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Let’s Draw a Graph
An Introduction with Graphviz

Marc Khoury

1 Introduction

Graphs are ubiquitous data structures in computer science. Many importantproblems have solutions hidden
in the complexity of modern graphs, rendering effective visualization techniques extremely valuable. The
need for such visualization techniques has led to the creation of a myriad of graph drawing algorithms.

We present several algorithms to draw several of the most common types ofgraphs. We will provide
instruction in the use of Graphviz, a popular open-source graph drawing package developed at AT&T Labs,
to execute these algorithms. All figures shown herein were generated with Graphviz.

2 The DOT Language

Visualization of a given graph requires that it first be represented in a format understandable by graph
drawing packages. We will use the DOT format, a format that can encode most attributes of a graph in a
human-readable manner [1].

2.1 Undirected Graphs

A DOT file for an undirected graph begins with the keywordgraph followed by the name of the graph. An
undirected edge between verticesu andv can be specified byu--v. A simple example of an undirected
graph with five vertices and five edges is illustrated by Figure 1, below.

Listing 1: A DOT file for a simple undirected graph with five vertices.

graph graphname {
1 -- 2;
3 -- 2;
4 -- 1;

5 2 -- 5 -- 4;
}
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Figure 1: Visualization of Listing 1 graph.

The Graphviz applicationneatois a straightforward method of rapidly visualizing undirected graphs in
the format described above. Figure 1 was generated by the commandneato -Teps undirected.gv
> undirected.eps, where undirected.gv is a file containing the code shown in Figure 1 and -Teps
specifies an Encapsulated Postscript output format. Graphviz supportsa wide range of output formats in-
cluding GIF, JPEG, PNG, EPS, PS, and SVG. All Graphviz programs perform I/O operations on standard
input and output in the absence of specified files.

2.2 Directed Graphs

A directed graph begins with the keyworddigraph followed by the name of the graph. A directed edge
between two verticesu andv is specified byu->v. The aforementioned edge starts at u and goes to v.
The DOT code for and visualization of an example directed graph appearsin Listing 2 and Figure 2, re-
spectively. The visualization in Figure 2 was produced via the commanddot -Teps directed.gv >
directed.eps.

Listing 2: A DOT file for a simple directed graph.

digraph graphname {
a -> b;
a -> c -> d;
c -> e;

5 }
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Figure 2: Visualization of Listing 2 graph.

2.3 Attributes

The DOT format supports a wide selection of attributes for vertices, edges, and graphs. Examples of user-
definable attributes include the color and shape of a vertex or the weight and style of an edge. There are far
too many attributes to list here and we direct the reader to the Graphviz documentation for a comprehensive
list. Graphviz defines default values for most of the attributes available forDOT files. Many attributes are
only used by specific Graphviz programs. As an example, the repulsive force attribute is only used by the
sfdpmodule.

Listing 3: A DOT file where most vertices and edges have been assigned various attributes.

graph graphname {
a [ l a b e l="Root", shape=circle];
b [shape=box, co l o r=red];
a -- b -- c [co l o r=blue];

5 b -- d [ s t y l e=dotted];
a -- e -- f [co l o r=green];
f [ l a b e l="Leaf"];

}
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Figure 3: Visualization of Listing 3 graph.

Attributes may be used to draw attention to sections of a graph (e.g. color and thickness adjustment to
highlight a path).

Listing 4: A DOT file where edges along a path have been colored red.

graph {
2--9--1--8--7 [co l o r=red,penwidth=3.0];
6--9
6--5

5 1--3
7--5
3--2
0--4
4--9

10 0--6
5--8
6--4

}
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Figure 4: Visualization of Listing 4 graph.

2.4 Clustering

In some graphs, grouping of vertex subsets is desirable. This groupingof vertex subsets is particularly
useful in the case ofk-partite graphs. The DOT language allows the specification of subgraphswhich can
be clustered together and visually separated from other parts of the graph.

In a graph file the keywordsubgraphis used to specify a subgraph. Prefixing the name of the subgraph
with the expression “cluster” ensures that the subgraph will be visually separated in the layout. Note that
only dot andfdp (explained in detail later in this document) support clustering. Figure 5 was generated by
the commanddot -Teps cluster.gv > cluster.eps.

Listing 5: A graph with two clusters representing different processes.

digraph cluster{

subgraph cluster_0{
l a b e l="Process A";

5 node[ s t y l e=filled, co l o r="lightgray"];
a0 -> a1 -> a2 -> a3;

}
subgraph cluster_1 {

l a b e l="Process B";
10 b0 -> b1 -> b2;

}
b1 -> a3;
start -> a0;
start -> b0;

15 a3 -> end;
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b2 -> end;
start [shape=Mdiamond];
end [shape=Msquare];

}

Process A

Process B

a0

a1

a2

a3

end

b0

b1

b2

start

Figure 5: Visualization of Listing 5 graph.

3 Force-Directed Methods

Force-directed algorithms model graph layouts as physical systems, assigning attractive and repulsive forces
between vertices and minimizing the total energy in the system. The optimal layout isdefined as the layout
corresponding to the global minimum energy.

The spring-electrical model assigns two forces between vertices: the repulsive forcefr and the attractive
forcefa. The repulsive force is defined for all pairwise combinations of verticesand is inversely propor-
tional to the distance between them. The attractive force exists only between neighboring vertices and is
proportional to the square of the distance. Intuitively, every vertex wants to keep its neighbors close while
pushing all other vertices away [7].

fr(i, j) =
−CK2

‖xi − xj‖
, i 6= j, i, j ∈ V (1)
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fa(i, j) =
‖xi − xj‖

2

K
, (i, j) ∈ E (2)

The force on vertexi is the sum of the attractive (from verticesj ∈ V , j 6= i, (i, j) ∈ E) and repulsive
(from verticesj ∈ V ) forces.

f(i,K,C) =
∑

i 6=j

−CK2

‖xi − xj‖
(xj − xi) +

∑

(i,j)∈E

‖xi − xj‖
2

K
(xj − xi) (3)

The parameterK is known as the optimal distance and the parameterC is used to control the relative
strength of the attractive and repulsive forces. While the choice of theseparameters is important in practice,
mathematically it can be shown that they only scale the layout [7].

Finally, the total energy in the system is the sum of the squared forces.

energy(K,C) =
∑

i∈V

f(i,K,C)2 (4)

For each vertexi the algorithm computes the forces acting oni and adjusts the position ofi in the layout.
The algorithm repeats this process until it converges on a final layout. The presented force-directed layout
algorithm requiresO(V 2) time per iteration and it is generally considered thatO(V ) iterations are required.

Algorithm 1 ForceDirectedLayout(G,x,tol)
step← initial step length
while not convergeddo
x0 ← x
for i ∈ V do
f ← 0
for (i, j) ∈ E do
f ← f + fa(i,j)

‖xi−xj‖
(xj − xi)

end for
for j 6= i, j ∈ V do
f ← f + fr(i,j)

‖xi−xj‖
(xj − xi)

end for
xi ← xi+step∗f/‖f‖

end for
step← 0.9∗ step
if ‖x− x0‖ < K∗tol then

converged← true
end if

end while
return x

The Graphviz programfdp uses a force-directed algorithm to generate layouts for undirected graphs.
fdp is suitable for small graphs that are both unweighted and undirected. Figure 6, below, displays a layout
generated byfdp for a torus generated using the commandfdp -Teps torus.gv > torus.eps.
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Figure 6: A drawing of a torus produced by fdp.

The complexity of this computation can be decreased by employing a Barnes-Hut scheme to compute
the forces acting on a vertex [2]. The use of a quadtree to group vertices into supernodes allows a single
computation to approximate the force contributions of a large collection of vertices. This scheme reduces the
complexity of the innermost loop fromO(V ) toO(log(V )), dropping the whole algorithm toO(V log(V ))
per iteration. The speed of this technique can be further improved by usinga multilevel approach that takes
advantage of graph coarsening techniques. The Graphviz programsfdpimplements these techniques and is
currently the optimal choice for generating large graph layouts.

Figure 7: A drawing of a graph with 40000 vertices produced by sfdp.
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4 Stress Majorization

Stress majorization attempts to embed the graph metric intoR
k [5]. If the shortest path distance between

two verticesi, j ∈ V is dij , then stress majorization will attempt to place these two vertices at distancedij
apart in the layout. To accomplish this, stress majorization uses an iterative optimization process to find a
global minimum of the stress function shown in Equation 5. The iterative equation involves two weighted
Laplacian matrices. For a quick introduction to Laplacian matrices and their properties, please see Appendix
A.

Laplacian matrices permit many different types of weightings. Here we consider two weighted Laplacian
matrices that are important for stress majorization.

Let dij be the shortest path distance - sometimes referred to as the “graph-theoretic distance” - between
two verticesi, j ∈ V . Let wij = d−p

ij and choosep = 2. Technically,p could be any integer, butp = 2
seems to produce the best graph drawings in practice.

Definition 1 LetG be a graph and letd be the shortest path distance matrix ofG. Definewij = d−2
ij . The

weighted LaplacianLw of a graphG is an× n matrix given by:

Lw
i,j =

{

−wij if i 6= j
∑

k 6=iwik if i = j

The off diagonal elements of the weighted Laplacian are−wij , as opposed to−1 and0. The diagonal
elementLw

i,i is the positive sum of the off diagonal elements for rowi, as with the standard Laplacian matrix.
The second type of weighted Laplacian matrix that we will consider is weightedby a layout of the graph:

the positions of the vertices ink-dimensional space. We denote ak-dimensional layout by an × k matrix
X. The position of theith vertex isXi ∈ R

k. Lastly define a functioninv(x) = 1/x whenx 6= 0 and0
otherwise.

Definition 2 LetG be a graph and letX be a layout forG. The weighted Laplacian matrixLX is ann×n
matrix given by:

LX
i,j =

{

−wijdijinv(‖Xi −Xj‖) if i 6= j

−
∑

k 6=i L
X
i,k if i = j

The off diagonal elements ofLX are−wijdijinv(‖Xi − Xj‖) where‖Xi − Xj‖ is the Euclidean
distance between verticesi andj in the layout. The diagonal elementLX

i,i is the positive sum of the off
diagonal elements in rowi.

The optimal layout corresponds to the global minimum of the following stress function.

stress(x) =
∑

i<j

wij(‖Xi −Xj‖ − dij)
2 (5)

The minimum of the stress is given by an iterative system involving weighted Laplacian matrices. Here
Z is the current layout andX is the next layout. At the end of each iterationX is assigned toZ to compute
a newX. The process continues until the stress function converges. A randomlayout can be used as the
initial layoutZ, but tends to require more iterations until convergence and is more likely to converge to a
local minima.

LwX = LZZ (6)

Laplacian matrices are known to be positive-semidefinite with a one-dimensional null space spanned
by 1 = (1, 1, . . . , 1) ∈ R

n. Intuitively, the null space tells us that our stress function is invariant under
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translation. To remove this degree of freedom, we remove the first row andcolumn and consider only the
(n−1)×(n−1) submatrix of each Laplacian matrix. This method requires us to setX0 = 0 in the layout. As
these submatrices are strictly diagonally dominant and positive-definite, we employ the conjugate gradient
method to solve the system [9]. The conjugate gradient method is a popular algorithm for solving systems
of linear equations of the formAx = b, wherex is an unknown vector,b is a known vector, andA is a
known, square, symmetric, and positive-definite matrix.

Stress majorization produces layouts that approximate the actual graph metricbecause it considers the
graph-theoretic distance between every two vertices. This method can easily account for weighted edges
or other desired graph metrics, providing a clear advantage over the previously described spring-electrical
model.

The requirement of access to the all-pairs shortest path matrix,d, severely constrains the scalability of
stress majorization. Execution of Dijkstra’s algorithm at each vertex allows computation of the APSP matrix
in O(V E + V 2 log(V )) time. Additionally, at each iteration we must computeLZ , perform a matrix multi-
plication withZ, and use the conjugate gradient method to solve the system. As a result, stress majorization
is not scalable beyond approximately104 vertices. Low-rank Laplacian matrices have recently been used
to extend stress majorization to much larger graphs [8]. An upcoming versionof Graphviz will include an
implementation of this extension.

Stress majorization is implemented in the Graphviz programneato. neatois suitable for weighted, or
unweighted, undirected graphs.

Figure 8: A drawing byneatoof the nasa1824 dataset.
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5 Reducing Edge Crossings

Thus far, we have limited our discussion to graph drawing algorithms for undirected graphs. Drawing
directed graphs is an entirely new problem. The naive approach is to simply ignore the direction of the
edges and use an algorithm for drawing undirected graphs. This is fundamentally unsatisfying because the
directionality is frequently very important to effectively visualizing the graph.
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Figure 9: A comparison of the same graph drawn byneato(left) and bydot (right).

The Graphviz programdot uses a four-pass [6] algorithm for drawing directed graphs.dot requires that
directed graphs be acyclic, and thus begins its layout algorithm by internallyreversing edges that participate
in many cycles. Note that this reversal is purely an algorithmic one: in the final drawing, the original edge
direction is preserved. Ranks are then assigned to each vertex in the graph, and used to generate vertical
coordinates in a top-to-bottom drawing. Ordering the vertices within each rank reduces the number of edge
crossings, so heuristic methods are employed in order to find a good ordering. The horizontal coordinates
are then assigned with the goal of keeping the edges short. Finally, splinesare created for each edge.

The ranking process attempts to assign an integer rankλ(v) such that for everye ∈ E we havel(e) ≥
δ(e) where the lengthl(e) of e = (v, u) is defined asλ(u)−λ(v) andδ(e) represents a predefined minimum
length constraint. Usuallyδ(e) is 1, but it may be any non-negative integer and can be set either internally
or by the user.

A consistent ordering of vertices is possible only if the graph is acyclic. Since this is not guaranteed by
the input, a preprocessing step must be executed in order to break any cycles in the graph. Depth-first search
classifies every edge of a directed graph as either a tree edge, forward edge , cross edge, or back edge. It can
be shown that there is a cycle in a graph if and only if there exists a back edge [4]. Heuristic methods can
be used to reverse the direction of the most offensive back edges (those that participate in the most cylces).

We will define an optimal ranking as one where the edges are as short as possible. This ranking assign-
ment may be formulated as an integer linear programming (ILP) problem.
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min
∑

(v,u)∈E

w(v, u)(λ(u)− λ(v)) (7)

constraint : λ(u)− λ(v) ≥ δ(v, u), ∀(v, u) ∈ E

To solve this ILP, Graphviz employs a network simplex formulation [3].
Having obtained a ranking for the vertices of the graph, we turn to the ordering of vertices within each

rank. The ordering of these vertices determines the number of edge crossings in the drawing, so our goal is
to compute an ordering with the minimum number of crossings. Unfortunately, solving this problem exactly
is NP-complete, so heuristic methods are employed.

Computation of a good vertex ordering is an iterative process, with initial ordering computed by depth
or breadth-first search starting at the vertices of minimum rank. Vertices are assigned positions within their
ranks in left-to-right order as the search progresses.

Algorithm 2 Ordering()
order← InitOrdering()
best← order
for i = 0 to maxiterdo

WMedian(order,i)
Transpose(order)
if crossings(order)< crossings(best)then

best← order
end if

end for
return best

The weighted median heuristic assigns each vertex a median based on the positions of the adjacent
vertices in the previous rank. The median value of a vertex is defined as themedian position of its adjacent
vertices if that value is uniquely defined. If such a value is not defined, the median is interpolated. The
weighted median heuristic biases the median value to the side where vertices aremore closely packed.
Finally, the vertices are sorted within their rank by their assigned median values.

Algorithm 3 WMedian(order,iter)
if iter is eventhen

for r = 1 to maxrankdo
for v ∈ order[r]do

median[v] ←MedianValue(v,r − 1)
end for
sort(order[r],median)

end for
end if

The transpose operation iterates through each rank examining neighboringvertices within a rank. Two
vertices are swapped if swapping them decreases the number of edge crossings in the layout. The trans-
pose operation terminates when no swap operation will further decrease the number of crossings. Since a
minimum must exist, termination is guaranteed.

Once a good ordering is found within each rank, all that remains is to assignx andy coordinates to each
vertex and create the splines to draw the edges. They coordinates are based on the rank, so vertices with the
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Algorithm 4 Transpose(rank)
improved← true
while improveddo

improved← false
for r = 0 to maxrankdo

for i = 0 to |rank[r]| -2 do
v← rank[r][ i]
w← rank[r][ i+ 1]
if crossings(v,w) > crossings(w,v) then

improved← true
Swap(rank[r][ i],rank[r][ i+ 1])

end if
end for

end for
end while

same rank will appear on the same level. Thex coordinates are determined using the ordering and chosen
to keep the edges short. Finally, splines are computed for each edge.

6 Conclusion

Graphviz is an extremely powerful and widely used tool for visualizing graphs. Several algorithms have
been presented above for drawing the most common types of graphs.

For small unweighted undirected graphs,fdp or neatowill produce a good drawing. Once these graphs
exceed 10000 verticessfdpshould be used. Unfortunately,sfdpdoes not take edge weights into account. To
draw large weighted undirected graphs, low-rank stress majorization mustbe employed. Finally,dot is the
tool of choice for visualization of directed graphs and trees.
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A Laplacian Matrices

The Laplacian matrix of a graphG is a representation ofG similar to the adjacency matrix. In fact, the
Laplacian matrix can be defined in terms of the degree matrix and the adjacencymatrix. As we proceed,
consider a simple graphG with n = |V | andm = |E|.

Definition 3 The adjacency matrixA for a graphG is then× n matrix given by:

Ai,j =

{

1 if (i, j) ∈ E

0 otherwise

Definition 4 The Laplacian matrixL for an unweighted, undirected graphG is then× n matrix given by:

Li,j =











deg(i) if i = j

−1 if (i, j) ∈ E

0 otherwise

wheredeg(i) is the degree of theith vertex.

For each edge(i, j) ∈ E the entryLi,j = −1. Additionally, the degrees of each vertex are stored on the
diagonal elements. The Laplacian matrix can also be expressed as

L = D −A

whereD is the degree matrix andA is the adjacency matrix.

Figure 10: A simple graph and its Laplacian matrix

All Laplacian matrices are positive-semidefinite and, as a result, have all nonnegative eigenvalues,
∀iλi ≥ 0. The number of times that 0 appears as an eigenvalue is equal to the number of connected
components in the graph. Thusλ0 = 0 for any Laplacian matrix. The first eigenvectorv0, corresponding to
the eigenvalueλ0, is always equal to1 = (1, 1, . . . , 1) ∈ R

n. Notice thatLv0 = 0 because the sum of the
elements in any row is 0. The null space of a Laplacian matrix is always nontrivial, but if G is a connected
graph then the null space is a 1D subspace spanned by the vector1. In general, the dimension of the null
space is equal to the number of connected components inG.
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