data; the first five lines are printed by default 
by the head function. 0 denotes False and 1 as True:

print df_converted.head()
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The output is printed as follows:

sex[ Female] sex[ Male]
           0          1
           0          1
           0          1
           0          1
           1          0

The next step is to drop the selected column sex, as it is not needed in the original 
data anymore. The inplace argument drops the column in to the original frame 
itself and we don't need to assign it back, because the axis argument 1 represents 
columns and 0 represents rows:

df.drop('sex', inplace=True, axis=1)

Next, we concatenate the two data frames together so that the new binary columns 
are added to the original frame:

df = pd.concat([df_converted, df], axis=1)

We print the column headers again to check whether the new columns have been 
added. The new columns have been added to the start of the frame.

print df.columns.values

The output is as follows:

['sex[ Female]' 'sex[ Male]' 'age' 'workclass' 'fnlwgt' 'education'
'education-num' 'marital-status' 'occupation' 'relationship' 'race'
'capital-gain' 'capital-loss' 'hours-per-week' 'native-country'
'IncomeGreaterThan50K']

The final step is to write the converted csv data frame to csv:

df.to_csv("../../../../data/chapter3/adult.data.converted_to_binary.csv", 
index=False)

The conversion of categorical variables to binary features loses information, 
categories are going to be mutually exclusive as the same adult cannot be both  
male and female, and hence we should use this technique cautiously.
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Converting to continuous variables
Categorical variables can also be converted to continuous variables. This approach 
can be used in a few scenarios. The first scenario—when the categories of a 
categorical feature can change over time, we can represent the categories in terms of 
their percentages of occurrence. For example, let's assume that the income study in 
the future will include other education categories. Industries change over a period 
of time and so does the demand for education levels and specialization. It would not 
be incorrect to assume that high-paying education jobs would continue to get higher 
wages at any particular point of time. Hence, rather than using the actual categories 
in the feature set, we could calculate the percent of adults getting greater than 50K 
and use it as a feature. This will take care of new categories being introduced and 
also the variation in the demand for a specific education level over a period of time.

Open the file CategoricalFeatureToPercentages.py in the directory 
learningApacheMahout/src/python/chapter3/src in your favorite editor.  
To execute the script execute the following command from the same directory:

python CategoricalFeatureToPercentages.py

First, we import the required package:

import pandas as pd

We read the adult dataset with merged education categories. It will be easier to 
explain with a smaller number of categories:

df = pd.read_csv("../../../../data/chapter3/adult.data.merged.csv")")
print pd.crosstab(df['IncomeGreaterThan50K'],df['education']).
apply(lambda r: r/r.sum(), axis=0)print df['sex'].head()

The output is as printed here:

education             High       Low       Medium     VeryLow
IncomeGreaterThan50K
False                 0.262892   0.817796  0.550721   0.942629
True                  0.737108   0.182204  0.449279   0.057371

We can now replace the category High with 0.737108, Medium with 0.449279,  
and so on.

Another technique is to add new features pivoting a continuous variable on the 
categories in a categorical feature. This is mostly done with time stamped data.
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Continuous features
We will discuss a few common transformations for continuous features. Continuous 
features can take any value in their range.

Binning
We can bin continuous features using thresholds. Few learning algorithms  
such as naïve Bayes only work with categorical features and for these scenarios, 
discretization or binning is important. Binning of variables can be both supervised  
as well as unsupervised.

Unsupervised binning has two common methods, equal frequency and equal 
width binning. In equal frequency binning, each bin has equal number of instances, 
whereas in equal width binning, the bins are chosen to have the same interval. 
Another useful method of unsupervised binning is to use a clustering algorithm to 
identify the natural boundaries of the feature and use those boundaries as the bins. 
Clustering methods like k-means, agglomerative clustering, and so on can be used.

Supervised binning is performed using the information from the target variable.  
The thresholds are decided based on how well the splits divide the target variable. 
For example, we can use a decision tree and train the tree on each feature that we 
want to bin; the decision tree will provide the splitting points and we can use the 
same to define the thresholds. More generally, rather than using a tree, we can use 
some measures such as Information Gain or the Gini index to decide the split points.

We will discuss a small example of equal frequency binning. Open the file 
ContinuousFeatureBinning.py from the same location as all the examples above. 
This script uses scipy and scikit-learn, these are scientific computing packages  
in Python. To install the packages please execute the following command:

sudo pip install scipy scikit-learn

We read the adult data file into a data frame df and then call the function describe() 
on the age feature. The describe function returns the summary statistics of the feature:

df = pd.read_csv("../../../../data/chapter3/adult.data.csv")
print df['age'].describe()

The output is as follows:

count        32561.000000
mean            38.581647
std             13.640433
min             17.000000
25%             28.000000
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50%             37.000000
75%             48.000000
max             90.000000

We have four equal frequency bins, [17, 28], (28, 37], (37, 48], and (48, 90], we 
will replace these with labels Young, Adult, MiddleAge, Old. We converted the 
continuous feature Age into a categorical feature:

df['age'] = pd.qcut(x=df['age'],q=4,labels=['Young','Adult','MiddleAge','
Old'])
print df['age'].unique()

The output is ['Young' 'Adult' 'MiddleAge' 'Old'].

Binarization
We can create binary feature out of continuous feature by using a threshold.  
A binary feature as the name suggests has two distinct values, most commonly  
(0, 1) and (True, False). Values greater than a particular threshold can take one  
of the two values and values less than equal to the threshold can take the other.  
Let's see this technique in practice on the age variable in adult dataset. Open the  
file ContinuousFeatureBinarization.py from the same location as all the 
examples above.

We read the adult dataset into the data frame df:

df = pd.read_csv("../../../../data/chapter3/adult.data.csv")

We print the first five values of the feature age:

print df['age'].head()

The output of the command is as follows:

0    39
1    50
2    38
3    53
4    28

We call the Binarizer function passing the threshold 40, values above 40 will be 
marked 1, and values below 40 marked 0:

binarizer = preprocessing.Binarizer(threshold=40)
print binarizer.transform(df['age'])[0:5]

The output is [0 1 0 1 0].
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Feature standardization
In real life data, the features are more often than not on different scales. Many 
machine learning algorithms will not work properly with datasets of different scales. 
An important concept in feature construction is to standardize the range of a feature 
by scaling it. We can either rescale the features or standardize the feature according 
to the mean or scale to unit length. This process of feature standardization is also 
referred to as feature normalization.

Rescaling
One way to standardize data is to rescale it by subtracting each value by the min and 
dividing by the range of the feature. This ensures that the values are between [0, 1]:

min
new

max min

x xx
x x
−

=
−

Mean standardization
Standardization of data refers to the transformation that enables the feature to have a 
mean of zero and a variance of one. For each value in a feature, we subtract the value 
by the mean of the feature and divide by the standard deviation:
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xx µ
σ
−

=

Scaling to unit norm 
Each value in a feature is divided by its norm. Depending on the use case, it could be 
L1 or L2 or any other norm. After division by the norm, the feature itself has a norm 
of one.

A norm is a function that assigns a strictly positive length or size 
to each vector in a vector space, other than the zero vector that 
has a length zero assigned to it.
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Open the file ContinousFeatureStandardization.py. This code file uses the 
package numpy and scikit learn. The scikit learn package is a machine 
learning package in Python and implements many machine learning algorithms as 
built-in modules. The numpy package is a powerful package for scientific computing 
in Python. To install both, execute the following command on the command line:

sudo pip install numpy scikit-learn

First, we will discuss the code for rescaling. The object min_max_scaler will 
transform the feature age to a range of [0, 1]:

df = pd.read_csv("../../../../data/chapter3/adult.data.csv")
min_max_scaler = preprocessing.MinMaxScaler()
X_train_minmax = min_max_scaler.fit_transform(df['age'].astype(float))
print min(X_train_minmax),max(X_train_minmax)

The minimum is 0 and the maximum is 1.

Next, we discuss the code for mean standardization. The function scale subtracts the 
mean from each value and divides by standard deviation:

df = pd.read_csv("../../../../data/chapter3/abalone.data.csv")
test= (preprocessing.scale(df['Height']))
print test.mean()
print test.std()

The mean of the transformed variable is ~0 and variance is 1.

Next, we will discuss the code to transform the feature to unit norm. The transformed 
feature will have a norm of 1:

weights = sorted(np.arange(float(14), 0.05, -1.0))
weight_norm = np.linalg.norm(weights)
weights = weights/weight_norm
print np.linalg.norm(weights)

Feature transformation derived from the problem domain
The most powerful feature transformations are the ones guided by domain knowledge 
of the problem at hand and understanding of data gained from data exploration. The 
list of such transformations is huge and even the largest list can't be exhaustive. I am 
discussing some of the common problem-driven transformations.
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Ratios
Quite often, a change in a variable over a period of time can be a very predicting 
feature. For example, in churn modeling, the decline of a usage metric like logins over 
a period of time is a very important predictor. Another example of ratios would be 
between features and the ratio of failed transaction by total number of transactions.

Frequency
Frequency of events over a period of time is always an interesting transformation for 
event-based time-stamped data.

Aggregate transformations
Aggregate transformations such as sum, average, minimum, and maximum over a 
group are the staples of most feature sets.

Normalization
So far, we have seen normalization of a column or feature. Another option to explore 
is row normalization by a metric.

Mathematical transformations
Another important feature construction technique is to apply appropriate mathematical 
transformations on the features. The motivation behind this is to decrease the skew and 
variance of the feature. Common mathematical transformations are log transformations 
with different bases, exponential transformations, and so on.

Feature extraction
Feature extraction is the process of automatic construction of new set of features 
from an existing one. For example, take a feature set and project it into a higher 
dimensional coordinates, the motivation being that the data might have a plane  
of separation in a higher dimension. Let's see an example using two dimensional 
data, in the plot to the left, the two classes represented by * and o cannot be 
separated by a straight line. If the data is projected to a three-dimensional plane,  
we can see that the two classes can be separated by a plane:
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The line of separation in two dimensions is represented by a plane in three dimensions 
and as a hyper plane in more than three dimensions. The plot on the left of the image 
shows a plane separating the data, and the plot on the right projects the separation into 
two dimensions:
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By projecting data from a lower dimension into a higher dimension, we can solve 
problems that cannot be solved by linearity in the lower dimension. One drawback 
of the approach is that projection of data from lower dimension to a higher one is 
computationally intensive and cannot scale one larger data. A kernel trick is one 
of the ways of solving the problem. A kernel is a function that computes the dot 
products into a higher dimension, while remaining in the lower dimension. By  
using a kernel, we can implicitly transform a dataset into a higher dimensional  
space without explicitly calculating the projection.

Feature extraction is an automated process. There are a number of generic feature 
construction methods that can be performed, based on the objective and data.  
Some common feature extraction techniques are as follows:

• Clustering-based feature extraction
• Linear transforms of the input variables such as PCA/SVD and so on
• Spectral transforms like Fourier transforms
• Applying simple functions to subsets of variables, such as algebraic 

computation on more than one feature

Feature selection
The primary goal of feature selection is to select a subset of features from the total 
feature set that can be used to build a good predictor with increased performance 
and generalization. It is not aimed at finding all the relevant features or reducing 
the dimensionality of the feature set, though both could be outcomes of the process. 
The difference between dimensionality reduction and feature selection is that the 
purpose of feature selection is to select the predictor with greater predictive power, 
whereas dimensionality reduction is aimed at a concise representation of the data. 
The similarity between them is that both lead to reduced number of features.

Feature selection can be both supervised and unsupervised. Feature selection could 
be filtered-based or wrapper-based.

Filter-based feature selection
Features are ranked according to an importance measure such as Information Gain 
and Chi-Squared test, and a subset of features can be selected, based on a threshold. 
The threshold-based rejection of features is aimed at selecting only those features 
that have a strong correlation with the target variable.
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There are a few disadvantages of filter-based feature selection. The first problem 
is caused by correlated features. If a set of correlated features also have a strong 
correlation with the target variable, all of them will be selected as strong features but 
the correlated features will not add any extra information. The correlated features 
will repeat the same information. For example, we might have a telecom provider 
with one calling plan for the entire subscriber base. In this scenario, predictors total 
minutes called and total amount charged are going to be highly correlated and only  
one should be in the feature set. Both features have a strong correlation with the 
target variable churn. A filter-based feature selection mechanism will select both  
the features. Before implementing a filter-based feature selection, it is important  
to handle the correlated features.

Another problem with filter-based feature selection is that it cannot take into  
account interaction between multiple features to compute feature importance.  
Two features could independently have a very weak correlation with the target 
variable but when combined, they might be able to explain the target variable  
very well. Filter-based feature selection cannot capture this interaction and  
hence both these features will be ignored.

Wrapper-based feature selection
This method assesses subsets of features, according to their usefulness to a given 
predictor. This method uses the machine learning algorithm that we are modeling 
with to score subsets of features, according to their predictive power. Wrapper-based 
feature selection has the advantage of taking into account the interaction between 
features that filter-based methods cannot. The disadvantage of wrapper-based 
feature selection is that it can be computationally expensive. But there are different 
search techniques  that can mitigate this drawback. Many search techniques can be 
used to do this, such as recursive feature elimination or backward selection, forward 
selection, step-wise selection, and so on. Each search technique might converge to 
an optimum set of features. We briefly introduce the main concepts in the wrapper-
based feature selection; note that the actual implementations have slight variations 
over the main concepts.

Backward selection
First, the backward selection algorithm fits the model for all the predictors or 
features in the feature set. Each predictor is then ranked according to its importance 
to the model. At each iteration of the feature selection, the N top raked predictors are 
retained, the model is refitted and its performance is assessed. The value of N with 
the best performance is determined and the top N predictors are then used to fit the 
final model.
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Forward selection
In the forward selection algorithm, we start with the null set and sequentially add 
features from the feature set. The feature score is recomputed and finally, the subset 
with the best performance is retained.

Recursive feature elimination
Given an external estimator that assigns weights to features (for example, the 
coefficients of a linear model), recursive feature elimination is designed to select 
features by recursively considering smaller and smaller sets of features. First, the 
estimator is trained on the initial set of features and weights are assigned to each  
one of them. Then, features whose absolute weights are the smallest are pruned  
from the current set features. This procedure is recursively repeated on the pruned 
set until the desired number of features are eventually reached.

Embedded feature selection
This search scheme is similar to the wrapper-based scheme, the difference being that 
the embedded method incorporates variable selection as part of model training. For 
example, random forest, gradient boosted trees, and so on, embedded feature selection 
is tied to a machine learning algorithm. Most of the time, using the models with the 
embedded feature selection will be more efficient than algorithms where the search 
routine for the right predictors is external to the model. Embedded feature selection 
typically couples the predictor search algorithm with the parameter estimation and is 
optimized with a single objective function.

Dimensionality reduction
Dimensionality reduction deals with representing the features into a more concise 
form. Dimensionality reduction can be achieved either through feature selection 
or feature extraction. The motivation can be both computation efficiency and to 
mitigate the curse of dimensionality. In simple terms, as the dimension or the 
number of features increases, the amount of data required to model the problem 
at hand increases exponentially. Collecting and processing large amount of data 
might not be possible and hence it is important to reduce the number of features 
or dimensionality of the dataset. One of the most common ways of reducing the 
dimensionality of the feature set is to use PCA.
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Intuitively, PCA tries to find the simplest representation of a dataset. It projects 
data into a different coordinate system to provide a concise representation of data. 
The output of PCA is data that is represented as principal components. The term 
principal component denotes new variables (or coordinate systems) that we choose 
to describe our data in a more concise or convenient way. All principal components 
must satisfy two conditions:

• They must be perpendicular to each other. This means principal components 
are not linearly correlated between each other. This is one major advantage 
of using PCA; it removes correlated variables. The presence of correlated 
variables degrades the performance of algorithms such as logistic regression.

• The principal components must be pointed in the direction of the largest 
variance of data. Thus data must have the largest variance along the axes of 
component 1, and the 2nd largest variance along the axes of component 2,  
and so on. So the first component will be the most significant, the second,  
the second most significant, and so on. We can use this information to reduce 
the dimensionality. If, say, 99 percent of the variance such as explained  
by n principal components of a dataset that has k dimensions, where k is 
greater than n, then we can use the n principal components in reducing  
the dimensionality by k-n.

Now, let's see an example; open the file PCAExample.py in an editor like vi or 
gedit. The code file can be found under the same directory as the other code files 
learningApacheMahout/src/python/chapter3/src.

In this example, we are going to work with the Iris dataset. This dataset comes 
prepackaged with the scikit learn package we installed in the previous example. 
The dataset has four features: sepal length, sepal width, petal length, and petal 
width, and the class label that represents the species of the flower. The first step  
is to load the data:

df = datasets.load_iris()

The object df has two attributes df.data. And df.target; df.data holds the 
training data and df.target the class labels.

Let's see the sample data in df.data, as discussed earlier, it has four features. A few 
lines are copied, as follows:

[ 5.1  3.5  1.4  0.2]
[ 4.9  3.   1.4  0.2]
[ 4.7  3.2  1.3  0.2]
[ 4.6  3.1  1.5  0.2]

We have three target variables, denoted by 0, 1, and 2.
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The next step is to create the DecisionTreeClassifier object. This object will be 
used to train a decision tree with the training data:

model = DecisionTreeClassifier()

Once we have created the object, the next step is to train the model. The fit() 
method takes the training data as the first argument and the target labels as the 
second argument:

model.fit(df.data, df.target)

The model has been created, now we need to check the efficacy of the model. We 
take the actual class labels in the variable expected and the class label predicted by 
the model in the variable predicted. The predict() function returns the predictions 
for the data passed as argument:

expected = df.target

predicted = model.predict(df.data)

The next step is to produce the efficacy metrics. The function classification_
report() as well as confusion_matrix() takes as input the actual and the 
predicted value and print the performance metric:

print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))

The output is copied here, we can see that using all the features we were able to get a 
prefect prediction:

precision  recall  f1-score   support

  0   1.00    1.00    1.00      50
  1   1.00    1.00    1.00      50
  2   1.00    1.00    1.00      50

[50  0  0]
[0  50  0]
[0  0  50]

Now, we will perform PCA on the original dataset and check the variance captured 
by each of the principal components. First, we create the PCA object and then get the 
components using the fit_transform() method:

principal_components = PCA()
pca_data = principal_components.fit_transform(df.data)
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Let's check the explained variance of the principal components. The attribute 
explained_variance_ratio_ holds the value:

print principal_components.explained_variance_ratio_

The output is copied here, we can see that the first component explains 92 percent of 
the variance:

[ 0.92461621  0.05301557  0.01718514  0.00518309]

We will repeat these steps to create a decision tree; this time, we will use the first 
principal component instead of the raw data. We have reduced the dimensionality of 
the problem from four to one, while retaining 92 percent of the original information. 
This is a good trade-off.

Since the rest of the steps are similar to what we discussed, I will only discuss the 
part where we are training the model. We select the first column pca_data:

model.fit(pca_data[:,[0]],df.target)

The efficacy of the new model is the same as the model built with the original 
data. This is a very simple example, but in real life scenarios with thousands of 
dimensions, PCA can make a big difference. We can reduce the dimensionality  
of the data, which in turn reduces the number of training examples required for 
building a good model and thus significantly reduces the amount of time and 
computation resources required for training.

Summary
In this chapter, we discussed the common techniques of feature engineering.  
The concepts and techniques discussed are very important; anyone working in  
data analysis will use these techniques regularly. A robust feature engineering 
process is imperative for a successful machine learning project. The better we 
represent data to an algorithm, the better its efficacy.

Chapter 1, Introduction to Mahout, Chapter 2, Core Concepts in Machine Learning and 
Chapter 3, Feature Engineering have provided a strong introduction to the basics of 
Mahout and machine learning. Now, we will start discussing the machine learning 
algorithms in detail. In the next chapter, we will discuss classification algorithms 
implemented in Mahout, covering both the concepts and practical examples.





[ 79 ]

Classification with Mahout
One of the most widely used tasks in machine learning is to predict discrete 
outcomes or classes of future data instances, using historical data. It is a very  
popular branch of supervised learning, and a wide variety of problems can be  
solved using this paradigm. Questions such as whether to approve a loan to  
someone or determining the probability of a telecom subscriber not renewing  
the contract can be answered using classification algorithms. In this chapter,  
we are going to discuss some of the important classification algorithms in  
Mahout. We will learn about the following classification algorithms:

• Logistic regression
• Random forest
• naïve Bayes

Classification
We discussed supervised learning in detail in Chapter 2, Core Concepts in Machine 
Learning. Here, we are going to put into action some of the practices we learned. 
The most critical parts of any machine learning task are data exploration, cleaning, 
and feature representation. The process involves exploring the data, addressing the 
anomalies in the data, extracting features, feature selection, and feature reduction, 
if required. Almost 70 percent of the time in any data analytics project is spent in 
feature engineering, and it is the most important part of the analytical process.

Then comes the task of training models; selection of which machine learning 
algorithms to use is mostly guided by the available data and the objective of the 
problem we are about to solve.
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Machine learning algorithms can be separated into two groups, based on the 
capability of a user to see how a model arrives at its predicted output. If we can 
deduce from the model how a particular prediction was done by the algorithm,  
we can derive insights from it.

White box models
The process of prediction is very transparent and well-understood by the user. When 
we say the process of prediction, we don't mean the internal working of the algorithm 
but after the model is trained, what factors lead to a particular prediction. This helps  
us in deducing insights for a particular problem area. For example, a decision tree, 
which is a white box technique, can provide us with rules after training the model.  
For example, if we are building a decision tree, which predicts classes for outdoors  
and indoors based on weather and temperature, we could get the following rules:

if weather='sunny' and temperature='medium' then class 'outdoors'
if weather ='overcast' and temperature='low' then class 'indoors'

Black box models
The process of prediction is opaque to the user. Though the logic of the algorithm may 
be known, how it predicts a particular instance is hard to understand. Say if we used 
SVM, which is a black box algorithm that classifies data by drawing a hyperplane, for 
the aforementioned problem, we would get a prediction for each row or instance but 
no insights would be derived easily giving reasons for of the prediction.

Logistic regression
Logistic regression is a probabilistic classification model. It provides the probability 
of a particular instance belonging to a class. It is used to predict the probability of 
binary outcomes. Logistic regression is computationally inexpensive, is relatively 
easier to implement, and can be interpreted easily.

Logistic regression belongs to the class of discriminative models. The other class of 
algorithms is generative models. Let's try to understand the differences between the 
two. Suppose we have some input data represented by X and a target variable Y, the 
learning task obviously is P(Y|X), finding the conditional probability of Y occurring 
given X. A generative model concerns itself with learning the joint probability of P(Y, 
X), whereas a discriminative model will directly learn the conditional probability of 
P(Y|X) from the training set. This is the actual objective of classification. A generative 
model first learns P(Y, X), and then gets to P(Y|X) by conditioning on X by using 
Bayes' theorem.
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In more intuitive terms, generative models first learn the distribution of the data, 
then they model how the data is actually generated. However, discriminative models 
don't try to learn the underlying data distribution; they are concerned with finding 
the decision boundaries for the classification. Since generative models learn the 
distribution, it is possible to generate synthetic samples of X, Y. This is not possible 
with discriminative models.

Some common examples of generative and discriminative models are as follows:

• Generative: naïve Bayes, Latent Dirichlet allocation
• Discriminative: Logistic regression, SVM, Neural networks

Logistic regression belongs to the family of statistical techniques called regression. For 
regression problems and few other optimization problems, we first define a hypothesis, 
then define a cost function, and optimize it using an optimization algorithm such as 
Gradient descent. The optimization algorithm tries to find the regression coefficient, 
which best fits the data. Let's assume that the target variable is Y and the predictor 
variable or feature is X. Any regression problem starts with defining the hypothesis 
function, for example, an equation of the predictor variable xα β+ , defines a cost 
function and then tweaks the weights; in this case, α  and β  are tweaked to minimize 
or maximize the cost function by using an optimization algorithm.

For logistic regression, the predicted target needs to fall between zero and one.  
We start by defining the hypothesis function for it:
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Here, f(z) is the sigmoid or logistic function that has a range of zero to one, x is  
a matrix of features, and θ  is the vector of weights. The next step is to define the  
cost function, which measures the difference between predicted and actual values.
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The objective of the optimization algorithm here is to find ( )( )min Jθ θ . This fits  
the regression coefficients so that the difference between predicted and actual  
target values are minimized. We will discuss gradient descent as the choice for  
the optimization algorithm shortly. To find the local minimum of a function  
using gradient descent, one takes steps proportional to the negative of the  
gradient of that function at the current point.
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This will give us the optimum value of vector θ , once we achieve the stopping 
criteria. The stopping criteria is when the change in the weight vectors falls below  
a certain threshold, although sometimes it could be set to a predefined number  
of iterations.

Logistic regression falls into the category of white box techniques and can be 
interpreted. We will see how to interpret a logistic regression later on in the chapter.

Features or variables are of two major types, categorical and continuous, defined  
as follows:

• Categorical variable: This is a variable or feature that can take on a limited, 
and usually fixed, number of possible values. Example, variables such as 
industry, zip code, and country are categorical variables.

• Continuous variable: This is a variable that can take on any value between  
its minimum value and maximum value or range. Example, variable such  
as age, price, and so on, are continuous variables.

Mahout logistic regression command line
Mahout employs a modified version of gradient descent called stochastic gradient 
descent. The previous optimization algorithm, gradient ascent, uses the whole 
dataset on each update. This was fine with 100 examples, but with billions of data 
points containing thousands of features, it's unnecessarily expensive in terms of 
computational resources. An alternative to this method is to update the weights 
using, only one instance at a time. This is known as stochastic gradient ascent. 
Stochastic gradient ascent is an example of an online learning algorithm. This is 
known as online learning algorithm because we can incrementally update the 
classifier as new data comes in, rather than all at once. The all-at-once method is 
known as batch processing.
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We will now train and test a logistic regression algorithm using Mahout. We will 
also discuss both command line and code examples. The first step is to get the data 
and explore it.

Getting the data
The dataset required for this chapter is included in the code repository that comes  
with this book. It is present in the learningApacheMahout/data/chapter4 directory. 
If you wish to download the data, the same can be downloaded from the UCI link. 
The UCI is a repository for many datasets for machine learning. You can check out the 
other datasets available for further practice via this link http://archive.ics.uci.
edu/ml/datasets.html.

Create a folder in your home directory with the following command:

cd $HOME
mkdir bank_data
cd bank_data

Download the data in the bank_data directory:

wget http://archive.ics.uci.edu/ml/machine-learning-databases/00222/bank-
additional.zip

Unzip the file using whichever utility you like, we use unzip:

unzip bank-additional.zip
cd bank-additional

We are interested in the file bank-additional-full.csv. Copy the file to the 
learningApacheMahout/data/chapter4 directory. The file is semicolon delimited 
and the values are enclosed by ", it also has a header line with column name. We will 
use sed to preprocess the data. The sed editor is a very powerful editor in Linux and 
the command to use it is as follows:

sed -e 's/STRING_TO_REPLACE/STRING_TO_REPLACE_IT/g' fileName > Output_
fileName

For inplace editing, the command is as follows:

sed -i 's/STRING_TO_REPLACE/STRING_TO_REPLACE_IT/g'

Command to replace ; with , and remove " are as follows:

sed -e 's/;/,/g' bank-additional-full.csv > input_bank_data.csv
sed -i 's/"//g' input_bank_data.csv

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
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The dataset contains demographic and previous campaign-related data about a client 
and the outcome of whether or not the client did subscribed to the term deposit. We 
are interested in training a model, which can predict whether a client will subscribe 
to a term deposit, given the input data.

The following table shows various input variables along with their types:

Column name Description Variable type
Age This represents the age of the Client Numeric
Job This represents their type of the job, for example, 

entrepreneur, housemaid, management
Categorical

Marital This represents their marital status Categorical
Education This represents their education level Categorical
Default States whether the client has defaulted on credit Categorical
Housing States whether the client has a housing loan Categorical
Loan States whether the client has a personal loan Categorical
contact States the contact communication type Categorical
Month States the last contact month of the year Categorical
day_of_week States the last contact day of the week Categorical
duration States the last contact duration, in seconds Numeric
campaign This represents the number of contacts Numeric
Pdays This represents the number of days that passed 

since the last contact
Numeric

previous This represents the number of contacts performed 
before this campaign

Numeric

poutcome This represents the outcome of the previous 
marketing campaign

Categorical

emp.var.rate States the employment variation rate - quarterly 
indicator

Numeric

cons.price.idx States the consumer price index - monthly indicator Numeric
cons.conf.idx States the consumer confidence index - monthly 

indicator
Numeric

euribor3m States the euribor three month rate - daily indicator Numeric
nr.employed This represents the number of employees - quarterly 

indicator
Numeric
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Model building via command line
Mahout uses command line implementation of logistic regression. We will first build 
a model using the command line implementation. Logistic regression does not have a 
map to reduce implementation, but as it uses stochastic gradient descent, it is pretty 
fast, even for large datasets. The Mahout Java class is OnlineLogisticRegression 
in the org.mahout.classifier.sgd package.

Splitting the dataset
To split a dataset, we can use the Mahout split command. Let's look at the split 
command arguments as follows:

mahout split ––help

We need to remove the first line before running the split command, as the  
file contains the header file and the split command doesn't make any special 
allowances for header lines. It will land in any line in the split file.
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We first remove the header line from the input_bank_data.csv file.

sed -i '1d' input_bank_data.csv
mkdir input_bank
cp input_bank_data.csv input_bank

Logistic regression in Mahout is implemented for single-machine execution. We set 
the variable MAHOUT_LOCAL to instruct Mahout to execute in the local mode.

export MAHOUT_LOCAL=TRUE

mahout split --input input_bank --trainingOutput train_data --testOutput 
test_data -xm sequential --randomSelectionPct 30

This will create different datasets, with the split based on number passed to the 
argument --randomSelectionPct. The split command can run in both Hadoop  
and the local file system. For current execution, it runs in the local mode on the  
local file system and splits the data into two sets, 70 percent as train in the  
train_data directory and 30 percent as test in test_data directory.

Next, we restore the header line to the train and test files as follows:

sed -i '1s/^/age,job,marital,education,default,housing,loan,contact,month
,day_of_week,duration,campaign,pdays,previous,poutcome,emp.var.rate,cons.
price.idx,cons.conf.idx,euribor3m,nr.employed,y\n/' train_data/input_
bank_data.csv

sed -i '1s/^/age,job,marital,education,default,housing,loan,contact,month
,day_of_week,duration,campaign,pdays,previous,poutcome,emp.var.rate,cons.
price.idx,cons.conf.idx,euribor3m,nr.employed,y\n/' test_data/input_bank_
data.csv

Train the model command line option
Let's have a look at some important and commonly used parameters and their 
descriptions:

mahout trainlogistic ––help

--help print this list
--quiet be extra quiet
--input "input directory from where to get the training data"
--output "output directory to store the model"
--target "the name of the target variable"
--categories "the number of target categories to be considered"
--predictors "a list of predictor variables"
--types "a list of predictor variables types (numeric, word or text)"
--passes "the number of times to pass over the input data"
--lambda "the amount of coeffiecient decay to use"
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--rate  "learningRate the learning rate"
--noBias "do not include a bias term"
--features "the number of internal hashed features to use"

mahout trainlogistic --input train_data/input_bank_data.csv --output 
model --target y --predictors age job marital education default housing 
loan contact month day_of_week duration campaign pdays previous poutcome 
emp.var.rate cons.price.idx cons.conf.idx euribor3m nr.employed --types 
n w w w w w w w w w n n n n w n n n n n --features 20 --passes 100 --rate 
50 --categories 2

We pass the input filename and the output folder name, identify the target variable 
name using --target option, the predictors using the --predictors option, and the 
variable or predictor type using --types option. Numeric predictors are represented 
using 'n', and categorical variables are predicted using 'w'. Learning rate passed using 
--rate is used by gradient descent to determine the step size for each descent. We 
pass the maximum number of passes over data as 100 and categories as 2.

The output is given below, which represents 'y', the target variable, as a sum of 
predictor variables multiplied by coefficient or weights. As we have not included  
the --noBias option, we see the intercept term in the equation:

y ~

-990.322*Intercept Term + -131.624*age + -11.436*campaign 
+ -990.322*cons.conf.idx + -14.006*cons.price.idx + 
-15.447*contact=cellular + -9.738*contact=telephone + 5.943*day_
of_week=fri + -988.624*day_of_week=mon + 10.551*day_of_week=thu + 
11.177*day_of_week=tue + -131.624*day_of_week=wed + -8.061*default=no 
+ 12.301*default=unknown + -131.541*default=yes + 6210.316*duration 
+ -17.755*education=basic.4y + 4.618*education=basic.6y + 
8.780*education=basic.9y + -11.501*education=high.school + 
0.492*education=illiterate + 17.412*education=professional.course + 
6202.572*education=university.degree + -979.771*education=unknown 
+ -189.978*emp.var.rate + -6.319*euribor3m + -21.495*housing=no + 
-14.435*housing=unknown + 6210.316*housing=yes + -190.295*job=admin. 
+ 23.169*job=blue-collar + 6202.200*job=entrepreneur + 
6202.200*job=housemaid + -3.208*job=management + -15.447*job=retired + 
1.781*job=self-employed + 11.396*job=services + -6.637*job=student + 
6202.572*job=technician + -9.976*job=unemployed + -4.575*job=unknown 
+ -12.143*loan=no + -0.386*loan=unknown + -197.722*loan=yes 
+ -12.308*marital=divorced + -9.185*marital=married + 
-1004.328*marital=single + 8.559*marital=unknown + -11.501*month=apr 
+ 9.110*month=aug + -1180.300*month=dec + -189.978*month=jul 
+ 14.316*month=jun + -124.764*month=mar + 6203.997*month=may 
+ -0.884*month=nov + -9.761*month=oct + 12.301*month=sep + 
-990.322*nr.employed + -189.978*pdays + -14.323*poutcome=failure + 
4.874*poutcome=nonexistent + -7.191*poutcome=success + 1.698*previous
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Interpreting the output
The output of the trainlogistic command is an equation representing the sum of 
all predictor variables multiplied by their respective coefficient. The coefficients give 
the change in the log-odds of the outcome for one unit increase in the corresponding 
feature or predictor variable.

Odds are represented as the ratio of probabilities, and they express the relative 
probabilities of occurrence or nonoccurrence of an event. If we take the base  
10 logarithm of odds and multiply the results by 10, it gives us the log-odds.  
Let's take an example to understand it better.

Let's assume that the probability of some event E occurring is 75 percent:

P(E)=75%=75/100=3/4

The probability of E not happening is as follows:

1-P(A)=25%=25/100=1/4

The odds in favor of E occurring are P(E)/(1-P(E))=3:1 and odds against it would be 
1:3. This shows that the event is three times more likely to occur than to not occur.

Log-odds would be 10*log(3).

For example, a unit increase in the age will decrease the log-odds of the client 
subscribing to a term deposit by 97.148 times, whereas a unit increase in cons.conf.
idx will increase the log-odds by 1051.996. Here, the change is measured by keeping 
other variables at the same value.

Testing the model
After the model is trained, it's time to test the model's performance by using a 
validation set.

Mahout has the runlogistic command for the same, the options are as follows:

mahout runlogistic ––help
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We run the following command on the command line:

mahout runlogistic --auc --confusion --input train_data/input_bank_data.
csv --model model

AUC = 0.59
confusion: [[25189.0, 2613.0], [424.0, 606.0]]
entropy: [[NaN, NaN], [-45.3, -7.1]]

To get the scores for each instance, we use the --scores option as follows:

mahout runlogistic --scores --input train_data/input_bank_data.csv 
--model model

To test the model on the test data, we will pass on the test file created during the split 
process as follows:

mahout runlogistic --auc --confusion --input test_data/input_bank_data.
csv --model model

AUC = 0.60
confusion: [[10743.0, 1118.0], [192.0, 303.0]]
entropy: [[NaN, NaN], [-45.2, -7.5]]

Prediction
Mahout doesn't have an out of the box command line for implementation of logistic 
regression for prediction of new samples. Note that the new samples for the prediction 
won't have the target label y, we need to predict that value. There is a way to work 
around this, though; we can use mahout runlogistic for generating a prediction by 
adding a dummy column as the y target variable and adding some random values. The 
runlogistic command expects the target variable to be present, hence the dummy 
columns are added. We can then get the predicted score using the --scores option.

Adaptive regression model
Mahout has an implementation of meta-learners of OnlineLogisticRegression, in 
which each learner is trained using different learning rates, this implementation is 
called AdaptiveLogisticRegression. By default, it trains 100 regression learners and 
tosses out learners with lower performance after separating learners that have different 
learning rates.
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Let's look at how to execute AdaptiveLogisticRegression using the Mahout 
command line.

mahout trainAdaptiveLogistic --input train_data/input_bank_data.csv 
--output model --target y --predictors age job marital education default 
housing loan contact month day_of_week duration campaign pdays previous 
poutcome emp.var.rate cons.price.idx cons.conf.idx euribor3m nr.employed 
--types n w w w w w w w w w n n n n w n n n n n --features 20 --passes 
100 --categories 2 --threads 20

To validate the model, we will use the validateAdaptiveLogistic command.  
Let's look at the arguments to the command:

mahout validateAdaptiveLogistic --help

We will pass the required parameters to the command and check the output.

mahout validateAdaptiveLogistic --input train_data/input_bank_data.csv 
--model model --auc --confusion

AUC = 0.31

=======================================================
Confusion Matrix
-------------------------------------------------------
a      b      <--Classified as
25613  0       |  25613   a     = no
0      3219    |  3219    b     = yes

To get the prediction for unseen samples, we have the command line option 
of runAdaptiveLogistic. Using the trained model, we can predict the future 
by passing the input data. We have idcolumn for which Mahout will provide 
predictions, but again a target variable is required, so we will add a dummy  
variable again:

mahout runAdaptiveLogistic --help
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We need to add an ID column, say a Client_ID that represents the ID of each client 
to the datasets, and then generate predictions.

mahout runAdaptiveLogistic --input input_bank_data_client_id.csv --output 
result.txt --model model --idcolumn id

The output is generated for both classes for each Client_ID, with the score 
representing the probability of belonging to one particular class:

Client_ID,target,score
1,yes,0.12908477170604132
1,no,0.8709152282939587
2,yes,0.09414374186718402
2,no,0.905856258132816
3,yes,0.11752872130530191
3,no,0.8824712786946981
4,yes,0.09453376989863829
4,no,0.9054662301013617
5,yes,0.14564154616220942
5,no,0.8543584538377906

Code example with logistic regression
Any machine learning algorithm in Mahout requires a few steps.

For classification, the steps are as follows:

1. Read the file, line by line.
2. Encode the features into vectors by splitting the line on the delimiters.
3. If running the MapReduce implementation, convert the vector to the 

sequence file.
4. Train the model by passing the vector and target variable.
5. Test the model.

Import the code folder, which comes with the book into Eclipse or your 
favorite editor. Go to the package chapter4.src.logistic and open the file 
OnlineLogisticRegressionTrain.java.
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Train the model
Here, we are reading the file:

String inputFile = "data/chapter4/train_data/input_bank_data.csv";
String outputFile = "data/chapter4/logistic/model";

We create the predictor list, the names of the column used as predictors:

List<String> predictorList =Arrays.asList("age","job","marital","educati
on","default",    "housing","loan","contact","month","day_of_week","dura
tion","campaign","pdays","previous","poutcome",    "emp.var.rate","cons.
price.idx","cons.conf.idx","euribor3m","nr.employed");

We encode the feature type; the types are same as shown in the code example, n for 
numerical and w for categorical variables:

List<String> typeList = Arrays.asList("n", "w", "w", "w", "w", "w", "w", 
"w", "w", "w", "n", "n", "n", "n","w", "n", "n", "n", "n", "n");

LogisticModelParameters is a helper class, which helps with passing parameters 
to the OnlineLogisticRegression class and returns a CsvRecordFactory value 
with appropriate parameters set. We will look into LogisticModelParameters and 
CsvRecordFactory later in the chapter, to help us understand the process better.

Here, we are setting the parameters required by the OnlineLogisticRegression 
class through the lmp object of the LogisticModelParameters class as follows:

LogisticModelParameters lmp = new LogisticModelParameters();
lmp.setTargetVariable("y");
lmp.setMaxTargetCategories(2);
lmp.setNumFeatures(20);
lmp.setUseBias(false);
lmp.setTypeMap(predictorList,typeList);
lmp.setLearningRate(0.5);

int passes = 50;

This step creates the appropriate CsvRecordFactory object and returns it. The csv 
object will be used to parse and encode the csv file into vectors as follows:

CsvRecordFactory csv = lmp.getCsvRecordFactory();

This step creates the OnlineLogisticRegression object by setting the parameters 
we passed to the lmp object as follows:

lr = lmp.createRegression();
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We define RandomAccessSparseVector with the size defined by the number 
of features in the file. We defined it by setting lmp.setNumFeatures(20). csv.
processLine takes the line read and encodes it into the vector input and returns  
the target value for that particular instance.

Vector input = new RandomAccessSparseVector(lmp.getNumFeatures());
int targetValue = csv.processLine(line, input);

At last, we can train the model using the lr.train method, which takes the 
particular instance's target value and the feature vector:

lr.train(targetValue, input);

The last step is to write the model to a file, so that we can use it later for testing  
and prediction.

To write the model to the file, we use the saveTo function, provided by the 
LogisticRegressionParameter object lmp:

     OutputStream modelOutput = new FileOutputStream(outputFile);
            try {
              lmp.saveTo(modelOutput);
            } finally {
              modelOutput.close();
            }

The LogisticRegressionParameter and 
CsvRecordFactory classes
To work with logistic regression in Java code, Mahout provides a couple of utility 
classes, LogisticRegressionParameter and CsvRecordFactory. Let's see how to 
use them.

A code example without the parameter class
Without using the LogisticRegressionParameter class, we can directly 
construct the CsvRecordFactory and OnlineLogisticRegression 
objects as follows. A working version of the code can be found in the 
OnlineTrainLogisticExampleWithoutParamater.java file, in the  
chapter4.src.logistic package:

CsvRecordFactory csv = new CsvRecordFactory("y",setTypeMap(predictorList,
typeList)).maxTargetValue(2).includeBiasTerm(false);

lr =new OnlineLogisticRegression(2,20,new L1()).lambda(0).
learningRate(0.5).alpha(1 - 1.0e-3);
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We have to take care of our own function to write the model as follows:

public static void write(DataOutput out) throws IOException {
    out.writeUTF("y");
    out.writeInt(typeMap.size());
    for (Map.Entry<String,String> entry : typeMap.entrySet()) {
      out.writeUTF(entry.getKey());
      out.writeUTF(entry.getValue());
    }
    out.writeInt(20);
    out.writeBoolean(false);
    out.writeInt(2);

    if (targetCategories == null) {
      out.writeInt(0);
    } else {
      out.writeInt(targetCategories.size());
      for (String category : targetCategories) {
        out.writeUTF(category);
      }
    }
    out.writeDouble(0);
    out.writeDouble(50);
    lr.write(out);
  }

Here, we write out all the parameters passed to the lr object, so that we can use 
them later.

Testing the online regression model
Open the OnlineLogisticRegressionTest.java code file. To test the model,  
we will use the test file created from the Mahout split command.

private static String inputFile="data/chapter4/test_data/input_bank_data.
csv";

private static String modelFile="data/chapter4/model";

First, we need to load the model from disk:

LogisticModelParameters lmp = LogisticModelParameters.loadFrom(new 
File(modelFile));

Read the input file to be tested:

BufferedReader in = OnlineLogisticRegressionTest.open(inputFile);
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For each line in the file, we encode the features into vectors and then classify each 
feature set. We also store the actual target value for the row that will be used to 
derive performance statistics:

   Auc collector = new Auc();
while (line != null) {
              Vector v = new SequentialAccessSparseVector(lmp.
getNumFeatures());
              int target = csv.processLine(line, v);
              double score = lr.classifyScalar(v);
              output.printf(Locale.ENGLISH, "%d,%.3f,%.6f%n", target, 
score, lr.logLikelihood(target, v));
              collector.add(target, score);
              line = in.readLine();
            }

The AUC class is used to derive the confusion matrix and AUC of ROC curve. We pass 
the predicted values and actual value to the collector.add() method.

Logistic regression has other methods for classification, for example, classify(), 
which returns the probability for both classes. I advise you to go through the 
documentation for further details.

To get the AUC class, use the collector.auc()function.

To get the confusion matrix, use the collector.confusion()function.

The output of the program:

AUC = 0.60
confusion: [[10743.0, 1118.0], [192.0, 303.0]]
entropy: [[NaN, NaN], [-45.2, -7.5]]

Getting predictions from 
OnlineLogisticRegression
Open the OnlineLogisticRegressionPredict.java file located in the chaper4.
src.logistic package in the code repository that comes with this book. The file 
used for prediction will not have the target variable populated. Most of the steps  
will be similar to the testing phase and the only difference is that we will not track 
the performance metrics:

private static String inputFile="data/chapter4/input_bank_data_without_
target.csv";
private static String modelFile="data/chapter4/model";private static 
String modelFile="data/chapter4/model";
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The LogisticModelParameters and CsvRecordFactory classes accept an input fie 
that has a target variable but the target variable will not be present when we perform 
predictions; so, we will tweak the file to meet the need of predictions. We will change 
the getCsvRecordFactory() method in LogisticModelParametersPredict 
and firstLine() in CsvRecordFactory. We rename the files as 
LogisticModelParametersPredict and CsvRecordFactoryPredict. Ideally, you 
would either extend the classes or create your implementation; I have renamed the 
file for ease of explanation.

LogisticModelParametersPredict lmp = LogisticModelParametersPredict.
loadFrom(new File(modelFile));
CsvRecordFactoryPredict csv = lmp.getCsvRecordFactory();
OnlineLogisticRegression lr = lmp.createRegression();

We modified the firstLine() method so that we don't need to look for the target 
variable, and changed the signature to accept the target variable name as an argument. 
getCsvRecordFactory() was modified to return CsvRecordFactoryPredict 
instead of CsvRecordFactory. CsvRecordFactory has a overloaded method for 
processLine(), which returns -1 for target variable for new samples.

       int target = csv.processLine(line, v,false);
       double score = lr.classifyScalar(v);

The score variable will give us the predicted score for each instance.

A CrossFoldLearner example
We have covered all three phases of implementation of a classification algorithm, 
train, test, and predict. Now, we look at CrossFoldLearner, which does cross-fold 
validations of log-likelihood and AUC on several OnlineLogisticRegression 
models. Each record is passed to all but one of the models to train and to the one 
remaining model to evaluate.

Open the CrossFoldLearnerExample.java file. We will use the cancer.csv  
file present in the data/chapter4 directory. We have copied the csv to our  
working directory:

BufferedReader br = new BufferedReader(new FileReader("data/chapter4/
cancer.csv"));

We open the file to read and ignore the first line.

CrossFoldLearner clf = new CrossFoldLearner(5, 2, 10, new L1()).lambda(1 
* 1.0e-3).learningRate(50);
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The parameters passed to the constructor are the number of folds, the number of 
categories, the number of features, and the prior L1() function.

We read the file line by line and split on ",". We then encode the values into vectors 
and train the CrossFoldLearner model as follows:

  while (line != null) {
  if (cnt_line > 0) {
    String[] values = line.split(",");
    double[] vecValues = new double[values.length];

  for (int i = 0; i < values.length - 2; i++) {
    vecValues[i] = Double.parseDouble(values[i]);
        }
int target = Integer.parseInt(values[values.length - 1]);
Vector v = new SequentialAccessSparseVector(values.length);
  v.assign(vecValues);
  clf.train(target, v);

    }

After the model has been run, we can either use the CrossFoldLearner model or 
get the individual model. The following is the code to get the information related to 
AUC and confusion matrix from the individual models:

System.out.println("Auc of cross fold learner is "+ clf.auc());
br.close();
int model_number=1;
for (OnlineLogisticRegression model : clf.getModels()) {

lr = model;
br = new BufferedReader(new FileReader("data/chapter4/cancer.csv"));
String pred_line = br.readLine();
int cnt_pred_line = 0;
Auc collector = new Auc();
while (pred_line != null) {
if (cnt_pred_line > 0) {
String[] values = pred_line.split(",");
double[] vecValues = new double[values.length];

for (int i = 0; i < values.length - 2; i++) {
vecValues[i] = Double.parseDouble(values[i]);
}
int target = Integer.parseInt(values[values.length - 1]);
Vector v = new SequentialAccessSparseVector(values.length);
v.assign(vecValues);
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double score = lr.classifyScalar(v);
collector.add(target, score);
}
pred_line = br.readLine();
cnt_pred_line++;

}
br.close();
System.out.println("Auc of model " +model_number+ " = "+ collector.
auc());
Matrix m = collector.confusion();
System.out.println("The confusion matrix is" +m);
model_number++;
}

We loop through the model to get individual models, test the individual models,  
and then compute the respective AUC and confusion matrix.

The AdaptiveLogisticRegression algorithm programming paradigm follows a 
similar flow. I am not going to explain this in great detail; you can look at the code 
examples for AdaptiveLogisticRegression and play with it. Since you already 
understand the process for OnlineLogisticRegression, the code will be pretty 
straightforward.

Random forest
Random forest introduces us to a category of learning tasks called ensemble learning. 
In ensemble learning, we train multiple weak learners over the same or different 
subsets of the dataset. We then combine their outputs to come up with the final 
answer. It has been empirically proved that an ensemble of weak learners will perform 
better than any single weak learner, giving the same performance at worst. Random 
forest is an ensemble learning algorithm with decision trees as the weak learners. It is a 
very good choice for datasets with missing data values and data with small 'n' or large 
'p' problems. By small 'n', we mean a smaller number of rows as compared to a large 
number of features or 'p'. We will discuss the major features of random forest.

Bagging
Random forest employs bagging. If you recall from Chapter 2, Core Concepts in 
Machine Learning, different samples are created from the training data by randomly 
selecting rows from the original dataset and replacing them. Decision trees are 
trained using the different samples of data, and final predictions are done based  
on taking a majority vote. The algorithm allows users to choose the number of  
trees to be trained to create a forest.
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Random subsets of features
While training different decision trees, a modified tree learning algorithm is 
employed. For each split in the learning process, a random subset of the features 
are used. This helps address the issue of training correlated trees; if a few features 
are highly correlated to the target variable, the majority of the trees will select these 
features to decide splits. This leads to a large number of correlated trees in the forest. 
By choosing a random subset, we address the issue of training correlated trees. 
Typically, for a dataset with p features, p  features are used in each split, though 
the same can be configured by the user.

Out-of-bag error estimate
Random forest computes an out-of-bag error estimate by constructing different 
bootstrap samples from the data. The number of bootstrap samples is equal to the 
number of trees to be created for the random forest model. Each decision tree is 
constructed by using a different bootstrap sample from the original data. About  
one-third of the rows are left out of the bootstrap sample and not used in the 
construction of that particular tree. This is called an out-of-bag sample.

With this approach, each row of data will not be included the training sample of 
around one-third of the trees, and we will get the prediction of the rows from these 
trees. For each row or instance in the dataset, we will get a prediction from one-third 
of the trees during training. If 'A' is the majority predicted class of instance 'X', every 
time it is out-of-bag, the proportion of time the prediction is not equal to the true 
class gives us the out-of-bag error estimate. Out-of-bag error estimates gives us a 
good idea of the model's generalization, even without using a test set.

Studies have shown that the OOB error estimate is as good as the estimate from a 
separate validation set, so theoretically, we don't need to use a validation set with 
random forest.

It is always a good idea to cross-validate your results.
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Random forest using the command line
We will use random forest on Hadoop.

export MAHOUT_LOCAL=""

Next, we will copy the file to HDFS. Random forest implementation doesn't need 
the header file, which we removed during the training of online logistic regression. 
Hence, we will use the same input_bank_data.csv file. We don't need to add back 
the header lines. First, we will create the input directory into which we will copy the 
file as follows:

hadoop fs -mkdir input_bank
hadoop fs -put input_bank_data.csv input_bank
mahout split --input input_bank --trainingOutput train_data --testOutput 
test_data -xm sequential --randomSelectionPct 30

We need to generate a descriptor file, which will be used by the algorithm to 
understand the data. Please find the parameters that can be passed to the Describe 
class, as follows:

hadoop jar $MAHOUT_HOME/mahout-core-0.9-job.jar org.apache.mahout.
classifier.df.tools.Describe --help

hadoop jar $MAHOUT_HOME/mahout-core-0.9-job.jar org.apache.mahout.
classifier.df.tools.Describe -p train_data/input_bank_data.csv -f  
bank_descriptor/bank-additional-full.info -d n 9 c 4 n c 5 n l

Here, we pass the descriptor with the –d option; n stands for numeric or continuous 
features, c stands for categorical feature, and l for label or the target variable.

Let's check the content of the descriptor file, an excerpt from the output is copied  
as follows:

hadoop fs -cat bank_descriptor/bank-additional-full.info
[
  {
    "values": null,
    "label": false,
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    "type": "numerical"
  },
  {
    "values": [
      "entrepreneur",
      "unemployed",
      "services",
      "technician",
      "student",
      "housemaid",
      "blue-collar",
      "retired",
      "unknown",
      "self-employed",
      "management",
      "admin."
    ],
    "label": false,
    "type": "categorical"
  },
   {
    "values": [
      "yes",
      "no"
    ],
    "label": true,
    "type": "categorical"
  }
]

For continuous variables, the value is set to null, and type set to numerical.  
For categorical variables, the values tag is populated with distinct categories of 
variables and type set to categorical. The label is set to true only for the target 
variable. For classification problems, the label is always categorical.
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The next step is to train the random forest. First, we will discuss the parameters that 
can be passed as follows:

hadoop jar $MAHOUT_HOME/mahout-examples-0.9-job.jar org.apache.mahout.
classifier.df.mapreduce.BuildForest --help

Let's now train the model. Here, we are building a random forest with 100 trees, 
and the feature selection factor is set to 4. The model is written to the final-forest 
directory, and we can use it to make predictions and evaluate the model.

hadoop jar $MAHOUT_HOME/mahout-examples-0.9-job.jar org.apache.mahout.
classifier.df.mapreduce.BuildForest -Dmapred.max.split.size=1874231 -d 
train_data/input_bank_data.csv -ds bank_descriptor/bank-additional-full.
info -sl 4 -p -t 100 -o final-forest

The next step is to test the performance of the model. To check the parameter options 
for the class TestForest, please execute the following command:

hadoop jar $MAHOUT_HOME/mahout-examples-0.9-job.jar org.apache.mahout.
classifier.df.mapreduce.TestForest --help
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Now, let's test the performance on the training data. We pass the location to  
training data file, the location to the descriptor file, the location to the model,  
and location to the output directory.

hadoop jar $MAHOUT_HOME/mahout-examples-0.9-job.jar org.apache.mahout.
classifier.df.mapreduce.TestForest -i test_data/input_bank_data.csv 
-ds bank_descriptor/bank-additional-full.info -m final-forest -a -mr -o 
final-pred

=======================================================
Summary
-------------------------------------------------------
Correctly Classified Instances          :      26541      92.054%
Incorrectly Classified Instances        :       2291       7.946%
Total Classified Instances              :      28832

=======================================================
Confusion Matrix
-------------------------------------------------------
a      b      <--Classified as
1000   2283    |  3283    a     = yes
8      25541   |  25549   b     = no

=======================================================
Statistics
-------------------------------------------------------
Kappa                                        0.436
Accuracy                                    92.054%
Reliability                                43.4762%
Reliability (standard deviation)            0.5124

hadoop fs -ls final-pred

final-pred/input_bank_data.csv.out

hadoop fs -cat final-pred/input_bank_data.csv.out

The output contains the predicted class labels of each row.
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To test the performance on the test data, we pass the location to the test data file, 
the location to the descriptor file, the location to the model file, and location to the 
output directory.

hadoop jar $MAHOUT_HOME/mahout-examples-0.9-job.jar org.apache.mahout.
classifier.df.mapreduce.TestForest -i test_data/input_bank_data.csv 
-ds bank_descriptor/bank-additional-full.info -m final-forest -a -mr -o 
final-pred_test

=======================================================
Summary
-------------------------------------------------------
Correctly Classified Instances          :      11079     89.6649%
Incorrectly Classified Instances        :       1277     10.3351%
Total Classified Instances              :      12356

=======================================================
Confusion Matrix
-------------------------------------------------------
a      b      <--Classified as
131    1226    |  1357    a     = yes
51     10948   |  10999   b     = no

=======================================================
Statistics
-------------------------------------------------------
Kappa                                       0.1497
Accuracy                                   89.6649%
Reliability                                36.3967%
Reliability (standard deviation)            0.5489

Predictions from random forest
For prediction, we can follow the same strategy we used for logistic regression and 
create a dummy target variable. We can get the prediction in the .csv.out file in  
the final pred folder.
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Naïve Bayes classifier
The naïve Bayes algorithm uses probabilistic learning to make predictions about 
classes. It is a generative model; it learns the join probability P(X|Y) and then 
generates conditional probability, using Bayes' theorem. The prefix naïve is attributed 
to this algorithm because the assumptions it makes about the data sound very 
naïve. The algorithm assumes that the features or predictor variables are all of equal 
importance and independent of each other. This assumption is rarely true for real-life 
data. For example, text classification is an area in which naïve Bayes shines, because 
some words would be more important in predicting the class than others, and some 
words would be more likely to occur together. In e-mail classification, words like 
lottery or subscribe are likely to indicate the message is spam, where the words lottery 
and won to occur more frequently. In this example, although both the assumptions of 
independence and equal importance are wrong, still naïve Bayes performs very well 
in e-mail classification. The reason for this is still being studied and there are a few 
papers that try to explain it. However, we won't go into that. The motivation behind 
the assumptions is computation simplicity, which we will see later.

Let's assume a dataset of 100 e-mails with 20 spams and 80 hams. We want to predict 
whether an e-mail is ham or spam based on the words in the emails. Without any 
information about the words in the e-mail, we can guess the probability of an e-mail 
being spam. It would be 20/100 or 0.2 or 20 percent. This is called prior probability. 
Now, let's suppose that we know that the e-mail has the word Lottery in it. The 
probability that the word Lottery was used in previous spam e-mails is called 
Likelihood. The probability that the word Lottery was used in any mail, whether 
spam or ham, is called marginal likelihood.

Now, by applying Bayes' theorem for conditional probability, we can compute the 
probability of an e-mail being spam if it has the word Lottery. This probability is 
called posterior probability.

( ) ( ) ( )( ) ( )| |P spam Lottery P Lottery spam P spam P Lottery= ∗ ÷

Here, ( )|P spam Lottery  is the posterior probability that we are trying to predict, 
( )( )|P Lottery spam  is the likelihood, ( )P Lottery  is the marginal probability, and 
( )P spam  is the prior probability.
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We will use the frequency table to generate the probabilities as follows:

Lottery Won Golf Subscribe Bank

Frequency Yes No Yes No Yes No Yes No Yes No Total

spam 9 11 10 10 0 20 2 18 5 15 20

ham 1 79 10 70 80 0 5 75 9 71 80

Total 1 79 1 79 1 79 1 79 1 79 100

The likelihood table is as follows:

Lottery Won Golf Subscribe Bank

Likelihood Yes No Yes No Yes No Yes No Yes No Total

spam 9/20 11/20 10/20 10/20 0/20 20/20 2/20 18/20 5/20 15/20 20

ham 1/80 79/80 10/80 70/80 80/80 0/80 5/80 75/80 9/80 71/80 80

Total 10/100 90/100 20/100 80/100 80/100 20/100 7/100 93/100 14/100 86/100 100

From the likelihood table, we can see that:

( )P Lottery  = 10 / 100 = 0.1

( )( )|P Lottery spam  = 9/20 = 0.45

( )P spam  = 20/100 = 0.2

Hence, ( )|P spam Lottery  = (0.45*0.2)/0.1 = 0.9

The probability of ( )|P ham Lottery  is 1 - 0.9 = 0.1 as the two events are mutually 
exclusive. As an exercise, you could derive the probability using the Bayes' theorem. 
We derived the probability of a particular e-mail belonging to the class spam based 
on a single feature, but in real-life data there will be multiple features. This is where 
the assumption of naïve Bayes comes handy. As the features are independent, we 
can use ( ) ( ) ( )P A B P A P B∩ = ∗  and generate a simpler formula:

( ) ( ) ( ) ( )

( ) ( ) ( )

| 1 2.. 1| 2 | .. |

1 2 ..

P spam f f fn P f spam P f spam p fn spam p spam

P f p f p fn

 ∩ ∩ = ∗ ∗ ∗ ÷ 
 

∗ ∗

∑
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where , 1..fi i n=  are the features. From our frequency table, let's assume that the 
mail contains the words Lottery, Won, and Subscribe, therefore the numerator 
of the left hand side is 9/20*10/20*2/20*20/100= 0.0045 and denominator is 
10/100*20/100*7/100= 0.0014.

Notice in the example table that Golf occurs zero times for spam, so the likelihood 
of golf is zero too. Now for naïve Bayes, we multiple the probabilities, so for spam 
the probability is going to be zero if an e-mail contains the word Golf. This is not an 
ideal scenario, and to address this we add a value, mostly one, to all the frequency 
counts in the frequency table.

Numeric features with naïve Bayes
As we can see that naïve Bayes uses likelihood based on frequencies, we need the 
input features to be categorical. To work with numeric features, we need to convert 
them to categorical features. There are many ways to do this. We can bin the data 
into categories based on equal weight, or equal widths, or use quartiles, or try to 
identify natural bins by using the domain expertise about the data.

Command line
We have already seen how to train and test a naïve Bayes classifier by using the 
Mahout command line in Chapter 1, Introduction to Mahout. If you revisit the chapter, 
you will find that you have a better grasp of the process now.

Summary
In this chapter, we discussed one of the major areas of application in machine 
learning, known as classification. 

We discussed the internal working and learned to use, three of the most popular 
classification algorithms and discussed all the four processes involved in the 
classification project: train, test, validate and predict.

In the next chapter, we will discuss topic modeling on top of text data and frequent 
pattern mining on top of product purchase transactions. Both of the topics have a 
wide area of practical application and is used extensively by the Industry.
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Frequent Pattern Mining  
and Topic Modeling

In this chapter, we are going to discuss two important application areas of machine 
learning, frequent pattern mining and topic modeling. Frequent pattern mining 
helps identify frequent patterns among transactions. This type of technique is used 
widely in market basket analysis, upselling and cross-selling of products, and so on. 
There are many different algorithms to mine frequent patterns from databases such 
as Apriori, Tree projection, and FP-Growth; we will restrict our discussion to FP-
Growth, which is implemented in Mahout. Topic modeling represents documents 
under consideration as topics. Each topic is a bag of words that we can use to label 
the topics. We will also discuss the Mahout implementation of Latent Dirichlet 
allocation (LDA). The topics covered in this chapter are as follows:

• Frequent pattern mining
• Topic modeling

Frequent pattern mining
FP-Growth represents the frequent transactions in a consolidated data structure 
called FP Tree, and the frequent patterns are mined using the FP Tree.

There are two major steps while mining frequent patterns using the FP-Growth 
algorithm, building the FP Tree, and deriving frequent patterns from the FP Tree.



Frequent Pattern Mining and Topic Modeling

[ 110 ]

Building FP Tree
Let's assume a database with the following information. For each transaction, we 
have a list of items that were sold.

Transaction ID Items
1 Fish, Milk, Egg, Bread, and Biscuit

2 Lemon, Fish, Bread, and Tea
3 Fish and Milk
4 Egg and Tea
5 Fish, Biscuit, Bread, and Cup

Let the minimum support be 2. We first compute the frequency of occurrence  
of each item in the transaction table. If you are not able to recall what is meant  
by support, please revisit the section Frequent pattern mining in Chapter 2, Core 
Concepts in Machine Learning.

The frequency of occurrence of items is as shown here:

Items Frequency
Fish 4
Milk 2
Egg 2
Bread 3
Biscuit 2
Lemon 1
Tea 2
Cup 1

Note that support, in this case, is the absolute number and not the percentage coverage.

The next step is to sort the items by their frequencies and drop items lower than the 
support value of 2. The output of the step is displayed in the following table:

Items Frequency
Fish 4
Bread 3
Milk 2
Egg 2
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Items Frequency
Biscuit 2
Tea 2

In this step, we reorder the transaction based on respective frequency in descending 
order. The output of the steps is displayed in the following table:

TransactionID Items Reordered

1
Fish, Milk, Egg, Bread, and 
Biscuit

Fish, Bread, Milk, Egg, 
and Biscuit

2 Lemon, Fish, Bread, and Tea Fish, Bread, and Tea
3 Fish and Milk Fish and Milk
4 Egg and Tea Egg and Tea
5 Fish, Biscuit, Bread, and Cup Fish, Bread, and Biscuit

Constructing the tree
The FP Tree has a null root node. So we will start with a null node, add the reordered 
items of transaction 1, and add the transaction node.
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Similarly, we proceed with adding the other transactions and incrementing the 
count of each element we encounter. As we add transaction 2, we add a node Tea 
after Bread and increment the count of Fish and Bread to 2, and so forth. Note that 
we require only two scans of the data, the first to collect and sort the list of frequent 
items and the second to construct the FP Tree. This is one advantage of the FP Tree 
algorithm compared to other methods such as Apriori.

Identifying frequent patterns from FP Tree
The following table shows the item frequency of the FP Tree we had constructed 
earlier in the chapter:

Items Frequency
Fish 4
Bread 3
Milk 2
Egg 2
Biscuit 2
Tea 2

To mine the frequent patterns, we go from the bottom to top of this list. We start 
mining from Tea all the way up to Fish. First, we create the conditional pattern  
base for the items under consideration, then we create the conditional frequency,  
list and lastly create the condition FP Tree.
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Let's see how the conditional pattern base for Tea is calculated. The steps are listed 
as follows, in order of they are encountered from fish to tea in each path:

Fish: 1, Bread: 1
Egg: 1

Note that in the conditional pattern base, Tea itself is not present.

The frequency list is given as follows:

Fish: 1, Egg: 1, Bread: 1

The frequent pattern for Tea is as follows:

Fish, Bread: Tea

Egg: Tea

Similarly, we can derive frequent patterns for all other items.

The conditional FP Tree is shown as follows:

Importing the Mahout source code  
into Eclipse
It's a good idea to look at the source code of Mahout, as it will give you additional 
insights into the working of machine learning algorithms and Mahout commands. In 
this section, we will be exploring and modifying some of the source files of Mahout. 
For that, we need to import the source code into Eclipse. Mahout source code is 
packaged in Maven and if all the configuration steps of Chapter 1, Introduction to 
Mahout, were followed, we should be ready to import the source code into Eclipse.
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Let's start with downloading the code folder. Please go to the URL http://archive.
apache.org/dist/mahout/0.9 and download the file mahout-distribution-0.9-
src.tar.gz. Ideally the file should be copied to the Eclipse workspace directory,  
but any location can be used. The next step is to extract the archive in the folder 
where the archive mahout-distribution-0.9-src.tar.gz has been copied to.  
For this, we will execute the following command:

tar -xf mahout-distribution-0.9-src.tar.gz

This will create the directory mahout-distribution-0.9. To import the source into 
Eclipse, please follow the sequence of steps as follows:

Go to File | Import | Maven | Existing Maven Projects | Next | Browse to 
workspace and go to mahout source folder mahout-distribution-0.9| Finish.  
Eclipse will download the required dependencies.

Frequent pattern mining with Mahout
So far, we discussed the important concepts needed to understand the frequent 
pattern mining algorithm and also discussed the construction of a FP Tree with 
examples. Let's now discuss how to implement frequent pattern mining (FPM)  
with Mahout.

Extending the command line of Mahout
Frequent pattern mining is not currently supported through the Mahout command 
line. We will learn how to tweak Mahout to support frequent pattern mining from 
the command line. The approach demonstrated here can be used to support  
user-created classes from the Mahout command line.

Looking at the source code of the tool you are working with is always a great 
idea. This gives a strong understanding of the basics and augments the learning 
process. We will use the Mahout source code imported into Eclipse. Let's open the 
file MahoutDriver.java found in the folder core/src/main/java/org/apache/
mahout/driver under the Mahout directory or from the package org.apache.
mahout.driver in Eclipse. This class is called by the Mahout shell script found 
in the bin/ folder. When we run the Mahout command, the MahoutDriver.java 
class is executed. The first argument that we pass to the Mahout script is called the 
short job name and it maps to a Mahout class to be executed. For example, when 
we run mahout trainlogistic, the class org.apache.mahout.classifier.sgd.
TrainLogistic is executed and the rest of the arguments are passed to the class.

http://archive.apache.org/dist/mahout/0.9
http://archive.apache.org/dist/mahout/0.9
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Let's look at these lines in the MahoutDriver.java file:

Properties mainClasses = loadProperties("driver.classes.props");
  if (mainClasses == null) {
    mainClasses = loadProperties("driver.classes.default.props");
  }
  if (mainClasses == null) {
    throw new IOException("Can't load any properties file?");
  }

The code block above is reading the properties file. The mapping of the short 
job name to the actual class name is maintained in the properties file driver.
classes.default.props present in the src/conf or conf folder under the mahout 
directory. Let's open the driver.classes.default.props file, where we can see 
that trainlogistic is mapped to the class org.apache.mahout.classifier.sgd.
TrainLogistic as previously mentioned:

org.apache.mahout.classifier.sgd.TrainLogistic = trainlogistic : Train a 
logistic regression using stochastic gradient descent

There are other .props files with the name format <shortJobName>.props. These 
can be used to pass additional parameters to the class to be executed.

Now, to enable Mahout to support frequent pattern mining from the command line, 
we need to create a class that can perform frequent pattern mining and then add it 
to the driver.classes.default.props file. The Mahout code base already has a 
Java class to perform the same function in its code base, org.apache.mahout.fpm.
pfpgrowth.FPGrowthDriver. We will add the following mentioned line in driver.
classes.default.props. It can be added as a new line anywhere in the file:

org.apache.mahout.fpm.pfpgrowth.FPGrowthDriver = fpg: Frequent Pattern 
Growth

Additionally, we can create a blank file fpg.props although it is not compulsory:

touch fpg.props

Now we can use the command line implementation of frequent pattern mining. 
Please make sure you have followed the instructions and got the command line 
for the working of the Mahout FPM, the examples ahead rely on it. Let's see the 
command line option. Type the following command on the terminal:

mahout fpg --help
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The important parameters of the fpg job are as follows:

Argument Description
input (-i) input This is the path to the job input directory.
output (-o) output This is the directory pathname for output.

minSupport (-s)
This is the minimum number of times a co-occurrence must 
be present. The default value is 3.

numGroups (-g)

This is the number of groups the features should be divided 
into in the MapReduce version. This doesn't work in a 
sequential version.

splitterPattern (-regex)

This is the regular expression pattern used to split given 
string transactions into itemsets. The default value splits 
comma-separated itemsets.

method (-method) method This is the method of processing sequential|mapreduce.
useFPG2 (-2) This uses an alternate FPG implementation.

Now we will discuss how to mine frequent patterns and rules using Mahout.  
The first step is to get the data.

Getting the data
For frequent pattern mining, we will use a dataset with transactions and then try to 
find out frequent patterns in those transactions. We will use the dataset provided by 
Dr. Tariq Mahmood, Assistant Professor at the National University of Computer and 
Emerging Sciences (FAST-NU), Karachi, Pakistan. It is available at https://sites.
google.com/a/nu.edu.pk/tariq-mahmood/.

The link to the file can be found in the code examples in this book at https://
sites.google.com/a/nu.edu.pk/tariq-mahmood/teaching-1/fall-12---dm/
marketbasket.csv?attredirects=0&d=1.

Data description
This marketbasket.csv file contains the list of purchases made in a transaction. An 
element with the value true represents a purchase made, whereas the value false 
represents no purchase for that particular item.

https://sites.google.com/a/nu.edu.pk/tariq-mahmood/
https://sites.google.com/a/nu.edu.pk/tariq-mahmood/
https://sites.google.com/a/nu.edu.pk/tariq-mahmood/teaching-1/fall-12---dm/marketbasket.csv?attredirects=0&d=1
https://sites.google.com/a/nu.edu.pk/tariq-mahmood/teaching-1/fall-12---dm/marketbasket.csv?attredirects=0&d=1
https://sites.google.com/a/nu.edu.pk/tariq-mahmood/teaching-1/fall-12---dm/marketbasket.csv?attredirects=0&d=1
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A snippet of the file is as follows:

Basket ID Hair conditioner Lemons Standard coffee
C11867 FALSE FALSE TRUE
C5096 FALSE FALSE FALSE
C4295 FALSE TRUE FALSE
C2837 FALSE FALSE FALSE
C2693 FALSE FALSE FALSE
C3497 TRUE FALSE FALSE
C2696 FALSE FALSE FALSE

To use the Mahout frequent mining implementation, we need to preprocess the file 
to a particular format, with each line representing the items that were purchased in 
the particular transaction, in this case the Basket ID. The items can be delimited and 
the delimiter can be passed to the regex parameter, which defaults to Tab or ,:

--splitterPattern (-regex) Default Value: "[ ,\t]*[,|\t][ ,\t]*"

The processed file would look something like this:

158
130,230
75
121
213
180
124
4,16,36,42,47,71,97,100,108,117,141,147,186,194,245,269,293

Here, each integer represents each item that's been purchased.

We will use Java to convert the file; for larger files, Pig can be used to convert 
the file using MapReduce. From the chapter5.fpm.src package, open the 
CSVToMahoutFormatConverter.Java file. We will first discuss the code  
snippet that creates the mapping file:

    String data_dir="data/chapter5/";
    String csvFilename = data_dir+"marketbasket.csv";

BufferedReader csvReader = new BufferedReader(new 
FileReader(csvFilename));

    String line = csvReader.readLine();
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    String[] tokens = line.split(",");
FileWriter mappingWriter = new FileWriter(data_dir+"item_mapping.csv");
    int itemID = 0;
    for(int idx=1;idx<tokens.length;idx++) {
// loops starts from 1 to ignore the first column // element
mappingWriter.write(tokens[idx].trim() + "," + itemID + "\n");
      itemID++;
    }
    mappingWriter.close();
    csvReader.close();

The first line of the file is read to create a mapping.csv file, which contains the 
mapping between the item name and itemID. The item name is in the first line  
itself and we use the column number to generate the itemID. We have to ignore  
the first element of the first line as the Basket ID is not required, hence the first  
loop starts at 1.

The second step is to convert the transactions into a Mahout-usable format as 
described earlier:

boolean isfirstLine=true;
    while(true) {
      line = csvReader.readLine();
      if (line == null) {
        break;
      }
      if(isfirstLine)
      {
        //ignore the first line
        isfirstLine=false;
        continue;
      }
      tokens = line.split(",");
      itemID = 0;
      boolean isFirstElement = true;
      for(int idx=1;idx<tokens.length;idx++) {
        if (tokens[idx].trim().equals("true")) {
          if (isFirstElement) {
            isFirstElement = false;
          } else {
            datWriter.append(",");
          }
          datWriter.append(Integer.toString(itemID));
        }
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        itemID++;
      }
      datWriter.append("\n");

This code snippet transforms the input file into the required Mahout format. The 
flag variable isfirstLine is used to ignore the header line. For each transaction, 
wherever we find true, we write the column number to the output file. The column 
number represents the item purchased.

After code execution, you will find two new files created, item_mapping.csv and 
marketbasket_converted.csv. The file item_mapping.csv holds the mapping  
item and the corresponding itemID that we generated:

item_mapping.csv

Hair Conditioner, 0
Lemons, 1
Standard coffee, 2
Frozen Chicken Wings, 3

The marketbasket_converted.csv file has the item ID of each item purchased for 
each transaction. This will be used as input for generating the frequent patterns.

marketbasket_converted.csv

158
130,230
75
121
213
180
124

The next step is to copy the marketbasket_converted.csv file to HDFS. First, we 
create a directory for it:

hadoop fs -mkdir fpm

Then, we copy the file to this directory:

hadoop fs -put marketbasket_converted.csv fpm

Now, let's derive the patterns using the command line option we just added in the 
previous section:

mahout fpg -i fpm/marketbasket_converted.csv -o patterns -k 10 -method 
mapreduce -s 2
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The input file is passed with the parameter –i and the output directory with the 
parameter -o; the method of execution is mapreduce and the minimum support is 2.

We now check the output directory:

hadoop fs -ls patterns
Found 4 items
-rw-r--r-- 1 ctiwary supergroup 6098 2014-08-20 23:50 /user/ctiwary/
patterns/fList
drwxr-xr-x - ctiwary supergroup 0 2014-08-20 23:51 /user/ctiwary/
patterns/fpgrowth
drwxr-xr-x - ctiwary supergroup 0 2014-08-20 23:51 /user/ctiwary/
patterns/frequentpatterns
drwxr-xr-x - ctiwary supergroup 0 2014-08-20 23:50 /user/ctiwary/
patterns/parallelcounting

The following two files of interest are created in the output directory:

• fList: This is a sequence file with the number of the transaction containing 
the particular item

• frequentpatterns/part-r-00000: This is a sequence file that contains the 
frequent patterns for each item

Let's see the result in the fList output file:

mahout seqdumper -i patterns/fList

Key: 132: Value: 167
Key: 141: Value: 162
Key: 124: Value: 149
Key: 16: Value: 133
Key: 4: Value: 127
Key: 110: Value: 126
Key: 300: Value: 118
Key: 238: Value: 116
Key: 6: Value: 109

The key is the item ID and Value is the number of transactions the item was present in:

hadoop fs -ls patterns/frequentpatterns

Found 3 items
-rw-r--r--   1 ctiwary supergroup          0 2014-08-20 23:51 /user/
ctiwary/patterns/frequentpatterns/_SUCCESS
drwxr-xr-x   - ctiwary supergroup          0 2014-08-20 23:51 /user/
ctiwary/patterns/frequentpatterns/_logs
-rw-r--r--   1 ctiwary supergroup      84198 2014-08-20 23:51 /user/
ctiwary/patterns/frequentpatterns/part-r-00000
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Execute the seqdumper command to explore the output:

mahout seqdumper -i patterns/frequentpatterns/part-r-00000

Let's observe one of the lines of the output:

Key: 99: Value: ([99],35), ([16, 99],22), ([141, 99],22), ([132, 99],20), 
([141, 16, 99],18), ([132, 16, 99],17), ([132, 141, 99],15), ([132, 141, 
16, 99],14), ([132, 124, 99],14), ([132, 141, 124, 16, 99],12)

The number 99 of the key represents the ItemID, if we check mapping.csv it is 
Glass Cleaner. The values represent the top 10 associations of other items with 
Glass Cleaner. ([99],35) means that Glass Cleaner is present 35 times, ([141, 
99],22) represents White Bread and Glass Cleaner is present 22 times, and so on. 
All the associations can be looked up in the mapping.csv file.

To run in sequential mode, we can pass the argument sequential to the parameter 
method. Note that in sequential mode, the file needs to be on the file system and  
not HDFS:

mahout fpg -i fpm/marketbasket_converted.csv -o patterns -k 10 -method 
sequential -s 2

Frequent pattern mining with Mahout API
An example of the Java implementation is in the FPGrowthExample.Java class in 
the package chapter5.fpm.src. It has implementations for both sequential and 
MapReduce execution.

The run(String[] args, Configuration conf) function called from 
the main method creates the required parameter object and passes it to the 
runPFPGrowth(Parameters params, Configuration conf) method:

    if ("sequential".equalsIgnoreCase(classificationMethod)) {
      System.out.println("Sequential run");
      runFPGrowth(params, conf);
    } else if ("mapreduce".equalsIgnoreCase(classificationMethod)) {
      System.out.println("mapreduce run");
      HadoopUtil.delete(conf, outputDir);
      PFPGrowth.runPFPGrowth(params, conf);
    }
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MapReduce execution
The program takes the following input. The input is the same as the one on the 
Mahout command line:

-i fpm/marketbasket_converted.csv -o patterns -k 10 -method mapreduce -s 
2

The entry part of the parallel execution is the FPGrowth.runPFPGrowth(params, 
conf) function.

We need to call the functions startParallelFPGrowth(params, conf) and 
startAggregating(params, conf):

List<Pair<String,Long>> fList = readFList(params);
saveFList(fList, params, conf);

// set param to control group size in MR jobs
int numGroups = params.getInt(NUM_GROUPS, NUM_GROUPS_DEFAULT);
int maxPerGroup = fList.size() / numGroups;
if (fList.size() % numGroups != 0) {
maxPerGroup++;
}
params.set(MAX_PER_GROUP, Integer.toString(maxPerGroup));

startParallelFPGrowth(params, conf);
startAggregating(params, conf);

startParallelFPGrowth(params, conf);

The classes used by the MapReduce job startParallelFPGrowth are given below. 
The classes are used to set different parameters of the job object:

job.setInputFormatClass(TextInputFormat.class);
job.setMapperClass(ParallelFPGrowthMapper.class);
job.setCombinerClass(ParallelFPGrowthCombiner.class);
job.setReducerClass(ParallelFPGrowthReducer.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);

startAggregating(params, conf);

The classes used by the MapReduce job startAggregating are given as follows.  
The classes are used to set different parameters of the job object:

job.setInputFormatClass(SequenceFileInputFormat.class);
job.setMapperClass(AggregatorMapper.class);
job.setCombinerClass(AggregatorReducer.class);
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job.setReducerClass(AggregatorReducer.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);

Linear execution
We will next discuss the linear execution of the frequent pattern mining algorithm. 
The entry point of execution is the function runFPGrowth(params, conf).

The first step is to create the object of the class FPGrowth:

FPGrowth<String> fp = new FPGrowth<String>();
fp.generateTopKFrequentPatterns(
new StringRecordIterator(new FileLineIterable(
inputStream, encoding, false), pattern),
fp.generateFList(new StringRecordIterator(
new FileLineIterable(inputStreamAgain,
encoding, false), pattern), minSupport),
minSupport,
maxHeapSize,
features,
new StringOutputConverter(
new SequenceFileOutputCollector<Text, TopKStringPatterns>(
writer)),
new ContextStatusUpdater<Writable, Writable, Writable, Writable>(
null));

List<Pair<String, TopKStringPatterns>> frequentPatterns = FPGrowth
.readFrequentPattern(conf, output);
for (Pair<String, TopKStringPatterns> entry : frequentPatterns) {
log.info("Dumping Patterns for Feature: {} \n{}", entry.getFirst(),
entry.getSecond());

Formatting the results and computing metrics
Open the FormatResults.java file present in the chapter5.src package of the 
code folder that comes with this book, the arguments to be passed are 1361 data/
chapter5/item_mapping.csv patterns/fList patterns/frequentpatterns/
part-r-00000 0.0 0.0:

   int transactionCount = Integer.parseInt(args[0]);
String mappingCsvFilename = args[1];
String frequencyFilename = args[2];
String frequentPatternsFilename = args[3];
double minSupport = Double.parseDouble(args[4]);
double minConfidence = Double.parseDouble(args[5]);

Map<Integer, Long> frequency = readFrequency(configuration, 
frequencyFilename);
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Reader frequencyReader = new SequenceFile.Reader(fs,
new Path(fileName), configuration);
Map<Integer, Long> frequency = new HashMap<Integer, Long>();
Text key = new Text();
LongWritable value = new LongWritable();
while(frequencyReader.next(key, value)) {
frequency.put(Integer.parseInt(key.toString()), value.get());
}

readFrequentPatterns(configuration, frequentPatternsFilename,
transactionCount, frequency, itemById, minSupport, minConfidence);

Reader frequentPatternsReader = new SequenceFile.Reader(fs,
new Path(fileName), configuration);
Text key = new Text();
TopKStringPatterns value = new TopKStringPatterns();

double support = (double)occurrence / transactionCount;
double confidence = (double)occurrence / firstFrequencyItem;
double lift = ((double)occurrence * transactionCount) / 
(firstFrequencyItem * otherItemOccurrence);
double conviction = (1.0 - (double)otherItemOccurrence / 
transactionCount) / (1.0 - confidence);

Topic modeling using LDA
The LDA algorithm represents documents under investigation with the help  
of multiple topics, where each topic consists of a certain bag of words. LDA  
is a generative probabilistic model and makes assumptions made about data 
generation. The assumptions made by LDA are as follows:

• There are a fixed number of patterns of word usage, groups of terms that 
tend to occur together in documents and these are called topics.

• Each document is assumed to be formed by the combination of a particular 
set of topics.

For a particular document, the steps are as follows:

1. Decide on the number of words, N,the document will have based upon  
a poisson distribution.

2. For a fixed number of topics, K, choose the topic composition for the 
document. For example, 20 percent of topic A, 50 percent of topic B,  
and 30 percent of topic C.
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3. Generate each word, w, in the document by:

1. Picking a topic for the word
2. Using the selected topic to generate the word itself

Using these steps, LDA then tries to backtrack from the documents to find a set of 
topics that are likely to have generated the collection.

With these assumptions in place, a bunch of documents and a fixed number of topics 
will represent the documents. We proceed by identifying the bag of words for each 
document and assigning each document to a combination of these topics.

The next steps are as follows:

1. We go through each document, and randomly assign each word in the 
document to one of the K topics.

2. This random assignment already gives us both the topic representations of all 
the documents and word distributions of all the topics, but the assignment is 
arbitrary and we need to improve on this by following these steps:

1. For each document d, go through each word w in d.
2. For each topic t, we will compute:

 p(topic t | document d) = the proportion of the words in document d that 
are currently assigned to topic t, and p(word w | topic t) = the proportion of 
assignments to topic t over all documents that come from this word w. Reassign w 
to a new topic, where you choose topic t with probability p(topic t | document 
d) * p(word w | topic t). According to our generative model, this is essentially 
the probability that topic t generated word w, so it makes sense that we 
resample the current word's topic with this probability.

3. In other words, in this step, we're assuming that all topic assignments except 
for the current word in question are correct, and then updating the assignment 
of the current word using our model of how documents are generated.

4. After repeating the previous step a large number of times, we will eventually 
reach a roughly steady state where your assignments are pretty good. So 
use these assignments to estimate the topic mixtures of each document (by 
counting the proportion of words assigned to each topic within that document) 
and the words associated to each topic (by counting the proportion of words 
assigned to each topic overall).
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LDA using the Mahout command line
We will use the Reuters dataset for out topic modeling example. The first step is to 
download the data and extract it to the working directory, like follows.

On the command line, first set up the working directory as follows:

mkdir /tmp/lda
export WORK_DIR=/tmp/lda

Then we download the data to a location on the hard drive and extract the 
downloaded file to the working directory:

wget http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.tar.gz
tar xvzf reuters21578.tar.gz -C $WORK_DIR/input

We will use the Mahout class ExtractReuters to extract the files:

mahout org.apache.lucene.benchmark.utils.ExtractReuters $WORK_DIR/input 
$WORK_DIR/reutersfinal

The next step is to convert the files to the sequence format. We will use the Mahout 
command seqdirectory for that:

mahout seqdirectory -i $WORK_DIR/reutersfinal -o $WORK_DIR/sequencefiles/ 
-c UTF-8 -chunk 5

To view one of the sequence files, we will use the seqdumper utility:

mahout seqdumper -i ./part-m-00000 -o part-m-00000.txt

The output is something like this:

Input Path: part-m-00000
Key class: class org.apache.hadoop.io.Text Value Class: class org.apache.
hadoop.io.Text
Key: /reut2-000.sgm-301.txt: Value: 2-MAR-1987 04:45:57.78
Key: /reut2-012.sgm-635.txt: Value: 2-APR-1987 12:14:08.24

The next step is to convert the sequence file into a term frequency matrix. We will 
use the Mahout utility seq2sparse for that. This matrix can then be used to perform 
topic modeling:

mahout seq2sparse -i $WORK_DIR/sequencefiles/ -o $WORK_DIR/vectors/ -wt tf
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Mahout has the cvb command to perform LDA. The main parameters are as follows:

• The –i input folder, where the input files are present
• The -o folder, where the output sequence file will be created
• The -k parameter is the number of topics to be generated
• The -x parameter is the maximum number of words to aggregate into a 

topic
• The –ow parameter instructs Mahout to remove the final output if it exists
• –dict tells you where the dictionary is located
• –dt is the output path for the document training
• –mt is the model topic folder

We execute the Mahout cvb command to perform topic modeling on the input dataset:

mahout cvb -i $WORK_DIR/reuters-out-matrix/matrix -o $WORK_DIR/reuterslda 
-k 20 -ow -x 20 -dict $WORK_DIR/reuters-out-seqdir-sparse-lda/dictionary.
file-* -dt $WORK_DIR/reuters-lda-topics -mt $WORK_DIR/reuters-lda-model

To view the results, we will use the Mahout vectordump utility:

mahout vectordump -i ${WORK_DIR}/reuters-lda-topics/part-m-00000 -o 
${WORK_DIR}/reuters-lda/vectordump -vs 10 -p true -d ${WORK_DIR}/reuters-
out-seqdir-sparse-lda/dictionary.file-* -dt sequencefile -sort ${WORK_
DIR}/reuters-lda-topics/part-m-00000

The output is stored in the vectordump file, to view it, we use the following command:

cat ${WORK_DIR}/reuters-lda/vectordump

Summary
In this chapter, we discussed two important application areas of machine learning, 
frequent pattern mining using the FP Growth algorithm, and topic modeling using 
LDA. These are two very important toolkits for any machine learning practitioner 
and using these two, many real-life problems can be solved. Both frequent pattern 
mining and topic modeling are used extensively for exploratory analysis and to  
gain additional insights.

In the next chapter, we are going to discuss the recommender system built using 
collaborative filtering. The recommender system is the most popular and mature 
functionality of Mahout.
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Recommendation  
with Mahout

Recommendations are an integral part of our experience on the Internet. Products are 
recommended to us on an e-commerce site, news items on a news portal, and videos 
are recommended on sites such as YouTube. There are many different approaches 
to building a recommender system. In this chapter, we will discuss methods based 
on collaborative filtering and learn how to implement a recommender system 
using Mahout. We are going to primarily focus on user-based and item-based 
recommendation. We will cover the following recommendations:

• User-based recommendation
• Item-based recommendation

Collaborative filtering
Collaborative filtering, generally speaking, is the process of filtering for information 
or patterns using techniques involving collaboration between multiple data points. 
Collaborative filtering methods have a wide breadth of applications, ranging 
from monitoring data such as logs, application on financial data, e-commerce 
recommendations, and different web applications such as news sites.

In collaborative filtering for recommendation, the underlying assumption of the 
approach is that if person A has the same opinion as person B on an issue, A is  
more likely to have B's opinion on a different issue, x, than the opinion on x of a 
randomly-chosen person. The idea behind collaborative filtering is the idea that 
people often get the best recommendations from someone with similar tastes like 
themselves. Collaborative filtering explores techniques for matching people with 
similar interests and making recommendations on this basis.
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The primary input for any recommendation system based on collaborative filtering is 
the past interests of the user, their current browsing history, and a concept of item or 
user similarity. Collaborative filtering comes in two predominant flavors, user-based 
recommenders and item-based recommenders. We will discuss them in details in the 
coming sections.

Similarity measures
Recommender systems are based on the concept of similarity; without the notion 
of similarity between users or between items, it won't be possible to compute new 
preferences and recommend items to users. In this section, we will discuss a few 
important measures implemented in Mahout.

Pearson correlation similarity
The Pearson correlation is a number that indicates the tendency of two series of 
numbers to increase or decrease together. The range of Pearson correlation is -1 to 
1, where values close to 1 indicate that the two series change together in the same 
direction, so they either increase or decrease together. In this case, the two series are 
considered to be positively correlated. Values close to -1 indicate negative correlation. 
The two series change in opposite directions, so if one increases the other decreases. 
Values close to 0 means that the two series don't have any patterns related to their 
respective changes.

It won't take a giant leap of imagination to see how the Pearson coefficient can be 
used for measuring the similarity of users. The preference values of users will be 
a series of numbers, and we can calculate the Pearson correlation similarity to see 
which users have a high value of correlation in their preference value. These users 
will be similar to each other. In Mahout, this similarity measure is implemented as 
PearsonCorrelationSimilarity.

Euclidean distance similarity
The Euclidean distance similarity is based on the distance between users. Users 
are represented as points in space. Space has as many coordinates as the number 
of items in the dataset, and the preference value for an item is the coordinate value 
for the corresponding coordinate. This similarity is implemented in Mahout as 
EuclideanDistanceSimilarity.

The Euclidean distance measure is computed as 1/ (1+d), where d is the Euclidean 
distance between two user points. The value is always positive and the range is 
between 0 and 1. Values closer to 1 indicate similar users, whereas values closer  
to 0 indicate users who don't have similar preferences.
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Computing similarity without a preference value
Till now, we have seen recommendations with a preference value associated with it. 
In some scenarios, recommendations could just be an ordered list of items without 
any preferences or the actual preference value is not important. In these cases, we 
need similarity measures that work without preference values. We will discuss two 
of them.

Tanimoto coefficient similarity
Tanimoto or Jaccard coefficient is the ratio count of the number of common items 
two users have commonly divided by the number of items both the users have 
preference for. For example, let's assume we have two users A and B.

A has demonstrated preference for items 1, 2, 5, 9.

B has demonstrated preference for items 1, 3, 5, 7, 10.

Count of common items = (1, 5) = 2.

Count of all items with preference = (1, 2, 5, 9, 7, 10, 3) = 7.

Hence, the Tanimoto coefficient is 2/7. It is implemented in Mahout as the class 
TanimotoCoefficientSimilarity.

Log-likelihood similarity
Log-likelihood similarity is similar to Tanimoto coefficient-based similarity, but it 
additionally calculates how likely it is that the overlap between the two users is due 
to chance. In a large dataset, users could have common items purely out of chance, 
and log-likelihood similarity accounts for this. It is implemented in Mahout as a the 
LogLikelihoodSimilarity class.

Evaluating recommender
In Chapter 2, Core Concepts in Machine Learning, we discussed concepts to evaluate 
a recommender system. Here, we will do a quick recap. The recommender can be 
evaluated using score difference or precision and recall. In score difference, the 
evaluation is based on the difference between the actual and predicted ratings. 
Average difference or root mean square are most commonly used. The root mean 
square evaluation metric is implemented by the RMSRecommenderEvaluator 
class, and the average difference evaluation metric is implemented by the 
AverageAbsoluteDifferenceRecommenderEvaluator class.
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Precision and recall is mostly used for Boolean preferences, preferences without  
a rating value. The implementation for the precision and recall metric is present  
in the RecommenderIRStatsEvaluator class.

We will discuss a few examples of evaluating recommenders in the coming sections.

User-based recommender system
The user-based recommender system is based on the concept of user similarity.  
The idea behind this algorithm is that similar users share similar preferences.  
This idea can be leveraged to recommend a new item based on the preference  
of users that are similar to that of a user for that particular item.

The user-based recommender algorithm works like this. For a given user u, compute 
the similarity with all other user based on a similarity measure. Shortlist a group of 
users n, based on a similarity threshold. This group will be called the neighborhood 
of the user. For every item, I, that u doesn't have a preference for but some users in 
n have a preference for, compute a weighted average of the preference values. The 
weighted preference is the product of the similarity of u with a user in n expressing 
preference for I as the preference value. Adding this weighted preference for all 
users in n having preference for I gives the weighted sum. Dividing this weighted 
sum by the number of such users gives the weighted average of preference value 
p. The value p is the preference for item I for user u, and if this is above a particular 
threshold, we can recommend the item to u. Similar users are found first, before 
seeing what those most-similar users are interested in. Only these items become 
candidates for recommendation for the user u.

To build a user-based recommender, we need preference data, a notion of similarity 
between users, a notion of neighborhood of users, and a similarity threshold.

User neighborhood
To compute the new item preferences for a user, we need to consider the 
preferences of users who are similar. A set of users that are similar to the current 
user are called its neighborhood. In Mahout, the notion of neighborhood is 
implemented as the UserNeighborhood interface. It has two implementations, 
NearestNUserNeighborhood and ThresholdUserNeighborhood. We will discuss 
them in the next section.
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Fixed size neighborhood
We could define the neighborhood as N for similar users. Here, the optimum  
number of users or optimum size of neighborhood can be determined by  
evaluating the recommender with different values. Too small or too large a  
value in most cases won't be a good selection. This is implemented in Mahout  
as a NearestNUserNeighborhood class.

Threshold-based neighborhood
Rather than having a fixed size neighborhood, we could define a neighbor by 
threshold. This is particularly helpful as the number of users could vary and hence 
the fixed size might be good for one dataset but not for the others. The threshold 
value lies between -1 and 1. We select a threshold value, say 0.5 and all users with 
a similarity of 0.5, and greater will be considered as neighbors. The similarity 
value will be calculated based on the similarity measure selected. Again, there 
is no way to determine a good threshold value, and the estimation can be done 
only by evaluating the recommender. This is implemented in Mahout as the 
ThresholdUserNeighborhood class.

The dataset
The dataset used for this chapter is the GroupLens, MovieLens 100K dataset. You 
can download the dataset by clicking on http://files.grouplens.org/datasets/
movielens/ml-100k.zip. The code repository includes one of the files from the 
ua.base dataset in the directory chapter6 under the directory data. This is a tab-
delimited file with user IDs, item IDs, ratings or preference value, and a time stamp 
as the field. In this chapter, the first three fields are of interest. Let's look at some 
sample data from the file. User 1 has expressed preference value for items 1 to 10  
and the range of preference value is between 1 and 5 as follows:

1  1  5  874965758

1  2  3  876893171

1  3  4  878542960

1  4  3  876893119

1  5  3  889751712

1  6  5  887431973

1  7  4  875071561

1  8  1  875072484

1  9  5  878543541

1  10  3  875693118

http://files.grouplens.org/datasets/movielens/ml-100k.zip
http://files.grouplens.org/datasets/movielens/ml-100k.zip
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Mahout code example
In this section, we read the input file, create a user-based recommender,  
and then evaluate the recommender that we build. We also explore a couple  
of methods related to making recommendation. The building blocks of a  
user-based recommender in Mahout are as follows:

• A DataModel object to represent the preference data
• A UserSimilarity object to measure the similarity of users
• A UserNeigborhood object to define the neighborhood of users
• A Recommender object to build the user-based recommender

Building the recommender
Open the UserBasedRecommender.java file from the package chapter6.src in 
Eclipse. To execute the code file from Eclipse, pass the path to the preference file  
as an argument and hit Run from the menu.

The first step is to read the input file described earlier in the text and create a 
DataModel object to represent the file. We use the FileDataModel implementation 
of the DataModel super class for representing the file. The dataset used is the same 
ua.base file discussed earlier:

File trainingFile = null;
trainingFile = new File(args[0]);
DataModel model = new FileDataModel(trainingFile);

Once the data is represented as a DataModel object, it's time to create the 
UserSimilarity object using a different similarity implementation class and then 
define the number of neighbors to consider for a particular user. We will use both 
fixed size and threshold-based neighborhoods:

UserSimilarity pearsonSimilarity = new PearsonCorrelationSimilarity(
model);
UserSimilarity euclideanSimilarity = new EuclideanDistanceSimilarity(
model);
UserSimilarity tanimotoSimilarity = new TanimotoCoefficientSimilarity(
model);
UserSimilarity logLikilihoodSimilarity = new LogLikelihoodSimilarity(
model);
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The fixed size neighborhood requires a number of neighbors, a similarity object, and 
the model object as a parameter to the constructor. We create neighborhood objects 
of all four similarities discussed in this chapter as follows:

UserNeighborhood pearsonNeighborhood = new NearestNUserNeighborhood(
1000, pearsonSimilarity, model);
UserNeighborhood euclideanNeighborhood = new NearestNUserNeighborhood(
1000, euclideanSimilarity, model);
UserNeighborhood tanimotoNeighborhood = new NearestNUserNeighborhood(
1000, tanimotoSimilarity, model);
UserNeighborhood logLikilihoodNeighborhood = new 
NearestNUserNeighborhood(
1000, logLikilihoodSimilarity, model);

The threshold-based neighborhood implementation requires the similarity threshold, 
a similarity object, and the model object as parameter to the constructor. We have set 
the similarity threshold as 0.1, which is very low; generally, anything below 0.5 is 
not a good idea. However, the optimum value of the similarity threshold can only be 
determined by evaluation. We have created four neighborhood objects using all the 
four similarities discussed in this chapter as follow:

UserNeighborhood pearsonThresNeighborhood = new 
ThresholdUserNeighborhood(
0.1, pearsonSimilarity, model);
UserNeighborhood euclideanThresNeighborhood = new 
ThresholdUserNeighborhood(
0.1, euclideanSimilarity, model);
UserNeighborhood tanimotoThresNeighborhood = new 
ThresholdUserNeighborhood(
0.1, tanimotoSimilarity, model);
UserNeighborhood logLikilihoodThresNeighborhood = new 
ThresholdUserNeighborhood(
0.1, logLikilihoodSimilarity, model);

The previous steps have created the base objects required for creating the 
recommenders. Now, we will create the recommenders and use them. I have created 
a function as we will create multiple recommenders using the different similarity 
and neighborhood objects that we created so far. The function takes as parameters 
the model object, the neighborhood object, the similarity object, and a string to 
denote which similarity measure we are using, and constructs the recommender:

private static void performRecommendation(DataModel model,
UserNeighborhood neighbour, UserSimilarity similarity, String Type)
throws TasteException {
Recommender recommender = new GenericUserBasedRecommender(model,
neighbour, similarity);
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long userId = 1;
int numberOfRecommendation = 2;
List<RecommendedItem> recommendations = recommender.recommend(userId,
numberOfRecommendation);

for (RecommendedItem recommendation : recommendations) {
System.out.println("The two recommended item using similarity "
+ Type + "for user " + userId + " is " + recommendation);
}

int userID = 1;
long itemID = 1106;

System.out.println("The estimated prefrence using similarity " + Type
+ "for user " + userId + " is "
+ recommender.estimatePreference(userID, itemID));
}

In the function described in the preceeding section, we can see a couple of ways 
of using the recommender. The recommend() function of the recommender object 
recommender takes the user ID as the first argument and returns n number of 
arguments according to the second argument. The values are returned as a list of 
RecommendationItem. We call the recommend function for user ID 1 and get 2 
recommendations as follows:

long userId = 1;
int numberOfRecommendation = 2;
List<RecommendedItem> recommendations = recommender.recommend(userId,
        numberOfRecommendation);

We can print the recommender items and the preference value by looping through 
the returned object:

for (RecommendedItem recommendation : recommendations) {
System.out.println("The two recommended item using similarity "
          + Type + "for user " + userId + " is " + recommendation);
    }

The other useful function is estimatePreference(). It takes a user ID as the first 
argument and item ID as the second argument, and gives the preference for the item 
for the given user ID:

int userID = 1;
long itemID = 1106;

System.out.println("The estimated prefrence using similarity " + Type + 
"for user " + userId + " is "+ recommender.estimatePreference(userID, 
itemID));
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Finally, we invoke the recommender function we defined, with the combination of 
similarity and user neighborhood objects we created so far. We invoke the function 
with the respective neighborhood and similarity measure: Pearson Neighborhood is 
passed with Pearson Similarity and so on. The function will print two recommended 
items for user 1 and the estimated preference for item 1106 of user 1:

performRecommendation(model, pearsonNeighborhood, pearsonSimilarity,

"pearson ");

performRecommendation(model, euclideanNeighborhood,

euclideanSimilarity, "euclidean ");

performRecommendation(model, tanimotoNeighborhood, tanimotoSimilarity,

"tanimoto ");

performRecommendation(model, logLikilihoodNeighborhood,

logLikilihoodSimilarity, "log-likelihood ");

performRecommendation(model, pearsonThresNeighborhood,

pearsonSimilarity, "pearson ");

performRecommendation(model, euclideanThresNeighborhood,

euclideanSimilarity, "euclidean ");

performRecommendation(model, tanimotoThresNeighborhood,

tanimotoSimilarity, "tanimoto ");

performRecommendation(model, logLikilihoodThresNeighborhood,
logLikilihoodSimilarity, "log-likelihood ");

The sample output is given later in the text. We can see that the Pearson similarity-
based recommender is better at estimating the preference of user 1 for item 1106 
than the Euclidean-based recommender. A conclusive best recommender can only 
be determined by tweaking the values of the neighborhood and evaluating the 
recommender iteratively. Hence, we will discuss the evaluation of the user-based 
recommender next:

The two recommended item using similarity pearson for user 1 is 
RecommendedItem[item:1106, value:5.0]

The two recommended item using similarity pearson for user 1 is 
RecommendedItem[item:1026, value:5.0]

The estimated preference using similarity pearson for user 1 is 5.0

The two recommended item using similarity euclidean for user 1 is 
RecommendedItem[item:1293, value:5.0]

The two recommended item using similarity euclidean for user 1 is 
RecommendedItem[item:1189, value:5.0]

The estimated preference using similarity euclidean for user 1 is 
2.9449823
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Evaluating the recommender
After we have built the recommender, we need to evaluate its performance. Open the 
UserBasedRecommendeEvaluation.java file from the package chapter6.src. To 
execute the code file from Eclipse, pass the path to the preference file as an argument 
and hit Run from the menu.

The first step is to read the preference file in a DataModel object. The dataset used is 
the same ua.base file discussed earlier:

File trainingFile = null;
trainingFile = new File(args[0]);
DataModel model = new FileDataModel(trainingFile);

We then build two objects which will perform evaluation. Score difference based on 
evaluation using the AverageAbsoluteDifferenceRecommenderEvaluator class 
and precision recall evaluation-based on GenericRecommenderIRStatsEvaluator:

RecommenderEvaluator scoreBasedEvaluator = new 
AverageAbsoluteDifferenceRecommenderEvaluator();
RecommenderIRStatsEvaluator precRecevaluator = new 
GenericRecommenderIRStatsEvaluator();

Next, we build the different similarity objects as follows:

UserSimilarity pearsonSimilarity = new PearsonCorrelationSimilarity(
model);
UserSimilarity euclideanSimilarity = new EuclideanDistanceSimilarity(
model);
UserSimilarity tanimotoSimilarity = new TanimotoCoefficientSimilarity(
model);
UserSimilarity logLikilihoodSimilarity = new LogLikelihoodSimilarity(
model);

We also build the neighborhood objects, both fixed sized and threshold-based, using 
the different similarity object. Sample code lines are shown as follows:

UserNeighborhood pearsonNeighborhood = new NearestNUserNeighborhood(
1000, pearsonSimilarity, model);
UserNeighborhood pearsonThresNeighborhood = new 
ThresholdUserNeighborhood(
0.1, pearsonSimilarity, model);
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To perform the evaluation, we define two functions, one for score-based evaluation 
and the other for precision recall-based evaluation. The score-based function takes 
the RecommenderEvaluator object, the DataModel object, the UserNeighborhood, 
and the UserSimilarity object as the parameters. It uses 70 percent of the data  
for training and 10 percent of the data for evaluation. It then prints the evaluated 
score. We can run this example multiple times with different neighborhood sizes  
to determine the optimum size:

private static void performEvaluationScoreDiff(
RecommenderEvaluator evaluator, DataModel model,
final UserNeighborhood neighborhood, final UserSimilarity similarity)
throws TasteException {
// Build the same recommender for testing that we did last time:
RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
public Recommender buildRecommender(DataModel model)
throws TasteException {
return new GenericUserBasedRecommender(model, neighborhood,
similarity);
}
};
// Use 70% of the data to train; test using the other 30%.
double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7,
1.0);
System.out.println("The evaluation score is " + score);
}

We call the function with the DataModel object, the RecommenderEvaluator object, 
and the different UserSimilarity and UserNeigborhood objects we created. Sample 
calls using the fixed sized neighborhood and threshold-based neighborhood are 
shown as follows:

performEvaluationScoreDiff(scoreBasedEvaluator, model,
pearsonNeighborhood, pearsonSimilarity)
performEvaluationScoreDiff(scoreBasedEvaluator, model,
pearsonThresNeighborhood, pearsonSimilarity);

The sample output is given later in the text. We can see that the recommender 
with a fixed size neighborhood performed slightly better than the threshold-based 
neighborhood. The optimum option can be determined iteratively by using different 
fixed size and threshold values, in combination with the different similarities, and 
selecting the best-performing one:

The evaluation score is 0.7279038090804933
The evaluation score is 0.7187479821770454
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Similarly, we define the evaluator function to perform precision and  
recall-based evaluation. The function is a bit different from the one  
used for the score difference evaluator. The evaluator object is now of the 
RecommenderIRStatsEvaluator type, an interface, with the implementation  
class being GenericRecommenderIRStatsEvaluator. The object has methods  
to get precision and recall:

private static void performEvaluationPrecRecall(
RecommenderIRStatsEvaluator evaluator, DataModel model,
final UserNeighborhood neighborhood, final UserSimilarity similarity)
throws TasteException {
RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
public Recommender buildRecommender(DataModel model)
throws TasteException {
return new GenericUserBasedRecommender(model, neighborhood,
similarity);
}
};
IRStatistics stats = evaluator.evaluate(recommenderBuilder, null,
model, null, 2,
GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1.0);

System.out.println("The precision is " + stats.getPrecision());
System.out.println("The recall is " + stats.getRecall());
}

We invoke the function to perform the evaluation, and the sample calls are shown  
as follows:

performEvaluationPrecRecall(precRecevaluator, model,
pearsonNeighborhood, pearsonSimilarity);

The sample output is shown later in the text, and the methodology to get  
the optimum values remains the same. You can try out different values of  
the parameter and iteratively find the best recommender:

The precision is 0.031757754800590836
The recall is 0.028553299492385772

Item-based recommender system
Item-based recommendation is based on similarities between items. The idea behind 
this algorithm is that a user will have a similar preference for similar items.
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The item-based algorithm works like this. For every item, I, that a user, u, has no 
preference for, compute the similarity between I and every other item that u has a 
preference for. Calculate a weighted average, where the weighted preference is the 
product of similarity of item I with any other item that u has expressed a preference 
for with the preference value for that item. Adding this weighted preference for 
all items that u has a preference for gives the weighted sum, and dividing it by the 
number of such items gives the weighted average of preference value p. The p value 
is the preference for item I for user u, and if this is above a particular threshold, we 
can recommend the item to u.

To build an item-based recommender, we need preference data and a notion of 
similarity between items.

Mahout code example
In this section, we are going to discuss how to build an item-based recommender 
using Mahout. The semantics are pretty similar to the user-based recommender.  
We will build a recommender and then discuss how to evaluate it. The building 
blocks of an item-based recommender are as follows:

• A DataModel object representing the preference data
• An ItemSimilarity object to measures the similarity of items
• A Recommender object to build the user-based recommender

Building the recommender
The steps to build an item-based recommender are similar to the ones used for 
a user-based recommender. Instead of a UserSimilarity object, we will use 
ItemSimilarity for building the recommender.

Open the ItemBasedRecommender.java file from the package chapter6.src.  
To execute the code file from Eclipse, pass the path to the preference file as an 
argument and hit Run from the menu.

The first step is to represent the preference file, discussed earlier, in a DataModel 
object. The dataset used is the same ua.base file discussed earlier:

File trainingFile = null;
trainingFile = new File(args[0]);
DataModel model = new FileDataModel(trainingFile);
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The second step is to create the different similarity objects:

ItemSimilarity pearsonSimilarity = new PearsonCorrelationSimilarity(

model);

ItemSimilarity euclideanSimilarity = new EuclideanDistanceSimilarity(

model);

ItemSimilarity tanimotoSimilarity = new TanimotoCoefficientSimilarity(

model);
ItemSimilarity logLikilihoodSimilarity = new LogLikelihoodSimilarity(
model);

Once the similarity objects have been created, the next step is to create the 
Recommender object. To do this, we have defined a performItemRecommendation() 
function. The function accepts as arguments the DataModel object, the 
ItemSimilarity object, and a string to denote the type of similarity used:

private static void performItemRecommendation(DataModel model,

ItemSimilarity itemSimilarity, String Type) throws TasteException {

long userId = 1;

int numberOfRecommendation = 2;

Recommender itemRecommender = new GenericItemBasedRecommender(model,

itemSimilarity);

List<RecommendedItem> itemBasedRecommendations = itemRecommender

.recommend(userId, numberOfRecommendation);

for (RecommendedItem recommendation : itemBasedRecommendations) {

System.out.println("The two recommended item using similarity "

+ Type + "for user " + userId + " is " + recommendation);

}

int userID = 1;

long itemID = 1106;

System.out.println("The estimated prefrence using similarity " + Type

+ "for user " + userId + " is "

+ itemRecommender.estimatePreference(userID, itemID));

}
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The function fetches the recommended items for user 1. The function that used 
recommend() is the same one that is used in the user-based recommender example, 
as follows:

long userId = 1;
int numberOfRecommendation = 2;
List<RecommendedItem> itemBasedRecommendations = itemRecommender.
recommend(userId, numberOfRecommendation);

Once the recommendations are available, we can get the recommended items for the 
particular user by looping through the list of RecommendedItem:

for (RecommendedItem recommendation : itemBasedRecommendations) {
      System.out.println(recommendation);
    }

The function also uses the estimatePreference() method of the Recommender 
object itemRecommender to get the preference of a user for an item as follows:

int userID = 1;
long itemID = 1106;
System.out.println(itemRecommender.estimatePreference(userID,itemID));

Next, we call the function and observe the output. The sample call to the function 
and partial output is shown as follows:

performItemRecommendation(model, pearsonSimilarity, "pearson ");

performItemRecommendation(model, euclideanSimilarity, "euclidean ");

The two recommended item using similarity pearson for user 1 is 
RecommendedItem[item:345, value:5.0]

The two recommended item using similarity pearson for user 1 is 
RecommendedItem[item:320, value:5.0]

The estimated prefrence using similarity pearson for user 1 is 4.180895

The two recommended item using similarity euclidean for user 1 is 
RecommendedItem[item:1653, value:4.509804]

The two recommended item using similarity euclidean for user 1 is 
RecommendedItem[item:1156, value:4.3728814]

The estimated prefrence using similarity euclidean for user 1 is 
3.7780771
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Evaluating the recommender
Open the ItemBasedRecommenderEvaluation.java file from the package 
chapter6.src. This code file has the sample code for evaluating an item-based 
recommender. To execute the code file from Eclipse, pass the path to the preference 
file as an argument and hit Run from the menu.

First, we represent the preference file as a DataModel object using the 
FileDataModel class. The dataset used is the same ua.base file discussed earlier:

File trainingFile = null;
trainingFile = new File(args[0]);
DataModel model = new FileDataModel(trainingFile);

We then build the two objects the will perform the evaluation. Score difference-
based evaluation using the AverageAbsoluteDifferenceRecommenderEvaluator 
class and precision recall-based evaluation based on 
GenericRecommenderIRStatsEvaluator:

RecommenderEvaluator scoreBasedEvaluator = new 
AverageAbsoluteDifferenceRecommenderEvaluator();
RecommenderIRStatsEvaluator precRecevaluator = new 
GenericRecommenderIRStatsEvaluator();

Next, we build the different similarity objects:

ItemSimilarity pearsonSimilarity = new PearsonCorrelationSimilarity(
model);
ItemSimilarity euclideanSimilarity = new EuclideanDistanceSimilarity(
model);
ItemSimilarity tanimotoSimilarity = new TanimotoCoefficientSimilarity(
model);
ItemSimilarity logLikilihoodSimilarity = new LogLikelihoodSimilarity(
model);

To perform the evaluation, we define two functions, one for score-based evaluation 
and the other for precision recall-based evaluation. The score-based function takes 
the RecommenderEvaluator object, the DataModel object and the ItemSimilarity 
object as the parameters. It uses 70 percent of the data for training and 10 percent of 
the data for evaluation. It then prints the evaluated score:

private static void performEvaluationScoreDiff(
RecommenderEvaluator evaluator, DataModel model,
final ItemSimilarity itemSimilarity) throws TasteException {
// Build the same recommender for testing that we did last time:
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RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
public Recommender buildRecommender(DataModel model)
throws TasteException {
return new GenericItemBasedRecommender(model, itemSimilarity);
}
};
// Use 70% of the data to train; test using the other 30%.
double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7,
1.0);
System.out.println("The evaluation score is " + score);
}

We call the function with the DataModel object, the RecommenderEvaluator  
object, and the different ItemSimilarity objects we created. Sample calls are  
shown as follows:

performEvaluationScoreDiff(scoreBasedEvaluator, model,
pearsonSimilarity);
performEvaluationScoreDiff(scoreBasedEvaluator, model,
euclideanSimilarity);

The sample output is given later in the text. We can see that recommender  
with Euclidean similarity has performed better than that with Pearson similarity.  
The optimum option can be determined by selecting the recommender with the 
highest score:

The evaluation score is 0.6664933304675151
The evaluation score is 0.7998527691989347

Similarly, we define the evaluator function to perform precision and  
recall-based evaluation. The function is a bit different from the one 
used for score difference evaluator. The evaluator object is now of the 
RecommenderIRStatsEvaluator type, an interface, with the implementation  
class being GenericRecommenderIRStatsEvaluator. The object has methods  
to get precision and recall:

private static void performEvaluationPrecRecall(
RecommenderIRStatsEvaluator evaluator, DataModel model,
final ItemSimilarity itemSimilarity) throws TasteException {
RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
public Recommender buildRecommender(DataModel model)
throws TasteException {
return new GenericItemBasedRecommender(model, itemSimilarity);
}
};
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IRStatistics stats = evaluator.evaluate(recommenderBuilder, null,
model, null, 2,
GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1.0);

System.out.println("The precision is " + stats.getPrecision());
System.out.println("The recall is " + stats.getRecall());
}

We invoke the function to perform the evaluation. Sample calls are shown as follows:

performEvaluationPrecRecall(precRecevaluator, model, pearsonSimilarity)

The sample output is shown, and the methodology to get the optimum values 
remain the same:

The precision is 0.0012690355329949235
The recall is 0.0012690355329949235

Inferring preferences
Sparse datasets with users providing preferences for only a fraction of the items 
are problematic. As users have provided preferences for only a few items, it will 
be difficult to generate meaningful preferences. One way to address this scenario 
is to impute or infer the missing preferences for user-item pairs. Mahout has an 
implementation for this as the AveragingPreferenceInferrer class, which extends 
the PreferenceInferrer interface. This implementation computes the average of 
all preferences provided by a user and imputes the average for all the missing item 
preferences for that user.

Summary
In this chapter, we learned about the basics of building a recommender system using 
Mahout. We discussed the idea behind recommender systems, similarity measures, 
and two paradigms for building the recommender, user-based and item-based.  
We also discussed a couple of use cases for building a recommender and learned 
how to measure the efficacy of a recommender system.

In the next chapter, we are going to look at clustering algorithms. We will look at the 
basic concepts of different clustering algorithms and discuss practical examples.
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Clustering with Mahout
In this chapter, we will discuss one of the major application areas of machine 
learning. Cluster analysis has wide areas of application like customer segmentation, 
news grouping, grouping users based on their behavior, and so on.

We will also get an understanding of the internals of a few important clustering 
algorithms and then discuss their implementation in Mahout. The topics that we  
will discuss in this chapter are as follows:

• Data preprocessing
• k-means
• Canopy clustering
• Fuzzy k-means
• Streaming k-means

k-means
k-means is one of the simplest and most widely-used clustering algorithms. Given 
the number of  K clusters to look for, k-means provides K clusters with respective 
data points belonging to a cluster, depending upon how close they are to the mean 
of that particular cluster mean. The point is assigned to a cluster to whose mean it is 
the closest. In other words, k-means tries to minimize the variance between points 
belonging to the same cluster. The algorithm requires one major input to look for the 
number of clusters, which can be both a bane and boon. We will discuss this further 
in this chapter. The other parameters that can be set are the distance measure to be 
used, the stopping criteria, the number of iterations, and so on. There are two steps 
in this algorithm.
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The first step finds the points that are nearest to each centroid point and assigns 
them to that specific cluster. The second step recalculates the centroid point using 
the mean of the coordinates of all the points in that cluster. These steps are repeated 
till the algorithm converges based on the stopping criteria or the maximum number 
of iterations. The stopping criteria for k-means is when the centroid doesn't change 
by a certain degree between iterations or there is no reallocation of points. If the 
stopping criteria is not achieved, then the algorithm breaks after a certain number 
of iterations fixed by the user. The choice of the distance measure is governed by the 
problem at hand. The objective of k-means is to decrease the variance of individual 
clusters and increase the variance between clusters. As variance is defined under 
EuclideanDistanceMeasure, it is the preferred choice for a distance measure.  
For text mining, the preferred distance measure is CosineDistanceMeasure.  
An important advantage is that it can account for documents of different sizes.

k-means is based on variance minimization around the mean. 
The variance and mean are well defined in the case of the 
Euclidean distance measure and hence it is recommended  
to use the Euclidean distance measure with k-means.

Let's look at an example to understand k-means better. Let's assume a dataset with 
two input features A and B. We intend to cluster them with K. The number of the 
cluster is set to 2.

The following table shows the first seven lines of the input data:

Input A B
1 1.0 1.0
2 1.5 2.0
3 3.0 4.0
4 5.0 7.0
5 3.5 5.0
6 4.5 5.0
7 3.5 4.5

We start with the initial centers; in this case, we assign the farthest point as the initial 
cluster mean. There are many approaches to determining the initial cluster mean, 
and we will discuss them shortly.

Individual Mean Vector (centroid)
Centre 1 1 (1.0, 1.0)
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Individual Mean Vector (centroid)
Centre 2 4 (5.0, 7.0)

The input points are now assigned to the respective cluster based on the shortest 
Euclidean distance from the cluster mean. After the addition of each input point,  
the centers are recalculated:

Cluster 1 Cluster 2

Step Points Mean Vector 
(centroid) Points Mean Vector 

(centroid)
1 1 (1.0, 1.0) 4 (5.0, 7.0)
2 1, 2 (1.2, 1.5) 4 (5.0, 7.0)
3 1, 2, 3 (1.8, 2.3) 4 (5.0, 7.0)
4 1, 2, 3 (1.8, 2.3) 4, 5 (4.2, 6.0)
5 1, 2, 3 (1.8, 2.3) 4, 5, 6 (4.3, 5.7)
6 1, 2, 3 (1.8, 2.3) 4, 5, 6, 7 (4.1, 5.4)

After the first pass of data, we are left with two clusters with points 1,2,3 belonging 
to cluster 1 with centroid (1.8,2.3) and 4,5,6,7 belonging to cluster 2 with centroid  
(4.1, 5.4), respectively.

Points Mean Vector 
(centroid)

Cluster 1 1, 2, 3 (1.8, 2.3)
Cluster 2 4, 5, 6, 7 (4.1, 5.4)

Now, to be sure that each point has been assigned to the right cluster, we compare 
each point's distance to its own cluster mean and to that of the opposite cluster. 
The Euclidean distance measure is again used to calculate the distance. We observe 
that point 3 is nearer to cluster 2's mean than cluster 1's mean. Point 3 needs to be 
reassigned to cluster 2:

Points
Distance to 
mean (centroid) 
of Cluster 1

Distance to mean 
(centroid) of 
Cluster 2

1 1.5 5.4
2 0.4 4.3
3 2.1 1.8
4 5.7 1.8
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Points
Distance to 
mean (centroid) 
of Cluster 1

Distance to mean 
(centroid) of 
Cluster 2

5 3.2 0.7
6 3.8 0.6
7 2.8 1.1

After the reassignment of point 3, the cluster mean needs to be recalculated again:

Points Mean Vector (centroid)
Cluster 1 1, 2 (1.3, 1.5)

Cluster 2 3, 4, 5, 
6, 7 (3.9, 5.1)

The iterative relocation continues from this new partition until no more relocations 
occur or the change in the mean between the iterations is below a certain threshold. 
If none of the conditions are met, the algorithm should break after a fixed number  
of iterations.

Deciding the number of clusters
There is no simple way to decide the number of clusters to generate. It depends  
on the data and the problem to be solved. The good news is that often the problem 
statement itself leads to the number of clusters. For example, let's assume we want to 
cluster users based on the product usage; intuitively clusters of high, medium, and 
low usage make sense. So, based on our intuition of 3 clusters, we can also generate 
clusters around the neighborhood of numbers like 2, 4, and 5 and select the best one 
depending on the cluster evaluation metric. Please note that business users don't 
need the best clusters, they need actionable clusters.

Another rule of thumb is to take the square root of the number of data points divided 
by 2;

We can also run some algorithms to determine the number of K from the data itself. 
Most tools have such utilities. In Mahout, we have canopy clustering for this. We will 
discuss canopy clustering later in this chapter.
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Deciding the initial centroid
The choice of the initial centroid impacts the convergence of the clusters and to an 
extent the quality of the clusters as well. It is important to understand the various 
choices of deciding the initial centroids and applying at least a couple of these 
techniques while building the clusters. Let's look at the major techniques.

Random points
One approach to initialize the centroids is to generate random points to represent the 
centroids equal to the number of the cluster K. The final output will vary depending 
on the initial points generated, but still this is a viable approach as the output in 
majority of cases vary by a small margin.

Points from the dataset
The second approach is to select random input points to represent the centroids 
equal to the number of the cluster K. This approach is similar to the first approach.

Partition by range
In the third approach, we take the range of the individual column, divide it  
into equal-spaced partitions, and use the partition points as the initial centroids.  
This approach might lead to a faster convergence of the algorithm.

Canopy centroids
Another possibility is to use the centroids generated by canopy clustering. This is one 
of the optimum approaches of selecting the centroids and providing both a suitable 
number of K and good initial cluster points.

If it is possible to run the clustering algorithm multiple times, that is, if we have 
enough time and resources, the optimum solution is to build different models using 
all the techniques of deciding initial centroids discussed previously. Once all the 
k-means converge, we can calculate the average of all the centroids created, use it 
as the new initial centroid, and run a final iteration of k-means. This final k-means 
model should determine the final clusters.
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Advantages and disadvantages
Like any machine learning algorithms, k-means has its advantages and disadvantages.

The advantages are that k-means is very fast and provides intuitive understanding. 
Given that we have a good approximation of K, the algorithm provides pretty robust 
clusters, which is dependent on a close approximation of K. Assumption of spherical 
clusters might not be good for more complex datasets. The output is dependent on 
the initial centroid points.

Canopy clustering
Canopy clustering is a fast and approximate clustering technique. It divides the 
input data points into overlapping clusters called canopies. Two different distance 
thresholds are used for the estimation of the cluster centroids. Canopy clustering can 
provide a quick approximation of the number of clusters and initial cluster centroids 
of a given dataset. It is mainly used to understand the data and provide input to 
algorithms such as k-means.

Overlapping clustering algorithms group points into different 
clusters without the condition of exclusivity of points. A single 
point can belong to different clusters.

Canopy clustering creates clusters with a single pass over the data. A canopy 
clustering algorithm might not give accurate and precise clusters, but it can give  
the optimal number of clusters without specifying the number of clusters.

The algorithm uses a fast distance measure and two distance thresholds, T1 and T2, 
with T1> T2. It begins with a dataset of points and an empty list of canopies, and then 
iterates over the dataset, creating canopies in the process. During each iteration, it 
removes a point from the dataset and adds a canopy to the list with that point as the 
center. It loops through the rest of the points one by one. For each one, it calculates 
the distances to all the canopy centers in the list. If the distance between the point 
and any canopy center is within T1, it's added to that canopy. If the distance is within 
T2, it's removed from the list and thereby prevented from forming a new canopy in 
subsequent loops. It repeats this process until the list is empty.

This approach prevents all points close to an already existing canopy (distance <T2) 
from being the center of a new canopy. It's detrimental to form another redundant 
canopy in close proximity to an existing one.
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Fuzzy k-means
The fuzzy k-means clustering algorithm is another overlapping clustering algorithm. 
It is an extension of k-means algorithm without the restriction of exclusive clusters. 
One data point can be a part of more than one cluster. In the overlapping clusters,  
any point can belong to more than one cluster with a certain affinity value toward 
each cluster. This affinity is proportional to the distance from the point to the centroid 
of the cluster. Fuzzy k-means converges faster than k-means, and should be preferred 
if the criteria of exclusivity is not mandatory.

Deciding the fuzzy factor
The fuzzy k-means algorithm has a parameter, m, called the fuzziness factor.  
Like k-means, fuzzy k-means loops over the dataset. However, instead of assigning 
vectors to the nearest centroids, it calculates the degree of association of the point to 
each of the clusters.

The fuzzy k-means algorithm starts behaving more like the k-means algorithm as 
m gets closer to 1. If m increases, the fuzziness of the algorithm increases, and you'll 
begin to see more and more overlap.

A Mahout command-line example
Now, we will discuss how to cluster objects using the Mahout command line.  
We start with getting the data first.

Getting the data
We will use the seed dataset from our favorite UCI repository for clustering 
examples. The dataset is available at https://archive.ics.uci.edu/ml/
datasets/seeds.

To download the data, we can execute the following command:

wget https://archive.ics.uci.edu/ml/machine-learning-databases/00236/
seeds_dataset.txt

We also have the data downloaded in data/chapter7 in our code base.

https://archive.ics.uci.edu/ml/datasets/seeds
https://archive.ics.uci.edu/ml/datasets/seeds
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Data description

The seed dataset consists of 8 attributes as follows:

Column Data type
Area (A) Continuous
Perimeter (P) Continuous
Compactness (C = 4*pi*A/P^2) Continuous
Length of kernel Continuous
Width of kernel Continuous
Asymmetry coefficient Continuous
Length of kernel groove Continuous
Type of seed Categorical

We can use all the columns for our clustering example or keep Type of seed as an 
external evaluation metric.

Sample data

15.26  14.84  0.871  5.763  3.312  2.221  5.22  1
14.88  14.57  0.8811  5.554  3.333  1.018  4.956  1
14.29  14.09  0.905  5.291  3.337  2.699  4.825  1
13.84  13.94  0.8955  5.324  3.379  2.259  4.805  1
16.14  14.99  0.9034  5.658  3.562  1.355  5.175  1

Preprocessing the data
The first step of preprocessing is to clean the data file. In this particular case, the 
delimited file has an extra character as a delimiter in a few lines. You can use your 
favorite text editor to clean it or use the cleaned file in the data directory of the code 
base. The next step is to convert the file into vectors and save it in the sequence file.

Before we convert the text in file into vectors, we need to clean the file and copy  
it to HDFS. Navigate to the directory learningApacheMahout/data/chapter7.  
We need to create a directory on HDFS to keep the data file, please execute the 
following command on the command prompt. This will create the input directories:

hadoop fs -mkdir chapter7/clustering_input
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We need to remove extra characters from the delimiter of the data file  
seeds_dataset.txt, we will use the sed for that, please execute the  
following command on the command prompt:

sed -ie "s/[[:space:]]\+/ /g" seeds_dataset.txt

Now we need to copy the cleaned file into the HDFS directory  
chapter7/clustering_input, please execute the following command  
on the command prompt:

hadoop fs -put seeds_dataset.txt chapter7/clustering_input/

From the code example, open the Java DataPreprocessing.Java file. This file is 
located in the chapter7.src package. We first create the Configuration object,  
set the required resources, and then pass the Configuration object to FileSystem:

Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
conf.addResource(new Path("/usr/local/hadoop/conf/hdfs-site.xml"));
    
FileSystemfileSystem = FileSystem.get(conf);

We then create the input and output Path objects:

String inputPath="chapter7/clustering_input";
String inputSeq="clustering_seq";
    
Path inputDir = new Path(inputPath);
Path inputSeqDir = new Path(inputSeq);

The last step is to use the InputDriver class to create the sequence file. InputDriver 
is a utility class in Mahout to convert the tab-delimited file into the sequence file.

Apart from the input and output directory, it takes the vector class name; in this case, 
org.apache.mahout.math.RandomAccessSparseVector and the Configuration 
object:

InputDriver.runJob(inputDir, inputSeqDir,         "org.apache.mahout.
math.RandomAccessSparseVector",conf);

We take a look at the following output directory:

hadoop fs -ls clustering_output
/user/ctiwary/clustering_seq/_SUCCESS
/user/ctiwary/clustering_seq/part-m-00000
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The sequence file is written to the clustering_seq/part-m-00000 file. To look at 
the contents of this file, we will use the mahout seqdumper command-line utility:

mahout seqdumper -i clustering_seq/part-m-00000

Key: 8: Value: {0:12.37,2:0.8567,1:13.47,5:3.919,3:5.204,7:3.0,6:5.001,4:
2.96}
Key: 8: Value: {0:12.19,2:0.8783,1:13.2,5:3.631,3:5.137,7:3.0,6:4.87,4:2.
981}
Key: 8: Value: {0:11.23,2:0.8511,1:12.88,5:4.325,3:5.14,7:3.0,6:5.003,4:2
.795}
Key: 8: Value: {0:13.2,2:0.8883,1:13.66,5:8.315,3:5.236,7:3.0,6:5.056,4:3
.232}
Key: 8: Value: {0:11.84,2:0.8521,1:13.21,5:3.598,3:5.175,7:3.0,6:5.044,4:
2.836}
Key: 8: Value: {0:12.3,2:0.8684,1:13.34,5:5.637,3:5.243,7:3.0,6:5.063,4:2
.974}

k-means
Let's start with checking the command-line options. We will describe some of the 
most commonly-used parameters.

The command-line options are as follows:

Parameters Description
--input (-i) Path to input directory
--output (-o) Path to output directory
--distanceMeasure (-dm) The class name given to the distance 

measure to be used
--clusters (-c) The input centroid as vectors in the 

sequence format
--numClusters (-k) The number of clusters to be generated
--convergenceDelta (-cd) The convergence delta value
--maxIter (-x) The maximum number of iterations to  

be performed
--overwrite (-ow) Overwrite the input directory if it is present
--clustering (-cl) If present, perform clustering after the 

convergence of the centroid
--method (-xm) Sequential or MapReduce execution
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From the data preprocessing step, we converted the input file into sequence file 
format that can be used by Mahout. We pass the sequence file as the input directory 
using the –i parameter option as follows:

mahout kmeans -i clustering_seq -c kmeans_init_cluster -o clustering_
output -dmorg.apache.mahout.common.distance.EuclideanDistanceMeasure -x 
10 -k

The Mahout k-means command line creates the initial cluster points. It takes the 
first approach that we described to create k number of random points passed with 
the parameter -k. We pass the command, the distance measure to use, the output 
clustering directory, the max number of iterations, and the path to the input dataset.

After we run the algorithm, let's investigate the output directory:

hadoop fs -ls clustering_output

The output is given as follows:

  /user/ctiwary/clustering_output/_policy
  /user/ctiwary/clustering_output/clusteredPoints
  /user/ctiwary/clustering_output/clusters-0
  /user/ctiwary/clustering_output/clusters-1
  /user/ctiwary/clustering_output/clusters-2
  /user/ctiwary/clustering_output/clusters-3-final

Files in the folder have the mapping of the vector to clusterclustering_output/
clusteredPoints/.

The final cluster of the centroids is present in the clusters-*-final directory. Here 
the star can be replaced by the number of clusters passed.

We will use Mahout's clusterdump utility to view the clustering output:

mahout clusterdump -i clustering_output/clusters-3-final/part-r-00000

An excerpt of the output is copied later in text. In this output, each line represents a 
cluster. The number after VL represents the cluster label, the vector with c represents 
the centroid as follows:

VL-198{n=71 c=[14.120, 14.201, 0.878, 5.476, 3.214, 2.603, 5.081, 1.169] 
r=[1.143, 0.565, 0.017, 0.236, 0.165, 1.024, 0.275, 0.503]}
VL-79{n=72 c=[18.329, 16.124, 0.885, 6.142, 3.683, 3.602, 5.994, 1.917] 
r=[1.367, 0.600, 0.015, 0.263, 0.168, 1.213, 0.284, 0.276]}
VL-180{n=67 c=[11.876, 13.257, 0.848, 5.238, 2.850, 4.968, 5.124, 2.970] 
r=[0.775, 0.361, 0.021, 0.135, 0.151, 1.210, 0.154, 0.243]}
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Now, we will use the seqdumper utility to view the data point to cluster mapping. 
The key is the cluster label. We have the distance from the cluster centroid and  
the vector:

mahout seqdumper -i clustering_output/clusteredPoints

Key: 180: Value: wt: 1.0 distance: 1.4086324273887754  vec: 8 = [12.190, 
13.200, 0.878, 5.137, 2.981, 3.631, 4.870, 3.000]
Key: 180: Value: wt: 1.0 distance: 1.0009021862979366  vec: 8 = [11.230, 
12.880, 0.851, 5.140, 2.795, 4.325, 5.003, 3.000]
Key: 180: Value: wt: 1.0 distance: 3.6425075218638305  vec: 8 = [13.200, 
13.660, 0.888, 5.236, 3.232, 8.315, 5.056, 3.000]
Key: 180: Value: wt: 1.0 distance: 1.375878190644538  vec: 8 = [11.840, 
13.210, 0.852, 5.175, 2.836, 3.598, 5.044, 3.000]
Key: 180: Value: wt: 1.0 distance: 0.808719839391573  vec: 8 = [12.300, 
13.340, 0.868, 5.243, 2.974, 5.637, 5.063, 3.000]
Key: 79: Value: wt: 1.0 distance: 0.8256480988955742  vec: 8 = [18.300, 
15.890, 0.911, 5.979, 3.755, 2.837, 5.962, 2.000]
Key: 79: Value: wt: 1.0 distance: 0.9602824919371283  vec: 8 = [18.940, 
16.320, 0.894, 6.144, 3.825, 2.908, 5.949, 2.000]
Key: 198: Value: wt: 1.0 distance: 2.626815730803073  vec: 8 = [15.380, 
14.900, 0.871, 5.884, 3.268, 4.462, 5.795, 2.000]
Key: 79: Value: wt: 1.0 distance: 2.4487610767462544  vec: 8 = [16.160, 
15.330, 0.864, 5.845, 3.395, 4.266, 5.795, 2.000]
Key: 198: Value: wt: 1.0 distance: 3.092561743802084  vec: 8 = [15.560, 
14.890, 0.882, 5.776, 3.408, 4.972, 5.847, 2.000]
Key: 198: Value: wt: 1.0 distance: 1.9165859729642354  vec: 8 = [15.380, 
14.660, 0.899, 5.477, 3.465, 3.600, 5.439, 2.000]

Canopy clustering
Let's check the canopy clustering command-line options. We will discuss the 
important and commonly-used parameters:

Parameters Description
--input (-i) Path to input directory
--output (-o) Path to output directory
--distanceMeasure (-dm) The class name given to the distance measure to be used
--overwrite (-ow) Overwrite the input directory if it is present
--clustering (-cl) If present, perform clustering after convergence  

of centroid
--method (-xm) Sequential or MapReduce execution
--t1 (-t1) T1 threshold value
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Parameters Description
--t2 (-t2) T2 threshold value
--t3 (-t3) T3 threshold value—reducer phase
--t4 (-t4) T4 threshold value—r educer phase

We will use the same preprocessed sequence file as the input directory for  
canopy clustering:

mahout canopy -i clustering_seq -o clustering_canopy -dm org.apache.
mahout.common.distance.EuclideanDistanceMeasure -t1 1.0 -t2 2.0 -xm 
mapreduce -c

The output directory has the following files, which can be displayed in the same 
manner as k-means:

hadoop fs -ls clustering_canopy

/user/ctiwary/clustering_canopy/clusteredPoints
/user/ctiwary/clustering_canopy/clusters-0-final

Fuzzy k-means
Let's check the fuzzy k-means clustering command-line options. We will discuss the 
important and commonly-used parameters:

Parameters Description
--input (-i) Path to input directory
--output (-o) Path to output directory
--output (-o) Path to output directory
--distanceMeasure 
(-dm)

The class name given to the distance measure to be used

--clusters (-c) The input centroid as vectors in sequence format
--numClusters (-k) The number of clusters to be generated
--convergenceDelta 
(-cd)

The convergence delta value

--maxIter (-x) The maximum number of iterations to be performed
--overwrite (-ow) Overwrite the input directory if present
--clustering(-cl) If present, perform clustering after convergence of centroid
--method (-xm) Sequential or MapReduce execution
--m (-m) Coefficient normalization factor, must be greater than 1, 

controls the fuzziness of the clustering
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We use the same processed sequence file as the input directory. Note that we  
pass an additional parameter -m as compared to the k-means, which is created  
by overlapping clusters:

mahout fkmeans -i clustering_seq -c kmeans_init_cluster -o 
clustering_output_fkmeans -dm org.apache.mahout.common.distance.
EuclideanDistanceMeasure -x 10 -k 3 -ow --clustering -m 1.2

The output can be viewed using the ls utility of Hadoop:

hadoop fs -ls clustering_output_fkmeans

/user/ctiwary/clustering_output_fkmeans/_policy
/user/ctiwary/clustering_output_fkmeans/clusteredPoints
/user/ctiwary/clustering_output_fkmeans/clusters-0
/user/ctiwary/clustering_output_fkmeans/clusters-/user/ctiwary/
clustering_output_fkmeans/clusters-/user/ctiwary/clustering_output_
fkmeans/clusters-3-final

The last step is to see the clusters using clusterdump. The output is similar to what 
we discussed with k-means:

mahout clusterdump -i clustering_output_fkmeans/clusters-*-final

SV-4{n=66 c=[18.507, 16.207, 0.884, 6.176, 3.699, 3.584, 6.033, 1.951] 
r=[1.251, 0.537, 0.015, 0.237, 0.163, 1.217, 0.244, 0.216]}
SV-200{n=72 c=[11.884, 13.244, 0.851, 5.224, 2.859, 4.749, 5.101, 2.907] 
r=[0.744, 0.351, 0.022, 0.141, 0.150, 1.344, 0.178, 0.421]}
SV-16{n=70 c=[14.430, 14.352, 0.879, 5.526, 3.253, 2.730, 5.132, 1.113] 
r=[1.063, 0.507, 0.017, 0.211, 0.161, 1.162, 0.287, 0.349]}
14/09/28 15:46:14 INFO clustering.ClusterDumper: Wrote 3 clusters
14/09/28 15:46:14 INFO driver.MahoutDriver: Program took 484 ms (Minutes: 
0.008066666666666666)

Streaming k-means
Let's check the streaming k-means clustering command-line options, we will discuss 
the important and commonly-used parameters:

Parameters Description
--input (-i) Path to input directory
--output (-o) Path to output directory
--output (-o) Path to output directory
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Parameters Description
--distanceMeasure (-dm) The class name given to the distance measure  

to be used
--numClusters (-k) The k in k-means, denotes that approximately 

those many clusters will be created.
--estimatedNumMapClusters 
(-km)

The estimated number of clusters to use for  
the map phase of the job

--maxIter (-x) The maximum number of iterations to  
be performed

--overwrite (-ow) Overwrite the input directory if they are present
--clustering (-cl) If present, perform clustering after convergence 

of the centroid
--method (-xm) Sequential or MapReduce execution

We use the same processed sequence file as the input directory for the streaming of 
the k-means example:

mahout streamingkmeans -i clustering_seq -o clustering_output_
streamkmeans -sc org.apache.mahout.math.neighborhood.FastProjectionSearch 
-dm org.apache.mahout.common.distance.EuclideanDistanceMeasure -k 3 -km 4 
-ow

hadoop fs -ls clustering_output_streamkmeans

/user/ctiwary/clustering_output_streamkmeans/_SUCCESS
/user/ctiwary/clustering_output_streamkmeans/_logs
/user/ctiwary/clustering_output_streamkmeans/part-r-00000

hadoop fs -ls clustering_output_streamkmeans
Key: 0: Value: key = 1, weight = 61.00, vector = {0:18.725892857142846,2:
0.885567857142857,1:16.29571428571429,5:3.5416249999999985,7:1.9821428571
428572,6:6.062232142857143,3:6.208339285714282,4:3.7261250000000006}
Key: 1: Value: key = 2, weight = 74.00, vector = {0:14.594545454545454,2:
0.8789560606060605,1:14.435151515151516,5:2.6875030303030276,7:1.12121212
12121218,6:5.1750757575757556,3:5.550848484848486,4:3.2686818181818182}
Key: 2: Value: key = 0, weight = 75.00, vector = {0:11.844218749999998,2:
0.8507296875000001,1:13.221875000000006,5:4.575562499999999,7:2.906250000
0000004,6:5.0941406250000005,3:5.217984374999997,4:2.853718750000001}
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A Mahout Java example
We will now discuss how to use the clustering algorithm discussed in Java code. 
Open the MahoutClusteringExample.java file from the chapter7.src package.

k-means
Define the distance measure to be used by the k-means clustering algorithm:

DistanceMeasure measure = new EuclideanDistanceMeasure();

We create the Path variable to the input sequence directory created in the 
preprocessing step:

Path inputSeq = newPath("clustering_seq")

The next step is to generate the random initial cluster seeds. We create the output 
directory path, where we save the initial cluster points. The path constructor with 
two arguments creates a folder with the name of the second argument inside the 
directory of the first argument. You could use a separate directory for the initial 
cluster directory too:

Path clusters = newPath(inputSeq, "random-seeds")

The RandomSeedGenerator class has the buildRandom()function for that. It takes  
as input the Configuration object, the input directory with the sequence files,  
the output directory in which the initial clusters are to be created, the number of 
clusters, and the distance measure.

The function returns the Path to the initial centroid directory:

clusters = RandomSeedGenerator.buildRandom(conf, inputSeqDir, clusters, 
3,measure);

We then create the clustering output directory:

Path output = new Path("clustering_output");

We then invoke the run method of the KmeansDriver class, which runs the parallel 
implementation of the k-means clustering algorithm. The output will be in the same 
format as the one from the Mahout command-line example:

KMeansDriver.run(conf, inputSeqDir, clusters, output, 0.2,50, true, 0.0, 
false);
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We could estimate the number of clusters and initial cluster centroids using canopy 
clustering and then pass the same to KMeansDriver:

CanopyDriver.runJob(conf, inputSeqDir, output_canopy,measure,, (float) 
3.1, (float) 2.1, true);

The initial clusters created by the preceding code line is passed to the runJob() 
method of the KmeansDriver class.

KMeansDriver.runJob(conf, inputSeqDir, output_canopy/clusters-0", 
output,measure, "0.001", "10", true);

Note that we don't need to pass the number of clusters when we initialize the initial 
cluster centroids using canopy clustering.

Cluster evaluation
Mahout has some implementations for internal cluster evaluation. We will briefly 
discuss that.

The cluster evaluation requires passing a distance measure. We create the 
DistanceMeasure object as follows:

DistanceMeasure measure = new EuclideanDistanceMeasure();
We run the RepresentativePointsDriver run method which setsup the 
ClusterEvaluator object properties.
RepresentativePointsDriver.run(conf, new Path("clustering_output_fkmeans/
clusters-3-final"),
new Path("clustering_output", "clusteredPoints"), new Path("clustering_
output_fkmeans"),
measure,
10, true);

We create the ClusterEvaluator object and pass the Configuration object and 
path to the cluster output directory:

ClusterEvaluator cv = new ClusterEvaluator(conf,new Path("clustering_
output/clusters-3-final"));

We invoke the respective functions to calculate the inter-cluster and intra cluster 
density of the clusters:

System.out.println(cv.interClusterDensity());
System.out.println(cv.intraClusterDensity());

We can calculate the evaluation metrics for other clustering algorithms too.
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Summary
In this chapter, we discussed different clustering algorithms in Mahout.  
We discussed the concept of k-means to better understand the clustering process,  
looked at command-line examples of various clustering algorithms, and finally 
discussed implementing k-means using Mahout Java API. I would encourage you  
to experiment with the different datasets and different settings/configurations of 
each algorithm to get a deeper understanding of the usage of clustering algorithms.

In the next chapter, we are going to discuss Mahout on top of Apache Spark.  
Mahout is being ported to Spark in Mahout 1.0, so carefully read this next chapter.  
It will help you get started with Mahout 1.0 when it is released.
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New Paradigm in Mahout
Mahout started out primarily as a Java MapReduce package to run distributed and 
scalable machine learning algorithms on top of Hadoop. As the Mahout Project 
matures, it has taken a decision to move out of MapReduce and embrace Apache 
Spark and other distributed processing frameworks, such as H20, with a focus on 
write once and run on multiple platforms. In this chapter, we are going to discuss:

• Limitations of MapReduce
• Apache Spark
• In-core binding
• Out-of-core binding

MapReduce and HDFS were two paradigms largely responsible for a quantum shift 
in data processing capability. With increased capabilities, we learned to imagine 
larger problems that kick started a whole new industry of Big Data Analytics. The 
last decade has been amazing for solving data-related problems. However, in recent 
times, a lot of effort has been put into developing processing paradigms beyond 
MapReduce. These efforts are either aimed at replacing MapReduce or augmenting 
the processing framework. The examples are Impala, Drill, Spark, and so on.

Moving beyond MapReduce
Let's discuss why we need to move beyond MapReduce. Based on the scenario and use 
case, there are many advantages and limitations of MapReduce. In this section, we will 
concern ourselves with the limitations that impact machine learning use cases.

Firstly, MapReduce is not feasible when the intermediate processes need to talk to 
each other. A lot of machine learning algorithms need to work based on a shared 
global state, which is difficult to implement with MapReduce.
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Secondly, quite a few problems are difficult to break down into map and reduce 
phases. Mahout is porting to Apache Spark, which works on top of HDFS and 
provides a processing paradigm other than MapReduce.

Apache Spark
Spark was developed as a general-purpose engine for large-scale data processing.  
It recently released its 1.0 version. Spark has two important features.

The first feature that Spark has is a resilient distributed dataset (RDD). This is a 
collection of elements partitioned across the nodes of a cluster, which can be operated 
on in parallel. A file on HDFS or any existing Scala collection can be converted to an 
RDD collection, and any operation on it can be executed in parallel. RDDs can also be 
requested to persist in memory, which leads to efficient parallel operations. RDDs have 
automatic fail-over support and can recover from node failures.

The second important feature of Spark is the concept of shared variables that can 
be used in any parallel operations. Spark supports two types of shared variables: 
broadcast variables and accumulators. Broadcast variables can be used to cache a value 
in memory on all the nodes, whereas accumulators are variables that can only be 
added up; for example, variables such as counters, sums, and so on. When Spark 
runs a function in parallel as a set of tasks on the different nodes of a cluster, the 
shared variables are made available across the nodes for each task of that function.

Configuring Spark with Mahout
Download Spark somewhere in your home drive using the following command:

wget http://d3kbcqa49mib13.cloudfront.net/spark-0.9.1.tgz

Make sure you get the same version of Spark with which the current development 
version of Mahout was compiled. The trunk I checked out was compiled using Spark 
0.9.1. This is required, as this feature is not yet released, and Mahout trunk and Spark 
versions will keep changing till it is released. To check for the latest versions of Spark 
and Mahout trunk, please visit https://github.com/apache/mahout.

Copy the downloaded folder to /usr/local and unpack using tar. After unpacking, 
change to the Spark directory where you unpacked and type the following 
command to build it:

sbt/sbt assembly

https://github.com/apache/mahout
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Check out the latest Mahout trunk using subversion (svn). svn is an open source 
version control system. It helps you keep track of a collection of files and folders:

svn co https://svn.apache.org/repos/asf/mahout/trunk/ mahout-spark

Run the following commands:

cd mahout-spark
mvn clean
mvn compile
mvn install

The next step is to go back to the Spark directory and type the following command 
to start Spark:

sbin/start-all.sh

After Spark has started, open the URL http://localhost:8080 to check the Spark 
cluster details.

Copy the URL field from the webpage. To stop Spark later on, we can use the 
following command:

sbin/stop-all.sh
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Move back to the Mahout directory. We need to export the following variables for the 
Mahout shell to work:

export MAHOUT_HOME=[ Path to Mahout Directory]
export SPARK_HOME=[Path to the Spark Directory]
export MASTER=[url of the Spark master]

In my case, the values for the environment variables are:

export MAHOUT_HOME=<your path here>/mahout-spark
export SPARK_HOME=<your path here>/spark
export MASTER=spark://<your username>:7077

If you are following the instructions as per the book, then the natural place would be 
usr/local.

After the variables have been exported, we will start the Mahout shell:

bin/mahout spark-shell

To exit from the shell, we can type the following command on Mahout shell:

exit()

Basics of Mahout Scala DSL
Mahout and Spark are being developed to abstract away the details of programming 
a distributed system. We don't have to worry about the intricacies of parallel 
programming, and we can concentrate on solving the machine learning task at hand.

Mahout Scala and Spark Bindings are aimed at providing an R-like feel to the 
Mahout shell. If you are familiar with R, you will be aware of its ease while working 
with linear algebra. One can basically type in the formula and see the execution. 
Right now, Mahout and Spark binding supports three major types: distributed row 
matrices (DRM), in-core vectors, and in-core matrices.

Let's start with practicing some command-line examples. Remember to go back to 
the Spark directory and run the start-all.sh script. Then, go back to the Mahout 
directory, export all the required environment variables, and run the command to 
get the shell.
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Imports
The following two Scala imports are typically used to enable Mahout Scala DSL 
bindings for linear algebra. We can type them directly to the command line:

import org.apache.mahout.math._
import scalabindings._
//To use R like dialect use
import RlikeOps._

Another option is to use the matlab-like dialect by typing:

import MatlabLikeOps._

In this chapter, we are going to restrict ourselves to the R-like dialect.

In-core types
Vector and Matrices are of type in-core or in-memory. We will try out some basic 
commands to get a feel of the linear algebra operations possible.

Vector
We will first discuss vectors and then cover matrices. We will see some examples of 
operations that can be performed on vectors.

Initializing a vector inline
Dense vector: The dense vector is a vector with relatively fewer zero elements.  
On the Mahout command line, please type the following command to initialize  
a dense vector:

mahout>val denseVec1: Vector = (1.0, 1.1, 1.2)

Each element is prefixed by its index, which starts with 0. The output of the 
command executed is given as follows:

denseVec1: org.apache.mahout.math.Vector = {0:1.0,1:1.1,2:1.2}

Sparse vector: Sparse vector is a vector with a relatively large number of zero 
elements. On the Mahout command line, please type the following command to 
initialize a sparse vector:

mahout>val sparseVec = svec((5 -> 1) :: (10 -> 2.0) :: Nil)
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The output of the command executed is given in the following command line.  
As we can see it creates RandomAcessSparseVector:

sparseVec:org.apache.mahout.math.RandomAccessSparseVector = 
{10:2.0,5:1.0}

Accessing elements of a vector
Vectors are accessed using the index number. For example, to access the third 
element, we will use the index 2 as the index starts with zero. Type the following 
command on the Mahout command line:

mahout>denseVec1(2)

The result is the value of element 3 with the corresponding data type:

res13: Double = 1.2

Setting values of an element
Again, we can use the index to set the value of a particular element of a vector.  
Let's set the third element to the value 2:

mahout> denseVec1(2)=2
mahout> denseVec1
res18: org.apache.mahout.math.Vector = {0:1.0,1:1.1,2:2.0}

Vector arithmetic
In this section, we will discuss some common vector arithmetic operations such as 
addition, division, and multiplication. For example, let's create a new dense vector 
with the denseVec2 name. Input the following command on the Mahout command 
line, which will initialize the vector:

mahout> val denseVec2: Vector = (1.0, 1.1, 5.5)

The result is the following dense vector:

denseVec2: org.apache.mahout.math.Vector = {0:1.0,1:1.1,2:5.5}

This is the multiplication of two vectors:

mahout> val multilpy_vec=denseVec1*denseVec2
multilpy_vec: org.apache.mahout.math.Vector = {0:1.0,1:1.2100000000000002
,2:6.6}
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This is the division of two vectors:

mahout> val divide_vec=denseVec1/denseVec2
divide_vec: org.apache.mahout.math.Vector = {0:1.0,1:1.0,2:0.218181818181
81817}

This is the addition of two vectors:

mahout> val add_vec=denseVec1+denseVec2
add_vec: org.apache.mahout.math.Vector = {0:2.0,1:2.2,2:6.7}

This is the subtraction of two vectors:

mahout> val sub_vec=denseVec1-denseVec2
sub_vec: org.apache.mahout.math.Vector = {2:-4.3}

Vector operations with a scalar
In the previous section, we discussed arithmetic operations on a vector. Now, we will 
see the results of scalar operations on a vector.

The result of adding a scalar to a vector is that all elements are incremented by the 
value of the scalar. For example, the following command adds five to all the elements 
of the vector:

mahout> val add_scalr=denseVec1+5
add_scalr: org.apache.mahout.math.Vector = {0:6.0,1:6.1,2:6.2}

Similar to the preceding command, this operation subtracts five from each of the 
element in the vector:

mahout> val sub_scalr=denseVec1-5
sub_scalr: org.apache.mahout.math.Vector = {0:-4.0,1:-3.9,2:-3.8}

The following scalar operation multiplies all the elements by five:

mahout> val mul_scalr=denseVec1*5
mul_scalr: org.apache.mahout.math.Vector = {0:5.0,1:5.5,2:6.0}

Lastly, division by a scalar divides all the elements by five:

mahout> val div_scalr=denseVec1/5
div_scalr: org.apache.mahout.math.Vector = {0:0.2,1:0.22000000000000003,2
:0.24}
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Matrix
We will now have a look at a matrix and the operations that can be performed on it.

Initializing the matrix
The inline initialization of a matrix, either dense or sparse, is always  
performed row-wise.

• Dense matrix:
mahout> val A = dense((1, 2, 3), (3, 4, 5))
A: org.apache.mahout.math.DenseMatrix =
{
  0  =>..{0:1.0,1:2.0,2:3.0}
  1  =>..{0:3.0,1:4.0,2:5.0}
}

• Sparse matrix:
val A = sparse(
(1, 3) :: Nil,
(0, 2) :: (1, 2.5) :: Nil
)

• Diagonal matrix:
mahout> val x=diag(10, 3)
x: org.apache.mahout.math.DiagonalMatrix =
{
  0  =>..{0:10.0}
  1  =>..{1:10.0}
  2  =>..{2:10.0}
}

• Identity matrix:
mahout> val x = eye(5)
x: org.apache.mahout.math.DiagonalMatrix =
{
  0  =>..{0:1.0}
  1  =>..{1:1.0}
  2  =>..{2:1.0}
  3  =>..{3:1.0}
  4  =>..{4:1.0}
}
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Accessing elements of a matrix
We will create a matrix called matrix_example, and then slice and dice it:

mahout> val matrix_example = dense((1, 2, 3), (3, 4, 5))

matrix_example: org.apache.mahout.math.DenseMatrix =

{

  0  =>  {0:1.0,1:2.0,2:3.0}

  1  =>  {0:3.0,1:4.0,2:5.0}

}

Accessing the second element of the second row:

mahout> matrix_example(1,1)

res35: Double = 4.0

Accessing the first element of the first row:

mahout> matrix_example(0,0)

res36: Double = 1.0

Fetching a complete row, in this case the second row:

mahout> val rowVec=matrix_example(1,::)

rowVec: org.apache.mahout.math.Vector = {0:3.0,1:4.0,2:5.0}

Fetching a complete row, in this case the first row:

mahout> val rowVec=matrix_example(0,::)

rowVec: org.apache.mahout.math.Vector = {0:1.0,1:2.0,2:3.0}

Fetching a complete column, in this case the first column:

mahout> val rowVec=matrix_example(::,0)

rowVec: org.apache.mahout.math.Vector = {0:1.0,1:3.0}

Fetching the second column:

mahout> val rowVec=matrix_example(::,1)

rowVec: org.apache.mahout.math.Vector = {0:2.0,1:4.0}

Setting the matrix row, in this case the first row:

mahout> matrix_example(1,::)=(10,9,6)
res45: org.apache.mahout.math.Vector = {0:10.0,1:9.0,2:6.0}
mahout> matrix_example
res46: org.apache.mahout.math.DenseMatrix =
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{
  0  =>  {0:1.0,1:9.0,2:3.0}
  1  =>  {0:10.0,1:9.0,2:6.0}
}

Fetching the sub-slices of a row, row 1 first two elements:

mahout> matrix_example(0,0 to 1)=(44,55)
res49: org.apache.mahout.math.Vector = {0:44.0,1:55.0}

Fetching the sub-slices of a row, row 2 second and third elements:

mahout> matrix_example(1,1 to 2)=(44,55)
res50: org.apache.mahout.math.Vector = {0:44.0,1:55.0}

Setting the matrix column
We will discuss the column operations on a matrix. Let's see how to set the value of 
an entire column of a matrix. Let's set the values of column 2. As indexing starts from 
0, we access column 2 by index:

mahout> matrix_example(::,1)=(9,6)
res43: org.apache.mahout.math.Vector = {0:9.0,1:6.0}

To fetch the number of rows of a matrix, we need to access the nrow property:

mahout> matrix_example.nrow
res52: Int = 2

Similarly, to fetch the number of columns of a matrix, we access the ncol property:

mahout> matrix_example.ncol
res57: Int = 3

To fetch the sum of all columns, we use colSums:

mahout> matrix_example.colSums
res58: org.apache.mahout.math.Vector = {0:54.0,1:99.0,2:58.0}

Lastly, to fetch the sum of rows, we use rowSums:

mahout> matrix_example.rowSums
res59: org.apache.mahout.math.Vector = {0:102.0,1:109.0}
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Copy by reference
Matrices are assigned by reference and not as a copy, hence we need to take care of 
the pitfalls associated with it. Here's an example of the same:

mahout> val ex1 = matrix_example
ex1: org.apache.mahout.math.DenseMatrix =
{
  0  =>..{0:1.0,1:2.0,2:3.0}
  1  =>..{0:3.0,1:4.0,2:5.0}
}
mahout> ex1 +=5.0
res5: org.apache.mahout.math.Matrix =
{
  0  =>..{0:6.0,1:7.0,2:8.0}
  1  =>..{0:8.0,1:9.0,2:10.0}
}
mahout> ex1
res6: org.apache.mahout.math.DenseMatrix =
{
  0  =>..{0:6.0,1:7.0,2:8.0}
  1  =>..{0:8.0,1:9.0,2:10.0}
}
mahout> matrix_example
res7: org.apache.mahout.math.DenseMatrix =
{
  0  =>..{0:6.0,1:7.0,2:8.0}
  1  =>..{0:8.0,1:9.0,2:10.0}
}

We saw that the original matrix_example matrix also got modified when we 
modified the matrix ex1, which was a copy of the original matrix matrix_example.  
To address this behavior, we can use clones. To keep the previous matrix value 
intact, we can use the clone command:

mahout> val ex1 = matrix_example clone
warning: there were 1 feature warning(s); re-run with -feature for 
details
ex1: org.apache.mahout.math.Matrix =
{
  0  =>  {0:6.0,1:7.0,2:8.0}
  1  =>  {0:8.0,1:9.0,2:10.0}
}
mahout> ex1 +=5.0
res8: org.apache.mahout.math.Matrix =
{
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  0  =>  {0:11.0,1:12.0,2:13.0}
  1  =>  {0:13.0,1:14.0,2:15.0}
}
mahout> matrix_example
res9: org.apache.mahout.math.DenseMatrix =
{
  0  =>  {0:6.0,1:7.0,2:8.0}
  1  =>  {0:8.0,1:9.0,2:10.0}
}

Spark Mahout basics
We will now focus on Mahout Spark's DRM. DRM, once loaded into Spark, is 
partitioned by rows of the DRM.

Initializing the Spark context
Many operations on the DRM will require a Spark context. To initialize Mahout with 
the Spark session, we create the implicit variable mahoutCtx as the Spark context:

implicit val mahoutCtx = mahoutSparkContext(
masterUrl = "spark://ctiwary-gsu-hyd:7077",
appName = "MahoutLocalContext"
)
We will import some import
// Import matrix, vector types, etc.
import org.apache.mahout.math._
// Import scala bindings operations
import scalabindings._
// Enable R-like dialect in scala bindings
import RLikeOps._
// Import distributed matrix apis
import drm._
// Import R-like distributed dialect
import RLikeDrmOps._
// Those are needed for Spark-specific
// operations such as context creation.
// 100% engine-agnostic code does not
// require these.
import org.apache.mahout.sparkbindings._
// A good idea when working with mixed
// scala/java iterators and collections
import collection._
import JavaConversions._
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The MahoutLocalContext application UI can be accessed on  
http://localhost:4041/.

Now, we need to create an in-core matrix with the in_core_matrix name  
and a distributed matrix called parallel_matrix. The following command  
will initialize the respective matrices:

val in_core_matrix = dense((1, 2, 3), (3, 4, 5))
val parallel_matrix = drmParallelize(in_core_matrix)

mahout> val parallel_matrix = drmParallelize(in_core_matrix)
parallel_matrix: org.apache.mahout.math.drm.CheckpointedDrm[Int] = org.
apache.mahout.sparkbindings.drm.CheckpointedDrmSpark@2f43cbcc

parallel_matrix.writeDRM(path="testSparkWrite")

check hadoop fs -ls testSparkWrite

val testRead = drmFromHDFS(path = "testSparkWrite")

Mahout Spark binding has two types of actions, optimizer actions and  
computational actions.

Optimizer actions
Optimizer actions, when performed on a DRM operation, don't trigger the actual 
computation but they materialize the physical plan of execution. Optimizer actions 
are backed by CheckpointedDRM, which acts as a cutoff boundary for the optimizer 
actions. Optimizer actions can be triggered explicitly by DRMLike#checkpoint().

Let's try to understand with the help of the following two examples:

val A = drmParallelize (...)
val B = drmParallelize (...)
val C = A %*% B.t
val D = C.t
val E = C.t %*% C
D.writeDRM(..path..)
E.writeDRM(..path..)
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In this example, the optimizer optimizes two pipelines separately, the one calculating 
D and the other calculating E using the same matrices A and B as root of both 
computations. Now, let's consider the following modified example:

val A = drmParallelize (...)
val B = drmParallelize (...)
val C = (A %*% B.t).checkpoint
val D = C.t
val E = C.t %*% C
D.writeDRM(..path..)
E.writeDRM(..path..)

In this example (which is functionally equivalent to the previous one), the  
optimizer considers three separate pipelines of execution: C, D, and E while  
caching the optimized plan and intermediate result for C into the Spark cache. 
Introducing checkpoints may improve wall time since matrices D and E will be 
triggered for action.

In both of the examples, nothing happens in the backend until a computational 
action is triggered for either of E or D.

It doesn't matter how many times checkpointing is called on a logical operator,  
the same logical operator will be optimized and set for caching policy only once.

Computational actions
Computational actions lead to results being computed and optionally placed into 
the Spark cache. Such actions will also lazily and implicitly trigger linalg optimizer 
checkpointing. Currently, computational actions include writeDrm(), collect(), 
blockify(). They can sometimes also be triggered implicitly by an optimizer 
activity beyond the current checkpoint's cutoff (if checkpointed but not computed 
and cached yet) to run some cost estimates necessary for the optimizer beyond 
checkpointing, potentially future actions associated with DRM sub-blocking.

For instance, in the second example, running E.writeDrm(path) will trigger 
computational actions for E and, implicitly, for C.

All these rules follow the same patterns as for the in-core arguments.
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Caching in Spark's block manager
Every checkpoint can be, and by default, is, pushed into Spark's memory block 
manager. The default policy is MEMORY_ONLY, but the storage level can be specified 
explicitly as a parameter to the checkpoint() call. The actual push of data to the 
memory block manager happens no sooner than an actual partition computation 
occurs for the first time (that is, at the first occurrence of a computational action of 
the pipeline involving the result in question). Five Checkpointed DRMs may later  
be explicitly uncached from block manager (asynchronously) if desired, for example:

val drmA = (/*..drm expression..*/).checkpoint(CacheHint.MEMORY_AND_DISK)
... some computational actions involving drmA
... drmA is not needed anymore
drmA.uncache()

If the argument is not cached by the time the uncache() call has occurred, nothing of 
substance happens.

Linear regression with Mahout Spark
We will discuss the linear regression example mentioned on the Mahout Wiki.  
Let's first create the training data in the form of a parallel DRM:

val drmData = drmParallelize(dense(
  (2, 2, 10.5, 10, 29.509541),  // Apple Cinnamon Cheerios
  (1, 2, 12,   12, 18.042851),  // Cap'n'Crunch
  (1, 1, 12,   13, 22.736446),  // Cocoa Puffs
  (2, 1, 11,   13, 32.207582),  // Froot Loops
  (1, 2, 12,   11, 21.871292),  // Honey Graham Ohs
  (2, 1, 16,   8,  36.187559),  // Wheaties Honey Gold
  (6, 2, 17,   1,  50.764999),  // Cheerios
  (3, 2, 13,   7,  40.400208),  // Clusters
  (3, 3, 13,   4,  45.811716)), // Great Grains Pecan
  numPartitions = 2);

The first four columns will be our feature vector and the last column will be our 
target variable. We will separate out the feature matrix and the target vector, drmX 
being the feature matrix and y being the target vector:

val drmX = drmData(::, 0 until 4)

The target variable is collected into the memory using the collect method:

val y = drmData.collect(::, 4)
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The next step is to introduce the bias column to the feature matrix; we will define a 
Scala function to do the same:

val drmXwithBiasColumn = drmX.mapBlock(ncol = drmX.ncol + 1) {
  case(keys, block) =>
    // create a new block with an additional column
    val blockWithBiasColumn = block.like(block.nrow, block.ncol + 1)
    // copy data from current block into the new block
    blockWithBiasColumn(::, 0 until block.ncol) := block
    // last column consists of ones
    blockWithBiasColumn(::, block.ncol) := 1

    keys -> blockWithBiasColumn
}

Now, to estimate the value of parameter vector β, we will use the approach of 
ordinary least square (OLS). OLS minimizes the sum of residual squares between 
the actual target value and the predicted value. We have a closed-form expression  
for estimating β as ( ) 1T TX X X Y

−
.

We compute ( )TX X  first using the following statement:

val drmXtX = (drmX.t %*% drmX).collect

The .t() function returns the transpose and %*% is the multiplication symbol.

Similarly, we compute TX Y :

val drmXty = (drmX.t %*% y).collect(::, 0)

Then, we call the solve() function to return the value of β. We represent the same in 
the form of a function:

def ols(drmX: DrmLike[Int], y: Vector) = {
  val XtX = (drmX.t %*% drmX).collect
  val Xty = (drmX.t %*% y).collect(::, 0)
  solve(XtX, Xty)
}

To determine the goodness of fit, we will use the following function:

def goodnessOfFit(drmX: DrmLike[Int], beta: Vector, y: Vector) = {
  val fittedY = (drmX %*% beta).collect(::, 0)
  (y - fittedY).norm(2)
}
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We will call the function using the following commands:

val betaWithBiasTerm = ols(drmXwithBiasColumn, y)
goodnessOfFit(drmXwithBiasColumn, betaWithBiasTerm, y)

Summary
We briefly discussed Mahout and Spark bindings. This is the future of Mahout, though 
a production-ready release is some time away. We learned the basic operations that 
can be performed on the various data structures and went through an example of 
applying these techniques to build a machine learning algorithm. I would encourage 
you to keep yourself updated on the development of Mahout and Spark bindings, and 
the best way would be to follow the Mahout Wiki.

In the next chapter, we will discuss end-to-end practical use cases of customer 
analytics. Most of the techniques used so far will be put into practice, and you  
will get an idea of a real-life analytics project.
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Case Study – Churn Analytics 
and Customer Segmentation

In this chapter, we are going to discuss the steps involved in a machine learning project 
from start to finish. We will cover all the important steps that need to be performed for 
a successful machine learning project. We will use a couple of examples from customer 
analytics to walk through the process. The topics covered in this chapter are:

• Churn analytics
• Customer segmentation

Churn analytics
Until now, in this book, we have discussed multiple important machine learning 
concepts and algorithms and their implementation/usage in Mahout. We also saw 
multiple examples of using machine learning algorithms with Mahout. We are now 
going to focus on end-to-end case studies, keeping a  specific business problem in 
mind. This chapter and the next will help you put the pieces together and get an 
overview of a complete analytics project. We will first look at churn prediction.

The goal of churn analytics is to understand the primary drivers to churn and predict 
churn. Churn can have a very specific meaning depending upon the industry or even 
the organization we are talking about, but in general it is related to the extension of 
the contract between a service provider and a subscriber. The contract is valid until 
the service term period, and then is up for renewal at the end of the contract term 
period. For example, postpaid telecom subscribers renew their contract with the 
telecom provider every month. If they choose to, they can end the relationship any 
month by terminating the contract at the end of that month.
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In this case, the subscription term is monthly and the termination of the contract will 
be considered as churning. It is of paramount importance for a telecom provider to be 
able to identify a subscriber at risk of churning so that they can be retained. Retention 
could be in terms of outbound calls to solve any issues the subscriber is facing, an  
offer or discount, a special plan, and so on. But to do any of this, we need to know 
whether the subscriber is going to churn and that too a few months in advance so  
that the retention process has enough time. So, there are two components to a churn 
model, a prediction about a subscriber churning and, the time period within which  
the subscriber will churn.

To predict churn, say n month before it happens, we need to build the model on 
signals that it is n month before the churn date. Typically, most recent n months of 
data have to be ignored from the churn date for the churned account and n months, 
from the maximum date for active accounts. For example, let's check the following 
data. Let's assume that the maximum date until which data is to be considered is 
2014-12-31 and the minimum date is 2012-01-01. We have a total of three years of 
historical data. We will discuss the account inclusion criteria for churn analytics 
based upon sample data in the following table:

Account Status Signup date Churn date
A Churned 2014-06-30 2014-11-30
B Churned 2013-01-01 2014-08-31
C Churned 2012-02-20

Account A and B are churned and C is active. Also let's assume that the data under 
consideration is six months. We are going to only include accounts with six months' 
worth of data. Prediction needs to be made three months in advance. We will ignore 
three months of data from the churn date for churned accounts and three months of 
data from the maximum date for active accounts.

For account A, data needs to be considered from 2014-11-90 - 90 days = 2014-09-01 
and for account B 2014-08-31 - 90 days = 2014-06-02. Similarly, for active account 
C we subtract 90 days from the maximum date, 2014-12-31 - 90 days = 2014-10-02. 
Now the next step is to ensure that all accounts have at least six months of data after 
ignoring three months. To calculate this, we need to subtract the considered date, for 
example 2014-09-01 for Account A from either the signup date or the earliest usage 
date, whichever is the most recent. In our sample data, all the signup dates are more 
recent than the minimum date, so we will use the signup date column. We calculate 
the number of days of usable data by subtracting the cut-off date from the signup  
date as follows:

• A → 2014-09-01 - 2014-06-30 = 64 days
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• B → 2014-06-02 - 2013-01-01 = 518 days
• C → 2014-10-02 - 2012-02-02 = 974 days

We have to drop account A as it only has 64 days of usable data and we need a 
minimum of 180 days of data. For accounts B and C, we are going to use six months 
of data. Data to be considered is as follows:

• A → 2014-06-02 – 180 days = 2013-12-04, between 2014-06-02 and 2013-12-04
• B → 2014-10-02 – 180 days = 2014-04-05, between 2014-10-02 and 2014-04-05

Now we have decided which accounts are to be included and the time period within 
which the data has to be considered for each account. Feature engineering needs to be 
done on this selected dataset. An account inclusion criteria and time period for data to 
be considered is very important for churn analytics and should be done carefully.

Survival analysis is another popular approach for modeling churn but we will not go 
into that much.

Getting the data
To start with our case study, we first need to get the data. We will look at a dataset  
that contains information about the subscriber from the telecom domain and their 
status information.

The data can be downloaded from http://www.sgi.com/tech/mlc/db/ or found in 
the code base directory that comes with the book. We need to download the churn.
all, churn.data, churn.names, and churn.test files. The churn.all file has 5000 
rows and 21 columns. The churn.data and churn.test files are different samples 
from the same churn.all file and could be used for training and testing the model. 
The churn.names file has the names of all the columns in the data files. Let's see the 
preprocessing step for the downloaded file churn.data; the file churn.all present 
in the directory learningApacheMahout/data/chapter9 is already preprocessed.

The first step is to remove the white spaces from the file. To do this, we use the sed 
command, which takes \s, representing white spaces, as the search pattern and a 
blank as the replacement:

sed -i 's/\s//g' churn.all

The second step is to replace False. with False and True. with True:

sed -i 's/False./False/g' churn.all
sed -i 's/True./True/g' churn.all

http://www.sgi.com/tech/mlc/db/
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Finally, we add the header line. The sed command matches the start of the first line 
and replaces it with the header information:

sed -i '1s/^/state,account length,area code,phone number,international 
plan,voice mail plan,number vmail messages,total day minutes,total 
day calls,total day charge,total eve minutes,total eve calls,total eve 
charge,total night minutes,total night calls,total night charge,total 
intl minutes,total intl calls,total intl charge,number customer service 
calls,Status\n/' churn.all

In this dataset, the target variable is the last column, Status, which stores the 
information about whether a user churned or not. True stands for churn customers and 
False for active. We have a total of 4293 active and 707 churn customers in the dataset.

Let's have a look at the column definition; this is a good starting point to understand 
a dataset:

Column Data Type
State Discrete 
account length Continuous
area code Continuous
phone number Discrete
international plan Discrete
voice mail plan Discrete
number v-mail messages Continuous
total day minutes Continuous
total day calls Continuous
total day charge Continuous
total eve minutes Continuous
total eve calls Continuous
total eve charge Continuous
total night minutes Continuous
total night calls Continuous
total night charge Continuous
total intl minutes Continuous
total intl calls Continuous
total intl charge Continuous
number customer service calls Continuous
Status Discrete
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The dataset, as seen in this table, has various telecom service usage metrics from 
rows eight to 19. They cover attributes such as total number of calls, total charge,  
and total minutes used by different slices of the data. The slices include time,  
day or night, and usage type such as international call. Row 20 has the number  
of customer service calls made and row 21 is the status of the subscriber, which  
is our target variable.

This dataset doesn't provide any scope for account exclusion or selecting the 
time period, as the information is not available. We assume that data for all the 
subscribers has been collected for the same time duration; being in the same time 
period is desirable but not necessary. What is meant is that for all subscribers the 
data is collected for the same n months irrespective of the time period. Having data 
collected over the same duration leads to an apple-to-apple comparison. This is a 
compulsory precondition, as without this it would be difficult to combine all the 
subscribers into one feature set.

Data exploration
Data exploration is a very important part of any analytics project and quite a bit of 
effort goes into it. Primarily, the objective of exploration is to get a good idea about 
how the data looks, preprocess data to remove outliers, and get cues towards feature 
engineering. We are going to use R for our data exploration. The other tools that can 
be used are SAS, Excel, Python, and so on.

Installing R
Open the file /etc/apt/sources.list in a text editor and add the following line of 
code to the file. For a different Ubuntu version, the final argument would be different 
depending on the OS version:

deb http://cran.rstudio.com/bin/linux/ubuntu precise/

To install the complete R system, type the following command on the terminal:

sudo apt-get update
sudo apt-get install r-base

Type R on the terminal, which will start the R prompt.

To read the csv into a data frame, please execute the following command on the  
R prompt:

churn_data<-read.csv("churn.all",header=T)
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The read.csv method takes the file name as the first argument. The second argument, 
set as True, treats the first line as the header line.

Type the following command to view the data frame created:

View(churn_data)

Summary statistics
As a first step, we will look at the summary statistics of the data. The summary 
statistics include looking at the min, max, median, median, the 1st and 3rd quartile  
of continuous variables, and the frequency count of categorical variables. It gives  
us a summarized understanding of the data, its centrality, and spread. We will 
contrast the overall summary statistics with the summary of only churn and only 
active subscribers.

To get the summary of all the data, type the following command:

summary_all<-summary(churn_data)

To get the summary of all churned customers, we call the summary function with, 
data of all churned customers. The subset function filters data based on the 
condition Status==True:

summary_churn<-summary(subset(churn_data,Status=='TRUE'))

To get the summary of all active customers, we call the summary function with data 
of all active customers. The subset function filters data based upon the condition 
Status=='False':

summary_active<-summary(subset(churn_data,Status=='FALSE'))

To combine all the data frames into one file, we call the function rbind() on the 
three data frames and write to a csv file:

write.csv(rbind(summary_all,summary_churn,summary_active),file="summary_
file.csv")

The pattern to observe while looking at the summary file is to observe substantial 
difference between the summaries of churn and active customers, especially the 
mean, median, and the 1st and 3rd quartile. For example, let's look at the summary 
statistics of the feature Total day calls in the following table. The feature doesn't seem 
to have any distinguishing difference on its own:

Total day calls
All subscribers Churn subscribers Active subscribers
1st Qu.: 87 1st Qu.: 88.0 1st Qu.: 87.0
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Median :100 Median :101.0 Median: 100.0
Mean: 100 Mean: 100.8 Mean: 99.9
3rd Qu.:113 3rd Qu.:115.0 3rd Qu.:113.0

On the other hand, the feature number of v-mail messages does have distinguishing 
summary statistics. We can see that the churn customer has significantly lower v-mail 
messages. Now, that could be because of a lower number of v-mail subscriptions  
for the churn customer. We can see the summary statistics of v-mail messages in  
the following table:

Number of v-mail messages
All 
subscribers Churn subscribers Active subscribers
1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
Median: 0.000 Median: 0.000 Median: 0.000
Mean: 7.755 Mean: 4.496 Mean: 8.292
3rd Qu.: 17.000 3rd Qu.: 0.000 3rd Qu.: 20.000

Exploring the datasets helps us to understand patterns and validate the results  
after modelling.

Correlation
It is a good practice to remove the strongly correlated variables from the feature set; 
both strong positively and strong negatively correlated features need to be removed. 
We will check the correlation between numerical variables. Using R, we will first 
remove the non-numeric variables:

cor_data<-churn_data
cor_data$Status<-NULL
cor_data$voice.mail.plan<-NULL
cor_data$international.plan <-NULL
cor_data$phone.number<-NULL
cor_data$state<-NULL

We will then calculate the correlation, which returns a correlation matrix:

correlation_all<-cor(cor_data)
write.csv(correlation_all,file="correlation_file.csv")
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Looking at correlation_file.csv, we can see that four pairs of columns are 
heavily correlated and we should remove them:

churn_data$total.day.charge<-NULL
churn_data$total.eve.charge<-NULL
churn_data$total.night.charge<-NULL
churn_data$total.intl.charge<-NULL

We will remove the features phone number and state.

churn_data$state<-NULL
churn_data$phone.number<-NULL
write.csv(churn_data,file="churn_data_clean.all.csv",row.names = F)

We need to remove these columns from all the files.

Another way of removing correlation is to perform dimensionality reduction such as 
PCA. This is the preferred approach if the dimensionality of the dataset is very high.

Feature engineering
Looking at the dataset, the scope of feature engineering looks a bit limited. The 
dimensionality is low and we don't have missing values. There is some scope for 
manual feature construction though, and we can use that to introduce some domain 
knowledge. The numeric features that we have measure how many calls a user 
makes, the frequency of the usage and the total time spent talking, the volume of the 
usage. The features like total day calls and total eve calls measure frequency of usage 
whereas features such as total day minutes and total eve minutes measure volume of 
usage. Another interesting feature to look at would be the average minutes per call. 
We can measure the average by dividing the total minutes by total calls, for example, 
the feature average minutes per day call = total day minutes / total day calls and similarly, 
average minutes per eve call = total eve minutes/ total eve calls.

Always spend some time figuring out ways to enrich the feature 
representation by using the manual feature construction. This step 
is mostly guided by data exploration and domain knowledge. If you 
don't have knowledge about a particular domain, reading about it and 
talking to business users will definitely lead to additional insights.

To calculate the average in R, we need to execute the following commands:

churn_data$avg.minute.day<-churn_data$total.day.minutes/churn_data$total.
day.calls

churn_data$avg.minute.eve<-churn_data$total.eve.minutes/churn_data$total.
eve.calls
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churn_data$avg.minute.night<-churn_data$total.night.minutes/churn_
data$total.night.calls

churn_data$avg.minute.intl<-churn_data$total.intl.minutes/churn_
data$total.intl.calls

We get four additional features by calculating the averages. This amounts to the 
inclusion of domain specific knowledge, which is that average usage per call could 
be a good feature.

We will now split the file into train and test set. The split will be 75 percent train and 
25 percent test samples. We first create the smp_size variable, which is 75 percent of 
the number of rows in churn_data:

smp_size <- floor(0.75 * nrow(churn_data))

We next set the seed to make the partition reproducible. Each iteration will have the 
same split of data:

set.seed(123)

Then we sample 75 percent of the rows for training:

train_ind <- sample(seq_len(nrow(churn_data)), size = smp_size)

We create the train set using the sampled rows:

train <- churn_data[train_ind, ]

The test set is created by not selecting the previously selected rows:

test <- churn_data[-train_ind, ]

We see the distribution of churn and active accounts across the train and test sets:

table(train$Status)

The output of the table command, which shows the distribution of the target 
variable in the training dataset, is as follows:

False  True 
3219   531

table(test$Status)

The output of the table command, which shows the distribution of the target 
variable in the test dataset, is as follows:

False  True
1074   176
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The proportion of churn and active cases are similar in both the sets, hence we will 
use them. Otherwise, we would have changed the seed and rerun the split process 
until we got a similar proportion. The last step is to save the sets as csv files:

write.csv(train,file="churn_data_clean.all.csv",row.names = F)
write.csv(test,file="churn_data_clean_test.all.csv",row.names = F)

Later  in this chapter we will be discussing customer segmentation. Let's prepare  
the data for customer segmentation, clustering algorithms only work with numeric 
data, so we need to discard categorical variables. For segmentation we intend to use 
only the features about time and number of calls during different parts of the day. 
We select columns 6 to 13 and write it to the file churn_cluster_data.csv.

churn_cluster_data<-churn_data[,6:13]
write.csv(churn_cluster_data,file="churn_cluster_data.csv",row.names = F)

Model training and validation
In the model training and validation phase, it's always a good idea to 
try multiple algorithms. We will try out OnlineLogisticRegression, 
AdaptiveLogisticRegression, and RandomForest for training the models.  
The idea is to see which algorithm works well for the data and select the best one.

Logistic regression
We need to clean the file to remove quotes and white spaces and replace NA introduced 
during the feature engineering phase with NA/0, which would be introduced if the 
numerator is zero. We will use the sed command with the inplace flag -i to preprocess 
the files. Please type the following command on the Linux terminal:

sed -i 's/"//g' churn_data_clean.all.csv
sed -i 's/NA/0/g' churn_data_clean.all.csv

sed -i 's/"//g' churn_data_clean_test.all.csv
sed -i 's/NA/0/g' churn_data_clean_test.all.csv

First, we will train using logistic regression:

mahout trainlogistic --input churn_data_clean.all.csv --output 
logistic_model --target Status --predictors account.length area.code 
international.plan voice.mail.plan number.vmail.messages total.day.
minutes total.day.calls total.eve.minutes total.eve.calls total.night.
minutes total.night.calls total.intl.minutes total.intl.calls number.
customer.service.calls avg.minute.day avg.minute.eve avg.minute.night 
avg.minute.intl --types n w w w n n n n n n n n n n n n n n --features 19 
--passes 100 --rate 50 --categories 2
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Then, we test the model using runlogistic, and we check the AUC and confusion 
matrix over the training set:

mahout runlogistic --auc --confusion --input churn_data_clean.all.csv  
--model logistic_model

Lastly, we check the performance over the test set:

mahout runlogistic --auc --confusion --input churn_data_clean_test.all.
csv  --model logistic_model

The AUC and the confusion matrix are stable across the test and train sets, which 
means we have not overfitten the data.
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Adaptive logistic regression
We use the trainAdaptiveLogistic command to train an ensemble of logistic 
regression. The configuration parameter passed is 100 passes over the data with  
20 threads:

mahout trainAdaptiveLogistic --input churn_data_clean.all.csv --output 
logistic_model --target Status --predictors account.length area.code 
international.plan voice.mail.plan number.vmail.messages total.day.
minutes total.day.calls total.eve.minutes total.eve.calls total.night.
minutes total.night.calls total.intl.minutes total.intl.calls number.
customer.service.calls avg.minute.day avg.minute.eve avg.minute.night 
avg.minute.intl --types n w w w n n n n n n n n n n n n n n --features 19 
--passes 100 --categories 2 --threads 20

The second step is to validate the model accuracy over the training dataset. We check 
the AUC and confusion matrix for this purpose:

mahout validateAdaptiveLogistic --input churn_data_clean.all.csv --model 
logistic_model --auc --confusion
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The second step is to validate the model accuracy over the test dataset. We check the 
AUC and confusion matrix for this purpose:

mahout validateAdaptiveLogistic --input churn_data_clean_test.all.csv 
--model logistic_model --auc --confusion

Random forest
As the random forest implementation in Mahout doesn't work with the header line, 
we remove the header. We will use sed for this purpose:

sed -i '1d' churn_data_clean.all.csv
sed -i '1d' churn_data_clean_test.all.csv

The next step is to create a directory on HDFS and copy the files to this  
HDFS directory:

hadoop fs -mkdir chapter9
hadoop fs -put churn_data_clean.all.csv chapter9
hadoop fs -put churn_data_clean_test.all.csv chapter9

The next step is to create the description file. We create it in the hdfs folder  
created previously:

hadoop jar $MAHOUT_HOME/mahout-core-0.9-job.jar org.apache.mahout.
classifier.df.tools.Describe -p chapter9/churn_data_clean.all.csv -f 
chapter9/churn.info -d 1 n 3 c 10 n l 4 n
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Then we proceed to train the model. We will build 100 trees in the forest:

hadoop jar $MAHOUT_HOME/mahout-examples-0.9-job.jar org.apache.mahout.
classifier.df.mapreduce.BuildForest -Dmapred.max.split.size=1874231 -d 
chapter9/churn_data_clean.all.csv -ds chapter9/churn.info -sl 4 -p -t 100 
-o chapter9_final-forest

The last step is to test the model's performance over test and train sets:

hadoop jar $MAHOUT_HOME/mahout-examples-0.9-job.jar org.apache.mahout.
classifier.df.mapreduce.TestForest -i chapter9/churn_data_clean.all.
csv -ds chapter9/churn.info -m chapter9_final-forest -a -mr -o chapter9_
final-pred

We repeat the last step with the test dataset and check the performance of the model:

hadoop jar $MAHOUT_HOME/mahout-examples-0.9-job.jar org.apache.mahout.
classifier.df.mapreduce.TestForest -i chapter9/churn_data_clean_test.all.
csv -ds chapter9/churn.info -m chapter9_final-forest -a -mr -o chapter9_
final-pred_test
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Out of the three algorithms, RandomForest has the best performance. We can  
further tune the models by adjusting the parameters and observing the results.  
For RandomForest, we can change the values of -t (number of trees) and -sl  
(number of features used per tree) to choose the best model.

Customer segmentation
The next analytics use case that we are going to discuss is customer segmentation. 
Customer segmentation is the process of dividing and grouping customers into 
meaningful subgroups or segments according to some notion of similarity. Segments 
are separated by natural boundaries in the data. Customer segmentation allows an 
organization to better understand their customer base and build different strategies 
based on the segments observed. For example, consider a hypothetical scenario:  
a telecom service provider segments subscribers based on their age, voice usage,  
and data usage, and after segmentation might observe five distinct segments.  
The segments are shown in the following table:

Segments Age Voice Usage Data Usage
Segment A Old High Low
Segment B Old Low Low
Segment C Middle Age High High
Segment D Young High Low
Segment E Young Low High
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Now the subscriber, based on this information, can decide different campaigns for 
each segment, thus getting greater returns for his marketing expense.

There are many different types of customer segmentation. We will briefly discuss a 
few of them:

• Value-based segmentation: Any customer or subscriber is associated  
with a value. The subscriber value can be measured in different ways  
and may have different terms associated with it. It could either be the 
license fee amount or annual recurring revenue or customer lifetime value. 
To identify the most valued customers or to track value changes over time, 
value-based segmentation is used. The customers are grouped together 
according to their value.

• Behavioral-based segmentation: Behavioral-based segmentation is done on 
product ownership and adoption or utilization data. Customers are grouped 
according to their product usage pattern. This type of segmentation is very 
useful for customizing the product offering, coming up with new features, 
and so on.

• Demographic–based segmentation: This type of segmentation is aimed 
at discovering different customer groupings based on socio-demographic 
aspects such as age, income, marital status, and so on.

In this case study, we are going to focus on behavioral segmentation based on 
telecom usage. The dataset would be the same as the one used for the churn  
analytics but we will use only numeric features.

Preprocessing
For a segmentation project, the data needs to be preprocessed. There are two 
common ways of preprocessing the data, by normalization and by rescaling it.  
Both are introduced as follows:

• Rescale: Scaling each entry of a feature between 0 and 1
• Normalize: Making every feature zero mean, unit variance

For behavioral segmentation, it is important to have an understanding of the 
behavior we are interested in segmenting for. In this case, we could be interested in 
understanding the behavior according to the time of the call (day, evening, or night), 
type of call (international or voice mail), and so on. The data representation for each 
of the cases will depend upon the behavior we are interested, in as we will see in the 
section ahead.
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There is a lot of value in exploratory clustering too, but without a clear objective in 
mind it is a bit difficult to interpret the clusters. Generally, you play with different 
cluster numbers and feature representation and then try to interpret each good result.

Feature extraction
We will consider a few usecases of behavior-based clustering. In all these cases, 
we will consider internal and external evaluation metrics to check the efficacy of 
the segments. The internal evaluation metrics used will be inter and intra-cluster 
distances and for external evaluation we will churn the Status label feature.

Day calls
The first behavior we will be interested in observing is the behavior according to 
the calls made during the day. The first step is to cluster the subscriber based on 
the features mentioned in the table and then try to find some interesting patterns. 
Once the clusters are satisfactory, the next step is to see how the observation 
variables behave across clusters, in this case, we have the churn label, Status, as 
the observational variable and we will check the count of the two categories of the 
variables Status, True, and False across the different clusters. The feature related to 
day calls are mentioned in the following table:

Features
total.day.minutes
total.day.calls

Evening calls
We are going to repeat the same steps discussed previously for evening calls and 
international calls. We will cluster them separately and then compute the count of 
the two different values for the Status field. The features related to evening calls are 
mentioned in the following table:

Features
total.eve.minutes
total.eve.calls
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International calls
Similarly, the international calls dataset will have total.intl.minutes and total.intl.calls 
as the features and are mentioned in the following table:

Features
total.intl.minutes
total.intl.calls

Preprocessing the files
We first need to preprocess the files to create the sequence files and the initial 
centroids. We need to remove the header line and replace commas with space so  
that we can use the preprocessing code from Chapter 7, Clustering with Mahout:

sed -i '1d' churn_cluster_data.csv
sed -i 's/,/ /g' churn_cluster_data.csv

Next we create the HDFS directory chapter09 on Hadoop and copy the file to  
the directory.

hadoop fs -mkdir chapter09/clustering_input
hadoop fs -put churn_cluster_data.csv chapter09/clustering_input/

Now open the file DataPreprocessing.java from the package chapter7.src,  
we need to change the path to the input directory and run the code.

//create the configuration object and add resources
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
conf.addResource(new Path("/usr/local/hadoop/conf/hdfs-site.xml"));

//create the file system object and pass the configuration object
FileSystem fileSystem = FileSystem.get(conf);

We then create the input and output Path objects.

#define the input and sequence file directory

We need to change the path of the input directory from chapter7/clustering/
input to chapter7/clustering/input. Once we have made the changes, the paths 
will look like the following code:

String inputPath="chapter09/clustering_input";
String inputSeq="clustering_seq";

Path inputDir = new Path(inputPath);
Path inputSeqDir = new Path(inputSeq);



Chapter 9

[ 201 ]

//The last step is to encode the vectors using the //
RandomAccessSparseVector
InputDriver.runJob(inputDir, inputSeqDir,         "org.apache.mahout.
math.RandomAccessSparseVector",conf);

Creating the clusters using fuzzy k-means
Once the files have been processed, we will use the Mahout fkmeans command to 
cluster them together. We could try different clustering algorithms as discussed 
previously; that can be as an exercise. We will create three clusters:

mahout fkmeans -i clustering_seq -c chapter09/kmeans_init_cluster -o 
chapter09/clustering_output_fkmeans -dm org.apache.mahout.common.
distance.EuclideanDistanceMeasure -x 10 -k 3 -ow --clustering -m 1.2

Once the clustering step is completed, we will observe the output.

Check the following files in the output directory:

hadoop fs -ls chapter09/clustering_output_fkmeans

/user/ctiwary/chapter09/clustering_output_fkmeans/_policy
/user/ctiwary/chapter09/clustering_output_fkmeans/clusteredPoints
/user/ctiwary/chapter09/clustering_output_fkmeans/clusters-0
/user/ctiwary/chapter09/clustering_output_fkmeans/clusters-/user/ctiwary/
chapter09/clustering_output_fkmeans/clusters-/user/ctiwary/chapter09/
clustering_output_fkmeans/clusters-3-final

To check the cluster centroids, we will use the clusterdump utility:

mahout clusterdump -i chapter09/clustering_output_fkmeans/clusters-*-final

Clustering using k-means
The next clustering algorithm that we are going to try is kmeans with three clusters. 
We will use the kmeans command of the Mahout command line utility:

mahout kmeans -i clustering_seq -c chapter09/kmeans_init_cluster -o 
chapter09/clustering_output -dm org.apache.mahout.common.distance.
EuclideanDistanceMeasure -x 10 -k 3 -ow --clustering

Evaluation
We will use Mahout's implementation for internal cluster evaluation. Cluster 
evaluation requires passing a distance measure. We will create the distance  
measure object as follows:

//create the distance measure object
DistanceMeasure measure = new EuclideanDistanceMeasure();
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We run the RepresentativePointsDriver.run method that sets up the 
ClusterEvaluator object properties:

RepresentativePointsDriver.run(conf, new Path("chapter09/clustering_
output_fkmeans/clusters-3-final"),
new Path("chapter09/clustering_output", " chapter09/clusteredPoints"), 
new Path("chapter09/clustering_output_fkmeans"),measure,               
10, true);

Then we create the ClusterEvaluator object and pass the Configuration object 
and path to the cluster output directory:

ClusterEvaluator cv = new ClusterEvaluator(conf,new Path("chapter09/
clustering_output/clusters-3-final"));

We call the respective functions to calculate  the inter-cluster and intra-cluster 
density of the clusters:

System.out.println(cv.interClusterDensity());
System.out.println(cv.intraClusterDensity());

We can calculate the evaluation metrics for other clustering algorithms too, using the 
same methodology.

Summary
In this chapter, we discussed the end-to-end steps involved in a machine learning 
project, taking two common customer analytics use cases, churn analytics and 
customer segmentation, as examples. We considered structured data for building  
the models. Many of the techniques learned up until now where put into practice. 
We discussed data cleansing, feature engineering, and model efficacy. A robust  
and repeatable step-by-step plan, which puts equal importance on all phases of  
a machine learning project, is important to its success.

In the last chapter, we will continue with the same theme and discuss text analytics 
use cases. Text analytics is an example of using unstructured data to gain insight 
and build models. We will cover the end-to-end steps that need to be performed to 
analyze text. The use cases that will be covered are text clustering and classification.
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Case Study – Text Analytics
So far, we have focused on deriving insights and building models on top of data 
that has a well defined and fixed structure. Data sources such as delimited files 
and database tables have a fixed format and are called structured sources of data. 
Structured data is the mainstay of analytics, and most of the use cases we discussed 
rely on structured data. Data sources such as social media posts, support case 
comments, e-mails, articles, and so on are called unstructured, data and they can 
contain business insights about customers and products that is not readily available 
in structured data. For example, structured information such as product usage tables 
can tell us that a particular customer is not using the product, but the reason for that 
could be documented in a support case comment. Mining unstructured data for 
information follows a slightly different approach than what we have discussed so far. 
In this chapter, we are going to discuss the steps involved in a text analytics project as 
a use case of mining unstructured data. You will understand the vector space model 
of representing text and run clustering and classification algorithms on it. The topics 
covered in this chapter are as follows:

• Vector space model
• Text clustering
• Text classification
• Feature extraction

Text analytics
Text analytics has many practical applications and is one of the most important areas 
of application of machine learning. Automatic e-mail filters, news article clustering 
and categorization, and sentimental analysis on social media posts about products are 
some of the most widely implemented use cases of text analytics. One of the major 
challenges in text analytics is feature extraction. Representation of documents is the 
most critical part of a text analytics project. In the coming sections, we are going to 
discuss one of the most-used forms of representation of text.
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Vector space model
The representation of a set of documents as vectors in a common vector space is known 
as the vector space model (VSM), and it is fundamental to a host of information 
retrieval operations, such as scoring documents on a query, document classification, 
and document clustering. The VSM is a common way of vectorizing text documents.

In the vector space model, each unique word present in the set of documents is 
represented as a coordinate of a vector. If we imagine a matrix, each column of the 
matrix will represent a word, and each row will be a document of the document set. 
The value of the matrix cells will indicate whether a word is present in a document, 
and a sense of how frequent the occurrence is. The dimensionality of such a matrix 
will be very high.

For example, let's assume we have two documents, A and B. A has the This is 
document A and this is the first document text, and B has the This is 
document B and this is the second document text. We will consider the 
simplest form of vector space model; each word is indexed, and we are going to fill 
the cell values with simple counts. There are other more intelligent ways of creating 
a VSM and we will discuss that in later sections. As we parse the documents, we see 
that there are 11 unique words; each will become a column in the matrix.

Document this is document A B and the first second
A 2 2 2 1 0 1 1 1 0
B 2 2 2 0 1 1 1 0 1

A cursory look at the VSM can provide some interesting pointers. One thing we notice 
is that words such as "this", "is", "and", and so on are not very important, as they are 
common across all documents. A feature-like "Document" could be interesting, but as 
we see the counts are the same, maybe we need to look at other ways of presenting the 
data that could be more interesting. Words such as "A", "B", "first", and "second" are 
definitely important words. In later sections, we will discuss how these initial pointers 
lead to some important feature extraction techniques.

The vector space model process can be divided into three major stages:

• The first stage is the preprocessing of raw text.
• The second step is document indexing, where content-bearing terms are 

extracted from the document text.
• The third stage is the weighting of the indexed terms to enhance retrieval  

of the document relevant to the user.
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Preprocessing
Before we can analyze and index documents in the vector space model, the  
text needs to be preprocessed. We will discuss some of the most common 
preprocessing tasks. It's better to use purpose-built tools such as Tika and  
Lucene for parsing and preprocessing the documents, instead of writing our  
own implementation. We will discuss an example based on Lucene later on.  
Let's now look at some common preprocessing tasks. They are presented in  
the order in which they should be performed.

Tokenization
The first task that needs to be performed in preprocessing of text is to tokenize  
each document. Tokenization refers to the process of extracting words from the 
document text. In this process, we have to handle cases such as white spaces,  
bad characters, special words such as e-mails, and so on. All words need to be 
converted to lowercase.

Stop word removal
We saw in the example of the vector space model that some common words  
such as "a", "and", "this", and so on are not very predictive and lead to noise.  
These words are called stop words and should be removed.

Stemming
Stemming is the process of converting a word into its root form. Words such 
as "kick" and "kicking" in most cases should be treated as the same. Performing 
stemming takes care of this requirement.

Preprocessing example
Open the PreprocessDataExample.java file from the chapter10.src package 
present in the code repository that comes with this book. This file contains an 
example of preprocessing text using Lucene analyzer. You will learn how to  
create your own analyzer that includes tokenizing text, stop word removal, 
lowercase filtering, and stemming.

We define a function, displayTokenUsingStandardAnalyzer(), to accomplish  
the aforementioned preprocessing task:

private static void displayTokenUsingStandardAnalyzer() throws 
IOException {
String text = "Lucene is simple but yet a powerful Java based at search 
library. StandardAnalyzer will convert all words to lowercase and remove 
stop words";
Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_46);
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TokenStream tokenStream = analyzer.tokenStream(null, new StringReader(
text));

tokenStream.reset();
while (tokenStream.incrementToken()) {
System.out.println(tokenStream
.getAttribute(CharTermAttribute.class).toString());
}
tokenStream.close();
System.out.println("Stemmimg Example \n");
String text_stem = "Lucene is simple but yet a powerful Java based at 
search library. This is to check stemming by PorterStemFilter, kicking 
will become kick";
tokenStream = analyzer.tokenStream(null, new StringReader(text_stem));
tokenStream = new PorterStemFilter(tokenStream);
tokenStream.reset();
while (tokenStream.incrementToken()) {
System.out.println(tokenStream
.getAttribute(CharTermAttribute.class).toString());
}
tokenStream.close();
analyzer.close();
}

At the start of the function, we defined a string variable with the name text.  
The string variable will be used to demonstrate the text processing. Then we  
created the StandardAnalyzer object. StandardAnalyzer is an out-of-the-box 
analyzer in Lucene that performs removal of white spaces, tokenization of words, 
converting all tokens to lowercase, and removing stop words. The text string 
variable is processed using StandardAnalyzer, and the output is as follows:
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We can see that all the words have become lowercase, whitespaces have been 
removed, and stop words such as "a", "at", and so on have been removed. Now  
we will add a filter to the standard analyzer to augment its capabilities. A filter  
is an additional operation we would want to perform on the data. We should also 
stem the words to their root form. We add the PorterStemFilter filter to the 
analyzer object. PorterStemFilter stems words in English to their root form.  
The text_stem variable is used to test the implementation. The output looks like 
what is shown in this screenshot:

We can see that many words have been stemmed; for example, "kicking" is stemmed 
to "kick". We will use the building blocks from this example to build our own custom 
analyzer in the sections ahead.

Document indexing
After preprocessing has been completed, the next step is to perform document 
indexing. After document indexing, we get the matrix discussed in the vector space 
model. There are many ways to compute the cell values. One of the simplest is term 
frequency (TF). The cell values are populated with the count of the particular word 
or term in a particular document. This is required because, even after removing 
the stop words, there may be some words that would be common across most 
documents. These words will not help us distinguish different documents. On 
the other hand, words that are common in a set of documents but not common 
otherwise in all the documents might be very important. We need to take this into 
account while indexing the document. We will discuss this technique in the next 
section, called term weighting.
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TF-IDF weighting
Term frequency-inverse document frequency (TF-IDF) weighting is a widely 
used improvement on simple term frequency weighting. The IDF part is the 
improvement; instead of simply using term frequency as the value in the vector, 
this value is multiplied by the inverse of the term's document frequency. That is,  
its value is reduced more for words used frequently across all the documents in  
the dataset than for infrequently used words.

Let's revisit the previous example; we have removed the stop words.

The term frequency of words is as follows:

Document document A B first second
A 2 1 0 1 0
B 2 0 1 0 1

The document frequency of words is the number of documents the word is present in, 
as shown in the following table:

Document document A B first second
A 2 1 1 1 1

TF-IDF is the multiplication of the term frequency with the inverse, 1/DF, of the 
document frequency:

Document document A B first second
A 1 1 0 1 0
B 1 0 1 0 1

A variation of TF-IDF is to multiply the product by the number of documents, N.  
The formula would be given by TFIDF = TF*1/DF*N. Another variation is to take  
the logarithm of DF and multiply it by TF.

n-grams
A group of words in a sequence is called an n-gram. A single word can be called 
a unigram, and two words, such as "Coca Cola", can be considered a single unit 
and called a bigram. Combinations of three and more terms can be called trigrams, 
4-grams, 5-grams, and so on. Classic TF-IDF weighting assumes that words occur 
independent of IDF of other words, but vectors created using this method usually  
lack the ability to identify key features of documents, which may be dependent.
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Some of these can be good combinations for generating document vectors ("big bang", 
"the best ever"), but some of them aren't ("a" and "the"). If you combine the unigrams 
and bigrams from a document and generate weights using TF-IDF, you'll end up  
with many meaningless bigrams that have large weights because of their large IDF. 
This is undesirable.

We can solve this problem by passing the n-grams through something called a  
log-likelihood test. It can determine whether two words occurred together by chance 
or because they form a significant unit. It selects the most significant n-grams and 
prunes away the least significant n-grams. Using the remaining n-grams, the TF-IDF 
weighting scheme is applied and vectors are produced. In this way, significant bigrams 
such as "Coca Cola" can be more properly accounted for in a TF-IDF weighting.

Normalization
Normalization, in this case, is a process of cleaning up edge cases—data with 
unusual characteristics that skews results disproportionately. For example, when 
calculating the similarity between documents based on some distance measure, it is 
common that a few documents pop up as if they're similar to all the other documents 
in the collection. But on closer inspection, you'll find that this happened because 
the document is large, and its vector has many nonzero dimensions, causing it to be 
close to many smaller documents. Somehow, we need to negate the effect of varying 
sizes of the vectors when calculating similarity. This process of decreasing the 
magnitude of large vectors and increasing the magnitude of smaller vectors is called 
normalization.

In Mahout, normalization uses what is known in statistics as a p-norm. The p-norm 
of vector x is given by this formula:

1/

x
p

p
ip

i
x ≡  

 
∑

The parameter p could be any value greater than 0. The 1-norm, or Manhattan norm, 
of a vector is the vector divided by the sum of the weights of all the dimensions.

The 2-norm, also known as Euclidean norm or the L2-norm, is the vector divided 
by the magnitude of the vector—this magnitude is the length of the vector, as we're 
accustomed to understanding it:
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The infinite norm is simply the vector divided by the weight of the largest  
magnitude dimension.

The norm power (p) you choose will depend on the type of operations done on the 
vector. If the distance measure used is the Manhattan distance measure, the 1-norm 
will often yield better results with the data. Similarly, if the cosine of the Euclidean 
distance measure is being used to calculate similarity, the 2-norm version of the 
vectors yields better results. For best results, the normalization should relate to the 
notion of distance used in the similarity metrics.

Generating the 2-normalized bigram vector is done by running the Mahout launcher 
using the seq2sparse command, with the –n flag set to 2:

mahout seq2sparse -i reuters-seqfiles/ -o reuters-normalized-bigram -ow
-a org.apache.lucene.analysis.WhitespaceAnalyzer
-chunk 200 -wt tfidf -s 5 -md 3 -x 90 -ng 2 -ml 50 -seq -n 2

Normalization improves the quality of clustering a little. Further refinement in the 
quality of clustering is achieved by using problem-specific distance measures and 
appropriate algorithms.

Clustering text
The clustering of text has many applications. It deals with grouping similar documents 
based on the words present in the text. One of the most common examples would be 
the clustering of news articles into similar groups. We will discuss how to implement 
the clustering of text using Mahout.

The dataset
We will be using Reuters dataset for the clustering example. This dataset has a 
repository of e-mails. We will download the dataset and then extract it using tar  
to the reuters-sgm folder. Move to the directory data/chapter10 and execute  
the following commands:

export MAHOUT_LOCAL=TRUE

curl http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.tar.gz -o 
reuters21578.tar.gz

mkdir -p reuters-sgm

tar xzf reuters21578.tar.gz -C reuters-sgm
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We will use Mahout's inbuilt utility to extract the Reuters dataset into the reuters-
out folder:

mahout org.apache.lucene.benchmark.utils.ExtractReuters reuters-sgm 
reuters-out

The last step is to convert the file into a sequence file using Mahout's seqdirectory 
command:

mahout seqdirectory -i reuters-out -o reuters-out-seqdir -c UTF-8 -chunk 
64 -xm sequential

Feature extraction
Open the TextPreprocessingExample.java file from the chapter10.src package 
present in the code repository that comes with this book. This code file reads the 
input sequence file, uses a custom analyzer to tokenize and preprocess the text,  
and creates the TF-IDF vectors.

We first create the path variables for the input and output directories and then 
declare the custom analyzer:

String inputDir = "data/chapter10/reuters-out-seqdir";
Configuration conf = new Configuration();
String outputDir = "data/chapter10/reuters-features";
Path tokenizedPath = new Path(outputDir,
DocumentProcessor.TOKENIZED_DOCUMENT_OUTPUT_FOLDER);
System.out.println(tokenizedPath);
CustomAnalyzer analyzer = new CustomAnalyzer();
DocumentProcessor.tokenizeDocuments(new Path(inputDir), analyzer
.getClass().asSubclass(Analyzer.class), tokenizedPath, conf);

The input and output directory path is taken as the input from the user, and we 
create the CustomAnalyzer object. The CustomAnalyzer object is used to tokenize 
the text document. Open the CustomAnalyzer.java file from the chapter10.src 
package present in the code repository that comes with this book. This code file 
contains the implementation of the custom analyzer. This analyzer performs the 
same operations as we saw in the previous example as it removes whitespaces and 
stop words, tokenizes words, converts words to lowercase, and stems the words:

public class CustomAnalyzer extends Analyzer {

@Override
public TokenStreamComponents createComponents(String field, Reader 
reader) {
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Tokenizer source = new StandardTokenizer(Version.LUCENE_46,reader);
StandardAnalyzer analyzer = new StandardAnalyzer(Version.LUCENE_46);
TokenStream filter;
try {
filter = analyzer.tokenStream(field,reader);
} catch (IOException e) {
e.printStackTrace();
}
filter = new PorterStemFilter(source);
analyzer.close();
return new TokenStreamComponents(source, filter);
}
}

A custom analyzer needs to extend the analyzer class and override the 
createComponents() method. In our implementation, we create a Tokenizer 
object and a StandardAnalyzer object, create a TokenStream object and a 
PorterStemFilter object, and then return a TokenStreamComponents object  
with Tokenizer and TokenStream objects as the arguments to the constructor.

Once the text is tokenized, we need to create the term frequency vector:

DictionaryVectorizer.createTermFrequencyVectors(tokenizedPath,
new Path(outputDir), tfDirName, conf, minSupport, maxNGramSize,
minLLRValue, norm, logNormalize, reduceTasks, chunkSize,
sequentialAccessOutput, namedVectors);

The createTermFrequencyVectors() method of the DictionaryVectorizer  
class takes as arguments the path to the tokenized directory, the output directory, 
and a bunch of arguments regarding how to create the term frequency vector.

Then we need to calculate the document frequency of each token. The calculateDF() 
function of TFIDFConverter does that for us. We store the document frequencies in 
the docFrequenciesFeatures variable:

docFrequenciesFeatures = TFIDFConverter.calculateDF(new Path(outputDir,
tfDirName), new Path(outputDir), conf, chunkSize);

The next step is to prune the tokens with high document frequencies. This is done by 
the pruneVectors() method of the HighDFWordsPruner class:

HighDFWordsPruner.pruneVectors(tfDir, prunedTFDir, prunedPartialTFDir,
maxDFThreshold, minDf, conf, docFrequenciesFeatures, -1.0f,
false, reduceTasks);
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The last step is to calculate the TF-IDF and save the output. This task is performed by 
the processTfIdf() function of the TFIDFConverter class. The major arguments for 
the function processTfIdf() are as follows:

• Input: This is the input directory of the vectors in the SequenceFile format.
• Output: This is the output directory where RandomAccessSparseVector's of 

the document are generated.
• datasetFeatures: This is the information on document frequencies 

calculated by calculateDF.
• minDf: This is the minimum document frequency. By default, it is 1.
• maxDF: This is the maximum percentage of vectors for the DF. It can be 

used to remove really high-frequency features. It is expressed as an integer 
between 0 and 100. By default, it is 99.

• numReducers: This is the number of reducers to spawn. It also affects the 
possible parallelism, since each reducer will typically produce a single output 
file containing TF-IDF vectors for a subset of the documents in the corpus.

The processTfIdf() function is called by passing the respective arguments:

TFIDFConverter.processTfIdf(new Path(outputDir,
DictionaryVectorizer.DOCUMENT_VECTOR_OUTPUT_FOLDER), new Path(
outputDir), conf, docFrequenciesFeatures, minDf, maxDFPercent,
norm, logNormalize, sequentialAccessOutput, namedVectors,
reduceTasks);

The TF-IDF vectors created can be used for both clustering and classification of text. 
We will discuss this in the next sections.

The clustering job
Open the KMeansClusteringExample.java file from the chapter10.src package 
present in the code repository that comes with this book. The code file includes an 
example of clustering using Kmeans and evaluation of the cluster using inter cluster 
and intra cluster distance as a metric.

The first step is to declare the output directory, input vector folder, path to initial 
centroids and the Configuration object:

String outputDir = "data/chapter10/reuters-features";
Path vectorsFolder = new Path(outputDir, "tfidf-vectors");
Path centroids = new Path(outputDir, "centroids");
Path clusterOutput = new Path(outputDir, "clusters");
Configuration conf = new Configuration();
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Then we create the initial cluster centroid. We will use CosineDistanceMeasure for 
the measure of similarity, and the number of clusters will be 20. For text mining, the 
preferred distance measure is CosineDistanceMeasure, an important advantage 
being that it can account for documents of different sizes:

RandomSeedGenerator.buildRandom(conf, vectorsFolder, centroids, 20,
new CosineDistanceMeasure());

Once the cluster centroids are created, we pass them along with the declared 
directories to the KMeansDriver run method to build the clusters:

KMeansDriver.run(conf, vectorsFolder, centroids, clusterOutput, 0.01,
20, true, 0, false);

Once the clustering is complete, we need to evaluate it. We declare the distance 
measure, which should be the same as that used by the clustering algorithm. Then 
we call the RepresentativePointsDriver run() method:

CosineDistanceMeasure measure = new CosineDistanceMeasure();

RepresentativePointsDriver.run(conf, new Path(clusterOutput,"clusters-10-
final"), new Path(
clusterOutput, "clusteredPoints"), clusterOutput, measure, 20, true);

The next step is to create the ClusterEvaluator object and measure the 
inter and intra cluster density:
ClusterEvaluator cv = new ClusterEvaluator(conf,new 
Path(clusterOutput,"clusters-10-final"));

System.out.println(cv.interClusterDensity());

System.out.println(cv.intraClusterDensity());

Categorizing text
Text categorization or classification deals with labeling documents to certain 
predefined classes. One of the most common tasks of text classification is  
labeling e-mail as ham and spam. We will discuss how to implement text 
classification in Mahout.

The dataset
For the text classification case study, we are going to use the 20 newsgroups  
dataset. The data is from transcripts of several months of postings made in 20  
Usenet newsgroups on 20 different topics. Download the dataset from http://
people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz.

http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz
http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz
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The dataset is divided into train and test sets, and each set has 20 subdirectories. If you 
look at the training folder, you will see these 20 subdirectories. Each subdirectory will 
be considered a class label, and all files belonging to the directory will belong to that 
class. The following screenshot displays the folders in which files of respective classes 
as present. The folder name is the class label for documents present inside it.

Let's look at the file in the alt.atheism directory. We will look at the 53314 file.

The file has a header section with information such as the sender of the e-mail,  
the subject line, number of lines in the message, and so on. Then we have the 
message body.

Feature extraction
The important features in this data will be in the headers and the message body. 
Counts of words in the header, most frequent words in the header, number of  
lines in messages, and words in the message body are some of the important  
features to look out. We will discuss feature extraction and training a classifier  
in the next section.

The classification job
Open the ClassificationExamples.java file from the chapter10.src package 
present in the code repository that comes with this book. In this code file, we will 
extract the features, encode them as vectors, and train a classification model to 
classify documents to respective class labels.



Case Study – Text Analytics

[ 216 ]

Let's discuss the code now. At first, we define the number of features to be used for 
training and the path to the input training directory:

private static final int FEATURES = 10000;
File base = new File("data/chapter10/20news-bydate/20news-bydate-train");

Then we declare the vector encoding of the features that we derive from the 
messages. We declare separate encoders for the message body, intercept term, and 
header lines:

Map<String, Set<Integer>> traceDictionary = new TreeMap<String, 
Set<Integer>>();
FeatureVectorEncoder encoder = new StaticWordValueEncoder("body");
encoder.setProbes(2);
encoder.setTraceDictionary(traceDictionary);
FeatureVectorEncoder bias = new ConstantValueEncoder("Intercept");
bias.setTraceDictionary(traceDictionary);
FeatureVectorEncoder lines = new ConstantValueEncoder("Lines");
lines.setTraceDictionary(traceDictionary);

We define the OnlineLogisticRegression object with categories set to 20. Each 
category corresponds to one subdirectory in the 20news-bydate-train directory. 
The learning algorithm constructor accepts arguments specifying the number of 
categories in the target variable, the size of the feature vectors, and a regularizer.  
In addition, there are a number of configuration methods in the learning algorithm. 
The alpha, decayExponent, and stepOffset methods specify the rate and way 
by which the learning rate decreases. The lambda method specifies the amount of 
regularization, and the learningRate method specifies the initial learning rate:

OnlineLogisticRegression learningAlgorithm =
new OnlineLogisticRegression(
20, FEATURES, new L1())
.alpha(1).stepOffset(1000)
.decayExponent(0.9)
.lambda(3.0e-5)
.learningRate(20);

In the next step, we parse the 20news-bydate-train directory and read the filename 
and the file list. The collection is shuffled to maintain the randomness so that the 
model sees the training example:

List<File> files = new ArrayList<File>();
for (File newsgroup : base.listFiles()) {
newsGroups.intern(newsgroup.getName());
files.addAll(Arrays.asList(newsgroup.listFiles()));
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}

Collections.shuffle(files);
System.out.printf("%d training files\n", files.size());

The next step is to loop through each file in the subdirectory, extract the features and 
the target label, encode the features into vectors, and train the regression model.

The following code snippet creates the target label in the actual variable :

BufferedReader reader = new BufferedReader(new FileReader(file));
String ng = file.getParentFile().getName();
int actual = newsGroups.intern(ng);

The average line count of messages per target class is created:

String line = reader.readLine();
while (line != null && line.length() > 0) {
if (line.startsWith("Lines:")) {
//String count =
try {
lineCount = line.split(":",1).length;
averageLineCount += (lineCount - averageLineCount)
/ Math.min(k + 1, 1000);
} catch (NumberFormatException e) {
lineCount = averageLineCount;
}
}

Next, the features are encoded in vectors and prepared for training:

Vector v = new RandomAccessSparseVector(FEATURES);
bias.addToVector("", 1, v);
lines.addToVector("", lineCount / 30, v);
logLines.addToVector("", Math.log(lineCount + 1), v);
for (String word : words.elementSet()) {
encoder.addToVector(word, Math.log(1 + words.count(word)), v);
}

The prepared vector is used for training with the target label. This is done for each  
of the files:

learningAlgorithm.train(actual, v);
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The learningAlgorithm trained model can be used to label a new dataset.  
The object has more than one method to perform the classification, for example 
function trainAll(). We have demonstrated one of them; the others can be  
checked in the online documentation at http://mahout.apache.org/.

The classify() function computes and returns a vector containing n-1 scores, 
where n is equal to numCategories(), given an input vector instance. Higher  
scores indicate that the input vector is more likely to belong to that category:

learningAlgorithm.classify(v);

Summary
This is the last chapter of this book. We discussed the fundamental concepts and  
an implementation of two major use cases of text analytics in Mahout. Throughout 
this book, we discussed the major concepts of machine learning, its implementation, 
and its usage in Mahout. This will give you a strong foundation for building a career 
in data analytics. I hope this book fulfilled its objective of providing a kick start in 
machine learning and Mahout, and I hope you continue building on and improving 
your skills.

http://mahout.apache.org/
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Mahout, configuring  4, 5
Maven, configuring  4
setting up  4

dimensionality reduction  54, 74-77
distance measure

about  35
cosine distance measure  36
Euclidean distance measure  36
Manhattan distance measure  36
squared Euclidean distance measure  36
Tanimoto distance measure  37

distributed row matrices (DRM)  168
document indexing  207
Dunn index  50

E
Eclipse

configuring  6, 7
Mahout source code, importing  113, 114

embedded feature selection  74
Euclidean distance measure  36
Euclidean distance similarity  130
evaluation

about  30
bias-variance trade-off  30, 31
dimensionality, of input space  32
function complexity  32
noise, in data  32
training data consideration  32

external evaluation
about  51
F-measure  52
Rand index  51
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F
feature  54
feature construction

about  55-58
categorical features  58
continuous features  66

feature engineering
about  54
automated feature extraction  54
dimensionality reduction  54
feature selection  54
manual feature construction  54

feature extraction
about  70-72
techniques  72

feature extraction, customer segmentation
day calls  199
evening calls  199
files, preprocessing  200
international calls  200

feature representation
about  34
dissimilarity  35
distance measure  35
feature normalization  34
similarity  35

feature selection
about  54, 72
embedded feature selection  74
filter-based feature selection  72, 73
wrapper-based feature selection  73

feature standardization
about  68
mean standardization  68
rescaling  68
scaling  68, 69

feature transformation
about  69
aggregate transformations  70
frequency  70
normalization  70
ratios  70

filter-based feature selection  72, 73
fixed size neighborhood  133

F-measure  52
forward selection  74
FP-Growth  109
FP Tree

about  109
building  110, 111
constructing  111, 112
frequent patterns, identifying  112, 113

frequent pattern mining
about  37, 109
considerations  39
data description  116-121
data, obtaining  116
FP-Growth  109
FP Tree  109
implementing, with Mahout  114
implementing, with Mahout API  121
Mahout command line, extending  114-116
rules, identifying  38

frequent pattern mining, considerations
actionable rules  39
association, determining  39

frequent pattern mining, rules
confidence  38
conviction  38
identifying  38
lift  38
support  38

frequent pattern mining, with Mahout API
linear execution  123
MapReduce execution  122
metrics, computing  123
results, formatting  123

fuzzy k-means
about  153
command-line options  159
fuzzy factor, deciding  153

H
Hadoop

URL, for configuring  4
Hadoop Distributed File System (HDFS)  9
holdout-set validation  29
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I
in-core types

about  169
matrix  172
vector  169

in-memory execution
about  22
versus parallel execution  22, 23

installation, R  187, 188
internal evaluation, clustering

about  49
Davies-Bouldin index  50
Dunn index  50
inter-cluster distance  50
intra-cluster distance  50

item-based recommender system
about  140
example  141
recommender, building  141-143
recommender, evaluating  144, 145

K
K-fold cross validation  29
k-means

about  147-150
advantages and disadvantages  152
command-line options  156
initial centroid, determining  151
number of clusters, determining  150

L
Latent Dirichlet allocation (LDA)

about  109, 124
implementing, Mahout command line  

used  126, 127
used, for topic modeling  124, 125

linear regression
with Mahout Spark  179-181

log-likelihood similarity  131
log-likelihood test  209

M
machine learning

about  25
model efficacy  41
recommender system  39
supervised learning  26
unsupervised learning  33

Mahout
about  1
advantages  2
configuring  4, 5
development environment, setting up  4
frequent pattern mining, implementing  114
source code, importing into  

Eclipse  113, 114
Spark, configuring  166-168
URL  5, 218
use case  3

Mahout, advantages
better data collection  2
community  3
license  3
sampling  2
simple techniques  2

Mahout API
about  18, 19
dataset  19-21
frequent pattern mining, implementing  121

Mahout Scala DSL
about  168
imports  169

Mahout Spark
DRM  176
linear regression  179-181

Mahout Spark, DRM
caching, in Spark's block manager  179
computational actions  178
optimizer actions, performing  177, 178
Spark context, initializing  176, 177

Mahout trunk
URL, for latest version  166

Manhattan distance measure  36
manual feature construction  54
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MapReduce
limitations  165, 166

mathematical transformations  70
matrix

about  172
column, setting  174
copy by reference  175
elements, accessing  173
initializing  172

Maven
configuring  4
URL  4

mean absolute error  46
model efficacy

about  41
classification  41
clustering  49
recommendation system  48
regression  46

model, training
bagging  28, 29
boosting  29

model training and validation phase,  
churn analytics

adaptive logistic regression  194, 195
logistic regression  192, 193
random forest  195-197

N
n-grams  208, 209
normalization  

about  34, 209, 210
column normalization  35
row normalization  35

O
ordinary least square (OLS)  180

P
parallel execution

about  22
versus in-memory execution  22, 23

patsy library  62
Pearson correlation similarity  130

p-norm  209
precision  49
preferences  146
preprocessing, customer segmentation

clustering, with k-means  201
clusters, creating with Fuzzy k-means  201
evaluation  201
feature extraction  199

R
R

correlation, calculating  189
installing  187
summary statistics, viewing  188, 189

Rand index  51
recommendation system

about  48
precision and recall  49
score difference  48

recommender system
about  39, 131
collaborative filtering  40
content-based filtering  41
evaluating  131, 132
item-based recommender system  140
user-based recommender system  132

recursive feature elimination  74
regression

about  26, 46
adjusted R-square  48
mean absolute error  46
root mean squared error (RMSE)  47
R-square  47

relative squared error (RSE)  47
rescaling, feature  35
resilient distributed dataset (RDD)  166
ROC curve

about  44
area-based accuracy measure  45
Euclidian distance comparison  45
example  46
used, for evaluating classifier  45

ROC graphs
features  44, 45

root mean squared error (RSME)  47
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row normalization  35
R-square  47

S
score difference  48
shared variables

about  166
accumulators  166
broadcast variables  166

similarity
about  130
computing, without preference value  131
Euclidean distance similarity  130
log-likelihood similarity  131
Pearson correlation similarity  130
Tanimoto coefficient similarity  131

source code, Mahout
importing, into Eclipse  113, 114

Spark
about  166
configuring, with Mahout  166-168
Mahout Scala DSL  168

sparse vector  169
Squared Euclidean distance measure  36
standard generalized markup language 

(SGML)  11
standardization, feature  35
stemming  205
stop words

removing  205
streaming k-means

command-line options  160
subversion (svn)  167
supervised binning  66
supervised learning

about  26
classification  26
evaluation  30
feature extraction  27
model, training  28
objective, determining  26
regression  26
training data, determining  26, 27
training set, cleaning  27
training set, creating  27
validation  29

T
Tanimoto coefficient similarity  131
Tanimoto distance measure  37
term frequency-inverse document  

frequency weighting (TF-IDF  
weighting)  208

term frequency (TF)  207
text analytics

about  203
VSM  204

text, categorizing
about  214
dataset  214, 215
dataset, URL  214
example  215-218
feature extraction  215

text, clustering
about  210
dataset  210
example  213, 214
feature extraction  211-213

text, preprocessing
example  205-207
stemming  205
stop word removal  205
tokenization  205

threshold-based neighborhood  133
topic modeling

about  109
LDA, using  124, 125

trigrams  208

U
unigram  208
unsupervised binning  66
unsupervised learning

about  33
cluster analysis  33, 34
frequent pattern mining  37

user-based recommender system
about  132
dataset  133
example  134
recommender, building  134-137
recommender, evaluating  138-140
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URL, for dataset  133
user neighborhood

about  132
fixed size neighborhood  133
threshold-based neighborhood  133

V
validation

about  29
holdout-set validation  29
K-fold cross validation  29

value-based segmentation  198
vector

about  169
arithmetic operations, performing  170
arithmetic operations, performing  

with scalar  171
dense vector  169
elements, accessing  170
element values, setting  170
initializing  169
sparse vector  169

vector space model (VSM)
document indexing  207
n-grams  208, 209
normalization  209, 210
text, preprocessing  205
TF-IDF weighting  208

W
wrapper-based feature selection

about  73
backward selection  73
forward selection  74
recursive feature elimination  74
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