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Abstract

We introduce Proof-of-Replication (PoRep), a new kind of Proof-of-Storage, that can be used to prove
that some data D has been replicated to its own uniquely dedicated physical storage. Enforcing unique
physical copies enables a verifier to check that a prover is not deduplicating multiple copies of D into
the same storage space. This construction is particularly useful in Cloud Computing and Decentralized
Storage Networks, which must be transparently verifiable, resistant to Sybil attacks, and unfriendly to
outsourcing.

This work (a) reviews Proofs-of-Storage and motivates use cases; (b) defines the novel Proofs-of-Replication,
which can be publicly verifiable, transparent, authenticated, and time-bounded ; (c) shows how to chain
Proofs-of-Replication to establish useful Proofs-of-Spacetime.

Work in Progress. This is a work in progress Technical Report from Protocol Labs. Active research
is under way, and new versions of this paper will appear. For comments and suggestions, contact us at
research@filecoin.io

1 Motivation and Background on Proofs-of-Storage

This section provides backgrounds and classifications of different Proofs-of-Storage and related proofs, and
motivates the need for Proofs-of-Replication. Throughout this section, we explain the distinction between
different proofs using a prover, P, that is attempting to convince a verifier, V, that P is storing some data,
D. V issues a challenge, c, to P who answers it with a corresponding proof πc, according to the scheme in
question. Proof schemes vary in their properties, their utility, and in whether D is useful outside the protocol
or is a random string with no external utility.

1.1 Common Properties

We use the following properties, common to various proving schemes:

• (Privately Verifiable) A scheme is privately verifiable if V is a user with a secret verifying key generated
during setup, or any other party that shares such secret key with the user. These schemes are useful
in Cloud Computing settings, where users wish to outsource storage of data to servers and perhaps
outsource verifying to a trusted verifier. As of this work, most Proof-of-Storage (PoS) schemes are
privately verifiable.

• (Publicly Verifiable) A scheme is publicly verifiable if V can be any party with access to public data (e.g.
a verifying key), but no access to the original data, or secret information generated during scheme setup.
Publicly verifiable schemes are very useful in Decentralized Storage Network settings, where a verifier may
be new participants who have access only to public data as context of previous proof scheme setups.
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• (Transparent) A scheme is transparent if there is no extra information, sk, that enables any P to generate
a valid proof without having data, D. This means that there is no sk with which a malicious prover can
generate proof π∗ = ForgeProof(c, sk) such that 1 = Verify(c, π∗) for a P-chosen c. Transparent schemes
are necessary in Decentralized Storage Networks, where provers may also be verifiers or users. While
many PoS schemes require trusting a user or verifier to generate secret keys, Transparent PoS schemes
do not.

• (Retrievability) A scheme supports retrievability if it is possible for V to extract and reconstruct D merely
by issuing many challenges c to P and aggregating corresponding proofs πc. See PoRet.

• (Dynamic) A PoS scheme is dynamic if it enables the user V to dynamically update data D to D’ stored
at server P, to support mutable data without requiring a completely new setup. Dynamic PoS schemes
are very useful in Cloud Storage settings, and systems with large, frequently mutable data without need
for version history.

• (Non-Outsourceable) A scheme is non-outsourceable if P cannot outsource her work to some other prover
P∗ (e.g. storage, work, or proof-generation) and convince V that P did the work. Non-outsourceable
schemes are useful in Cloud Computing, Cryptocurrency, and Decentralized Storage Network settings,
where P may be rewarded for providing space, and the users or V wish to ensure P is actually providing
the service.

• (Authenticated) A scheme is authenticated if the the identity of a prover can be verified during a proof
verification. For example a digital signature might be required as part of generating πc to prove identity,
pki. Authentication can help make schemes non-outsourceable, since a prover would have to reveal secret
identifying information (e.g. their private key) to the outsourced provider.

• (Time-Bounded) A proving scheme is time-bounded if a proof is only valid during a span of time. For
example, some schemes declare that P must generate a valid proof, π, within a certain time after receiving
challenge, c. If P delays beyond some scheme-specific time bound, then the proof is no longer valid, as
P had enough time to forge it.

• (Useful) A scheme is useful if it can achieve separate useful work or useful storage as part of its operation
or as a side-effect. For example, storing and verifying a verifier-chosen D (PDP, PoRet, PoRep) is useful,
whereas storing and verifying a randomly-generated D (PoSpace) is not useful.

1.2 Kinds of Proofs

Here we give an overview of various kinds of proving schemes, in particular Proofs-of-Storage and its variants:

• Provable Data Possession (PDP) schemes [1] allow user V to send data D to server P, and later V
can repeatedly check whether P is still storing D. PDPs are useful in cloud storage and other storage
outsourcing settings. PDPs can be either privately-verifiable or publicly-verifiable, and static or dynamic.
A wide variety of PDP schemes exist.

• Proof-of-Retrievability (PoRet) schemes [8], [12] are similar to PDPs, but also enable extracting D,
namely they offer retrievability. PDPs allow the verifier V to check that P is still storing D, but P may
submit valid PDP proofs yet hold D hostage and never release it. PoRs solves this problem by making the
proofs themselves leak pieces of D so that V can issue some number of challenges and then reconstruct
D from the proofs.

• Proof-of-Storage (PoS) schemes allow a user V to outsource the storage of data D to a server P and
then repeatedly check if P is still storing D. PDPs and PoRets were independently introduced around
the same time in 2007. Since then, the concept of Proofs-of-Storage generalizes PDPs and PoRets. This
work presents PoReps, a new type of PoS.

• Proof-of-Replication (PoRep) schemes (this work) are another kind of PoS that additionally ensure
that P is dedicating unique physical storage to storing D. P cannot pretend to store D twice and
deduplicate the storage. This construction is useful in Cloud Storage and Decentralized Storage Network
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settings, where ensuring a proper level of replication is important, and where rational servers may create
Sybil identities and sell their service twice to the same user. PoRep schemes ensure each replica is stored
independently. Some PoRep schemes may also be PoRet schemes.

• Proof-of-Work (PoW) schemes [6] allow prover P to convince verifier V that P has spent some resources.
The original use case [6] presented this scheme to allow a server V to rate-limit usage by asking user
P to do some expensive work per-request. Since then, PoW schemes have been adapted for use in
cryptocurrencies, Byzantine Consensus [11], and many other systems. Famously, the Bitcoin network
[11] expends a massive amount of energy in a hashing PoW scheme, used to establish consensus and
extend the Bitcoin ledger safely.

• Proof-of-Space (PoSpace) schemes allow prover P to convince verifier V that P has spent some storage
resources. PoSpace schemes are PoW schemes where the expended resource is not computation (CPU
instructions) but rather storage space. In a sense, a PoS scheme is also a PoSpace, since a PoS implies
the use of storage resources.

• Proof-of-Spacetime (PoSt) schemes [10] allow prover P to convince verifier V that P has spent some
“spacetime” (storage space used over time) resources. This is a PoSpace with a sequence of checks over
time. A useful version of PoSt would be valuable as it could replace other PoW schemes with a storage
service. This work introduces such a scheme, based on sequential PoReps.

Definition 1.1. (
∏PoS

) This work also defines a simplified PoS proving scheme
∏PoS

= (Setup,Prove,Verify),
where:

• SP ,SV ← PoS.Setup(1λ,D) where SP and SV are scheme-specific setup variables for P and V respectively,
that depend on the data D, and on a security parameter λ.

• πc ← PoS.Prove(SP ,D, c) where c is a challenge, and πc is a proof that P has access to D.

• {0, 1} ← PoS.Verify(SV , c, πc) which V runs to checks whether a proof from P is correct.

1.3 Motivation for Proofs-of-Replication

Consider the following scenarios:

• (replication) A user V wishes to hire server P to store n independent copies of data D; in other words, V
wants a replication factor of n. PDP and PoRet schemes do not give V a way to verify P is storing these
n replicas separately rather than merely pretending to do so.

• (deduplication) A user V asks each of n different servers P0...Pn ∈ P to store data D. With normal
PDP and PoRet schemes, the servers could collude and store D only once, instead of n times (once each).
When issued a challenge, Pi would only need to retrieve D from whichever Pj is actually storing it,
calculate the proof, and discard D.

• (Sybil identities) A setup very similar to deduplication above, but now all servers P0...Pn ∈ P are secretly
just one server, say P0. The others are Sybil identities.

• (networks) A set of users and servers come together to form a Decentralized Storage Network, where all
participants simulate a unified service that outsources storage to each individual server. Ideally, each
individual server could prove they are storing each replica of data uniquely, in a transparent, and publicly
verifiable way.

Current PoS schemes do not address these scenarios in full. PDP and PoRet schemes do not prevent a
single prover (or group of provers) P from deduplicating data across multiple user requests. Users with
D can achieve replication with PDP and PoRet schemes by deriving a set of encrypted replicas Dski , and
keeping the mapping and keys secret. However, this is expensive and not transparent, which means that in
a Decentralized Storage Network setting, a user could also play the role of P, have access to some of the
replication mappings and keys, and thus deduplicate the storage. We must do better.
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2 Proofs-of-Replication

We introduce Proof-of-Replication (PoRep) schemes, which allow a prover P to (a) commit to store n distinct
replicas (physically independent copies) of D, and then (b) convince a verifier V that P is indeed storing each
of the replicas. We formalize three challenges: Sybil Attack, Outsourcing Attack, and Generation Attack, all
concerning replication. The ability to surmount these challenges distinguishes PoRep schemes from other PoS
schemes. We introduce an adversarial game called RepGame that PoRep schemes must pass to be secure, and
the formal definition of PoRep schemes. Finally, we explore a sub-class of PoRep schemes, Time-Bounded
Proofs-of-Replication, that are significantly easier to realize.

Definition 2.1. (Sybil Attack) An attacker A has Sybil identities P0...Pn, and makes each commit to
storing a replica of D. The attack succceeds if P0...Pn store less than n copies of D (i.e. one copy), and
produce n valid proofs-of-storage that convince a verifier V that D is stored as n independent copies.

Definition 2.2. (Outsourcing Attack) Upon receiving challenge c from verifier V, an attacking prover A
quickly fetches the corresponding D from another storage provider P∗ and produces the proof, pretending
that A has been storing D all along.

Definition 2.3. (Generation Attack) If attacker A is in a position to determine D, then A may choose D
such that A can re-generate D on demand. Upon receiving challenge c, A re-generates D, and produces the
proof, pretending that A has been storing D all along.

Preventing the Generation Attack is difficult, and not usually a problem in the traditional Cloud Computing
setting, so it has not been a goal of most PoS schemes. However this attack is what prevents most PoS
schemes from being used to build Decentralized Storage Networks, as an attacker A could request storage
of D (even pay for it) and then prove storage of D to collect network rewards. Prior work has attempted
to make it irrational to do this by adjusting fee and reward schedules but these approaches prevent useful
economic constructions and do not prevent the problem. Completely preventing the Generation Attack by
forcing such attacker to store the data has been an open problem; PoRep aims solve it.

We now construct a game that tests for the three attacks together and distinguishes PoRep schemes from
other PoS schemes. If a PoS scheme passes the game, then it is a PoRep scheme.

Definition 2.4. (RepGame) In the Replication Game
(
{1, 0} ← RepGame

(∏PoS
,∆
))

, an adversary, A, with

a fixed amount of storage l, adaptively interacts with an honest verifier, V, and must prove to V that A is
storing n replicas of data D, such that n = l + 1, one more than A has storage space for. A chooses data
to replicate D, so that A may generate it on demand. A can also interact with a separate honest storage
provider P with infinite, free storage; A may use P to only store and retrieve arbitrary data, with a latency
of ∆. A may also create and control any Sybil identities that A wishes. V and A use the Proof-of-Storage
proving scheme

∏PoS
. V asks A to store n different replicas of D, and runs the setup PoS.Setup for each

replica. A only has enough storage space to store l replicas of D. Then, V issues a sequence of verification
challenges ci for each replica i ∈ {0...n}. A wins the game if she convinces V that she is storing all n different
replicas, namely if A produces a set of valid proofs πci that convinces V that PoS.Verify(SV , ci, πci) succeeds.
If any call to PoS.Verify fails, A loses.

A PoRep is secure if there is no adversary that wins the PoRep game with more than negligible probability.
Armed with these clear attacks and a game than can test for security, we can now formally define PoRep
schemes. We use a general scheme construction, similar to the PoS construction above.

Definition 2.5. (
∏PoRep

) A general PoRep proving scheme
∏PoRep

= (Setup,Prove,Verify) is a set of algo-
rithms that together enable a prover P to convince a verifier V that P is storing a replica RD of data D. No
two replicas RDi , RDj can be deduplicated into the same physical storage; they must be stored independently.
The three algorithms are:

• RD,SP ,SV ← PoRep.Setup(1λ,D), where SP and SV are scheme-specific setup variables for P and V
respectively, that depend on the data D, and on a security parameter λ. PoRep.Setup is used to initialize
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the proving scheme and give P and V information they will use to run PoRep.Prove and PoRep.Verify.
Some schemes may require either party to compute PoRep.Setup, require it to be a secure multi-party
computation, or allow any party to run it.

• πc ← PoRep.Prove(SP ,RD, c), where c is a challenge, and πc is a proof that a prover has access to RD a
specific replica of D. PoRep.Prove is run by P to produce a πc for V.

• {0, 1} ← PoRep.Verify(SV , c, πc), which checks whether a proof is correct. PoRep.Verify is run by V and
convinces V whether P has been storing RD.

A PoRep must be complete and secure. In addition, PoRep schemes can be designed to have any of the
properties described above in Section 1.1.

• (complete) if any honest prover P that stores a replica of D can always produce valid proofs that convince
a verifier V;

• (secure) if it can pass RepGame.

2.1 Time Bounded Proofs-of-Replication

There are likely to be many different strategies for constructing Proof-of-Replication protocols. Any secure
construction must prevent the Sybil Attack, the Outsourcing Attack, and the Generation Attack and must
pass the RepGame. Some protocols may be able to rely on trusted hardware while others may rely on time
bounding. In this work, we are interested in creating constructions that can be deployed to existing systems
and do not rely on trusted parties. We give a construction for time-bounded PoReps, which can be instanti-
ated using any PDP or PoRet scheme, do not rely on trusted parties, and rely only on local time from the
verifier’s perspective. This construction is adaptable to Decentralized Storage Networks, a publicly verifiable
setting.

Intuition for preventing the Sybil Attack. Ensuring independent physical storage of n copies of D is
similar to ensuring the storage of n different sets of data from which we can derive D. We can treat each
independent physical copy differently, force a prover P to commit to a specific encoding of D ahead of time,
and check P is storing that specific encoding instead. More formally, we define a replica of D to be an
encoding using a per-replica encoding key ek: RDek = Encode(D, ek). Encodings must be distinguishable
(RDeki 6= R

D
ekj

when eki 6= ekj) and incompressible. In order to recover D, the encoding must be reversible:

D = Decode(RDek, ek). Creating n different replicas, each with encoding key eki for replica i ∈ 0...n, forces
any number of Sybil identities or colluding participants to prove each of those n replicas existed when pro-
ducing a valid proof.

Intuition for preventing the Outsourcing and Generation Attacks We must still ensure that provers
cannot get the replica just-in-time (between receiving the challenge c and producing the proof πc), either
by retrieving it from outsourced storage or by producing it by encoding D. To achieve this, we can simply
make attackers be distinguishably slower than an honest prover responding to a challenge. Computing
Encode(D, ek) must take a distinguishable amount of time, such that a verifier, V, can distinguish between:

(a) T honest = RTTV→P→V + Time(PoRep.Prove(SP ,RDek, c))
(b) T attack = RTTV→P→V + Time(PoRep.Prove(SP ,Encode(D, ek), c))

where RTTV→P→V is the round-trip time from V to P and back to V. For an attacker running Encode
just-in-time to be distinguishable from a slow or unlucky but honest prover, computing Encode must run
distinguishably slower than acceptable variance in RTTV→P→V and PoRep.Prove(SP ,RDek, c). From the per-
spective of V, the wall clock running time of P computing Encode(D, ek) must be noticeable. Statistical
estimation of RTT and PoRep.Prove to determine the acceptable variance can give a lower bound on the
amount of time required. This may be required in systems where variance in RTT and PoRep.Prove do
not dominate the time required for the proving step, but rather their minimums do (e.g. proofs across the
interplanetary internet, or collocated in a datacenter). For distributed systems across Earth, we assume
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variance in RTT to dominate, and to establish a significant bound we set the minimum time of Encode
T Encode = 10 × T honest or 100 × T honest. As long as verifiers can clearly distinguish T honest << T attack we
defeat both the Outsourcing and Generation Attacks.

Intuitions for Encode. The remaining question is what function should Encode be? We have explored some
of the requirements: (a) it must be slow enough to distinguish T honest << T attack; (b) it must be reversible;
(c) the output should be determined from an encoding key; and (d) information should not be compress-
ible across replicas. Additional design goals follow: (a) Decode should allow fast recovery of D, ideally the
running time of Decode grows sub-linearly in respect to Encode; (b) Encode’s running time should scale
arbitrarily with a tunable parameter; (c) Encode should be publicly verifiable, so that anybody, including P,
can verify it; (d) Encode should use all of D multiple times before finishing, so that a partial replica cannot
be computed from partial D, which would affect timing assumptions; (e) Encode should support high-entropy
encoding keys; and (f) a slight variation (single bit flip) in the encoding key should change the encoding
completely. What we need is a PRP (pseudo-random permutation) that matches our desires.

Slowable PRPs. It is easy to construct a PRP that can be slowed down arbitrarily by using a block cipher
(BC) in cipher block chaining (CBC) mode. The following three variations of CBC sequentially increase in
complexity to achieve the desired properties:

• (streaming) We simply run a modified version of CBC.Encrypt that encrypts each block τ times before
moving on to the next. This slows down the encryption by a factor of τ , making it run in O(nτ) time,
where n is the size of the input data. Note that encryption is still sequential; this is important to slow down
encryption cheaply, in that decryption is still parallelizable (O(nτ) time, with up to τ parallelization),
which speeds up recovery of the original data and allows random reads. The only issue with this scheme
is that it is depth-first : it computes and outputs each cipher text block before reading the next input
block (i.e. streaming process). This makes it possible to encrypt having only a partial input file, and to
start using the encrypted output after each iteration, significantly lowering the slow-down.

• (shuffling). To fix the issues with the streaming scheme above we can try some random shuffling: before
and after starting CBC.Encrypt, apply a random shuffle that is likely to disperse information across all
the blocks, making it impossible to use sequential segments on an encrypted block until the whole data
is encrypted. This also affects decryption, as a decryptor must have the entire file and de-scramble it
before running the streaming and parallelizable CBC.Decrypt.

• (layering) Another version runs all of CBC.Encrypt for τ iterations, taking the output of the last iteration
as the input of the next, making sure to chain across iterations. This chaining preserves the sequential
property of CBC encryption: the last cipher block of iteration τ − 1 is chained with the first block
of iteration τ . This sequentiality ensures the encryption cannot be parallelized. The running time of
CBC.Encrypt is still O(nτ) and CBC.Decrypt is still parallelizable (O(nτ) with up to τ parallelization),
but requires decrypting in whole layers before recovering any plaintext.

We can make any of these constructions publicly verifiable without the data (cheaply) by computing them
within a SCIP scheme (SNARKs, STARKs) [7, 4, 3, 2]. Doing this would be expensive, and it is likely
primitives used in SCIP scheme constructions can be used directly in a cheaper way. We believe this is an
open problem.

Definition 2.6. (Seal) We define a pair of encoding functions Seal and Unseal, inverses of each other, and
parametrized over any secure block cipher algorithm BC and number of rounds t:

SealτBC(ek,D) := BC.CBC.Encryptτ (ek,D)

UnsealτBC(ek,RDek) := BC.CBC.Decryptτ (ek,RDek)

where BC.CBC.{Encrypt,Decrypt} are the Encrypt,Decrypt functions of BC in CBC mode; τ is the number of
encryption rounds to perform, which is chosen to slow down Seal; and {Encryptτ ,Decryptτ} is the recursive
application of Encrypt or Decrypt for τ iterations, where the last cipher block of each iteration is chained
back onto the first block of the following iteration, ensuring that the entire encryption is sequential.
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With SealτBC and any existing PDP or PoRet scheme, we can construct a time bounded PoRep scheme, where
the proofs prove that the storage of a specific replica is encoded with SealτBC. The scheme is time bounded
because the proofs only prove possession of the replica at the time of the challenge if they are produced by
P and checked by V in less time than the running time of SealτBC.

Definition 2.7. (
∏SealPoRep

) A time-bounded Seal-based PoRep proving scheme
∏SealPoRep

= (Setup,Prove,
Verify) is a set of algorithms that together enable a prover P to convince a verifier V that P is storing
independent replica RDek of data D, where RDek = SealτBC(ek,D) for some encoding key ek, a secure block
cipher BC, and a timing parameter τ . These algorithms rely on another Proof-of-Storage proving scheme∏PoS

, which is used internally to prove storage of the replica, and may be either a PDP or PoRet scheme.
The three algorithms are:

• RDek, ek ← SealPoRep.Setup(1λ, τ,D) where ek is an encoding key unique to a single setup. ek may be
chosen randomly, or derived from the identity of P and a unique replica number. SealPoRep.Setup is used
to initialize the proving scheme: to choose an encoding key ek, to compute RDek = SealτBC(ek,D), and to
compute PoS.Setup(1λ,RDek), all of which P and V will use to run SealPoRep.Prove and SealPoRep.Verify.
With a publicly verifiable SealτBC, any party can run the setup, even P. The τ timing parameter must be
chosen such that running SealτBC is distinguishibly more expensive than just proving and verifying.

• πc ← SealPoRep.Prove(RDek, c) where c is a challenge, and πc is a proof that a prover has access to RDek.
SealPoRep.Prove computes πc = PoS.Prove(RDek, c). It is run by P.

• {0, 1} ← SealPoRep.Verify(c, πc) which checks whether a proof is correct. SealPoRep.Verify internally
computes {0, 1} ← PoS.Verify(c, πc). It is run by V, and convinces V whether P has been storing RDek

3 Proofs-of-Spacetime

Usually, most PoS and PoSpace schemes are described in terms of interactive challenge settings, where a
verifier V issues single or periodic challenges to a prover P. Unpredictable yet frequent challenges can give V
confidence that P has been correctly storing the required data D for the duration of time challenged. These
challenges must be frequent and unpredictable, as too infrequent or predictable challenges could give P a
chance to cheat by retrieving D (from other outsourced storage or from a secondary market) in advance of
V’s challenge. V’s confidence increases with the frequency of challenges. This is a useful way for a Cloud
Storage client (V) to ensure a particular service (P) is correctly storing the client’s data over time. However,
these interactive checks require the clients to be online and spend bandwidth and computation resources
during all challenges.

Time-bounded PoReps could allow the time intervals to be large, as the Seal function can be scaled to be
significantly larger than the maximum desired time between intervals. Yet, this would not obviate the need
for periodic challenges; many challenges would still be needed over long periods of time, and these would
require V to be online and spending resources to perform them. In both Cloud Storage and Decentralized
Storage Network settings, it would be quite useful to allow clients to check proofs infrequently, perhaps
coupled with other necessary accesses, such as retrieving D. It would also be useful to have an auditable
record that shows P has been behaving correctly – storing D – for the entire duration of time. This record
could even be time-stamped into public ledgers such as blockchains.

Chaining Sequential Proofs. We can construct a sequence of challenges and proofs where the challenge
at iteration n (cn) is derived deterministically from the proof at iteration n− 1 (πn−1). Let a proof-chain be
these sequential challenges and proofs stored together, for a verifier to inspect all at once. Note that every
proof must be correctly produced; if any proof fails to verify, the whole chain fails to verify.

Definition 3.1. (proof-chain) A proof-chain is a verifiable data-structure that chains together a sequence of
challenges and proofs. For iteration n, let cn be a challenge, πn be a proof for cn, and Cn be the proof-chain
formed by extending Cn−1 with πn. Given a proof scheme with functions (Prove, Verify), randomness r,
and a collision resistant hash-function (CRH) H; we can construct the data structure and verify it with
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VerifyChain, according to the following rules:

• c0 ← H(r)

• cn ← H(n||πn−1)

• πn ← Prove(cn)

• C0 ← (c0, π0)

• Cn ← (Cn−1, πn)

• {0, 1} ← VerifyChain(C0) = Verify(c0, π0)

• {0, 1} ← VerifyChain(Cn) = VerifyChain(Cn−1) & Verify(cn, πn)

Time and proof-chains. Such a proof-chain would be a verifiable record of a prover producing proofs
over a duration of time. There are schemes with predictable computation time, where a verifier V can know
how long it takes a prover P to produce each iteration (i.e. with some well-known and bounded variance).
Using such schemes, V could ask P to begin producing a chain at time t0. At a future time tn, V can
ask P to return the chain, which should contain as many entries as can be computed within the interval
tn → t0. If the chain passes verification, V knows that P has spent that interval of time (t0 → tn) pro-
ducing the proof chain. This also implies P has been storing D, or at least has had sufficiently fast access
to D, during the entire interval. V can have the same degree of confidence as with a sequence of online
PoS challenges. Since producing the proof-chain is a sequential process, with parallelization only possible
in the proof algorithm itself, P need only provide enough processing power to compute a single proof at a
time, and P cannot spend more computation resources in parallel to speed up the process and cheat the ex-
pectations. The nth iteration of the proof-chain has similar guarantees as an equivalent online PoS challenge.

Reducing disk accesses and time variance. The process of computing such a proof-chain would force
a prover P to be constantly running a PoS proving process, which may require significant computation re-
sources and disk accesses. This should not be a task too onerous for most modern computers to perform.
However, some use-cases may need to reduce the amount of disk accesses, or to reduce the variance in the
time required to compute each iteration of the proof-chain. To do so, we can adjust the chaining scheme
to run some additional sequential computation when deriving the next challenge. This computation can be
tuned to have the desired properties: low time variance, no disk accesses, CPU bounded, memory bounded,
storage bounded, etc. For example, the Sloth hash function [9] is arbitrarily scalable in time, is CPU bounded,
has low time variance, and makes zero disk accesses. The Balloon hash function [5] is arbitrarily scalable in
time, is memory bounded, has low time variance, and makes zero disk accesses. These are only two examples
of sequential processes with predictable running times can be used to tune the properties of the proof-chain
computation.

Proof-chains and spacetime. The creation of this sequential proof-chain of PoS or PoSpace proofs im-
plies that a specific amount of space was kept occupied storing data D for a specific duration of time. In
other words, a slice of spacetime was committed to storing the relevant data D. Hence we call this chaining
of sequential proofs a Proof-of-Spacetime (PoSt). These proofs are inherently time-bounded, in that a PoSt
proof for a duration of time t is only valid if verified shortly after, but the chain can be extended arbitrarily.
The only bound is the variance in the time to compute each iteration. The variance of computing the whole
PoSt proof-chains must be low enough to have confidence over the time interval.

PoSt to the blockchain. The sequential PoSt proof-chains can get arbitrarily long when involving time-
stamping services – such as the Bitcoin blockchain. Given a time-stamping service trusted by both P and V,
P can periodically time-stamp the head of the proof-chain (creating a checkpoint), effectively anchoring the
proof-chain in time. This can happen while V is offline. In the future, V can decide to audit the proof-chain
and its time-stamped checkpoints, and verify that P correctly produced the proof-chain during the right
intervals of time.
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Definition 3.2. (
∏PoSt

) A general PoSt proving scheme
∏PoSt

= (Setup,Prove,Verify) is a set of algorithms
that together enable a prover P to produce an incremental time-bounded proof-chain Cn which proves to
a verifier V that P has been storing data D during iterations 0 → n of the proof-chain. The proof-chain
must be periodically checked or time-stamped. These algorithms rely on a Proof-of-Space (PoSpace) proving

scheme
∏PoSpace

, which may also be a Proof-of-Storage scheme (
∏PoS

). The three algorithms are:

• D, c0,SP ,SV ← PoSt.Setup(1λ,D) where c0 is an initial random challenge not controlled by P, SP and
SV are scheme-specific setup variables for P and V respectively, that depend on the data D, and on a
security parameter λ. PoSt.Setup is used to initialize the proving scheme and give P and V information
they will use to run PoSt.Prove and PoSt.Verify. Some schemes may require either party to compute
PoSt.Setup, require it to be a secure multi-party computation, or allow any party to run it.

• Cn+1 ← PoSt.Prove(SP ,D, Cn) where Cn and Cn+1 are proof-chains that prove P had access to D up to
iterations n and n+1 respectively. PoSt.Prove is run by P to produce each proof-chain iteration, extending
the chain with the next proof (πn+1), as computed by PoSpace.Prove. Note that the challenges and proofs
are computed according to the proving scheme and the proof-chain construction. The proof-chain and
its proofs will later be checked by V.

• {0, 1} ← PoSt.Verify(SV , Cn) which checks whether proof-chain is correct, by verifying every iteration’s
proof with PoSpace.Verify. PoSt.Verify is run by V and convinces V whether P has been storing D during
iterations 0→ n.

4 Realizable Constructions (TODO)

4.1 Realizable time-bounded Proof-of-Replication

SealPoRep with SealτAES−256, and τ such that SealτAES−256 takes 10-100x the honest prover/verifier time.

4.2 Realizable useful Proofs-of-Spacetime

A PoSt with the PoRep from 5.1, checked or time-stamped frequently (into a blockchain).
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