
Free ebooks ==> www.Ebook777.com

www.Ebook777.com

http://www.ebook777.com

Free ebooks ==> www.Ebook777.com

Learning Concurrent
Programming in Scala

Learn the art of building intricate, modern, scalable
concurrent applications using Scala

Aleksandar Prokopec

BIRMINGHAM - MUMBAI

www.Ebook777.com

http://www.ebook777.com

Learning Concurrent Programming in Scala

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1211114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-141-1

www.packtpub.com

www.packtpub.com

Credits

Author
Aleksandar Prokopec

Reviewers
Dominik Gruntz

Vladimir Kostyukov

Zhen Li

Lukas Rytz

Michel Schinz

Samira Tasharofi

Commissioning Editor
Kevin Colaco

Acquisition Editor
Kevin Colaco

Content Development Editor
Vaibhav Pawar

Technical Editor
Sebastian Rodrigues

Copy Editors
Rashmi Sawant

Stuti Srivastava

Project Coordinator
Kranti Berde

Proofreaders
Mario Cecere

Martin Diver

Ameesha Green

Indexer
Tejal Soni

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

Free ebooks ==> www.Ebook777.com

www.Ebook777.com

http://www.ebook777.com

Foreword

Concurrent and parallel programming have progressed from niche disciplines,
of interest only to kernel programming and high-performance computing,
to something that every competent programmer must know. As parallel and
distributed computing systems are now the norm, most applications are concurrent,
be it for increasing the performance or for handling asynchronous events.

So far, most developers are unprepared to deal with this revolution. Maybe they
have learned the traditional concurrency model, which is based on threads and
locks, in school, but this model has become inadequate for dealing with massive
concurrency in a reliable manner and with acceptable productivity. Indeed, threads
and locks are hard to use and harder to get right. To make progress, one needs
to use concurrency abstractions that are at a higher level and composable.

15 years ago, I worked on a predecessor of Scala: "Funnel" was an experimental
programming language that had a concurrent semantics at its core. All the
programming concepts were explained in this language as syntactic sugar on top
of "functional nets", an object-oriented variant of "join calculus". Even though join
calculus is a beautiful theory, we realized after some experimentation that the
concurrency problem is more multifaceted than what can be comfortably expressed
in a single formalism. There is no silver bullet for all concurrency issues; the right
solution depends on what one needs to achieve. Do you want to define asynchronous
computations that react to events or streams of values? Or have autonomous,
isolated entities communicating via messages? Or define transactions over a
mutable store? Or, maybe the primary purpose of parallel execution is to increase
the performance? For each of these tasks, there is an abstraction that does the job:
futures, reactive streams, actors, transactional memory, or parallel collections.

This brings us to Scala and this book. As there are so many useful concurrency
abstractions, it seems unattractive to hardcode them all in a programming language.
The purpose behind the work on Scala was to make it easy to define high-level
abstractions in user code and libraries. This way, one can define modules handling
the different aspects of concurrent programming. All of these modules would be
built on a low-level core that is provided by the host system. In retrospect, this
approach has worked well. Scala has today some of the most powerful and elegant
libraries for concurrent programming. This book will take you on a tour of the most
important ones, explaining the use case for each, and the application patterns.

The book could not have a more expert author. Aleksandar Prokopec contributed to
some of the most popular Scala libraries for concurrent and parallel programming.
He also invented some of the most intricate data structures and algorithms. With this
book, he created a readable tutorial at the same time and an authoritative reference
for the area that he had worked in. I believe that Learning Concurrent Programming in
Scala will be a mandatory reading for everyone who writes concurrent and parallel
programs in Scala. I expect to also see it on the bookshelves of many people who just
want to find out about this fascinating and fast moving area of computing.

Martin Odersky
Professor at EPFL, the creator of Scala

About the Author

Aleksandar Prokopec is a software developer and a concurrent and distributed
programming researcher. He holds an MSc in Computing from the Faculty of
Electrical Engineering and Computing, University of Zagreb, Croatia, and a PhD in
Computer Science from the École Polytechnique Fédérale de Lausanne, Switzerland.
As a doctoral assistant and member of the Scala team at EPFL, he actively contributed
to the Scala programming language, and has worked on programming abstractions
for concurrency, data-parallel programming support, and concurrent data structures
for Scala. He created the Scala Parallel Collections framework, which is a library for
high-level data-parallel programming in Scala, and participated in working groups
for Scala concurrency libraries, such as Futures and Promises and ScalaSTM.

Acknowledgments

First of all, I would like to thank my reviewers Samira Tasharofi, Lukas Rytz,
Dominik Gruntz, Michel Schinz, Zhen Li, and Vladimir Kostyukov for their excellent
feedback and valuable comments. They have shown exceptional dedication and
expertise in improving the quality of this book. I would also like to thank the editors
at Packt Publishing: Kevin Colaco, Sruthi Kutty, Kapil Hemnani, Vaibhav Pawar,
and Sebastian Rodrigues for their help in writing this book. It was really a pleasure
to work with these people.

The concurrency frameworks described in this book wouldn't have seen the light
of day without a collaborative effort of a large number of people. Many individuals
have, either directly or indirectly, contributed to the development of these utilities.
These people are the true heroes of Scala concurrency, and they deserve thanks for
Scala's excellent support for concurrent programming. It is difficult to enumerate all
of them here, but I have tried my best. If somebody feels left out, he should ping me,
and he'll probably appear in the next edition of this book.

It goes without saying that Martin Odersky is to be thanked for creating the
Scala programming language, which was used as a platform for the concurrency
frameworks described in this book. Special thanks go to him, to all the people
who were a part of the Scala team at the EPFL for the last 10 or more years, and
to the people at Typesafe, who are working hard to make Scala one of the best
general-purpose languages out there.

Most of the Scala concurrency frameworks rely on the works of Doug Lea in one
way or another. His Fork/Join framework underlies the implementation of the
Akka actors, Scala Parallel collections, and the Futures and Promises library; and
many of the JDK concurrent data structures described in this book are his own
implementations. Many of the Scala concurrency libraries were influenced by
his advice. Furthermore, I would like to thank the Java concurrency experts for the
years of work they invested into making JVM a solid concurrency platform, and
especially, Brian Goetz, whose book inspired our front cover.

Free ebooks ==> www.Ebook777.com

The Scala Futures and Promises library was initially designed by Philipp Haller,
Heather Miller, Vojin Jovanović, and myself, from the EPFL; Viktor Klang and
Roland Kuhn from the Akka team; Marius Eriksen from Twitter; with contributions
from Havoc Pennington, Rich Dougherty, Jason Zaugg, Doug Lea, and many others.

Although I was the main author of the Scala Parallel Collections, this library
benefited from the input of many different people, including Phil Bagwell, Martin
Odersky, Tiark Rompf, Doug Lea, and Nathan Bronson. Later on, Dmitry Petrashko
and I started working on an improved version of parallel and standard collection
operations, which were optimized through the use of Scala Macros. Eugene Burmako
and Denys Shabalin are among the main contributors to the Scala Macros project.

The work on the Rx project was started by Erik Meijer, Wes Dyer, and the rest of the
Rx team. Since its original .NET implementation, the Rx framework has been ported
to many different languages, including Java, Scala, Groovy, JavaScript, and PHP, and
has gained widespread adoption, thanks to the contributions and the maintenance
work of Ben Christensen, Samuel Grütter, Shixiong Zhu, Donna Malayeri, and
many other people.

Nathan Bronson is one of the main contributors to the ScalaSTM project, whose
default implementation is based on Nathan's CCSTM project. The ScalaSTM API was
designed by the ScalaSTM expert group, which comprised of Nathan Bronson, Jonas
Bonér, Guy Korland, Krishna Sankar, Daniel Spiewak, and Peter Veentjer.

The initial Scala actor library was inspired by the Erlang actor model, and
developed by Philipp Haller. This library inspired Jonas Bonér to start the Akka actor
framework. The Akka project had many contributors, including Viktor Klang, Henrik
Engström, Peter Vlugter, Roland Kuhn, Patrik Nordwall, Björn Antonsson, Rich
Dougherty, Johannes Rudolph, Mathias Doenitz, Philipp Haller, and many others.

Finally, I would like to thank the entire Scala community for their contributions, and
for making Scala an awesome programming language.

www.Ebook777.com

http://www.ebook777.com

About the Reviewers

Dominik Gruntz has a PhD from ETH Zürich and has been a Professor of
Computer Science at the University of Applied Sciences FHNW since 2000. Besides
his research projects, he teaches a course on concurrent programming. Some
years ago, the goal of this course was to convince the students that writing correct
concurrent programs is too complicated for mere mortals (an educational objective
that was regularly achieved).

With the availability of high-level concurrency frameworks in Java and Scala, this
has changed, and this book, Learning Concurrent Programming in Scala, is a great
resource for all programmers who want to learn how to write correct, readable,
and efficient concurrent programs. This book is the ideal textbook for a course on
concurrent programming.

Thanks to Packt Publishing for giving me the opportunity to support
this project as a reviewer.

Zhen Li acquired an enthusiasm of computing early in elementary school when she
first learned Logo. After earning a Software Engineering degree at Fudan University
in Shanghai, China and a Computer Science degree from University College Dublin,
Ireland, she moved to the University of Georgia in the United States for her doctoral
study and research. She focused on psychological aspects of programmers' learning
behaviors, especially the way programmers understand concurrent programs. Based
on the research, she aimed to develop effective software engineering methods and
teaching paradigms to help programmers embrace concurrent programs.

Zhen Li had practical teaching experience with undergraduate students on a variety
of computer science topics, including system and network programming, modeling
and simulation, as well as human-computer interaction. Her major contributions
in teaching computer programming were to author syllabi and offer courses
with various programming languages and multiple modalities of concurrency
that encouraged students to actively acquire software design philosophy and
comprehensively learn programming concurrency.

Zhen Li also had a lot of working experience in industrial innovations. She worked
in various IT companies, including Oracle, Microsoft, and Google, over the past
10 years, where she participated in the development of cutting-edge products,
platforms and infrastructures for core enterprise, and Cloud business technologies.

Zhen Li is passionate about programming and teaching. You are welcome to contact
her at janeli@uga.edu.

Lukas Rytz is a compiler engineer working in the Scala team at Typesafe. He
received his PhD from EPFL in 2014, and has been advised by Martin Odersky,
the inventor of the Scala programming language.

Michel Schinz is a lecturer at EPFL.

Samira Tasharofi received her PhD in the field of Software Engineering from the
University of Illinois at Urbana-Champaign. She has conducted research on various
areas, such as testing concurrent programs and in particular actor programs, patterns
in parallel programming, and verification of component-based systems.

Samira has accompanied her research with valuable practical experiences by
working at several IT companies, such as Microsoft and LinkedIn during the past
few years. Samira has reviewed several books, such as Actors in Scala, Parallel
Programming with Microsoft® .NET: Design Patterns for Decomposition and Coordination
on Multicore Architectures (Patterns and Practices), and Parallel Programming with
Microsoft Visual C++: Design Patterns for Decomposition and Coordination on Multicore
Architectures (Patterns & Practices). She was also among the reviewers of the
technical research papers for software engineering conferences and workshops,
including ASE, AGERE, SPLASH, FSE, and FSEN. She has served as a PC member
of the 4th International Workshop on Programming based on Actors, Agents, and
Decentralized Control (AGERE 2014) and 6th IPM International Conference on
Fundamentals of Software Engineering (FSEN 2015).

Thanks for giving me the opportunity to review this book and
contribute to this project.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

Dedicated to Sasha, she's probably the only PhD in
physical chemistry who has read this book.

Table of Contents
Preface	 1
Chapter 1: Introduction	 13

Concurrent programming	 13
A brief overview of traditional concurrency	 14
Modern concurrency paradigms	 15

The advantages of Scala	 16
Preliminaries	 17

Execution of a Scala program	 18
A Scala primer	 19

Summary	 24
Exercises	 24

Chapter 2: Concurrency on the JVM and the Java
Memory Model	 27

Processes and Threads	 28
Creating and starting threads	 31
Atomic execution	 36
Reordering	 40

Monitors and synchronization	 42
Deadlocks	 44
Guarded blocks	 47
Interrupting threads and the graceful shutdown	 51

Volatile variables	 53
The Java Memory Model	 54

Immutable objects and final fields	 56
Summary	 58
Exercises	 59

Table of Contents

[ii]

Chapter 3: Traditional Building Blocks of Concurrency	 63
The Executor and ExecutionContext objects	 64
Atomic primitives	 68

Atomic variables	 69
Lock-free programming	 72
Implementing locks explicitly	 74
The ABA problem	 76

Lazy values	 79
Concurrent collections	 83

Concurrent queues	 85
Concurrent sets and maps	 88
Concurrent traversals	 93

Creating and handling processes	 96
Summary	 98
Exercises	 99

Chapter 4: Asynchronous Programming with Futures
and Promises	 101

Futures	 102
Starting future computations	 104
Future callbacks	 105
Futures and exceptions	 108
Using the Try type	 109
Fatal exceptions	 111
Functional composition on futures	 111

Promises	 119
Converting callback-based APIs	 121
Extending the future API	 124
Cancellation of asynchronous computations	 125

Futures and blocking	 128
Awaiting futures	 128
Blocking in asynchronous computations	 129

The Scala Async library	 130
Alternative Future frameworks	 133
Summary	 134
Exercises	 135

Chapter 5: Data-Parallel Collections	 137
Scala collections in a nutshell	 138
Using parallel collections	 139

Parallel collection class hierarchy	 143

Free ebooks ==> www.Ebook777.com

Table of Contents

[iii]

Configuring the parallelism level	 145
Measuring the performance on the JVM	 145

Caveats of parallel collections	 148
Non-parallelizable collections	 148
Non-parallelizable operations	 149
Side effects in parallel operations	 151
Nondeterministic parallel operations	 153
Commutative and associative operators	 154

Using parallel and concurrent collections together	 156
Weakly consistent iterators	 157

Implementing custom parallel collections	 158
Splitters	 159
Combiners	 162

Alternative data-parallel frameworks	 165
Collections hierarchy in ScalaBlitz	 166

Summary	 168
Exercises	 169

Chapter 6: Concurrent Programming with Reactive Extensions	 171
Creating Observable objects	 173

Observables and exceptions	 175
The Observable contract	 176
Implementing custom Observable objects	 178
Creating Observables from futures	 179
Subscriptions	 180

Composing Observable objects	 183
Nested observables	 185
Failure handling in observables	 190

Rx schedulers	 193
Using custom schedulers for UI applications	 194

Subjects and top-down reactive programming	 199
Summary	 204
Exercises	 204

Chapter 7: Software Transactional Memory	 207
The trouble with atomic variables	 209
Using Software Transactional Memory	 212

Transactional references	 215
Using the atomic statement	 216

Composing transactions	 218
The interaction between transactions and side effects	 218

www.Ebook777.com

http://www.ebook777.com

Table of Contents

[iv]

Single-operation transactions	 222
Nesting transactions	 224
Transactions and exceptions	 227

Retrying transactions	 232
Retrying with timeouts	 235

Transactional collections	 237
Transaction-local variables	 237
Transactional arrays	 239
Transactional maps	 241

Summary	 242
Exercises	 243

Chapter 8: Actors	 247
Working with actors	 248

Creating actor systems and actors	 250
Managing unhandled messages	 254
Actor behavior and state	 255
Akka actor hierarchy	 260
Identifying actors	 263
The actor life cycle	 265

Communication between actors	 269
The ask pattern	 271
The forward pattern	 274
Stopping actors	 275

Actor supervision	 277
Remote actors	 282
Summary	 286
Exercises	 287

Chapter 9: Concurrency in Practice	 289
Choosing the right tools for the job	 290
Putting it all together – a remote file browser	 294

Modeling the filesystem	 296
The server interface	 300
Client navigation API	 301
The client user interface	 305
Implementing the client logic	 309
Improving the remote file browser	 314

Table of Contents

[v]

Debugging concurrent programs	 315
Deadlocks and lack of progress	 316
Debugging incorrect program outputs	 320
Performance debugging	 326

Summary	 332
Exercises	 333

Index	 335

Preface
Concurrency is everywhere. With the rise of multicore processors in the consumer
market, the need for concurrent programming has overwhelmed the developer
world. Where it once served to express asynchrony in programs and computer
systems, and was largely an academic discipline, concurrent programming is now a
pervasive methodology in software development. As a result, advanced concurrency
frameworks and libraries are sprouting at an amazing rate. Recent years have
witnessed a renaissance in the field of concurrent computing.

As the level of abstraction grows in modern languages and concurrency frameworks,
it is becoming crucial to know how and when to use them. Having a good grasp of
the classical concurrency and synchronization primitives, such as threads, locks, and
monitors, is no longer sufficient. High-level concurrency frameworks, which solve
many issues of traditional concurrency and are tailored towards specific tasks, are
gradually overtaking the world of concurrent programming.

This book describes high-level concurrent programming in Scala. It presents detailed
explanations of various concurrency topics and covers the basic theory of concurrent
programming. Simultaneously, it describes modern concurrency frameworks, shows
their detailed semantics, and teaches you how to use them. Its goal is to introduce
important concurrency abstractions, and at the same time show how they work in
real code.

We are convinced that, by reading this book, you will gain both a solid theoretical
understanding of concurrent programming, and develop a set of useful practical
skills that are required to write correct and efficient concurrent programs. These
skills are the first steps toward becoming a modern concurrency expert.

We hope that you will have as much fun reading this book as we did writing it.

Preface

[2]

How this book is organized
The primary goal of this book is to help you develop skills that are necessary to
write correct and efficient concurrent programs. The best way to obtain a skill is to
apply it in practice. When it comes to programming, the best way to learn it is to
write programs. This book aims to teach you about concurrency in Scala through a
sequence of example programs, each designed to show you a particular aspect of
concurrent programming. The examples range from the simplest counterparts
of a "Hello World" program to programs demonstrating advanced intricacies
of concurrency.

What is common to most of the programs in this book is that they are short and
self-contained. This has two benefits. First, you can study most of the examples in
isolation. Although we recommend that you read the entire book in the order of the
chapters, you should have no problem studying specific topics. Second, conciseness
ensures that each new concept is easy to grasp and understand. It is much easier to
comprehend concepts like atomicity, memory contention, or busy-waiting on simple
programs. This does not mean that these programs are contrived or artificial; each
example illustrates an effect present in real-world programs, although stripped of
irrelevant nonessentials.

When reading this book, we strongly encourage you to write down and run these
examples yourself, rather than just passively study them. Each example will teach
you about a new concept, but you can only fully understand each of these concepts
if you try them in practice. Witnessing a particular effect in a running concurrent
program is a far more valuable experience than just reading about it. So, make sure
that you download SBT, and create an empty project before starting to read this
book, as described later in a subsequent section. The examples are made short so
that you, the reader, can try them out with almost no hassle.

At the end of each chapter, you will find a list of programming exercises. These
exercises are designed to test your understanding of the various topics that have
been introduced. We recommend that you try to solve at least a few after completing
a chapter.

In most cases, we avoid listing the API methods, or their exact signatures. There are
several reasons for this. First, you can always study the APIs in the online ScalaDoc
documentation. This book would not be particularly useful if it simply repeated
the content that's already there. Second, software is in a constant state of change.
Although the Scala concurrency framework designers strive to keep the APIs stable,
the method names and signatures are occasionally changed. This book describes the
semantics of the most important concurrency facilities that are sufficient to write
concurrent programs and unlikely to change.

Preface

[3]

The goal of this book is not to give a comprehensive overview of every dark corner
of the Scala concurrency APIs. Instead, this book will teach you the most important
concepts of concurrent programming. By the time you are done reading this book,
you will not just be able to find additional information in the online documentation;
you will also know what to look for. Rather than serving as a complete API reference
and feeding you the exact semantics of every method, the purpose of this book
is to teach you how to fish. By the time you are done reading, you will not only
understand how different concurrency libraries work, but you will also know
how to think when building a concurrent program.

What this book covers
This book is organized into a sequence of chapters with various topics on concurrent
programming. The book covers the fundamental concurrent APIs that are a part of
the Scala runtime, introduces more complex concurrency primitives, and gives an
extensive overview of high-level concurrency abstractions.

Chapter 1, Introduction, explains the need for concurrent programming, and gives
some philosophical background. At the same time, it covers the basics of the Scala
programming language that are required for understanding the rest of this book.

Chapter 2, Concurrency on the JVM and the Java Memory Model, teaches you the basics
of concurrent programming. This chapter will teach you how to use threads, how
to protect access to shared memory, and introduce the Java Memory Model.

Chapter 3, Traditional Building Blocks of Concurrency, presents classic concurrency
utilities, such as thread pools, atomic variables, and concurrent collections with
a particular focus on the interaction with the features of the Scala language. The
emphasis in this book is on the modern, high-level concurrent programming
frameworks. Consequently, this chapter presents an overview of traditional
concurrent programming techniques, but it does not aim to be extensive.

Chapter 4, Asynchronous Programming with Futures and Promises, is the first chapter
that deals with a Scala-specific concurrency framework. This chapter presents the
futures and promises API, and shows how to correctly use them when implementing
asynchronous programs.

Chapter 5, Data-Parallel Collections, describes the Scala parallel collections framework.
In this chapter, you will learn how to parallelize collection operations, when it is
allowed to parallelize them, and how to assess the performance benefits of doing so.

Preface

[4]

Chapter 6, Concurrent Programming with Reactive Extensions, teaches you how
to use the Reactive Extensions framework for event-based and asynchronous
programming. You will see how the operations on event streams correspond to
collection operations, how to pass events from one thread to another, and how
to design a reactive user interface using event streams.

Chapter 7, Software Transactional Memory, introduces the ScalaSTM library
for transactional programming, which aims to provide a safer, more intuitive,
shared-memory programming model. In this chapter, you will learn how to protect
access to shared data using scalable memory transactions, and at the same time,
reduce the risk of deadlocks and race conditions.

Chapter 8, Actors, presents the actor programming model and the Akka framework.
In this chapter, you will learn how to transparently build message-passing
distributed programs that run on multiple machines.

Chapter 9, Concurrency in Practice, summarizes the different concurrency libraries
introduced in the earlier chapters. In this chapter, you will learn how to choose
the correct concurrency abstraction to solve a given problem, and how to combine
different concurrency abstractions together when designing larger concurrent
applications.

While we recommend that you read the chapters in the order in which they appear,
this is not strictly necessary. If you are well acquainted with the content in Chapter 2,
Concurrency on the JVM and the Java Memory Model, you can study most of the other
chapters directly. The only chapter that heavily relies on the content from all the
preceding chapters is Chapter 9, Concurrency in Practice, where we present a practical
overview of the topics in this book.

What you need for this book
In this section, we describe some of the requirements that are necessary to read and
understand this book. We explain how to install the Java Development Kit that is
required to run Scala programs, and show how to use Simple Build Tool to run
various examples.

We will not require an IDE in this book. The program that you use to write code is
entirely up to you, and you can choose anything, such as Vim, Emacs, Sublime Text,
Eclipse, IntelliJ IDEA, Notepad++, or some other text editor.

Preface

[5]

Installing the JDK
Scala programs are not compiled directly to the native machine code, so they
cannot be run as executables on various hardware platforms. Instead, the Scala
compiler produces an intermediate code format, called the Java bytecode. To
run this intermediate code, your computer must have the Java Virtual Machine
software installed. In this section, we explain how to download and install the Java
Development Kit, which includes the Java Virtual Machine and other useful tools.

There are multiple implementations of the JDK that are available from different
software vendors. We recommend that you use the Oracle JDK distribution. To
download and install the Java Development Kit, follow these steps:

1.	 Open the following URL in your web browser: www.oracle.com/
technetwork/java/javase/downloads/index.html.

2.	 If you cannot open the specified URL, go to your search engine and enter the
keywords JDK Download.

3.	 Once you find the link for the Java SE download on the Oracle website,
download the appropriate version of JDK 7 for your operating system:
Windows, Linux, or Mac OS X; 32-bit or 64-bit.

4.	 If you are using the Windows operating system, simply run the installer
program. If you are using the Mac OS X, open the dmg archive to install JDK.
Finally, if you are using Linux, decompress the archive to a XYZ directory,
and add the bin subdirectory to the PATH variable:
export PATH=XYZ/bin:$PATH

5.	 You should now be able to run the java and javac commands in the
terminal. Enter javac to see if it is available (you will never invoke this
command directly in this book, but running it verifies that it is available):
javac

It is possible that your operating system already has JDK installed. To verify this,
simply run the javac command, as in the last step in the preceding description.

Installing and using SBT
Simple Build Tool (SBT) is a command-line build tool used for Scala projects. Its
purpose is to compile Scala code, manage dependencies, continuous compilation and
testing, deployment, and many other uses. Throughout this book, we will use SBT to
manage our project dependencies and run example code.

www.oracle.com/technetwork/java/javase/downloads/index.html
www.oracle.com/technetwork/java/javase/downloads/index.html

Preface

[6]

To install SBT, please follow these instructions:

1.	 Go to the http://www.scala-sbt.org/ URL.
2.	 Download the installation file for your platform. If you are running on

Windows, this is the msi installer file. If you are running on Linux or OS X,
this is the zip or tgz archive file.

3.	 Install SBT. If you are running on Windows, simply run the installer file. If
you are running on Linux or OS X, unzip the contents of the archive in your
home directory.

You are now ready to use SBT. In the following steps, we will create a new
SBT project:

1.	 Open a command prompt if you are running on Windows, or a terminal
window if you are running on Linux or OS X.

2.	 Create an empty directory called scala-concurrency-examples:
$ mkdir scala-concurrency-examples

3.	 Change your path to the scala-concurrency-examples directory:
$ cd scala-concurrency-examples

4.	 Create a single source code directory for our examples:
$ mkdir src/main/scala/org/learningconcurrency/

5.	 Now, use your editor to create a build definition file, named build.sbt. This
file defines various project properties. Create it in the root directory of the
project (scala-concurrency-examples). Add the following contents to the
build definition file (note that the empty lines are mandatory):
name := "concurrency-examples"

version := "1.0"

scalaVersion := "2.11.1"

6.	 Finally, go back to the terminal, and run SBT from the root directory of
the project:
$ sbt

7.	 SBT will start an interactive shell, which we will use to give SBT various
build commands.

http://www.scala-sbt.org/

Preface

[7]

Now, you can start writing Scala programs. Open your editor, and create a
source code file named HelloWorld.scala in the src/main/scala/org/
learningconcurrency directory. Add the following contents to the
HelloWorld.scala file:

package org.learningconcurrency

object HelloWorld extends App {
 println("Hello, world!")
}

Now, go back to the terminal window with the SBT interactive shell, and run the
program with the following command:

> run

Running this program should give the following output:

Hello, world!

These steps are sufficient to run most of the examples in this book. Occasionally,
we will rely on external libraries when running the examples. These libraries are
resolved automatically by SBT from standard software repositories. For some
libraries, we will need to specify additional software repositories, so we add the
following lines to our build.sbt file:

resolvers ++= Seq(
 "Sonatype OSS Snapshots" at
 "https://oss.sonatype.org/content/repositories/snapshots",
 "Sonatype OSS Releases" at
 "https://oss.sonatype.org/content/repositories/releases",
 "Typesafe Repository" at
 "http://repo.typesafe.com/typesafe/releases/"
)

Now that we have added all the necessary software repositories, we can add some
concrete libraries. By adding the following line to the build.sbt file, we obtain
access to the Apache Commons IO library:

libraryDependencies += "commons-io" % "commons-io" % "2.4"

After changing the build.sbt file, it is necessary to reload any running SBT
instances. In the SBT interactive shell, we need to enter the following command:

> reload

This enables SBT to detect any changes in the build definition file, and download
additional software packages when necessary.

Preface

[8]

Different Scala libraries live in different namespaces, called packages. To obtain
access to the contents of a specific package, we use the import statement. When we
use a specific concurrency library in an example for the first time, we will always
show the necessary set of import statements. On subsequent uses of the same
library, we will not repeat the same import statements.

Similarly, we avoid adding package declarations in the code examples to keep
them short. Instead, we assume that the code in a specific chapter is in the similarly
named package. For example, all the code belonging to Chapter 2, Concurrency on
the JVM and the Java Memory Model, resides in the org.learningconcurrency.ch2
package. Source code files for the examples presented in that chapter begin with
the following code:

package org.learningconcurrency
package ch2

Finally, this book deals with concurrency and asynchronous execution. Many of the
examples start a concurrent computation that continues executing after the main
execution stops. To make sure that these concurrent computations always complete,
we will run most of the examples in the same JVM instance as SBT itself. We add the
following line to our build.sbt file:

fork := false

In the examples, where running in a separate JVM process is required, we will point
this out and give clear instructions.

Using Eclipse, IntelliJ IDEA, or another IDE
An advantage of using an Integrated Development Environment (IDE) such as
Eclipse or IntelliJ IDEA is that you can write, compile, and run your Scala programs
automatically. In this case, there is no need to install SBT, as described in the
previous section. While we advise that you run the examples using SBT, you
can alternatively use an IDE.

There is an important caveat when running the examples in this book using an IDE:
editors such as Eclipse and IntelliJ IDEA run the program inside a separate JVM
process. As mentioned in the previous section, certain concurrent computations
continue executing after the main execution stops. To make sure that they always
complete, you will sometimes need to add the sleep statements at the end of the
main execution, which slow down the main execution. In most of the examples in
this book, the sleep statements are already added for you, but in some programs
you might have to add them yourself.

Preface

[9]

Who this book is for
This book is primarily intended for developers who have learned how to write
sequential Scala programs, and wish to learn how to write correct concurrent
programs. The book assumes that you have a basic knowledge of the Scala
programming language. Throughout this book, we strive to use the simple features
of Scala in order to demonstrate how to write concurrent programs. Even with
an elementary knowledge of Scala, you should have no problem understanding
various concurrency topics.

This is not to say that the book is limited to Scala developers. Whether you
have experience with Java, come from a .NET background, or are generally a
programming language aficionado, chances are that you will find the content
in this book insightful. A basic understanding of object-oriented or functional
programming should be a sufficient prerequisite.

Finally, this book is a good introduction to modern concurrent programming in
the broader sense. Even if you have the basic knowledge about multithreaded
computing, or the JVM concurrency model, you will learn a lot about modern,
high-level concurrency utilities. Many of the concurrency libraries in this book
are only starting to find their way into mainstream programming languages,
and some of them are truly cutting-edge technologies.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Then, it calls the square method to compute the value for the local variable s."

A block of code is shown as follows:

object SquareOf5 extends App {
 def square(x: Int): Int = x * x
 val s = square(5)
 println(s"Result: $s")
}

Preface

[10]

Any command-line input or output is written as follows:

run-main-46: ...

Thread-80: New thread running.

run-main-46: ...

run-main-46: New thread joined.

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "After
clicking on the Thread Dump button, Java VisualVM displays the stack traces
of all the threads, as shown in the following screenshot:".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important
for us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[11]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you. Alternatively, you can download the source code
for this book at https://github.com/concurrent-programming-in-scala/
learning-examples/.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/concurrent-programming-in-scala/learning-examples/
https://github.com/concurrent-programming-in-scala/learning-examples/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com

Free ebooks ==> www.Ebook777.com

www.Ebook777.com

http://www.ebook777.com

Introduction
"For over a decade prophets have voiced the contention that the organization of a
single computer has reached its limits and that truly significant advances can be
made only by interconnection of a multiplicity of computers."

Gene Amdahl, 1967

Although the discipline of concurrent programming has a long history, it gained
a lot of traction in recent years with the arrival of multicore processors. The recent
development in computer hardware not only revived some classical concurrency
techniques, but also started a major paradigm shift in concurrent programming. At
a time, when concurrency is becoming so important, an understanding of concurrent
programming is an essential skill for every software developer.

This chapter explains the basics of concurrent computing and presents some Scala
preliminaries required for this book. Specifically, it does the following:

•	 Shows a brief overview of concurrent programming
•	 Studies the advantages of using Scala when it comes to concurrency
•	 Covers the Scala preliminaries required for reading this book

We will start by examining what concurrent programming is and why it is important.

Concurrent programming
In concurrent programming, we express a program as a set of concurrent
computations that execute during overlapping time intervals and coordinate in some
way. Implementing a concurrent program that functions correctly is usually much
harder than implementing a sequential one. All the pitfalls present in sequential
programming lurk in every concurrent program, but there are many other things
that can go wrong, as we will learn in this book. A natural question arises: why
bother? Can't we just keep writing sequential programs?

Introduction

[14]

Concurrent programming has multiple advantages. First, increased concurrency
can improve program performance. Instead of executing the entire program on a
single processor, different subcomputations can be performed on separate processors
making the program run faster. With the spread of multicore processors, this is the
primary reason why concurrent programming is nowadays getting so much attention.

Then, a concurrent programming model can result in faster I/O operations. A
purely sequential program must periodically poll I/O to check if there is any data
input available from the keyboard, the network interface, or some other device. A
concurrent program, on the other hand, can react to I/O requests immediately. For
I/O-intensive operations, this results in improved throughput, and is one of the
reasons why concurrent programming support existed in programming languages
even before the appearance of multiprocessors. Thus, concurrency can ensure the
improved responsiveness of a program that interacts with the environment.

Finally, concurrency can simplify the implementation and maintainability of
computer programs. Some programs can be represented more concisely using
concurrency. It can be more convenient to divide the program into smaller,
independent computations than to incorporate everything into one large program.
User interfaces, web servers, and game engines are typical examples of such systems.

In this book, we adopt the convention that concurrent programs communicate
through the use of shared memory, and execute on a single computer. By contrast, a
computer program that executes on multiple computers, each with its own memory,
is called a distributed program, and the discipline of writing such programs is called
distributed programming. Typically, a distributed program must assume that each
of the computers can fail at any point, and provide some safety guarantees if this
happens. We will mostly focus on concurrent programs, but we will also look at
examples of distributed programs.

A brief overview of traditional concurrency
In a computer system, concurrency can manifest itself in the computer hardware,
at the operating system level, or at the programming language level. We will focus
mainly on programming language-level concurrency.

Coordination of multiple executions in a concurrent system is called synchronization,
and it is a key part in successfully implementing concurrency. Synchronization
includes mechanisms used to order concurrent executions in time. Furthermore,
synchronization specifies how concurrent executions communicate, that is, how
they exchange information. In concurrent programs, different executions interact
by modifying the shared memory subsystem of the computer. This type of
synchronization is called shared memory communication. In distributed programs,
executions interact by exchanging messages, so this type of synchronization is called
message-passing communication.

Chapter 1

[15]

At the lowest level, concurrent executions are represented by entities called processes
and threads, covered in Chapter 2, Concurrency on the JVM and the Java Memory Model.
Processes and threads traditionally use entities such as locks and monitors to order
parts of their execution. Establishing an order between the threads ensures that the
memory modifications done by one thread are visible to a thread that executes later.

Often, expressing concurrent programs using threads and locks is cumbersome.
More complex concurrent facilities have been developed to address this such as
communication channels, concurrent collections, barriers, countdown latches, and
thread pools. These facilities are designed to more easily express specific concurrent
programming patterns, and some of them are covered in Chapter 3, Traditional
Building Blocks of Concurrency.

Traditional concurrency is relatively low level and prone to various kinds of errors,
such as deadlocks, starvations, data races, and race conditions. You will rarely use
low-level concurrency primitives when writing concurrent Scala programs. Still,
a basic knowledge of low-level concurrent programming will prove invaluable in
understanding high-level concurrency concepts later.

Modern concurrency paradigms
Modern concurrency paradigms are more advanced than traditional approaches to
concurrency. Here, the crucial difference lies in the fact that a high-level concurrency
framework expresses which goal to achieve, rather than how to achieve that goal.

In practice, the difference between low-level and high-level concurrency is less clear,
and different concurrency frameworks form a continuum rather than two distinct
groups. Still, recent developments in concurrent programming show a bias towards
declarative and functional programming styles.

As we will see in Chapter 2, Concurrency on the JVM and the Java Memory Model,
computing a value concurrently requires creating a thread with a custom run
method, invoking the start method, waiting until the thread completes, and then
inspecting specific memory locations to read the result. Here, what we really want
to say is "compute some value concurrently, and inform me when you are done."
Furthermore, we would like to treat the result of the concurrent computation
as if we already have it, rather than having to wait for it, and then reading it
from the memory. Asynchronous programming using futures is a paradigm
designed to specifically support these kinds of statements, as we will learn in
Chapter 4, Asynchronous Programming with Futures and Promises. Similarly, reactive
programming using event streams aims to declaratively express concurrent
computations that produce many values, as we will see in Chapter 6, Concurrent
Programming with Reactive Extensions.

Introduction

[16]

The declarative programming style is increasingly common in sequential
programming too. Languages such as Python, Haskell, Ruby, and Scala express
operations on their collections in terms of functional operators, and allow statements
such as "filter all negative integers from this collection." This statement expresses
a goal rather than the underlying implementation, so it is easy to parallelize such
an operation behind the scene. Chapter 5, Data-Parallel Collections, describes the
data-parallel collections framework available in Scala, which is designed to
seamlessly accelerate collection operations using multiple processors.

Another trend seen in high-level concurrency frameworks is specialization towards
specific tasks. Software transactional memory technology is specifically designed
to express memory transactions, and does not deal with how to start concurrent
executions at all. A memory transaction is a sequence of memory operations that
appear as if they either execute all at once or do not execute at all. The advantage of
using memory transactions is that this avoids a lot of errors typically associated with
low-level concurrency. Chapter 7, Software Transactional Memory, explains software
transactional memory in detail.

Finally, some high-level concurrency frameworks aim to transparently provide
distributed programming support as well. This is especially true for data-parallel
frameworks and message passing concurrency frameworks, such as the actors
described in Chapter 8, Actors.

The advantages of Scala
Although Scala is still a language on the rise that has yet to receive the wide-scale
adoption of a language such as Java, its support for concurrent programming is rich
and powerful. Concurrency frameworks for nearly all the different styles of
concurrent programming exist in the Scala ecosystem, and are being actively
developed. Throughout its development, Scala has pushed the boundaries when it
comes to providing modern, high-level application programming interfaces or APIs
for concurrent programming. There are many reasons for this.

The primary reason that so many modern concurrency frameworks have found
their way into Scala is its inherent syntactic flexibility. Thanks to features such as
first-class functions, by-name parameters, type inference, and pattern matching
explained in the following sections, it is possible to define APIs that look as if they
are built-in language features.

Free ebooks ==> www.Ebook777.com

Chapter 1

[17]

Such APIs emulate various programming models as embedded domain-specific
languages, with Scala serving as a host language: actors, software transactional
memory, and futures are examples of APIs that look like they are basic language
features, when they are in fact implemented as libraries. On one hand, Scala avoids the
need for developing a new language for each new concurrent programming model,
and serves as a rich nesting ground for modern concurrency frameworks. On the other
hand, lifting the syntactic burden present in many other languages attracts more users.

The second reason Scala has pushed ahead lies in the fact that it is a safe language.
Automatic garbage collection, automatic bound checks, and the lack of pointer
arithmetic help to avoid problems such as memory leaks, buffer overflows, and other
memory errors. Similarly, static type safety eliminates a lot of programming errors at
an early stage. When it comes to concurrent programming, which is in itself prone to
various kinds of concurrency errors, having one less thing to worry about can make
a world of difference.

The third important reason is interoperability. Scala programs are compiled into Java
bytecode, so the resulting executable code runs on top of the Java Virtual Machine
(JVM). This means that Scala programs can seamlessly use existing Java libraries,
and interact with Java's rich ecosystem. Often, transitioning to a different language
is a painful process. In the case of Scala, a transition from a language such as Java
can proceed gradually and is much easier. This is one of the reasons for its growing
adoption, and also a reason why some Java-compatible frameworks choose Scala as
their implementation language.

Importantly, the fact that Scala runs on the JVM implies that Scala programs are
portable across a range of different platforms. Not only that, but the JVM has
well-defined threading and memory models, which are guaranteed to work in the
same way on different computers. While portability is important for the consistent
semantics of sequential programs, it is even more important when it comes to
concurrent computing.

Having seen some of Scala's advantages for concurrent programming, we are now
ready to study the language features relevant for this book.

Preliminaries
This book assumes basic familiarity with sequential programming. While we advise
the readers to get acquainted with the Scala programming language, an understanding
of a similar language, such as Java or C#, should be sufficient for reading this book.
A basic familiarity with concepts in object-oriented programming, such as classes,
objects, and interfaces is helpful. Similarly, a basic understanding of functional
programming principles such as first-class functions, purity, and type-polymorphism
are beneficial in understanding this book, but are not a strict prerequisite.

www.Ebook777.com

http://www.ebook777.com

Introduction

[18]

Execution of a Scala program
To better understand the execution model of Scala programs, let's consider a simple
program that uses the square method to compute the square value of the number
five, and then prints the result to the standard output:

object SquareOf5 extends App {
 def square(x: Int): Int = x * x
 val s = square(5)
 println(s"Result: $s")
}

We can run this program using the Simple Build Tool (SBT), as described in the
Preface. When a Scala program runs, the JVM runtime allocates the memory required
for the program. Here, we consider two important memory regions: the call stack
and the object heap. The call stack is a region of memory in which the program
stores information about the local variables and parameters of the currently executed
methods. The object heap is a region of memory in which the objects are allocated by
the program. To understand the difference between the two regions, we consider a
simplified scenario of this program's execution.

First, in figure 1, the program allocates an entry to the call stack for the local variable
s. Then, it calls the square method in figure 2 to compute the value for the local
variable s. The program places the value 5 on the call stack, which serves as the
value for the x parameter. It also reserves a stack entry for the return value of the
method. At this point, the program can execute the square method, so it multiplies
the x parameter by itself, and places the return value 25 on the stack in figure 3. This
is shown in the first row in the following illustration:

Chapter 1

[19]

After the square method returns the result, the result 25 is copied into the stack
entry for the local variable s, as shown in figure 4. Now, the program must create the
string for the println statement. In Scala, strings are represented as object instances
of the String class, so the program allocates a new String object to the object heap,
as illustrated in figure 5. Finally, in figure 6, the program stores the reference to the
newly allocated object into the stack entry x, and calls the println method.

Although this demonstration is greatly simplified, it shows the basic execution
model for Scala programs. In Chapter 2, Concurrency on the JVM and the Java Memory
Model, we will learn that each thread of execution maintains a separate call stack,
and that threads mainly communicate by modifying the object heap. We will learn
that the disparity between the state of the heap and the local call stack is frequently
responsible for certain kinds of error in concurrent programs.

Having seen an example of how Scala programs are typically executed, we now
proceed to an overview of Scala features that are essential to understand the
contents of this book.

A Scala primer
In this section, we present a short overview of the Scala programming language
features that are used in the examples in this book. This is a quick and cursory glance
through the basics of Scala. Note that this section is not meant to be a complete
introduction to Scala. This is to remind you about some of the language's features,
and contrast them with similar languages that might be familiar to you. If you would
like to learn more about Scala, refer to some of the books referred in the summary
of this chapter.

A Printer class, which takes a greeting parameter, and has two methods named
printMessage and printNumber, is declared as follows:

class Printer(val greeting: String) {
 def printMessage(): Unit = println(greeting + "!")
 def printNumber(x: Int): Unit = {
 println("Number: " + x)
 }
}

In the preceding code, the printMessage method does not take any arguments,
and contains a single println statement. The printNumber method takes a single
argument x of the Int type. Neither method returns a value, which is denoted
by the Unit type. The Unit type can be omitted, in which case it is inferred
automatically by the Scala compiler.

Introduction

[20]

We instantiate the class and call its methods as follows:
val printy = new Printer("Hi")
printy.printMessage()
printy.printNumber(5)

Scala allows the declaration of singleton objects. This is like declaring a class and
instantiating its single instance at the same time. We saw the SquareOf5 singleton
object earlier, which was used to declare a simple Scala program. The following
singleton object, named Test, declares a single Pi field and initializes it with the
value 3.14:

object Test {
 val Pi = 3.14
}

Where classes in similar languages extend entities that are called interfaces, Scala
classes can extend traits. Scala's traits allow declaring both concrete fields and
method implementations. In the following example, we declare the Logging trait
that outputs custom error and warning messages using the abstract log method,
and then mix the trait into the PrintLogging class:

trait Logging {
 def log(s: String): Unit
 def warn(s: String) = log("WARN: " + s)
 def error(s: String) = log("ERROR: " + s)
}
class PrintLogging extends Logging {
 def log(s: String) = println(s)
}

Classes can have type parameters. The following generic Pair class takes two type
parameters P and Q, which determine the types of its arguments, named first
and second:

class Pair[P, Q](val first: P, val second: Q)

Scala has support for first-class function objects, also called lambdas. In the following
code snippet, we declare a twice lambda, which multiplies its argument by two:

val twice: Int => Int = (x: Int) => x * 2

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files
e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[21]

In the preceding code, the (x: Int) part is the argument to the lambda, and x *
2 is its body. The => symbol must be placed between the arguments and the body
of the lambda. The same => symbol is also used to express the type of the lambda,
which is Int => Int. In the preceding example, we can omit the type annotation
Int => Int, and the compiler will infer the type of the twice lambda automatically,
as shown in the following code:

val twice = (x: Int) => x * 2

Alternatively, we can omit the type annotation in the lambda declaration and arrive
at a more convenient syntax, as follows:

val twice: Int => Int = x => x * 2

Finally, whenever the argument to the lambda appears only once in the body of the
lambda, Scala allows a more convenient syntax, as follows:

val twice: Int => Int = _ * 2

First-class functions allow manipulating blocks of code as if they were first-class
values. They allow a more lightweight and concise syntax. In the following example,
we use by-name parameters to declare a runTwice method, which runs the specified
block of code body twice:

def runTwice(body: =>Unit) = {
 body
 body
}

A by-name parameter is formed by putting the => annotation before the type.
Whenever the runTwice method references the body argument, the expression
is re-evaluated, as shown in the following snippet:

runTwice { // this will print Hello twice
 println("Hello")
}

Scala for expressions are a convenient way to traverse and transform collections.
The following for loop prints the numbers in the range from 0 until 10, where 10
is not included in the range:

for (i <- 0 until 10) println(i)

In the preceding code, the range is created with the expression 0 until 10, which
is equivalent to the expression 0.until(10), which calls the method until on
the value 0. In Scala, the dot notation can sometimes be dropped when invoking
methods on objects.

Free ebooks ==> www.Ebook777.com

Introduction

[22]

Every for loop is equivalent to a foreach call. The preceding for loop is translated
by the Scala compiler to the following expression:

(0 until 10).foreach(i => println(i))

For-comprehensions are used to transform data. The following for-comprehension
transforms all the numbers from 0 until 10 by multiplying them by -1:

val negatives = for (i <- 0 until 10) yield -i

The negatives value contains negative numbers from 0 until -10. This for-
comprehension is equivalent to the following map call:

val negatives = (0 until 10).map(i => -1 * i)

It is also possible to transform data from multiple inputs. The following for-
comprehension creates all pairs of integers between zero and four:

val pairs = for (x <- 0 until 4; y <- 0 until 4) yield (x, y)

The preceding for-comprehension is equivalent to the following expression:

val pairs = (0 until 4).flatMap(x => (0 until 4).map(y => (x, y)))

We can nest an arbitrary number of generator expressions in a for-comprehension.
The Scala compiler will transform them into a sequence of nested flatMap calls,
followed by a map call at the deepest level.

Commonly used Scala collections include sequences, denoted by the Seq[T] type;
maps, denoted by the Map[T] type; and sets, denoted by the Set[T] type. In the
following code, we create a sequence of strings:

val messages: Seq[String] = Seq("Hello", "World.", "!")

Throughout this book, we rely heavily on the string interpolation feature. Normally,
Scala strings are formed with double quotation marks. Interpolated strings are
preceded with an s character, and can contain $ symbols with arbitrary identifiers
resolved from the enclosing scope, as shown in the following example:

val magic = 7
val myMagicNumber = s"My magic number is $magic"

Pattern matching is another important Scala feature. For readers with Java, C#,
or C background, it suffices to say that Scala's match statement is like the switch
statement on steroids. The match statement can decompose arbitrary datatypes,
and allows you to express different cases in the program concisely.

www.Ebook777.com

http://www.ebook777.com

Chapter 1

[23]

In the following example, we declare a Map collection, named successors, used
to map integers to their immediate successors. We then call the get method to
obtain the successor of the number five. The get method returns an object with the
Option[Int] type, which may either be implemented with the Some class, indicating
that the number five exists in the map, or the None class, indicating that the number
five is not a key in the map. Pattern matching on the Option object allows proceeding
casewise, as shown in the following code snippet:

val successors = Map(1 -> 2, 2 -> 3, 3 -> 4)
successors.get(5) match {
 case Some(n) => println(s"Successor is: $n")
 case None => println("Could not find successor.")
}

In Scala, most operators can be overloaded. Operator overloading is no different
from declaring a method. In the following code snippet, we declare a Position
class with a + operator:

class Position(val x: Int, val y: Int) {
 def +(that: Position) = new Position(x + that.x, y + that.y)
}

Finally, Scala allows defining package objects to store top-level method and value
definitions for a given package. In the following code snippet, we declare the
package object for the org.learningconcurrency package. We implement the
top-level log method, which outputs a given string and the current thread name:

package org
package object learningconcurrency {
 def log(msg: String): Unit =
 println(s"${Thread.currentThread.getName}: $msg")
}

We will use the log method in the examples throughout this book to trace how the
concurrent programs are executed.

This concludes our quick overview of important Scala features. If you would like to
obtain a deeper knowledge about any of these language constructs, we suggest that
you check out one of the introductory books on sequential programming in Scala.

Introduction

[24]

Summary
In this chapter, we studied what concurrent programming is and why Scala is a good
language for concurrency. We gave a brief overview of what you will learn in this
book, and how the book is organized. Finally, we stated some Scala preliminaries
necessary for understanding the various concurrency topics in the subsequent
chapters. If you would like to learn more about sequential Scala programming, we
suggest that you read the book Programming in Scala, Martin Odersky, Lex Spoon, and
Bill Venners, Artima Inc.

In the next chapter, we will start with the fundamentals of concurrent programming
on the JVM. We will introduce the basic concepts in concurrent programming,
present the low-level concurrency utilities available on the JVM, and learn about
the Java Memory Model.

Exercises
The following exercises are designed to test your knowledge of the Scala
programming language. They cover the content presented in this chapter, along
with some additional Scala features. The last two exercises contrast the difference
between concurrent and distributed programming, as defined in this chapter. You
should solve them by sketching out a pseudocode solution, rather than a complete
Scala program.

1.	 Implement a compose method with the following signature:
def compose[A, B, C](g: B => C, f: A => B): A => C = ???

This method must return a function h, which is the composition of the
functions f and g.

2.	 Implement a fuse method with the following signature:
def fuse[A, B](a: Option[A], b: Option[B]): Option[(A, B)] = ???

The resulting Option object should contain a tuple of values from the
Option objects a and b, given that both a and b are non-empty. Use
for-comprehensions.

3.	 Implement a check method, which takes a set of values of the type T and
a function of the type T => Boolean:
def check[T](xs: Seq[T])(pred: T => Boolean): Boolean = ???

Chapter 1

[25]

The method must return true if and only if the pred function returns true
for all the values in xs without throwing an exception. Use the check
method as follows:
check(0 until 10)(40 / _ > 0)

The check method has a curried definition: instead of just one
parameter list, it has two of them. Curried definitions allow
a nicer syntax when calling the function, but are otherwise
semantically equivalent to single-parameter list definitions.

4.	 Modify the Pair class from this chapter so that it can be used in a
pattern match.

If you haven't already, familiarize yourself with pattern
matching in Scala.

5.	 Implement a permutations function, which, given a string, returns a
sequence of strings that are lexicographic permutations of the input string:
def permutations(x: String): Seq[String]

6.	 Consider yourself and three of your colleagues working in an office divided
into cubicles. You cannot see each other, and you are not allowed to verbally
communicate, as that might disturb other workers. Instead, you can throw
pieces of paper with short messages at each other. Since you are confined in
a cubicle, neither of you can tell if the message has reached its destination.
At any point, you or one of your colleagues may be called to the boss's office
and kept there indefinitely. Design an algorithm in which you and your
colleagues can decide when to meet at the local bar. With the exception of
the one among you who was called to the boss's office, all of you have to
decide on the same time. What if some of the paper pieces can arbitrarily
miss the target cubicle?

7.	 Imagine that in the previous exercise, you and your colleagues also have a
whiteboard in the hall next to the office. Each one of you can occasionally
pass through the hall and write something on the whiteboard, but there
is no guarantee that either of you will be in the hall at the same time.
Solve the problem from the previous exercise, this time using the whiteboard.

Free ebooks ==> www.Ebook777.com

Concurrency on the JVM and
the Java Memory Model

"All non-trivial abstractions, to some degree, are leaky."

 -Jeff Atwood

Since its inception, Scala has run primarily on top of the JVM, and this fact has
driven the design of many of its concurrency libraries. The memory model in
Scala, its multithreading capabilities, and its inter-thread synchronization are all
inherited from the JVM. Most, if not all, higher-level Scala concurrency constructs
are implemented in terms of the low-level primitives presented in this chapter.
These primitives are the basic way to deal with concurrency—in a way, the APIs
and synchronization primitives in this chapter constitute the assembly of concurrent
programming on the JVM.

In most cases, you should avoid low-level concurrency in place of higher-level
constructs introduced later, but we felt it important for you to understand what a
thread is, that a guarded block is better than busy-waiting, or why a memory model is
useful. We are convinced that this is essential for a better understanding of high-level
concurrency abstractions. Despite the popular notion that an abstraction that requires
knowledge about its implementation is broken, understanding the basics often proves
very handy—in practice, all abstractions are to some extent leaky. In what follows,
we not only explain the cornerstones of concurrency on the JVM, but also discuss
how they interact with some Scala-specific features. In particular, we will cover the
following topics in this chapter:

•	 Creating and starting threads and waiting for their completion
•	 Communication between threads using object monitors and the

synchronized statement

www.Ebook777.com

http://www.ebook777.com

Concurrency on the JVM and the Java Memory Model

[28]

•	 How to avoid busy-waiting using guarded blocks
•	 The semantics of volatile variables
•	 The specifics of the Java Memory Model (JMM), and why the JMM

is important

In the next section, we will study how to use threads: the basic way to express
concurrent computations.

Processes and Threads
In modern, pre-emptive, multitasking operating systems, the programmer has
little or no control over the choice of the processor on which the program will be
executed. In fact, the same program might run on many different processors during
its execution and sometimes even simultaneously on several processors. It is usually
the task of the Operating System (OS) to assign executable parts of the program
to specific processors—this mechanism is called multitasking, and it happens
transparently for the computer user.

Historically, multitasking was introduced to operating systems to improve the user
experience by allowing multiple users or programs to use resources of the same
computer simultaneously. In cooperative multitasking, programs were able to decide
when to stop using the processor and yield control to other programs. However,
this required a lot of discipline on the programmer's part and programs could easily
give the impression of being unresponsive. For example, a download manager that
starts downloading a file must take care in order to yield control to other programs.
Blocking the execution until a download finishes will completely ruin the user
experience. Most operating systems today rely on pre-emptive multitasking, in which
each program is repetitively assigned slices of execution time at a specific processor.
These slices are called time slices. Thus, multitasking happens transparently for the
application programmer as well as the user.

The same computer program can be started more than once, or even simultaneously
within the same OS. A process is an instance of a computer program that is being
executed. When a process starts, the OS reserves a part of the memory and other
computational resources, and associates them with a specific computer program. The
OS then associates the processor with the process, and the process executes during
one time slice. Eventually, the OS gives other processes control over the processor.
Importantly, the memory and other computational resources of one process are
isolated from the other processes: two processes cannot read each other's memory
directly or simultaneously use most of the resources.

Chapter 2

[29]

Most programs are comprised of a single process, but some programs run in multiple
processes. In this case, different tasks within the program are expressed as separate
processes. Since separate processes cannot access the same memory areas directly, it
can be cumbersome to express multitasking using multiple processes.

Multitasking was important long before the recent years, in which multicore
computers became mainstream. Large programs such as web browsers are divided
into many logical modules. A browser's download manager downloads files
independent of rendering the web page or updating the HTML Document Object
Model (DOM). While the user is browsing a social networking website, the file
download proceeds in the background; but both independent computations occur
as part of the same process. These independent computations occurring in the same
process are called threads. In a typical operating system, there are many more threads
than processors.

Every thread describes the current state of the program stack and the program
counter during program execution. The program stack contains a sequence of
method invocations that are currently being executed, along with the local variables
and method parameters of each method. The program counter describes the position
of the current instruction in the current method. A processor can advance the
computation in some thread by manipulating the state of its stack or the state of the
program objects and executing the instruction at the current program counter. When
we say that a thread performs an action such as writing to a memory location, we
mean that the processor executing that thread performs that action. In pre-emptive
multitasking, thread execution is scheduled by the operating system. A programmer
must assume that the processor time assigned to his thread is unbiased toward other
threads in the system.

OS threads are a programming facility provided by the OS, usually exposed through
an OS-specific programming interface. Unlike separate processes, separate OS
threads within the same process share a region of memory, and communicate by
writing to and reading parts of that memory. Another way to define a process is
to define it as a set of OS threads along with the memory and resources shared by
these threads.

Concurrency on the JVM and the Java Memory Model

[30]

Based on the preceding discussion about the relationships between processes and
threads, a summary of a typical OS is depicted in the following simplified illustration:

The preceding illustration shows an OS in which multiple processes are executing
simultaneously. Only the first three processes are shown in the illustration. Each
process is assigned a fixed region of computer memory. In practice, the memory
system of the OS is much more complex, but this approximation serves as a simple
mental model.

Each of the processes contains multiple OS threads, two of which are shown for each
process. Currently, Thread 1 of Process 2 is executing on CPU Core 1, and Thread 2
of Process 3 is executing on CPU Core 2. The OS periodically assigns different
OS threads to each of the CPU cores to allow the computation to progress in all
the processes.

Having shown the relationship between the OS threads and processes, we turn our
attention to see how these concepts relate to the Java Virtual Machine (JVM), the
runtime on top of which Scala programs execute.

Chapter 2

[31]

Starting a new JVM instance always creates only one process. Within the JVM
process, multiple threads can run simultaneously. The JVM represents its threads
with the java.lang.Thread class. Unlike runtimes for languages such as Python,
the JVM does not implement its custom threads. Instead, each Java thread is directly
mapped to an OS thread. This means that Java threads behave in a very similar way
to the OS threads, and the JVM depends on the OS and its restrictions.

Scala is a programming language that is by default compiled to the JVM bytecode,
and the Scala compiler output is largely equivalent to that of Java from the JVM's
perspective. This allows Scala programs to transparently call Java libraries, and in
some cases, even vice versa. Scala reuses the threading API from Java for several
reasons. First, Scala can transparently interact with the existing Java thread model,
which is already sufficiently comprehensive. Second, it is useful to retain the same
threading API for compatibility reasons, and there is nothing fundamentally new
that Scala can introduce with respect to the Java thread API.

The rest of this section shows how to create JVM threads using Scala, how they can
be executed, and how they can communicate. We will show and discuss several
concrete examples. Java aficionados, already well-versed in this subject, might
choose to skip the rest of the section.

Creating and starting threads
Every time a new JVM process starts, it creates several threads by default. The most
important thread among them is the main thread, which executes the main method
of the Scala program. We show this in the following program, which gets the name
of the current thread and prints it to the standard output:

object ThreadsMain extends App {
 val t: Thread = Thread.currentThread
 val name = t.getName
 println(s"I am the thread $name")
}

On the JVM, thread objects are represented with the Thread class. The preceding
program uses the static currentThread method to obtain a reference to the current
thread object, and stores it to a local variable named t. It then calls the getName
method to obtain the thread's name. If you are running this program from Simple
Build Tool (SBT) with the run command, as explained in Chapter 1, Introduction,
you should see the following output:

[info] I am the thread run-main-0

Concurrency on the JVM and the Java Memory Model

[32]

Normally, the name of the main thread is just main. The reason we see a different
name is because SBT started our program on a separate thread inside the SBT
process. To ensure that the program runs inside a separate JVM process, we need
to set SBT's fork setting to true:

> set fork := true

Invoking the SBT run command again should give the following output:

[info] I am the thread main

Every thread goes through several thread states during its existence. When a Thread
object is created, it is initially in the new state. After the newly created thread object
starts executing, it goes into the runnable state. After the thread is done executing,
the thread object goes into the terminated state, and cannot execute any more.

Starting an independent thread of computation consists of two steps. First, we
need to create a Thread object to allocate the memory for the stack and thread
state. To start the computation, we need to call the start method on this object. We
show how to do this in the following example application called ThreadsCreation:

object ThreadsCreation extends App {
 class MyThread extends Thread {
 override def run(): Unit = {
 println("New thread running.")
 }
 }
 val t = new MyThread
 t.start()
 t.join()
 println("New thread joined.")
}

When a JVM application starts, it creates a special thread called the main thread that
executes the method called main in the specified class, in this case, ThreadsCreation.
When the App class is extended, the main method is automatically synthesized from
the object body. In this example, the main thread first creates another thread of the
MyThread type and assigns it to t.

Chapter 2

[33]

Next, the main thread starts t by calling the start method. Calling the start
method eventually results in executing the run method from the new thread. First,
the OS is notified that t must start executing. When the OS decides to assign the
new thread to some processor, this is largely out of the programmer's control, but
the OS must ensure that this eventually happens. After the main thread starts the
new thread t, it calls its join method. This method halts the execution of the main
thread until t completes its execution. We can say that the join operation puts the
main thread into the waiting state until t terminates. Importantly, the waiting thread
relinquishes its control over the processor, and the OS can assign that processor
to some other thread.

Waiting threads notify the OS that they are waiting for
some condition and cease spending CPU cycles, instead of
repetitively checking that condition.

In the meantime, the OS finds an available processor and instructs it to run the
child thread. The instructions that a thread must execute are specified by overriding
its run method. The t instance of the MyThread class starts by printing the "New
thread running." text to the standard output and then terminates. At this point,
the operating system is notified that t is terminated and eventually lets the main
thread continue the execution. The OS then puts the main thread back into the
running state, and the main thread prints "New thread joined.". This is shown
in the following diagram:

It is important to note that the two outputs "New thread running." and "New
thread joined." are always printed in this order. This is because the join
call ensures that the termination of the t thread occurs before the instructions
following the join call.

Concurrency on the JVM and the Java Memory Model

[34]

When running the program, it is executed so fast that the two println statements
occur almost simultaneously. Could it be that the ordering of the println statements
is just an artifact in how the OS chooses to execute these threads? To verify the
hypothesis that the main thread really waits for t and that the output is not just
because the OS is biased to execute t first in this particular example, we can
experiment by tweaking the execution schedule. Before we do that, we will introduce
a shorthand to create and start a new thread; the current syntax is too verbose! The
new thread method simply runs a block of code in a newly started thread. This time,
we will create the new thread using an anonymous thread class declared inline at the
instantiation site:

def thread(body: =>Unit): Thread = {
 val t = new Thread {
 override def run() = body
 }
 t.start()
 t
}

The thread method takes a block of code body, creates a new thread that executes
this block of code in its run method, starts the thread, and returns a reference to the
new thread so that the clients can call join on it.

Creating and starting threads using the thread statement is much less verbose. To
make the examples in this chapter more concise, we will use the thread statement
from now on. However, you should think twice before using the thread statement
in production projects. It is prudent to correlate the syntactic burden with the
computational cost; lightweight syntax can be mistaken for a cheap operation
and creating a new thread is relatively expensive.

We can now experiment with the OS by making sure that all the processors are
available. To do this, we will use the static sleep method on the Thread class,
which postpones the execution of the thread that is being currently executed for
the specified number of milliseconds. This method puts the thread into the timed
waiting state. The OS can reuse the processor for other threads when sleep is called.
Still, we will require a sleep time much larger than the time slice on a typical OS,
which ranges from 10 to 100 milliseconds. The following code depicts this:

object ThreadsSleep extends App {
 val t = thread {
 Thread.sleep(1000)
 log("New thread running.")
 Thread.sleep(1000)
 log("Still running.")
 Thread.sleep(1000)

Chapter 2

[35]

 log("Completed.")
 }
 t.join()
 log("New thread joined.")
}

The main thread of the ThreadSleep application creates and starts a new t thread
that sleeps for one second, then outputs some text, and repeats this two or more
times before terminating. The main thread calls join as before and then prints
"New thread joined.".

Note that we are now using the log method described in Chapter 1, Introduction. The
log method prints the specified string value along with the name of the thread that
calls the log method.

Regardless of how many times you run the preceding application, the last output
will always be "New thread joined.". This program is deterministic: given a
particular input, it will always produce the same output, regardless of the execution
schedule chosen by the OS.

However, not all the applications using threads will always yield the same output
if given the same input. The following code is an example of a nondeterministic
application:

object ThreadsNondeterminism extends App {
 val t = thread { log("New thread running.") }
 log("...")
 log("...")
 t.join()
 log("New thread joined.")
}

There is no guarantee that the log("...") statements in the main thread occur
before or after the log call in the t thread. Running the application several times
on a multicore processor prints "..." before, after, or interleaved with the output
by the t thread. By running the program, we get the following output:
run-main-46: ...

Thread-80: New thread running.

run-main-46: ...

run-main-46: New thread joined.

Running the program again results in a different order between these outputs:
Thread-81: New thread running.

run-main-47: ...

run-main-47: ...

run-main-47: New thread joined.

Concurrency on the JVM and the Java Memory Model

[36]

Most multithreaded programs are nondeterministic, and this is what makes
multithreaded programming so hard. There are multiple possible reasons for
this. First, the program might be too big for the programmer to reason about its
determinism properties, and interactions between threads could simply be too
complex. But some programs are inherently nondeterministic. A web server has no
idea which client will be the first to send a request for a web page. It must allow these
requests to arrive in any possible order and respond to them as soon as they arrive.
Depending on the order in which the clients prepare inputs for the web server, they
can behave differently even though the requests might be the same.

Atomic execution
We have already seen one basic way in which threads can communicate: by waiting
for each other to terminate. The information that the joined thread delivers is that it
has terminated. In practice, however, this information is not necessarily useful; for
example, a thread that renders one page in a web browser must inform the other
threads that a specific URL has been visited.

It turns out that the join method on threads has an additional property. All the
writes to memory performed by the thread being joined occur before the join call
returns, and are visible to the thread that called the join method. This is illustrated
by the following example:

object ThreadsCommunicate extends App {
 var result: String = null
 val t = thread { result = "\nTitle\n" + "=" * 5 }
 t.join()
 log(result)
}

The main thread will never print null, as the call to join always occurs before
the log call, and the assignment to result occurs before the termination of t. This
pattern is a very basic way in which the threads can use their results to communicate
with each other.

However, this pattern only allows very restricted one-way communication, and
it does not allow threads to mutually communicate during their execution. There
are many use cases for an unrestricted two-way communication. One example is
assigning unique identifiers, in which a set of threads must concurrently choose
numbers such that no two threads produce the same number. We might be tempted
to proceed as in the following example, which will not work correctly. We will start
by showing the first half of the program:

object ThreadsUnprotectedUid extends App {
 var uidCount = 0L

Free ebooks ==> www.Ebook777.com

Chapter 2

[37]

 def getUniqueId() = {
 val freshUid = uidCount + 1
 uidCount = freshUid
 freshUid
 }

In the preceding code snippet, we first declare a uidCount variable that will hold the
last unique identifier picked by any thread. The threads will call the getUniqueId
method to compute the first unused identifier, and then update the uidCount
variable. In this example, reading uidCount to initialize freshUid and assigning
freshUid back to uniqueUid do not necessarily happen together. We say that the two
statements do not happen atomically, since the statements from the other threads
can interleave arbitrarily. We next define a printUniqueIds method such that,
given a number n, the method calls getUniqueId to produce n unique identifiers
and then prints them. We use Scala for-comprehensions to map the range 0 until
n to unique identifiers. Finally, the main thread starts a new t thread that calls the
printUniqueIds method, and then calls printUniqueIds concurrently with the t
thread as follows:

 def printUniqueIds(n: Int): Unit = {
 val uids = for (i<- 0 until n) yield getUniqueId()
 log(s"Generated uids: $uids")
 }
 val t = thread { printUniqueIds(5) }
 printUniqueIds(5)
 t.join()
}

Running this application several times reveals that the identifiers generated by the
two threads are not necessarily unique; the application prints Vector(1, 2, 3, 4,
5) and Vector(1, 6, 7, 8, 9) in some runs, but not in the others! The outputs
of the program depend on the timing at which the statements in separate threads
get executed.

A race condition is a phenomenon in which the output of a
concurrent program depends on the execution schedule of the
statements in the program.

www.Ebook777.com

http://www.ebook777.com

Concurrency on the JVM and the Java Memory Model

[38]

A race condition is not necessarily an incorrect program behavior. However, if
some execution schedule causes an undesired program output, the race condition
is considered to be a program error. The race condition from the previous example
is a program error, because the getUniqueId method is not atomic. The t thread
and the main thread sometimes concurrently call getUniqueId. In the first line, they
concurrently read the value of uidCount, which is initially 0, and conclude that their
own freshUid variable should be 1. The freshUid variable is a local variable, so it is
allocated on the thread stack; each thread sees a separate instance of that variable. At
this point, the threads decide to write the value 1 back to uidCount in any order, and
both return a non-unique identifier 1. This is illustrated in the following figure:

There is a mismatch between the mental model that most programmers inherit from
sequential programming and the execution of the getUniqueId method when it is
run concurrently. This mismatch is grounded in the assumption that getUniqueId
executes atomically. Atomic execution of a block of code means that the individual
statements in that block of code executed by one thread cannot interleave with those
statements executed by another thread. In atomic execution, the statements can only
be executed all at once, which is exactly how the uidCount field should be updated.
The code inside the getUniqueId function reads, modifies, and writes a value, which
is not atomic on the JVM. An additional language construct is necessary to guarantee
atomicity. The fundamental Scala construct that allows this sort of atomic execution
is called the synchronized statement, and it can be called on any object. This allows
us to define getUniqueId as follows:

def getUniqueId() = this.synchronized {
 val freshUid = uidCount + 1
 uidCount = freshUid
 freshUid
}

Free ebooks ==> www.Ebook777.com

Chapter 2

[39]

The synchronized call ensures that the subsequent block of code can only execute
if there is no other thread simultaneously executing this synchronized block of code,
or any other synchronized block of code called on the same this object. In our case,
the this object is the enclosing singleton object, ThreadsUnprotectedUid, but in
general, this can be an instance of the enclosing class or trait.

Two concurrent invocations of the getUniqueId method are shown in the
following figure:

We can also call synchronized and omit the this part, in which case the compiler
will infer what the surrounding object is, but we strongly discourage you from
doing so. Synchronizing on incorrect objects results in concurrency errors that are
not easily identified.

Always explicitly declare the receiver for the synchronized
statement—doing so protects you from subtle and hard-to-spot
program errors.

The JVM ensures that the thread executing a synchronized statement invoked on
some x object is the only thread executing any synchronized statement on that
particular x object. If a T thread calls synchronized on x, and there is another S
thread calling synchronized on x, then the T thread is put into the blocked state.
Once the S thread completes its synchronized statement, the JVM can choose
the T thread to execute its own synchronized statement.

www.Ebook777.com

http://www.ebook777.com

Concurrency on the JVM and the Java Memory Model

[40]

Every object created inside the JVM has a special entity called an intrinsic
lock or a monitor, which is used to ensure that only one thread is executing
some synchronized block on that object. When a thread starts executing the
synchronized block, we can say that the T thread gains ownership of the x monitor,
or alternatively, acquires it. When a thread completes the synchronized block, we
can say that it releases the monitor.

The synchronized statement is one of the fundamental mechanisms for inter-thread
communication in Scala and on the JVM. Whenever there is a possibility that multiple
threads access and modify a field in some object, you should use the synchronized
statement.

Reordering
The synchronized statement is not without a price: writes to fields such as
uidCount, which are protected by the synchronized statement are usually more
expensive than regular unprotected writes. The performance penalty of the
synchronized statement depends on the JVM implementation, but it is usually not
large. You might be tempted to avoid using synchronized when you think that
there is no bad interleaving of program statements, like the one we saw previously
in the unique identifier example. Never do this! We will now show you a minimal
example in which this leads to serious errors.

Let's consider the following program, in which two threads t1 and t2 access a pair
of Boolean variables, a and b, and a pair of Int variables, x and y. The t1 thread sets
the variable a to true, and then reads the value of b. If the value of b is true, the t1
thread assigns 0 to y, and otherwise it assigns 1. The t2 thread does the opposite:
it first assigns true to the variable b, and then assigns 0 to x if a is true, and 1
otherwise. This is repeated in a loop 100000 times, as shown in the following snippet:

object ThreadSharedStateAccessReordering extends App {
 for (i <- 0 until 100000) {
 var a = false
 var b = false
 var x = -1
 var y = -1
 val t1 = thread {
 a = true
 y = if (b) 0 else 1
 }
 val t2 = thread {
 b = true
 x = if (a) 0 else 1
 }

Chapter 2

[41]

 t1.join()
 t2.join()
 assert(!(x == 1 && y == 1), s"x = $x, y = $y")
 }
}

This program is somewhat subtle, so we need to carefully consider several possible
execution scenarios. By analyzing the possible interleaving of the instructions of
the t1 and t2 threads, we can conclude that if both the threads are simultaneously
assigned to a and b, then they will both assign 0 to x and y. This outcome indicates
that both the threads started at almost the same time, and is shown on the left in the
following illustration:

Alternatively, let's assume that the t2 thread executes faster. In this case, the t2
thread sets the variable b to true, and proceeds to read the value of a. This happens
before the assignment to a by the t1 thread, so the t2 thread reads the value false,
and assigns 1 to x. When the t1 thread executes, it sees that the value of b is true,
and assigns 0 to y. This sequence of events is shown on the right in the preceding
illustration. Note that the case where the t1 thread starts first results in a similar
assignment where x = 0 and y = 1, so it is not shown in the illustration.

The conclusion is that regardless of how we reorder the execution of the statements
in the t1 and t2 threads, the output of the program should never be such that x = 1
and y = 1 simultaneously. Thus, the assertion at the end of the loop never throws
an exception.

However, after running the program several times, we get the following output,
which indicates that both x and y can be assigned the value 1 simultaneously:

[error] Exception in thread "main": assertion failed: x = 1, y = 1

Concurrency on the JVM and the Java Memory Model

[42]

This result is scary and seems to defy common sense. Why can't we reason about
the execution of the program the way we did? The answer is that by the JMM
specification, the JVM is allowed to reorder certain program statements executed by
one thread as long as it does not change the serial semantics of the program for that
particular thread. This is because some processors do not always execute instructions
in the program order. Additionally, the threads do not need to write all their updates
to the main memory immediately, but can temporarily keep them cached in registers
inside the processor. This maximizes the efficiency of the program and allows better
compiler optimizations.

How then should we reason about multithreaded programs? The error we made
when analyzing the example is that we assumed that the writes by one thread
are immediately visible to all the other threads. We always need to apply proper
synchronization to ensure that the writes by one thread are visible to another thread.

The synchronized statement is one of the fundamental ways to achieve proper
synchronization. Writes by any thread executing the synchronized statement on an
x object are not only atomic, but also visible to threads that execute synchronized on
x. Enclosing each assignment in the t1 and t2 threads in a synchronized statement
makes the program behave as expected.

Use the synchronized statement on some object x when accessing
(reading or modifying) a state shared between multiple threads.
This ensures that at most, a single T thread is at any time executing a
synchronized statement on x. It also ensures that all the writes to
the memory by the T thread are visible to all the other threads that
subsequently execute synchronized on the same object x.

In the rest of this chapter and in Chapter 3, Traditional Building Blocks of Concurrency,
we will see additional synchronization mechanisms, such as volatile and
atomic variables. In the next section, we will take a look at other use cases
of the synchronized statement and learn about object monitors.

Monitors and synchronization
In this section, we will study inter-thread communication using the synchronized
statement in more detail. As we saw in the previous sections, the synchronized
statement serves both to ensure the visibility of writes performed by different
threads, and to limit concurrent access to a shared region of memory. Generally
speaking, a synchronization mechanism that enforces access limits on a shared
resource is called a lock. Locks are also used to ensure that no two threads execute
the same code simultaneously; that is, they implement mutual exclusion.

Chapter 2

[43]

As mentioned previously, each object on the JVM has a special built-in monitor
lock, also called the intrinsic lock. When a thread calls the synchronized statement
on an x object, it gains ownership of the monitor lock of the x object, given that no
other thread owns the monitor. Otherwise, the thread is blocked until the monitor
is released. Upon gaining ownership of the monitor, the thread can witness the
memory writes of all the threads that previously released that monitor.

A natural consequence is that synchronized statements can be nested. A thread
can own monitors belonging to several different objects simultaneously. This is
useful when composing larger systems from simpler components. We do not know
which sets of monitors independent software components use in advance. Let's
assume that we are designing an online banking system in which we want to log
money transfers. We can maintain the transfers list of all the money transfers in a
mutable ArrayBuffer growable array implementation. The banking application
does not manipulate transfers directly, but instead appends new messages with a
logTransfer method that calls synchronized on transfers. The ArrayBuffer
implementation is a collection designed for single-threaded use, so we need to
protect it from concurrent writes. We will start by defining the logTransfer method:

object SynchronizedNesting extends App {
 import scala.collection._
 private val transfers = mutable.ArrayBuffer[String]()
 def logTransfer(name: String, n: Int) = transfers.synchronized {
 transfers += s"transfer to account '$name' = $n"
 }

Apart from the logging modules of the banking system, the accounts are represented
with the Account class. The Account objects hold information about their owner
and the amount of money with them. To add some money to an account, the system
uses an add method that obtains the monitor of the Account object and modifies its
money field. The bank's business process requires treating large transfers specially: if
a money transfer is bigger than 10 currency units, we need to log it. In the following
code, we will define the Account class and the add method, which adds an amount n
to the Account object:

 class Account(val name: String, var money: Int)
 def add(account: Account, n: Int) = account.synchronized {
 account.money += n
 if (n > 10) logTransfer(account.name, n)
 }

Concurrency on the JVM and the Java Memory Model

[44]

The add method calls logTransfer from inside the synchronized statement,
and logTransfer first obtains the transfers monitor. Importantly, this happens
without releasing the account monitor. If the transfers monitor is currently
acquired by some other thread, the current thread goes into the blocked state
without releasing its monitors.

In the following example, the main application creates two separate accounts and
three threads that execute transfers. Once all the threads complete their transfers,
the main thread outputs all the transfers that were logged:

 val jane = new Account("Jane", 100)
 val john = new Account("John", 200)
 val t1 = thread { add(jane, 5) }
 val t2 = thread { add(john, 50) }
 val t3 = thread { add(jane, 70) }
 t1.join(); t2.join(); t3.join()
 log(s"--- transfers ---\n$transfers")
}

The use of the synchronized statement in this example prevents threads t1 and
t3 from corrupting Jane's account by concurrently modifying it. The t2 and t3
threads also access the transfers log. This simple example shows why nesting is
useful: we do not know which other components in our banking system potentially
use the transfers log. To preserve encapsulation and prevent code duplication,
independent software components should not explicitly synchronize to log a money
transfer; synchronization is instead hidden in the logTransfer method.

Deadlocks
A factor that worked to our advantage in the banking system example is that
the logTransfer method never attempts to acquire any monitors other than
the transfers monitor. Once the monitor is obtained, a thread will eventually
modify the transfers buffer and release the monitor; in a stack of nested monitor
acquisitions, transfers always comes last. Given that logTransfer is the only
method synchronizing on transfers, it cannot indefinitely delay other threads
that synchronize on transfers.

Chapter 2

[45]

A deadlock is a general situation in which two or more executions wait for each
other to complete an action before proceeding with their own action. The reason for
waiting is that each of the executions obtains an exclusive access to a resource that
the other execution needs to proceed. As an example from our daily life, assume that
you are sitting in a cafeteria with your colleague and just about to start your lunch.
However, there is only a single fork and a single knife at the table, and you need
both the utensils to eat. You grab the fork, but your colleague grabs a knife. Both of
you wait for the other to finish the meal, but do not let go of your own utensil. You
are now in a state of deadlock, and you will never finish your lunch. Well, at least
not until your boss arrives to see what's going on.

In concurrent programming, when two threads obtain two separate monitors at the
same time and then attempt to acquire the other thread's monitor, a deadlock occurs.
Both the threads go into a blocked state until the other monitor is released, but do
not release the monitors they own.

The logTransfer method can never cause a deadlock, because it only attempts to
acquire a single monitor that is released eventually. Let's now extend our banking
example to allow money transfers between specific accounts, as follows:

object SynchronizedDeadlock extends App {
 import SynchronizedNesting.Account
 def send(a: Account, b: Account, n: Int) = a.synchronized {
 b.synchronized {
 a.money -= n
 b.money += n
 }
 }

We import the Account class from the previous example. The send method
atomically transfers a given amount of money n from an account a to another
account b. To do so, it invokes the synchronized statement on both the accounts
to ensure that no other thread is modifying either account concurrently, as shown
in the following snippet:

 val a = new Account("Jack", 1000)
 val b = new Account("Jill", 2000)
 val t1 = thread { for (i<- 0 until 100) send(a, b, 1) }
 val t2 = thread { for (i<- 0 until 100) send(b, a, 1) }
 t1.join(); t2.join()
 log(s"a = ${a.money}, b = ${b.money}")
}

Concurrency on the JVM and the Java Memory Model

[46]

Now, assume that two of our bank's new clients Jack and Jill just opened their
accounts and are amazed with the new e-banking platform. They log in and start
sending each other small amounts of money to test it, frantically hitting the send
button a 100 times. Soon, something very bad happens. The t1 and t2 threads,
which execute Jack's and Jill's requests, invoke send simultaneously with the order of
accounts a and b reversed. Thread t1 locks a and t2 locks b, but are then both unable
to lock the other account. To Jack's and Jill's surprise, the new transfer system is not
as shiny as it seems. If you are running this example, you'll want to close the terminal
session at this point and restart SBT.

A deadlock occurs when a set of two or more threads acquire
resources and then cyclically try to acquire other thread's resources
without releasing their own.

How do we prevent deadlocks from occurring? Recall that, in the initial banking
system example, the order in which the monitors were acquired was well defined. A
single account monitor was acquired first and the transfers monitor was possibly
acquired afterwards. You should convince yourself that whenever resources are
acquired in the same order, there is no danger of a deadlock. When a thread T waits
for a resource X acquired by some other thread S, the thread S will never try to
acquire any resource Y already held by T, because Y < X and S might only attempt to
acquire resources Y > X. The ordering breaks the cycle, which is one of the necessary
preconditions for a deadlock.

Establish a total order between resources when acquiring them;
this ensures that no set of threads cyclically wait on the resources
they previously acquired.

In our example, we need to establish an order between different accounts. One way
of doing so is to use the getUniqueId method introduced in an earlier section:

import SynchronizedProtectedUid.getUniqueId
class Account(val name: String, var money: Int) {
 val uid = getUniqueId()
}

The new Account class ensures that no two accounts share the same uid value,
regardless of the thread they were created on. The deadlock-free send method
then needs to acquire the accounts in the order of their uid values, as follows:

def send(a1: Account, a2: Account, n: Int) {
 def adjust() {
 a1.money -= n
 a2.money += n

Free ebooks ==> www.Ebook777.com

Chapter 2

[47]

 }
 if (a1.uid < a2.uid)
 a1.synchronized { a2.synchronized { adjust() } }
 else a2.synchronized { a1.synchronized { adjust() } }
}

After a quick response from the bank's software engineers, Jack and Jill happily send
each other money again. A cyclic chain of blocked threads can no longer happen.

Deadlocks are inherent to any concurrent system in which the threads wait
indefinitely for a resource without releasing the resources they previously acquired.
However, while they should be avoided, deadlocks are often not as deadly as they
sound. A nice thing about deadlocks is that by their definition, a deadlocked system
does not progress. The developer that resolved Jack's and Jill's issue was able to
act quickly by doing a heap dump of the running JVM instance and analyzing the
thread stacks; deadlocks can at least be easily identified, even when they occur in
a production system. This is unlike the errors due to race conditions, which only
become apparent long after the system transitions into an invalid state.

Guarded blocks
Creating a new thread is much more expensive than creating a new lightweight
object such as Account. A high-performance banking system should be quick and
responsive, and creating a new thread on each request can be too slow when there
are thousands of requests per second. The same thread should be reused for many
requests; a set of such reusable threads is usually called a thread pool.

In the following example, we will define a special thread called worker that
will execute a block of code when some other thread requests it. We will use the
mutable Queue class from the Scala standard library collections package to store
the scheduled blocks of code:

import scala.collection._
object SynchronizedBadPool extends App {
 private val tasks = mutable.Queue[() => Unit]()

We represent the blocks of code with the () => Unit function type. The worker
thread will repetitively call the poll method that synchronizes on tasks to check
whether the queue is non-empty. The poll method shows that the synchronized
statement can return a value. In this case, it returns an optional Some value if there
are tasks to do, or None otherwise. The Some object contains the following block of
code to execute:

 val worker = new Thread {
 def poll(): Option[() => Unit] = tasks.synchronized {
 if (tasks.nonEmpty) Some(tasks.dequeue()) else None

www.Ebook777.com

http://www.ebook777.com

Concurrency on the JVM and the Java Memory Model

[48]

 }
 override def run() = while (true) poll() match {
 case Some(task) => task()
 case None =>
 }
 }
 worker.setName("Worker")
 worker.setDaemon(true)
 worker.start()

We set the worker thread to be a daemon thread before starting it. Generally, a JVM
process does not stop when the main thread terminates. The JVM process terminates
when all non-daemon threads terminate. We want worker to be a daemon thread
because we send work to it using the asynchronous method, which schedules a
given block of code to eventually execute the worker thread:

 def asynchronous(body: =>Unit) = tasks.synchronized {
 tasks.enqueue(() => body)
 }
 asynchronous { log("Hello") }
 asynchronous { log(" world!")}
 Thread.sleep(5000)
}

Run the preceding example and witness the worker thread print "Hello" and
then "world!". Now listen to your laptop. The fan should start humming by
now. Turn on your Task Manager or simply type top into your terminal if you
are running this on a Unix system. One of your CPUs is completely used up by a
process called java. You can guess the reason. After worker completes its work, it
is constantly checking if there are any tasks on the queue. We say that the worker
thread is busy-waiting. Busy-waiting is undesired, because it needlessly uses
processor power. Still, shouldn't a daemon thread be stopped once the main thread
terminates? In general, yes, but we are running this example from SBT in the same
JVM process that SBT itself is running. SBT has non-daemon threads of its own,
so our worker thread is not stopped. To tell SBT that it should execute the run
command in a new process, enter the following directive:

set fork := true

Chapter 2

[49]

Running the preceding example again should stop the worker thread as soon as the
main thread completes its execution. Still, our busy-waiting worker thread can be a
part of a larger application that does not terminate so quickly. Creating new threads
all the time might be expensive, but a busy-waiting thread is even more expensive.
Several such threads can quickly compromise the system performance. There are
only a handful of applications in which busy-waiting makes sense. If you still have
doubts that this is dangerous, start this example on your laptop while running on
battery power and go grab a snack. Make sure that you save any open files before
you do this; you might lose data once the CPU drains all the battery power.

What we would really like the worker thread to do is to go to the waiting state,
similar to what a thread does when we call join. It should only wake up after we
ensure that there are additional function objects to execute on the tasks queue.

Scala objects (and JVM objects in general) support a pair of special methods called
wait and notify, which allow waiting and awakening the waiting threads,
respectively. It is only legal to call these methods on an x object if the current thread
owns the monitor of the object x. In other words, wait and notify can only be called
from a thread that owns the monitor of that object. When a thread T calls wait on an
object, it releases the monitor and goes into the waiting state until some other thread
S calls notify on the same object. The thread S usually prepares some data for T,
as in the following example in which the main thread sets the Some message for the
greeter thread to print:

object SynchronizedGuardedBlocks extends App {
 val lock = new AnyRef
 var message: Option[String] = None
 val greeter = thread {
 lock.synchronized {
 while (message == None) lock.wait()
 log(message.get)
 }
 }
 lock.synchronized {
 message = Some("Hello!")
 lock.notify()
 }
 greeter.join()
}

Free ebooks ==> www.Ebook777.com

Concurrency on the JVM and the Java Memory Model

[50]

The threads use the monitor from a fresh lock object of an AnyRef type that maps
into the java.lang.Object class. The greeter thread starts by acquiring the lock's
monitor and checks whether the message is set to None. If it is, there is nothing to
output as yet and the greeter thread calls wait on lock. Upon calling wait, the
lock monitor is released and the main thread, which was previously blocked at its
synchronized statement, and now obtains the ownership of the lock monitor, sets
the message, calls notify, and releases lock. This causes greeter to wake up, acquire
lock, check whether there is a message again, and then output it. Since greeter
acquires the same monitor that the main thread previously released, the write to
message by the main thread occurs before the check by the greeter thread. We thus
know that the greeter thread will see the message. In this example, the greeter
thread will output Hello! regardless of which thread runs synchronized first.

An important property of the wait method is that it can cause spurious wakeups.
Occasionally, the JVM is allowed to wake up a thread that called wait even though
there is no corresponding notify call. To guard against this, we must always
use wait in conjunction with a while loop that checks the condition, as in the
previous example.

After the thread that checks the condition wakes up, the monitor
becomes owned by that thread, so we are guaranteed that the check is
performed atomically.
Note that a thread that checks the condition must acquire the monitor
to wake up. If it cannot acquire the monitor immediately, it goes into
the blocked state.

A synchronized statement in which some condition is repetitively checked before
calling wait is called a guarded block. We can now use our insight on guarded
blocks to avoid the busy-wait in our worker thread in advance. We will now
show the complete worker implementation using monitors:

object SynchronizedPool extends App {
 private val tasks = mutable.Queue[() => Unit]()
 object Worker extends Thread {
 setDaemon(true)
 def poll() = tasks.synchronized {
 while (tasks.isEmpty) tasks.wait()
 tasks.dequeue()
 }
 override def run() = while (true) {
 val task = poll()
 task()
 }

www.Ebook777.com

http://www.ebook777.com

Chapter 2

[51]

 }
 Worker.start()
 def asynchronous(body: =>Unit) = tasks.synchronized {
 tasks.enqueue(() => body)
 tasks.notify()
 }
 asynchronous { log("Hello ") }
 asynchronous { log("World!") }
 Thread.sleep(500)
}

In this example, we declared the Worker thread as a singleton object within our
application to be more concise. This time, the poll method calls wait on the tasks
object and waits until the main thread adds a code block to tasks and calls notify
in the asynchronous method. Start the example and inspect your CPU usage again.
If you restarted SBT (and still have battery power) since running the busy-wait
example, you will see that the CPU usage by the java process is zero.

Interrupting threads and the graceful
shutdown
In the previous example, the Worker thread loops forever in its run method and
never terminates. You might be satisfied with this; Worker does not use the CPU
if it has no work to do, and since Worker is a daemon thread, it is destroyed when
the application exits. However, its stack space is not reclaimed until the application
terminates. If we have a lot of dormant workers lying around, we might run out of
memory. One way to stop a dormant thread from executing is to interrupt it,
as follows:

Worker.interrupt()

Calling the interrupt method on a thread that is in the waiting or timed waiting
state causes it to throw an InterruptedException. This exception can be caught
and handled, but in our case it will terminate the Worker thread. However, if we
call this method while the thread is running, the exception is not thrown and the
thread's interrupt flag is set. A thread that does not block must periodically query
the interrupt flag with the isInterrupted method.

Concurrency on the JVM and the Java Memory Model

[52]

An alternative is to implement an idiom known as the graceful shutdown. In the
graceful shutdown, one thread sets the condition for the termination and then calls
notify to wake up a worker thread. The worker thread then releases all its resources
and terminates willingly. We first introduce a variable called terminated that is
true if the thread should be stopped. The poll method additionally checks this
variable before waiting on tasks and optionally returns a task only if the Worker
thread should continue to run, as shown in the following code:

object Worker extends Thread {
 var terminated = false
 def poll(): Option[() => Unit] = tasks.synchronized {
 while (tasks.isEmpty && !terminated) tasks.wait()
 if (!terminated) Some(tasks.dequeue()) else None
 }

We change the run method to check if poll returns Some(task) in a pattern
match. We no longer use a while loop in the run method. Instead, we call run
tail-recursively if poll returned Some(task):

 import scala.annotation.tailrec
 @tailrec override def run() = poll() match {
 case Some(task) => task(); run()
 case None =>
 }
 def shutdown() = tasks.synchronized {
 terminated = true
 tasks.notify()
 }
}

The main thread can now call the synchronized shutdown method on the Worker
thread to communicate with the termination request. There is no need to make
the Worker thread a daemon thread any more. Eventually, the Worker thread will
terminate on its own.

To ensure that various utility threads terminate correctly without race
conditions, use the graceful shutdown idiom.

The situation where calling interrupt is preferred to a graceful shutdown is when
we cannot wake the thread using notify. One example is when the thread does
blocking I/O on an InterruptibleChannel object, in which case the object the
thread is calling the wait method on is hidden.

Chapter 2

[53]

The Thread class also defines a deprecated stop method that immediately terminates
a thread by throwing a ThreadDeath exception. You should avoid it as it stops the
thread's execution at an arbitrary point, possibly leaving the program data in an
inconsistent state.

Volatile variables
The JVM offers a more lightweight form of synchronization than the synchronized
block, called volatile variables. Volatile variables can be atomically read and
modified, and are mostly used as status flags; for example, to signal that a
computation is completed or cancelled. They have two advantages. First, writes to
and reads from volatile variables cannot be reordered in a single thread. Second,
writing to a volatile variable is immediately visible to all the other threads.

Reads and writes to variables marked as volatile are never reordered. If
a write W to a volatile v variable is observed on another thread through a
read R of the same variable, then all the writes that preceded the write W
are guaranteed to be observed after the read R.

In the following example, we search for at least one ! character in several pages of
the text. Separate threads start scanning separate pages p of the text written by a
person that is particularly fond of a popular fictional hero. As soon as one thread
finds the exclamation, we want to stop searching in other threads:

class Page(val txt: String, var position: Int)
object Volatile extends App {
 val pages = for (i<- 1 to 5) yield
 new Page("Na" * (100 - 20 * i) + " Batman!", -1)
 @volatile var found = false
 for (p <- pages) yield thread {
 var i = 0
 while (i < p.txt.length && !found)
 if (p.txt(i) == '!') {
 p.position = i
 found = true
 } else i += 1
 }
 while (!found) {}
 log(s"results: ${pages.map(_.position)}")
}

Concurrency on the JVM and the Java Memory Model

[54]

Separate pages of text are represented by the Page class, which has a special
position field for storing the result of the exclamation mark search. The found
flag denotes that some thread has found an exclamation. We add the @volatile
annotation to the found flag to declare it volatile. When some thread finds an
exclamation character in some page, the position value is stored and the found
flag is set so that the other threads can stop their search early. It is entirely possible
that all the threads end up scanning the entire text, but more likely that they see that
found is true before that. Thus, at least one thread stores the exclamation position.

For the purposes of this example, the main thread busy-waits until it reads found,
which is true. It then prints the positions. Note that a write to position occurs before
the write to found in the spawned threads, which in turn occurs before reading found
in the main thread. This means that the main thread always sees the write of the
thread that found set and hence prints at least one position other than -1.

The ThreadSharedStateAccessReordering example from an earlier section can be
fixed by declaring all the variables as volatile. As we will learn in the next section,
this ensures a correct order between reads from and writes to a and b. Unlike Java,
Scala allows you to declare local fields volatile (in this case, local to the closure of
the enclosing for loop). A heap object with a volatile field is created for each local
volatile variable used in some closure or a nested class. We say the variable is lifted
into an object.

A volatile read is usually extremely cheap. In most cases, however, you should resort
to the synchronized statements; volatile semantics are subtle and easy to get wrong.
In particular, multiple volatile reads and writes are not atomic without additional
synchronization; volatiles alone cannot help us to implement getUniqueId correctly.

The Java Memory Model
While we were never explicit about it throughout this chapter, we have actually
defined most of the JMM. What is a memory model in the first place?

A language memory model is a specification that describes the circumstances under
which a write to a variable becomes visible to other threads. You might think that
a write to a variable v changes the corresponding memory location immediately
after the processor executes it, and that other processors see the new value of v
instantaneously. This memory consistency model is called sequential consistency.

Chapter 2

[55]

As we already saw in the ThreadSharedStateAccessReordering example,
sequential consistency has little to do with how processors and compilers really
work. Writes rarely end up in the main memory immediately; instead, processors
have hierarchies of caches that ensure a better performance, and guarantee that
the data is only eventually written to the main memory. Compilers are allowed
to use registers to postpone or avoid memory writes, and reorder statements to
achieve optimal performance, as long as it does not change the serial semantics. It
makes sense to do so; while the short examples in this book are interspersed with
synchronization primitives, in actual programs, different threads communicate
relatively rarely compared to the amount of time spent doing useful work.

A memory model is a trade-off between the predictable behavior
of a concurrent program and a compiler's ability to perform
optimizations. Not every language or platform has a memory
model. A typical purely functional programming language, which
doesn't support mutations, does not need a memory model at all.

Differences between processor architectures result in different memory models; it
would be very difficult, if not impossible, to correctly write a Scala program that
works in the same way on every computer without the precise semantics of the
synchronized statement or volatile reads and writes. Scala inherits its memory
model from the JVM, which precisely specifies a set of happens-before relationships
between different actions in a program.

In the JMM, the different actions are (volatile) variable reads and writes, acquiring
and releasing object monitors, starting threads, and waiting for their termination.
If an action A happens before an action B, then the action B sees A's memory
writes. The same set of happens-before relationships is valid for the same program
irrespective of the machine it runs on; it is the JVM's task to ensure this. We already
summarized most of these rules but we will now present a complete overview:

•	 Program order: Each action in a thread happens-before every other
subsequent action in the program order of that thread

•	 Monitor locking: Unlocking a monitor happens-before every subsequent
locking of that monitor

•	 Volatile fields: A write to a volatile field happens-before every subsequent
read of that volatile field

•	 Thread start: A call to start() on a thread happens-before any actions in the
started thread

Concurrency on the JVM and the Java Memory Model

[56]

•	 Thread termination: Any action in a thread happens-before another thread
completes a join() call on that thread

•	 Transitivity: If an action A happens-before action B, and action B
happens-before action C, then action A happens-before action C

Despite its somewhat misleading name, the happens-before relationship exists to
ensure that threads see each other's memory writes. It does not exist to establish a
temporal ordering between different statements in the program. When we say that
a write A happens before a read B, it is guaranteed that the effects of the write A are
visible to that particular read B. Whether or not the write A occurs earlier than the
read B depends on the execution of the program.

The happens-before relationship describes the visibility of the writes
performed by a different thread.

Additionally, the JMM guarantees that volatile reads and writes as well as monitor
locks and unlocks are never reordered. The happens-before relationship ensures that
nonvolatile reads and writes also cannot be reordered arbitrarily. In particular, this
relationship ensures the following things:

•	 A non-volatile read cannot be reordered to appear before a volatile read
(or monitor lock) that precedes it in the program order

•	 A non-volatile write cannot be reordered to appear after a volatile write
(or monitor unlock) that follows it in the program order

Higher-level constructs often establish a happens-before relationship on top of these
rules. For example, an interrupt call happens before the interrupted thread detects
it; this is because the interrupt call uses a monitor to wake the thread in a typical
implementation. Scala concurrency APIs described in the later chapters also establish
happens-before relationships between various method calls, as we will see. In all
these cases, it is the task of the programmer to ensure that every write of a variable is
in a happens-before relationship with every read of that variable that should read the
written value. A program in which this is not true is said to contain data races.

Immutable objects and final fields
We have said that programs must establish happens-before relationships to avoid
data races, but there is an exception to this rule. If an object contains only final fields
and the reference to the enclosing object does not become visible to another thread
before the constructor completes, then the object is considered immutable and can be
shared between the threads without any synchronization.

Free ebooks ==> www.Ebook777.com

Chapter 2

[57]

In Java, a final field is marked with the final keyword. In Scala, declaring an object
field as final means that the getter for that field cannot be overridden in a subclass.
The field itself is always final provided that it is a value declaration, that is, a val
declaration. The following class depicts this:

class Foo(final val a: Int, val b: Int)

The preceding class corresponds to the following Java class after the Scala compiler
translates it:

class Foo { // Java code below
 final private int a$;
 final private int b$;
 final public int a() { return a$; }
 public int b() { return b$; }
 public Foo(int a, int b) {
 a$ = a;
 b$ = b;
 }
}

Note that both the fields become final at the JVM level and can be shared without
synchronization. The difference is that the getter for a cannot be overridden in a Foo
subclass. We have to disambiguate finality in the reassignment and overriding sense.

Since Scala is a hybrid between functional and object-oriented paradigms, many
of its language features map to immutable objects. A lambda value can capture a
reference to the enclosing class or a lifted variable, as in the following example:

var inc: () => Unit = null
val t = thread { if (inc != null) inc() }
private var number = 1
inc = () => { number += 1 }

The local number variable is captured by the lambda, so it needs to be lifted. The
statement in the last line translates to an anonymous Function0 class instantiation:

number = new IntRef(1) // captured local variables become objects
inc = new Function0 {
 val $number = number // recall – vals are final!
 def apply() = $number.elem += 1
}-

www.Ebook777.com

http://www.ebook777.com

Concurrency on the JVM and the Java Memory Model

[58]

There is no happens-before relationship between the assignment to inc and the read
of inc by the thread t. However, if the t thread sees that inc is not null, invoking
inc still works correctly, because the $number field is appropriately initialized since
it is stored as a field in the immutable lambda object. The Scala compiler ensures that
lambda values contain only final, properly initialized fields. Anonymous classes,
auto-boxed primitives, and value classes share the same philosophy.

In current versions of Scala, however, certain collections that are deemed immutable,
such as List and Vector, cannot be shared without synchronization. Although their
external API does not allow you to modify them, they contain non-final fields.

Even if an object seems immutable, always use proper synchronization
to share any object between the threads.

Summary
In this chapter, we showed how to create and start threads, and wait for their
termination. We have shown how to achieve inter-thread communication by
modifying the shared memory and by using the synchronized statement, and
what it means for a thread to be in a blocked state. We have studied approaches to
prevent deadlocks by imposing ordering on the locks and avoided busy-waits in
place of guarded blocks. We have seen how to implement a graceful shutdown for
thread termination and when to communicate using volatiles. We witnessed how
the correctness of a program can be compromised by undesired interactions known
as race conditions as well as data races due to the lack of synchronization. And,
most importantly, we have learned that the only way to correctly reason about the
semantics of a multithreaded program is in terms of happens-before relationships
defined by the JMM.

The language primitives and APIs presented in this section are low-level; they are
the basic building blocks for concurrency on the JVM and in Scala, and there are only
a handful of situations where you should use them directly. One of them is designing
a new concurrency library yourself, another one is dealing with a legacy API built
directly from these primitives. Although you should strive to build concurrent Scala
applications in terms of concurrency frameworks introduced in the later chapters,
the insights from this chapter will be helpful in understanding how higher-level
constructs work. You should now have a valuable insight of what's going on under
the hood.

Free ebooks ==> www.Ebook777.com

Chapter 2

[59]

If you would like to learn more about concurrency on the JVM and the JMM, we
recommend that you read the book Java Concurrency in Practice, Brian Goetz, Tim
Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug Lea, Addison Wesley. For
an in-depth understanding of processes, threads, and the internals of operating
systems, we recommend the book Operating System Concepts, Abraham Silberschatz,
Peter B. Galvin, and Greg Gagne, Wiley.

In the next chapter, we will cover more advanced building blocks of concurrent
programs. We will learn how to use executors to avoid creating threads directly,
concurrent collections for thread-safe data access, and atomic variables for
deadlock-free synchronization. These high-level abstractions will alleviate many
of the problems inherent to the fundamental concurrency primitives presented
in this chapter.

Exercises
In the following set of exercises, you are required to implement higher-level
concurrency abstractions in terms of basic JVM concurrency primitives. Some of
these exercises introduce concurrent counterparts of sequential programming
abstractions, and, in doing so, highlight important differences between sequential
and concurrent programming. The exercises are not ordered in any particular order,
but some of them rely on specific content from earlier exercises or this chapter.

1.	 Implement a parallel method, which takes two computation blocks a
and b, and starts each of them in a new thread. The method must return
a tuple with the result values of both the computations. It should have the
following signature:
def parallel[A, B](a: =>A, b: =>B): (A, B)

2.	 Implement a periodically method, which takes a time interval duration
specified in milliseconds, and a computation block b. The method starts a
thread that executes the computation block b every duration milliseconds.
It should have the following signature:
def periodically(duration: Long)(b: =>Unit): Unit

3.	 Implement a SyncVar class with the following interface:
class SyncVar[T] {
 def get(): T = ???
 def put(x: T): Unit = ???
}

www.Ebook777.com

http://www.ebook777.com

Concurrency on the JVM and the Java Memory Model

[60]

A SyncVar object is used to exchange values between two or more threads.
When created, the SyncVar object is empty:

°° Calling get throws an exception
°° Calling put adds a value to the SyncVar object

After a value is added to a SyncVar object, we can say that it is non-empty:
°° Calling get returns the current value, and changes the state to empty
°° Calling put throws an exception

4.	 The SyncVar object from the previous exercise can be cumbersome to use,
due to exceptions when the SyncVar object is in an invalid state. Implement
a pair of methods isEmpty and nonEmpty on the SyncVar object. Then,
implement a producer thread that transfers a range of numbers 0 until 15
to the consumer thread that prints them.

5.	 Using the isEmpty and nonEmpty pair of methods from the previous exercise
requires busy-waiting. Add the following methods to the SyncVar class:
def getWait(): T
def putWait(x: T): Unit

These methods have similar semantics as before, but go into the waiting
state instead of throwing an exception, and return once the SyncVar object
is empty or non-empty, respectively.

6.	 A SyncVar object can hold at most one value at a time. Implement a
SyncQueue class, which has the same interface as the SyncVar class, but can
hold at most n values. The parameter n is specified in the constructor of the
SyncQueue class.

7.	 The send method in the Deadlocks section was used to transfer money
between the two accounts. The sendAll method takes a set accounts of bank
accounts and a target bank account, and transfers all the money from every
account in accounts to the target bank account. The sendAll method has
the following signature:
def sendAll(accounts: Set[Account], target: Account): Unit

Implement the sendAll method and ensure that a deadlock cannot occur.

Chapter 2

[61]

8.	 Recall the asynchronous method from the Guarded blocks section. This
method stores the tasks in a First In First Out (FIFO) queue; before a
submitted task is executed, all the previously submitted tasks need to be
executed. In some cases, we want to assign priorities to tasks so that a
high-priority task can execute as soon as it is submitted to the task pool.
Implement a PriorityTaskPool class that has the asynchronous method
with the following signature:
def asynchronous(priority: Int)(task: =>Unit): Unit

A single worker thread picks tasks submitted to the pool and executes them.
Whenever the worker thread picks a new task from the pool for execution,
that task must have the highest priority in the pool.

9.	 Extend the PriorityTaskPool class from the previous exercise so that it
supports any number of worker threads p. The parameter p is specified in
the constructor of the PriorityTaskPool class.

10.	 Extend the PriorityTaskPool class from the previous exercise so that it
supports the shutdown method:
def shutdown(): Unit

When the shutdown method is called, all the tasks with the priorities greater
than important must be completed, and the rest of the tasks must be
discarded. The important integer parameter is specified in the constructor
of the PriorityTaskPool class.

Free ebooks ==> www.Ebook777.com

Traditional Building Blocks
of Concurrency

"There's an old story about the person who wished his computer were as easy to
use as his telephone. That wish has come true, since I no longer know how to use
my telephone."

-Bjarne Stroustrup

The concurrency primitives shown in Chapter 2, Concurrency on the JVM and the Java
Memory Model, are the basics of concurrent programming on JVM. Nevertheless, we
usually avoid using them directly, as their low-level nature makes them delicate
and prone to errors. As we saw, low-level concurrency is susceptible to effects such
as data races, reordering, visibility, deadlocks, and nondeterminism. Fortunately,
people have come up with more advanced building blocks of concurrency,
which capture common patterns in concurrent programs and are a lot safer to
use. Although these building blocks do not solve all the issues of concurrent
programming, they simplify the reasoning about concurrent programs and can be
found across concurrency frameworks and libraries of many languages, including
Scala. This chapter extends the fundamental concurrent programming model
from Chapter 2, Concurrency on the JVM and the Java Memory Model, with traditional
building blocks of concurrency and shows how to use them in practice.

www.Ebook777.com

http://www.ebook777.com

Traditional Building Blocks of Concurrency

[64]

In general, there are two aspects of a concurrent programming model. The first deals
with expressing concurrency in a program. Given a program, which of its parts can
execute concurrently and under which conditions? In the previous chapter, we saw
that JVM allows declaring and starting separate threads of control. In this chapter,
we will visit a more lightweight mechanism for starting concurrent executions. The
second important aspect of concurrency is data access. Given a set of concurrent
executions, how can these executions correctly access and modify the program data?
Having seen the low-level answer to these questions in the previous chapter, such
as the synchronized statement and volatile variables, we will now dive into more
complex abstractions. We will study the following topics:

•	 Using the Executor and ExecutionContext objects
•	 Atomic primitives for non-blocking synchronization
•	 The interaction of lazy values and concurrency
•	 Using concurrent queues, sets, and maps
•	 How to create processes and communicate with them

The ultimate goal of this chapter will be to implement a safe API for concurrent
file handling. We will use the abstractions in this chapter to implement a simple,
reusable file-handling API for applications such as filesystem managers or FTP
servers. We will thus see how the traditional building blocks of concurrency work
separately and how they all fit together in a larger use case.

The Executor and ExecutionContext
objects
As discussed in Chapter 2, Concurrency on the JVM and the Java Memory Model,
although creating a new thread in a Scala program takes orders of magnitude less
computational time compared to creating a new JVM process, thread creation is still
much more expensive than allocating a single object, acquiring a monitor lock, or
updating an entry in a collection. If an application performs a large number of small
concurrent tasks and requires high throughput, we cannot afford to create a fresh
thread for each of these tasks. Starting a thread requires us to allocate a memory
region for its call stack and a context switch from one thread to another, which can be
much more time consuming than the amount of work in the concurrent task. For this
reason, most concurrency frameworks have facilities that maintain a set of threads in
a waiting state and start running when concurrently executable work tasks become
available. Generally, we call such facilities thread pools.

Chapter 3

[65]

To allow programmers to encapsulate the decision of how to run concurrently
executable work tasks, JDK comes with an abstraction called Executor. Executor
is a simple interface that defines a single execute method. This method takes a
Runnable object and eventually calls the Runnable object's run method. Executor
decides on which thread and when to call run. An Executor object can start a new
thread specifically for this invocation of execute or even execute the Runnable
object directly on the caller thread. Usually, the Executor interface executes the
Runnable object concurrently to the execution of the thread that called execute,
and is implemented as a thread pool.

One Executor implementation, introduced in JDK7, is ForkJoinPool and is
available in the java.util.concurrent package. Scala programs can use it in JDK
6 as well by importing the contents of the scala.concurrent.forkjoin package.
In the following code snippet, we show you how to instantiate a ForkJoinPool
implementation and submit a task that can be asynchronously executed:

import scala.concurrent._
object ExecutorsCreate extends App {
 val executor = new forkjoin.ForkJoinPool
 executor.execute(new Runnable {
 def run() = log("This task is run asynchronously.")
 })
 Thread.sleep(500)
}

We start by importing the scala.concurrent package. In the later examples,
we implicitly assume that this package is imported. We then instantiate the
ForkJoinPool class and assign it to a value called executor. Once instantiated,
the executor value is sent a task in the form of a Runnable object that prints to the
standard output. Finally, we invoke the sleep statement in order to prevent the
daemon threads in the ForkJoinPool instance from being terminated before they
call run on the Runnable object. Note that the sleep statement is not required if
you are running the example from SBT with the fork setting set to false.

Why do we need Executor objects in the first place? In the previous example, we
can easily change the Executor implementation without affecting the code in the
Runnable object. Executor objects serve to decouple the logic in the concurrent
computations from how these computations are executed. The programmer can
focus on specifying parts of the code that potentially execute concurrently,
separately from where and when to execute those parts of the code.

Traditional Building Blocks of Concurrency

[66]

The more elaborate subtype of the Executor interface, also implemented by the
ForkJoinPool class, is called ExecutorService. This extended Executor interface
defines several convenience methods, the most prominent being the shutdown
method. The shutdown method makes sure that the Executor object gracefully
terminates by executing all the submitted tasks and then stopping all the worker
threads. Fortunately, our ForkJoinPool implementation is benign with respect to
termination. Its threads are daemons by default, so there is no need to shut it down
explicitly at the end of the program. In general, however, programmers should
call shutdown on the ExecutorService objects they created, typically before the
program terminates.

When your program no longer needs the ExecutorService
object you created, you should ensure that the shutdown
method is called.

To ensure that all the tasks submitted to the ForkJoinPool object are complete, we
need to additionally call the awaitTermination method, specifying the maximum
amount of time to wait for their completion. Instead of calling the sleep statement,
we can do the following:

import java.util.concurrent.TimeUnit
executor.shutdown()
executor.awaitTermination(60, TimeUnit.SECONDS)

The scala.concurrent package defines the ExecutionContext trait that offers a
similar functionality to that of Executor objects but is more specific to Scala. We
will later learn that many Scala methods take ExecutionContext objects as implicit
parameters. Execution contexts implement the abstract execute method, which
exactly corresponds to the execute method on the Executor interface, and the
reportFailure method, which takes a Throwable object and is called whenever
some task throws an exception. The ExecutionContext companion object
contains the default execution context called global, which internally uses a
ForkJoinPool instance:

object ExecutionContextGlobal extends App {
 val ectx = ExecutionContext.global
 ectx.execute(new Runnable {
 def run() = log("Running on the execution context.")
 })
 Thread.sleep(500)
}

Free ebooks ==> www.Ebook777.com

Chapter 3

[67]

The ExecutionContext companion object defines a pair of methods, fromExecutor
and fromExecutorService, which create an ExecutionContext object from an
Executor or ExecutorService interface, respectively:

object ExecutionContextCreate extends App {
 val pool = new forkjoin.ForkJoinPool(2)
 val ectx = ExecutionContext.fromExecutorService(pool)
 ectx.execute(new Runnable {
 def run() = log("Running on the execution context again.")
 })
 Thread.sleep(500)
}

In the preceding example, we create an ExecutionContext object from
a ForkJoinPool instance with a parallelism level 2. This means that the
ForkJoinPool instance will usually keep two worker threads in its pool.

In the examples that follow, we rely on the global ExecutionContext object. To
make the code more concise, we introduce the execute convenience method in
the package object of this chapter, which executes a block of code on the global
ExecutionContext object:

def execute(body: =>Unit) = ExecutionContext.global.execute(
 new Runnable { def run() = body }
)

The Executor and ExecutionContext objects are a nifty concurrent programming
abstraction, but they are not without culprits. They can improve throughput by
reusing the same set of threads for different tasks but are unable to execute tasks if
those threads become unavailable, because all the threads are busy with running
other tasks. In the following example, we declare 32 independent executions, each
of which lasts two seconds, and wait 10 seconds for their completion:

object ExecutionContextSleep extends App {
 for (i<- 0 until 32) execute {
 Thread.sleep(2000)
 log(s"Task $i completed.")
 }
 Thread.sleep(10000)
}

www.Ebook777.com

http://www.ebook777.com

Traditional Building Blocks of Concurrency

[68]

You would expect that all the executions terminate after two seconds, but this
is not the case. Instead, on our quad-core CPU with hyper threading, the global
ExecutionContext object has eight threads in the thread pool, so it executes work
tasks in batches of eight. After two seconds, a batch of eight tasks prints that they
are completed, after two more seconds another batch prints, and so on. This is
because the global ExecutionContext object internally maintains a pool of eight
worker threads, and calling sleep puts all of them into a timed waiting state.
Only once the sleep call in these worker threads is completed can another batch
of eight tasks be executed. Things can be much worse. We could start eight tasks
that execute a guarded block idiom seen in Chapter 2, Concurrency on the JVM and
the Java Memory Model, and another task that calls notify to wake them up. As the
ExecutionContext object can execute only eight tasks concurrently, the worker
threads would, in this case, be blocked forever. We say that executing blocking
operations on ExecutionContext objects can cause starvation.

Avoid executing operations that might block indefinitely on
ExecutionContext and Executor objects.

Having seen how to declare concurrent executions, we turn our attention to how
these concurrent executions interact by manipulating the program data.

Atomic primitives
In Chapter 2, Concurrency on the JVM and the Java Memory Model, we learned that
memory writes do not happen immediately unless proper synchronization is
applied. A set of memory writes is not executed at once, that is, atomically. We
saw that visibility is ensured by the happens-before relationship, and we relied on
the synchronized statement to achieve it. Volatile fields were a more lightweight
way of ensuring happens-before relationships but a less powerful synchronization
construct. Recall how volatile fields alone could not implement the getUniqueId
method correctly.

In this section, we study atomic variables that provide basic support for executing
multiple memory reads and writes at once. Atomic variables are volatile variables'
close cousins but are more expressive than volatile variables; they are used to build
complex concurrent operations without relying on the synchronized statement.

Free ebooks ==> www.Ebook777.com

Chapter 3

[69]

Atomic variables
An atomic variable is a memory location that supports complex linearizable
operations. A linearizable operation is any operation that appears to occur
instantaneously to the rest of the system. For example, a volatile write is a
linearizable operation. A complex linearizable operation is a linearizable operation
equivalent to at least two reads and/or writes. We will use the term atomically to
refer to complex linearizable operations.

Various atomic variables defined in the java.util.concurrent.atomic package
support some complex linearizable operations on the Boolean, integer, long, and
reference types with the AtomicBoolean, AtomicInteger, AtomicLong, and
AtomicReference classes, respectively. Recall that the getUniqueId method from
Chapter 2, Concurrency on the JVM and the Java Memory Model, needs to return a
unique numeric identifier each time a thread invokes it. We previously implemented
this method using the synchronized statement, and we now reimplement it using
atomic long variables:

import java.util.concurrent.atomic._
object AtomicUid extends App {
 private val uid = new AtomicLong(0L)
 def getUniqueId(): Long = uid.incrementAndGet()
 execute { log(s"Uid asynchronously: ${getUniqueId()}") }
 log(s"Got a unique id: ${getUniqueId()}")
}

Here, we declare an atomic long variable, which is uid, with an initial value 0
and call its incrementAndGet method from getUniqueId. The incrementAndGet
method is a complex linearizable operation. It simultaneously reads the current
value x of uid, computes x + 1, writes x + 1 back to uid, and returns x + 1. These
steps cannot be interleaved with steps in other invocations of incrementAndGet, so
each invocation of getUniqueId returns a unique number.

Atomic variables define other methods such as getAndSet, which atomically
reads the value of the variable, set the new value, and returns its previous value.
Numeric atomic variables additionally have methods such as decrementAndGet and
addAndGet. It turns out that all these atomic operations are implemented in terms
of a fundamental atomic operation, which is compareAndSet. The compare-and-set
operation, sometimes called compare-and-swap (CAS), takes the expected previous
value and the new value for the atomic variable and atomically replaces the current
value with the new value only if the current value is equal to the expected value.

The CAS operation is a fundamental building block for lock-free
programming.

www.Ebook777.com

http://www.ebook777.com

Traditional Building Blocks of Concurrency

[70]

The CAS operation is conceptually equivalent to the following synchronized block
but is more efficient and does not get blocked on most JVMs, as it is implemented in
terms of a processor instruction:

def compareAndSet(ov: Long, nv: Long): Boolean =
 this.synchronized {
 if (this.get == ov) false else {
 this.set(nv)
 true
 }
 }

The CAS operation is available on all types of atomic variables; compareAndSet also
exists in the generic AtomicReference[T] class that is used to store object references
of an arbitrary object of type T and is equivalent to the following:

def compareAndSet(ov: T, nv: T): Boolean = this.synchronized {
 if (this.get eq ov) false else {
 this.set(nv)
 true
 }
}

If CAS does replace the old value with the new value, it returns true. Otherwise,
CAS returns false. When using CAS, we usually start by calling get on the atomic
variable to read its value. We then compute a new value based on the value we read.
Finally, we invoke the CAS operation to change the value we've previously read with
the new value. If the CAS operation returns true, we are done. If the CAS operation
returns false, then some other thread must have changed the atomic variable since
we last read it using get.

Let's see how CAS works in a concrete example. We will reimplement the
getUniqueId method using the get and compareAndSet methods:

@tailrec def getUniqueId(): Long = {
 val oldUid = uid.get
 val newUid = oldUid + 1
 if (uid.compareAndSet(oldUid, newUid)) newUid
 else getUniqueId()
}

Chapter 3

[71]

This time, the thread T calls get to read the value of uid into a local variable oldUid.
Note that local variables such as oldUid are only used by a single thread that
initialized them, so no other thread can see T's version of oldUid. The thread T
then computes the new value newUid. This does not happen atomically, and at
this point, another thread S might concurrently change the value of the uid variable.
The compareAndSet call by T changes uid successfully only if no other thread S
modified the value of the uid variable since thread T called the get method in the
first line. If the compareAndSet method is not successful, the method is called again
tail-recursively. Hence, we use the @tailrec annotation to force the compiler to
generate a tail-recursive call. We say that the thread T needs to retry the operation.
This is illustrated in the following figure:

Always use the @tailrec annotation for these functions, which are
intended to be tail-recursive. The compiler will check all the annotated
functions to see whether or not they are tail-recursive.

Retrying is a common pattern when programming with CAS operations. This retry
can happen infinitely many times. The good news is that a CAS in thread T can fail
only when another thread S completes the operation successfully: if our part of the
system does not progress, at least some other part of the system does. In fact, the
getUniqueId method is fair to all the threads in practice, and most JDKs implement
incrementAndGet in a very similar manner to our CAS-based implementation
of getUniqueId.

Free ebooks ==> www.Ebook777.com

Traditional Building Blocks of Concurrency

[72]

Lock-free programming
A lock is a synchronization mechanism that is used to limit access to a resource that
can be used by multiple threads. In Chapter 2, Concurrency on the JVM and the Java
Memory Model, we learned that every JVM object has an intrinsic lock that is used when
invoking the synchronized statement on the object. Recall that an intrinsic lock makes
sure that at most one thread executes the synchronized statement on the object at
most. The intrinsic lock accomplishes this by blocking all the threads that try to acquire
it when it is unavailable. We will study other examples of locks in this section.

As we already learned, programming using locks is susceptible to deadlocks. Also,
if the OS pre-empts a thread that is holding a lock, it might arbitrarily delay the
execution of other threads. In lock-free programs, these effects are less likely to
compromise the program's performance.

Why do we need atomic variables? Atomic variables allow us to implement lock-free
operations. As the name implies, a thread that executes a lock-free operation does
not acquire any locks. Consequently, many lock-free algorithms have an improved
throughput. A thread executing a lock-free algorithm does not hold any locks
when it gets pre-empted by the OS, so it cannot temporarily block other threads.
Furthermore, lock-free operations are impervious to deadlocks, because threads
cannot get blocked indefinitely without locks.

Our CAS-based implementation of getUniqueId is an example of a lock-free
operation. It acquires no locks that can permanently suspend other threads. If one
thread fails due to concurrent CAS operations, it immediately restarts and tries
to execute getUniqueId again.

However, not all operations composed from atomic primitives are lock-free. Using
atomic variables is a necessary precondition for lock-freedom, but it is not sufficient.
To show this, we will implement our own simple synchronized statement, which
will use atomic variables:

object AtomicLock extends App {
 private val lock = new AtomicBoolean(false)
 def mySynchronized(body: =>Unit): Unit = {
 while (!lock.compareAndSet(false, true)) {}
 try body finally lock.set(false)
 }
 var count = 0
 for (i<- 0 until 10) execute { mySynchronized { count += 1 } }
 Thread.sleep(1000)
 log(s"Count is: $count")
}

www.Ebook777.com

http://www.ebook777.com

Chapter 3

[73]

The mySynchronized statement executes a block of code body in isolation. It uses
the atomic lock Boolean variable to decide whether some thread is currently
calling mySynchronized or not. The first thread that changes the lock from false
to true using compareAndSet can proceed with executing the body. While the
thread is executing the body, other threads calling mySynchronized repetitively
invoke compareAndSet on lock but fail. Once body completes executing, the
thread unconditionally sets the lock variable back to false in the finally block.
A compareAndSet method in some other thread can then succeed, and the process
is repeated again. After all the tasks are completed, the value of count is always
10. The main difference with respect to the synchronized statement is that threads
calling mySynchronized busy-wait in the while loop until the lock becomes
available. Such locks are dangerous and much worse than the synchronized
statement. This example shows you that we need to define the lock-freedom more
carefully, because a lock can implicitly exist in the program without the programmer
being aware of it.

In Chapter 2, Concurrency on the JVM and the Java Memory Model, we learned that
most modern operating systems use pre-emptive multitasking, where a thread T
can be temporarily suspended by the operating system at any point in time. If this
happens while the thread T is holding a lock, other threads waiting for the same lock
cannot proceed until the lock is released. These other threads have to wait until the
operating system continues executing the thread T and the thread T releases the lock.
This is unfortunate, as these threads could be doing useful work while the thread T
is suspended. We say that a slow thread T blocked the execution of other threads. In
a lock-free operation, a slow thread cannot block the execution of other threads. If
multiple threads execute an operation concurrently, then at least one of these threads
must complete in a finite amount of time.

Given a set of threads executing an operation, an operation is lock-free if
at least one thread always completes the operation after a finite number
of steps, regardless of the speed at which different threads progress.

With this more formal definition of lock-freedom, you can get a feel why lock-
free programming is hard. It is not easy to prove that an operation is lock-free,
and implementing more complex lock-free operations is notoriously difficult. The
CAS-based getUniqueId implementation is indeed lock-free. Threads only loop
if the CAS fails, and the CAS can only fail if some thread successfully computed
the unique identifier: this means that some other thread executed getUniqueId
successfully in a finite number of steps between the get and compareAndSet calls.
This fact proves lock-freedom.

Traditional Building Blocks of Concurrency

[74]

Implementing locks explicitly
In some cases, we really do want locks, and atomic variables allow us to implement
locks that do not have to block the caller. The trouble with intrinsic object locks from
Chapter 2, Concurrency on the JVM and the Java Memory Model, is that a thread cannot
inspect whether the object's intrinsic lock is currently acquired. Instead, a thread that
calls synchronized is immediately blocked until the monitor becomes available.
Sometimes, we would like our threads to execute a different action when a lock
is unavailable.

We now turn to the concurrent filesystem API mentioned at the beginning of this
chapter. Inspecting the state of a lock is something we need to do in an application
such as a file manager. In the good old days of DOS and Norton Commander, starting
a file copy blocked the entire user interface, so you could sit back, relax, and grab
your Game Boy until the file transfer completes. Times change; modern file managers
need to start multiple file transfers simultaneously, cancel existing transfers, or delete
different files simultaneously. Our filesystem API must ensure that:

•	 If a thread is creating a new file, then that file cannot be copied or deleted
•	 If one or more threads are copying a file, then the file cannot be deleted
•	 If a thread is deleting a file, then the file cannot be copied
•	 Only a single thread in the file manager is deleting a file at a time

The filesystem API will allow the concurrent copying and deleting of files. In this
section, we will start by ensuring that only a single thread gets to delete a file. We
model a single file or directory with the Entry class:

class Entry(val isDir: Boolean) {
 val state = new AtomicReference[State](new Idle)
}

The isDir field of the Entry class denotes whether the respective path is a file or a
directory. The state field describes the file state: whether the file is idle, currently
being created, copied, or is scheduled for deletion. We model these states with a
sealed trait called State:

sealed trait State
class Idle extends State
class Creating extends State
class Copying(val n: Int) extends State
class Deleting extends State

Chapter 3

[75]

Note that in the case of the Copying state, the n field also tracks how many
concurrent copies are in progress. When using atomic variables, it is often useful to
draw a diagram of the different states an atomic variable can be in. As illustrated in
the following figure, state is set to Creating immediately after an Entry class is
created and then becomes Idle. After that, an Entry object can jump between the
Copying and Idle states indefinitely and eventually, arrive from Idle to Deleting.
After getting into the Deleting state, the Entry class can no longer be modified; this
indicates that we are about to delete the file.

Let's assume that we want to delete a file. There might be many threads running
inside our file manager, and we want to avoid having two threads delete the same
file. We will require the file being deleted to be in the Idle state and atomically
change it to the Deleting state. If the file is not in the Idle state, we report an error.
We will use the logMessage method, which is defined later; for now, we can assume
that this method just calls our log statement:

@tailrec private def prepareForDelete(entry: Entry): Boolean = {
 val s0 = entry.state.get
 s0 match {
 case i: Idle =>
 if (entry.state.compareAndSet(s0, new Deleting)) true
 else prepareForDelete(entry)
 case c: Creating =>
 logMessage("File currently created, cannot delete."); false
 case c: Copying =>
 logMessage("File currently copied, cannot delete."); false
 case d: Deleting =>
 false
 }
}

Traditional Building Blocks of Concurrency

[76]

The prepareForDelete method starts by reading the state atomic reference
variable and stores its value into a local variable s0. It then checks whether s0
is Idle and attempts to atomically change the state to Deleting. Just like in the
getUniqueId example, a failed CAS indicates that another thread changed the state
variable and the operation needs to be repeated. The file cannot be deleted if another
thread is creating or copying it, so we report an error and return false. If another
thread is already deleting the file, we only return false.

The state atomic variable implicitly acts like a lock in this example, although it
neither blocks the other threads nor busy-waits. If the prepareForDelete method
returns true, we know that our thread can safely delete the file, as it is the only
thread that changed the state variable value to Deleting. However, if the method
returns false, we report an error in the file manager UI instead of blocking it.

An important thing to note about the AtomicReference class is that it always uses
reference equality when comparing the old object and the new object assigned
to state.

The CAS instructions on atomic reference variables always use
reference equality and never call the equals method, even when
equals is overridden.

As an expert in sequential Scala programming, you might be tempted to implement
State subtypes as case classes in order to get the equals method for free, but this
does not affect the compareAndSet operation.

The ABA problem
The ABA problem is a situation in concurrent programming where two reads of
the same memory location yield the same value A, which is used to indicate that the
value of the memory location did not change between the two reads. This conclusion
can be violated if other threads concurrently write some value B to the memory
location, followed by the write of the value A again. The ABA problem is usually
a type of a race condition. In some cases, it leads to program errors.

Suppose that we implemented Copying as a class with a mutable field n. We might
then be tempted to reuse the same Copying object for subsequent calls to release
and acquire. This is almost certainly not a good idea!

Free ebooks ==> www.Ebook777.com

Chapter 3

[77]

Let's assume that we have a hypothetical pair of methods called releaseCopy and
acquireCopy. The releaseCopy method assumes that the Entry class is in the
Copying state and changes the state from Copying to another Copying or Idle state.
It then returns the old Copying object associated with the previous state:

def releaseCopy(e: Entry): Copying = e.state.get match {
 case c: Copying =>
 val nstate = if (c.n == 1) new Idle else new Copying(c.n – 1)
 if (e.state.compareAndSet(c, nstate)) c
 else releaseCopy(e)
}

The acquireCopy method takes a currently unused Copying object and attempts to
replace the old state with the previously used Copying object:

def acquireCopy(e: Entry, c: Copying) = e.state.get match {
 case i: Idle =>
 c.n = 1
 if (!e.state.compareAndSet(i, c)) acquire(e, c)
 case oc: Copying =>
 c.n = oc.n + 1
 if (!e.state.compareAndSet(oc, c)) acquire(e, c)
}

Upon calling the releaseCopy method, a thread might store the old Copying
object. Later, the same thread can reuse the old Copying object in the call to the
acquireCopy method. Here, the programmer's intent could be to reduce the pressure
on the garbage collector by allocating less Copying objects. However, this leads to
the ABA problem, as we will describe further.

We consider two threads T1 and T2, which call the releaseCopy method. They both
read the state of the Entry object and create a new state object nstate, which is Idle.
Let's assume that the thread T1 executes the compareAndSet operation first and
returns the old Copying object c from the releaseCopy method. Next, let's assume
that a third thread T3 calls the acquireCopy method and changes the state of the
Entry object to Copying(1). If the thread T1 now calls the acquireCopy method
with the old Copying object c, the state of the Entry object becomes Copying(2).
Note that at this point, the old Copying object c is once again stored inside the atomic
variable state. If the thread T1 now attempts to call compareAndSet, it will succeed
and set the state of the Entry object to Idle. Effectively, the last compareAndSet
operation changes the state from Copying(2) to Idle, so one acquire is lost.

www.Ebook777.com

http://www.ebook777.com

Traditional Building Blocks of Concurrency

[78]

This scenario is shown in the following figure:

In the preceding example, the ABA problem manifests itself in the execution of the
thread T2. Having first read the value of the state field in the Entry object with the
get method and with the compareAndSet method later, thread T2 assumes that the
value of the state field has not changed between these two writes. In this case, this
leads to a program error.

There is no general technique to avoid the ABA problem, so we need to guard the
program against it on a per-problem basis. Still, the following guidelines are useful
when avoiding the ABA problem in a managed runtime, such as JVM:

•	 Create new objects before assigning them to the AtomicReference objects
•	 Store immutable objects inside the AtomicReference objects
•	 Avoid assigning a value that was previously already assigned to an

atomic variable
•	 If possible, make updates to numeric atomic variables monotonic,

that is, either strictly decreasing or strictly increasing with respect
to the previous value

There are other techniques in order to avoid the ABA problem, such as pointer
masking and hazard pointers, but these are not applicable to JVM.

In some cases, the ABA problem does not affect the correctness of the algorithm; for
example, if we changed the Idle class to a singleton object, the prepareForDelete
method will continue to work correctly. Still, it is a good practice to follow
the preceding guidelines, because they simplify the reasoning about lock-free
algorithms.

Chapter 3

[79]

Lazy values
You should be familiar with lazy values from sequential programming in Scala.
Lazy values are value declarations that are initialized with their right-hand side
expression when the lazy value is read for the first time. This is unlike regular
values, which are initialized the moment they are created. If a lazy value is never
read inside the program, it is never initialized and it is not necessary to pay the cost
of its initialization. Lazy values allow you to implement data structures such as
lazy streams; they improve complexities of persistent data structures, can boost
the program's performance, and help avoid initialization order problems in Scala's
mixin composition.

Lazy values are extremely useful in practice, and you will often deal with them in
Scala. However, using them in concurrent programs can have some unexpected
interactions, and this is the topic of this section. Note that lazy values must retain
the same semantics in a multithreaded program; a lazy value is initialized only
when a thread accesses it, and it is initialized at most once. Consider the following
motivating example in which two threads access two lazy values, which are obj
and non:

object LazyValsCreate extends App {
 lazy val obj = new AnyRef
 lazy val non = s"made by ${Thread.currentThread.getName}"
 execute {
 log(s"EC sees obj = $obj")
 log(s"EC sees non = $non")
 }
 log(s"Main sees obj = $obj")
 log(s"Main sees non = $non")
 Thread.sleep(500)
}

You know from sequential Scala programming that it is a good practice to initialize
the lazy value with an expression that does not depend on the current state of the
program. The lazy value obj follows this practice, but the lazy value non does not.
If you run this program once, you might notice that non is initialized with the name
of the main thread:

[info] main: Main sees non = made by main

[info] FJPool-1-worker-13: EC sees non = made by main

Traditional Building Blocks of Concurrency

[80]

Running the program again shows you that non is initialized by the worker thread:

[info] main: Main sees non = made by FJPool-1-worker-13

[info] FJPool-1-worker-13: EC sees non = made by FJPool-1-worker-13

As the previous example shows you, lazy values are affected by nondeterminism.
Nondeterministic lazy values are a recipe for trouble, but we cannot always
avoid them. Lazy values are deeply tied into Scala, because singleton objects are
implemented as lazy values under the hood:

object LazyValsObject extends App {
 object Lazy { log("Running Lazy constructor.") }
 log("Main thread is about to reference Lazy.")
 Lazy
 log("Main thread completed.")
}

Running this program reveals that the Lazy initializer runs when the object is first
referenced in the third line and not when it is declared. Getting rid of singleton
objects in your Scala code would be too restrictive, and singleton objects are often
large; they can contain all kinds of potentially nondeterministic code.

You might think that a little bit of nondeterminism is something we can live with.
However, this nondeterminism can be dangerous. In the existing Scala versions, lazy
values and singleton objects are implemented with the so-called double-checked
locking idiom under the hood. This concurrent programming pattern ensures that a
lazy value is initialized by at most one thread when it is first accessed. Thanks to this
pattern, upon initializing the lazy value, its subsequent reads are cheap and do not
need to acquire any locks. Using this idiom, a single lazy value declaration, which is
obj from the previous example, is translated by the Scala compiler as follows:

object LazyValsUnderTheHood extends App {
 @volatile private var _bitmap = false
 private var _obj: AnyRef = _
 def obj = if (_bitmap) _obj else this.synchronized {
 if (!_bitmap) {
 _obj = new AnyRef
 _bitmap = true
 }
 _obj
 }
 log(s"$obj")
 log(s"$obj")
}

Chapter 3

[81]

The Scala compiler introduces an additional volatile field, which is _bitmap, when a
class contains lazy fields. The private _obj field that holds the value is uninitialized
at first. After the getter obj assigns a value to _obj, it sets _bitmap to true to indicate
that the lazy value was initialized. Other subsequent invocations of the getter know
whether they can read the lazy value from _obj by checking the _bitmap field.

The getter obj starts by checking whether _bitmap is true. If _bitmap is true,
then the lazy value was already initialized and the getter returns _obj. Otherwise,
the getter obj attempts to obtain the intrinsic lock of the enclosing object, in this
case, LazyValsUnderTheHood. If the _bitmap field is still not set from within the
synchronized block, the getter evaluates the expression new AnyRef, assigns it
to _obj, and sets _bitmap to true. After this point, the lazy value is considered
initialized. Note that the synchronized statement, together with the check that the
_bitmap field is false, ensure that a single thread at most initializes the lazy value.

The double-checked locking idiom ensures that every lazy value
is initialized by at most a single thread.

This mechanism is robust and ensures that lazy values are both thread-safe and
efficient. However, synchronization on the enclosing object can cause problems.
Consider the following example in which two threads attempt to initialize lazy
values A.x and B.y at the same time:

object LazyValsDeadlock extends App {
 object A { lazy val x: Int = B.y }
 object B { lazy val y: Int = A.x }
 execute { B.y }
 A.x
}

In a sequential setting, accessing either A.x or B.y results in a stack overflow.
Initializing A.x requires calling the getter for B.y, which is not initialized.
Initialization of B.y calls the getter for A.x and continues in infinite recursion.
However, this example was carefully tuned to access both A.x and B.y at the same
time by both the main thread and the worker thread. Prepare to restart SBT. After
both A and B are initialized, their monitors are acquired simultaneously by two
different threads. Each of these threads needs to acquire a monitor owned by the
other thread. Neither thread lets go of its own monitor, and this results in a deadlock.

Cyclic dependencies between lazy values are unsupported in both sequential
and concurrent Scala programs. The difference is that they potentially manifest
themselves as deadlocks instead of stack overflows in concurrent programming.

Traditional Building Blocks of Concurrency

[82]

Avoid cyclic dependencies between lazy values, as they can
cause deadlocks.

The previous example is not something you are likely to do in your code, but cyclic
dependencies between lazy values and singleton objects can be much more devious
and harder to spot. In fact, there are other ways to create dependencies between lazy
values besides directly accessing them. A lazy value initialization expression can
block a thread until some other value becomes available. In the following example,
the initialization expression uses the thread statement from Chapter 2, Concurrency
on the JVM and the Java Memory Model, to start a new thread and join it:

object LazyValsAndBlocking extends App {
 lazy val x: Int = {
 val t = ch2.thread { println(s"Initializing $x.") }
 t.join()
 1
 }
 x
}

Although there is only a single lazy value in this example, running it inevitably
results in a deadlock. The new thread attempts to access x, which is not initialized, so
it attempts to call synchronized on LazyValsAndBlocking and blocks, because the
main thread already holds this lock. On the other hand, the main thread waits for
the other thread to terminate, so neither thread can progress.

While the deadlock is relatively obvious in this example, in a larger code base,
circular dependencies can easily sneak past your guard. In some cases, they
might even be nondeterministic and occur only in particular system states.
To guard against them, avoid blocking in the lazy value expression altogether.

Never invoke blocking operations inside lazy value
initialization expressions or singleton object constructors.

Lazy values cause deadlocks even when they do not block themselves. In the
following example, the main thread calls synchronized on the enclosing object,
starts a new thread, and waits for its termination. The new thread attempts to
initialize the lazy value x but cannot acquire the monitor until the main thread
releases it:

object LazyValsAndMonitors extends App {
 lazy val x = 1
 this.synchronized {

Chapter 3

[83]

 val t = ch2.thread { x }
 t.join()
 }
}

This kind of a deadlock is not inherent to lazy values and can happen with
arbitrary code that uses synchronized statements. The problem is that the
LazyValsAndMonitors lock is used in two different contexts: as a lazy value
initialization lock and as the lock for some custom logic in the main thread. To
prevent two unrelated software components from using the same lock, always
call synchronized on separate private objects that exist solely for this purpose.

Never call synchronized on publicly available objects; always
use a dedicated, private dummy object for synchronization.

Although we rarely use separate objects for synchronization in this book, to keep the
examples concise, you should strongly consider doing this in your programs. This tip
is useful outside the context of lazy values; keeping your locks private reduces the
possibility of deadlocks.

Concurrent collections
As you can conclude from the discussion on Java Memory Model in Chapter 2,
Concurrency on the JVM and the Java Memory Model, modifying the Scala standard
library collections from different threads can result in arbitrary data corruption.
Standard collection implementations do not use any synchronization. Data
structures underlying mutable collections can be quite complex; predicting how
multiple threads affect the collection state in the absence of synchronization is
neither recommended nor possible. We demonstrate this by letting two threads
add numbers to the mutable.ArrayBuffer collection:

import scala.collection._
object CollectionsBad extends App {
 val buffer = mutable.ArrayBuffer[Int]()
 def asyncAdd(numbers: Seq[Int]) = execute {
 buffer ++= numbers
 log(s"buffer = $buffer")
 }
 asyncAdd(0 until 10)
 asyncAdd(10 until 20)
 Thread.sleep(500)
}

Traditional Building Blocks of Concurrency

[84]

Instead of printing an array buffer with 20 different elements, this example arbitrarily
prints different results or throws exceptions each time it runs. The two threads modify
the internal array buffer state simultaneously and cause data corruption.

Never use mutable collections from several different threads
without applying proper synchronization.

We can restore synchronization in several ways. First, we can use immutable
collections along with synchronization to share them between threads. For example,
we can store immutable data structures inside atomic reference variables. In the
following code snippet, we introduce an AtomicBuffer class that allows concurrent
+= operations. Appending reads the current immutable List value from the atomic
reference buffer and creates a new List object containing x. It then invokes a CAS
operation to atomically update the buffer, retrying the operation if the CAS operation
is not successful:

class AtomicBuffer[T] {
 private val buffer = new AtomicReference[List[T]](Nil)
 @tailrec def +=(x: T): Unit = {
 val xs = buffer.get
 val nxs = x :: xs
 if (!buffer.compareAndSet(xs, nxs)) this += x
 }
}

While using atomic variables or the synchronized statements with immutable
collections is simple, it can lead to scalability problems when many threads
access an atomic variable at once.

If we intend to continue using mutable collections, we need to add synchronized
statements around calls to collection operations:

def asyncAdd(numbers: Seq[Int]) = execute {
 buffer.synchronized {
 buffer ++= numbers
 log(s"buffer = $buffer")
 }
}

This approach can be satisfactory, provided that collection operations do not block
inside synchronized. In fact, this approach allows you to implement guarded
blocks around collection operations, as we saw in the SynchronizedPool example
in Chapter 2, Concurrency on the JVM and the Java Memory Model. However, using
synchronized can also lead to scalability problems when many threads attempt
to acquire the lock at once.

Chapter 3

[85]

Finally, concurrent collections are collection implementations with operations that
can be safely invoked from different threads without synchronization. In addition to
the thread-safe versions of basic collection operations, some concurrent collections
provide more expressive operations. Conceptually, the same operations can be
achieved using atomic primitives, synchronized statements, and guarded blocks,
but concurrent collections ensure far better performance and scalability.

Concurrent queues
A common pattern used in concurrent programming is the producer-consumer
pattern. In this pattern, the responsibility for different parts of the computational
workload is divided across several threads. In an FTP server, one or more threads
can be responsible for reading chunks of a large file from the disk. Such threads
are called producers. Another dedicated set of threads can bear the responsibility
of sending file chunks through the network. We call these threads consumers. In
their relationship, consumers must react to work elements created by the producers.
Often, the two are not perfectly synchronized, so work elements need to be buffered
somewhere. The concurrent collection that supports this kind of buffering is called
a concurrent queue. There are three main operations we expect from a concurrent
queue. The enqueue operation allows producers to add work elements to the queue,
and the dequeue operation allows consumers to remove them. Finally, sometimes
we want to check whether the queue is empty or inspect the value of the next item
without changing the queue's contents. Concurrent queues can be bounded, which
means that they can only contain a maximum number of elements, or they can
be unbounded, which means that they can grow indefinitely. When a bounded
queue contains the maximum number of elements, we say it is full. The semantics
of various versions of enqueue and dequeue operations differ with respect to
what happens when we try to enqueue to a full queue or dequeue from an empty
queue. This special case needs to be handled differently by the concurrent queue.
In single-threaded programming, sequential queues usually return a special value
such as null or false when they are full or empty or simply throw an exception. In
concurrent programming, the absence of elements in the queue can indicate that the
producer did not yet enqueue an element, although it might enqueue it in the future.
Similarly, a full queue means that the consumer did not yet remove elements but
will do so later. For this reason, some concurrent queues have blocking enqueue and
dequeue implementations, which block the caller until the queue is non-full or
non-empty, respectively.

JDK represents multiple efficient concurrent queue implementations in the java.
util.concurrent package with the BlockingQueue interface. Rather than
reinventing the wheel with its own concurrent queue implementations, Scala adopts
these concurrent queues as part of its concurrency utilities and does not have a
dedicated trait for blocking queues currently.

Traditional Building Blocks of Concurrency

[86]

The BlockingQueue interface contains several versions of the basic concurrent
queue operations, each with slightly different semantics. Different variants of their
enqueue, dequeue, and inspect-next methods are summarized in the following table.
The inspect, dequeue, and enqueue versions are called element, remove, and add in
the first column; they throw an exception when the queue is empty or full. Methods
such as poll and offer return special values such as null or false. Timed versions
of these methods block the caller for a specified duration before returning an element
or a special value, and blocking methods block the calling thread until the queue
becomes non-empty or non-full.

Operation Exception Special value Timed Blocking

Dequeue remove(): T poll(): T poll(t: Long,

 u: TimeUnit): T

take(): T

Enqueue add(x: T) offer(x: T):

 Boolean

offer(x: T,

 t: Long,

 u: TimeUnit)

put(x: T)

Inspect element: T peek: T N/A N/A

ArrayBlockingQueue is a concrete implementation of a bounded blocking queue.
When creating ArrayBlockingQueue, we need to specify its capacity, which is the
number of elements in the queue when it is full. If producers can potentially create
elements faster than the consumers can process them, we need to use bounded
queues. Otherwise, the queue size can potentially grow to the point where it
consumes all the available memory in the program.

Another concurrent queue implementation is called the LinkedBlockingQueue.
This queue is unbounded, and we can use it when we are sure that the consumers
work much faster than the producers. This queue is an ideal candidate for the
logging component of our filesystem's API. Logging must return feedback about
the execution to the user. In a file manager, logging produces messages to the user
inside the UI, while in an FTP server, it sends feedback over the network. To keep
the example simple, we just print the messages to the standard output.

We use LinkedBlockingQueue to buffer various messages from different
components of the filesystem API. We declare the queue to a private variable
called messages. A separate daemon thread, called logger, repetitively calls take
on messages. Recall from the previous table that the take method is blocking; it
blocks the logger thread until there is a message in the queue. The logger thread
then calls log to print the message. The logMessage method, which we used in the
prepareForDelete method earlier, simply calls offer on the messages queue. We
could have alternatively called add or put. We know that the queue is unbounded,
so these methods never throw or block:

Chapter 3

[87]

private val messages = new LinkedBlockingQueue[String]
val logger = new Thread {
 setDaemon(true)
 override def run() = while (true) log(messages.take())
}
logger.start()
def logMessage(msg: String): Unit = messages.offer(msg)

We place these methods and the previously defined prepareForDelete method
into the FileSystem class. To test this, we can simply instantiate our FileSystem
class and call logMessage. Once the main thread terminates, the logger thread
automatically stops:

val fileSystem = new FileSystem(".")
fileSystem.logMessage("Testing log!")

An important difference between sequential queues and concurrent queues is that
concurrent queues have weakly consistent iterators. An iterator created with the
iterator method traverses the elements that were in the queue at the moment the
iterator was created. However, if there is an enqueue or dequeue operation before
the traversal is over, all bets are off, and the iterator might or might not reflect any
modifications. Consider the following example, in which one thread traverses the
concurrent queue while another thread dequeues its elements:

object CollectionsIterators extends App {
 val queue = new LinkedBlockingQueue[String]
 for (i <- 1 to 5500) queue.offer(i.toString)
 execute {
 val it = queue.iterator
 while (it.hasNext) log(it.next())
 }
 for (i <- 1 to 5500) queue.poll()
 Thread.sleep(1000)
}

The main thread creates a queue with 5500 elements. It then starts a concurrent task
that creates an iterator and prints the elements one by one. At the same time, the
main thread starts removing all the elements from the queue in the same order. In
one of our thread runs, the iterator returns 1, 4779, and 5442. This does not make
sense, because the queue never contained these three elements alone; we would
expect to see a suffix that has the range of 1 to 5500. We say that the iterator is not
consistent. It is never corrupt and does not throw exceptions, but it fails to return a
consistent set of elements that were at in the queue some point. With a few notable
exceptions, this effect can happen when using any concurrent data structure.

Traditional Building Blocks of Concurrency

[88]

Use iterators on concurrent data structures only when you can
ensure that no other thread will modify the data structure from
the point where the iterator was created until the point where the
iterator's hasNext method returns false.

The CopyOnWriteArrayList and CopyOnWriteArraySet in JDK are exceptions
to this rule, but they copy the underlying data whenever the collection is mutated
and can be slow. Later in this section, we will see a concurrent collection from the
scala.collection.concurrent package called TrieMap, which creates consistent
iterators without copying the underlying dataset and allows arbitrary modifications
during the traversal.

Concurrent sets and maps
Concurrent API designers strive to provide programmers with interfaces that resemble
those from sequential programming. We have seen that this is the case with concurrent
queues. As the main use case for concurrent queues is the producer-consumer pattern,
the BlockingQueue interface additionally provides blocking versions of methods that
are already known from sequential queues. Concurrent maps and concurrent sets
are map and set collections, respectively, that can be safely accessed and modified by
multiple threads. Like concurrent queues, they retain the API from the corresponding
sequential collections. Unlike concurrent queues, they do not have blocking operations.
The reason is that their principal use case is not the producer-consumer pattern but
encoding the program state.

The concurrent.Map trait in the scala.collection package represents different
concurrent map implementations. In our filesystem API, we use it to track the files
that exist in the filesystem as follows:

val files: concurrent.Map[String, Entry]

This concurrent map contains paths and their corresponding Entry objects. These are
the same Entry objects that prepareForDelete used earlier. The concurrent files
map is populated when the FileSystem object is created.

For the examples in this section, we add the following dependency to our build.sbt
file. This will allow us to use the Apache Commons IO library in order to handle files:

libraryDependencies += "commons-io" % "commons-io" % "2.4"

Chapter 3

[89]

We will allow FileSystem objects to only track files in a certain directory called
root. By instantiating the FileSystem object with the "." string, we set the root
directory to the root of our project with the example code. This way, the worst thing
that can happen is that you delete all your examples by accident and have to rewrite
them once more. However, that's okay, as practice makes perfect! The FileSystem
class is shown in the following snippet:

import scala.collection.convert.decorateAsScala._
import java.io.File
import org.apache.commons.io.FileUtils
class FileSystem(val root: String) {
 val rootDir = new File(root)
 val files: concurrent.Map[String, Entry] =
 new ConcurrentHashMap().asScala
 for (f <- FileUtils.iterateFiles(rootDir, null, false).asScala)
 files.put(f.getName, new Entry(false))
}

We first create a new ConcurrentHashMap method from the java.util.concurrent
package and wrap it to a Scala concurrent.Map trait by calling asScala. This
method can be called to wrap most Java collections, provided the contents of
the decorateAsScala object are imported like they are in our example. The
asScala method ensures that Java collections obtain the Scala collection API. The
iterateFiles method in the FileUtils class returns a Java iterator that traverses
the files in a specific folder; we can only use Scala iterators in for comprehensions,
so we call asScala again. The first argument for the iterateFiles method specifies
the root folder, and the second method specifies an optional filter for the files. The
final false argument for the iterateFiles method denotes that we do not scan
files recursively in the subdirectories of root. We play it safe and expose only files in
our root project directory to the FileSystem class. We place each f file along with
a fresh Entry object into files by calling put on the concurrent map. There is no
need for a synchronized statement around put, as the concurrent map takes care
of synchronization. The put operation is atomic, and it establishes a happens-before
relationship with subsequent get operations.

The same is true for the other methods such as remove, which removes key-value
pairs from a concurrent map. We can now use the prepareForDelete method
implemented earlier to atomically lock a file for deletion and then remove it from
the files map. We implement the deleteFile method for this purpose:

def deleteFile(filename: String): Unit = {
 files.get(filename) match {
 case None =>
 logMessage(s"Path '$filename' does not exist!")
 case Some(entry) if entry.isDir =>
 logMessage(s"Path '$filename' is a directory!")
 case Some(entry) => execute {

Traditional Building Blocks of Concurrency

[90]

 if (prepareForDelete(entry))
 if (FileUtils.deleteQuietly(new File(filename)))
 files.remove(filename)
 }
 }
}

If the deleteFile method finds that the concurrent map contains the file with the
given name, it calls the execute method to asynchronously delete it, as we prefer not
to block the caller thread. The concurrent task, started by the execute invocation,
calls the prepareForDelete method. If the prepareForDelete method returns
true, then it is safe to call the deleteQuietly method from the Commons IO library.
This method physically removes the file from the disk. If the deletion is successful,
the file entry is removed from the files map. We create a new file called test.txt
and use it to test deleteFile. We prefer not to experiment with the build definition
file. The following code shows the deletion of the file:

fileSystem.deleteFile("test.txt")

The second time we run this line, our logger thread from before complains that the
file does not exist. A quick check in our file manager reveals that test.txt is no
longer there.

The concurrent.Map trait also defines several complex linearizable methods. Recall
that complex linearizable operations involve multiple reads and writes. In the context
of concurrent maps, methods are complex linearizable operations if they involve
multiple instances of get and put but appear to get executed at a single point in time.
Such methods are a powerful tool in our concurrency arsenal. We have already seen
that volatile reads and writes do not allow us to implement the getUniqueId method,
and we need compareAndSet for that. Similar methods on concurrent maps have
comparable advantages. Different atomic methods on atomic maps are summarized in
the following table. Note that unlike the CAS instruction, these methods use structural
equality to compare keys and values, and they call the equals method.

Signature Description
putIfAbsent(k: K, v:
V): Option[V]

This atomically assigns the value v to the key k if k is not in
the map. Otherwise, it returns the value associated with k.

remove(k: K, v: V):
Boolean

This atomically removes the key k if it is associated to the
value equal to v and returns true if successful.

replace(k: K, v: V):
Option[V]

This atomically assigns the value v to the key k and returns
the value previously associated with k.

replace(k: K, ov: V,
nv: V): Boolean

This atomically assigns the key k to the value nv if k
was previously associated with ov and returns true if
successful.

Chapter 3

[91]

Coming back to our filesystem API, let's see how these methods work to our
advantage. We will now implement the copyFile method in the FileSystem
class. Recall the diagram from the section on atomic variables. A copy operation can
start only if the file is either in the Idle state or already in the Copying state, so we
need to atomically switch the file state from Idle to Copying or from the Copying
state to another Copying state with the value n incremented. We do this with the
acquire method:

@tailrec private def acquire(entry: Entry): Boolean = {
 val s0 = entry.state.get
 s0 match {
 case _: Creating | _: Deleting =>
 logMessage("File inaccessible, cannot copy."); false
 case i: Idle =>
 if (entry.state.compareAndSet(s0, new Copying(1))) true
 else acquire(entry)
 case c: Copying =>
 if (entry.state.compareAndSet(s0, new Copying(c.n+1))) true
 else acquire(entry)
 }
}

After a thread completes copying a file, it needs to release the Copying lock. This is
done by a similar release method, which decreases the Copying count or changes
the state to Idle. Importantly, this method must be called after files are newly
created in order to switch from the Creating state to the Idle state. By now, the
retry pattern following unsuccessful CAS operations should be child's play for you.
The following code shows this:

@tailrec private def release(entry: Entry): Unit = {
 Val s0 = entry.state.get
 s0 match {
 case c: Creating =>
 if (!entry.state.compareAndSet(s0, new Idle)) release(entry)
 case c: Copying =>
 val nstate = if (c.n == 1) new Idle else new Copying(c.n-1)
 if (!entry.state.compareAndSet(s0, nstate)) release(entry)
 }
}

Traditional Building Blocks of Concurrency

[92]

We now have all the machinery required to implement copyFile. This method
checks whether an src entry exists in the files map. If the entry exists, the copyFile
method starts a concurrent task to copy the file. The concurrent task attempts to
acquire the file for copying and creates a new destEntry file entry in the Creating
state. It then calls the putIfAbsent method, which atomically checks whether the
file path dest is a key in the map and adds the dest and destEntry pair if it is not.
Both srcEntry and destEntry are locked at this point, so the FileUtils.copyFile
method from the Commons IO library is called to copy the file on the disk. Once the
copying is complete, both srcEntry and destEntry are released:

def copyFile(src: String, dest: String): Unit = {
 files.get(src) match {
 case Some(srcEntry) if !srcEntry.isDir => execute {
 if (acquire(srcEntry)) try {
 val destEntry = new Entry(isDir = false)
 destEntry.state.set(new Creating)
 if (files.putIfAbsent(dest, destEntry) == None) try {
 FileUtils.copyFile(new File(src), new File(dest))
 } finally release(destEntry)
 } finally release(srcEntry)
 }
 }
}

You should convince yourself that the copyFile method would be incorrect if it first
called get to check whether dest is in the map and then called put to place dest
in the map. This would allow another thread's get and put steps to interleave and
potentially overwrite an entry in the files map. This demonstrates the importance
of the putIfAbsent method.

There are some methods the concurrent.Map trait inherits from the mutable.Map
trait that are not atomic. An example is getOrElseUpdate, which retrieves an element
if it is present in the map and updates it with a different element otherwise. This
method is not atomic, while its individual steps are atomic; they can be interleaved
arbitrarily with concurrent calls to getOrElseUpdate. Another example is clear,
which does not have to be atomic on concurrent collections in general and can behave
like the concurrent data structure iterators we studied before.

The+=, -=, put, update, get, apply, and remove methods in the
concurrent.Map trait are linearizable methods. The putIfAbsent,
conditional remove, and replace methods in the concurrent.Map
trait are the only complex methods guaranteed to be linearizable.

Chapter 3

[93]

Just like the Java concurrency library, Scala currently does not have a dedicated
trait for concurrent sets. A concurrent set of the Set[T] type can be emulated with a
concurrent map with the ConcurrentMap[T, Unit] type, which ignores the values
assigned to keys. This is the reason why concrete concurrent set implementations
appear less often in concurrency frameworks. In rare situations, where a Java
concurrent set, such as the ConcurrentSkipListSet[T] class, need to be converted
to a Scala concurrent set, we can use the asScala method, which converts it to a
mutable.Set[T] class.

As a final note, you should never use null as a key or value in a concurrent map or
a concurrent set. Many concurrent data structure implementations on JVM rely on
using null as a special indicator of the absence of an element.

Avoid using the null value as a key or a value in a concurrent
data structure.

Some implementations are defensive and will throw an exception; for others, the
results might be undefined. Even when a concurrent collection specifies that null is
allowed, you should avoid coupling null with your program logic in order to make
potential refactoring easier.

Concurrent traversals
As you had a chance to witness, Scala directly inherits many of its basic concurrency
utilities from the Java concurrency packages. After all, these facilities were
implemented by JVM's concurrency experts. Apart from providing conversions that
make Java's traditional concurrency utilities feel Scala-idiomatic, there is no need to
reinvent what's already there. When it comes to concurrent collections, a particularly
bothersome limitation is that you cannot safely traverse most concurrent collections
and modify them in the same time. This is not so problematic for sequential
collections where we control the thread that calls foreach or uses iterators. In a
concurrent system where threads are not perfectly synchronized with each other, it is
much harder to guarantee that there will be no modifications during the traversal.

Traditional Building Blocks of Concurrency

[94]

Fortunately, Scala has an answer for concurrent collection traversals. The TrieMap
collection from the scala.collection.concurrent package, which is based on the
concurrent Ctrie data structure, is a concurrent map implementation that produces
consistent iterators. When its iterator method is called, the TrieMap collection
atomically takes a snapshot of all the elements. A snapshot is complete information
about the state of a data structure. The iterator then uses this snapshot to traverse
the elements. If the TrieMap collection is later modified during the traversal,
modifications are not visible in the snapshot and the iterator does not reflect them.
You might conclude that taking a snapshot is expensive and requires the copying
all the elements, but this is not the case. The snapshot method of the TrieMap class
incrementally rebuilds parts of the TrieMap collection when they are first accessed
by some thread. The readOnlySnapshot method, internally used by the iterator
method, is even more efficient. It ensures that only the modified parts of the TrieMap
collection are lazily copied. If there are no subsequent concurrent modifications, then
no part of the TrieMap collection is ever copied.

Let's study the difference between the Java ConcurrentHashMap and the Scala
concurrent.TrieMap collections in an example. Assume that we have a concurrent
map that maps names to numerals in these names. For example, "Jane" will be
mapped to 0, but "John 4" will be mapped to 4, and so on. In one concurrent task,
we add different names for John in the order of 0 to 10 to the ConcurrentHashMap.
We concurrently traverse the map and output these names:

object CollectionsConcurrentMapBulk extends App {
 val names = new ConcurrentHashMap[String, Int]().asScala
 names("Johnny") = 0; names("Jane") = 0; names("Jack") = 0
 execute { for (n <- 0 until 10) names(s"John $n") = n }
 execute { for (n <- names) log(s"name: $n") }
 Thread.sleep(1000)
}

If the iterator was consistent, we would expect to see the three names Johnny, Jane,
and Jack that were initially in the map and the name John in the interval from 0
to an n value, depending on how many names the first task added; this could be
John 1, John 2, or John 3. Instead, the output shows you random nonconsecutive
names such as John 8 and John 5, which does not make sense. John 8 should never
appear in the map without John 7, and other entries inserted earlier by the other
task. This never happens in a concurrent TrieMap collection. We can run the same
experiment with the TrieMap collection and sort the names lexicographically before
outputting them. Running the following program always prints all the John names
in the interval of 0 and some value n:

object CollectionsTrieMapBulk extends App {
 val names = new concurrent.TrieMap[String, Int]

Chapter 3

[95]

 names("Janice") = 0; names("Jackie") = 0; names("Jill") = 0
 execute {for (n <- 10 until 100) names(s"John $n") = n}
 execute {
 log("snapshot time!")
 for (n <- names.map(_._1).toSeq.sorted) log(s"name: $n")
 }
}

How is this useful in practice? Imagine that we need to return a consistent snapshot
of the filesystem; all the files are as seen by the file manager or an FTP server at
a point in time. A TrieMap collection ensures that other threads that delete or
copy files cannot interfere with the thread that is extracting the files. We thus use
TrieMap to store files in our filesystem API and define a simple allFiles method
that returns all the files. At the point where we start using the files map in a for
comprehension, a snapshot with the filesystem contents is created:

val files: concurrent.Map[String, Entry] =
 new concurrent.TrieMap()
def allFiles(): Iterable[String] =
 for ((name, state) <- files) yield name

We use allFiles to display all the files in the root directory:

val rootFiles = fileSystem.allFiles()
log("All files in the root dir: " + rootFiles.mkString(", "))

After having seen both these concurrent maps, you might be wondering which one
to use? This mainly depends on the use case. If the application requires consistent
iterators, then you should definitely use the TrieMap collections. On the other
hand, if the application does not require consistent iterators and rarely modifies the
concurrent map, you can consider using ConcurrentHashMap collections, as their
lookup operations are slightly faster.

Use TrieMap collections if you require consistent iterators and
ConcurrentHashMap collections when the get and apply
operations are the bottlenecks in your program.

From a performance point of view, this tip is only applicable if your application is
exclusively accessing a concurrent map all the time and doing nothing else. In practice,
this is rarely the case, and in most situations, you can use either of these collections.

Traditional Building Blocks of Concurrency

[96]

Creating and handling processes
So far, we focused on concurrency within a Scala program running in a single
JVM process. Whenever we wanted to allow multiple computations to proceed
concurrently, we created new threads or sent Runnable objects to Executor threads.
Another venue to concurrency is to create separate processes. As explained in
Chapter 2, Concurrency on the JVM and the Java Memory Model, separate processes
have separate memory spaces and cannot share the memory directly.

There are several reasons why we occasionally want to do this. First, while JVM
has a very rich ecosystem with thousands of software libraries for all kinds of tasks,
sometimes, the only available implementation of a certain software component is a
command-line utility or prepackaged program. Running it in a new process could be
the only way to harvest its functionality. Second, sometimes we want to put Scala or
Java code that we do not trust in a sandbox. A third-party plugin might have to run
with a reduced set of permissions. Third, sometimes we just don't want to run in the
same JVM process for performance reasons. Garbage collection or JIT compilation
in a separate process should not affect the execution of our process, given that the
machine has sufficient CPUs.

The scala.sys.process package contains a concise API for dealing with other
processes. We can run the child process synchronously—in which case, the thread
from the parent process that runs it waits until the child process terminates—or
asynchronously—in which case, the child process runs concurrently with the
calling thread from the parent process. We first show you how to run a new
process synchronously:

import scala.sys.process._
object ProcessRun extends App {
 val command = "ls"
 val exitcode = command.!
 log(s"command exited with status $exitcode")
}

Importing the contents of the scala.sys.process package allows us to call the !
method on any string. The shell command represented by the string is then run
from the working directory of the current process. The return value is the exit
code of the new process: zero when the process exits successfully and a nonzero
error code otherwise.

Chapter 3

[97]

Sometimes, we are interested in the standard output of a process rather than its exit
code. In this case, we start the process with the!! method. Let's assume that we want
a lineCount method for text files in FileSystem but are too lazy to implement it
from scratch:

def lineCount(filename: String): Int = {
 val output = s"wc $filename".!!
 output.trim.split(" ").head.toInt
}

After removing the white space from the output with the trim method on String
and converting the first part of the output to an integer, we obtain the word count
of a file.

To start the process asynchronously, we call the run method on a string that represents
the command. This method returns a Process object with the exitValue method,
which is blocked until the process terminates, and the method destroy, which stops
the process immediately. Assume that we have a potentially long-running process that
lists all the files in our filesystem. After one second, we might wish to stop it by calling
the destroy method on the Process object:

object ProcessAsync extends App {
 val lsProcess = "ls -R /".run()
 Thread.sleep(1000)
 log("Timeout - killing ls!")
 lsProcess.destroy()
}

Overloads of the run method allow you to communicate with the process by hooking
the custom input and output streams or providing a custom logger object that is
called each time the new process outputs a line.

The scala.sys.process API has additional features such as starting multiple
processes and piping their outputs together, running a different process if the
current process fails, or redirecting the output to a file. It strives to mimic much of
the functionality provided by the Unix shells. For complete information, we refer
the reader to the Scala standard library's documentation of the scala.sys.process
package.

Traditional Building Blocks of Concurrency

[98]

Summary
This chapter presented the traditional building blocks of concurrent programs in
Scala. We saw how to use Executor objects to run concurrent computations. We
learned how to use atomic primitives to atomically switch between different states
in the program and implement locks and lock-free algorithms. We studied the
implementation of lazy values and their impact on concurrent programs. We then
showed you important classes of concurrent collections and learned how to apply
them in practice, and we concluded by visiting the scala.sys.process package.
These insights are not only specific to Scala; but most languages and platforms also
have concurrency utilities that are similar to the ones presented in this chapter.

Many other Java concurrency APIs are thoroughly explained in the book Java
Concurrency in Practice, Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David
Holmes, and Doug Lea, Addison Wesley. To learn more about concepts such as
lock-freedom, atomic variables, various types of locks, or concurrent data structures,
we recommend the book The Art of Multiprocessor Programming, Maurice Herlihy and
Nir Shavit, Morgan Kaufmann.

Although the concurrency building blocks in this chapter are more high level than
the basic concurrency primitives of Chapter 2, Concurrency on the JVM and the Java
Memory Model, there are still culprits lurking at every corner. We had to be careful
not to block when running on the execution context, to steer clear from the ABA
problem, avoid synchronizing on objects that use lazy values, and ensure that
concurrent collections are not modified while using their iterators. All this imposes
quite a burden on the programmer. Couldn't concurrent programming be simpler?
Fortunately, the answer is yes, as Scala supports styles of expressing concurrency
that are more high level and declarative; less prone to effects such as deadlocks,
starvation, or nondeterminism; and generally easier to reason about. In the following
chapters, we dive into Scala-specific concurrency APIs that are safer and more
intuitive to use. We start by studying futures and promises in the next chapter,
which allow you to compose asynchronous computations in a thread-safe and
intuitive way.

Chapter 3

[99]

Exercises
The following exercises cover the various topics from this chapter. Most of the
exercises require implementing new concurrent data structures using atomic
variables and the CAS instruction. These data structures can also be solved using
the synchronized statement, so it is helpful to contrast the advantages of the
two approaches.

1.	 Implement a custom ExecutionContext class called PiggybackContext,
which executes Runnable objects on the same thread that calls execute.
Ensure that a Runnable object executing on the PiggybackContext can
also call execute and that exceptions are properly reported.

2.	 Implement a TreiberStack class, which implements a concurrent stack
abstraction:
class TreiberStack[T] {
 def push(x: T): Unit = ???
 def pop(): T = ???
}

Use an atomic reference variable that points to a linked list of nodes that
were previously pushed to the stack. Make sure that your implementation
is lock-free and not susceptible to the ABA problem.

3.	 Implement a ConcurrentSortedList class, which implements a concurrent
sorted list abstraction:
class ConcurrentSortedList[T](implicit val ord: Ordering[T]) {
 def add(x: T): Unit = ???
 def iterator: Iterator[T] = ???
}

Under the hood, the ConcurrentSortedList class should use a linked list of
atomic references. Ensure that your implementation is lock-free and avoids
ABA problems.
The Iterator object returned by the iterator method must correctly
traverse the elements of the list in the ascending order under the assumption
that there are no concurrent invocations of the add method.

4.	 If required, modify the ConcurrentSortedList class from the previous
example so that calling the add method has the running time linear to the
length of the list and creates a constant number of new objects when there
are no retries due to concurrent add invocations.

Traditional Building Blocks of Concurrency

[100]

5.	 Implement a LazyCell class with the following interface:
class LazyCell[T](initialization: =>T) {
 def apply(): T = ???
}

Creating a LazyCell object and calling the apply method must have the
same semantics as declaring a lazy value and reading it, respectively.
You are not allowed to use lazy values in your implementation.

6.	 Implement a PureLazyCell class with the same interface and semantics
as the LazyCell class from the previous exercise. The PureLazyCell class
assumes that the initialization parameter does not cause side effects, so it
can be evaluated more than once.
The apply method must be lock-free and should call the initialization
as little as possible.

7.	 Implement a SyncConcurrentMap class that extends the Map interface from
the scala.collection.concurrent package. Use the synchronized
statement to protect the state of the concurrent map.

8.	 Implement a method spawn that, given a block of Scala code, starts a new
JVM process and runs the specified block in the new process:
def spawn[T](block: =>T): T = ???

Once the block returns a value, the spawn method should return the value
from the child process. If the block throws an exception, the spawn method
should throw the same exception.

Use Java serialization to transfer the block of code, its return
value, and the potential exceptions between the parent and
the child JVM processes.

Asynchronous Programming
with Futures and Promises

Programming in a functional style makes the state presented to your code explicit,
which makes it much easier to reason about, and, in a completely pure system,
makes thread race conditions impossible.

John Carmack

In the examples of the previous chapters, we often dealt with blocking computations.
We have seen that blocking synchronization can have negative effects—it can
cause deadlocks, starve thread pools, or break lazy value initialization. While in
some cases, blocking is the right tool for the job, in many cases we can avoid it.
Asynchronous programming refers to the programming style in which executions
occur independently of the main program flow. Asynchronous programming helps
you to eliminate blocking: instead of suspending the thread whenever a resource
is not available, a separate computation is scheduled to proceed once the resource
becomes available.

In a way, many of the concurrency patterns seen so far support asynchronous
programming; thread creation and scheduling execution context tasks can be used
to start executing a computation concurrent to the main program flow. Still, it is not
straightforward to use these facilities directly when avoiding blocking or composing
asynchronous computations. In this chapter, we will focus on two abstractions
in Scala that are specifically tailored for this task: futures and promises. More
specifically, we will study the following topics:

•	 Starting asynchronous computations, and using Future objects
•	 Installing callbacks that handle the results of asynchronous computations
•	 Exception semantics of Future objects, and using the Try type

Asynchronous Programming with Futures and Promises

[102]

•	 Functional composition of Future objects
•	 Using Promise objects to interface with callback-based APIs, implement

future combinators and support cancellation
•	 Blocking threads inside asynchronous computations
•	 Using the Scala Async library

In the next section, we will start by introducing the Future type, and show why
it is useful.

Futures
In the earlier chapters, we have learned that parallel executions in a concurrent
program proceed on entities called threads. At any point, the execution of a thread
can be temporarily suspended, until a specific condition is fulfilled. When this
happens, we say that the thread is blocked. Why do we block threads in the first
place in concurrent programming? One of the reasons is that we have a finite amount
of resources; multiple computations that share these resources sometimes need to
wait. In other situations, a computation needs specific data to proceed, and if that
data is not yet available, threads responsible for producing the data could be slow or
the source of the data could be external to the program. A classic example is waiting
for the data to arrive over the network. Let's assume that we have a getWebpage
method that given a url string with the location of the webpage, returns that
webpage's contents:

def getWebpage(url: String): String

The return type of the getWebpage method is String; the method must return a string
with the webpage's contents. Upon sending an HTTP request, though, the webpage's
contents are not available immediately. It takes some time for the request to travel over
the network to the server and back before the program can access the document. The
only way for the method to return the contents of the webpage as a string value is to
wait for the HTTP response to arrive. However, this can take a relatively long amount
of time from the program's point of view; even with a high-speed Internet connection,
the getWebpage method needs to wait. Since the thread that called getWebpage cannot
proceed without the contents of the webpage, it needs to pause its execution; therefore,
the only way to correctly implement the getWebpage method is to block.

Chapter 4

[103]

We already know that blocking can have negative side effects, so can we change the
return value of getWebpage to some special value that can be returned immediately?
The answer is yes. In Scala, this special value is called a future. The future is a
placeholder, that is, a memory location for the value. This placeholder does not need
to contain a value when the future is created; the value can be placed into the future
eventually by getWebpage. We can change the signature of the getWebpage method
to return a future as follows:

def getWebpage(url: String): Future[String]

Here, the Future[String] type means that the future object can eventually contain
a String value. We can now implement getWebpage without blocking: we can start
the HTTP request asynchronously and place the webpage's contents into the future
when they become available. When this happens, we can say that the getWebpage
method completes the future. Importantly, after the future is completed with some
value, that value can no longer change.

The Future[T] type encodes latency in the program—use it to
encode values that will become available later during execution.

This removes blocking from the getWebpage method, but it is not clear how the
calling thread can extract the content of the future. Polling is one non-blocking way
of extracting the content. In the polling approach, the calling thread calls a special
method to block until the value becomes available. While this approach does not
eliminate blocking, it transfers the responsibility of blocking from the getWebpage
method to the caller thread. Java defines its own Future type to encode values that
will become available later. However, as a Scala developer, you should use Scala's
futures instead, they allow additional ways of handling future values and avoid
blocking, as we will soon see.

When programming with futures in Scala, we need to distinguish between future
values and future computations. A future value of the Future[T] type denotes some
value of the T type in the program that might not be currently available, but could
become available later. Usually, when we say a future, we really mean a future value.
In the scala.concurrent package, futures are represented with the Future[T] trait:

trait Future[T]

By contrast, a future computation is an asynchronous computation that produces a
future value. A future computation can be started by calling the apply method
on the Future companion object. This method has the following signature in the
scala.concurrent package:

def apply[T](b: =>T)(implicit e: ExecutionContext): Future[T]

Asynchronous Programming with Futures and Promises

[104]

This method takes a by-name parameter of the T type. This is the body of the
asynchronous computation that results in some value of type T. It also takes an
implicit ExecutionContext parameter, which abstracts over where and when
the thread gets executed, as we learned in Chapter 3, Traditional Building Blocks of
Concurrency. Recall that Scala's implicit parameters can either be specified when
calling a method, in the same way as normal parameters, or they can be left out: in
this case, the Scala compiler searches for a value of the ExecutionContext type in
the surrounding scope. Most Future methods take an implicit execution context.
Finally, the Future.apply method returns a future of the type T. This future is
completed with the value resulting from the asynchronous computation, b.

Starting future computations
Let's see how to start a future computation in an example. We first import the
contents of the scala.concurrent package. We then import the global execution
context from the Implicits object. This makes sure that the future computations
execute on global—the default execution context you can use in most cases:

import scala.concurrent._
import ExecutionContext.Implicits.global
object FuturesCreate extends App {
 Future { log("the future is here") }
 log("the future is coming")
 Thread.sleep(1000)
}

The order, in which the log method calls (in the future computation and the main
thread) execute, is nondeterministic. The Future singleton object followed by a block
is syntactic sugar for calling the Future.apply method. The Future.apply method
acts similar to the execute statement from Chapter 3, Traditional Building Blocks of
Concurrency. The difference is that the Future.apply method returns a future value.
We can poll this future value until it is completed. In the following example, we
can use the scala.io.Source object to read the contents of our build.sbt file in a
future computation. The main thread calls the isCompleted method on the future
value, buildFile, returned from the future computation. Chances are that the build
file was not read so fast, so isCompleted returns false. After 250 milliseconds, the
main thread calls isCompleted again, and this time isCompleted returns true.
Finally, the main thread calls the value method, which returns the contents of
the build file:

import scala.io.Source
object FuturesDataType extends App {
 val buildFile: Future[String] = Future {
 val f = Source.fromFile("build.sbt")

Chapter 4

[105]

 try f.getLines.mkString("\n") finally f.close()
 }
 log(s"started reading the build file asynchronously")
 log(s"status: ${buildFile.isCompleted}")
 Thread.sleep(250)
 log(s"status: ${buildFile.isCompleted}")
 log(s"value: ${buildFile.value}")
}

In this example, we used polling to obtain the value of the future. The Future
singleton object's polling methods are non-blocking, but they are also nondeterministic;
isCompleted will repeatedly return false until the future is completed. Importantly,
completion of the future is in a happens-before relationship with the polling calls. If the
future completes before the invocation of the polling method, then its effects are visible
to the thread after the polling completes.

Shown graphically, polling looks like the following figure:

Polling diagram

Polling is like calling your potential employer every 5 minutes to ask if you're hired.
What you really want to do is hand in a job application and then apply for other jobs,
instead of busy-waiting for the employer's response. Once your employer decides to
hire you, he will give you a call on the phone number you left him. We want futures
to do the same; when they are completed, they should call a specific function we left
for them. This is the topic of the next section.

Future callbacks
A callback is a function that is called once its arguments become available. When a
Scala future takes a callback, it eventually calls that callback. However, the future
does not call the callback before this future is completed with some value.

Asynchronous Programming with Futures and Promises

[106]

Let's assume that we need to look up the details of the URL specification from the
W3 consortium. We are interested in all the occurrences of the telnet keyword.
The URL specification is available as a text document at the w3.org domain. We can
use the scala.io.Source object to fetch the contents of the specification, and use
futures in the getUrlSpec method to asynchronously execute the HTTP request.
The getUrlSpec method first calls fromURL to obtain a Source object with the text
document. It then calls getLines to get a list of separate lines in the document:

object FuturesCallbacks extends App {
 def getUrlSpec(): Future[List[String]] = Future {
 val url = "http://www.w3.org/Addressing/URL/url-spec.txt"
 val f = Source.fromURL(url)
 try f.getLines.toList finally f.close()
 }
 val urlSpec: Future[List[String]] = getUrlSpec()

To find the lines in the urlSpec future that contains the telnet keyword, we use the
find method that takes a list of lines and a keyword and returns a string containing
the matches:

 def find(lines: List[String], keyword: String): String =
 lines.zipWithIndex collect {
 case (line, n) if line.contains(keyword) => (n, line)
 } mkString("\n")

The find method takes a List[String] parameter, but urlSpec is of the
Future[List[String]] type. We cannot pass the urlSpec future directly to the
find method; and for a good reason, the value might not be available at the time
when we call find.

Instead, we install a callback to the future using the foreach method. Note that, the
equivalent of the foreach method is called onSuccess, but might be deprecated
after Scala 2.11. This method takes a partial function that, given a value of the future,
performs some action, as follows:

 urlSpec foreach {
 case lines => log(find(lines, "telnet"))
 }
 log("callback registered, continuing with other work")
 Thread.sleep(2000)

w3.org

Chapter 4

[107]

Importantly, installing a callback is a non-blocking operation. The log statement
in the main thread immediately executes after the callback is registered, but the
log statement in the callback can be called much later. This is illustrated in the
following figure:

Callback diagram

Note that the callback is not necessarily invoked immediately after the future is
completed. Most execution contexts schedule a task to asynchronously process
the callbacks. The same is true if the future is already completed when we try to
install a callback.

After the future is completed, the callback is called eventually
and independently from other callbacks on the same future. The
specified execution context decides when and on which thread the
callback gets executed.
There is a happens-before relationship between completing the
future and starting the callback.

We are not limited to installing a single callback to the future. If we additionally
want to find all the occurrences of the password keyword, we can install
another callback:

 urlSpec foreach {
 case lines => log(find(lines, "password"))
 }
 Thread.sleep(1000)
}

Asynchronous Programming with Futures and Promises

[108]

As an experienced Scala programmer, you might have heard about referential
transparency. Roughly speaking, a function is referentially transparent if it does
not execute any side effects such as variable assignment, modifying mutable
collections, or writing to the standard output. Callbacks on futures have one very
useful property. Programs using only the Future.apply and foreach calls with
referentially transparent callbacks are deterministic. For the same inputs, such
programs will always compute the same results.

Programs composed from referentially transparent future
computations and callbacks are deterministic.

In the examples so far, we assumed that an asynchronous computation yielding
a future always succeeds. However, computations occasionally fail and throw
exceptions. We will study how to handle failures in asynchronous computations next.

Futures and exceptions
If a future computation throws an exception, then its corresponding future object
cannot be completed with a value. Ideally, we would like to be notified when this
happens. If you apply for a job and the employer decides to hire someone else, you
would still like to receive a phone call. Otherwise, you might spend days sitting idly
in front of your phone, waiting for the call from the recruiter.

When a Scala future is completed, it can either be completed successfully or be
completed with a failure. When a future is completed with a failure, we also say
that a future has failed. To summarize all the different states of a future, we show
the following state diagram. A future is created without any associated callbacks.
Then, any number of callbacks f1, f2, …, fn can be assigned to it. When the future is
completed, it is either completed successfully or has failed. After that, the future's state
no longer changes, and registering a callback immediately schedules it for execution.

Chapter 4

[109]

We now take a closer look at handling the failure case. The foreach method only
accepts callbacks that handle values from a successfully completed future, so we
need another method to install failure callbacks. This method is called failed. It
returns a Future[Throwable] object that contains the exception that the current
object has failed with, and can be used with foreach to access the exception:

object FuturesFailure extends App {
 val urlSpec: Future[String] = Future {
 val invalidUrl = "http://www.w3.org/non-existent-url-spec.txt"
 Source.fromURL(invalidUrl).mkString
 }
 urlSpec.failed foreach {
 case t => log(s"exception occurred - $t")
 }
 Thread.sleep(1000)
}

In this example, our asynchronous computation sends an HTTP request to an
invalid URL. As a result, the fromURL method throws an exception, and the urlSpec
future fails. The program then prints the exception name and message with the
log statement.

Using the Try type
For conciseness, sometimes we want to subscribe to both successes and failures in the
same callback. To do this, we need to use the Try[T] type. The Try[T] type is very
similar to the Option[T] type. Recall from your experience with sequential Scala
programming that the Option[T] type is used to encode a value of the type T or its
absence. A value of Option[T] type can either be an object of a Some[T] type, which
holds some value, or None, which does not hold anything. We use pattern matching
to determine whether an Option[T] type is Some[T] or None. Optional types are an
alternative to using null values, which is what one typically does in Java. However,
the Option[T] type does not allow encoding failures in its None subtype. None tells
us nothing about the exception that failed the computation. For this, we use the
Try[T] type.

The Try[T] type has two implementations: Success[T], which encodes results of
the successful computations, and Failure[T], which encodes the Throwable objects
that failed the computation. We use pattern matching to determine which of the two
a Try[T] object is:

def handleMessage(t: Try[String]) = t match {
 case Success(msg) => log(msg)
 case Failure(error) => log(s"unexpected failure - $error")
}

Asynchronous Programming with Futures and Promises

[110]

The Try[T] objects are immutable objects used synchronously; unlike futures,
they contain a value or an exception from the moment they are created. They are
more akin to collections than to futures. We can even compose Try[T] values in
for-comprehensions. In the following code snippet, we will compose the name
of the current thread with some custom text:

import scala.util.{Try, Success, Failure}
object FuturesTry extends App {
 val threadName: Try[String] = Try(Thread.currentThread.getName)
 val someText: Try[String] = Try("Try objects are synchronous")
 val message: Try[String] = for {
 tn <- threadName
 st <- someText
 } yield s"Message $st was created on t = $tn"
 handleMessage(message)
}

We will first create two Try[String] values, threadName and someText, using the
Try.apply factory method. The for-comprehension extracts the thread name, tn,
from the threadName value, and then the st text from the someText value. These
values are then used to yield another string. If any of the Try values in the for-
comprehension fail, then the resulting Try value fails with the Throwable object
from the first failed Try value. However, if all the Try values are Success, then
the resulting Try value is Success with the value of the expression after the yield
keyword. If this expression throws an exception, the resulting Try value fails with
that exception.

Note that the preceding example always prints the name of the main thread.
Creating Try objects and using them in for-comprehensions always occurs
on the caller thread.

Unlike Future[T] values, Try[T] values are manipulated
synchronously.

In most cases, we use the Try values in pattern matching. When calling the
onComplete callback, we will provide a partial function that matches the Success
and Failure values. Our example with fetching the URL specification is as follows:

urlSpec onComplete {
 case Success(txt) => log(find(txt))
 case Failure(err) => log(s"exception occurred - $err")
}

Chapter 4

[111]

Fatal exceptions
We have seen futures storing exceptions that caused them to fail. However, there are
some Throwable objects that a future computation does not catch. In the following
short program, the callback on the f future is never invoked. Instead, the stack trace
of InterruptedException is printed on the standard error output:

object FuturesNonFatal extends App {
 val f = Future { throw new InterruptedException }
 val g = Future { throw new IllegalArgumentException }
 f.failed foreach { case t => log(s"error - $t") }
 g.failed foreach { case t => log(s"error - $t") }
}

The InterruptedException exception and some severe program errors
such as LinkageError, VirtualMachineError, ThreadDeath, and Scala's
ControlThrowable error are forwarded to the execution context's reportFailure
method introduced in Chapter 3, Traditional Building Blocks of Concurrency. These
types of Throwable objects are called fatal errors. To find out if a Throwable object
will be stored in a Future instance, you can pattern match the Throwable object
with the NonFatal extractor:

f.failed foreach {
 case NonFatal(t) => log(s"$t is non-fatal!")
}

Note that you never need to manually match in order to see whether errors in your
futures are nonfatal. Fatal errors are automatically forwarded to the execution context.

Future computations do not catch fatal errors. Use the NonFatal
extractor to pattern match against nonfatal errors.

Functional composition on futures
Callbacks are useful, but they can make reasoning about control flow difficult when
programs become larger. They also disallow certain patterns in asynchronous
programming—in particular, it is cumbersome to use a callback to subscribe to
multiple futures at once. Luckily, Scala futures have an answer to these problems
called functional composition. Functional composition on futures allows using futures
inside for comprehensions, and is often more intuitive to use than callbacks.

Asynchronous Programming with Futures and Promises

[112]

Introducing futures transfers the responsibility for blocking from the API to the
caller. The foreach method helps you to avoid blocking altogether. It also eliminates
nondeterminism inherent to polling methods such as isCompleted and value. Still,
there are some situations when foreach is not the best solution.

Let's say that we want to implement some of the functionality from the Git version
control system: we want to use the .gitignore file to find the files in our project tree
that should not be versioned. We simplify our task by assuming that the .gitignore
file only contains a list of prefixes for blacklisted file paths, and no regular expressions.

We perform two asynchronous actions. First, we fetch the contents of our
.gitignore file in a future computation. Then, using its contents, we will
asynchronously scan all the files in our project directory and match them. We
will start by importing the packages necessary for file handling. In addition to the
scala.io.Source object, we use the java.io package and the Apache Commons
IO FileUtils class and import them as follows:

import java.io._
import org.apache.commons.io.FileUtils._
import scala.collection.convert.decorateAsScala._

If you haven't already added the dependency on Commons IO to your build.sbt
file in the previous chapters, now is a good time to introduce the following line:

libraryDependencies += "commons-io" % "commons-io" % "2.4"

We will first create a future using the blacklistFile method, which reads the
contents of the .gitignore file. With the pace at which technology is evolving these
days, we never know when a different version control system will become more
popular; so we add the name parameter for the name of the blacklist file. We filter
out the empty lines and all the comment lines starting with a # sign. We then
convert them to a list, as shown in the following code snippet:

object FuturesClumsyCallback extends App {
 def blacklistFile(name: String): Future[List[String]] = Future {
 val lines = Source.fromFile(name).getLines
 lines.filter(x => !x.startsWith("#") && !x.isEmpty).toList
 }

Chapter 4

[113]

In our case, the future returned by blacklistFile eventually contains a list with
a single string, target, which is the directory where SBT stores files created by the
Scala compiler. Then, we implement another method named findFiles that, given
a list of patterns, finds all the files in the current directory containing these patterns.
The iterateFiles method from the Commons IO library returns a Java iterator over
the project files, so we can convert it to a Scala iterator by calling asScala. We then
yield all the matching file paths:

 def findFiles(patterns: List[String]): List[String] = {
 val root = new File(".")
 for {
 f <- iterateFiles(root, null, true).asScala.toList
 pat <- patterns
 abspat = root.getCanonicalPath + File.separator + pat
 if f.getCanonicalPath.contains(abspat)
 } yield f.getCanonicalPath
 }

If we now want to list blacklisted files, we first need to call foreach on the
blacklistFile future, and call findPatterns from inside the callback, as follows:

 blacklistFile(".gitignore") foreach {
 case lines =>
 val files = findFiles(lines)
 log(s"matches: ${files.mkString("\n")}")
 }
 Thread.sleep(1000)
}

Assume your fellow developer now asks you to implement another method
blacklisted, which takes the name of the blacklist file and returns a future with
the list of blacklisted files. This allows us to specify the callback independently in
the program; instead of printing the files to the standard output, another part of the
program can, for example, create a safety backup of the blacklisted files using the
following method:

def blacklisted(name: String): Future[List[String]]

Being an experienced object-oriented developer, you'd like to reuse the
blacklistFile future and the findFiles method. After all, the functionality is
already there. We challenge you to reuse the existing methods to implement the new
blacklisted method. Try to use foreach. You will find this task extremely difficult.

Asynchronous Programming with Futures and Promises

[114]

So far, we haven't seen methods that produce new futures using the values
in existing futures. The Future trait has a map method that maps the value in
one future to a value in another future:

def map[S](f: T => S)(implicit e: ExecutionContext): Future[S]

This method is non blocking—it returns the Future[S] object immediately. After
the original future completes with some value x, the returned Future[S] object
is eventually completed with f(x). With the map method, our task is trivial: we
transform the patterns into a list of matching files by calling the findFiles method:

def blacklisted(name: String): Future[List[String]] =
 blacklistFile(name).map(patterns => findFiles(patterns))

As a Scala developer, you know that a map operation on a collection transforms many
elements into a new collection. To more easily comprehend operations such as map
on futures, you can consider a future a specific form of a collection, which contains
at most one element.

Functional composition is a programming pattern in which simpler values are
composed into more complex ones by means of higher-order functions called
combinators. Functional composition on Scala collections should be familiar
to you from sequential Scala programming. For example, the map method on
a collection produces a new collection containing elements from the original
collection, mapped with a specified function. Functional composition on futures is
similar; we can produce new futures by transforming or merging existing futures,
as in the preceding example. Callbacks have shown usefulness, but they do not
directly allow functional composition in the way combinators such as map do. Just
as with callbacks, a function passed to a combinator is never invoked before the
corresponding future completes.

There is a happens-before relationship between completing the future and
invoking the function in any of its combinators.

Choosing between alternative ways to handle futures can be confusing. When should
we use functional composition in place of callbacks? A good rule of thumb is to
use callbacks for side-effecting actions that depend on a single future. In all other
situations, we can use functional composition.

Chapter 4

[115]

When an action in the program depends on the value of a single future,
use callbacks on futures. When subsequent actions in the program
depend on values of multiple futures or produce new futures, use
functional composition on futures.

Let us consider several crucial combinators for functional composition. The map
method on a Future[T] takes a f function and returns a new Future[S] future.
After the Future[T] is completed, the Future[S] is completed by applying f to
the value in Future[T]. If Future[T] fails with some exception e, or the mapping
function f throws an exception e, then Future[S] also fails with that exception e.

Recall that Scala allows using for-comprehensions on objects that have a map method,
so we can use futures in for-comprehensions. Let's assume that we want to get the
future with the longest line from our build.sbt file. The computation proceeds in
two steps. First, we read in the lines from the disk, and then we call maxBy to get
the longest line:

val buildFile = Future { Source.fromFile("build.sbt").getLines }
val longest = for (ls <- buildFile) yield ls.maxBy(_.length)
longest foreach { case line => log(s"longest line: $line") }

The longest declaration is desugared by the Scala compiler into the following line:

val longest = buildFile.map(ls => ls.maxBy(_.length))

The real advantage of for-comprehensions becomes apparent when we use the
flatMap combinator, which has the following signature:

def flatMap[S](f: T => Future[S])(implicit e: ExecutionContext):
 Future[S]

The flatMap combinator uses the current future with the Future[T] type to
produce another future with the Future[S] type. The resulting Future[S] is
completed by taking the value x of the type T from the current future, and mapping
that value to another future f(x). While the future resulting from a map method
completes when the mapping function f completes, the future resulting from a
flatMap method completes when both f and the future returned by f complete.

Asynchronous Programming with Futures and Promises

[116]

To understand how this combinator is useful, let's consider the following example.
Assume that your job application went well and you got that new job you were
hoping for. On the first day of work, you receive a chain e-mail from your secretary.
The chain e-mail claims that you should never open URLs starting with ftp://,
because all of them contain viruses. As a skilful techie with a lot of experience,
you quickly recognize the chain letter for what it is—a scam. You therefore decide
to enlighten your secretary by sending her instructions on how to communicate
using e-mails, and an explanation of what FTP links are. You write a short program
that replies asynchronously. You've got better things to do than to spend your day
writing e-mails:

val netiquetteUrl = "http://www.ietf.org/rfc/rfc1855.txt"
val netiquette = Future { Source.fromURL(netiquetteUrl).mkString }
val urlSpecUrl = "http://www.w3.org/Addressing/URL/url-spec.txt"
val urlSpec = Future { Source.fromURL(urlSpecUrl).mkString }
val answer = netiquette.flatMap { nettext =>
 urlSpec.map { urltext =>
 "Check this out: " + nettext + ". And check out: " + urltext
 }
}
answer foreach { case contents => log(contents) }

This program asynchronously fetches the good old RFC 1855—the guidelines
for e-mail communication, or the netiquette. It then asynchronously fetches the
URL specification with information on the ftp schema. The program attempts to
concatenate the two texts. It calls flatMap on the netiquette future. Based on the
nettext value in the netiquette future, flatMap needs to return another future.
It could return the urlSpec future directly, but the resulting future, answer, would
then be completed with just the URL specification. Instead, we can call the map
combinator on the urlSpec future; we map its value, urltext, into the concatenation
of nettext and urltext. This results in another intermediate future holding the
concatenation; once this future is completed, the answer future is completed as well.
Graphically, this looks as follows:

Chapter 4

[117]

If you look at this execution diagram from far, you will notice that there is an
inherent ordering between asynchronous computations. We can capture these
relationships in a graph, as shown in the following figure:

This graph is called the dataflow graph, because it describes how the data flows
from one future to another. Futures are represented with vertices and asynchronous
computations are directed edges between them. An edge points from one vertex to
another if the value of future in the first vertex is used to compute the value of future
in the second vertex. In this graph, futures produced by Future.apply are source
vertices—they have only outward edges. Various future combinators such as map
and flatMap connect different vertices. Callback functions such as foreach lead to
sink vertices—they have no outward edges. Some combinators, such as flatMap, can
use values from multiple vertices.

The flatMap combinator combines two futures into one: the one
on which flatMap is invoked and the one that is returned by the
argument function.

There are two issues with our e-mail example. First, we should be nicer to our
new secretary; she's not a techie like we are. Second, using flatMap directly makes
the program hard to understand. There are not many developers in the Scala
community that use flatMap like this. Instead, flatMap should be used implicitly
in for-comprehensions:

val answer = for {
 nettext <- netiquette
 urltext <- urlSpec
} yield {
 "First, read this: " + nettext + ". Now, try this: " + urltext
}

After desugaring, this for-comprehension is identical to what we had before. This
is much simpler, the program now almost reads itself. For the nettext value of the
netiquette future and the urltext value of the urlSpec future, the answer future
is a new future with the concatenation of nettext and urltext.

Asynchronous Programming with Futures and Promises

[118]

You should prefer for-comprehensions to using flatMap directly
to make programs more concise and understandable.

Note that the following for-comprehension looks very similar to what we had before,
but it is not equivalent:

val answer = for {
 nettext <- Future { Source.fromURL(netiquetteUrl).mkString }
 urltext <- Future { Source.fromURL(urlSpecUrl).mkString }
} yield {
 "First, read this: " + nettext + ". Now, try this: " + urltext
}

In the preceding code, the nettext value is extracted from the first future. Only after
the first future is completed, the second future computation starts. This is useful
when the second asynchronous computation uses nettext, but in our case, fetching
the netiquette document and the URL specification can proceed concurrently.

So far, we have only considered future combinators that work with successful futures.
When any of the input futures fails or the computation in the combinator throws an
exception, the resulting future fails with the same exception. In some situations, we
want to handle the exception in the future in the same way as we handle exceptions
with a try-catch block in sequential programming. A combinator that is helpful in
these situations is called recover. It's simplified signature is as follows:

def recover(pf: PartialFunction[Throwable, T])
 (implicit e: ExecutionContext): Future[T]

When this combinator is called on a future, which is successfully completed with
some value x of the type T, the resulting future is completed with the same value
x. On the other hand, if a future fails, then the the pf partial function is applied to
the Throwable object that failed it. If the pf partial function is not defined for the
Throwable object, then the resulting future is failed with the same Throwable object.
Otherwise, the resulting future is completed with the result of applying pf to the
Throwable object. If the pf partial function itself throws an exception, the resulting
future is completed with that exception.

Let's assume you're worried about misspelling the URL for the netiquette
document. You can use the recover combinator on the netiquette future
to provide a reasonable default message if anything fails, as follows:

val netiquetteUrl = "http://www.ietf.org/rfc/rfc1855.doc"
val netiquette = Future { Source.fromURL(netiquetteUrl).mkString }
val answer = netiquette recover {

Chapter 4

[119]

 case e: java.io.FileNotFoundException =>
 "Dear secretary, thank you for your e-mail." +
 "You might be interested to know that ftp links " +
 "can also point to regular files we keep on our servers."
}
answer foreach { case contents => log(contents) }
Thread.sleep(2000)

Futures come with other combinators such as filter, fallbackTo, or zip, but
we will not cover all of them here; the understanding of the basic combinators
should be sufficient. You might wish to study the remaining combinators in
the API documentation.

Promises
In Chapter 2, Concurrency on the JVM and the Java Memory Model, we implemented an
asynchronous method that used a worker thread and a task queue to receive and
execute asynchronous computations. That example should have left you with a basic
intuition about how the execute method is implemented in execution contexts.
You might be wondering how the Future.apply method can return and complete
a Future object. We will study promises in this section to answer this question.
Promises are objects that can be assigned a value or an exception only once. This is
why promises are sometimes also called single-assignment variables. A promise is
represented with the Promise[T] type in Scala. To create a promise instance, we use
the Promise.apply method on the Promise companion object:

def apply[T](): Promise[T]

This method returns a new promise instance. Like the Future.apply method, the
Promise.apply method returns immediately; it is non-blocking. However, the
Promise.apply method does not start an asynchronous computation, it just creates a
fresh promise object. When the promise object is created, it does not contain a value
or an exception. To assign a value or an exception to a promise, we use the success
or failure method, respectively.

Perhaps you have noticed that promises are very similar to futures. Both futures
and promises are initially empty and can be completed with either a value or an
exception. This is intentional—every promise object corresponds to exactly one
future object. To obtain the future associated with a promise, we can call the future
method on the promise. Calling this method multiple times always returns the same
future object.

Asynchronous Programming with Futures and Promises

[120]

A promise and a future represent two aspects of a single-assignment
variable: the promise allows you to assign a value to the future object,
whereas the future allows you to read that value.

In the following code snippet, we create two promises, p and q, that can hold string
values. We then install a foreach callback on the future associated with the p
promise and wait for one second. The callback is not invoked until the p promise is
completed by calling the success method. We then fail the q promise in the same
way and install a failed.foreach callback:

object PromisesCreate extends App {
 val p = Promise[String]
 val q = Promise[String]
 p.future foreach { case x => log(s"p succeeded with '$x'") }
 Thread.sleep(1000)
 p success "assigned"
 q failure new Exception("not kept")
 q.future.failed foreach { case t => log(s"q failed with $t") }
 Thread.sleep(1000)
}

Alternatively, we can use the complete method and specify a Try[T] object to
complete the promise. Depending on whether the Try[T] object is a success or a
failure, the promise is successfully completed or failed. Importantly, after a promise
is either successfully completed or failed, it cannot be assigned an exception or a
value again in any way. Trying to do so results in an exception. Note that this is true
even when there are multiple threads simultaneously calling success or complete.
Only one thread completes the promise, and the rest throw an exception.

Assigning a value or an exception to an already completed promise is
not allowed and throws an exception.

We can also use the trySuccess, tryFailure, and tryComplete methods that
correspond to success, failure, and complete, respectively, but return a Boolean
value to indicate whether the assignment was successful. Recall that using Future.
apply and callback methods with referentially transparent functions results in
deterministic concurrent programs. As long as we do not use the trySuccess,
tryFailure, and tryComplete methods, and none of the success, failure, and
complete methods ever throws an exception, we can use promises and retain
determinism in our programs.

Chapter 4

[121]

We now have everything we need to implement our custom Future.apply method.
We call it myFuture in the following example. The myFuture method takes a b by-
name parameter that is the asynchronous computation. First, it creates a p promise.
Then, it starts an asynchronous computation on the global execution context.
This computation tries to evaluate b and complete the promise. However, if the b
body throws a nonfatal exception, the asynchronous computation fails the promise
with that exception. In the meanwhile, the myFuture method returns the future
immediately after starting the asynchronous computation:

import scala.util.control.NonFatal
object PromisesCustomAsync extends App {
 def myFuture[T](b: =>T): Future[T] = {
 val p = Promise[T]
 global.execute(new Runnable {
 def run() = try {
 p.success(b)
 } catch {
 case NonFatal(e) => p.failure(e)
 }
 })
 p.future
 }
 val f = myFuture { "naa" + "na" * 8 + " Katamari Damacy!" }
 f foreach { case text => log(text) }
}

This is a common pattern when producing futures. We create a promise, let some
other computation complete that promise, and return the corresponding future.
However, promises were not invented just for our custom future computation
method myFuture. In the following sections, we will study use cases in which
promises are useful.

Converting callback-based APIs
Scala futures are great. We already saw how they can be used to avoid blocking. We
have learned that callbacks help us to avoid polling and busy-waiting. We witnessed
that futures compose well with functional combinators and for-comprehensions.
In some cases, futures and promises even guarantee deterministic programs. But,
we have to face the truth—not all legacy APIs were created using Scala futures.
Although futures are now the right way to do asynchronous computing, various
third-party libraries have different approaches to encoding latency.

Asynchronous Programming with Futures and Promises

[122]

Legacy frameworks deal with latency in the program with raw callbacks. Methods
that take an unbounded amount of time to complete do not return the result; instead,
they take a callback argument, which is invoked with the result later. JavaScript
libraries and frameworks are a good example for this: there is a single thread
executing a JavaScript program and it is unacceptable to block that thread every
time we call a blocking method.

Such legacy systems have issues in large-scale development. First, they do not nicely
compose, as we already saw. Second, they are hard to understand and reason about;
a bunch of unstructured callbacks feels almost like spaghetti code. The control flow
of the program is not apparent from the code, but is dictated by the internals of
the library. This is called inversion of control. We would like to somehow create a
bridge between legacy callback-based APIs and futures, and avoid this inversion of
control. This is where promises come in handy.

Use promises to bridge the gap between callback-based APIs and futures.

Let's consider the org.apache.commons.io.monitor package from the Commons
IO library. This package allows subscribing to filesystem events such as file and
directory creation and deletion. Having become well versed in the use of futures,
we do not want to deal with this API directly anymore. We therefore implement
a fileCreated method that takes a directory name and returns a future with the
name of the first file in that freshly created directory:

import org.apache.commons.io.monitor._

To subscribe to a filesystem event using this package, we first need to instantiate
a FileAlterationMonitor object. This object periodically scans the filesystem
for changes. After that, we need to create a FileAlterationObserver
object, which observes a specific directory for changes. Finally, we create a
FileAlterationListenerAdaptor object, which represents the callback. Its
onFileCreate method is called when a file is created in the filesystem; we use
it to complete the promise with the name of the file that was changed:

def fileCreated(directory: String): Future[String] = {
 val p = Promise[String]
 val fileMonitor = new FileAlterationMonitor(1000)
 val observer = new FileAlterationObserver(directory)
 val listener = new FileAlterationListenerAdaptor {
 override def onFileCreate(file: File): Unit =
 try p.trySuccess(file.getName) finally fileMonitor.stop()
 }

Chapter 4

[123]

 observer.addListener(listener)
 fileMonitor.addObserver(observer)
 fileMonitor.start()
 p.future
}

Notice that the structure of this method is the same as the structure of the myFuture
method. We first create a promise and defer the completion of the promise to some
other computation. Then, we return the future associated with the promise. This
recurring pattern is called the future-callback bridge.

We can now use the future to subscribe to the first file change in the filesystem. We
add a foreach call to the future returned by fileCreated, create a new file in the
editor, and witness how the program detects a new file:

fileCreated(".") foreach {
 case filename => log(s"Detected new file '$filename'")
}

A useful utility which is not available on futures is the timeout. We want to call a
timeout method that takes some number of t milliseconds, and returns a future
that is completed after at least t milliseconds. We apply the callback-future bridge to
the Timer class from the java.util package. We use a single timer object for all the
timeout calls:

import java.util._
private val timer = new Timer(true)

Again, we first create a promise p. This promise holds no useful information other
than the fact that it is completed, so we give it a Promise[Unit] type. We then call
the Timer class's schedule method with a TimerTask object that completes the p
promise after t milliseconds:

def timeout(t: Long): Future[Unit] = {
 val p = Promise[Unit]
 timer.schedule(new TimerTask {
 def run() = {
 p success ()
 timer.cancel()
 }
 }, t)
 p.future
}
timeout(1000) foreach { case _ => log("Timed out!") }
Thread.sleep(2000)

Asynchronous Programming with Futures and Promises

[124]

The future returned by timeout can be used to install a callback, or it can be
combined with other futures using combinators. In the next section, we will
introduce new combinators for this purpose.

Extending the future API
Usually, the existing future combinators are sufficient for most tasks, but
occasionally we want to define new ones. This is another use case for promises.
Assume that we want to add a combinator to futures, as follows:

def or(that: Future[T]): Future[T]

This method returns a new future of the same type that is assigned the value of the
this future or the that future, whichever is completed first. We cannot add this
method directly to the Future trait because futures are defined in the Scala standard
library, but we can create an implicit conversion that adds this method. Recall that
if you call a nonexisting xyz method on an object of some A type, the Scala compiler
will search for all implicit conversions from the A type to some other type that has
the xyz method. One way to define such an implicit conversion is to use Scala's
implicit classes:

implicit class FutureOps[T](val self: Future[T]) {
 def or(that: Future[T]): Future[T] = {
 val p = Promise[T]
 self onComplete { case x => p tryComplete x }
 that onComplete { case y => p tryComplete y }
 p.future
 }
}

The implicit FutureOps class converts a future of Future[T] type to an object with
an additional or method. Inside the FutureOps object, we refer to the original future
with the name self; we cannot use this, because this is a reserved keyword that
refers to the FutureOps object. The or method installs callbacks on self and that.
Each of these callbacks calls the tryComplete method on the p promise; the callback
that executes first successfully completes the promise. The tryComplete method in
the other callback returns false and does not change the state of the promise.

Use promises to extend futures with additional functional
combinators.

Chapter 4

[125]

Note that we used tryComplete in this example, and the or combinator is
nondeterministic as a result. The resulting future is completed with the value of one
of the input futures depending on the execution schedule. In this particular case, this
is exactly what we want.

Cancellation of asynchronous computations
In some cases, we want to cancel a future computation. This might be because a
future computation takes more than the allotted amount of time, or because the
user clicks on the Cancel button in the UI. In either case, we need to provide some
alternative value for the cancelled future.

Futures come without a built-in support for cancellation. Once a future computation
starts, it is not possible to cancel it directly. Recall from Chapter 2, Concurrency on the
JVM and the Java Memory Model, that violently stopping concurrent computations can
be harmful, and this is why the Thread methods such as stop were deprecated in the
early JDK releases.

One approach to cancel a future is to compose it with another future called the
cancellation future. The cancellation future provides a default value when a
future is cancelled. We can use the or combinator, discussed in the previous section,
along with the timeout method to compose a future with its cancellation future:

val f = timeout(1000).map(_ => "timeout!") or Future {
 Thread.sleep(999)
 "work completed!"
}

The nondeterminism of the or combinator is apparent when running this program.
The timeout and sleep statements are precisely tuned to occur approximately
at the same time. Another thing worth noting is that the computation started by
the Future.apply method does not actually stop if a timeout occurs. The f future
is completed with the value "timeout!", but the future computation proceeds
concurrently. Eventually, it fails to set the value of the promise when calling
tryComplete in the or combinator. In many cases, this is not a problem. An HTTP
request that needs to complete a future does not occupy any computational resources,
and will eventually timeout anyway. A keyboard event that completes a future only
consumes a small amount of CPU time when it triggers. Callback-based futures
can usually be cancelled, as in the preceding example. On the other hand, a future
that performs an asynchronous computation can use a lot of CPU power or other
resources. We might want to ensure that actions such as scanning the filesystem or
downloading a huge file really terminate.

Asynchronous Programming with Futures and Promises

[126]

A future computation cannot be forcefully stopped. Instead, there should exist some
form of cooperation between the future computation and the client of the future.
In the examples seen so far, asynchronous computations always use futures to
communicate a value to the client. In this case, the client also communicates in the
opposite direction to let the asynchronous computation know that it should stop.
Naturally, we use futures and promises to accomplish this two-way communication.

First, we define a Cancellable[T] type as a pair of Promise[Unit] and Future[T]
objects. The client will use the Promise[Unit] part to request a cancellation, and the
Future[T] part to subscribe to the result of the computation:

object PromisesCancellation extends App {
 type Cancellable[T] = (Promise[Unit], Future[T])

The cancellable method takes the b body of the asynchronous computation.
This time, the b body takes a single parameter, Future[Unit], to check if the
cancellation was requested. The cancellable method creates a cancel promise of
the Promise[Unit] type and forwards its corresponding future to the asynchronous
computation. We call this promise the cancellation promise. The cancel promise
will be used to signal that the asynchronous computation b should end. After the
asynchronous computation b returns some value r, the cancel promise needs to
fail. This ensures that if the Future[T] type is completed, then the client cannot
successfully cancel the computation using the cancel promise:

 def cancellable[T](b: Future[Unit] => T): Cancellable[T] = {
 val cancel = Promise[Unit]
 val f = Future {
 val r = b(cancel.future)
 if (!cancel.tryFailure(new Exception))
 throw new CancellationException
 r
 }
 (cancel, f)
 }

If calling tryFailure on the cancel promise returns false, then the client must
have already completed the cancel promise. In this case, we cannot fail the client's
attempt to cancel the computation, so we throw a CancellationException. Note
that we cannot omit this check, as it exists to avoid the race in which the client
successfully requests the cancellation, and the future computation simultaneously
completes the future.

Free ebooks ==> www.Ebook777.com

Chapter 4

[127]

The asynchronous computation must occasionally check if the future was cancelled
using the isCompleted method on the cancel future. If it detects that it was
cancelled, it must cease execution by throwing a CancellationException:

 val (cancel, value) = cancellable { cancel =>
 var i = 0
 while (i < 5) {
 if (cancel.isCompleted) throw new CancellationException
 Thread.sleep(500)
 log(s"$i: working")
 i += 1
 }
 "resulting value"
 }

After the cancellable computation starts, the main thread waits for 1500
milliseconds and then calls trySuccess to complete the cancellation promise. By this
time, the cancellation promise could have already failed; in this case, calling success
instead of trySuccess would result in an exception:

 Thread.sleep(1500)
 cancel trySuccess ()
 log("computation cancelled!")
 Thread.sleep(2000)
}

We expect to see the final working message printed after the "computation
cancelled!" message from the main thread. This is because the asynchronous
computation uses polling and does not immediately detect that it was cancelled.

Use promises to implement cancellation, or any other form of two-way
communication between the client and the asynchronous computation.

Note that calling trySuccess on the cancel promise does not guarantee that the
computation will really be cancelled. It is entirely possible that the asynchronous
computation fails the cancel promise before the client has a chance to cancel it.
Thus, the client, such as the main thread in our example, should in general use the
return value from trySuccess to check if the cancellation succeeded.

www.Ebook777.com

http://www.ebook777.com

Asynchronous Programming with Futures and Promises

[128]

Futures and blocking
Examples in this book should have shed the light into why blocking is sometimes
considered an anti-pattern. Futures and asynchronous computations mainly exist
to avoid blocking, but in some cases, we cannot live without it. It is therefore valid
to ask how blocking interacts with futures.

There are two ways to block with futures. The first is waiting until a future is
completed. The second is blocking from within an asynchronous computation.
We will study both the topics in this section.

Awaiting futures
In rare situations, we cannot use callbacks or future combinators to avoid blocking.
For example, the main thread that starts multiple asynchronous computations has to
wait for these computations to finish. If an execution context uses daemon threads,
as is the case with the global execution context, the main thread needs to block
to prevent the JVM process from terminating.

In these exceptional circumstances, we use the ready and result methods on the
Await object from the scala.concurrent package. The ready method blocks the
caller thread until the specified future is completed. The result method also blocks
the caller thread, but returns the value of the future if it was completed successfully,
or throws the exception in the future if the future was failed.

Both the methods require specifying a timeout parameter: the longest duration that
the caller should wait for the completion of the future before a TimeoutException is
thrown. To specify a timeout, we import the scala.concurrent.duration package.
This allows us to write expressions such as 10.seconds:

import scala.concurrent.duration._
object BlockingAwait extends App {
 val urlSpecSizeFuture = Future {
 val specUrl = "http://www.w3.org/Addressing/URL/url-spec.txt"
 Source.fromURL(specUrl).size
 }
 val urlSpecSize = Await.result(urlSpecSizeFuture, 10.seconds)
 log(s"url spec contains $urlSpecSize characters")
}

In this example, the main thread starts a computation that retrieves the URL
specification and then awaits. By this time, the World Wide Web Consortium is
worried that a DOS attack is under way, so this is the last time we download the
URL specification.

Chapter 4

[129]

Blocking in asynchronous computations
Waiting for the completion of a future is not the only way to block. Some legacy APIs
do not use callbacks to asynchronously return results. Instead, such APIs expose the
blocking methods. After we call a blocking method, we lose control over the thread;
it is up to the blocking method to unblock the thread and return the control back.

Execution contexts are often implemented using thread pools. As we saw in Chapter
3, Traditional Building Blocks of Concurrency, blocking worker threads can lead to
thread starvation. Thus, by starting future computations that block, it is possible
to reduce parallelism and even cause deadlocks. This is illustrated in the following
example, in which 16 separate future computations call sleep, and the main thread
waits until they complete for an unbounded amount of time:

val startTime = System.nanoTime
val futures = for (_ <- 0 until 16) yield Future {
 Thread.sleep(1000)
}
for (f <- futures) Await.ready(f, Duration.Inf)
val endTime = System.nanoTime
log(s"Total time = ${(endTime - startTime) / 1000000} ms")
log(s"Total CPUs = ${Runtime.getRuntime.availableProcessors}")

Assume that you have eight cores in your processor. This program does not end in
one second. Instead, a first batch of eight futures started by Future.apply will block
all the worker threads for one second, and then another batch of eight futures will
block for another second. As a result, none of our eight processor cores can do any
useful work for one second.

Avoid blocking in asynchronous computations, as it can cause
thread starvation.

If you absolutely must block, then the part of the code that blocks should be enclosed
within the blocking call. This signals to the execution context that the worker thread
is blocked and allows it to temporarily spawn additional worker threads if necessary:

 val futures = for (_ <- 0 until 16) yield Future {
 blocking {
 Thread.sleep(1000)
 }
 }

Asynchronous Programming with Futures and Promises

[130]

With the blocking call around the sleep call, the global execution context spawns
additional threads when it detects that there is more work than the worker threads.
All 16 future computations can execute concurrently, and the program terminates
after one second.

The Await.ready and Await.result statements block the caller
thread until the future is completed, and, are in most cases used
outside asynchronous computations. They are blocking operations. The
blocking statement is used inside asynchronous code to designate that
the enclosed block of code contains a blocking call. It is not a blocking
operation by itself.

The Scala Async library
In the final section of this chapter, we turn to the Scala Async library. You should
understand that the Scala Async library does not add anything conceptually new
to futures and promises. If you got this far in this chapter, you already know
everything that you need to know about asynchronous programming, callbacks,
future composition, promises, and blocking. You can start building asynchronous
applications right away.

Having said that, the Scala Async library is a convenient library for futures and
promises that allows expressing chains of asynchronous computations more
conveniently. Every program that you express using the Scala Async library can
also be expressed using futures and promises. Often, the Scala Async library allows
writing shorter, more concise, and understandable programs.

The Scala Async library introduces two new method calls: async and await. The
async method is conceptually equivalent to the Future.apply method; it starts an
asynchronous computation and returns a future object. The await method should
not be confused with the Await object used to block on futures. The await method
takes a future and returns that future's value. However, unlike the methods on the
Await object, the await method does not block the underlying thread; we will soon
see how this is possible.

The Scala Async library is currently not a part of the Scala standard library. To use it,
we need to add the following line to our build definition file:

libraryDependencies +=
 "org.scala-lang.modules" %% "scala-async" % "0.9.1"

Chapter 4

[131]

As a simple example, consider the delay method, which returns a future that is
completed after n seconds. We use the async method to start an asynchronous
computation that calls sleep. When the sleep call returns, the future is completed:

def delay(n: Int): Future[Unit] = async {
 blocking { Thread.sleep(n * 1000) }
}

The await method must be statically enclosed within an async block in the same
method; it is a compile-time error to invoke await outside of an async block.
Whenever the execution inside the async block reaches an await statement, it stops
until the value from the future in the await statement becomes available. Consider
the following example:

async {
 log("T-minus 1 second")
 await { delay(1) }
 log("done!")
}

Here, the asynchronous computation in the async block prints "T-minus 1
second". It then calls delay to obtain a future that is completed after one second.
The await call designates that the computation can proceed only after the future
returned by delay completes. After that happens, the async block prints done.

The natural question is how can the Scala Async library execute the preceding
example without blocking? The answer is that the Scala Async library uses Scala
Macros to transform the code inside the async statement. The code is transformed in
such a way that the code after every await statement becomes a callback registered
to the future inside await. Immensely simplifying how this transformation works
under the hood, the preceding code is equivalent to the following computation:

Future {
 log("T-minus 1 second")
 delay(1) foreach {
 case x => log("done!")
 }
}

Asynchronous Programming with Futures and Promises

[132]

As you can see, the equivalent code produced by the Scala Async library is
completely non-blocking. The advantage of the async/await style code is that it is
much more understandable. For example, it allows defining a custom countdown
method that takes a number of seconds n and a f function to execute every second.
We use a while loop for the countdown method inside the async block: each time
an await instance is invoked, the execution is postponed for one second. The
implementation using the Scala Async library feels like regular procedural code,
but does not incur the cost of blocking:

def countdown(n: Int)(f: Int => Unit): Future[Unit] = async {
 var i = n
 while (i > 0) {
 f(i)
 await { delay(1) }
 i -= 1
 }
}

The countdown method can be used from the main thread to print to the standard
output every second. Since the countdown method returns a future, we can
additionally install a foreach callback to execute after the countdown method
is over:

countdown(10) { n => log(s"T-minus $n seconds") } foreach {
 case _ => log(s"This program is over!")
}

Having seen how the expressive Async library is in practice, the question is when
to use it in place of callbacks, future combinators, and for-comprehensions? In most
cases, whenever you can express a chain of asynchronous computations inside a
single method, you are free to use Async. You should use your best judgment
when applying it; always choose the programming style that results in concise,
more understandable, and more maintainable programs.

Use the Scala Async library when a chain of asynchronous
computations can be expressed more intuitively as procedural
code using the async and await statements.

Chapter 4

[133]

Alternative Future frameworks
Scala futures and promises API resulted from an attempt to consolidate several
different APIs for asynchronous programming, among them, legacy Scala futures,
Akka futures, Scalaz futures, and Twitter's Finagle futures. Legacy Scala futures and
Akka futures have already converged to the futures and promises API that you've
learned about so far in this chapter. Finagle's com.twitter.util.Future type is
planned to eventually implement the same interface as scala.concurrent.Future,
while the Scalaz scalaz.concurrent.Future type implements a slightly different
interface. In this section, we give a brief of Scalaz futures.

To use Scalaz, we add the following dependency to the build.sbt file:

libraryDependencies +=
 "org.scalaz" %% "scalaz-concurrent" % "7.0.6"

We now encode an asynchronous tombola program using Scalaz. The Future type
in Scalaz does not have the foreach method. Instead, we use its runAsync method,
which asynchronously runs the future computation to obtain its value, and then calls
the specified callback:

import scalaz.concurrent._
object Scalaz extends App {
 val tombola = Future {
 scala.util.Random.shuffle((0 until 10000).toVector)
 }
 tombola.runAsync { numbers =>
 log(s"And the winner is: ${numbers.head}")
 }
 tombola.runAsync { numbers =>
 log(s"... ahem, winner is: ${numbers.head}")
 }
}

Unless you are terribly lucky and draw the same permutation twice, running
this program reveals that the two runAsync calls print different numbers. Each
runAsync call separately computes the permutation of the random numbers. This
is not surprising, as Scalaz futures have the pull semantics, in which the value is
computed each time some callback requests it, in contrast to Finagle and Scala
futures' push semantics, in which the callback is stored, and applied if and when
the asynchronously computed value becomes available.

Asynchronous Programming with Futures and Promises

[134]

To achieve the same semantics, as we would have with Scala futures, we need to use
the start combinator that runs the asynchronous computation once, and caches
its result:

val tombola = Future {
 scala.util.Random.shuffle((0 until 10000).toVector)
} start

With this change, the two runAsync calls use the same permutation of random
numbers tombola, and print the same values.

We will not dive further into the internals of alternate frameworks. The fundamentals
about futures and promises that you learned about in this chapter should be sufficient
to easily familiarize yourself with other asynchronous programming libraries, should
the need arise.

Summary
This chapter presented some powerful abstractions for asynchronous programming.
We have seen how to encode latency with the Future type, how to avoid blocking
with callbacks on futures, and how to compose values from multiple futures. We
have learned that futures and promises are closely tied together and that promises
allow interfacing with legacy callback-based systems. In cases, where blocking was
unavoidable, we learned how to use the Await object and the blocking statement.
Finally, we learned that the Scala Async library is a powerful alternative for
expressing future computations more concisely.

Futures and promises only allow dealing with a single value at a time. What if an
asynchronous computation produces more than a single value before completing?
Similarly, how do we efficiently execute thousands of asynchronous operations on
different elements of large datasets? Should we use futures in such cases? In the next
chapter, we will explore Scala's support for data-parallelism, a form of concurrency
where similar asynchronous computations execute in parallel on different collection
elements. We will see that using data-parallel collections is preferable to using
futures when collections are large, as it results in a better performance.

Chapter 4

[135]

Exercises
The following exercises summarize what we have learned about futures and
promises in this chapter, and require implementing custom future factory methods
and combinators. Several exercises also deal with several deterministic programming
abstractions that were not treated in this chapter, such as single-assignment variables
and maps.

1.	 Implement a command-line program that asks the user to input a URL of
some website, and displays the HTML of that website. Between the time that
the user hits ENTER and the time that the HTML is retrieved, the program
should repetitively print a . to the standard output every 50 milliseconds,
with a two seconds timeout. Use only futures and promises, and avoid the
synchronization primitives from the previous chapters. You may reuse the
timeout method defined in this chapter.

2.	 Implement an abstraction called a single-assignment variable, represented
by the IVar class:
class IVar[T] {
 def apply(): T = ???
 def :=(x: T): Unit = ???
}

When created, the IVar class does not contain a value, and calling apply
results in an exception. After a value is assigned using the := method,
subsequent calls to := throw an exception, and the apply method returns
the previously assigned value. Use only futures and promises, and avoid
the synchronization primitives from the previous chapters.

3.	 Extend the Future[T] type with the exists method, which takes a predicate
and returns a Future[Boolean] object:
def exists(p: T => Boolean): Future[Boolean]

The resulting future is completed with true if and only if the original future
is completed and the predicate returns true, and false otherwise. You
can use future combinators, but you are not allowed to create any Promise
objects in the implementation.

4.	 Repeat the previous exercise, but use Promise objects instead of
future combinators.

5.	 Repeat the previous exercise, but use the Scala Async framework.

Asynchronous Programming with Futures and Promises

[136]

6.	 Implement the spawn method, which takes a command-line string,
asynchronously executes it as a child process, and returns a future
with the exit code of the child process:
def spawn(command: String): Future[Int]

Make sure that your implementation does not cause thread starvation.

7.	 Implement the IMap class, which represents a single-assignment map:
class IMap[K, V] {
 def update(k: K, v: V): Unit
 def apply(k: K): Future[V]
}

Pairs of keys and values can be added to the IMap object, but they can never
be removed or modified. A specific key can be assigned only once, and
subsequent calls to update with that key results in an exception. Calling
apply with a specific key returns a future, which is completed after that key
is inserted into the map. In addition to futures and promises, you may use
the scala.collection.concurrent.Map class.

8.	 Extend the Promise[T] type with the compose method, which takes a
function of the S => T type, and returns a Promise[S] object:
def compose[S](f: S => T): Promise[S]

Whenever the resulting promise is completed with some value x of the type
S (or failed), the original promise must be completed with the value f(x)
asynchronously (or failed), unless the original promise is already completed.

Free ebooks ==> www.Ebook777.com

Data-Parallel Collections
"Premature optimization is the root of all evil."

 -Donald Knuth

So far, we have been composing multiple threads of computation into safe concurrent
programs. In doing so, we focused on ensuring their correctness. We saw how to
avoid blocking in concurrent programs, react to the completion of asynchronous
computations, and how to use concurrent data structures to communicate information
between threads. All these tools made organizing the structure of concurrent programs
easier. In this chapter, we will focus mainly on achieving good performance. We
require minimal or no changes in the organization of existing programs, but we will
study how to reduce their running time using multiple processors. Futures from
the previous chapter allowed doing this to a certain extent, but they are relatively
heavyweight and inefficient when the asynchronous computation in each future
is short.

Data parallelism is a form of computation where the same computation proceeds
in parallel on different data elements. Rather than having concurrent tasks of
computation that communicate through the use of synchronization, in data-parallel
programming, independent computations produce values that are eventually
merged together in some way. An input to a data-parallel operation is usually a
dataset such as a collection, and the output can be a value or another dataset.

In this chapter, we will study the following topics:

•	 Starting a data-parallel operation
•	 Configuring the parallelism level of a data-parallel collection
•	 Measuring performance and why it is important
•	 Differences between using sequential and parallel collections

www.Ebook777.com

http://www.ebook777.com

Data-Parallel Collections

[138]

•	 Using parallel collections together with concurrent collections
•	 Implementing a custom parallel collection, such as a parallel string
•	 Alternative data-parallel frameworks

In Scala, data-parallel programming was applied to the standard collections
framework to accelerate bulk operations that are, by their nature, declarative and fit
data parallelism well. Before studying data-parallel collections, we present a brief
overview of the Scala collection framework.

Scala collections in a nutshell
The Scala collections module is a package in the Scala standard library that contains
a variety of general-purpose collection types. Scala collections provide a general and
easy-to-use way of declaratively manipulating data using functional combinators.
For example, in the following program, we use the filter combinator on a range
of numbers to return a sequence of palindromes between 0 and 100,000; that is,
numbers that are read in the same way in both the forward and reverse direction:

(0 until 100000).filter(x => x.toString == x.toString.reverse)

Scala collections define three basic types of collections: sequences, maps, and sets.
Elements stored in sequences are ordered and can be retrieved using the apply
method and an integer index. Maps store key-value pairs and can be used to
retrieve a value associated with a specific key. Sets can be used to test the element
membership with the apply method.

The Scala collection library makes a distinction between immutable collections
that cannot be modified after they are created, and mutable collections that can be
updated after they are created. Commonly used immutable sequences are List and
Vector, while ArrayBuffer is the mutable sequence of choice in most situations.
Mutable HashMap and HashSet collections are maps and sets implemented using
hash tables, while immutable HashMap and HashSet collections are based on the
less widely known hash trie data structure.

Scala collections can be transformed to their parallel counterparts by calling the par
method. The resulting collection is called a parallel collection, and its operations are
accelerated by using multiple processors simultaneously. The previous example can
run in parallel as follows:

(0 until 100000).par.filter(x => x.toString == x.toString.reverse)

Chapter 5

[139]

In the preceding code line, the filter combinator is a data-parallel operation. In this
chapter, we will study parallel collections in more detail. We will see when and how
to create parallel collections, study how they can be used together with sequential
collections, and conclude by implementing a custom parallel collection class.

Using parallel collections
Most of the concurrent programming utilities we have studied so far are used in
order to enable different threads of computation to exchange information. Atomic
variables, the synchronized statement, concurrent queues, futures, and promises are
focused on ensuring the correctness of a concurrent program. On the other hand, the
parallel collections programming model is designed to be largely identical to that of
sequential Scala collections; parallel collections exist solely in order to improve the
running time of the program. In this chapter, we will measure the relative speedup
of programs using parallel collections. To make this task easier, we will introduce
the timed method to the package object used for the examples in this chapter. This
method takes a block of code body, and returns the running time of the executing
block of code body. It starts by recording the current time with the nanoTime method
from the JDK System class. It then runs the body, records the time after the body
executes, and computes the time difference:

@volatile var dummy: Any = _
def timed[T](body: =>T): Double = {
 val start = System.nanoTime
 dummy = body
 val end = System.nanoTime
 ((end - start) / 1000) / 1000.0
}

Certain runtime optimizations in the JVM, such as the dead-code elimination, can
potentially remove the invocation of the body block, causing us to measure an
incorrect running time. To prevent this, we assign the return value of the body
block to a volatile field named dummy.

Program performance is subject to many factors, and it is very hard to predict in
practice. Whenever you can, you should validate your performance assumptions
with measurements. In the following example, we use the Scala Vector class to
create a vector with 5 million numbers and then shuffle that vector using the Random
class from the scala.util package. We then compare the running time of sequential
and parallel max methods, which both find the greatest integer in numbers:

import scala.collection._
import scala.util.Random
object ParBasic extends App {

Data-Parallel Collections

[140]

 val numbers = Random.shuffle(Vector.tabulate(5000000)(i => i))
 val seqtime = timed { numbers.max }
 log(s"Sequential time $seqtime ms")
 val partime = timed { numbers.par.max }
 log(s"Parallel time $partime ms")
}

Running this program on an Intel i7-4900MQ quad-core processor with
hyper-threading and the Oracle JVM Version 1.7.0_51, we find that the sequential
max method takes 244 milliseconds, while its parallel version takes 35 milliseconds.
This is partly because parallel collections are optimized better than their sequential
counterparts, and partly because they use multiple processors. However, on
different processors and JVM implementations, results will vary.

Always validate assumptions about the performance by measuring
the execution time.

The max method is particularly well-suited for parallelization. Worker threads
can independently scan subsets of the collection, such as numbers. When a worker
thread finds the greatest integer in its own subset, it notifies the other processors
and they agree on the greatest result. This final step takes much less time than
searching for the greatest integer in a collection subset. We say that the max method
is trivially parallelizable.

In general, data-parallel operations require more inter-processor communication
than the max method. Consider the incrementAndGet method on atomic variables
from Chapter 3, Traditional Building Blocks of Concurrency. We can use this method
once again to compute unique identifiers. This time, we will use parallel collections
to compute a large number of unique identifiers:

import java.util.concurrent.atomic._
object ParUid extends App {
 private val uid = new AtomicLong(0L)
 val seqtime = timed {
 for (i <- 0 until 10000000) uid.incrementAndGet()
 }
 log(s"Sequential time $seqtime ms")
 val partime = timed {
 for (i <- (0 until 10000000).par) uid.incrementAndGet()
 }
 log(s"Parallel time $partime ms")
}

Chapter 5

[141]

This time, we use parallel collections in a for loop; recall that every occurrence of a
for loop is desugared into the foreach call by the compiler. The parallel for loop
from the preceding code is equivalent to the following:

(0 until 10000000).par.foreach(i => uid.incrementAndGet())

When the foreach method is called on a parallel collection, collection elements are
processed concurrently. This means that separate worker threads simultaneously
invoke the specified function, so proper synchronization must be applied. In our
case, this synchronization is ensured by the atomic variable, as explained in Chapter 3,
Traditional Building Blocks of Concurrency.

Running this program on our machine reveals that there is no speedup. In fact, the
parallel version of the program is even slower; our program prints 320 milliseconds
for the sequential foreach call, and 1,041 milliseconds for the parallel foreach call.

You might be surprised to see this; shouldn't a program be running at least four
times faster on a quad-core processor with hyper-threading? As shown by the
preceding example, this is not always the case. The parallel foreach call is slower
because the worker threads simultaneously invoke incrementAndGet on the atomic
variable, uid, and write to the same memory location at once.

Memory writes do not go directly to Random Access Memory (RAM) in modern
architectures, as this would be too slow. Instead, modern computer architectures
separate the CPU from the RAM with multiple levels of caches: smaller, more
expensive, and much faster memory units that hold copies of parts of the RAM
that the processor is currently using. The cache level closest to the CPU is called the
L1 cache. The L1 cache is divided into short contiguous parts called cache lines.
Typically, a cache-line size is 64 bytes. Although multiple cores can read the same
cache line simultaneously, in standard multicore processors, the cache line needs to
be in exclusive ownership when a core writes to it. When another core requests to
write to the same cache line, the cache line needs to be copied to that core's L1 cache.
The cache coherence protocol that enables this is called Modified Exclusive Shared
Invalid (MESI), and its specifics are beyond the scope of this book. All you need to
know is that exchanging the cache-line ownership can be relatively expensive on the
processor's time scale.

Data-Parallel Collections

[142]

Since the uid variable is atomic, the JVM needs to ensure a happens-before
relationship between the writes and reads of uid, as we know from Chapter 2,
Concurrency on the JVM and the Java Memory Model. To ensure the happens-before
relationship, memory writes have to be visible to other processors. The only way to
ensure this is to obtain the cache line in exclusive mode before writing to it. In our
example, different processor cores repetitively exchange the ownership of the cache
line in which uid is allocated, and the resulting program becomes much slower than
its sequential version. This is shown in the following illustration:

If different processors only read a shared memory location, then there is no
slowdown. Writing to the same memory location is, on the other hand, an
obstacle to scalability.

Writing to the same memory location with proper synchronization
leads to performance bottlenecks and contention; avoid this in
data-parallel operations.

Parallel programs share other resources in addition to computing power. When
different parallel computations request more resources than are currently available,
an effect known as resource contention occurs. The specific kind of resource
contention that occurs in our example is called a memory contention—a conflict
over exclusive rights to write to a specific part of memory.

We can expect the same kind of performance degradation when using multiple
threads to concurrently start the synchronized statement on the same object,
repetitively modifying the same key in a concurrent map, or simultaneously
enqueueing elements to a concurrent queue; all these actions require writes to the
same memory location. Nonetheless, this does not mean that threads should never
write to the same memory locations. In some applications, concurrent writes occur
very infrequently; the ratio between the time spent writing to contended memory
locations and the time spent doing other work determines whether parallelization is
beneficial or not. It is difficult to predict this ratio by just looking at the program; the
ParUid example serves to illustrate that we should always measure in order to see
the impact of contention.

Chapter 5

[143]

Parallel collection class hierarchy
As we saw, parallel collection operations execute on different worker threads
simultaneously. At any point during the execution of a parallel operation, an element
in a parallel collection can be processed by at most one worker thread executing
that operation. The block of code associated with the parallel operation is executed
on each of the elements separately; in the ParUid example, the incrementAndGet
method is called concurrently many times. Whenever a parallel operation executes
any side effects, it must take care to use proper synchronization; the naive approach
of using var to store uid causes data races as it did in Chapter 2, Concurrency on the
JVM and the Java Memory Model. This is not the case with sequential Scala collections.

The consequence is that a parallel collection cannot be a subtype of a sequential
collection. If it were, then the Liskov substitution principle would be violated. The
Liskov substitution principle states that if the type S is a subtype of T, then the object
of type T can be replaced with objects of type S without affecting the correctness of
the program.

In our case, if parallel collections are subtypes of sequential collections, then some
method can return a sequential sequence collection with the static type Seq[Int],
where the sequence object is a parallel sequence collection at runtime. Clients can
call methods such as foreach on the collection without knowing that the body of
the foreach method needs synchronization, and their programs would not work
correctly. For these reasons, parallel collections form a hierarchy that is separate
from the sequential collections, as shown in the following diagram:

Scala collection hierarchy

Data-Parallel Collections

[144]

The preceding figure shows the simplified Scala collection hierarchy with sequential
collections on the left. The most general collection type is called Traversable:
different collection operations such as find, map, filter, or reduceLeft are
implemented in terms of its abstract foreach method. Its Iterable[T] subtype
offers additional operations such as zip, grouped, sliding, and sameElements
that are implemented using its iterator method. Seq, Map, and Set are iterable
collections that represent Scala sequences, maps, and sets, respectively. These traits
are used to write code that is generic in the type of the concrete Scala collection. The
following nonNull method copies elements from an xs collection that are different
from null. Here, xs can be a Vector[T], List[T], or some other sequence:

def nonNull(xs: Seq[T]): Seq[T] = xs.filter(_ != null)

Parallel collections form a separate hierarchy. The most general parallel collection
type is called ParIterable. Methods such as foreach, map, or reduce on a
ParIterable object execute in parallel. The ParSeq, ParMap, and ParSet collections
are parallel collections that correspond to Seq, Map, and Set, but are not their
subtypes. We can rewrite the nonNull method to use parallel collections:

def nonNull(xs: ParSeq[T]): ParSeq[T] = xs.filter(_ != null)

Although the implementation is identical, we can no longer pass a sequential
collection to nonNull. We can call .par on the sequential xs collection before passing
it to nonNull, but then the filter method will execute in parallel. Can we instead
write code that is agnostic in the type of the collection? The generic collection types:
GenTraversable, GenIterable, GenSeq, GenMap, and GenSet exist for this purpose.
Each of them represents a supertype of the corresponding sequential or parallel
collection type. For example, the GenSeq generic sequence type allows us to rewrite
the nonNull method as follows:

def nonNull(xs: GenSeq[T]): GenSeq[T] = xs.filter(_ != null)

When using generic collection types, we need to remember that they might be
implemented either as a sequential collection or as a parallel collection. Thus, as a
precaution, if operations invoked on a generic collection execute any side effects,
you should use synchronization.

Treat operations invoked on a generic collection type as if they
are parallel.

Chapter 5

[145]

Configuring the parallelism level
Parallel collections use all the processors by default; their underlying executor has
as many workers as there are processors. We can change this default behavior by
changing the TaskSupport object of the parallel collection. The basic TaskSupport
implementation is the ForkJoinTaskSupport class. It takes a ForkJoinPool
collection and uses it to schedule parallel operations. Therefore, to change the
parallelism level of a parallel collection, we instantiate a ForkJoinPool collection
with the desired parallelism level:

import scala.concurrent.forkjoin.ForkJoinPool
object ParConfig extends App {
 val fjpool = new ForkJoinPool(2)
 val customTaskSupport = new parallel.ForkJoinTaskSupport(fjpool)
 val numbers = Random.shuffle(Vector.tabulate(5000000)(i => i))
 val partime = timed {
 val parnumbers = numbers.par
 parnumbers.tasksupport = customTaskSupport
 val n = parnumbers.max
 println(s"largest number $n")
 }
 log(s"Parallel time $partime ms")
}

Once a TaskSupport object is created, we can use it with different parallel
collections. Every parallel collection has a tasksupport field that we use
to assign the TaskSupport object to it.

Measuring the performance on the JVM
To correctly measure the running time on the JVM is not an easy task. Under the
hood, the JVM does a lot more than meets the eye. The Scala compiler does not
produce machine code directly runnable on the CPU. Instead, the Scala compiler
produces a special intermediate instruction code called Java bytecode. When
bytecode from the Scala compiler gets run inside the JVM, at first it executes in
so-called interpreted mode; the JVM interprets each bytecode instruction and
simulates the execution of the program. Only when the JVM decides that the
bytecode in a certain method was run often enough does it compile the bytecode
to machine code, which can be executed directly on the processor. This process is
called just-in-time compilation.

Data-Parallel Collections

[146]

The JVM needs standardized bytecode to be cross-platform; the same bytecode can
be run on any processor or operating system which supports the JVM. However,
the entire bytecode of a program cannot be translated to the machine code as soon
as the program runs; this would be too slow. Instead, the JVM translates parts of
the programs, such as specific methods, incrementally, in short compiler runs. In
addition, the JVM can decide to additionally optimize certain parts of the program
that execute very frequently. As a result, programs running on the JVM are usually
slow immediately after they start, and eventually reach their optimal performance.
Once this happens, we say that the JVM reached its steady state. When evaluating
the performance on the JVM, we are usually interested in the steady state; most
programs run long enough to achieve it.

To witness this effect, assume that you want to find out what the TEXTAREA tag
means in HTML. You write the program that downloads the HTML specification
and searches for the first occurrence of the TEXTAREA string. Having mastered
asynchronous programming in Chapter 4, Asynchronous Programming with Futures and
Promises, you can implement the getHtmlSpec method that starts an asynchronous
computation to download the HTML specification and returns a future value with
the lines of the HTML specification. You then install a callback; once the HTML
specification is available, you can call the indexWhere method on the lines to find
the line that matches the regular expression .*TEXTAREA.*:

object ParHtmlSearch extends App {
 def getHtmlSpec() = Future {
 val url = "http://www.w3.org/MarkUp/html-spec/html-spec.txt"
 val specSrc = Source.fromURL(url)
 try specSrc.getLines.toArray finally specSrc.close()
 }
 getHtmlSpec() foreach { case specDoc =>
 def search(d: GenSeq[String]): Double =
 timed { d.indexWhere(line => line.matches(".*TEXTAREA.*")) }
 val seqtime = search(specDoc)
 log(s"Sequential time $seqtime ms")
 val partime = search(specDoc.par)
 log(s"Parallel time $partime ms")
 }
}

Running this example several times from SBT shows that the times vary. At first,
the sequential and parallel versions execute for 45 and 16 milliseconds, respectively.
Next time, they take 36 and 10 milliseconds, and subsequently 10 and 4 milliseconds.
Note that we only observe this effect when running the examples inside the same
JVM process as SBT itself.

Chapter 5

[147]

We can draw a false conclusion that the steady state was reached at this point.
In truth, we should run this program many more times before the JVM properly
optimizes it. Therefore, we add the warmedTimed method to our package object. This
method runs the block of code n times before measuring its running time. We set the
default value for n to 200; although there is no way to be sure that the JVM will reach
a steady state after executing the block of code 200 times, this is a reasonable default:

def warmedTimed[T](n: Int = 200)(body: =>T): Double = {
 for (_ <- 0 until n) body
 timed(body)
}

We can now call the warmedTimed method instead of timed in the
ParHtmlSearch example:

def search(d: GenSeq[String]) = warmedTimed() {
 d.indexWhere(line => line.matches(".*TEXTAREA.*"))
}

Doing so changes the running times on our machine to 1.5 and 0.5 milliseconds for
the sequential and parallel versions of the program, respectively.

Make sure that the JVM is in the steady state before drawing any
premature conclusions about the running time of a program.

There are other reasons why measuring performance on the JVM is hard. Even
if the JVM reached a steady state for the part of the program we measure, the
Just-In-Time (JIT) compiler can at any point pause the execution and translate
some other part of the program, effectively slowing down our measurement. Then,
the JVM provides automatic memory management. In languages such as C++,
an invocation of the new keyword, which is used to allocate an object, must be
accompanied by the corresponding delete call that frees the memory occupied
by the object so that it can be reused later. In languages such as Scala and Java,
however, there is no delete statement; objects are eventually freed automatically
during the process called Garbage Collection (GC). Periodically, the JVM stops
the execution, scans the heap for all objects no longer used in the program, and frees
the memory they occupy. If we measure the running time of code that frequently
causes GC cycles, the chances are that GC will skew the measurements. In some
cases, the performance of the same program can vary from one JVM process to the
other because the objects get allocated in a way that causes a particular memory
access pattern, impacting the program's performance.

Data-Parallel Collections

[148]

To get really reliable running time values, we need to run the code many times by
starting separate JVM processes, making sure that the JVM reached a steady state,
and taking the average of all the measurements. Frameworks such as ScalaMeter,
introduced in Chapter 9, Concurrency in Practice, go a long way toward automating
this process.

Caveats of parallel collections
Parallel collections were designed to provide a programming API similar to
sequential Scala collections. Every sequential collection has a parallel counterpart
and most operations have the same signature in both sequential and parallel
collections. Still, there are some caveats when using parallel collections, and
we will study them in this section.

Non-parallelizable collections
Parallel collections use splitters, represented with the Splitter[T] type, in order
to provide parallel operations. A splitter is a more advanced form of an iterator;
in addition to the iterator's next and hasNext methods, splitters define the split
method that divides the splitter S into a sequence of splitters that traverse parts of S:

def split: Seq[Splitter[T]]

This method allows separate processors to traverse separate parts of the input
collection. The split method must be implemented efficiently, as this method is
invoked many times during the execution of a parallel operation. In the vocabulary
of computational complexity theory, the allowed asymptotic running time of the
split method is O(log N), where N is the number of elements in the splitter.
Splitters can be implemented for flat data structures such as arrays and hash tables,
and tree-like data structures such as immutable hash maps and vectors. Linear
data structures such as the Scala List and Stream collections cannot efficiently
implement the split method. Dividing a long linked list of nodes into two parts
requires traversing these nodes, which takes a time that is proportionate to the size
of the collection.

Operations on Scala collections such as Array, ArrayBuffer, mutable HashMap and
HashSet, Range, Vector, immutable HashMap and HashSet, and concurrent TrieMap
can be parallelized. We call these collections parallelizable. Calling .par on these
collections creates a parallel collection that shares the same underlying dataset as
the original collection. No elements are copied and the conversion is fast.

Chapter 5

[149]

Other Scala collections need to be converted to their parallel counterparts upon
calling par. We can refer to them as non-parallelizable collections. Calling par on
non-parallelizable collections entails copying their elements into a new collection.
For example, the List collection needs to be copied to a Vector collection when
par is called, as shown in the following code snippet:

object ParNonParallelizableCollections extends App {
 val list = List.fill(1000000)("")
 val vector = Vector.fill(1000000)("")
 log(s"list conversion time: ${timed(list.par)} ms")
 log(s"vector conversion time: ${timed(vector.par)} ms")
}

Calling par on List takes 55 milliseconds on our machine, whereas calling
par on Vector takes 0.025 milliseconds. Importantly, the conversion from a
sequential collection to a parallel one is not itself parallelized, and is a possible
sequential bottleneck.

Converting a non-parallelizable sequential collection to a parallel
collection is not a parallel operation; it executes on the caller thread.

Sometimes, the cost of converting a non-parallelizable collection to a parallel one
is acceptable. If the amount of work in the parallel operation far exceeds the cost
of converting the collection, then we can bite the bullet and pay the cost of the
conversion. Otherwise, it is more prudent to keep the program data in parallelizable
collections and benefit from fast conversions. When in doubt, measure!

Non-parallelizable operations
While most of the parallel collection operations achieve superior performance by
executing on several processors, some operations are inherently sequential, and their
semantics do not allow them to execute in parallel. Consider the foldLeft method
from the Scala collections API:

def foldLeft[S](z: S)(f: (S, T) => S): S

This method visits elements of the collection going from left to right and adds them to
the accumulator of type S. The accumulator is initially equal to the zero value z, and
is updated with the function f that uses the accumulator and a collection element of
type T to produce a new accumulator. For example, given a list of integers List(1,
2, 3), we can compute the sum of its integers with the following expression:

List(1, 2, 3).foldLeft(0)((acc, x) => acc + x)

Data-Parallel Collections

[150]

This foldLeft method starts by assigning 0 to acc. It then takes the first element
in the list 1 and calls the function f to evaluate 0 + 1. The acc accumulator then
becomes 1. This process continues until all of the list of elements is visited, and the
foldLeft method eventually returns the result 6. In this example, the S type of the
accumulator is set to Int. In general, the accumulator can have any type. When
converting a list of elements to a string, the zero value is an empty string and the
function f concatenates a string and a number.

The crucial property of the foldLeft operation is that it traverses the elements of the
list by going from left to right. This is reflected in the type of the function f; it accepts
an accumulator of type S and a list value of type T. The function f cannot take two
values of the accumulator type S and merge them into a new accumulator of type S.
As a consequence, computing the accumulator cannot be implemented in parallel;
the foldLeft method cannot merge two accumulators from two different processors.
We can confirm this by running the following program:

object ParNonParallelizableOperations extends App {
 ParHtmlSearch.getHtmlSpec() foreach { case specDoc =>
 def allMatches(d: GenSeq[String]) = warmedTimed() {
 val results = d.foldLeft("") { (acc, line) =>
 if (line.matches(".*TEXTAREA.*")) s"$acc\n$line" else acc
 }
 }
 val seqtime = allMatches(specDoc)
 log(s"Sequential time - $seqtime ms")
 val partime = allMatches(specDoc.par)
 log(s"Parallel time - $partime ms")
 }
 Thread.sleep(2000)
}

In the preceding program, we use the getHtmlSpec method introduced earlier to
obtain the lines of the HTML specification. We install a callback using foreach
to process the HTML specification once it arrives; the allMatches method calls
foldLeft to accumulate the lines of the specification that contain the TEXTAREA
string. Running the program reveals that both the sequential and parallel foldLeft
operation take 5.6 milliseconds.

Chapter 5

[151]

To specify how the accumulators produced by different processors should be
merged together, we need to use the aggregate method. The aggregate method is
similar to foldLeft, but does not specify that the elements are traversed from left
to right. Instead, it only specifies that subsets of elements are visited going from left
to right; each of these subsets can produce a separate accumulator. The aggregate
method takes an additional function of type (S, S) => S, which is used to merge
multiple accumulators:

d.aggregate("")(
 (acc, line) =>
 if (line.matches(".*TEXTAREA.*")) s"$acc\n$line" else acc,
 (acc1, acc2) => acc1 + acc2
)

Running the example again shows the difference between the sequential and parallel
version of the program; the parallel aggregate method takes 1.4 milliseconds
to complete on our machine.

When doing these kinds of reduction operations in parallel, we can alternatively
use the reduce or fold methods, which do not guarantee to go from left to right.
The aggregate method is more expressive, as it allows the accumulator type to be
different from the type of the elements in the collection.

Use the aggregate method to execute parallel reduction operations.

Other inherently sequential operations include foldRight, reduceLeft,
reduceRight, reduceLeftOption, reduceRightOption, scanLeft, scanRight,
and methods that produce non-parallelizable collections such as toList.

Side effects in parallel operations
As their name implies, parallel collections execute on multiple threads concurrently.
We have already learned in Chapter 2, Concurrency on the JVM and the Java Memory
Model, that multiple threads cannot correctly modify shared memory locations
without the use of synchronization. Assigning to a mutable variable from a parallel
collection operation may be tempting, but it is almost certainly incorrect. This is best
illustrated by the following example in which we construct two sets, a and b, where
b is the subset of the elements in a, and then use a total mutable variable to count
the size of the intersection:

object ParSideEffectsIncorrect extends App {
 def intersectionSize(a: GenSet[Int], b: GenSet[Int]): Int = {
 var total = 0

Data-Parallel Collections

[152]

 for (x <- a) if (b contains x) total += 1
 total
 }
 val a = (0 until 1000).toSet
 val b = (0 until 1000 by 4).toSet
 val seqres = intersectionSize(a, b)
 val parres = intersectionSize(a.par, b.par)
 log(s"Sequential result - $seqres")
 log(s"Parallel result - $parres")
}

Instead of returning 250, the parallel version nondeterministically returns various
wrong results. Note that you might have to change the sizes of the sets a and b to
witness this:

run-main-32: Sequential result - 250

run-main-32: Parallel result - 244

To ensure that the parallel version returns the correct results, we can use an atomic
variable and its incrementAndGet method. However, this leads to the same
scalability problems we had before. A better alternative is to use the parallel
count method:

a.count(x => b contains x)

If the amount of work executed per element is low and the matches are frequent, the
parallel count method will result in better performance than the foreach method
with an atomic variable.

To avoid the need for synchronization and ensure better scalability, favor
declarative-style parallel operations instead of the side effects in parallel
for loops.

Similarly, we must ensure that the memory locations read by a parallel operation
are protected from concurrent writes. In the last example, the b set should not be
concurrently mutated by some thread while the parallel operation is executing—
this leads to the same incorrect results as using mutable variables from within the
parallel operation.

Chapter 5

[153]

Nondeterministic parallel operations
In Chapter 2, Concurrency on the JVM and the Java Memory Model, we saw that
multithreaded programs can be nondeterministic; given the same inputs, they can
produce different outputs depending on the execution schedule. The find collection
operation returns an element matching a given predicate. The parallel find operation
returns whichever element was found first by some processor. In the following
example, we use find to search the HTML specification for occurrences of the
TEXTAREA string; running the example several times gives different results, because
the TEXTAREA string occurs in many different places in the HTML specification:

object ParNonDeterministicOperation extends App {
 ParHtmlSearch.getHtmlSpec() foreach { case specDoc =>
 val patt = ".*TEXTAREA.*"
 val seqresult = specDoc.find(_.matches(patt))
 val parresult = specDoc.par.find(_.matches(patt))
 log(s"Sequential result - $seqresult")
 log(s"Parallel result - $parresult")
 }
 Thread.sleep(3000)
}

If we want to retrieve the first occurrence of TEXTAREA, we need to use
indexWhere instead:

val index = specDoc.par.indexWhere(_.matches(patt))
val parresult = if (index != -1) Some(specDoc(index)) else None

Parallel collection operations other than find are deterministic as long as their
operators are pure functions. A pure function is always evaluated to the same
value, given the same inputs, and does not have any side effects. For example,
(x: Int) => x + 1 is a pure function. By contrast, the following f function
is not pure, because it changes the state of uid:

val uid = new AtomicInteger(0)
val f = (x: Int) => (x, uid.incrementAndGet())

Even if a function does not modify any memory locations, it is not pure if it reads
memory locations that might change. For example, the following g function
is not pure:

val g = (x: Int) => (x, uid.get)

Data-Parallel Collections

[154]

When used with a nonpure function, any parallel operation can become
nondeterministic. Mapping the range of values to unique identifiers in
parallel gives a nondeterministic result, as illustrated by the following call:

val uids: GenSeq[(Int, Int)] = (0 until 10000).par.map(f)

The resulting sequence, uids, is different in separate executions. The parallel map
operation retains the relative order of elements from the range 0 until 10000,
so the tuples in uids are ordered by their first elements from 0 until 10,000. On the
other hand, the second element in each tuple is assigned nondeterministically; in
one execution, uids can start with the sequence (0, 0), (1, 2), (2, 3), ...
and in another, with (0, 0), (1, 4), (2, 9),

Commutative and associative operators
Parallel collection operations such as reduce, fold, aggregate, and scan take
binary operators as part of their input. A binary operator is a function op that takes
two arguments a and b. We can say that a binary operator op is commutative if
changing the order of its arguments returns the same result, that is, op(a, b) ==
op(b, a). For example, adding two numbers together is a commutative operation.
Concatenating two strings is not a commutative operation; we get different strings
depending on the concatenation order.

Binary operators for the parallel reduce, fold, aggregate, and scan operations
never need to be commutative. Parallel collection operations always respect the
relative order of the elements when applying binary operators, provided that the
underlying collections have any ordering. Elements in sequence collections, such as
ArrayBuffer collections, are always ordered. Other collection types can order their
elements, but are not required to do so.

In the following example, we can concatenate the strings inside an ArrayBuffer
collection into one long string by using the sequential reduceLeft operation and
the parallel reduce operation. We then convert the ArrayBuffer collection into
a set, which does not have an ordering:

object ParNonCommutativeOperator extends App {
 val doc = mutable.ArrayBuffer.tabulate(20)(i => s"Page $i, ")
 def test(doc: GenIterable[String]) {
 val seqtext = doc.seq.reduceLeft(_ + _)
 val partext = doc.par.reduce(_ + _)
 log(s"Sequential result - $seqtext\n")
 log(s"Parallel result - $partext\n")
 }
 test(doc)
 test(doc.toSet)
}

Chapter 5

[155]

We can see that the string is concatenated correctly when the parallel reduce
operation is invoked on a parallel array, but the order of the pages is mangled both
for the reduceLeft and reduce operations when invoked on a set; the default Scala
set implementation does not order the elements.

Binary operators used in parallel operations do not need to
be commutative.

An op binary operator is associative if applying op consecutively to a sequence of
values a, b, and c gives the same result regardless of the order in which the operator
is applied, that is, op(a, op(b, c)) == op(op(a, b), c). Adding two numbers
together or computing the larger of the two numbers is an associative operation.
Subtraction is not associative, as 1 – (2 – 3) is different from (1 – 2) – 3.

Parallel collection operations usually require associative binary operators. While
using subtraction with reduceLeft means that all the numbers in the collection
should be subtracted from the first number, using subtraction in reduce, fold, or
scan gives nondeterministic and incorrect results, as illustrated by the following
code snippet:

object ParNonAssociativeOperator extends App {
 def test(doc: GenIterable[Int]) {
 val seqtext = doc.seq.reduceLeft(_ - _)
 val partext = doc.par.reduce(_ - _)
 log(s"Sequential result - $seqtext\n")
 log(s"Parallel result - $partext\n")
 }
 test(0 until 30)
}

While the reduceLeft operation consistently returns -435, the reduce operation
returns meaningless results at random.

Make sure that binary operators used in parallel operations
are associative.

Parallel operations such as aggregate require multiple binary operators, sop
and cop:

def aggregate[S](z: S)(sop: (S, T) => S, cop: (S, S) => S): S

Data-Parallel Collections

[156]

The sop operator is of the same type as the operator required by reduceLeft. It
takes an accumulator and the collection element. The sop operator is used to fold
elements within a subset assigned to a specific processor. The cop operator is used
to merge the subsets together, and is of the same type as the operators for reduce
and fold. The aggregate operation requires that cop is associative and that z is the
zero element for the accumulator, that is, cop(z, a) == a. Additionally, operators
sop and cop must give the same result irrespective of the order in which element
subsets are assigned to processors, that is, cop(sop(z, a), sop(z, b)) == cop(z,
sop(sop(z, a), b)).

Using parallel and concurrent collections
together
We have already seen that parallel collection operations are not allowed to access
mutable states without the use of synchronization. This includes modifying sequential
Scala collections from within a parallel operation. Recall that we used a mutable
variable in the section on side effects to count the size of the intersection. In the
following example, we will download the URL and HTML specifications, convert them
to sets of words, and try to find an intersection of their words. In the intersection
method, we use a HashSet collection and update it in parallel. Collections in the
scala.collection.mutable package are not thread-safe. The following example
nondeterministically drops elements, corrupts the buffer state, or throws exceptions:

object ConcurrentWrong extends App {
 import ParHtmlSearch.getHtmlSpec
 import ch4.FuturesCallbacks.getUrlSpec
 def intersection(a: GenSet[String], b: GenSet[String]) = {
 val result = new mutable.HashSet[String]
 for (x <- a.par) if (b contains x) result.add(x)
 result
 }
 val ifut = for {
 htmlSpec <- getHtmlSpec()
 urlSpec <- getUrlSpec()
 } yield {
 val htmlWords = htmlSpec.mkString.split("\\s+").toSet
 val urlWords = urlSpec.mkString.split("\\s+").toSet
 intersection(htmlWords, urlWords)
 }
 ifut onComplete { case t => log(s"Result: $t") }
 Thread.sleep(3000)
}

Free ebooks ==> www.Ebook777.com

Chapter 5

[157]

We learned in Chapter 3, Traditional Building Blocks of Concurrency, that concurrent
collections can be safely modified by multiple threads without the risk of data
corruption. We use the concurrent skip list collection from the JDK to accumulate
words that appear in both the specifications. The decorateAsScala object is used
to add the asScala method to Java collections:

import java.util.concurrent.ConcurrentSkipListSet
import scala.collection.convert.decorateAsScala._
def intersection(a: GenSet[String], b: GenSet[String]) = {
 val skiplist = new ConcurrentSkipListSet[String]
 for (x <- a.par) if (b contains x) skiplist.add(x)
 val result: Set[String] = skiplist.asScala
 result
}

Weakly consistent iterators
As we saw in Chapter 3, Traditional Building Blocks of Concurrency, iterators on
most concurrent collections are weakly consistent. This means that they are not
guaranteed to correctly traverse the data structure if some thread concurrently
updates the collection during traversal.

When executing a parallel operation on a concurrent collection, the same limitation
applies; the traversal is weakly consistent and might not reflect the state of the data
structure at the point when the operation started. The Scala TrieMap collection is an
exception to this rule. In the following example, we will create a TrieMap collection
called cache containing numbers between 0 and 100, mapped to their string
representation. We will then start a parallel operation that traverses these numbers
and adds the mappings for their negative values to the map:

object ConcurrentTrieMap extends App {
 val cache = new concurrent.TrieMap[Int, String]()
 for (i <- 0 until 100) cache(i) = i.toString
 for ((number, string) <- cache.par) cache(-number) = s"-$string"
 log(s"cache - ${cache.keys.toList.sorted}")
}

The parallel foreach operation does not traverse entries added after the parallel
operation started; only positive numbers are reflected in the traversal. The TrieMap
collection is implemented using the Ctrie concurrent data structure, which atomically
creates a snapshot of the collection when the parallel operation starts. Snapshot
creation is efficient and does not require you to copy the elements; subsequent
update operations incrementally rebuild parts of the TrieMap collection.

www.Ebook777.com

http://www.ebook777.com

Data-Parallel Collections

[158]

Whenever the program data needs to be simultaneously modified and
traversed in parallel, use the TrieMap collection.

Implementing custom parallel collections
Parallel collections in the Scala standard library are sufficient for most tasks, but
in some cases we want to add parallel operations to our own collections. The Java
String class does not have a direct parallel counterpart in the parallel collections
framework. In this section, we will study how to implement a custom ParString
class that supports parallel operations. We will then use our custom parallel
collection class in several example programs.

The first step to implementing a custom parallel collection is to extend the correct
parallel collection trait. A parallel string is a sequence of characters, so we need to
extend the ParSeq trait with the Char type argument. Once a string is created, it can
no longer be modified; we say that the string is an immutable collection. For this
reason, we extend a subtype of the scala.collection.parallel.ParSeq trait,
the ParSeq trait from the scala.collection.parallel.immutable package:

class ParString(val str: String) extends immutable.ParSeq[Char] {
 def apply(i: Int) = str.charAt(i)
 def length = str.length
 def splitter = new ParStringSplitter(str, 0, str.length)
 def seq = new collection.immutable.WrappedString(str)
}

When we extend a parallel collection, we need to implement its methods apply,
length, splitter, and seq. The apply method returns an element at position i in
the sequence, and the length method returns the total number of elements in the
sequence. These methods are equivalent to the methods on sequential collections,
so we use the String class's charAt and length methods to implement them. Where
defining a custom regular sequence requires implementing its iterator method,
custom parallel collections need a splitter method. Calling splitter returns
an object of Splitter[T] type, a special iterator that can be split into subsets. We
implement the splitter method to return a ParStringSplitter object, which
we will show you shortly. Finally, parallel collections need a seq method, which
returns a sequential Scala collection. Since String itself comes from Java and is
not a Scala collection, we will use its WrappedString wrapper class from the Scala
collections library.

Chapter 5

[159]

Our custom parallel collection class is almost complete; we only need to provide
the implementation for the ParStringSplitter object. We will study how to do
this next.

Splitters
A splitter is an iterator that can be efficiently split into disjoint subsets. Here,
efficient means that the splitter's split method must have O(log N) running time,
where N is the number of elements in the splitter. Stated informally, a splitter is not
allowed to copy large parts of the collection when split; if it did, the computational
overhead from splitting would overcome any benefits of parallelization and become
a serial bottleneck.

The easiest way to define a new Splitter class for the Scala parallel collection
framework is to extend the IterableSplitter[T] trait, which has the following
simplified interface:

trait IterableSplitter[T] extends Iterator[T] {
 def dup: IterableSplitter[T]
 def remaining: Int
 def split: Seq[IterableSplitter[T]]
}

The splitter interface declares the dup method that duplicates the current splitter.
This method simply returns a new splitter pointing to the same subset of the
collection. Splitters also define the remaining method, which returns the number
of elements that the splitter can traverse by calling next before the hasNext method
returns false. The remaining method does not change the state of the splitter and
can be called as many times as necessary.

However, the split method can be called only once and it invalidates the splitter;
none of the splitter's methods should be called after calling split. The split
method returns a sequence of splitters that iterate over the disjoint subsets of the
original splitter. If the original splitter has two or more elements remaining, then
none of the resulting splitters should be empty, and the split method should return
at least two splitters. If the original splitter has a single element or no elements
remaining, then split is allowed to return empty splitters. Importantly, the splitters
returned by split should be approximately equal in size; this helps the parallel
collections scheduler achieve good performance.

Data-Parallel Collections

[160]

To allow sequence-specific operations such as zip, sameElements, and corresponds,
parallel sequence collections use a more refined subtype of the IterableSplitter
trait, called the SeqSplitter:

trait SeqSplitter[T] extends IterableSplitter[T] {
 def psplit(sizes: Int*): Seq[SeqSplitter[T]]
}

Sequence splitters declare an additional method, psplit, that takes the list of sizes
for the splitter partitions and returns as many splitters with as many elements as
specified by the sizes parameter. If sizes specifies more elements than there are
available in the splitter, additional empty splitters are returned at the end of the
resulting sequence. For example, calling s.psplit(10, 20, 15) on a splitter
with only 15 elements yields three splitters with sizes 10, five, and zero.

Similarly, if the sizes parameter specifies fewer elements than there are in the
splitter, an additional splitter with the remaining elements is appended at the end.

Our parallel string class is a parallel sequence, so we need to implement a
sequence splitter. We can start by extending the SeqSplitter class with the
Char type parameter:

class ParStringSplitter
 (val s: String, var i: Int, val limit: Int)
extends SeqSplitter[Char] {

We add the s field pointing to the underlying String object in the
ParStringSplitter constructor. A parallel string splitter must represent a subset
of the elements in the string, so we add an i field to represent the position of the
next character that will be traversed by the splitter. Note that i does not need to be
synchronized; the splitter is only used by one processor at a time. The limit field
contains the position after the last character in the splitter. This way, our splitter
class represents substrings of the original string.

Implementing methods inherited from the Iterator trait is easy. As long as i is less
than limit, hasNext must return true. The next method uses i to read the character
at that position, increment i, and return the character:

 final def hasNext = i < limit
 final def next = {
 val r = s.charAt(i)
 i += 1
 r
 }

Chapter 5

[161]

The dup and remaining methods are straightforward; the dup method creates a
new parallel string splitter using the state of the current splitter, and the remaining
method uses limit and i to compute the number of remaining elements:

 def dup = new ParStringSplitter(s, i, limit)
 def remaining = limit - i

The main parts of a splitter are its split and psplit methods. Luckily, split can
be implemented in terms of psplit. If there is more than one element remaining, we
call psplit. Otherwise, if there are no elements to split, we return the this splitter:

 def split = {
 val rem = remaining
 if (rem >= 2) psplit(rem / 2, rem - rem / 2)
 else Seq(this)
 }

The psplit method uses sizes to peel off parts of the original splitter. It does so by
incrementing i and creating a new splitter for each size sz in sizes. Recall that the
current splitter is considered invalidated after calling split or psplit, so we are
allowed to mutate its i field:

 def psplit(sizes: Int*): Seq[ParStringSplitter] = {
 val ss = for (sz <- sizes) yield {
 val nlimit = (i + sz) min limit
 val ps = new ParStringSplitter(s, i, nlimit)
 i = nlimit
 ps
 }
 if (i == limit) ss
 else ss :+ new ParStringSplitter(s, i, limit)
 }
}

Note that we never copy the string underlying the splitter; instead, we update the
indices that mark the beginning and the end of the splitter.

We have now completed our ParString class; we can use it to execute parallel
operations on strings. We can use it to count the number of uppercase characters
in the string as follows:

object CustomCharCount extends App {
 val txt = "A custom text " * 250000
 val partxt = new ParString(txt)
 val seqtime = warmedTimed(50) {
 txt.foldLeft(0) { (n, c) =>

Data-Parallel Collections

[162]

 if (Character.isUpperCase(c)) n + 1 else n
 }
 }
 log(s"Sequential time - $seqtime ms")
 val partime = warmedTimed(50) {
 partxt.aggregate(0)(
 (n, c) => if (Character.isUpperCase(c)) n + 1 else n,
 _ + _)
 }
 log(s"Parallel time - $partime ms")
}

On our machine, the sequential foldLeft call takes 57 milliseconds, and the
parallel aggregate call takes 19 milliseconds. This is a good indication that
we have implemented parallel strings efficiently.

Combiners
Collection methods in the Scala standard library are divided into two major groups:
accessor and transformer methods. Accessor methods, such as foldLeft, find, or
exists, return a single value from the collection. By contrast, transformer methods,
such as map, filter, or groupBy, create new collections and return them as results.

To generically implement transformer operations, the Scala collection framework
uses an abstraction called a builder, which has roughly the following interface:

trait Builder[T, Repr] { // simplified interface
 def +=(x: T): Builder[T, Repr]
 def result: Repr
 def clear(): Unit
}

Here, Repr is the type of collection that a specific builder can produce, and T is the
type of its elements. A builder is used by repetitively calling its += method to add
more elements, and eventually calling the result method to obtain the collection.
After the result method is called, the contents of the builder are undefined. The
clear method can be used to reset the state of the builder.

Every collection defines a custom builder that is used in various transformer
operations. For example, the filter operation is defined in the Traversable
trait, roughly as follows:

def newBuilder: Builder[T, Traversable[T]]
def filter(p: T => Boolean): Traversable[T] = {
 val b = newBuilder

Chapter 5

[163]

 for (x <- this) if (p(x)) b += x
 b.result
}

In the preceding example, the filter implementation relies on the abstract
newBuilder method, which is implemented in subclasses of the Traversable trait.
This design allows defining all the collection methods once, and only provide the
foreach method (or the iterator) and the newBuilder method when declaring
a new collection type.

Combiners are a parallel counterpart of standard builders, and are represented with
the Combiner[T, Repr] type, which subtypes the Builder[T, Repr] type:

trait Combiner[T, Repr] extends Builder[T, Repr] {
 def size: Int
 def combine[N <: T, NewRepr >: Repr]
 (that: Combiner[N, NewRepr]): Combiner[N, NewRepr]
}

The size method is self-explanatory. The combine method takes another combiner
called that, and produces a third combiner that contains the elements of the this
and that combiners. After the combine method returns, the contents of both
the this and that combiners are undefined, and should not be used again. This
constraint allows reusing the this or that combiner object as the resulting combiner.
Importantly, if that combiner is the same runtime object as the this combiner, the
combine method should just return the this combiner.

There are three ways to implement a custom combiner, as follows:

•	 Merging: Some data structures have an efficient merge operation that can be
used to implement the combine method

•	 Two-phase evaluation: Here, elements are first partially sorted into buckets
that can be efficiently concatenated, and placed into the final data structure
once it is allocated

•	 Concurrent data structure: The += method is implemented by modifying
a concurrent data structure shared between different combiners, and the
combine method does not do anything

Data-Parallel Collections

[164]

Most data structures do not have an efficient merge operation, so we usually have to
use two-phase evaluation in the combiner implementation. In the following example,
we implement the combiners for parallel strings using two-phase evaluation. The
ParStringCombiner class contains a resizable array, called chunks, containing
StringBuilder objects. Invoking the += method adds a character to the rightmost
StringBuilder object in this array:

class ParStringCombiner extends Combiner[Char, ParString] {
 private val chunks = new ArrayBuffer += new StringBuilder
 private var lastc = chunks.last
 var size = 0
 def +=(elem: Char) = {
 lastc += elem
 size += 1
 this
 }

The combine method takes the StringBuilder objects of the that combiner, and
adds them to the chunks array of the this combiner. It then returns a reference
to the this combiner:

 def combine[N <: Char, NewRepr >: ParString]
 (that: Combiner[U, NewTo]) = {
 if (this eq that) this else that match {
 case that: ParStringCombiner =>
 size += that.size
 chunks ++= that.chunks
 lastc = chunks.last
 this
 }

Finally, the result method allocates a new StringBuilder object and adds the
characters from all the chunks into the resulting string:

 def result: ParString = {
 val rsb = new StringBuilder
 for (sb <- chunks) rsb.append(sb)
 new ParString(rsb.toString)
 }
}

We test the performance of the parallel filter method with the following snippet:

val txt = "A custom txt" * 25000
val partxt = new ParString(txt)
val seqtime = warmedTimed(250) { txt.filter(_ != ' ') }
val partime = warmedTimed(250) { partxt.filter(_ != ' ') }

Chapter 5

[165]

Running this snippet on our machine takes 11 milliseconds for the sequential
version, and 6 milliseconds for the parallel one.

Alternative data-parallel frameworks
Although parallel collections are the preferred way of expressing data-parallel
applications in Scala, they can be suboptimal when collections contain primitive
values. Since parallel collections are generic in the type of values they contain,
they are susceptible to autoboxing: the process in which primitive values get
automatically converted to objects. This can be harmful to applications such as
linear algebra, various numeric computations, or text processing.

Parallel collections were introduced to the Scala standard library in the Scala 2.9
release. Ever since, there have been many developments in the language, with Scala
Macros being one of the prominent new language features. The Scala macro system
allows you to define language libraries that manipulate abstract syntax trees of
parts of the Scala program. Macros are a very expressive feature of Scala, and they
allow some new optimization opportunities that were not available when parallel
collections were introduced.

One of the third-party frameworks that uses Scala Macros to optimize some of
these inefficiencies is called ScalaBlitz. To use this, we need to add the following
dependency to our build.sbt file:

libraryDependencies +=
 "com.github.scala-blitz" %% "scala-blitz" % "1.2"

ScalaBlitz is designed to have a similar usage as standard parallel collections. To
use parallel operations defined by ScalaBlitz, we import the scala.collection.
par package. ScalaBlitz collections do not have the tasksupport field for custom
schedulers. Instead, their operations take an implicit Scheduler argument. To use
the default scheduler, we need to import the global scheduler:

import scala.collection.par._
import scala.collection.par.Scheduler.Implicits.global

To invoke a parallel operation in ScalaBlitz, we first need to call the toPar
method on a collection, which is added with an implicit conversion. This is to
disambiguate from the existing par method that converts the collection to a
standard parallel collection:

object BlitzComparison extends App {
 val array = (0 until 100000).toArray
 val seqtime = warmedTimed(1000) {
 array.reduce(_ + _)

Data-Parallel Collections

[166]

 }
 val partime = warmedTimed(1000) {
 array.par.reduce(_ + _)
 }
 val blitztime = warmedTimed(1000) {
 array.toPar.reduce(_ + _)
 }
 log(s"sequential time - $seqtime")
 log(s"parallel time - $partime")
 log(s"ScalaBlitz time - $blitztime")
}

Running the preceding example on our machine requires 1.6 milliseconds for the
sequential reduce operation and 0.8 milliseconds for the parallel reduce operation.
The ScalaBlitz reduce operation takes only 0.06 milliseconds to complete; it is more
than 10 times faster than the parallel collection version.

The take-away lesson is that whenever the data in our program is composed
of primitive values packed in arrays, we should consider using an alternative
macro-based framework such as ScalaBlitz to achieve top performance. In most other
situations, parallel collections have a similar performance to ScalaBlitz. ScalaBlitz
was in the early stages of development at the time of writing this book, and macros
are partly an experimental feature of Scala. Be sure to check your assumptions about
the program performance with concrete measurements. Depending on your use case,
standard parallel collections might deliver sufficient performance.

Collections hierarchy in ScalaBlitz
Unlike standard Scala parallel collections, ScalaBlitz is not integrated directly
into the collections hierarchy. Instead, ScalaBlitz uses implicit conversions to
add data-parallel operations to the existing collections. In doing so, it relies
on the Par[Repr] type, which is a wrapper around any collection type:

trait Par[Repr]

When the toPar method gets invoked on some collection type, Repr, a Par[Repr]
wrapper object is returned. For example, an Array[Int] collection becomes a
Par[Array[Int]] object, and a Range collection becomes a Par[Range] object.
The Par wrapper object does not by itself have any parallel operations. Instead, the
parallel operations are added to the Par object through implicit conversions. One
of the reasons for this design is to disallow calling data-parallel operations on
non-parallelizable collections. For example, there are no implicit conversions
that add parallel operations to a Par[List[Int]] object, but there are implicit
conversions that add parallel operations to Par[Array[Int]].

Chapter 5

[167]

Earlier in this chapter, we studied the nonNull method, which can take any parallel
collection type as an argument. This method relied on the ParSeq type in the
standard Scala parallel collections. How do we write a generic method that takes
any kind of a collection in ScalaBlitz? In the following code snippet, we will try to
implement a sum method that computes the sum of a sequence of integers, for any
sequence type:

def sum(xs: Par[Seq[Int]]): Int = {
 xs.reduce(_ + _) // does not work
}

Unfortunately, this code does not compile, because the xs object can refer to any
sequence collection, including a non-parallelizable one. To express generic parallel
code, ScalaBlitz defines the Zippable[T] type. Any parallelizable sequence
collection is implicitly converted into a Zippable object. In the following example,
we will redefine the sum method to use the Zippable type, and call it twice: first with
a parallel array, of the Par[Array[Int]] type, and then with a parallel range, of the
Par[Range] type:

object BlitzHierarchy extends App {
 val array = (0 until 100000).toArray
 val range = 0 until 100000
 def sum(xs: Zippable[Int]): Int = {
 xs.reduce(_ + _)
 }
 println(sum(array.toPar))
 println(sum(range.toPar))
}

Some parallelizable collections, such as mutable.HashMap, immutable.HashMap,
mutable.HashSet, and immutable.HashSet, are not sequences, but their operations
can, nevertheless, be efficiently parallelized. For these collections, ScalaBlitz defines
the more general Reducible[T] type, which is a supertype of the Zippable[T] type.
Reducible[T] most closely corresponds to ParIterable[T] from the standard
parallel collections.

When using the Reducible[T] and Zippable[T] interfaces, the resulting programs
might not be as optimized as in situations where the compiler has complete
information about the exact collection type, but the difference is not noticeable
in many applications.

Data-Parallel Collections

[168]

Summary
In this chapter, we learned how to use parallel collections to improve program
performance. We have seen that sequential operations on large collections can
be easily parallelized and learned the difference between parallelizable and
non-parallelizable collections. We investigated how mutability and side effects
impact correctness and determinism of parallel operations, and saw the importance
of using associative operators for parallel operations. Finally, we studied how to
implement our custom parallel collection class.

We also found, however, that tuning program performance is tricky. Effects such
as memory contention, garbage collection, and dynamic compilation may impact
the performance of the program in ways that are hard to predict by looking at the
source code. Throughout this section, we urged you to confirm suspicions and claims
about program performance by experimentally validating them. Understanding the
performance characteristics of your program is the first step toward optimizing it.

Even when you are sure that parallel collections improve program performance,
you should think twice before using them. Donald Knuth once coined the phrase
"Premature optimization is the root of all evil." It is neither desirable nor necessary
to use parallel collections wherever possible. In some cases, parallel collections give
negligible or no speedup. In other situations, they could be speeding up a part of
the program that is not the real bottleneck. Before using parallel collections, make
sure to investigate which part of the program takes the most time, and if it is worth
parallelizing. The only principled way of doing so is by correctly measuring the
running time of the parts of your application. In Chapter 9, Concurrency in Practice,
we will introduce a framework called ScalaMeter, which offers a more robust way
to measure program performance than what we saw in this chapter.

This chapter briefly introduced concepts such as random access memory, cache lines,
and the MESI protocol. If you would like to learn more on this, you should read the
article What Every Programmer Should Know About Memory, Ulrich Drepper. To gain a
more in-depth knowledge about the Scala collections hierarchy, we recommend you
to search for the document entitled The Architecture of Scala Collections, Martin Odersky
and Lex Spoon, or the paper Fighting Bit Rot with Types, Martin Odersky and Adriaan
Moors. To understand how data-parallel frameworks work under the hood, consider
reading the doctoral thesis entitled Data Structures and Algorithms for Data-Parallel
Computing in a Managed Runtime, Aleksandar Prokopec.

Chapter 5

[169]

So far, we've assumed that all the collection elements are available when the
data-parallel operation starts. A collection does not change its contents during the
data-parallel operation. This makes parallel collections ideal in situations where we
already have the dataset, and we want to process it in bulk. In other applications,
data elements are not immediately available, but arrive asynchronously. In the next
chapter, we will learn about an abstraction called an event stream, which is used
when asynchronous computations produce multiple intermediate results.

Exercises
In the following exercises, you will use data-parallel collections in several concrete
parallel collection use cases, as well as implement custom parallel collections. In all
examples, a particular emphasis is put on measuring the performance gains from
parallelization. Even when it is not asked explicitly, you should ensure that your
program is not only correct, but also faster than a corresponding sequential program.

1.	 Measure the average running time of allocating a simple object on the JVM.
2.	 Count the occurrences of the whitespace character in a randomly generated

string, where the probability of a whitespace at each position is determined
by a p parameter. Use the parallel foreach method. Plot a graph that
correlates the running time of this operation with the p parameter.

3.	 Implement a program that renders the Mandelbrot set in parallel.
4.	 Implement a program that simulates a cellular automaton in parallel.
5.	 Implement a parallel Barnes-Hut N-body simulation algorithm.
6.	 Explain how you can improve the performance of the result method in

the ParStringCombiner class, as shown in this chapter. Can you parallelize
this method?

7.	 Implement a custom splitter for the binary heap data structure.
8.	 The binomial heap, described in the doctoral thesis of Chris Okasaki, entitled

Purely Functional Data Structures, is an immutable data structure that efficiently
implements a priority queue with four basic operations: insert element, find
smallest element, remove smallest element, and merge two binomial heaps:
class BinomialHeap[T] extends Iterable[T] {
 def insert(x: T): BinomialHeap[T]
 def remove: (T, BinomialHeap[T])
 def smallest: T
 def merge(that: BinomialHeap[T]): BinomialHeap[T]
}

Implement the BinomialHeap class. Then, implement splitters and combiners
for the binomial heap, and override the par operation.

Concurrent Programming
with Reactive Extensions

"Your mouse is a database."

 Erik Meijer

The futures and promises from Chapter 4, Asynchronous Programming with Futures
and Promises, push concurrent programming to a new level. First, they avoid
blocking when transferring the result of the computation from the producer to the
consumer. Second, they allow you to idiomatically compose simple future objects
into more complex ones, resulting in programs that are more concise. Futures
encapsulate patterns of asynchronous communication in a way that is clear and
easily understandable.

One disadvantage of futures is that they can only deal with a single result. For HTTP
requests or asynchronous computations that compute a single value, futures can be
adequate, but sometimes we need to react to many different events coming from the
same computation. For example, it is cumbersome to track the progress status of a file
download with futures. Event streams are a much better tool for this use case; unlike
futures, they can produce any number of values, which we call events. First-class event
streams, which we will learn about in this chapter, can be used inside expressions as if
they were regular values. Just as futures, first-class event streams can be composed and
transformed using functional combinators.

In computer science, event-driven programming is a programming style in which
the flow of the program is determined by events such as external inputs, user actions,
or messages coming from other computations. Here, a user action might be a mouse
click, and an external input can be a network interface. Both futures and event streams
can be classified as event-driven programming abstractions.

Concurrent Programming with Reactive Extensions

[172]

Reactive programming, which deals with propagation of change and the flow of data
in the program, is a closely related discipline. Traditionally, reactive programming
is defined as a programming style that allows you to express various constraints
between the data values in the program. For example, when we say a = b + 1 in
an imperative programming model, it means that a is assigned the current value
of b increased by 1. If the value b later changes, the value of a does not change. By
contrast, in reactive programming, whenever the value b changes, the value a is
updated using the constraint a = b + 1.

With the rising demand for concurrency, the need for event-driven and reactive
programming grows even larger. Traditional callback-based and imperative APIs
have shown to be inadequate for this task—they obscure the program flow, mix
concurrency concerns with program logic, and rely on mutable state. In larger
applications, swarms of unstructured callback declarations lead to an effect known
as the callback hell, in which the programmer can no longer make sense of the
control flow of the program. In a way, callbacks are the GOTO statement of reactive
programming. Event stream composition captures patterns of callback declarations,
allowing the programmer to express them more easily. It is a much more structured
approach for building event-based systems.

Reactive Extensions (Rx) is a programming framework for composing asynchronous
and event-driven programs using event streams. In Rx, an event stream that
produces events of the T type is represented with the Observable[T] type. As we
will learn in this chapter, the Rx framework incorporates principles present both in
reactive and in event-driven programming. The fundamental concept around Rx is
that events and data can be manipulated in a similar way.

In this chapter, we will study the semantics of RxObservable objects, and learn how
to use them to build event-driven and reactive applications. Concretely, we will
cover the following topics:

•	 Creating and subscribing to the observable objects.
•	 The observable contract and how to implement custom observable objects.
•	 Using the subscriptions to cancel event sources. Composing observable

objects using Rx combinators.
•	 Controlling concurrency with Rx scheduler instances.
•	 Using Rx subjects for designing larger applications.

We will start with simple examples that show you how to create and manipulate the
Observable objects, and illustrate how they propagate events.

Chapter 6

[173]

Creating Observable objects
In this section, we will study various ways of creating Observable objects. We
will learn how to subscribe to different kinds of events produced by Observable
instances and learn how to correctly create custom Observable objects. Finally,
we will discuss the difference between cold and hot observables.

An Observable object is an object that has a method called subscribe, which takes
an object called an observer as a parameter. The observer is a user-specified object
with custom event-handling logic. When we call the subscribe method with a
specific observer, we can say that the observer becomes subscribed to the respective
Observable object. Every time the Observable object produces an event, its
subscribed observers get notified.

The Rx implementation for Scala is not a part of the Scala standard library. To use Rx
in Scala, we need to add the following dependency to our build.sbt file:

libraryDependencies +=
 "com.netflix.rxjava" % "rxjava-scala" % "0.19.1"

Now, we can import the contents of the rx.lang.scala package to start using Rx.
Let's say that we want to create a simple Observable object that first emits several
String events and then completes the execution. We use the items factory method
on the Observable companion object to create an Observable object o. We then
call the subscribe method, which is similar to the foreach method on futures
introduced in Chapter 4, Asynchronous Programming with Futures and Promises. The
subscribe method takes a callback function and instructs the Observable object o
to invoke the callback function for each event that is emitted. It does so by creating
an Observer object behind the scene. The difference is that, unlike futures, the
Observable objects can emit multiple events. In our example, the callback functions
print the events to the screen by calling log, as follows:

import rx.lang.scala._
object ObservablesItems extends App {
 val o = Observable.items("Pascal", "Java", "Scala")
 o.subscribe(name => log(s"learned the $name language"))
 o.subscribe(name => log(s"forgot the $name language"))
}

Upon running this example, we notice two things. First, all the log statements are
executed on the main program thread. Second, the callback associated with the
first subscribe call is invoked for all the three programming languages before the
callback associated with the second subscribe call is called for these three languages:

run-main-0: learned the Pascal language

run-main-0: learned the Java language

Concurrent Programming with Reactive Extensions

[174]

run-main-0: learned the Scala language

run-main-0: forgot the Pascal language

run-main-0: forgot the Java language

run-main-0: forgot the Scala language

We can conclude that the subscribe call executes synchronously: it invokes the
callback for all the events emitted by o before returning. However, this is not
always the case. The subscribe call can also return the control to the main thread
immediately, and invoke the callback functions asynchronously. This behavior
depends on the implementation of the Observable object. In this Rx implementation,
Observable objects created using the items method have their events available
when the Observable object is created, so their subscribe method is synchronous.

In the previous example, the Observable object feels almost like an immutable
Scala collection, and the subscribe method acts as if it is a foreach method on
a collection. However, the Observable objects are more general. We will see an
Observable object that emits events asynchronously next.

Let's assume that we want the Observable object that emits an event after a certain
period of time has elapsed. We use the timer factory method to create such an
Observable object and set the timeout to 1 second. We then call subscribe with
two different callbacks, as shown in the following code snippet:

import scala.concurrent.duration._
object ObservablesTimer extends App {
 val o = Observable.timer(1.second)
 o.subscribe(_ => log("Timeout!"))
 o.subscribe(_ => log("Another timeout!"))
 Thread.sleep(2000)
}

This time, the subscribe method calls are asynchronous; it makes no sense to block
the main thread for an entire second and wait until the timeout event appears.
Running the example shows that the main thread continues before the callback
functions are invoked:

RxComputationThreadPool-2: Another timeout!

RxComputationThreadPool-1: Timeout!

Furthermore, the log statements reveal that the callback functions are invoked on the
thread pool internally used by Rx, in an unspecified order.

Chapter 6

[175]

The Observable objects can emit events either synchronously or
asynchronously, depending on the implementation of the specific
Observable object.

As we will see, in most use cases, events are not available when calling subscribe.
This is the case with UI events, file modification events, or HTTP responses. To
avoid blocking the thread that calls subscribe, the Observable objects emit such
events asynchronously.

Observables and exceptions
In Chapter 4, Asynchronous Programming with Futures and Promises, we saw that
asynchronous computations sometimes throw exceptions. When that happens, the
Future object associated with the exception fails; instead of being completed with
the result of the computation, the Future object is completed with the exception that
failed the asynchronous computation. The clients of the Future objects can react to
exceptions by registering callbacks with the failed.foreach or onComplete methods.

The computations that produce events in Observable objects can also throw
exceptions. To respond to exceptions produced by the Observable objects, we can
use an overload of the subscribe method that takes two callback arguments to
create an observer: the callback function for the events and the callback function
for the exception.

The following program creates an Observable object that emits numbers 1 and 2,
and then produces a RuntimeException. The items factory method creates the
Observable object with the numbers, and the error factory method creates another
Observable object with an exception. We then concatenate the two together with
the ++ operator on Observable instances. The first callback logs the numbers to the
standard output and ignores the exception. Conversely, the second callback logs
the Throwable objects and ignores the numbers. This is shown in the following
code snippet:

object ObservablesExceptions extends App {
 val exc = new RuntimeException
 val o = Observable.items(1, 2) ++ Observable.error(exc)
 o.subscribe(
 x => log(s"number $x"),
 t => log(s"an error occurred: $t")
)
}

Concurrent Programming with Reactive Extensions

[176]

The program first prints numbers 1 and 2, and then prints the exception object.
Without the second callback function being passed to subscribe, the exception
will be emitted by the Observable object o, but never passed to the observer.
Importantly, after an exception is emitted, the Observable object is not allowed
to emit any additional events. We can redefine the Observable object o as follows:

import Observable._
val o = items(1, 2) ++ error(exc) ++ items(3, 4)

We might expect the program to print the events 3 and 4, but they are not emitted by
the Observable object o. When an Observable object produces an exception, we say
that it is in the error state.

When an Observable object produces an exception, it enters
the error state and cannot emit more events.

Irrespective of whether the Observable object is created using a factory method, or
is a custom Observable implementation described in the subsequent sections, an
Observable object is not allowed to emit events after it produces an exception.
In the next section, we will examine this contract in more detail.

The Observable contract
Now that we have seen how to create simple Observable objects and react to their
events, it is time to take a closer look at the lifetime of an Observable object. Every
Observable object can be in three states: uncompleted, error, or completed. As long
as the Observable[T] object is uncompleted, it can emit events of type T. As we
already learned, an Observable object can produce an exception to indicate that
it failed to produce additional data. When this happens, the Observable object
enters the error state and cannot emit any additional events. Similarly, when an
Observable object decides that it will not produce any additional data, it might
enter the completed state. After an Observable object is completed, it is not
allowed to emit any additional events.

In Rx, an object that subscribes to events from an Observable object is called
an Observer object. The Observer[T] trait comes with three methods: onNext,
onError, and onCompleted, gets invoked when an Observable object emits an
event, produces an error, or is completed, respectively. This trait is shown in the
following code snippet:

trait Observer[T] {
 def onNext(event: T): Unit

Free ebooks ==> www.Ebook777.com

Chapter 6

[177]

 def onError(error: Throwable): Unit
 def onCompleted(): Unit
}

In the previous examples, whenever we called the subscribe method, Rx created
an Observer object and assigned it to the Observable instance. Alternatively, we
can provide an Observer object directly to an overloaded version of subscribe. The
following program uses the from factory method that converts a list of movie titles
into an Observable object. It then creates an Observer object and passes it to the
subscribe method:

object ObservablesLifetime extends App {
 val classics = List("Good, bad, ugly", "Titanic", "Die Hard")
 val movies = Observable.from(classics)
 movies.subscribe(new Observer[String] {
 override def onNext(m: String) = log(s"Movies Watchlist - $m")
 override def onError(e: Throwable) = log(s"Ooops - $e!")
 override def onCompleted() = log(s"No more movies.")
 })
}

This program first prints our favorite movies, and terminates after calling
onCompleted and printing "No more movies".. The Observable object movies is
created from a finite collection of strings; after these events are emitted, movies calls
onCompleted. In general, Observable objects can only call onCompleted after it is
certain that there will be no more events.

Every Observable object can call onNext on its Observer objects zero or more
times. An Observable object might then enter the completed or error state by calling
onCompleted or onError on its Observer objects. This is known as the Observable
contract, and is shown graphically in the following state diagram, where different
nodes denote Observable states, and links denote calls to different Observer methods:

www.Ebook777.com

http://www.ebook777.com

Concurrent Programming with Reactive Extensions

[178]

Note that an Observable object can call onCompleted or onError if it knows that
it will not emit additional events, but it is free to call neither. Some Observable
objects, such as items, know when they emit the last event. On the other hand, an
Observable instance that emits mouse or keyboard events never calls onCompleted.

An Observable object can call onNext on the subscribed
Observer objects an unlimited number of times. After optionally
calling onCompleted or onError, an Observable object is not
allowed to call any Observer methods.

The Observable objects produced by the Rx API implement the Observable contract.
In practice, we do not need to worry about the Observable contract, unless we are
implementing our own custom Observable object. This is the topic of the next section.

Implementing custom Observable objects
To create a custom Observable object, we can use the Observable.create factory
method as follows:

def create(f: Observer[T] => Subscription): Observable[T]

The preceding method takes a function f from an Observer to a Subscription
object and returns a new Observable object. Whenever the subscribe method gets
called, the function f is called on the corresponding Observer object. The function
f returns a Subscription object, which can be used to unsubscribe the Observer
object from the Observable instance. The Subscription trait defines a single
method called unsubscribe:

trait Subscription {
 def unsubscribe(): Unit
}

We will talk about the Subscription objects in more detail in a subsequent section.
For now, we only use the empty Subscription object, which does not unsubscribe
the Observer object.

To illustrate how to use the Observable.create method, we implement
an Observable object vms, which emits names of popular virtual machine
implementations. In Observable.create, we take care to first call onNext with
all the VM names, and then call onCompleted once. Finally, we return the empty
Subscription object. This is shown in the following program:

object ObservablesCreate extends App {
 val vms = Observable.create[String] { obs =>
 obs.onNext("JVM")

Chapter 6

[179]

 obs.onNext("DartVM")
 obs.onNext("V8")
 obs.onCompleted()
 Subscription()
 }
 vms.subscribe(log _, e => log(s"oops - $e"), () => log("Done!"))
}

The Observable object vms has a synchronous subscribe method. All the events
are emitted to an obs observer before returning the control to the thread that called
subscribe. In general, we can use the Observable.create method in order to
create an Observable instance that emits events asynchronously. We will study
how to convert a Future object into an Observable object next.

Creating Observables from futures
Futures are objects that represent the result of an asynchronous computation. One
can consider an Observable object as a generalization of a Future object. Instead of
emitting a single success or failure event, an Observable object emits a sequence of
events, before failing or completing successfully.

Scala APIs that deal with asynchronous computations generally return Future
objects, and not Observable instances. In some cases, it is useful to be able to
convert a Future object into an Observable object. Here, after a Future object is
completed successfully, the corresponding Observable object must emit an event
with the future value, and then call the onCompleted method. If the Future object
fails, the corresponding Observable object should call onError. Before we begin,
we need to import the contents of the scala.concurrent package and the global
ExecutionContext object, as shown in the following code snippet:

import scala.concurrent._
import ExecutionContext.Implicits.global

We then use the Observable.create method to create an Observable object o.
Instead of calling onNext, onError, and onCompleted directly on the Observer object,
we will install callbacks on the Future object f, as shown in the following program:

object ObservablesCreateFuture extends App {
 val f = Future { "Back to the Future(s)" }
 val o = Observable.create[String] { obs =>
 f foreach { case s => obs.onNext(s); obs.onCompleted() }
 f.failed foreach { case t => obs.onError(t) }
 Subscription()
 }
 o.subscribe(log _)
}

Concurrent Programming with Reactive Extensions

[180]

This time, the subscribe method is asynchronous. It returns immediately after
installing the callback on the Future object. In fact, this pattern is so common that Rx
comes with the Observable.from factory method that converts a Future object into
an Observable object directly, as shown by the following code snippet:

val o = Observable.from(Future { "Back to the Future(s)" })

Still, learning how to convert a Future object into an Observable object was handy.
The Observable.create method is the preferred way to convert callback-based
APIs to Observable objects, as we will see in the subsequent sections.

Use the Observable.create factory method to create the
Observable objects from callback-based APIs.

In the examples so far, we always returned an empty Subscription object.
Calling the unsubscribe method on such a Subscription object has no effect.
Sometimes, the Subscription objects need to release resources associated with the
corresponding Observable instance. We will study how to implement and work
with such Subscription objects next.

Subscriptions
Recall the example with monitoring the filesystem for changes in Chapter 4,
Asynchronous Programming with Futures and Promises, where we used the file
monitoring package from the Apache Commons IO library to complete a Future
object when a new file is created. A Future object can be completed only once, so
the future was completed with the name of the first file that was created. It is more
natural to use Observable objects for this use case, as files in a filesystem can be
created and deleted many times. In an application like a file browser or an FTP
server, we would like to receive all such events.

Later in the program, we might want to unsubscribe from the events in the
Observable object. We will now see how to use the Subscription object to achieve
this. We first import the contents of the Apache Commons IO file monitoring
package, as follows:

import org.apache.commons.io.monitor._

Chapter 6

[181]

We define the modified method, which returns an Observable object with filenames
of the modified files in the specified directory. The Observable.create method
bridges the gap between the Commons IO callback-based API and Rx. When the
subscribe method is called, we create a FileAlterationMonitor object, which
uses a separate thread to scan the filesystem and emit filesystem events every 1000
milliseconds; a FileAlterationObserver object, which specifies a directory to
monitor; and a FileAlterationListener object, which reacts to file events by
calling the onNext method on the Rx Observer object. We then call start on the
fileMonitor object. Finally, we return a custom Subscription object, which calls
stop on the fileMonitor object. The modified method is shown in the following
code snippet:

def modified(directory: String): Observable[String] = {
 Observable.create { observer =>
 val fileMonitor = new FileAlterationMonitor(1000)
 val fileObs = new FileAlterationObserver(directory)
 val fileLis = new FileAlterationListenerAdaptor {
 override def onFileChange(file: java.io.File) {
 observer.onNext(file.getName)
 }
 }
 fileObs.addListener(fileLis)
 fileMonitor.addObserver(fileObs)
 fileMonitor.start()
 Subscription { fileMonitor.stop() }
 }
}

We used the apply factory method on the Subscription companion object in the
preceding code snippet. When the unsubscribe method is called on the resulting
Subscription object, the specified block of code is run. Importantly, calling
unsubscribe the second time will not run the specified block of code again. We say
that the unsubscribe method is idempotent; calling it multiple times has the same
effect as calling it only once. In our example, the unsubscribe method calls the stop
method of the fileMonitor object at most once. When subclassing the Subscription
trait, we need to ensure that unsubscribe is idempotent, and the Subscription.
apply method is a convenience method that ensures idempotence automatically.

Implementations of the unsubscribe method in
the Subscription trait need to be idempotent. Use
the Subscription.apply method to create the
Subscription objects that are idempotent by default.

Concurrent Programming with Reactive Extensions

[182]

We use the modified method to track file changes in our project. After we call
subscribe on the Observable object returned by the modified method, the main
thread suspends for 10 seconds. If we save files in our editor during this time, the
program will log file modification events to the standard output. This is shown
in the following program:

object ObservablesSubscriptions extends App {
 log(s"starting to monitor files")
 val sub = modified(".").subscribe(n => log(s"$n modified!"))
 log(s"please modify and save a file")
 Thread.sleep(10000)
 sub.unsubscribe()
 log(s"monitoring done")
}

Note that, in this example, the FileAlterationMonitor object is only created if
the program invokes the subscribe method. The Observable instance returned
by the modified method does not emit events unless there exists an Observer
object subscribed to it. In Rx, Observable objects that only emit events only when
subscriptions exist are called cold observables. On the other hand, some Observable
objects emit events even when there are no associated subscriptions. This is usually
the case with Observable instances that handle user input, such as the keyboard or
mouse events. Observable objects that emit events regardless of their subscriptions
are called hot observables. We now reimplement an Observable object that
tracks file modifications as a hot observable. We first instantiate and start the
FileAlterationMonitor object, as follows:

val fileMonitor = new FileAlterationMonitor(1000)
fileMonitor.start()

The Observable object uses the fileMonitor object to specify the directory in
order to monitor. The downside is that our Observable object now consumes
computational resources even when there are no subscriptions. The advantage
of using a hot observable is that multiple subscriptions do not need to instantiate
multiple FileAlterationMonitor objects, which are relatively heavyweight. We
implement the hot Observable object in the hotModified method, as shown in the
following code:

def hotModified(directory: String): Observable[String] = {
 val fileObs = new FileAlterationObserver(directory)
 fileMonitor.addObserver(fileObs)
 Observable.create { observer =>
 val fileLis = new FileAlterationListenerAdaptor {
 override def onFileChange(file: java.io.File) {
 observer.onNext(file.getName)

Chapter 6

[183]

 }
 }
 fileObs.addListener(fileLis)
 Subscription { fileObs.removeListener(fileLis) }
 }
}

The hotModified method creates an Observable object with file changes for a given
directory by registering the specified directory with the fileMonitor object, and
only then calls Observable.create. When the subscribe method is called on the
resulting Observable object, we instantiate and add a new FileAlterationListener
object. In the Subscription object, we remove the FileAlterationListener object
in order to avoid receiving additional file modification events, but we do not call stop
on the fileMonitor object until the program terminates.

Composing Observable objects
Having seen different ways of creating various types of Observable objects,
subscribing to their events, and using the Subscription objects, we turn to
composing Observable objects into larger programs. From what we have seen
so far, the advantages of using Observable objects over a callback-based API are
hardly worth the trouble.

The true power of Rx becomes apparent when we start composing Observable
objects using various combinators. We can think of an Observable object in a similar
way as we think of Scala sequence collections. In a Scala sequence, represented with
the Seq[T] trait, elements of type T are ordered in the memory according to their
indices. In an Observable[T] trait, events of type T are ordered in time.

Let's use the Observable.interval factory method in order to create an
Observable object, which asynchronously emits a number every 0.5 seconds,
and then output the first five odd numbers. To do this, we first call filter on the
Observable object in order to obtain an intermediate Observable object that emits
only odd numbers. Note that calling filter on an Observable object is similar to
calling filter on a Scala collection. Similarly, we obtain another Observable object
by calling map in order to transform each odd number into a string. We then call take
to create an Observable object odds that contains only the first five events. Finally,
we subscribe to odds so that we can print the events it emits. This is shown in the
following program:

object CompositionMapAndFilter extends App {
 val odds = Observable.interval(0.5.seconds)
 .filter(_ % 2 == 1).map(n => s"num $n").take(5)

Concurrent Programming with Reactive Extensions

[184]

 odds.subscribe(
 log _, e => log(s"unexpected $e"), () => log("no more odds"))
 Thread.sleep(4000)
}

To concisely explain the semantics of different Rx combinators, we often rely on
marble diagrams. These diagrams graphically represent events in an Observable
object and transformations between different Observable objects. The marble
diagram represents every Observable object with a timeline containing its events.
The first three intermediate Observable objects never call onCompleted on its
observers. The Observable object odds contains at most five events, so it calls
onCompleted after emitting them. We denote a call to onCompleted with a vertical
bar in the marble diagram, as shown in the following diagram:

Note that the preceding diagram is a high-level illustration of the relationships
between different Observable objects, but some of these events can be omitted
during execution. The particular Rx implementation can detect that the events 11
and 12 cannot be observed by the subscribe invocation, so these events are not
emitted to save computational resources.

As an expert on sequential programming in Scala, you probably noticed that we
can rewrite the previous program more concisely using for comprehensions. For
example, we can output the first five even natural numbers with the following
for comprehension:

val evens = for (n <- Observable.from(0 until 9); if n % 2 == 0)
 yield s"even number $n"
evens.subscribe(log _)

Before moving on to more complex for comprehensions, we will study a special
kind of Observable object whose events are other Observable objects.

Chapter 6

[185]

Nested observables
A nested observable, also called a higher-order event stream, is an Observable
object that emits events that are themselves Observable objects. A higher-order
function such as foreach is called a higher-order function because it has a nested
function inside its (T => Unit) => Unit type. Similarly, higher-order event
streams earned this fancy name because they have an Observable[T] type as part
of their type Observable[Observable[T]]. In this section, we will study when
nestedObservable objects are useful and how to manipulate them.

Let's assume that we are writing a book and we want to add a famous quote at the
beginning of each chapter. Choosing the right quote for a chapter is a hard job and we
want to automate it. We write a short program that uses Observable objects to fetch
random quotes from the I Heart Quotes website every 0.5 seconds and prints them to
the screen. Once we see a nice quote, we have to quickly copy it to our book chapter.

We will start by defining a fetchQuote method that returns a Future object with the
text of the quote. Luckily, the HTTP API of the I Heart Quotes website returns plain
text, so we do not need to parse any JSON or XML. We use the scala.io.Source
object to fetch the contents of the proper URL, as follows:

import scala.io.Source
def fetchQuote(): Future[String] = Future {
 blocking {
 val url = "http://www.iheartquotes.com/api/v1/random?" +
 "show_permalink=false&show_source=false"
 Source.fromURL(url).getLines.mkString
 }
}

Recall that we can convert a Future object to an Observable object using the from
factory method:

def fetchQuoteObservable(): Observable[String] = {
 Observable.from(fetchQuote())
}

We now use the Observable.interval factory method in order to create an
Observable object that emits a number every 0.5 seconds. For the purposes of our
example, we take only the first four numbers. Then, we map each of these numbers
into an Observable object that emits a quote, prefixed with the ordinal number
of the quote. To do this, we call the fetchQuoteObservable method and map
the quotes using a nested map call, as shown in the following code snippet:

def quotes: Observable[Observable[String]] =
 Observable.interval(0.5 seconds).take(4).map {
 n => fetchQuoteObservable().map(txt => s"$n) $txt")
 }

Concurrent Programming with Reactive Extensions

[186]

Note that the inner map call transforms an Observable[String] instance,
which contains the quote text, to another Observable[String] instance, which
contains the quote prefixed with a number. The outer map call transforms
the Observable[Long] object, which contains the first four numbers, to an
Observable[Observable[String]] instance, which contains Observable objects
emitting separate quotes. The Observable objects created by the quotes method are
shown in the following marble diagram. Events in the nested Observable objects
presented last are themselves Observable objects that contain a single event: the
text of the quote returned in the Future object. Note that we omit the nested map
call from the diagram to make it more readable.

Drawing a marble diagram makes the contents of this Observable
object more understandable, but how do we subscribe to events in an
Observable[Observable[String]] object? Calling subscribe on quotes requires
observers to handle Observable[String] objects, and not String events directly.

Once again, an analogy with Scala sequence collections is useful in order to
understand how to solve this issue. Whenever we have a nested sequence, say
Seq[Seq[T]], we can flatten it to a Seq[T] collection by calling flatten. When we
do this, elements of the nested sequences are simply concatenated together. The Rx
API provides similar methods that flatten the Observable objects, but they must
deal with the additional complexity associated with the timing of events. There are
different ways of flattening the Observable objects depending on the time when
their events arrive.

Free ebooks ==> www.Ebook777.com

Chapter 6

[187]

The first method, called concat, concatenates nestedObservable objects by ordering
all the events in one nested Observable object before the events in a subsequent
Observable object. An Observable object that appears earlier must complete before
the events from a subsequent Observable object can be emitted. The marble diagram
for the concat operation is shown in the following figure. Although the quote
Veni, vidi, vici. arrives before the quote "Carpe diem.", the quote "Veni,
vidi, vici." is emitted only after the Observable object associated with the quote
"Carpe diem." completes. The resulting Observable object completes only after the
Observable object quotes and all the nested Observable objects complete.

The second method is called flatten, analogously to the similar method in the
Scala collections API. This method emits events from the nested Observable
objects in the order in which they arrive in time, regardless of when the respective
nested Observable object started. An Observable object that appears earlier is
not required to complete before events from a subsequent Observable object are
emitted. This is illustrated in the following marble diagram. A quote is emitted to the
resulting Observable object as soon as it appears on any of the nested Observable
objects. Once quotes and all the nested Observable objects complete, the resulting
Observable object completes as well.

www.Ebook777.com

http://www.ebook777.com

Concurrent Programming with Reactive Extensions

[188]

To test the difference between the concat and flatten method, we subscribe to
events in quotes using each of these two methods. If our network is unreliable or
has particularly nondeterministic latency, the order in which the second subscribe
call prints quotes can be mangled. We can reduce the interval between queries from
0.5 to 0.01 seconds to witness this effect. The ordinal numbers preceding each quote
become unordered when using flatten. This is illustrated in the following program:

object CompositionConcatAndFlatten extends App {
 log(s"Using concat")
 quotes.concat.subscribe(log _)
 Thread.sleep(6000)
 log(s"Now using flatten")
 quotes.flatten.subscribe(log _)
 Thread.sleep(6000)
}

How do we choose between the concat and flatten methods? The concat method
has the advantage that it maintains the relative order between events coming from
different Observable objects. If we had been fetching and printing quotes in a
lexicographic order, then the concat method would be the correct way to flatten
the nested Observable objects.

Use concat to flatten nested Observable objects whenever the
order of events between different nested Observable objects
needs to be maintained.

The concat method does not subscribe to subsequent Observable objects before the
current Observable object completes. If one of the nested Observable objects takes
a long time to complete or does not complete at all, the events from the remaining
Observable objects are postponed or never emitted. The flatten method subscribes
to a nested Observable object as soon as the nested Observable object is emitted,
and emits events as soon as they arrive.

If at least one of the nested Observable objects has an
unbounded number of events or never completes, use flatten
instead of concat.

Chapter 6

[189]

We can also traverse events from multiple Observable objects in a for
comprehension. The Observable objects come with the flatMap method, and
this allows you to use them in for comprehensions. Calling the flatMap method
on an Observable object is equivalent to mapping each of its events into a nested
Observable object, and then calling flatten. Thus, we can rewrite the quotes.
flatten method as follows:

Observable.interval(0.5 seconds).take(5).flatMap({
 n => fetchQuoteObservable().map(txt => s"$n) $txt")
}).subscribe(log _)

Having already mastered for comprehensions on Scala collections and for
comprehensions on futures, this pattern of flatMap and map calls immediately rings a
bell, and we recognize the previous expression as the following for comprehension:

val qs = for {
 n <- Observable.interval(0.5 seconds).take(5)
 txt <- fetchQuoteObservable()
} yield s"$n) $txt"
qs.subscribe(log _)

This is much more concise and understandable, and almost feels like we're back in
the collections land. Still, we need to be careful, because the for comprehensions
on Observable objects do not maintain the relative order of the events in the way
that the for comprehensions on collections do. In the preceding example, as soon
as we can pair a n number with some quote txt, the s"$n) $txt" event is emitted,
irrespective of the events associated with the preceding n number.

Calling flatMap or using Observable objects in for
comprehensions emits events in the order in which they
arrive, and it does not maintain ordering between events from
different Observable objects. Invoking the flatMap method is
semantically equivalent to calling map followed by flatten.

An attentive reader will notice that we did not consider the case where one of the
nested Observable objects terminates by calling onError. When this happens, both
concat and flatten call the onError method with the same exception. Similarly,
map and filter fail the resulting Observable object if the input Observable object
produces an exception, so it is unclear how to compose failed Observable objects.
This is the focus of the next section.

Concurrent Programming with Reactive Extensions

[190]

Failure handling in observables
If you ran the previous examples yourself, you might have noticed that some of
the quotes are long and tedious to read. We don't want to put a long quote at the
beginning of the chapter. If we did that, our readers might lose interest. The best
quotes are short and straight to the point.

Our next goal will be to replace quotes longer than 100 characters with a string
Retrying... and print the first quote shorter than 100 characters. This time, we
define an Observable object called randomQuote, which emits a random quote every
time we subscribe to it. We use the Observable.create method in order to obtain a
random quote as before and emit the quote to the observer. We then return an empty
Subscription object. This is shown in the following code snippet:

def randomQuote = Observable.create[String] { obs =>
 val url = "http://www.iheartquotes.com/api/v1/random?" +
 "show_permalink=false&show_source=false"
 obs.onNext(Source.fromURL(url).getLines.mkString)
 obs.onCompleted()
 Subscription()
}

There is a subtle difference between the Observable object returned by
randomQuote and the one returned by fetchQuoteObservable, defined
earlier. The fetchQuoteObservable method creates a Future object in order to
obtain a quote and emits the quote in that Future object to every observer. By
contrast, randomQuote fetches a new quote every time subscribe is called. In
the previously introduced terminology, the randomQuote method creates cold
Observable objects, which emit events only when we subscribe to it, whereas the
fetchQuoteObservable method creates hot Observable objects, which emit the
same quote to all their observers.

To resubscribe to a failed Observable object, we can use the retry combinator. The
retry combinator takes an input Observable, and returns another Observable
object that emits events from the input Observable object until it either completes
or fails. If the input Observable object fails, the retry combinator subscribes to the
input Observable object again.

We now use the retry combinator with the randomQuote method to fetch quotes
until we obtain a quote shorter than 100 characters. We first transform the long
quotes from randomQuote into failed observables, which enables retry to subscribe
again to obtain another quote. To do this, we define a new Observable object called
errorMessage, which emits a string "Retrying..." and then fails. We then traverse
the text quote from randomQuote in a for comprehension. If the text quote is
shorter than 100 characters, we traverse an Observable object that emits text.

Chapter 6

[191]

Otherwise, we traverse errorMessage to output "Retrying..." instead of text.
This for comprehension defines an Observable object quoteMessage, which either
emits a short quote, or emits "Retrying..." and fails. The marble diagram of the
resulting Observable object, called quoteMessage, is shown for these two cases, in
which the exception in the Observable object is shown with a cross symbol:

Finally, we call retry on quoteMessage and subscribe to it. We specify that we
want to retry up to five times, as omitting the argument would retry forever. We
implement the Observable object quoteMessage in the following program:

object CompositionRetry extends App {
 import Observable._
 def errorMessage = items("Retrying...") ++ error(new Exception)
 def quoteMessage = for {
 text <- randomQuote
 message <- if (text.size < 100) items(text) else errorMessage
 } yield message
 quoteMessage.retry(5).subscribe(log _)
 Thread.sleep(2500)
}

Run this program several times. You will notice that a short quote is either printed
right away, or after a few retries, depending on some random distribution of the
quotes. You may be wondering how many quotes are on average longer than 100
characters. It turns out that it is easy to do this statistic in Rx. We introduce two
new combinators. The first one is called repeat, and it is very similar to retry.
Instead of resubscribing to an Observable object when it fails, it resubscribes when
an Observable object completes. The second combinator is called scan and it is
similar to the scanLeft operator on collections. Given an input Observable object
and a starting value for the accumulation, it emits the value of the accumulation
by applying the specified binary operator to the accumulation and the event,
updating the accumulation as the events arrive. The usage of the repeat and scan
combinators is illustrated in the following program:

object CompositionScan extends App {
 CompositionRetry.quoteMessage.retry.repeat.take(100).scan(0) {
 (n, q) => if (q == "Retrying...") n + 1 else n
 } subscribe(n => log(s"$n / 100"))
}

Concurrent Programming with Reactive Extensions

[192]

In the preceding example, we use the Observable object quoteMessage defined
earlier in order to obtain a short quote or a message "Retrying..." followed by
an exception. We retry quotes that have failed because of them being too long, and
repeat whenever a quote is short enough. We take 100 quotes in total, and use the
scan operator to count the short quotes. When we ran this program, it turned out
that 57 out of 100 quotes are too long for our book.

The retry method is used in order to repeat the events from failed
Observable objects. Similarly, the repeat method is used in order
to repeat the events from completed Observable objects.

In the examples shown so far, we use the same Observable object to resubscribe
and emit additional events if that Observable object fails. In some cases, we want
to emit specific events when we encounter an exception, or fall back to a different
Observable object. Recall that this is what we did with Future objects previously.
The Rx methods that replace an exception with an event, or multiple events from
another Observable object, are called onErrorReturn and onErrorResumeNext,
respectively. In the following program, we first replace the exception from status
with a string "exception occurred.". We then replace the exception with strings
from another Observable object:

object CompositionErrors extends App {
 val status = items("ok", "still ok") ++ error(new Exception)
 val fixedStatus =
 status.onErrorReturn(e => "exception occurred.")
 fixedStatus.subscribe(log _)
 val continuedStatus =
 status.onErrorResumeNext(e => items("better", "much better"))
 continuedStatus.subscribe(log _)
}

Having seen various ways to compose Observable objects, we turn to the
concurrency features of Rx. So far, we did not pay close attention to the thread on
which an Observable object emits events. In the next section, we will study how to
transfer events between Observable objects on different threads, and learn when
this can be useful.

Chapter 6

[193]

Rx schedulers
At the beginning of this chapter, we observed that different Observable objects emit
events on different threads. A synchronous Observable object emits on the caller
thread when subscribe gets invoked. The Observable.timer object emits events
asynchronously on threads internally used by Rx. Similarly, events in Observable
objects created from Future objects are emitted on ExecutionContext threads. What
if we want to use an existing Observable object to create another Observable object
bound to a specific thread?

To encapsulate the choice of the thread on which an Observable object should emit
events, Rx defines a special class called Scheduler. A Scheduler class is similar
to the Executor and ExecutionContext interfaces we saw in Chapter 3, Traditional
Building Blocks of Concurrency. The Observable objects come with a combinator
called observeOn. This combinator returns a new Observable object that emits
events using the specified Scheduler class. In the following program, we instantiate
a Scheduler object called ComputationScheduler, which emits events using an
internal thread pool. We then emit events with and without calling observeOn:

object SchedulersComputation extends App {
 val scheduler = schedulers.ComputationScheduler()
 val numbers = Observable.from(0 until 20)
 numbers.subscribe(n => log(s"num $n"))
 numbers.observeOn(scheduler).subscribe(n => log(s"num $n"))
 Thread.sleep(2000)
}

From the output, we can see that the second subscribe call uses a thread pool:

run-main-42: num 0

...

run-main-42: num 19

RxComputationThreadPool-1: num 0

...

RxComputationThreadPool-1: num 19

The ComputationScheduler object maintains a pool of threads intended for
computational tasks. If processing the events blocks or waits for I/O operations, we
must use the IOScheduler object, which automatically spawns new threads when
necessary. Exceptionally, if processing each event is a very coarse-grained task, we
can use the NewThreadScheduler object, which spawns a new thread for each event.

Concurrent Programming with Reactive Extensions

[194]

Using custom schedulers for UI applications
Built-in Rx schedulers are useful for most tasks, but in some cases we need more
control. Most UI toolkits only allow you to read and modify UI elements from a
special thread. This thread is called the event-dispatching thread. This approach
simplifies the design and the implementation of a UI toolkit, and protects clients
from subtle concurrency errors. Since UI usually does not represent a computational
bottleneck, this approach has been widely adopted; the Swing toolkit uses an
EventDispatchThread object in order to propagate events.

The Observable objects are particularly useful when applied to UI applications; a
user interface is all about events. In the subsequent examples, we will use the Scala
Swing library to illustrate the usefulness of Rx in UI code. We start by adding the
following dependency to our project:

libraryDependencies +=
 "org.scala-lang.modules" %% "scala-swing" % "1.0.1"

We will start by creating a simple Swing application with a single button. Clicking
on this button will print a message to the standard output. This application
illustrates how to convert Swing events into an Observable object. We will
start by importing the relevant Scala Swing packages as follows:

import scala.swing._
import scala.swing.event._

To create a Swing application, we need to extend the SimpleSwingApplication
class. This class has a single abstract method, top, which needs to return a Frame
object. The Swing's abstract Frame class represents the application window. We
return a new MainFrame object, which is a subclass of Frame. In the MainFrame
constructor, we set the window title bar text to Swing Observables, and instantiate
a new Button object with the Click text. We then set the contents of the MainFrame
constructor to that button.

So much for the UI elements and their layout; we now want to add some logic to this
simple application. Traditionally, we would make a Swing application interactive by
installing callbacks to various UI elements. Using Rx, we instead convert callbacks
into event streams; we define an Observable object called buttonClicks that emits
an event every time the button element is clicked on. We use the Observable.
create method in order to register a ButtonClicked callback that calls onNext on
the observer. To log clicks to the standard output, we subscribe to buttonClicks.
The complete Swing application is shown in the following code snippet:

object SchedulersSwing extends SimpleSwingApplication {
 def top = new MainFrame {
 title = "Swing Observables"

Chapter 6

[195]

 val button = new Button {
 text = "Click"
 }
 contents = button
 val buttonClicks = Observable.create[Button] { obs =>
 button.reactions += {
 case ButtonClicked(_) => obs.onNext(button)
 }
 Subscription()
 }
 buttonClicks.subscribe(_ => log("button clicked"))
 }
}

Running this application opens the window, as shown in the following screenshot.
Clicking on the button prints a string to the standard output. We can see that
the events are emitted on the thread called AWT-EventQueue-0, which is the
event-dispatching thread in Swing.

One downside of single-threaded UI toolkits is that long-running computations on
the event-dispatching thread block the UI and harm the user experience. If we issued
a blocking HTTP request each time the user clicks on a button, we would witness
a noticeable lag after each click. Luckily, this is easy to address by executing long-
running computations asynchronously.

Usually, we are not content with just starting an asynchronous computation.
Once the asynchronous computation produces a result, we would like to display
it in the application. Recall that we are not allowed to do this directly from the
computation thread; we need to return the control back to the event-dispatching
thread. Swing defines the invokeLater method, which schedules tasks on Swing's
event-dispatching thread. On the other hand, Rx has a Schedulers.from built-in
method that converts an Executor object into a Scheduler object. To bridge the gap
between Swing's invokeLater method and Rx schedulers, we implement a custom
Executor object that wraps a call to invokeLater, and we pass this Executor object
to Schedulers.from. The custom swingScheduler object is implemented as follows:

import java.util.concurrent.Executor
import rx.schedulers.Schedulers.{from => fromExecutor}
import javax.swing.SwingUtilities.invokeLater

Concurrent Programming with Reactive Extensions

[196]

val swingScheduler = new Scheduler {
 val asJavaScheduler = fromExecutor(new Executor {
 def execute(r: Runnable) = invokeLater(r)
 })
}

We can use the newly-defined swingScheduler object in order to send events back
to Swing. To illustrate this, let's implement a small web browser application. Our
browser consists of an urlfield address bar and a Feeling lucky button. Typing
into the address bar displays the suggestions for the URL, and clicking on the button
displays raw HTML of the webpage. The browser is not a trivial application, so we
separate the implementation of the UI layout from the UI logic. We start by defining
the BrowserFrame class, which describes the layout of the UI elements:

abstract class BrowserFrame extends MainFrame {
 title = "MiniBrowser"
 val specUrl = "http://www.w3.org/Addressing/URL/url-spec.txt"
 val urlfield = new TextField(specUrl)
 val pagefield = new TextArea
 val button = new Button {
 text = "Feeling Lucky"
 }
 contents = new BorderPanel {
 import BorderPanel.Position._
 layout(new BorderPanel {
 layout(new Label("URL:")) = West
 layout(urlfield) = Center
 layout(button) = East
 }) = North
 layout(pagefield) = Center
 }
 size = new Dimension(1024, 768)
}

Scala Swing was implemented long before the introduction of Rx, so it does not
come with event streams. We use Scala's extension method pattern in order to enrich
the existing UI element classes with Observable objects, and add implicit classes,
ButtonOps and TextFieldOps, with methods, clicks and texts, respectively. The
clicks method returns an Observable object that emits an event each time the
corresponding button is clicked on. Similarly, the texts method emits an event each
time the content of a text field changes:

implicit class ButtonOps(val self: Button) {
 def clicks = Observable.create[Unit] { obs =>
 self.reactions += {

Free ebooks ==> www.Ebook777.com

Chapter 6

[197]

 case ButtonClicked(_) => obs.onNext(())
 }
 Subscription()
 }
}
implicit class TextFieldOps(val self: TextField) {
 def texts = Observable.create[String] { obs =>
 self.reactions += {
 case ValueChanged(_) => obs.onNext(self.text)
 }
 Subscription()
 }
}

We now have the necessary utilities to concisely define the logic of our web browser.
We implement the browser logic in a trait called BrowserLogic, annotated with a
self-type BrowserFrame object. The self type allows you to mix the BrowserLogic
trait only into classes that extend BrowserFrame. This makes sense; the browser logic
needs to know about UI events to react to them.

There are two main functionalities supported by the web browser. First, the browser
needs to suggest possible URLs while the user types into the address bar. To facilitate
this, we define a helper method, suggestRequest, which takes a term from the
address bar and returns an Observable object with the possible completions. This
Observable object uses Google's query suggestion service to get a list of possible
URLs. To cope with network errors, the Observable object will time out after 0.5
seconds if there is no reply from the server, and emit an error message.

Second, our browser needs to display the contents of the specified URL, when we
click on the Feeling lucky button. To achieve this, we define another helper method
named pageRequest, which returns an Observable object with the raw HTML of the
web page. This Observable object times out after 4 seconds if the page is not loaded
by that time.

Using these helper methods and the UI element Observable objects, we can encode
the browser logic more easily. Each urlField text modification event maps into a
nested Observable object with the suggestion. The call to concat then flattens the
nested Observable object. The suggestion events transfer back to the Swing event-
dispatching thread using the observeOn combinator. We subscribe to the events on
the Swing event-dispatching thread in order to modify the contents of the pagefield
text area. We subscribe to button.clicks in a similar way:

trait BrowserLogic {
 self: BrowserFrame =>
 def suggestRequest(term: String): Observable[String] = {
 val url = "http://suggestqueries.google.com/" +

www.Ebook777.com

http://www.ebook777.com

Concurrent Programming with Reactive Extensions

[198]

 s"complete/search?client=firefox&q=$term"
 val request = Future { Source.fromURL(url).mkString }
 Observable.from(request)
 .timeout(0.5.seconds)
 .onErrorReturn(e => "(no suggestion)")
 }
 def pageRequest(url: String): Observable[String] = {
 val request = Future { Source.fromURL(url).mkString }
 Observable.from(request)
 .timeout(4.seconds)
 .onErrorReturn(e => s"Could not load page: $e")
 }
 urlfield.texts.map(suggestRequest).concat
 .observeOn(swingScheduler)
 .subscribe(response => pagefield.text = response)
 button.clicks.map(_ => pageRequest(urlfield.text)).concat
 .observeOn(swingScheduler)
 .subscribe(response => pagefield.text = response)
}

After defining both the UI layout and the UI logic, we only need to instantiate the
browser frame in a Swing application:

object SchedulersBrowser extends SimpleSwingApplication {
 def top = new BrowserFrame with BrowserLogic
}

Running the application opens the browser frame, and we can start surfing in our
very own Rx-based web browser. The guys at Mozilla and Google will surely be
impressed when they see the following screenshot:

Chapter 6

[199]

Although our web browser is very simple, we managed to separate its functionality
into the UI layout and browser logic layers. The UI layout layer defines Observable
objects such as urlfield.texts and button.clicks as part of its interface. The
browser logic layer relies on the functionality from the UI layout layer; for example,
we could not describe the updates to the pagefield UI element without referencing
the Observable object button.clicks. We say that the browser logic depends on
the UI layout, but not vice versa. For an UI application, this can be acceptable, but
other applications require a more loosely coupled design, in which different layers
do not refer to each other directly.

Subjects and top-down reactive
programming
Composing Observable objects is similar to composing functions, collections,
or futures. Complex Observable objects are formed from simpler parts using
functional composition. This is a very Scala-idiomatic pattern, and it results in
concise and understandable programs.

A not-so-obvious downside of functional composition is that it favors bottom-up
programming style. An Observable object cannot be created without a reference
to another Observable object that it depends on. For instance, we cannot create an
Observable object using the map combinator without having an input Observable
object to call map on. In a bottom-up programming style, we build complex programs
by implementing the simplest parts first, and then gradually working our way up.
By contrast, in a top-down programming style, we first define the complex parts
of the system, and then gradually divide them into successively smaller pieces.
Top-down programming style allows first declaring an Observable object, and
defining its dependencies later.

To allow building systems in a top-down programming style, Rx defines an
abstraction called a subject, represented by the Subject trait. A Subject trait is
simultaneously an Observable object and an Observer object. As an Observable
object, a Subject trait can emit events to its subscribers. As an Observer object, a
Subject trait can subscribe to different input Observable objects and forward their
events to its own subscribers.

A Subject trait is an Observable object whose inputs can
change after its creation.

Concurrent Programming with Reactive Extensions

[200]

To see how to use a Subject trait in practice, let's assume that we are building our
own operating system. Having witnessed how practical the Rx event streams are,
we decide to use them throughout our operating system, which we name RxOS. To
make RxOS pluggable, its functionality is divided into separate components called
kernel modules. Each kernel module might define a certain number of Observable
objects. For example, a TimeModule module exposes an Observable object named
systemClock, which outputs a string with the system uptime every second:

object TimeModule {
 import Observable._
 val systemClock = interval(1.seconds).map(t => s"systime: $t")
}

System output is an essential part of every operating system. We want RxOS to
output important system events such as the system up time. We already know how
to do this by calling subscribe on the systemClock object from the TimeModule
module, as shown in the following code:

object RxOS {
 val messageBus = TimeModule.systemClock.subscribe(log _)
}

Let's say that another team now independently develops another kernel
module named FileSystemModule, which exposes an Observable object
called fileModifications. This Observable object emits a filename each
time a file is modified:

object FileSystemModule {
 val fileModifications = modified(".")
}

Our core development team now decides that the fileModifications objects are
important system events and wants to log these events as part of the messageBus
subscription. We now need to redefine the singleton object RxOS, as shown in the
following code snippet:

object RxOS {
 val messageBus = Observable.items(
 TimeModule.systemClock,
 FileSystemModule.fileModifications
).flatten.subscribe(log _)
}

Chapter 6

[201]

This patch solves the situation, but what if another kernel module introduces
another group of important system events. With our current approach, we will have
to recompile the RxOS kernel each time some third-party developer implements a
kernel module. Even worse, the RxOS object definition references kernel modules,
and thus, depends on them. Developers who want to build custom, reduced versions
of RxOS now need to tweak the kernel source code.

This is the classic culprit of the bottom-up programming style; we are unable to
declare the messageBus object without declaring its dependencies, and declaring
them binds us to specific kernel modules.

We now redefine the messageBus object as an Rx subject. We create a new
Subject instance that emits strings, and we then subscribe to it, as shown
in the following example:

object RxOS {
 val messageBus = Subject[String]()
 messageBus.subscribe(log _)
}

At this point, the messageBus object is not subscribed to any Observable objects and
does not emit any events. We can now define the RxOS boot sequence separately
from the modules and the kernel code. The boot sequence specifies which kernel
modules to subscribe with the messageBus object, and stores their subscriptions
into the loadedModules list:

object SubjectsOS extends App {
 log(s"RxOS boot sequence starting...")
 val loadedModules = List(
 TimeModule.systemClock,
 FileSystemModule.fileModifications
).map(_.subscribe(RxOS.messageBus))
 log(s"RxOS boot sequence finished!")
 Thread.sleep(10000)
 for (mod <- loadedModules) mod.unsubscribe()
 log(s"RxOS going for shutdown")
}

Concurrent Programming with Reactive Extensions

[202]

The boot sequence first subscribes the messageBus object to each of the required
modules. We can do this because the messageBus object is an Observer object, in
addition to being an Observable object. The RxOS then stays up for 10 seconds
before calling unsubscribe on the modules and shutting down. During this time,
the system clock emits an event to the messageBus object every second. Similarly,
the messageBus object outputs the name of the modified file every time a file
modification occurs, as shown in the following diagram:

The difference between the two approaches is shown in the preceding figure. In
the bottom-up approach, we first need to define all the kernel modules and then
make RxOS depend on them. In the top-down approach, RxOS does not depend
on the kernel modules. Instead, it is glued together with them by the boot sequence
module. The clients of RxOS no longer need to tweak or recompile the kernel code
if they want to add a new kernel module. In fact, the new design even allows
hot-plugging kernel modules into a running RxOS instance, long after the boot
sequence is completed.

Use Subject instances when you need to create an Observable
object whose inputs are not available when the Observable
object is created.

In our example, designing a web browser was a lot like ordering a MacBook. After
specifying the preferred processor type and the hard disk size, the Macbook is
assembled, and its components cannot be exchanged easily. Analogously, after
implementing the browser's UI layout, the event streams that describe the interaction
between UI components are declared only once, and cannot change if the UI
components are replaced. On the other hand, building an OS is more like building a
desktop computer from custom components. After putting the motherboard into the
case, we can plug in components such as the graphics card or the RAID controller
independently. Similarly, after declaring the messageBus subject, we can plug in
any number of kernel modules at any time during the execution of the program.

Chapter 6

[203]

Although the Subject interface is more flexible than the Observable interface, you
should not always use the Subject instances and rely exclusively on top-down
programming style. While declaring the dependencies of an Observable object at its
creation point makes the application less flexible, it also makes it more declarative
and easier to understand. Modern large-scale applications usually combine both
bottom-up and top-down approaches.

Rx defines several other types of subjects. The ReplaySubject type is a Subject
implementation that buffers the events it receives as an Observer object. When
another Observer object subscribes to a ReplaySubject instance, all the events
previously buffered by the ReplaySubject instance are replayed. In the following
code snippet, we define a ReplaySubject instance called messageLog in RxOS:

object RxOS {
 val messageBus = Subject[String]()
 val messageLog = subjects.ReplaySubject[String]()
 messageBus.subscribe(log _)
 messageBus.subscribe(messageLog)
}

The messageLog object subscribes to the messageBus object in order to buffer all the
system messages. If, for example, we now want to dump all the messages into a log
file, we can subscribe to the messageLog object immediately before the application
ends, as shown in the following example:

log(s"RxOS dumping the complete system event log")
RxOS.messageLog.subscribe(logToFile)
log(s"RxOS going for shutdown")

Rx also defines two other subjects called BehaviorSubject and AsyncSubject. The
BehaviorSubject class buffers only the most recent event, and the AsyncSubject
class only emits the event immediately preceding onComplete. We will not study
their exact semantics and use case here, but we refer you to the online documentation
to find out more about them.

Concurrent Programming with Reactive Extensions

[204]

Summary
First-class event streams are an extremely expressive tool for modelling dynamic,
event-based systems with time-varying values. Rx Observable objects are an
event stream implementation designed to build scalable, concurrent, event-based
applications. In this chapter, we saw how to create Rx Observable objects and how
to subscribe to their events. We studied the Observable contract and learned how
to compose complex Observable objects from simple ones. We investigated various
ways of recovering from failures and saw how to use Rx schedulers to transfer
events between threads. Finally, we learned how to design loosely coupled systems
with Rx subjects. These powerful tools together allow us to build a plethora of
different applications, ranging from web browsers, FTP servers, music and video
players to real-time games and trading platforms, and even operating systems.

Due to the increasing popularity of reactive programming, a number of frameworks
similar to Rx have appeared in the recent years, REScala, Akka Streams, and Reactive
Collections, to name a few. We did not study the semantics of these frameworks in
this chapter, but leave it to the readers to explore them on their own.

We have seen that Observable objects are very declarative in nature, making the
Rx programming model easy to use and understand. Nevertheless, it is sometimes
useful to model a system imperatively, using explicit state. In the next chapter, we
will study software transactional memory, which allows accessing shared program
state without the risk of deadlocks and race conditions that we learned about in
Chapter 2, Concurrency on the JVM and the Java Memory Model.

Exercises
In the following exercises, you will need to implement different Observable
objects. The exercises show different use cases for Observable objects, and contrast
the different ways of creating Observable objects. Also, some of the exercises
introduce new reactive programming abstractions, such as reactive maps and
reactive priority queues.

1.	 Implement a custom Observable[Thread] object that emits an event when
it detects that a thread was started. The implementation is allowed to miss
some of the events.

2.	 Implement an Observable object that emits an event every 5 seconds and
every 12 seconds, but not if the elapsed time is a multiple of 30 seconds.
Use functional combinators on Observable objects.

Chapter 6

[205]

3.	 Use the randomQuote method from this section in order to create an
Observable object with the moving average of the quote lengths.
Each time a new quote arrives, a new average value should be emitted.

4.	 Implement the reactive signal abstraction, represented with the Signal[T]
type. The Signal[T] type comes with the method apply, used to query the
last event emitted by this signal, and several combinators with the same
semantics as the corresponding Observable methods:
class Signal[T] {
 def apply(): T = ???
 def map(f: T => S): Signal[S] = ???
 def zip[S](that: Signal[S]): Signal[(T, S)] = ???
 def scan[S](z: S)(f: (S, T) => S) = ???
}

Then, add the method toSignal to the Observable[T] type, which converts
an Observable object to a reactive signal:
def toSignal: Signal[T] = ???

Consider using Rx subjects for this task.

5.	 Implement the reactive cell abstraction, represented with the RCell[T] type:
class RCell[T] extends Signal[T] {
 def :=(x: T): Unit = ???
}

A reactive cell is simultaneously a reactive signal from the previous
exercise. Calling the := method sets a new value to the reactive cell,
and emits an event.

6.	 Implement the reactive map collection, represented with the RMap class:
class RMap[K, V] {
 def update(k: K, v: V): Unit
 def apply(k: K): Observable[V]
}

The update method behaves like the update on a regular Map collection.
Calling apply on a reactive map returns an Observable object with all
the subsequent updates of the specific key.

Concurrent Programming with Reactive Extensions

[206]

7.	 Implement the reactive priority queue, represented with the
RPriorityQueue class:
class RPriorityQueue[T] {
 def add(x: T): Unit = ???
 def pop(): T = ???
 def popped: Observable[T] = ???
}

The reactive priority queue exposes the Observable object popped, which
emits events whenever the smallest element in the priority queue gets
removed by calling pop.

8.	 Implement the copyFile method, which copies a file specified with the src
parameter to the destination specified with the dest parameter. The method
returns an Observable[Double] object, which emits an event with the file
transfer progress every 100 milliseconds:
def copyFile(src: String, dest: String): Observable[Double]

The resulting Observable object must complete if the file transfer completes
successfully, or otherwise fail with an exception.

9.	 Create a custom Swing component, called RxCanvas, which exposes mouse
events using Observable objects:
class RxCanvas extends Component {
 def mouseMoves: Observable[(Int, Int)]
 def mousePresses: Observable[(Int, Int)]
 def mouseReleases: Observable[(Int, Int)]
}

Use the RxCanvas component to build your own Paint program, in which
you can drag lines on the canvas using a brush, and save the contents of
the canvas to an image file. Consider using nested Observable objects
to implement dragging.

Free ebooks ==> www.Ebook777.com

Software Transactional
Memory

"Everybody who learns concurrency and thinks they understand it, ends up
finding mysterious races they thought weren't possible, and discovers that they
didn't actually understand it yet after all."

-Herb Sutter

While investigating the fundamental primitives of concurrency in Chapter 2,
Concurrency on the JVM and the Java Memory Model, we recognized the need for
protecting parts of the program from shared access. We saw that a basic way of
achieving this isolation is the synchronized statement, which uses intrinsic object
locks to ensure that at most a single thread executes a specific part of the program
at the same time. The disadvantage of using locks is that they can easily cause
deadlocks, a situation in which the program cannot progress.

In this chapter, we will introduce Software Transactional Memory (STM), a
concurrency control mechanism for controlling access to shared memory, which
greatly reduces the risk of deadlocks and races. An STM is used to designate critical
sections of the code. Instead of using locks in order to protect critical sections, STM
tracks the reads and writes to shared memory, and serializes critical sections with
interleaving reads and writes. The synchronized statement is replaced with the
atomic blocks that express segments of the program that need to be executed in
isolation. STM is safer and easier to use, and at the same time, guarantees relatively
good scalability.

www.Ebook777.com

http://www.ebook777.com

Software Transactional Memory

[208]

The idea of memory transactions stems from database transactions, which ensure
that a sequence of database queries occur in isolation. A memory transaction is a
sequence of reads and writes to shared memory that logically occur at a single point
in time. When a memory transaction T occurs, concurrent memory transactions
observe the state of the memory either before the transaction T started, or after the
transaction T completed, but not the intermediate states during the execution of T.
This property is called isolation.

As we will see, composability is another important advantage of using an STM.
Consider a lock-based hash table implementation with thread-safe insert and
remove operations. While the individual insert and remove operations can be safely
invoked by different threads, it is impossible to implement a method that removes an
element from one hash table, and adds it to another hash table without exposing the
intermediate state in which the element is not present in either hash table.

Traditionally, STM was proposed as a part of the programming language with the
advantage that certain transaction limitations can be ensured at compile time. Since
this approach requires intrusive changes to a language, many software transactional
memories are implemented as libraries. ScalaSTM is one such example. We will use
ScalaSTM as the concrete STM implementation. Concretely, we cover the following
topics in this chapter:

•	 The disadvantages of atomic variables
•	 The semantics and internals of STM
•	 Transactional references
•	 The interaction between transactions and external side effects
•	 Semantics of single operation transactions and nested transactions
•	 Retrying transactions conditionally and timing out transactions
•	 Transaction-local variables, transactional arrays, and transactional maps

We already learned in Chapter 3, Traditional Building Blocks of Concurrency, that using
atomic variables and concurrent collections allows expressing lock-free programs.
Why not just use atomic variables to express concurrently shared data? To better
motivate the need for STM, we will start by presenting a situation in which atomic
variables prove inadequate.

Chapter 7

[209]

The trouble with atomic variables
Atomic variables from Chapter 3, Traditional Building Blocks of Concurrency, are one
of the fundamental synchronization mechanisms. We already know that volatile
variables, introduced in Chapter 2, Concurrency on the JVM and the Java Memory
Model, allow race conditions, in which the program correctness is subject to precise
execution schedule of different threads. Atomic variables can ensure that no thread
concurrently modifies the variable between a read and a write. At the same time,
atomic variables reduce the risk of deadlocks. Regardless of their advantages, there
are situations when using atomic variables is not satisfactory.

In Chapter 6, Concurrent Programming with Reactive Extensions, we implemented a
minimalistic web browser using the Rx framework. Surfing around the web is great,
but we would like to have some additional features in our browser. For example, we
would like to maintain the browser's history: the list of URLs that were previously
visited. We decide to keep the list of URLs in the Scala List[String] collection.
Additionally, we decide to track the total character length of all the URLs. If we want
to copy the URL strings into an array, this information allows us to quickly allocate
an array of an appropriate size.

Different parts of our browser execute asynchronously, so we need to synchronize
access to this mutable state. We can keep the list of URLs and their total character
length in private mutable fields and use the synchronized statement to access them.
However, having seen the culprits of the synchronized statement in earlier chapters,
we decide to avoid locks. Instead, we will use atomic variables. We will store the list
of URLs and their total character length in two atomic variables: urls and clen:

import java.util.concurrent.atomic._
val urls = new AtomicReference[List[String]](Nil)
val clen = new AtomicInteger(0)

Whenever the browser opens some URL, we need to update these atomic variables.
To do this more easily, we define a helper method called addUrl:

import scala.annotation.tailrec
def addUrl(url: String): Unit = {
 @tailrec def append(): Unit = {
 val oldUrls = urls.get
 val newUrls = url :: oldUrls
 if (!urls.compareAndSet(oldUrls, newUrls)) append()
 }
 append()
 clen.addAndGet(url.length + 1)
}

Software Transactional Memory

[210]

As we have learned in the introductory chapters, we need to use atomic operations
on atomic variables to ensure that their values consistently change from one state
to another. In the previous code snippet, we use the compareAndSet operation to
atomically replace the old list of URLs called oldUrls with the updated version
newUrls. As discussed at length in Chapter 3, Traditional Building Blocks of Concurrency,
the compareAndSet operation can fail when two threads call it simultaneously on
the same atomic variable. For this reason, we define a nested, tail-recursive method,
append, that calls compareAndSet and restarts if compareAndSet fails. Updating
the clen field is easier. We just call the atomic addAndGet method defined on
atomic integers.

Other parts of the web browser can use urls and clen to render the browsing
history, dump it to a logfile or to export browser data, in case our users decide they
like Firefox better. For convenience, we define a getUrlArray auxiliary method that
returns a character array in which the URLs are separated with a newline character.
The clen field is a quick way to get the required size of the array. We call get to read
the value of clen and allocate the array. We then call get to read the current list of
URLs, append the newline character to each URL, flatten the list of strings into a
single list, zip the characters with their indices, and store them into the array:

def getUrlArray(): Array[Char] = {
 val array = new Array[Char](clen.get)
 val urlList = urls.get
 for ((ch, i) <- urlList.map(_ + "\n").flatten.zipWithIndex) {
 array(i) = ch
 }
 array
}

To test these methods, we can simulate the user interaction with two asynchronous
computations. The first asynchronous computation calls getUrlArray to dump
the browsing history to a file. The second asynchronous computation visits three
separate URLs by calling addURL three times, and then prints the "done browsing"
string to the standard output:

import scala.concurrent._
import ExecutionContext.Implicits.global
object AtomicHistoryBad extends App {
 Future {
 try { log(s"sending: ${getUrlArray().mkString}") }
 catch { case e: Exception => log(s"Houston... $e!") }
 }
 Future {
 addUrl("http://scala-lang.org")

Chapter 7

[211]

 addUrl("https://github.com/scala/scala")
 addUrl("http://www.scala-lang.org/api")
 log("done browsing")
 }
 Thread.sleep(1000)
}

Running this program several times reveals a bug. The program sometimes
mysteriously crashes with an ArrayIndexOutOfBoundsException. By analyzing
the getUrlArray method, we find the cause to the bug. This bug occurs when the
retrieved value of clen is not equal to the length of the list. The getUrlArray method
first reads the clen atomic variable, and later reads the list of the URLs from the urls
atomic variable. Between these two reads, the first thread modifies urls by adding an
additional URL string. By the time getUrlArray reads urls, the total character length
becomes longer than the allocated array, and we eventually get an exception.

This example illustrates an important disadvantage of atomic variables. Although
specific atomic operations are themselves atomic and occur at a single point in time,
invoking multiple atomic operations is typically not atomic. When multiple threads
simultaneously execute multiple atomic operations, the operations might interleave
in unforeseen ways and lead to the same kind of race conditions that result from
using volatile variables. Note that swapping the updates to clen and urls does
not solve the problem. Although there are other ways to ensure atomicity in our
example, they are not immediately obvious.

Reading multiple atomic variables is not an atomic operation and
it can observe the program data in an inconsistent state.

When all threads in the program observe that an operation occurs at the same,
single point in time, we can say that the operation is linearizable. The point in time
at which the operation occurs is called a linearization point. The compareAndSet
and addAndGet operations are inherently linearizable operations. They execute
atomically, usually as a single processor instruction, and at a single point in time,
from the perspective of all the threads. The append nested method in the previous
example is also linearizable. Its linearization point is a successful compareAndSet
operation, because that is the only place where append modifies the program state.
On the other hand, the addUrl and getUrlArray methods are not linearizable.
They contain no single atomic operation that modifies or reads the state of the
program. The addUrl method modifies the program state twice. First, it calls the
append method and then it calls the addAndGet method. Similarly, getUrlArray
reads the program state with two separate atomic get operations. This is a common
misunderstanding point when using atomic variables, and we say that atomic
variables do not compose into larger programs.

Software Transactional Memory

[212]

We can fix our example by removing the clen atomic variable, and computing the
required array length after reading urls once. Similarly, we can use a single atomic
reference to store a tuple with the URL list and the size of that list. Both approaches
would make the addUrl and getUrlArray methods linearizable.

Concurrent programming experts have proven that it is possible to express any
program state using atomic variables, and arbitrarily modify this state with
linearizable operations. In practice, implementing such linearizable operations
efficiently can be quite challenging. It is generally hard to implement arbitrary
linearizable operations correctly, and it is even harder to implement them efficiently.

Unlike atomic variables, multiple synchronized statements can be used
together more easily. We can modify multiple fields of an object when we use
the synchronized statement, and we can even nest multiple synchronized
statements. We are thus left with a dilemma. We can use atomic variables and risk
race conditions when composing larger programs, or we can revert to using the
synchronized statement, but risk deadlocks. Luckily, the STM is a technology that
offers the best of both worlds: it allows you to compose simple atomic operations
into more complex atomic operations, without the risk of deadlocks.

Using Software Transactional Memory
In this section, we will study the basics of using STM. Historically, multiple STM
implementations were introduced for Scala and the JVM platform. The particular
STM implementation described in this chapter is called ScalaSTM. There are two
reasons that ScalaSTM is our STM of choice. First, ScalaSTM was authored by a
group of STM experts that agreed on a standardized set of APIs and features. Future
STM implementations for Scala are strongly encouraged to implement these APIs.
Second, the ScalaSTM API is designed for multiple STM implementations, and comes
with an efficient default implementation. Different STM implementations can be
chosen when the program starts. Users can write applications using a standardized
API, and seamlessly switch to a different STM implementation later.

The atomic statement is a fundamental abstraction at the core of every STM. When the
program executes a block of code marked with atomic, it starts a memory transaction:
a sequence of reads and writes to memory which occur atomically for other threads
in the program. The atomic statement is similar to the synchronized statement, and
ensures that a block of code executes in isolation, without the interference of other
threads, thus avoiding race conditions. Unlike the synchronized statement, the
atomic statement does not cause deadlocks.

Chapter 7

[213]

The following methods, swap and inc, show how to use the atomic statement on
a high level. The swap method atomically exchanges the contents of two memory
locations, a and b. Between the time that a thread reads the memory location a (or b)
and the time that the atomic statement ends, no other thread can effectively modify
the value at location a (or b). Similarly, the inc method atomically increments the
integer value at the memory location a. When a thread, which calls inc, reads the
value of a in the atomic statement, no other thread can change the value of the
memory location a until the atomic statement ends:

def swap() = atomic { // not actual code
 val tmp = a
 a = b
 b = tmp
}
def inc() = atomic { a = a + 1 }

The ways in which an STM implements deadlock-freedom, and ensures that no two
threads simultaneously modify the same memory locations are quite complex. In
most STM implementations, the atomic statement maintains a log of the read and
write operations. Every time a memory location is read during a memory transaction,
the corresponding memory address is added to the log. Similarly, whenever a
memory location is written during a memory transaction, the memory address and
the proposed value are written to the log. Once the execution reaches the end of the
atomic block, all the writes from the transaction log are written to the memory. When
this happens, we say that the transaction is committed. On the other hand, during the
transaction, the STM might detect that another concurrent transaction performed by
some other thread is concurrently reading or writing the same memory location. This
situation is called a transactional conflict. When a transactional conflict occurs, one
or both of the transactions are cancelled, and re-executed serially, one after another.
We say that the STM rolls back these transactions. Such STMs are called optimistic.
Optimistic STMs try to execute a transaction under the assumption that it will
succeed, and roll back when they detect a conflict. When we say that a transaction is
completed, we mean that it was either committed or rolled back, and re-executed.

Software Transactional Memory

[214]

To illustrate how a memory transaction works, we consider the scenario in which
two threads, T1 and T2, simultaneously call the swap and inc methods. Since both
the atomic statements in these methods modify the memory location a, the execution
results in a runtime transactional conflict. During the execution of the program,
the STM detects that the entries in the transactional logs overlap: the transaction
associated with the swap method has both memory locations a and b in its read and
write sets, while the inc method has a in its read and write sets. This indicates
a potential conflict. Both the transactions can be rolled back, and then executed
serially one after another, as shown in the following diagram:

We will not dive deeper into the internals of the ScalaSTM implementation, as that is
beyond the scope of this book. Instead, we will focus on how to use ScalaSTM to easily
write concurrent applications. Where reasonable, we hint at some implementation
details to better understand the reasons behind the ScalaSTM semantics.

Chapter 7

[215]

In some STMs, the atomic statement tracks all the reads and writes to the memory.
ScalaSTM only tracks specially marked memory locations within transactions. There
are several reasons for this. First, an STM cannot ensure safety if some parts of the
program access memory locations outside of the atomic statements, while other
parts access the same memory locations inside the atomic statements. ScalaSTM
avoids accidental uses outside transactions by explicitly marking the memory
locations that can only be used in transactions. Second, STM frameworks for the
JVM need to use post-compilation or bytecode introspection in order to accurately
capture all the reads and writes. ScalaSTM is a library-only STM implementation,
so it cannot analyze and transform the program in the same way a compiler can.

In ScalaSTM, the effects of the atomic statement are limited to special objects called
transactional references. Before showing how to use the atomic statement to perform
memory transactions, we will study how to create transactional references.

Transactional references
In this section, we will study how to declare transactional references. A transactional
reference is a memory location that provides transactional read and write access to a
single memory location. In ScalaSTM, transactional references to the values of type T
are encapsulated within the objects of type Ref[T]:

Before we begin using STM in Scala, we need to add an external dependency to our
project, since ScalaSTM is not a part of the Scala standard library:

libraryDependencies += "org.scala-stm" %% "scala-stm" % "0.7"

To use the ScalaSTM atomic statement in a compilation unit, we import the contents
of the scala.concurrent.stm package:

import scala.concurrent.stm._

To instantiate a Ref object, we use the Ref.apply factory method on the Ref
companion object. Let's rewrite our browser history example using transactional
memory. We start by replacing atomic variables with transactional references. We
pass the initial value of each transactional reference to the Ref.apply method:

val urls = Ref[List[String]](Nil)
val clen = Ref(0)

Software Transactional Memory

[216]

Calling the apply method on a transactional reference returns its value, and calling
the update method modifies it. However, we cannot call these methods from outside
of a transaction. The apply and update methods take an implicit argument of type
InTxn (which stands for "in transaction"), which designates that a transaction is under
way. Without the InTxn object, we cannot call apply and update. This constraint
protects us from accidentally circumventing the ScalaSTM safety mechanisms.

To read and modify transactional references, we must first start a transaction that
provides the implicit InTxn object. We will study how to do this next.

Using the atomic statement
After redefining the urls and clen variables as transactional references, we redefine
the addUrl method. Instead of separately updating two atomic variables, we start a
memory transaction with the atomic statement. In ScalaSTM, the atomic statement
takes a block of type InTxn => T, where InTxn is the type of the aforementioned
transaction object, and T is the type of the return value of the transaction. Note that
we can annotate the InTxn parameter with the implicit keyword:

def addUrl(url: String): Unit = atomic { implicit txn =>
 urls() = url :: urls()
 clen() = clen() + url.length + 1
}

The new definition of addUrl is surprisingly simple. It first reads the value of the
urls list, prepends a new url to the list, and assigns the updated list back to urls.
Then, it reads the current value of the total character length clen, increments it by
the length of the new URL, and assigns the new value back to clen. Note that the
new definition of addUrl looks almost identical to a single-threaded implementation.

An important limitation of the atomic statement in ScalaSTM is that it does not track
reads and writes to ordinary local variables and object fields. As we will see later, these
are considered as arbitrary side effects, and are not allowed inside the transaction.

We reimplement getUrlArray in a similar fashion. We start by creating a transaction
with the atomic statement. The value of clen is used in order to allocate a character
array of an appropriate size. We then read the urls list and assign its characters
to the array in a for loop. Again, the implementation of getUrlArray looks
surprisingly similar to the corresponding single-threaded implementation:

def getUrlArray(): Array[Char] = atomic { implicit txn =>
 val array = new Array[Char](clen())
 for ((ch, i) <- urls().map(_ + "\n").flatten.zipWithIndex) {
 array(i) = ch

Chapter 7

[217]

 }
 array
}

This time, there is no danger of seeing the inconsistent values of clen and urls.
When used in a transaction, the two values are always consistent with each other,
as shown in the following program:

object AtomicHistorySTM extends App {
 Future {
 addUrl("http://scala-lang.org")
 addUrl("https://github.com/scala/scala")
 addUrl("http://www.scala-lang.org/api")
 log("done browsing")
 }
 Thread.sleep(25)
 Future {
 try { log(s"sending: ${getUrlArray().mkString}") }
 catch { case e: Exception => log(s"Ayayay... $e") }
 }
 Thread.sleep(5000)
}

Note that we added the sleep statement in the main program, as this sets the timing
of the two asynchronous computations to occur approximately at the same time.
You can tweak the duration of the sleep statement in order to observe the various
interleavings of the two asynchronous computations. Convince yourself with the fact
that dumping the browsing history to the logfile always observes some prefix of the
three addUrl calls, and does not throw an exception.

When encoding a complex program state, use multiple transactional
references. To atomically perform multiple changes on the program
state, use the atomic statement.

Having seen the basic way of using the atomic statement with transactional
references, we will proceed to show more advanced examples and study the
STM semantics in more detail.

Software Transactional Memory

[218]

Composing transactions
When used correctly, transactional memory is a powerful tool for building concurrent
applications that modify shared data. Nevertheless, no technology is a silver bullet,
and neither is STM. In this section, we will study how to compose transactions in
larger programs and learn how transactional memory interacts with other features
of Scala. We investigate some of the caveats of STM, and go beyond transactional
references and the atomic blocks to show how to use STM more effectively.

The interaction between transactions and
side effects
Previously, we learned that an STM may roll back and retry a transaction. An
attentive reader might notice that retrying a transaction means re-executing its side
effects. Here, the side effects are arbitrary reads and writes to regular object fields
and variables.

Sometimes, side effects are not a problem. Transactional references cannot be
modified outside a transaction, and inside a transaction, their modifications are
aborted when retrying. Still, the other kinds of side effects are not rolled back.
Consider the following program:

object CompositionSideEffects extends App {
 val myValue = Ref(0)
 def inc() = atomic { implicit txn =>
 log(s"Incrementing ${myValue()}")
 myValue() = myValue() + 1
 }
 Future { inc() }
 Future { inc() }
 Thread.sleep(5000)

}

The preceding program declares a myValue transactional reference, and an inc method
that increments myValue inside of an atomic block. The inc method also contains a
log statement that prints the current value of myValue. The program asynchronously
calls inc twice. Upon executing this program, we get the following output:

ForkJoinPool-1-worker-1: Incrementing 0

ForkJoinPool-1-worker-3: Incrementing 0

ForkJoinPool-1-worker-3: Incrementing 1

Chapter 7

[219]

The two asynchronous computations call inc at the same time, and both start a
transaction. One of the transactions adds the myValue reference to its read set, calls
the log statement with the 0 value, and proceeds to increment the myValue reference
by adding myValue to its write set. In the meantime, the other transaction first logs
the 0 value, then attempts to read myValue again, and detects that myValue is in a
write set of another active transaction. The second transaction is rolled back, and
retried after the first transaction commits. The second transaction reads myValue
once more, prints 1, and then increments myValue. The two transactions commit,
but the side-effecting log call is executed three times as a result of the rollback.

It might not be harmful to execute a simple log statement multiple times, but
repeating arbitrary side effects can easily break the correctness of a program.
Avoiding side effects in the transactions is a recommended practice.

Recall that an operation is idempotent if executing it multiple times has the same
effect as executing it once, as discussed in Chapter 6, Concurrent Programming
with Reactive Extensions. You might conclude that, if a side-effecting operation is
idempotent, then it is safe to execute it in a transaction. After all, the worst thing
that can happen is that the idempotent operation gets executed more than once,
right? Unfortunately, this reasoning is flawed. After a transaction is rolled back
and retried, the values of the transactional references might change. The second
time a transaction is executed, the arguments to the idempotent operation might be
different, or the idempotent operation might not be invoked at all. The safest way
to avoid such situations is to avoid external side effects altogether.

Avoid external side effects inside the transactions, as the transactions
can be re-executed multiple times.

In practice, we usually want to execute a side effect only if the transaction commits,
that is, after we are sure that the changes to the transactional references are visible
to other threads. To do this, we use the Txn singleton object, which can schedule
multiple operations that execute after the transaction commits or rolls back. After a
rollback, these operations are removed, and potentially re-registered when retrying
the transaction. Its methods can only be called from inside an active transaction. In
the following code, we rewrite the inc method to call the Txn object's afterCommit
method, and schedule the log statement to execute after the transaction commits:

def inc() = atomic { implicit txn =>
 val valueAtStart = myValue()
 Txn.afterCommit { _ =>
 log(s"Incrementing $valueAtStart")
 }
 myValue() = myValue() + 1
}

Software Transactional Memory

[220]

Note that we read the myValue reference inside the transaction and assign the value
to a local variable valueAtStart. The value of the valueAtStart local variable is
later printed to the standard output. This is different from reading myValue inside
the afterCommit block:

def inc() = atomic { implicit txn =>
 Txn.afterCommit { _ =>
 log(s"Incrementing ${myValue()}") // don't do this!
 }
 myValue() = myValue() + 1
}

Calling the last version of inc fails with an exception. Although the transactional
context txn exists when the afterCommit method is called, the afterCommit
block is executed later, after the transaction is already over and the txn object is
no longer valid. It is illegal to read or modify transactional references outside a
transaction. Before using it in an afterCommit block, we need to store the value
of the transactional reference into a local variable in the transaction itself.

Why does accessing a transactional reference inside the afterCommit block only fail
at runtime, when the transaction executes, instead of failing during compilation?
The afterCommit method is in the static scope of the transaction, or, in other
words, is statically nested within an atomic statement. For this reason, the compiler
resolves the txn object of the transaction, and allows you to access the transactional
references, such as myValue. However, the afterCommit block is not executed in the
dynamic scope of the transaction. In other words, the afterCommit block is run after
the atomic block returns. By contrast, accessing a transactional reference outside of
the atomic block is not in the static scope of a transaction, so the compiler detects
this and reports an error.

In general, the InTxn objects must not escape the transaction block. For example, it is
not legal to start an asynchronous operation from within the transaction, and use the
InTxn object to access the transactional references.

Only use the transactional context within the thread that started
the transaction.

In some cases, we want to execute some side-effecting operations when a rollback
occurs. For instance, we would like to log each rollback to track the contention in our
program. This information can help us restructure the program and eliminate potential
performance bottlenecks. To achieve this, we use the afterRollback method:

 def inc() = atomic { implicit txn =>
 Txn.afterRollback { _ =>

Chapter 7

[221]

 log(s"rollin' back")
 }
 myValue() = myValue() + 1
 }

Importantly, after a rollback, the transaction is no longer under way. Just as in
the afterCommit blocks, it is illegal to access the transactional references in the
afterRollback blocks.

Use the Txn object's afterCommit and afterRollback
methods to perform side-effecting operations in the transactions
without the danger of executing them multiple times.

Not all side-effecting operations inside the transactions are bad. As long as the
side effects are confined to mutating objects that are created inside the transaction,
we are free to use them. In fact, such side effects are sometimes necessary. To
demonstrate this, let's define the Node class for a transactional linked list collection.
A transactional list is a concurrent, thread-safe linked list that is modified using
memory transactions. Similar to a functional cons list, represented by the List
class in Scala, the transactional Node class contains two fields that we call elem and
next. The elem field contains the value of the current node. To keep things simple,
the elem field is a value field and can only contain integers. The next field is a
transactional reference containing the next node in the linked list. We can read
and modify the next field only inside the memory transactions:

case class Node(elem: Int, next: Ref[Node])

We now define a nodeToString method, which takes a transactional linked list
node n, and creates a String representation of the transactional list starting with
the n node:

def nodeToString(n: Node): String = atomic { implicit txn =>
 val b = new StringBuilder
 var curr = n
 while (curr != null) {
 b ++= s"${curr.elem}, "
 curr = curr.next()
 }
 b.toString
}

Software Transactional Memory

[222]

In the preceding code snippet, we were careful to confine the side effects to objects
that were created inside the transaction: in this case, the StringBuilder object b.
Had we instantiated the StringBuilder object before the transaction had started,
the nodeToString method would not work correctly:

def nodeToStringWrong(n: Node): String = {
 val b = new StringBuilder // very bad
 atomic { implicit txn =>
 var curr = n
 while (curr != null) {
 b ++= s"${curr.elem}, "
 curr = curr.next()
 }
 }
 b.toString
}

If the transaction gets rolled back in the nodeToStringWrong example, the contents
of the StringBuilder object are not cleared. The second time a transaction runs,
it will modify the already existing, non-empty StringBuilder object and return a
string representation that does not correspond to the state of the transactional list.

When mutating an object inside a transaction, make sure that
the object is created inside the transaction and the reference to it
does not escape the scope of the transaction.

Having seen how to manage side effects inside the transactions, we examine several
special kinds of transactions and study how to compose smaller transactions into
larger ones.

Single-operation transactions
In some cases, we only want to read or modify a single transactional reference. It can
be cumbersome to type the atomic keyword and the implicit txn argument just to read
a single Ref object. To alleviate this, ScalaSTM defines single-operation transactions on
transactional references. Single-operation transactions are executed by calling a single
method on a Ref object. This method returns a Ref.View object, which has the same
interface as a Ref object, but its methods can be called from outside a transaction. Each
operation on a Ref.View object acts like a single-operation transaction.

Chapter 7

[223]

Recall the Node class for transactional linked lists from the previous section,
which stored integers in an elem field, and the reference to the next node in the
transactional reference called next. Let's augment Node with two linked list methods.
The append method takes a single Node argument n, and inserts n after the current
node. The nextNode method returns the reference to the next node, or null if the
current node is at the end of the list:

case class Node(val elem: Int, val next: Ref[Node]) {
 def append(n: Node): Unit = atomic { implicit txn =>
 val oldNext = next()
 next() = n
 n.next() = oldNext
 }
 def nextNode: Node = next.single()
}

The nextNode method does a single-operation transaction. It calls single on the next
transactional reference, and then calls the apply method in order to obtain the value
of the next node. This is equivalent to the following definition:

def nextNode: Node = atomic { implicit txn =>
 next()
}

We can use our transactional Node class to declare a linked list called nodes, initially
containing values 1, 4, and 5, and then concurrently modify it. We start two futures
f and g, which call append to add nodes with the values 2 and 3, respectively. After
the futures complete, we call nextNode and print the value of the next node. The
following code snippet will print the node with either the value 2 or 3, depending
on which future completes last:

val nodes = Node(1, Ref(Node(4, Ref(Node(5, Ref(null))))))
val f = Future { nodes.append(Node(2, Ref(null))) }
val g = Future { nodes.append(Node(3, Ref(null))) }
for (_ <- f; _ <- g) log(s"Next node is: ${nodes.nextNode}")

We can also use single to invoke other transactional reference operations. In the
following code snippet, we use the transform operation to define an appendIfEnd
method on the Node class, which appends a node n after the current node only if the
current node is followed by null:

def appendIfEnd(n: Node) = next.single.transform {
 oldNext => if (oldNext == null) n else oldNext
}

Software Transactional Memory

[224]

The transform operation on a Ref object containing the values of type T takes
a transformation function of type T => T. It atomically performs a read of the
transactional reference, applies the transformation function to the current value,
and writes the new value back. Other single-operation transactions include update,
compareAndSet, and swap. We refer the readers to the online documentation
to learn their precise semantics.

Use single-operation transactions for single read, write, and
CAS-like operations in order to avoid the syntactic boilerplate
associated with the atomic blocks.

Single-operation transactions are convenience methods that are easier to type,
and are possibly more efficient, depending on the underlying STM implementation.
They can be useful, but as programs grow, we are more interested in building
larger transactions from the simple ones. We will investigate how to do this in
the next section.

Nesting transactions
Recall from Chapter 2, Concurrency on the JVM and the Java Memory Model, that a
synchronized statement can be nested inside other synchronized statements. This
property is essential when composing programs from multiple software modules.
For example, a money transfer module in a banking system must call operations
from a logging module to persist the transactions. Both the modules might internally
use arbitrary sets of locks, without the knowledge of other modules. An unfortunate
disadvantage of arbitrarily nested synchronized statements is that they allow the
possibility of a deadlock.

Separate atomic statements can also nest arbitrarily. The motivation for this is the
same as with the synchronized statement. A transaction inside some software
module must be able to invoke the operations inside other software modules, which
themselves might start the transactions. Not having to know about the transactions
inside an operation allows a better separation between different software components.

Let's illustrate this with a concrete example. Recall the Node class from the previous
section, which was used for transactional linked lists. The Node class was somewhat
low-level. We can only call append to insert new nodes after the specified node, and
call nodeToString on a specific node to convert its elements to a String object.

Chapter 7

[225]

In this section, we define the transactional sorted list class, represented by the
TSortedList class. This class stores integers in the ascending order. It maintains
a single transactional reference head, which points to the head of the linked list
of the Node objects. We define the toString method on the TSortedList class to
convert its contents into a textual representation. The toString method needs to
read the transactional reference head, so it starts by creating a new transaction. After
reading the value of the head transactional reference into a local value headNode, the
toString method can reuse the nodeToString method that we defined earlier:

class TSortedList {
 val head = Ref[Node](null)
 override def toString: String = atomic { implicit txn =>
 val h = head()
 nodeToString(h)
 }
}

Recall that the nodeToString method starts another transaction to read the next
references in each node. When the toString method calls nodeToString, the second
transaction becomes nested in the transaction started by toString. The atomic block
in the nodeToString method does not start a new, separate transaction. Instead, the
nested transaction becomes a part of the existing transaction. This has two important
consequences. First, if the nested transaction fails, it is not rolled back to the start of
its atomic block in the nodeToString method. Instead, it rolls back to the start of
the atomic block in the toString method. We say that the start of the transaction
is determined by the dynamic scope, rather than the static scope. Similarly, the
nested transaction does not commit when it reaches the end of the atomic block in
the nodeToString method. The changes induced by the nested transaction become
visible, when the initial transaction commits. We say that the scope of the transaction
is always that of the top-level transaction.

Nested atomic blocks result in a transaction that starts when
the top-level atomic block starts, and can commit only after the
top-level atomic block completes. Similarly, rollbacks retry the
transaction starting from the top-level atomic block.

We now study another example of using nested transactions. Atomically converting
transactional sorted lists to their string representation is useful, but we also need to
insert elements in the list. We define the insert method, which takes an integer and
inserts it into a proper position in the transactional list.

Software Transactional Memory

[226]

Since insert can modify both the transactional reference head and the nodes in the
list, it starts by creating a transaction. It then checks for two special cases. A list can be
empty, in which case we set head to a new node containing x. Likewise, the x integer
might be smaller than the first value in the list; in which case, the head reference is set
to a new node containing x, and its next field is set to the previous value of the head
reference. If neither of these conditions apply, we call a tail-recursive, nested method
insert to process the remainder of the list:

import scala.annotation.tailrec
def insert(x: Int): this.type = atomic { implicit txn =>
 @tailrec def insert(n: Node): Unit = {
 if (n.next() == null || n.next().elem > x)
 n.append(new Node(x, Ref(null)))
 else insert(n.next())
 }
 if (head() == null || head().elem > x)
 head() = new Node(x, Ref(head()))
 else insert(head())
 this
}

The nested insert method traverses the linked list in order to find the correct
position for the x integer. It takes the current node n and checks if the node is
followed by null, indicating the end of the list, or if the next element is greater than
x. In both cases, we call the append method on the node. If the node following n is
not null, and its elem field is less than or equal to x, we call insert recursively on
the next node.

Note that the tail-recursive, nested method insert uses the transactional context txn
of the enclosing atomic block. We can also define a separate tail-recursive method
insert outside the scope of the transaction. In this case, we need to encode the
transactional context txn as a separate implicit parameter:

@tailrec
final def insert(n: Node, x: Int)(implicit txn: InTxn): Unit = {
 if (n.next() == null || n.next().elem > x)
 n.append(new Node(x, Ref(null)))
 else insert(n.next(), x)
}

Free ebooks ==> www.Ebook777.com

Chapter 7

[227]

Alternatively, we can omit the implicit txn transactional context parameter,
but then we have to start a nested transaction inside the tail-recursive insert
method. This might be slightly less efficient than the previous approach, but it
is semantically equivalent:

@tailrec
final def insert(n: Node, x: Int): Unit = atomic { implicit txn =>
 if (n.next() == null || n.next().elem > x)
 n.append(new Node(x, Ref(null)))
 else insert(n.next(), x)
}

We test our transactional sorted list with the following snippet. We instantiate an
empty transactional sorted list and insert several integers concurrently from
the asynchronous computations f and g. After both the corresponding futures
complete execution, we print the contents of the sorted list:

val sortedList = new TSortedList
val f = Future { sortedList.insert(1); sortedList.insert(4) }
val g = Future { sortedList.insert(2); sortedList.insert(3) }
for (_ <- f; _ <- g) log(s"sorted list - $sortedList")

Running the preceding snippet always outputs the elements 1, 2, 3, and 4 in the
same sorted order, regardless of the execution schedule of the futures. We created a
thread-safe transactional sorted list class, and the implementation is almost identical
to the corresponding sequential sorted list implementation. This example shows
the true potential of STM. It allows you to create concurrent data structures and
thread-safe data models without having to worry too much about concurrency.

There is one more aspect of transactions that we have not yet considered. What
happens if a transaction fails due to an exception? For example, the tail-recursive
insert method can get called with a null value instead of a valid Node reference.
This results in throwing a NullPointerException, but how does it affect the
transaction? We will explore the exception semantics of the transactions in the
following section.

Transactions and exceptions
From what we've learned about transactions so far, it is not clear what happens with
a transaction if it throws an exception. An exception could roll back the transaction,
or it could commit its changes. ScalaSTM does a rollback, by default, but this
behavior can be overridden.

www.Ebook777.com

http://www.ebook777.com

Software Transactional Memory

[228]

Let's assume that the clients of our transactional sorted list want to use it as a
concurrent priority queue. A priority queue is a collection that contains ordered
elements, such as integers. An arbitrary element can be inserted into a priority
queue using the insert method. At each point, we can retrieve the smallest element
currently in the priority queue using the head method. The priority queue also
allows you to remove the smallest element with the pop method.

The transactional sorted list is already sorted and supports element insertion with
the insert method, but, once added, elements cannot be removed. To make our
transactional sorted list usable as a priority queue, we define a pop method, which
removes the first n elements from a transactional list xs. We start a transaction inside
the pop method, and declare a local variable left, initializing it with the number
of removed elements n. We then use a while loop to remove nodes from head and
decrease left until it becomes 0:

def pop(xs: TSortedList, n: Int): Unit = atomic { implicit txn =>
 var left = n
 while (left > 0) {
 xs.head() = xs.head().next()
 left -= 1
 }
}

To test the pop method, we declare a new transactional list lst, and insert integers
4, 9, 1, and 16. The list is sorted, so the integers appear in the list in the order 1, 4, 9,
and 16:

val lst = new TSortedList
lst.insert(4).insert(9).insert(1).insert(16)

Next, we start an asynchronous computation that removes the first two integers
in the list by calling pop. After the asynchronous computation is successfully
completed, we print the contents of the transactional list to the standard output:

Future { pop(lst, 2) } foreach {
 case _ => log(s"removed 2 elements; list = $lst")
}

So far, so good. The log statement outputs the list with the elements 9 and 16. We
proceed by starting another asynchronous computation, which removes the first
three elements from the transactional list:

Future { pop(lst, 3) } onComplete {
 case Failure(t) => log(s"whoa $t; list = $lst")
}

Chapter 7

[229]

However, when we call the pop method again, it throws a NullPointerException;
there are only two elements left in the transactional list. As a result, the reference
head is eventually assigned null during the transaction. When the pop method
tries to call next on null, an exception is thrown.

In the onComplete callback, we output the name of the exception and the contents
of the transactional list. It turns out that the transactional list still contains the
elements 9 and 16, although the head reference of the transactional list had been
set to null in the transaction. When an exception is thrown, the effects of the
transaction are reverted.

When an exception is thrown inside a transaction, the transaction
is rolled back and the exception is rethrown at the point where the
top-level atomic block started.

Importantly, the nested transactions are also rolled back. In the following code
snippet, the nested atomic block in the pop method completes successfully, but its
changes are not committed. Instead, the entire transaction is rolled back when the
sys.error call throws a RuntimeException in the enclosing top-level atomic block:

Future {
 atomic { implicit txn =>
 pop(lst, 1)
 sys.error("")
 }
} onComplete {
 case Failure(t) => log(s"oops again $t - $lst")
}

Unlike ScalaSTM, some other STM implementations do not roll back transactions
when an exception is thrown; instead, they commit the transaction. STM experts
have not yet reached a consensus on what the exception semantics should be.
ScalaSTM uses a hybrid approach. Most exceptions roll back the transaction,
but Scala's control exceptions are excluded from this rule. Control exceptions
are exceptions that are used for control flow in Scala programs. They extend the
ControlThrowable trait from the scala.util.control package, and are sometimes
treated differently by the Scala compiler and runtime. When a control exception is
thrown inside a transaction, ScalaSTM does not roll back the transaction. Instead,
the transaction is committed.

Software Transactional Memory

[230]

Control exceptions are used to support the break statement in Scala, which is not a
native language construct. The break statement throws a control exception, which
is then caught by the enclosing breakable block. In the next example, we define a
breakable block for the break statement and start a transaction that calls pop in
a for loop with the values 1, 2, and 3. After the first iteration, we break the loop.
The example shows that the changes in the first pop statement are committed.
The transactional list now contains only the element 16:

import scala.util.control.Breaks._
Future {
 breakable {
 atomic { implicit txn =>
 for (n <- List(1, 2, 3)) {
 pop(lst, n)
 break
 }
 }
 }
 log(s"after removing - $lst")
}

Furthermore, it is possible to override how a specific transaction handles exceptions
by calling the withControlFlowRecognizer method on the atomic block. This
method takes a partial function from Throwable to Boolean, and uses it to decide
whether a particular exception is to be considered as a control exception or not. If the
partial function is not defined for a particular exception, the decision is deferred to
the default control flow recognizer.

In the following example, the atomic block overrides the default control flow
recognizer. For this specific transaction, subclasses of the ControlThrowable trait
are considered as regular exceptions. The pop call removes the last element of the
transactional list as part of this transaction, but when we call break, the transaction
is rolled back. The log statement at the end of the asynchronous computation shows
that the list still contains the number 16:

import scala.util.control._
Future {
 breakable {
 atomic.withControlFlowRecognizer {
 case c: ControlThrowable => false
 } { implicit txn =>
 for (n <- List(1, 2, 3)) {
 pop(lst, n)
 break
 }

Chapter 7

[231]

 }
 }
 log(s"after removing - $lst")
}

Note that the exceptions thrown inside the transactions can also be intercepted using
the catch statement. In this case, the effects of the nested transactions are aborted,
and the execution proceeds at the point where the exception was caught. In the
following example, we catch the exception thrown by the second pop call:

val lst = new TSortedList
lst.insert(4).insert(9).insert(1).insert(16)
atomic { implicit txn =>
 pop(lst, 2)
 log(s"lst = $lst")
 try { pop(lst, 3) }
 catch { case e: Exception => log(s"Houston... $e!") }
 pop(lst, 1)
}
log(s"result - $lst")

The second pop call should not remove any elements from the list, so we
expect to see the element 16 at the end. Running this code snippet results
in the following output:

run-main-26: lst = 9, 16,

run-main-26: lst = 9, 16,

run-main-26: Houston... java.lang.NullPointerException!

run-main-26: result - 16,

Interestingly, the output reveals that the first log statement is invoked twice. The
reason is that when the exception is thrown the first time, both the nested and
the top-level transaction are rolled back. This is an optimization in the ScalaSTM
implementation, since it is more efficient to flatten the nested and the top-level
transaction during the first execution attempt. Note that, after the transactional
block is executed the second time, the exception from the nested transaction is
correctly handled.

These examples were useful in understanding the semantics of exceptions inside
the transactions. Still, the clients of our transactional sorted list want more than
an exception when they call pop on an empty sorted list. In some cases, like the
producer-consumer pattern from Chapter 3, Traditional Building Blocks of Concurrency,
a thread has to wait and repeat the transaction when the sorted list becomes
non-empty. This is called retrying, and is the topic of the next section.

Software Transactional Memory

[232]

Retrying transactions
In sequential computing, a single thread is responsible for executing the program. If
a specific value is not available, the single thread is responsible for producing it. In
concurrent programming, the situation is different. When a value is not available,
some other thread, called a producer, might eventually produce the value. The thread
consuming the value, called a consumer, can either block the execution until the value
becomes available, or temporarily execute some other work before checking for the
value again. We have seen various mechanisms for achieving this relationship, ranging
from monitors and the synchronized statement from Chapter 2, Concurrency on the
JVM and the Java Memory Model, concurrent queues from Chapter 3, Traditional Building
Blocks of Concurrency, futures and promises in Chapter 4, Asynchronous Programming
with Futures and Promises, to event-streams in Chapter 6, Concurrent Programming with
Reactive Extensions.

Syntactically, the atomic statement best corresponds to the synchronized statement.
Recall that the synchronized statement supported the guarded block pattern, in
which the thread acquires a monitor, checks for some condition, and then calls wait
on the monitor. When some other thread fulfills this condition, it calls notify on the
same monitor, indicating that the first thread should wake up and continue its work.
Although sometimes fragile, this mechanism allows circumventing busy-waiting.

From what we have learned about STMs so far, monitors and the notify method
have no direct counterpart in the atomic statement. Without them, busy-waiting is
the only option when a transaction needs to wait for a specific condition to proceed.
To illustrate this, let's consider the transactional sorted lists from the last section. We
would like to augment the transactional sorted lists with the headWait method that
takes a list and returns the first integer in the list if the list is non-empty. Otherwise,
the execution should block until the list becomes non-empty:

def headWait(lst: TSortedList): Int = atomic { implicit txn =>
 while (lst.head() == null) {} // never do this
 lst.head().elem
}

The headWait method starts a transaction, and busy-waits until the head reference
of the transactional list lst becomes different from null. To test this method, we
create an empty transaction sorted list, and start an asynchronous computation that
calls headWait. After one second, we start another asynchronous computation that
adds the number 1 to the list. During the one second delay, the first asynchronous
computation repetitively busy-waits:

object RetryHeadWaitBad extends App {
 val myList = new TSortedList
 Future {

Chapter 7

[233]

 val headElem = headWait(myList)
 log(s"The first element is $headElem")
 }
 Thread.sleep(1000)
 Future { myList.insert(1) }
 Thread.sleep(1000)
}

The first time we ran this example, it completed successfully after one second and
reported that the first element of the list is 1. However, this example is likely to
fail. ScalaSTM will eventually detect that there is a conflict between the transaction
in headWait and the transaction in the insert method, and will serialize the two
transactions. In the case where the STM chooses headWait to execute first, number 1
is never inserted into myList. Effectively, this program ends up in a deadlock. This
example illustrates that busy-waiting in a transaction is just as bad as busy-waiting
inside a synchronized statement.

Avoid long-running transactions whenever possible. Never execute an
infinite loop inside a transaction, as it can cause deadlocks.

An STM is more than just support for executing isolated memory transactions. To
fully replace monitors and the synchronized statement, an STM must provide an
additional utility for the transactions that block until a specific condition is fulfilled.
ScalaSTM defines the retry statement for this purpose. When the execution inside
the transaction reaches a retry statement, the transaction is rolled back to the
enclosing top-level atomic block with a special exception, and the calling thread is
blocked. After the rollback, the read set of the transaction is saved. Values from the
transactional references in the read set are the reason why the transaction decides to
call retry. If and when some transactional reference in the read set changes its value
from within another transaction, the blocked transaction can be retried.

We now reimplement headWait so that it calls retry if the head of the transactional
list is null, indicating that the list is empty:

def headWait(lst: TSortedList): Int = atomic { implicit txn =>
 if (lst.head() != null) lst.head().elem
 else retry
}

Software Transactional Memory

[234]

We rerun the complete program. Calling headWait is a potential blocking operation,
so we need to use the blocking call inside the asynchronous computation. The
transaction in headWait reads the transactional reference head, and puts it into the
read set after calling retry. When the reference head later changes, the transaction
is automatically retried:

object RetryHeadWait extends App {
 val myList = new TSortedList
 Future {
 blocking {
 log(s"The first element is ${headWait(myList)}")
 }
 }
 Thread.sleep(1000)
 Future { myList.insert(1) }
 Thread.sleep(1000)
}

This time, the program runs as expected. The first asynchronous computation is
suspended until the second asynchronous computation adds 1 to the list. This
awakens the first asynchronous computation and repeats the transaction.

Use the retry statement to block the transaction until a specific
condition is fulfilled, and retry the transaction automatically once
its read set changes.

In some cases, when a specific condition is not fulfilled and the transaction cannot
proceed, we would like to retry a different transaction. Assume that there are
many producer threads in the program, and a single consumer thread. To decrease
contention between the producers, we decide to introduce two transactional sorted
lists called queue1 and queue2. To avoid creating contention by simultaneously
accessing both lists, the consumer thread must check the contents of these
transactional sorted lists in two separate transactions. The orAtomic construct
allows you to do this.

The following snippet illustrates how to use orAtomic in this situation. We
instantiate two empty transactional sorted lists queue1 and queue2. We then start an
asynchronous computation that represents the consumer and starts a transaction that
calls headWait on queue1. We call orAtomic after the first transaction. This specifies
an alternative transaction if the first transaction calls retry. In the orAtomic block,
we call headWait on queue2. When the first atomic block calls retry, the control is
passed to the orAtomic block, and a different transaction starts.

Chapter 7

[235]

Since both the transactional lists, queue1 and queue2 are initially empty, the second
transaction also calls retry, and the transaction chain is blocked until one of the
transactional lists changes:

val queue1 = new TSortedList
val queue2 = new TSortedList
val consumer = Future {
 blocking {
 atomic { implicit txn =>
 log(s"probing queue1")
 log(s"got: ${headWait(queue1)}")
 } orAtomic { implicit txn =>
 log(s"probing queue2")
 log(s"got: ${headWait(queue2)}")
 }
 }
}

We now simulate several producers that call insert 50 milliseconds later:

Thread.sleep(50)
Future { queue2.insert(2) }
Thread.sleep(50)
Future { queue1.insert(1) }
Thread.sleep(2000)

The consumer first prints the "probing queue1" string, calls retry inside headWait,
and proceeds to the next transaction. It prints "probing queue2" in the same way
and then blocks its execution. After the first producer computation inserts 2 into
the second transactional list, the consumer retries the chain of transactions again. It
attempts to execute the first transaction and prints probing queue1 again before
finding that queue1 is empty. It then prints probing queue2 and successfully
outputs the element 2 from the queue2 list.

Retrying with timeouts
We have seen that it is useful to suspend a transaction until a specific condition gets
fulfilled. In some cases, we want to prevent a transaction from being blocked forever.
The wait method on the object monitors comes with an overload that takes the
timeout argument. When the timeout elapses without a notify call from some other
thread, an InterruptedException is thrown. The ScalaSTM withRetryTimeout
method is a similar mechanism for handling timeouts.

Software Transactional Memory

[236]

In the following code snippet, we create a message transactional reference that
initially contains an empty string. We then start an atomic block whose timeout is
set to 1000 milliseconds. If the message transactional reference does not change its
value within that time, the transaction fails by throwing an InterruptedException:

val message = Ref("")
Future {
 blocking {
 atomic.withRetryTimeout(1000) { implicit txn =>
 if (message() != "") log(s"got a message - ${message()}")
 else retry
 }
 }
}
Thread.sleep(1025)
message.single() = "Howdy!"

We deliberately set the timeout to 1025 milliseconds to create a race condition. This
program will either print the "Howdy!" message or fail with an exception.

We use withRetryTimeout, when timing out is an exceptional behavior. Shutting
down the application is one example of such a behavior. We want to avoid having a
blocked transaction that prevents the program from terminating. Another example is
waiting for a network reply. If there is no reply after some duration of time, we want
to fail the transaction.

In some cases, a timeout is a part of a normal program behavior. In this case, we wait
for a specific amount of time for conditions relevant to the transaction to change. If
they do, we roll back and retry the transaction, as before. If the specified amount of
time elapses without any changes, the transaction should continue. In ScalaSTM, the
method that does this is called retryFor. In the following code snippet, we rewrite
the previous example using retryFor:

Future {
 blocking {
 atomic { implicit txn =>
 if (message() == "") {
 retryFor(1000)
 log(s"no message.")
 } else log(s"got a message - '${message()}'")
 }
 }
}
Thread.sleep(1025)
message.single() = "Howdy!"

Free ebooks ==> www.Ebook777.com

Chapter 7

[237]

This time, the transaction inside the asynchronous computation does not throw an
exception. Instead, the transaction prints the "no message." string if a timeout occurs.

When a timeout represents exceptional program behavior, use the
withRetryTimeout method to set the timeout duration in the
transaction. When the transaction proceeds normally after a timeout,
use the retryFor method.

The different retry variants are the ScalaSTM powerful additions to the standard
STM model. They are as expressive as the wait and notify calls, and much safer
to use. Together with the atomic statement, they unleash the full potential
of synchronization.

Transactional collections
In this section, we take a step away from transactional references, and study
more powerful transactional constructs, namely, transactional collections. While
transactional references can only hold a single value at once, transactional
collections can manipulate multiple values. In principle, the atomic statements and
transactional references are sufficient to express any kind of transaction over shared
data. However, ScalaSTM's transactional collections are deeply integrated with the
STM. They can be used to express shared data operations more conveniently and
execute the transactions more efficiently.

Transaction-local variables
We have already seen that some transactions need to create a local mutable state that
exists only during the execution of the transaction. Sometimes, we need to re-declare
the same state over and over again for multiple transactions. In such cases, we would
like to declare the same state once, and reuse it in multiple transactions. A construct
that supports this in ScalaSTM is called a transaction-local variable.

To declare a transaction-local variable, we instantiate an object of the TxnLocal[T]
type, giving it an initial value of type T. In the following code, we instantiate a myLog
transaction-local variable. We will use myLog inside the transactional sorted list
operations to log the flow of different transactions:

val myLog = TxnLocal("")

www.Ebook777.com

http://www.ebook777.com

Software Transactional Memory

[238]

The value of the myLog transaction-local variable is seen separately by each
transaction. When a transaction starts, the value of myLog is equal to an empty string,
as specified when myLog was declared. When the transaction updates the value of
myLog, this change is only visible to that specific transaction. Other transactions
behave as if they have their own separate copies of myLog.

We now declare a clearList method that atomically removes all the elements from
the specified transactional sorted list. This method uses myLog to log the elements
that were removed:

def clearList(lst: TSortedList): Unit = atomic { implicit txn =>
 while (lst.head() != null) {
 myLog() = myLog() + "\nremoved " + lst.head().elem
 lst.head() = lst.head().next()
 }
}

Usually, we are not interested in the contents of the myLog variable. However, we
might occasionally want to inspect myLog for debugging purposes. Hence, we declare
the clearWithLog method that clears the list and then returns the contents of myLog.
We then call clearWithLog on a non-empty transactional list from two separate
asynchronous computations. After both asynchronous computations complete
the execution, we output their logs:

val myList = new TSortedList().insert(14).insert(22)
def clearWithLog(): String = atomic { implicit txn =>
 clearList(myList)
 myLog()
}
val f = Future { clearWithLog() }
val g = Future { clearWithLog() }
for (h1 <- f; h2 <- g) log(s"Log for f: $h1\nLog for g: $h2")

Since the clearList operation is atomic, only one of the transactions can remove all
the elements. The contents of the myLog object reflect this. Depending on the timing
between the asynchronous computations, the elements 14 and 22, both appear either
in the log of the f future or in the log of the g future. This shows that each of the two
transactions sees a separate duplicate of myLog.

Transaction-local variables are syntactically more lightweight
than creating transactional references and passing them between
different methods.

Chapter 7

[239]

Transaction-local variables are used while logging or gathering statistics on the
execution of the program. The TxnLocal constructor additionally allows you to
specify the afterCommit and afterRollback callbacks, invoked on the transaction-
local variable when the transaction commits or rolls back, respectively. We refer
the reader to the online documentation to find out how to use them. To build more
complex concurrent data models, we use transactional arrays and maps, which we
will study in the next section.

Transactional arrays
Transactional references are a handy way to encapsulate a transactional state, but
they come with certain overheads. First, a Ref object is more heavyweight than a
simple object reference and consumes more memory. Then, every access to a new
Ref object needs to add an entry in the transaction's read set. When we are dealing
with many Ref objects, these overheads can become substantial. Let's illustrate this
with an example.

Assume that we are working in a marketing department of a company that does
Scala consulting. We are asked to write a program that updates the content of the
company website with the marketing information about the Scala 2.10 release.
Naturally, we decide to use ScalaSTM for this task. The website consists of five
separate pages, each represented with a string. We declare the contents of the
website in a sequence called pages. We then assign the content of the pages to an
array of transactional references. If some page changes later, we can update its
transactional reference in a transaction:

val pages: Seq[String] = Seq.fill(5)("Scala 2.10 is out, " * 7)
val website: Array[Ref[String]] = pages.map(Ref(_)).toArray

This solution is not satisfactory. We created a lot of transactional reference objects,
and the definition of website is not easily understandable. Luckily, ScalaSTM has
an alternative called a transactional array. A transactional array, represented with
the TArray class, is similar to an ordinary Scala array, but can be accessed only from
within a transaction. Its modifications are only made visible to the other threads
when a transaction commits. Semantically, a TArray class corresponds to an array
of transactional references, but it is more memory-efficient and concise:

val pages: Seq[String] = Seq.fill(5)("Scala 2.10 is out, " * 7)
val website: TArray[String] = TArray(pages)

Software Transactional Memory

[240]

Scala development proceeds at an amazing pace. Not long after Scala 2.10 gets
announced, the 2.11 release of Scala becomes available. The marketing team asks us
to update the contents of the website. All occurrences of the "2.10" string should be
replaced with the "2.11" string. We write a replace method that does this:

def replace(p: String, s: String): Unit = atomic { implicit txn =>
 for (i <- 0 until website.length)
 website(i) = website(i).replace(p, s)
}

Using TArray is much nicer than storing transactional references in an array.
Not only does it spare us from a parenthesis soup resulting from calling apply
on the transactional references in the array, but it also occupies less memory. This
is because a single contiguous array object is created for the TArray[T] object,
whereas an Array[Ref[T]] object requires many Ref objects, each of which has
a memory overhead.

Use the TArray class instead of arrays of transactional references
to optimize memory usage and make programs more concise.

Let's test the TArray class and the replace method in a short program. We first
define an additional method, asString, which concatenates the contents of all
the website pages. We then replace all occurrences of the 2.10 string with the
2.11 string. To test whether replace works correctly, we concurrently replace
all occurrences of the out word with "released":

def asString = atomic { implicit txn =>
 var s: String = ""
 for (i <- 0 until website.length)
 s += s"Page $i\n======\n${website(i)}\n\n"
 s
}
val f = Future { replace("2.10", "2.11") }
val g = Future { replace("out", "released") }
for (_ <- f; _ <- g) log(s"Document\n$asString")

The asString method captured all the entries in the transactional array. In effect, the
asString method atomically produced a snapshot of the state of the TArray object.
Alternatively, we could have copied the contents of website into another TArray
object, instead of a string. In either case, computing the snapshot of a TArray object
requires traversing all its entries, and can conflict with the transactions that modify
only a subset of the TArray class.

Chapter 7

[241]

Recall the transactional conflict example from the beginning of this chapter.
A transaction with many reads and writes, as in the asString method, can be
inefficient, because all the other transactions need to serialize with asString when
a conflict occurs. When the array is large, this creates a scalability bottleneck. In
the next section, we will examine another collection capable of producing atomic
snapshots in a much more scalable manner, namely, the transactional map.

Transactional maps
Similar to transactional arrays, transactional maps avoid the need to store
transactional reference objects inside a map. As a consequence, they reduce memory
consumption, improve the transaction performance, and provide a more intuitive
syntax. In ScalaSTM, transactional maps are represented with the TMap class.

ScalaSTM's TMap class has an additional advantage. It exposes a scalable,
constant-time, atomic snapshot operation. The snapshot operation returns an
immutable Map object with the contents of the TMap object at the time of the snapshot.
Let's declare a transactional map, alphabet, which maps character strings to their
position in the alphabet:

val alphabet = TMap("a" -> 1, "B" -> 2, "C" -> 3)

We are unsatisfied with the fact that the letter A is in lowercase. We start a
transaction that atomically replaces the lowercase letter a with the uppercase letter A.
Simultaneously, we start another asynchronous computation that calls snapshot
on alphabet. We tune the timing of the second asynchronous computation so that
it creates a race condition with the first transaction:

Future {
 atomic { implicit txn =>
 alphabet("A") = 1
 alphabet.remove("a")
 }
}
Thread.sleep(23)
Future {
 val snap = alphabet.single.snapshot
 log(s"atomic snapshot: $snap")
}
Thread.sleep(2000)

Software Transactional Memory

[242]

In this example, the snapshot operation cannot interleave with the two updates in
the atomic block. We can run the program several times to convince ourselves of
this. The second asynchronous computation prints either the map with the lowercase
letter a, or the map with the uppercase letter A, but it can never output a map with
both the lowercase and the uppercase occurrence of the letter A.

Use TMap instead of maps of transactional references to optimize
memory usage, make programs more concise, and efficiently
retrieve atomic snapshots.

Summary
In this chapter, we learned how STM works and how to apply it in concurrent
programs. We saw the advantages of using STM's transactional references and
atomic blocks over the synchronized statements, and investigated their interaction
with side effects. We studied the semantics of exception handling inside transactions
and learned how to retry and conditionally re-execute transactions. Finally, we
learned about transactional collections, which allow encoding shared program
data more efficiently.

These features together enable a concurrent programming model in which the
programmer can focus on expressing the meaning of the program, without having to
worry about handling lock objects, or avoiding deadlocks and race conditions. This
is especially important when it comes to modularity. It is hard or near impossible
to reason about deadlocks or race conditions in the presence of separate software
components. STM exists to liberate the programmer from such concerns, and is
essential when composing large concurrent programs from simpler modules.

These advantages come with a cost, however, as using an STM for data access is
slower than using locks and the synchronized statement. For many applications, the
performance penalty of using an STM is acceptable. When it is not, we need to revert
to simpler primitives, such as locks, atomic variables, and concurrent data structures.

To learn more about STMs, we recommend reading the related chapter in the book
The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit, Morgan Kauffman.
There are many different STM implementations in the wild, and you will need to study
various research articles to obtain an in-depth understanding of STMs. An extensive
list of STM research literature is available at http://research.cs.wisc.edu/
trans-memory/biblio/index.html. To learn more about the specifics of ScalaSTM,
consider reading the doctoral thesis entitled Composable Operations on High-Performance
Concurrent Collections, Nathan G. Bronson.

http://research.cs.wisc.edu/trans-memory/biblio/index.html
http://research.cs.wisc.edu/trans-memory/biblio/index.html

Chapter 7

[243]

In the next chapter, we will study the actor programming model, which takes a
different approach to achieving memory consistency. As we will see, separate
computations never access each other's regions of memory in the actor model,
and communicate mainly by exchanging messages.

Exercises
In the following exercises, you will use ScalaSTM to implement various transactional
programming abstractions. In most cases, their implementation will closely resemble
a sequential implementation, but use transactions. In some cases, you might need to
consult external literature or ScalaSTM documentation to correctly solve the exercise.

1.	 Implement the transactional pair abstraction, represented with the
TPair class:
class TPair[P, Q](pinit: P, qinit: Q) {
 def first(implicit txn: InTxn): P = ???
 def first_=(x: P)(implicit txn: InTxn): P = ???
 def second(implicit txn: InTxn): Q = ???
 def second_=(x: Q)(implicit txn: InTxn): Q = ???
 def swap()(implicit e: P =:= Q, txn: InTxn): Unit = ???
}

In addition to getters and setters for the two fields, the transactional pair
defines the swap method that swaps the fields, and can only be called if
the types P and Q are the same.

2.	 Use ScalaSTM to implement the mutable location abstraction from Haskell,
represented with the MVar class:
class MVar[T] {
 def put(x: T)(implicit txn: InTxn): Unit = ???
 def take()(implicit txn: InTxn): T = ???
}

An MVar object can be either full or empty. Calling put on a full MVar object
blocks until the MVar object becomes empty, and adds an element. Similarly,
calling take on an empty MVar object blocks until the MVar object becomes
full, and removes the element. Now, implement a method called swap,
which takes two MVar objects and swaps their values:
def swap[T](a: MVar[T], b: MVar[T])(implicit txn: InTxn) =
???

Software Transactional Memory

[244]

Contrast the MVar class with the SyncVar class from Chapter 2, Concurrency
on the JVM and the Java Memory Model. Is it possible to implement the swap
method for SyncVar objects without modifying the internal implementation
of the SyncVar class?

3.	 Implement the atomicRollbackCount method, which is used to track how
many times a transaction was rolled back before it completed successfully:
def atomicRollbackCount[T](block: InTxn => T): (T, Int) =
???

4.	 Implement the atomicWithRetryMax method, which is used to start a
transaction that can be retried at most n times:
def atomicWithRetryMax[T](n: Int)(block: InTxn => T): T =
???

Reaching the maximum number of retries throws an exception.

Use the Txn object.

5.	 Implement a transactional First In First Out (FIFO) queue, represented with
the TQueue class:
class TQueue[T] {
 def enqueue(x: T)(implicit txn: InTxn): Unit = ???
 def dequeue()(implicit txn: InTxn): T = ???
}

The TQueue class has similar semantics as scala.collection.mutable.
Queue, but calling dequeue on an empty queue blocks until a value
becomes available.

6.	 Use ScalaSTM to implement a thread-safe TArrayBuffer class, which
extends the scala.collection.mutable.Buffer interface.

Chapter 7

[245]

7.	 The TSortedList class described in this chapter is always sorted, but
accessing the last element requires traversing the entire list, and can be
slow. An AVL tree can be used to address this problem. There are numerous
descriptions of AVL trees available online. Use ScalaSTM to implement the
thread-safe transactional sorted set as an AVL tree:
class TSortedSet[T] {
 def add(x: T)(implicit txn: InTxn): Unit = ???
 def remove(x: T)(implicit txn: InTxn): Boolean = ???
 def apply(x: T)(implicit txn: InTxn): Boolean = ???
}

The TSortedSet class has similar semantics as scala.collection.
mutable.Set.

8.	 Use ScalaSTM to implement a banking system that tracks amounts of money
on user accounts. Different threads can call the send method to transfer
money from one account to another, the deposit and withdraw methods
that deposit to or withdraw money from a specific account, respectively, and
the totalStock method that returns the total amount of money currently
deposited in the bank. Finally, implement the method totalStockIn that
returns the total amount of money currently deposited in the specified set
of banks.

Actors
"A distributed system is one in which the failure of a computer you didn't even
know existed can render your own computer unusable."

Leslie Lamport

Throughout this book, we have concentrated on many different abstractions for
concurrent programming. Most of these abstractions assume the presence of shared
memory. Futures and promises, concurrent data structures, and software transactional
memory are best suited for shared memory systems. While the shared memory
assumption ensures that these facilities are efficient, it also limits them to applications
running on a single computer. In this chapter, we consider a programming model that
is equally applicable to a shared-memory machine or a distributed system, namely,
the actor model. In the actor model, the program is represented by a large number
of entities that execute computations independently, and communicate by passing
messages. These independent entities are called actors.

The actor model aims to resolve issues associated with using shared memory,
such as data races or synchronization, by eliminating the need for shared memory
altogether. Mutable state is confined within the boundaries of one actor, and is
potentially modified when the actor receives a message. Messages received by the
actor are handled serially, one after another. This ensures that the mutable state
within the actor is never accessed concurrently. However, separate actors can process
the received messages concurrently. In a typical actor-based program, the number
of actors can be orders of magnitude greater than the number of processors. This
is similar to the relationship between processors and threads in multi-threaded
programs. The actor model implementation decides when to assign processor time
to specific actors, to allow them to process messages.

Actors

[248]

The true advantage of the actor model becomes apparent when we start distributing
the application across multiple computers. Implementing programs that span across
multiple machines and devices that communicate through a computer network is
called distributed programming. The actor model allows you to write programs that
run inside a single process, multiple processes on the same machine, or on multiple
machines that are connected with a computer network. Creating actors and sending
messages is oblivious and independent of the location of the actor. In distributed
programming, this is called location transparency. Location transparency allows you
to design distributed systems without having the knowledge about the relationships
in the computer network.

In this chapter, we will use the Akka actor framework to learn about the actor
concurrency model. Specifically, we cover the following topics:

•	 Declaring actor classes and creating actor instances
•	 Modeling actor state and complex actor behaviors
•	 Manipulating the actor hierarchy and the life cycle of an actor
•	 The different message-passing patterns used in actor communication
•	 Error recovery using the built-in actor supervision mechanism
•	 Using actors to transparently build concurrent and distributed programs

We will start by studying the important concepts and terminology in the actor
model, and learning the basics of the actor model in Akka.

Working with actors
In the actor programming model, the program is run by a set of concurrently
executing entities called actors. Actor systems resemble human organizations, such
as companies, governments, or other large institutions. To understand this similarity,
we consider the example of a large software company.

In a software company like Google, Microsoft, Amazon, or Typesafe, there are many
goals that need to be achieved concurrently. Hundreds or thousands of employees
work towards achieving these goals, and are usually organized in a hierarchical
structure. Different employees work at different positions. A team leader makes
important technical decisions for a specific project, a software engineer implements
and maintains various parts of a software product, and a system administrator
makes sure that the personal workstations, servers, and various equipments are
functioning correctly. Many employees, such as the team leader, delegate their
own tasks to other employees who are lower in the hierarchy than themselves. To be
able to work and make decisions efficiently, employees use e-mails to communicate.

Chapter 8

[249]

When an employee comes to work in the morning, he inspects his e-mail client
and responds to the important messages. Sometimes, these messages contain work
tasks that come from his boss or requests from other employees. When an e-mail is
important, the employee must compose the answer right away. While the employee
is busy answering one e-mail, additional e-mails can arrive, and these e-mails are
enqueued in his e-mail client. Only once the employee is done with one e-mail is
he able to proceed to the next one.

In the preceding scenario, the workflow of the company is divided into a number
of functional components. It turns out that these components closely correspond
to different parts of an actor framework. We will now identify these similarities
by defining the parts of an actor system, and relating them to their analogs in the
software company.

An actor system is a hierarchical group of actors that share common configuration
options. An actor system is responsible for creating new actors, locating actors within
the actor system, and logging important events. An actor system is an analog of the
software company itself.

An actor class is a template that describes a state internal to the actor, and how the
actor processes the messages. Multiple actors can be created from the same actor
class. An actor class is an analog of a specific position within the company, such
as a software engineer, a marketing manager, or a recruiter.

An actor instance is an entity that exists at runtime and is capable of receiving
messages. An actor instance might contain mutable state, and can send messages
to other actor instances. The difference between an actor class and an actor instance
directly corresponds to the relationship between a class and an object instance of
that class in object-oriented programming. In the context of the software company
example, an actor instance is analogous to a specific employee.

A message is a unit of communication that actors use to communicate. In Akka, any
object can be a message. Messages are analogous to e-mails sent within the company.
When an actor sends a message, it does not wait until some other actor receives the
message. Similarly, when an employee sends an e-mail, he does not wait until the
e-mail is received or read by the other employees. Instead, he proceeds with his own
work; an employee is too busy to wait. Multiple e-mails might be sent to the same
person concurrently.

The mailbox is a part of memory that is used to buffer messages, specific to each
actor instance. This buffer is necessary, as an actor instance can process only a single
message at a time. The mailbox corresponds to an e-mail client used by an employee.
At any point, there might be multiple unread e-mails buffered in the e-mail client,
but the employee can only read and respond to them one at a time.

Actors

[250]

An actor reference is an object that allows you to send messages to a specific actor.
This object hides information about the location of the actor from the programmer.
Actor might run within separate processes or on different computers. The actor
reference allows you to send a message to an actor irrespective of where the actor is
running. From the software company perspective, an actor reference corresponds to
the e-mail address of a specific employee. The e-mail address allows us to send an
e-mail to an employee, without knowing anything about the physical location of the
employee. The employee might be in his office, on a business trip, or on a vacation,
but the e-mail will eventually reach him no matter where he goes.

A dispatcher is a component that decides when actors are allowed to process
messages, and lends them computational resources to do so. In Akka, every dispatcher
is at the same time an execution context. The dispatcher ensures that actors with
non-empty mailboxes eventually get run by a specific thread, and that these messages
are handled serially. A dispatcher is best compared to the e-mail answering policy in
the software company. Some employees, such as the technical support specialists, are
expected to answer e-mails as soon as they arrive. Software engineers sometimes have
more liberty: they can choose to fix several bugs before inspecting their e-mails. The
janitor spends his day working around the office building, and only takes a look
at his e-mail client in the morning.

To make these concepts more concrete, we start by creating a simple actor application.
This is the topic of the next section, in which we learn how to create actor systems and
actor instances.

Creating actor systems and actors
When creating an object instance in an object-oriented language, we start by
declaring a class, which can be reused by multiple object instances. We then specify
arguments for the constructor of the object. Finally, we instantiate an object using
the new keyword and obtain a reference to the object.

Creating an actor instance in Akka roughly follows the same steps as creating an
object instance. First, we need to define an actor class, which defines the behavior
of the actor. Then, we need to specify the configuration for a specific actor instance.
Finally, we need to tell the actor system to instantiate the actor using the given
configuration. The actor system then creates an actor instance and returns an actor
reference to that instance. In this section, we will study these steps in more detail.

Chapter 8

[251]

An actor class is used to specify the behavior of an actor: it describes how the actor
responds to messages and communicates with other actors, encapsulates actor state,
and defines the actor's startup and shutdown sequences. We declare a new actor
class by extending the Actor trait from the akka.actor package. This trait comes
with a single abstract method receive. The receive method returns a partial
function object of type PartialFunction[Any, Unit]. This partial function is used
when an actor receives a message of Any type. If the partial function is not defined
for the message, the message is discarded.

In addition to defining how an actor receives messages, the actor class encapsulates
references to objects used by the actor. These objects comprise the actor's state.
Throughout this chapter, we use Akka's Logging object to print to the standard
output. In the following code, we declare a HelloActor actor class, which reacts to
a hello message specified with the hello constructor argument. The HelloActor
class contains a Logging object log as part of its state. The Logging object is created
using the context.system reference to the current actor system, and the this
reference to the current actor. The HelloActor class defines a partial function
in the receive method, which determines if the message is equal to the hello
string argument, or to some other object called msg. When an actor defined by the
HelloActor class receives a hello message, it prints the message using the Logging
object log. Otherwise, it prints that it received an unexpected message, and stops
by calling context.stop on the actor reference self, which represents the current
actor. This is shown in the following code snippet:

import akka.actor._
import akka.event.Logging
class HelloActor(val hello: String) extends Actor {
 val log = Logging(context.system, this)
 def receive = {
 case `hello` =>
 log.info(s"Received a '$hello'... $hello!")
 case msg =>
 log.info(s"Unexpected message '$msg'")
 context.stop(self)
 }
}

Declaring an actor class does not create a running actor instance. Instead, the actor
class serves as a blueprint for creating actor instances. The same actor class can be
shared by many actor instances. To create an actor instance in Akka, we need to
pass information about the actor class to the actor system. However, an actor class
such as HelloActor is not sufficient for creating an actor instance; we also need to
specify the hello argument. To bundle the information required for creating an actor
instance, Akka uses objects called actor configurations.

Actors

[252]

An actor configuration contains information about the actor class, its constructor
arguments, mailbox, and dispatcher implementation. In Akka, an actor configuration
is represented with the Props class. A Props object encapsulates all the information
required to create an actor instance, and can be serialized or sent over the network.

To create Props objects, it is a recommended practice to declare factory methods
in the companion object of the actor class. In the following companion object, we
declare two factory methods called props and propsAlt, which return Props
objects for the HelloActor class, given the hello argument:

object HelloActor {
 def props(hello: String) = Props(new HelloActor(hello))
 def propsAlt(hello: String) = Props(classOf[HelloActor], hello)
}

The props method uses an overload of the Props.apply factory method, which
takes a block of code by creating the HelloActor class. This block of code is invoked
every time an actor system needs to create an actor instance. The propsAlt method
uses another Props.apply overload, which creates an actor instance from the Class
object of the actor class, and a list of constructor arguments. The two declarations
are semantically equivalent.

The first Props.apply overload takes a closure that calls the actor class constructor.
If we are not careful, the closure can easily catch references to the enclosing scope.
When this happens, these references become a part of the Props object. Consider
the defaultProps method in the following utility class:

class HelloActorUtils {
 val defaultHi = "Aloha!"
 def defaultProps() = Props(new HelloActor(defaultHi))
}

Sending the Props object that is returned by the defaultProps method over the
network requires sending the enclosing HelloActorUtils object captured by the
closure, incurring additional network costs.

Furthermore, it is particularly dangerous to declare a Props object within an actor
class, as it can catch a this reference to the enclosing actor instance. It is safer to
create the Props objects exactly as they were shown in the propsAlt method.

Avoid creating the Props objects within actor classes to prevent
accidentally capturing the actor's this reference. Wherever
possible, declare Props inside factory methods in top-level
singleton objects.

Chapter 8

[253]

The third overload of the Props.apply method is a convenience method that can be
used with actor classes with zero-argument constructors. If HelloActor defines no
constructor arguments, we can write Props[HelloActor] to create a Props object.

To instantiate an actor, we pass an actor configuration to the actorOf method of
the actor system. Throughout this chapter, we will use our custom actor system
instance called ourSystem. We define ourSystem using the ActorSystem.apply
factory method:

lazy val ourSystem = ActorSystem("OurExampleSystem")

We can now create and run HelloActor by calling the actorOf method on the actor
system. When creating a new actor, we can specify a unique name for the actor
instance with the argument called name. Without explicitly specifying the name
argument, the actor system automatically assigns a unique name to the new actor
instance. The actorOf method does not return an instance of the HelloActor class.
Instead, it returns an actor reference object of the type ActorRef.

After creating a HelloActor instance hiActor, which recognizes the hi messages,
we send it a message hi. To send a message to an Akka actor, we use the ! operator
(pronounced as tell or bang). For clarity, we then pause the execution for one second
by calling sleep, and give the actor some time to process the message. We then send
another message hola, and wait one more second. Finally, we terminate the actor
system by calling its shutdown method. This is shown in the following program:

object ActorsCreate extends App {
 val hiActor: ActorRef =
 ourSystem.actorOf(HelloActor.props("hi"), name = "greeter")
 hiActor ! "hi"
 Thread.sleep(1000)
 hiActor ! "hola"
 Thread.sleep(1000)
 ourSystem.shutdown()
}

Upon running this program, the hiActor instance first prints that it received a hi
message. After one second, it prints that it received a hola, an unexpected message,
and terminates.

Actors

[254]

Managing unhandled messages
The receive method in the HelloActor example was able to handle any kind of
messages. When the message was different from the pre-specified hello argument,
such as hi used previously, the HelloActor actor reported this in the default case.
Alternatively, we could have left the default case unhandled. When an actor receives
a message that is not handled by its receive method, the message is wrapped into
an UnhandledMessage object and forwarded to the actor system's event stream.
Usually, the actor system's event stream is used for logging purposes.

We can override this default behavior by overriding the unhandled method in
the actor class. By default, this method publishes the unhandled messages on the
actor system's event stream. In the following code, we declare a DeafActor actor
class, whose receive method returns an empty partial function. An empty partial
function is not defined for any type of message, so all the messages sent to this actor
get passed to the unhandled method. We override it to output the String messages
to the standard output. We pass all other types of message to the actor system's
event stream by calling super.unhandled. The following code snippet shows the
DeafActor implementation:

class DeafActor extends Actor {
 val log = Logging(context.system, this)
 def receive = PartialFunction.empty
 override def unhandled(msg: Any) = msg match {
 case msg: String => log.info(s"I do not hear '$msg'")
 case msg => super.unhandled(msg)
 }
}

Let's test a DeafActor class in an example. The following program creates a
DeafActor instance named deafy, and assigns its actor reference to the value
deafActor. It then sends the two messages deafy and 1234 to deafActor,
and shuts down the actor system:

object ActorsUnhandled extends App {
 val deafActor: ActorRef =
 ourSystem.actorOf(Props[DeafActor], name = "deafy")
 deafActor ! "hi"
 Thread.sleep(1000)
 deafActor ! 1234
 Thread.sleep(1000)
 ourSystem.shutdown()
}

Chapter 8

[255]

Running this program shows that the first message, deafy, is caught and printed by
the unhandled method. The 1234 message is forwarded to the actor system's event
stream, and is never shown on the standard output.

An attentive reader might have noticed that we could have avoided the unhandled
call by moving the case into the receive method, as shown in the following
receive implementation:

def receive = {
 case msg: String => log.info(s"I do not hear '$msg'")
}

This definition of receive is more concise, but is inadequate for more complex
actors. In the preceding example, we have fused the treatment of unhandled
messages together with how the actor handles regular messages. Stateful actors
often change the way they handle regular messages, and it is essential to separate
the treatment of unhandled messages from the normal behavior of the actor. We
will study how to change the actor behavior in the next section.

Actor behavior and state
When an actor changes its state, it is often necessary to change the way it handles
incoming messages. The way that the actor handles regular messages is called
the behavior of the actor. In this section, we will study how to manipulate
actor behavior.

We have previously learned that we define the initial behavior of the actor by
implementing the receive method. Note that the receive method must always
return the same partial function. It is not correct to return different partial functions
from receive depending on the current state of the actor. Let's assume we want to
define a CountdownActor actor class, which decreases its n integer field every time
it receives a count message, until it reaches zero. After the CountdownActor class
reaches zero, it should ignore all subsequent messages. The following definition
of the receive method is not allowed in Akka:

class CountdownActor extends Actor {
 var n = 10
 def receive = if (n > 0) { // never do this
 case "count" =>
 log(s"n = $n")
 n -= 1
 } else PartialFunction.empty
}

Actors

[256]

To correctly change the behavior of the CountdownActor class after it reaches zero,
we use the become method on the actor's context object. In the correct definition
of the CountdownActor class, we define two methods, counting and done, which
return two different behaviors. The counting behavior reacts to the count messages
and calls become to change to the done behavior once the n field is zero. The done
behavior is just an empty partial function, which ignores all the messages. This is
shown in the following implementation of the CountdownActor class:

class CountdownActor extends Actor {
 val log = Logging(context.system, this)
 var n = 10
 def counting: Actor.Receive = {
 case "count" =>
 n -= 1
 log.info(s"n = $n")
 if (n == 0) context.become(done)
 }
 def done = PartialFunction.empty
 def receive = counting
}

The receive method defines the initial behavior of the actor, which must be the
counting behavior. Note that we are using the type alias Receive from the Actor
companion object, which is just a shorthand for the PartialFunction[Any, Unit]
type.

When modeling complex actors, it is helpful to think of them as state machines.
A state machine is a mathematical model that represents a system with some
number of states and transitions between these states. In an actor, each behavior
corresponds to a state in the state machine. A transition exists between two states
if the actor potentially calls the become method, when receiving a certain message.
In the following figure, we illustrate the state machine corresponding to the
CountdownActor class. The two circles represent the states corresponding to the
behaviors counting and done. The initial behavior is counting, so we draw an
arrow pointing to the corresponding state. We represent the transitions between
the states with arrows starting and ending at a state. When the actor receives the
count message and the n field is larger than 1, the behavior does not change.
However, when the actor receives the count message and the n field is decreased
to 0, the actor changes its behavior to done.

Free ebooks ==> www.Ebook777.com

Chapter 8

[257]

The following short program tests the correctness of our actor. We use the actor
system to create a new countdown actor, and send it 20 count messages. The actor
only reacts to the first 10 messages, before switching to the done behavior:

object ActorsCountdown extends App {
 val countdown = ourSystem.actorOf(Props[CountdownActor])
 for (i <- 0 until 20) countdown ! "count"
 Thread.sleep(1000)
 ourSystem.shutdown()
}

Whenever an actor responds to the incoming messages differently depending on its
current state, you should decompose different states into partial functions and use
the become method to switch between states. This is particularly important when
actors get more complex, and ensures that the actor logic is easier to understand
and maintain.

When a stateful actor needs to change its behavior, declare a
separate partial function for each of its behaviors. Implement
the receive method to return the method corresponding to
the initial behavior.

We now consider a more refined example, in which we define an actor that checks
if a given word exists in a dictionary and prints it to the standard output. We want
to be able to change the dictionary that the actor is using during runtime. To set the
dictionary, we send the actor an Init message with the path to the dictionary. After
that, we can check if a word is in the dictionary by sending the actor the IsWord
message. Once we're done using the dictionary, we can ask the actor to unload the
dictionary by sending it the End message. After that, we can initialize the actor with
some other dictionary.

www.Ebook777.com

http://www.ebook777.com

Actors

[258]

The following state machine models this logic with two behaviors called
uninitialized and initialized:

It is a recommended practice to define the datatypes for the different messages in
the companion object of the actor class. In this case, we add the case classes Init,
IsWord, and End to the companion object of the DictionaryActor class:

object DictionaryActor {
 case class Init(path: String)
 case class IsWord(w: String)
 case object End
}

We next define the DictionaryActor actor class. This class defines a private
Logging object log, and a dictionary mutable set, which is initially empty and can
be used to store words. The receive method returns the uninitialized behavior,
which only accepts the Init message type. When an Init message arrives, the actor
uses its path field to fetch the dictionary from a file, load the words, and call become
to switch to the initialized behavior. When an IsWord message arrives, the actor
checks if the word exists and prints it to the standard output. If an End message
arrives, the actor clears the dictionary and switches back to the uninitialized
behavior. This is shown in the following code snippet:

class DictionaryActor extends Actor {
 private val log = Logging(context.system, this)
 private val dictionary = mutable.Set[String]()
 def receive = uninitialized
 def uninitialized: PartialFunction[Any, Unit] = {
 case DictionaryActor.Init(path) =>
 val stream = getClass.getResourceAsStream(path)
 val words = Source.fromInputStream(stream)
 for (w <- words.getLines) dictionary += w
 context.become(initialized)

Chapter 8

[259]

 }
 def initialized: PartialFunction[Any, Unit] = {
 case DictionaryActor.IsWord(w) =>
 log.info(s"word '$w' exists: ${dictionary(w)}")
 case DictionaryActor.End =>
 dictionary.clear()
 context.become(uninitialized)
 }
 override def unhandled(msg: Any) = {
 log.info(s"cannot handle message $msg in this state.")
 }
}

Note that we have overridden the unhandled method in the DictionaryActor class.
In this case, using the unhandled method reduces code duplication, and makes the
DictionaryActor class easier to maintain, as there is no need to list the default case
twice in both the initialized and uninitialized behaviors.

If you are using a Unix system, you can load the list of words, separated by
a newline character, from the file in the location /usr/share/dict/words.
Alternatively, download the source code for this book and find the words.txt file,
or create a dummy file with several words, and save it to the src/main/resources/
org/learningconcurrency/ directory. You can then test the correctness of the
DictionaryActor class, using the following program:

val dict = ourSystem.actorOf(Props[DictionaryActor], "dictionary")
dict ! DictionaryActor.IsWord("program")
Thread.sleep(1000)
dict ! DictionaryActor.Init("/org/learningconcurrency/words.txt")
Thread.sleep(1000)

The first message sent to the actor results in an error message. We cannot send an
IsWord message before initializing the actor. After sending the Init message, we can
check if words are present in the dictionary. Finally, we send an End message and
shut down the actor system, as shown in the following code snippet:

dict ! DictionaryActor.IsWord("program")
Thread.sleep(1000)
dict ! DictionaryActor.IsWord("balaban")
Thread.sleep(1000)
dict ! DictionaryActor.End
Thread.sleep(1000)
ourSystem.shutdown()

Having learned about actor behaviors, we will study how actors are organized into a
hierarchy in the next section.

Actors

[260]

Akka actor hierarchy
In large organizations, people are assigned roles and responsibilities for different
tasks in order to reach a specific goal. The CEO of the company chooses a specific
goal, such as launching a software product. He then delegates parts of the work
tasks to various teams within the company: the marketing team investigates who
are the potential customers for the new product, the design team develops the user
interface of the product, and the software engineering team implements the logic of
the software product. Each of these teams can be further decomposed into subteams
with different roles and responsibilities, depending on the size of the company.
For example, the software engineering team can be composed into two developer
subteams, responsible for implementing the backend of the software product, such
as the server-side code, and the frontend, such as the website or a desktop UI.

Similarly, sets of actors can form hierarchies in which actors closer to the root work
on more general tasks, and delegate work items to more specialized actors lower
in the hierarchy. Organizing parts of the system in hierarchies is a natural and
systematic way to decompose a complex program into its basic components. In
the context of actors, a correctly chosen actor hierarchy can also guarantee better
scalability of the application, depending on how the work is balanced between the
actors. Importantly, a hierarchy between actors allows isolating and replacing parts
of the system that fail more easily.

In Akka, actors implicitly form a hierarchy. Every actor can have some number of
child actors, and it can create or stop child actors using the context object. To test
this relationship, we will define two actor classes to represent the parent and child
actors. We start by defining the ChildActor actor class, which reacts to the sayhi
messages by printing the reference to its parent actor. The reference to the parent is
obtained by calling the parent method on the context object. Additionally, we will
override the postStop method of the Actor class, which is invoked after the actor
stops. By doing this, we will be able to see precisely when a child actor is stopped.
The ChildActor template is shown in the following code snippet:

class ChildActor extends Actor {
 val log = Logging(context.system, this)
 def receive = {
 case "sayhi" =>
 val parent = context.parent
 log.info(s"my parent $parent made me say hi!")
 }
 override def postStop() {
 log.info("child stopped!")
 }
}

Chapter 8

[261]

We now define an actor class called ParentActor, which can accept the messages
create, sayhi, and stop. When ParentActor receives a create message, it creates
a new child by calling actorOf on the context object. When the ParentActor class
receives a sayhi message, it forwards the message to its children by traversing the
context.children list, and resending the message to each child. Finally, when the
ParentActor class receives a stop message, it stops itself:

class ParentActor extends Actor {
 val log = Logging(context.system, this)
 def receive = {
 case "create" =>
 context.actorOf(Props[ChildActor])
 log.info(s"created a kid; children = ${context.children}")
 case "sayhi" =>
 log.info("Kids, say hi!")
 for (c <- context.children) c ! "sayhi"
 case "stop" =>
 log.info("parent stopping")
 context.stop(self)
 }
}

We test the actor classes ParentActor and ChildActor in the following program.
We first create the ParentActor instance parent, and then send two create
messages to parent. The parent actor prints that it had created a child actor twice.
We then send a sayhi message to parent, and witness how the child actors output
a message after the parent forwards sayhi to them. Finally, we send a stop message
to stop the parent actor. This is shown in the following program:

object ActorsHierarchy extends App {
 val parent = ourSystem.actorOf(Props[ParentActor], "parent")
 parent ! "create"
 parent ! "create"
 Thread.sleep(1000)
 parent ! "sayhi"
 Thread.sleep(1000)
 parent ! "stop"
 Thread.sleep(1000)
 ourSystem.shutdown()
}

Actors

[262]

By studying the standard output, we find that each of the two child actors output a
sayhi message immediately after the parent actor prints that it is about to stop. This
is the normal behavior of Akka actors: a child actor cannot exist without its parent.
As soon as the parent actor stops, its child actors are stopped by the actor system
as well.

When an actor is stopped, its child actors are also
automatically stopped.

If you ran the preceding example program, you might have noticed that printing
an actor reference reflects the actor's position in the actor hierarchy. For example,
printing the child actor reference shows the akka://OurExampleSystem/user/
parent/$a string. The first part of this string, akka://, denotes that this reference
points to a local actor. The OurExampleSystem part is the name of the actor system
that we are using in this example. The parent/$a part reflects the name of the parent
actor and the automatically generated name $a of the child actor. Unexpectedly,
the string representation of the actor reference also contains a reference to an
intermediate actor called user.

In Akka, an actor that resides at the top of the actor hierarchy is called the
guardian actor, which exists to perform various internal tasks, such as logging and
restarting user actors. Every top-level actor created in the application is placed under
the user predefined guardian actor. There are other guardian actors. For example,
actors internally used by the actor system are placed under the system guardian
actor. The actor hierarchy is graphically shown in the following figure, where the
guardian actors user and system form two separate hierarchies in the actor system
called OurExampleSystem:

In this section, we saw that Akka actors form a hierarchy, and learned about the
relationships between actors in this hierarchy. Importantly, we learned how to refer
to immediate neighbors of an actor using the parent and children methods of the
context object. In the next section, we will see how to refer to an arbitrary actor
within the same actor system.

Chapter 8

[263]

Identifying actors
In the previous section, we learned that actors are organized in a hierarchical tree, in
which every actor has a parent and some number of children. Thus, every actor lies on
a unique path from the root of this hierarchy, and can be assigned a unique sequence
of actor names on this path. The parent actor was directly beneath the user guardian
actor, so its unique sequence of actor names is /user/parent. Similarly, the unique
sequence of actor names for the parent actor's child actor $a is /user/parent/$a.
An actor path is a concatenation of the protocol, the actor system name, and the actor
names on the path from the top guardian actor to a specific actor. The actor path of the
parent actor from the previous example is akka://OurExampleSystem/user/parent.

Actor paths closely correspond to file paths in a filesystem. Every file path uniquely
designates a file location, just as an actor path uniquely designates the location of
the actor in the hierarchy. Just as a file path in a filesystem does not mean that a file
exists, an actor path does not imply that there is an actor on that file path in the actor
system. Instead, an actor path is an identifier used to obtain an actor reference if one
exists. Also, parts of the names in the actor path can be replaced with wildcards and
the .. symbol, similar to how parts of filenames can be replaced in a shell. In this
case, we obtain a path selection. For example, the path selection .. references the
parent of the current actor. The selection ../* references the current actor and all
its siblings.

Actor paths are different from actor references; we cannot send a message to an
actor using its actor path. Instead, we must first use the actor path to identify an
actor on that actor path. If we successfully find an actor reference behind an actor
path, we can send messages to it.

To obtain an actor reference corresponding to an actor path, we call the
actorSelection method on the context object of an actor. This method takes an
actor path, or a path selection. Calling the actorSelection method might address
zero actors if no actors correspond to the actor path. Similarly, it might address
multiple actors if we use a path selection. Thus, instead of returning an ActorRef
object, the actorSelection method returns an ActorSelection object, which might
represent zero, one, or more actors. We can use the ActorSelection object to send
messages to these actors.

Use the actorSelection method on the context object to
communicate with arbitrary actors in the actor system.

Actors

[264]

If we compare the ActorRef object to a specific e-mail address, an ActorSelection
object can be compared to a mailing list address. Sending an e-mail to a valid e-mail
address ensures that the e-mail reaches a specific person. On the other hand, when
we send an e-mail to a mailing list, the e-mail might reach zero, one, or more people,
depending on the number of mailing list subscribers.

An ActorSelection object does not tell us anything about the concrete paths of
the actors, in a similar way to how a mailing list does not tell us anything about
its subscribers. For this purpose, Akka defines a special type of message called
Identify. When an Akka actor receives an Identify message, it will automatically
reply by sending back an ActorIdentity message with its ActorRef object. If there
are no actors in the actor selection, the ActorIdentity message is sent back to the
sender of Identify without an ActorRef object.

Send Identify messages to the ActorSelection objects to
obtain actor references of arbitrary actors in the actor system.

In the following example, we define a CheckActor actor class, which describes
actors that check and print actor references whenever they receive a message with an
actor path. When the actor of type CheckActor receives a string with an actor path
or a path selection, it obtains an ActorSelection object and sends it an Identify
message. This message is forwarded to all actors in the selection, which then respond
with an ActorIdentity message. The Identify message also takes a messageId
argument. If an actor sends out multiple Identify messages, the messageId
argument allows disambiguating between the different ActorIdentity responses. In
our example, we use the path string as the messageId argument. When CheckActor
receives an ActorIdentity message, it either prints the actor reference or reports
that there is no actor on the specified path. The CheckActor class is shown in the
following code snippet:

class CheckActor extends Actor {
 val log = Logging(context.system, this)
 def receive = {
 case path: String =>
 log.info(s"checking path $path")
 context.actorSelection(path) ! Identify(path)
 case ActorIdentity(path, Some(ref)) =>
 log.info(s"found actor $ref at $path")
 case ActorIdentity(path, None) =>
 log.info(s"could not find an actor at $path")
 }
}

Chapter 8

[265]

Next, we instantiate a checker actor of the CheckActor class, and send it the path
selection ../*. This references all the child actors of the checker parent: the checker
actor itself and its siblings:

val checker = ourSystem.actorOf(Props[CheckActor], "checker")
checker ! "../*"

We did not instantiate any top-level actors besides checker, so checker receives
only a single ActorIdentity message and prints its own actor path. Next, we try to
identify all the actors one level above checker. Recall the earlier figure. Since checker
is a top-level actor, this should identify the guardian actors in the actor system:

checker ! "../../*"

As expected, checker prints the actor paths of the user and system guardian actors.
We are curious to learn more about the system-internal actors from the system
guardian actor. This time, we send an absolute path selection to checker:

checker ! "/system/*"

The checker actor prints the actor paths of the internal actors log1-Logging and
deadLetterListener, which are used for logging and for processing unhandled
messages, respectively. We next try identifying a non-existing actor:

checker ! "/user/checker2"

There are no actors named checker2, so checker receives an ActorIdentity
message with the ref field set to None and prints that it cannot find an actor
on that path.

Using the actorSelection method and the Identify message is the fundamental
method for discovering unknown actors in the same actor system. Note that we
will always obtain an actor reference, and never obtain a pointer to the actor object
directly. To better understand the reasons for this, we will study the life cycle of
actors in the next section.

The actor life cycle
Recall that the ChildActor class from a previous section overrode the postStop
method to produce some logging output when the actor is stopped. In this section,
we investigate when exactly postStop gets called, along with the other important
events that comprise the life cycle of the actor.

Actors

[266]

To understand why the actor life cycle is important, we consider what happens if
an actor throws an exception while processing an incoming message. In Akka, such
an exception is considered abnormal behavior, so top-level user actors that throw
an exception are by default restarted. Restarting creates a fresh actor object, and
effectively means that the actor state is reinitialized. When an actor is restarted, its
actor reference and actor path remain the same. Thus, the same ActorRef object
might refer to many different physical actor objects during the logical existence
of the same actor. This is one of the reasons why an actor must never allow its this
reference to leak. Doing so allows other parts of the program to refer to an old
actor object, consequently invalidating the transparency of the actor reference.
Additionally, revealing the this reference of the actor can reveal the internals
of the actor implementation, or even cause data corruption.

Never pass an actor's this reference to other actors, as it breaks
actor encapsulation.

Let's examine the complete actor life cycle. As we have learned, a logical actor
instance is created when we call actorOf. The Props object is used to instantiate
a physical actor object. This object is assigned a mailbox, and can start receiving
input messages. The actorOf method returns an actor reference to the caller, and
the actors can execute concurrently. Before the actor starts processing messages, its
preStart method is called. The preStart method is used to initialize the logical
actor instance.

After creation, the actor starts processing messages. At some point, an actor might
need to be restarted due to an exception. When this happens, the preRestart
method is first called. All the child actors are then stopped. Then, the Props object,
previously used in order to create the actor with actorOf, is reused to create a new
actor object. The postRestart method is called on the newly created actor object.
After postRestart returns, the new actor object is assigned the same mailbox as the
old actor object, and it continues to process messages that were in the mailbox before
the restart.

By default, the postRestart method calls preStart. In some cases, we want to
override this behavior. For example, a database connection might need to be opened
only once during preStart, and closed when the logical actor instance is terminated.

Chapter 8

[267]

Once the logical actor instance needs to stop, the postStop method gets called. The
actor path associated with the actor is released, and returned to the actor system.
By default, the preRestart method calls postStop. The complete actor life cycle
is illustrated in the following figure:

Note that, during the actor life cycle, the rest of the actor system observes the same
actor reference, regardless of how many times the actor restarts. Actor failures and
restarts occur transparently for the rest of the system.

To experiment with the life cycle of an actor, we declare two actor classes
StringPrinter and LifecycleActor. The StringPrinter actor prints a logging
statement for each message that it receives. We override its preStart and postStop
methods to precisely track when the actor has started and stopped, as shown in the
following snippet:

class StringPrinter extends Actor {
 val log = Logging(context.system, this)
 def receive = {
 case msg => log.info(s"printer got message '$msg'")
 }
 override def preStart(): Unit = log.info(s"printer preStart.")
 override def postStop(): Unit = log.info(s"printer postStop.")
}

Actors

[268]

The LifecycleActor class maintains a child actor reference to a StringPrinter
actor. The LifecycleActor class reacts to the Double and Int messages by printing
them, and to the List messages by printing the first element of the list. When it
receives a String message, the LifecycleActor instance forwards it to the
child actor:

class LifecycleActor extends Actor {
 val log = Logging(context.system, this)
 var child: ActorRef = _
 def receive = {
 case num: Double => log.info(s"got a double - $num")
 case num: Int => log.info(s"got an integer - $num")
 case lst: List[_] => log.info(s"list - ${lst.head}, ...")
 case txt: String => child ! txt
 }
}

We now override different life cycle hooks. We start with the preStart method to
output a logging statement and instantiate the child actor. This ensures that the
child reference is initialized before the actor starts processing any messages:

override def preStart(): Unit = {
 log.info("about to start")
 child = context.actorOf(Props[StringPrinter], "kiddo")
}

Next, we override the preRestart and postRestart methods. In preRestart and
postRestart, we log the exception that caused the failure. The postRestart method
calls preStart by default, so the new actor object gets initialized with a new child
actor after a restart:

override def preRestart(t: Throwable, msg: Option[Any]): Unit = {
 log.info(s"about to restart because of $t, during message $msg")
 super.preRestart(t, msg)
}
override def postRestart(t: Throwable): Unit = {
 log.info(s"just restarted due to $t")
 super.postRestart(t)
}

Finally, we override postStop to track when the actor is stopped:

override def postStop() = log.info("just stopped")

Chapter 8

[269]

We now create an instance of the LifecycleActor class called testy, and send
a math.Pi message to it. The actor prints that it is about to start in its preStart
method, and creates a child new actor. It then prints that it received the value math.
Pi. Importantly, the child about to start logging statement is printed after the
math.Pi message is received. This shows that actor creation is an asynchronous
operation: when we call actorOf, creating the actor is delegated to the actor system,
and the program immediately proceeds.

val testy = ourSystem.actorOf(Props[LifecycleActor], "testy")
testy ! math.Pi

We then send a String message to testy. The message is forwarded to the child
actor, which prints a logging statement, indicating that it received the message:

testy ! "hi there!"

Finally, we send a Nil message to testy. The Nil object represents an empty
list, so testy throws an exception when attempting to fetch the head element. It
reports that it needs to restart. After that, we witness that the child actor prints the
message that it needs to stop; recall that the child actors are stopped when an actor
is restarted. Finally, testy prints that it is about to restart, and the new child actor
is instantiated. These events are caused by the following statement:

testy ! Nil

Testing the actor life cycle revealed an important property of the actorOf method.
When we call actorOf, the execution proceeds without waiting for the actor to
fully initialize itself. Similarly, sending a message does not block execution until
the message is received or processed by another actor; we say that message sends
are asynchronous. In the next section, we will examine various communication
patterns that address this asynchronous behavior.

Communication between actors
We have learned that actors communicate by sending messages. While actors
running on the same machine can access shared parts of memory in the presence
of proper synchronization, sending messages allows isolating the actor from the
rest of the system and ensures location transparency. The fundamental operation
that allows you to send a message to an actor is the ! operator. We have learned
that the ! operator is a non-blocking operation: sending a message does not block
the execution of the sender until the message is delivered. This way of sending
messages is sometimes called the fire-and-forget pattern, because it does not
wait for a reply from the message receiver, nor does it ensure that the message
is delivered.

Actors

[270]

Sending messages in this way improves the throughput of programs built using
actors, but can be limiting in some situations. For example, we might want to send
a message and wait for the response from the target. In this section, we learn about
patterns used in actor communication that go beyond fire-and-forget.

While the fire-and-forget pattern does not guarantee that the message is delivered,
it guarantees that the message is delivered at most once. The target actor never
receives duplicate messages. Furthermore, the messages are guaranteed to be
ordered for a given pair of sender and receiver actors. If an actor A sends messages
X and Y in that order, the actor B will receive no messages, only the message X, only
the message Y, or the message X, followed by the message Y. This is shown on the
left in the following figure:

However, the delivery order is not ensured for a group of three or more actors.
For example, as shown on the right in the preceding figure, actor A performs
the following actions:

•	 Sends a message X to the actor B
•	 Sends a message Y to another actor C
•	 Actor C sends a message Z to the actor B after having received Y

In this situation, the delivery order between messages X and Z is not guaranteed.
The actor B might receive the messages X and Z in any order. This property reflects
the characteristics of most computer networks, and is adopted to allow actors to
run transparently on network nodes that may be remote.

The order in which an actor B receives messages from an
actor A is the same as the order in which these messages are
sent from the actor A.

Chapter 8

[271]

Before we study various patterns of actor communication, we note that the !
operator was not the only non-blocking operation. The methods actorOf and
actorSelection are also non-blocking. These methods are often called while an
actor is processing a message. Blocking the actor while the message is processed
prevents the actor from processing subsequent messages in the mailbox and severely
compromises the throughput of the system. For these reasons, most of the actor
API is non-blocking. Additionally, we must never start blocking the operations
from third-party libraries from within an actor.

Messages must be handled without blocking indefinitely. Never
start an infinite loop and avoid long-running computations in
the receive block, the unhandled method, and within actor
life cycle hooks.

The ask pattern
Not being able to block from within an actor prevents the request-respond
communication pattern. In this pattern, an actor interested in certain information
sends a request message to another actor. It then needs to wait for a response message
from the other actor. In Akka, this communication pattern is also known as the
ask pattern.

The akka.pattern package defines the use of convenience methods in actor
communication. Importing its contents allows us to call the ? operator (pronounced
ask) on actor references. This operator sends a message to the target actor like the
tell operator. Additionally, the ask operator returns a future object with the response
from the target actor.

To illustrate the usage of the ask pattern, we will define two actors that play ping
pong with each other. A Pingy actor will send a ping request message to another
actor of type Pongy. When the Pongy actor receives the ping message, it sends a pong
response message to the sender. We start by importing the akka.pattern package:

import akka.pattern._

We first define the Pongy actor class. To respond to the ping incoming message,
Pongy needs an actor reference of the sender. While processing a message, every
actor can call the sender method of the Actor class to obtain the actor reference of
the sender of the current message. Pongy uses the sender method to send ping back
to Pingy. The Pongy implementation is shown in the following code snippet:

class Pongy extends Actor {
 val log = Logging(context.system, this)
 def receive = {

Actors

[272]

 case "ping" =>
 log.info("Got a ping -- ponging back!")
 sender ! "pong"
 context.stop(self)
 }
 override def postStop() = log.info("pongy going down")
}

Next, we define the Pingy actor class, which uses the ask operator to send a request
to Pongy. When Pingy receives a pongyRef actor reference of Pongy, it creates an
implicit Timeout object set to 2 seconds. Using the ask operator requires an implicit
Timeout object in scope; the future is failed with an AskTimeoutException if the
response message does not arrive within the given timeframe. Once Pingy sends
the ping message, it is left with an f future object. The Pingy actor uses the special
pipeTo combinator that sends the value in the future to the sender of the pongyRef
actor reference, as shown in the following code:

import akka.util.Timeout
import scala.concurrent.duration._
class Pingy extends Actor {
 val log = Logging(context.system, this)
 def receive = {
 case pongyRef: ActorRef =>
 implicit val timeout = Timeout(2 seconds)
 val f = pongyRef ? "ping"
 f pipeTo sender
 }
}

The message in the future object can be manipulated using the standard future
combinators seen in Chapter 4, Asynchronous Programming with Futures and Promises.
However, the following definition of Pingy would not be correct:

class Pingy extends Actor {
 val log = Logging(context.system, this)
 def receive = {
 case pongyRef: ActorRef =>
 implicit val timeout = Timeout(2 seconds)
 val f = pongyRef ? "ping"
 f onComplete { case v => log.info(s"Response: $v") } // bad!
 }
}

Chapter 8

[273]

Although it is perfectly legal to call onComplete on the f future, the subsequent
asynchronous computation should not access any mutable actor state. Recall that the
actor state should be visible only to the actor, so concurrently accessing it opens the
possibility of data races and race conditions. The log object should only be accessed
by the actor that owns it. Similarly, we should not call the sender method from
within the onComplete handler. By the time that the future is completed with the
response message, the actor might be processing a different message with a different
sender, so the sender method can return arbitrary values.

When starting an asynchronous computation from within the receive
block, the unhandled method, or a life cycle hook, never let the closure
capture any mutable actor state.

To test Pingy and Pongy in action, we define the Master actor class that instantiates
them. Upon receiving the start message, the Master actor passes the pongy
reference to pingy. Once the pingy actor returns a pong message from pongy,
the Master actor stops. This is shown in the following Master actor template:

class Master extends Actor {
 val pingy = ourSystem.actorOf(Props[Pingy], "pingy")
 val pongy = ourSystem.actorOf(Props[Pongy], "pongy")
 def receive = {
 case "start" =>
 pingy ! pongy
 case "pong" =>
 context.stop(self)
 }
 override def postStop() = log.info("master going down")
}
val masta = ourSystem.actorOf(Props[Master], "masta")
masta ! "start"

The ask pattern is useful because it allows you to send requests to multiple actors
and obtain futures with their responses. Values from multiple futures can be
combined within for comprehensions to compute a value from several responses.
Using the fire-and-forget pattern when communicating with multiple actors requires
changing the actor behavior, and is a lot more cumbersome than the ask pattern.

Actors

[274]

The forward pattern
Some actors exist solely to forward messages to other actors. For example, an actor
might be responsible for load-balancing request messages between several worker
actors, or it might forward the message to its mirror actor to ensure better availability.
In such cases, it is useful to forward the message without changing the sender field of
the message. The forward method on actor references serves this purpose.

In the following code, we use the StringPrinter actor from the previous section to
define a Router actor class. A Router actor instantiates four child StringPrinter
actors and maintains an i field with the index of the list child it forwarded the
message to. Whenever it receives a message, it forwards the message to a different
StringPrinter child before incrementing i:

class Router extends Actor {
 var i = 0
 val children = for (_ <- 0 until 4) yield
 context.actorOf(Props[StringPrinter])
 def receive = {
 case msg =>
 children(i) forward msg
 i = (i + 1) % 4
 }
}

In the following code, we create a Router actor and test it by sending it two
messages. We can observe that the messages are printed to the standard output
by two different StringPrinter actors, denoted with actors on the actor paths
/user/router/$b and /user/router/$a:

val router = ourSystem.actorOf(Props[Router], "router")
router ! "Hola"
router ! "Hey!"

The forward pattern is typically used in router actors, which use specific knowledge
to decide about the destination of the message; replicator actors, which send the
message to multiple destinations; or load balancers, which ensure that the workload
is spread evenly between a set of worker actors.

Chapter 8

[275]

Stopping actors
So far, we have stopped different actors by making them call context.stop. Calling
the stop method on the context object terminates the actor immediately after the
current message is processed. In some cases, we want to have more control over how
an actor gets terminated. For example, we might want to allow the actor to process
its remaining messages or wait for the termination of some other actors. In Akka,
there are several special message types that assist us in doing so, and we study
them in this section.

In many cases, we do not want to terminate an actor instance, but simply restart
it. We have previously learned that an actor is automatically restarted when it
throws an exception. An actor is also restarted when it receives the Kill message:
when we send a Kill message to an actor, the actor automatically throws an
ActorKilledException and fails.

Use the Kill message to restart the target actor without
losing the messages in the mailbox.

Unlike the stop method, the Kill message does not terminate the actor, but only
restarts it. In some cases, we want to terminate the actor instance, but allow it to
process the messages from its mailbox. Sending a PoisonPill message to an actor
has the same effect as calling stop, but allows the actor to process the messages
that were in the mailbox before the PoisonPill message arrives.

Use the PoisonPill message to stop the actor, but
allow it to process the messages received before the
PoisonPill message.

In some cases, allowing the actor to process its message using PoisonPill is not
enough. An actor might have to wait for other actors to terminate before terminating
itself. An orderly shutdown is important in some cases, as actors might be involved in
sensitive operations, such as writing to a file on the disk. We do not want to forcefully
stop them when we end the application. A facility that allows an actor to track the
termination of other actors is called DeathWatch in Akka.

Actors

[276]

Recall the earlier example with the actors Pingy and Pongy. Let's say that we want to
terminate Pingy, but only after Pongy has already been terminated. We define a new
GracefulPingy actor class for this purpose. GracefulPingy calls the watch method on
the context object when it gets created. This ensures that, after Pongy terminates and
its postStop method completes, GracefulPingy receives a Terminated message with
the actor reference to Pongy. Upon receiving the Terminated message, GracefulPingy
stops itself, as shown in the following GracefulPingy implementation:

class GracefulPingy extends Actor {
 val pongy = context.actorOf(Props[Pongy], "pongy")
 context.watch(pongy)
 def receive = {
 case "Die, Pingy!" =>
 context.stop(pongy)
 case Terminated(`pongy`) =>
 context.stop(self)
 }
}

Whenever we want to track the termination of an actor from inside an actor,
we use DeathWatch, as in the previous example. When we need to wait for the
termination of an actor from outside an actor, we use the graceful stop pattern. The
gracefulStop method from the akka.pattern package takes an actor reference, a
timeout, and a shutdown message. It returns a future and asynchronously sends the
shutdown message to the actor. If the actor terminates within the allotted timeout,
the future is successfully completed. Otherwise, the future fails. In the following
code, we create a GracefulPingy actor and call the gracefulStop method:

object CommunicatingGracefulStop extends App {
 val grace = ourSystem.actorOf(Props[GracefulPingy], "grace")
 val stopped =
 gracefulStop(grace, 3.seconds, "Die, Pingy!")
 stopped onComplete {
 case Success(x) =>
 log("graceful shutdown successful")
 ourSystem.shutdown()
 case Failure(t) =>
 log("grace not stopped!")
 ourSystem.shutdown()
 }
}

Free ebooks ==> www.Ebook777.com

Chapter 8

[277]

We typically use DeathWatch inside the actors, and the graceful stop pattern in the
main application thread. The graceful stop pattern can be used within actors as well,
as long as we are careful that the callbacks on the future returned by gracefulStop
do not capture actor state. Together, DeathWatch and the graceful stop pattern allow
safely shutting down actor-based programs.

Actor supervision
When studying the actor life cycle, we said that top-level user actors are by default
restarted when an exception occurs. We now take a closer inspection at how this
works. In Akka, every actor acts as a supervisor for its children. When a child fails, it
suspends the processing messages, and sends a message to its parent to decide what
to do about the failure. The policy that decides what happens to the parent and the
child after the child fails is called the supervision strategy. The parent might decide
to do the following:

•	 Restart the actor, indicated with the Restart message
•	 Resume the actor without a restart, indicated with the Resume message
•	 Permanently stop the actor, indicated with the Stop message
•	 Fail itself with the same exception, indicated with the Escalate message

By default, the user guardian actor comes with a supervision strategy that restarts
the failed children access. User actors stop their children by default. Both supervision
strategies can be overridden.

To override the default supervision strategy in user actors, we override the
supervisorStrategy field of the Actor class. In the following code, we define a
particularly troublesome actor class called Naughty. When the Naughty class receives
a String message, it prints a logging statement. For all other message types, it throws
a RuntimeException, as shown in the following implementation:

class Naughty extends Actor {
 val log = Logging(context.system, this)
 def receive = {
 case s: String => log.info(s)
 case msg => throw new RuntimeException
 }
 override def postRestart(t: Throwable) =
 log.info("naughty restarted")
}

www.Ebook777.com

http://www.ebook777.com

Actors

[278]

Next, we declare a Supervisor actor class, which creates a child actor of the type
Naughty. The Supervisor actor does not handle any messages, but overrides the
default supervision strategy. If a Supervisor actor's child actor fails because of
throwing an ActorKilledException, it is restarted. However, if its child actor fails
with any other exception type, the exception is escalated to the Supervisor actor.
We override the supervisorStrategy field with the value OneForOneStrategy, a
supervision strategy that applies fault handling specifically to the actor that failed:

class Supervisor extends Actor {
 val child = context.actorOf(Props[StringPrinter], "naughty")
 def receive = PartialFunction.empty
 override val supervisorStrategy =
 OneForOneStrategy() {
 case ake: ActorKilledException => Restart
 case _ => Escalate
 }
}

We test the new supervisor strategy by creating an actor instance super of the
Supervisor actor class. We then create an actor selection for all the children of super,
and send them a Kill message. This fails the Naughty actor, but super restarts it due
to its supervision strategy. We then apologize to the Naughty actor by sending it a
String message. Finally, we convert a String message to a list of characters, and
send it to the Naughty actor, which then throws a RuntimeException. This exception
is escalated by super, and both actors are terminated, as shown in the following
code snippet:

ourSystem.actorOf(Props[Supervisor], "super")
ourSystem.actorSelection("/user/super/*") ! Kill
ourSystem.actorSelection("/user/super/*") ! "sorry about that"
ourSystem.actorSelection("/user/super/*") ! "kaboom".toList

In this example, we saw how OneForOneStrategy works. When an actor fails, that
specific actor is resumed, restarted, or stopped, depending on the exception that
caused it to fail. The alternative AllForOneStrategy applies the fault-handling
decision to all the children. When one of the child actors stops, all the other
children are resumed, restarted, or stopped.

Recall our minimalistic web browser implementation from Chapter 6, Concurrent
Programming with Reactive Extensions. A more advanced web browser requires a
separate subsystem that handles concurrent file downloads. Usually, we refer to such
a software component as a download manager. We now consider a larger example,
in which we apply our knowledge of actors in order to implement the infrastructure
for a simple download manager.

Chapter 8

[279]

The download manager will be implemented as an actor, represented by the
DownloadManager actor class. The two most important tasks of every download
manager are to download the resources at the requested URL, and to track the
downloads that are currently in progress. To be able to react to download requests
and download completion events, we define the message types Download and
Finished in the DownloadManager companion object. The Download message
encapsulates the URL of the resource and the destination file for the resource, while
the Finished message encodes the destination file where the resource is saved:

object DownloadManager {
 case class Download(url: String, dest: String)
 case class Finished(dest: String)
}

The DownloadManager actor will not execute the downloads itself. Doing so
would prevent it from receiving any messages before the download completes.
Furthermore, this will serialize different downloads and prevent them from
executing concurrently. Thus, the DownloadManager actor must delegate the task
of downloading the files to different actors. We represent these actors with the
Downloader actor class. A DownloadManager actor maintains a set of Downloader
children, and tracks which children are currently downloading a resource. When a
DownloadManager actor receives a Download message, it picks one of the non-busy
Downloader actors, and forwards the Download message to it. Once the download
is complete, the Downloader actor sends a Finished message to its parent. This is
illustrated in the following figure:

Actors

[280]

We first show the implementation of the Downloader actor class. When a Downloader
actor receives a Download message, it downloads the contents of the specified URL,
and writes them to a destination file. It then sends the Finished message back to the
sender of the Download message, as shown in the following implementation:

class Downloader extends Actor {
 def receive = {
 case DownloadManager.Download(url, dest) =>
 val content = Source.fromURL(url)
 FileUtils.write(new java.io.File(dest), content.mkString)
 sender ! DownloadManager.Finished(dest)
 }
}

The DownloadManager actor class needs to maintain state to track which of its
Downloader actors is currently downloading a resource. If there are more download
requests than there are available Downloader instances, the DownloadManager actor
needs to enqueue the download requests until some Downloader actor becomes
available. The DownloadManager actor maintains a downloaders queue with actor
references to non-busy Downloader actors. It maintains another queue pendingWork
with Download requests that cannot be assigned to any Downloader instances.
Finally, it maintains a map called workItems that associates actor references of
the busy Downloader instances with their Download requests. This is shown in the
following DownloadManager implementation:

class DownloadManager(val downloadSlots: Int) extends Actor {
 import DownloadManager._
 val log = Logging(context.system, this)
 val downloaders = mutable.Queue[ActorRef]()
 val pendingWork = mutable.Queue[Download]()
 val workItems = mutable.Map[ActorRef, Download]()
 private def checkDownloads(): Unit = {
 if (pendingWork.nonEmpty && downloaders.nonEmpty) {
 val dl = downloaders.dequeue()
 val item = pendingWork.dequeue()
 log.info(
 s"$item starts, ${downloaders.size} download slots left")
 dl ! item
 workItems(dl) = item
 }
 }
 def receive = {
 case msg @ DownloadManager.Download(url, dest) =>
 pendingWork.enqueue(msg)
 checkDownloads()
 case DownloadManager.Finished(dest) =>

Chapter 8

[281]

 workItems.remove(sender)
 downloaders.enqueue(sender)
 log.info(
 s"'$dest' done, ${downloaders.size} download slots left")
 checkDownloads()
 }
}

The checkDownloads private method maintains the DownloadManager actor's
invariant: the pendingWork and the downloaders queue cannot be non-empty
at the same time. As soon as both the queues become non-empty, a Downloader
actor reference dl is dequeued from downloaders and a Download request item is
dequeued from pendingWork. The item is then sent as a message to the dl actor,
and the workItems map is updated.

Whenever the DownloadManager actor receives a Download message, it adds it to
pendingWork and calls checkDownloads. Similarly, when a Finished message
arrives, the Downloader actor is removed from workItems and enqueued on the
downloaders list.

To ensure that the DownloadManager actor is created with the specified number
of Downloader child actors, we override the preStart method to create the
Downloaders and add their actor references to the downloaders queue:

override def preStart(): Unit = {
 for (i <- 0 until downloadSlots) {
 val dl = context.actorOf(Props[Downloader], s"dl$i")
 downloaders.enqueue()
 }
}

Finally, we must override the supervisorStrategy field of the DownloadManager
actor. We use the OneForOneStrategy field again, but specify that the actor can be
restarted or resumed only up to 20 times within a 2-second interval.

We expect that some URLs might be invalid; in which case, the actor fails with a
FileNotFoundException. We need to remove such an actor from the workItems
collection and add it back to the downloaders queue. It does not make sense to
restart the Downloader actors, because they do not contain any state. Instead of
restarting, we simply resume a Downloader actor that cannot resolve a URL. If the
Downloader instances fail due to any other messages, we escalate the exception and
fail the DownloadManager actor, as shown in the following supervisorStrategy
implementation:

override val supervisorStrategy =
 OneForOneStrategy(
 maxNrOfRetries = 20, withinTimeRange = 2 seconds

Actors

[282]

) {
 case fnf: java.io.FileNotFoundException =>
 log.info(s"Resource could not be found: $fnf")
 workItems.remove(sender)
 downloaders.enqueue(sender)
 Resume // ignores the exception and resumes the actor
 case _ =>
 Escalate
 }

To test the download manager, we create a DownloadManager actor with four
download slots, and send it several Download messages:

 val downloadManager =
 ourSystem.actorOf(Props(classOf[DownloadManager], 4), "man")
 downloadManager ! Download(
 "http://www.w3.org/Addressing/URL/url-spec.txt",
 "url-spec.txt")

An extra copy of the URL specification cannot hurt, so we download it to our
computer. The download manager logs that there are only three download slots
left. Once the download completes, the download manager logs that there are four
remaining download slots again. We then decide that we would like to contribute to
the Scala programming language, so we download the README file from the official
Scala repository. Unfortunately, we enter an invalid URL, and observe a warning
from the download manager, saying that the resource cannot be found:

downloadManager ! Download(
 "https://github.com/scala/scala/blob/master/README.md",
 "README.md")

The simple implementation of the basic actor-based download manager illustrates
both how to achieve concurrency by delegating work to child actors, and how to
treat failures in child actors. Delegating work is important both for decomposing the
program into smaller, isolated components, and to achieve better throughput and
scalability. Actor supervision is the fundamental mechanism for handling failures
in isolated components that is implemented in separate actors.

Remote actors
So far in this book, we have mostly concentrated on writing programs on a single
computer. Concurrent programs are executed within a single process on one
computer, and they communicate using shared memory. Seemingly, actors described
in this chapter communicate by passing messages. However, the message passing
used throughout this chapter is implemented by reading and writing to shared
memory under the hood.

Chapter 8

[283]

In this section, we study how the actor model ensures location transparency by
taking existing actors and deploying them in a distributed program. We take
two existing actor implementations, namely, Pingy and Pongy, and deploy them
inside different processes. We will then instruct Pingy to send a message to Pongy,
as before, and wait until Pingy returns the Pongy actor's message. The message
exchange will occur transparently, although Pingy and Pongy were previously
implemented without knowing that they might exist inside separate processes,
or even different computers.

The Akka actor framework is organized into several modules. To use the part of
Akka that allows communicating with actors in remote actor systems, we need
to add the following dependency to our build definition file:

libraryDependencies +=
 "com.typesafe.akka" %% "akka-remote" % "2.3.2"

Before creating our ping-pong actors inside two different processes, we need to
create an actor system that is capable of communicating with remote actors. To
do this, we create a custom actor system configuration string. The actor system
configuration string can be used to configure a range of different actor system
properties; we are interested in using a custom ActorRef factory object called
RemoteActorRefProvider. This ActorRef factory object allows the actor system
to create actor references that can be used to communicate over the network.
Furthermore, we configure the actor system to use the Netty networking library
with the TCP network layer and the desired TCP port number. We declare the
remotingConfig method for this task:

import com.typesafe.config._
def remotingConfig(port: Int) = ConfigFactory.parseString(s"""
akka {
 actor.provider = "akka.remote.RemoteActorRefProvider"
 remote {
 enabled-transports = ["akka.remote.netty.tcp"]
 netty.tcp {
 hostname = "127.0.0.1"
 port = $port
 }
 }
}
""")

Actors

[284]

We then define a remotingSystem factory method that creates an actor system object
using the given name and port. We use the remotingConfig method, defined earlier,
to produce the configuration object for the specified network port:

def remotingSystem(name: String, port: Int): ActorSystem =
 ActorSystem(name, remotingConfig(port))

Now, we are ready to create the Pongy actor system. We declare an application called
RemotingPongySystem, which instantiates an actor system called PongyDimension
using the network port 24321. We arbitrarily picked a network port that was free on
our machine. If the creation of the actor system fails because the port is not available,
you can pick a different port in the range from 1024 to 65535. Make sure that you don't
have a firewall running, as it can block the network traffic for arbitrary applications.

The RemotingPongySystem application is shown in the following example:

object RemotingPongySystem extends App {
 val system = remotingSystem("PongyDimension", 24321)
 val pongy = system.actorOf(Props[Pongy], "pongy")
 Thread.sleep(15000)
 system.shutdown()
}

The RemotingPongySystem application creates a Pongy actor and shuts down
after 15 seconds. After we start it, we will only have a short period of time to start
another application running the Pingy actor. We will call this second application
RemotingPingySystem. Before we implement it, we create another actor called
Runner, which will instantiate Pingy, obtain the Pongy actor's reference, and give
it to Pingy; recall that the Ping Pong game from the earlier section starts when
Pingy obtains the Pongy actor's reference.

When the Runner actor receives a start message, it constructs the actor path for
Pongy. We use the akka.tcp protocol and the name of the remote actor system,
along with its IP address and port number. The Runner actor sends an Identify
message to the actor selection in order to obtain the actor reference to the remote
Pongy instance. The complete Runner implementation is shown in the following
code snippet:

class Runner extends Actor {
 val log = Logging(context.system, this)
 val pingy = context.actorOf(Props[Pingy], "pingy")
 def receive = {
 case "start" =>
 val pongySys = "akka.tcp://PongyDimension@127.0.0.1:24321"

Chapter 8

[285]

 val pongyPath = "/user/pongy"
 val url = pongySys + pongyPath
 val selection = context.actorSelection(url)
 selection ! Identify(0)
 case ActorIdentity(0, Some(ref)) =>
 pingy ! ref
 case ActorIdentity(0, None) =>
 log.info("Something's wrong – ain't no pongy anywhere!")
 context.stop(self)
 case "pong" =>
 log.info("got a pong from another dimension.")
 context.stop(self)
 }
}

Once the Runner actor sends the Pongy actor reference to Pingy, the game of remote
ping pong can begin. To test it, we declare the RemotingPingySystem application,
which starts the Runner actor and sends it a start message:

object RemotingPingySystem extends App {
 val system = remotingSystem("PingyDimension", 24567)
 val runner = system.actorOf(Props[Runner], "runner")
 runner ! "start"
 Thread.sleep(5000)
 system.shutdown()
}

We now need to start the RemotingPongySystem application, and the
RemotingPingySystem application after that; we only have 15 seconds until the
RemotingPongySystem application shuts itself down. The easiest way to do this is
to start two SBT instances in your project folder, and run the two applications at the
same time. After the RemotingPingySystem application starts, we soon observe a
pong message from another dimension.

In the previous example, the actor system configuration and the Runner actor were
responsible for setting up the network communication, and were not location-
transparent. This is typically the case with distributed programs; a part of the
program is responsible for initializing and discovering actors within remote actor
systems, while the application-specific logic is confined within separate actors.

Separate deployment logic from application logic in larger
actor programs.

Actors

[286]

To summarize, remote actor communication requires the following steps:

•	 Declaring an actor system with an appropriate remoting configuration
•	 Starting two actor systems in separate processes or on separate machines
•	 Using actor path selection to obtain actor references
•	 Using actor references to transparently send messages

While the first three steps are not location-transparent, the application logic is
usually confined within the fourth step, as we saw in this section. This is important,
as it allows separating the deployment logic from the application semantics,
and building distributed systems that can be deployed transparently to different
network configurations.

Summary
In this chapter, we learned what actors are and how to use them to build concurrent
programs. Using the Akka actor framework, we studied how to create actors,
organize them into hierarchies, manage their life cycle, and recover them from
errors. We examined important patterns in actor communication and learned how
to model actor behavior. Finally, we saw how the actor model can ensure location
transparency, and serve as a powerful tool to seamlessly build distributed systems.

Still, there are many Akka features that we omitted in this chapter. Akka
comes with a detailed online documentation, which is one of the best sources
of information on Akka. To obtain an in-depth understanding of distributed
programming, we recommend the books Distributed Algorithms, Nancy A. Lynch,
Elsevier and Introduction to Reliable and Secure Distributed Programming, Christian
Cachin, Rachid Guerraoui, Luis Rodrigues, Springer.

In the next chapter, we will summarize the different concurrency libraries we
learned about in this book, examine the typical use cases for each of them, and
see how they work together in larger applications.

Chapter 8

[287]

Exercises
The following exercises test your understanding of the actor programming model,
and distributed programming in general. First few exercises are straightforward,
and deal with the basics of the actor API in Akka. Subsequent exercises are more
involved, and go deeper into the territory of fault-tolerant distributed programming.
Try to solve these exercises by first assuming that no machines fail, and then consider
what happens if some of the machines fail during the execution of the program.

1.	 Implement the timer actor with the TimerActor class. After receiving
a Register message containing the t timeout in milliseconds, the timer
actor sends a Timeout message back after t milliseconds. The timer must
accept multiple Register messages.

2.	 Recall the bank account example from Chapter 2, Concurrency on the JVM
and the Java Memory Model. Implement different bank accounts as separate
actors, represented with the AccountActor class. When an AccountActor
class receives a Send message, it must transfer the specified amount of money
to the target actor. What will happen if either of the actors receives a Kill
message at any point during the money transaction?

3.	 Implement the SessionActor class, for actors that control access to
other actors:
class SessionActor(password: String, r: ActorRef) extends Actor {
 def receive = ???
}

After the SessionActor instance receives the StartSession message with
the correct password, it forwards all the messages to the actor reference r,
until it receives the EndSession message. Use behaviors to model this actor.

4.	 Use actors to implement the ExecutionContext interface, described in
Chapter 3, Traditional Building Blocks of Concurrency.

5.	 Implement the FailureDetector actor, which sends Identify messages
to the specified actors every interval seconds. If an actor does not
reply with any ActorIdentity messages within threshold seconds, the
FailureDetector actor sends a Failed message to its parent actor, which
contains the actor reference of the failed actor.

Actors

[288]

6.	 A distributed hash map is a collection distributed across multiple computers,
each of which contains part of the data, called a shard. When there are 2^n
shards, the first n bits of the hash code of the key are used to decide which
shard a key-value pair should go to. Implement the distributed hash map
with the DistributedMap class:
class DistributedMap[K, V](shards: ActorRef*) {
 def update(key: K, value: V): Future[Unit] = ???
 def get(key: K): Future[Option[V]] = ???
}

The DistributedMap class takes a list of actor references to the ShardActor
instances, whose actor template you also need to implement. You might
assume that the length of the shards list is a power of two. The update and
get methods are asynchronous, and return the result in a future object.

7.	 Implement an abstract BroadcastActor class, which defines the
broadcast method:
def broadcast(refs: ActorRef*)(msg: Any): Unit = ???

The broadcast method sends the msg message to all the actors specified in
the refs list. The actor invoking the broadcast method might, for reasons
such as power loss, fail at any point during the execution of the broadcast
method. Nevertheless, the broadcast method must have reliable delivery:
if at least one actor from the refs list receives the msg message, then all the
actors from the refs list must eventually receive msg.

Concurrency in Practice
"The best theory is inspired by practice."

 -Donald Knuth

We have studied a plethora of different concurrency facilities in this book. By
now, you will have learned about dozens of different ways of starting concurrent
computations and accessing shared data. Knowing how to use different styles of
concurrency is useful, but it might not yet be obvious when to use which.

The goal of this final chapter is to introduce the big picture of concurrent
programming. We will study the use cases for various concurrency abstractions,
see how to debug concurrent programs, and how to integrate different concurrency
libraries in larger applications. In this chapter, we perform the following tasks:

•	 Summarize the characteristics and typical uses of different concurrency
frameworks introduced in the earlier chapters

•	 Investigate how to deal with various kinds of bugs appearing in
concurrent applications

•	 Learn how to identify and resolve performance bottlenecks
•	 Apply the previous knowledge about concurrency to implement a larger

concurrent application, namely, a remote file browser

We start with an overview of the important concurrency frameworks that we learned
about in this book, and a summary of when to use each of them.

Concurrency in Practice

[290]

Choosing the right tools for the job
In this section, we present an overview of the different concurrency libraries that
we learned about. We take a step back and look at the differences between these
libraries, and what they have in common. This summary will give us an insight
into what different concurrency abstractions are useful for.

A concurrency framework usually needs to address several concerns:

•	 It must provide a way to declare data that is shared between concurrent
executions

•	 It must provide constructs for reading and modifying program data
•	 It must be able to express conditional execution, triggered when a certain

set of conditions are fulfilled
•	 It must define a way to start concurrent executions

Some of the frameworks from this book address all of these concerns; others address
only a subset, and transfer part of the responsibility to another framework.

Typically, in a concurrent programming model, we express concurrently shared data
differently from data intended to be accessed only from a single thread. This allows
the JVM runtime to optimize sequential parts of the program more effectively. So far,
we've seen a lot of different ways to express concurrently shared data, ranging from
the low-level facilities to advanced high-level abstractions. We summarize different
data abstractions in the following table:

Data abstraction Datatype or annotation Description
Volatile variables
(JDK)

@volatile Ensure visibility and the happens-before
relationship on class fields and local
variables that are captured in closures.

Atomic variables
(JDK)

AtomicReference[T]

AtomicInteger

AtomicLong

Provide basic composite atomic
operations, such as compareAndSet
and incrementAndGet.

Futures and
promises
(scala.
concurrent)

Future[T]

Promise[T]

Sometimes called single-assignment
variables, these express values that
might not be computed yet, but will
eventually become available.

Chapter 9

[291]

Data abstraction Datatype or annotation Description
Observables and
subjects
(Rx)

Observable[T]

Subject[T]

Also known as first-class event streams,
these describe many different values
that arrive one after another in time.

Transactional
references
(ScalaSTM)

Ref[T] These describe memory locations
that can only be accessed from
within memory transactions. Their
modifications only become visible after
the transaction successfully commits.

The next important concern is providing access to shared data, which includes
reading and modifying shared memory locations. Usually, a concurrent program
uses special constructs to express such accesses. We summarize the different data
access constructs in the following table:

Data abstraction Data access constructs Description
Arbitrary data
(JDK)

synchronized Uses intrinsic object locks to exclude access
to arbitrary shared data.

Atomic variables
and classes
(JDK)

compareAndSet Atomically exchanges the value of a single
memory location. It allows implementing
lock-free programs.

Futures and
promises
(scala.
concurrent)

value

tryComplete

Used to assign a value to a promise, or to
check the value of the corresponding future.
The value method is not a preferred way to
interact with a future.

Transactional
references and
classes
(Scala STM)

atomic

orAtomic

single

Atomically modify the values of a set of
memory locations. Reduces the risk of
deadlocks, but disallow side effects inside
the transactional block.

Concurrency in Practice

[292]

Concurrent data access is not the only concern of a concurrency framework. As we
have learned in the earlier chapters, concurrent computations sometimes need to
proceed only after a certain condition is met. In the following table, we summarize
different constructs that enable this:

Concurrency
framework

Conditional
execution constructs

Description

JVM
concurrency

wait

notify

notifyAll

Used to suspend the execution of a thread
until some other thread notifies that the
conditions are met.

Futures and
promises

onComplete

Await.ready

Conditionally schedules an asynchronous
computation. The Await.ready method
suspends the thread until the future
completes.

Reactive
extensions

subscribe Asynchronously or synchronously executes a
computation when an event arrives.

Software
transactional
memory

retry

retryFor

withRetryTimeout

Retries the current memory transaction
when some of the relevant memory locations
change.

Actors receive Executes the actor's receive block when a
message arrives.

Finally, a concurrency model must define a way to start a concurrent execution. We
summarize different concurrency constructs in the following table:

Concurrency
framework

Concurrency
constructs

Description

JVM concurrency Thread.start Starts a new thread of execution.
Execution
contexts

execute Schedules a block of code for execution on a
thread pool.

Futures and
promises

Future.apply Schedules a block of code for execution, and
returns the future value with the result of the
execution.

Parallel
collections

par Allows invoking data-parallel versions of
collection methods.

Reactive
extensions

Observable.
create

observeOn

The create method defines an event source.
The observeOn method schedules the handling
of events on different threads.

Actors actorOf Schedules a new actor object for execution.

Chapter 9

[293]

This breakdown shows us that different concurrency libraries focus on different
tasks. For example, parallel collections do not have conditional waiting constructs,
because a data-parallel operation proceeds on separate elements independently.
Similarly, software transactional memory does not come with a construct to express
concurrent computations, and focuses only on protecting access to shared data.
Actors do not have special constructs for modeling shared data and protecting access
to it, because data is encapsulated within separate actors and accessed serially only
by the actor that owns it.

Having classified concurrency libraries according to how they model shared data
and express concurrency, we present a summary of what different concurrency
libraries are good for:

•	 The classical JVM concurrency model uses threads, the synchronized
statement, volatile variables, and atomic primitives for low-level tasks.
Uses include implementing a custom concurrency utility, a concurrent
data structure, or a concurrency framework optimized for specific tasks.

•	 Futures and promises are best suited for referring to concurrent
computations that produce a single result value. Futures model latency in
the program, and allow composing values that become available later during
the execution of the program. Uses include performing remote network
requests and waiting for replies, referring to the result of an asynchronous
long-running computation, or reacting to the completion of an I/O operation.
Futures are usually the glue of a concurrent application, binding the different
parts of a concurrent program together. We often use futures to convert
single-event callback APIs into a standardized representation based on the
Future type.

•	 Parallel collections are best suited for efficiently executing data-parallel
operations on large datasets. Uses include file searching, text processing,
linear algebra applications, numerical computations, and simulations.
Long-running Scala collection operations are usually good candidates
for parallelization.

•	 Reactive extensions are used to express asynchronous event-based programs.
Unlike parallel collections, in reactive extensions, data elements are not
available when the operation starts, but arrive while the application is
running. Uses include converting callback-based APIs, modeling events in
user interfaces, modeling events external to the application, manipulating
program events with collection-style combinators, streaming data from input
devices or remote locations, or incrementally propagating changes in the data
model throughout the program.

Concurrency in Practice

[294]

•	 Use STM to protect program data from getting corrupted by concurrent
accesses. An STM allows building complex data models and accessing them
with the reduced risk of deadlocks and race conditions. A typical use is
to protect concurrently accessible data, while retaining good scalability
between threads whose accesses to data do not overlap.

•	 Actors are suitable for encapsulating concurrently accessible data, and
seamlessly building distributed systems. Actor frameworks provide a natural
way to express concurrent tasks that communicate by explicitly sending
messages. Uses include serializing concurrent access to data to prevent
corruption, expressing stateful concurrency units in the system, and building
distributed applications like trading systems, P2P networks, communication
hubs, or data mining frameworks.

Advocates of specific programming languages, libraries, or frameworks might try to
convince you that their technology is the best for any task and any situation, often
with the intent of selling it. Richard Stallman once said how computer science is the
only industry more fashion-driven than women's fashion. As engineers, we need to
know better than to succumb to programming fashion and marketing propaganda.
Different frameworks are tailored towards specific use cases, and the correct way
to choose a technology is to carefully weigh its advantages and disadvantages when
applied to a specific situation.

There is no one-size-fits-all technology. Use your own best judgment
when deciding which concurrency framework to use for a specific
programming task.

Sometimes, choosing the best-suited concurrency utility is easier said than done.
It takes a great deal of experience to choose the correct technology. In many cases,
we do not even know enough about the requirements of the system to make an
informed decision. Regardless, a good rule of thumb is to apply several concurrency
frameworks to different parts of the same application, each best suited for a specific
task. Often, the real power of different concurrency frameworks becomes apparent
when they are used together. This is the topic of the next section.

Putting it all together – a remote
file browser
In this section, we use our knowledge about different concurrency frameworks to
build a remote file browser. This larger application example illustrates how different
concurrency libraries work together, and how to apply them to different situations.
We will name our remote file browser ScalaFTP.

Chapter 9

[295]

The ScalaFTP browser is divided into two main components: the server and the
client process. The server process will run on the machine whose filesystem we want
to manipulate. The client will run on our own computer, and comprise of a graphical
user interface used to navigate the remote filesystem. To keep things simple, the
protocol that the client and the server will use to communicate will not really be FTP,
but a custom communication protocol. By choosing the correct concurrency libraries
to implement different parts of ScalaFTP, we will ensure that the complete ScalaFTP
implementation fits inside just 500 lines of code.

Specifically, the ScalaFTP browser will implement the following features:

•	 Displaying the names of the files and the directories in a remote filesystem,
and allow navigating through the directory structure

•	 Copying files between directories in a remote filesystem
•	 Deleting files in a remote filesystem

To implement separate pieces of this functionality, we will divide the ScalaFTP
server and client programs into layers. The task of the server program is to answer
to incoming copy and delete requests, and to answer queries about the contents of
specific directories. To make sure that its view of the filesystem is consistent, the
server will cache the directory structure of the filesystem. We divide the server
program into two layers: the filesystem API and the server interface. The filesystem
API will expose the data model of the server program, and define useful utility
methods to manipulate the filesystem. The server interface will receive requests
and send responses back to the client.

Since the server interface will require communicating with the remote client, we
decide to use the Akka actor framework. Akka comes with remote communication
facilities, as we learned in Chapter 8, Actors. The contents of the filesystem, that
is, its state, will change over time. We are therefore interested in choosing proper
constructs for data access.

In the filesystem API, we can use object monitors and locking to synchronize access
to shared state, but we will avoid these due to the risk of deadlocks. We similarly
avoid using atomic variables, because they are prone to race conditions. We could
encapsulate the filesystem state within an actor, but note that this can lead to a
scalability bottleneck: an actor would serialize all accesses to the filesystem state.
Therefore, we decide to use the ScalaSTM framework to model the filesystem
contents. An STM avoids the risk of deadlocks and race conditions, and ensures
good horizontal scalability, as we learned in Chapter 7, Software Transactional Memory.

Concurrency in Practice

[296]

The task of the client program will be to graphically present the contents of
the remote filesystem, and communicate with the server. We divide the client
program into three layers of functionality. The GUI layer will render the contents
of the remote filesystem and register user requests, such as button clicks. We will
implement the GUI using the Swing and Rx frameworks, similarly to how we
implemented the web browser in Chapter 6, Concurrent Programming with Reactive
Extensions. The client API will replicate the server interface on the client side and
communicate with the server. We will use Akka to communicate with the server, but
expose the results of remote operations as futures. Finally, the client logic will be a
gluing layer, which binds the GUI and the client API together.

The architecture of the ScalaFTP browser is illustrated in the following diagram, in
which we indicate which concurrency libraries will be used by separate layers. The
dashed line represents the communication path between the client and the server:

We now start by implementing the ScalaFTP server, relying on the bottom-up design
approach. In the next section, we will describe the internals of the filesystem API.

Modeling the filesystem
In Chapter 3, Traditional Building Blocks of Concurrency, we used atomic variables
and concurrent collections to implement a non-blocking, thread-safe filesystem
API, which allowed copying files and retrieving snapshots of the filesystem. In this
section, we repeat this task using STM. We will see that it is much more intuitive
and less error-prone to use an STM.

We start by defining the different states that a file can be in. As in Chapter 3,
Traditional Building Blocks of Concurrency, the file can be currently created, in the idle
state, being copied, or being deleted. We model this with a sealed State trait, and
its four cases:

sealed trait State
case object Created extends State
case object Idle extends State
case class Copying(n: Int) extends State
case object Deleted extends State

Chapter 9

[297]

A file can only be deleted if it is in the idle state, and it can only be copied if it is in
the idle state or in the copied state. Since a file can be copied to multiple destinations
at a time, the Copying state encodes how many copies are currently under way. We
add the methods inc and dec to the State trait, which return a new state with one
more or one fewer copy, respectively. For example, the implementation of inc and
dec for the Copying state is as follows:

def inc: State = Copying(n + 1)
def dec: State = if (n > 1) Copying(n - 1) else Idle

Similar to the File class in the java.io package, we represent both the files and
directories with the same entity, and refer to them more generally as files. Each
file is represented by the FileInfo class that encodes the path, its name, its parent
directory, and the date of the last modification to the file, a Boolean value denoting
if the file is a directory, the size of the file, and its State object. The FileInfo
class is immutable, and updating the state of the file will require creating a fresh
FileInfo object:

case class FileInfo(path: String, name: String,
 parent: String, modified: String, isDir: Boolean,
 size: Long, state: State)

We separately define the factory methods apply and creating that take a File
object and return a FileInfo object in the Idle or Created state, respectively.

Depending on where the server is started, the root of the ScalaFTP directory structure
is a different subdirectory in the actual filesystem. A FileSystem object tracks the files
in the given rootpath directory, using a transactional map called files:

class FileSystem(val rootpath: String) {
 val files = TMap[String, FileInfo]()
}

We introduce a separate init method to initialize the FileSystem object. The init
method starts a transaction, clears the contents of the files map, and traverses the
files and directories under rootpath using the Apache Commons IO library. For
each file and directory, the init method creates a FileInfo object and adds it
to the files map, using its path as the key:

def init() = atomic { implicit txn =>
 files.clear()
 val rootDir = new File(rootpath)
 val all = TrueFileFilter.INSTANCE
 val fileIterator =
 FileUtils.iterateFilesAndDirs(rootDir, all, all).asScala
 for (file <- fileIterator) {

Concurrency in Practice

[298]

 val info = FileInfo(file)
 files(info.path) = info
 }
}

Recall that the ScalaFTP browser must display the contents of the remote
filesystem. To enable directory queries, we first add the getFileList method to
the FileSystem class, which retrieves the files in the specified dir directory. The
getFileList method starts a transaction and filters the files whose direct parent
is equal to dir:

def getFileList(dir: String): Map[String, FileInfo] =
 atomic { implicit txn =>
 files.filter(_._2.parent == dir)
 }

We implement the copying logic in the filesystem API with the copyFile method.
This method takes a path to the src source file and the dest destination file, and
starts a transaction. After checking whether the dest destination file exists or not,
the copyFile method inspects the state of the source file entry, and fails unless the
state is Idle or Copying. It then calls inc to create a new state with the increased
copy count, and updates the source file entry in the files map with the new state.
Similarly, the copyFile method creates a new entry for the destination file in
the files map. Finally, the copyFile method calls the afterCommit handler to
physically copy the file to disk after the transaction completes. Recall that it is
not legal to execute side-effecting operations from within the transaction body,
so the private copyOnDisk method is called only after the transaction commits:

def copyFile(src: String, dest: String) = atomic { implicit txn =>
 val srcfile = new File(src)
 val destfile = new File(dest)
 val info = files(src)
 if (files.contains(dest)) sys.error(s"Destination exists.")
 info.state match {
 case Idle | Copying(_) =>
 files(src) = info.copy(state = info.state.inc)
 files(dest) = FileInfo.creating(destfile, info.size)
 Txn.afterCommit { _ => copyOnDisk(srcfile, destfile) }
 src
 }
}

Chapter 9

[299]

The copyOnDisk method calls the copyFile method on the FileUtils class from
the Apache Commons IO library. After the file transfer completes, the copyOnDisk
method starts another transaction, in which it decreases the copy count of the source
file and sets the state of the destination file to Idle:

private def copyOnDisk(srcfile: File, destfile: File) = {
 FileUtils.copyFile(srcfile, destfile)
 atomic { implicit txn =>
 val ninfo = files(srcfile.getPath)
 files(srcfile.getPath) = ninfo.copy(state = ninfo.state.dec)
 files(destfile.getPath) = FileInfo(destfile)
 }
}

The deleteFile method deletes a file in a similar way. It changes the file state to
Deleted, deletes the file, and starts another transaction to remove the file entry:

def deleteFile(srcpath: String): String = atomic { implicit txn =>
 val info = files(srcpath)
 info.state match {
 case Idle =>
 files(srcpath) = info.copy(state = Deleted)
 Txn.afterCommit { _ =>
 FileUtils.forceDelete(info.toFile)
 files.single.remove(srcpath)
 }
 srcpath
 }
}

Modeling the server data model with the STM allows seamlessly adding different
concurrent computations to the server program. In the next section, we will
implement a server actor that uses the server API to execute filesystem operations.

Use STM to model concurrently accessible data, as an STM works
transparently with most concurrency frameworks.

Having completed the filesystem API, we now proceed to the server interface layer
of the ScalaFTP browser.

Concurrency in Practice

[300]

The server interface
The server interface comprises of a single actor called FTPServerActor. This actor
will receive client requests and respond to them serially. If it turns out that the server
actor is the sequential bottleneck of the system, we can simply add additional server
interface actors to improve horizontal scalability.

We start by defining the different types of messages that the server actor can receive.
We follow the convention of defining them inside the companion object of the
FTPServerActor class:

object FTPServerActor {
 sealed trait Command
 case class GetFileList(dir: String) extends Command
 case class CopyFile(src: String, dest: String) extends Command
 case class DeleteFile(path: String) extends Command
 def apply(fs: FileSystem) = Props(classOf[FTPServerActor], fs)
}

The actor template of the server actor takes a FileSystem object as a parameter.
It reacts to the GetFileList, CopyFile, and DeleteFile messages by calling the
appropriate methods from the filesystem API:

class FTPServerActor(fileSystem: FileSystem) extends Actor {
 val log = Logging(context.system, this)
 def receive = {
 case GetFileList(dir) =>
 val filesMap = fileSystem.getFileList(dir)
 val files = filesMap.map(_._2).to[Seq]
 sender ! files
 case CopyFile(srcpath, destpath) =>
 Future {
 Try(fileSystem.copyFile(srcpath, destpath))
 } pipeTo sender
 case DeleteFile(path) =>
 Future {
 Try(fileSystem.deleteFile(path))
 } pipeTo sender
 }
}

When the server receives a GetFileList message, it calls the getFileList method
with the specified dir directory, and sends a sequence collection with the FileInfo
objects back to the client. Since FileInfo is a case class, it extends the Serializable
interface, and its instances can be sent over the network.

Chapter 9

[301]

When the server receives a CopyFile or DeleteFile message, it calls the appropriate
filesystem method asynchronously. The methods in the filesystem API throw
exceptions when something goes wrong, so we need to wrap calls to them in Try
objects. After the asynchronous file operations complete, the resulting Try objects
are piped back as messages to the sender actor, using the Akka pipeTo method.

To start the ScalaFTP server, we need to instantiate and initialize a FileSystem object,
and start the server actor. We parse the network port command-line argument, and
use it to create an actor system that is capable of remote communication. For this, we
use the remotingSystem factory method that we introduced in Chapter 8, Actors. The
remoting actor system then creates an instance of the FTPServerActor. This is shown
in the following program:

object FTPServer extends App {
 val fileSystem = new FileSystem(".")
 fileSystem.init()
 val port = args(0).toInt
 val actorSystem = ch8.remotingSystem("FTPServerSystem", port)
 actorSystem.actorOf(FTPServerActor(fileSystem), "server")
}

The ScalaFTP server actor can run inside the same process as the client application,
in another process in the same machine, or on a different machine connected with a
network. The advantage of the actor model is that we usually need not worry about
where the actor runs until we integrate it into the entire application.

When you need to implement a distributed application that runs
on different machines, use an actor framework.

Our server program is now complete, and we can run it with the run command from
SBT. We set the actor system to use the port 12345:

run 12345

In the next section, we will implement the file navigation API for the ScalaFTP client,
which will communicate with the server interface over the network.

Client navigation API
The client API exposes the server interfaces to the client program through
asynchronous methods that return future objects. Unlike the server's filesystem API,
which runs locally, the client API methods execute remote network requests. Futures
are a natural way to model latency in the client API methods, and to avoid blocking
during the network requests.

Concurrency in Practice

[302]

Internally, the client API maintains an actor instance that communicates with the
server actor. The client actor does not know the actor reference of the server actor
when it is created. For this reason, the client actor starts in an unconnected state.
When it receives the Start message with the URL of the server actor system, the
client constructs an actor path to the server actor, sends out an Identify message,
and switches to the connecting state. If the actor system is able to find the server
actor, the client actor eventually receives the ActorIdentity message with the
server actor reference. In this case, the client actor switches to the connected state,
and is able to forward commands to the server. Otherwise, the connection fails and
the client actor reverts to the unconnected state. The state diagram of the client actor
is shown in the following figure:

We define the Start message in the client actor's companion object:

object FTPClientActor {
 case class Start(host: String)
}

We then define the FTPClientActor class and give it an implicit Timeout parameter.
The Timeout parameter will be used later in the Akka ask pattern, when forwarding
client requests to the server actor. The stub of the FTPClientActor class is as follows:

class FTPClientActor(implicit val timeout: Timeout)
extends Actor

Before defining the receive method, we define behaviors corresponding to different
actor states. Once the client actor in the unconnected state receives the Start
message with the host string, it constructs an actor path to the server, and creates an
actor selection object. The client actor then sends the Identify message to the actor
selection, and switches its behavior to connecting. This is shown in the following
behavior method, named unconnected:

def unconnected: Actor.Receive = {
 case Start(host) =>
 val serverActorPath =
 s"akka.tcp://FTPServerSystem@$host/user/server"

Chapter 9

[303]

 val serverActorSel = context.actorSelection(serverActorPath)
 serverActorSel ! Identify(())
 context.become(connecting(sender))
}

The connecting method creates a behavior given an actor reference to the sender
of the Start message. We call this actor reference clientApp, because the ScalaFTP
client application will send the Start message to the client actor. Once the client
actor receives an ActorIdentity message with the ref reference to the server actor,
it can send true back to the clientApp reference, indicating that the connection
was successful. In this case, the client actor switches to the connected behavior.
Otherwise, if the client actor receives an ActorIdentity message without the server
reference, the client actor sends false back to the application, and reverts to the
unconnected state:

def connecting(clientApp: ActorRef): Actor.Receive = {
 case ActorIdentity(_, Some(ref)) =>
 clientApp ! true
 context.become(connected(ref))
 case ActorIdentity(_, None) =>
 clientApp ! false
 context.become(unconnected)
}

The connected state uses the serverActor server actor reference to forward the
Command messages. To do so, the client actor uses the Akka ask pattern, which
returns a future object with the server's response. The contents of the future are
piped back to the original sender of the Command message. In this way, the client
actor serves as an intermediary between the application, which is the sender, and
the server actor. The connected method is shown in the following code snippet:

def connected(serverActor: ActorRef): Actor.Receive = {
 case command: Command =>
 (serverActor ? command).pipeTo(sender)
}

Finally, the receive method returns the unconnected behavior, in which the client
actor is created:

def receive = unconnected

Concurrency in Practice

[304]

Having implemented the client actor, we can proceed to the client API layer. We
model it as a trait with a connected value, the concrete methods getFileList,
copyFile, and deleteFile, and an abstract host method. The client API creates a
private remoting actor system and a client actor. It then instantiates the connected
future that computes the connection status by sending a Start message to the client
actor. The methods getFileList, copyFile, and deleteFile are similar. They use
the ask pattern on the client actor to obtain a future with the response. Recall that
the actor messages are not typed, and the ask pattern returns a Future[Any] object.
For this reason, each method in the client API uses the mapTo future combinator to
restore the type of the message:

trait FTPClientApi {
 implicit val timeout: Timeout = Timeout(4 seconds)
 private val props = Props(classOf[FTPClientActor], timeout)
 private val system = ch8.remotingSystem("FTPClientSystem", 0)
 private val clientActor = system.actorOf(props)
 def host: String
 val connected: Future[Boolean] = {
 val f = clientActor ? FTPClientActor.Start
 f.mapTo[Boolean]
 }
 def getFileList(d: String): Future[(String, Seq[FileInfo])] = {
 val f = clientActor ? FTPServerActor.GetFileList(d)
 f.mapTo[Seq[FileInfo]].map(fs => (d, fs))
 }
 def copyFile(src: String, dest: String): Future[String] = {
 val f = clientActor ? FTPServerActor.CopyFile(src, dest)
 f.mapTo[Try[String]].map(_.get)
 }
 def deleteFile(srcpath: String): Future[String] = {
 val f = clientActor ? FTPServerActor.DeleteFile(srcpath)
 f.mapTo[Try[String]].map(_.get)
 }
}

Note that the client API does not expose the fact that it uses actors for remote
communication. Moreover, the client API is similar to the server API, but the return
types of the methods are futures instead of normal values. Futures encode the
latency of a method without exposing the cause for the latency, so we often find
them at the boundaries between different APIs. We can internally replace the actor
communication between the client and the server with the remote Observable
objects, but that would not change the client API.

Chapter 9

[305]

In a concurrent application, use futures at the boundaries of the layers
to express latency.

Now that we can programmatically communicate with the remote ScalaFTP server,
we turn our attention to the user interface of the client program.

The client user interface
In this section, we create the static user interface for the ScalaFTP client program.
This graphical frontend will make our ScalaFTP application easy and intuitive
to use. We will rely on the Scala Swing library to implement the UI.

We will implement the client interface in an abstract FTPClientFrame class:

abstract class FTPClientFrame extends MainFrame {
 title = "ScalaFTP"
}

In the rest of this section, we augment the FTPClientFrame class with different UI
components. These UI components will enable the end user to interact with the client
application, and ultimately with the remote server. Therefore, we will implement
the following:

•	 A menu bar with common application options
•	 A status bar that displays various user notifications, such as the connection

state, status of the last requested operation, and various error messages
•	 A pair of file panes that display the path to a specific directory in the

filesystem, along with its contents and buttons that start a copy or
delete operation

Concurrency in Practice

[306]

After we are done, the ScalaFTP client program will look like the following screenshot:

We start by implementing the menu bar. When creating Swing components in our
UI, we can instantiate an anonymous class that extends a Menu or MenuBar class,
and assign it to a local variable. However, using an anonymous class does not allow
access to its custom members. If the anonymous UI component class contains nested
components, we are not able to refer to them. Therefore, we will use nested singleton
objects to instantiate UI components, as doing this allows us to refer to the object's
nested components.

In the following code snippet, we create the menu singleton object that extends the
MenuBar class. We create the file and the help menu, with the exit and about
menu items, respectively, and take care in order to add each Menu component
to the contents collection of the enclosing component:

object menu extends MenuBar {
 object file extends Menu("File") {
 val exit = new MenuItem("Exit ScalaFTP")
 contents += exit
 }
 object help extends Menu("Help") {
 val about = new MenuItem("About...")
 contents += about
 }
 contents += file += help
}

Chapter 9

[307]

Similarly, we implement the status object by extending the BorderPanel class. The
BorderPanel components are used to hold other nested components: in our case,
two nested Label objects. The anonymous Label object always contains the static
Status: text, while the named Label object contains arbitrary status messages. We
place the anonymous Label object to the left, and the Label object with the status
messages in the center. This is shown in the following code snippet:

object status extends BorderPanel {
 val label = new Label("connecting...", null, Alignment.Left)
 layout(new Label("Status: ")) = West
 layout(label) = Center
}

Finally, we implement a custom FilePane component that displays the contents of
a directory in the remote filesystem. We will have two FilePane instances in the
client program, so we declare a custom FilePane class, which itself extends the
BorderPanel component type:

class FilePane extends BorderPanel

We hierarchically decompose the FilePane class into three parts: the pathBar
component that displays the path to the current directory, the scrollPane
component that allows scrolling through the contents of the current directory, and
the buttons component that contains the copy and delete buttons. In the following
code snippet, we add a non-editable text field with the current path, and an
upButton component that is used to navigate up the file hierarchy:

object pathBar extends BorderPanel {
 val label = new Label("Path:")
 val filePath = new TextField(".") { editable = false }
 val upButton = new Button("^")
 layout(label) = West
 layout(filePath) = Center
 layout(upButton) = East
}

The scrollPane component contains a Table object named fileTable. The
fileTable object will contain the columns named Filename, Size, and Date
modified, and each table row will contain a file or a subdirectory within the
current working directory. To prevent the user from modifying filenames, sizes, or
modification dates, we install a custom TableModel object that disallows editing in
every row and column. The complete implementation of the scrollPane component
is as follows:

object scrollPane extends ScrollPane {
 val columnNames =
 Array[AnyRef]("Filename", "Size", "Date modified")

Concurrency in Practice

[308]

 val fileTable = new Table {
 showGrid = true
 model = new DefaultTableModel(columnNames, 0) {
 override def isCellEditable(r: Int, c: Int) = false
 }
 selection.intervalMode = Table.IntervalMode.Single
 }
 contents = fileTable
}

The buttons singleton object is a GridPanel component with one row and two
columns. Each column contains a single button, as shown in the following
code snippet:

object buttons extends GridPanel(1, 2) {
 val copyButton = new Button("Copy")
 val deleteButton = new Button("Delete")
 contents += copyButton += deleteButton
}

We then place these custom components inside the FilePane component:

layout(pathBar) = North
layout(scrollPane) = Center
layout(buttons) = South

Finally, we add the parent directory field and the list of the files in the current
directory, named dirFiles, into the FilePane class, as well as a few convenience
methods to more easily access deeply nested UI components:

var parent: String = "."
var dirFiles: Seq[FileInfo] = Nil
def table = scrollPane.fileTable
def currentPath = pathBar.filePath.text

Recall that we need one FilePane instance on the left side of the client program,
and another one on the right. We declare the files singleton object inside the
FTPClientFrame class to hold the two FilePane instances, as follows:

object files extends GridPanel(1, 2) {
 val leftPane = new FilePane
 val rightPane = new FilePane
 contents += leftPane += rightPane
 def opposite(pane: FilePane) =
 if (pane eq leftPane) rightPane else leftPane
}

Chapter 9

[309]

Finally, we need to place the menu, files, and status components at the top, center,
and bottom of the client program:

contents = new BorderPanel {
 layout(menu) = North
 layout(files) = Center
 layout(status) = South
}

We can already run the client program at this point, and try to interact with it.
Unfortunately, the client program does not do anything yet. Clicking on the
FilePane component, the buttons, or the menu items currently does not have any
effect, as we have not yet defined callbacks for various UI actions. In the next section,
we will use Rx to complete the functionality of the client application.

Implementing the client logic
We are now ready to add some life to the ScalaFTP client program. We will define
the logic layer in the FTPClientLogic trait. We only want to allow mixing in the
FTPClientLogic trait with classes that extend both the FTPClientFrame class
and the FTPClientApi trait, as this allows the logic layer to refer to both of the
UI components and use the client API. Therefore, we give this trait the self-type
FTPClientFrame class with FTPClientApi:

trait FTPClientLogic {
 self: FTPClientFrame with FTPClientApi =>
}

Before we begin, recall that the Swing components can only be modified from the
event-dispatching thread. Similar to how we ensured this using the swingScheduler
object in Chapter 6, Concurrent Programming with Reactive Extensions, we now
introduce the swing method, which takes a block of code and schedules it for
execution on the Swing library's event-dispatching thread:

def swing(body: =>Unit) = {
 val r = new Runnable { def run() = body }
 javax.swing.SwingUtilities.invokeLater(r)
}

Throughout this section, we will rely on the swing method in order to ensure that
the effect of asynchronous computations occur only on the Swing event-dispatching
thread.

Concurrency in Practice

[310]

The Swing toolkit permits modifying UI components only from
the event-dispatching thread, but does not ensure this restriction
at compile time, and can unexpectedly fail during runtime.

We begin by relating the connection status to the user interface. Recall that we
introduced the connected future as part of the client API. Depending on the result of
the connected future, we either modify the text value of the status label to display
an error message, or report that the client program has successfully connected to the
server. In the latter case, we call the refreshPane method to update the contents of
the FilePane components that we will look at shortly. The following code snippet
shows the onComplete callback:

connected.onComplete {
 case Failure(t) =>
 swing { status.label.text = s"Could not connect: $t" }
 case Success(false) =>
 swing { status.label.text = "Could not find server." }
 case Success(true) =>
 swing {
 status.label.text = "Connected!"
 refreshPane(files.leftPane)
 refreshPane(files.rightPane)
 }
}

There are two steps involved in updating the FilePane component. First, we need to
get the contents of the remote directory from the server. Second, once these contents
arrive, we need to refresh the Table object in the FilePane component. In the
following code, we call the getFileList method from the client API, and refresh
the Table object with the updatePane method:

def refreshPane(pane: FilePane): Unit = {
 val dir = pane.pathBar.filePath.text
 getFileList(dir) onComplete {
 case Success((dir, files)) =>
 swing { updatePane(pane, dir, files) }
 case Failure(t) =>
 swing { status.label.text = s"Could not update pane: $t" }
 }
}

Chapter 9

[311]

The updatePane method takes the dir directory name and the files list, and uses
them to update the FilePane component p. It extracts the DefaultTableModel
object, and clears its previous contents by setting the row count to 0. It then updates
the parent field in the FilePane object to the parent of the dir directory. Finally, it
stores the files list into the dirFiles field, and adds a row for each entry:

def updatePane(p: FilePane, dir: String, files: Seq[FileInfo]) = {
 val table = p.scrollPane.fileTable
 table.model match {
 case d: DefaultTableModel =>
 d.setRowCount(0)
 p.parent =
 if (dir == ".") "."
 else dir.take(dir.lastIndexOf(File.separator))
 p.dirFiles = files.sortBy(!_.isDir)
 for (f <- p.dirFiles) d.addRow(f.toRow)
 }
}

In the preceding method, we relied on the toRow method to convert the FileInfo
object into an array of String objects, which the Table component works with:

def toRow = Array[AnyRef](
 name, if (isDir) "" else size / 1000 + "kB", modified)

So far so good! Our client program is able to connect to the server, and show the
contents of the root directory. Next, we need to implement the UI logic that allows
navigating through the remote filesystem.

When dealing with UI events in Chapter 6, Concurrent Programming with Reactive
Extensions, we augmented our UI components with Observable objects. Recall
that we added the clicks and texts methods in order to process events from the
Button and TextField components. In the following code, we augment the Table
component with the rowDoubleClicks method, which returns an Observable object
with the indices of the rows that have been double-clicked on:

implicit class TableOps(val self: Table) {
 def rowDoubleClicks = Observable[Int] { sub =>
 self.peer.addMouseListener(new MouseAdapter {
 override def mouseClicked(e: java.awt.event.MouseEvent) {
 if (e.getClickCount == 2) {
 val row = self.peer.getSelectedRow
 sub.onNext(row)
 }
 }

Concurrency in Practice

[312]

 })
 }
}

To navigate through the remote filesystem, users need to click on the FilePane and
upButton objects. We need to set up this functionality once for each pane, so we
define the setupPane method for this purpose:

def setupPane(pane: FilePane): Unit

The first step when reacting to the clicks on the FilePane component is mapping
each user double-click to the name of the file or directory that has been clicked
on. Then, if the double-clicked file is a directory, we update the current filePath
method, and call the refreshPane method:

val fileClicks =
 pane.table.rowDoubleClicks.map(row => pane.dirFiles(row))
fileClicks.filter(_.isDir).subscribe { fileInfo =>
 pane.pathBar.filePath.text =
 pane.pathBar.filePath.text + File.separator + fileInfo.name
 refreshPane(pane)
}

Similarly, when the user clicks on the upButton component, we call the
refreshPane method to navigate to the parent directory:

pane.pathBar.upButton.clicks.subscribe { _ =>
 pane.pathBar.filePath.text = pane.parent
 refreshPane(pane)
}

Navigating through the remote filesystem is informative, but we also want to be able
to copy and delete the remote files. This requires reacting to UI button clicks, each
of which needs to be mapped to the correct currently selected file. The rowActions
method produces an event stream with the files that were selected at the time, at the
point when a button was clicked:

def rowActions(button: Button): Observable[FileInfo] =
 button.clicks
 .map(_ => pane.table.peer.getSelectedRow)
 .filter(_ != -1)
 .map(row => pane.dirFiles(row))

Chapter 9

[313]

Clicking on the copy button will copy the selected file to the directory selected in the
opposite pane. We use the rowActions method to map the directory on the opposite
pane, and call the copyFile method from the client API. Recall that the copyFile
method returns a future, so we need to call the onComplete method to process its
result asynchronously:

rowActions(pane.buttons.copyButton)
 .map(info => (info, files.opposite(pane).currentPath))
 .subscribe { t =>
 val (info, destDir) = t
 val dest = destDir + File.separator + info.name
 copyFile(info.path, dest) onComplete {
 case Success(s) =>
 swing {
 status.label.text = s"File copied: $s"
 refreshPane(pane)
 }
 }
 }

We use the rowActions method in a similar way in order to react to clicks on the
delete button. Finally, we call the setupPane method once for each pane:

setupPane(files.leftPane)
setupPane(files.rightPane)

Our remote file browser is now fully functional. To test it, we open two separate
instances of the terminal, and run SBT in our project directory from both the
terminals. We first run the server program:

> set fork := true

> run 12345

By making sure that the server is running on port 12345, we can run the client from
the second terminal as follows:

> set fork := true

> run 127.0.0.1:12345

Now, try copying some of our project files between different directories. If you've
also implemented the delete functionality, make sure that you back up the project
files before deleting anything, just in case. It's not always a good idea to test
experimental file-handling utilities on our source code.

Concurrency in Practice

[314]

Improving the remote file browser
If you successfully ran both the ScalaFTP server, client programs, and copied files
around, you might have noticed that, if you delete a file on the disk from an external
application, such as your source code editor, the changes will not be reflected in
the ScalaFTP server program. The reason for this is that the server actor does not
monitor the filesystem for changes, and the server filesystem layer is not updated
when we delete the file.

To account for filesystem changes external to the ScalaFTP server program, we need
to monitor the filesystem for changes. This sounds like an ideal case for event streams.
Recall that we already did this in Chapter 6, Concurrent Programming with Reactive
Extensions, when we defined the modified method to track file modifications. This
time, we define the FileCreated, FileDeleted, and FileModified types to denote
three different kinds of filesystem events:

sealed trait FileEvent
case class FileCreated(path: String) extends FileEvent
case class FileDeleted(path: String) extends FileEvent
case class FileModified(path: String) extends FileEvent

By implementing the additional methods in the FileAlterationListener
interface, we ensure that the resulting Observable object produces any one of the
three event types. In the following code snippet, we show the relevant part of the
fileSystemEvents method that produces an Observable[FileEvent] object with
the filesystem events:

override def onFileCreate(file: File) =
 obs.onNext(FileCreated(file.getPath))
override def onFileChange(file: File) =
 obs.onNext(FileModified(file.getPath))
override def onFileDelete(file: File) =
 obs.onNext(FileDeleted(file.getPath))

Now that we have an event stream of file events, we can easily modify the filesystem
model. We subscribe to the file event stream, and start single-operation transactions
to update the fileSystem transactional map:

fileSystemEvents(".").subscribe { e =>
 e match {
 case FileCreated(path) =>
 fileSystem.files.single(path) = FileInfo(new File(path))
 case FileDeleted(path) =>
 fileSystem.files.single.remove(path)
 case FileModified(path) =>

Chapter 9

[315]

 fileSystem.files.single(path) = FileInfo(new File(path))
 }
}

Now, you can run the server and the client again, and experiment with either
deleting or copying files in your editor after the server has started. You will notice
that the filesystem changes are detected on the server, and eventually shown when
the client is refreshed.

Note that this example was chosen to illustrate how all the different concurrency
libraries described in this book work together. However, there is no need to use all
of these concurrency libraries in every program. In many situations, we only need a
few different concurrency abstractions. Depending on your programming task, you
should decide which ones are the best fit.

Never over-engineer your concurrent program. Only use
those concurrency libraries that help you solve your specific
programming task.

Having studied how to combine different concurrency libraries in a larger
application, and having caught a glimpse of how to pick the correct concurrency
library, we turn our attention to another aspect of dealing with concurrency,
namely, debugging concurrent programs.

Debugging concurrent programs
Concurrent programming is much harder than sequential programming. There
are multiple reasons for this. First, the details of the memory model are much
more important in concurrent programming, resulting in increased programming
complexity. Even on a platform with a well-defined memory model, such as the
JVM, the programmer must take care to use proper memory access primitives in
order to avoid data races. Then, it is harder to track the execution of a multithreaded
program, simply because there are multiple executions proceeding simultaneously.
Language debuggers are still focused on tracking the execution of a single thread at
a time. Deadlocks and inherent nondeterminism are another source of bugs, neither
of which is common in sequential programs. To make things worse, all these issues
only have to do with ensuring the correctness of a concurrent program. Ensuring
improved throughput and performance opens a separate set of problems, and is often
harder than it sounds. Generally, a lot of effort is required to ensure that a concurrent
program really runs faster, and performance debugging is an art of its own.

Concurrency in Practice

[316]

In this section, we survey some of the typical causes of errors in concurrent programs,
and inspect different methods of dealing with them. We start with the simplest form
of concurrency bugs, which are revealed by a lack of progress in the system.

Deadlocks and lack of progress
Despite the scariness typically associated with the term deadlock, when it comes to
debugging concurrent programs, deadlocks are one of the more benevolent forms of
concurrency bugs you will encounter. The reason for this is that deadlocks are easy
to track down and analyze. In this section, we study how to identify and resolve a
deadlock in a concurrent program.

Before we begin, we will make sure that SBT starts the example programs in a
separate JVM process. To do this, we enter the following command into the SBT
interactive shell:

> set fork := true

In Chapter 2, Concurrency on the JVM and the Java Memory Model, we discussed at
length what deadlocks are and why they occur. Here, we recall the bank account
example introduced in that chapter, which is a canonical example of a deadlock. The
bank account example consisted of an Account class and the send method, which
locks two Account objects, and transfers a certain amount of money between them:

class Account(var money: Int)

def send(a: Account, b: Account, n: Int) = a.synchronized {
 b.synchronized {
 a.money -= n
 b.money += n
 }
}

A deadlock nondeterministically occurs when we simultaneously make an attempt
to transfer money from account a to account b, and vice versa, as shown in the
following code snippet:

val a = new Account(1000)
val b = new Account(2000)
val t1 = ch2.thread { for (i <- 0 until 100) send(a, b, 1) }
val t2 = ch2.thread { for (i <- 0 until 100) send(b, a, 1) }
t1.join()
t2.join()

Chapter 9

[317]

In the preceding snippet, we are using the thread method for the thread creation
from Chapter 2, Concurrency on the JVM and the Java Memory Model. This program
never completes, as the t1 and t2 threads get suspended in the deadlock state. In a
larger program, this effect manifests itself as a lack of response. When a concurrent
program fails to produce a result or an end, this is a good indication that part of it is
in the deadlock state.

Usually, the most difficult part in debugging a deadlock is localizing it. While this is
easy to determine in our simple example, it is much harder in a larger application.
However, a defining feature of a deadlock is the lack of any progress, and we can use
this to our advantage to determine its cause; we simply need to find the threads that
are in a blocked state, and determine their stack-traces.

The Java VisualVM tool, which comes bundled with newer JDK distributions, is
the simplest way to determine the state of the running Scala and Java applications.
Without exiting our deadlocked program, we run the jvisualvm program from
another terminal instance as follows:

$ jvisualvm

Once run, the Java VisualVM application shows all the active JVM processes on the
current machine. In the following screenshot, the Java VisualVM application shows
us the SBT process, our deadlock example program, and VisualVM itself, as the
running instances:

Concurrency in Practice

[318]

After clicking on the example process, we get the report in the following screenshot:

The preceding screenshot shows that there are multiple threads running inside the
example process. Most of these threads are part of the virtual machine runtime,
and not under the direct control of the programmer. Other threads, such as main,
Thread-0, and Thread-1 are created by our program.

To determine the cause of the deadlock, we need to inspect the threads in the BLOCKED
state. By examining their stack-traces, we can determine the cycle that is causing the
deadlock. In this case, Java VisualVM was smart enough to automatically determine
the cause of the deadlock, and displays the deadlocked threads with the red bar.

Chapter 9

[319]

After clicking on the Thread Dump button, Java VisualVM displays the stack-traces
of all the threads, as shown in the following screenshot:

The stack-traces in the preceding screenshot tell us exactly where in the program the
threads are blocked, and why. Both Thread-0 and Thread-1 threads are suspended
in line 15 of the Debugging.scala file. Inspecting these lines of code in our editor
reveals that both the threads are blocked on the nested synchronized statement.
We now know that the cause of the deadlock is the inverted locking order in the
send method.

We've already discussed how to deal with this type of a deadlock in Chapter 2,
Concurrency on the JVM and the Java Memory Model. Enforcing a locking order in the
send method is a textbook example of dealing with deadlocks, and is easy to ensure
by assigning unique identifiers to different locks.

Concurrency in Practice

[320]

In some cases, we are not able to enforce the locking order to avoid deadlocks. For
example, in Chapter 3, Traditional Building Blocks of Concurrency, we learned that the lazy
values initialization implicitly calls the synchronized statement without our control.
There, we eluded deadlocks by avoiding the explicit synchronized statements on
the object enclosing the lazy value. Another way of preventing deadlocks is to avoid
blocking when a resource is not available. In Chapter 3, Traditional Building Blocks of
Concurrency, we learned that custom locks can return an error value, letting the rest
of the program decide how to proceed if a lock is not available.

Besides deadlocks, there are other kinds of concurrency bugs that are associated with
a lack of progress. We've already seen examples of starvation, in which a concurrent
computation is denied access to the required resources. In Chapter 4, Asynchronous
Programming with Futures and Promises, we started many futures simultaneously,
and suspended them by calling the sleep method. As a result, the thread-pool
underlying the ExecutionContext object became exhausted, and no additional
futures could execute until the sleep method returned.

In a livelock, different concurrent computations are not suspended, and constantly
change their state, but are unable to make progress. A livelock is akin to the situation
in which two people approach each other on the street, and constantly try to move
to the opposite side in order to allow the other person to pass. As a result, neither
person moves on, and they constantly move from one side to the other. What is
common to these kinds of errors is that the system makes no or very little progress,
making them easy to identify.

Looking for a deadlock is like hunting for a dead animal. Since it implies no
progress, a deadlock is tracked down more easily than other kinds of concurrency
bugs. In the next section, we will study a more malevolent class of concurrency
errors that manifest themselves through incorrect program outputs.

Debugging incorrect program outputs
In this section, we study a broader range of concurrency bugs that manifest
themselves as incorrect outputs of the program. Generally, these kinds of errors are
harder to track, because their effects become apparent long after the actual error took
place. A real-world example of such an error is a piece of broken glass lying on the
road. You don't see the glass when you drive your car, and accidentally run over it.
By the time your tire runs flat and you realize what happened, it is difficult to figure
out where exactly along the road the glass was.

Chapter 9

[321]

There are two main ways in which an error can appear. First, the concurrent
program can consistently produce the same erroneous outputs. When this happens,
we can consider ourselves lucky, as we are able to consistently reproduce the error
to study it. Conversely, the incorrect output might appear only occasionally, in some
executions of the program. This is a much less desired situation. A buggy concurrent
program might exhibit incorrect behavior only occasionally due to its inherent
nondeterminism. We will see both the deterministic and nondeterministic errors
in the rest of the section.

The goal of this section will be to implement the fold method on futures. Given a
sequence of future objects, a zero value, and the folding operator, the fold method
will return a future object with the folding operator that is applied between all the
values. We will require the folding operator to be commutative, associative, and
without side effects. The fold method will closely correspond to the foldLeft
method on collections. The signature of the fold method on futures will be as follows:

def fold[T](fs: Seq[Future[T]])(z: T)(op: (T, T) => T): Future[T]

One use case for the fold method is to compute the sum of the values in many
different future objects, which cannot be done directly with the foldLeft method
on collections. This is illustrated in the following code snippet:

val fs: Seq[Future[Int]] = for (i <- 0 until 5) yield Future { i }
val sum: Future[Int] = fold(fs)(0)(_ + _)

We will implement the fold method in two steps. First, we will accumulate the
values from all the values in the fs sequence by applying the op operator on them.
Accumulating the values will give us the accumulation value of the resulting future.
Then, after all the futures complete, we will complete the resulting future with the
accumulation value.

We start by implementing several basic concurrency abstractions that will help us
implement the fold method. A concurrent accumulator is a concurrency facility
that allows you to keep track of an accumulation of values. Here, the values can be
integers, and the accumulation can be their sum. A concurrent accumulator comes
with the add method that is used to add new values, and the apply method that is
used to obtain the current state of the accumulation. We present the simplest possible
lock-free implementation of a concurrent accumulator, which uses atomic variables
from Chapter 3, Traditional Building Blocks of Concurrency. The Accumulator class
takes the type T of the accumulation, a z initial value, and an op reduction operator,
and is shown in the following code snippet:

class Accumulator[T](z: T)(op: (T, T) => T) {
 private val value = new AtomicReference(z)
 def apply(): T = value.get

Concurrency in Practice

[322]

 @tailrec final def add(v: T): Unit = {
 val ov = value.get
 val nv = op(ov, v)
 if (!value.compareAndSet(ov, nv)) add(v)
 }
}

The Accumulator implementation has a private atomic variable, named value,
initialized with the z value, and is used to track the value of the accumulation.
The apply method is easy to implement; we simply call the linearizable get
method to obtain the current accumulation value. The add method must use the
compareAndSet operation to atomically update the accumulation. Here, we read the
ov current value of the atomic variable, call the op operator to compute the new nv
accumulation value, and, finally, call the compareAndSet operation to replace the
old ov accumulation value with the new nv value. If the compareAndSet operation
returns false, then the accumulation was modified, as it was previously read, and
the tail-recursive add operation must be retried. We studied this technique at length
in Chapter 3, Traditional Building Blocks of Concurrency.

Note that, because of the retries, the op operator can be invoked multiple times
with the same v argument. Therefore, our lock-free concurrent accumulator
implementation only works correctly with a reduction operator that is free
from side effects.

Next, we will need a facility that allows different futures to synchronize. A
countdown latch is a synchronization primitive that performs a specific action
once a specified number of threads agree that the action can be performed. Our
CountDownLatch class takes the number of threads n, and an action block. The latch
keeps an atomic integer variable, named left, with the current countdown value,
and defines a count method, which decreases the value of the left atomic variable.
After n calls of the count method, the action block is invoked once. This is shown
in the following code snippet:

class CountDownLatch(n: Int)(action: =>Unit) {
 private val left = new AtomicInteger(n)
 def count() =
 if (left.decrementAndGet() <= 1) action
}

Chapter 9

[323]

We now have all the prerequisites for implementing the fold method. This method
needs to return a future object, so we start by instantiating a promise object. The
promise will enable us to return the future object corresponding to the promise.
We have seen this pattern many times in Chapter 4, Asynchronous Programming with
Futures and Promises. Next, we need some way of combining the values from the
different futures, so we instantiate an Accumulator object with the initial z value
and the op reduction operator. We can complete the promise with the value of the
accumulator only after all the futures complete, so we create a countdown latch with
the countdown value set to the number of the futures. The action associated with the
countdown latch completes the promise with the value of the accumulator, and we
decide to use the trySuccess method for this purpose. Finally, we need to install
callbacks on all the futures, which update the accumulator, and then call the count
method on the latch. The complete implementation of the fold method is shown in
the following code snippet:

def fold[T](fs: Seq[Future[T]])(z: T)(op: (T, T) => T) = {
 val p = Promise[T]()
 val accu = new Accumulator(z)(op)
 val latch = new CountDownLatch(fs.length)({
 p.trySuccess(accu()))
 })
 for (f <- fs) f foreach { case v =>
 accu.add(v)
 latch.count()
 }
 p.future
}

If you paid close attention, you might have noticed that we deliberately introduced
an error somewhere in the fold implementation. Don't worry if you did not notice
this error yet, as we will now analyze how the error manifests itself, and how to
identify it. To test the fold method, we run the following example program:

val fs = for (i <- 0 until 5) yield Future { i }
val folded = fold(fs)(0)(_ + _)
folded foreach { case v => log(s"folded: $v") }

On our machine, running this program prints the correct value 10. We already feel
confident that we implemented the program correctly, but we run the program
again, just to be sure. This time, however, the program outputs the value 7. It turns
out that we have a bug in our implementation of the fold method. Even worse, the
bug manifests itself nondeterministically!

Concurrency in Practice

[324]

In sequential programming, the normal response would be to use the debugger,
and proceed stepwise through the program, until we reach the buggy behavior.
In concurrent programming, this approach often does not help. By tracking the
progress of one thread in the debugger, we are arbitrarily delaying it, and changing
the execution schedule of the program. The bug appears nondeterministically, so it
might not appear when we run the program in the debugger.

Instead of going forward through the program, to find the culprit, we work our
way backwards through the code. The future is completed with the incorrect
value, meaning that some thread must have inserted the incorrect value into the
corresponding promise. We should insert a breakpoint at the promise completion
point and observe what happens. To keep things simple, we avoid using the
debugger, and insert a simple println statement to track the value with which
the promise is completed:

val total = accu()
println(total)
p.trySuccess(total)

Running the program again gives the following output:

8

10

ForkJoinPool-1-worker-1: folded: 8

This reveals a surprising fact: the promise is, in fact, completed twice. The first time,
some thread uses the value 8 of the accumulator, and the second time, another
thread uses the value 10. This also means that the action block of the countdown
latch was called twice, so we need to find out why. We therefore modify the count
method in order to track when the action block is called:

def count() = {
 val v = left.decrementAndGet()
 if (v <= 1) {
 println(v)
 action
 }
}

The program output now shows the following content:

1

0

ForkJoinPool-1-worker-15: folded: 7

Chapter 9

[325]

It appears that the action block is called not only on the last decrement, but also on
one before the last. This is because the decrementAndGet method first decrements
the atomic integer, and then returns its value, rather than the other way around.
The way to fix this is to either call the getAndDecrement method, or change the if
statement. We reimplement the count method as follows:

def count() =
 if (left.decrementAndGet() == 0) action

Note that, if we had used the success method in place of trySuccess, we would
have learned about the error much earlier. Let's change the implementation of the
action block in the fold method to use the success method:

p.success(accu()))

Running the program with this change, and the previously incorrect count method,
results in the following exception:

java.lang.IllegalStateException: Promise already completed.

This is much better. The output of the program is incorrect, but the exception
consistently occurs each time that the program is run. Along with the cause of the
error, we consistently get a full stack-trace to quickly determine where the error
has occurred. We say that the error occurs deterministically.

Recall that, in Chapter 4, Asynchronous Programming with Futures and Promises,
we used the tryComplete method to implement the or combinator on futures.
This combinator was inherently nondeterministic, so we were forced to use the
tryComplete method. However, there is no need to use any of the tryXYZ methods
in the fold implementation, as the fold method should always return a future
with the same result. Wherever possible, you should use the complete, success,
and failure methods, in place of the tryComplete, trySuccess, and tryFailure
methods. More generally, always strive for deterministic semantics, unless the
program itself is inherently nondeterministic.

Program defensively: check for consistency violations often,
prefer determinism, and fail at an early stage. This simplifies
the debugging process when program errors arise.

In the next section, we turn to a different correctness aspect in concurrent programs,
namely, testing their performance.

Concurrency in Practice

[326]

Performance debugging
When it comes to performance debugging, the field is virtually endless. A separate
book on the subject would barely scratch the surface. The goal of this section is
to show you two basic examples that will teach you the basics of analyzing and
resolving performance problems in concurrent Scala programs.

In recent years, processor clock rates have reached a limit, and processor vendors
struggled to improve single processor performance. As a consequence, multicore
processors have overwhelmed the consumer market. Their main goal is to offer
increased performance by increasing parallelism. Ultimately, the goal of concurrent
and parallel computing is to increase the program performance.

There are two ways in which program performance can be improved. The first
is through optimizing the program, so that its sequential instance runs as fast
as possible. The second approach is to run parts of the program in parallel. In
concurrent and parallel computing, both approaches are the key to achieving optimal
performance. It does not make sense to parallelize a program that is much slower
than the optimal sequential program.

Thus, we will study both how to optimize and how to parallelize a concurrent
program. We will start with a single-threaded version of the program that uses a
concurrent accumulator, and ensure that it runs efficiently. Then, we will ensure that
the program is also scalable, that is, adding additional processors makes it faster.

The first step in debugging the performance of a parallel program is to measure
its running time. As stated in Chapter 5, Data-Parallel Collections, benchmarking the
program performance is the only principled way of knowing how fast the program
is, and finding its bottlenecks. This task can be complicated on the JVM, due to
effects such as garbage collection, JIT compilation, and adaptive optimizations.

Fortunately, the Scala ecosystem comes with a tool called ScalaMeter, which is
designed to easily test the performance of both Scala and Java programs. The
ScalaMeter tool can be used in two ways. First, ScalaMeter allows defining
performance regression tests, which are essentially unit tests for performance.
Second, ScalaMeter allows inline benchmarking that is used to benchmark parts
of the running application. In this section, we will keep things simple, and only
use ScalaMeter's inline benchmarking feature. We add the following line to our
build.sbt file:

libraryDependencies +=
 "com.storm-enroute" %% "scalameter-core" % "0.6"

To use ScalaMeter inside our programs, we need to import the following package:

import org.scalameter._

Chapter 9

[327]

This package gives us access to the measure statement that is used to measure
various performance metrics. By default, this method measures the running time of a
snippet of code. Let's use it to measure how long it takes to add one million integers
to the Accumulator object defined in the preceding section:

val time = measure {
 val acc = new Accumulator(0)(_ + _)
 var i = 0
 val total = 1000000
 while (i < total) {
 acc.add(i)
 i += 1
 }
}

Printing the time value gives us the following output:

Running time: 34.60

From this, we might conclude that adding one million integers takes approximately
34 milliseconds. However, this conclusion is wrong. As discussed in Chapter 5,
Data-Parallel Collections, after a JVM program is run, it goes through a warm-up
phase. Only after the warm-up phase is completed, the program usually achieves
the best possible performance. To measure the relevant running time more
accurately, we need to first ensure that the JVM reached stable performance.

The good news is that ScalaMeter can do this automatically. In the following code,
we configure the measure call to use the default warmer implementation, called
Warmer.Default. We set several configuration parameters, such as the minimum
number of warm-up runs, the maximum number of warm-up runs, and the number
of benchmark runs that are used to compute the average running time. Finally, we
set the verbose key to true in order to get more logging output about ScalaMeter's
execution. This is shown in the following code snippet:

val accTime = config(
 Key.exec.minWarmupRuns -> 20,
 Key.exec.maxWarmupRuns -> 40,
 Key.exec.benchRuns -> 30,
 Key.verbose -> true
) withWarmer(new Warmer.Default) measure {
 val acc = new Accumulator(0L)(_ + _)
 var i = 0
 val total = 1000000
 while (i < total) {
 acc.add(i)

Concurrency in Practice

[328]

 i += 1
 }
}
println("Accumulator time: " + accTime)

When running this, make sure that there are no active applications running in
the background on your computer. Running this snippet of code gives us the
following output:

18. warmup run running time: 17.285859

GC detected.

19. warmup run running time: 21.460975

20. warmup run running time: 16.557505

21. warmup run running time: 17.712535

22. warmup run running time: 16.355897

Steady-state detected.

Accumulator time: 17.24

We can now see how the running time changes during the warm-up runs.
Eventually, ScalaMeter detects a steady state, and outputs the running time.
We now have a value of 17.24 milliseconds, which is a good estimate.

A closer inspection of the ScalaMeter output reveals that, occasionally, a Garbage
Collection (GC) cycle occurs. These GC cycles appear periodically during the
execution of our code snippet, so we conclude that something in the add method
allocates heap objects. However, the add implementation does not contain any new
statements. The object allocation must be somehow happening implicitly.

Note that the Accumulator class is generic. It takes a T type parameter, which
denotes the type of the accumulation. Scala allows using both the reference types,
such as String or Option, and primitive types, such as Int or Long, as class-type
parameters. Although this conveniently allows treating both the primitive and
reference types in the same way, it has an unfortunate side effect that the primitive
values passed to generic classes are converted into heap objects. This process is
known as auto-boxing, and it hurts the performance in various ways. First, it is
much slower than just passing a primitive value. Second, it causes GC cycles more
frequently. Third, it affects cache-locality and might cause memory contention. In the
case of the Accumulator class, each time we call the add method with a Long value,
a java.lang.Long object is created on the heap.

Chapter 9

[329]

In practice, boxing is sometimes problematic, and sometimes not. Generally, it
should be avoided in high-performance code. In our case, we can avoid boxing by
creating an accumulator specialized for the Long values. We show it in the following
code snippet:

class LongAccumulator(z: Long)(op: (Long, Long) => Long) {
 private val value = new AtomicLong(z)
 @tailrec final def add(v: Long): Unit = {
 val ov = value.get
 val nv = op(ov, v)
 if (!value.compareAndSet(ov, nv)) add(v)
 }
 def apply() = value.get
}

Re-running the program reveals that the new accumulator is almost twice as fast:

Long accumulator time: 8.88

Boxing can slow down the program by a factor of anywhere between one and several
dozen times. This depends on the specific ratio of object allocations and other work,
and it needs to be measured on a per-program basis.

An unfortunate side effect is that we can only use the new accumulator
implementation for Long values. However, Scala allows us to retain the generic
nature of the previous Accumulator implementation. The Scala specialization
feature allows annotating class type parameters with the @specialized annotation,
instructing the Scala compiler to automatically generate versions of the generic class
for primitive types such as Long, and avoid boxing. We do not dive further into this
topic, and let interested readers find out more on their own.

Now that we know how to identify performance issues and optimize sequential
programs, we study how to improve the performance by increasing the parallelism
level. Let's parallelize the previous program by adding one million integers from
four separate threads. This is shown in the following code snippet:

val intAccTime4 = config(
 Key.exec.minWarmupRuns -> 20,
 Key.exec.maxWarmupRuns -> 40,
 Key.exec.benchRuns -> 30,
 Key.verbose -> true
) withWarmer(new Warmer.Default) measure {
 val acc = new LongAccumulator(0L)(_ + _)
 val total = 1000000
 val p = 4

Concurrency in Practice

[330]

 val threads = for (j <- 0 until p) yield ch2.thread {
 val start = j * total / p
 var i = start
 while (i < start + total / p) {
 acc.add(i)
 i += 1
 }
 }
 for (t <- threads) t.join()
}
println("4 threads integer accumulator time: " + intAccTime4)

In the preceding example, we distribute the work of adding one million integers
across four different threads, so we expect the running time of the program
to increase four times. Sadly, running the program reveals that our expectations
were wrong:

4 threads integer accumulator time: 95.85

As pointed out in Chapter 5, Data-Parallel Collections, perpetually writing to the
same memory location from multiple threads results in memory contention issues.
In most computer architectures, cache-lines need to be exchanged between the
processors writing to the same memory location, and this slows down the program.
In our case, the contention point is the AtomicLong object in the LongAccumulator
class. Simultaneously invoking the compareAndSet operation on the same memory
location does not scale.

To address the issue of memory contention, we need to somehow disperse the
writes throughout different cache-lines. Instead of adding the accumulated value
to a single memory location, we will maintain many memory locations with partial
accumulation values. When some processor calls the add method, it will pick one
of these memory locations, and update the partial accumulation. When a processor
calls the apply method, it will scan all the partial accumulations, and add them
together. In this implementation, we trade the performance of the apply method
for the improved scalability of the add method. This trade-off is acceptable in many
cases, including our fold method, where we call the add method many times, but
the apply method only once.

Furthermore, note that the new apply implementation is not linearizable, as
explained in Chapter 7, Software Transactional Memory. If some processor calls the
apply method when multiple processors are calling the add method, the resulting
accumulation value can be slightly incorrect. However, if no other processor calls the
add method when the apply method is called, then the resulting accumulation value
will be correct. We say that the new apply implementation is quiescently consistent
with respect to the add method.

Chapter 9

[331]

Note that this property is sufficient for ensuring the correctness of the preceding
fold implementation, because the fold method only calls the apply method after
all the add calls are completed.

We now show the implementation of the ParLongAccumulator class, which uses an
AtomicLongArray object, named values, to keep the partial accumulation values.
Atomic arrays are arrays on which we can call operations such as the compareAndSet
method. Conceptually, an AtomicLongArray is equivalent to an array of AtomicLong
objects, but is more memory-efficient.

The ParLongAccumulator class must choose a proper size for the AtomicLongArray
object. Setting the size of the array to the number of processors will not make the
memory contention problems go away. Recall from Chapter 3, Traditional Building
Blocks of Concurrency, that a processor needs to own a cache-line in exclusive mode
before writing to it. A cache-line size is typically 64 bytes. This means that on a 32-
bit JVM, eight consecutive entries in an AtomicLongArray object fit inside a single
cache-line. Even when different processors write to separate AtomicLongArray
entries, memory contention occurs if these entries lie in the same cache-line. This
effect is known as false-sharing. A necessary precondition in avoiding false-sharing
is to make the array size at least eight times larger than the number of processors.

A ParLongAccumulator object is used by many different threads simultaneously. In
most programs, there are much more threads than processors. To reduce false-sharing,
as much as possible, we set the size of the values array to 128 times the number
of processors:

import scala.util.hashing
class ParLongAccumulator(z: Long)(op: (Long, Long) => Long) {
 private val par = Runtime.getRuntime.availableProcessors * 128
 private val values = new AtomicLongArray(par)
 @tailrec final def add(v: Long): Unit = {
 val id = Thread.currentThread.getId.toInt
 val pos = math.abs(hashing.byteswap32(id)) % par
 val ov = values.get(pos)
 val nv = op(ov, v)
 if (!values.compareAndSet(pos, ov, nv)) add(v)
 }
 def apply(): Long = {
 var total = 0L
 for (i <- 0 until values.length)
 total = op(total, values.get(i))
 total
 }
}

Concurrency in Practice

[332]

The new add implementation is similar to the previous one. The main difference is
that the new implementation needs to pick the pos memory location for the partial
accumulation value. Different processors should pick different memory locations
based on their index. Unfortunately, standard APIs on the JVM do not provide the
index of the current processor. An adequate approximation is to compute the pos
partial accumulation location from the current thread ID. We additionally use the
byteswap32 hashing function to effectively randomize the location in the array.
This decreases the likelihood that two threads with adjacent IDs end up writing
to adjacent entries in the array, and reduces the possibility of false-sharing.

Running the program demonstrates that we reached our goal, and improved the
program performance by a factor of almost three times:

Parallel integer accumulator time: 3.34

There are additional ways to improve our ParLongAccumulator class. One is to
further reduce false-sharing by choosing the entries in the values array more
randomly. Another is to ensure that the apply method is not only quiescently
consistent, but also linearizable. In the interest of keeping this section simple and
clear, we do not dive further into these topics, but let interested readers explore
them on their own.

In this and the preceding sections, we summarized the different styles of
concurrency, and studied the basics of dealing with concurrency bugs. This gave us
a useful insight into the big picture, but the theory that we learned is only valuable
if it can be applied in practice. We designed and implemented a remote file browser
application, a practical example of a large concurrent application. This gave us
insight into both the theoretical and practical side of concurrent programming.

Summary
Having seen the technical details of a variety of different concurrency libraries
in the preceding chapters, we took a couple of steps back, and presented a more
cohesive view of Scala concurrency. After presenting a taxonomy of different styles
of concurrency, we outlined the use cases for different concurrency frameworks. We
then studied how to debug concurrent programs and analyze their performance.
Finally, we combined the different concurrency frameworks together to implement
a real-world distributed application: a remote file browser.

Chapter 9

[333]

The best theory is inspired by practice, and the best practice is inspired by theory.
This book has given you a fair amount of both. To deepen the understanding of
concurrent computing, consider studying the references listed at the end of each
chapter: you should already be prepared to grasp most of them. Importantly, to
improve your practical concurrent programming skills, try to solve the exercises from
this book. Finally, start building your own concurrent applications. By now, you must
have understood both how high-level concurrency abstractions work and how to use
them together, and are on the path to becoming a true concurrency expert.

Exercises
The following exercises will improve your skills in building practical concurrent
applications. Some of them require extending the ScalaFTP program from this
chapter, while others require implementing concurrent applications from scratch.
Finally, several exercises are dedicated to testing the performance and scalability
of concurrent programs.

1.	 Extend the ScalaFTP application to allow adding directories to the
remote filesystem.

2.	 Extend the ScalaFTP application so that the changes in the server filesystem
are automatically reflected in the client program.

3.	 Extend the ScalaFTP application so that it allows parallel regex searches over
filenames in the remote filesystem.

4.	 Extend the ScalaFTP server so that it allows recursively copying directories.
5.	 Implement the download and upload functionality, and use Observable

objects to display the file transfer progress in a Swing ProgressBar
component.

6.	 Extend the ScalaFTP client implementation so that a FilePane can display
either a remote or a local filesystem's contents.

7.	 Design and implement a distributed chat application.
8.	 Design and implement a Paint program with collaborative editing.
9.	 Compare the duration of creating and starting a new thread, and waiting for

its termination, against the duration of starting a computation using Future.
apply, and waiting for the completion of the corresponding Future object.

Concurrency in Practice

[334]

10.	 A pool is one of the simplest collection abstractions, which allows adding
and extracting elements. The remove operation returns any element that
was previously added to the pool. A concurrent pool is represented by the
ConcurrentPool class:
class ConcurrentPool[T] {
 def add(x: T): Unit = ???
 def remove(): T = ???
 def isEmpty(): Boolean = ???
}

Implement the concurrent pool, and make sure that its operations are
linearizable. Measure and ensure high performance and scalability of
your implementation.

11.	 Compare the performance and scalability of the Treiber stack from the
exercise in Chapter 2, Concurrency on the JVM and the Java Memory Model,
against the transactional sorted list from Chapter 7, Software Transactional
Memory. How are they compared to the concurrent pool from the
previous exercise?

12.	 Implement the getUniqueId method from Chapter 2, Concurrency on the
JVM and the Java Memory Model. Measure and ensure high performance and
scalability of your implementation.

Index
A
ABA problem 76-78
actor behavior

manipulating 255-259
actor class 249
actor configurations 251
actor instance 249
actor model 247
actor path 263
actor reference 250
actors

about 247
communication between 269, 270
creating 250-253
identifying 263-265
life cycle 265-269
state 256-259
stopping 275-277
working with 248, 249

actor supervision 277-282
actor systems

about 249
creating 250-253

aggregate operation 156
Akka actor hierarchy 260-262
ArrayBlockingQueue 86
ask pattern 271-273
associative operators 154, 155
atomic execution 36-39
atomic primitives, non-blocking

synchronization
ABA problem 76-78
about 68
atomic variables 69-71

lock-free programming 72, 73
locks, implementing explicitly 74-76

atomic statement
using 216, 217

atomic variables
about 69-72
issues 209-212

awaiting futures 128
Await.ready statement 130
Await.result statement 130

B
behavior, actor 255

C
call stack 18
collections hierarchy, ScalaBlitz 166, 167
combiners

about 162
implementing 163

communication, between actors
ask pattern 271-273
forward pattern 274

commutative operators 154, 155
compare-and-swap (CAS) 69
concurrency framework

actors 292
concerns, addressing 290
execution contexts 292
futures and promises 292
JVM concurrency 292
parallel collections 292
reactive extensions 292
software transactional memory 292

[336]

concurrency libraries
benefits 293, 294
overview 290-293

concurrent collections 83, 84
concurrent maps 88-92
concurrent.Map trait 90
concurrent programming

modern concurrency paradigms 15, 16
overview 13, 14
traditional concurrency 14, 15

concurrent programs
debugging 315

concurrent queues 85-87
concurrent sets 88-92
concurrent traversals 93-95
connected state 302
connecting state 302
control exceptions 229
cop operator 156
countdown latch 322
custom combiner, implementation ways

concurrent data-structure 163
merging 163
two-phase evaluation 163

custom Observable objects
implementing 178, 179

custom parallel collections
implementing 158

custom schedulers
creating, from futures 179, 180
using, for UI applications 194-198

D
data abstractions

atomic variables (JDK) 290
futures and promises (scala.concurrent) 290
observables and subjects (Rx) 291
transactional references (Scala STM) 291
volatile variables (JDK) 290

data access constructs
arbitrary data (JDK) 291
atomic variables and classes (JDK) 291
futures and promises (scala.concurrent) 291
transactional references and classes

(Scala STM) 291
dataflow graph 117

data-parallel frameworks
alternative 165

deadlocks
about 44, 45
overview 316-320
preventing, from occurring 46, 47

DeathWatch 275
dispatcher 250
distributed programming 248
distributed system 247
Document Object Model (DOM) 29
dynamic scope, transaction 220

E
event-driven programming 171
exceptions

and futures 108, 109
and observables 175, 176
and transactions 227-231

ExecutionContext object
implementing 66, 67

ExecutionContext parameter 104
Executor object

about 65
implementing 65, 66

F
failure handling, observables 190-192
final fields, Java Memory Model 56-58
fire-and-forget pattern 269
flatMap combinator 115
ForkJoinPool class 65
forward pattern 274
functional composition

on futures 111-118
future callbacks 105-108
future computations

starting 104, 105
Future frameworks

alternatives 133
futures

about 102, 103
and exceptions 108, 109
awaiting futures 128
blocking, in asynchronous

computations 129

[337]

blocking with 128
disadvantage 171
fatal exceptions 111
functional composition 111-117
observables, creating from 179, 180
Try type, using 109, 110

Future[String] type 103
Future[T] type 103

G
Garbage Collection (GC) 147, 328
getWebpage method 102, 103
graceful shutdown 52
graceful stop pattern 276
guarded blocks 47-50
guardian actor 262

I
immutable objects, Java Memory

Model 56-58
incorrect program outputs

debugging 320-325
intrinsic lock 43

J
java.lang.Thread class 31
Java Memory Model

about 54-56
final fields 56-58
immutable objects 56-58

Java Virtual Machine (JVM)
about 17, 30
performance, measuring of 145-148

Just-In-Time (JIT) 147

L
lazy values

interaction 79-83
linearization point 211
LinkedBlockingQueue 86
livelock 320
location transparency 248
lock-free programming 72, 73

locks
implementing, explicitly 74-76

logTransfer method 44, 45

M
mailbox 249
maps 138
message 249
modern concurrency paradigms 15, 16
Modified Exclusive Shared Invalid

(MESI) 141
monitors 42-44
multitasking 28

N
nested observables 185-189
nondeterministic parallel

operations 153, 154
non-parallelizable collections 148, 149
non-parallelizable operations 149-151

O
object heap 18
Observable contract 176-178
Observable objects

about 173
creating 173-175
subscriptions 180-182

observables
and exceptions 175, 176
composing 183, 184
failure handling concept 190-192
nested observables 185-189

OS threads 29

P
parallel, and concurrent collections

using, simultaneously 156, 157
parallel collection class hierarchy 143, 144
parallel collections

parallelism level, configuring 145
performance, measuring of JVM 145-148
using 139-142

[338]

parallel collections, cautions
about 148
associative operators 154-156
commutative operators 154-156
nondeterministic parallel

operations 153, 154
non-parallelizable collections 148, 149
non-parallelizable operations 149-151

parallel operations
drawbacks 151, 152

path selection 263
performance debugging 326-332
priority queue 228
processes

about 28-30
creating 96, 97
handling 96, 97

promises
about 119, 120
asynchronous computations,

cancelling 125-127
callback-based APIs, converting 121-124
future API, extending 124, 125

R
race condition 37
Random Access Memory (RAM) 141
Reactive Extensions. See Rx
reactive programming 172
remote actors

about 282-285
communication, requisites 286

remote file browser
about 294-296
client logic, implementing 309-313
client navigation API 301-304
client user interface 305-308
filesystem, modeling 296-299
improving 314, 315
server interface 300, 301

reordering 40-42
rules, Java Memory Model

monitor locking 55
program order 55
thread start 55

thread termination 56
transitivity 56
volatile fields 55

Rx 172
Rx schedulers

about 193
custom schedulers, using for UI

applications 194-199

S
Scala

about 31
advantages 16, 17

Scala Async library 130-132
ScalaBlitz

about 165
collections hierarchy 166, 167

Scala collection library 138
Scala collections

maps 138
sequences 138
sets 138

ScalaFTP browser
about 295
features, implementing 295

ScalaMeter 326
Scala primer 19-23
Scala program

executing 18, 19
scala.sys.process API 97
scala.sys.process package 96
sequences 138
sets 138
Simple Build Tool (SBT) 18, 31
single-operation transactions 222-224
Software Transactional Memory (STM)

about 207
atomic statement, using 216, 217
transactional references, declaring 215
using 212-214

sop operator 156
splitter

about 159
implementing 160-162

[339]

starvation 320
state machines 256
static scope, transaction 220
subjects 199
supervision strategy 277
synchronization 42-44
synchronized statement 40

T
threads

about 28-30, 102
creating 31-36
interrupting 51, 52
starting 31-36

top-down reactive programming 199-203
traditional concurrency

overview 14, 15
transactional arrays 239, 240
transactional collections

about 237
transactional arrays 239, 240
transactional maps 241
transaction-local variables 237, 238

transactional conflict 213
transactional maps 241
transactional reference 215
transaction-local variable 237, 238

transactions
and exceptions 227-231
and side effects 218-222
composing 218
nesting 224-227
retrying 232-235
retrying, with timeouts 235-237
single-operation transactions 222-224

Try[T] objects 110
Try[T] type 109
Try type

using 109, 110

U
UI applications

custom schedulers, using for 194-199
unconnected state 302
unhandled messages

managing 254, 255

V
volatile variables 53, 54

W
weakly consistent iterators 157

Thank you for buying
Learning Concurrent Programming in Scala

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Java 7 Concurrency Cookbook
ISBN: 978-1-84968-788-1 Paperback: 364 pages

Over 60 simple but incredibly effective recipes for
mastering multithreaded application development
with Java 7

1.	 Master all that Java 7 has to offer for concurrent
programming.

2.	 Get to grips with thread management, the
Fork/Join framework, concurrency classes,
and much more in this book and e-book.

3.	 A practical cookbook packed with recipes
for achieving the most important Java
Concurrency tasks.

Mastering Concurrency in Go
ISBN: 978-1-78398-348-3 Paperback: 328 pages

Discover and harness Go's powerful concurrency
features to develop and build fast, scalable
network systems

1.	 Explore the core syntaxes and language
features that enable concurrency in Go.

2.	 Understand when and where to use
concurrency to keep data consistent and
applications non-blocking, responsive,
and reliable.

3.	 A practical approach to utilize application
scaffolding to design highly-scalable programs
that are deeply rooted in goroutines
and channels.

Please check www.PacktPub.com for information on our titles

Free ebooks ==> www.Ebook777.com

Scala for Java Developers
ISBN: 978-1-78328-363-7 Paperback: 282 pages

Build reactive, scalable applications and integrate
Java code with the power of Scala

1.	 Learn the syntax interactively to smoothly
transition to Scala by reusing your Java code.

2.	 Leverage the full power of modern web
programming by building scalable and
reactive applications.

3.	 Easy-to-follow instructions and real-world
examples to help you integrate Java code
and tackle Big Data challenges.

Getting Started with SBT
for Scala
ISBN: 978-1-78328-267-8 Paperback: 86 pages

Equip yourself with a high-productivity work
environment using SBT, a build tool for Scala

1.	 Establish simple and complex projects quickly.

2.	 Employ Scala code to define the build.

3.	 Write build definitions that are easy to update
and maintain.

4.	 Customize and configure SBT for your
project without changing your project's
existing structure.

Please check www.PacktPub.com for information on our titles

www.Ebook777.com

http://www.ebook777.com

	Cover

	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction
	Concurrent programming
	A brief overview of traditional concurrency
	Modern concurrency paradigms

	The advantages of Scala
	Preliminaries
	Execution of a Scala program
	A Scala primer

	Summary
	Exercises

	Chapter 2: Concurrency on the JVM and the Java Memory Model
	Processes and Threads
	Creating and starting threads
	Atomic execution
	Reordering

	Monitors and synchronization
	Deadlocks
	Guarded blocks
	Interrupting threads and the graceful shutdown

	Volatile variables
	The Java Memory Model
	Immutable objects and final fields

	Summary
	Exercises

	Chapter 3: Traditional Building Blocks
of Concurrency
	The Executor and ExecutionContext objects
	Atomic primitives
	Atomic variables
	Lock-free programming
	Implementing locks explicitly
	The ABA problem

	Lazy values
	Concurrent collections
	Concurrent queues
	Concurrent sets and maps
	Concurrent traversals

	Creating and handling processes
	Summary
	Exercises

	Chapter 4: Asynchronous Programming with Futures and Promises
	Futures
	Starting future computations
	Future callbacks
	Futures and exceptions
	Using the Try type
	Fatal exceptions
	Functional composition on futures

	Promises
	Converting callback-based APIs
	Extending the future API
	Cancellation of asynchronous computations

	Futures and blocking
	Awaiting futures
	Blocking in asynchronous computations

	The Scala Async library
	Alternative Future frameworks
	Summary
	Exercises

	Chapter 5: Data-Parallel Collections
	Scala collections in a nutshell
	Using parallel collections
	Parallel collection class hierarchy
	Configuring the parallelism level
	Measuring the performance on the JVM

	Caveats of parallel collections
	Non-parallelizable collections
	Non-parallelizable operations
	Side effects in parallel operations
	Nondeterministic parallel operations
	Commutative and associative operators

	Using parallel and concurrent collections together
	Weakly consistent iterators

	Implementing custom parallel collections
	Splitters
	Combiners

	Alternative data-parallel frameworks
	Collections hierarchy in ScalaBlitz

	Summary
	Exercises

	Chapter 6: Concurrent Programming with Reactive Extensions
	Creating Observable objects
	Observables and exceptions
	The Observable contract
	Implementing custom Observable objects
	Creating Observables from futures
	Subscriptions

	Composing Observable objects
	Nested observables
	Failure handling in observables

	Rx schedulers
	Using custom schedulers for UI applications

	Subjects and top-down reactive programming
	Summary
	Exercises

	Chapter 7: Software Transactional Memory
	The trouble with atomic variables
	Using Software Transactional Memory
	Transactional references
	Using the atomic statement

	Composing transactions
	The interaction between transactions and
side effects
	Single-operation transactions
	Nesting transactions
	Transactions and exceptions

	Retrying transactions
	Retrying with timeouts

	Transactional collections
	Transaction-local variables
	Transactional arrays
	Transactional maps

	Summary
	Exercises

	Chapter 8: Actors
	Working with actors
	Creating actor systems and actors
	Managing unhandled messages
	Actor behavior and state
	Akka actor hierarchy
	Identifying actors
	The actor life cycle

	Communication between actors
	The ask pattern
	The forward pattern
	Stopping actors

	Actor supervision
	Remote actors
	Summary
	Exercises

	Chapter 9: Concurrency in Practice
	Choosing the right tools for the job
	Putting it all together – a remote
file browser
	Modeling the filesystem
	Server interface
	Client navigation API
	The client user interface
	Implementing the client logic
	Improving the remote file browser

	Debugging concurrent programs
	Deadlocks and lack of progress
	Debugging incorrect program outputs
	Performance debugging

	Summary
	Exercises

	Index

