

Learning Apache Mahout

Acquire practical skills in Big Data Analytics and
explore data science with Apache Mahout

Chandramani Tiwary

BIRMINGHAM - MUMBAI

Learning Apache Mahout

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1240315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-521-5

www.packtpub.com

www.packtpub.com

Credits

Author
Chandramani Tiwary

Reviewers
Saleem A. Ansari

Sahil Kharb

Pavan Kumar Narayanan

Commissioning Editor
Akram Hussain

Acquisition Editor
Sonali Vernekar

Content Development Editor
Arun Nadar

Technical Editors
Narsimha Pai

Mitali Somaiya

Copy Editors
Charlotte Carneiro

Merilyn Pereira

Vikrant Phadke

Project Coordinator
Nikhil Nair

Proofreaders
Simran Bhogal

Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Sheetal Aute

Disha Haria

Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Chandramani Tiwary is a Data Scientist with special interest towards building data
driven products. He is a founding member of the Data Science team at Gainsight and
was instrumental in framing Data Science use cases for customer success management
in the SaaS industry. He is also an advisor to multiple organizations. He can be
followed on Twitter at https://twitter.com/Mani_on_Twitt and on LinkedIn
at https://www.linkedin.com/today/author/60666042.

I would like to take this opportunity to thank my parents and my
brother for always trusting and encouraging me; I wouldn't have
been where I am without their support. I would also like to thank
Packt Publishing, the various editors, and the reviewers of this book
for their efforts in making this book possible.

https://twitter.com/Mani_on_Twitt
https://www.linkedin.com/today/author/60666042

About the Reviewers

Saleem A. Ansari is a full-stack Java, Scala, and Ruby developer with over 7 years
of industry experience and a special interest in machine learning and information
retrieval. Having implemented the data ingestion and processing pipeline in Core
Java and Ruby separately, he knows the challenges faced by huge datasets in such
systems. He has worked for companies such as Red Hat, Impetus Technologies,
Belzabar Software, and Exzeo Software. He is also a passionate member of the Free
and Open Source Software (FOSS) community. He started his journey with FOSS
in 2004. The very next year, 2005, he formed JMILUG, a Linux user group at Jamia
Millia Islamia University, New Delhi. Since then, he has been contributing to FOSS
by organizing community activities and contributing code to various projects
(such as github.com/tuxdna). He also advises students about FOSS and its benefits.
He is currently enrolled at Georgia Institute of Technology, USA, for the MSCS
program. He can be reached at tuxdna@fedoraproject.org. He maintains a blog
at http://tuxdna.in/.

First of all, I would like to thank the vibrant, talented, and very
generous Apache Mahout community, who created such a wonderful
machine learning library. I would like to thank Packt Publishing and
its staff for giving me this wonderful opportunity. I would also like
to thank the author for his hard work in simplifying and elaborating
the latest developments in Apache Mahout.

http://tuxdna.in/

Sahil Kharb is the computer science undergraduate student at Indian Institute
of Technology, Jodhpur (India). He has been working on Mahout and Hadoop
for the last 2 years. His area of interest is data mining on a large scale. Nowadays,
he works on Apache Spark and Apache Storm, doing real-time data analytics and
batch processing with the help of Apache Mahout.

I would like to thank my family who always supported me in
learning new technologies and also my friends Mohit Dadhich,
Prashant Mittal, Manish Sachdeva, and Pratik Kumar, who helped
me in testing codes.

Pavan Kumar Narayanan is an applied mathematician with experience in
mathematical programming, Data Science, and scientific computing projects. He has
published and presented papers on applied mathematics in Washington DC and New
York, and also maintains a blog, DataScience Hacks (https://datasciencehacks.
wordpress.com/). Currently, he is a graduate student in computational mathematics
in New York. He loves exploring new problem solving techniques and software,
from industrial mathematics to machine learning, in addition to reviewing Packt
Publishing books.

I would like to thank my family for their unconditional love and
support and God almighty for giving me strength and endurance.

https://datasciencehacks.wordpress.com/
https://datasciencehacks.wordpress.com/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface vii
Chapter 1: Introduction to Mahout 1

Why Mahout 2
Simple techniques and more data is better 2
Sampling is difficult 2
Community and license 3

When Mahout 3
Data too large for single machine 3
Data already on Hadoop 3
Algorithms implemented in Mahout 3

How Mahout 4
Setting up the development environment 4

Configuring Maven 4
Configuring Mahout 4
Configuring Eclipse with the Maven plugin and Mahout 6

Mahout command line 8
A clustering example 9
A classification example 15

Mahout API – a Java program example 18
The dataset 19

Parallel versus in-memory execution mode 22
Summary 24

Chapter 2: Core Concepts in Machine Learning 25
Supervised learning 26

Determine the objective 26
Decide the training data 26
Create and clean the training set 27
Feature extraction 27

Table of Contents

[ii]

Train the models 28
Bagging 28
Boosting 29

Validation 29
Holdout-set validation 29
K-fold cross validation 29

Evaluation 30
Bias-variance trade-off 30
Function complexity and amount of training data 32
Dimensionality of the input space 32
Noise in data 32

Unsupervised learning 33
Cluster analysis 33

Objective 34
Feature representation 34
Algorithm for clustering 37
A stopping criteria 37

Frequent pattern mining 37
Measures for identifying interesting rules 38
Things to consider 39

Recommender system 39
Collaborative filtering 40

Cold start 40
Scalability 41
Sparsity 41

Content-based filtering 41
Model efficacy 41

Classification 41
Confusion matrix 42
ROC curve and AUC 44

Regression 46
Mean absolute error 46
Root mean squared error 47
R-square 47
Adjusted R-square 48

Recommendation system 48
Score difference 48
Precision and recall 49

Clustering 49
The internal evaluation 49
The external evaluation 51

Summary 52
Chapter 3: Feature Engineering 53

Feature engineering 53
Feature construction 55

Categorical features 58

Table of Contents

[iii]

Continuous features 66
Feature extraction 70
Feature selection 72

Filter-based feature selection 72
Wrapper-based feature selection 73
Embedded feature selection 74

Dimensionality reduction 74
Summary 77

Chapter 4: Classification with Mahout 79
Classification 79

White box models 80
Black box models 80

Logistic regression 80
Mahout logistic regression command line 82

Getting the data 83
Model building via command line 85
Train the model command line option 86
Testing the model 88

Prediction 89
Adaptive regression model 89
Code example with logistic regression 91

Train the model 92
The LogisticRegressionParameter and CsvRecordFactory class 93
A code example without the parameter classes 93

Testing the online regression model 94
Getting predictions from OnlineLogisticRegression 95
A CrossFoldLearner example 96

Random forest 98
Bagging 98
Random subsets of features 99
Out-of-bag error estimate 99
Random forest using the command line 100
Predictions from random forest 104

Naïve Bayes classifier 105
Numeric features with naïve Bayes 107

Command line 107
Summary 107

Chapter 5: Frequent Pattern Mining and Topic Modeling 109
Frequent pattern mining 109

Building FP Tree 110
Constructing the tree 111
Identifying frequent patterns from FP Tree 112

Table of Contents

[iv]

Importing the Mahout source code into Eclipse 113
Frequent pattern mining with Mahout 114

Extending the command line of Mahout 114
Getting the data 116

Data description 116
Frequent pattern mining with Mahout API 121

Topic modeling using LDA 124
LDA using the Mahout command line 126

Summary 127
Chapter 6: Recommendation with Mahout 129

Collaborative filtering 129
Similarity measures 130

Pearson correlation similarity 130
Euclidean distance similarity 130
Computing similarity without a preference value 131

Evaluating recommender 131
User-based recommender system 132

User neighborhood 132
The dataset 133
Mahout code example 134

Item-based recommender system 140
Mahout code example 141

Inferring preferences 146
Summary 146

Chapter 7: Clustering with Mahout 147
k-means 147

Deciding the number of clusters 150
Deciding the initial centroid 151

Random points 151
Points from the dataset 151
Partition by range 151
Canopy centroids 151

Advantages and disadvantages 152
Canopy clustering 152
Fuzzy k-means 153

Deciding the fuzzy factor 153
A Mahout command-line example 153

Getting the data 153
Preprocessing the data 154
k-means 156
Canopy clustering 158
Fuzzy k-means 159

Table of Contents

[v]

Streaming k-means 160
A Mahout Java example 162

k-means 162
Cluster evaluation 163

Summary 164
Chapter 8: New Paradigm in Mahout 165

Moving beyond MapReduce 165
Apache Spark 166

Configuring Spark with Mahout 166
Basics of Mahout Scala DSL 168

Imports 169
In-core types 169

Vector 169
Initializing a vector inline 169
Accessing elements of a vector 170
Setting values of an element 170
Vector arithmetic 170
Vector operations with a scalar 171

Matrix 172
Initializing the matrix 172
Accessing elements of a matrix 173
Setting the matrix column 174
Copy by reference 175

Spark Mahout basics 176
Initializing the Spark context 176
Optimizer actions 177
Computational actions 178
Caching in Spark's block manager 179

Linear regression with Mahout Spark 179
Summary 181

Chapter 9: Case Study – Churn Analytics and
Customer Segmentation 183

Churn analytics 183
Getting the data 185
Data exploration 187

Installing R 187
Feature engineering 190
Model training and validation 192

Logistic regression 192
Adaptive logistic regression 194
Random forest 195

Customer segmentation 197

Table of Contents

[vi]

Preprocessing 198
Feature extraction 199
Creating the clusters using fuzzy k-means 201
Clustering using k-means 201
Evaluation 201

Summary 202
Chapter 10: Case Study – Text Analytics 203

Text analytics 203
Vector space model 204

Preprocessing 205
Document indexing 207
TF-IDF weighting 208
n-grams 208
Normalization 209

Clustering text 210
The dataset 210
Feature extraction 211
The clustering job 213

Categorizing text 214
The dataset 214
Feature extraction 215
The classification job 215

Summary 218
Index 219

[vii]

Preface
Learning Apache Mahout is aimed at providing a strong foundation in machine
learning using Mahout. This book is ideal for learning the core concepts of machine
learning and the basics of Mahout. This book will go from the basics of Mahout and
machine learning, to feature engineering and the implementation of various machine
learning algorithms in Mahout. Algorithm usage examples will be explained using
both the Mahout command line and its Java API. We will conclude the book with
two chapters of end-to-end case studies. Ideally, chapters 1, 2 and 3 should be read
sequentially, chapters 4 to 8 in any order, and chapters 9 and 10 after chapter 1 to 8
have been completed.

What this book covers
Chapter 1, Introduction to Mahout, covers the setup of the learning environment,
installation, and the configuration of the various tools required for this book.
It will discuss the need for a machine learning library such as Mahout and
introduce the basics of Mahout with command line and code examples.

Chapter 2, Core Concepts in Machine Learning, covers the fundamental concepts
in machine learning. It will discuss the important steps involved in a machine
learning project, such as data processing, model training, and efficacy, and
provides an intuitive explanation of different algorithms.

Chapter 3, Feature Engineering, covers the most important phase of a machine
learning project, feature extraction and representation. It will discuss common
data preprocessing tasks, manual and automated feature transformation, feature
selection, and dimensionality reduction.

Preface

[viii]

Chapter 4, Classification with Mahout, covers classification algorithms implemented
in Mahout. It will discuss the important phases of building a classifier, such as
preprocessing data, creating a train and test set, and measuring model efficacy.
The algorithms that will be covered are logistic regression, random forest, and
naïve Bayes.

Chapter 5, Frequent Pattern Mining and Topic Modeling, covers algorithms for frequent
pattern mining and topic modeling. This chapter will provide an intuitive explanation
of the algorithms and include both command line and code examples, while also
providing practical examples.

Chapter 6, Recommendation with Mahout, covers algorithms to build recommender
systems in Mahout. It will discuss item-based and user-based recommenders.
This chapter will provide an intuitive explanation of the algorithms and include
both command line and code examples, while also providing practical examples.

Chapter 7, Clustering with Mahout, covers algorithms to perform clustering in Mahout.
It will discuss algorithms such as k-means, fuzzy k-means, streaming k-means, and
so on. This chapter will provide an intuitive explanation of the algorithm and include
both command line and code examples, while also providing practical examples.

Chapter 8, New Paradigm in Mahout, covers the porting of Mahout on top of Apache
Spark. It will discuss the installation and configuration of Mahout and Spark,
explain the important concepts of Spark and Mahout binding, and cover some
basic examples.

Chapter 9, Case Study – Churn Analytics and Customer Segmentation, covers the steps
involved in a machine learning project from start to finish. It will discuss all the
important steps that need to be performed for a successful machine learning project.
It will take a couple of use cases from customer analytics, churn analytics, and
customer segmentation, to walk through the process.

Chapter 10, Case Study – Text Analytics, covers the steps involved in a text analytics
project. It will discuss the vector space model of representing text, text clustering,
and classification.

What you need for this book
For this book, you will need the following software:

• Java 1.6 or higher
• Maven 2.0 or higher
• Hadoop 1.2.1

Preface

[ix]

• Eclipse with Maven plug-in
• Mahout 0.9
• Python
• R

We will cover every software needed for this book in the corresponding chapters.
All the examples in the book have been coded using the Ubuntu 12.04 LTS release.

Who this book is for
If you are a Java developer and want to use Mahout and machine learning to solve
Big Data Analytics use cases, then this book is ideal for you. This book is good for
self-learners who want to learn the fundamental concepts of machine learning and
the practical implementations of Mahout. Some familiarity with shell scripts, Python,
and R is assumed, but no prior experience is required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The output of the sed command is saved to the new file adult.data.csv."

Any command-line input or output is written as follows:

sudo pip install pandas

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Once the search results are displayed hit Install and follow the instructions."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[x]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[xi]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[1]

Introduction to Mahout
Mahout is an open source machine learning library from Apache. Mahout primarily
implements clustering, recommender engines (collaborative filtering), classification,
and dimensionality reduction algorithms but is not limited to these.

The aim of Mahout is to provide a scalable implementation of commonly used
machine learning algorithms. Mahout is the machine learning tool of choice if the
data to be used is large. What we generally mean by large is that the data cannot
be processed on a single machine. With Big Data becoming an important focus area,
Mahout fulfils the need for a machine learning tool that can scale beyond a single
machine. The focus on scalability differentiates Mahout from other tools such as R,
Weka, and so on.

The learning implementations in Mahout are written in Java, and major portions,
but not all, are built upon Apache's Hadoop distributed computation project using
the MapReduce paradigm. Efforts are on to build Mahout on Apache Spark using
Scala DSL. Programs written in Scala DSL will be automatically optimized and
executed in parallel on Apache Spark. Commits of new algorithms in MapReduce
have been stopped and the existing MapReduce implementation will be supported.

The purpose of this chapter is to understand the fundamental concepts behind
Mahout. In particular, we will cover the following topics:

• Why Mahout
• When Mahout
• How Mahout

Introduction to Mahout

[2]

Why Mahout
We already have many good open source machine learning software tools.
The statistical language R has a very large community, good IDE, and a large
collection of machine learning packages already implemented. Python has a
strong community and is multipurpose, and in Java we have Weka.

So what is the need for a new machine learning framework?

The answer lies in the scale of data. Organizations are generating terabytes
of data daily and there is a need for a machine learning framework that can
process that amount of data.

That begs a question, can't we just sample the data and use existing tools for
our analytics use cases?

Simple techniques and more data is better
Collecting and processing data is much easier today than, say, a decade ago. IT
infrastructure has seen an enormous improvement; ETL tools, click stream providers
such as Google analytics, stream processing frameworks such as Kafka, Storm, and
so on have made collecting data much easier. Platforms like Hadoop, Cassandra, and
MPP databases such as Teradata have made storing and processing huge amount of
data much easier than earlier. From a large-scale production algorithm standpoint,
we have seen that simpler algorithms on very large amounts of data produce
reasonably good results.

Sampling is difficult
Sampling may lead to over-fitting and increases the complexity of preparing data to
build models to solve the problem at hand. Though sampling tends to simplify things
by allowing scientists to work on a small sample instead of the whole population
and helps in using existing tools like R to scale up to the task, getting a representative
sample is tricky.

I'd say when you have the choice of getting more data, take it. Never discard data.
Throw more (commodity) hardware at the data by using platforms and tools such
as Hadoop and Mahout.

Chapter 1

[3]

Community and license
Another advantage of Mahout is its license. Mahout is Apache licensed, which
means that you can incorporate pieces of it into your own software regardless
of whether you want to release your source code. However, other ML software,
such as Weka, are under the GPL license, which means that incorporating them
into your software forces you to release source code for any software you package
with Weka components.

When Mahout
We have discussed the advantages of using Mahout, let's now discuss the scenarios
where using Mahout is a good choice.

Data too large for single machine
If the data is too large to process on a single machine then it would be a good starting
point to think about a distributed system. Rather than scaling and buying bigger
hardware, it could be a better option to scale out, buy more machines, and distribute
the processing.

Data already on Hadoop
A lot of enterprises have adopted Hadoop as their Big Data platform and have used
it to store and aggregate data. Mahout has been designed to run algorithms on top of
Hadoop and has a relatively straightforward configuration.

If your data or the bulk of it is already on Hadoop, then Mahout is a natural choice to
run machine learning algorithms.

Algorithms implemented in Mahout
Do check whether the use case that needs to be implemented has a corresponding
algorithm implemented in Mahout, or you have the required expertise to extend
Mahout to implement your own algorithms.

Introduction to Mahout

[4]

How Mahout
In this section, you will learn how to install and configure Mahout.

Setting up the development environment
For any development work involving Mahout, and to follow the examples in this
book, you will require the following setup:

• Java 1.6 or higher
• Maven 2.0 or higher
• Hadoop 1.2.1
• Eclipse with Maven plugin
• Mahout 0.9

I prefer to try out the latest version, barring when there are known compatibility
issues. To configure Hadoop, follow the instructions on this page http://hadoop.
apache.org/docs/r1.2.1/single_node_setup.html. We will focus on configuring
Maven, Eclipse with the Maven plugin, and Mahout.

Configuring Maven
Maven can be downloaded from one of the mirrors of the Apache website http://
maven.apache.org/download.cgi. We use Apache Maven 3.2.5 and the same can
be downloaded using this command:

wget http://apache.mirrors.tds.net/maven/maven-3/3.2.5/binaries/apache-
maven-3.2.5-bin.tar.gz
cd /usr/local
sudo tar xzf $HOME/Downloads/ /usr/local/apache-maven-3.2.5-bin.tar.gz
sudo mv apache-maven-3.2.5 maven
sudo chown -R $USER maven

Configuring Mahout
Mahout can be configured to be run with or without Hadoop. Currently, efforts
are on to port Mahout on Apache Spark but it is in a nascent stage. We will discuss
Mahout on Spark in Chapter 8, New Paradigm in Mahout. In this chapter, you are
going to learn how to configure Mahout on top of Hadoop.

We will have two configurations for Mahout. The first we will use for practicing
command line examples of Mahout and the other, compiled from source, will be
used to develop Mahout code using Java API and Eclipse.

http://hadoop.apache.org/docs/r1.2.1/single_node_setup.html
http://hadoop.apache.org/docs/r1.2.1/single_node_setup.html
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi

Chapter 1

[5]

Though we can use one Mahout configuration, I will take this opportunity to discuss
both approaches.

Download the latest Mahout version using one of the mirrors listed at the Apache
Mahout website https://mahout.apache.org/general/downloads.html. The
current release version is mahout-distribution-0.9.tar.gz. After the download
completes, the archive should be in the Downloads folder under the user's home
directory. Type the following on the command line. The first command moves the
shell prompt to the /usr/local directory:

cd /usr/local

Extract the downloaded file to the directory mahout-distribution-0.9.tar.gz
under the /usr/local directory. The command tar is used to extract the archive:

sudo tar xzf $HOME/Downloads/mahout-distribution-0.9.tar.gz

The third command mv renames the directory from mahout-distribution-0.9
to mahout:

sudo mv mahout-distribution-0.9 mahout

The last command chown changes the ownership of the file from the root user to
the current user. The Linux command chown is used for changing the ownership of
files and directories. The argument –R instructs the chown command to recursively
change the ownership of subdirectories and $USER holds the value of the logged in
user's username:

sudo chown -R $USER mahout

We need to update the .bashrc file to export the required variables and update the
$PATH variable:

cd $HOME
vi .bashrc

At the end of the file, copy the following statements:

#Statements related to Mahout
export MAVEN_HOME=/usr/local/maven
export MAHOUT_HOME=/usr/local/mahout
PATH=$PATH:/bin:$MAVEN_HOME/bin:$MAHOUT_HOME/bin
###end of mahout statement

Exit from all existing terminals, start a new terminal, and enter the following command:

echo $PATH

Check whether the output has the path recently added to Maven and Mahout.

https://mahout.apache.org/general/downloads.html

Introduction to Mahout

[6]

Type the following commands on the command line; both commands should be
recognized:

mvn –-version
mahout

Configuring Eclipse with the Maven plugin
and Mahout
Download Eclipse from the Eclipse mirror mentioned on the home page. We have
used Eclipse Kepler SR2 for this book. The downloaded archive should be in the
Downloads folder of the user's home directory. Open a terminal and enter the
following command:

cd /usr/local
sudo tar xzf $HOME/Downloads/eclipse-standard-kepler-SR2-linux-
gtk-x86_64.tar.gz
sudo chown -R $USER eclipse

Go into the Eclipse directory and open up the Eclipse GUI. We will now install the
Maven plugin. Click on Help then Eclipse Marketplace and then in the search panel
type m2e and search. Once the search results are displayed hit Install and follow the
instructions. To complete the installation hit the Next button and press the Accept
button whenever prompted. Once the installation is done, Eclipse will prompt for a
restart. Hit OK and let Eclipse restart.

Chapter 1

[7]

Now to add Mahout dependency to any Maven project we need, add the following
dependency in the pom.xml file:

 <dependency>
 <groupId>org.apache.mahout</groupId>
 <artifactId>mahout-core</artifactId>
 <version>0.9</version>
 </dependency>
 <dependency>
 <groupId>org.apache.mahout</groupId>
 <artifactId>mahout-examples</artifactId>
 <version>0.9</version>
 </dependency>
 <dependency>
 <groupId>org.apache.mahout</groupId>
 <artifactId>mahout-math</artifactId>
 <version>0.9</version>
 </dependency>

Eclipse will download and add all the dependencies.

Now we should import the code repository of this book to Eclipse. Open Eclipse and
follow the following sequence of steps. The pom.xml file has all the dependencies
included in it and Eclipse will download and resolve the dependencies.

Go to File | Import | Maven | Existing Maven Projects | Next | Browse to the
location of the source folder that comes with this book | Finish.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Introduction to Mahout

[8]

Mahout command line
Mahout provides an option for the command line execution of machine learning
algorithms. Using the command line, an initial prototype of the model can be
built quickly.

A few examples of command line are discussed. A great place to start is to go
through Mahout's example scripts, the example scripts; are located under the
Mahout home folder in the examples folder:

cd $MAHOUT_HOME
cd examples/bin
ls --ltr

The Mahout example scripts are as follows:

Open the file README.txt in vi editor and read the description of the scripts.
We will be discussing them in the subsequent sections of this chapter:

vi README.txt

Chapter 1

[9]

The description of the example script is as follows:

It is a good idea to try out a few command line Mahout algorithms
before writing Mahout Java code. This way we can shortlist a few
algorithms that might work on the given data and problem, and
save a lot of time.

A clustering example
In this section, we will discuss the command line implementation of clustering in
Mahout and use the example script as reference.

On the terminal please type:

vi cluster-reuters.sh

This script clusters the Reuters dataset using a variety of algorithms. It downloads
the dataset automatically, parses and copies it to HDFS (Hadoop Distributed File
System), and based upon user input, runs the corresponding clustering algorithm.

Introduction to Mahout

[10]

On the vi terminal type the command:

:set number

This will display the line numbers of the lines in the file. The algorithms implemented
are kmeans, fuzzykmeans, lda, and streamingkmeans; line 42 of the code has a list of
all algorithms implemented in the script:

algorithm=(kmeansfuzzykmeansldastreamingkmeans) #A list of all
algorithms implemented in the script

Input is taken from the user in line 51 by the read statement:

read -p "Enter your choice : " choice

Line 57 sets the temp working directory variable:

WORK_DIR=/tmp/mahout-work-${USER}

On line 79, the curl statement downloads the Reuters data to the working directory,
first checking whether the file is already present in the working directory between
lines 70 to 73:

curl http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.tar.gz -o
${WORK_DIR}/reuters21578.tar.gz

From line 89, the Reuters tar is extracted to the reuters-sgm folder under the
working directory:

tar xzf ${WORK_DIR}/reuters21578.tar.gz -C ${WORK_DIR}/reuters-sgm

Reuter's raw data file
Let's have a look at one of the raw files. Open the reut2-000.sgm file in a text editor
such as vi or gedit.

Chapter 1

[11]

The Reuter's raw file looks like this:

The Reuters data is distributed in 22 files, each of which contains 1,000 documents,
except for the last (reut2-021.sgm), which contains 578 documents. The files are
in the SGML (standard generalized markup language) format, which is similar to
XML. The SGML file needs to be parsed.

On line 93, the Reuters data is parsed using Lucene. Lucene has built-in classes and
functions to process different file formats. The logic of parsing the Reuters dataset
is implemented in the ExtractReuters class. The SGML file is parsed and the text
elements are extracted from it.

Apache Lucene is a free/open source information
retrieval software library.

We will use the ExtractReuters class to extract the sgm file to text format.

$MAHOUT org.apache.lucene.benchmark.utils.ExtractReuters ${WORK_DIR}/
reuters-sgm ${WORK_DIR}/reuters-out

Introduction to Mahout

[12]

Now let's look at the Reuters processed file. The following figure is a snapshot
taken from the text file extracted from the sgm files we saw previously by the
ExtractReuters class:

On lines 95 to 101, data is loaded from a local directory to HDFS, deleting the
reuters-sgm and reuters-out folders if they already exist:

 echo "Copying Reuters data to Hadoop"
 $HADOOP dfs -rmr ${WORK_DIR}/reuters-sgm
 $HADOOP dfs -rmr ${WORK_DIR}/reuters-out
 $HADOOP dfs -put ${WORK_DIR}/reuters-sgm ${WORK_DIR}/reuters-sgm
 $HADOOP dfs -put ${WORK_DIR}/reuters-out ${WORK_DIR}/reuters-out

On line 105, the files are converted into sequence files. Mahout works with
sequence files.

Sequence files are the standard input of Mahout machine
learning algorithms.

$MAHOUT seqdirectory -i ${WORK_DIR}/reuters-out -o ${WORK_DIR}/reuters-
out-seqdir -c UTF-8 -chunk 64 -xm sequential

Chapter 1

[13]

On lines 109 to 111, the sequence file is converted to a vector representation.
Text needs to be converted into a vector representation so that a machine learning
algorithm can process it. We will talk about text vectorization in details in Chapter 10,
Case Study – Text Analytics.

 $MAHOUT seq2sparse -i ${WORK_DIR}/reuters-out-seqdir/
 -o ${WORK_DIR}/reuters-out-seqdir-sparse-kmeans --maxDFPercent 85 –
namedVector

From here on, we will only explain the k-means algorithm execution; we encourage
you to read and understand the other three implementations too. A detailed
discussion of clustering will be covered in Chapter 7, Clustering with Mahout.

Clustering is the process of partitioning a bunch of data points into related groups
called clusters. K-means clustering partitions a dataset into a specified number
of clusters by minimizing the distance between each data point and the center of
the cluster using a distance metric. A distance metric is a way to define how far or
near a data point is from another. K-means requires users to provide the number
of clusters and optionally user-defined cluster centroids.

To better understand how data points are clustered together, please have a look at
the sample figure displaying three clusters. Notice that the points that are nearby
are grouped together into three distinct clusters. A few points don't belong to any
clusters, those points represent outliers and should be removed prior to clustering.

Introduction to Mahout

[14]

Here is an example of the command line for k-means clustering:

Parameter Description
--input (-i) This is the path to the job input directory.
--clusters (-c) These are the input centroids and they must be a

SequenceFile of type Writable or Cluster/Canopy.
If k is also specified, then a random set of vectors will be
selected and written out to this path first.

--output (-o) This is the directory pathname for the output.
--distanceMeasure This is the class name of DistanceMeasure; the default is

SquaredEuclidean.
--convergenceDelta This is the convergence delta value; the default is 0.5.
--maxIter (-x) This is the maximum number of iterations.
--maxRed (-r) This is the number of reduce tasks; this defaults to 2.
--k (-k) This is the k in k-means. If specified, then a random

selection of k vectors will be chosen as the Centroid
and written to the cluster's input path.

--overwrite (-ow) If this is present, overwrite the output directory before
running the job.

--help (-h) This prints out Help.
--clustering (-cl) If this is present, run clustering after the iterations have

taken place.

Lines 113 to 118 take the sparse matrix and runs the k-means clustering algorithm
using the cosine distance metric. We pass –k the number of clusters as 20 and –x
the maximum number of iterations as 10:

 $MAHOUT kmeans \
 -i ${WORK_DIR}/reuters-out-seqdir-sparse-kmeans/tfidf-vectors/ \
 -c ${WORK_DIR}/reuters-kmeans-clusters \
 -o ${WORK_DIR}/reuters-kmeans \
 -dm org.apache.mahout.common.distance.CosineDistanceMeasure \
 -x 10 -k 20 -ow --clustering \

Lines 120 to 125 take the cluster dump utility, read the clusters in sequence file
format, and convert them to text files:

 $MAHOUT clusterdump \
 -i ${WORK_DIR}/reuters-kmeans/clusters-*-final \
 -o ${WORK_DIR}/reuters-kmeans/clusterdump \
 -d ${WORK_DIR}/reuters-out-seqdir-sparse-kmeans/dictionary.file-0 \

Chapter 1

[15]

 -dt sequencefile -b 100 -n 20 --evaluate -dm org.apache.mahout.
common.distance.CosineDistanceMeasure -sp 0 \
 --pointsDir ${WORK_DIR}/reuters-kmeans/clusteredPoints \
&& \
 cat ${WORK_DIR}/reuters-kmeans/clusterdump

The clusterdump utility outputs the center of each cluster and the top terms in the
cluster. A sample of the output is shown here:

A classification example
In this section, we will discuss the command line implementation of classification in
Mahout and use the example script as a reference.

Classification is the task of identifying which set of predefined classes a data point
belongs to. Classification involves training a model with a labeled (previously
classified) dataset and then predicting new unlabeled data using that model.
The common workflow for a classification problem is:

1. Data preparation
2. Train model
3. Test model
4. Performance measurement

Repeat steps until the desired performance is achieved, or the best possible solution
is achieved or the project's time is up.

Introduction to Mahout

[16]

On the terminal, please type:

vi classify-20newsgroups.sh

On the vi terminal, type the following command to show the line numbers for lines
in the script:

:set number

The algorithms implemented in the script are cnaivebayes, naivebayes, sgd, and a
last option clean, which cleans up the work directory

Line 44 creates a working directory for the dataset and all input/output:

export WORK_DIR=/tmp/mahout-work-${USER}

Lines 64 to 74 download and extract the 20news-bydate.tar.gz file after making
sure it is not already downloaded:

 if [! -e ${WORK_DIR}/20news-bayesinput]; then
 if [! -e ${WORK_DIR}/20news-bydate]; then
 if [! -f ${WORK_DIR}/20news-bydate.tar.gz]; then
 echo "Downloading 20news-bydate"
 curl http://people.csail.mit.edu/jrennie/20Newsgroups/20news-
bydate.tar.gz -o ${WORK_DIR}/20news-bydate.tar.gz
 fi
 mkdir -p ${WORK_DIR}/20news-bydate
 echo "Extracting..."
 cd ${WORK_DIR}/20news-bydate && tar xzf ../20news-bydate.tar.gz &&
cd ..&&cd ..
 fi
 fi

The 20 newsgroups dataset consists of messages, one per file. Each file begins with
header lines that specify things such as who sent the message, how long it is, what
kind of software was used, and the subject. A blank line follows, and then the
message body follows as unformatted text.

Lines 90 to 101 prepare the directory and copy the data to the Hadoop directory:

 echo "Preparing 20newsgroups data"
 rm -rf ${WORK_DIR}/20news-all
 mkdir ${WORK_DIR}/20news-all
 cp -R ${WORK_DIR}/20news-bydate/*/* ${WORK_DIR}/20news-all

 if ["$HADOOP_HOME" != ""] && ["$MAHOUT_LOCAL" == ""] ; then
 echo "Copying 20newsgroups data to HDFS"

Chapter 1

[17]

 set +e
 $HADOOP dfs -rmr ${WORK_DIR}/20news-all
 set -e
 $HADOOP dfs -put ${WORK_DIR}/20news-all ${WORK_DIR}/20news-all
 fi

A snapshot of the raw 20newsgroups data file is provided below.

Lines 104 to 106 convert the full 20 newsgroups dataset into sequence files:

$ mahout seqdirectory -i ${WORK_DIR}/20news-all –o ${WORK_DIR}/20news-
seq -ow

Lines 109 to 111 convert the sequence files to vectors calculating the term frequency
and inverse document frequency. Term frequency and inverse document frequency
are ways of representing text using numeric representation:

./bin/mahout seq2sparse \
-i ${WORK_DIR}/20news-seq \
-o ${WORK_DIR}/20news-vectors -lnorm -nv -wt tfidf

Introduction to Mahout

[18]

Lines 114 to 118 split the preprocessed dataset into training and testing sets. The test
set will be used to test the performance of the model trained using the training sets:

./bin/mahout split \
-i ${WORK_DIR}/20news-vectors/tfidf-vectors \
--trainingOutput ${WORK_DIR}/20news-train-vectors \
--testOutput ${WORK_DIR}/20news-test-vectors \
--randomSelectionPct 40 --overwrite --sequenceFiles -xm sequential

Lines 120 to 125 train the classifier using the training sets:

./bin/mahout trainnb \
-i ${WORK_DIR}/20news-train-vectors -el \
-o ${WORK_DIR}/model \
-li ${WORK_DIR}/labelindex \
-ow $c

Lines 129 to 133 test the classifier using the test sets:

./bin/mahout testnb \
-i ${WORK_DIR}/20news-train-vectors\
-m ${WORK_DIR}/model \
-l ${WORK_DIR}/labelindex \
-ow -o ${WORK_DIR}/20news-testing $c

Mahout API – a Java program example
Though using Mahout from the command line is convenient, fast, and serves the
purpose in many scenarios, learning the Mahout API is important too. The reason
being, using the API gives you more flexibility in terms of creating your machine
learning application, and not all algorithms can be easily called from the command
line. Working with the Mahout API helps to understand the internals of a machine
learning algorithm.

Mahout core JAR files have the implementation of the main machine learning
classes and the Mahout examples JAR file has some example code and wrappers
built around the Mahout core classes. It is worth spending time going through the
documentation and getting an overall understanding. The documentation for the
version you are using can be found in the Mahout installation directory.

Chapter 1

[19]

The Mahout documentation directory looks like this:

We will now look at a Mahout code example. We will write a classification example
in which we will train an algorithm to predict whether a client has subscribed to
a term deposit. Classification refers to the process of labeling a particular instance
or row to a particular predefined category, called a class label. The purpose of the
following example is to give you a hang of the development using Mahout, Eclipse,
and Maven.

The dataset
We will use the bank-additional-full.csv file present in the
learningApacheMahout/data/chapter4 directory as the input for our
example. First, let's have a look at the structure of the data and try to understand
it. The following table shows various input variables along with their data types:

Column Name Description Variable Type
Age Age of the client Numeric
Job Type of job, for example, entrepreneur,

housemaid, or management
Categorical

Marital Marital status Categorical
Education Education level Categorical
Default Has the client defaulted on credit? Categorical

Introduction to Mahout

[20]

Column Name Description Variable Type
Housing Does the client have housing loan? Categorical
Loan Does the client have personal loan? Categorical
Contact Contact communication type Categorical
Month Last contact month of year Categorical
day_of_week Last contact day of the week Categorical
duration Last contact duration, in seconds Numeric
campaign Number of contacts Numeric
Pdays Number of days that passed since last contact Numeric
previous Number of contacts performed before this

campaign
Numeric

poutcome outcome of the previous marketing campaign Categorical
emp.var.rate Employment variation rate - quarterly indicator Numeric
cons.price.idx Consumer price index - monthly indicator Numeric
cons.conf.idx Consumer confidence index - monthly indicator Numeric
euribor3m Euribor 3 month rate - daily indicator Numeric
nr.employed Number of employees - quarterly indicator Numeric
Y Has the client subscribed a term deposit Categorical/

target

Based on many attributes of the customer, we try to predict the target variable y
(has the client subscribed to a term deposit?), which has a set of two predefined
values, Yes and No. We need to remove the header line to use the data.

We will use logistic regression to build the model; logistic regression is a statistical
technique that computes the probability of an unclassified item belonging to a
predefined class.

You might like to run the example with the code in the source code that ships with
this book; I will explain the important steps in the following section. In Eclipse, open
the code file OnlineLogisticRegressionTrain.java from the package chapter4.
logistic.src, which is present in the directory learningApacheMahout/src/
main/java/chapter4/src/logistic in the code folder that comes with this book.

The first step is to identify the source and target folders:

String inputFile = "data/chapter4/train_data/input_bank_data.csv";
String outputFile = "data/chapter4/model";

Chapter 1

[21]

Once we know where to get the data from, we need to tell the algorithm about how
to interpret the data. We pass the column name and the corresponding column type;
here, n denotes the numeric column and w, the categorical columns of the data:

List<String> predictorList =Arrays.asList("age","job","marital","educat
ion","default","housing","loan","contact","month","day_of_week","durati
on","campaign","pdays","previous","poutcome","emp.var.rate","cons.price.
idx","cons.conf.idx","euribor3m","nr.employed");

List<String> typeList = Arrays.asList("n","w","w","w","w","w","w","w","w"
,"w","n","n","n","n","w","n","n","n","n","n");

Set the classifier parameters. LogisticModelParameters is a wrapper class, in
Mahout's example distribution, used to set the parameters for training logistic
regression and to return the instance of a CsvRecordFactory:

LogisticModelParameters lmp = new LogisticModelParameters();
 lmp.setTargetVariable("y");
 lmp.setMaxTargetCategories(2);
 lmp.setNumFeatures(20);
 lmp.setUseBias(false);
 lmp.setTypeMap(predictorList,typeList);
 lmp.setLearningRate(0.5);
 int passes = 50;

We set the the target variable y to be used for training, the maximum number of
target categories to be 2 (Yes, No), the number of features or columns in the data
excluding the target variable (which is 20), and some other settings (which we
will learn about later in this book). The variable passed has been given a value
of 50, which means the maximum number of iteration over the data will be 50.

The CsvRecordFactory class returns an object to parse the CSV file based
on the parameters passed. The LogisticModelParameters class takes care of
passing the parameters to the constructor of CsvRecordFactory. We use the
class RandomAccessSparseVector to encode the data into vectors and train
the model using lr.train(targetValue, input):

CsvRecordFactory csv = lmp.getCsvRecordFactory();
lr = lmp.createRegression();
for (int pass = 0; pass < passes; pass++) {
 BufferedReader in = new BufferedReader(new
FileReader(inputFile));

 csv.firstLine(in.readLine());

Introduction to Mahout

[22]

 String line = in.readLine();
 int lineCount = 2;
 while (line != null) {

 Vector input = new RandomAccessSparseVector(lmp.
getNumFeatures());
 int targetValue = csv.processLine(line, input);

 // update model
 lr.train(targetValue, input);
 k++;

 line = in.readLine();
 lineCount++;
 }
 in.close();
 }

The output after running the code would be an equation denoting the logistic
regression. Excerpts of the equation are copied here:

y ~ -97.230*age + -12.713*campaign + . . .

You will learn about logistic regression, how to interpret the equation, and how
to evaluate the results in detail in Chapter 4, Classification with Mahout.

Parallel versus in-memory execution mode
Mahout has both parallel and in-memory execution for many machine learning
algorithms. In-memory execution can be used when the data size is smaller or to try
out different algorithms quickly without installing Hadoop. In-memory execution
is restricted to one machine whereas the parallel are designed to run on different
machines. The parallel execution is implemented over Hadoop using the MapReduce
paradigm, and for parallel execution; we call the code via the driver class to run
the Hadoop MapReduce job. Let's see which algorithms have single machine and
parallel execution. We have grouped the algorithms according to the paradigm such
as collaborative filtering, classification, and so on. The first column of the table is the
name of the column, the second column indicates whether the algorithm has a single
machine implementation, and the third column indicates whether the algorithm has
a parallel execution implementation.

Chapter 1

[23]

The collaborative filtering table is as follows:

Algorithm Single machine Parallel
User-based collaborative filtering Y N
Item-based collaborative filtering Y Y
Matrix factorization with alternating least squares Y Y
Matrix factorization with alternating least squares
on implicit feedback

Y Y

Weighted matrix factorization Y N

The classification table is as follows:

Algorithm Single machine Parallel
Logistic regression Y N
Naïve Bayes/Complementary naïve Bayes N Y
Random forest N Y
Hidden Markov models Y N
Multilayer perceptron Y N

The clustering table is as follows:

Algorithm Single machine Parallel
Canopy clustering Y Y
k-means clustering Y Y
Fuzzy k-means Y Y
Streaming k-means Y Y
Spectral clustering N Y

The dimensionality reduction table is as follows:

Algorithm Single machine Parallel
Singular value decomposition Y N
Lanczos algorithm Y Y
Stochastic SVD Y Y
Principal component analysis Y Y

Introduction to Mahout

[24]

The topic models table is as follows:

Algorithm Single machine Parallel
Latent Dirichlet allocation Y Y

The miscellaneous table is as follows:

Algorithm Single machine Parallel
Frequent pattern mining N Y
RowSimilarityJob N Y
ConcatMatrices N Y
Collocations N Y

Summary
In this chapter, we discussed the guiding principle of Mahout and tried out some
examples to get a hands-on feel of Mahout. We discussed why, when, and how
to use Mahout and walked through the installation steps of the required tools and
software. We then learned how to use Mahout from the command line and from
the code, and finally concluded with a comparison between the parallel and the
single-machine execution of Mahout.

This is the beginning of what will hopefully be an exciting journey. In the forthcoming
chapters, we will discuss a lot of practical applications for Mahout. In the next chapter,
we will discuss the core concepts of machine learning. A clear understanding of the
concepts of different machine learning algorithms is of paramount importance for a
successful career in data analytics.

[25]

Core Concepts in
Machine Learning

The purpose of this chapter is to understand the core concepts of machine learning.
We will focus on understanding the steps involved in, resolving different types of
problems and application areas in machine learning. In particular we will cover the
following topics:

• Supervised learning
• Unsupervised learning
• The recommender system
• Model efficacy

A wide range of software applications today try to replace or augment human
judgment. Artificial Intelligence is a branch of computer science that has long been
trying to replicate human intelligence. A subset of AI, referred to as machine learning,
tries to build intelligent systems by using the data. For example, a machine learning
system can learn to classify different species of flowers or group-related news items
together to form categories such as news, sports, politics, and so on, and for each of
these tasks, the system will learn using data. For each of the tasks, the corresponding
algorithm would look at the data and try to learn from it. In the next few sections,
you will learn about the major concepts and paradigms related to machine learning.

Core Concepts in Machine Learning

[26]

Supervised learning
Supervised learning deals with training algorithms with labeled data, inputs for
which the outcome or target variables are known, and then predicting the outcome/
target with the trained model for unseen future data. For example, historical e-mail
data will have individual e-mails marked as ham or spam; this data is then used for
training a model that can predict future e-mails as ham or spam. Supervised learning
problems can be broadly divided into two major areas, classification and regression.

Classification deals with predicting categorical variables or classes; for example,
whether an e-mail is ham or spam or whether a customer is going to renew a
subscription or not, for example a postpaid telecom subscription. This target
variable is discrete, and has a predefined set of values.

Regression deals with a target variable, which is continuous. For example, when we
need to predict house prices, the target variable price is continuous and doesn't have
a predefined set of values.

In order to solve a given problem of supervised learning, one has to perform the
following steps.

Determine the objective
The first major step is to define the objective of the problem. Identification of class
labels, what is the acceptable prediction accuracy, how far in the future is prediction
required, is insight more important or is accuracy of classification the driving factor,
these are the typical objectives that need to be defined. For example, for a churn
classification problem, we could define the objective as identifying customers who
are most likely to churn within three months. In this case, the class label from the
historical data would be whether a customer has churned or not, with insights into
the reasons for the churn and a prediction of churn at least three months in advance.

Decide the training data
After the objective of the problem has been defined, the next step is to decide what
training data should be used. The training data is directly guided by the objective of
the problem to be solved. For example, in the case of an e-mail classification system,
it would be historical e-mails, related metadata, and a label marking each e-mail as
spam or ham. For the problem of churn analysis, different data points collected about
a customer such as product usage, support case, and so on, and a target label for
whether a customer has churned or is active, together form the training data.

Chapter 2

[27]

Churn Analytics is a major problem area for a lot of businesses
domains such as BFSI, telecommunications, and SaaS. Churn is
applicable in circumstances where there is a concept of term-bound
subscription. For example, postpaid telecom customers subscribe for
a monthly term and can choose to renew or cancel their subscription.
A customer who cancels this subscription is called a churned customer.

Create and clean the training set
The next step in a machine learning project is to gather and clean the dataset. The
sample dataset needs to be representative of the real-world data, though all available
data should be used, if possible. For example, if we assume that 10 percent of e-mails
are spam, then our sample should ideally start with 10 percent spam and 90 percent
ham. Thus, a set of input rows and corresponding target labels are gathered from data
sources such as warehouses, or logs, or operational database systems. If possible, it is
advisable to use all the data available rather than sampling the data. Cleaning data for
data quality purposes forms part of this process. For example, training data inclusion
criteria should also be explored in this step. An example of this in the case of customer
analytics is to decide the minimum age or type of customers to use in the training set,
for example including customers aged at least six months.

Feature extraction
Determine and create the feature set from the training data. Features or
predictor variables are representations of the training data that is used as input
to a model. Feature extraction involves transforming and summarizing that data.
The performance of the learned model depends strongly on its input feature set.
This process is primarily called feature extraction and requires good understanding
of data and is aided by domain expertise. For example, for churn analytics, we
use demography information from the CRM, product adoption (phone usage in
case of telecom), age of customer, and payment and subscription history as the
features for the model. The number of features extracted should neither be too large
nor too small; feature extraction is more art than science and, optimum feature
representation can be achieved after some iterations. Typically, the dataset is
constructed such that each row corresponds to one variable outcome. For example,
in the churn problem, the training dataset would be constructed so that every row
represents a customer.

Core Concepts in Machine Learning

[28]

Train the models
We need to try out different supervised learning algorithms. This step is called training
the model and is an iterative process where you might try building different training
samples and try out different combinations of features. For example, we may choose
to use support vector machines or decision trees depending upon the objective of the
study, the type of problem, and the available data. Machine learning algorithms can
be bucketed into groups based on the ability of a user to interpret how the predictions
were arrived at. If the model can be interpreted easily, then it is called a white box, for
example decision tree and logistic regression, and if the model cannot be interpreted
easily, they belong to the black box models, for example support vector machine
(SVM). If the objective is to gain insight, a white box model such as decision tree or
logistic regression can be used, and if robust prediction is the criteria, then algorithms
such as neural networks or support vector machines can be used.

While training a model, there are a few techniques that we should keep in mind,
like bagging and boosting.

Bagging
Bootstrap aggregating, which is also known as bagging, is a technique where the data
is taken from the original dataset S times to make S new datasets. The datasets are
the same size as the original. Each dataset is built by randomly selecting an example
from the original with replacement. By with replacement we mean that you can select
the same example more than once. This property allows you to have values in the
new dataset that are repeated, and some values from the original won't be present
in the new set. Bagging helps in reducing the variance of a model and can be used to
train different models using the same datasets. The final conclusion is arrived at after
considering the output of each model.

For example, let's assume our data is a, b, c, d, e, f, g, and h. By sampling our data five
times, we can create five different samples as follows:

• Sample 1: a, b, c, c, e, f, g, h
• Sample 2: a, b, c, d, d, f, g, h
• Sample 3: a, b, c, c, e, f, h, h
• Sample 4: a, b, c, e, e, f, g, h
• Sample 5: a, b, b, e, e, f, g, h

Chapter 2

[29]

As we sample with replacement, we get the same examples more than once.
Now we can train five different models using the five sample datasets. Now,
for the prediction; as each model will provide the output, let's assume classes
are yes and no, and the final outcome would be the class with maximum votes.
If three models say yes and two no, then the final prediction would be class yes.

Boosting
Boosting is a technique similar to bagging. In boosting and bagging, you always
use the same type of classifier. But in boosting, the different classifiers are trained
sequentially. Each new classifier is trained based on the performance of those
already trained, but gives greater weight to examples that were misclassified
by the previous classifier. Boosting focuses new classifiers in the sequence on
previously misclassified data.

Boosting also differs from bagging in its approach of calculating the final prediction.
The output is calculated from a weighted sum of all classifiers, as opposed to the
method of equal weights used in bagging. The weights assigned to the classifier output
in boosting are based on the performance of the classifier in the previous iteration.

Validation
After collecting the training set and extracting the features, you need to train the
model and validate it on unseen samples. There are many approaches for creating
the unseen sample called the validation set. We will be discussing a couple of
them shortly.

Holdout-set validation
One approach to creating the validation set is to divide the feature set into train
and test samples. We use the train set to train the model and test set to validate it.
The actual percentage split varies from case to case but commonly it is split at 70
percent train and 30 percent test. It is also not uncommon to create three sets, train,
test and validation set. Train and test set is created from data out of all considered
time periods but the validation set is created from the most recent data.

K-fold cross validation
Another approach is to divide the data into k equal size folds or parts and then use
k-1 of them for training and one for testing. The process is repeated k times so that
each set is used as a validation set once and the metrics are collected over all the
runs. The general standard is to use k as 10, which is called 10-fold cross-validation.

Core Concepts in Machine Learning

[30]

Evaluation
The objective of evaluation is to test the generalization of a classifier. By generalization,
we mean how good the model performs on future data. Ideally, evaluation should be
done on an unseen sample, separate to the validation sample or by cross-validation.
There are standard metrics to evaluate a classifier against. We will discuss them in the
model efficacy section. There are a few things to consider while training a classifier that
we should keep in mind. We will discuss those in this section.

Bias-variance trade-off
 The first aspect to keep in mind is the trade-off between bias and variance.

To understand the meaning of bias and variance, let's assume that we have several
different, but equally good, training datasets for a specific supervised learning
problem. We train different models using the same technique; for example, build
different decision trees using the different training datasets available.

Bias measures how far off in general a model's predictions are from the correct value.
Bias can be measured as the average difference between a predicted output and its
actual value. A learning algorithm is biased for a particular input X if, when trained
on different training sets, it is incorrect when predicting the correct output for X.

Variance is how greatly the predictions for a given point vary between different
realizations of the model. A learning algorithm has high variance for a particular input
X if it predicts different output values for X when trained on different training sets.

Generally, there will be a trade-off between bias and variance. A learning algorithm
with low bias must be flexible so that it can fit the data well. But if the learning
algorithm is too flexible, it will fit each training dataset differently, and hence have
high variance. A key aspect of many supervised learning methods is that they are
able to adjust this trade-off between bias and variance. The plot on the top left is
the scatter plot of the original data. The plot on the top right is a fit with high bias;
the error in prediction in this case will be high. The bottom left image is a fit with
high variance; the model is very flexible, and error on the training set is low but the
prediction on unseen data will have a much higher degree of error as compared to
the training set. The bottom right plot is an optimum fit with a good trade-off of bias
and variance. The model explains the data well and will perform in a similar way for
unseen data too.

Chapter 2

[31]

If the bias-variance trade-off is not optimized, it leads to problems of under-fitting and
over-fitting. The plot shows a visual representation of the bias-variance trade-off.

Over-fitting occurs when an estimator is too flexible and tries to fit the data too
closely. High variance and low bias leads to over-fitting of data.

Under-fitting occurs when a model is not flexible enough to capture the underlying
trends in the observed data. Low variance and high bias leads to under-fitting of data.

Core Concepts in Machine Learning

[32]

Function complexity and amount of training data
The second aspect to consider is the amount of training data needed to properly
represent the learning task. The amount of data required is proportional to the
complexity of the data and learning task at hand. For example, if the features in
the data have low interaction and are smaller in number, we could train a model
with a small amount of data. In this case, a learning algorithm with high bias and
low variance is better suited.

But if the learning task at hand is complex and has a large number of features
with higher degree of interaction, then a large amount of training data is required.
In this case, a learning algorithm with low bias and high variance is better suited.

It is difficult to actually determine the amount of data needed, but the complexity
of the task provides some indications.

Dimensionality of the input space
A third aspect to consider is the dimensionality of the input space. By dimensionality,
we mean the number of features the training set has. If the input feature set has a very
high number of features, any machine learning algorithm will require a huge amount
of data to build a good model.

In practice, it is advisable to remove any extra dimensionality before training the
model; this is likely to improve the accuracy of the learned function. Techniques like
feature selection and dimensionality reduction can be used for this. We will discuss
in details the problems of higher dimensionality and a few of the techniques for
dimensionality reduction in Chapter 3, Feature Engineering.

Noise in data
The fourth issue is noise. Noise refers to inaccuracies in data due to various issues.
Noise can be present either in the predictor variables, or in the target variable.
Both lead to model inaccuracies and reduce the generalization of the model.

In practice, there are several approaches to alleviate noise in the data; first would
be to identify and then remove the noisy training examples prior to training the
supervised learning algorithm, and second would be to have an early stopping
criteria to prevent over-fitting.

Chapter 2

[33]

Unsupervised learning
Unsupervised learning deals with unlabeled data. The objective is to observe
structure in data and find patterns. Tasks like cluster analysis, association rule
mining, outlier detection, dimensionality reduction, and so on can be modeled as
unsupervised learning problems. As the tasks involved in unsupervised learning
vary vastly, there is no single process outline that we can follow. We will follow
the process of some of the most common unsupervised learning problems.

Cluster analysis
Cluster analysis is a subset of unsupervised learning that aims to create groups
of similar items from a set of items. Real life examples could be clustering movies
according to various attributes like genre, length, ratings, and so on. Cluster
analysis helps us identify interesting groups of objects that we are interested in.
It could be items we encounter in day-to-day life such as movies, songs according
to taste, or interests of users in terms of their demography or purchasing patterns.
Let's consider a small example so you understand what we mean by interesting
groups and understand the power of clustering. We will use the Iris dataset, which
is a standard dataset used for academic research and it contains five variables: sepal
length, sepal width, petal length, petal width, and species with 150 observations.
The first plot we see shows petal length against petal width. Each color represents
a different species. The second plot is the groups identified by clustering the data.

Core Concepts in Machine Learning

[34]

Looking at the plot, we can see that the plot of petal length against petal width
clearly separates the species of the Iris flower and in the process, it clusters the
group's flowers of the same species together. Cluster analysis can be used to
identify interesting patterns in data.

The process of clustering involves these four steps. We will discuss each of them
in the section ahead.

• Objective
• Feature representation
• Algorithm for clustering
• A stopping criteria

Objective
What do we want to cluster? This is an important question. Let's assume we have a
large customer base for some kind of an e-commerce site and we want to group them
together. How do we want to group them? Do we want to group our users according
to their demography, such as age, location, income, and so on or are we interested in
grouping them together? A clear objective is a good start, though it is not uncommon
to start without an objective and see what can be done with the available data.

Feature representation
As with any machine learning task, feature representation is important for
cluster analysis too. Creating derived features, summarizing data, and converting
categorical variables to continuous variables are some of the common tasks. The
feature representation needs to represent the objective of clustering. For example,
if the objective is to cluster users based upon purchasing behavior, then features
should be derived from purchase transaction and user demography information.
If the objective is to cluster documents, then features should be extracted from the
text of the document.

Feature normalization
To compare the feature vectors, we need to normalize them. Normalization could be
across rows or across columns. In most cases, both are normalized.

Chapter 2

[35]

Row normalization
The objective of normalizing rows is to make the objects to be clustered, comparable.
Let's assume we are clustering organizations based upon their e-mailing behavior.
Now organizations are very large and very small, but the objective is to capture the
e-mailing behavior, irrespective of size of the organization. In this scenario, we need
to figure out a way to normalize rows representing each organization, so that they
can be compared. In this case, dividing by user count in each respective organization
could give us a good feature representation. Row normalization is mostly driven by
the business domain and requires domain expertise.

Column normalization
The range of data across columns varies across datasets. The unit could be different or
the range of columns could be different, or both. There are many ways of normalizing
data. Which technique to use varies from case to case and depends upon the objective.
A few of them are discussed here.

Rescaling
The simplest method is to rescale the range of features to make the features
independent of each other. The aim is scale the range in [0, 1] or [−1, 1]:

()
() ()
min

max min
x x

x
x x
−

′ =
−

Here x is the original value and x', the rescaled valued.

Standardization
Feature standardization allows for the values of each feature in the data to have
zero-mean and unit-variance. In general, we first calculate the mean and standard
deviation for each feature and then subtract the mean in each feature. Then, we
divide the mean subtracted values of each feature by its standard deviation:
Xs = (X – mean(X)) / standard deviation(X).

A notion of similarity and dissimilarity
Once we have the objective defined, it leads to the idea of similarity and dissimilarity
of object or data points. Since we need to group things together based on similarity,
we need a way to measure similarity. Likewise to keep dissimilar things apart,
we need a notion of dissimilarity. This idea is represented in machine learning by
the idea of a distance measure. Distance measure, as the name suggests, is used to
measure the distance between two objects or data points.

Core Concepts in Machine Learning

[36]

Euclidean distance measure
Euclidean distance measure is the most commonly used and intuitive
distance measure:

() () () () ()2 2 2 2
1 1 2 2, i i n nd p q p q p q p q p q= − + − + + − + + −… …

Squared Euclidean distance measure
The standard Euclidean distance, when squared, places progressively greater weight
on objects that are farther apart as compared to the nearer objects. The equation to
calculate squared Euclidean measure is shown here:

() () () () ()2 2 2 22
1 1 2 2, i i n nd p q p q p q p q p q= − + − + + − + + −… …

Manhattan distance measure
Manhattan distance measure is defined as the sum of the absolute difference of the
coordinates of two points. The distance between two points measured along axes at
right angles. In a plane with p1 at (x1, y1) and p2 at (x2, y2), it is |x1 - x2| + |y1 - y2|:

()1 1
1

,
n

i i
i

d p q
=

= − = −∑p q p q

Cosine distance measure
The cosine distance measure measures the angle between two points. When this
angle is small, the vectors must be pointing in the same direction, and so in some
sense the points are close. The cosine of this angle is near one when the angle is
small, and decreases as it gets larger. The cosine distance equation subtracts the
cosine value from one in order to give a proper distance, which is 0 when close
and larger otherwise.

The cosine distance measure doesn't account for the length of the two vectors;
all that matters is that the points are in the same direction from the origin. Also
note that the cosine distance measure ranges from 0.0, if the two vectors are along
the same direction, to 2.0, when the two vectors are in opposite directions:

()
() ()()

1 1 2 2

2 2 2 2 2 2
1 2 1 2

1 n n

n n

a b a b a b
d

a a a b b b

+ + +
= −

+ + + + + +

…

… …

Chapter 2

[37]

Tanimoto distance measure
The Tanimoto distance measure, like the cosine distance measure, measures the
angle between two points, as well as the relative distance between the points:

()
() ()() ()

1 1 2 2

2 2 2 2 2 2
1 2 1 2 1 1 2 2

1 n n

n n n n

a b a b a b
d

a a a b b b a b a b a b

+ + +
= −

+ + + + + + − + + +

…

… … …

Apart from the standard distance measure, we can also define our own distance
measure. Custom distance measure can be explored when existing ones are not
able to measure the similarity between items.

Algorithm for clustering
The type of clustering algorithm to be used is driven by the objective of the problem at
hand. There are several options and the predominant ones are density-based clustering,
distance-based clustering, distribution-based clustering, and hierarchical clustering.
The choice of algorithm to be used depends upon the objective of the problem.

A stopping criteria
We need to know when to stop the clustering process. The stopping criteria could be
decided in different ways: one way is when the cluster centroids don't move beyond
a certain margin after multiple iterations, a second way is when the density of the
clusters have stabilized, and third way could be based upon the number of iterations,
for example stopping the algorithm after 100 iterations. The stopping criteria depends
upon the algorithm used, the goal being to stop when we have good enough clusters.

Frequent pattern mining
Frequent pattern mining is a popular and well-researched method to uncover
interesting relationships between variables in large databases. It is intended to identify
strong rules discovered in databases using different measures of interestingness. For
example, the rule {onions, potatoes}→{burger} found in the sales data of a supermarket
would indicate that if a customer buys onions and potatoes together, he or she is likely
to also buy hamburger meat. Such information can be used as the basis for decisions
about marketing activities, such as promotional pricing or product placements. In
addition to the preceding example, from the market basket analysis, association rules
are employed today in many application areas including web usage mining, intrusion
detection, continuous production, and bioinformatics.

Core Concepts in Machine Learning

[38]

Measures for identifying interesting rules
The rules that are discovered in a database should be filtered by some criteria
of interest, otherwise we will be flooded by a large number of insignificant rules.
There are a few ways of defining the degree of interest and we will use a table to
explain them:

Transaction Item1 Item2 Item3 Item4
1 1 1 0 0
2 0 0 1 0
3 0 0 0 1
4 1 1 1 0
5 0 1 0 0

Support
The support supp(x) of an itemset X is defined as the proportion of transactions in
the dataset, which contain the itemset. In the example database, the itemset {Item1,
Item2, Item3} has a support of 1/5=0.2 since it occurs in 20 percent of all transactions
(1 out of 5 transactions).

Confidence
The confidence of a rule is defined as conf(x → y) = supp(x U y) / supp(x). For example,
the rule {Item3, Item2} → {Item1} has a confidence of 0.2/0.2=1.0 in the database,
which means that 100 percent of the transactions containing Item3 and Item2 also
contain Item1. Here sup(x U y) means support for occurrences of transactions where
X and Y both appear

Lift
The lift of a rule is defined as lift(X → Y) = supp(X U Y) / (supp(X) *supp(Y)) or
the ratio of the observed support to that expected if X and Y were independent.
The rule {Item1, Item2} → {Item3} has a lift of 0.2/ (0.4 * 0.4) = 1.25.

Conviction
The conviction of a rule is defined as conv(X → Y) = (1- supp(Y)) / (1 - conf(X → Y)).
The rule {Item1, Item2} → {Item3} has a conviction of (1 - 0.4)/ (1 - 0.5) = 1.2, and
it can be interpreted as the ratio of the expected frequency that X occurs without Y
(that is to say, the frequency that the rule makes an incorrect prediction) if X and Y
were independently divided by the observed frequency of incorrect predictions.

Chapter 2

[39]

In this example, the conviction value of 1.2 shows that the rule {Item1, Item2}
→ {Item3} would be incorrect 20 percent more often (1.2 times as often) if the
association between X and Y was a purely random chance.

Things to consider
For an association rule mining project to be successful, we need to consider a couple
of things, which are discussed here.

Actionable rules
While filtering the association rules, focus should be on looking at actionable rules.
Many a time, the algorithm will churn out simple rules such {Car} → {Car Insurance},
which though true, are as simple as a person buying a car is bound to buy car
insurance. Similarly, we could get inexplicable rules, which might provide some
insight, but are not very actionable.

What association to look for
Many rule mining implementations allow you to define the left or the right-hand side
of the association to look for. Even if the particular implementation you are working
on doesn't have that capability, you can always post-process the rules. This approach
is particularly helpful when the data is very large and generates a lot of rules. The
associations to look for could be defined in a discussion with the business users; for
example, are they aware of the products that loyal customers buy and do they want
to push some more related products to them? Or are they interested in identifying
products that are not doing well and they want to replace it with some other products
to push sales? In the former case, the known items would be on the right-hand side of
the association and you could look at the left-hand side of the rules for insight; in the
latter case, the product would be on the right-hand side and you could look at the left-
hand side to find products to club together.

Recommender system
There is a lot of interest in recommending items to a user. Suppose a user goes
to an e-commerce site, what should be recommended to the user? Items might be
recommended based upon what a user previously liked, bought, or what their
friends liked. Recommenders deal with discovering new items for which a user
could have a higher preference.

Core Concepts in Machine Learning

[40]

Recommender systems typically produce a list of recommendations in one of two
ways—through collaborative or content-based filtering. Collaborative filtering
based approaches build a model for recommendation from a user's past behavior;
for example, based on items previously purchased or selected by the user, based on
ratings given to items previously purchased or selected by the user, based on decisions
made by users similar to the current user. The model built using past behavior can
then be used to recommend items to the user. Content-based filtering approaches
utilize a series of discrete characteristics of an item, in order to recommend additional
items with similar properties. These approaches are often combined to build a hybrid
recommendation system.

Collaborative filtering
The first approach to a recommendation system that we will discuss is collaborative
filtering. This approach is based on collecting and analyzing large amount of data
based on the user's behavior, preferences, and activities such as browsing history,
purchase history, and so on. The recommendations are generated for items that
a user has not yet disclosed any preference, based upon similar users or similar
items. A key point to note is that collaborative filtering doesn't take into account
the attributes or characteristics of the item itself. We don't need to know anything
about a book to recommend it.

The data points that are generally considered are as follows:

• History of the user's preference of items on a predefined scale,
for example zero to five

• History of the user's searches and browsing history
• Items that the user has liked
• Items bought by the user over a period of time
• Information from the user's social network to discover similarity in likes

and dislikes

There are a few common issues to keep in mind while creating a recommender
system, they are as follows.

Cold start
Collaborative filtering often requires a large amount of existing data on a user, in
order to make accurate recommendations. While designing a new system, we won't
have data for user item interactions.

Chapter 2

[41]

Scalability
Collaborative filtering algorithms normally need to analyze millions of records of
different users and product. Scaling a recommender system to handle large volumes
of data is a big challenge.

Sparsity
Sparse data, irrespective of the learning problem and algorithm, is always hard to
model. The recommender system generally builds recommendations around a large
number of items, whereas user activity typically is concentrated around a smaller
subset of the items. For example, an e-commerce site sells a large number of items
but the users would have provided preferences for a very small number of items.
Addressing this scenario is not simple.

Content-based filtering
An alternative to collaborative filtering is content-based filtering, also called
cognitive filtering. In contrast to collaborative filtering, content-based filtering
depends on the understanding of the items to be recommended. Attributes are
derived from the items that recommend the described items. A user profile is built
that describes the interests of a user and recommendations are provided based on
matching user and item descriptions. For example, if a user expresses an interest
in action-based movies, then highly rated movies of the action genre could be
recommended. We will be focusing on collaborative filtering in this book and
content-based filtering will not be covered hereafter.

Model efficacy
The main goal of model building in machine learning is generalization, which is how
well the model will perform its intended objective. Generalization means how the
model would perform on new unseen data, typically data in production. To estimate
the generalization of a model, we need to test its performance based on unseen data.
The mechanism to do it varies, depending upon the task at hand.

Classification
In this section, we will discuss the common ways to evaluate the efficacy of a
classification model.

Core Concepts in Machine Learning

[42]

Confusion matrix
One of the most common and basic ways of evaluating a model's performance is
by creating a confusion matrix and computing various metrics such as accuracy,
precision, recall, and so on. We will start with an example for two class classifiers
to understand the concepts, and then extend it to problems involving more than
two classes.

The confusion matrix is as follows:

Classifier
Predicted
Negative Positive

Actual
Negative A B
Positive C D

We label one class as positive and the other as negative. To illustrate some specific
problems with an unbalanced dataset, we will consider examples with unbalanced
class labels, where negative is ham and positive is spam.

The entries in the confusion matrix have the following meaning in the context of
our study:

• A is the number of correct predictions that an instance is negative, where
ham is predicted as ham.

• B is the number of incorrect predictions that an instance is positive, where
ham is predicted as spam.

• C is the number of incorrect predictions that an instance is negative, where
spam is predicted as ham.

• D is the number of correct predictions that an instance is positive, where
spam is predicted as spam.

The performance metric derived from the confusion matrix is as follows:

• The accuracy (AC) is the proportion of the total number of predictions that
were correct. It is determined using the equation:

a dAC
a b c d

+
=

+ + +

Chapter 2

[43]

• The recall or true positive rate (TP) is the proportion of positive cases that
were correctly identified, as calculated using the equation:

dTP
c d

=
+

• The false positive rate (FP) is the proportion of negative cases that were
incorrectly classified as positive, as calculated using the equation:

bFP
a b

=
+

• The true negative rate (TN) is defined as the proportion of negatives cases
that were classified correctly, as calculated using the equation:

aTN
a b

=
+

• The false negative rate (FN) is the proportion of positive cases that were
incorrectly classified as negative, as calculated using the equation:

cFN
c d

=
+

• Finally, precision (P) is the proportion of the predicted positive cases that
were correct, as calculated using the equation:

dP
b d

=
+

Another way of measuring a model's accuracy is to compute the F-score. The balanced
F-score is the harmonic mean of precision and recall:

1 2 precision recallF
precision recall

⋅
= ⋅

+

Core Concepts in Machine Learning

[44]

For unbalanced class problems, the accuracy may not be an adequate performance
measure when the number of negative cases is much greater than the number of
positive cases. Suppose there are 1000 cases, 995 of which are negative cases and
five are positive cases; if the system classifies them all as negative, the accuracy
would be 99.5 percent, even though the classifier missed all positive cases. In this
scenario, we could use the general formula, as follows:

() ()
2

2
1 precision recallF

precision recallβ β
β

⋅
= + ⋅

⋅ +

β has a value from 0 to infinity and is used to control the weight assigned to TP and
P. Typically, we can use the ratio of positive to negative cases as the value of β.

ROC curve and AUC
The ROC curve is an alternative way to evaluate the performance of classifiers.
The ROC curve plots the false positive rate against the true positive rate. Typically,
the false positive rate is plotted on the x axis and true positive rate is plotted on the
y axis. The point (0, 1) represents the perfect classifier as the false positive rate is
zero and true positive rate is 1. A similar deduction can be derived for (0,0), which
denotes all cases as negative (1,0) and (1,1).

Features of ROC graphs
The features of the ROC graph are as follows:

• The ROC curve is independent of the class distribution of the data or the
relative error costs of the classes

• The ROC graph represents all the information that can be derived from the
confusion matrix and additionally, provides a visual representation of the
performance of a classifier

• ROC curves provide a visual tool for examining the trade-off between the
ability of a classifier to correctly identify positive cases and the number of
negative cases that are incorrectly classified

Chapter 2

[45]

The red line plots the ROC curve.

Evaluating classifier using the ROC curve
Once we have built the ROC curve, there are a few standard ways to summarize a
model performance from it.

Area-based accuracy measure
The area under the ROC curve, commonly known as AUC, can be used to estimate
the performance of a model. AUC ranges between zero and one. The higher the
value, the better the performance of a classifier. Generally, an AUC greater than eight
is considered excellent and values between six and eight are considered good, but
the thresholds should depend upon the task at hand. One point to note about AUC is
that it is very important to look at the ROC curve itself, as two very different curves
can have a similar AUC. AUC gives a good representative number for a model's
performance but cannot replace the value of actually visualizing it on an ROC curve.

Euclidian distance comparison
As noted earlier, there could be scenarios where the cost of misclassification is
not equal for each class and you learned how to address those scenarios using
the F-measure. We could do the same using the ROC curve by measuring the
Euclidean distance between the perfect classifier (0,1) and the current classifier.
We include the weight factor W as having a range between zero and one and
assign the weights W to the true positive and 1 - W to the false positive rate.
This gives us the following formula:

() ()2 21 1 1dAC W TP W FP= − ∗ − + − ∗

Core Concepts in Machine Learning

[46]

The value of ACd ranges from 0 for the perfect classifier to the square root of two for
a classifier that classifies all cases incorrectly.

Example
Consider two algorithms A and B that perform adequately against most datasets.
However, assume both A and B misclassify all positive cases in a particular dataset
and A classifies 10 times the number of infrequent item sets as potentially frequent
compared to B. Algorithm B is the better algorithm in this case, because it has wasted
less effort counting infrequent item sets.

Regression
In this section, we will discuss the common ways to evaluate the efficacy of a
regression model.

Mean absolute error
Mean absolute error is defined as the mean of the magnitude of difference between
the actual and the predicted values. While calculating absolute mean value, we
don't consider the +- sign in its value. The mean absolute error has the same unit
as the original data, and it can only be compared between models whose errors are
measured in the same units.

1

n

i i
i
p a

MAE
n

=

−
=
∑

Here p is the predicted value, a the actual value, and n the number of samples.

An alternative is a relative absolute error, which can be compared between models
whose errors are measured in the different units. It is defined as the ratio of mean
absolute error to the mean value of the measured quantity.

1

1

n

i i
i
n

i
i

p a
RAE

a a

=

=

−
=

−

∑

∑

Chapter 2

[47]

Root mean squared error
RMSE is a popular formula used to measure the error rate of a regression model.
However, it can only be compared between models whose errors are measured
in the same units.

()2
1

n

i i
i
p a

RMSE
n

=

−
=
∑

Here p is the predicted value, a the actual value and n the number of samples.
An alternative is to use relative squared error (RSE). The relative squared error can
be compared between models whose errors are measured in the different units.

()

()

2

1

2

1

n

i i
i
n

i
i

p a
RSE

a a

=

=

−
=

−

∑

∑

R-square
A common way to summarize how well a linear regression model fits the data is via
the coefficient of determination, or R2. This can be calculated as the square of the
correlation between the observed y values and the predicted ŷ values. Alternatively,
it can also be calculated as follows where the summations are overall observations:

()
()

2
2

2

ˆi

i

y y
R

y y
−

=
−

∑
∑

Thus, the proportion of variation in the forecast variable is accounted for (or
explained) by the regression model.

If the predictions are close to the actual values, we would expect R2 to be close to
one. On the other hand, if the predictions are unrelated to the actual values, then
R2=0. In all cases, R2 lies between zero and one.

Core Concepts in Machine Learning

[48]

Adjusted R-square
The use of an adjusted R2 (often written as \bar R^2 and pronounced R bar squared)
is an attempt to take account of the phenomenon of the R2 value automatically and
spuriously increasing when extra explanatory variables are added to the model. It is
a modification for each class of R2 that adjusts the number of explanatory terms in
a model relative to the number of data points. The adjusted R2 can be negative, and
its value will always be less than or equal to that of R2. Unlike R2, on inclusion of a
new explanator, the adjusted R2 value will only increase if the improvement seen
is not by chance. If a set of explanatory variables with a predetermined hierarchy of
importance is introduced into a regression, one variable at a time, with the adjusted
R2 computed each time, the level at which the adjusted R2 reaches a maximum, and
decreases afterward, would be the regression with the ideal combination of having
the best fit without excess/unnecessary terms. The adjusted R2 is defined as follows
where p is the total number of regressors in the linear model (not counting the
constant term), and n is the sample size.:

() ()2 2 2 211 1 1
1 1

n pR R R R
n p n p

−
= − − = − −

− − − −

Recommendation system
Evaluation of recommenders follows the same paradigm as for the supervised
learning evaluation; keep aside a test dataset from the training data and evaluate
the recommender based on the test data.

Score difference
We keep aside a test sample, where items already rated are kept aside as a test set.
The training sample doesn't include the test ratings and the recommender estimates
the ratings for those example ratings. The evaluation is based upon the difference
between the actual ratings and predicted ratings. The difference can be defined in
various ways, depending upon the requirement. Average difference or root mean
square difference (to match below) are the most commonly used methods. Average
difference is straightforward and intuitive, whereas root mean square differences
can be used if we need to penalize larger difference in rating.

An illustration of the score difference is as follows:

Ratings Item 1 Item 2 Item 3
Actual 4 5 3
Predicted 3 4 5

Chapter 2

[49]

Ratings Item 1 Item 2 Item 3
Difference 1 1 2

Average difference = (1 + 1+ 2)/3 = 1.33

Root mean square difference = sqrt((1*1 + 1*1 + 2*2)/3) = 1.414

As you can see the rms difference is higher as one difference is greater.

For a recommender that only provides binary outcomes, approach based on score
difference cannot be used for providing future prediction, we need a different
approach which is discussed next.

Precision and recall
In scenarios where preference rating is not required and just a list of recommendations
is generated, we could use the previously discussed metric's precisions and recall
can be used to measure the performance of a recommender. Let's assume that the
recommender system provides a list of recommendations.

Precision is the proportion of top recommendations given that are good, and recall is
the proportion of good recommendations that appear in the top recommendations.

We have to define good before we can calculate the metrics. Good can be a user-defined
threshold value or it can be a default value. The default is an average preference value
per user plus one standard deviation.

Clustering
Typical objective functions in clustering formalize the goal of attaining high
intra-cluster similarity (documents within a cluster are similar) and low inter-cluster
similarity (documents from different clusters are dissimilar). Inter-cluster distances
are maximized, intra-cluster distances are minimized.

The internal evaluation
When a clustering result is evaluated based on the data that was clustered itself,
this is called internal evaluation. These methods usually assign the best score to
the algorithm that produces clusters with high similarity within a cluster and low
similarity between clusters.

Core Concepts in Machine Learning

[50]

The intra-cluster distance
The intra-cluster distance is the sum of the square distance from the items of
each cluster to its centroid.

The inter-cluster distance
The inter-cluster distance is the sum of the square distance between each
cluster centroid.

The Davies–Bouldin index
The Davies–Bouldin index can be calculated using the following formula:

()1

1 max
,

n
i j

i ji i j

DB
n d c c

σ σ
≠

=

 +
 =

∑

Here, n is the number of clusters, c_x is the centroid of cluster x, \sigma_x is the
average distance of all elements in cluster x to centroid c_x, and d(c_i,c_j) is the
distance between centroids c_i and c_j. Since algorithms that produce clusters with
low intra-cluster distances (high intra-cluster similarity) and high inter-cluster
distances (low inter-cluster similarity) will have a low Davies–Bouldin index,
the clustering algorithm that produces a collection of clusters with the smallest
Davies–Bouldin index is considered the best algorithm, based on this criterion.

The Dunn index
The Dunn index aims to identify dense and well-separated clusters. It is defined
as the ratio between the minimum inter-cluster distance to maximum intra-cluster
distance. For each cluster partition, the Dunn index can be calculated by the
following formula:

()
()1 1 ,

1

,
min min

maxi n j n i j
k n

d i j
D

d k≤ ≤ ≤ ≤ ≠
≤ ≤

 = ′

Chapter 2

[51]

Here, d(i,j) represents the distance between clusters i and j, and d^{'}(k) measures
the intra-cluster distance of cluster k. The inter-cluster distance d(i,j) between two
clusters may be any number of distance measures, such as the distance between
the centroids of the clusters. Similarly, the intra-cluster distance d^{'}(k) may be
measured in a variety of ways, such as the maximum distance between any pair of
elements in cluster k. Since internal criterion seek clusters with high intra-cluster
similarity and low inter-cluster similarity, algorithms that produce clusters with
a high Dunn index are more desirable.

The external evaluation
External evaluation is a form of clustering in which the results are evaluated based
on data that was not used for clustering. This data can be known class labels or other
external benchmarks. The benchmarks can consist of a set of preclassified items,
and these sets are often created by human experts. Hence, the set benchmarks can
be thought of as a gold standard for evaluation. These evaluation methods measure
how close the clustering is to the predetermined benchmark classes. However, it
has recently been discussed among experts whether this is adequate for real data, or
only on synthetic datasets with a factual ground truth. Since such classes can contain
internal structures, the attributes present may not allow separation of clusters, or
the classes themselves might contain anomalies. Additionally, from a knowledge
discovery point of view, the reproduction of known knowledge may not necessarily
be the intended result.

Some of the quality measures of a cluster algorithm using an external criterion are
mentioned here.

The Rand index
The Rand index computes how similar the clusters (returned by the clustering
algorithm) are to the benchmark classifications. One can also view the Rand index
as a measure of the percentage of correct decisions made by the algorithm. It can
be computed using the following formula:

TP TNRI
TP FP FN TN

+
=

+ + +

Here, TP is the number of true positives, TN is the number of true negatives, FP is
the number of false positives, and FN is the number of false negatives. One issue with
the Rand index is that false positives and false negatives are equally weighted. This
may be an undesirable characteristic for some clustering applications. The F-measure
addresses this concern.

Core Concepts in Machine Learning

[52]

F-measure
The F-measure can be used to balance the contribution of false negatives by weighting
recall through a parameter β. Let precision and recall be defined as follows:

TPP
TP FP

=
+

TPR
TP FN

=
+

Here, P is the precision rate and R is the recall rate. We can calculate the F-measure
by using the following formula:

()2

2

1 P R
F

P Rβ

β

β

+ ⋅ ⋅
=

⋅ +

Notice that when 0β = , 0F P= . In other words, recall has no impact on the F-measure
when 0β = , and increasing β allocates an increasing amount of weight to recall in
the final F-measure.

Summary
Machine learning adoption has increased in leaps and bounds in the last few years.
Availability of data in the digital age, scalable platforms to process large amount
of data, focus on intelligent applications, and the realization of the business values
of machine learning has driven the growth. Machine learning is a vast field that
requires continuing education to gain expertise. This chapter has introduced a few
important concepts in machine learning but the knowledge gained is just the tip of
the iceberg. I would encourage the reader to keep exploring and augmenting their
knowledge. In the next chapter, we will discuss one of the first and most important
parts of a machine learning project, feature engineering. Feature engineering deals
with transforming and presenting data to the learning algorithm. We will cover
some common techniques for feature extraction and dimensionality reduction.

[53]

Feature Engineering
This chapter discusses arguably the most important step in solving a machine learning
problem. Feature engineering involves the preparation and representation of data on
which the models can be trained. A good feature set is compulsory for the success of a
modeling project. In this chapter, we are going to cover the following topics:

• Feature construction
• Feature extraction
• Feature selection
• Dimensionality reduction

Feature engineering
Let's start by understanding what is meant by feature engineering. Feature
engineering is performed after data cleansing and preparation, before or even
during model training. It aims to provide better representation of the data to
the machine learning algorithm. Feature engineering as a process has multiple
outcomes and can impact the overall modeling exercise in many ways. Feature
engineering can be focused to increase model accuracy and generalization, decrease
the computation requirements for large and wide datasets, and make the model
simpler. Generally, a practitioner aims to do all of these. Feature engineering can
be divided into four major tasks: feature construction, feature extraction, feature
selection, and dimensionality reduction. We will discuss the four tasks shortly.

Feature Engineering

[54]

Before we discuss feature engineering, let's revisit the definition of features first:

• Raw data comes with many attributes. For example, for structured data such
as a database table, the attributes would be the columns and for unstructured
data, such as text, the attributes could be the words in the text.

• A feature is an attribute that is useful or meaningful to your machine
learning problem. Some columns in a table could be meaningful and others,
not. Similarly, for text classifications, stop words such as and, the, and so on
are not useful and hence not used as features.

Now, let's briefly go through all the four tasks, and then we will discuss them in
detail, giving examples.

• Manual feature construction: This is the process of constructing new
features from raw data and existing features. For example, creating
features such as sum, averages, and change percentages are constructed
features. Quite a few times multiple features are combined to come up with
constructed features. For example, we have two features, total number of
transactions and successful transactions. An interesting feature that can be
constructed is percentage of successful transactions. This new feature is an
example of feature construction.

• Automated feature extraction: This is the process of building a set of new
features from existing featuring. Some functional mappings between the old
and new features are defined in order to create the new features out of existing
features. Projecting data into a different dimension, as used by SVM kernels, is
an example of feature extraction. Please note that sometimes the terminology
is flexible and practitioners frequently use the same term feature extraction for
both automated feature extraction and manual feature construction.

• Feature selection: This is the process of selecting a subset of relevant
features from the existing features. There are two major strategies for
feature selection, filter based and wrapper based. We will discuss these
strategies later in the chapter.

• Dimensionality reduction: This is the process of reducing the number
of features to be considered in the modeling process. The reasons for
this are to improve computation performance and to address the curse
of dimensionality. We can achieve dimensionality reduction by means
of either feature selection or feature extraction.

Chapter 3

[55]

Many of the techniques discussed in this chapter do not have direct support in
Mahout and hence we will be discussing those using Python. In a real life scenario,
one could sample a subset of the data and then use Python or any other tool of choice
to experiment with the feature engineering and build a POC model and then build a
full-fledged project in Mahout.

Feature construction
We refer to feature construction as a process in which the dataset is manually
enhanced by either creating new features from existing ones or transforming the
existing features. The constructed features may reflect the domain knowledge a
practitioner has about the problem at hand, a rule of thumb that the practitioner tries
regularly, or some common standard transformations of data. Manually constructed
features created after understanding the data and the problem domain can lead to a
good representation of the data and result in a simpler model with improved accuracy.
Feature construction could lead to an increase in dimensionality of the features as we
add new features.

Some examples of manual feature constructions are discussed here. We will use a
common dataset for each of the examples, the Abalone dataset. The dataset has been
downloaded from https://archive.ics.uci.edu/ml/datasets/Abalone. You can
download the data from the site or use the data in the source code folder supplied with
this book. Headers have been added to the file to make it easier to understand.

Here is a description of the Abalone dataset:

Name Data Type Measurement Description
Sex nominal M,F,I (infant)
Length continuous mm Longest shell measurement
Diameter continuous mm Perpendicular to length
Height continuous mm Height with meat in shell
WholeWeight continuous grams Whole abalone weight
ShuckedWeight continuous grams Weight of only meat
VisceraWeight continuous grams Gut weight (after bleeding)
ShellWeight continuous grams Weight after being dried

Rings integer
Adding 1.5 to the value gives
the age in years

https://archive.ics.uci.edu/ml/datasets/Abalone

Feature Engineering

[56]

An abalone is a species of snail and in the dataset we have some measurements
about each snail. Let's assume the objective of the study is to predict the sex, given
the measurements. We will discuss how we can apply feature engineering, keeping
the previously stated objective in mind.

The other dataset that we are going to consider is the adult dataset, mainly because
it has a lot of categorical variables, so we can use it to discuss the feature construction
techniques of categorical variables. You can either download the data from https://
archive.ics.uci.edu/ml/datasets/Adult or use the file adult.data.csv present
in the directory learningApacheMahout/data/chapter3 that comes with this
book's source code folder. A header line has been added to the data file that comes
with this book repository.

The adult.data.csv file has already been preprocessed, but if you wish to use the
original file adult.data.txt from the UCI repository then please follow the steps to
prepare the instruction. Even if you wish to use the adult.data.csv file, it's a good
idea to read through the process of cleaning the file. Let's look firstly at the raw file.
Execute the head command displaying the first 5 lines of data.

head -5 adult.data.txt

The output is copied as follows. Note that the data has no header line and has white
spaces between words that need to be removed:

39, State-gov, 77516, Bachelors, 13, Never-married, Adm-clerical, Not-in-
family, White, Male, 2174, 0, 40, United-States, <=50K
50, Self-emp-not-inc, 83311, Bachelors, 13, Married-civ-spouse, Exec-
managerial, Husband, White, Male, 0, 0, 13, United-States, <=50K
38, Private, 215646, HS-grad, 9, Divorced, Handlers-cleaners, Not-in-
family, White, Male, 0, 0, 40, United-States, <=50K
53, Private, 234721, 11th, 7, Married-civ-spouse, Handlers-cleaners,
Husband, Black, Male, 0, 0, 40, United-States, <=50K
28, Private, 338409, Bachelors, 13, Married-civ-spouse, Prof-specialty,
Wife, Black, Female, 0, 0, 40, Cuba, <=50K

To remove the white spaces, we will use Sed. Sed is a command line editor in Linux.
Sed can perform pattern matching and search and replace operations. By default,
Sed doesn't modify the original file, the output is directed to the standard output
of Linux. We pass the search pattern \s that represents white spaces, the replace
pattern is blank and the search and replace is done globally. The output of the sed
command is saved to the new file adult.data.csv:

sed 's/\s//g' adult.data.txt > adult.data.csv

https://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/Adult

Chapter 3

[57]

The next step is to encode the target variable. We will replace the value >50K
with the value True and <=50K with False. To do this, we will again use the
sed command, this time with the –i flag, which directs sed to make the changes
directly in the input file:

sed -i 's/>50K/True/g' adult.data.csv
sed -i 's/<=50K/False/g' adult.data.csv

Let's view the file again, to see if the changes are being made as per our expectation.
We run the head command, again this time on the file adult.data.csv:

head -5 adult.data.csv

As we can see in the output copied here, the white spaces have been removed and
the target variable, which is the last column, is properly encoded:

39,State-gov,77516,Bachelors,13,Never-married,Adm-clerical,Not-in-
family,White,Male,2174,0,40,United-States,False
50,Self-emp-not-inc,83311,Bachelors,13,Married-civ-spouse,Exec-managerial
,Husband,White,Male,0,0,13,United-States,False
38,Private,215646,HS-grad,9,Divorced,Handlers-cleaners,Not-in-
family,White,Male,0,0,40,United-States,False
53,Private,234721,11th,7,Married-civ-spouse,Handlers-cleaners,Husband,Bla
ck,Male,0,0,40,United-States,False
28,Private,338409,Bachelors,13,Married-civ-spouse,Prof-specialty,Wife,Bla
ck,Female,0,0,40,Cuba,False

The last step is to add the header file. The preceding 1 in the match pattern instructs
Sed to match only the first line. The caret sign ^ represent the start of line. So the
command replaces the start of first line with the replacement text:

sed -i '1s/^/age,workclass,fnlwgt,education,education-num,marital-sta
tus,occupation,relationship,race,sex,capital-gain,capital-loss,hours-
perweek,native-country,IncomeGreaterThan50K\n/' adult.data.csv

We repeat a similar process for the Abalone dataset. For this file, we need to remove
white spaces, if present, and add the header line. The downloaded file name is
abalone.data.txt and the following commands will prepare the file for processing:

sed 's/\s//g' abalone.data.txt > abalone.data.csv
sed -i '1s/^/Sex,Length,Diameter,Height,WholeWeight,ShuckedWeight,Viscera
Weight,ShellWeight,Rings\n/' abalone.data.csv

The files are now ready for further processing; we can copy the file back to the data
directory learningApacheMahout/data/chapter3 of the code repository.

Feature Engineering

[58]

Here is a description of the adult dataset:

Name Data Type Description
Age continuous Age of the adult
workclass categorical Working class of the adult
fnlwgt continuous Final derived weight of the adult
education categorical Education level of the adult
education-num continuous Education level of the adult encoded as integer
marital-status categorical Marital Status of the adult
occupation categorical Occupation of the adult
relationship categorical Relationship of the adult
Race categorical Race of the adult
Sex categorical Gender of the adult
capital-gain continuous Capital gained by the adult
capital-loss continuous Capital lost by the adult
hours-per-week continuous Hours worked per week
native-country categorical Native country of the adult

IncomeGreaterThan50K categorical

This column contains the value True or
False according to whether the income of
adult is greater than or less than 50 thousand
per year.

The dataset has information about adults and the target variable is a categorical
feature IncomeGreaterThan50K, which informs whether an adult has income
above 50,000 or not.

Categorical features
As we have already discussed in Chapter 2, Core Concepts in Machine Learning, features
that can only take few predefined and mostly fixed values are called categorical
features. Let's discuss some feature construction techniques for categorical features.

Chapter 3

[59]

Merging categories
Features such as zip code and industry can have a large number of distinct values.
For a country like India, the number of distinct zip codes is around 150,000. There are
a few problems with having a feature with this many values. First of all, any machine
learning algorithm is going to struggle to derive insight from so many values. The
training example for each distinct value might also be very few. To make the feature
usable, we will have to reduce the number of categories, either by merging the
different categories together or by creating different models for different subsets of
categories. The second problem is that so many categorical values add unnecessary
detail to the dataset. For example, to analyze the churn for a telecom subscriber,
having data for an individual zip code is not helpful, when instead we could use
the zip code data for the state level.

In the adults, data file, the feature education has 16 categories, which are as follows:

10th 11th 12th 1st-4th 5th-6th 7th-8th 9th Preschool Assoc-acdm Assoc-voc
Some-college HS-grad Bachelors Masters Prof-school Doctorate

Although 16 categories is not a large number of categories, and hence not very
problematic, closer inspection reveals some natural grouping within these categories.
The following categories: 10th, 11th, 12th, 1st-4th, 5th-6th, 7th-8th, 9th,
Preschool can be naturally grouped together as lower education and categories
Prof-school and Doctorate can be grouped as higher education. Let's investigate
this variable in detail. Open the file CategoricalFeatureMerge.py in the directory
learningApacheMahout/src/python/chapter3/src in your favorite text editor.
To run the script, execute the following command from the same directory:

python CategoricalFeatureMerge.py

The code file imports pandas with the alias pd. pandas is an open source Python
library providing high performance, easy-to-use data structures for data processing
and analysis. It provides in-built functions for common data processing tasks, a
few of which we will use in this chapter. To install pandas, execute the following
command on the command line:

sudo pip install numpy pandas

Now, let's look at the code file. The script starts by importing the required packages
and defining the class:

import pandas as pd
class CategoricalFeatureMerge:
def __init__(self):
pass

Feature Engineering

[60]

The next step is to read the csv into a data frame, for which we use pandas's read_
csv function; pandas, which is referred to by the alias pd. A data frame is like a
matrix that can contain columns of different data types:

df = pd.read_csv("../../../../data/chapter3/adult.data.csv")

We then use the crosstab function in panda to tabulate the education against the
target variable IncomeGreaterThan50K:

print pd.crosstab(df['IncomeGreaterThan50K'],df['education'])

The output calculates the count of False and True in the IncomeGreaterThan50K
variable for each category in education.

Here is a comparison of the education level with the target variable:

We will convert the counts to percentages to make it easier to interpret. The apply
function applies the defined operation to all the columns:

print pd.crosstab(df['IncomeGreaterThan50K'],df['education']).
apply(lambda r: r/r.sum(), axis=0)

Chapter 3

[61]

The output is shown in the following figure:

Comparison of education level with the target variable

The categories Bachelors Masters can be marked as Medium as around 50 percent
of adults earn less than 50K. The categories Prof-school and Doctorate can be
marked as High, as less than 70 percent adults earn more than 50K. With this, we
have merged the categories into four different broad buckets with the potential of
improving the model interpretability and performance. The following lines of code
perform the merging of the categories for creating four different lists with their
respective categories:

list_very_low_income_edu = ["10th","11th","12th","1st-4th","5th-
6th","7th-8th","9th","Preschool"]
list_low_income_edu = ["Assoc-acdm", "Assoc-voc", "Some-college", "HS-
grad"]
list_medium_income_edu = ["Bachelors", "Masters"]
list_high_income_edu = ["Prof-school", "Doctorate"]

If the current category is in the list, substitute it with the corresponding
broader category:

df['education'].loc[df['education'].isin(list_very_low_income_edu)] =
'VeryLow'
df['education'].loc[df['education'].isin(list_low_income_edu)] = 'Low'
df['education'].loc[df['education'].isin(list_medium_income_edu)] =
'Medium'
df['education'].loc[df['education'].isin(list_high_income_edu)] = 'High'

Feature Engineering

[62]

Check whether the categories have been substituted:

print df['education'].unique()

The output is as follows:

['Medium' 'Low' 'VeryLow' 'High']

The last step is to save the modified file with the merged education categories to
another csv file. The file adult.data.merged.csv is used for subsequent examples:

df.to_csv("../../../../data/chapter3/adult.data.merged.csv", index=False)

The preceding code and the codes discussed further in the chapter are very simplistic.
The goal is to explain the concepts with easy-to-follow examples and hence simplicity
is preferred.

Converting to binary variables
We can convert the categories in to a categorical variable to multiple binary variables.
If a categorical feature has five categories, then we can create five features with zero
representing the absence of that particular value and one representing the presence of
that particular value. Conversion of categorical variables to binary variables is required
if the particular learning algorithm doesn't support more than two categories.

We will use Python to convert the feature gender in adult.data.csv to binary
features; any tool of choice can be used, but because Python is easy to use and explain,
and this is an important skill for a data analyst to have, so we will use Python. Open
the file CategoricalFeatureToBinary.py in the learningApacheMahout/src/
python/chapter3/src directory in your favorite text editor. To execute the script,
run the following command from the same directory.

python CategoricalFeatureToBinary.py

The first couple of lines import the required packages. To install patsy, please run
the following command on the command line:

sudo pip install six patsy

The patsy library is a Python library that describes statistical models, and has some
good functions for common data processing tasks:

import pandas as pd
import patsy

Chapter 3

[63]

We then define the class CategoricalFeatureToBinary:

class CategoricalFeatureToBinary:
def __init__(self):
pass

We read the adult.data.set.csv into the data frame df:

df = pd.read_csv("../../../../data/chapter3/adult.data.csv")

Next, we print the column headers of the csv read:

print df.columns.values

The output is the following list of columns:

['age' 'workclass' 'fnlwgt' 'education' 'education-num' 'marital-status'
'occupation' 'relationship' 'race' 'sex' 'capital-gain' 'capital-loss'
'hours-per-week' 'native-country' 'IncomeGreaterThan50K']

Next, we convert the selected feature sex to binary features, we use the dmatrix
function of the patsy package for it. The function takes the column name and returns
a data frame based on the third parameter. The second parameter is the data frame
itself. To convert multiple columns, use the + operator. For example, to convert sex
and workclass, we need to pass sex + workclass -1 as the first argument:

df_converted = patsy.dmatrix('sex - 1', df, return_type='dataframe')

The original file has the first five values of the feature sex, as follows:

Sex
 Male
 Male
 Male
 Male
 Female

We print the output of the converted data; the first five lines are printed by default
by the head function. 0 denotes False and 1 as True:

print df_converted.head()

Feature Engineering

[64]

The output is printed as follows:

sex[Female] sex[Male]
 0 1
 0 1
 0 1
 0 1
 1 0

The next step is to drop the selected column sex, as it is not needed in the original
data anymore. The inplace argument drops the column in to the original frame
itself and we don't need to assign it back, because the axis argument 1 represents
columns and 0 represents rows:

df.drop('sex', inplace=True, axis=1)

Next, we concatenate the two data frames together so that the new binary columns
are added to the original frame:

df = pd.concat([df_converted, df], axis=1)

We print the column headers again to check whether the new columns have been
added. The new columns have been added to the start of the frame.

print df.columns.values

The output is as follows:

['sex[Female]' 'sex[Male]' 'age' 'workclass' 'fnlwgt' 'education'
'education-num' 'marital-status' 'occupation' 'relationship' 'race'
'capital-gain' 'capital-loss' 'hours-per-week' 'native-country'
'IncomeGreaterThan50K']

The final step is to write the converted csv data frame to csv:

df.to_csv("../../../../data/chapter3/adult.data.converted_to_binary.csv",
index=False)

The conversion of categorical variables to binary features loses information,
categories are going to be mutually exclusive as the same adult cannot be both
male and female, and hence we should use this technique cautiously.

Chapter 3

[65]

Converting to continuous variables
Categorical variables can also be converted to continuous variables. This approach
can be used in a few scenarios. The first scenario—when the categories of a
categorical feature can change over time, we can represent the categories in terms of
their percentages of occurrence. For example, let's assume that the income study in
the future will include other education categories. Industries change over a period
of time and so does the demand for education levels and specialization. It would not
be incorrect to assume that high-paying education jobs would continue to get higher
wages at any particular point of time. Hence, rather than using the actual categories
in the feature set, we could calculate the percent of adults getting greater than 50K
and use it as a feature. This will take care of new categories being introduced and
also the variation in the demand for a specific education level over a period of time.

Open the file CategoricalFeatureToPercentages.py in the directory
learningApacheMahout/src/python/chapter3/src in your favorite editor.
To execute the script execute the following command from the same directory:

python CategoricalFeatureToPercentages.py

First, we import the required package:

import pandas as pd

We read the adult dataset with merged education categories. It will be easier to
explain with a smaller number of categories:

df = pd.read_csv("../../../../data/chapter3/adult.data.merged.csv")")
print pd.crosstab(df['IncomeGreaterThan50K'],df['education']).
apply(lambda r: r/r.sum(), axis=0)print df['sex'].head()

The output is as printed here:

education High Low Medium VeryLow
IncomeGreaterThan50K
False 0.262892 0.817796 0.550721 0.942629
True 0.737108 0.182204 0.449279 0.057371

We can now replace the category High with 0.737108, Medium with 0.449279,
and so on.

Another technique is to add new features pivoting a continuous variable on the
categories in a categorical feature. This is mostly done with time stamped data.

Feature Engineering

[66]

Continuous features
We will discuss a few common transformations for continuous features. Continuous
features can take any value in their range.

Binning
We can bin continuous features using thresholds. Few learning algorithms
such as naïve Bayes only work with categorical features and for these scenarios,
discretization or binning is important. Binning of variables can be both supervised
as well as unsupervised.

Unsupervised binning has two common methods, equal frequency and equal
width binning. In equal frequency binning, each bin has equal number of instances,
whereas in equal width binning, the bins are chosen to have the same interval.
Another useful method of unsupervised binning is to use a clustering algorithm to
identify the natural boundaries of the feature and use those boundaries as the bins.
Clustering methods like k-means, agglomerative clustering, and so on can be used.

Supervised binning is performed using the information from the target variable.
The thresholds are decided based on how well the splits divide the target variable.
For example, we can use a decision tree and train the tree on each feature that we
want to bin; the decision tree will provide the splitting points and we can use the
same to define the thresholds. More generally, rather than using a tree, we can use
some measures such as Information Gain or the Gini index to decide the split points.

We will discuss a small example of equal frequency binning. Open the file
ContinuousFeatureBinning.py from the same location as all the examples above.
This script uses scipy and scikit-learn, these are scientific computing packages
in Python. To install the packages please execute the following command:

sudo pip install scipy scikit-learn

We read the adult data file into a data frame df and then call the function describe()
on the age feature. The describe function returns the summary statistics of the feature:

df = pd.read_csv("../../../../data/chapter3/adult.data.csv")
print df['age'].describe()

The output is as follows:

count 32561.000000
mean 38.581647
std 13.640433
min 17.000000
25% 28.000000

Chapter 3

[67]

50% 37.000000
75% 48.000000
max 90.000000

We have four equal frequency bins, [17, 28], (28, 37], (37, 48], and (48, 90], we
will replace these with labels Young, Adult, MiddleAge, Old. We converted the
continuous feature Age into a categorical feature:

df['age'] = pd.qcut(x=df['age'],q=4,labels=['Young','Adult','MiddleAge','
Old'])
print df['age'].unique()

The output is ['Young' 'Adult' 'MiddleAge' 'Old'].

Binarization
We can create binary feature out of continuous feature by using a threshold.
A binary feature as the name suggests has two distinct values, most commonly
(0, 1) and (True, False). Values greater than a particular threshold can take one
of the two values and values less than equal to the threshold can take the other.
Let's see this technique in practice on the age variable in adult dataset. Open the
file ContinuousFeatureBinarization.py from the same location as all the
examples above.

We read the adult dataset into the data frame df:

df = pd.read_csv("../../../../data/chapter3/adult.data.csv")

We print the first five values of the feature age:

print df['age'].head()

The output of the command is as follows:

0 39
1 50
2 38
3 53
4 28

We call the Binarizer function passing the threshold 40, values above 40 will be
marked 1, and values below 40 marked 0:

binarizer = preprocessing.Binarizer(threshold=40)
print binarizer.transform(df['age'])[0:5]

The output is [0 1 0 1 0].

Feature Engineering

[68]

Feature standardization
In real life data, the features are more often than not on different scales. Many
machine learning algorithms will not work properly with datasets of different scales.
An important concept in feature construction is to standardize the range of a feature
by scaling it. We can either rescale the features or standardize the feature according
to the mean or scale to unit length. This process of feature standardization is also
referred to as feature normalization.

Rescaling
One way to standardize data is to rescale it by subtracting each value by the min and
dividing by the range of the feature. This ensures that the values are between [0, 1]:

min
new

max min

x xx
x x
−

=
−

Mean standardization
Standardization of data refers to the transformation that enables the feature to have a
mean of zero and a variance of one. For each value in a feature, we subtract the value
by the mean of the feature and divide by the standard deviation:

new
xx µ
σ
−

=

Scaling to unit norm
Each value in a feature is divided by its norm. Depending on the use case, it could be
L1 or L2 or any other norm. After division by the norm, the feature itself has a norm
of one.

A norm is a function that assigns a strictly positive length or size
to each vector in a vector space, other than the zero vector that
has a length zero assigned to it.

Chapter 3

[69]

Open the file ContinousFeatureStandardization.py. This code file uses the
package numpy and scikit learn. The scikit learn package is a machine
learning package in Python and implements many machine learning algorithms as
built-in modules. The numpy package is a powerful package for scientific computing
in Python. To install both, execute the following command on the command line:

sudo pip install numpy scikit-learn

First, we will discuss the code for rescaling. The object min_max_scaler will
transform the feature age to a range of [0, 1]:

df = pd.read_csv("../../../../data/chapter3/adult.data.csv")
min_max_scaler = preprocessing.MinMaxScaler()
X_train_minmax = min_max_scaler.fit_transform(df['age'].astype(float))
print min(X_train_minmax),max(X_train_minmax)

The minimum is 0 and the maximum is 1.

Next, we discuss the code for mean standardization. The function scale subtracts the
mean from each value and divides by standard deviation:

df = pd.read_csv("../../../../data/chapter3/abalone.data.csv")
test= (preprocessing.scale(df['Height']))
print test.mean()
print test.std()

The mean of the transformed variable is ~0 and variance is 1.

Next, we will discuss the code to transform the feature to unit norm. The transformed
feature will have a norm of 1:

weights = sorted(np.arange(float(14), 0.05, -1.0))
weight_norm = np.linalg.norm(weights)
weights = weights/weight_norm
print np.linalg.norm(weights)

Feature transformation derived from the problem domain
The most powerful feature transformations are the ones guided by domain knowledge
of the problem at hand and understanding of data gained from data exploration. The
list of such transformations is huge and even the largest list can't be exhaustive. I am
discussing some of the common problem-driven transformations.

Feature Engineering

[70]

Ratios
Quite often, a change in a variable over a period of time can be a very predicting
feature. For example, in churn modeling, the decline of a usage metric like logins over
a period of time is a very important predictor. Another example of ratios would be
between features and the ratio of failed transaction by total number of transactions.

Frequency
Frequency of events over a period of time is always an interesting transformation for
event-based time-stamped data.

Aggregate transformations
Aggregate transformations such as sum, average, minimum, and maximum over a
group are the staples of most feature sets.

Normalization
So far, we have seen normalization of a column or feature. Another option to explore
is row normalization by a metric.

Mathematical transformations
Another important feature construction technique is to apply appropriate mathematical
transformations on the features. The motivation behind this is to decrease the skew and
variance of the feature. Common mathematical transformations are log transformations
with different bases, exponential transformations, and so on.

Feature extraction
Feature extraction is the process of automatic construction of new set of features
from an existing one. For example, take a feature set and project it into a higher
dimensional coordinates, the motivation being that the data might have a plane
of separation in a higher dimension. Let's see an example using two dimensional
data, in the plot to the left, the two classes represented by * and o cannot be
separated by a straight line. If the data is projected to a three-dimensional plane,
we can see that the two classes can be separated by a plane:

Chapter 3

[71]

The line of separation in two dimensions is represented by a plane in three dimensions
and as a hyper plane in more than three dimensions. The plot on the left of the image
shows a plane separating the data, and the plot on the right projects the separation into
two dimensions:

Feature Engineering

[72]

By projecting data from a lower dimension into a higher dimension, we can solve
problems that cannot be solved by linearity in the lower dimension. One drawback
of the approach is that projection of data from lower dimension to a higher one is
computationally intensive and cannot scale one larger data. A kernel trick is one
of the ways of solving the problem. A kernel is a function that computes the dot
products into a higher dimension, while remaining in the lower dimension. By
using a kernel, we can implicitly transform a dataset into a higher dimensional
space without explicitly calculating the projection.

Feature extraction is an automated process. There are a number of generic feature
construction methods that can be performed, based on the objective and data.
Some common feature extraction techniques are as follows:

• Clustering-based feature extraction
• Linear transforms of the input variables such as PCA/SVD and so on
• Spectral transforms like Fourier transforms
• Applying simple functions to subsets of variables, such as algebraic

computation on more than one feature

Feature selection
The primary goal of feature selection is to select a subset of features from the total
feature set that can be used to build a good predictor with increased performance
and generalization. It is not aimed at finding all the relevant features or reducing
the dimensionality of the feature set, though both could be outcomes of the process.
The difference between dimensionality reduction and feature selection is that the
purpose of feature selection is to select the predictor with greater predictive power,
whereas dimensionality reduction is aimed at a concise representation of the data.
The similarity between them is that both lead to reduced number of features.

Feature selection can be both supervised and unsupervised. Feature selection could
be filtered-based or wrapper-based.

Filter-based feature selection
Features are ranked according to an importance measure such as Information Gain
and Chi-Squared test, and a subset of features can be selected, based on a threshold.
The threshold-based rejection of features is aimed at selecting only those features
that have a strong correlation with the target variable.

Chapter 3

[73]

There are a few disadvantages of filter-based feature selection. The first problem
is caused by correlated features. If a set of correlated features also have a strong
correlation with the target variable, all of them will be selected as strong features but
the correlated features will not add any extra information. The correlated features
will repeat the same information. For example, we might have a telecom provider
with one calling plan for the entire subscriber base. In this scenario, predictors total
minutes called and total amount charged are going to be highly correlated and only
one should be in the feature set. Both features have a strong correlation with the
target variable churn. A filter-based feature selection mechanism will select both
the features. Before implementing a filter-based feature selection, it is important
to handle the correlated features.

Another problem with filter-based feature selection is that it cannot take into
account interaction between multiple features to compute feature importance.
Two features could independently have a very weak correlation with the target
variable but when combined, they might be able to explain the target variable
very well. Filter-based feature selection cannot capture this interaction and
hence both these features will be ignored.

Wrapper-based feature selection
This method assesses subsets of features, according to their usefulness to a given
predictor. This method uses the machine learning algorithm that we are modeling
with to score subsets of features, according to their predictive power. Wrapper-based
feature selection has the advantage of taking into account the interaction between
features that filter-based methods cannot. The disadvantage of wrapper-based
feature selection is that it can be computationally expensive. But there are different
search techniques that can mitigate this drawback. Many search techniques can be
used to do this, such as recursive feature elimination or backward selection, forward
selection, step-wise selection, and so on. Each search technique might converge to
an optimum set of features. We briefly introduce the main concepts in the wrapper-
based feature selection; note that the actual implementations have slight variations
over the main concepts.

Backward selection
First, the backward selection algorithm fits the model for all the predictors or
features in the feature set. Each predictor is then ranked according to its importance
to the model. At each iteration of the feature selection, the N top raked predictors are
retained, the model is refitted and its performance is assessed. The value of N with
the best performance is determined and the top N predictors are then used to fit the
final model.

Feature Engineering

[74]

Forward selection
In the forward selection algorithm, we start with the null set and sequentially add
features from the feature set. The feature score is recomputed and finally, the subset
with the best performance is retained.

Recursive feature elimination
Given an external estimator that assigns weights to features (for example, the
coefficients of a linear model), recursive feature elimination is designed to select
features by recursively considering smaller and smaller sets of features. First, the
estimator is trained on the initial set of features and weights are assigned to each
one of them. Then, features whose absolute weights are the smallest are pruned
from the current set features. This procedure is recursively repeated on the pruned
set until the desired number of features are eventually reached.

Embedded feature selection
This search scheme is similar to the wrapper-based scheme, the difference being that
the embedded method incorporates variable selection as part of model training. For
example, random forest, gradient boosted trees, and so on, embedded feature selection
is tied to a machine learning algorithm. Most of the time, using the models with the
embedded feature selection will be more efficient than algorithms where the search
routine for the right predictors is external to the model. Embedded feature selection
typically couples the predictor search algorithm with the parameter estimation and is
optimized with a single objective function.

Dimensionality reduction
Dimensionality reduction deals with representing the features into a more concise
form. Dimensionality reduction can be achieved either through feature selection
or feature extraction. The motivation can be both computation efficiency and to
mitigate the curse of dimensionality. In simple terms, as the dimension or the
number of features increases, the amount of data required to model the problem
at hand increases exponentially. Collecting and processing large amount of data
might not be possible and hence it is important to reduce the number of features
or dimensionality of the dataset. One of the most common ways of reducing the
dimensionality of the feature set is to use PCA.

Chapter 3

[75]

Intuitively, PCA tries to find the simplest representation of a dataset. It projects
data into a different coordinate system to provide a concise representation of data.
The output of PCA is data that is represented as principal components. The term
principal component denotes new variables (or coordinate systems) that we choose
to describe our data in a more concise or convenient way. All principal components
must satisfy two conditions:

• They must be perpendicular to each other. This means principal components
are not linearly correlated between each other. This is one major advantage
of using PCA; it removes correlated variables. The presence of correlated
variables degrades the performance of algorithms such as logistic regression.

• The principal components must be pointed in the direction of the largest
variance of data. Thus data must have the largest variance along the axes of
component 1, and the 2nd largest variance along the axes of component 2,
and so on. So the first component will be the most significant, the second,
the second most significant, and so on. We can use this information to reduce
the dimensionality. If, say, 99 percent of the variance such as explained
by n principal components of a dataset that has k dimensions, where k is
greater than n, then we can use the n principal components in reducing
the dimensionality by k-n.

Now, let's see an example; open the file PCAExample.py in an editor like vi or
gedit. The code file can be found under the same directory as the other code files
learningApacheMahout/src/python/chapter3/src.

In this example, we are going to work with the Iris dataset. This dataset comes
prepackaged with the scikit learn package we installed in the previous example.
The dataset has four features: sepal length, sepal width, petal length, and petal
width, and the class label that represents the species of the flower. The first step
is to load the data:

df = datasets.load_iris()

The object df has two attributes df.data. And df.target; df.data holds the
training data and df.target the class labels.

Let's see the sample data in df.data, as discussed earlier, it has four features. A few
lines are copied, as follows:

[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]

We have three target variables, denoted by 0, 1, and 2.

Feature Engineering

[76]

The next step is to create the DecisionTreeClassifier object. This object will be
used to train a decision tree with the training data:

model = DecisionTreeClassifier()

Once we have created the object, the next step is to train the model. The fit()
method takes the training data as the first argument and the target labels as the
second argument:

model.fit(df.data, df.target)

The model has been created, now we need to check the efficacy of the model. We
take the actual class labels in the variable expected and the class label predicted by
the model in the variable predicted. The predict() function returns the predictions
for the data passed as argument:

expected = df.target

predicted = model.predict(df.data)

The next step is to produce the efficacy metrics. The function classification_
report() as well as confusion_matrix() takes as input the actual and the
predicted value and print the performance metric:

print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))

The output is copied here, we can see that using all the features we were able to get a
prefect prediction:

precision recall f1-score support

 0 1.00 1.00 1.00 50
 1 1.00 1.00 1.00 50
 2 1.00 1.00 1.00 50

[50 0 0]
[0 50 0]
[0 0 50]

Now, we will perform PCA on the original dataset and check the variance captured
by each of the principal components. First, we create the PCA object and then get the
components using the fit_transform() method:

principal_components = PCA()
pca_data = principal_components.fit_transform(df.data)

Chapter 3

[77]

Let's check the explained variance of the principal components. The attribute
explained_variance_ratio_ holds the value:

print principal_components.explained_variance_ratio_

The output is copied here, we can see that the first component explains 92 percent of
the variance:

[0.92461621 0.05301557 0.01718514 0.00518309]

We will repeat these steps to create a decision tree; this time, we will use the first
principal component instead of the raw data. We have reduced the dimensionality of
the problem from four to one, while retaining 92 percent of the original information.
This is a good trade-off.

Since the rest of the steps are similar to what we discussed, I will only discuss the
part where we are training the model. We select the first column pca_data:

model.fit(pca_data[:,[0]],df.target)

The efficacy of the new model is the same as the model built with the original
data. This is a very simple example, but in real life scenarios with thousands of
dimensions, PCA can make a big difference. We can reduce the dimensionality
of the data, which in turn reduces the number of training examples required for
building a good model and thus significantly reduces the amount of time and
computation resources required for training.

Summary
In this chapter, we discussed the common techniques of feature engineering.
The concepts and techniques discussed are very important; anyone working in
data analysis will use these techniques regularly. A robust feature engineering
process is imperative for a successful machine learning project. The better we
represent data to an algorithm, the better its efficacy.

Chapter 1, Introduction to Mahout, Chapter 2, Core Concepts in Machine Learning and
Chapter 3, Feature Engineering have provided a strong introduction to the basics of
Mahout and machine learning. Now, we will start discussing the machine learning
algorithms in detail. In the next chapter, we will discuss classification algorithms
implemented in Mahout, covering both the concepts and practical examples.

[79]

Classification with Mahout
One of the most widely used tasks in machine learning is to predict discrete
outcomes or classes of future data instances, using historical data. It is a very
popular branch of supervised learning, and a wide variety of problems can be
solved using this paradigm. Questions such as whether to approve a loan to
someone or determining the probability of a telecom subscriber not renewing
the contract can be answered using classification algorithms. In this chapter,
we are going to discuss some of the important classification algorithms in
Mahout. We will learn about the following classification algorithms:

• Logistic regression
• Random forest
• naïve Bayes

Classification
We discussed supervised learning in detail in Chapter 2, Core Concepts in Machine
Learning. Here, we are going to put into action some of the practices we learned.
The most critical parts of any machine learning task are data exploration, cleaning,
and feature representation. The process involves exploring the data, addressing the
anomalies in the data, extracting features, feature selection, and feature reduction,
if required. Almost 70 percent of the time in any data analytics project is spent in
feature engineering, and it is the most important part of the analytical process.

Then comes the task of training models; selection of which machine learning
algorithms to use is mostly guided by the available data and the objective of the
problem we are about to solve.

Classification with Mahout

[80]

Machine learning algorithms can be separated into two groups, based on the
capability of a user to see how a model arrives at its predicted output. If we can
deduce from the model how a particular prediction was done by the algorithm,
we can derive insights from it.

White box models
The process of prediction is very transparent and well-understood by the user. When
we say the process of prediction, we don't mean the internal working of the algorithm
but after the model is trained, what factors lead to a particular prediction. This helps
us in deducing insights for a particular problem area. For example, a decision tree,
which is a white box technique, can provide us with rules after training the model.
For example, if we are building a decision tree, which predicts classes for outdoors
and indoors based on weather and temperature, we could get the following rules:

if weather='sunny' and temperature='medium' then class 'outdoors'
if weather ='overcast' and temperature='low' then class 'indoors'

Black box models
The process of prediction is opaque to the user. Though the logic of the algorithm may
be known, how it predicts a particular instance is hard to understand. Say if we used
SVM, which is a black box algorithm that classifies data by drawing a hyperplane, for
the aforementioned problem, we would get a prediction for each row or instance but
no insights would be derived easily giving reasons for of the prediction.

Logistic regression
Logistic regression is a probabilistic classification model. It provides the probability
of a particular instance belonging to a class. It is used to predict the probability of
binary outcomes. Logistic regression is computationally inexpensive, is relatively
easier to implement, and can be interpreted easily.

Logistic regression belongs to the class of discriminative models. The other class of
algorithms is generative models. Let's try to understand the differences between the
two. Suppose we have some input data represented by X and a target variable Y, the
learning task obviously is P(Y|X), finding the conditional probability of Y occurring
given X. A generative model concerns itself with learning the joint probability of P(Y,
X), whereas a discriminative model will directly learn the conditional probability of
P(Y|X) from the training set. This is the actual objective of classification. A generative
model first learns P(Y, X), and then gets to P(Y|X) by conditioning on X by using
Bayes' theorem.

Chapter 4

[81]

In more intuitive terms, generative models first learn the distribution of the data,
then they model how the data is actually generated. However, discriminative models
don't try to learn the underlying data distribution; they are concerned with finding
the decision boundaries for the classification. Since generative models learn the
distribution, it is possible to generate synthetic samples of X, Y. This is not possible
with discriminative models.

Some common examples of generative and discriminative models are as follows:

• Generative: naïve Bayes, Latent Dirichlet allocation
• Discriminative: Logistic regression, SVM, Neural networks

Logistic regression belongs to the family of statistical techniques called regression. For
regression problems and few other optimization problems, we first define a hypothesis,
then define a cost function, and optimize it using an optimization algorithm such as
Gradient descent. The optimization algorithm tries to find the regression coefficient,
which best fits the data. Let's assume that the target variable is Y and the predictor
variable or feature is X. Any regression problem starts with defining the hypothesis
function, for example, an equation of the predictor variable xα β+ , defines a cost
function and then tweaks the weights; in this case, α and β are tweaked to minimize
or maximize the cost function by using an optimization algorithm.

For logistic regression, the predicted target needs to fall between zero and one.
We start by defining the hypothesis function for it:

() ()
() ()

1
1

T

z

h x f x

f z
e

θ θ

−

=

=
+

Here, f(z) is the sigmoid or logistic function that has a range of zero to one, x is
a matrix of features, and θ is the vector of weights. The next step is to define the
cost function, which measures the difference between predicted and actual values.

()() ()() () ()(){ }, log 1 log 1Cost h x y y h x y h xθ θ θ= − − − −

() ()()

() () ()()
1

1

1 Cos ,

1 log 1 log 1 log

m
i i

i

m
i i i i

i

J t h x y
m

y h x y h x
m

θ

θ θ

θ
=

=

 = −

 = − + − −

∑

∑

Classification with Mahout

[82]

The objective of the optimization algorithm here is to find ()()min Jθ θ . This fits
the regression coefficients so that the difference between predicted and actual
target values are minimized. We will discuss gradient descent as the choice for
the optimization algorithm shortly. To find the local minimum of a function
using gradient descent, one takes steps proportional to the negative of the
gradient of that function at the current point.

()()
1 1

Repeat :
m

i i i
j j jh x y xθθ θ α

=

 = − −

∑

This will give us the optimum value of vector θ , once we achieve the stopping
criteria. The stopping criteria is when the change in the weight vectors falls below
a certain threshold, although sometimes it could be set to a predefined number
of iterations.

Logistic regression falls into the category of white box techniques and can be
interpreted. We will see how to interpret a logistic regression later on in the chapter.

Features or variables are of two major types, categorical and continuous, defined
as follows:

• Categorical variable: This is a variable or feature that can take on a limited,
and usually fixed, number of possible values. Example, variables such as
industry, zip code, and country are categorical variables.

• Continuous variable: This is a variable that can take on any value between
its minimum value and maximum value or range. Example, variable such
as age, price, and so on, are continuous variables.

Mahout logistic regression command line
Mahout employs a modified version of gradient descent called stochastic gradient
descent. The previous optimization algorithm, gradient ascent, uses the whole
dataset on each update. This was fine with 100 examples, but with billions of data
points containing thousands of features, it's unnecessarily expensive in terms of
computational resources. An alternative to this method is to update the weights
using, only one instance at a time. This is known as stochastic gradient ascent.
Stochastic gradient ascent is an example of an online learning algorithm. This is
known as online learning algorithm because we can incrementally update the
classifier as new data comes in, rather than all at once. The all-at-once method is
known as batch processing.

Chapter 4

[83]

We will now train and test a logistic regression algorithm using Mahout. We will
also discuss both command line and code examples. The first step is to get the data
and explore it.

Getting the data
The dataset required for this chapter is included in the code repository that comes
with this book. It is present in the learningApacheMahout/data/chapter4 directory.
If you wish to download the data, the same can be downloaded from the UCI link.
The UCI is a repository for many datasets for machine learning. You can check out the
other datasets available for further practice via this link http://archive.ics.uci.
edu/ml/datasets.html.

Create a folder in your home directory with the following command:

cd $HOME
mkdir bank_data
cd bank_data

Download the data in the bank_data directory:

wget http://archive.ics.uci.edu/ml/machine-learning-databases/00222/bank-
additional.zip

Unzip the file using whichever utility you like, we use unzip:

unzip bank-additional.zip
cd bank-additional

We are interested in the file bank-additional-full.csv. Copy the file to the
learningApacheMahout/data/chapter4 directory. The file is semicolon delimited
and the values are enclosed by ", it also has a header line with column name. We will
use sed to preprocess the data. The sed editor is a very powerful editor in Linux and
the command to use it is as follows:

sed -e 's/STRING_TO_REPLACE/STRING_TO_REPLACE_IT/g' fileName > Output_
fileName

For inplace editing, the command is as follows:

sed -i 's/STRING_TO_REPLACE/STRING_TO_REPLACE_IT/g'

Command to replace ; with , and remove " are as follows:

sed -e 's/;/,/g' bank-additional-full.csv > input_bank_data.csv
sed -i 's/"//g' input_bank_data.csv

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html

Classification with Mahout

[84]

The dataset contains demographic and previous campaign-related data about a client
and the outcome of whether or not the client did subscribed to the term deposit. We
are interested in training a model, which can predict whether a client will subscribe
to a term deposit, given the input data.

The following table shows various input variables along with their types:

Column name Description Variable type
Age This represents the age of the Client Numeric
Job This represents their type of the job, for example,

entrepreneur, housemaid, management
Categorical

Marital This represents their marital status Categorical
Education This represents their education level Categorical
Default States whether the client has defaulted on credit Categorical
Housing States whether the client has a housing loan Categorical
Loan States whether the client has a personal loan Categorical
contact States the contact communication type Categorical
Month States the last contact month of the year Categorical
day_of_week States the last contact day of the week Categorical
duration States the last contact duration, in seconds Numeric
campaign This represents the number of contacts Numeric
Pdays This represents the number of days that passed

since the last contact
Numeric

previous This represents the number of contacts performed
before this campaign

Numeric

poutcome This represents the outcome of the previous
marketing campaign

Categorical

emp.var.rate States the employment variation rate - quarterly
indicator

Numeric

cons.price.idx States the consumer price index - monthly indicator Numeric
cons.conf.idx States the consumer confidence index - monthly

indicator
Numeric

euribor3m States the euribor three month rate - daily indicator Numeric
nr.employed This represents the number of employees - quarterly

indicator
Numeric

Chapter 4

[85]

Model building via command line
Mahout uses command line implementation of logistic regression. We will first build
a model using the command line implementation. Logistic regression does not have a
map to reduce implementation, but as it uses stochastic gradient descent, it is pretty
fast, even for large datasets. The Mahout Java class is OnlineLogisticRegression
in the org.mahout.classifier.sgd package.

Splitting the dataset
To split a dataset, we can use the Mahout split command. Let's look at the split
command arguments as follows:

mahout split ––help

We need to remove the first line before running the split command, as the
file contains the header file and the split command doesn't make any special
allowances for header lines. It will land in any line in the split file.

Classification with Mahout

[86]

We first remove the header line from the input_bank_data.csv file.

sed -i '1d' input_bank_data.csv
mkdir input_bank
cp input_bank_data.csv input_bank

Logistic regression in Mahout is implemented for single-machine execution. We set
the variable MAHOUT_LOCAL to instruct Mahout to execute in the local mode.

export MAHOUT_LOCAL=TRUE

mahout split --input input_bank --trainingOutput train_data --testOutput
test_data -xm sequential --randomSelectionPct 30

This will create different datasets, with the split based on number passed to the
argument --randomSelectionPct. The split command can run in both Hadoop
and the local file system. For current execution, it runs in the local mode on the
local file system and splits the data into two sets, 70 percent as train in the
train_data directory and 30 percent as test in test_data directory.

Next, we restore the header line to the train and test files as follows:

sed -i '1s/^/age,job,marital,education,default,housing,loan,contact,month
,day_of_week,duration,campaign,pdays,previous,poutcome,emp.var.rate,cons.
price.idx,cons.conf.idx,euribor3m,nr.employed,y\n/' train_data/input_
bank_data.csv

sed -i '1s/^/age,job,marital,education,default,housing,loan,contact,month
,day_of_week,duration,campaign,pdays,previous,poutcome,emp.var.rate,cons.
price.idx,cons.conf.idx,euribor3m,nr.employed,y\n/' test_data/input_bank_
data.csv

Train the model command line option
Let's have a look at some important and commonly used parameters and their
descriptions:

mahout trainlogistic ––help

--help print this list
--quiet be extra quiet
--input "input directory from where to get the training data"
--output "output directory to store the model"
--target "the name of the target variable"
--categories "the number of target categories to be considered"
--predictors "a list of predictor variables"
--types "a list of predictor variables types (numeric, word or text)"
--passes "the number of times to pass over the input data"
--lambda "the amount of coeffiecient decay to use"

Chapter 4

[87]

--rate "learningRate the learning rate"
--noBias "do not include a bias term"
--features "the number of internal hashed features to use"

mahout trainlogistic --input train_data/input_bank_data.csv --output
model --target y --predictors age job marital education default housing
loan contact month day_of_week duration campaign pdays previous poutcome
emp.var.rate cons.price.idx cons.conf.idx euribor3m nr.employed --types
n w w w w w w w w w n n n n w n n n n n --features 20 --passes 100 --rate
50 --categories 2

We pass the input filename and the output folder name, identify the target variable
name using --target option, the predictors using the --predictors option, and the
variable or predictor type using --types option. Numeric predictors are represented
using 'n', and categorical variables are predicted using 'w'. Learning rate passed using
--rate is used by gradient descent to determine the step size for each descent. We
pass the maximum number of passes over data as 100 and categories as 2.

The output is given below, which represents 'y', the target variable, as a sum of
predictor variables multiplied by coefficient or weights. As we have not included
the --noBias option, we see the intercept term in the equation:

y ~

-990.322*Intercept Term + -131.624*age + -11.436*campaign
+ -990.322*cons.conf.idx + -14.006*cons.price.idx +
-15.447*contact=cellular + -9.738*contact=telephone + 5.943*day_
of_week=fri + -988.624*day_of_week=mon + 10.551*day_of_week=thu +
11.177*day_of_week=tue + -131.624*day_of_week=wed + -8.061*default=no
+ 12.301*default=unknown + -131.541*default=yes + 6210.316*duration
+ -17.755*education=basic.4y + 4.618*education=basic.6y +
8.780*education=basic.9y + -11.501*education=high.school +
0.492*education=illiterate + 17.412*education=professional.course +
6202.572*education=university.degree + -979.771*education=unknown
+ -189.978*emp.var.rate + -6.319*euribor3m + -21.495*housing=no +
-14.435*housing=unknown + 6210.316*housing=yes + -190.295*job=admin.
+ 23.169*job=blue-collar + 6202.200*job=entrepreneur +
6202.200*job=housemaid + -3.208*job=management + -15.447*job=retired +
1.781*job=self-employed + 11.396*job=services + -6.637*job=student +
6202.572*job=technician + -9.976*job=unemployed + -4.575*job=unknown
+ -12.143*loan=no + -0.386*loan=unknown + -197.722*loan=yes
+ -12.308*marital=divorced + -9.185*marital=married +
-1004.328*marital=single + 8.559*marital=unknown + -11.501*month=apr
+ 9.110*month=aug + -1180.300*month=dec + -189.978*month=jul
+ 14.316*month=jun + -124.764*month=mar + 6203.997*month=may
+ -0.884*month=nov + -9.761*month=oct + 12.301*month=sep +
-990.322*nr.employed + -189.978*pdays + -14.323*poutcome=failure +
4.874*poutcome=nonexistent + -7.191*poutcome=success + 1.698*previous

Classification with Mahout

[88]

Interpreting the output
The output of the trainlogistic command is an equation representing the sum of
all predictor variables multiplied by their respective coefficient. The coefficients give
the change in the log-odds of the outcome for one unit increase in the corresponding
feature or predictor variable.

Odds are represented as the ratio of probabilities, and they express the relative
probabilities of occurrence or nonoccurrence of an event. If we take the base
10 logarithm of odds and multiply the results by 10, it gives us the log-odds.
Let's take an example to understand it better.

Let's assume that the probability of some event E occurring is 75 percent:

P(E)=75%=75/100=3/4

The probability of E not happening is as follows:

1-P(A)=25%=25/100=1/4

The odds in favor of E occurring are P(E)/(1-P(E))=3:1 and odds against it would be
1:3. This shows that the event is three times more likely to occur than to not occur.

Log-odds would be 10*log(3).

For example, a unit increase in the age will decrease the log-odds of the client
subscribing to a term deposit by 97.148 times, whereas a unit increase in cons.conf.
idx will increase the log-odds by 1051.996. Here, the change is measured by keeping
other variables at the same value.

Testing the model
After the model is trained, it's time to test the model's performance by using a
validation set.

Mahout has the runlogistic command for the same, the options are as follows:

mahout runlogistic ––help

Chapter 4

[89]

We run the following command on the command line:

mahout runlogistic --auc --confusion --input train_data/input_bank_data.
csv --model model

AUC = 0.59
confusion: [[25189.0, 2613.0], [424.0, 606.0]]
entropy: [[NaN, NaN], [-45.3, -7.1]]

To get the scores for each instance, we use the --scores option as follows:

mahout runlogistic --scores --input train_data/input_bank_data.csv
--model model

To test the model on the test data, we will pass on the test file created during the split
process as follows:

mahout runlogistic --auc --confusion --input test_data/input_bank_data.
csv --model model

AUC = 0.60
confusion: [[10743.0, 1118.0], [192.0, 303.0]]
entropy: [[NaN, NaN], [-45.2, -7.5]]

Prediction
Mahout doesn't have an out of the box command line for implementation of logistic
regression for prediction of new samples. Note that the new samples for the prediction
won't have the target label y, we need to predict that value. There is a way to work
around this, though; we can use mahout runlogistic for generating a prediction by
adding a dummy column as the y target variable and adding some random values. The
runlogistic command expects the target variable to be present, hence the dummy
columns are added. We can then get the predicted score using the --scores option.

Adaptive regression model
Mahout has an implementation of meta-learners of OnlineLogisticRegression, in
which each learner is trained using different learning rates, this implementation is
called AdaptiveLogisticRegression. By default, it trains 100 regression learners and
tosses out learners with lower performance after separating learners that have different
learning rates.

Classification with Mahout

[90]

Let's look at how to execute AdaptiveLogisticRegression using the Mahout
command line.

mahout trainAdaptiveLogistic --input train_data/input_bank_data.csv
--output model --target y --predictors age job marital education default
housing loan contact month day_of_week duration campaign pdays previous
poutcome emp.var.rate cons.price.idx cons.conf.idx euribor3m nr.employed
--types n w w w w w w w w w n n n n w n n n n n --features 20 --passes
100 --categories 2 --threads 20

To validate the model, we will use the validateAdaptiveLogistic command.
Let's look at the arguments to the command:

mahout validateAdaptiveLogistic --help

We will pass the required parameters to the command and check the output.

mahout validateAdaptiveLogistic --input train_data/input_bank_data.csv
--model model --auc --confusion

AUC = 0.31

===
Confusion Matrix

a b <--Classified as
25613 0 | 25613 a = no
0 3219 | 3219 b = yes

To get the prediction for unseen samples, we have the command line option
of runAdaptiveLogistic. Using the trained model, we can predict the future
by passing the input data. We have idcolumn for which Mahout will provide
predictions, but again a target variable is required, so we will add a dummy
variable again:

mahout runAdaptiveLogistic --help

Chapter 4

[91]

We need to add an ID column, say a Client_ID that represents the ID of each client
to the datasets, and then generate predictions.

mahout runAdaptiveLogistic --input input_bank_data_client_id.csv --output
result.txt --model model --idcolumn id

The output is generated for both classes for each Client_ID, with the score
representing the probability of belonging to one particular class:

Client_ID,target,score
1,yes,0.12908477170604132
1,no,0.8709152282939587
2,yes,0.09414374186718402
2,no,0.905856258132816
3,yes,0.11752872130530191
3,no,0.8824712786946981
4,yes,0.09453376989863829
4,no,0.9054662301013617
5,yes,0.14564154616220942
5,no,0.8543584538377906

Code example with logistic regression
Any machine learning algorithm in Mahout requires a few steps.

For classification, the steps are as follows:

1. Read the file, line by line.
2. Encode the features into vectors by splitting the line on the delimiters.
3. If running the MapReduce implementation, convert the vector to the

sequence file.
4. Train the model by passing the vector and target variable.
5. Test the model.

Import the code folder, which comes with the book into Eclipse or your
favorite editor. Go to the package chapter4.src.logistic and open the file
OnlineLogisticRegressionTrain.java.

Classification with Mahout

[92]

Train the model
Here, we are reading the file:

String inputFile = "data/chapter4/train_data/input_bank_data.csv";
String outputFile = "data/chapter4/logistic/model";

We create the predictor list, the names of the column used as predictors:

List<String> predictorList =Arrays.asList("age","job","marital","educati
on","default", "housing","loan","contact","month","day_of_week","dura
tion","campaign","pdays","previous","poutcome", "emp.var.rate","cons.
price.idx","cons.conf.idx","euribor3m","nr.employed");

We encode the feature type; the types are same as shown in the code example, n for
numerical and w for categorical variables:

List<String> typeList = Arrays.asList("n", "w", "w", "w", "w", "w", "w",
"w", "w", "w", "n", "n", "n", "n","w", "n", "n", "n", "n", "n");

LogisticModelParameters is a helper class, which helps with passing parameters
to the OnlineLogisticRegression class and returns a CsvRecordFactory value
with appropriate parameters set. We will look into LogisticModelParameters and
CsvRecordFactory later in the chapter, to help us understand the process better.

Here, we are setting the parameters required by the OnlineLogisticRegression
class through the lmp object of the LogisticModelParameters class as follows:

LogisticModelParameters lmp = new LogisticModelParameters();
lmp.setTargetVariable("y");
lmp.setMaxTargetCategories(2);
lmp.setNumFeatures(20);
lmp.setUseBias(false);
lmp.setTypeMap(predictorList,typeList);
lmp.setLearningRate(0.5);

int passes = 50;

This step creates the appropriate CsvRecordFactory object and returns it. The csv
object will be used to parse and encode the csv file into vectors as follows:

CsvRecordFactory csv = lmp.getCsvRecordFactory();

This step creates the OnlineLogisticRegression object by setting the parameters
we passed to the lmp object as follows:

lr = lmp.createRegression();

Chapter 4

[93]

We define RandomAccessSparseVector with the size defined by the number
of features in the file. We defined it by setting lmp.setNumFeatures(20). csv.
processLine takes the line read and encodes it into the vector input and returns
the target value for that particular instance.

Vector input = new RandomAccessSparseVector(lmp.getNumFeatures());
int targetValue = csv.processLine(line, input);

At last, we can train the model using the lr.train method, which takes the
particular instance's target value and the feature vector:

lr.train(targetValue, input);

The last step is to write the model to a file, so that we can use it later for testing
and prediction.

To write the model to the file, we use the saveTo function, provided by the
LogisticRegressionParameter object lmp:

 OutputStream modelOutput = new FileOutputStream(outputFile);
 try {
 lmp.saveTo(modelOutput);
 } finally {
 modelOutput.close();
 }

The LogisticRegressionParameter and
CsvRecordFactory classes
To work with logistic regression in Java code, Mahout provides a couple of utility
classes, LogisticRegressionParameter and CsvRecordFactory. Let's see how to
use them.

A code example without the parameter class
Without using the LogisticRegressionParameter class, we can directly
construct the CsvRecordFactory and OnlineLogisticRegression
objects as follows. A working version of the code can be found in the
OnlineTrainLogisticExampleWithoutParamater.java file, in the
chapter4.src.logistic package:

CsvRecordFactory csv = new CsvRecordFactory("y",setTypeMap(predictorList,
typeList)).maxTargetValue(2).includeBiasTerm(false);

lr =new OnlineLogisticRegression(2,20,new L1()).lambda(0).
learningRate(0.5).alpha(1 - 1.0e-3);

Classification with Mahout

[94]

We have to take care of our own function to write the model as follows:

public static void write(DataOutput out) throws IOException {
 out.writeUTF("y");
 out.writeInt(typeMap.size());
 for (Map.Entry<String,String> entry : typeMap.entrySet()) {
 out.writeUTF(entry.getKey());
 out.writeUTF(entry.getValue());
 }
 out.writeInt(20);
 out.writeBoolean(false);
 out.writeInt(2);

 if (targetCategories == null) {
 out.writeInt(0);
 } else {
 out.writeInt(targetCategories.size());
 for (String category : targetCategories) {
 out.writeUTF(category);
 }
 }
 out.writeDouble(0);
 out.writeDouble(50);
 lr.write(out);
 }

Here, we write out all the parameters passed to the lr object, so that we can use
them later.

Testing the online regression model
Open the OnlineLogisticRegressionTest.java code file. To test the model,
we will use the test file created from the Mahout split command.

private static String inputFile="data/chapter4/test_data/input_bank_data.
csv";

private static String modelFile="data/chapter4/model";

First, we need to load the model from disk:

LogisticModelParameters lmp = LogisticModelParameters.loadFrom(new
File(modelFile));

Read the input file to be tested:

BufferedReader in = OnlineLogisticRegressionTest.open(inputFile);

Chapter 4

[95]

For each line in the file, we encode the features into vectors and then classify each
feature set. We also store the actual target value for the row that will be used to
derive performance statistics:

 Auc collector = new Auc();
while (line != null) {
 Vector v = new SequentialAccessSparseVector(lmp.
getNumFeatures());
 int target = csv.processLine(line, v);
 double score = lr.classifyScalar(v);
 output.printf(Locale.ENGLISH, "%d,%.3f,%.6f%n", target,
score, lr.logLikelihood(target, v));
 collector.add(target, score);
 line = in.readLine();
 }

The AUC class is used to derive the confusion matrix and AUC of ROC curve. We pass
the predicted values and actual value to the collector.add() method.

Logistic regression has other methods for classification, for example, classify(),
which returns the probability for both classes. I advise you to go through the
documentation for further details.

To get the AUC class, use the collector.auc()function.

To get the confusion matrix, use the collector.confusion()function.

The output of the program:

AUC = 0.60
confusion: [[10743.0, 1118.0], [192.0, 303.0]]
entropy: [[NaN, NaN], [-45.2, -7.5]]

Getting predictions from
OnlineLogisticRegression
Open the OnlineLogisticRegressionPredict.java file located in the chaper4.
src.logistic package in the code repository that comes with this book. The file
used for prediction will not have the target variable populated. Most of the steps
will be similar to the testing phase and the only difference is that we will not track
the performance metrics:

private static String inputFile="data/chapter4/input_bank_data_without_
target.csv";
private static String modelFile="data/chapter4/model";private static
String modelFile="data/chapter4/model";

Classification with Mahout

[96]

The LogisticModelParameters and CsvRecordFactory classes accept an input fie
that has a target variable but the target variable will not be present when we perform
predictions; so, we will tweak the file to meet the need of predictions. We will change
the getCsvRecordFactory() method in LogisticModelParametersPredict
and firstLine() in CsvRecordFactory. We rename the files as
LogisticModelParametersPredict and CsvRecordFactoryPredict. Ideally, you
would either extend the classes or create your implementation; I have renamed the
file for ease of explanation.

LogisticModelParametersPredict lmp = LogisticModelParametersPredict.
loadFrom(new File(modelFile));
CsvRecordFactoryPredict csv = lmp.getCsvRecordFactory();
OnlineLogisticRegression lr = lmp.createRegression();

We modified the firstLine() method so that we don't need to look for the target
variable, and changed the signature to accept the target variable name as an argument.
getCsvRecordFactory() was modified to return CsvRecordFactoryPredict
instead of CsvRecordFactory. CsvRecordFactory has a overloaded method for
processLine(), which returns -1 for target variable for new samples.

 int target = csv.processLine(line, v,false);
 double score = lr.classifyScalar(v);

The score variable will give us the predicted score for each instance.

A CrossFoldLearner example
We have covered all three phases of implementation of a classification algorithm,
train, test, and predict. Now, we look at CrossFoldLearner, which does cross-fold
validations of log-likelihood and AUC on several OnlineLogisticRegression
models. Each record is passed to all but one of the models to train and to the one
remaining model to evaluate.

Open the CrossFoldLearnerExample.java file. We will use the cancer.csv
file present in the data/chapter4 directory. We have copied the csv to our
working directory:

BufferedReader br = new BufferedReader(new FileReader("data/chapter4/
cancer.csv"));

We open the file to read and ignore the first line.

CrossFoldLearner clf = new CrossFoldLearner(5, 2, 10, new L1()).lambda(1
* 1.0e-3).learningRate(50);

Chapter 4

[97]

The parameters passed to the constructor are the number of folds, the number of
categories, the number of features, and the prior L1() function.

We read the file line by line and split on ",". We then encode the values into vectors
and train the CrossFoldLearner model as follows:

 while (line != null) {
 if (cnt_line > 0) {
 String[] values = line.split(",");
 double[] vecValues = new double[values.length];

 for (int i = 0; i < values.length - 2; i++) {
 vecValues[i] = Double.parseDouble(values[i]);
 }
int target = Integer.parseInt(values[values.length - 1]);
Vector v = new SequentialAccessSparseVector(values.length);
 v.assign(vecValues);
 clf.train(target, v);

 }

After the model has been run, we can either use the CrossFoldLearner model or
get the individual model. The following is the code to get the information related to
AUC and confusion matrix from the individual models:

System.out.println("Auc of cross fold learner is "+ clf.auc());
br.close();
int model_number=1;
for (OnlineLogisticRegression model : clf.getModels()) {

lr = model;
br = new BufferedReader(new FileReader("data/chapter4/cancer.csv"));
String pred_line = br.readLine();
int cnt_pred_line = 0;
Auc collector = new Auc();
while (pred_line != null) {
if (cnt_pred_line > 0) {
String[] values = pred_line.split(",");
double[] vecValues = new double[values.length];

for (int i = 0; i < values.length - 2; i++) {
vecValues[i] = Double.parseDouble(values[i]);
}
int target = Integer.parseInt(values[values.length - 1]);
Vector v = new SequentialAccessSparseVector(values.length);
v.assign(vecValues);

Classification with Mahout

[98]

double score = lr.classifyScalar(v);
collector.add(target, score);
}
pred_line = br.readLine();
cnt_pred_line++;

}
br.close();
System.out.println("Auc of model " +model_number+ " = "+ collector.
auc());
Matrix m = collector.confusion();
System.out.println("The confusion matrix is" +m);
model_number++;
}

We loop through the model to get individual models, test the individual models,
and then compute the respective AUC and confusion matrix.

The AdaptiveLogisticRegression algorithm programming paradigm follows a
similar flow. I am not going to explain this in great detail; you can look at the code
examples for AdaptiveLogisticRegression and play with it. Since you already
understand the process for OnlineLogisticRegression, the code will be pretty
straightforward.

Random forest
Random forest introduces us to a category of learning tasks called ensemble learning.
In ensemble learning, we train multiple weak learners over the same or different
subsets of the dataset. We then combine their outputs to come up with the final
answer. It has been empirically proved that an ensemble of weak learners will perform
better than any single weak learner, giving the same performance at worst. Random
forest is an ensemble learning algorithm with decision trees as the weak learners. It is a
very good choice for datasets with missing data values and data with small 'n' or large
'p' problems. By small 'n', we mean a smaller number of rows as compared to a large
number of features or 'p'. We will discuss the major features of random forest.

Bagging
Random forest employs bagging. If you recall from Chapter 2, Core Concepts in
Machine Learning, different samples are created from the training data by randomly
selecting rows from the original dataset and replacing them. Decision trees are
trained using the different samples of data, and final predictions are done based
on taking a majority vote. The algorithm allows users to choose the number of
trees to be trained to create a forest.

Chapter 4

[99]

Random subsets of features
While training different decision trees, a modified tree learning algorithm is
employed. For each split in the learning process, a random subset of the features
are used. This helps address the issue of training correlated trees; if a few features
are highly correlated to the target variable, the majority of the trees will select these
features to decide splits. This leads to a large number of correlated trees in the forest.
By choosing a random subset, we address the issue of training correlated trees.
Typically, for a dataset with p features, p features are used in each split, though
the same can be configured by the user.

Out-of-bag error estimate
Random forest computes an out-of-bag error estimate by constructing different
bootstrap samples from the data. The number of bootstrap samples is equal to the
number of trees to be created for the random forest model. Each decision tree is
constructed by using a different bootstrap sample from the original data. About
one-third of the rows are left out of the bootstrap sample and not used in the
construction of that particular tree. This is called an out-of-bag sample.

With this approach, each row of data will not be included the training sample of
around one-third of the trees, and we will get the prediction of the rows from these
trees. For each row or instance in the dataset, we will get a prediction from one-third
of the trees during training. If 'A' is the majority predicted class of instance 'X', every
time it is out-of-bag, the proportion of time the prediction is not equal to the true
class gives us the out-of-bag error estimate. Out-of-bag error estimates gives us a
good idea of the model's generalization, even without using a test set.

Studies have shown that the OOB error estimate is as good as the estimate from a
separate validation set, so theoretically, we don't need to use a validation set with
random forest.

It is always a good idea to cross-validate your results.

Classification with Mahout

[100]

Random forest using the command line
We will use random forest on Hadoop.

export MAHOUT_LOCAL=""

Next, we will copy the file to HDFS. Random forest implementation doesn't need
the header file, which we removed during the training of online logistic regression.
Hence, we will use the same input_bank_data.csv file. We don't need to add back
the header lines. First, we will create the input directory into which we will copy the
file as follows:

hadoop fs -mkdir input_bank
hadoop fs -put input_bank_data.csv input_bank
mahout split --input input_bank --trainingOutput train_data --testOutput
test_data -xm sequential --randomSelectionPct 30

We need to generate a descriptor file, which will be used by the algorithm to
understand the data. Please find the parameters that can be passed to the Describe
class, as follows:

hadoop jar $MAHOUT_HOME/mahout-core-0.9-job.jar org.apache.mahout.
classifier.df.tools.Describe --help

hadoop jar $MAHOUT_HOME/mahout-core-0.9-job.jar org.apache.mahout.
classifier.df.tools.Describe -p train_data/input_bank_data.csv -f
bank_descriptor/bank-additional-full.info -d n 9 c 4 n c 5 n l

Here, we pass the descriptor with the –d option; n stands for numeric or continuous
features, c stands for categorical feature, and l for label or the target variable.

Let's check the content of the descriptor file, an excerpt from the output is copied
as follows:

hadoop fs -cat bank_descriptor/bank-additional-full.info
[
 {
 "values": null,
 "label": false,

Chapter 4

[101]

 "type": "numerical"
 },
 {
 "values": [
 "entrepreneur",
 "unemployed",
 "services",
 "technician",
 "student",
 "housemaid",
 "blue-collar",
 "retired",
 "unknown",
 "self-employed",
 "management",
 "admin."
],
 "label": false,
 "type": "categorical"
 },
 {
 "values": [
 "yes",
 "no"
],
 "label": true,
 "type": "categorical"
 }
]

For continuous variables, the value is set to null, and type set to numerical.
For categorical variables, the values tag is populated with distinct categories of
variables and type set to categorical. The label is set to true only for the target
variable. For classification problems, the label is always categorical.

Classification with Mahout

[102]

The next step is to train the random forest. First, we will discuss the parameters that
can be passed as follows:

hadoop jar $MAHOUT_HOME/mahout-examples-0.9-job.jar org.apache.mahout.
classifier.df.mapreduce.BuildForest --help

Let's now train the model. Here, we are building a random forest with 100 trees,
and the feature selection factor is set to 4. The model is written to the final-forest
directory, and we can use it to make predictions and evaluate the model.

hadoop jar $MAHOUT_HOME/mahout-examples-0.9-job.jar org.apache.mahout.
classifier.df.mapreduce.BuildForest -Dmapred.max.split.size=1874231 -d
train_data/input_bank_data.csv -ds bank_descriptor/bank-additional-full.
info -sl 4 -p -t 100 -o final-forest

The next step is to test the performance of the model. To check the parameter options
for the class TestForest, please execute the following command:

hadoop jar $MAHOUT_HOME/mahout-examples-0.9-job.jar org.apache.mahout.
classifier.df.mapreduce.TestForest --help

Chapter 4

[103]

Now, let's test the performance on the training data. We pass the location to
training data file, the location to the descriptor file, the location to the model,
and location to the output directory.

hadoop jar $MAHOUT_HOME/mahout-examples-0.9-job.jar org.apache.mahout.
classifier.df.mapreduce.TestForest -i test_data/input_bank_data.csv
-ds bank_descriptor/bank-additional-full.info -m final-forest -a -mr -o
final-pred

===
Summary

Correctly Classified Instances : 26541 92.054%
Incorrectly Classified Instances : 2291 7.946%
Total Classified Instances : 28832

===
Confusion Matrix

a b <--Classified as
1000 2283 | 3283 a = yes
8 25541 | 25549 b = no

===
Statistics

Kappa 0.436
Accuracy 92.054%
Reliability 43.4762%
Reliability (standard deviation) 0.5124

hadoop fs -ls final-pred

final-pred/input_bank_data.csv.out

hadoop fs -cat final-pred/input_bank_data.csv.out

The output contains the predicted class labels of each row.

Classification with Mahout

[104]

To test the performance on the test data, we pass the location to the test data file,
the location to the descriptor file, the location to the model file, and location to the
output directory.

hadoop jar $MAHOUT_HOME/mahout-examples-0.9-job.jar org.apache.mahout.
classifier.df.mapreduce.TestForest -i test_data/input_bank_data.csv
-ds bank_descriptor/bank-additional-full.info -m final-forest -a -mr -o
final-pred_test

===
Summary

Correctly Classified Instances : 11079 89.6649%
Incorrectly Classified Instances : 1277 10.3351%
Total Classified Instances : 12356

===
Confusion Matrix

a b <--Classified as
131 1226 | 1357 a = yes
51 10948 | 10999 b = no

===
Statistics

Kappa 0.1497
Accuracy 89.6649%
Reliability 36.3967%
Reliability (standard deviation) 0.5489

Predictions from random forest
For prediction, we can follow the same strategy we used for logistic regression and
create a dummy target variable. We can get the prediction in the .csv.out file in
the final pred folder.

Chapter 4

[105]

Naïve Bayes classifier
The naïve Bayes algorithm uses probabilistic learning to make predictions about
classes. It is a generative model; it learns the join probability P(X|Y) and then
generates conditional probability, using Bayes' theorem. The prefix naïve is attributed
to this algorithm because the assumptions it makes about the data sound very
naïve. The algorithm assumes that the features or predictor variables are all of equal
importance and independent of each other. This assumption is rarely true for real-life
data. For example, text classification is an area in which naïve Bayes shines, because
some words would be more important in predicting the class than others, and some
words would be more likely to occur together. In e-mail classification, words like
lottery or subscribe are likely to indicate the message is spam, where the words lottery
and won to occur more frequently. In this example, although both the assumptions of
independence and equal importance are wrong, still naïve Bayes performs very well
in e-mail classification. The reason for this is still being studied and there are a few
papers that try to explain it. However, we won't go into that. The motivation behind
the assumptions is computation simplicity, which we will see later.

Let's assume a dataset of 100 e-mails with 20 spams and 80 hams. We want to predict
whether an e-mail is ham or spam based on the words in the emails. Without any
information about the words in the e-mail, we can guess the probability of an e-mail
being spam. It would be 20/100 or 0.2 or 20 percent. This is called prior probability.
Now, let's suppose that we know that the e-mail has the word Lottery in it. The
probability that the word Lottery was used in previous spam e-mails is called
Likelihood. The probability that the word Lottery was used in any mail, whether
spam or ham, is called marginal likelihood.

Now, by applying Bayes' theorem for conditional probability, we can compute the
probability of an e-mail being spam if it has the word Lottery. This probability is
called posterior probability.

() () ()() ()| |P spam Lottery P Lottery spam P spam P Lottery= ∗ ÷

Here, ()|P spam Lottery is the posterior probability that we are trying to predict,
()()|P Lottery spam is the likelihood, ()P Lottery is the marginal probability, and
()P spam is the prior probability.

Classification with Mahout

[106]

We will use the frequency table to generate the probabilities as follows:

Lottery Won Golf Subscribe Bank

Frequency Yes No Yes No Yes No Yes No Yes No Total

spam 9 11 10 10 0 20 2 18 5 15 20

ham 1 79 10 70 80 0 5 75 9 71 80

Total 1 79 1 79 1 79 1 79 1 79 100

The likelihood table is as follows:

Lottery Won Golf Subscribe Bank

Likelihood Yes No Yes No Yes No Yes No Yes No Total

spam 9/20 11/20 10/20 10/20 0/20 20/20 2/20 18/20 5/20 15/20 20

ham 1/80 79/80 10/80 70/80 80/80 0/80 5/80 75/80 9/80 71/80 80

Total 10/100 90/100 20/100 80/100 80/100 20/100 7/100 93/100 14/100 86/100 100

From the likelihood table, we can see that:

()P Lottery = 10 / 100 = 0.1

()()|P Lottery spam = 9/20 = 0.45

()P spam = 20/100 = 0.2

Hence, ()|P spam Lottery = (0.45*0.2)/0.1 = 0.9

The probability of ()|P ham Lottery is 1 - 0.9 = 0.1 as the two events are mutually
exclusive. As an exercise, you could derive the probability using the Bayes' theorem.
We derived the probability of a particular e-mail belonging to the class spam based
on a single feature, but in real-life data there will be multiple features. This is where
the assumption of naïve Bayes comes handy. As the features are independent, we
can use () () ()P A B P A P B∩ = ∗ and generate a simpler formula:

() () () ()

() () ()

| 1 2.. 1| 2 | .. |

1 2 ..

P spam f f fn P f spam P f spam p fn spam p spam

P f p f p fn

 ∩ ∩ = ∗ ∗ ∗ ÷

∗ ∗

∑

Chapter 4

[107]

where , 1..fi i n= are the features. From our frequency table, let's assume that the
mail contains the words Lottery, Won, and Subscribe, therefore the numerator
of the left hand side is 9/20*10/20*2/20*20/100= 0.0045 and denominator is
10/100*20/100*7/100= 0.0014.

Notice in the example table that Golf occurs zero times for spam, so the likelihood
of golf is zero too. Now for naïve Bayes, we multiple the probabilities, so for spam
the probability is going to be zero if an e-mail contains the word Golf. This is not an
ideal scenario, and to address this we add a value, mostly one, to all the frequency
counts in the frequency table.

Numeric features with naïve Bayes
As we can see that naïve Bayes uses likelihood based on frequencies, we need the
input features to be categorical. To work with numeric features, we need to convert
them to categorical features. There are many ways to do this. We can bin the data
into categories based on equal weight, or equal widths, or use quartiles, or try to
identify natural bins by using the domain expertise about the data.

Command line
We have already seen how to train and test a naïve Bayes classifier by using the
Mahout command line in Chapter 1, Introduction to Mahout. If you revisit the chapter,
you will find that you have a better grasp of the process now.

Summary
In this chapter, we discussed one of the major areas of application in machine
learning, known as classification.

We discussed the internal working and learned to use, three of the most popular
classification algorithms and discussed all the four processes involved in the
classification project: train, test, validate and predict.

In the next chapter, we will discuss topic modeling on top of text data and frequent
pattern mining on top of product purchase transactions. Both of the topics have a
wide area of practical application and is used extensively by the Industry.

[109]

Frequent Pattern Mining
and Topic Modeling

In this chapter, we are going to discuss two important application areas of machine
learning, frequent pattern mining and topic modeling. Frequent pattern mining
helps identify frequent patterns among transactions. This type of technique is used
widely in market basket analysis, upselling and cross-selling of products, and so on.
There are many different algorithms to mine frequent patterns from databases such
as Apriori, Tree projection, and FP-Growth; we will restrict our discussion to FP-
Growth, which is implemented in Mahout. Topic modeling represents documents
under consideration as topics. Each topic is a bag of words that we can use to label
the topics. We will also discuss the Mahout implementation of Latent Dirichlet
allocation (LDA). The topics covered in this chapter are as follows:

• Frequent pattern mining
• Topic modeling

Frequent pattern mining
FP-Growth represents the frequent transactions in a consolidated data structure
called FP Tree, and the frequent patterns are mined using the FP Tree.

There are two major steps while mining frequent patterns using the FP-Growth
algorithm, building the FP Tree, and deriving frequent patterns from the FP Tree.

Frequent Pattern Mining and Topic Modeling

[110]

Building FP Tree
Let's assume a database with the following information. For each transaction, we
have a list of items that were sold.

Transaction ID Items
1 Fish, Milk, Egg, Bread, and Biscuit

2 Lemon, Fish, Bread, and Tea
3 Fish and Milk
4 Egg and Tea
5 Fish, Biscuit, Bread, and Cup

Let the minimum support be 2. We first compute the frequency of occurrence
of each item in the transaction table. If you are not able to recall what is meant
by support, please revisit the section Frequent pattern mining in Chapter 2, Core
Concepts in Machine Learning.

The frequency of occurrence of items is as shown here:

Items Frequency
Fish 4
Milk 2
Egg 2
Bread 3
Biscuit 2
Lemon 1
Tea 2
Cup 1

Note that support, in this case, is the absolute number and not the percentage coverage.

The next step is to sort the items by their frequencies and drop items lower than the
support value of 2. The output of the step is displayed in the following table:

Items Frequency
Fish 4
Bread 3
Milk 2
Egg 2

Chapter 5

[111]

Items Frequency
Biscuit 2
Tea 2

In this step, we reorder the transaction based on respective frequency in descending
order. The output of the steps is displayed in the following table:

TransactionID Items Reordered

1
Fish, Milk, Egg, Bread, and
Biscuit

Fish, Bread, Milk, Egg,
and Biscuit

2 Lemon, Fish, Bread, and Tea Fish, Bread, and Tea
3 Fish and Milk Fish and Milk
4 Egg and Tea Egg and Tea
5 Fish, Biscuit, Bread, and Cup Fish, Bread, and Biscuit

Constructing the tree
The FP Tree has a null root node. So we will start with a null node, add the reordered
items of transaction 1, and add the transaction node.

Frequent Pattern Mining and Topic Modeling

[112]

Similarly, we proceed with adding the other transactions and incrementing the
count of each element we encounter. As we add transaction 2, we add a node Tea
after Bread and increment the count of Fish and Bread to 2, and so forth. Note that
we require only two scans of the data, the first to collect and sort the list of frequent
items and the second to construct the FP Tree. This is one advantage of the FP Tree
algorithm compared to other methods such as Apriori.

Identifying frequent patterns from FP Tree
The following table shows the item frequency of the FP Tree we had constructed
earlier in the chapter:

Items Frequency
Fish 4
Bread 3
Milk 2
Egg 2
Biscuit 2
Tea 2

To mine the frequent patterns, we go from the bottom to top of this list. We start
mining from Tea all the way up to Fish. First, we create the conditional pattern
base for the items under consideration, then we create the conditional frequency,
list and lastly create the condition FP Tree.

Chapter 5

[113]

Let's see how the conditional pattern base for Tea is calculated. The steps are listed
as follows, in order of they are encountered from fish to tea in each path:

Fish: 1, Bread: 1
Egg: 1

Note that in the conditional pattern base, Tea itself is not present.

The frequency list is given as follows:

Fish: 1, Egg: 1, Bread: 1

The frequent pattern for Tea is as follows:

Fish, Bread: Tea

Egg: Tea

Similarly, we can derive frequent patterns for all other items.

The conditional FP Tree is shown as follows:

Importing the Mahout source code
into Eclipse
It's a good idea to look at the source code of Mahout, as it will give you additional
insights into the working of machine learning algorithms and Mahout commands. In
this section, we will be exploring and modifying some of the source files of Mahout.
For that, we need to import the source code into Eclipse. Mahout source code is
packaged in Maven and if all the configuration steps of Chapter 1, Introduction to
Mahout, were followed, we should be ready to import the source code into Eclipse.

Frequent Pattern Mining and Topic Modeling

[114]

Let's start with downloading the code folder. Please go to the URL http://archive.
apache.org/dist/mahout/0.9 and download the file mahout-distribution-0.9-
src.tar.gz. Ideally the file should be copied to the Eclipse workspace directory,
but any location can be used. The next step is to extract the archive in the folder
where the archive mahout-distribution-0.9-src.tar.gz has been copied to.
For this, we will execute the following command:

tar -xf mahout-distribution-0.9-src.tar.gz

This will create the directory mahout-distribution-0.9. To import the source into
Eclipse, please follow the sequence of steps as follows:

Go to File | Import | Maven | Existing Maven Projects | Next | Browse to
workspace and go to mahout source folder mahout-distribution-0.9| Finish.
Eclipse will download the required dependencies.

Frequent pattern mining with Mahout
So far, we discussed the important concepts needed to understand the frequent
pattern mining algorithm and also discussed the construction of a FP Tree with
examples. Let's now discuss how to implement frequent pattern mining (FPM)
with Mahout.

Extending the command line of Mahout
Frequent pattern mining is not currently supported through the Mahout command
line. We will learn how to tweak Mahout to support frequent pattern mining from
the command line. The approach demonstrated here can be used to support
user-created classes from the Mahout command line.

Looking at the source code of the tool you are working with is always a great
idea. This gives a strong understanding of the basics and augments the learning
process. We will use the Mahout source code imported into Eclipse. Let's open the
file MahoutDriver.java found in the folder core/src/main/java/org/apache/
mahout/driver under the Mahout directory or from the package org.apache.
mahout.driver in Eclipse. This class is called by the Mahout shell script found
in the bin/ folder. When we run the Mahout command, the MahoutDriver.java
class is executed. The first argument that we pass to the Mahout script is called the
short job name and it maps to a Mahout class to be executed. For example, when
we run mahout trainlogistic, the class org.apache.mahout.classifier.sgd.
TrainLogistic is executed and the rest of the arguments are passed to the class.

http://archive.apache.org/dist/mahout/0.9
http://archive.apache.org/dist/mahout/0.9

Chapter 5

[115]

Let's look at these lines in the MahoutDriver.java file:

Properties mainClasses = loadProperties("driver.classes.props");
 if (mainClasses == null) {
 mainClasses = loadProperties("driver.classes.default.props");
 }
 if (mainClasses == null) {
 throw new IOException("Can't load any properties file?");
 }

The code block above is reading the properties file. The mapping of the short
job name to the actual class name is maintained in the properties file driver.
classes.default.props present in the src/conf or conf folder under the mahout
directory. Let's open the driver.classes.default.props file, where we can see
that trainlogistic is mapped to the class org.apache.mahout.classifier.sgd.
TrainLogistic as previously mentioned:

org.apache.mahout.classifier.sgd.TrainLogistic = trainlogistic : Train a
logistic regression using stochastic gradient descent

There are other .props files with the name format <shortJobName>.props. These
can be used to pass additional parameters to the class to be executed.

Now, to enable Mahout to support frequent pattern mining from the command line,
we need to create a class that can perform frequent pattern mining and then add it
to the driver.classes.default.props file. The Mahout code base already has a
Java class to perform the same function in its code base, org.apache.mahout.fpm.
pfpgrowth.FPGrowthDriver. We will add the following mentioned line in driver.
classes.default.props. It can be added as a new line anywhere in the file:

org.apache.mahout.fpm.pfpgrowth.FPGrowthDriver = fpg: Frequent Pattern
Growth

Additionally, we can create a blank file fpg.props although it is not compulsory:

touch fpg.props

Now we can use the command line implementation of frequent pattern mining.
Please make sure you have followed the instructions and got the command line
for the working of the Mahout FPM, the examples ahead rely on it. Let's see the
command line option. Type the following command on the terminal:

mahout fpg --help

Frequent Pattern Mining and Topic Modeling

[116]

The important parameters of the fpg job are as follows:

Argument Description
input (-i) input This is the path to the job input directory.
output (-o) output This is the directory pathname for output.

minSupport (-s)
This is the minimum number of times a co-occurrence must
be present. The default value is 3.

numGroups (-g)

This is the number of groups the features should be divided
into in the MapReduce version. This doesn't work in a
sequential version.

splitterPattern (-regex)

This is the regular expression pattern used to split given
string transactions into itemsets. The default value splits
comma-separated itemsets.

method (-method) method This is the method of processing sequential|mapreduce.
useFPG2 (-2) This uses an alternate FPG implementation.

Now we will discuss how to mine frequent patterns and rules using Mahout.
The first step is to get the data.

Getting the data
For frequent pattern mining, we will use a dataset with transactions and then try to
find out frequent patterns in those transactions. We will use the dataset provided by
Dr. Tariq Mahmood, Assistant Professor at the National University of Computer and
Emerging Sciences (FAST-NU), Karachi, Pakistan. It is available at https://sites.
google.com/a/nu.edu.pk/tariq-mahmood/.

The link to the file can be found in the code examples in this book at https://
sites.google.com/a/nu.edu.pk/tariq-mahmood/teaching-1/fall-12---dm/
marketbasket.csv?attredirects=0&d=1.

Data description
This marketbasket.csv file contains the list of purchases made in a transaction. An
element with the value true represents a purchase made, whereas the value false
represents no purchase for that particular item.

https://sites.google.com/a/nu.edu.pk/tariq-mahmood/
https://sites.google.com/a/nu.edu.pk/tariq-mahmood/
https://sites.google.com/a/nu.edu.pk/tariq-mahmood/teaching-1/fall-12---dm/marketbasket.csv?attredirects=0&d=1
https://sites.google.com/a/nu.edu.pk/tariq-mahmood/teaching-1/fall-12---dm/marketbasket.csv?attredirects=0&d=1
https://sites.google.com/a/nu.edu.pk/tariq-mahmood/teaching-1/fall-12---dm/marketbasket.csv?attredirects=0&d=1

Chapter 5

[117]

A snippet of the file is as follows:

Basket ID Hair conditioner Lemons Standard coffee
C11867 FALSE FALSE TRUE
C5096 FALSE FALSE FALSE
C4295 FALSE TRUE FALSE
C2837 FALSE FALSE FALSE
C2693 FALSE FALSE FALSE
C3497 TRUE FALSE FALSE
C2696 FALSE FALSE FALSE

To use the Mahout frequent mining implementation, we need to preprocess the file
to a particular format, with each line representing the items that were purchased in
the particular transaction, in this case the Basket ID. The items can be delimited and
the delimiter can be passed to the regex parameter, which defaults to Tab or ,:

--splitterPattern (-regex) Default Value: "[,\t]*[,|\t][,\t]*"

The processed file would look something like this:

158
130,230
75
121
213
180
124
4,16,36,42,47,71,97,100,108,117,141,147,186,194,245,269,293

Here, each integer represents each item that's been purchased.

We will use Java to convert the file; for larger files, Pig can be used to convert
the file using MapReduce. From the chapter5.fpm.src package, open the
CSVToMahoutFormatConverter.Java file. We will first discuss the code
snippet that creates the mapping file:

 String data_dir="data/chapter5/";
 String csvFilename = data_dir+"marketbasket.csv";

BufferedReader csvReader = new BufferedReader(new
FileReader(csvFilename));

 String line = csvReader.readLine();

Frequent Pattern Mining and Topic Modeling

[118]

 String[] tokens = line.split(",");
FileWriter mappingWriter = new FileWriter(data_dir+"item_mapping.csv");
 int itemID = 0;
 for(int idx=1;idx<tokens.length;idx++) {
// loops starts from 1 to ignore the first column // element
mappingWriter.write(tokens[idx].trim() + "," + itemID + "\n");
 itemID++;
 }
 mappingWriter.close();
 csvReader.close();

The first line of the file is read to create a mapping.csv file, which contains the
mapping between the item name and itemID. The item name is in the first line
itself and we use the column number to generate the itemID. We have to ignore
the first element of the first line as the Basket ID is not required, hence the first
loop starts at 1.

The second step is to convert the transactions into a Mahout-usable format as
described earlier:

boolean isfirstLine=true;
 while(true) {
 line = csvReader.readLine();
 if (line == null) {
 break;
 }
 if(isfirstLine)
 {
 //ignore the first line
 isfirstLine=false;
 continue;
 }
 tokens = line.split(",");
 itemID = 0;
 boolean isFirstElement = true;
 for(int idx=1;idx<tokens.length;idx++) {
 if (tokens[idx].trim().equals("true")) {
 if (isFirstElement) {
 isFirstElement = false;
 } else {
 datWriter.append(",");
 }
 datWriter.append(Integer.toString(itemID));
 }

Chapter 5

[119]

 itemID++;
 }
 datWriter.append("\n");

This code snippet transforms the input file into the required Mahout format. The
flag variable isfirstLine is used to ignore the header line. For each transaction,
wherever we find true, we write the column number to the output file. The column
number represents the item purchased.

After code execution, you will find two new files created, item_mapping.csv and
marketbasket_converted.csv. The file item_mapping.csv holds the mapping
item and the corresponding itemID that we generated:

item_mapping.csv

Hair Conditioner, 0
Lemons, 1
Standard coffee, 2
Frozen Chicken Wings, 3

The marketbasket_converted.csv file has the item ID of each item purchased for
each transaction. This will be used as input for generating the frequent patterns.

marketbasket_converted.csv

158
130,230
75
121
213
180
124

The next step is to copy the marketbasket_converted.csv file to HDFS. First, we
create a directory for it:

hadoop fs -mkdir fpm

Then, we copy the file to this directory:

hadoop fs -put marketbasket_converted.csv fpm

Now, let's derive the patterns using the command line option we just added in the
previous section:

mahout fpg -i fpm/marketbasket_converted.csv -o patterns -k 10 -method
mapreduce -s 2

Frequent Pattern Mining and Topic Modeling

[120]

The input file is passed with the parameter –i and the output directory with the
parameter -o; the method of execution is mapreduce and the minimum support is 2.

We now check the output directory:

hadoop fs -ls patterns
Found 4 items
-rw-r--r-- 1 ctiwary supergroup 6098 2014-08-20 23:50 /user/ctiwary/
patterns/fList
drwxr-xr-x - ctiwary supergroup 0 2014-08-20 23:51 /user/ctiwary/
patterns/fpgrowth
drwxr-xr-x - ctiwary supergroup 0 2014-08-20 23:51 /user/ctiwary/
patterns/frequentpatterns
drwxr-xr-x - ctiwary supergroup 0 2014-08-20 23:50 /user/ctiwary/
patterns/parallelcounting

The following two files of interest are created in the output directory:

• fList: This is a sequence file with the number of the transaction containing
the particular item

• frequentpatterns/part-r-00000: This is a sequence file that contains the
frequent patterns for each item

Let's see the result in the fList output file:

mahout seqdumper -i patterns/fList

Key: 132: Value: 167
Key: 141: Value: 162
Key: 124: Value: 149
Key: 16: Value: 133
Key: 4: Value: 127
Key: 110: Value: 126
Key: 300: Value: 118
Key: 238: Value: 116
Key: 6: Value: 109

The key is the item ID and Value is the number of transactions the item was present in:

hadoop fs -ls patterns/frequentpatterns

Found 3 items
-rw-r--r-- 1 ctiwary supergroup 0 2014-08-20 23:51 /user/
ctiwary/patterns/frequentpatterns/_SUCCESS
drwxr-xr-x - ctiwary supergroup 0 2014-08-20 23:51 /user/
ctiwary/patterns/frequentpatterns/_logs
-rw-r--r-- 1 ctiwary supergroup 84198 2014-08-20 23:51 /user/
ctiwary/patterns/frequentpatterns/part-r-00000

Chapter 5

[121]

Execute the seqdumper command to explore the output:

mahout seqdumper -i patterns/frequentpatterns/part-r-00000

Let's observe one of the lines of the output:

Key: 99: Value: ([99],35), ([16, 99],22), ([141, 99],22), ([132, 99],20),
([141, 16, 99],18), ([132, 16, 99],17), ([132, 141, 99],15), ([132, 141,
16, 99],14), ([132, 124, 99],14), ([132, 141, 124, 16, 99],12)

The number 99 of the key represents the ItemID, if we check mapping.csv it is
Glass Cleaner. The values represent the top 10 associations of other items with
Glass Cleaner. ([99],35) means that Glass Cleaner is present 35 times, ([141,
99],22) represents White Bread and Glass Cleaner is present 22 times, and so on.
All the associations can be looked up in the mapping.csv file.

To run in sequential mode, we can pass the argument sequential to the parameter
method. Note that in sequential mode, the file needs to be on the file system and
not HDFS:

mahout fpg -i fpm/marketbasket_converted.csv -o patterns -k 10 -method
sequential -s 2

Frequent pattern mining with Mahout API
An example of the Java implementation is in the FPGrowthExample.Java class in
the package chapter5.fpm.src. It has implementations for both sequential and
MapReduce execution.

The run(String[] args, Configuration conf) function called from
the main method creates the required parameter object and passes it to the
runPFPGrowth(Parameters params, Configuration conf) method:

 if ("sequential".equalsIgnoreCase(classificationMethod)) {
 System.out.println("Sequential run");
 runFPGrowth(params, conf);
 } else if ("mapreduce".equalsIgnoreCase(classificationMethod)) {
 System.out.println("mapreduce run");
 HadoopUtil.delete(conf, outputDir);
 PFPGrowth.runPFPGrowth(params, conf);
 }

Frequent Pattern Mining and Topic Modeling

[122]

MapReduce execution
The program takes the following input. The input is the same as the one on the
Mahout command line:

-i fpm/marketbasket_converted.csv -o patterns -k 10 -method mapreduce -s
2

The entry part of the parallel execution is the FPGrowth.runPFPGrowth(params,
conf) function.

We need to call the functions startParallelFPGrowth(params, conf) and
startAggregating(params, conf):

List<Pair<String,Long>> fList = readFList(params);
saveFList(fList, params, conf);

// set param to control group size in MR jobs
int numGroups = params.getInt(NUM_GROUPS, NUM_GROUPS_DEFAULT);
int maxPerGroup = fList.size() / numGroups;
if (fList.size() % numGroups != 0) {
maxPerGroup++;
}
params.set(MAX_PER_GROUP, Integer.toString(maxPerGroup));

startParallelFPGrowth(params, conf);
startAggregating(params, conf);

startParallelFPGrowth(params, conf);

The classes used by the MapReduce job startParallelFPGrowth are given below.
The classes are used to set different parameters of the job object:

job.setInputFormatClass(TextInputFormat.class);
job.setMapperClass(ParallelFPGrowthMapper.class);
job.setCombinerClass(ParallelFPGrowthCombiner.class);
job.setReducerClass(ParallelFPGrowthReducer.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);

startAggregating(params, conf);

The classes used by the MapReduce job startAggregating are given as follows.
The classes are used to set different parameters of the job object:

job.setInputFormatClass(SequenceFileInputFormat.class);
job.setMapperClass(AggregatorMapper.class);
job.setCombinerClass(AggregatorReducer.class);

Chapter 5

[123]

job.setReducerClass(AggregatorReducer.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);

Linear execution
We will next discuss the linear execution of the frequent pattern mining algorithm.
The entry point of execution is the function runFPGrowth(params, conf).

The first step is to create the object of the class FPGrowth:

FPGrowth<String> fp = new FPGrowth<String>();
fp.generateTopKFrequentPatterns(
new StringRecordIterator(new FileLineIterable(
inputStream, encoding, false), pattern),
fp.generateFList(new StringRecordIterator(
new FileLineIterable(inputStreamAgain,
encoding, false), pattern), minSupport),
minSupport,
maxHeapSize,
features,
new StringOutputConverter(
new SequenceFileOutputCollector<Text, TopKStringPatterns>(
writer)),
new ContextStatusUpdater<Writable, Writable, Writable, Writable>(
null));

List<Pair<String, TopKStringPatterns>> frequentPatterns = FPGrowth
.readFrequentPattern(conf, output);
for (Pair<String, TopKStringPatterns> entry : frequentPatterns) {
log.info("Dumping Patterns for Feature: {} \n{}", entry.getFirst(),
entry.getSecond());

Formatting the results and computing metrics
Open the FormatResults.java file present in the chapter5.src package of the
code folder that comes with this book, the arguments to be passed are 1361 data/
chapter5/item_mapping.csv patterns/fList patterns/frequentpatterns/
part-r-00000 0.0 0.0:

 int transactionCount = Integer.parseInt(args[0]);
String mappingCsvFilename = args[1];
String frequencyFilename = args[2];
String frequentPatternsFilename = args[3];
double minSupport = Double.parseDouble(args[4]);
double minConfidence = Double.parseDouble(args[5]);

Map<Integer, Long> frequency = readFrequency(configuration,
frequencyFilename);

Frequent Pattern Mining and Topic Modeling

[124]

Reader frequencyReader = new SequenceFile.Reader(fs,
new Path(fileName), configuration);
Map<Integer, Long> frequency = new HashMap<Integer, Long>();
Text key = new Text();
LongWritable value = new LongWritable();
while(frequencyReader.next(key, value)) {
frequency.put(Integer.parseInt(key.toString()), value.get());
}

readFrequentPatterns(configuration, frequentPatternsFilename,
transactionCount, frequency, itemById, minSupport, minConfidence);

Reader frequentPatternsReader = new SequenceFile.Reader(fs,
new Path(fileName), configuration);
Text key = new Text();
TopKStringPatterns value = new TopKStringPatterns();

double support = (double)occurrence / transactionCount;
double confidence = (double)occurrence / firstFrequencyItem;
double lift = ((double)occurrence * transactionCount) /
(firstFrequencyItem * otherItemOccurrence);
double conviction = (1.0 - (double)otherItemOccurrence /
transactionCount) / (1.0 - confidence);

Topic modeling using LDA
The LDA algorithm represents documents under investigation with the help
of multiple topics, where each topic consists of a certain bag of words. LDA
is a generative probabilistic model and makes assumptions made about data
generation. The assumptions made by LDA are as follows:

• There are a fixed number of patterns of word usage, groups of terms that
tend to occur together in documents and these are called topics.

• Each document is assumed to be formed by the combination of a particular
set of topics.

For a particular document, the steps are as follows:

1. Decide on the number of words, N,the document will have based upon
a poisson distribution.

2. For a fixed number of topics, K, choose the topic composition for the
document. For example, 20 percent of topic A, 50 percent of topic B,
and 30 percent of topic C.

Chapter 5

[125]

3. Generate each word, w, in the document by:

1. Picking a topic for the word
2. Using the selected topic to generate the word itself

Using these steps, LDA then tries to backtrack from the documents to find a set of
topics that are likely to have generated the collection.

With these assumptions in place, a bunch of documents and a fixed number of topics
will represent the documents. We proceed by identifying the bag of words for each
document and assigning each document to a combination of these topics.

The next steps are as follows:

1. We go through each document, and randomly assign each word in the
document to one of the K topics.

2. This random assignment already gives us both the topic representations of all
the documents and word distributions of all the topics, but the assignment is
arbitrary and we need to improve on this by following these steps:

1. For each document d, go through each word w in d.
2. For each topic t, we will compute:

 p(topic t | document d) = the proportion of the words in document d that
are currently assigned to topic t, and p(word w | topic t) = the proportion of
assignments to topic t over all documents that come from this word w. Reassign w
to a new topic, where you choose topic t with probability p(topic t | document
d) * p(word w | topic t). According to our generative model, this is essentially
the probability that topic t generated word w, so it makes sense that we
resample the current word's topic with this probability.

3. In other words, in this step, we're assuming that all topic assignments except
for the current word in question are correct, and then updating the assignment
of the current word using our model of how documents are generated.

4. After repeating the previous step a large number of times, we will eventually
reach a roughly steady state where your assignments are pretty good. So
use these assignments to estimate the topic mixtures of each document (by
counting the proportion of words assigned to each topic within that document)
and the words associated to each topic (by counting the proportion of words
assigned to each topic overall).

Frequent Pattern Mining and Topic Modeling

[126]

LDA using the Mahout command line
We will use the Reuters dataset for out topic modeling example. The first step is to
download the data and extract it to the working directory, like follows.

On the command line, first set up the working directory as follows:

mkdir /tmp/lda
export WORK_DIR=/tmp/lda

Then we download the data to a location on the hard drive and extract the
downloaded file to the working directory:

wget http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.tar.gz
tar xvzf reuters21578.tar.gz -C $WORK_DIR/input

We will use the Mahout class ExtractReuters to extract the files:

mahout org.apache.lucene.benchmark.utils.ExtractReuters $WORK_DIR/input
$WORK_DIR/reutersfinal

The next step is to convert the files to the sequence format. We will use the Mahout
command seqdirectory for that:

mahout seqdirectory -i $WORK_DIR/reutersfinal -o $WORK_DIR/sequencefiles/
-c UTF-8 -chunk 5

To view one of the sequence files, we will use the seqdumper utility:

mahout seqdumper -i ./part-m-00000 -o part-m-00000.txt

The output is something like this:

Input Path: part-m-00000
Key class: class org.apache.hadoop.io.Text Value Class: class org.apache.
hadoop.io.Text
Key: /reut2-000.sgm-301.txt: Value: 2-MAR-1987 04:45:57.78
Key: /reut2-012.sgm-635.txt: Value: 2-APR-1987 12:14:08.24

The next step is to convert the sequence file into a term frequency matrix. We will
use the Mahout utility seq2sparse for that. This matrix can then be used to perform
topic modeling:

mahout seq2sparse -i $WORK_DIR/sequencefiles/ -o $WORK_DIR/vectors/ -wt tf

Chapter 5

[127]

Mahout has the cvb command to perform LDA. The main parameters are as follows:

• The –i input folder, where the input files are present
• The -o folder, where the output sequence file will be created
• The -k parameter is the number of topics to be generated
• The -x parameter is the maximum number of words to aggregate into a

topic
• The –ow parameter instructs Mahout to remove the final output if it exists
• –dict tells you where the dictionary is located
• –dt is the output path for the document training
• –mt is the model topic folder

We execute the Mahout cvb command to perform topic modeling on the input dataset:

mahout cvb -i $WORK_DIR/reuters-out-matrix/matrix -o $WORK_DIR/reuterslda
-k 20 -ow -x 20 -dict $WORK_DIR/reuters-out-seqdir-sparse-lda/dictionary.
file-* -dt $WORK_DIR/reuters-lda-topics -mt $WORK_DIR/reuters-lda-model

To view the results, we will use the Mahout vectordump utility:

mahout vectordump -i ${WORK_DIR}/reuters-lda-topics/part-m-00000 -o
${WORK_DIR}/reuters-lda/vectordump -vs 10 -p true -d ${WORK_DIR}/reuters-
out-seqdir-sparse-lda/dictionary.file-* -dt sequencefile -sort ${WORK_
DIR}/reuters-lda-topics/part-m-00000

The output is stored in the vectordump file, to view it, we use the following command:

cat ${WORK_DIR}/reuters-lda/vectordump

Summary
In this chapter, we discussed two important application areas of machine learning,
frequent pattern mining using the FP Growth algorithm, and topic modeling using
LDA. These are two very important toolkits for any machine learning practitioner
and using these two, many real-life problems can be solved. Both frequent pattern
mining and topic modeling are used extensively for exploratory analysis and to
gain additional insights.

In the next chapter, we are going to discuss the recommender system built using
collaborative filtering. The recommender system is the most popular and mature
functionality of Mahout.

[129]

Recommendation
with Mahout

Recommendations are an integral part of our experience on the Internet. Products are
recommended to us on an e-commerce site, news items on a news portal, and videos
are recommended on sites such as YouTube. There are many different approaches
to building a recommender system. In this chapter, we will discuss methods based
on collaborative filtering and learn how to implement a recommender system
using Mahout. We are going to primarily focus on user-based and item-based
recommendation. We will cover the following recommendations:

• User-based recommendation
• Item-based recommendation

Collaborative filtering
Collaborative filtering, generally speaking, is the process of filtering for information
or patterns using techniques involving collaboration between multiple data points.
Collaborative filtering methods have a wide breadth of applications, ranging
from monitoring data such as logs, application on financial data, e-commerce
recommendations, and different web applications such as news sites.

In collaborative filtering for recommendation, the underlying assumption of the
approach is that if person A has the same opinion as person B on an issue, A is
more likely to have B's opinion on a different issue, x, than the opinion on x of a
randomly-chosen person. The idea behind collaborative filtering is the idea that
people often get the best recommendations from someone with similar tastes like
themselves. Collaborative filtering explores techniques for matching people with
similar interests and making recommendations on this basis.

Recommendation with Mahout

[130]

The primary input for any recommendation system based on collaborative filtering is
the past interests of the user, their current browsing history, and a concept of item or
user similarity. Collaborative filtering comes in two predominant flavors, user-based
recommenders and item-based recommenders. We will discuss them in details in the
coming sections.

Similarity measures
Recommender systems are based on the concept of similarity; without the notion
of similarity between users or between items, it won't be possible to compute new
preferences and recommend items to users. In this section, we will discuss a few
important measures implemented in Mahout.

Pearson correlation similarity
The Pearson correlation is a number that indicates the tendency of two series of
numbers to increase or decrease together. The range of Pearson correlation is -1 to
1, where values close to 1 indicate that the two series change together in the same
direction, so they either increase or decrease together. In this case, the two series are
considered to be positively correlated. Values close to -1 indicate negative correlation.
The two series change in opposite directions, so if one increases the other decreases.
Values close to 0 means that the two series don't have any patterns related to their
respective changes.

It won't take a giant leap of imagination to see how the Pearson coefficient can be
used for measuring the similarity of users. The preference values of users will be
a series of numbers, and we can calculate the Pearson correlation similarity to see
which users have a high value of correlation in their preference value. These users
will be similar to each other. In Mahout, this similarity measure is implemented as
PearsonCorrelationSimilarity.

Euclidean distance similarity
The Euclidean distance similarity is based on the distance between users. Users
are represented as points in space. Space has as many coordinates as the number
of items in the dataset, and the preference value for an item is the coordinate value
for the corresponding coordinate. This similarity is implemented in Mahout as
EuclideanDistanceSimilarity.

The Euclidean distance measure is computed as 1/ (1+d), where d is the Euclidean
distance between two user points. The value is always positive and the range is
between 0 and 1. Values closer to 1 indicate similar users, whereas values closer
to 0 indicate users who don't have similar preferences.

Chapter 6

[131]

Computing similarity without a preference value
Till now, we have seen recommendations with a preference value associated with it.
In some scenarios, recommendations could just be an ordered list of items without
any preferences or the actual preference value is not important. In these cases, we
need similarity measures that work without preference values. We will discuss two
of them.

Tanimoto coefficient similarity
Tanimoto or Jaccard coefficient is the ratio count of the number of common items
two users have commonly divided by the number of items both the users have
preference for. For example, let's assume we have two users A and B.

A has demonstrated preference for items 1, 2, 5, 9.

B has demonstrated preference for items 1, 3, 5, 7, 10.

Count of common items = (1, 5) = 2.

Count of all items with preference = (1, 2, 5, 9, 7, 10, 3) = 7.

Hence, the Tanimoto coefficient is 2/7. It is implemented in Mahout as the class
TanimotoCoefficientSimilarity.

Log-likelihood similarity
Log-likelihood similarity is similar to Tanimoto coefficient-based similarity, but it
additionally calculates how likely it is that the overlap between the two users is due
to chance. In a large dataset, users could have common items purely out of chance,
and log-likelihood similarity accounts for this. It is implemented in Mahout as a the
LogLikelihoodSimilarity class.

Evaluating recommender
In Chapter 2, Core Concepts in Machine Learning, we discussed concepts to evaluate
a recommender system. Here, we will do a quick recap. The recommender can be
evaluated using score difference or precision and recall. In score difference, the
evaluation is based on the difference between the actual and predicted ratings.
Average difference or root mean square are most commonly used. The root mean
square evaluation metric is implemented by the RMSRecommenderEvaluator
class, and the average difference evaluation metric is implemented by the
AverageAbsoluteDifferenceRecommenderEvaluator class.

Recommendation with Mahout

[132]

Precision and recall is mostly used for Boolean preferences, preferences without
a rating value. The implementation for the precision and recall metric is present
in the RecommenderIRStatsEvaluator class.

We will discuss a few examples of evaluating recommenders in the coming sections.

User-based recommender system
The user-based recommender system is based on the concept of user similarity.
The idea behind this algorithm is that similar users share similar preferences.
This idea can be leveraged to recommend a new item based on the preference
of users that are similar to that of a user for that particular item.

The user-based recommender algorithm works like this. For a given user u, compute
the similarity with all other user based on a similarity measure. Shortlist a group of
users n, based on a similarity threshold. This group will be called the neighborhood
of the user. For every item, I, that u doesn't have a preference for but some users in
n have a preference for, compute a weighted average of the preference values. The
weighted preference is the product of the similarity of u with a user in n expressing
preference for I as the preference value. Adding this weighted preference for all
users in n having preference for I gives the weighted sum. Dividing this weighted
sum by the number of such users gives the weighted average of preference value
p. The value p is the preference for item I for user u, and if this is above a particular
threshold, we can recommend the item to u. Similar users are found first, before
seeing what those most-similar users are interested in. Only these items become
candidates for recommendation for the user u.

To build a user-based recommender, we need preference data, a notion of similarity
between users, a notion of neighborhood of users, and a similarity threshold.

User neighborhood
To compute the new item preferences for a user, we need to consider the
preferences of users who are similar. A set of users that are similar to the current
user are called its neighborhood. In Mahout, the notion of neighborhood is
implemented as the UserNeighborhood interface. It has two implementations,
NearestNUserNeighborhood and ThresholdUserNeighborhood. We will discuss
them in the next section.

Chapter 6

[133]

Fixed size neighborhood
We could define the neighborhood as N for similar users. Here, the optimum
number of users or optimum size of neighborhood can be determined by
evaluating the recommender with different values. Too small or too large a
value in most cases won't be a good selection. This is implemented in Mahout
as a NearestNUserNeighborhood class.

Threshold-based neighborhood
Rather than having a fixed size neighborhood, we could define a neighbor by
threshold. This is particularly helpful as the number of users could vary and hence
the fixed size might be good for one dataset but not for the others. The threshold
value lies between -1 and 1. We select a threshold value, say 0.5 and all users with
a similarity of 0.5, and greater will be considered as neighbors. The similarity
value will be calculated based on the similarity measure selected. Again, there
is no way to determine a good threshold value, and the estimation can be done
only by evaluating the recommender. This is implemented in Mahout as the
ThresholdUserNeighborhood class.

The dataset
The dataset used for this chapter is the GroupLens, MovieLens 100K dataset. You
can download the dataset by clicking on http://files.grouplens.org/datasets/
movielens/ml-100k.zip. The code repository includes one of the files from the
ua.base dataset in the directory chapter6 under the directory data. This is a tab-
delimited file with user IDs, item IDs, ratings or preference value, and a time stamp
as the field. In this chapter, the first three fields are of interest. Let's look at some
sample data from the file. User 1 has expressed preference value for items 1 to 10
and the range of preference value is between 1 and 5 as follows:

1 1 5 874965758

1 2 3 876893171

1 3 4 878542960

1 4 3 876893119

1 5 3 889751712

1 6 5 887431973

1 7 4 875071561

1 8 1 875072484

1 9 5 878543541

1 10 3 875693118

http://files.grouplens.org/datasets/movielens/ml-100k.zip
http://files.grouplens.org/datasets/movielens/ml-100k.zip

Recommendation with Mahout

[134]

Mahout code example
In this section, we read the input file, create a user-based recommender,
and then evaluate the recommender that we build. We also explore a couple
of methods related to making recommendation. The building blocks of a
user-based recommender in Mahout are as follows:

• A DataModel object to represent the preference data
• A UserSimilarity object to measure the similarity of users
• A UserNeigborhood object to define the neighborhood of users
• A Recommender object to build the user-based recommender

Building the recommender
Open the UserBasedRecommender.java file from the package chapter6.src in
Eclipse. To execute the code file from Eclipse, pass the path to the preference file
as an argument and hit Run from the menu.

The first step is to read the input file described earlier in the text and create a
DataModel object to represent the file. We use the FileDataModel implementation
of the DataModel super class for representing the file. The dataset used is the same
ua.base file discussed earlier:

File trainingFile = null;
trainingFile = new File(args[0]);
DataModel model = new FileDataModel(trainingFile);

Once the data is represented as a DataModel object, it's time to create the
UserSimilarity object using a different similarity implementation class and then
define the number of neighbors to consider for a particular user. We will use both
fixed size and threshold-based neighborhoods:

UserSimilarity pearsonSimilarity = new PearsonCorrelationSimilarity(
model);
UserSimilarity euclideanSimilarity = new EuclideanDistanceSimilarity(
model);
UserSimilarity tanimotoSimilarity = new TanimotoCoefficientSimilarity(
model);
UserSimilarity logLikilihoodSimilarity = new LogLikelihoodSimilarity(
model);

Chapter 6

[135]

The fixed size neighborhood requires a number of neighbors, a similarity object, and
the model object as a parameter to the constructor. We create neighborhood objects
of all four similarities discussed in this chapter as follows:

UserNeighborhood pearsonNeighborhood = new NearestNUserNeighborhood(
1000, pearsonSimilarity, model);
UserNeighborhood euclideanNeighborhood = new NearestNUserNeighborhood(
1000, euclideanSimilarity, model);
UserNeighborhood tanimotoNeighborhood = new NearestNUserNeighborhood(
1000, tanimotoSimilarity, model);
UserNeighborhood logLikilihoodNeighborhood = new
NearestNUserNeighborhood(
1000, logLikilihoodSimilarity, model);

The threshold-based neighborhood implementation requires the similarity threshold,
a similarity object, and the model object as parameter to the constructor. We have set
the similarity threshold as 0.1, which is very low; generally, anything below 0.5 is
not a good idea. However, the optimum value of the similarity threshold can only be
determined by evaluation. We have created four neighborhood objects using all the
four similarities discussed in this chapter as follow:

UserNeighborhood pearsonThresNeighborhood = new
ThresholdUserNeighborhood(
0.1, pearsonSimilarity, model);
UserNeighborhood euclideanThresNeighborhood = new
ThresholdUserNeighborhood(
0.1, euclideanSimilarity, model);
UserNeighborhood tanimotoThresNeighborhood = new
ThresholdUserNeighborhood(
0.1, tanimotoSimilarity, model);
UserNeighborhood logLikilihoodThresNeighborhood = new
ThresholdUserNeighborhood(
0.1, logLikilihoodSimilarity, model);

The previous steps have created the base objects required for creating the
recommenders. Now, we will create the recommenders and use them. I have created
a function as we will create multiple recommenders using the different similarity
and neighborhood objects that we created so far. The function takes as parameters
the model object, the neighborhood object, the similarity object, and a string to
denote which similarity measure we are using, and constructs the recommender:

private static void performRecommendation(DataModel model,
UserNeighborhood neighbour, UserSimilarity similarity, String Type)
throws TasteException {
Recommender recommender = new GenericUserBasedRecommender(model,
neighbour, similarity);

Recommendation with Mahout

[136]

long userId = 1;
int numberOfRecommendation = 2;
List<RecommendedItem> recommendations = recommender.recommend(userId,
numberOfRecommendation);

for (RecommendedItem recommendation : recommendations) {
System.out.println("The two recommended item using similarity "
+ Type + "for user " + userId + " is " + recommendation);
}

int userID = 1;
long itemID = 1106;

System.out.println("The estimated prefrence using similarity " + Type
+ "for user " + userId + " is "
+ recommender.estimatePreference(userID, itemID));
}

In the function described in the preceeding section, we can see a couple of ways
of using the recommender. The recommend() function of the recommender object
recommender takes the user ID as the first argument and returns n number of
arguments according to the second argument. The values are returned as a list of
RecommendationItem. We call the recommend function for user ID 1 and get 2
recommendations as follows:

long userId = 1;
int numberOfRecommendation = 2;
List<RecommendedItem> recommendations = recommender.recommend(userId,
 numberOfRecommendation);

We can print the recommender items and the preference value by looping through
the returned object:

for (RecommendedItem recommendation : recommendations) {
System.out.println("The two recommended item using similarity "
 + Type + "for user " + userId + " is " + recommendation);
 }

The other useful function is estimatePreference(). It takes a user ID as the first
argument and item ID as the second argument, and gives the preference for the item
for the given user ID:

int userID = 1;
long itemID = 1106;

System.out.println("The estimated prefrence using similarity " + Type +
"for user " + userId + " is "+ recommender.estimatePreference(userID,
itemID));

Chapter 6

[137]

Finally, we invoke the recommender function we defined, with the combination of
similarity and user neighborhood objects we created so far. We invoke the function
with the respective neighborhood and similarity measure: Pearson Neighborhood is
passed with Pearson Similarity and so on. The function will print two recommended
items for user 1 and the estimated preference for item 1106 of user 1:

performRecommendation(model, pearsonNeighborhood, pearsonSimilarity,

"pearson ");

performRecommendation(model, euclideanNeighborhood,

euclideanSimilarity, "euclidean ");

performRecommendation(model, tanimotoNeighborhood, tanimotoSimilarity,

"tanimoto ");

performRecommendation(model, logLikilihoodNeighborhood,

logLikilihoodSimilarity, "log-likelihood ");

performRecommendation(model, pearsonThresNeighborhood,

pearsonSimilarity, "pearson ");

performRecommendation(model, euclideanThresNeighborhood,

euclideanSimilarity, "euclidean ");

performRecommendation(model, tanimotoThresNeighborhood,

tanimotoSimilarity, "tanimoto ");

performRecommendation(model, logLikilihoodThresNeighborhood,
logLikilihoodSimilarity, "log-likelihood ");

The sample output is given later in the text. We can see that the Pearson similarity-
based recommender is better at estimating the preference of user 1 for item 1106
than the Euclidean-based recommender. A conclusive best recommender can only
be determined by tweaking the values of the neighborhood and evaluating the
recommender iteratively. Hence, we will discuss the evaluation of the user-based
recommender next:

The two recommended item using similarity pearson for user 1 is
RecommendedItem[item:1106, value:5.0]

The two recommended item using similarity pearson for user 1 is
RecommendedItem[item:1026, value:5.0]

The estimated preference using similarity pearson for user 1 is 5.0

The two recommended item using similarity euclidean for user 1 is
RecommendedItem[item:1293, value:5.0]

The two recommended item using similarity euclidean for user 1 is
RecommendedItem[item:1189, value:5.0]

The estimated preference using similarity euclidean for user 1 is
2.9449823

Recommendation with Mahout

[138]

Evaluating the recommender
After we have built the recommender, we need to evaluate its performance. Open the
UserBasedRecommendeEvaluation.java file from the package chapter6.src. To
execute the code file from Eclipse, pass the path to the preference file as an argument
and hit Run from the menu.

The first step is to read the preference file in a DataModel object. The dataset used is
the same ua.base file discussed earlier:

File trainingFile = null;
trainingFile = new File(args[0]);
DataModel model = new FileDataModel(trainingFile);

We then build two objects which will perform evaluation. Score difference based on
evaluation using the AverageAbsoluteDifferenceRecommenderEvaluator class
and precision recall evaluation-based on GenericRecommenderIRStatsEvaluator:

RecommenderEvaluator scoreBasedEvaluator = new
AverageAbsoluteDifferenceRecommenderEvaluator();
RecommenderIRStatsEvaluator precRecevaluator = new
GenericRecommenderIRStatsEvaluator();

Next, we build the different similarity objects as follows:

UserSimilarity pearsonSimilarity = new PearsonCorrelationSimilarity(
model);
UserSimilarity euclideanSimilarity = new EuclideanDistanceSimilarity(
model);
UserSimilarity tanimotoSimilarity = new TanimotoCoefficientSimilarity(
model);
UserSimilarity logLikilihoodSimilarity = new LogLikelihoodSimilarity(
model);

We also build the neighborhood objects, both fixed sized and threshold-based, using
the different similarity object. Sample code lines are shown as follows:

UserNeighborhood pearsonNeighborhood = new NearestNUserNeighborhood(
1000, pearsonSimilarity, model);
UserNeighborhood pearsonThresNeighborhood = new
ThresholdUserNeighborhood(
0.1, pearsonSimilarity, model);

Chapter 6

[139]

To perform the evaluation, we define two functions, one for score-based evaluation
and the other for precision recall-based evaluation. The score-based function takes
the RecommenderEvaluator object, the DataModel object, the UserNeighborhood,
and the UserSimilarity object as the parameters. It uses 70 percent of the data
for training and 10 percent of the data for evaluation. It then prints the evaluated
score. We can run this example multiple times with different neighborhood sizes
to determine the optimum size:

private static void performEvaluationScoreDiff(
RecommenderEvaluator evaluator, DataModel model,
final UserNeighborhood neighborhood, final UserSimilarity similarity)
throws TasteException {
// Build the same recommender for testing that we did last time:
RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
public Recommender buildRecommender(DataModel model)
throws TasteException {
return new GenericUserBasedRecommender(model, neighborhood,
similarity);
}
};
// Use 70% of the data to train; test using the other 30%.
double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7,
1.0);
System.out.println("The evaluation score is " + score);
}

We call the function with the DataModel object, the RecommenderEvaluator object,
and the different UserSimilarity and UserNeigborhood objects we created. Sample
calls using the fixed sized neighborhood and threshold-based neighborhood are
shown as follows:

performEvaluationScoreDiff(scoreBasedEvaluator, model,
pearsonNeighborhood, pearsonSimilarity)
performEvaluationScoreDiff(scoreBasedEvaluator, model,
pearsonThresNeighborhood, pearsonSimilarity);

The sample output is given later in the text. We can see that the recommender
with a fixed size neighborhood performed slightly better than the threshold-based
neighborhood. The optimum option can be determined iteratively by using different
fixed size and threshold values, in combination with the different similarities, and
selecting the best-performing one:

The evaluation score is 0.7279038090804933
The evaluation score is 0.7187479821770454

Recommendation with Mahout

[140]

Similarly, we define the evaluator function to perform precision and
recall-based evaluation. The function is a bit different from the one
used for the score difference evaluator. The evaluator object is now of the
RecommenderIRStatsEvaluator type, an interface, with the implementation
class being GenericRecommenderIRStatsEvaluator. The object has methods
to get precision and recall:

private static void performEvaluationPrecRecall(
RecommenderIRStatsEvaluator evaluator, DataModel model,
final UserNeighborhood neighborhood, final UserSimilarity similarity)
throws TasteException {
RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
public Recommender buildRecommender(DataModel model)
throws TasteException {
return new GenericUserBasedRecommender(model, neighborhood,
similarity);
}
};
IRStatistics stats = evaluator.evaluate(recommenderBuilder, null,
model, null, 2,
GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1.0);

System.out.println("The precision is " + stats.getPrecision());
System.out.println("The recall is " + stats.getRecall());
}

We invoke the function to perform the evaluation, and the sample calls are shown
as follows:

performEvaluationPrecRecall(precRecevaluator, model,
pearsonNeighborhood, pearsonSimilarity);

The sample output is shown later in the text, and the methodology to get
the optimum values remains the same. You can try out different values of
the parameter and iteratively find the best recommender:

The precision is 0.031757754800590836
The recall is 0.028553299492385772

Item-based recommender system
Item-based recommendation is based on similarities between items. The idea behind
this algorithm is that a user will have a similar preference for similar items.

Chapter 6

[141]

The item-based algorithm works like this. For every item, I, that a user, u, has no
preference for, compute the similarity between I and every other item that u has a
preference for. Calculate a weighted average, where the weighted preference is the
product of similarity of item I with any other item that u has expressed a preference
for with the preference value for that item. Adding this weighted preference for
all items that u has a preference for gives the weighted sum, and dividing it by the
number of such items gives the weighted average of preference value p. The p value
is the preference for item I for user u, and if this is above a particular threshold, we
can recommend the item to u.

To build an item-based recommender, we need preference data and a notion of
similarity between items.

Mahout code example
In this section, we are going to discuss how to build an item-based recommender
using Mahout. The semantics are pretty similar to the user-based recommender.
We will build a recommender and then discuss how to evaluate it. The building
blocks of an item-based recommender are as follows:

• A DataModel object representing the preference data
• An ItemSimilarity object to measures the similarity of items
• A Recommender object to build the user-based recommender

Building the recommender
The steps to build an item-based recommender are similar to the ones used for
a user-based recommender. Instead of a UserSimilarity object, we will use
ItemSimilarity for building the recommender.

Open the ItemBasedRecommender.java file from the package chapter6.src.
To execute the code file from Eclipse, pass the path to the preference file as an
argument and hit Run from the menu.

The first step is to represent the preference file, discussed earlier, in a DataModel
object. The dataset used is the same ua.base file discussed earlier:

File trainingFile = null;
trainingFile = new File(args[0]);
DataModel model = new FileDataModel(trainingFile);

Recommendation with Mahout

[142]

The second step is to create the different similarity objects:

ItemSimilarity pearsonSimilarity = new PearsonCorrelationSimilarity(

model);

ItemSimilarity euclideanSimilarity = new EuclideanDistanceSimilarity(

model);

ItemSimilarity tanimotoSimilarity = new TanimotoCoefficientSimilarity(

model);
ItemSimilarity logLikilihoodSimilarity = new LogLikelihoodSimilarity(
model);

Once the similarity objects have been created, the next step is to create the
Recommender object. To do this, we have defined a performItemRecommendation()
function. The function accepts as arguments the DataModel object, the
ItemSimilarity object, and a string to denote the type of similarity used:

private static void performItemRecommendation(DataModel model,

ItemSimilarity itemSimilarity, String Type) throws TasteException {

long userId = 1;

int numberOfRecommendation = 2;

Recommender itemRecommender = new GenericItemBasedRecommender(model,

itemSimilarity);

List<RecommendedItem> itemBasedRecommendations = itemRecommender

.recommend(userId, numberOfRecommendation);

for (RecommendedItem recommendation : itemBasedRecommendations) {

System.out.println("The two recommended item using similarity "

+ Type + "for user " + userId + " is " + recommendation);

}

int userID = 1;

long itemID = 1106;

System.out.println("The estimated prefrence using similarity " + Type

+ "for user " + userId + " is "

+ itemRecommender.estimatePreference(userID, itemID));

}

Chapter 6

[143]

The function fetches the recommended items for user 1. The function that used
recommend() is the same one that is used in the user-based recommender example,
as follows:

long userId = 1;
int numberOfRecommendation = 2;
List<RecommendedItem> itemBasedRecommendations = itemRecommender.
recommend(userId, numberOfRecommendation);

Once the recommendations are available, we can get the recommended items for the
particular user by looping through the list of RecommendedItem:

for (RecommendedItem recommendation : itemBasedRecommendations) {
 System.out.println(recommendation);
 }

The function also uses the estimatePreference() method of the Recommender
object itemRecommender to get the preference of a user for an item as follows:

int userID = 1;
long itemID = 1106;
System.out.println(itemRecommender.estimatePreference(userID,itemID));

Next, we call the function and observe the output. The sample call to the function
and partial output is shown as follows:

performItemRecommendation(model, pearsonSimilarity, "pearson ");

performItemRecommendation(model, euclideanSimilarity, "euclidean ");

The two recommended item using similarity pearson for user 1 is
RecommendedItem[item:345, value:5.0]

The two recommended item using similarity pearson for user 1 is
RecommendedItem[item:320, value:5.0]

The estimated prefrence using similarity pearson for user 1 is 4.180895

The two recommended item using similarity euclidean for user 1 is
RecommendedItem[item:1653, value:4.509804]

The two recommended item using similarity euclidean for user 1 is
RecommendedItem[item:1156, value:4.3728814]

The estimated prefrence using similarity euclidean for user 1 is
3.7780771

Recommendation with Mahout

[144]

Evaluating the recommender
Open the ItemBasedRecommenderEvaluation.java file from the package
chapter6.src. This code file has the sample code for evaluating an item-based
recommender. To execute the code file from Eclipse, pass the path to the preference
file as an argument and hit Run from the menu.

First, we represent the preference file as a DataModel object using the
FileDataModel class. The dataset used is the same ua.base file discussed earlier:

File trainingFile = null;
trainingFile = new File(args[0]);
DataModel model = new FileDataModel(trainingFile);

We then build the two objects the will perform the evaluation. Score difference-
based evaluation using the AverageAbsoluteDifferenceRecommenderEvaluator
class and precision recall-based evaluation based on
GenericRecommenderIRStatsEvaluator:

RecommenderEvaluator scoreBasedEvaluator = new
AverageAbsoluteDifferenceRecommenderEvaluator();
RecommenderIRStatsEvaluator precRecevaluator = new
GenericRecommenderIRStatsEvaluator();

Next, we build the different similarity objects:

ItemSimilarity pearsonSimilarity = new PearsonCorrelationSimilarity(
model);
ItemSimilarity euclideanSimilarity = new EuclideanDistanceSimilarity(
model);
ItemSimilarity tanimotoSimilarity = new TanimotoCoefficientSimilarity(
model);
ItemSimilarity logLikilihoodSimilarity = new LogLikelihoodSimilarity(
model);

To perform the evaluation, we define two functions, one for score-based evaluation
and the other for precision recall-based evaluation. The score-based function takes
the RecommenderEvaluator object, the DataModel object and the ItemSimilarity
object as the parameters. It uses 70 percent of the data for training and 10 percent of
the data for evaluation. It then prints the evaluated score:

private static void performEvaluationScoreDiff(
RecommenderEvaluator evaluator, DataModel model,
final ItemSimilarity itemSimilarity) throws TasteException {
// Build the same recommender for testing that we did last time:

Chapter 6

[145]

RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
public Recommender buildRecommender(DataModel model)
throws TasteException {
return new GenericItemBasedRecommender(model, itemSimilarity);
}
};
// Use 70% of the data to train; test using the other 30%.
double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7,
1.0);
System.out.println("The evaluation score is " + score);
}

We call the function with the DataModel object, the RecommenderEvaluator
object, and the different ItemSimilarity objects we created. Sample calls are
shown as follows:

performEvaluationScoreDiff(scoreBasedEvaluator, model,
pearsonSimilarity);
performEvaluationScoreDiff(scoreBasedEvaluator, model,
euclideanSimilarity);

The sample output is given later in the text. We can see that recommender
with Euclidean similarity has performed better than that with Pearson similarity.
The optimum option can be determined by selecting the recommender with the
highest score:

The evaluation score is 0.6664933304675151
The evaluation score is 0.7998527691989347

Similarly, we define the evaluator function to perform precision and
recall-based evaluation. The function is a bit different from the one
used for score difference evaluator. The evaluator object is now of the
RecommenderIRStatsEvaluator type, an interface, with the implementation
class being GenericRecommenderIRStatsEvaluator. The object has methods
to get precision and recall:

private static void performEvaluationPrecRecall(
RecommenderIRStatsEvaluator evaluator, DataModel model,
final ItemSimilarity itemSimilarity) throws TasteException {
RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
public Recommender buildRecommender(DataModel model)
throws TasteException {
return new GenericItemBasedRecommender(model, itemSimilarity);
}
};

Recommendation with Mahout

[146]

IRStatistics stats = evaluator.evaluate(recommenderBuilder, null,
model, null, 2,
GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1.0);

System.out.println("The precision is " + stats.getPrecision());
System.out.println("The recall is " + stats.getRecall());
}

We invoke the function to perform the evaluation. Sample calls are shown as follows:

performEvaluationPrecRecall(precRecevaluator, model, pearsonSimilarity)

The sample output is shown, and the methodology to get the optimum values
remain the same:

The precision is 0.0012690355329949235
The recall is 0.0012690355329949235

Inferring preferences
Sparse datasets with users providing preferences for only a fraction of the items
are problematic. As users have provided preferences for only a few items, it will
be difficult to generate meaningful preferences. One way to address this scenario
is to impute or infer the missing preferences for user-item pairs. Mahout has an
implementation for this as the AveragingPreferenceInferrer class, which extends
the PreferenceInferrer interface. This implementation computes the average of
all preferences provided by a user and imputes the average for all the missing item
preferences for that user.

Summary
In this chapter, we learned about the basics of building a recommender system using
Mahout. We discussed the idea behind recommender systems, similarity measures,
and two paradigms for building the recommender, user-based and item-based.
We also discussed a couple of use cases for building a recommender and learned
how to measure the efficacy of a recommender system.

In the next chapter, we are going to look at clustering algorithms. We will look at the
basic concepts of different clustering algorithms and discuss practical examples.

[147]

Clustering with Mahout
In this chapter, we will discuss one of the major application areas of machine
learning. Cluster analysis has wide areas of application like customer segmentation,
news grouping, grouping users based on their behavior, and so on.

We will also get an understanding of the internals of a few important clustering
algorithms and then discuss their implementation in Mahout. The topics that we
will discuss in this chapter are as follows:

• Data preprocessing
• k-means
• Canopy clustering
• Fuzzy k-means
• Streaming k-means

k-means
k-means is one of the simplest and most widely-used clustering algorithms. Given
the number of K clusters to look for, k-means provides K clusters with respective
data points belonging to a cluster, depending upon how close they are to the mean
of that particular cluster mean. The point is assigned to a cluster to whose mean it is
the closest. In other words, k-means tries to minimize the variance between points
belonging to the same cluster. The algorithm requires one major input to look for the
number of clusters, which can be both a bane and boon. We will discuss this further
in this chapter. The other parameters that can be set are the distance measure to be
used, the stopping criteria, the number of iterations, and so on. There are two steps
in this algorithm.

Clustering with Mahout

[148]

The first step finds the points that are nearest to each centroid point and assigns
them to that specific cluster. The second step recalculates the centroid point using
the mean of the coordinates of all the points in that cluster. These steps are repeated
till the algorithm converges based on the stopping criteria or the maximum number
of iterations. The stopping criteria for k-means is when the centroid doesn't change
by a certain degree between iterations or there is no reallocation of points. If the
stopping criteria is not achieved, then the algorithm breaks after a certain number
of iterations fixed by the user. The choice of the distance measure is governed by the
problem at hand. The objective of k-means is to decrease the variance of individual
clusters and increase the variance between clusters. As variance is defined under
EuclideanDistanceMeasure, it is the preferred choice for a distance measure.
For text mining, the preferred distance measure is CosineDistanceMeasure.
An important advantage is that it can account for documents of different sizes.

k-means is based on variance minimization around the mean.
The variance and mean are well defined in the case of the
Euclidean distance measure and hence it is recommended
to use the Euclidean distance measure with k-means.

Let's look at an example to understand k-means better. Let's assume a dataset with
two input features A and B. We intend to cluster them with K. The number of the
cluster is set to 2.

The following table shows the first seven lines of the input data:

Input A B
1 1.0 1.0
2 1.5 2.0
3 3.0 4.0
4 5.0 7.0
5 3.5 5.0
6 4.5 5.0
7 3.5 4.5

We start with the initial centers; in this case, we assign the farthest point as the initial
cluster mean. There are many approaches to determining the initial cluster mean,
and we will discuss them shortly.

Individual Mean Vector (centroid)
Centre 1 1 (1.0, 1.0)

Chapter 7

[149]

Individual Mean Vector (centroid)
Centre 2 4 (5.0, 7.0)

The input points are now assigned to the respective cluster based on the shortest
Euclidean distance from the cluster mean. After the addition of each input point,
the centers are recalculated:

Cluster 1 Cluster 2

Step Points Mean Vector
(centroid) Points Mean Vector

(centroid)
1 1 (1.0, 1.0) 4 (5.0, 7.0)
2 1, 2 (1.2, 1.5) 4 (5.0, 7.0)
3 1, 2, 3 (1.8, 2.3) 4 (5.0, 7.0)
4 1, 2, 3 (1.8, 2.3) 4, 5 (4.2, 6.0)
5 1, 2, 3 (1.8, 2.3) 4, 5, 6 (4.3, 5.7)
6 1, 2, 3 (1.8, 2.3) 4, 5, 6, 7 (4.1, 5.4)

After the first pass of data, we are left with two clusters with points 1,2,3 belonging
to cluster 1 with centroid (1.8,2.3) and 4,5,6,7 belonging to cluster 2 with centroid
(4.1, 5.4), respectively.

Points Mean Vector
(centroid)

Cluster 1 1, 2, 3 (1.8, 2.3)
Cluster 2 4, 5, 6, 7 (4.1, 5.4)

Now, to be sure that each point has been assigned to the right cluster, we compare
each point's distance to its own cluster mean and to that of the opposite cluster.
The Euclidean distance measure is again used to calculate the distance. We observe
that point 3 is nearer to cluster 2's mean than cluster 1's mean. Point 3 needs to be
reassigned to cluster 2:

Points
Distance to
mean (centroid)
of Cluster 1

Distance to mean
(centroid) of
Cluster 2

1 1.5 5.4
2 0.4 4.3
3 2.1 1.8
4 5.7 1.8

Clustering with Mahout

[150]

Points
Distance to
mean (centroid)
of Cluster 1

Distance to mean
(centroid) of
Cluster 2

5 3.2 0.7
6 3.8 0.6
7 2.8 1.1

After the reassignment of point 3, the cluster mean needs to be recalculated again:

Points Mean Vector (centroid)
Cluster 1 1, 2 (1.3, 1.5)

Cluster 2 3, 4, 5,
6, 7 (3.9, 5.1)

The iterative relocation continues from this new partition until no more relocations
occur or the change in the mean between the iterations is below a certain threshold.
If none of the conditions are met, the algorithm should break after a fixed number
of iterations.

Deciding the number of clusters
There is no simple way to decide the number of clusters to generate. It depends
on the data and the problem to be solved. The good news is that often the problem
statement itself leads to the number of clusters. For example, let's assume we want to
cluster users based on the product usage; intuitively clusters of high, medium, and
low usage make sense. So, based on our intuition of 3 clusters, we can also generate
clusters around the neighborhood of numbers like 2, 4, and 5 and select the best one
depending on the cluster evaluation metric. Please note that business users don't
need the best clusters, they need actionable clusters.

Another rule of thumb is to take the square root of the number of data points divided
by 2;

We can also run some algorithms to determine the number of K from the data itself.
Most tools have such utilities. In Mahout, we have canopy clustering for this. We will
discuss canopy clustering later in this chapter.

Chapter 7

[151]

Deciding the initial centroid
The choice of the initial centroid impacts the convergence of the clusters and to an
extent the quality of the clusters as well. It is important to understand the various
choices of deciding the initial centroids and applying at least a couple of these
techniques while building the clusters. Let's look at the major techniques.

Random points
One approach to initialize the centroids is to generate random points to represent the
centroids equal to the number of the cluster K. The final output will vary depending
on the initial points generated, but still this is a viable approach as the output in
majority of cases vary by a small margin.

Points from the dataset
The second approach is to select random input points to represent the centroids
equal to the number of the cluster K. This approach is similar to the first approach.

Partition by range
In the third approach, we take the range of the individual column, divide it
into equal-spaced partitions, and use the partition points as the initial centroids.
This approach might lead to a faster convergence of the algorithm.

Canopy centroids
Another possibility is to use the centroids generated by canopy clustering. This is one
of the optimum approaches of selecting the centroids and providing both a suitable
number of K and good initial cluster points.

If it is possible to run the clustering algorithm multiple times, that is, if we have
enough time and resources, the optimum solution is to build different models using
all the techniques of deciding initial centroids discussed previously. Once all the
k-means converge, we can calculate the average of all the centroids created, use it
as the new initial centroid, and run a final iteration of k-means. This final k-means
model should determine the final clusters.

Clustering with Mahout

[152]

Advantages and disadvantages
Like any machine learning algorithms, k-means has its advantages and disadvantages.

The advantages are that k-means is very fast and provides intuitive understanding.
Given that we have a good approximation of K, the algorithm provides pretty robust
clusters, which is dependent on a close approximation of K. Assumption of spherical
clusters might not be good for more complex datasets. The output is dependent on
the initial centroid points.

Canopy clustering
Canopy clustering is a fast and approximate clustering technique. It divides the
input data points into overlapping clusters called canopies. Two different distance
thresholds are used for the estimation of the cluster centroids. Canopy clustering can
provide a quick approximation of the number of clusters and initial cluster centroids
of a given dataset. It is mainly used to understand the data and provide input to
algorithms such as k-means.

Overlapping clustering algorithms group points into different
clusters without the condition of exclusivity of points. A single
point can belong to different clusters.

Canopy clustering creates clusters with a single pass over the data. A canopy
clustering algorithm might not give accurate and precise clusters, but it can give
the optimal number of clusters without specifying the number of clusters.

The algorithm uses a fast distance measure and two distance thresholds, T1 and T2,
with T1> T2. It begins with a dataset of points and an empty list of canopies, and then
iterates over the dataset, creating canopies in the process. During each iteration, it
removes a point from the dataset and adds a canopy to the list with that point as the
center. It loops through the rest of the points one by one. For each one, it calculates
the distances to all the canopy centers in the list. If the distance between the point
and any canopy center is within T1, it's added to that canopy. If the distance is within
T2, it's removed from the list and thereby prevented from forming a new canopy in
subsequent loops. It repeats this process until the list is empty.

This approach prevents all points close to an already existing canopy (distance <T2)
from being the center of a new canopy. It's detrimental to form another redundant
canopy in close proximity to an existing one.

Chapter 7

[153]

Fuzzy k-means
The fuzzy k-means clustering algorithm is another overlapping clustering algorithm.
It is an extension of k-means algorithm without the restriction of exclusive clusters.
One data point can be a part of more than one cluster. In the overlapping clusters,
any point can belong to more than one cluster with a certain affinity value toward
each cluster. This affinity is proportional to the distance from the point to the centroid
of the cluster. Fuzzy k-means converges faster than k-means, and should be preferred
if the criteria of exclusivity is not mandatory.

Deciding the fuzzy factor
The fuzzy k-means algorithm has a parameter, m, called the fuzziness factor.
Like k-means, fuzzy k-means loops over the dataset. However, instead of assigning
vectors to the nearest centroids, it calculates the degree of association of the point to
each of the clusters.

The fuzzy k-means algorithm starts behaving more like the k-means algorithm as
m gets closer to 1. If m increases, the fuzziness of the algorithm increases, and you'll
begin to see more and more overlap.

A Mahout command-line example
Now, we will discuss how to cluster objects using the Mahout command line.
We start with getting the data first.

Getting the data
We will use the seed dataset from our favorite UCI repository for clustering
examples. The dataset is available at https://archive.ics.uci.edu/ml/
datasets/seeds.

To download the data, we can execute the following command:

wget https://archive.ics.uci.edu/ml/machine-learning-databases/00236/
seeds_dataset.txt

We also have the data downloaded in data/chapter7 in our code base.

https://archive.ics.uci.edu/ml/datasets/seeds
https://archive.ics.uci.edu/ml/datasets/seeds

Clustering with Mahout

[154]

Data description

The seed dataset consists of 8 attributes as follows:

Column Data type
Area (A) Continuous
Perimeter (P) Continuous
Compactness (C = 4*pi*A/P^2) Continuous
Length of kernel Continuous
Width of kernel Continuous
Asymmetry coefficient Continuous
Length of kernel groove Continuous
Type of seed Categorical

We can use all the columns for our clustering example or keep Type of seed as an
external evaluation metric.

Sample data

15.26 14.84 0.871 5.763 3.312 2.221 5.22 1
14.88 14.57 0.8811 5.554 3.333 1.018 4.956 1
14.29 14.09 0.905 5.291 3.337 2.699 4.825 1
13.84 13.94 0.8955 5.324 3.379 2.259 4.805 1
16.14 14.99 0.9034 5.658 3.562 1.355 5.175 1

Preprocessing the data
The first step of preprocessing is to clean the data file. In this particular case, the
delimited file has an extra character as a delimiter in a few lines. You can use your
favorite text editor to clean it or use the cleaned file in the data directory of the code
base. The next step is to convert the file into vectors and save it in the sequence file.

Before we convert the text in file into vectors, we need to clean the file and copy
it to HDFS. Navigate to the directory learningApacheMahout/data/chapter7.
We need to create a directory on HDFS to keep the data file, please execute the
following command on the command prompt. This will create the input directories:

hadoop fs -mkdir chapter7/clustering_input

Chapter 7

[155]

We need to remove extra characters from the delimiter of the data file
seeds_dataset.txt, we will use the sed for that, please execute the
following command on the command prompt:

sed -ie "s/[[:space:]]\+/ /g" seeds_dataset.txt

Now we need to copy the cleaned file into the HDFS directory
chapter7/clustering_input, please execute the following command
on the command prompt:

hadoop fs -put seeds_dataset.txt chapter7/clustering_input/

From the code example, open the Java DataPreprocessing.Java file. This file is
located in the chapter7.src package. We first create the Configuration object,
set the required resources, and then pass the Configuration object to FileSystem:

Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
conf.addResource(new Path("/usr/local/hadoop/conf/hdfs-site.xml"));

FileSystemfileSystem = FileSystem.get(conf);

We then create the input and output Path objects:

String inputPath="chapter7/clustering_input";
String inputSeq="clustering_seq";

Path inputDir = new Path(inputPath);
Path inputSeqDir = new Path(inputSeq);

The last step is to use the InputDriver class to create the sequence file. InputDriver
is a utility class in Mahout to convert the tab-delimited file into the sequence file.

Apart from the input and output directory, it takes the vector class name; in this case,
org.apache.mahout.math.RandomAccessSparseVector and the Configuration
object:

InputDriver.runJob(inputDir, inputSeqDir, "org.apache.mahout.
math.RandomAccessSparseVector",conf);

We take a look at the following output directory:

hadoop fs -ls clustering_output
/user/ctiwary/clustering_seq/_SUCCESS
/user/ctiwary/clustering_seq/part-m-00000

Clustering with Mahout

[156]

The sequence file is written to the clustering_seq/part-m-00000 file. To look at
the contents of this file, we will use the mahout seqdumper command-line utility:

mahout seqdumper -i clustering_seq/part-m-00000

Key: 8: Value: {0:12.37,2:0.8567,1:13.47,5:3.919,3:5.204,7:3.0,6:5.001,4:
2.96}
Key: 8: Value: {0:12.19,2:0.8783,1:13.2,5:3.631,3:5.137,7:3.0,6:4.87,4:2.
981}
Key: 8: Value: {0:11.23,2:0.8511,1:12.88,5:4.325,3:5.14,7:3.0,6:5.003,4:2
.795}
Key: 8: Value: {0:13.2,2:0.8883,1:13.66,5:8.315,3:5.236,7:3.0,6:5.056,4:3
.232}
Key: 8: Value: {0:11.84,2:0.8521,1:13.21,5:3.598,3:5.175,7:3.0,6:5.044,4:
2.836}
Key: 8: Value: {0:12.3,2:0.8684,1:13.34,5:5.637,3:5.243,7:3.0,6:5.063,4:2
.974}

k-means
Let's start with checking the command-line options. We will describe some of the
most commonly-used parameters.

The command-line options are as follows:

Parameters Description
--input (-i) Path to input directory
--output (-o) Path to output directory
--distanceMeasure (-dm) The class name given to the distance

measure to be used
--clusters (-c) The input centroid as vectors in the

sequence format
--numClusters (-k) The number of clusters to be generated
--convergenceDelta (-cd) The convergence delta value
--maxIter (-x) The maximum number of iterations to

be performed
--overwrite (-ow) Overwrite the input directory if it is present
--clustering (-cl) If present, perform clustering after the

convergence of the centroid
--method (-xm) Sequential or MapReduce execution

Chapter 7

[157]

From the data preprocessing step, we converted the input file into sequence file
format that can be used by Mahout. We pass the sequence file as the input directory
using the –i parameter option as follows:

mahout kmeans -i clustering_seq -c kmeans_init_cluster -o clustering_
output -dmorg.apache.mahout.common.distance.EuclideanDistanceMeasure -x
10 -k

The Mahout k-means command line creates the initial cluster points. It takes the
first approach that we described to create k number of random points passed with
the parameter -k. We pass the command, the distance measure to use, the output
clustering directory, the max number of iterations, and the path to the input dataset.

After we run the algorithm, let's investigate the output directory:

hadoop fs -ls clustering_output

The output is given as follows:

 /user/ctiwary/clustering_output/_policy
 /user/ctiwary/clustering_output/clusteredPoints
 /user/ctiwary/clustering_output/clusters-0
 /user/ctiwary/clustering_output/clusters-1
 /user/ctiwary/clustering_output/clusters-2
 /user/ctiwary/clustering_output/clusters-3-final

Files in the folder have the mapping of the vector to clusterclustering_output/
clusteredPoints/.

The final cluster of the centroids is present in the clusters-*-final directory. Here
the star can be replaced by the number of clusters passed.

We will use Mahout's clusterdump utility to view the clustering output:

mahout clusterdump -i clustering_output/clusters-3-final/part-r-00000

An excerpt of the output is copied later in text. In this output, each line represents a
cluster. The number after VL represents the cluster label, the vector with c represents
the centroid as follows:

VL-198{n=71 c=[14.120, 14.201, 0.878, 5.476, 3.214, 2.603, 5.081, 1.169]
r=[1.143, 0.565, 0.017, 0.236, 0.165, 1.024, 0.275, 0.503]}
VL-79{n=72 c=[18.329, 16.124, 0.885, 6.142, 3.683, 3.602, 5.994, 1.917]
r=[1.367, 0.600, 0.015, 0.263, 0.168, 1.213, 0.284, 0.276]}
VL-180{n=67 c=[11.876, 13.257, 0.848, 5.238, 2.850, 4.968, 5.124, 2.970]
r=[0.775, 0.361, 0.021, 0.135, 0.151, 1.210, 0.154, 0.243]}

Clustering with Mahout

[158]

Now, we will use the seqdumper utility to view the data point to cluster mapping.
The key is the cluster label. We have the distance from the cluster centroid and
the vector:

mahout seqdumper -i clustering_output/clusteredPoints

Key: 180: Value: wt: 1.0 distance: 1.4086324273887754 vec: 8 = [12.190,
13.200, 0.878, 5.137, 2.981, 3.631, 4.870, 3.000]
Key: 180: Value: wt: 1.0 distance: 1.0009021862979366 vec: 8 = [11.230,
12.880, 0.851, 5.140, 2.795, 4.325, 5.003, 3.000]
Key: 180: Value: wt: 1.0 distance: 3.6425075218638305 vec: 8 = [13.200,
13.660, 0.888, 5.236, 3.232, 8.315, 5.056, 3.000]
Key: 180: Value: wt: 1.0 distance: 1.375878190644538 vec: 8 = [11.840,
13.210, 0.852, 5.175, 2.836, 3.598, 5.044, 3.000]
Key: 180: Value: wt: 1.0 distance: 0.808719839391573 vec: 8 = [12.300,
13.340, 0.868, 5.243, 2.974, 5.637, 5.063, 3.000]
Key: 79: Value: wt: 1.0 distance: 0.8256480988955742 vec: 8 = [18.300,
15.890, 0.911, 5.979, 3.755, 2.837, 5.962, 2.000]
Key: 79: Value: wt: 1.0 distance: 0.9602824919371283 vec: 8 = [18.940,
16.320, 0.894, 6.144, 3.825, 2.908, 5.949, 2.000]
Key: 198: Value: wt: 1.0 distance: 2.626815730803073 vec: 8 = [15.380,
14.900, 0.871, 5.884, 3.268, 4.462, 5.795, 2.000]
Key: 79: Value: wt: 1.0 distance: 2.4487610767462544 vec: 8 = [16.160,
15.330, 0.864, 5.845, 3.395, 4.266, 5.795, 2.000]
Key: 198: Value: wt: 1.0 distance: 3.092561743802084 vec: 8 = [15.560,
14.890, 0.882, 5.776, 3.408, 4.972, 5.847, 2.000]
Key: 198: Value: wt: 1.0 distance: 1.9165859729642354 vec: 8 = [15.380,
14.660, 0.899, 5.477, 3.465, 3.600, 5.439, 2.000]

Canopy clustering
Let's check the canopy clustering command-line options. We will discuss the
important and commonly-used parameters:

Parameters Description
--input (-i) Path to input directory
--output (-o) Path to output directory
--distanceMeasure (-dm) The class name given to the distance measure to be used
--overwrite (-ow) Overwrite the input directory if it is present
--clustering (-cl) If present, perform clustering after convergence

of centroid
--method (-xm) Sequential or MapReduce execution
--t1 (-t1) T1 threshold value

Chapter 7

[159]

Parameters Description
--t2 (-t2) T2 threshold value
--t3 (-t3) T3 threshold value—reducer phase
--t4 (-t4) T4 threshold value—r educer phase

We will use the same preprocessed sequence file as the input directory for
canopy clustering:

mahout canopy -i clustering_seq -o clustering_canopy -dm org.apache.
mahout.common.distance.EuclideanDistanceMeasure -t1 1.0 -t2 2.0 -xm
mapreduce -c

The output directory has the following files, which can be displayed in the same
manner as k-means:

hadoop fs -ls clustering_canopy

/user/ctiwary/clustering_canopy/clusteredPoints
/user/ctiwary/clustering_canopy/clusters-0-final

Fuzzy k-means
Let's check the fuzzy k-means clustering command-line options. We will discuss the
important and commonly-used parameters:

Parameters Description
--input (-i) Path to input directory
--output (-o) Path to output directory
--output (-o) Path to output directory
--distanceMeasure
(-dm)

The class name given to the distance measure to be used

--clusters (-c) The input centroid as vectors in sequence format
--numClusters (-k) The number of clusters to be generated
--convergenceDelta
(-cd)

The convergence delta value

--maxIter (-x) The maximum number of iterations to be performed
--overwrite (-ow) Overwrite the input directory if present
--clustering(-cl) If present, perform clustering after convergence of centroid
--method (-xm) Sequential or MapReduce execution
--m (-m) Coefficient normalization factor, must be greater than 1,

controls the fuzziness of the clustering

Clustering with Mahout

[160]

We use the same processed sequence file as the input directory. Note that we
pass an additional parameter -m as compared to the k-means, which is created
by overlapping clusters:

mahout fkmeans -i clustering_seq -c kmeans_init_cluster -o
clustering_output_fkmeans -dm org.apache.mahout.common.distance.
EuclideanDistanceMeasure -x 10 -k 3 -ow --clustering -m 1.2

The output can be viewed using the ls utility of Hadoop:

hadoop fs -ls clustering_output_fkmeans

/user/ctiwary/clustering_output_fkmeans/_policy
/user/ctiwary/clustering_output_fkmeans/clusteredPoints
/user/ctiwary/clustering_output_fkmeans/clusters-0
/user/ctiwary/clustering_output_fkmeans/clusters-/user/ctiwary/
clustering_output_fkmeans/clusters-/user/ctiwary/clustering_output_
fkmeans/clusters-3-final

The last step is to see the clusters using clusterdump. The output is similar to what
we discussed with k-means:

mahout clusterdump -i clustering_output_fkmeans/clusters-*-final

SV-4{n=66 c=[18.507, 16.207, 0.884, 6.176, 3.699, 3.584, 6.033, 1.951]
r=[1.251, 0.537, 0.015, 0.237, 0.163, 1.217, 0.244, 0.216]}
SV-200{n=72 c=[11.884, 13.244, 0.851, 5.224, 2.859, 4.749, 5.101, 2.907]
r=[0.744, 0.351, 0.022, 0.141, 0.150, 1.344, 0.178, 0.421]}
SV-16{n=70 c=[14.430, 14.352, 0.879, 5.526, 3.253, 2.730, 5.132, 1.113]
r=[1.063, 0.507, 0.017, 0.211, 0.161, 1.162, 0.287, 0.349]}
14/09/28 15:46:14 INFO clustering.ClusterDumper: Wrote 3 clusters
14/09/28 15:46:14 INFO driver.MahoutDriver: Program took 484 ms (Minutes:
0.008066666666666666)

Streaming k-means
Let's check the streaming k-means clustering command-line options, we will discuss
the important and commonly-used parameters:

Parameters Description
--input (-i) Path to input directory
--output (-o) Path to output directory
--output (-o) Path to output directory

Chapter 7

[161]

Parameters Description
--distanceMeasure (-dm) The class name given to the distance measure

to be used
--numClusters (-k) The k in k-means, denotes that approximately

those many clusters will be created.
--estimatedNumMapClusters
(-km)

The estimated number of clusters to use for
the map phase of the job

--maxIter (-x) The maximum number of iterations to
be performed

--overwrite (-ow) Overwrite the input directory if they are present
--clustering (-cl) If present, perform clustering after convergence

of the centroid
--method (-xm) Sequential or MapReduce execution

We use the same processed sequence file as the input directory for the streaming of
the k-means example:

mahout streamingkmeans -i clustering_seq -o clustering_output_
streamkmeans -sc org.apache.mahout.math.neighborhood.FastProjectionSearch
-dm org.apache.mahout.common.distance.EuclideanDistanceMeasure -k 3 -km 4
-ow

hadoop fs -ls clustering_output_streamkmeans

/user/ctiwary/clustering_output_streamkmeans/_SUCCESS
/user/ctiwary/clustering_output_streamkmeans/_logs
/user/ctiwary/clustering_output_streamkmeans/part-r-00000

hadoop fs -ls clustering_output_streamkmeans
Key: 0: Value: key = 1, weight = 61.00, vector = {0:18.725892857142846,2:
0.885567857142857,1:16.29571428571429,5:3.5416249999999985,7:1.9821428571
428572,6:6.062232142857143,3:6.208339285714282,4:3.7261250000000006}
Key: 1: Value: key = 2, weight = 74.00, vector = {0:14.594545454545454,2:
0.8789560606060605,1:14.435151515151516,5:2.6875030303030276,7:1.12121212
12121218,6:5.1750757575757556,3:5.550848484848486,4:3.2686818181818182}
Key: 2: Value: key = 0, weight = 75.00, vector = {0:11.844218749999998,2:
0.8507296875000001,1:13.221875000000006,5:4.575562499999999,7:2.906250000
0000004,6:5.0941406250000005,3:5.217984374999997,4:2.853718750000001}

Clustering with Mahout

[162]

A Mahout Java example
We will now discuss how to use the clustering algorithm discussed in Java code.
Open the MahoutClusteringExample.java file from the chapter7.src package.

k-means
Define the distance measure to be used by the k-means clustering algorithm:

DistanceMeasure measure = new EuclideanDistanceMeasure();

We create the Path variable to the input sequence directory created in the
preprocessing step:

Path inputSeq = newPath("clustering_seq")

The next step is to generate the random initial cluster seeds. We create the output
directory path, where we save the initial cluster points. The path constructor with
two arguments creates a folder with the name of the second argument inside the
directory of the first argument. You could use a separate directory for the initial
cluster directory too:

Path clusters = newPath(inputSeq, "random-seeds")

The RandomSeedGenerator class has the buildRandom()function for that. It takes
as input the Configuration object, the input directory with the sequence files,
the output directory in which the initial clusters are to be created, the number of
clusters, and the distance measure.

The function returns the Path to the initial centroid directory:

clusters = RandomSeedGenerator.buildRandom(conf, inputSeqDir, clusters,
3,measure);

We then create the clustering output directory:

Path output = new Path("clustering_output");

We then invoke the run method of the KmeansDriver class, which runs the parallel
implementation of the k-means clustering algorithm. The output will be in the same
format as the one from the Mahout command-line example:

KMeansDriver.run(conf, inputSeqDir, clusters, output, 0.2,50, true, 0.0,
false);

Chapter 7

[163]

We could estimate the number of clusters and initial cluster centroids using canopy
clustering and then pass the same to KMeansDriver:

CanopyDriver.runJob(conf, inputSeqDir, output_canopy,measure,, (float)
3.1, (float) 2.1, true);

The initial clusters created by the preceding code line is passed to the runJob()
method of the KmeansDriver class.

KMeansDriver.runJob(conf, inputSeqDir, output_canopy/clusters-0",
output,measure, "0.001", "10", true);

Note that we don't need to pass the number of clusters when we initialize the initial
cluster centroids using canopy clustering.

Cluster evaluation
Mahout has some implementations for internal cluster evaluation. We will briefly
discuss that.

The cluster evaluation requires passing a distance measure. We create the
DistanceMeasure object as follows:

DistanceMeasure measure = new EuclideanDistanceMeasure();
We run the RepresentativePointsDriver run method which setsup the
ClusterEvaluator object properties.
RepresentativePointsDriver.run(conf, new Path("clustering_output_fkmeans/
clusters-3-final"),
new Path("clustering_output", "clusteredPoints"), new Path("clustering_
output_fkmeans"),
measure,
10, true);

We create the ClusterEvaluator object and pass the Configuration object and
path to the cluster output directory:

ClusterEvaluator cv = new ClusterEvaluator(conf,new Path("clustering_
output/clusters-3-final"));

We invoke the respective functions to calculate the inter-cluster and intra cluster
density of the clusters:

System.out.println(cv.interClusterDensity());
System.out.println(cv.intraClusterDensity());

We can calculate the evaluation metrics for other clustering algorithms too.

Clustering with Mahout

[164]

Summary
In this chapter, we discussed different clustering algorithms in Mahout.
We discussed the concept of k-means to better understand the clustering process,
looked at command-line examples of various clustering algorithms, and finally
discussed implementing k-means using Mahout Java API. I would encourage you
to experiment with the different datasets and different settings/configurations of
each algorithm to get a deeper understanding of the usage of clustering algorithms.

In the next chapter, we are going to discuss Mahout on top of Apache Spark.
Mahout is being ported to Spark in Mahout 1.0, so carefully read this next chapter.
It will help you get started with Mahout 1.0 when it is released.

[165]

New Paradigm in Mahout
Mahout started out primarily as a Java MapReduce package to run distributed and
scalable machine learning algorithms on top of Hadoop. As the Mahout Project
matures, it has taken a decision to move out of MapReduce and embrace Apache
Spark and other distributed processing frameworks, such as H20, with a focus on
write once and run on multiple platforms. In this chapter, we are going to discuss:

• Limitations of MapReduce
• Apache Spark
• In-core binding
• Out-of-core binding

MapReduce and HDFS were two paradigms largely responsible for a quantum shift
in data processing capability. With increased capabilities, we learned to imagine
larger problems that kick started a whole new industry of Big Data Analytics. The
last decade has been amazing for solving data-related problems. However, in recent
times, a lot of effort has been put into developing processing paradigms beyond
MapReduce. These efforts are either aimed at replacing MapReduce or augmenting
the processing framework. The examples are Impala, Drill, Spark, and so on.

Moving beyond MapReduce
Let's discuss why we need to move beyond MapReduce. Based on the scenario and use
case, there are many advantages and limitations of MapReduce. In this section, we will
concern ourselves with the limitations that impact machine learning use cases.

Firstly, MapReduce is not feasible when the intermediate processes need to talk to
each other. A lot of machine learning algorithms need to work based on a shared
global state, which is difficult to implement with MapReduce.

New Paradigm in Mahout

[166]

Secondly, quite a few problems are difficult to break down into map and reduce
phases. Mahout is porting to Apache Spark, which works on top of HDFS and
provides a processing paradigm other than MapReduce.

Apache Spark
Spark was developed as a general-purpose engine for large-scale data processing.
It recently released its 1.0 version. Spark has two important features.

The first feature that Spark has is a resilient distributed dataset (RDD). This is a
collection of elements partitioned across the nodes of a cluster, which can be operated
on in parallel. A file on HDFS or any existing Scala collection can be converted to an
RDD collection, and any operation on it can be executed in parallel. RDDs can also be
requested to persist in memory, which leads to efficient parallel operations. RDDs have
automatic fail-over support and can recover from node failures.

The second important feature of Spark is the concept of shared variables that can
be used in any parallel operations. Spark supports two types of shared variables:
broadcast variables and accumulators. Broadcast variables can be used to cache a value
in memory on all the nodes, whereas accumulators are variables that can only be
added up; for example, variables such as counters, sums, and so on. When Spark
runs a function in parallel as a set of tasks on the different nodes of a cluster, the
shared variables are made available across the nodes for each task of that function.

Configuring Spark with Mahout
Download Spark somewhere in your home drive using the following command:

wget http://d3kbcqa49mib13.cloudfront.net/spark-0.9.1.tgz

Make sure you get the same version of Spark with which the current development
version of Mahout was compiled. The trunk I checked out was compiled using Spark
0.9.1. This is required, as this feature is not yet released, and Mahout trunk and Spark
versions will keep changing till it is released. To check for the latest versions of Spark
and Mahout trunk, please visit https://github.com/apache/mahout.

Copy the downloaded folder to /usr/local and unpack using tar. After unpacking,
change to the Spark directory where you unpacked and type the following
command to build it:

sbt/sbt assembly

https://github.com/apache/mahout

Chapter 8

[167]

Check out the latest Mahout trunk using subversion (svn). svn is an open source
version control system. It helps you keep track of a collection of files and folders:

svn co https://svn.apache.org/repos/asf/mahout/trunk/ mahout-spark

Run the following commands:

cd mahout-spark
mvn clean
mvn compile
mvn install

The next step is to go back to the Spark directory and type the following command
to start Spark:

sbin/start-all.sh

After Spark has started, open the URL http://localhost:8080 to check the Spark
cluster details.

Copy the URL field from the webpage. To stop Spark later on, we can use the
following command:

sbin/stop-all.sh

New Paradigm in Mahout

[168]

Move back to the Mahout directory. We need to export the following variables for the
Mahout shell to work:

export MAHOUT_HOME=[Path to Mahout Directory]
export SPARK_HOME=[Path to the Spark Directory]
export MASTER=[url of the Spark master]

In my case, the values for the environment variables are:

export MAHOUT_HOME=<your path here>/mahout-spark
export SPARK_HOME=<your path here>/spark
export MASTER=spark://<your username>:7077

If you are following the instructions as per the book, then the natural place would be
usr/local.

After the variables have been exported, we will start the Mahout shell:

bin/mahout spark-shell

To exit from the shell, we can type the following command on Mahout shell:

exit()

Basics of Mahout Scala DSL
Mahout and Spark are being developed to abstract away the details of programming
a distributed system. We don't have to worry about the intricacies of parallel
programming, and we can concentrate on solving the machine learning task at hand.

Mahout Scala and Spark Bindings are aimed at providing an R-like feel to the
Mahout shell. If you are familiar with R, you will be aware of its ease while working
with linear algebra. One can basically type in the formula and see the execution.
Right now, Mahout and Spark binding supports three major types: distributed row
matrices (DRM), in-core vectors, and in-core matrices.

Let's start with practicing some command-line examples. Remember to go back to
the Spark directory and run the start-all.sh script. Then, go back to the Mahout
directory, export all the required environment variables, and run the command to
get the shell.

Chapter 8

[169]

Imports
The following two Scala imports are typically used to enable Mahout Scala DSL
bindings for linear algebra. We can type them directly to the command line:

import org.apache.mahout.math._
import scalabindings._
//To use R like dialect use
import RlikeOps._

Another option is to use the matlab-like dialect by typing:

import MatlabLikeOps._

In this chapter, we are going to restrict ourselves to the R-like dialect.

In-core types
Vector and Matrices are of type in-core or in-memory. We will try out some basic
commands to get a feel of the linear algebra operations possible.

Vector
We will first discuss vectors and then cover matrices. We will see some examples of
operations that can be performed on vectors.

Initializing a vector inline
Dense vector: The dense vector is a vector with relatively fewer zero elements.
On the Mahout command line, please type the following command to initialize
a dense vector:

mahout>val denseVec1: Vector = (1.0, 1.1, 1.2)

Each element is prefixed by its index, which starts with 0. The output of the
command executed is given as follows:

denseVec1: org.apache.mahout.math.Vector = {0:1.0,1:1.1,2:1.2}

Sparse vector: Sparse vector is a vector with a relatively large number of zero
elements. On the Mahout command line, please type the following command to
initialize a sparse vector:

mahout>val sparseVec = svec((5 -> 1) :: (10 -> 2.0) :: Nil)

New Paradigm in Mahout

[170]

The output of the command executed is given in the following command line.
As we can see it creates RandomAcessSparseVector:

sparseVec:org.apache.mahout.math.RandomAccessSparseVector =
{10:2.0,5:1.0}

Accessing elements of a vector
Vectors are accessed using the index number. For example, to access the third
element, we will use the index 2 as the index starts with zero. Type the following
command on the Mahout command line:

mahout>denseVec1(2)

The result is the value of element 3 with the corresponding data type:

res13: Double = 1.2

Setting values of an element
Again, we can use the index to set the value of a particular element of a vector.
Let's set the third element to the value 2:

mahout> denseVec1(2)=2
mahout> denseVec1
res18: org.apache.mahout.math.Vector = {0:1.0,1:1.1,2:2.0}

Vector arithmetic
In this section, we will discuss some common vector arithmetic operations such as
addition, division, and multiplication. For example, let's create a new dense vector
with the denseVec2 name. Input the following command on the Mahout command
line, which will initialize the vector:

mahout> val denseVec2: Vector = (1.0, 1.1, 5.5)

The result is the following dense vector:

denseVec2: org.apache.mahout.math.Vector = {0:1.0,1:1.1,2:5.5}

This is the multiplication of two vectors:

mahout> val multilpy_vec=denseVec1*denseVec2
multilpy_vec: org.apache.mahout.math.Vector = {0:1.0,1:1.2100000000000002
,2:6.6}

Chapter 8

[171]

This is the division of two vectors:

mahout> val divide_vec=denseVec1/denseVec2
divide_vec: org.apache.mahout.math.Vector = {0:1.0,1:1.0,2:0.218181818181
81817}

This is the addition of two vectors:

mahout> val add_vec=denseVec1+denseVec2
add_vec: org.apache.mahout.math.Vector = {0:2.0,1:2.2,2:6.7}

This is the subtraction of two vectors:

mahout> val sub_vec=denseVec1-denseVec2
sub_vec: org.apache.mahout.math.Vector = {2:-4.3}

Vector operations with a scalar
In the previous section, we discussed arithmetic operations on a vector. Now, we will
see the results of scalar operations on a vector.

The result of adding a scalar to a vector is that all elements are incremented by the
value of the scalar. For example, the following command adds five to all the elements
of the vector:

mahout> val add_scalr=denseVec1+5
add_scalr: org.apache.mahout.math.Vector = {0:6.0,1:6.1,2:6.2}

Similar to the preceding command, this operation subtracts five from each of the
element in the vector:

mahout> val sub_scalr=denseVec1-5
sub_scalr: org.apache.mahout.math.Vector = {0:-4.0,1:-3.9,2:-3.8}

The following scalar operation multiplies all the elements by five:

mahout> val mul_scalr=denseVec1*5
mul_scalr: org.apache.mahout.math.Vector = {0:5.0,1:5.5,2:6.0}

Lastly, division by a scalar divides all the elements by five:

mahout> val div_scalr=denseVec1/5
div_scalr: org.apache.mahout.math.Vector = {0:0.2,1:0.22000000000000003,2
:0.24}

New Paradigm in Mahout

[172]

Matrix
We will now have a look at a matrix and the operations that can be performed on it.

Initializing the matrix
The inline initialization of a matrix, either dense or sparse, is always
performed row-wise.

• Dense matrix:
mahout> val A = dense((1, 2, 3), (3, 4, 5))
A: org.apache.mahout.math.DenseMatrix =
{
 0 =>..{0:1.0,1:2.0,2:3.0}
 1 =>..{0:3.0,1:4.0,2:5.0}
}

• Sparse matrix:
val A = sparse(
(1, 3) :: Nil,
(0, 2) :: (1, 2.5) :: Nil
)

• Diagonal matrix:
mahout> val x=diag(10, 3)
x: org.apache.mahout.math.DiagonalMatrix =
{
 0 =>..{0:10.0}
 1 =>..{1:10.0}
 2 =>..{2:10.0}
}

• Identity matrix:
mahout> val x = eye(5)
x: org.apache.mahout.math.DiagonalMatrix =
{
 0 =>..{0:1.0}
 1 =>..{1:1.0}
 2 =>..{2:1.0}
 3 =>..{3:1.0}
 4 =>..{4:1.0}
}

Chapter 8

[173]

Accessing elements of a matrix
We will create a matrix called matrix_example, and then slice and dice it:

mahout> val matrix_example = dense((1, 2, 3), (3, 4, 5))

matrix_example: org.apache.mahout.math.DenseMatrix =

{

 0 => {0:1.0,1:2.0,2:3.0}

 1 => {0:3.0,1:4.0,2:5.0}

}

Accessing the second element of the second row:

mahout> matrix_example(1,1)

res35: Double = 4.0

Accessing the first element of the first row:

mahout> matrix_example(0,0)

res36: Double = 1.0

Fetching a complete row, in this case the second row:

mahout> val rowVec=matrix_example(1,::)

rowVec: org.apache.mahout.math.Vector = {0:3.0,1:4.0,2:5.0}

Fetching a complete row, in this case the first row:

mahout> val rowVec=matrix_example(0,::)

rowVec: org.apache.mahout.math.Vector = {0:1.0,1:2.0,2:3.0}

Fetching a complete column, in this case the first column:

mahout> val rowVec=matrix_example(::,0)

rowVec: org.apache.mahout.math.Vector = {0:1.0,1:3.0}

Fetching the second column:

mahout> val rowVec=matrix_example(::,1)

rowVec: org.apache.mahout.math.Vector = {0:2.0,1:4.0}

Setting the matrix row, in this case the first row:

mahout> matrix_example(1,::)=(10,9,6)
res45: org.apache.mahout.math.Vector = {0:10.0,1:9.0,2:6.0}
mahout> matrix_example
res46: org.apache.mahout.math.DenseMatrix =

New Paradigm in Mahout

[174]

{
 0 => {0:1.0,1:9.0,2:3.0}
 1 => {0:10.0,1:9.0,2:6.0}
}

Fetching the sub-slices of a row, row 1 first two elements:

mahout> matrix_example(0,0 to 1)=(44,55)
res49: org.apache.mahout.math.Vector = {0:44.0,1:55.0}

Fetching the sub-slices of a row, row 2 second and third elements:

mahout> matrix_example(1,1 to 2)=(44,55)
res50: org.apache.mahout.math.Vector = {0:44.0,1:55.0}

Setting the matrix column
We will discuss the column operations on a matrix. Let's see how to set the value of
an entire column of a matrix. Let's set the values of column 2. As indexing starts from
0, we access column 2 by index:

mahout> matrix_example(::,1)=(9,6)
res43: org.apache.mahout.math.Vector = {0:9.0,1:6.0}

To fetch the number of rows of a matrix, we need to access the nrow property:

mahout> matrix_example.nrow
res52: Int = 2

Similarly, to fetch the number of columns of a matrix, we access the ncol property:

mahout> matrix_example.ncol
res57: Int = 3

To fetch the sum of all columns, we use colSums:

mahout> matrix_example.colSums
res58: org.apache.mahout.math.Vector = {0:54.0,1:99.0,2:58.0}

Lastly, to fetch the sum of rows, we use rowSums:

mahout> matrix_example.rowSums
res59: org.apache.mahout.math.Vector = {0:102.0,1:109.0}

Chapter 8

[175]

Copy by reference
Matrices are assigned by reference and not as a copy, hence we need to take care of
the pitfalls associated with it. Here's an example of the same:

mahout> val ex1 = matrix_example
ex1: org.apache.mahout.math.DenseMatrix =
{
 0 =>..{0:1.0,1:2.0,2:3.0}
 1 =>..{0:3.0,1:4.0,2:5.0}
}
mahout> ex1 +=5.0
res5: org.apache.mahout.math.Matrix =
{
 0 =>..{0:6.0,1:7.0,2:8.0}
 1 =>..{0:8.0,1:9.0,2:10.0}
}
mahout> ex1
res6: org.apache.mahout.math.DenseMatrix =
{
 0 =>..{0:6.0,1:7.0,2:8.0}
 1 =>..{0:8.0,1:9.0,2:10.0}
}
mahout> matrix_example
res7: org.apache.mahout.math.DenseMatrix =
{
 0 =>..{0:6.0,1:7.0,2:8.0}
 1 =>..{0:8.0,1:9.0,2:10.0}
}

We saw that the original matrix_example matrix also got modified when we
modified the matrix ex1, which was a copy of the original matrix matrix_example.
To address this behavior, we can use clones. To keep the previous matrix value
intact, we can use the clone command:

mahout> val ex1 = matrix_example clone
warning: there were 1 feature warning(s); re-run with -feature for
details
ex1: org.apache.mahout.math.Matrix =
{
 0 => {0:6.0,1:7.0,2:8.0}
 1 => {0:8.0,1:9.0,2:10.0}
}
mahout> ex1 +=5.0
res8: org.apache.mahout.math.Matrix =
{

New Paradigm in Mahout

[176]

 0 => {0:11.0,1:12.0,2:13.0}
 1 => {0:13.0,1:14.0,2:15.0}
}
mahout> matrix_example
res9: org.apache.mahout.math.DenseMatrix =
{
 0 => {0:6.0,1:7.0,2:8.0}
 1 => {0:8.0,1:9.0,2:10.0}
}

Spark Mahout basics
We will now focus on Mahout Spark's DRM. DRM, once loaded into Spark, is
partitioned by rows of the DRM.

Initializing the Spark context
Many operations on the DRM will require a Spark context. To initialize Mahout with
the Spark session, we create the implicit variable mahoutCtx as the Spark context:

implicit val mahoutCtx = mahoutSparkContext(
masterUrl = "spark://ctiwary-gsu-hyd:7077",
appName = "MahoutLocalContext"
)
We will import some import
// Import matrix, vector types, etc.
import org.apache.mahout.math._
// Import scala bindings operations
import scalabindings._
// Enable R-like dialect in scala bindings
import RLikeOps._
// Import distributed matrix apis
import drm._
// Import R-like distributed dialect
import RLikeDrmOps._
// Those are needed for Spark-specific
// operations such as context creation.
// 100% engine-agnostic code does not
// require these.
import org.apache.mahout.sparkbindings._
// A good idea when working with mixed
// scala/java iterators and collections
import collection._
import JavaConversions._

Chapter 8

[177]

The MahoutLocalContext application UI can be accessed on
http://localhost:4041/.

Now, we need to create an in-core matrix with the in_core_matrix name
and a distributed matrix called parallel_matrix. The following command
will initialize the respective matrices:

val in_core_matrix = dense((1, 2, 3), (3, 4, 5))
val parallel_matrix = drmParallelize(in_core_matrix)

mahout> val parallel_matrix = drmParallelize(in_core_matrix)
parallel_matrix: org.apache.mahout.math.drm.CheckpointedDrm[Int] = org.
apache.mahout.sparkbindings.drm.CheckpointedDrmSpark@2f43cbcc

parallel_matrix.writeDRM(path="testSparkWrite")

check hadoop fs -ls testSparkWrite

val testRead = drmFromHDFS(path = "testSparkWrite")

Mahout Spark binding has two types of actions, optimizer actions and
computational actions.

Optimizer actions
Optimizer actions, when performed on a DRM operation, don't trigger the actual
computation but they materialize the physical plan of execution. Optimizer actions
are backed by CheckpointedDRM, which acts as a cutoff boundary for the optimizer
actions. Optimizer actions can be triggered explicitly by DRMLike#checkpoint().

Let's try to understand with the help of the following two examples:

val A = drmParallelize (...)
val B = drmParallelize (...)
val C = A %*% B.t
val D = C.t
val E = C.t %*% C
D.writeDRM(..path..)
E.writeDRM(..path..)

New Paradigm in Mahout

[178]

In this example, the optimizer optimizes two pipelines separately, the one calculating
D and the other calculating E using the same matrices A and B as root of both
computations. Now, let's consider the following modified example:

val A = drmParallelize (...)
val B = drmParallelize (...)
val C = (A %*% B.t).checkpoint
val D = C.t
val E = C.t %*% C
D.writeDRM(..path..)
E.writeDRM(..path..)

In this example (which is functionally equivalent to the previous one), the
optimizer considers three separate pipelines of execution: C, D, and E while
caching the optimized plan and intermediate result for C into the Spark cache.
Introducing checkpoints may improve wall time since matrices D and E will be
triggered for action.

In both of the examples, nothing happens in the backend until a computational
action is triggered for either of E or D.

It doesn't matter how many times checkpointing is called on a logical operator,
the same logical operator will be optimized and set for caching policy only once.

Computational actions
Computational actions lead to results being computed and optionally placed into
the Spark cache. Such actions will also lazily and implicitly trigger linalg optimizer
checkpointing. Currently, computational actions include writeDrm(), collect(),
blockify(). They can sometimes also be triggered implicitly by an optimizer
activity beyond the current checkpoint's cutoff (if checkpointed but not computed
and cached yet) to run some cost estimates necessary for the optimizer beyond
checkpointing, potentially future actions associated with DRM sub-blocking.

For instance, in the second example, running E.writeDrm(path) will trigger
computational actions for E and, implicitly, for C.

All these rules follow the same patterns as for the in-core arguments.

Chapter 8

[179]

Caching in Spark's block manager
Every checkpoint can be, and by default, is, pushed into Spark's memory block
manager. The default policy is MEMORY_ONLY, but the storage level can be specified
explicitly as a parameter to the checkpoint() call. The actual push of data to the
memory block manager happens no sooner than an actual partition computation
occurs for the first time (that is, at the first occurrence of a computational action of
the pipeline involving the result in question). Five Checkpointed DRMs may later
be explicitly uncached from block manager (asynchronously) if desired, for example:

val drmA = (/*..drm expression..*/).checkpoint(CacheHint.MEMORY_AND_DISK)
... some computational actions involving drmA
... drmA is not needed anymore
drmA.uncache()

If the argument is not cached by the time the uncache() call has occurred, nothing of
substance happens.

Linear regression with Mahout Spark
We will discuss the linear regression example mentioned on the Mahout Wiki.
Let's first create the training data in the form of a parallel DRM:

val drmData = drmParallelize(dense(
 (2, 2, 10.5, 10, 29.509541), // Apple Cinnamon Cheerios
 (1, 2, 12, 12, 18.042851), // Cap'n'Crunch
 (1, 1, 12, 13, 22.736446), // Cocoa Puffs
 (2, 1, 11, 13, 32.207582), // Froot Loops
 (1, 2, 12, 11, 21.871292), // Honey Graham Ohs
 (2, 1, 16, 8, 36.187559), // Wheaties Honey Gold
 (6, 2, 17, 1, 50.764999), // Cheerios
 (3, 2, 13, 7, 40.400208), // Clusters
 (3, 3, 13, 4, 45.811716)), // Great Grains Pecan
 numPartitions = 2);

The first four columns will be our feature vector and the last column will be our
target variable. We will separate out the feature matrix and the target vector, drmX
being the feature matrix and y being the target vector:

val drmX = drmData(::, 0 until 4)

The target variable is collected into the memory using the collect method:

val y = drmData.collect(::, 4)

New Paradigm in Mahout

[180]

The next step is to introduce the bias column to the feature matrix; we will define a
Scala function to do the same:

val drmXwithBiasColumn = drmX.mapBlock(ncol = drmX.ncol + 1) {
 case(keys, block) =>
 // create a new block with an additional column
 val blockWithBiasColumn = block.like(block.nrow, block.ncol + 1)
 // copy data from current block into the new block
 blockWithBiasColumn(::, 0 until block.ncol) := block
 // last column consists of ones
 blockWithBiasColumn(::, block.ncol) := 1

 keys -> blockWithBiasColumn
}

Now, to estimate the value of parameter vector β, we will use the approach of
ordinary least square (OLS). OLS minimizes the sum of residual squares between
the actual target value and the predicted value. We have a closed-form expression
for estimating β as () 1T TX X X Y

−
.

We compute ()TX X first using the following statement:

val drmXtX = (drmX.t %*% drmX).collect

The .t() function returns the transpose and %*% is the multiplication symbol.

Similarly, we compute TX Y :

val drmXty = (drmX.t %*% y).collect(::, 0)

Then, we call the solve() function to return the value of β. We represent the same in
the form of a function:

def ols(drmX: DrmLike[Int], y: Vector) = {
 val XtX = (drmX.t %*% drmX).collect
 val Xty = (drmX.t %*% y).collect(::, 0)
 solve(XtX, Xty)
}

To determine the goodness of fit, we will use the following function:

def goodnessOfFit(drmX: DrmLike[Int], beta: Vector, y: Vector) = {
 val fittedY = (drmX %*% beta).collect(::, 0)
 (y - fittedY).norm(2)
}

Chapter 8

[181]

We will call the function using the following commands:

val betaWithBiasTerm = ols(drmXwithBiasColumn, y)
goodnessOfFit(drmXwithBiasColumn, betaWithBiasTerm, y)

Summary
We briefly discussed Mahout and Spark bindings. This is the future of Mahout, though
a production-ready release is some time away. We learned the basic operations that
can be performed on the various data structures and went through an example of
applying these techniques to build a machine learning algorithm. I would encourage
you to keep yourself updated on the development of Mahout and Spark bindings, and
the best way would be to follow the Mahout Wiki.

In the next chapter, we will discuss end-to-end practical use cases of customer
analytics. Most of the techniques used so far will be put into practice, and you
will get an idea of a real-life analytics project.

[183]

Case Study – Churn Analytics
and Customer Segmentation

In this chapter, we are going to discuss the steps involved in a machine learning project
from start to finish. We will cover all the important steps that need to be performed for
a successful machine learning project. We will use a couple of examples from customer
analytics to walk through the process. The topics covered in this chapter are:

• Churn analytics
• Customer segmentation

Churn analytics
Until now, in this book, we have discussed multiple important machine learning
concepts and algorithms and their implementation/usage in Mahout. We also saw
multiple examples of using machine learning algorithms with Mahout. We are now
going to focus on end-to-end case studies, keeping a specific business problem in
mind. This chapter and the next will help you put the pieces together and get an
overview of a complete analytics project. We will first look at churn prediction.

The goal of churn analytics is to understand the primary drivers to churn and predict
churn. Churn can have a very specific meaning depending upon the industry or even
the organization we are talking about, but in general it is related to the extension of
the contract between a service provider and a subscriber. The contract is valid until
the service term period, and then is up for renewal at the end of the contract term
period. For example, postpaid telecom subscribers renew their contract with the
telecom provider every month. If they choose to, they can end the relationship any
month by terminating the contract at the end of that month.

Case Study – Churn Analytics and Customer Segmentation

[184]

In this case, the subscription term is monthly and the termination of the contract will
be considered as churning. It is of paramount importance for a telecom provider to be
able to identify a subscriber at risk of churning so that they can be retained. Retention
could be in terms of outbound calls to solve any issues the subscriber is facing, an
offer or discount, a special plan, and so on. But to do any of this, we need to know
whether the subscriber is going to churn and that too a few months in advance so
that the retention process has enough time. So, there are two components to a churn
model, a prediction about a subscriber churning and, the time period within which
the subscriber will churn.

To predict churn, say n month before it happens, we need to build the model on
signals that it is n month before the churn date. Typically, most recent n months of
data have to be ignored from the churn date for the churned account and n months,
from the maximum date for active accounts. For example, let's check the following
data. Let's assume that the maximum date until which data is to be considered is
2014-12-31 and the minimum date is 2012-01-01. We have a total of three years of
historical data. We will discuss the account inclusion criteria for churn analytics
based upon sample data in the following table:

Account Status Signup date Churn date
A Churned 2014-06-30 2014-11-30
B Churned 2013-01-01 2014-08-31
C Churned 2012-02-20

Account A and B are churned and C is active. Also let's assume that the data under
consideration is six months. We are going to only include accounts with six months'
worth of data. Prediction needs to be made three months in advance. We will ignore
three months of data from the churn date for churned accounts and three months of
data from the maximum date for active accounts.

For account A, data needs to be considered from 2014-11-90 - 90 days = 2014-09-01
and for account B 2014-08-31 - 90 days = 2014-06-02. Similarly, for active account
C we subtract 90 days from the maximum date, 2014-12-31 - 90 days = 2014-10-02.
Now the next step is to ensure that all accounts have at least six months of data after
ignoring three months. To calculate this, we need to subtract the considered date, for
example 2014-09-01 for Account A from either the signup date or the earliest usage
date, whichever is the most recent. In our sample data, all the signup dates are more
recent than the minimum date, so we will use the signup date column. We calculate
the number of days of usable data by subtracting the cut-off date from the signup
date as follows:

• A → 2014-09-01 - 2014-06-30 = 64 days

Chapter 9

[185]

• B → 2014-06-02 - 2013-01-01 = 518 days
• C → 2014-10-02 - 2012-02-02 = 974 days

We have to drop account A as it only has 64 days of usable data and we need a
minimum of 180 days of data. For accounts B and C, we are going to use six months
of data. Data to be considered is as follows:

• A → 2014-06-02 – 180 days = 2013-12-04, between 2014-06-02 and 2013-12-04
• B → 2014-10-02 – 180 days = 2014-04-05, between 2014-10-02 and 2014-04-05

Now we have decided which accounts are to be included and the time period within
which the data has to be considered for each account. Feature engineering needs to be
done on this selected dataset. An account inclusion criteria and time period for data to
be considered is very important for churn analytics and should be done carefully.

Survival analysis is another popular approach for modeling churn but we will not go
into that much.

Getting the data
To start with our case study, we first need to get the data. We will look at a dataset
that contains information about the subscriber from the telecom domain and their
status information.

The data can be downloaded from http://www.sgi.com/tech/mlc/db/ or found in
the code base directory that comes with the book. We need to download the churn.
all, churn.data, churn.names, and churn.test files. The churn.all file has 5000
rows and 21 columns. The churn.data and churn.test files are different samples
from the same churn.all file and could be used for training and testing the model.
The churn.names file has the names of all the columns in the data files. Let's see the
preprocessing step for the downloaded file churn.data; the file churn.all present
in the directory learningApacheMahout/data/chapter9 is already preprocessed.

The first step is to remove the white spaces from the file. To do this, we use the sed
command, which takes \s, representing white spaces, as the search pattern and a
blank as the replacement:

sed -i 's/\s//g' churn.all

The second step is to replace False. with False and True. with True:

sed -i 's/False./False/g' churn.all
sed -i 's/True./True/g' churn.all

http://www.sgi.com/tech/mlc/db/

Case Study – Churn Analytics and Customer Segmentation

[186]

Finally, we add the header line. The sed command matches the start of the first line
and replaces it with the header information:

sed -i '1s/^/state,account length,area code,phone number,international
plan,voice mail plan,number vmail messages,total day minutes,total
day calls,total day charge,total eve minutes,total eve calls,total eve
charge,total night minutes,total night calls,total night charge,total
intl minutes,total intl calls,total intl charge,number customer service
calls,Status\n/' churn.all

In this dataset, the target variable is the last column, Status, which stores the
information about whether a user churned or not. True stands for churn customers and
False for active. We have a total of 4293 active and 707 churn customers in the dataset.

Let's have a look at the column definition; this is a good starting point to understand
a dataset:

Column Data Type
State Discrete
account length Continuous
area code Continuous
phone number Discrete
international plan Discrete
voice mail plan Discrete
number v-mail messages Continuous
total day minutes Continuous
total day calls Continuous
total day charge Continuous
total eve minutes Continuous
total eve calls Continuous
total eve charge Continuous
total night minutes Continuous
total night calls Continuous
total night charge Continuous
total intl minutes Continuous
total intl calls Continuous
total intl charge Continuous
number customer service calls Continuous
Status Discrete

Chapter 9

[187]

The dataset, as seen in this table, has various telecom service usage metrics from
rows eight to 19. They cover attributes such as total number of calls, total charge,
and total minutes used by different slices of the data. The slices include time,
day or night, and usage type such as international call. Row 20 has the number
of customer service calls made and row 21 is the status of the subscriber, which
is our target variable.

This dataset doesn't provide any scope for account exclusion or selecting the
time period, as the information is not available. We assume that data for all the
subscribers has been collected for the same time duration; being in the same time
period is desirable but not necessary. What is meant is that for all subscribers the
data is collected for the same n months irrespective of the time period. Having data
collected over the same duration leads to an apple-to-apple comparison. This is a
compulsory precondition, as without this it would be difficult to combine all the
subscribers into one feature set.

Data exploration
Data exploration is a very important part of any analytics project and quite a bit of
effort goes into it. Primarily, the objective of exploration is to get a good idea about
how the data looks, preprocess data to remove outliers, and get cues towards feature
engineering. We are going to use R for our data exploration. The other tools that can
be used are SAS, Excel, Python, and so on.

Installing R
Open the file /etc/apt/sources.list in a text editor and add the following line of
code to the file. For a different Ubuntu version, the final argument would be different
depending on the OS version:

deb http://cran.rstudio.com/bin/linux/ubuntu precise/

To install the complete R system, type the following command on the terminal:

sudo apt-get update
sudo apt-get install r-base

Type R on the terminal, which will start the R prompt.

To read the csv into a data frame, please execute the following command on the
R prompt:

churn_data<-read.csv("churn.all",header=T)

Case Study – Churn Analytics and Customer Segmentation

[188]

The read.csv method takes the file name as the first argument. The second argument,
set as True, treats the first line as the header line.

Type the following command to view the data frame created:

View(churn_data)

Summary statistics
As a first step, we will look at the summary statistics of the data. The summary
statistics include looking at the min, max, median, median, the 1st and 3rd quartile
of continuous variables, and the frequency count of categorical variables. It gives
us a summarized understanding of the data, its centrality, and spread. We will
contrast the overall summary statistics with the summary of only churn and only
active subscribers.

To get the summary of all the data, type the following command:

summary_all<-summary(churn_data)

To get the summary of all churned customers, we call the summary function with,
data of all churned customers. The subset function filters data based on the
condition Status==True:

summary_churn<-summary(subset(churn_data,Status=='TRUE'))

To get the summary of all active customers, we call the summary function with data
of all active customers. The subset function filters data based upon the condition
Status=='False':

summary_active<-summary(subset(churn_data,Status=='FALSE'))

To combine all the data frames into one file, we call the function rbind() on the
three data frames and write to a csv file:

write.csv(rbind(summary_all,summary_churn,summary_active),file="summary_
file.csv")

The pattern to observe while looking at the summary file is to observe substantial
difference between the summaries of churn and active customers, especially the
mean, median, and the 1st and 3rd quartile. For example, let's look at the summary
statistics of the feature Total day calls in the following table. The feature doesn't seem
to have any distinguishing difference on its own:

Total day calls
All subscribers Churn subscribers Active subscribers
1st Qu.: 87 1st Qu.: 88.0 1st Qu.: 87.0

Chapter 9

[189]

Median :100 Median :101.0 Median: 100.0
Mean: 100 Mean: 100.8 Mean: 99.9
3rd Qu.:113 3rd Qu.:115.0 3rd Qu.:113.0

On the other hand, the feature number of v-mail messages does have distinguishing
summary statistics. We can see that the churn customer has significantly lower v-mail
messages. Now, that could be because of a lower number of v-mail subscriptions
for the churn customer. We can see the summary statistics of v-mail messages in
the following table:

Number of v-mail messages
All
subscribers Churn subscribers Active subscribers
1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
Median: 0.000 Median: 0.000 Median: 0.000
Mean: 7.755 Mean: 4.496 Mean: 8.292
3rd Qu.: 17.000 3rd Qu.: 0.000 3rd Qu.: 20.000

Exploring the datasets helps us to understand patterns and validate the results
after modelling.

Correlation
It is a good practice to remove the strongly correlated variables from the feature set;
both strong positively and strong negatively correlated features need to be removed.
We will check the correlation between numerical variables. Using R, we will first
remove the non-numeric variables:

cor_data<-churn_data
cor_data$Status<-NULL
cor_data$voice.mail.plan<-NULL
cor_data$international.plan <-NULL
cor_data$phone.number<-NULL
cor_data$state<-NULL

We will then calculate the correlation, which returns a correlation matrix:

correlation_all<-cor(cor_data)
write.csv(correlation_all,file="correlation_file.csv")

Case Study – Churn Analytics and Customer Segmentation

[190]

Looking at correlation_file.csv, we can see that four pairs of columns are
heavily correlated and we should remove them:

churn_data$total.day.charge<-NULL
churn_data$total.eve.charge<-NULL
churn_data$total.night.charge<-NULL
churn_data$total.intl.charge<-NULL

We will remove the features phone number and state.

churn_data$state<-NULL
churn_data$phone.number<-NULL
write.csv(churn_data,file="churn_data_clean.all.csv",row.names = F)

We need to remove these columns from all the files.

Another way of removing correlation is to perform dimensionality reduction such as
PCA. This is the preferred approach if the dimensionality of the dataset is very high.

Feature engineering
Looking at the dataset, the scope of feature engineering looks a bit limited. The
dimensionality is low and we don't have missing values. There is some scope for
manual feature construction though, and we can use that to introduce some domain
knowledge. The numeric features that we have measure how many calls a user
makes, the frequency of the usage and the total time spent talking, the volume of the
usage. The features like total day calls and total eve calls measure frequency of usage
whereas features such as total day minutes and total eve minutes measure volume of
usage. Another interesting feature to look at would be the average minutes per call.
We can measure the average by dividing the total minutes by total calls, for example,
the feature average minutes per day call = total day minutes / total day calls and similarly,
average minutes per eve call = total eve minutes/ total eve calls.

Always spend some time figuring out ways to enrich the feature
representation by using the manual feature construction. This step
is mostly guided by data exploration and domain knowledge. If you
don't have knowledge about a particular domain, reading about it and
talking to business users will definitely lead to additional insights.

To calculate the average in R, we need to execute the following commands:

churn_data$avg.minute.day<-churn_data$total.day.minutes/churn_data$total.
day.calls

churn_data$avg.minute.eve<-churn_data$total.eve.minutes/churn_data$total.
eve.calls

Chapter 9

[191]

churn_data$avg.minute.night<-churn_data$total.night.minutes/churn_
data$total.night.calls

churn_data$avg.minute.intl<-churn_data$total.intl.minutes/churn_
data$total.intl.calls

We get four additional features by calculating the averages. This amounts to the
inclusion of domain specific knowledge, which is that average usage per call could
be a good feature.

We will now split the file into train and test set. The split will be 75 percent train and
25 percent test samples. We first create the smp_size variable, which is 75 percent of
the number of rows in churn_data:

smp_size <- floor(0.75 * nrow(churn_data))

We next set the seed to make the partition reproducible. Each iteration will have the
same split of data:

set.seed(123)

Then we sample 75 percent of the rows for training:

train_ind <- sample(seq_len(nrow(churn_data)), size = smp_size)

We create the train set using the sampled rows:

train <- churn_data[train_ind,]

The test set is created by not selecting the previously selected rows:

test <- churn_data[-train_ind,]

We see the distribution of churn and active accounts across the train and test sets:

table(train$Status)

The output of the table command, which shows the distribution of the target
variable in the training dataset, is as follows:

False True
3219 531

table(test$Status)

The output of the table command, which shows the distribution of the target
variable in the test dataset, is as follows:

False True
1074 176

Case Study – Churn Analytics and Customer Segmentation

[192]

The proportion of churn and active cases are similar in both the sets, hence we will
use them. Otherwise, we would have changed the seed and rerun the split process
until we got a similar proportion. The last step is to save the sets as csv files:

write.csv(train,file="churn_data_clean.all.csv",row.names = F)
write.csv(test,file="churn_data_clean_test.all.csv",row.names = F)

Later in this chapter we will be discussing customer segmentation. Let's prepare
the data for customer segmentation, clustering algorithms only work with numeric
data, so we need to discard categorical variables. For segmentation we intend to use
only the features about time and number of calls during different parts of the day.
We select columns 6 to 13 and write it to the file churn_cluster_data.csv.

churn_cluster_data<-churn_data[,6:13]
write.csv(churn_cluster_data,file="churn_cluster_data.csv",row.names = F)

Model training and validation
In the model training and validation phase, it's always a good idea to
try multiple algorithms. We will try out OnlineLogisticRegression,
AdaptiveLogisticRegression, and RandomForest for training the models.
The idea is to see which algorithm works well for the data and select the best one.

Logistic regression
We need to clean the file to remove quotes and white spaces and replace NA introduced
during the feature engineering phase with NA/0, which would be introduced if the
numerator is zero. We will use the sed command with the inplace flag -i to preprocess
the files. Please type the following command on the Linux terminal:

sed -i 's/"//g' churn_data_clean.all.csv
sed -i 's/NA/0/g' churn_data_clean.all.csv

sed -i 's/"//g' churn_data_clean_test.all.csv
sed -i 's/NA/0/g' churn_data_clean_test.all.csv

First, we will train using logistic regression:

mahout trainlogistic --input churn_data_clean.all.csv --output
logistic_model --target Status --predictors account.length area.code
international.plan voice.mail.plan number.vmail.messages total.day.
minutes total.day.calls total.eve.minutes total.eve.calls total.night.
minutes total.night.calls total.intl.minutes total.intl.calls number.
customer.service.calls avg.minute.day avg.minute.eve avg.minute.night
avg.minute.intl --types n w w w n n n n n n n n n n n n n n --features 19
--passes 100 --rate 50 --categories 2

Chapter 9

[193]

Then, we test the model using runlogistic, and we check the AUC and confusion
matrix over the training set:

mahout runlogistic --auc --confusion --input churn_data_clean.all.csv
--model logistic_model

Lastly, we check the performance over the test set:

mahout runlogistic --auc --confusion --input churn_data_clean_test.all.
csv --model logistic_model

The AUC and the confusion matrix are stable across the test and train sets, which
means we have not overfitten the data.

Case Study – Churn Analytics and Customer Segmentation

[194]

Adaptive logistic regression
We use the trainAdaptiveLogistic command to train an ensemble of logistic
regression. The configuration parameter passed is 100 passes over the data with
20 threads:

mahout trainAdaptiveLogistic --input churn_data_clean.all.csv --output
logistic_model --target Status --predictors account.length area.code
international.plan voice.mail.plan number.vmail.messages total.day.
minutes total.day.calls total.eve.minutes total.eve.calls total.night.
minutes total.night.calls total.intl.minutes total.intl.calls number.
customer.service.calls avg.minute.day avg.minute.eve avg.minute.night
avg.minute.intl --types n w w w n n n n n n n n n n n n n n --features 19
--passes 100 --categories 2 --threads 20

The second step is to validate the model accuracy over the training dataset. We check
the AUC and confusion matrix for this purpose:

mahout validateAdaptiveLogistic --input churn_data_clean.all.csv --model
logistic_model --auc --confusion

Chapter 9

[195]

The second step is to validate the model accuracy over the test dataset. We check the
AUC and confusion matrix for this purpose:

mahout validateAdaptiveLogistic --input churn_data_clean_test.all.csv
--model logistic_model --auc --confusion

Random forest
As the random forest implementation in Mahout doesn't work with the header line,
we remove the header. We will use sed for this purpose:

sed -i '1d' churn_data_clean.all.csv
sed -i '1d' churn_data_clean_test.all.csv

The next step is to create a directory on HDFS and copy the files to this
HDFS directory:

hadoop fs -mkdir chapter9
hadoop fs -put churn_data_clean.all.csv chapter9
hadoop fs -put churn_data_clean_test.all.csv chapter9

The next step is to create the description file. We create it in the hdfs folder
created previously:

hadoop jar $MAHOUT_HOME/mahout-core-0.9-job.jar org.apache.mahout.
classifier.df.tools.Describe -p chapter9/churn_data_clean.all.csv -f
chapter9/churn.info -d 1 n 3 c 10 n l 4 n

Case Study – Churn Analytics and Customer Segmentation

[196]

Then we proceed to train the model. We will build 100 trees in the forest:

hadoop jar $MAHOUT_HOME/mahout-examples-0.9-job.jar org.apache.mahout.
classifier.df.mapreduce.BuildForest -Dmapred.max.split.size=1874231 -d
chapter9/churn_data_clean.all.csv -ds chapter9/churn.info -sl 4 -p -t 100
-o chapter9_final-forest

The last step is to test the model's performance over test and train sets:

hadoop jar $MAHOUT_HOME/mahout-examples-0.9-job.jar org.apache.mahout.
classifier.df.mapreduce.TestForest -i chapter9/churn_data_clean.all.
csv -ds chapter9/churn.info -m chapter9_final-forest -a -mr -o chapter9_
final-pred

We repeat the last step with the test dataset and check the performance of the model:

hadoop jar $MAHOUT_HOME/mahout-examples-0.9-job.jar org.apache.mahout.
classifier.df.mapreduce.TestForest -i chapter9/churn_data_clean_test.all.
csv -ds chapter9/churn.info -m chapter9_final-forest -a -mr -o chapter9_
final-pred_test

Chapter 9

[197]

Out of the three algorithms, RandomForest has the best performance. We can
further tune the models by adjusting the parameters and observing the results.
For RandomForest, we can change the values of -t (number of trees) and -sl
(number of features used per tree) to choose the best model.

Customer segmentation
The next analytics use case that we are going to discuss is customer segmentation.
Customer segmentation is the process of dividing and grouping customers into
meaningful subgroups or segments according to some notion of similarity. Segments
are separated by natural boundaries in the data. Customer segmentation allows an
organization to better understand their customer base and build different strategies
based on the segments observed. For example, consider a hypothetical scenario:
a telecom service provider segments subscribers based on their age, voice usage,
and data usage, and after segmentation might observe five distinct segments.
The segments are shown in the following table:

Segments Age Voice Usage Data Usage
Segment A Old High Low
Segment B Old Low Low
Segment C Middle Age High High
Segment D Young High Low
Segment E Young Low High

Case Study – Churn Analytics and Customer Segmentation

[198]

Now the subscriber, based on this information, can decide different campaigns for
each segment, thus getting greater returns for his marketing expense.

There are many different types of customer segmentation. We will briefly discuss a
few of them:

• Value-based segmentation: Any customer or subscriber is associated
with a value. The subscriber value can be measured in different ways
and may have different terms associated with it. It could either be the
license fee amount or annual recurring revenue or customer lifetime value.
To identify the most valued customers or to track value changes over time,
value-based segmentation is used. The customers are grouped together
according to their value.

• Behavioral-based segmentation: Behavioral-based segmentation is done on
product ownership and adoption or utilization data. Customers are grouped
according to their product usage pattern. This type of segmentation is very
useful for customizing the product offering, coming up with new features,
and so on.

• Demographic–based segmentation: This type of segmentation is aimed
at discovering different customer groupings based on socio-demographic
aspects such as age, income, marital status, and so on.

In this case study, we are going to focus on behavioral segmentation based on
telecom usage. The dataset would be the same as the one used for the churn
analytics but we will use only numeric features.

Preprocessing
For a segmentation project, the data needs to be preprocessed. There are two
common ways of preprocessing the data, by normalization and by rescaling it.
Both are introduced as follows:

• Rescale: Scaling each entry of a feature between 0 and 1
• Normalize: Making every feature zero mean, unit variance

For behavioral segmentation, it is important to have an understanding of the
behavior we are interested in segmenting for. In this case, we could be interested in
understanding the behavior according to the time of the call (day, evening, or night),
type of call (international or voice mail), and so on. The data representation for each
of the cases will depend upon the behavior we are interested, in as we will see in the
section ahead.

Chapter 9

[199]

There is a lot of value in exploratory clustering too, but without a clear objective in
mind it is a bit difficult to interpret the clusters. Generally, you play with different
cluster numbers and feature representation and then try to interpret each good result.

Feature extraction
We will consider a few usecases of behavior-based clustering. In all these cases,
we will consider internal and external evaluation metrics to check the efficacy of
the segments. The internal evaluation metrics used will be inter and intra-cluster
distances and for external evaluation we will churn the Status label feature.

Day calls
The first behavior we will be interested in observing is the behavior according to
the calls made during the day. The first step is to cluster the subscriber based on
the features mentioned in the table and then try to find some interesting patterns.
Once the clusters are satisfactory, the next step is to see how the observation
variables behave across clusters, in this case, we have the churn label, Status, as
the observational variable and we will check the count of the two categories of the
variables Status, True, and False across the different clusters. The feature related to
day calls are mentioned in the following table:

Features
total.day.minutes
total.day.calls

Evening calls
We are going to repeat the same steps discussed previously for evening calls and
international calls. We will cluster them separately and then compute the count of
the two different values for the Status field. The features related to evening calls are
mentioned in the following table:

Features
total.eve.minutes
total.eve.calls

Case Study – Churn Analytics and Customer Segmentation

[200]

International calls
Similarly, the international calls dataset will have total.intl.minutes and total.intl.calls
as the features and are mentioned in the following table:

Features
total.intl.minutes
total.intl.calls

Preprocessing the files
We first need to preprocess the files to create the sequence files and the initial
centroids. We need to remove the header line and replace commas with space so
that we can use the preprocessing code from Chapter 7, Clustering with Mahout:

sed -i '1d' churn_cluster_data.csv
sed -i 's/,/ /g' churn_cluster_data.csv

Next we create the HDFS directory chapter09 on Hadoop and copy the file to
the directory.

hadoop fs -mkdir chapter09/clustering_input
hadoop fs -put churn_cluster_data.csv chapter09/clustering_input/

Now open the file DataPreprocessing.java from the package chapter7.src,
we need to change the path to the input directory and run the code.

//create the configuration object and add resources
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
conf.addResource(new Path("/usr/local/hadoop/conf/hdfs-site.xml"));

//create the file system object and pass the configuration object
FileSystem fileSystem = FileSystem.get(conf);

We then create the input and output Path objects.

#define the input and sequence file directory

We need to change the path of the input directory from chapter7/clustering/
input to chapter7/clustering/input. Once we have made the changes, the paths
will look like the following code:

String inputPath="chapter09/clustering_input";
String inputSeq="clustering_seq";

Path inputDir = new Path(inputPath);
Path inputSeqDir = new Path(inputSeq);

Chapter 9

[201]

//The last step is to encode the vectors using the //
RandomAccessSparseVector
InputDriver.runJob(inputDir, inputSeqDir, "org.apache.mahout.
math.RandomAccessSparseVector",conf);

Creating the clusters using fuzzy k-means
Once the files have been processed, we will use the Mahout fkmeans command to
cluster them together. We could try different clustering algorithms as discussed
previously; that can be as an exercise. We will create three clusters:

mahout fkmeans -i clustering_seq -c chapter09/kmeans_init_cluster -o
chapter09/clustering_output_fkmeans -dm org.apache.mahout.common.
distance.EuclideanDistanceMeasure -x 10 -k 3 -ow --clustering -m 1.2

Once the clustering step is completed, we will observe the output.

Check the following files in the output directory:

hadoop fs -ls chapter09/clustering_output_fkmeans

/user/ctiwary/chapter09/clustering_output_fkmeans/_policy
/user/ctiwary/chapter09/clustering_output_fkmeans/clusteredPoints
/user/ctiwary/chapter09/clustering_output_fkmeans/clusters-0
/user/ctiwary/chapter09/clustering_output_fkmeans/clusters-/user/ctiwary/
chapter09/clustering_output_fkmeans/clusters-/user/ctiwary/chapter09/
clustering_output_fkmeans/clusters-3-final

To check the cluster centroids, we will use the clusterdump utility:

mahout clusterdump -i chapter09/clustering_output_fkmeans/clusters-*-final

Clustering using k-means
The next clustering algorithm that we are going to try is kmeans with three clusters.
We will use the kmeans command of the Mahout command line utility:

mahout kmeans -i clustering_seq -c chapter09/kmeans_init_cluster -o
chapter09/clustering_output -dm org.apache.mahout.common.distance.
EuclideanDistanceMeasure -x 10 -k 3 -ow --clustering

Evaluation
We will use Mahout's implementation for internal cluster evaluation. Cluster
evaluation requires passing a distance measure. We will create the distance
measure object as follows:

//create the distance measure object
DistanceMeasure measure = new EuclideanDistanceMeasure();

Case Study – Churn Analytics and Customer Segmentation

[202]

We run the RepresentativePointsDriver.run method that sets up the
ClusterEvaluator object properties:

RepresentativePointsDriver.run(conf, new Path("chapter09/clustering_
output_fkmeans/clusters-3-final"),
new Path("chapter09/clustering_output", " chapter09/clusteredPoints"),
new Path("chapter09/clustering_output_fkmeans"),measure,
10, true);

Then we create the ClusterEvaluator object and pass the Configuration object
and path to the cluster output directory:

ClusterEvaluator cv = new ClusterEvaluator(conf,new Path("chapter09/
clustering_output/clusters-3-final"));

We call the respective functions to calculate the inter-cluster and intra-cluster
density of the clusters:

System.out.println(cv.interClusterDensity());
System.out.println(cv.intraClusterDensity());

We can calculate the evaluation metrics for other clustering algorithms too, using the
same methodology.

Summary
In this chapter, we discussed the end-to-end steps involved in a machine learning
project, taking two common customer analytics use cases, churn analytics and
customer segmentation, as examples. We considered structured data for building
the models. Many of the techniques learned up until now where put into practice.
We discussed data cleansing, feature engineering, and model efficacy. A robust
and repeatable step-by-step plan, which puts equal importance on all phases of
a machine learning project, is important to its success.

In the last chapter, we will continue with the same theme and discuss text analytics
use cases. Text analytics is an example of using unstructured data to gain insight
and build models. We will cover the end-to-end steps that need to be performed to
analyze text. The use cases that will be covered are text clustering and classification.

[203]

Case Study – Text Analytics
So far, we have focused on deriving insights and building models on top of data
that has a well defined and fixed structure. Data sources such as delimited files
and database tables have a fixed format and are called structured sources of data.
Structured data is the mainstay of analytics, and most of the use cases we discussed
rely on structured data. Data sources such as social media posts, support case
comments, e-mails, articles, and so on are called unstructured, data and they can
contain business insights about customers and products that is not readily available
in structured data. For example, structured information such as product usage tables
can tell us that a particular customer is not using the product, but the reason for that
could be documented in a support case comment. Mining unstructured data for
information follows a slightly different approach than what we have discussed so far.
In this chapter, we are going to discuss the steps involved in a text analytics project as
a use case of mining unstructured data. You will understand the vector space model
of representing text and run clustering and classification algorithms on it. The topics
covered in this chapter are as follows:

• Vector space model
• Text clustering
• Text classification
• Feature extraction

Text analytics
Text analytics has many practical applications and is one of the most important areas
of application of machine learning. Automatic e-mail filters, news article clustering
and categorization, and sentimental analysis on social media posts about products are
some of the most widely implemented use cases of text analytics. One of the major
challenges in text analytics is feature extraction. Representation of documents is the
most critical part of a text analytics project. In the coming sections, we are going to
discuss one of the most-used forms of representation of text.

Case Study – Text Analytics

[204]

Vector space model
The representation of a set of documents as vectors in a common vector space is known
as the vector space model (VSM), and it is fundamental to a host of information
retrieval operations, such as scoring documents on a query, document classification,
and document clustering. The VSM is a common way of vectorizing text documents.

In the vector space model, each unique word present in the set of documents is
represented as a coordinate of a vector. If we imagine a matrix, each column of the
matrix will represent a word, and each row will be a document of the document set.
The value of the matrix cells will indicate whether a word is present in a document,
and a sense of how frequent the occurrence is. The dimensionality of such a matrix
will be very high.

For example, let's assume we have two documents, A and B. A has the This is
document A and this is the first document text, and B has the This is
document B and this is the second document text. We will consider the
simplest form of vector space model; each word is indexed, and we are going to fill
the cell values with simple counts. There are other more intelligent ways of creating
a VSM and we will discuss that in later sections. As we parse the documents, we see
that there are 11 unique words; each will become a column in the matrix.

Document this is document A B and the first second
A 2 2 2 1 0 1 1 1 0
B 2 2 2 0 1 1 1 0 1

A cursory look at the VSM can provide some interesting pointers. One thing we notice
is that words such as "this", "is", "and", and so on are not very important, as they are
common across all documents. A feature-like "Document" could be interesting, but as
we see the counts are the same, maybe we need to look at other ways of presenting the
data that could be more interesting. Words such as "A", "B", "first", and "second" are
definitely important words. In later sections, we will discuss how these initial pointers
lead to some important feature extraction techniques.

The vector space model process can be divided into three major stages:

• The first stage is the preprocessing of raw text.
• The second step is document indexing, where content-bearing terms are

extracted from the document text.
• The third stage is the weighting of the indexed terms to enhance retrieval

of the document relevant to the user.

Chapter 10

[205]

Preprocessing
Before we can analyze and index documents in the vector space model, the
text needs to be preprocessed. We will discuss some of the most common
preprocessing tasks. It's better to use purpose-built tools such as Tika and
Lucene for parsing and preprocessing the documents, instead of writing our
own implementation. We will discuss an example based on Lucene later on.
Let's now look at some common preprocessing tasks. They are presented in
the order in which they should be performed.

Tokenization
The first task that needs to be performed in preprocessing of text is to tokenize
each document. Tokenization refers to the process of extracting words from the
document text. In this process, we have to handle cases such as white spaces,
bad characters, special words such as e-mails, and so on. All words need to be
converted to lowercase.

Stop word removal
We saw in the example of the vector space model that some common words
such as "a", "and", "this", and so on are not very predictive and lead to noise.
These words are called stop words and should be removed.

Stemming
Stemming is the process of converting a word into its root form. Words such
as "kick" and "kicking" in most cases should be treated as the same. Performing
stemming takes care of this requirement.

Preprocessing example
Open the PreprocessDataExample.java file from the chapter10.src package
present in the code repository that comes with this book. This file contains an
example of preprocessing text using Lucene analyzer. You will learn how to
create your own analyzer that includes tokenizing text, stop word removal,
lowercase filtering, and stemming.

We define a function, displayTokenUsingStandardAnalyzer(), to accomplish
the aforementioned preprocessing task:

private static void displayTokenUsingStandardAnalyzer() throws
IOException {
String text = "Lucene is simple but yet a powerful Java based at search
library. StandardAnalyzer will convert all words to lowercase and remove
stop words";
Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_46);

Case Study – Text Analytics

[206]

TokenStream tokenStream = analyzer.tokenStream(null, new StringReader(
text));

tokenStream.reset();
while (tokenStream.incrementToken()) {
System.out.println(tokenStream
.getAttribute(CharTermAttribute.class).toString());
}
tokenStream.close();
System.out.println("Stemmimg Example \n");
String text_stem = "Lucene is simple but yet a powerful Java based at
search library. This is to check stemming by PorterStemFilter, kicking
will become kick";
tokenStream = analyzer.tokenStream(null, new StringReader(text_stem));
tokenStream = new PorterStemFilter(tokenStream);
tokenStream.reset();
while (tokenStream.incrementToken()) {
System.out.println(tokenStream
.getAttribute(CharTermAttribute.class).toString());
}
tokenStream.close();
analyzer.close();
}

At the start of the function, we defined a string variable with the name text.
The string variable will be used to demonstrate the text processing. Then we
created the StandardAnalyzer object. StandardAnalyzer is an out-of-the-box
analyzer in Lucene that performs removal of white spaces, tokenization of words,
converting all tokens to lowercase, and removing stop words. The text string
variable is processed using StandardAnalyzer, and the output is as follows:

Chapter 10

[207]

We can see that all the words have become lowercase, whitespaces have been
removed, and stop words such as "a", "at", and so on have been removed. Now
we will add a filter to the standard analyzer to augment its capabilities. A filter
is an additional operation we would want to perform on the data. We should also
stem the words to their root form. We add the PorterStemFilter filter to the
analyzer object. PorterStemFilter stems words in English to their root form.
The text_stem variable is used to test the implementation. The output looks like
what is shown in this screenshot:

We can see that many words have been stemmed; for example, "kicking" is stemmed
to "kick". We will use the building blocks from this example to build our own custom
analyzer in the sections ahead.

Document indexing
After preprocessing has been completed, the next step is to perform document
indexing. After document indexing, we get the matrix discussed in the vector space
model. There are many ways to compute the cell values. One of the simplest is term
frequency (TF). The cell values are populated with the count of the particular word
or term in a particular document. This is required because, even after removing
the stop words, there may be some words that would be common across most
documents. These words will not help us distinguish different documents. On
the other hand, words that are common in a set of documents but not common
otherwise in all the documents might be very important. We need to take this into
account while indexing the document. We will discuss this technique in the next
section, called term weighting.

Case Study – Text Analytics

[208]

TF-IDF weighting
Term frequency-inverse document frequency (TF-IDF) weighting is a widely
used improvement on simple term frequency weighting. The IDF part is the
improvement; instead of simply using term frequency as the value in the vector,
this value is multiplied by the inverse of the term's document frequency. That is,
its value is reduced more for words used frequently across all the documents in
the dataset than for infrequently used words.

Let's revisit the previous example; we have removed the stop words.

The term frequency of words is as follows:

Document document A B first second
A 2 1 0 1 0
B 2 0 1 0 1

The document frequency of words is the number of documents the word is present in,
as shown in the following table:

Document document A B first second
A 2 1 1 1 1

TF-IDF is the multiplication of the term frequency with the inverse, 1/DF, of the
document frequency:

Document document A B first second
A 1 1 0 1 0
B 1 0 1 0 1

A variation of TF-IDF is to multiply the product by the number of documents, N.
The formula would be given by TFIDF = TF*1/DF*N. Another variation is to take
the logarithm of DF and multiply it by TF.

n-grams
A group of words in a sequence is called an n-gram. A single word can be called
a unigram, and two words, such as "Coca Cola", can be considered a single unit
and called a bigram. Combinations of three and more terms can be called trigrams,
4-grams, 5-grams, and so on. Classic TF-IDF weighting assumes that words occur
independent of IDF of other words, but vectors created using this method usually
lack the ability to identify key features of documents, which may be dependent.

Chapter 10

[209]

Some of these can be good combinations for generating document vectors ("big bang",
"the best ever"), but some of them aren't ("a" and "the"). If you combine the unigrams
and bigrams from a document and generate weights using TF-IDF, you'll end up
with many meaningless bigrams that have large weights because of their large IDF.
This is undesirable.

We can solve this problem by passing the n-grams through something called a
log-likelihood test. It can determine whether two words occurred together by chance
or because they form a significant unit. It selects the most significant n-grams and
prunes away the least significant n-grams. Using the remaining n-grams, the TF-IDF
weighting scheme is applied and vectors are produced. In this way, significant bigrams
such as "Coca Cola" can be more properly accounted for in a TF-IDF weighting.

Normalization
Normalization, in this case, is a process of cleaning up edge cases—data with
unusual characteristics that skews results disproportionately. For example, when
calculating the similarity between documents based on some distance measure, it is
common that a few documents pop up as if they're similar to all the other documents
in the collection. But on closer inspection, you'll find that this happened because
the document is large, and its vector has many nonzero dimensions, causing it to be
close to many smaller documents. Somehow, we need to negate the effect of varying
sizes of the vectors when calculating similarity. This process of decreasing the
magnitude of large vectors and increasing the magnitude of smaller vectors is called
normalization.

In Mahout, normalization uses what is known in statistics as a p-norm. The p-norm
of vector x is given by this formula:

1/

x
p

p
ip

i
x ≡

∑

The parameter p could be any value greater than 0. The 1-norm, or Manhattan norm,
of a vector is the vector divided by the sum of the weights of all the dimensions.

The 2-norm, also known as Euclidean norm or the L2-norm, is the vector divided
by the magnitude of the vector—this magnitude is the length of the vector, as we're
accustomed to understanding it:

2 2 2
1 2 22

x x x x x= = + + +…

Case Study – Text Analytics

[210]

The infinite norm is simply the vector divided by the weight of the largest
magnitude dimension.

The norm power (p) you choose will depend on the type of operations done on the
vector. If the distance measure used is the Manhattan distance measure, the 1-norm
will often yield better results with the data. Similarly, if the cosine of the Euclidean
distance measure is being used to calculate similarity, the 2-norm version of the
vectors yields better results. For best results, the normalization should relate to the
notion of distance used in the similarity metrics.

Generating the 2-normalized bigram vector is done by running the Mahout launcher
using the seq2sparse command, with the –n flag set to 2:

mahout seq2sparse -i reuters-seqfiles/ -o reuters-normalized-bigram -ow
-a org.apache.lucene.analysis.WhitespaceAnalyzer
-chunk 200 -wt tfidf -s 5 -md 3 -x 90 -ng 2 -ml 50 -seq -n 2

Normalization improves the quality of clustering a little. Further refinement in the
quality of clustering is achieved by using problem-specific distance measures and
appropriate algorithms.

Clustering text
The clustering of text has many applications. It deals with grouping similar documents
based on the words present in the text. One of the most common examples would be
the clustering of news articles into similar groups. We will discuss how to implement
the clustering of text using Mahout.

The dataset
We will be using Reuters dataset for the clustering example. This dataset has a
repository of e-mails. We will download the dataset and then extract it using tar
to the reuters-sgm folder. Move to the directory data/chapter10 and execute
the following commands:

export MAHOUT_LOCAL=TRUE

curl http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.tar.gz -o
reuters21578.tar.gz

mkdir -p reuters-sgm

tar xzf reuters21578.tar.gz -C reuters-sgm

Chapter 10

[211]

We will use Mahout's inbuilt utility to extract the Reuters dataset into the reuters-
out folder:

mahout org.apache.lucene.benchmark.utils.ExtractReuters reuters-sgm
reuters-out

The last step is to convert the file into a sequence file using Mahout's seqdirectory
command:

mahout seqdirectory -i reuters-out -o reuters-out-seqdir -c UTF-8 -chunk
64 -xm sequential

Feature extraction
Open the TextPreprocessingExample.java file from the chapter10.src package
present in the code repository that comes with this book. This code file reads the
input sequence file, uses a custom analyzer to tokenize and preprocess the text,
and creates the TF-IDF vectors.

We first create the path variables for the input and output directories and then
declare the custom analyzer:

String inputDir = "data/chapter10/reuters-out-seqdir";
Configuration conf = new Configuration();
String outputDir = "data/chapter10/reuters-features";
Path tokenizedPath = new Path(outputDir,
DocumentProcessor.TOKENIZED_DOCUMENT_OUTPUT_FOLDER);
System.out.println(tokenizedPath);
CustomAnalyzer analyzer = new CustomAnalyzer();
DocumentProcessor.tokenizeDocuments(new Path(inputDir), analyzer
.getClass().asSubclass(Analyzer.class), tokenizedPath, conf);

The input and output directory path is taken as the input from the user, and we
create the CustomAnalyzer object. The CustomAnalyzer object is used to tokenize
the text document. Open the CustomAnalyzer.java file from the chapter10.src
package present in the code repository that comes with this book. This code file
contains the implementation of the custom analyzer. This analyzer performs the
same operations as we saw in the previous example as it removes whitespaces and
stop words, tokenizes words, converts words to lowercase, and stems the words:

public class CustomAnalyzer extends Analyzer {

@Override
public TokenStreamComponents createComponents(String field, Reader
reader) {

Case Study – Text Analytics

[212]

Tokenizer source = new StandardTokenizer(Version.LUCENE_46,reader);
StandardAnalyzer analyzer = new StandardAnalyzer(Version.LUCENE_46);
TokenStream filter;
try {
filter = analyzer.tokenStream(field,reader);
} catch (IOException e) {
e.printStackTrace();
}
filter = new PorterStemFilter(source);
analyzer.close();
return new TokenStreamComponents(source, filter);
}
}

A custom analyzer needs to extend the analyzer class and override the
createComponents() method. In our implementation, we create a Tokenizer
object and a StandardAnalyzer object, create a TokenStream object and a
PorterStemFilter object, and then return a TokenStreamComponents object
with Tokenizer and TokenStream objects as the arguments to the constructor.

Once the text is tokenized, we need to create the term frequency vector:

DictionaryVectorizer.createTermFrequencyVectors(tokenizedPath,
new Path(outputDir), tfDirName, conf, minSupport, maxNGramSize,
minLLRValue, norm, logNormalize, reduceTasks, chunkSize,
sequentialAccessOutput, namedVectors);

The createTermFrequencyVectors() method of the DictionaryVectorizer
class takes as arguments the path to the tokenized directory, the output directory,
and a bunch of arguments regarding how to create the term frequency vector.

Then we need to calculate the document frequency of each token. The calculateDF()
function of TFIDFConverter does that for us. We store the document frequencies in
the docFrequenciesFeatures variable:

docFrequenciesFeatures = TFIDFConverter.calculateDF(new Path(outputDir,
tfDirName), new Path(outputDir), conf, chunkSize);

The next step is to prune the tokens with high document frequencies. This is done by
the pruneVectors() method of the HighDFWordsPruner class:

HighDFWordsPruner.pruneVectors(tfDir, prunedTFDir, prunedPartialTFDir,
maxDFThreshold, minDf, conf, docFrequenciesFeatures, -1.0f,
false, reduceTasks);

Chapter 10

[213]

The last step is to calculate the TF-IDF and save the output. This task is performed by
the processTfIdf() function of the TFIDFConverter class. The major arguments for
the function processTfIdf() are as follows:

• Input: This is the input directory of the vectors in the SequenceFile format.
• Output: This is the output directory where RandomAccessSparseVector's of

the document are generated.
• datasetFeatures: This is the information on document frequencies

calculated by calculateDF.
• minDf: This is the minimum document frequency. By default, it is 1.
• maxDF: This is the maximum percentage of vectors for the DF. It can be

used to remove really high-frequency features. It is expressed as an integer
between 0 and 100. By default, it is 99.

• numReducers: This is the number of reducers to spawn. It also affects the
possible parallelism, since each reducer will typically produce a single output
file containing TF-IDF vectors for a subset of the documents in the corpus.

The processTfIdf() function is called by passing the respective arguments:

TFIDFConverter.processTfIdf(new Path(outputDir,
DictionaryVectorizer.DOCUMENT_VECTOR_OUTPUT_FOLDER), new Path(
outputDir), conf, docFrequenciesFeatures, minDf, maxDFPercent,
norm, logNormalize, sequentialAccessOutput, namedVectors,
reduceTasks);

The TF-IDF vectors created can be used for both clustering and classification of text.
We will discuss this in the next sections.

The clustering job
Open the KMeansClusteringExample.java file from the chapter10.src package
present in the code repository that comes with this book. The code file includes an
example of clustering using Kmeans and evaluation of the cluster using inter cluster
and intra cluster distance as a metric.

The first step is to declare the output directory, input vector folder, path to initial
centroids and the Configuration object:

String outputDir = "data/chapter10/reuters-features";
Path vectorsFolder = new Path(outputDir, "tfidf-vectors");
Path centroids = new Path(outputDir, "centroids");
Path clusterOutput = new Path(outputDir, "clusters");
Configuration conf = new Configuration();

Case Study – Text Analytics

[214]

Then we create the initial cluster centroid. We will use CosineDistanceMeasure for
the measure of similarity, and the number of clusters will be 20. For text mining, the
preferred distance measure is CosineDistanceMeasure, an important advantage
being that it can account for documents of different sizes:

RandomSeedGenerator.buildRandom(conf, vectorsFolder, centroids, 20,
new CosineDistanceMeasure());

Once the cluster centroids are created, we pass them along with the declared
directories to the KMeansDriver run method to build the clusters:

KMeansDriver.run(conf, vectorsFolder, centroids, clusterOutput, 0.01,
20, true, 0, false);

Once the clustering is complete, we need to evaluate it. We declare the distance
measure, which should be the same as that used by the clustering algorithm. Then
we call the RepresentativePointsDriver run() method:

CosineDistanceMeasure measure = new CosineDistanceMeasure();

RepresentativePointsDriver.run(conf, new Path(clusterOutput,"clusters-10-
final"), new Path(
clusterOutput, "clusteredPoints"), clusterOutput, measure, 20, true);

The next step is to create the ClusterEvaluator object and measure the
inter and intra cluster density:
ClusterEvaluator cv = new ClusterEvaluator(conf,new
Path(clusterOutput,"clusters-10-final"));

System.out.println(cv.interClusterDensity());

System.out.println(cv.intraClusterDensity());

Categorizing text
Text categorization or classification deals with labeling documents to certain
predefined classes. One of the most common tasks of text classification is
labeling e-mail as ham and spam. We will discuss how to implement text
classification in Mahout.

The dataset
For the text classification case study, we are going to use the 20 newsgroups
dataset. The data is from transcripts of several months of postings made in 20
Usenet newsgroups on 20 different topics. Download the dataset from http://
people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz.

http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz
http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz

Chapter 10

[215]

The dataset is divided into train and test sets, and each set has 20 subdirectories. If you
look at the training folder, you will see these 20 subdirectories. Each subdirectory will
be considered a class label, and all files belonging to the directory will belong to that
class. The following screenshot displays the folders in which files of respective classes
as present. The folder name is the class label for documents present inside it.

Let's look at the file in the alt.atheism directory. We will look at the 53314 file.

The file has a header section with information such as the sender of the e-mail,
the subject line, number of lines in the message, and so on. Then we have the
message body.

Feature extraction
The important features in this data will be in the headers and the message body.
Counts of words in the header, most frequent words in the header, number of
lines in messages, and words in the message body are some of the important
features to look out. We will discuss feature extraction and training a classifier
in the next section.

The classification job
Open the ClassificationExamples.java file from the chapter10.src package
present in the code repository that comes with this book. In this code file, we will
extract the features, encode them as vectors, and train a classification model to
classify documents to respective class labels.

Case Study – Text Analytics

[216]

Let's discuss the code now. At first, we define the number of features to be used for
training and the path to the input training directory:

private static final int FEATURES = 10000;
File base = new File("data/chapter10/20news-bydate/20news-bydate-train");

Then we declare the vector encoding of the features that we derive from the
messages. We declare separate encoders for the message body, intercept term, and
header lines:

Map<String, Set<Integer>> traceDictionary = new TreeMap<String,
Set<Integer>>();
FeatureVectorEncoder encoder = new StaticWordValueEncoder("body");
encoder.setProbes(2);
encoder.setTraceDictionary(traceDictionary);
FeatureVectorEncoder bias = new ConstantValueEncoder("Intercept");
bias.setTraceDictionary(traceDictionary);
FeatureVectorEncoder lines = new ConstantValueEncoder("Lines");
lines.setTraceDictionary(traceDictionary);

We define the OnlineLogisticRegression object with categories set to 20. Each
category corresponds to one subdirectory in the 20news-bydate-train directory.
The learning algorithm constructor accepts arguments specifying the number of
categories in the target variable, the size of the feature vectors, and a regularizer.
In addition, there are a number of configuration methods in the learning algorithm.
The alpha, decayExponent, and stepOffset methods specify the rate and way
by which the learning rate decreases. The lambda method specifies the amount of
regularization, and the learningRate method specifies the initial learning rate:

OnlineLogisticRegression learningAlgorithm =
new OnlineLogisticRegression(
20, FEATURES, new L1())
.alpha(1).stepOffset(1000)
.decayExponent(0.9)
.lambda(3.0e-5)
.learningRate(20);

In the next step, we parse the 20news-bydate-train directory and read the filename
and the file list. The collection is shuffled to maintain the randomness so that the
model sees the training example:

List<File> files = new ArrayList<File>();
for (File newsgroup : base.listFiles()) {
newsGroups.intern(newsgroup.getName());
files.addAll(Arrays.asList(newsgroup.listFiles()));

Chapter 10

[217]

}

Collections.shuffle(files);
System.out.printf("%d training files\n", files.size());

The next step is to loop through each file in the subdirectory, extract the features and
the target label, encode the features into vectors, and train the regression model.

The following code snippet creates the target label in the actual variable :

BufferedReader reader = new BufferedReader(new FileReader(file));
String ng = file.getParentFile().getName();
int actual = newsGroups.intern(ng);

The average line count of messages per target class is created:

String line = reader.readLine();
while (line != null && line.length() > 0) {
if (line.startsWith("Lines:")) {
//String count =
try {
lineCount = line.split(":",1).length;
averageLineCount += (lineCount - averageLineCount)
/ Math.min(k + 1, 1000);
} catch (NumberFormatException e) {
lineCount = averageLineCount;
}
}

Next, the features are encoded in vectors and prepared for training:

Vector v = new RandomAccessSparseVector(FEATURES);
bias.addToVector("", 1, v);
lines.addToVector("", lineCount / 30, v);
logLines.addToVector("", Math.log(lineCount + 1), v);
for (String word : words.elementSet()) {
encoder.addToVector(word, Math.log(1 + words.count(word)), v);
}

The prepared vector is used for training with the target label. This is done for each
of the files:

learningAlgorithm.train(actual, v);

Case Study – Text Analytics

[218]

The learningAlgorithm trained model can be used to label a new dataset.
The object has more than one method to perform the classification, for example
function trainAll(). We have demonstrated one of them; the others can be
checked in the online documentation at http://mahout.apache.org/.

The classify() function computes and returns a vector containing n-1 scores,
where n is equal to numCategories(), given an input vector instance. Higher
scores indicate that the input vector is more likely to belong to that category:

learningAlgorithm.classify(v);

Summary
This is the last chapter of this book. We discussed the fundamental concepts and
an implementation of two major use cases of text analytics in Mahout. Throughout
this book, we discussed the major concepts of machine learning, its implementation,
and its usage in Mahout. This will give you a strong foundation for building a career
in data analytics. I hope this book fulfilled its objective of providing a kick start in
machine learning and Mahout, and I hope you continue building on and improving
your skills.

http://mahout.apache.org/

[219]

Index
A
Abalone dataset

URL 55
accumulators 166
adjusted R-square 48
Apache Spark. See Spark
AUC 44, 45
automated feature extraction 54

B
backward selection 73
bagging 28, 29
behavioral-based segmentation 198
bias-variance trade-off 30, 31
bigram 208
binarization 67
binning

about 66, 67
supervised binning 66
unsupervised binning 66

boosting 29
broadcast variables 166

C
canopy clustering

about 152
command-line options 158

categorical features
about 58
categories, converting to binary

variables 62-64
categories, converting to continuous

variables 65

categories, merging 59-61
centroids

canopy centroids, using 151
determining 151
partition, by range 151
random input points, selecting 151
random points, generating 151

churn analytics
about 183-185
data exploration 187
data, obtaining 185-187
feature engineering 190, 191
model training and validation phase 192

classification
about 15, 26, 41
AUC 44
common workflow 15
confusion matrix 42-44
ROC curve 44

cluster analysis
about 33, 34
clustering algorithm, using 37
feature representation 34
objective 34
stopping criteria 37

clustering
about 9, 49
external evaluation 51
internal evaluation 49

clustering algorithm
about 147
canopy clustering 152
fuzzy k-means 153
k-means 147-150

[220]

clustering, using Java code
cluster evaluation 163
example 162
k-means, using 162

clustering, using Mahout command line
canopy clustering 158, 159
data, obtaining 153
data, preprocessing 154
example 153
fuzzy k-means 159, 160
k-means 156-158
streaming k-means 160
URL, for dataset 153

collaborative filtering
about 40, 129
cold start 40
preferences 146
recommender systems 131, 132
scalability 41
similarity 130
sparsity 41

column normalization
about 35
rescaling 35
standardization 35

command line
about 8
classification example 15-18
clustering example 9
example, for k-means clustering 14
extending 114-116
Reuter's raw data file 10-15
used, for implementing LDA 126, 127

confusion matrix 42-44
content-based filtering 41
continuous features

about 66
binarization 67
binning 66, 67
feature standardization 68
mathematical transformations 70

cosine distance measure 36
customer segmentation

about 197, 198
behavioral-based segmentation 198
demographic-based segmentation 198

preprocessing 198
value-based segmentation 198

D
data exploration, churn analytics

R, installing 187
Davies-Bouldin index 50
demographic-based segmentation 198
dense vector 169
development environment

Eclipse, configuring 6, 7
Mahout, configuring 4, 5
Maven, configuring 4
setting up 4

dimensionality reduction 54, 74-77
distance measure

about 35
cosine distance measure 36
Euclidean distance measure 36
Manhattan distance measure 36
squared Euclidean distance measure 36
Tanimoto distance measure 37

distributed row matrices (DRM) 168
document indexing 207
Dunn index 50

E
Eclipse

configuring 6, 7
Mahout source code, importing 113, 114

embedded feature selection 74
Euclidean distance measure 36
Euclidean distance similarity 130
evaluation

about 30
bias-variance trade-off 30, 31
dimensionality, of input space 32
function complexity 32
noise, in data 32
training data consideration 32

external evaluation
about 51
F-measure 52
Rand index 51

[221]

F
feature 54
feature construction

about 55-58
categorical features 58
continuous features 66

feature engineering
about 54
automated feature extraction 54
dimensionality reduction 54
feature selection 54
manual feature construction 54

feature extraction
about 70-72
techniques 72

feature extraction, customer segmentation
day calls 199
evening calls 199
files, preprocessing 200
international calls 200

feature representation
about 34
dissimilarity 35
distance measure 35
feature normalization 34
similarity 35

feature selection
about 54, 72
embedded feature selection 74
filter-based feature selection 72, 73
wrapper-based feature selection 73

feature standardization
about 68
mean standardization 68
rescaling 68
scaling 68, 69

feature transformation
about 69
aggregate transformations 70
frequency 70
normalization 70
ratios 70

filter-based feature selection 72, 73
fixed size neighborhood 133

F-measure 52
forward selection 74
FP-Growth 109
FP Tree

about 109
building 110, 111
constructing 111, 112
frequent patterns, identifying 112, 113

frequent pattern mining
about 37, 109
considerations 39
data description 116-121
data, obtaining 116
FP-Growth 109
FP Tree 109
implementing, with Mahout 114
implementing, with Mahout API 121
Mahout command line, extending 114-116
rules, identifying 38

frequent pattern mining, considerations
actionable rules 39
association, determining 39

frequent pattern mining, rules
confidence 38
conviction 38
identifying 38
lift 38
support 38

frequent pattern mining, with Mahout API
linear execution 123
MapReduce execution 122
metrics, computing 123
results, formatting 123

fuzzy k-means
about 153
command-line options 159
fuzzy factor, deciding 153

H
Hadoop

URL, for configuring 4
Hadoop Distributed File System (HDFS) 9
holdout-set validation 29

[222]

I
in-core types

about 169
matrix 172
vector 169

in-memory execution
about 22
versus parallel execution 22, 23

installation, R 187, 188
internal evaluation, clustering

about 49
Davies-Bouldin index 50
Dunn index 50
inter-cluster distance 50
intra-cluster distance 50

item-based recommender system
about 140
example 141
recommender, building 141-143
recommender, evaluating 144, 145

K
K-fold cross validation 29
k-means

about 147-150
advantages and disadvantages 152
command-line options 156
initial centroid, determining 151
number of clusters, determining 150

L
Latent Dirichlet allocation (LDA)

about 109, 124
implementing, Mahout command line

used 126, 127
used, for topic modeling 124, 125

linear regression
with Mahout Spark 179-181

log-likelihood similarity 131
log-likelihood test 209

M
machine learning

about 25
model efficacy 41
recommender system 39
supervised learning 26
unsupervised learning 33

Mahout
about 1
advantages 2
configuring 4, 5
development environment, setting up 4
frequent pattern mining, implementing 114
source code, importing into

Eclipse 113, 114
Spark, configuring 166-168
URL 5, 218
use case 3

Mahout, advantages
better data collection 2
community 3
license 3
sampling 2
simple techniques 2

Mahout API
about 18, 19
dataset 19-21
frequent pattern mining, implementing 121

Mahout Scala DSL
about 168
imports 169

Mahout Spark
DRM 176
linear regression 179-181

Mahout Spark, DRM
caching, in Spark's block manager 179
computational actions 178
optimizer actions, performing 177, 178
Spark context, initializing 176, 177

Mahout trunk
URL, for latest version 166

Manhattan distance measure 36
manual feature construction 54

[223]

MapReduce
limitations 165, 166

mathematical transformations 70
matrix

about 172
column, setting 174
copy by reference 175
elements, accessing 173
initializing 172

Maven
configuring 4
URL 4

mean absolute error 46
model efficacy

about 41
classification 41
clustering 49
recommendation system 48
regression 46

model, training
bagging 28, 29
boosting 29

model training and validation phase,
churn analytics

adaptive logistic regression 194, 195
logistic regression 192, 193
random forest 195-197

N
n-grams 208, 209
normalization

about 34, 209, 210
column normalization 35
row normalization 35

O
ordinary least square (OLS) 180

P
parallel execution

about 22
versus in-memory execution 22, 23

patsy library 62
Pearson correlation similarity 130

p-norm 209
precision 49
preferences 146
preprocessing, customer segmentation

clustering, with k-means 201
clusters, creating with Fuzzy k-means 201
evaluation 201
feature extraction 199

R
R

correlation, calculating 189
installing 187
summary statistics, viewing 188, 189

Rand index 51
recommendation system

about 48
precision and recall 49
score difference 48

recommender system
about 39, 131
collaborative filtering 40
content-based filtering 41
evaluating 131, 132
item-based recommender system 140
user-based recommender system 132

recursive feature elimination 74
regression

about 26, 46
adjusted R-square 48
mean absolute error 46
root mean squared error (RMSE) 47
R-square 47

relative squared error (RSE) 47
rescaling, feature 35
resilient distributed dataset (RDD) 166
ROC curve

about 44
area-based accuracy measure 45
Euclidian distance comparison 45
example 46
used, for evaluating classifier 45

ROC graphs
features 44, 45

root mean squared error (RSME) 47

[224]

row normalization 35
R-square 47

S
score difference 48
shared variables

about 166
accumulators 166
broadcast variables 166

similarity
about 130
computing, without preference value 131
Euclidean distance similarity 130
log-likelihood similarity 131
Pearson correlation similarity 130
Tanimoto coefficient similarity 131

source code, Mahout
importing, into Eclipse 113, 114

Spark
about 166
configuring, with Mahout 166-168
Mahout Scala DSL 168

sparse vector 169
Squared Euclidean distance measure 36
standard generalized markup language

(SGML) 11
standardization, feature 35
stemming 205
stop words

removing 205
streaming k-means

command-line options 160
subversion (svn) 167
supervised binning 66
supervised learning

about 26
classification 26
evaluation 30
feature extraction 27
model, training 28
objective, determining 26
regression 26
training data, determining 26, 27
training set, cleaning 27
training set, creating 27
validation 29

T
Tanimoto coefficient similarity 131
Tanimoto distance measure 37
term frequency-inverse document

frequency weighting (TF-IDF
weighting) 208

term frequency (TF) 207
text analytics

about 203
VSM 204

text, categorizing
about 214
dataset 214, 215
dataset, URL 214
example 215-218
feature extraction 215

text, clustering
about 210
dataset 210
example 213, 214
feature extraction 211-213

text, preprocessing
example 205-207
stemming 205
stop word removal 205
tokenization 205

threshold-based neighborhood 133
topic modeling

about 109
LDA, using 124, 125

trigrams 208

U
unigram 208
unsupervised binning 66
unsupervised learning

about 33
cluster analysis 33, 34
frequent pattern mining 37

user-based recommender system
about 132
dataset 133
example 134
recommender, building 134-137
recommender, evaluating 138-140

[225]

URL, for dataset 133
user neighborhood

about 132
fixed size neighborhood 133
threshold-based neighborhood 133

V
validation

about 29
holdout-set validation 29
K-fold cross validation 29

value-based segmentation 198
vector

about 169
arithmetic operations, performing 170
arithmetic operations, performing

with scalar 171
dense vector 169
elements, accessing 170
element values, setting 170
initializing 169
sparse vector 169

vector space model (VSM)
document indexing 207
n-grams 208, 209
normalization 209, 210
text, preprocessing 205
TF-IDF weighting 208

W
wrapper-based feature selection

about 73
backward selection 73
forward selection 74
recursive feature elimination 74

Thank you for buying
Learning Apache Mahout

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Apache Mahout Cookbook
ISBN: 978-1-84951-802-4 Paperback: 250 pages

A fast, fresh, developer-oriented dive into the world
of Apache Mahout

1. Learn how to set up a Mahout
development environment.

2. Start testing Mahout in a standalone
Hadoop cluster.

3. Learn to find stock market direction using
logistic regression.

Hadoop Real-World Solutions
Cookbook
ISBN: 978-1-84951-912-0 Paperback: 316 pages

Realistic, simple code examples to solve problems at
scale with Hadoop and related technologies

1. Solutions to common problems when working
in the Hadoop environment.

2. Recipes for (un)loading data, analytics,
and troubleshooting.

3. In depth code examples demonstrating
various analytic models, analytic solutions,
and common best practices.

Please check www.PacktPub.com for information on our titles

Scaling Apache Solr
ISBN: 978-1-78398-174-8 Paperback: 298 pages

Optimize your searches using high-performance
enterprise search repositories with Apache Solr

1. Get an introduction to the basics of Apache Solr
in a step-by-step manner with lots of examples.

2. Develop and understand the workings of
enterprise search solution using various
techniques and real-life use cases.

3. Gain a practical insight into the advanced ways
of optimizing and making an enterprise search
solution cloud ready.

Building Hadoop Clusters [Video]
ISBN: 978-1-78328-403-0 Duration: 02:34 hours

Deploy multi-node Hadoop clusters to harness the
Cloud for storage and large-scale data processing

1. Familiarize yourself with Hadoop and its
services, and how to configure them.

2. Deploy compute instances and set up a
three-node Hadoop cluster on Amazon.

3. Set up a Linux installation optimized
for Hadoop.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Mahout
	Why Mahout
	Simple techniques and more data is better
	Sampling is difficult
	Community and license

	When Mahout
	Data too large for single machine
	Data already on Hadoop
	Algorithms implemented in Mahout

	How Mahout
	Setting up the development environment
	Configuring Maven
	Configuring Mahout
	Configuring Eclipse with the Maven plugin
and Mahout

	Mahout command line
	Clustering example
	A classification example

	Mahout API – Java program example
	The dataset

	Parallel versus in-memory execution mode

	Summary

	Chapter 2: Core Concepts in Machine Learning
	Supervised learning
	Determine the objective
	Decide the training data
	Create and clean the training set
	Feature extraction
	Train the models
	Bagging
	Boosting

	Validation
	Holdout-set validation
	K-fold cross validation

	Evaluation
	Bias-variance trade-off
	Function complexity and amount of training data
	Dimensionality of the input space
	Noise in data

	Unsupervised learning
	Cluster analysis
	Objective
	Feature representation
	Algorithm for clustering
	A stopping criteria

	Frequent pattern mining
	Measures for identifying interesting rules
	Things to consider

	Recommender system
	Collaborative filtering
	Cold start
	Scalability
	Sparsity

	Content-based filtering

	Model efficacy
	Classification
	Confusion matrix
	ROC curve and AUC

	Regression
	Mean absolute error
	Root mean squared error
	R-square
	Adjusted R-square

	Recommendation system
	Score difference
	Precision and recall

	Clustering
	The internal evaluation
	External evaluation

	Summary

	Chapter 3: Feature Engineering
	Feature engineering
	Feature construction
	Categorical features
	Continuous features

	Feature extraction
	Feature selection
	Filter-based feature selection
	Wrapper-based feature selection
	Embedded feature selection

	Dimensionality reduction

	Summary

	Chapter 4: Classification with Mahout
	Classification
	White box models
	Black box models

	Logistic regression
	Mahout logistic regression command line
	Getting the data
	Model building via command line
	Train the model command line option
	Testing the model

	Prediction

	Adaptive regression model
	Code example with logistic regression
	Train the model
	The LogisticRegressionParameter and CsvRecordFactory class
	Code example without the parameter class

	Testing the online regression model
	Getting predictions from OnlineLogisticRegression
	CrossFoldLearner example

	Random forest
	Bagging
	Random subsets of features
	Out-of-bag error estimate
	Random forest using the command line
	Predictions from random forest

	Naïve Bayes classifier
	Numeric features with naïve Bayes
	Command line

	Summary

	Chapter 5: Frequent Pattern Mining and Topic Modeling
	Frequent pattern mining
	Building FP Tree
	Constructing the tree
	Identifying frequent patterns from FP Tree

	Importing Mahout source code into Eclipse
	Frequent pattern mining with Mahout
	Extending the command line of Mahout
	Getting the data
	Data description
	Frequent pattern mining with Mahout API

	Topic modeling using LDA
	LDA using the Mahout command line

	Summary

	Chapter 6: Recommendation with Mahout
	Collaborative filtering
	Similarity measures
	Pearson correlation similarity
	Euclidean distance similarity
	Computing similarity without a preference value

	Evaluating recommender
	User-based recommender system
	User neighborhood
	The dataset
	Mahout code example

	Item-based recommender system
	Mahout code example

	Inferring preferences

	Summary

	Chapter 7: Clustering with Mahout
	k-means
	Deciding the number of clusters
	Deciding the initial centroid
	Random points
	Points from the dataset
	Partition by range
	Canopy centroids

	Advantages and disadvantages

	Canopy clustering
	Fuzzy k-means
	Deciding the fuzzy factor

	Mahout command-line example
	Getting the data
	Preprocessing the data
	k-means
	Canopy clustering
	Fuzzy k-means
	Streaming k-means

	Mahout Java example
	k-means
	Cluster evaluation

	Summary

	Chapter 8: New Paradigm in Mahout
	Moving beyond MapReduce
	Apache Spark
	Configuring Spark with Mahout
	Basics of Mahout Scala DSL
	Imports

	In-core types
	Vector
	Initializing a vector inline
	Accessing elements of a vector
	Setting values of an element
	Vector arithmetic
	Vector operations with a scalar:

	Matrix
	Initializing matrix
	Accessing elements of a matrix
	Setting the matrix column
	Copy by reference

	Spark Mahout basics
	Initializing the Spark context
	Optimizer actions
	Computational actions
	Caching in Spark's block manager

	Linear regression with Mahout Spark
	Summary

	Chapter 9: Case Study – Churn Analytics and Customer Segmentation
	Churn analytics
	Getting the data
	Data exploration
	Installing R

	Feature engineering
	Model training and validation
	Logistic regression
	Adaptive logistic regression
	Random forest

	Customer segmentation
	Preprocessing
	Feature extraction
	Creating the clusters using fuzzy k-means
	Clustering using k-means
	Evaluation

	Summary

	Chapter 10: Case Study – Text Analytics
	Text analytics
	Vector space model
	Preprocessing
	Document indexing
	TF-IDF Weighting
	n-grams
	Normalization

	Clustering text
	The dataset
	Feature extraction
	Clustering job

	Categorizing text
	The dataset
	Feature extraction
	Classification job

	Summary

	Index

