

Three.js Essentials

Create and animate beautiful 3D graphics with
this fast-paced tutorial

Jos Dirksen

BIRMINGHAM - MUMBAI

Three.js Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Production reference: 1300614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-086-4

www.packtpub.com

Cover image by Suyog Gharat (yogiee@me.com)

Credits

Author
Jos Dirksen

Reviewers
Samrat Ambadekar

Chris "2pha" Brown

Justin Tolman

Commissioning Editor
Ashwin Nair

Acquisition Editor
Rebecca Pedley

Content Development Editor
Akshay Nair

Technical Editors
Taabish Khan

Pooja Nair

Copy Editors
Sarang Chari

Gladson Monteiro

Project Coordinator
Lima Danti

Proofreaders
Maria Gould

Ameesha Green

Indexers
Mehreen Deshmukh

Tejal Soni

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

About the Author

Jos Dirksen has worked as a software developer and architect for more than a
decade. He has quite a lot of experience in a large range of technologies that range
from backend technologies, such as Java and Scala, to frontend development
using HTML5, CSS, and JavaScript. Besides working with these technologies, he
also regularly speaks at conferences and likes to write about new and interesting
technologies on his blog. He also likes to experiment with new technologies and
see how they can be best used to create beautiful data visualizations, the results of
which you can see on his blog at http://www.smartjava.org/.

Jos currently works as an enterprise architect for Malmberg, a large Dutch publisher
of educational material. He helps to create a new digital platform for the creation and
publication of educational content for primary, secondary, and vocational education.
Previously, he worked in many different roles in the private and public sectors,
ranging from private companies such as Philips and ASML to organizations in the
public sector, such as the Department of Defense.

Jos has already written a book on Three.js named Learning Three.js: The JavaScript 3D
Library for WebGL, Packt Publishing, which is an in-depth description of all the features
Three.js provides. Besides his interest in frontend JavaScript and HTML5 technologies,
he is also interested in backend service development using REST and traditional web
service technologies. He has already written two books on this subject. He is the
co-author along with Tijs Rademakers of Open-Source ESBs in Action, Manning
Publications, an action book that was published in 2008. In 2012, he published a book on
how to apply SOA Governance in a practical manner, titled SOA Governance in Action,
Manning Publications.

Acknowledgment

Writing a book isn't something you do by yourself. A lot of people have helped
and supported me when I was doing this, and my special thanks go out to the
following people:

•	 All the guys from Packt Publishing who have helped me during the writing,
reviewing, and laying out part of the process. Great work guys!

•	 I, of course, have to thank Ricardo Cabello, also known as Mr. dò_ób,
for creating the great Three.js library.

•	 Many thanks go to the reviewers. They have provided me with great
feedback and comments that really helped me improve the book;
their positive remarks have really helped me shape the book!

And, of course, I'd like to thank my family. I'd like to thank my wife, Brigitte, for
supporting me and my two girls, Sophie and Amber, who can always find reasons
to pull me away from the keyboard and computer.

About the Reviewers

Samrat Ambadekar is a user experience and interaction designer based in
California, U.S. He holds a Master's degree in Human Computer Interaction from the
Georgia Institute of Technology, Atlanta. He has more than five years of experience
as a designer and a developer. His work and interests span across interaction design,
interactive environments, augmented reality, and information visualization. You can
track him at www.samratambadekar.com.

Chris "2pha" Brown is a web and Drupal developer based out of Brisbane,
Australia. He has been dabbling with 3D from around 2003 when he started making
custom characters and mods for Unreal Tournament 2003. Since then, he has kept
his 3D skills up to date by occasionally working on both personal and professional
3D projects. After completing a multimedia degree in 2007, he went into a Flash
developer role where he discovered Papervision3D, which allowed his 3D creations
to be visualized on the Web via Flash. With new tools and technologies such as
HTML5 and Three.js becoming more popular and widespread, he has incorporated
these into his 3D/web workflow. When not creating awesome stuff with Drupal,
Three.js, and 3D, he can be found trying to get a knee down on his bike or sitting
on a beach in Thailand. You can keep up to date with him at www.2pha.com.

Justin Tolman currently works as a contract-based web and mobile developer in
Boise, Idaho. Programming and electronics have interested him since childhood. He
started building websites in 2005 and has worked with WebGL and Three.js since
2011. On the mobile side of things, he has written native applications for Android
and iOS devices. His favorite operating system is Linux. He has trouble deciding
between Firefox and Chrome, so we'll just say that his favorite browser is not Internet
Explorer. He has also dabbled in robotics and automation. He has done technical
support work for a US Defense contractor, and is a former military intelligence
cryptographer and linguist for the US Army.

In addition to his experience with a wide range of technologies and a variety of
programming languages, Justin also has a keen interest in human languages. He is
a native English speaker, is fluent in Thai, and has also studied Laotian, Spanish,
and Arabic. In his spare time, he enjoys reasoning puzzles and games, reading,
and outdoor activities. He has a scuba diving certification and is a member of Mensa.

I would like to thank the developers and contributors of Three.js for
creating a great library of tools for 3D on the Web.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Chapter 1: Get Up and Running with Three.js	 7

Introducing Three.js	 8
Looking at the requirements for Three.js	 9
Setting up a local development environment	 11

Getting the source code	 11
Setting up a local web server	 12

Using Python to run a web server	 13
Using the npm command from Node.js to run a web server	 13
Running a portable version of Mongoose	 14

Creating a minimal Three.js web application	 14
Creating a scene to contain all the objects	 15
Adding a mesh created from geometry	 18

What are vertices?	 20
Combining vertices into faces	 21

Enhancing the basic scene	 22
Adding easy controls with the dat.GUI library	 22
Add a statistics element to show the frame rate	 24

Debugging the examples in this book	 25
Using console logging for debugging	 25
Looking at objects with breakpoints in Chrome	 27

Summary	 28
Chapter 2: Creating a 3D World Globe and Visualizing Open Data	 29

Setting up the globe and camera controls	 30
Adding basic textures to the globe	 32
Adding directional and ambient lighting	 35
Combining with a starry background	 37

Table of Contents

[ii]

Improving the look with more advanced textures	 41
Using a normal map to simulate elevations	 42
Using a specular map to define the reflectivity of an area	 43

Adding 2D information using HTML canvas as a texture	 44
Summary	 49

Chapter 3: Navigate around a Randomly Generated Maze	 51
The result we're aiming for in this chapter	 52
Creating the maze	 53

Generating a maze layout	 53
Converting the layout to a 3D set of objects	 54

Animating the cube	 56
The standard Three.js rotation behavior	 57
Creating an edge rotation using matrix-based transformation	 58
Using Tween.js to add an animation	 59

Setting up collision detection	 61
Selecting objects	 62
Detecting collisions	 63

Adding textures and improving the lighting	 65
Adding a repeating texture	 66
Setting up the light sources	 67

Adding trackball and keyboard controls	 69
Adding trackball controls to the camera	 69
Configuring keyboard controls	 70

Summary	 72
Chapter 4: Visualizing Audio Data with a Particle System	 73

Visualizing the audio volume	 75
Setting up the HTML5 Web Audio API	 76
Creating a particle system	 77
Playing a sound and animating the particle system	 80

Creating a particle system by hand	 82
Web Audio's configuration and the render loop	 83
Creating waves with a custom geometry	 84

Customizing colors of individual particles	 87
Coloring individual particles	 88
Coloring the particles based on the amplitude	 90

Combining dynamic colors to create advanced visualizations	 92
Setting up the initial particle system	 93
Calculating volumes for each range	 93
Determining particles that need to be updated and setting the height
and color of an individual particle	 94

Summary	 96

Table of Contents

[iii]

Chapter 5: Programmatic Geometries	 97
Creating a 3D terrain from scratch	 98

Generating a terrain with Math.random()	 98
Generating a terrain with a Perlin noise	 104
Adding a texture	 107
Creating a JavaScript object with a constructor	 111

Creating a city from scratch	 113
Creating parametric trees	 119
Summary	 123

Chapter 6: Combining HTML and Three.js with CSS3DRenderer	 125
Setting up a CSS3DRenderer skeleton	 126
Creating an interactive 3D Google Maps cube	 129

Displaying a part of Google Maps using HTML	 130
Positioning and rotating the element	 132

Animating HTML elements with TweenJS	 136
Using images as the input	 136
Setting up the animations	 138

Determining the target position and rotation	 139
Configuring TweenJS to run the animation	 139

Creating a parametric terrain using CSS sprites	 143
Creating a 3D terrain using sprites	 144
Animating the terrain with TweenJS	 145

Summary	 147
Chapter 7: Loading and Animating External Models
Using Blender	 149

Installing Blender and the Three.js plugin	 150
Downloading and installing Blender	 150
Installing the Three.js plugin	 151
Enabling the Three.js plugin	 152

Exporting a model from Blender and showing it in Three.js	 153
Exporting the model	 154
Loading the model and showing it in Three.js	 156

Using Blender's predefined materials in Three.js	 157
Setting up a Blender material	 158
Setting up UV mapping in Blender	 160
Exporting and rendering in Three.js	 162

Working with skeletal-based animations in Three.js	 164
Exploring the model and exporting it to Three.js	 164
Loading and animating the model in Three.js	 166

Working with morph-based animations in Three.js	 168

Table of Contents

[iv]

Exploring the model and exporting it to Three.js	 169
Loading and animating the model in Three.js	 171

Summary	 174
Index	 177

Preface
Web development has been changing a lot in the last couple of years. JavaScript
libraries have matured, browsers have become more powerful, and the HTML5 spec
is well supported on most systems. Currently, though, the Web mostly focuses on 2D
to represent information, create games, and build websites. There is also, however, a
great and standardized way to create 3D graphics. This is called WebGL; it provides
an API to create hardware-accelerated 3D graphics.

However, the WebGL API isn't very easy to use. It requires you to program in C,
and you really need to have an in-depth knowledge of how WebGL works
internally to work with this API. Luckily though, there are a number of JavaScript
libraries available that hide the complexity of WebGL and provide you with an
easy-to-use API to create 3D applications and visualizations. Currently, the best of
these JavaScript libraries, the one that is explained in this book, is called Three.js.

With Three.js, you're provided with an easy-to-use API and a whole range of
advanced materials and shapes that you can use to access WebGL. In this book,
we'll walk you through the most essential features of Three.js. We do this by
creating some advanced visualizations that cover various parts of the Three.js API.

What this book covers
Chapter 1, Get Up and Running with Three.js, explains how to get the source code and
set up a local environment to get started with the development of Three.js. At the
end of this chapter, you'll have a simple Three.js scene that we will further expand
on in the following chapters.

Chapter 2, Creating a 3D World Globe and Visualizing Open Data, shows how you can
create a rotating 3D globe. While going through this example, you'll learn how to
use materials, how to set up camera controls, and how to enhance your object using
the various available textures. As a bonus, we'll also explain how you can use the
HTML5 canvas as a texture.

Preface

[2]

Chapter 3, Navigate around a Randomly Generated Maze, explains how you can create a
random 3D maze through which you can navigate a cube. In this chapter, we'll show
you how to use animations, lights, and the rotation and position properties.

Chapter 4, Visualizing Audio Data with a Particle System, uses the HTML5 Web Audio
API in combination with Three.js to visualize audio. This chapter shows what you
can do with the particle system from Three.js. It shows this through visualizations of
the waveform, the amplitude, and a 3D histogram.

Chapter 5, Programmatic Geometries, shows an alternative way through which you can
create 3D geometries. Three.js, out of the box, offers a number of standard geometries,
but creating geometries from scratch is also very easy. In this chapter, we'll show you
the various properties you need to configure to correctly set up your own geometries.
We do this by creating a programmatic terrain and a programmatic tree.

Chapter 6, Combining HTML and Three.js with CSS3DRenderer, explains how to use
CSS3DRenderer to apply a 3D transformation to HTML elements. We'll show a
couple of examples that explain what is possible with CSS3DRenderer and how
to use it to animate any HTML element.

Chapter 7, Loading and Animating External Models Using Blender, shows how you can
load and display models created by external 3D modeling programs. This chapter
will also show you a Blender-based workflow that explains how you can model your
geometries in Blender and then show and animate these models through Three.js.

What you need for this book
Three.js doesn't have any special requirements. All you need for this book is a
text editor and a modern web browser. Some examples run better with a local
web browser or require you to disable some security sessions. The steps you
need to take to accomplish this are explained in the first chapter of this book.

Who this book is for
This book is for developers who already know JavaScript and want to get
acquainted with Three.js. Through the examples in this book, you'll quickly learn
the most essential parts of Three.js. No special math or WebGL skills are required.
All you need to know is some basic JavaScript and HTML. The examples can be
freely downloaded and no special tools or products are required to run and play
around with the examples. If you want to get started with creating beautiful 3D
visualizations, this book will give you the skills to do that.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We use the position property to determine where the light should be added and
then we add the light to the scene."

A block of code is set as follows:

varcurrentGeometry = create3DTerrain(21, 21, 21, 21, 50);
vartargetGeometry = create3DTerrain(21, 21,21, 21, 50);
var container = new THREE.Object3D();

// for each vertices add a sprite
geometry.vertices.forEach(function(e) {
varcssObject = new THREE.CSS3DSprite(createDiv());
cssObject.position = new THREE.Vector3(e.x, e.y, e.z);
container.add(cssObject);
});

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

varcurrentGeometry = create3DTerrain(21, 21, 21, 21, 50);
vartargetGeometry = create3DTerrain(21, 21,21, 21, 50);
var container = new THREE.Object3D();

// for each vertices add a sprite
geometry.vertices.forEach(function(e) {
varcssObject = new THREE.CSS3DSprite(createDiv());
cssObject.position = new THREE.Vector3(e.x, e.y, e.z);
container.add(cssObject);
});

Any command-line input or output is written as follows:

#git clone https://github.com/josdirksen/essential-threejs

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "From the
Develop menu, you can now enable WebGL through Develop | Enable WebGL."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[5]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand
the changes in the output. You can download this file from the following link:
https://www.packtpub.com/sites/default/files/downloads/0864OS_
ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Get Up and Running
with Three.js

Three.js is an open source JavaScript library that allows you to create and render 3D
scenes directly in your browser. Three.js provides an extensive API for this with a
large set of functions. The online documentation for Three.js, however, is very sparse
and doesn't provide information on how to create complex visualizations. In this
book, you'll learn the essential parts of Three.js by creating a number of extensive
examples so that after reading this book, you'll be able to create these kind of
complex graphics yourself.

Before we dive into the examples that will help you learn the essentials of Three.
js, we first have to set up an environment that you can use to experiment and play
around with. Besides setting up this environment, we'll also introduce a couple of
concepts around which Three.js is built and show some techniques that you can use
if you run into problems. The following topics will be discussed in this chapter:

•	 What is Three.js, and what are its requirements?
•	 Getting access to the source of the examples discussed in this book
•	 Setting up a local environment to experiment with the examples
•	 Creating a minimal Three.js scene
•	 Extending the scene with additional helper libraries for stats, control,

and progress

Let's get started with a quick introduction to Three.js.

Get Up and Running with Three.js

[8]

Introducing Three.js
Three.js is an open source JavaScript library that's been around since 2010 and
allows you to easily create good-looking 3D scenes directly inside your browser. For
rendering, Three.js uses WebGL (http://www.khronos.org/webgl/) if a browser
supports it, and it can fall back to an HTML5 canvas or an SVG approach if WebGL
isn't supported.

Creating 3D scenes using WebGL directly (or using a canvas) is very hard. Three.js
provides an easy-to-use API to create and manipulate 3D objects and scenes without
having to know too much about WebGL or complex math formulas. The following
screenshot shows a Three.js-based game that even runs on mobile browsers (http://
helloracer.com/racer-s/):

A lot of information about Three.js can be found online at the main Three.js site,
http://threejs.org. For an extensive reference guide, you can also look at
Learning Three.js: The JavaScript 3D Library for WebGL, Jos Dirksen, Packt Publishing.

In the next section, we'll look at the requirements for Three.js to work.

Chapter 1

[9]

Looking at the requirements for Three.js
Three.js is a 100 percent JavaScript library and hasn't got any dependencies to other
libraries, so it can run completely in a standalone manner. To get the most out of Three.
js, however, you need a browser that supports the WebGL standard. Luckily though,
most modern browsers on desktop and mobile currently support this standard. The
following table provides an overview of the supported desktop browsers:

Browser Description
Internet Explorer Supports WebGL from version 11. For older

versions, you can use the IEWebGL plugin
that adds support for WebGL to IE 9 and IE
10.

Mozilla Firefox WebGL is supported from version 4.
Google Chrome Supports WebGL from version 10.
Safari Supports WebGL from version 5.1 and above

installed on Mac OS X Mountain Lion, Lion,
Snow Leopard, and Maverick.
You might need to explicitly enable WebGL
in Safari by navigating to Preferences |
Advanced, and checking the Show Develop
Menu In Menu Bar option. From the
Develop menu, you can now enable WebGL
through Develop | Enable WebGL.

Opera Supports WebGL from version 12.0. You
still might need to enable this though. Type
opera:config in the address bar. Once
there, set the value for WebGL and Enable
Hardware Acceleration to 1. After this,
restart the browser and WebGL will be
enabled.

As you can see, almost all modern browsers support WebGL. Support and especially
performance on mobile devices, however, is very diverse. The following list shows
the browsers that support WebGL and thus Three.js on mobile devices:

•	 Mozilla Firefox for Android
•	 Google Chrome for Android (you might need to turn it on explicitly)
•	 Opera Mobile
•	 Blackberry Browser

Get Up and Running with Three.js

[10]

Note that performance is dependent on how old your device is and
the OS you're running. It might even be the case that your graphics
card might be blacklisted (http://www.khronos.org/webgl/
wiki/BlacklistsAndWhitelists).

Generally speaking, support on mobile Android devices, especially the modern
ones, is pretty good. The following screenshot, for instance, shows how one of the
examples from this chapter runs on Firefox for Android on a Samsung Galaxy S3.

Note that as iOS doesn't support WebGL (yet), most of the examples
from this book won't run on iOS devices because we will use the
WebGL renderer provided by Three.js. Three.js also provides an HTML5
canvas and an SVG renderer that do work on iOS but with rather bad
performance. A subset of Three.js's functionalities is provided by the
CSS3D renderer, which is explained in Chapter 6, Combining HTML and
Three.js with CSS3DRenderer, and which runs really well on mobile devices.

Chapter 1

[11]

Setting up a local development
environment
The easiest and fastest way to learn Three.js is by playing around with the examples
in this book. In this section, we'll have a quick look at how you can get the source code
for this book and set up a local web server to easily test and extend the examples.

Getting the source code
There are two different ways in which you can get the source code for this chapter.
You can download them directly from the Packt website at http://www.packtpub.
com/support, or you can get the code directly from the GitHub repository. For the
first approach, point your browser to the specified URL, download the source code,
and extract the .zip file into a directory of your choice.

When you want to get the source code directly from GitHub, first make sure
you've got Git installed. A good manual on how to install Git for various operating
systems can be found online at http://git-scm.com/book/en/Getting-Started-
Installing-Git. After you've installed Git, all you have to do is run the following
command from the command line:

git clone https://github.com/josdirksen/essential-threejs

This will download all the source code to the directory you're currently in and show
an output that looks something like the following code:

Cloning into 'essential-threejs'...

remote: Reusing existing pack: 8, done.

remote: Counting objects: 36, done.

remote: Compressing objects: 100% (21/21), done.

remote: Total 44 (delta 6), reused 0 (delta 0)

Unpacking objects: 100% (44/44), done.

Checking connectivity... done

Get Up and Running with Three.js

[12]

Now, you'll have a directory where all the source code can be found as shown in the
following screenshot:

You could open the files directly in your browser, but for the complex examples in
the following chapters, where resources are loaded asynchronously, this approach
won't work. To make sure all the examples work, the best thing to do is set up a local
web server.

Setting up a local web server
Setting up a local web server is fairly straightforward. In this section, we'll explore
the following three different approaches:

1.	 A Python-based approach for those who have Python installed.
2.	 If you're a Node.js developer or have played around with it, you can use

the npm command.
3.	 If the previous two approaches don't work for you, you can always install

Mongoose, which has a portable version for Mac and Windows.

Let's start by looking at the Python-based approach.

Chapter 1

[13]

Using Python to run a web server
The easiest way to check whether you've got Python installed is by just typing
python on the command line. If you see something like the following output, you've
got Python installed, and you can use it to run a simple web server:

> python

Python 2.7.3 (default, Apr 10 2013, 05:09:49)

[GCC 4.7.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

All you need to do to run a simple Python-based web server is type the following
code on the command line:

> python -m SimpleHTTPServer

The output will be as shown in the following snippet:

Serving HTTP on 0.0.0.0 port 8000...

This will start a web server on port 8000, which allows you to access all the files from
the directory where you've run this command.

Using the npm command from Node.js to run a web
server
Alternatively, if you haven't got Python installed, you can check whether the npm
package manager from the Node.js distribution is available by just typing the
following command on the command line:

> npm

If the output is as shown in the following snippet, then you can use the npm-based
approach:

Usage: npm <command>

...

In this approach, you can run a web server that serves the files from the directory
you're in, using the following command:

> npm install -g http-server

Get Up and Running with Three.js

[14]

After installing the web server, you can start it using the following command:

> http-server

Starting up http-server, serving ./ on port: 8080

Hit CTRL-C to stop the server

If both the scenarios discussed so far fail, you can also opt to download a portable
web server directly.

Running a portable version of Mongoose
You can download Mongoose, a portable web server, from https://code.google.
com/p/mongoose/downloads/list. In Windows, you can just copy the downloaded
executable to the folder where you've put the source code files and double-click
on the executable to launch the web server. For other platforms as well, copy the
file to the directory that contains the source code files. However, you can't run the
executable directly; you must start it from the command line. Once started, your web
server will be up and running on port 8080.

There is a final alternative if you're not able to install a local web server.
You can open the files directly from the browser (or drag-and-drop them
in the browser window). For a lot of examples, this will work directly;
however, once textures or other features that require the loading of
external resources are required, this approach will stop working because
of browser security settings. It is possible to change this security policy so
that the examples that use those features also work. A good explanation
on how to do this is shown in the Three.js website at https://github.
com/mrdoob/three.js/wiki/How-to-run-things-locally.

Creating a minimal Three.js web
application
At this point, you'll have the source code and a locally running web server. Now,
let's look at the basics of Three.js to prepare you for the examples in the following
chapters. In this section, we'll introduce you to a basic Three.js scene and the basic
building blocks.

Chapter 1

[15]

Creating a scene to contain all the objects
Let's start with a minimal Three.js scene where we'll show you the following:

•	 How to include the correct libraries
•	 How to create a THREE.Scene object
•	 How to add a THREE.Camera object
•	 How to set up a render loop

The source code that the following example refers to is the 01.01-basic-scene.
html file. The first thing that we need to do is include the Three.js JavaScript library.
This is described in the following code:

<head>
 <script src="../libs/three.js"></script>
</head>

Here, we include the three.js library from the libs folder. This library also comes
in a minified version (the three.min.js library), which you can also use and which
downloads faster. In our examples, we use the normal one as it makes debugging
inside the included Three.js file much easier.

Now, we can add the script tag to the HTML page where we will add our Three.js
code. This is described in the following code:

<script>
 // code
</script>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Now, let's look at what we need for JavaScript to set up a minimal Three.js web
application. The first thing we do inside the script tag is set up a couple of global
variables, which we'll explain later. This setup is described in the following code:

// global variables
var renderer;
var scene;
var camera;

Get Up and Running with Three.js

[16]

Next, we'll look at the init() function that we'll use to initialize the Three.js library
once the complete document is loaded. This is described in the following code:

function init() {
 // Three.js initialization code
}

window.onload = init;

With the window.onload function, we tell the browser to call the init() function
when the document is loaded. The init() function itself looks like as described in
the following code:

function init() {
 scene = new THREE.Scene();

 renderer = new THREE.WebGLRenderer();
 renderer.setClearColor(0x000000, 1.0);
 renderer.setSize(window.innerWidth, window.innerHeight);
 renderer.shadowMapEnabled = true;

 camera = new THREE.PerspectiveCamera(
 45, window.innerWidth / window.innerHeight, 0.1, 1000);
 camera.position.x = 15;
 camera.position.y = 16;
 camera.position.z = 13;
 camera.lookAt(scene.position);

 document.body.appendChild(renderer.domElement);
 render();
}

In the previous fragment of code, we created three basic Three.js objects. First, we
created a THREE.Scene object. This object is the container that will hold all the objects
we want to render. Next, we created a THREE.WebGLRenderer object. This is the Three.
js object that we'll use to render the created THREE.Scene object. Finally, the THREE.
PerspectiveCamera object determines what we see. The last call of the init()
function is a call to the render() function, which is shown in the following code:

 function render() {
 // render using requestAnimationFrame
 renderer.render(scene, camera);
 requestAnimationFrame(render);
}

Chapter 1

[17]

In this function, you can see that we use the renderer.render() function to visualize
the scene using the camera. In this function, we also use the requestAnimationFrame
function to set up a render loop. With the requestAnimationFrame function, we tell
the browser to determine when it thinks it is best to call the supplied function (the
render function in this case). This way, we can offload the graphical rendering of the
scene from the normal JavaScript thread; this provides a much smoother experience
and better performance.

As you can probably guess, when we open this example (the 01.01-basic-scene.
html file) in the browser, the result is still just a black screen. This is because we don't
have any objects and any light in the scene yet. This is seen in the following screenshot:

Even though this is just a black scene, this is the minimal Three.js skeleton you
can create.

In the next section, we'll make the scene a bit more interesting by adding a ground
plane, a cube, and a light.

Get Up and Running with Three.js

[18]

Adding a mesh created from geometry
Now that we've got our basic scene set up, we'll add the elements to be
rendered. In this section, we'll create the scene shown in the following screenshot
(the 01.02-simple-mesh.html file):

In the previous screenshot, you can see a simple cube that is rendered on top of a
square floor. In the following couple of code fragments, we'll show you how to do
this. The first thing we do is add the cube. This is described in the following code:

var cubeGeometry = new THREE.CubeGeometry(6, 4, 6);
var cubeMaterial = new THREE.MeshLambertMaterial({
 color: "red"
});
var cube = new THREE.Mesh(cubeGeometry, cubeMaterial);
cube.castShadow = true;
scene.add(cube);

Now, the first thing we need to do is create the shape and the geometry of the cube.
We do this by creating a new THREE.CubeGeometry object where we specify the
width, the height, and the depth of the cube. Now that we have the shape, we must
also specify a material. This material is used to determine how an object will react
to the light sources in the scene. For instance, you can use it to determine its color,
reflectivity, whether it's transparent, and much more. In this example, we will create
a THREE.MeshLambertMaterial object and set the cube's color to red.

Chapter 1

[19]

We'll discuss materials in more detail in the next chapter. For now, it's enough to
know that a material requires a light source to be present in the scene to determine
the color it should show. Now, we need to combine these two components; we
do this by creating a THREE.Mesh object, where we provide the geometry and the
material as arguments. This THREE.Mesh object is then added to the scene as shown
in the previous code fragment.

For the floor plane, we do pretty much the same. Consider the following code:

var planeGeometry = new THREE.PlaneGeometry(20, 20);
var planeMaterial = new THREE.MeshLambertMaterial({
 color: 0xcccccc
});
var plane = new THREE.Mesh(planeGeometry, planeMaterial);
plane.receiveShadow = true;

plane.rotation.x = -0.5 * Math.PI;
plane.position.y = -2;

scene.add(plane);

What is different here is that we set two additional properties of the create THREE.
Mesh object. We set its position in the scene and we set its rotation. The rotation is
needed because normally a THREE.PlaneGeometry object is oriented vertically, and
as we want to have a horizontal plane, we need to rotate it by 90 degrees (which is
0.5*Pi in radians). As you can see in the previous code, we also set its position. If we
don't do this, our ground will cut through half of the cube as the center of the cube is
at the position 0, 0, 0 (because we didn't specify it explicitly). The height of the cube
is 4, so if we offset the position of the ground by 2, the cube will fit in completely.

Now all that is left to do is to add the light and tell Three.js that we want to see
shadows. This is described in the following code:

var spotLight = new THREE.SpotLight(0xffffff);
spotLight.position.set(10, 20, 20);
spotLight.castShadow = true;
scene.add(spotLight);

Get Up and Running with Three.js

[20]

For this scene, we've created a THREE.SpotLight object that works like a spot on
the ceiling or a flashlight. We use the position property to determine where the
light should be added and then we add the light to the scene. To enable shadows,
we must tell Three.js which objects cast a shadow and which objects should receive a
shadow. For this example, it's only useful to show shadows on the ground plane, so
we set the plane.receiveShadow object to true to enable shadow rendering on this
plane. Now, we just need to set the castShadow object to true on the cube and the
light, and we're almost done. Finally, we need to explicitly enable shadow rendering
on the renderer. This is done by setting the renderer.shadowMapEnabled object to
true. With all this code in place, you get the result you've seen in the screenshot at
the beginning of this section.

Before we move on to the next section, we'd like to go one step deeper into two
important concepts of Three.js (or modeling in general): vertices and faces.

What are vertices?
In the later chapters of this book, we'll sometimes mention vertices, so it's good
to understand what we're talking about in that case. A vertex (plural, vertices) is
a single point with an x, y, and z coordinate. When we create a geometry, we're
actually creating a number of vertices that together define the shape of the object.
If we show the vertices for the cube we created earlier, you will get something like
the following screenshot (the 01.03-vertices.html file):

Chapter 1

[21]

Here, each vertex is shown as a small green sphere. So, when we create a THREE.
CubeGeometry object, we actually create eight vertices.

Vertices themselves don't determine the shape of an object. This shape is defined by
how the vertices are connected to one another. This concept is called faces.

Combining vertices into faces
A face in Three.js consists of three vertices that together fill out an area. This area
is called a face. The easiest way to understand this is by looking at the following
screenshot (the 01.04-faces.html file):

Here, you can see that each side of the cube is divided into two faces, and the corners
of each face are defined by a vertex.

Now that you've seen the basic components of a scene and know about faces and
vertices, we'll add some helper elements to the scene to best prepare you for the
more complex examples in the following chapters.

Get Up and Running with Three.js

[22]

Enhancing the basic scene
You can easily experiment with the previous examples by changing the code and
refreshing your browser. In this section, we'll introduce two additional components
that will make experimenting easier and allow you to keep an eye on the
performance of your 3D web application.

Adding easy controls with the dat.GUI library
The first thing that we do is add the dat.GUI library (https://code.google.com/p/
dat-gui/) to our basic scene. Even though this library isn't part of Three.js, we can
use it to easily add a simple UI element that can be used to control some properties
of your scene. For instance, in the following screenshot (the 01.05-controls.html
file), you can use the menu on the top right-hand side of the window to control a
number of properties of the scene:

Adding a control element to our scene is very simple and only requires a couple
of lines of code. First, of course, we need to include the JavaScript dat.GUI library.
This is described in the following line of code:

<script src="../libs/dat.gui.min.js"></script>

Chapter 1

[23]

Next, what we need to do is create a JavaScript object, which you do counter intuitively
in JavaScript by calling the new function(), which contains the values we want to
change using the dat.GUI library. This is described in the following code:

control = new function() {
 this.rotationSpeed = 0.005;
 this.opacity = 0.6;
 this.color = cubeMaterial.color.getHex();
};
addControlGui(control);

The addControl function creates the menu you see on the top right-hand side of the
window. Consider the following code:

function addControlGui(controlObject) {
 var gui = new dat.GUI();
 gui.add(controlObject, 'rotationSpeed', -0.01, 0.01);
 gui.add(controlObject, 'opacity', 0.1, 1);
 gui.addColor(controlObject, 'color');
}

Now, whenever we use the UI to change one of the elements, the value in the supplied
control object also changes. In the render loop that we created, we can update the
corresponding values to reflect the changes in the objects on the screen. This is
described in the following code:

function render() {
 ...
 scene.getObjectByName('cube').material.opacity =
 control.opacity;

 scene.getObjectByName('cube').material.color =
 new THREE.Color(control.color);

 renderer.render(scene, camera);
 requestAnimationFrame(render);
}

The more complex your scene becomes, the longer it will take to render and update,
which might adversely affect the frame rate. To keep track of this, we'll add a simple
counter that shows the current frame rate.

Get Up and Running with Three.js

[24]

Add a statistics element to show the
frame rate
For statistics, we use an external library called stats.js, which happens to be
created by the author of Three.js. You can get this library from https://github.
com/mrdoob/stats.js. Adding a statistics element with this library is fairly
straightforward. First, of course, you have to include the corresponding JavaScript
library, which is described in the following line of code:

<script src="../libs/stats.min.js"></script>

Next, we need to configure what kind of statistics we want to show and where to
show them. This is described in the following code:

function addStatsObject() {
 stats = new Stats();
 stats.setMode(0);
 stats.domElement.style.position = 'absolute';
 stats.domElement.style.left = '0px';
 stats.domElement.style.top = '0px';
 document.body.appendChild(stats.domElement);
}

Stats.js supports two modes. Mode 0, which we will use here, shows the frames per
second (FPS). If we set the mode to 1, we will see the number of milliseconds needed
to render the frame. In this function, we also position the stats element at the top left-
hand side of the window. Now, all we need to do is call the update() function on
the stats object whenever we render a new frame. So, logically, we add this to the
render() function. This is described in the following code:

function render() {
 ...
 stats.update();
 ...
}

The same scene with a statistics element looks like as shown in the following
screenshot (the 01.06-statistics.html file):

Chapter 1

[25]

For the last subject in this chapter, we'll give you two tips that will make it easier for
you to experiment and play around with the examples.

Debugging the examples in this book
While creating JavaScript applications, it's important to understand what happens
when your application runs in the browser. In the past, we used to use pop-up alerts
for this, but luckily, modern browsers (especially Firefox and Chrome) come with
good development tools. In this section, we'll quickly show two approaches that you
can use to get a better understanding of what happens inside your code when you run
the application in a browser. First, we'll look at how to log in to the browser's console
log, and after that, we'll quickly show how you can use breakpoints (in Chrome, for
this example) to see and explore the current state of your web application.

Using console logging for debugging
Logging from JavaScript used to be hard, but with modern browsers, there is finally
a general way of logging from JavaScript. Just by adding the following line of code to
your JavaScript code, you can log a statement:

console.log('Logging something to the browsers console log');

Get Up and Running with Three.js

[26]

Let's add a couple of log statements to the init() function that we saw earlier. We'll
log a simple text message, but we'll also log the cube mesh we added. To do this, we
just add the following two lines of code at the end of the init() function:

console.log('Log statement from the init function');
console.log(cube);

In Chrome, the result looks like the following screenshot. You can open the console
from the menu through View | Developer | JavaScript Console or by accessing the
settings and then going to Tools | JavaScript Console. In Firefox, you can find the
console in View | Firebug.

In the preceding screenshot, you can see the string we logged with the first log
statement. What's more interesting though is the console.log(cube) output. With
this log statement, all the properties from the object are logged. This way, we can
quickly check the value of specific properties and explore referenced objects; we can
even change them directly from here. An important aspect to keep in mind when
using logging in this way is performance. When you do a lot of logging in your web
application, its performance will go down. So keep in mind that you remove the
logging when you move your code to production.

Chapter 1

[27]

This is a very easy way to get extra information during runtime. If you, however,
want to add some logging to the render loop, the output may be a bit overwhelming.
This function will be called approximately 60 times a second, so you can imagine
the amount of output you'll get. There is a very easy way to solve this by using a
JavaScript debugger. In the following section, I will show an example using the
debugger from Chrome, but each modern browser has a very capable debugger.

Looking at objects with breakpoints in Chrome
When you use a debugger, you can easily access all the values of the JavaScript
objects you're working with. If you run into issues that you can't easily solve by just
adding log statements, using a debugger is probably a good choice.

In the following screenshot, you can see the Chrome debugger in action:

Here, we clicked on the Sources tab and opened the file that contained the JavaScript
code. In this file, all you have to do is click on the line number where you want to
add a breakpoint. When the code runs to that point, even if it is called from the
requestAnimationFrame object, the execution will stop and you can then browse
through all the variables and objects that are available. This works great whenever
you run into some changed behavior.

Get Up and Running with Three.js

[28]

Summary
That was that for the first introductory chapter. In this chapter, we explained a
number of different subjects. Now, we'll summarize the most important ones.

Three.js is an open source JavaScript library that can run in all modern browsers
without requiring any plugins, and for older IE browsers, there is a plugin available
that enables WebGL support. For mobile browsers, it's a bit different. The performance
of WebGL on these platforms depends on the combination of device, OS, and browser.
If you want to run the examples on a mobile device, your best bet is to go for a modern
Android device and use Chrome or Firefox as the browser. If you use iOS, you're out
of luck, as iOS doesn't support WebGL yet. You can, however, still use the CSS3D
renderer (see Chapter 6, Combining HTML and Three.js with CSS3DRenderer), which runs
really well on iOS but does have a more limited API.

If you create your first Three.js application, you can run it in a number of different
ways. The best way, though, is to set up a local web server, which is very easy to do.
If you can't run a local web server, there is always the option to disable some of the
security policies in your browser.

To understand how Three.js works, you need to understand the basic concepts
of Three.js. The first thing you do in Three.js is create a THREE.Scene object. This
object serves as a container in which you can place the other Three.js objects, such
as meshes and lights. A THREE.Mesh object represents a 3D object and consists of
a geometry and a material. The geometry defines the shape of an object, and the
material defines what it will look like.

In this chapter, we also introduced a couple of external libraries that make working
with Three.js easier. You can use the dat.GUI library to easily add a simple UI
element to control specific properties in your scene. To keep track of performance,
we introduced the Stats.js library.

Once you try to get your scene up and running, you might run into some unexpected
behavior. There are different ways to determine what is going on. You can, for
instance, use the console.log function, or set a breakpoint in the developers section
of your favorite browser.

In the next chapter, we'll show you how to create a 3D world globe and use that
example to explain camera control, textures, integration with HTML5 canvas, and a
number of other essential parts of Three.js.

Creating a 3D World Globe
and Visualizing Open Data

In this chapter, we're going to use the example of a 3D-rendered globe to explain
a number of core Three.js concepts. We'll show you how to build this example
step by step and explain the following features provided by Three.js:

•	 Three.js provides a number of easy ways to control the camera. In this
example, we'll show you how you can use the orbit camera control.

•	 Through the use of textures, we can quickly enhance the look of the simple
meshes that are rendered. In this example, we'll show you how to use simple
and advanced textures to transform a simple sphere into an object that looks
like the earth.

•	 We'll also dive a little bit deeper into lighting. In this example, you'll see how
ambient and directional lighting can be added to a scene.

•	 When you add a lot of meshes to a scene, the performance will suffer.
Three.js allows you to combine multiple geometries with a single geometry
to improve performance. We'll demonstrate how to do this.

•	 Most of the examples we'll discuss use a perspective camera. Three.js also
provides a camera that presents us with an orthogonal projection. We'll add
this camera to the scene and show some of its features.

•	 The normal way to render a scene is to call the render() function on the
renderer. There is, however, also a different approach through which we can
create various render or effect steps and combine these together. We'll show
how you can configure and use this alternative rendering approach.

Creating a 3D World Globe and Visualizing Open Data

[30]

Before we show you the required JavaScript and HTML code required to accomplish
the examples, let's look at the first result that we're aiming for in this chapter.

In the following screenshot, you can see a rotating 3D world, complete with
clouds, mountains, and a starry background. When you open this example
(the 02.05-advanced-textures.html file), you can use the mouse to rotate
and pan around it.

In the next few sections, we'll explain how to create this rotating earth. The first thing
that we need to do is create a simple globe and set up the camera.

Setting up the globe and camera controls
In this section, we'll create a simple sphere, add it to the scene, position the camera,
and add some camera controls. First, let's create and add a sphere. This is described
in the following code:

var sphereGeometry = new THREE.SphereGeometry(15, 30, 30);
var sphereMaterial = new THREE.MeshNormalMaterial();
var earthMesh = new THREE.Mesh(sphereGeometry, sphereMaterial);
earthMesh.name = 'earth';
scene.add(earthMesh);

Chapter 2

[31]

If you look back at the previous chapter where we created the cube, you will see that
we took the same approach. We first created geometry, then some material; we then
combined it with a mesh and added it to the scene. The geometry in this example
takes the following three arguments (note that the constructor has four arguments,
but only the first argument, the radius, is required):

•	 The radius of the sphere
•	 The number of width segments
•	 The number of height segments

The radius defines the size of the sphere, and the segments decide how many faces
the cube will be divided into. The easiest way to understand this is by just looking at
the following output (the 02.01-globe-and-camera.html file):

Here, you can see that the sphere isn't completely round but is divided into a number
of squares. The number of squares is based on the parameters provided. You can
also see that we've used a new kind of material: THREE.MeshNormalMaterial. With
this material, the color of a mesh isn't determined by lighting, but is determined by
its normal vector, or in other words, by the angle of the face. This is a good material
to use when you're testing the position of your camera, the way the geometry looks,
and whether the scene is initialized correctly.

Creating a 3D World Globe and Visualizing Open Data

[32]

Just this sphere by itself isn't that interesting. So, let's add the camera controls. This is
described in the following code:

// Position the camera and point it at the center of the scene
camera.position.x = 35;
camera.position.y = 36;
camera.position.z = 33;
camera.lookAt(scene.position);

// add controls
cameraControl = new THREE.OrbitControls(camera);

To add a camera control, the only thing that you need to do is wrap the existing
camera with a control object, in this case, a THREE.OrbitControls object. To use these
controls, we also need to add the following line of code to the render() function:

function render() {
 ...
 cameraControl.update();
 ...
}

With this line added, you can now use the mouse (or even swipe actions) to move
around the scene using the controls listed in the following table:

Control Action
Left mouse button and move Rotate and roll the camera around the scene
Scroll wheel Zoom in and zoom out
Middle mouse button and move Zoom in and zoom out
Right mouse button and move Pan around the scene

So far, the example looks very basic. In the next section, we'll add the basic textures
to make it look like a real planet.

Adding basic textures to the globe
In this step, we're going to add two different textures. First, we're going to add a
satellite image of the earth, and to make it look more realistic, we'll also add a couple
of clouds. Let's first look at the texture of the earth that we'll use. This is shown in the
following image:

Chapter 2

[33]

To use this image as a texture in Three.js, we need to change the way we create the
material. For readability, we have moved the material creation code to a separate
function. This is described in the following code:

function createEarthMaterial() {
 // 4096 is the maximum width for maps
 var earthTexture = THREE.ImageUtils.loadTexture(
 "../assets/textures/planets/earthmap4k.jpg");

 var earthMaterial = new THREE.MeshBasicMaterial();
 earthMaterial.map = earthTexture;

 return earthMaterial;
}

In the createEarthMaterial function, we create MeshBasicMaterial object, a
material that doesn't change the way it looks according to light sources. Before we
can use an image as a texture, we first need to load it. We can do this by using the
THREE.ImageUtils.loadTexture function, which loads the image asynchronously.
The final step that we need to do is set the map property of the material to the texture
we just created.

Creating a 3D World Globe and Visualizing Open Data

[34]

At this point, we have a sphere that looks a bit like the earth but doesn't have any
clouds yet. To render the clouds, we create another sphere and position it at exactly
the same location, but we make this one slightly larger. This is described in the
following line of code:

var cloudGeometry = new
 THREE.SphereGeometry(sphereGeometry.parameters.radius*1.01,
 sphereGeometry.parameters.widthSegments,
 sphereGeometry.parameters.heightSegments);

Next, we define the material for this new sphere. This is described in the
following code:

function createCloudMaterial() {
 var cloudTexture = THREE.ImageUtils.loadTexture(
 "../assets/textures/planets/fair_clouds_4k.png");
 var cloudMaterial = new THREE.MeshBasicMaterial();
 cloudMaterial.map = cloudTexture;
 cloudMaterial.transparent = true;
 return cloudMaterial;
}

This is almost the same process, but for this sphere, we set the material to be
transparent. This is so that we can also see the earth below the clouds. This results in
the following rendered scene (the 02.02-basic-textures.html file):

Chapter 2

[35]

This scene is better than the way it would be without textures, but it is still missing a
lot. Next, we'll add some lighting and see what that does.

Adding directional and ambient lighting
Three.js offers a number of different types of light. The following table shows the
most important lights that are available:

Name Description
AmbientLight A simple light whose color is added to the color of an

object's material.
PointLight A single point in space that emanates light evenly in all

directions.
SpotLight A light with a cone effect, for instance, a spot in the ceiling

or a torch.
DirectionalLight A light that acts like a very remote light source. All light

rays run parallel to each other. The sun, for instance,
can be seen as an infinite source of light.

Before we create the lights, we first need to change the material. In the previous
example, we used THREE.MeshBasicMaterial. Now, we'll change the material to
THREE.MeshPhongMaterial. This material reacts to light sources, while THREE.
MeshBasicMaterial does not. This is described in the following code:

var earthMaterial = new THREE.MeshPhongMaterial();
earthMaterial.map = earthTexture;

In this example, we'll use an AmbientLight object and a DirectionalLight object.
First, we add the directional light, which represents the sun in our case. This is
described in the following code:

var directionalLight = new THREE.DirectionalLight(0xffffff, 1);
directionalLight.position = new THREE.Vector3(100, 10, -50);
directionalLight.name = 'directional';
scene.add(directionalLight);

Creating a 3D World Globe and Visualizing Open Data

[36]

The constructor for THREE.DirectionalLight takes two parameters. The first one is
the color and the second one is the intensity. So, if you want to have a brighter light,
you can change the second parameter; if you want light of a different color, change
the first parameter. After creating the light, we set the position of the light and we
then add it to the scene. With this setup, the back of the earth (the side not facing this
directional light) will be completely black. To make it look a little bit more realistic,
we add an ambient light so that everything is a bit brighter. This is described in the
following code snippet:

var ambientLight = new THREE.AmbientLight(0x111111);
scene.add(ambientLight);

AmbientLight only takes a single parameter, which determines the color of the
light. If you now look at the scene, it will slowly start to look more real (the
02.03-add-lighting.html file). The scene is shown in the following screenshot:

As a basic globe, this already looks pretty nice. However, without any other stars,
it still looks wrong. In the next section, we'll add a starry background.

Chapter 2

[37]

Combining with a starry background
There are different approaches you can take to set up a background in Three.
js. We could, for instance, create a very large cube, apply a texture to the inside
of the cube, and make sure it encompasses our globe. In our case, however, we'll
use an approach that'll show you a very interesting feature of Three.js: the THREE.
OrthographicCamera object. With an orthographic camera, all elements in the
scene are rendered in the same size regardless of how far it is from the camera.
This is, for instance, the effect you see in some older games, such as Baldur's Gate
or Civilization. We'll use this camera to show a scene where we can create a plane
geometry on which we will define a starry texture. So, first off, let's create the
camera. Consider the following code:

cameraBG = new THREE.OrthographicCamera(
 -window.innerWidth,
 window.innerWidth,
 window.innerHeight,
 -window.innerHeight,

 -10000, 10000);
cameraBG.position.z = 50;

What you can see here is that this camera takes other properties compared to what
we've seen in the previous chapter for the perspective camera. The reason is that as the
orthographic camera renders all the objects in the same size, regardless of the distance,
we just need to tell the camera about the cuboid area in which we are interested. The
following table explains the properties you need to specify on this camera:

Argument Description
left This property defines the border for the leftmost position to be rendered.
right This property defines the border for the rightmost position to be rendered.
top This property defines the border for the topmost position to be rendered.
bottom This property defines the border for the bottommost position to be rendered.
near This property defines the point, based on the position of the camera,

from where the scene will be rendered.
far This property defines the point, based on the position of the camera,

to which the scene will be rendered.

Creating a 3D World Globe and Visualizing Open Data

[38]

It's easier to understand how this camera works by looking at the following figure:

Here, you can see the cuboid area that we defined, and this is rendered when the
orthographic camera is used. Now, let's create a new scene and add a 2D plane
(THREE.PlaneGeometry) with a starry background as the texture. This is described
in the following code:

sceneBG = new THREE.Scene();
var materialColor = new THREE.MeshBasicMaterial({ map:
 THREE.ImageUtils.loadTexture(
 "../assets/textures/planets/starry_background.jpg")});
var bgPlane = new THREE.Mesh(
 new THREE.PlaneGeometry(1, 1), materialColor);
bgPlane.position.z = -100;
bgPlane.scale.set(
 window.innerWidth * 2, window.innerHeight * 2, 1);
sceneBG.add(bgPlane);

What we did here was create a simple horizontal plane with a starry texture. We
moved it to the back of our planet (position.z = -100) and then scaled it to fill the
complete screen. If we were to render this with the renderer, we would get a nice
fullscreen plane that shows the image we used for the texture.

Chapter 2

[39]

As we're not interested in just the background but want to combine the rendering of
the earth with the rendered background, we can't use the renderer we've used so far.
We need to use an object called EffectComposer. With an EffectComposer object,
we can define various render passes, which are combined into a single image shown
in the browser.

The required JavaScript for this object isn't part of the standard Three.js JavaScript
file. So, we need to add the following code to the JavaScript by including statements
at the top of the page:

<script src="../libs/EffectComposer.js"></script>
<script src="../libs/RenderPass.js"></script>
<script src="../libs/CopyShader.js"></script>
<script src="../libs/ShaderPass.js"></script>
<script src="../libs/MaskPass.js"></script>

The next thing we need to do is set up the EffectComposer object. Let's first look at
the following code:

// setup the passes
var bgPass = new THREE.RenderPass(sceneBG, cameraBG);
var renderPass = new THREE.RenderPass(scene, camera);
renderPass.clear = false;
var effectCopy = new THREE.ShaderPass(THREE.CopyShader);
effectCopy.renderToScreen = true;

// add these passes to the composer
composer = new THREE.EffectComposer(renderer);
composer.addPass(bgPass);
composer.addPass(renderPass);
composer.addPass(effectCopy);

In this example, we first define two THREE.RenderPass objects. With a Three.
RenderPass object, you can render a scene with a specific camera, but the result
isn't rendered directly to the screen but kept internally for further processing. The
normal behavior of a Three.RenderPass object is to clear the current output from
the renderer before rendering. This is why we need to set the renderPass.clear
property on the second THREE.RenderPass object. If we don't do this, we'll only
see the rotating earth and not the background.

Creating a 3D World Globe and Visualizing Open Data

[40]

Once both the scenes have been rendered, we need a way to copy them to the screen.
For this, we use the THREE.CopyShader object, which we can add to the THREE.
EffectComposer object using a THREE.ShaderPass object, as we can't use the
THREE.CopyShader object directly. The THREE.ShaderPass object doesn't pass the
output to the screen automatically. To accomplish this, we set the renderToScreen
property of the THREE.ShaderPass object to true. Now, all we need to do is create
the THREE.EffectComposer object and add the three passes we just created in
the order of their execution; so, we'll first perform background rendering, then
foreground rendering, and finally copy it to the screen.

The final change that we need to make is in the render loop. Here, we replace the
call to the renderer.render function with a call to the composer.render function.
This is described in the following code:

function render() {
 ...
 renderer.autoClear = false;
 composer.render();
 ...
}

Additionally, as you can see in this code fragment, we also need to set the autoClear
property of the renderer to false. If we don't do this, we'll only see the result
from the latest THREE.RenderPass object. Now, when we run the example (the
02.04-starry-background.html file), we get a beautiful-looking rotating earth in
front of a starry background, as shown in the following screenshot:

Chapter 2

[41]

With the background added, it is really starting to look like a real planet. However,
when you look closely, you'll see that there is lack of depth in the texture. For instance,
you can't see any mountain ranges. In the following section, we'll introduce two
different texture types that will really improve how the earth will look.

Improving the look with more advanced
textures
To further improve the model of the earth, we'll add some more depth to the
mountain ranges and other elevations and change the reflectivity of the water
bodies. Let's start by adding more depth to the scene.

Creating a 3D World Globe and Visualizing Open Data

[42]

Using a normal map to simulate elevations
In 3D modeling, there are two different approaches to simulate the depth using a
texture. The first one is a bump map. With a bump map, you can create a black and
white texture, where the color of each pixel determines the elevation. Even though
this works for simple models, it doesn't result in a very detailed depth rendering.

For a more detailed approach, we can also use a normal map. A normal map doesn't
store the intensity of each pixel but rather stores the direction (orientation) of each
pixel. The map we will use in this example is shown in the following image:

Using a normal map works in the same way as using a standard texture. Consider the
following code:

function createEarthMaterial() {
 ...
 var normalMap = THREE.ImageUtils.loadTexture(
 "../assets/textures/planets/earth_normalmap_flat4k.jpg");
 ...
 earthMaterial.normalMap = normalMap;
 earthMaterial.normalScale = new THREE.Vector2(0.5, 0.7);
 ...
}

To load the texture, you can use the THREE.ImageUtils.loadTexture() function
and assign the result to the normalMap property. You can play around with how
large the effect of this normal map is by using the normalScale property, where the
first property defines scaling along the x axis and the second one along the y axis.

Before we show the result, let's quickly look at a specular map.

Chapter 2

[43]

Using a specular map to define the reflectivity
of an area
When you look at satellite images of the earth, you can see that different areas of the
earth reflect light in a different manner. In general, you can say that the oceans reflect
the light from the sun very well and the continents don't. The following image shows
how the picture looks. We'll use this image as an input.

Here, you can see that the continents are black, so they won't reflect the directional
light we created, and the oceans are white. To use this image to improve our globe,
we set this image as a texture to the specularMap property of the material we're
using. This is described in the following code:

function createEarthMaterial() {
 ...
 var specularMap = THREE.ImageUtils.loadTexture(
 "../assets/textures/planets/earthspec4k.jpg");

 earthMaterial.specularMap = specularMap;
 earthMaterial.specular = new THREE.Color(0x262626);
 ...
}

We load this texture the same way we've done before and assign it to the
specularMap property. Finally, we can define the color of the reflection using
the specular property.

Creating a 3D World Globe and Visualizing Open Data

[44]

With all these features combined, we get the following screenshot as the result
(the 02.05-advanced-textures.html file):

Here, you can see that the mountain ranges in South America stand out. This is
based on the normal map. You can also see that there is a small reflection in the
body of water just north of South America, which isn't seen on land.

Adding 2D information using HTML
canvas as a texture
So far, we've just used the basic features of Three.js to render the globe. In this
section, we'll look a bit further and use this globe as a way to visualize data. We'll
show you how you can use an HTML5 canvas as a texture to visualize data on the
3D globe. What we're aiming for in this section is shown in the following screenshot
(the 02.06-canvas-overlay.html file):

Chapter 2

[45]

All the red circles that you see in this screenshot are ports, and they are shown on
the rotating globe. To get this result, we first have to get a source for the data. For
this, I've used the World Port Index (WPI) database that you can download from
http://msi.nga.mil/NGAPortal/MSI.portal?_nfpb=true&_pageLabel=msi_
portal_page_62&pubCode=0015. I've converted this database into a simple CSV
file that shows the following information:

31140;30980;ROTTERDAM;NL;51;54;N;4;29;E;192;37243/1;...
7640;6585;NEW YORK CITY;US;40;42;N;74;1;W;CP02;12335;...

Creating a 3D World Globe and Visualizing Open Data

[46]

Each line contains the location and a set of other properties for all the ports in the
world. We'll use this information to create an HTML5 canvas that we'll use as a
texture for the globe. The code to render this to an HTML5 canvas is as follows:

canvas = document.createElement("canvas");
canvas.width = 4096;
canvas.height = 2048;

var context = canvas.getContext('2d');

var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 // Convert the CSV file to a list of arrays
 var ports = CSVToArray(xmlhttp.responseText, ";");
 // now we process each of the inidividual arrays
 // which represent a single line from the CVS file
 ports.forEach(function(e) {

 if (e[25] === 'L') {
 var posY = parseFloat(e[4] + "." + e[5]);
 var sign = e[6];
 if (sign === 'S') posY = posY * -1;

 var posX = parseFloat(e[7] + "." + e[8]);
 var sign = e[9];
 if (sign === 'W') posX = posX * -1;

 var x2 = ((4096 / 360.0) * (180 + posX));
 var y2 = ((2048 / 180.0) * (90 - posY));

 context.beginPath();
 context.arc(x2, y2, 4, 0, 2 * Math.PI);
 context.fillStyle = 'red';

 context.fill();
 context.lineWidth = 2;
 context.strokeStyle = '#003300';
 context.stroke();
 }
 });
 }
}

xmlhttp.open("GET", "../assets/data/wpi.csv", true);
xmlhttp.send();

Chapter 2

[47]

Let's look at this code step by step. First, we used an XMLHttpRequest function to
asynchronously load the CSV file that contained all the port locations by using the
xmlhttp.open and xmlhttp.send methods. When the CSV file is loaded, we walk
through all the lines and check whether a specific value is set to L. If this property
is set, it means the port we're looking at is a large one. We do this so that only the
large ports are shown on the globe. For each large port, we get the latitude and
longitude, and we convert these to x and y coordinates. On this coordinate, we
render a small circle using the context.arc, context.fill, and context.stroke
functions. If we show the canvas at this point, we'll get something that appears like
the following screenshot:

As you can see, if we plot all the large ports, we can already discern the shape of
the continents.

The only thing we need to do now is assign this canvas as a texture to a sphere.

Note that we need to create a new sphere, as the map property of the
globe is already used for the satellite image.

Creating a 3D World Globe and Visualizing Open Data

[48]

Consider the following code:

function createOverlayMaterial() {
 var olMaterial = new THREE.MeshPhongMaterial();
 olMaterial.map = new THREE.Texture(addCanvas());
 olMaterial.transparent = true;
 olMaterial.opacity = 0.6;
 return olMaterial;
}

var overlayGeometry = new THREE.SphereGeometry(
 sphereGeometry.parameter.radius,
 sphereGeometry.widthSegments,
 sphereGeometry.heightSegments);
var overlayMaterial = createOverlayMaterial();
var overlayMesh = new THREE.Mesh(
 overlayGeometry, overlayMaterial);
overlayMesh.name = 'overlay';
scene.add(overlayMesh);

As you can see in the createOverlayMaterial function, we set the map property
to the result of the addCanvas function, which is the canvas element we saw in the
previous code. Now, we only need to make a small change to the render function,
as described in the following code:

function render() {
 ...
 scene.getObjectByName('overlay')
 .material.map.needsUpdate = true;
 ...
}

Here, we tell Three.js that it needs to update the texture that we just created at the
start of the rendering phase. The reason we do this is that we don't know when the
CSV file is loaded and processed. With this approach, we make sure that the texture,
which uses the canvas as an input, is updated on each render loop.

Note that we could also do this at the end of the XMLHttpRequest
callback for better performance, as the picture drawn on the canvas
doesn't change after it is loaded for the first time.

Chapter 2

[49]

The following screenshot shows the final result:

Summary
We've seen a lot of concepts of Three.js in this chapter. The most important points to
remember are as follows:

•	 We can create a good-looking earth by just starting with a basic THREE.
SphereGeometry object.

•	 Three.js provides a large number of camera controls for use. In this chapter,
we used the OrbitControls property to quickly support the zoom and pan
functions for our scene.

•	 There are different types of textures available. In this chapter, we used a map
texture that renders an image on top of an object. Also, we used a normal
texture to define detailed heights, and finally, a specular map for reflections.

Creating a 3D World Globe and Visualizing Open Data

[50]

•	 Besides the perspective camera, Three.js also provides an orthographic
camera that renders objects the same size regardless of their distance
from the camera.

•	 You can combine various renders together using the THREE.EffectComposer
object. This is done by defining separate passes, which are combined into a
single result.

•	 You can use the output of an HTML5 canvas as a texture. This can be easily
used to plot additional data onto a 3D object.

In the next chapter, we'll show you how to create a simple 3D maze game where
you'll learn more about animations, collision detection, and different light sources.

Navigate around a Randomly
Generated Maze

In the previous chapter, we showed you how to set up a scene where we showed a
3D rotating globe. You learned about the basics of materials, geometries, and lights.
In this chapter, we're going to create a simple game that we'll use to explain some
other features provided by Three.js. To be more specific, we're going to create
a random 3D maze through which you have to navigate a rolling cube using the
arrow keys on your keyboard. Through this example, we'll explore the following
Three.js features:

•	 With Three.js, it is easy to rotate and move objects around a scene.
For this, there are two different approaches, which we'll explore in this
chapter. First, rotating and translating objects through standard Three.js
properties and second, using matrix transformations.

•	 We've already seen a couple of light sources. In this chapter, we'll
introduce the THREE.SpotLight light source. This light source sends
out a beam of light.

•	 We've already set up an animation loop in Chapter 1, Get Up and Running with
Three.js. In this chapter, we'll explain an easy way to create more advanced
animations by combining the Tween.js JavaScript library with Three.js.

•	 In this chapter, we'll also expand on how you can use textures in Three.js
by explaining how to set up a repeating texture.

•	 When you create games or more advanced 3D scenes, it is important to
know when objects touch each other. We'll show you an approach to set
up collision detection using THREE.Raycaster.

Navigate around a Randomly Generated Maze

[52]

•	 Three.js comes with a number of different camera controls. In the previous
chapter, we looked at the THREE.OrbitControls object. In this chapter,
we'll show you how you can use the THREE.TrackballControls object
to easily move and pan around the created scene.

•	 Finally, we'll also explain the use of the keyboard to control Three.js elements
in our scene.

Before we dive into the individual steps needed to create the 3D maze, you can
already look and play around with the final result.

The result we're aiming for in this chapter
Open up the 03.05-keyboard-controls.html file in your browser, and you'll be
shown the following screenshot:

You can move around the scene by using the arrow keys on your keyboard, and
the goal is to reach the colored wall segment at the top of the maze. Once you
hit a wall, you'll be moved back to the starting point.

Now, let's look at the steps you need to take to create this interactive scene.
The first thing we need to do is create the maze structure by using some of
Three.js standard geometries.

Chapter 3

[53]

Creating the maze
A maze is a rather simple shape that consists of a number of walls and a floor.
So, what we need is a way to create these shapes. Three.js, not very surprisingly,
doesn't have a standard geometry that will allow you to create a maze, so we need
to create this maze by hand. To do this, we need to take two different steps:

1.	 Find a way to generate the layout of the maze so that not all the mazes
look the same.

2.	 Convert that to a set of cubes (THREE.BoxGeometry) that we can use to
render the maze in 3D.

There are many different algorithms that we can use to generate a maze, and luckily
there are also a number of open source JavaScript libraries that implement such an
algorithm. So, we don't have to start from scratch. For the example in this book, I've
used the following random-maze-generator project that you can find on GitHub at
the following link:

https://github.com/felipecsl/random-maze-generator

Generating a maze layout
Without going into too much detail, this library allows you to generate a maze and
render it on an HTML5 canvas. The result of this library looks something like the
following screenshot (the 03.0A-maze.html file):

Navigate around a Randomly Generated Maze

[54]

You can generate this by just using the following JavaScript:

var maze = new Maze(document, 'maze');
 maze.generate();
 maze.draw();

Even though this is a nice looking maze, we can't use this directly to create a 3D
maze. What we need to do is change the code the library uses to write on the canvas,
and change it to create Three.js objects. This library draws the lines on the canvas in
a function called drawLine:

drawLine: function(x1, y1, x2, y2) {
 self.ctx.beginPath();
 self.ctx.moveTo(x1, y1);
 self.ctx.lineTo(x2, y2);
 self.ctx.stroke();
}

If you're familiar with the HTML5 canvas, you can see that this function draws lines
based on the input arguments. Now that we've got this maze, we need to convert it
to a number of 3D shapes so that we can render them in Three.js.

Converting the layout to a 3D set of objects
To change this library to create Three.js objects, all we have to do is change the
drawLine function to the following code snippet:

drawLine: function(x1, y1, x2, y2) {
 var lengthX = Math.abs(x1 - x2);
 var lengthY = Math.abs(y1 - y2);

 // since only 90 degrees angles, so one of these is always 0
 // to add a certain thickness to the wall, set to 0.5
 if (lengthX === 0) lengthX = 0.5;
 if (lengthY === 0) lengthY = 0.5;

 // create a cube to represent the wall segment
 var wallGeom = new THREE.BoxGeometry(lengthX, 3, lengthY);
 var wallMaterial = new THREE.MeshPhongMaterial({
 color: 0xff0000,
 opacity: 0.8,
 transparent: true
 });

 // and create the complete wall segment
 var wallMesh = new THREE.Mesh(wallGeom, wallMaterial);

 // finally position it correctly
 wallMesh.position = new THREE.Vector3(
 x1 - ((x1 - x2) / 2) - (self.height / 2),

Chapter 3

[55]

 wallGeom.height / 2,
 y1 - ((y1 - y2)) / 2 - (self.width / 2));

 self.elements.push(wallMesh);
 scene.add(wallMesh);
}

In this new drawLine function, instead of drawing on the canvas, we create a
THREE.BoxGeometry object whose length and depth are based on the supplied
arguments. Using this geometry, we create a THREE.Mesh object and use the
position attribute to position the mesh on a specific points with the x, y, and z
coordinates. Before we add the mesh to the scene, we add it to the self.elements
array. We don't need this at this moment, but we'll use this later on in this chapter
for collision detection.

Now we can just use the following code snippet to create a 3D maze:

var maze = new Maze(scene,17, 100, 100);
maze.generate();
maze.draw();

As you can see, we've also changed the input arguments. These properties now
define the scene to which the maze should be added and the size of the maze.
The result from these changes can be seen when you open the example file:
03.01-simple-generated-maze.html. Have a look at the following screenshot:

Navigate around a Randomly Generated Maze

[56]

Every time you refresh, you'll see a newly generated random maze. Now that
we've got our generated maze, the next step is to add the object that we'll move
through the maze.

Animating the cube
Before we dive into the code, let's first look at the result we're aiming for.
Open the example file, 03.02-animate-cube.html, and you'll see something
like the following screenshot:

Using the controls at the top-right corner, you can move the cube around. What you'll
see is that the cube rotates around its edges, not around its center. In this section, we'll
show you how to create that effect. Let's first look at the default rotation, which is
along an object's central axis, and the translation behavior of Three.js.

Chapter 3

[57]

The standard Three.js rotation behavior
Let's first look at all the properties you can set on THREE.Mesh. They are shown
as follows:

Function/property Description
position This property refers to the position of an object, which is

relative to the position of its parent. In all our examples,
so far the parent is THREE.Scene.

rotation This property defines the rotation of THREE.Mesh
around its own x, y, or z axis.

scale With this property, you can scale the object along its
own x, y, and z axes.

translateX(amount) This property moves the object by a specified amount
over the x axis.

translateY(amount) This property moves the object by a specified amount
over the y axis.

translateZ(amount) This property moves the object by a specified amount
over the z axis.

If we want to rotate a mesh around one of its own axes, we can just call the
following line of code:

plane.rotation.x = -0.5 * Math.PI;

We've used this to rotate the ground area from a horizontal position to a vertical
one. It is important to know that this rotation is done around its own internal axis,
not the x, y, or z axis of the scene. So, if you first do a number of rotations one after
another, you have to keep track at the orientation of your mesh to make sure you get
the required effect. Another point to note is that rotation is done around the center
of the object—in this case the center of the cube. If we look at the effect we want to
accomplish, we run into the following two problems:

•	 First, we don't want to rotate around the center of the object; we want to
rotate around one of its edges to create a walking-like animation

•	 Second, if we use the default rotation behavior, we have to continuously keep
track of our orientation since we're rotating around our own internal axis

In the next section, we'll explain how you can solve these problems by using
matrix-based transformations.

Navigate around a Randomly Generated Maze

[58]

Creating an edge rotation using matrix-based
transformation
If we want to perform edge rotations, we have to take the following few steps:

•	 If we want to rotate around the edge, we have to change the center point of
the object to the edge we want to rotate around.

•	 Since we don't want to keep track of all the rotations we've done, we'll need
to make sure that after each rotation, the vertices of the cube represent the
correct position.

•	 Finally, after we've rotated around the edge, we have to do the inverse of
the first step. This is to make sure the center point of the object is back in the
center of the cube so that it is ready for the next step.

So, the first thing we need to do is change the center point of the cube. The approach
we use is to offset the position of all individual vertices and then change the position
of the cube in the opposite way. The following example will allow us to make a step
to the right-hand side:

cubeGeometry.applyMatrix(new THREE.Matrix4().makeTranslation
 (0, width / 2, width / 2));
cube.position.y += -width / 2;
cube.position.z += -width / 2;

With the cubeGeometry.applyMatrix function, we can change the position of
the individual vertices of our geometry. In this example, we will create a translation
(using makeTranslation), which offsets all the y and z coordinates by half the
width of the cube. The result is that it will look like the cube moved a bit to the
right-hand side and then up, but the actual center of the cube now is positioned
at one of its lower edges. Next, we use the cube.position property to position
the cube back at the ground plane since the individual vertices were offset by the
makeTranslation function.

Now that the edge of the object is positioned correctly, we can rotate the object.
For rotation, we could use the standard rotation property, but then, we will have
to constantly keep track of the orientation of our cube. So, for rotations, we once
again use a matrix transformation on the vertices of our cube:

cube.geometry.applyMatrix(new
 THREE.Matrix4().makeRotationX(amount);

Chapter 3

[59]

As you can see, we use the makeRotationX function, which changes the position of
our vertices. Now we can easily rotate our cube, without having to worry about its
orientation. The final step we need to take is reset the cube to its original position;
taking into account that we've moved a step to the right, we can take the next step:

cube.position.y += width/2; // is the inverse + width
cube.position.z += -width/2;
cubeGeometry.applyMatrix(new THREE.Matrix4().makeTranslation(0, -
 width / 2, width / 2));

As you can see, this is the inverse of the first step; we've added the width of the cube
to position.y and subtracted the width from the second argument of the translation
to compensate for the step to the right-hand side we've taken.

If we use the preceding code snippet, we will only see the result of the step to the right.
In the next section, we'll use the Tween.js JavaScript library to animate the step.

Using Tween.js to add an animation
We've created a function that takes care of a single step. This function makes the
appropriate matrix transformations and sets up the animation. The following code
fragment shows this function, where we've left out the transformations for clarity:

function takeStepRight(cube, start, end, time) {
 var cubeGeometry = cube.geometry;
 var width = 4;
 if (!isTweening) {
 var tween = new TWEEN.Tween({
 x: start,
 cube: cube,
 previous: 0
 })
 .to({
 x: end
 }, time)
 .easing(TWEEN.Easing.Linear.None)
 .onStart(function() {
 // change center point to edge
 })
 .onUpdate(function() {
 var amount = -(this.x – this.previous);
 // do rotation based on amount
 })
 .onComplete(function() {
 // reset center point to center of cube
 isTweening = false;
 })

Navigate around a Randomly Generated Maze

[60]

 .start();
 }
}

So, whenever we take a step to the right-hand side, we create a new tween. A tween
can be used to change the value of a variable from one value to another over a period
of time. In this example, we created a tween that changes the x variable from the
provided start to end value within a duration of time. With a tween, we can also
define how the variable changes. Whether it changes quickly in the beginning and
slowly at the end, or, for instance, if it changes exponentially. This is called easing,
and we can define this on our tween using the easing function. In this case, we
use TWEEN.Easing.Linear.None, which means that the value changes in a linear
fashion. We can also use exponential, sinusoidal, and many more easing methods.

Using the onStart function, we define what we want to do when this tween is
started. In this case, we changed the center point as we explained in the previous
section. Next in the onUpdate function, which is called a number of times during the
animation, we changed the rotation based on the current value of the x property, just
as we explained in the previous section. Finally, using the onEnd function, we reset
the center of the cube. With Tween.start(), we started the animation directly.

The last thing we need to do is add one line to the render() function to update this
animation, which in turn will call the function supplied to onUpdate:

TWEEN.update();

Now, whenever we take a step, a tween will be created that animates the rotation of
the cube around its edge to the new position. You can see the result in the example
file, 03.02-animate-cube.html. Have a look at the following screenshot:

Chapter 3

[61]

Setting up collision detection
Now that we've got our animation up and running for our cube, we can look at how
we can detect collisions. For this, we're going to use the THREE.Raycaster object.
With this object, we can send out a ray from a specific point along a certain direction
and get a list of all objects that were intersected by the ray. This is often used to select
objects using the mouse. If you open the example 03.03-collision-detection.
html file, you can see both the object selection and collision detection in action.
Have a look at the following screenshot:

Navigate around a Randomly Generated Maze

[62]

With the controls in the menu on the top-right corner, you can move the red cube
around. As soon as it hits one of the green cubes, the red cube is put back in its
original position. Additionally, you can use the mouse to click on the green cubes,
which will change their color to blue, as shown in the following screenshot:

We'll first show you how we can use the THREE.Raycaster object to select objects;
after that, we'll show you how you can use pretty much the same approach to
implement collision detection.

Selecting objects
To select objects, we have to take a couple of steps. Let's first look at the following
code snippet, and then we'll walk you through the various steps:

var projector = new THREE.Projector();

function onDocumentMouseDown(event) {

 var vector = new THREE.Vector3(
 (event.clientX / window.innerWidth) * 2 - 1,
 -(event.clientY / window.innerHeight) * 2 + 1,
 0.5);
 projector.unprojectVector(vector, camera);

Chapter 3

[63]

 var raycaster = new THREE.Raycaster(
 camera.position,
 vector.sub(camera.position).normalize());
 var intersects =
 raycaster.intersectObjects(collidableMeshList);

 if (intersects.length > 0) {
 intersects[0].object.material.transparent = true;
 intersects[0].object.material.color =
 new THREE.Color(0x0000ff);
 }
}
window.onmousedown = onDocumentMouseDown;

So, what is done in this code fragment? This is explained as follows:

•	 First, we created a THREE.Projecter object, which we can use to convert the
coordinates where you've clicked into the coordinates in your 3D scene.

•	 Using this projector, we convert the position where we clicked (vector)
into a position in the scene by using the unprojectVector function.

•	 Now, we can create a THREE.Raycaster object to cast rays in the direction
we clicked from the point of view of the camera.

•	 Using the raycaster.intersectObjects function, we can check
whether the ray we cast intersects any of the objects that are in the
collidableMeshList array. Any objects that are intersected by the
ray are returned in the form of an array of objects from this function.

•	 If there are objects that are intersected (intersects.length > 0) by our
ray, we change the color of the first one, which is the nearest one, to blue.

As you can see, this is a fairly straightforward approach to select objects in our scene
and do something with the selected object. We use pretty much the same approach
for detecting collisions.

Detecting collisions
If we want to detect a collision in our scene between the cube and the walls, we can
use an approach that is pretty much the same as the one we've used in the previous
section. Let's walk you step by step through the detectCollision function, which
handles collision detection in our examples:

var cube = scene.getObjectByName('cube');
var originPoint = cube.position.clone();

Navigate around a Randomly Generated Maze

[64]

The first thing we need to do is get the current position of our cube. Now, we're
going to send rays from the center of our cube to each vertex and check whether
they intersect with one of our walls:

for (var vertexIndex = 0;
 vertexIndex < cube.geometry.vertices.length;
 vertexIndex++) {

For each vertex, we create a THREE.Raycaster object, just as we did in the previous
code fragment, send a ray to one of the vertices, and check whether we intersect with
one of our wall segments, which we stored in the collidableMeshList array:

 var localVertex = cube.geometry.vertices[vertexIndex].clone();
 var globalVertex = localVertex.applyMatrix4(cube.matrix);
 var directionVector = globalVertex.sub(cube.position);

 var ray = new THREE.Raycaster(
 originPoint, directionVector.clone().normalize());
 var collisionResults =
 ray.intersectObjects(collidableMeshList);

The ray sent by the THREE.Raycaster object doesn't stop when it reaches the vertex
it is aimed at. So the collisionResults object will also contain objects that are hit
by the ray but haven't collided with the cube yet. So, additionally, we check the
distance of the object we intersected with. If that is smaller than the distance between
the center of the cube and the vertex, it means we have a collision. Have a look at the
following code snippet:

 if (collisionResults.length > 0
 && collisionResults[0].distance < directionVector.length()) {

At this point, we have a collision; for our maze, it means we stop all the current
running animations, remove the cube from its current position, and position it
back at the beginning:

 var tweens = TWEEN.getAll();

 if (tweens.length > 0) {

 tweens[0].stop();
 TWEEN.removeAll();
 isTweening = false;

 scene.remove(cube);
 cube = createCube();
 }
 }
}

Chapter 3

[65]

With this approach, using collision detection is very easy. There is also, however, a
downside to detecting collisions like this. It is a fairly resource-intensive process. The
more complex shapes become, or when the number of shapes increases, the more
time it'll cost to determine whether there are collisions. There are different ways in
which you can make collision detection less resource intensive. For complex shapes,
you could, for instance, use an invisible bounding box, instead of the actual complex
shapes. Going into details here is a bit out of the scope of this book. The main thing
to remember is that collision detection comes at a price, and you should really look
at the performance implications when using this in complex scenes and scenarios.
All parts of the maze and the functionality are pretty much done. We can generate a
maze, move the cube around, and detect collisions. Now let's improve what the maze
would look like.

Adding textures and improving
the lighting
So far, the maze looks rather simple. We've red walls on top of a gray ground plane.
In this section, we'll improve how the scene looks with a couple of simple steps. First,
we'll set up a texture for the ground plane, and after that, we'll add some additional
lights to the scene.
At the end of these changes, our maze will look something like the
following screenshot:

We will start by setting up the texture for the ground plane.

Navigate around a Randomly Generated Maze

[66]

Adding a repeating texture
To create a nice wooden texture, as you can see in the previous screenshot, you only
have to change the material you use for the ground plane. The changed code now
looks like the following code snippet:

var planeMaterial = new THREE.MeshPhongMaterial({
 color: 0xffffff
});
planeMaterial.map = THREE.ImageUtils.loadTexture(
 "../assets/textures/wood_1-1024x1024.png")
planeMaterial.map.wrapS = THREE.RepeatWrapping;
planeMaterial.map.wrapT = THREE.RepeatWrapping;
planeMaterial.map.repeat.set(4, 4);

Here, you can see that we have used the map property of the material to point to the
image containing our texture, just as we did in the previous chapter. The standard
behavior of Three.js is to stretch the texture to the size of the object. This results in a
scene that looks like the following screenshot:

Chapter 3

[67]

Even though the result looks nice, it looks very zoomed in. By setting the
planeMaterial.map.wrapS and planeMaterial.map.wrapT properties to
THREE.RepeatWrapping, we tell Three.js that we want to repeat the texture along its
x and y axes. We can specify the number of times the texture is repeated by using the
map.repeat property. In this example, we repeat the texture four times along the x
and y axes. As you can see in the following screenshot, the texture is repeated:

Now that we've set up the texture for the floor, the next step is to add the red
and green light sources at the start and end positions.

Setting up the light sources
If you look back at the earlier screenshots, you will see that we've added
green and red lights to the bottom-left corner and top-right corner, respectively.
To accomplish this, we've used a THREE.SpotLight object. This light source
behaves like a flashlight that emits a beam of light. Using a THREE.SpotLight
object is pretty much the same as the other lights we've seen so far:

// add spotlight for the finish line
var finishLight = new THREE.SpotLight(0xff0000);

Navigate around a Randomly Generated Maze

[68]

finishLight.position.set(-50, 70, -50);
finishLight.castShadow = true;
finishLight.intensity = 0.5;

var finishTarget = new THREE.Object3D();
finishTarget.position.set(-60, 0, -60);
finishLight.target = finishTarget;

scene.add(finishLight);

In this code fragment, we've created a THREE.SpotLight object that emits red light.
With the position property, we set the light above the top-left area of our maze,
and we set the intensity of the light to 0.5 to make the light a bit softer. By default,
all lights point to the center of the scene; using the target property, we can tell the
light where it needs to look. A light source expects THREE.Object3D, or any of its
subclasses, such as THREE.Mesh, as its target. In our case, we create a new THREE.
Object3D object and set it as the target property. The interesting part is that if we
now move the finishTarget object, our light will automatically follow it around.

The previous code snippet was used to add the red light; we've used the same
approach to add the green light at the bottom-left corner. For a complete overview of
the properties you can set on a THREE.SpotLight object, look at the following table:

Property Description
castShadow Set this property to true to have this light cast shadows.
shadowCameraNear This property signifies the distance from the light that

shadows should be created.
shadowCameraFar This property refers to the distance from the light that

shadows should be created.
shadowCameraFov This property tells us how wide the area is for which

shadows need to be created.
target This property determines where the light is looking.
shadowBias This property can be used to slightly offset the position

of the rendered shadow.
angle This property tells us how wide the beam of light is.

It is measured in radians. Its default value is Math.PI/3.
exponent A light is aimed at a specific target. The farther away

the light is from this direction, the more its intensity
will decrease. This value determines how fast the light's
intensity will decrease.

onlyShadow If this property is set to true, the light will only cast
a shadow.

Chapter 3

[69]

Property Description
shadowCameraVisible If this property is set to true, you will see how and

where this light source casts a shadow. This is very easy
for debugging purposes.

shadowDarkness Its default value is 0.5. This property defines how dark
the shadow rendered is.

shadowMapWidth This property determines how many pixels are used to
create the shadow. Increase this when the shadow has
jagged edges or doesn't look smooth.

shadowMapHeight This property determines how many pixels are used to
create the shadow. Increase this when the shadow has
jagged edges or doesn't look smooth.

In the next section, we'll add trackball controls that you can use to move and pan
around the scene, and we'll add some keyboard controls that you can use to move
the cube around.

Adding trackball and keyboard controls
All that is left to do now is make it a bit friendlier to use. To do this, we'll add THREE.
TrackballControls, which you can use to pan and move the camera around, and
we'll configure some keyboard controls that you can use to move the cube around.

Adding trackball controls to the camera
With the trackball controls, you can very easily use your mouse to move the camera
around the scene. The following table shows how you can move the camera around
when this control is used:

Control Action
Left mouse button and move Rotate and roll the camera around the scene
Scroll wheel Zoom in and zoom out
Middle mouse button and move Zoom in and zoom out
Right mouse button and move Pan around the scene

Navigate around a Randomly Generated Maze

[70]

To configure this control, you have to take two steps. The first one is to wrap
the camera:

controls = new THREE.TrackballControls(camera);

Next, we have to make sure that we update the control in our render loop:

controls.update();

And that's it. Now we can very easily zoom in and pan around the maze as shown
in the following screenshot:

So far, you had to use the menu to move the cube around. Even though this works, it
isn't the most user-friendly way. In the next section, we will show you how you can
use the arrows on your keyboard to move the cube around.

Configuring keyboard controls
As you've seen before, we've created moving animations for each step the cube can
take. If we want it to move to the left-hand side, we call the takeStepLeft function,
for a move to the right-hand side, the takeStepRight function, and so on. The code
to do this is actually very easy:

document.onkeydown = checkKey;

function checkKey(e) {
 if (e.keyCode == '37') {

Chapter 3

[71]

 // left
 takeStepLeft(scene.getObjectByName('cube'),
 0, 0.5 * Math.PI, 100);
 }
 else if (e.keyCode == '38') {
 // up
 takeStepForward(scene.getObjectByName('cube'),
 0, 0.5 * Math.PI, 100);
 }
 else if (e.keyCode == '39') {
 // right
 takeStepRight(scene.getObjectByName('cube'),
 0, 0.5 * Math.PI, 100);
 }
 else if (e.keyCode == '40') {
 // down
 takeStepBackward(scene.getObjectByName('cube'),
 0, 0.5 * Math.PI, 100);
 }
}

First, we register the checkKey function as the listener for the onkeydown event.
Now, whenever a key is pressed, the checkKey function will be called. In this
function, we check keyCode of the event, and based on the value, we take a step
in the appropriate direction. The final result looks like the screenshot we saw at
the beginning of this chapter (03.05-keyboard-controls.html):

Navigate around a Randomly Generated Maze

[72]

Summary
In this chapter, we covered many different parts of Three.js to create the maze with
a walking cube. We started by adapting a standard JavaScript library since Three.js
didn't provide us with a geometry we could use out of the box. As you've seen, it is
pretty easy to adapt these kinds of libraries and use them as input for creating
Three.js geometries.

In this chapter, we've also spent a lot of time on rotation. By default, Three.js rotates
objects around their center point. For many use cases, this is enough, but for more
advanced animations or rotations, you need to approach this differently by moving
its rotation point (also called pivot point). If you want to change its rotation point,
you first need to translate a geometry and change this pivot point before applying
the rotation.

Another aspect of rotation that you need to understand is the difference between the
rotation property of a mesh, and applying rotations through a matrix transformation.
When you set the rotation property of a mesh, you're not really changing the position
of its vertices. You're just telling Three.js that it needs to apply this rotation before
rendering the object. In this case, the position of the vertices of the geometry doesn't
change. If you apply a matrix transformation directly to the geometry, you change
the position of the individual vertices.

Another object of Three.js that we used in this chapter is the THREE.Raycaster
object. We can use this object to select objects with our mouse or use it for some
simple collision detection between objects.

The last big part of this chapter dealt with animations. There are many different
ways to do animations in Three.js. You could update the variables yourself in the
render loop, but it is often easier to use Tween.js, or another tween library such
as TweenLite, for this purpose. With these kinds of libraries, you can easily change
the value of a variable from start to end over a period of time using a specific
easing method.

In the earlier chapters, we looked at geometries that consist of vertices and faces.
In the next chapter, we'll look at particles. With particles we don't create 3D objects;
instead, we work with particles created from the vertices of geometry. Each particle
can be animated, and styled separately to create beautiful effects.

Visualizing Audio Data with a
Particle System

In the previous chapters, you learned to create scenes that consist of geometries,
such as cubes and planes. In Chapter 3, Navigate around a Randomly Generated Maze,
we even used cubes to create a complete maze. In Three.js, there is, however, a
different type of object that you can add to a scene instead of the THREE.Mesh object
we've used so far. It is the THREE.ParticleSystem object. With a particle system,
the complete geometry isn't rendered; instead, only the vertices are shown. In this
chapter, we'll explore how you can use a THREE.ParticleSystem object by showing
various ways to visualize sound. We'll cover the following topics in this chapter:

•	 A THREE.ParticleSystem object can be created in two different ways.
We will show you how to use an empty THREE.Geometry object to create
a particle system and how to create one from an existing particle system.

•	 A static particle system isn't that interesting to look at. We will show you
how to animate individual particles inside the particle system. We will
discuss two approaches to do this: one where we scale the whole geometry
and one where we move the individual vertices around.

•	 When you create a THREE.ParticleSystem object, you also provide a
material to the system. This material defines what the individual particles
look like. In this chapter, we'll explain the various properties of the
THREE.ParticleSystemMaterial.

•	 With THREE.ParticleSystemMaterial, we can style the particles in
the system; however, by default, all the particles have the same color.
We will show you how to set the color of each individual particle.

Visualizing Audio Data with a Particle System

[74]

•	 The last part of this chapter introduces some of the blend modes that are
available within Three.js. A blend mode defines how the color of a pixel
on the screen interacts with the color of the pixel behind it. For the
THREE.ParticleSystem object, the blend mode THREE.AdditiveBlending is
especially interesting.

The example we will use in this chapter to highlight the features of the THREE.
ParticleSystem object deals with visualizing audio. The following screenshot
(the 04.05-bass-circle-system.html file) provides a preview of what we will
create in this chapter:

In this screenshot, we've got a particle system that shows the volume of the low,
mid, and high ranges. In the middle of the screenshot, you can see the volume of the
low range. The middle ring shows the volume of the mid range, and the outer ring
shows the high notes.

We will start from the beginning, and the first thing we'll do is show you how to
connect the HTML5 Web Audio API to Three.js. We will also show you a simple
example of a particle system.

Chapter 4

[75]

Visualizing the audio volume
In the first example, we are going to create a 3D visualization of the volume of the
left and right channels. In the following screenshot, you can see two cubes where
the left cube represents the volume of the left channel and the right one shows the
volume of the right channel (the 04.01-output-sound-volume.html file):

As you can already see in the preceding screenshot, we don't show a complete
rendered cube anymore. What you see are individual vertices that make up the
cube. These individual vertices are what we call particles.

To create this example, we have to perform the following steps:

1.	 The first thing we need to do is set up HTML5 Web Audio (http://www.
w3.org/TR/webaudio/) to be able to play an audio file that we can use as
an input.

2.	 We'll use Web Audio's AnalyserNode interface to determine the volume
from the left and right channels.

Visualizing Audio Data with a Particle System

[76]

3.	 For this example, we need to create two different THREE.ParticleSystems
objects: one to show the left volume and one to show the right volume.

4.	 Finally, when we play the audio file, we'll use the volume to animate the
THREE.ParticleSystems object that we'll create.

The first thing we need to do is set up the HTML5 Web Audio part, which we will
see in the next section.

Setting up the HTML5 Web Audio API
We won't go too deep into how Web Audio works, but you will see just enough
to understand how to use it. Web Audio works when you create an AudioContext
interface through which you can create various nodes. For instance, you need the
AudioBufferSourceNode interface to play a sound, the AudioDestinationNode
interface to output a sound to a speaker, the AnalyserNode interface to perform
Fast Fourier transformation, and many other nodes. You need to connect all these
nodes together to get the effect you want. For the example in this section, we're going
to use the following nodes:

•	 An AudioBufferSourceNode interface to play back an .ogg file
•	 A ChannelSplitterNode interface to split the sound into left and right channels
•	 Two AnalyserNode interfaces to determine the volume of the sound for

each channel
•	 The default DestinationNode interface provided by the AudioContext

interface to play the sound on speakers

The following JavaScript code shows how to accomplish this:

context = new AudioContext();

// create the nodes
sourceNode = context.createBufferSource();

splitter = context.createChannelSplitter();

analyser = context.createAnalyser();
analyser.smoothingTimeConstant = 0.4;
analyser.fftSize = 1024;

Chapter 4

[77]

analyser2 = context.createAnalyser();
analyser2.smoothingTimeConstant = 0.4;
analyser2.fftSize = 1024;

// connect them together
sourceNode.connect(splitter);
splitter.connect(analyser, 0);
splitter.connect(analyser2, 1);
sourceNode.connect(context.destination);

Here, you can see that we've created an AudioContext function, which we will use
to create other types of nodes and then use the connect function to connect these
nodes with each other. When we connect the splitter, we use the additional argument
to specify which channel (left or right) we want to connect to. With all the nodes
connected, we're now ready to play back music.

We also configured the AnalyserNode interface here, which we have created using
the createAnalyser function, with the smoothingTimeConstant and fftSize
properties. The Web Audio specification explains what these properties do, as listed
in the following table:

Property Description
smoothingTimeConstant This is a value between 0 and 1, where 0 represents

no time averaging with the last analysis's frame.
The default value is 0.8.

fftSize This refers to the size of the Fast Fourier Transform
(FFT) used for frequency-domain analysis.

We'll show you how to use these properties in our examples in the
coming sections, but before we do that, let's first look at how to set up
a THREE.ParticleSystem object.

Creating a particle system
In the previous section, we split the sound into a left and right channel using the
ChannelSplitterNode interface. In this section, we'll represent the volume of each
channel using a THREE.ParticleSystem object. First, let's look at the code to create
the first THREE.ParticleSystem object; we start by creating its geometry. Consider
the following code:

var boxGeometry = new THREE.BoxGeometry(3, 6, 3, 15, 25, 15);

Visualizing Audio Data with a Particle System

[78]

To create a particle system, we need a set of vertices. In this case, to create this set
of vertices, we need to create a THREE.BoxGeometry object. As a normal box only
consists of eight vertices, we use the last three arguments of the THREE.BoxGeometry
constructor to specify how many segments we want for the width, depth, and height
dimensions. By using these properties, we get many more vertices, which make the
particle system look a lot better.

To style a particle system, we use THREE.ParticleSystemMaterial. Refer to the
following code:

// setup the material
var pm = new THREE.ParticleSystemMaterial();
pm.map = THREE.ImageUtils
 .loadTexture("../assets/textures/particles/particle.png");
pm.blending = THREE.AdditiveBlending;
pm.transparent = true;

Because a particle system consists of individual particles, we can't use
the standard materials provided by Three.js. So, we have to use the
THREE.ParticleSystemMaterial that can only be used for particle
systems and contains the properties described in the following table:

Property Description
color If you don't use a texture (with the map property),

this property determines the color of the particles.
opacity This property refers to the opacity of each pixel

(when the transparent property has been set to true).
map This property refers to the texture to be used for each

individual particle.
size This property refers to the relative size of a particle;

the default value is 1.0.
blending This property defines how the particle color or the texture

blends together with the color of the pixels that are behind it.
vertexColors If this is set to true, you can change the color of each

individual particle.
transparent This property determines whether the particle is transparent

or not. It affects the opacity and the way textures are blended.

Chapter 4

[79]

In this case, we load a simple texture, as shown in the following image:

We set the transparent property to true and tell Three.js to use the
THREE.AdditiveBlending object. This blend mode adds the color of the texture
to the color of the pixel that is behind it, resulting in the glowing effect that you
see in this example. Finally, we can create the THREE.ParticleSystem object.
Consider the following code:

// create the particle system
var ps = new THREE.ParticleSystem(BoxGeometry, pm);
ps.name = 'cube';
ps.sortParticles = true;
scene.add(ps);

To create a THREE.ParticleSystem object, we follow the same approach as we
followed for a THREE.Mesh object. We provide a geometry (BoxGeometry) and a
material (pm) and add it to the scene. Note that we set the sortParticles property
to true. You should always do this whenever you change the vertices (or the
position of the vertices) of the system to make sure that they are rendered correctly
and don't result in weird overlapping artifacts.

To create the second particle, we just clone the initial material and change the texture
we want to use. Consider the following code:

var pm2 = pm.clone();
pm2.map = THREE.ImageUtils
 .loadTexture("../assets/textures/particles/particle2.png");

Visualizing Audio Data with a Particle System

[80]

Then, we create a THREE.ParticleSystem object in the same manner, as shown in
the following code:

var ps2 = new THREE.ParticleSystem(BoxGeometry, pm2);
ps2.name = 'cube2';
scene.add(ps2);

We've also given both of the particle systems a specific name so that we can easily
reference them when the need to animate them arises. Now, all we've got to do is
play the sound and animate the particle system.

Playing a sound and animating the particle
system
Before we can play a sound, we must first load our sound file into the memory and
set it as the buffer in the sourceNode object that we created previously. We use the
following function to load the file using a standard XMLHttpRequest function:

function loadSound(url) {
 var request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.responseType = 'arraybuffer';

 request.onload = function() {

 // decode the data
 context.decodeAudioData(request.response, function(buf) {
 playSound(buf);
 }, onError);
 }
 request.send();
}

When the file is loaded, the onload function is executed, which first decodes the
audio. When this is done, it calls the playSound function, which starts playing the
sound. This is described in the following code:

function playSound(buffer) {
 sourceNode.buffer = buffer;
 sourceNode.start(0);
}

Chapter 4

[81]

Now, we finally get to the part where we can animate the cubes. For this, we use
the render function that we've seen in all the examples so far. In this specific
example, we call an updateCubes function from this render function. Consider
the following code:

function render() {
...
 updateCubes();
...
}

In the updateCubes function, we use the information from the AnalyserNodes
interface to determine the volume and then use that volume to scale the cubes
appropriately. This is described in the following code:

function updateCubes() {
 // get the average for the first channel
 var array = new Uint8Array(analyser.frequencyBinCount);
 analyser.getByteFrequencyData(array);
 var average = getAverageVolume(array);

 // get the average for the second channel
 var array2 = new Uint8Array(analyser2.frequencyBinCount);
 analyser2.getByteFrequencyData(array2);
 var average2 = getAverageVolume(array2);

 // clear the current state
 if (scene.getObjectByName('cube')) {
 var cube = scene.getObjectByName('cube');
 var cube2 = scene.getObjectByName('cube2');
 cube.scale.y = average / 20;
 cube2.scale.y = average2 / 20;

 }
}

To scale the cube according to its volume, we use the getByteFrequencyData
function from each AnalyserNode interface. This returns an array of the size
frequencyBinCount, where each entry contains the volume for a range of
frequencies. With the getAverageVolume function, we add all the entries in the array
and divide them by the number of elements (implementation not shown). This value
(called average and average2) is used to scale the two THREE.ParticleSystem
objects along the y axis by setting the scale.y property.

Visualizing Audio Data with a Particle System

[82]

With the smoothingTimeConstant property, which we had set when we created
the analyzers, we can now configure how smoothly the cubes can be animated.
This is shown in the following screenshot:

In the next section, we won't create a THREE.ParticleSystem object using an
existing geometry, but we'll create a geometry from scratch.

Creating a particle system by hand
Now that we've seen our first particle system in action, let's look at how we can
create a particle system from a custom geometry. For this, we're going to visualize
the waveform from our audio as a number of particle systems. The result will look
something like the following screenshot, where each line from left to right is a single
particle system (the 04.02-particle-line-output.html file):

Chapter 4

[83]

To accomplish this sound visualization, we need to perform pretty much the same
steps as we saw in the previous example. We need to configure our audio. Next,
we need to access a NodeAnalyser interface to get the waveform; based on this
information, in this example, we're going to create a new particle system.

Web Audio's configuration and the render
loop
In this example, we won't go into the details of how to set up the Web Audio part,
as we've already seen that in the previous example. For this example, in the Web
Audio part, we will configure the following:

•	 An AudioBufferSourceNode interface that we can use to play back
an .ogg file

•	 One AnalyserNode interface to determine the waveform
•	 The default DestinationNode interface provided by the AudioContext

interface to play the sound on the speakers

Visualizing Audio Data with a Particle System

[84]

Just as we did in the previous example, we'll update the screen from the render
function, as shown in the following code:

function render() {

 c++;
 if (c % 2 == 0) updateWaves();
 // update stats
 stats.update();

 // and render the scene
 renderer.render(scene, camera);

 // render using requestAnimationFrame
 requestAnimationFrame(render);
}

As you can see, we do this by calling the updateWaves() function. Note that we've
added (c % 2 == 0). We do this to limit the speed with which the waves move
around the screen. So, for every two calls to the render function, we only update
the waves once. Now, let's look at how we created the waves in this example in a
bit more detail.

Creating waves with a custom geometry
All the interesting stuff in this example happens in the updateWaves() function, so
let's walk through the different parts of this function. Consider the following code:

function updateWaves() {

 // get the average for the first channel
 var array = new Uint8Array(analyser.frequencyBinCount);
 analyser.getByteTimeDomainData(array);

The first thing we need is the data from the Web Audio analyzer. In the
previous example, we used the analyser.getByteFrequencyData() function
to calculate the volume. In this example, we get the data from the analyser.
getByteTimeDomainData() function. If we visualize this time domain, we get a
waveform. Next, we set up the material. This is described in the following code:

// setup the material
 var pm = new THREE.ParticleBasicMaterial();
 pm.map = THREE.ImageUtils
 .loadTexture("../assets/textures/particles/particle.png");
 pm.blending = THREE.AdditiveBlending;
 pm.transparent = true;
 pm.opacity = 0.3;
 pm.size = 1.5;

Chapter 4

[85]

This example uses pretty much the same properties that we saw in the
previous example. We set a texture through the map property, set up the
THREE.AdditiveBlending object for the glow effect, and changed the opacity
and transparency of the material. The only thing we now need to create a particle
system is a geometry. Consider the following code:

// create an empty geometry
 var geom = new THREE.Geometry();

// add the vertices to the geometry based on the waveform
 for (var i = 0; i < array.length; i++) {
 var v = new THREE.Vector3(1, array[i] / 8, (i / 15));
 geom.vertices.push(v);
 }

To create a geometry from scratch, we first instantiate a new THREE.Geometry object.
A THREE.Geometry object contains an array where it stores all the vertices. This array
can be accessed through the vertices property. What we do in the previous piece
of code is create a new vertex in the form of a THREE.Vector3 object. When you
create this object, you need to specify an x, y, and z value. We just set the x value to
1 so that we can draw each wave by varying the y and z values. We use the y value
to represent the value in the array (array[i]) and the z value to just move to the
next position for the next value. This way, whenever this function is called, a single
waveform is drawn.

Now that we've created the material and added a number of vertices to the
geometry, we can combine these to create a THREE.ParticleSystem object.
This is described in the following code:

// create a new particle system
 var ps = new THREE.ParticleSystem(geom, pm);
 ps.sortParticles = true;

If you look at the screenshot at the beginning of this chapter, you can see that
we move the older waves to the back. The following code moves the existing
waveforms back and adds the newly created THREE.ParticleSystem object:

// move the existing particle systems back
 systems.forEach(function(e) {
 e.position.x -= 1.5
 });

// and remove the oldest particle system
 if (systems.length === 40) {
 var oldPs = systems.shift();
 if (oldPs) {
 scene.remove(oldPs);
 }

Visualizing Audio Data with a Particle System

[86]

 }

// add the new to the systems array and the scene
 systems.push(ps);
 scene.add(ps);
}

Here, you can see that we iterate through the systems array, an array that we use to
keep track of all the THREE.ParticleSystem objects we've created. For each particle
system in this array, we change the position along the x axis. In this example, we
limit the maximum number of waves to be shown at the same time to 40. If we don't
do this, at a certain point, the animation will become unresponsive as Three.js has
to keep track of all the particle systems that we create (around 30 every second).
Finally, after we've removed the obsolete systems, we push the newly created ones to
the systems array and add them to the scene. The result is a nice visualization of the
waveform of the currently playing audio sprinting along the x axis.

By playing around with the THREE.ParticleSystemMaterial object, it is
very easy to change the look and feel of the waveform. This is shown in the
following screenshot:

Chapter 4

[87]

For instance, the waveform in the previous screenshot was created with the material
described in the following code:

var pm = new THREE.ParticleSystemMaterial();
pm.color = new THREE.Color(0x00ff00);
pm.transparent = true;
pm.opacity = 0.5;
pm.size=0.1;

So far, we haven't looked at how to style individual particles. All the particles we've
created use the same texture. It is however possible to change the colors of the
individual particles. In the next section, we're going to explore how you can do this.

Customizing colors of individual particles
In this example, we're going to create a visualization that shows the amplitude
of the individual frequencies of the currently playing audio. For each frequency,
the height of a particle and its color will change to reflect the amplitude. The result
looks something like the following screenshot:

Visualizing Audio Data with a Particle System

[88]

In this screenshot, you can see the lower frequencies to the left and the higher
frequencies to the right. As you can see, the height and color of the individual
particles are different. In the following couple of sections, we'll see how to do this.

Coloring individual particles
Let's start simple and create a THREE.ParticleSystem object without any animations.
We'll create the particle system that you can see in the following screenshot:

Here, you can see a set of particles where each particle has its own color.
To accomplish this, we have to perform the following two steps:

1.	 First, we have to configure the THREE.ParticleSystemMaterial
object whose individual particles we want to color.

2.	 For each vertex in the geometry that we provide to the
THREE.ParticleSystem object, we have to define a THREE.Color object.

Chapter 4

[89]

Let's start by configuring the material; this is described in the following code:

var pm = new THREE.ParticleSystemMaterial();
pm.map = THREE.ImageUtils
 .loadTexture("../assets/textures/particles/particle.png");
pm.blending= THREE.AdditiveBlending;
pm.transparent = true;
pm.size=1.5;
pm.vertexColors = true;

Nothing new here, except the last line. With the vertexColors property of the
THREE.ParticleSystemMaterial object, we can tell the particle system how we
want the color of the particles to behave. If this property is set to false, the color of the
particles will use the color set by the color property of the material. If this property is
set to true, as is done in this case, we can set the color of each individual vertex.

To color each individual particle, we need to specify a THREE.Color object for
each of the particles and add that object to the colors property, which is an array
of the THREE.Geometry object. The following piece of code shows how we did this,
the result of which was shown in the previous screenshot:

function setupParticleSystem(width, depth) {
 var targetGeometry = new THREE.Geometry();
 for (var i = 0; i < width; i++) {
 for (var j = 0; j < depth; j++) {
 var v = new THREE.Vector3(i / 2 - (width / 2) / 2
 , 0, j / 2 - (depth / 2) / 2);
 targetGeometry.vertices.push(v);
 targetGeometry.colors.push(
 new THREE.Color(Math.random() * 0xffffff));
 }
 }

 var ps = new THREE.ParticleSystem(targetGeometry, pm);
 ps.name = 'ps';
 scene.add(ps);
}

In this function, we create a new THREE.Geometry object and fill it with a set of
vertices. For each vertex that we push into the vertices array of the THREE.Geometry
object, we also create a random THREE.Color object that we push into the colors
array of the same THREE.Geometry object.

The result is that Three.js will use the THREE.Color objects in the colors array to
render the individual particles. We'll use the same approach in the next section to
create colors based on the amplitude of a specific frequency.

Visualizing Audio Data with a Particle System

[90]

Coloring the particles based on the amplitude
As you can see in the screenshot at the beginning of the Customizing colors of
individual particles section, we color the vertices starting from orange at the bottom,
then moving on to red in the center, and finally ending with white at the top. We
could create this color scale manually, but that takes a lot of work and requires a
good understanding of how colors work. Luckily, there is a very good open source
library that specifically solves this problem. This library is called Chroma.js and can
be downloaded from GitHub at https://github.com/gka/chroma.js.

With Chroma.js, you can define a color scale that you can use to automatically get an
appropriate color, as shown in the following code:

var scale = chroma.scale(['orange', 'red', 'white'])
 .domain([0, 255]);

In this example, we will create a color scale with three colors. Now, when we use
scale 0, we'll get the orange color; with scale 255, we'll get the white color; and with
scale 64, we will get something between orange and red colors. The range can be
pretty much anything you want. We've used a scale from 0 to 255 because that is
the range we receive from the analyzer.

Now, let's look at how we can use this scale object together with the information
from the frequencyBinCount function to color the individual vertices. Consider the
following code:

var array = new Uint8Array(analyser.frequencyBinCount);
analyser.getByteFrequencyData(array);

var ps = scene.getObjectByName('ps');
var geom = ps.geometry;

for (var i = 0; i < array.length; i++) {
 if (geom.vertices[i]) {
 geom.vertices[i].y = array[i] / 40;
 if (array[i] > max) max = array[i];
 geom.colors[i] = new THREE.Color(scale(array[i]).hex());
 }

}
ps.sortParticles = true;
geom.verticesNeedUpdate = true;

Chapter 4

[91]

In this piece of code, we once again walk through all the values returned from
the getByteFrequencyData function. For each of these values, we set the y
value of the corresponding vertices (geom.vertices[i]) and use the new
THREE.Color(scale(array[i].hex()) function to set the color in the
geom.colors[i] array. The result of this is a particle system whose colors
respond to the amplitude of the various frequencies of the audio. The result is
shown in the following screenshot:

In the last part of this chapter, we'll look at another way in which you can visualize
audio data. We won't go into too much detail, as most topics have already been
discussed in the previous sections.

Visualizing Audio Data with a Particle System

[92]

Combining dynamic colors to create
advanced visualizations
In this section, we'll have a very quick look at how you can apply the concepts that
you've learned in this chapter to create a more complex visualization. We won't show
you all the JavaScript code for this but will just highlight the most important steps.
If you want to know the details, you can look at the provided source code. The
resulting advanced visualization is shown in the following screenshot:

The visualization you can see in the previous screenshot shows the low, mid,
and high tones of the audio that is being played in the form of concentric circles.
The low tones are shown in the center of the visualization, the second circle shows
the mid tones, and the outermost circle shows the amplitude of the high tones.
To create this visualization, we have to perform the following steps:

1.	 We have to start by setting up the initial particle system.
2.	 Next, we have to calculate the volumes for the low, mid, and high tones.

Chapter 4

[93]

3.	 Then, we need to determine the particles that need to be updated for each
tone range.

4.	 Finally, we need to set the height and color of the individual particles for
each tone range.

Setting up the initial particle system
The particle system that we use for this example is the same one we saw in
the previous example. In that section, we saw the setupParticleSystem()
function that created a simple particle system. In this example, we will use the
setupParticleSystem(100, 100) function, which creates a particle system with
10,000 particles. The material we will use is described in the following code:

var pm = new THREE.ParticleSystemMaterial();
pm.map = THREE.ImageUtils
 .loadTexture("../assets/textures/particles/ball.png");
pm.transparent = true;
pm.opacity = 0.4;
pm.size=0.9;
pm.vertexColors = THREE.VertexColors;

With the particle system created, the next step is to calculate the average volumes
for each frequency range.

Calculating volumes for each range
In the previous examples, we've already calculated the average volume.
The main change here is that we want to calculate the volume for a specific range.
Consider the following code:

var array = new Uint8Array(analyser.frequencyBinCount);
analyser.getByteFrequencyData(array);

var lowValue = getAverageVolume(array,0,300);
var midValue = getAverageVolume(array,301,600);
var highValue = getAverageVolume(array,601,1000);

Visualizing Audio Data with a Particle System

[94]

Here, we've specified the low range as the first 300 frequencies, the mid range as the
second 300 frequencies, and the high range as the next 400 frequencies. The function
to calculate these volumes is pretty simple. It is described in the following code:

function getAverageVolume(array, start, end) {
 var values = 0;
 var average;

 var length = end - start;
 for (var i = start; i < end; i++) {
 values += array[i];
 }

 average = values / length;
 return average;
}

This function just adds up all the individual volumes and divides them by the
number of values. All we need to do now is select the particles that we want to
update and set them to their correct height and color.

Determining particles that need to be updated
and setting the height and color of an
individual particle
To determine which particles we need to update is a bit complex. We need to
determine the offset from the center, the width of the ring, the spacing used between
individual particles, and the size of the particles. To explain the details of this is a bit
out of scope. If you want to see the implementation details, look at the source code
for the 04.05-bass-circle-system.html file.

The following lines of code show the steps needed to color and position the particles
for the middle tones. First, we select all the particles that should be updated when
the volume of the mid range changes.

var midParticles = [];
for (var i = 0 ; i < midRings ; i++) {
 midParticles.push(getFallOffParticles
 (centerParticle,(i+1+midFrom)*spacing,(i+midFrom)*spacing));
}

Chapter 4

[95]

The getFallOffParticles function determines which particles should be updated
based on the provided arguments. In this case, it is the set of particles that represent
the middle tones. Besides the particles, we also need to determine the maximum
height of the individual particles. The ones in the center of the ring are the highest.
The further away from the center of the ring a particle is, the lower its height is.
This is described in the following code:

for (var i = midRings/2 ; i < midRings ; i++) {
 midOffsets.push(
 Math.sin(Math.PI*(0.5*(i/(midRings/2)))));
}

Next, we need to change each particle in the ring to its correct height and color.
For this, we've also created a helper function called renderRing, which is described
in the following code:

// render the mid ring
for (var i = 0 ; i < midRings ; i++) {
 renderRing(
 geom,midParticles[i],
 midValue,midOffsets[i],
 midVolumeDownScale);
}

function renderRing(geom, particles
 , value, distanceOffset, volumeDownScale) {

 for (var i = 0; i < particles.length; i++) {
 if (geom.vertices[i]) {
 geom.vertices[particles[i]].y
 = distanceOffset*value/volumeDownScale;
 geom.colors[particles[i]]
 = new THREE.Color(scale(distanceOffset*value).hex());
 }
 }
}

In this function, you can see that we've used the same approach as we did in the
example in the Customizing colors of individual particles section. We use the Chroma.js
library to determine the color and position of the pixel based on the volume together
with the offset that we calculated earlier. That's it for this last visualization example
of this chapter.

Visualizing Audio Data with a Particle System

[96]

Summary
Particle systems provide a very interesting way to create 3D visualizations. In this
chapter, we focused on visualizing audio, but you could use this for many other
kinds of 3D visualizations. You can create a THREE.ParticleSystem object from
any existing geometry. Three.js will then render a particle for each of the vertices
of the geometry and use the provided THREE.ParticleSystemMaterial object
to determine how each particle looks. Besides generating systems from existing
geometries, you can also create a custom geometry by instantiating a THREE.
Geometry object, adding THREE.Vector3 objects to the vertices array and using
that as an input for a THREE.ParticleSystem object.

If you use a THREE.ParticleSystemMaterial object, the standard way to render
particles will be as simple squares using the color property from the supplied
material. If you want more advanced shapes, you can use a texture for a particle
by setting the map property of the the THREE.ParticleSystemMaterial object.

It's also possible to color each particle individually. For this, you'll have to fill the
color array of the geometry with a THREE.Color object for each vertex, and you also
need to set the vertexColors property of the THREE.ParticleSystemMaterial
object to true. The last important property of the THREE.ParticleSystemMaterial
object is the blending property. You can set this property to the THREE.
AdditiveBlending object to get a nice-looking glow effect.

Finally, if you need to use color scales for your particles, the easiest way to do this is
by using the Chroma.js JavaScript library.

In the next chapter, we'll dive deeper into creating custom geometries in Three.js,
using algorithms to create trees, cities, and landscapes.

Programmatic Geometries
In this chapter, we're going to look at a different approaches to creating geometries.
Instead of using the built-in geometries from Three.js as we did in earlier chapters,
we will create the geometries programmatically. This will allow us to create many
different-looking types of objects without having to specify the models in detail
or model them in a 3D modeling program. We'll cover the following topics in
this chapter:

•	 Creating a geometry from scratch using vertices and faces.
•	 Coloring the generated geometries; we'll use the color property of the

created faces.
•	 Working with textures; we need to configure an additional property besides

the faces and the vertices. This is called UV mapping.
•	 Using Perlin noise, you can create natural-looking randomness. We'll use

Perlin noise to create a natural-looking terrain.
•	 Generating textures using random libraries can be done just as geometries

using random libraries are created. In this chapter, we will show you how
to generate a random building-like texture.

•	 Using the algorithms of external libraries , we can generate the information
needed to create a geometry. We'll use a library that contains an algorithm
to generate trees.

We'll start with creating a 3D terrain using Math.random().

Programmatic Geometries

[98]

Creating a 3D terrain from scratch
In the first section, we're going to create a 3D terrain from scratch. For this,
we need to take the following steps:

•	 The first thing we need to do is define the position of all vertices that make
up the geometry

•	 When all the vertices have been created, we need to connect them together
to create faces

•	 From this geometry and these faces, we can create a THREE.Mesh object to
add to the scene with a specific material

In this section, we're going to create a terrain using two different approaches.
We're going to start with Math.random() to create the terrain, and after that,
we're going to use a Perlin noise generator for a more evenly distributed terrain.

Generating a terrain with Math.random()
For our first example, we're going to create the example you can see in the following
screenshot (05.01-3D-plane-from-scratch.html):

Chapter 5

[99]

In this screenshot, you can see a randomly generated terrain where the color of
each face is determined by its height. Let's walk through the code to show you how
to accomplish this. To make it easier to use, we've put all the relevant code into a
single function:

function create3DTerrain(width, depth, spacingX, spacingY, height) {
 // create individual vertices
 ...
 // create the faces
 ...
 // create the mesh and add to scene
 ...
}

Before we look at the implementation of this function, let's quickly review the
arguments it takes:

Argument Description
width This argument refers to the width of the terrain to generate.

It defines how many vertices will be created for the width.
depth This argument refers to the depth of the terrain to generate.

It defines the number of vertices that will be created for the depth.
spacingX This argument refers to how many rooms there will be between

the individual vertices along the x axis.
spacingY This argument refers to how many space there will be between

the individual vertices along the z axis.
height This argument defines the maximum height of the terrain

to generate.

Let's start at the beginning and create all the vertices based on the supplied
arguments:

var geometry = new THREE.Geometry();
for (var z = 0; z < depth; z++) {
 for (var x = 0; x < width; x++) {
 var vertex = new THREE.Vector3(
 x * spacingX,
 Math.random() * height,
 z * spacingZ);
 geometry.vertices.push(vertex);
 }
}

Programmatic Geometries

[100]

What we do here is first create an empty THREE.Geometry object, just as we did when
we created the THREE.ParticleSystem object in the previous chapter. Based on the
supplied depth and width, we determine the number and position of the particles we
need to create. For the height, which is the y property of the THREE.Vector3, we use
Math.Random() to generate a random value, and use that value to calculate the height
of this specific vertex. This height is based on the supplied height property. The result
of this part of the function is that we've got a THREE.Geometry object with an array
of vertices.

The next step is to use the array position of these vertices to create faces. Three.js
uses triangle faces that can be created by instantiating the THREE.Face3 object.
We're going to create faces in the format shown in the following figure:

As you can see in the figure, we are going to create squares by combining two faces.
So we need to create a face using the A, B, and C vertices, and another face using the
B, C, and D faces. We do this in the following code fragment:

for (var z = 0; z < depth - 1; z++) {
 for (var x = 0; x < width - 1; x++) {
 // we need to point to the position in the array
 // a - - b
 // | / |
 // c - - d
 var a = x + z * width;
 var b = (x + 1) + (z * width);
 var c = x + ((z + 1) * width);
 var d = (x + 1) + ((z + 1) * width);

 var face1 = new THREE.Face3(b, a, c);
 var face2 = new THREE.Face3(c, d, b);
 geometry.faces.push(face1);
 geometry.faces.push(face2);
 }
}

Chapter 5

[101]

In this small fragment, we walk through all the vertices; based on their position, we
have set the a, b, c, and d values to a specific value, which points to the correct vertex
in the vertices array we filled in earlier. Based on these positions, we create two faces
and add them to the faces array of geometry.

At this point, we've created the two most important parts of our geometry: the
vertices and the faces. Before we create a THREE.Mesh object and add the geometry
to the scene, we need to take a couple of small steps to recreate the example you saw
at the beginning of this section. Let's start by looking at how to create the colors.
In our example, each face has its own color based on the height of the face. We can
specify this by setting the color property of the faces we created in the previous
code fragment:

face1.color = new
 THREE.Color(scale(getHighPoint(geometry, face1)).hex());
face2.color = new
 THREE.Color(scale(getHighPoint(geometry, face2)).hex())

To set the color, we once again use Chroma.js to help us get the correct color value.
The scale we used this time is as follows:

var scale = chroma.scale(['blue','green','red'])
 .domain([0,MAX_HEIGHT]);

So, when we call scale() and supply the height of the face, we get a color back
from this range. To calculate the value to supply to the scale function, we use the
getHighPoint function, which determines the highest position of the vertices used
in a face:

function getHighPoint(geometry, face) {

 var v1 = geometry.vertices[face.a].y;
 var v2 = geometry.vertices[face.b].y;
 var v3 = geometry.vertices[face.c].y;

 return Math.max(v1, v2, v3);
}

Now, let's create the material, create a THREE.Mesh object, and look at the result:

var mat = new THREE.MeshPhongMaterial();
mat.vertexColors = THREE.FaceColors;

// create the mesh

Programmatic Geometries

[102]

var groundMesh = new THREE.Mesh(geometry, mat);
groundMesh.translateX(-width / 1.5);
groundMesh.translateZ(-depth / 4);
groundMesh.name = 'terrain';

scene.add(groundMesh);

Here, we use THREE.MeshPhongMaterial, which can be used to create shiny objects
and set the vertexColors property to THREE.FaceColors to tell the material to
use the colors we specified on the faces. Now, we're ready to create the THREE.Mesh
object and add it to the scene. The result, however, doesn't really look that great.

The shapes seem to be there, but the lighting and shading is completely off.
The reason for this is that Three.js is still missing one piece of information.
What we need to specify is the face normal vector. This is the vector that is
perpendicular to the face. This is used by Three.js to determine how lighting
applies to this specific face. We could calculate this by hand, but luckily Three.js
provides an easier approach for this. Have a look at the following line of code:

geometry.computeFaceNormals();

Chapter 5

[103]

This will compute the normal vectors for all the faces of the geometry.
Now, when we render the scene, we get the result we saw at the beginning
of the chapter. Have a look at the following screenshot:

If you open the example (05.01-3D-plane-from-scratch.html) in your browser,
you can find some additional functionality in the menu on the top-right corner.
If you click on the toNormalMaterial button, the material will change to THREE.
MeshNormalMaterial. With this material, the color of each face is based on its
face normal vector, as shown in the following screenshot:

Programmatic Geometries

[104]

In this example, you can also enable smoothShading. With smoothShading, you
don't see the individual faces, but Three.js combines them to create a smooth
geometry. You can easily enable this by setting the shading property of the material
to THREE.SmoothShading. The result looks like the following screenshot:

So far, we've created the terrain using the Math.random() function. This provides
an interesting terrain, but as you can see, it doesn't really look natural. In the next
section, we'll show you how you can use a Perlin noise generator for a more natural
but random result.

Generating a terrain with a Perlin noise
A Perlin noise is an algorithm that creates a more natural-looking distribution of
values. For instance, the following screenshot is an example of a texture generated
using a Perlin noise algorithm:

Chapter 5

[105]

What you can see here is that even though it appears rather random, the transitions
are very smooth and natural looking. If we apply this to our example, we'll get
a result (05.02-3D-plane-from-scratch-perlin.html) that looks like the
following screenshot:

As you can see in the preceding screenshot, the terrain generated is very
smooth and looks very natural. To accomplish this, we only have to change
the method create3DTerrain at a couple of small points and import an
additional JavaScript library.

There are a couple of JavaScript Perlin noise libraries available, but I
usually use the perlin.js library, which you can get from GitHub
at the following link:
https://github.com/josephg/noisejs

First, include this library at the top of the JavaScript file:

<script src="../libs/perlin.js"></script>

Now, change the first part of the create3DTerrain function to the following
code snippet:

function create3DTerrain(width, depth, spacingX, spacingZ, height) {
 // seed the perlin generator
 var date = new Date();
 noise.seed(date.getMilliseconds());

 // first create all the individual vertices
 var geometry = new THREE.Geometry();
 for (var z = 0; z < depth; z++) {
 for (var x = 0; x < width; x++) {

Programmatic Geometries

[106]

 var yValue = Math.abs(
 noise.perlin2(x / 10, z / 10) * height * 2);
 var vertex = new THREE.Vector3(
 x * spacingX,
 yValue,
 z * spacingZ);
 geometry.vertices.push(vertex);
 }
 }
 ...
}

Before we can use the perlin function, we first need to seed it. In other words, we
need to supply the input value that is used to generate random values. In this case,
we seed it with the current date in milliseconds. This way, each time we reload the
scene, it will show a different landscape. Now we can call the noise.perlin2()
function to generate the next height value. The arguments of this function define
how smoothly the values returned by the perlin2 function follow each other. If, in
each step, the increase is too small, you'll see very little hills and values; if it is too
large, you'll only see spikes. Finally, we use Math.abs to make sure the returned
value is positive, since the perlin2 function returns values from -1 to 1. Especially if
you enable smoothShading, you can get some beautiful looking terrains, as shown in
the following screenshot:

There is one aspect that we haven't tested yet with our custom geometry, and that
is textures.

Chapter 5

[107]

Adding a texture
We've already seen in the earlier chapters how to configure a texture. So let's do that
and see what the result is:

var mat = new THREE.MeshPhongMaterial();
mat.map = THREE.ImageUtils
 .loadTexture("../assets/textures/wood_1-1024x1024.png");

The result is not a texture, but a rather cryptic error message.

The reason, which isn't actually clear from this error message, is that we're missing
one more piece of configuration in the geometry we've created: the UV map.

With a UV map, you define faces of the geometry map with respect to the provided
texture. For each vertex of each face, we need to define its position on the texture.
The texture, which is practical to use when debugging UV maps, shows the range of
the U value (the x axis) and the V value (the y axis).

Programmatic Geometries

[108]

As you can see in the following screenshot, both run from 0 to 1, starting at the
top-left corner:

When we discussed faces in this chapter, we looked at the following figure:

Now let's assume that we want to use this texture on these two faces, and we
want to use only its top half. This would mean that vertex A would get an UV
value of [0,0], vertex B would get [1,0], vertex C would get [0,0.5], and D would
get [1,0.5]. Not so difficult, but something we need to add to our geometry if we
want to be able to use textures.

Chapter 5

[109]

We're going to extend the create3DTerrain function again to also create the UV
mapping we need. To specify these UV mappings, Three.js uses a THREE.Vector2
object; this object is a 2D vector, so it takes two arguments. This is analogous to the
THREE.Vector3 object we used to specify a point in a 3D space:

for (var z = 0; z < depth - 1; z++) {
 for (var x = 0; x < width - 1; x++) {
 ...

 // define the uvs for the vertices we just created.
 var uva = new THREE.Vector2
 (x / (width - 1), 1 - z / (depth - 1));
 var uvb = new THREE.Vector2
 ((x + 1) / (width - 1), 1 - z / (depth - 1));
 var uvc = new THREE.Vector2
 (x / (width - 1), 1 - (z + 1) / (depth - 1));
 var uvd = new THREE.Vector2
 ((x + 1) / (width - 1),
 1 - (z + 1) / (depth - 1));

 var face1 = new THREE.Face3(b, a, c);
 var face2 = new THREE.Face3(c, d, b);

 ...

 geometry.faces.push(face1);
 geometry.faces.push(face2);

 geometry.faceVertexUvs[0].push([uvb, uva, uvc]);
 geometry.faceVertexUvs[0].push([uvc, uvd, uvb]);
 }
}

The code to generate the correct UVs isn't that much different from what we saw
earlier to calculate the position of the vertices. The only thing we need to keep
in mind is that the range for both the U and V values runs from 0 to 1. Note that
geometry.faceVertexUvs can contain multiple UV mappings. Generally, you set
the mapping with index 0 when you want to map a texture. Three.js uses other
indices for special purposes. We now configure the debug texture that we saw
earlier; you can see that our custom geometry uses the complete texture.

Programmatic Geometries

[110]

Have a look at the following screenshot

This mapping is based on the UV information we specified. So, if you create a
custom geometry, remember to also think about how a texture should be applied
to it. Now we can very easily create very interesting-looking terrains. For instance,
the following figure was created with a simple wood-like texture (05.03-3D-plane-
with-texture.html):

As the final step for our custom geometry, we're going to make it easier to create.
We're going to extend Three.js so that we can just use new THREE.Terrain to create
this geometry.

Chapter 5

[111]

Creating a JavaScript object with a constructor
As a last step, we're going to make it easier for you to reuse the custom geometry
we just created. To better understand this, you need to know a little about how
inheritance works in JavaScript. A good tutorial can be found at the http://
martinrinehart.com/frontend-engineering/engineers/javascript/inher/
masters/master-inher-crockford.html.

The goal of this example is to change the create3DTerrain function to the following
code snippet:

function create3DTerrain(width, depth, spacingX, spacingZ, height) {

 var terrain = new THREE.TerrainGeometry(
 width, depth, spacingX, spacingZ, height, scale);

 // setup the material
 ...

 // create the mesh
 ...

 scene.add(groundMesh);
}

So, instead of using this function to create the geometry by hand, we just want
to make a call to THREE.TerrainGeometry just as we would do with the other
geometries Three.js provides. The code for this example can be found in this
source code: 05.04-Simple-3D-Buildings.html. To accomplish this, we need to
do the following two things:

•	 First, we have to register this object with Three.js
•	 After that, we have to make some small changes to our code to work

with this new setup

To register this object, we've created the registerObject function. Have a look
at the following code snippet:

function registerObject() {
 THREE.TerrainGeometry = function(
 width, depth, spacingX, spacingZ, height, scale) {

Programmatic Geometries

[112]

 THREE.Geometry.call(this);
 ...
 };

 THREE.TerrainGeometry.prototype =
 Object.create(THREE.Geometry.prototype);
}

With this setup, we registered the THREE.TerrainGeometry object and defined its
constructor. In Three.js, all geometry objects extend from the basic THREE.Geometry
object. To accomplish this, we need to make sure we set the prototype property of
our newly created object to Object.create(THREE.Geometry.prototype). The
final step is to make sure that whenever we create this object, we always first call
THREE.Geometry.call(this) to also call the constructor of the THREE.Geometry
object we extend from.

Once we've got this skeleton set up, we only need a couple of small changes in our
code. To get this to work, we changed the following items:

•	 All references to the geometry variable were replaced by the variable this.
The reason is that our new object is also a THREE.Geometry, so there is no
need to use a separate THREE.Geometry object.

•	 We moved the getHighPoint function inside the THREE.TerrainGeometry
object, since it was only used in that context.

•	 We removed all the THREE.Mesh object- and material-related code,
since we only wanted to create the geometry.

That's it. Now we can create a new, randomly-generated terrain by just calling the
following line of code:

var terrain = new THREE.TerrainGeometry(width, depth, spacingX,
 spacingZ, height, scale);

In the next section, we'll look at a different approach to procedural object generation,
and we'll show you how you can create a procedural city.

Chapter 5

[113]

Creating a city from scratch
So far we've just created a terrain. In this small section, we'll show you how you
can get started with creating a complete procedural city. We won't show you all
the details here, but enough to get started. The goal for this section is shown in
the following screenshot (05.04-Simple-3D-Buildings.html):

Programmatic Geometries

[114]

As you can see in this screenshot, we're going to create a number of skyscrapers
that we randomly position. Let's walk through the code to accomplish this.
The basic steps are as follows:

function createCity(buildingCount, rangeX, rangeY, scale) {
 // create the basic building block
 ...
 // Disable the texture for the roof
 ...
 // For each building create custom texture, set scale and add
}

We'll look at each of these steps a bit closer. The first step is to create a basic
building using a simple THREE.CubeGeometry that we'll scale and texture to
look like a building:

// create the basic buildingblock
var buildingBlock = new THREE.CubeGeometry(1, 1, 1);
buildingBlock.applyMatrix(
 new THREE.Matrix4().makeTranslation(0, 0.5, 0));

You can see that we first created a 1 x 1 x 1 THREE.CubeGeometry object, and we
translated this geometry along the y axis with 0.5. This last step moved the center
of the cube for the y axis to the bottom. Now, if we scale the cube along the y axis,
it will scale directly up, and we won't need to move the mesh afterwards.

In the previous screenshot, you can see that our roof has a different texture than
the side walls. The standard way Three.js applies textures on cubes is to apply
the texture to all the sides. In one of the earlier sections, you learned about UV
mapping, and we'll use that to make sure the roof texture is a single color. We do
this by changing the mapping for the two triangles (the fourth and fifth faces)
that make up the roof:

// setup the texture for the roof
var uvPixel = 0.0;
buildingBlock.faceVertexUvs[0][4][0] =
 new THREE.Vector2(uvPixel, uvPixel);
buildingBlock.faceVertexUvs[0][4][1] =
 new THREE.Vector2(uvPixel, uvPixel);
buildingBlock.faceVertexUvs[0][4][2] =
 new THREE.Vector2(uvPixel, uvPixel);
buildingBlock.faceVertexUvs[0][5][0] =
 new THREE.Vector2(uvPixel, uvPixel);

Chapter 5

[115]

buildingBlock.faceVertexUvs[0][5][1] =
 new THREE.Vector2(uvPixel, uvPixel);
buildingBlock.faceVertexUvs[0][5][2] =
 new THREE.Vector2(uvPixel, uvPixel);

By pointing all the vertices of the faces to the same position on the texture, we make
sure that the roof is of a uniform color. In this case, it is the color of the top-left
pixel of the texture. Now that we've got the basic building block ready, we can start
scaling and creating the buildings:

// create buildings
for (var i = 0; i < buildingCount; i++) {

 // create a custom material for each building
 var material = new THREE.MeshLambertMaterial();
 material.color = new THREE.Color(0xffffff);
 material.map = new THREE.Texture(generateBuildingTexture());

 // reduce bluriness
 material.map.anisotropy = renderer.getMaxAnisotropy();
 material.map.needsUpdate = true;

 // create the mesh
 var building = new THREE.Mesh(buildingBlock, material);
 var scale = ((Math.random() / 1.2) + 0.5) * scale;

 // scale the buildings
 building.scale.x = scale;
 building.scale.z = scale;
 building.scale.y = scale * 4;

 // position the buildings
 building.position.x =
 (Math.random() / 2 * rangeX) - rangeX / 2;
 building.position.z =
 (Math.random() / 2 * rangeY) - rangeY / 2;

 // add to scene
 scene.add(building);
}

Programmatic Geometries

[116]

In the previous code fragment, we first set up a material for each building. We do
this because we're going to generate a custom texture for each building using the
generateBuildingTexture() function, which we'll explain later. Normally, textures
are a bit blurry to improve performance and make textures look more natural. In our
case, however, we want to have the textures as crisp and sharp as possible. We can
do this by setting anisotropy of the material to renderer.getMaxAnisotropy().
After we've set up the material, we create a THREE.Mesh object and randomly set the
scale and position before adding it to the scene.

The only thing left to explore is how to create a random texture.
For each building in this example, we create a random texture using the
generateBuildingTexture() function. This function returns textures that
look something like the following screenshot:

The code to create this canvas is shown in the following code snippet:

var scale = chroma.scale(
 ['black','#111111','#222222','white','red'])
 .domain([0,1],10);
function generateBuildingTexture() {

Chapter 5

[117]

 var canvas = document.createElement("canvas");
 canvas.width = 256;
 canvas.height = 512;

 var ctx = canvas.getContext("2d");
 ctx.imageSmoothingEnabled = false;
 ctx.webkitImageSmoothingEnabled = false;
 ctx.mozImageSmoothingEnabled = false;

 ctx.fillStyle = '#111111';
 ctx.fillRect(0, 0, 512, 512);

 // fill in the windows
 for (var x = 0; x < 256; x += 8) {
 for (var y = 0; y < 490; y += 8) {
 ctx.fillStyle = scale(Math.random()).hex();
 ctx.fillRect(x + 1, y + 1, 6, 6);
 }
 }
 for (var x = 0; x < 256; x += 8) {
 for (var y = 490; y < 512; y += 8) {
 ctx.fillStyle = '#333333';
 ctx.fillRect(x + 1, y + 1, 8, 8);
 }
 }

 return canvas;
}

The code isn't that difficult. We create a canvas and fill it with colored rectangles.
To determine the color of the rectangle, we use the color scale, which you can see
at the top of the code sample. We don't fill the complete texture with rectangles but
make sure the lower part is a uniform color. This results in a texture that looks like
a building at nighttime, with lots of windows, and a kind of storefront at the bottom
(the uniform color).

Programmatic Geometries

[118]

By playing around with the variables (or the colors), you can create really interesting
looking cities.

If you want to explore procedural city generation further, there is a
great example on how to do this with Three.js at the following URL:
http://learningthreejs.com/blog/2013/08/02/how-to-
do-a-procedural-city-in-100lines/

Before we move on to the next chapter, we're going to look at another way to quickly
get some procedural geometries. In the next section, we'll use a standard library to
generate the geometry and convert it into something Three.js can use.

Chapter 5

[119]

Creating parametric trees
For the last example, we'll look at how you can use an existing library to easily create
parametric geometries. In this case, we'll show you how to create trees like the ones
shown in the following screenshot (05.05-generated-tree):

The library we use to create this generated tree is called proctree.js,
which you can download from GitHub at the following link:
https://github.com/supereggbert/proctree.js/

Programmatic Geometries

[120]

This library allows you to specify a bunch of parameters, which are used to
create a tree geometry. To get this to work with Three.js, we have to convert the
information provided by this library to Three.js. Let's look at what proctree.js
generates so that we can decide how to convert it:

var myTree = new Tree({
 // configuration
});

console.log(myTree);

The following screenshot shows this result in the Chrome console:

As shown in the previous screenshot, the proctree.js library creates the following
components when generating a tree:

Property Description
UV This property contains the UV value for each individual

vertex of the trunk.
faces This property shows an array of faces that together make

up the trunk. Each face points to vertices stored in the
verts property.

facesTwig This property shows an array of faces that together make
up the leaves of the tree.

Chapter 5

[121]

Property Description
normals and
normalsTwig

These properties contain normals for all of the vertices.

root This property contains internal information on how the
tree was generated. This property is not needed to create a
Three.js geometry.

uvsTwigs This property contains the UV values for each individual
vertex of the leaves.

verts This property represents all the vertices that make up the
trunk geometry.

vertsTwig This property represents all the vertices that make up the
leaves of the tree.

What we need to do is create a THREE.Geometry object and fill the vertices, faces,
and UV values based on the properties from the proctree.js tree. We'll show
you how to do this for the trunk:

var trunkGeom = new THREE.Geometry();

 // convert the vertices
myTree.verts.forEach(function(v) {
 trunkGeom.vertices.push(new THREE.Vector3(v[0], v[1], v[2]));
});

 // convert the faces
myTree.faces.forEach(function(f) {
 trunkGeom.faces.push(new THREE.Face3(f[0], f[1], f[2]));
});

// setup uvsTwig
myTree.faces.forEach(function(f) {
 var uva = myTree.UV[f[0]];
 var uvb = myTree.UV[f[1]];
 var uvc = myTree.UV[f[2]];

 var vuva = new THREE.Vector2(uva[0], uva[1]);
 var vuvb = new THREE.Vector2(uvb[0], uvb[1]);
 var vuvc = new THREE.Vector2(uvc[0], uvc[1]);

 trunkGeom.faceVertexUvs[0].push([vuva, vuvb, vuvc]);
});

trunkGeom.computeFaceNormals();
trunkGeom.computeVertexNormals(true);

Programmatic Geometries

[122]

In this code fragment, we start by creating a THREE.Geometry object. Next, for each
of the vertices in the myTree.verts array, we create a THREE.Vector3, which we
add to the Three.js geometry. We repeat this process for the faces using the myTree.
faces array. The final step we need to take is set up the UV mapping for each of the
faces. In proctree.js, the UV values are stored for each vertex, so we need a small
conversion before we can set them on trunkGeom. Finally, we calculate the face and
vertex normals and we're done. Now we can create a THREE.Mesh object with our
own choice of material and we've got a parametric tree in Three.js.

For instance, the preceding screenshot shows a completely different tree, which is
generated using proctree.js with slightly different textures.

Chapter 5

[123]

Summary
In this chapter, we saw a lot of examples and code you can use to create your
own geometries. This can be done either by creating them from scratch or using an
external library. To create a geometry, you first have to specify its vertices and its
faces. First you create the vertices, and based on these vertices, you can create the
faces. When you define the faces, remember that Three.js only supports triangles
as face. So when you create a face, use the THREE.Face3 object.

For correct behavior, we also have to set the normal on the face. Three.js uses
this information to determine how to color a face based on the available lighting.
The easiest way to do this is to just let Three.js calculate the normal by calling
computeFaceNormals(). Once the normal is set, you can define different shading
styles. If you want to use smooth shading, where you don't see the individual
faces, you first have to call computeVertexNormals(true).

There are different ways of creating random geometries. The most straightforward
one is using Math.random(). This, however, doesn't generate natural-looking
terrains. If you want more natural-looking terrains, you can use a Perlin noise
generator. If you create a custom geometry and want to apply textures, you also
need to specify the UV mapping. This mapping determines which part of a texture
should be shown on a face.

So far, we've used WebGLRenderer to render our scenes. In the next chapter,
we'll use a different renderer, the CSS3DRenderer, to transform web pages
into 3D.

Combining HTML and
Three.js with

CSS3DRenderer
So far in this book, we've exclusively used the THREE.WebGLRenderer object to
render our scenes. This specific renderer requires browsers that support WebGL to
show a scene. Most modern desktop browsers have good support for WebGL, but
mobile devices are currently a bit behind. Three.js offers two alternative renderers
that you can use. With CanvasRenderer, you can directly draw on an HTML5
canvas, which is supported on pretty much all the browsers and devices. However,
CanvasRenderer has one big disadvantage; its performance isn't that great. With
the latest versions of Three.js, we get another option: CSS3DRenderer. With this
renderer, Three.js uses CSS3 3D transforms to render a scene. CSS3DRenderer runs
well on most devices and even uses hardware acceleration. The disadvantage with
CSS3DRenderer is that it doesn't support geometries, materials, and lights.

In the previous chapter, we looked at how you can create geometries from scratch
and render them with the THREE.WebGLRenderer object. In this chapter, we'll explain
how you can use CSS3DRenderer and what features are available. We'll show this
through the following examples:

•	 We'll start by setting up a simple skeleton page that you can use as a starting
point for when you want to create a CSS3DRenderer-based visualization.

•	 Even though CSS3DRenderer doesn't support geometries and meshes, we
can still simulate this. We'll show how you can still create geometry-like
objects by reusing the information from a THREE.Geometry object.

Combining HTML and Three.js with CSS3DRenderer

[126]

•	 An interesting aspect is that by using Three.js and CSS3DRenderer, you can
easily animate and move HTML elements in 3D. We'll extend the previous
example by adding animations.

•	 As a last example, we'll look at how you can use CSS3DRenderer to simulate
a particle system by using CSS3DSprite.

Let's first look at what the most simple CSS3DRenderer-based page looks like.

Setting up a CSS3DRenderer skeleton
To set up a skeleton page for CSS3DRenderer, we don't really have to change much
with regards to the template that we set up in Chapter 1, Get Up and Running with Three.
js. The main thing that we do here is remove the elements that aren't supported, such
as lights. The first thing we need to do though is include the CSS3DRenderer object as
it isn't included in the standard Three.js JavaScript file. This is done using the following
line of code:

<script src="../libs/CSS3DRenderer.js"></script>

Now, let's set up the complete init() function just like we did in the first chapter
for the WebGLRenderer object. It is described in the following code:

function init() {

 scene = new THREE.Scene();

 camera = new THREE.PerspectiveCamera(45
 , window.innerWidth / window.innerHeight, 0.1, 1000);
 renderer = new THREE.CSS3DRenderer();
 renderer.setSize(window.innerWidth, window.innerHeight);
 renderer.domElement.style.position = 'absolute';
 renderer.domElement.style.top = 0;

 camera.position.x = 500;
 camera.position.y = 500;
 camera.position.z = 500;
 camera.lookAt(scene.position);

 // create an example object and add to scene
 var cssElement = createCSS3DObject(string);

Chapter 6

[127]

 cssElement.position.set(100, 100, 100);
 scene.add(cssElement);

 // add the output of the renderer to the html element
 document.body.appendChild(renderer.domElement);

 render();
}

In the previous code fragment, you can see that instead of creating a THREE.
WebGLRenderer object, we create a THREE.CSS3DRenderer object. The rest of the
init() function hasn't changed much, except that we removed all the light and
shadow references. In this init() function, we also add an HTML element through
the createCSS3DObject function. This is described in the following code:

function createCSS3DObject(s) {
 // create outerdiv and set inner HTML from supplied string
 var div = document.createElement('div');
 div.innerHTML = s;

 // set some values on the div to style it, standard CSS
 div.style.width = '370px';
 div.style.height = '370px';
 div.style.opacity = 0.7;
 div.style.background =
 new THREE.Color(Math.random() * 0xffffff).getStyle();

 // create a CSS3Dobject and return it.
 var object = new THREE.CSS3DObject(div);
 return object;
}

The createCSS3DObject function takes a string as an argument and creates a DOM
element from it by setting it as the innerHTML object for a div element. Next, we
style the div element a little bit and create a THREE.CSS3DObject, which we will
return. We can wrap any HTML element inside the THREE.CSS3DObject and render
it through CSS3DRenderer.

Combining HTML and Three.js with CSS3DRenderer

[128]

When you open the 06.01-CSS3DSkeleton.html file from the source code, you will
see the following screenshot:

The previous screenshot shows the following HTML code rendered
with CSS3DRenderer:

var string = '<div>' +
 '<h1>This is an H1 Element.</h1>' +
 'Hello Essential Three.js' +
 '<textarea> And this is a textarea</textarea>' +
'</div>';

The interesting thing is that you can still select text, enter values in the textarea
element, and resize the textarea element, just as you would do on a normal page. In
the next section, we'll expand on this example by rendering maps on a 3D cube.

Chapter 6

[129]

Creating an interactive 3D Google
Maps cube
Google Maps provides an API that we can use to show maps of specific areas in our
own web pages as an iframe. As iframes are just normal HTML elements, we can
transform these with Three.js using CSS3DRenderer.

Let's first look at the example that we're going to create in this section.

Combining HTML and Three.js with CSS3DRenderer

[130]

In the previous screenshot (the 06.02-google-maps-cube.html file), you see a 3D
cube where each side shows a map from Google Maps. By entering coordinates at
the bottom, you can change each side of the cube. To do this, we need to perform the
following steps:

•	 First, we need to get the HTML code for the maps to be shown. We'll use the
Google Maps Embed API for this, which uses an iframe.

•	 Now, we can create a THREE.CSS3DObject from this iframe and add it to
the scene.

•	 The last step we need to perform is position and rotate the THREE.
CSS3DObject correctly so that the result looks like a cube.

Displaying a part of Google Maps using HTML
The first step is really easy. Google provides a Google Maps Embed API where you
can specify which part of the map needs to be shown through the location parameter.
For instance, consider the following iframe:

<iframe width="600" height="450" frameborder="0" style="border:0"
 src="https://www.google.com/maps/embed/v1/view?zoom=10&maptype
 =satellite¢er=10,2&key=AIzaSyAVUZTKZz1e6hbEwZOT8CmWfoMhe
 gHL7bs"></iframe>

If you use the preceding iframe, you'll see a nice looking map directly inside your
own page, as shown in the following screenshot:

Chapter 6

[131]

As an iframe is also a normal HTML element, we can use THREE.CSS3DObject to
transform and rotate it.

To add an object to the scene, we need to reuse the code, that is, the
createCSS3DObject function that we saw in the previous example to create a
THREE.CSS3DObject from a string; this time, we will provide an iframe as the
content. Consider the following code:

var iframe = '<iframe width="600" height="450" frameborder="0"' +
 ' style="border:0" src="https://www.google.com/maps/embed/' +
 'v1/view?zoom=10&maptype=satellite¢er=LOCATION' +
 '&key=AIzaSyAVUZTKZz1e6hbEwZOT8CmWfoMhegHL7bs"></iframe>';

Note that we haven't set the center argument yet. We do this so that we can easily
reuse this string to show other maps.

Combining HTML and Three.js with CSS3DRenderer

[132]

Positioning and rotating the element
To position the maps at the correct location and rotation, we're going to use
information from the standard THREE.CubeGeometry object. As we've seen in the
previous chapter, to create a geometry, we need to define its vertices and its faces.
The faces also have an additional property called a normal, which shows how the
face is aligned. To create the cube you saw at the beginning of this section, we'll
reuse the information from the faces of a standard THREE.CubeGeometry object. To
make it easier to use, we've created the createSides(s, geometry) function, which
takes an HTML string and a geometry as its input. The HTML string defines how the
side will look, and the geometry will be used to position and rotate the sides. The
following code fragment shows this function:

function createSides(s, geometry) {

 // iterate over all the sides
 for (var iFace = 0;
 iFace < geometry.faces.length; iFace += 2) {

 // create a new object based on the supplied HTML String
 var side = createCSS3DObject(s);

 // get this face and the next which both make the cube
 var face = geometry.faces[iFace];
 var faceNext = geometry.faces[iFace + 1];

 // reposition the sides using the center of the faces
 var centroid = new THREE.Vector3();
 centroid.copy(geometry.vertices[face.a])
 .add(geometry.vertices[face.b])
 .add(geometry.vertices[face.c])
 .add(geometry.vertices[faceNext.a])
 .add(geometry.vertices[faceNext.b])
 .add(geometry.vertices[faceNext.c])
 .divideScalar(6);

 side.position.x = centroid.x;
 side.position.y = centroid.y;
 side.position.z = centroid.z;
 // Calculate and apply the rotation for this side
 ...

 // add to the scene
 scene.add(side);
 }
}

Chapter 6

[133]

In this function, we walk through all the faces, two at a time, of a geometry. We need
to combine two faces. We need to do this because Three.js works with triangular faces,
and our objects represent rectangles. For every two faces, we create a CSS3DObject
with the createCSS3DObject function. Once we have CSS3DObject, we need to rotate
and position it. The first thing that we do is position the CSS3DObject. For this, we
calculate the center of the two faces that make up the side. The result is stored in the
centroid property. The last step before we add the CSS3D Google Maps element to
the scene is rotating the object. The code for this is shown here:

// Up contains the normal of our side.
var up = new THREE.Vector3(0, 0, 1);
var normal = geometry.faces[iFace].normal;;

// We calculate the axis on which to rotate by
// selecting the cross of the vectors
var axis = new THREE.Vector3();
axis.crossVectors(up, normal);

// based on the axis, in relation to our normal vector
// we can calculate the angle.
var angle = Math.atan2(axis.length(), up.dot(normal));
axis.normalize();

// now we can use matrix function to rotate the object so
// it is aligned with the normal from the face
var matrix4 = new THREE.Matrix4();
matrix4.makeRotationAxis(axis, angle);

// apply the rotation
side.rotation.setFromRotationMatrix(matrix4);

To align our side object with the normal of the face of the provided geometry, we
need to perform some matrix calculations. Explaining this in detail here is a bit out of
scope, but we'll walk you through the following most important steps:

1.	 The first thing that we do is determine the cross product of the normal of the
face and the normal of our side (up). This gives us the axis around which
we're going to rotate. The result of this is a vector that is perpendicular to
both the up and the normal vector.

2.	 To translate to the new position, we don't just need to know the axis around
which we're going to rotate, but also the angle (the amount) by which we're
going to rotate. We can do this using the Math.atan2 function.

Combining HTML and Three.js with CSS3DRenderer

[134]

3.	 At this point, we've got the axis around which to rotate and the angle to
rotate. Three.js uses matrix transformations to apply rotations and provides
a helper function, makeRotationAxis, that we can use to get the correct
rotation matrix.

4.	 All that is left to do is apply the rotation on our CSS3DObject. We do this by
using the setFromRotationMatrix function on the rotation property of the
side object.

With all these steps, our CSS3DObjects are automatically positioned and rotated
correctly; the following screenshot is displayed as a result of this.

Like with our first example, the maps are fully functional here too. You can zoom in,
rotate, and do anything else that Google Maps allows. In this example, we also added
a THREE.OrbitControl object so that you can use your mouse to move around the
scene. Additionally, we added a small menu at the bottom where you can enter the
coordinates and update the sides of the cube. The following screenshot, for instance,
shows the Eiffel Tower:

Chapter 6

[135]

As we don't specify the rotation of the sides explicitly, we can easily extend this
example to show other shapes, such as a sphere using the THREE.Sphere object. This
is shown in the following screenshot:

All you need to do to accomplish this is provide a different geometry to the
createSides function as shown in the following code fragment:

createSides(iframe.replace("LOCATION",loc), new
 THREE.SphereGeometry(700,6,4););

In the following section, we'll dive a bit deeper into this approach and also add
animations through TweenJS.

Combining HTML and Three.js with CSS3DRenderer

[136]

Animating HTML elements with TweenJS
In this section, we'll use the same approach as in the previous section to create 3D
objects that are built up from HTML elements. The following screenshot shows an
impression of what we'll create in this section (the 06.03-Animations.html file):

If you run this example, you'll see a rotating 3D object built up from a number of
images. Using the menu on the top right-hand side of the window, you can change
the shape of the 3D object, and the various components will automatically move to
their correct new position and rotation. Let's start with the beginning and look at the
HTML element that we use to show the image.

Using images as the input
Normally, in Three.js, when you want to use an image on a 3D object, you create a
THREE.Texture object and apply it to a 3D object through a material. In this case, it is
much easier. We can just create an img element and wrap it in a CSS3DObject. This is
described in the following code:

Chapter 6

[137]

function createCSS3DObject(iFace) {
 var div = document.createElement('div');
 var img = document.createElement('img');

 var nrString = ("000" + iFace * 4).substr(-3, 3);
 img.src = '../assets/screens/WALL-E-' + nrString + ".jpg";
 img.width = 140;

 div.appendChild(img);
 div.style.opacity = 0.8;

 var object = new THREE.CSS3DObject(div);

 return object;
}

As you can see, in the createCSS3DObject function, we created an img element that
we pointed to a file in the ../assets/screens/ folder. The image is wrapped in a
div element, which is used to create the CSS3DObject. Positioning and rotating these
CSS3DObjects is done in the same way as we saw in the previous chapter. So, when
we use a new THREE.CylinderGeometry(12,12,27,15,7,true) as an input, we get
the following result:

Combining HTML and Three.js with CSS3DRenderer

[138]

Even though this looks nice, we can make it even more interesting by adding
animations for when we update the geometry.

Setting up the animations
To set up the animation to move from one form to the other, we have to perform the
following steps:

1.	 To animate the HTML elements from their position and rotation in one
geometry (for example, the THREE.PlaneGeometry object) to another
geometry (for example, the THREE.SphereGeometry object), we need to store
their current position and rotation and the position and rotation they would
get in the target geometry.

2.	 Once we know the current and target positions and rotations, we can use
them to set up an animation using TweenJS to slowly change the position and
rotation of the elements from the current to the target position and rotation.

3.	 We also need to take into account the number of elements we have. If the
target geometry we're animating has more faces, we need to add images;
if there are less faces, we have to ensure that elements are removed.

We've created a single function that takes care of these steps. It is called the
updateStructure() function. We'll first show you the structure of this method
and then dive into the interesting parts. Consider the following code:

function updateStructure(geometry, offset) {

 // get the position where we need to move elements
 positionAndRotation = getPositionAndRotation(geometry,offset);

 // setup the tween to move to rotation and position
 // from the current position to target position
 ...

 // walk through the positionAndRotation set and either move or
 // create the elements
 for (var i = 0; i < positionAndRotation.length; i++) {

 if (currentElements.length > i) {
 // we need to move one of the existing ones.
 ...
 }
 else {
 // create a new one, and set it's position of screen

Chapter 6

[139]

 ...
 }
 }

 // finally determine the elements that aren't needed anymore
 for (var i = positionAndRotation.length;
 i < currentElements.length; i++) {
 toBeRemovedElements.push(currentElements[i]);
 }
 // and remove them from the scene
 for (var i = 0; i < toBeRemovedElements.length; i++) {
 scene.remove(currentElements.pop());
 }
}

Let's look at some of the details of this function in the following sections.

Determining the target position and rotation
The implementation of the getPositionAndRotation function that is used to
determine the new position of the elements works in the same way as we saw in the
Google Maps example. The only difference is that this time we don't set the target
rotation and position directly on a CSS3DObject, but we return an array that contains
the following code structure for each element:

{
 pos: THREE.Vector3(),
 rot: THREE.Matrix4()
}

Configuring TweenJS to run the animation
We once again use TweenJS to implement the animation. Consider the following code:

var tweenIn = new TWEEN.Tween({opacity: 0})
 .to({pos: 1.0}, 3000).easing(TWEEN.Easing.Sinusoidal.InOut)
 .onUpdate(function () {
 var toSet = this.pos;
 newlyAddedElements.forEach(function (cssObject) {
 cssObject.element.style.opacity = toSet;
 });

 var i = 0;
 currentElements.forEach(function (cssObject) {
 // get the elements start /target position
 var currentPos = positionAndRotation[i].currentPos;

Combining HTML and Three.js with CSS3DRenderer

[140]

 var targetPos = positionAndRotation[i].pos;

 // also get the elements start / end rotations
 var currentRotation =
 positionAndRotation[i].currentRotation;
 var targetRotation = new THREE.Euler();
 targetRotation.setFromRotationMatrix
 (positionAndRotation[i].rot);

 // use the tween to slowly move the elements
 if (currentPos) {
 cssObject.position.x = currentPos.x +
 (targetPos.x - currentPos.x) * toSet;
 cssObject.position.y = currentPos.y +
 (targetPos.y - currentPos.y) * toSet;
 cssObject.position.z = currentPos.z +
 (targetPos.z - currentPos.z) * toSet;

 cssObject.rotation.x = currentRotation.x +
 (targetRotation.x – currentRotation.x) * toSet;
 cssObject.rotation.y = currentRotation.y +
 (targetRotation.y – currentRotation.y) * toSet;
 cssObject.rotation.z = currentRotation.z +
 (targetRotation.z – currentRotation.z) * toSet;
 }
 i++;
 });
});

When we run this tween, the pos property changes from 0 to 1. In the onUpdate
function, we use this property to calculate the new position of the element based
on its original position (currentPos), the target position (targetPos), and how
far we're done with the tween (pos). We do this for the x, y, and z attributes of the
position and do the same with the x, y, and z properties of the rotation. The result is
that when we call this function, all the elements will slowly move and rotate to their
new position and rotation. This is shown in the following screenshot:

Chapter 6

[141]

Just like with the previous example, it's really easy to add new shapes. For instance,
consider the following code:

updateStructure(new THREE.TorusGeometry(20,10,8,10),25);

Combining HTML and Three.js with CSS3DRenderer

[142]

This code results in a torus-like structure, as shown in the following screenshot:

In the last section of this chapter, we'll look at another CSS3DRenderer feature
called CSS3DSprite.

Chapter 6

[143]

Creating a parametric terrain using
CSS sprites
So far, we've shown you examples where we've used THREE.CSS3DObjects to show
our HTML elements. Three.js, however, provides another way in which we can
show and animate HTML elements using a THREE.CSS3DSprite object. The main
difference is that a CSS3DSprite always faces the camera directly. To demonstrate
this, we've extended the example from the previous chapter where we created a
random terrain. This time, instead of defining faces, we will render each vertex of
the generated terrain geometry as a CSS3DSprite. Basically, what we are doing is
creating a particle system using CSS3DSprites. The result will look something similar
to what is shown in the following screenshot (the 06.04-CSS3DSprites.html file):

Combining HTML and Three.js with CSS3DRenderer

[144]

Creating a 3D terrain using sprites
To accomplish a 3D terrain, we only have to make a couple of small changes to the
05.02-3D-plane-from-scratch-perlin.html example from the previous chapter.
The first change is in the method we've used to create the 3D terrain. In the previous
chapter, we also used this method to set up faces and calculate normals. This time,
we only have to randomly determine the position of the vertices. Consider the
following code:

function create3DTerrain
 (width, depth, spacingX, spacingZ, height) {

 var date = new Date();
 noise.seed(Math.random() * date.getMilliseconds());

 // first create all the individual vertices
 var geometry = new THREE.Geometry();
 for (var z = 0; z < depth; z++) {
 for (var x = 0; x < width; x++) {
 var yValue = Math.abs(
 noise.perlin2(x / 8, z / 8) * height * 2);
 var vertex = new THREE.Vector3(
 x * spacingX, yValue, z * spacingZ);
 geometry.vertices.push(vertex);
 }
 }

 return geometry;
}

After we call this method, we'll have a THREE.Geometry object whose vertices we'll
use to position the THREE.CSS3DSprite objects as shown in the following code:

var currentGeometry = create3DTerrain(21, 21, 21, 21, 50);
var targetGeometry = create3DTerrain(21, 21,21, 21, 50);
var container = new THREE.Object3D();

// for each vertices add a sprite
geometry.vertices.forEach(function(e) {
 var cssObject = new THREE.CSS3DSprite(createDiv());
 cssObject.position = new THREE.Vector3(e.x, e.y, e.z);
 container.add(cssObject);
});

Chapter 6

[145]

The constructor of the THREE.CSS3DSprite object takes an HTML element as its
argument. We create this element in the createDiv function. This is described in the
following code:

function createDiv() {

 var img = document.createElement('img');
 img.src = "../assets/textures/particles/ball.png";
 img.height = 29;
 img.style.opacity = 0.6;

 return img;
}

This time, we just create a simple HTML img element. The result of these steps is a
random terrain where on each vertex, the ball.png image will be shown.

Animating the terrain with TweenJS
In the examples in this book, we've already used TweenJS a couple of times to
animate transitions between colors, positions, and rotations. This time, we'll
use TweenJS to animate the transition from one randomly generated terrain
(currentGeometry) to another (targetGeometry). Let's look at how we transition
from currentGeometry to targetGeometry. This is described in the following code:

var tweenIn = new TWEEN.Tween({pos: 0})
 .to({pos: 1}, 1000).easing(TWEEN.Easing.Sinusoidal.InOut)
 .onUpdate(function () {
 var target = this.pos;
 var i = 0;
 container.children.forEach(function (e) {
 e.position.y = currentGeometry.vertices[i].
 y – (currentGeometry.vertices[i].
 y - targetGeometry.vertices[i].y) * target;
 i++;
 });
}).onComplete(function () {
 currentGeometry = targetGeometry.clone();
 targetGeometry = create3DTerrain(21, 21, 21, 21, 50);
 this.pos = 0;
});

Combining HTML and Three.js with CSS3DRenderer

[146]

What happens in this tween is that for each of our created CSS3DSprite objects,
we slowly change the y position from its original position to the y position of the
relevant vertex in the targetGeometry object. At the end of this tween, all the
CSS3DSprites will have moved to their new position. In the onComplete function of
the tween, which is called when the transition ends, we set the currentGeometry
object to a clone of the targetGeometry object, generate a new targetGeometry
object, and reset the tween by setting pos back to 0.

All we need to do now is chain the tween to itself and we have our animation. This is
described in the following code:

tweenIn.chain(tweenIn);
tweenIn.start();

Also, by just changing the image you want to load, you can quickly create interesting
effects, as shown in the following screenshot:

Chapter 6

[147]

Summary
In this chapter, we focused on the features of CSS3DRenderer. As you've seen,
there are lots of interesting things you can do with CSS3DRenderer that will not
only look great, but also deliver good performance on a wide range of mobile
and desktop devices.

When you work with CSS3DRenderer, you do have to remember that this renderer
doesn't support the wide range of materials, geometries, and objects that the other
Three.js renderers support. The only objects that CSS3DRenderer supports are
CSS3DObject and CSS3DSprite. With CSS3DRenderer, you can render each HTML
element. All you have to do is wrap it in a CSS3DObject or CSS3DSprite.

To render geometries with CSS3DRenderer, you can't use the geometries that Three.js
uses out of the box. What you can do, as shown in this chapter, is use the information
from a geometry's object and use that to render HTML elements in one of the shapes
provided by Three.js.

It's also possible to simulate a particle system with CSS3DRenderer. In this case,
you should use a CSS3DSprite. This object will always be aligned with the camera.

In the next and final chapter, we'll look at how you can use Three.js together with
Blender. You use Blender for animation and modeling, and use Three.js for real-time
rendering in the browser.

Loading and Animating
External Models

Using Blender
Three.js works really well for showing and animating models directly in the browser,
either using WebGL or, as you've seen in the previous chapter, using CSS3D. With
Three.js, you get a large set of standard geometries that you can use in your scene,
and as you've seen in Chapter 5, Programmatic Geometries, it's also easy to create
custom geometries from scratch. Three.js, however, isn't a 3D modeling tool. If you
want to create more complex geometries, you'll need a different kind of tool. There
are many commercial and very expensive 3D modeling tools available, but luckily,
there is also a great open source 3D modeling application. This application is called
Blender (http://www.blender.org). Using Blender, you can easily model complex
3D objects and even assign animations to these models. In this chapter, we'll explain
how you can combine the modeling functionality from Blender with the rendering
functionality provided by Three.js.

The following topics will be explained in this chapter:

•	 We'll start by installing Blender and configuring the Three.js plugin so
that models and animations can be exported to Three.js.

•	 Next, we'll explain how to accomplish a simple model in Blender,
export it using the Three.js plugin, and finally, load the model and show
it in the browser.

Loading and Animating External Models Using Blender

[150]

•	 Three.js supports two different kinds of animations: bone-based animations
and morph-based animations. These same kinds are also supported in
Blender. In this chapter, we'll show you how to set up such an animation in
Blender and animate it in your browser through Three.js.

•	 For both the bone-based and morph-based animation, we'll show you how to
play an animation defined in Blender using Three.js.

The first thing we'll do is set up Blender and configure the Three.js plugin.

Installing Blender and the Three.js plugin
The first thing that we need to do is download Blender. The examples in this chapter
were done with Blender 2.70a, but they should also work with newer versions. In
this section, we'll perform the following steps:

1.	 First, we'll show you where you can download Blender and how to install it.
2.	 Then, we'll show you how to install the Three.js plugin in Blender.
3.	 Finally, we'll explain how to enable this plugin so that you can use it directly

from the Blender menus.

Let's start with the first step and install Blender.

Downloading and installing Blender
You can download your platform-specific version of Blender from http://www.
blender.org/download/. This page also lists the installation instructions for your
specific platform. Note that if you don't have permissions to install Blender on
your local machine, there is also a portable version available that doesn't require
an installation. It is available at http://portableapps.com/apps/graphics_
pictures/blender_portable. After you install Blender, start it up to see whether
everything is working. You should be presented with a screen that somewhat
resembles the following screenshot:

Chapter 7

[151]

You'll see a single cube in the middle of an empty scene. Now, we need to install
the Three.js plugin, which will allow us to import and export models in the Three.js
format. Note that Three.js also supports a large number of other 3D formats, but for
best results, you should use its own JavaScript-based format.

Installing the Three.js plugin
To install the Three.js plugin, we first need to get the latest version of it. We've added
the required files to the source code of this book. You can find this plugin, which
is a folder named io_mesh_threejs, in the assets/plugins directory. To install
this plugin in Blender, we need to copy the complete io_mesh_threejs directory
to the location where Blender stores its plugins. Depending on your platform,
these are stored at different locations. For Windows, copy the io_mesh_threejs
directory to the C:\Users\USERNAME\AppData\Roaming\Blender Foundation\
Blender\2.70a\scripts\addons location. For OS X, depending on where you
extracted the zip file, copy the io_mesh_threejs directory to the /location/of/
extracted/zip/blender.app/Contents/MacOS/2.6X/scripts/addons location.
Finally, for Linux, copy the io_mesh_threejs directory to the /home/USERNAME/.
config/blender/2.70a/scripts/addons location.

Loading and Animating External Models Using Blender

[152]

If you've installed it on Ubuntu using the apt-get command, you should copy the
io_mesh_three.js directory to the /usr/lib/blender/scripts/addons location.

Now, all that is left to do is enable the Three.js plugin from Blender.

Enabling the Three.js plugin
To enable the plugin, restart Blender and open the Blender User Preferences
window through File | User Preferences…. From this window, select the Addons
tab; this will show all the available plugins, as shown in the following screenshot:

In the search box in the top left-hand side of the window, type three. This filters the
plugins and if the io_mesh_threejs directory is copied to the correct location, we
will see a window as shown in the following screenshot:

Chapter 7

[153]

Here, you can see that the Three.js plugin is found, but as it is gray in color, it isn't
enabled yet. You can now enable the plugin by checking the checkbox to the far
right, as shown in the following screenshot:

Now, the Three.js plugin is enabled and we can export Blender models to Three.js.
Before you go on, be sure to click on the Save User Settings button so that Blender
stores these changes. To test whether everything is configured and enabled correctly,
close this window and open the Export menu via the File option. It should show a
Three.js export option, as shown in the following screenshot:

With the export option available, let's look at how we can use this plugin.

Exporting a model from Blender and
showing it in Three.js
Let's define a model of a 3D geometric shape in Blender, export it using the plugin
we just installed, and render it in Three.js. You can also find the Blender model used
in this example in the assets/models folder from the source code of this book.

Loading and Animating External Models Using Blender

[154]

Exporting the model
For this first example, we're just going to use one of the standard geometries that
are provided by Blender. First off though, let's remove the cube that we see. If
you've opened Blender, the cube will be selected, so just delete it by pressing x and
clicking on Delete in the pop up menu. Next, click on Add (at the bottom of the 3D
window) and select Monkey via the Mesh option's submenu. This is shown in the
following screenshot:

Doing this will create a geometry that looks like a monkey, as shown in the
following screenshot:

Chapter 7

[155]

Now that we've got a model in Blender, we can use the plugin we installed at the
beginning of this chapter to export this model to Three.js. To do this, go to the Export
| Three.js option from the top menu, as shown in the following screenshot:

This opens up the export dialog box where you can convert the current model
to Three.js. For this example, we will export the monkey to the assets/models/
exported directory located inside the source code of this book. You can specify
additional Three.js properties, but for now, the defaults will suffice. This is shown in
the following screenshot:

Loading and Animating External Models Using Blender

[156]

Loading the model and showing it in Three.js
Now that we've got our model, all we have to do is load it in Three.js and display it on
the screen. Doing this is very easy and only requires the following JavaScript code:

function loadModel() {
 var loader = new THREE.JSONLoader();
 loader.load("../assets/models/exported/monkey.js",
 function(model) {
 var material = new THREE.MeshNormalMaterial();

 var mesh = new THREE.Mesh(model, material);
 mesh.translateY(-0.5);
 mesh.scale = new THREE.Vector3(3, 3, 3);

 scene.add(mesh);
 });
}

The previous code fragment uses the THREE.JSONLoader.load() function to load
the model we just exported from Blender. The first argument to the loader.load()
function specifies the model that we want to load, and the second argument is a
callback function that will be called once the model is loaded. For this example,
in our callback function, we move the geometry down a bit using the translateY
function and scaling the model along the x, y, and z axis by setting the scale
property. We need to specify this callback function as Three.js loads models
asynchronously. In the callback function, we create the material we want to use for
the model and use the provided model to create a THREE.Mesh object, which we will
add to the scene. The result is shown in the following screenshot:

Chapter 7

[157]

In this example, we defined the model in Blender and the material in Three.js.
Blender, of course, also supports materials and textures. In the following section,
we'll show you how you can use materials defined in Blender for your own models.

Using Blender's predefined materials
in Three.js
Blender has excellent support for a large range of different materials and provides
easy-to-use tools to map and apply textures. Using the Three.js plugin, we can also
export the materials used in Blender to Three.js. Let's continue with the monkey we
left off in the previous section. The first step we need to take is set up the material.

Loading and Animating External Models Using Blender

[158]

Setting up a Blender material
On the right-hand side of the screen, open the material tab, as can be seen in the
following screenshot, and click on New:

This will create a new material and assign it to our monkey geometry. If you scroll
down in the material tab after the material has been created, you can set some Three.
js-specific properties, such as the material type to be used and the type of blending
you expect. This is shown in the following screenshot:

Chapter 7

[159]

For our example, we'll just keep Material type as Lambert and Blending type as
NormalBlending. Now, click on the texture tab so we can define the texture that we
want to use on our monkey. This is shown in the following screenshot:

In this tab, click on New. This will create the texture for this material. Next, click on
the Type field and select Image or Movie as the texture type. This is shown in the
following screenshot:

Loading and Animating External Models Using Blender

[160]

Next, scroll down a bit and click on the Image tab. There, click on the Open button.
This will open a file selection window from where you can select the image that
should be applied as a texture. In our example, we've used the debug.png image.
This is shown in the following screenshot:

Now that we've set up the material, we need to perform an additional step in Blender
before we can use this material in Three.js. As you might remember from Chapter 5,
Programmatic Geometries, when we want to apply a texture to a geometry, we also
need to define a UV mapping. This defines how individual faces map to a certain
part of the texture.

Setting up UV mapping in Blender
Luckily, we don't have to set up UV mapping by hand in Blender. For this example,
we'll just let Blender determine the best way to map our monkey to the texture. We
can do this by telling Blender to unwrap our geometry and project it on the texture.
To do this, we first have to select the edit mode. You can do this by clicking on the
Object Mode button at the bottom of the screen or by just hitting the Tab key. This is
shown in the following screenshot:

Chapter 7

[161]

From this mode, navigate to Mesh | UV Unwrap and click on the Smart UV Project
option. This is shown in the following screenshot:

Loading and Animating External Models Using Blender

[162]

In the window that pops up, just click on OK to accept the default settings and
you're done. To see how Blender unwrapped our geometry, you can open the UV/
Image Editor view from the editor icon in the bottom left-hand side of the window.
This is shown in the following screenshot:

Each black dot you see in this square represents a vertex of the model, and you can
see how each face is mapped to the texture. Now that we've set up UV mapping, we
can export the model to Three.js and render it.

Exporting and rendering in Three.js
Exporting this model is done in the same manner as we've done in the previous
example. Loading the model isn't that much different, except that we have to specify
a couple of additional parameters. Consider the following code:

function loadModel() {
 var loader = new THREE.JSONLoader();
 loader.load("../assets/models/exported/monkey-mat.js",
 function(model, material) {

 var mesh = new THREE.Mesh(model, material[0]);
 mesh.scale = new THREE.Vector3(3, 3, 3);
 scene.add(mesh);

 }, "../assets/textures/");
}

Chapter 7

[163]

The first change is in the callback function we specify. Instead of just defining the
model argument, we also specify a material argument. The provided material
argument contains an array of the materials we specified in Blender. So, to create
a mesh using the material from Blender, we just use the new THREE.Mesh(model,
material[0]) function. For this example, we have also defined an image to be
used as the texture. We need to provide the THREE.JSONLoader() function with
information about where it can find the images used by the materials. This is done by
providing the location as the final argument to the loader.load() function. In this
case, we specify "../assets/textures/" as the location. Now, when we view this
scene in the browser, you will see something like the following screenshot:

You can see the monkey's head with the texture and material we defined in Blender.
That's it for loading and exporting static models. In the next section, we'll show you
how to run animations created from Blender.

Loading and Animating External Models Using Blender

[164]

Working with skeletal-based animations
in Three.js
In this section, we're going to look a bit closer at how to show animations defined
in Blender from Three.js. We start by looking at skeletal-based animations, where
we animate a model by moving its bones around. Setting up the bones and the
associated animations in Blender, however, is a bit out of the scope of this book.
A good introduction on skeletal animations can be found at the Blender wiki
at http://wiki.blender.org/index.php/Doc:2.6/Manual/Your_First_
Animation/2.Animating_the_Gingerbread_Man, or you can follow some tutorials
on YouTube.

Exploring the model and exporting it to
Three.js
To see the animation and model we're working with, load the dino-bones.blend
file, which you can find in the assets/models/blender directory of the source
code. Once you open up this blender file, you'll be shown a very roughly modeled
dinosaur. This is shown in the following screenshot:

Chapter 7

[165]

In this screenshot, you can see the shape of the dinosaur and also the skeleton it is
made of. For this example, we've connected the model to the bones you can see. The
result is that whenever we move the bones (in the pose mode in Blender), the model
deforms as well. We've used this to create a number of poses for this dinosaur. One
of the poses is shown in the following screenshot:

In this pose, the head of the dinosaur is at the bottom and its tail is curved.
By combining various poses and adding each pose as a key for the animation,
we can create a skeletal-based animation. You can view our sample animation
by clicking on the play button at the bottom of the screen. This is shown in the
following screenshot:

Loading and Animating External Models Using Blender

[166]

Exporting this model together with the animation can be done directly through
Blender by using the Three.js plugin we installed. This time, however, we need to
make sure that the export is configured correctly. First, make sure the model is in
its rest mode (change Frame step option to 1) and then select Three.js through File
| Export. In the window that opens, scroll the right scroll bar down until you see
Three.js-specific properties. Make sure that the properties for the animation are set as
shown in the following screenshot:

This will make sure that the bones and the animation we defined in Blender are
exported and can be used in Three.js. Now, all that is left to do is to load this model
in Three.js and run the animation.

Loading and animating the model in Three.js
Let's look at how the loadModel function needs to change to support these
animations. Consider the following code:

function loadModel() {
 var loader = new THREE.JSONLoader();
 loader.load("../assets/models/exported/estj-dino-anim.js",
 function(model, loadedMat) {
 loadedMat[0].skinning = true;
 THREE.AnimationHandler.add(model.animations[0]);
 animmesh = new
 THREE.SkinnedMesh(model, loadedMat[0]);

 animmesh.translateY(-2);

Chapter 7

[167]

 var animation =
 new THREE.Animation(animmesh, "ArmatureAction");
 animation.play();

 scene.add(animmesh);
 }, "../assets/textures/");
}

We've added a couple of things to this function. The first thing we do is set the
loadedMat[0].skinning property to true. This makes sure that Three.js knows
we're working with a skinned model. If this property is not set to true, everything
will seem OK, but you'll see no animations. The next step is to inform Three.
js about the animations that are available in our model. You can use the THREE.
AnimationHandler.add function for this purpose. In this example, we only have a
single animation defined, so we add this animation (model.animations[0]) to the
animation handler.

Now, we can just create our mesh. For these kinds of models (also called skinned
models), we have to use a special mesh called the THREE.SkinnedMesh object.
Creating this mesh works in the same way as for a normal THREE.Mesh object;
you specify the model and the material you want to use. Now, we can set up the
animation we want to play and call the play function on this object. In this case, our
animation is called ArmatureAction. This name is used in Blender for a skeletal-
based animation. If you want to know the names of all the animations available, the
easiest way is to just output the model.animations array to the JavaScript console of
your browser.

If you run the demo with this setup, you still won't see a dancing dinosaur. For this, we
need to make a small change to the render function, as shown in the following code:

var clock = new THREE.Clock();
function render() {

 ...
 var delta = clock.getDelta();
 if (animmesh) {

 THREE.AnimationHandler.update(delta);
 }
 ...
}

We need to define a THREE.Clock object that keeps track of the time passed between
each rendering. Three.js uses this information to determine how to render our model,
using the THREE.AnimationHandler.update function, according to the animation
we have defined.

Loading and Animating External Models Using Blender

[168]

Now, when you open this example in your browser (the 07.03-load-json-model-
animations-bones.html file), you'll see our model from Blender following the
poses we defined for our animation, as shown in the following screenshot:

It's worth mentioning that with Three.js, you can also move the bones of the model
programmatically, but that's a bit beyond the scope of this book. Besides skeletal-
based animations, Three.js also supports another often-used animation method
called morph-based animation.

Working with morph-based animations
in Three.js
With skeletal-based animations, we move the model around based on the position
and rotation of its individual bones. This provides you with a lot of flexibility but
becomes very complex for detailed animations such as facial expressions, which
aren't bone-based. With morph-based animations, you don't work with bones but
simply define the various states of the model (by moving the vertices around), and
you let Blender (or Three.js) fill in the missing steps between these model states.
Morph-based animations, for example, are often used to model facial expressions.

Chapter 7

[169]

Exploring the model and exporting it to
Three.js
In this example, we're going to create a morph-based animation where the monkey
we saw in the beginning is made to smile at first and appear sad later. Once again,
explaining how to set this up in Blender is a bit out of the scope of this book, but
the related information can be easily found on YouTube or on the Blender wiki at
http://wiki.blender.org/index.php/Doc:2.6/Manual/Animation/Techs/
Shape/Shape_Keys. To see how it was set up in Blender, we've provided the Blender
source code file in the assets/models/blender folder. If you load the unhappy-
monkey.blend file, you will see the animation we've set up. In the following
screenshot, you see the monkey smiling:

Loading and Animating External Models Using Blender

[170]

In the next screenshot, the monkey is looking a bit sad:

What you can see here is that we haven't defined a skeleton. What we're doing here is
just repositioning the individual vertices to change the facial expression of our model.

To export this model, we once again have to make sure that the exported Three.js is
configured correctly. So, click on Three.js through File | Export and make sure the
Morph animation box is ticked. This is shown in the following screenshot:

This will result in a Three.js model that we can load from our JavaScript code.

Chapter 7

[171]

Loading and animating the model in Three.js
Before we can animate the model, we first have to load the model. Loading the
model is pretty much the same as we've seen for a bone-based model. This is
described in the following code:

function loadModel() {
 var loader = new THREE.JSONLoader();
 loader.load("../assets/models/exported/unhappy-monkey-2.js",
 function(model, loadedMat) {

 var mat = new THREE.MeshNormalMaterial({
 color: 0xff0000
 });
 mat.morphTargets = true;
 mat.shading = THREE.SmoothShading;

 animmesh = new THREE.MorphAnimMesh(model, mat);

 animmesh.parseAnimations();
 animmesh.playAnimation("animation");
 animmesh.duration = 10;

 scene.add(animmesh);

);
}

In this example, we haven't defined a material for our monkey. So, the first thing
that we do is create our own material. For a skeletal-based animation, we had to
set the skinning property of the material to true. In this case, we have to set the
morphTargets property of the material to true to tell Three.js that this model uses
morph-based animations. Next, we can create our mesh. This time we have to use the
special THREE.MorphAnimMesh object. The resulting mesh contains all the functions
we need to play our animation. First, we need to determine the available animations.
We do this by calling the parseAnimations() function on the mesh we just created.

Loading and Animating External Models Using Blender

[172]

This will look through the morphs defined in the model and try and determine the
animation names. It does this by looking at the morphTargets property, which is
shown in the following screenshot:

The result from the parseAnimations() function will give us an animation
called animation. Next, we tell the mesh to play this animation, using the
playAnimation() function. The last step that we need to do is set up the duration of
the animation. With the duration, you can control the playback speed.

For a morph-based animation, we also need to make a small change to the render
function and add the following lines of code:

var delta = clock.getDelta();
if (animmesh) {
 animmesh.updateAnimation(delta);
}

Chapter 7

[173]

The reason we need to do this is the same as for a bone-based animation. Three.js
needs to know how much time has passed since the last render. It uses this information
to determine how the model looks for the next rendering. When you combine all
of this, you get a smiling and sad-looking monkey (the 07.04-load-json-model-
animations-morph.html file). This is shown in the following screenshot:

The easiest way to get used to the different kinds of animations is to play around
with Blender-based examples and see how changes in Blender affect the rendering
in Three.js. As you've seen, being able to import external models is a very powerful
feature of Three.js.

Loading and Animating External Models Using Blender

[174]

Summary
In this chapter, we focused on how you can integrate Three.js with Blender. We've
only shown you the tip of the iceberg, as Blender is a very powerful and sometimes
complex 3D modeling application.

As you've seen in this book so far, Three.js is a really powerful way of rendering
3D graphics in your browser, but it lacks in modeling functionality. Blender is a
great tool to use in combination with Three.js. With Blender, you can model your
geometries and visualize them in real time in a browser using Three.js. Blender also
provides a great way to define materials and apply textures; additionally, if you're
struggling to define a UV map for your model, using the functionality that Blender
provides could be of great help.

Besides creating models, you can also use Blender to create animations, which you
can run using Three.js. Three.js supports two different kinds of animations: skeletal-
based animations and morph-based animations. With skeletal-based animations,
you create a skeleton that defines how the object will move around. This is great
for creating characters and defining natural movements. For more detailed and
fine-grained animations, such as facial expressions, morph-based animations come
in handy. With morph-based animations, you define various positions of all the
vertices in a model and slowly move (morph) from one state to the other. To use
a skeletal-based animation in Three.js, you have to use the THREE.SkinnedMesh
object, and if you want to use morph-based animations, you have to use the THREE.
MorphAnimMesh object. If you've set up your animation and don't see any errors in
the console and still the animation isn't running, remember to check whether you've
set the skinning property or the morphTargets property of the material you're
using to true. Only then will the animation run.

This is the end of the final chapter. In this book, we've tried to show you the most
important parts of Three.js to give you a basic understanding of how you can use this
great 3D library to create 3D visualizations and render beautiful models.

You've learned about textures, lighting, materials, models, particle systems, and
much more. Still, however, there is a fairly large part of Three.js that we haven't
covered in this book. There are, for instance, more kinds of lights available than the
ones we've seen, a large number of out-of-the-box geometries provided by Three.js
that you can use, advanced post-processing filters provided by Three.js that you can
apply to your scene, and even more materials that you can use to style your models.

Chapter 7

[175]

If you want to know more about these features, there are a couple of places where
you can look. Packt Publishing provides a comprehensive Three.js reference book,
Learning Three.js: The JavaScript 3D Library for WebGL, Jos Dirksen, which provides a
detailed reference of all the Three.js features; also, you can of course have a look at
the Three.js website, which also provides lots of information and examples.

I hope you liked the information and examples from this book. Feel free to use and
expand on these examples and create beautiful 3D visualizations yourself!

Index
Symbols
2D information

adding, HTML canvas as
texture used 44-49

3D Google Maps cube
creating 129, 130
displaying, HTML used 130, 131
positioning 132-135
rotating 132-135

3D object set
maze layout, converting to 54, 55

3D terrain
creating, CSS sprites used 144, 145
creating, from scratch 98
generating, Math.random() used 98-104
generating, Perlin noise used 104-106
JavaScript object, creating

with constructor 111, 112
texture, adding 107-110

A
advanced visualizations creation

dynamic colors, combining for 92
initial particle system, setting up 93
particles, determining for update 94, 95
volumes, calculating for range 93, 94

ambient lighting
adding 35, 36

animation
adding, Tween.js used 59, 60

AudioContext function 77
audio volume

visualizing 75, 76

audio volume, visualizing
HTML5 Web Audio API, setting up 76, 77
particle system, animating 80, 81
particle system, creating 77-80
sound, playing 80, 81

B
background

setting up, in Three.js 37-41
basic scene

enhancing 22
basic scene, enhancing

easy controls, adding with
dat.GUI library 22, 23

statistics element, adding for displaying
frame rate 24

basic textures
adding, to globe 32-35

Blender
downloading 150
installing 150
model, exporting from 154, 155
predefined materials, setting up 158-160
predefined materials, using 157
URL 149
URL, for downloading 150
URL, for portable version 150
UV mapping, setting up in 160-162

Blender 2.70a 150
bump map 42

C
camera

trackball controls, adding to 69, 70

[178]

camera controls
setting up 30-32

checkKey function 71
Chroma.js

URL, for downloading 90
Chrome

object with breakpoints, viewing 27
Chrome debugger

working 27
city

creating, from scratch 113-118
collision detection

objects, selecting 62, 63
setting up 61, 62

collisions
detecting 63-65

color property 101
colors

customizing, of individual particles 87, 88
configuration, keyboard controls 70
console logging

used, for debugging 25-27
constructor

used, for creating JavaScript object 111, 112
create3DTerrain function

about 111
extending 109

createCSS3DObject function 127
createDiv function 145
CSS3DRenderer object

init() function, setting up 126, 127
CSS3DRenderer skeleton

setting up 126-128
CSS sprites

used, for creating 3D terrain 144, 145
used, for creating parametric terrain 143

cube
animating 56

cube animation
edge rotation, creating with matrix-based

transformation 58, 59
standard Three.js rotation behavior 57
Tween.js, used for adding animation 59, 60

cubeGeometry.applyMatrix function 58
custom geometry

waves, creating with 84-87

D
dat.GUI library

URL 22
used, for adding controls 22, 23

debugging
console logging, using for 25-27

depth argument 99
directional light

adding 35, 36
drawLine function 54
dynamic colors

combining, for advanced
visualizations creation 92

E
edge rotation

creating, matrix-based
transformation used 58, 59

elevations
simulating, normal maps used 42

examples
debugging 25

F
faces

vertices, combining into 21
faces property 120
facesTwig property 120
Fast Fourier Transform (FFT) 77
features, Three.js 29, 51, 52
frames per second (FPS) 24

G
generateBuildingTexture() function

using 116
getAverageVolume function 81
getByteFrequencyData function 81
getHighPoint function 101
getPositionAndRotation function

implementing 139
Git, for various operating systems

URL, for installation manual 11

[179]

globe
basic textures, adding to 32-35
setting up 30-32

H
height argument 99
HTML

used, for displaying Google Maps 130, 131
HTML5 Web Audio API

setting up 76, 77
URL 75

HTML canvas, as texture
used, for adding 2D information 44-49

HTML elements
animating, with images as input 136, 138
animating, with TweenJS 136, 139-142

HTML elements animation
setting up 138, 139
target position and rotation,

determining 139

I
init() function

about 16, 26
setting up, for CSS3DRenderer

object 126, 127
installation, Blender 150
installation, Three.js plugin 151, 152

J
JavaScript object

creating, constructor used 111, 112

K
keyboard controls
configuring 70
displaying 52

L
lighting

improving 65
lights

ambient lighting 35

directional light 35
point light 35
spot light 35

light sources
setting up 67, 68

local development environment
local web server, setting up 12
setting up 11
source code, obtaining 11, 12

local web server
setting up 12

M
makeRotationX function 59
Math.random()

used, for generating 3D terrain 98-104
matrix-based transformation

used, for creating edge rotation 58, 59
maze

about 53
creating 53

maze layout
converting, to 3D set of objects 54, 55
generating 53, 54

minimal Three.js web application
creating 14
mesh, adding 18-20
scene, creating 15-17

model
displaying, in Three.js 153-157
exporting, from Blender 154, 155
exporting, in Three.js 162, 163
improving, advanced textures used 41
loading 156
rendering, in Three.js 162, 163

modeled dinosaur
animating, in Three.js 166-168
exporting, to Three.js 164-166
loading 166-168

Mongoose
URL, for downloading 14

morph-based animations
model, animating 171-173
model, exploring 169, 170
model, exporting to Three.js 169, 170
model, loading 171-173

[180]

working with 168

N
normal map

about 42
used, for simulating elevations 42

normals property 121
normalsTwig property 121
npm command, from Node.js

used, for running web server 13, 14

O
objects, collision detection

selecting 62, 63
objects, with breakpoints

viewing, in Chrome 27
onEnd function 60
onkeydown event 71
onStart function 60
onUpdate function 60

P
parametric terrain

animating, TweenJS used 145, 146
creating, CSS sprites used 143-145

parametric trees
creating 119-122

parseAnimations() function 171, 172
particles

coloring, based on amplitude 90, 91
colors, customizing of 87, 88
individual particles, coloring 88, 89

particle system
creating, manually 82
screenshot 74
Web Audio configuration, and

render loop 83
particle system, audio volume

animating 80-82
creating 77-80

particle system creation
waves, creating with custom

geometry 84-87
Perlin noise

used, for generating 3D terrain 104-106
playAnimation() function 172
portable version, of Mongoose

running 14
pos property

using 140
predefined materials, Blender

setting up 158-160
using, in Three.js 157

procedural city generation
URL 118

proctree.js library
URL 119
used, for creating parametric trees 119-122

proctree.js library components
faces property 120
facesTwig property 120
normal property 121
root property 121
UV property 120
uvsTwigs property 121
verts property 121
vertsTwig property 121

properties, AnalyserNode interface
fftSize 77
smoothingTimeConstant 77

properties, for camera
bottom 37
far 37
left 37
near 37
right 37
top 37

properties, THREE.Mesh object
position 57
rotation 57
scale 57
translateX(amount) 57
translateY(amount) 57
translateZ(amount) 57

properties, THREE.ParticleSystemMaterial
object

blending 78
color 78
map 78
opacity 78
size 78

[181]

transparent 78
vertexColors 78

properties, THREE.SpotLight object
angle 68
castShadow 68
exponent 68
onlyShadow 68
shadowBias 68
shadowCameraFar 68
shadowCameraFov 68
shadowCameraNear 68
shadowCameraVisible 69
shadowDarkness 69
shadowMapHeight 69
shadowMapWidth 69
target 68

Python
used, for running web server 13

R
random-maze-generator project

URL 53
raycaster.intersectObjects function 63
reflectivity, of area
defining, specular map used 43, 44

registerObject function 111
render() function 29
repeating texture

adding 66, 67
requisites, Three.js 9, 10
root property 121
rotating 3D world

screenshot 30

S
setupParticleSystem() function 93
skeletal-based animations

modeled dinosaur, animating 166-168
modeled dinosaur, exporting

to Three.js 164-166
modeled dinosaur, loading 166-168
working with 164

sound
playing 80, 81

source code, local development
environment

obtaining 11, 12
spacingX argument 99
spacingY argument 99
specular map
used, for defining reflectivity of area 43, 44

supported desktop browsers, Three.js
Google Chrome 9
Internet Explorer 9
Mozilla Firefox 9
Opera 9
Safari 9

T
targetGeometry object 146
target position

determining 139
target rotation

determining 139
textarea element 128
textures

adding, to 3D maze 65
adding, to 3D terrain 107-110
repeating texture, adding 66, 67

THREE.AdditiveBlending mode 74
THREE.CSS3DSprite object 143
THREE.CubeGeometry object 114, 132
THREE.Geometry object

about 73, 89
creating 121, 122

Three.js
about 7
background, setting up in 37-41
features 29, 51, 52
model, displaying in 153, 156, 157
model, exporting 162, 163
model, rendering in 162, 163
requisites 9, 10
URL 8

Three.js-based game, running on
mobile browser

URL 8
Three.js plugin

enabling 152, 153
installing 151, 152

THREE.MeshNormalMaterial 31
THREE.Mesh object

[182]

creating 122
properties 57

THREE.ParticleSystemMaterial object
about 73
properties 78

THREE.ParticleSystem object
about 73, 80, 100
creating 79

THREE.Projecter object 63
THREE.Raycaster object 61, 63
THREE.SpotLight object

properties 68, 69
THREE.TerrainGeometry object 112
THREE.TrackballControls object 69
THREE.Vector2 object

using 109
THREE.Vector3 object

using 109
trackball controls

adding, to camera 69, 70
Tween.js

used, for adding animation 59, 60
TweenJS

used, for animating HTML
elements 136, 139-142

used, for animating parametric
terrain 145, 146

U
unprojectVector function 63
updateCubes function 81
updateStructure() function 138
updateWaves() function 84
UV mapping

about 97
setting up, in Blender 160-162

UV property 120
uvsTwigs property 121

V
vertices

about 20, 21
combining, into faces 21

verts property 121
vertsTwig property 121

W
waves

creating, with custom geometry 84-87
WebGL

URL 8
web server

running, npm command from
Node.js used 13, 14

running, Python used 13
width argument 99
World Port Index (WPI) 45

Nikki
Typewriter
uploaded by [stormg]

Thank you for buying
Three.js Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Game Development with Three.js
ISBN: 978-1-78216-853-9 Paperback: 118 pages

Embrace the next generation of game development
and reach millions of gamers online with the Three.js
3D graphics library

1.	 Develop immersive 3D games that anyone can
play on the Internet.

2.	 Learn Three.js from a gaming perspective,
including everything you need to build
beautiful and high-performance worlds.

3.	 A step-by-step guide filled with game-focused
examples and tips.

Learning Three.js: The JavaScript
3D Library for WebGL
ISBN: 978-1-78216-628-3 Paperback: 402 pages

Create and animate stunning 3D graphics using the
open source Three.js JavaScript library

1.	 Create and animate beautiful 3D graphics
directly in the browser using JavaScript without
the need to learn WebGL.

2.	 Learn how to enhance your 3D graphics with
light sources, shadows, and advanced materials
and textures.

3.	 Each subject is explained using extensive
examples that you can directly use and adapt
for your own purposes.

Please check www.PacktPub.com for information on our titles

Leap Motion Development
Essentials
ISBN: 978-1-84969-772-9 Paperback: 106 pages

Leverage the power of Leap Motion to develop and
deploy a fully interactive application

1.	 Comprehensive and thorough coverage of
many SDK features.

2.	 Intelligent usage of gesture interfaces.

3.	 In-depth, functional examples of API usage
explained in detail.

HTML5 and CSS3 Transition,
Transformation, and Animation
ISBN: 978-1-84951-994-6 Paperback: 136 pages

A handy guide to understanding Microdata, the new
JavaScript APIs, and the new form elements in HTML5
and CSS3 along with transition, transformation, and
animation using lucid code samples

1.	 Discover the semantics of HTML5
and Microdata.

2.	 Understand the concept of the CSS3 Flexible
Box model.

3.	 Explore the main features of HTML5 such as
canvas, offline web application, geolocation,
audio and video elements, and web storage.

4.	 Master the tools and utilities in HTML5
and CSS3.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgment
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Get Up and Running with Three.js
	Introducing Three.js
	Looking at the requirements for Three.js
	Setting up a local development environment
	Getting the source code
	Setting up a local web server
	Using Python to run a web server
	Using the npm command from Node.js to run a web server
	Running a portable version of Mongoose

	Creating a minimal Three.js web application
	Creating a scene to contain all the objects
	Adding a mesh created from geometry
	What are vertices?
	Combining vertices into faces

	Enhancing the basic scene
	Adding easy controls with the dat.GUI library
	Add a statistics element to show the
frame rate

	Debugging the examples in this book
	Using console logging for debugging
	Looking at objects with breakpoints in Chrome

	Summary

	Chapter 2: Creating a 3D World Globe and Visualizing Open Data
	Setting up the globe and camera controls
	Adding basic textures to the globe
	Adding directional and ambient lighting
	Combining with a starry background
	Improving the look with more advanced textures
	Using a normal map to simulate elevations
	Using a specular map to define the reflectivity of an area

	Adding 2D information using HTML canvas as a texture
	Summary

	Chapter 3: Navigate around a Randomly Generated Maze
	The result we're aiming for in this chapter
	Creating the maze
	Generating a maze layout
	Converting the layout to a 3D set of objects

	Animating the cube
	The standard Three.js rotation behavior
	Creating an edge rotation using matrix-based transformation
	Using Tween.js to add an animation

	Setting up collision detection
	Selecting objects
	Detecting collisions

	Adding textures and improving lighting
	Adding a repeating texture
	Setting up the light sources

	Adding trackball and keyboard controls
	Adding trackball controls to the camera
	Configuring keyboard controls

	Summary

	Chapter 4: Visualizing Audio Data with a Particle System
	Visualizing the audio volume
	Setting up the HTML5 Web Audio API
	Creating a particle system
	Playing a sound and animating the particle system

	Creating a particle system by hand
	Web Audio's configuration and the render loop
	Creating waves with a custom geometry

	Customizing colors of individual particles
	Coloring individual particles
	Coloring the particles based on the amplitude

	Combining dynamic colors to create advanced visualizations
	Setting up the initial particle system
	Calculating volumes for each range
	Determining particles that need to be updated and setting the height and color of an individual particle

	Summary

	Chapter 5: Programmatic Geometries
	Creating a 3D terrain from scratch
	Generating a terrain with Math.random()
	Generating a terrain with a perlin noise
	Adding a texture
	Creating a JavaScript object with constructor

	Creating a city from scratch
	Creating parametric trees
	Summary

	Chapter 6: Combining HTML and Three.js with CSS3DRenderer
	Setting up a CSS3DRenderer skeleton
	Creating an interactive 3D Google
Maps cube
	Displaying a part of Google Maps using HTML
	Positioning and rotating the element

	Animating HTML elements with TweenJS
	Using images as the input
	Setting up the animations
	Determining the target position and rotation
	Configuring TweenJS to run the animation

	Creating a parametric terrain using
CSS sprites
	Creating a 3D terrain using sprites
	Animating the terrain with TweenJS

	Summary

	Chapter 7: Loading and Animating External Models Using Blender
	Installing Blender and the Three.js plugin
	Downloading and installing Blender
	Installing the Three.js plugin
	Enabling the Three.js plugin

	Exporting a model from Blender and showing it in Three.js
	Exporting the model
	Loading the model and showing it in Three.js

	Using Blender's predefined materials
in Three.js
	Setting up a Blender material
	Setting up UV mapping in Blender
	Exporting and rendering in Three.js

	Working with skeletal-based animations in Three.js
	Exploring the model and exporting it to
Three.js
	Loading and animating the model in Three.js

	Working with morph-based animations
in Three.js
	Exploring the model and exporting it to
Three.js
	Loading and animating the model in Three.js

	Summary

	Index
	Uploaded by [StormRG]

