
MANUAL

SONIC PI

1 Welcome to Sonic Pi
1.1 Live Coding
1.2 Exploring the Interface
1.3 Learning through Play

2 Synths
2.1 Your First Beeps
2.2 Synth Options
2.3 Switching Synths
2.4 Duration with Envelopes

3 Samples
3.1 Triggering Samples
3.2 Sample Parameters
3.3 Stretching Samples
3.4 Enveloped Samples
3.5 Partial Samples
3.6 External Samples

4 Randomisation
5 Programming Structures

5.1 Blocks
5.2 Iteration and Loops
5.3 Conditionals
5.4 Threads
5.5 Functions
5.6 Variables
5.7 Thread Synchronisation

6 FX
6.1 Adding FX
6.2 FX in Practice

7 Control
7.1 Controlling Running Synths
7.2 Controlling FX
7.3 Sliding Options

8 Data Structures
8.1 Lists
8.2 Chords
8.3 Scales
8.4 Rings

9 Live Coding
9.1 Live Coding Fundamentals
9.2 Live Loops
9.3 Multiple Live Loops
9.4 Ticking

10 Essential Knowledge
10.1 Using Shortcuts
10.2 Shortcut Cheatsheet
10.3 Sharing
10.4 Performing

11 Minecraft Pi
11.1 Basic API

12 Conclusions

1 - Welcome friend :-)
Welcome to Sonic Pi. Hopefully you’re as excited to get started making crazy sounds as I am to show you. It’s going to be a really fun ride
where you’ll learn all about music, synthesis, programming, composition, performance and more.

But wait, how rude of me! Let me introduce myself - I’m Sam Aaron - the chap that created Sonic Pi. You can find me at @samaaron on
Twitter and I’d be more than happy to say hello to you. You might also be interested in finding out more about my Live Coding
Performances where I code with Sonic Pi live in front of audiences.

If you have any thoughts, or ideas for improving Sonic Pi - please pass them on - feedback is so helpful. You never know, your idea might
be the next big feature!

This tutorial is divided up into sections grouped by category. Whilst I’ve written it to have an easy learning progression from start to finish,
feel very free just to dip in and out of sections as you see fit. If you feel that there’s something missing, do let me know and I’ll consider it
for a future version.

Finally, watching others live code is a really great way to learn. I regularly stream live on livecoding.tv/samaaron so please do drop by, say
hi and ask me lots of questions :-)

OK, let’s get started…

http://twitter.com/samaaron
http://twitter.com/samaaron
http://facebook.com/livecodersamaaron
http://livecoding.tv/samaaron

1.1 - Live Coding
One of the most exciting aspects of Sonic Pi is that it enables you to write and modify code live to make music, just like you might perform
live with a guitar. This means that given some practice you can take Sonic Pi on stage and gig with it.

Free your mind

Before we get into the real details of how Sonic Pi works in the rest of this tutorial, I’d like to give you an experience of what it’s like to live
code. Don’t worry if you don’t understand much (or any) of this. Just try to hold onto your seats and enjoy…

A live loop

Let’s get started, copy the following code into an empty buffer above:

live_loop :flibble do
 sample :bd_haus, rate: 1
 sleep 0.5
end

Now, press the Run button and you’ll hear a nice fast bass drum beating away. If at any time you wish to stop the sound just hit the Stop
button. Although don’t hit it just yet… Instead, follow these steps:

1. Make sure the bass drum sound is still running
2. Change the sleep value from 0.5 to something higher like 1.
3. Press the Run button again
4. Notice how the drum speed has changed.
5. Finally, remember this moment, this is the first time you’ve live coded with Sonic Pi and it’s unlikely to be your last…

Ok, that was simple enough. Let’s add something else into the mix. Above sample :bd_haus add the line sample :ambi_choir,
rate: 0.3. Your code should look like this:

live_loop :flibble do
 sample :ambi_choir, rate: 0.3
 sample :bd_haus, rate: 1
 sleep 1
end

Now, play around. Change the rates - what happens when you use high values, or small values or negative values? See what happens
when you change the rate: value for the :ambi_choir sample just slightly (say to 0.29). What happens if you choose a really small
sleep value? See if you can make it go so fast your computer will stop with an error because it can’t keep up (if that happens, just choose
a bigger sleep time and hit Run again).

Try commenting one of the sample lines out by adding a # to the beginning:

live_loop :flibble do
 sample :ambi_choir, rate: 0.3
sample :bd_haus, rate: 1
 sleep 1
end

Notice how it tells the computer to ignore it, so we don’t hear it. This is called a comment. In Sonic Pi we can use comments to remove and
add things into the mix.

Finally, let me leave you something fun to play with. Take the code below, and copy it into a spare buffer. Now, don’t try to understand it
too much other than see that there are two loops - so two things going round at the same time. Now, do what you do best - experiment and
play around. Here are some suggestions:

Try changing the blue rate: values to hear the sample sound change.
Try changing the sleep times and hear that both loops can spin round at different rates.
Try uncommenting the sample line (remove the #) and enjoy the sound of the guitar played backwards.
Try changing any of the blue mix: values to numbers between 0 (not in the mix) and 1 (fully in the mix).

Remember to press Run and you’ll hear the change next time the loop goes round. If you end up in a pickle, don’t worry - hit Stop, delete
the code in the buffer and paste a fresh copy in and you’re ready to jam again. Making mistakes is how you’ll learn the quickest…

live_loop :guit do
 with_fx :echo, mix: 0.3, phase: 0.25 do
 sample :guit_em9, rate: 0.5
 end
sample :guit_em9, rate: -0.5
 sleep 8
end

live_loop :boom do
 with_fx :reverb, room: 1 do
 sample :bd_boom, amp: 10, rate: 1

 end
 sleep 8
end

Now, keep playing and experimenting until your curiosity about how this all actually works kicks in and you start wondering what else you
can do with this. You’re now ready to read the rest of the tutorial.

So what are you waiting for…

1.2 - The Sonic Pi Interface
Sonic Pi has a very simple interface for coding music. Let’s spend a little time exploring it.

A - Play Controls
B - Editor Controls
C - Info and Help
D - Code Editor
E - Prefs Panel
F - Log Viewer
G - Help System

A. Play Controls

These pink buttons are the main controls for starting and stopping sounds. There’s the Run button for running the code in the editor, Stop
for stopping all running code, Save for saving the code to an external file and Record to create a recording (a WAV file) of the sound
playing.

B. Editor Controls

These orange buttons allow you to manipulate the code editor. The Size + and Size - buttons allow you to make the text bigger and
smaller. The Align button will neaten the code for you to make it look more professional.

C. Info and Help

These blue buttons give you access to information, help and preferences. The Info button will open up the information window which
contains information about Sonic Pi itself - the core team, history, contributors and community. The Help button toggles the help system (F)
and the Prefs button toggles the preferences window which allows you to control some basic system parameters.

D. Code Editor

This is the area where you’ll write your code and compose/perform music. It’s a simple text editor where you can write code, delete it, cut
and paste, etc. Think of it like a very basic version of Word or Google Docs. The editor will automatically colour words based on their
meaning in the code. This may seem strange at first, but you’ll soon find it very useful. For example, you’ll know something is a number
because it is blue.

E. Prefs Panel

Sonic Pi supports a number of tweakable preferences which can be accessed by toggling the prefs button in the Info and Help button set.
This will toggle the visibility of the Prefs Panel which includes a number of options to be changed. Examples are forcing mono mode,
inverting stereo, Toggling log output verbosity and also a volume slider and audio selector on the Raspberry Pi.

F. Log Viewer

When you run your code, information about what the program is doing will be displayed in the log viewer. By default, you’ll see a message
for every sound you create with the exact time the sound was triggered. This is very useful for debugging your code and understanding
what your code is doing.

G. Help System

Finally, one of the most important parts of the Sonic Pi interface is the help system which appears at the bottom of the window. This can be
toggled on and off by clicking on the blue Help button. The help system contains help and information about all aspects of Sonic Pi
including this tutorial, a list of available synths, samples, examples, FX and a full list of all the functions Sonic Pi provides for coding music.

1.3 - Learning through Play
Sonic Pi encourages you to learn about both computing and music through play and experimentation. The most important thing is that
you’re having fun, and before you know it you’ll have accidentally learned how to code, compose and perform.

There are no mistakes

Whilst we’re on this subject, let me just give you one piece of advice I’ve learned over my years of live coding with music - there are no
mistakes, only opportunities. This is something I’ve often heard in relation to jazz but it works equally well with live coding. No matter how
experienced you are - from a complete beginner to a seasoned Algoraver, you’ll run some code that has a completely unexpected
outcome. It might sound insanely cool - in which case run with it. However, it might sound totally jarring and out of place. It doesn’t matter
that it happened - what matters is what you do next with it. Take the sound, manipulate it and morph it into something awesome. The
crowd will go wild.

Start Simple

When you’re learning, it’s tempting to want to do amazing things now. However, just hold that thought and see it as a distant goal to reach
later. For now, instead think of the simplest thing you could write which would be fun and rewarding that’s a small step towards the
amazing thing you have in your head. Once you have an idea about that simple step, then try and build it, play with it and then see what
new ideas it gives you. Before long you’ll be too busy having fun and making real progress.

Just make sure to share your work with others!

2 - Synths
OK, enough of the intros - let’s get into some sound.

In this section we’ll cover the basis of triggering and manipulating synths. Synth is short for synthesiser which is a fancy word for
something which creates sounds. Typically synths are quite complicated to use - especially analog synths with many patch wires and
modules. However, Sonic Pi gives you much of that power in a very simple and approachable manner.

Don’t be fooled by the immediate simplicity of Sonic Pi’s interface. You can get very deep into very sophisticated sound manipulation if
that’s your thing. Hold on to your hats…

2.1 - Your First Beeps
Take a look at the following code:

play 70

This is where it all starts. Go ahead, copy and paste it into the code window at the top of the app (the big white space under the Run
button). Now, press Run…

Beep!

Intense. Press it again. And again. And again…

Woah, crazy, I’m sure you could keep doing that all day. But wait, before you lose yourself in an infinite stream of beeps, try changing the
number:

play 75

Can you hear the difference? Try a lower number:

play 60

So, lower numbers make lower pitched beeps and higher numbers make higher pitched beeps. Just like on a piano, the keys at the lower
part of the piano (the left hand side) play lower notes and the keys on the higher part of the piano (the right hand side) play higher notes. In
fact, the numbers actually relate to notes on the piano. play 47 actually means play the 47th note on the piano. Which means that play
48 is one note up (the next note to the right). It just so happens that the 4th octave C is number 60. Go ahead and play it: play 60.

Don’t worry if this means nothing to you - it didn’t to me when I first started. All that matters right now is that you know that low numbers
make lower beeps and high numbers make higher beeps.

Chords

Playing a note is quite fun, but playing many at the same time can be even better. Try it:

play 72
play 75
play 79

Jazzy! So, when you write multiple plays, they all play at the same time. Try it for yourself - which numbers sound good together? Which
sound terrible? Experiment, explore and find out for yourself.

Melody

So, playing notes and chords is fun - but how about a melody? What if you wanted to play one note after another and not at the same
time? Well, that’s easy, you just need to sleep between the notes:

play 72
sleep 1
play 75
sleep 1
play 79

How lovely, a little arpeggio. So what does the 1 mean in sleep 1? Well it means the duration of the sleep. It actually means sleep for
one beat, but for now we can think about it as sleeping for 1 second. So, what if we wanted to make our arpeggio a little faster? Well, we
need to use shorter sleep values. What about a half i.e. 0.5:

play 72
sleep 0.5
play 75
sleep 0.5
play 79

Notice how it plays faster. Now, try for yourself, change the times - use different times and notes.

One thing to try is in-between notes such as play 52.3 and play 52.63. There’s absolutely no need to stick to standard whole notes.
Play around and have fun.

Traditional Note Names

For those of you that already know some musical notation (don’t worry if you don’t - you don’t need it to have fun) you might want to write a
melody using note names such as C and F# rather than numbers. Sonic Pi has you covered. You can do the following:

play :C
sleep 0.5
play :D
sleep 0.5

play :E

Remember to put the colon : in front of your note name so that it goes pink. Also, you can specify the octave by adding a number after the
note name:

play :C3
sleep 0.5
play :D3
sleep 0.5
play :E4

If you want to make a note sharp, add an s after the note name such as play :Fs3 and if you want to make a note flat, add a b such as
play :Eb3.

Now go crazy and have fun making your own tunes.

2.2 - Synth Options: Amp and Pan
As well as allowing you to control which note to play or which sample to trigger, Sonic Pi provides a whole range of options to craft and
control the sounds. We’ll be covering many of these in this tutorial and there’s extensive documentation for each in the help system.
However, for now we’ll introduce two of the most useful: amplitude and pan. First, let’s look at what options actually are.

Options

Sonic Pi supports the notion of options (or opts for short) for its synths. Opts are controls you pass to play which modify and control
aspects of the sound you hear. Each synth has its own set of opts for finely tuning its sound. However, there are common sets of opts
shared by many sounds such as amp: and envelope opts (covered in another section).

Opts have two major parts, their name (the name of the control) and their value (the value you want to set the control at). For example, you
might have a opt called cheese: and want to set it with a value of 1.

Opts are passed to calls to play by using a comma , and then the name of the opt such as amp: (don’t forget the colon :) and then a
space and the value of the opt. For example:

play 50, cheese: 1

(Note that cheese: isn’t a valid opt, we’re just using it as an example).

You can pass multiple opts by separating them with a comma:

play 50, cheese: 1, beans: 0.5

The order of the opts doesn’t matter, so the following is identical:

play 50, beans: 0.5, cheese: 1

Opts that aren’t recognised by the synth are just ignored (like cheese and beans which are clearly ridiculous opt names!)

If you accidentally use the same opt twice with different values, the last one wins. For example, beans: here will have the value 2 rather
than 0.5:

play 50, beans: 0.5, cheese: 3, eggs: 0.1, beans: 2

Many things in Sonic Pi accept opts, so just spend a little time learning how to use them and you’ll be set! Let’s play with our first opt:
amp:.

Amplitude

Amplitude is a computer representation of the loudness of a sound. A high amplitude produces a loud sound and a low amplitude produces
a quiet sound. Just as Sonic Pi uses numbers to represent time and notes, it uses numbers to represent amplitude. An amplitude of 0 is
silent (you’ll hear nothing) whereas an amplitude of 1 is normal volume. You can even crank up the amplitude higher to 2, 10, 100.
However, you should note that when the overall amplitude of all the sounds gets too high, Sonic Pi uses what’s called a compressor to
squash them all to make sure things aren’t too loud for your ears. This can often make the sound muddy and strange. So try to use low
amplitudes, i.e. in the range 0 to 0.5 to avoid compression.

Amp it up

To change the amplitude of a sound, you can use the amp: opt. For example, to play at half amplitude pass 0.5:

play 60, amp: 0.5

To play at double amplitude pass 2:

play 60, amp: 2

The amp: opt only modifies the call to play it’s associated with. So, in this example, the first call to play is at half volume and the second
is back to the default (1):

play 60, amp: 0.5
sleep 0.5
play 65

Of course, you can use different amp: values for each call to play:

play 50, amp: 0.1
sleep 0.25
play 55, amp: 0.2
sleep 0.25
play 57, amp: 0.4
sleep 0.25
play 62, amp: 1

Panning

Another fun opt to use is pan: which controls the panning of a sound in stereo. Panning a sound to the left means that you hear it out of
the left speaker, and panning it to the right means you hear it out of your right speaker. For our values, we use a -1 to represent fully left, 0
to represent center and 1 to represent fully right in the stereo field. Of course, we’re free to use any value between -1 and 1 to control the
exact positioning of our sound.

Let’s play a beep out of the left speaker:

play 60, pan: -1

Now, let’s play it out of the right speaker:

play 60, pan: 1

Finally let’s play it back out of the center of both (the default position):

play 60, pan: 0

Now, go and have fun changing the amplitude and panning of your sounds!

2.3 - Switching Synths
So far we’ve had quite a lot of fun making beeps. However, you’re probably starting to get bored of the basic beep noise. Is that all Sonic
Pi has to offer? Surely there’s more to live coding than just playing beeps? Yes there is, and in this section we’ll explore the exciting range
of sounds that Sonic Pi has to offer.

Synths

Sonic Pi has a range of instruments it calls synths which is short for synthesisers. Whereas samples represent pre-recorded sounds,
synths are capable of generating new sounds depending on how you control them (which we’ll explore later in this tutorial). Sonic Pi’s
synths are very powerful and expressive and you’ll have a lot of fun exploring and playing with them. First, let’s learn how to select the
current synth to use.

Buzzy saws and prophets

A fun sound is the saw wave - let’s give it a try:

use_synth :saw
play 38
sleep 0.25
play 50
sleep 0.25
play 62
sleep 0.25

Let’s try another sound - the prophet:

use_synth :prophet
play 38
sleep 0.25
play 50
sleep 0.25
play 62
sleep 0.25

How about combining two sounds. First one after another:

use_synth :saw
play 38
sleep 0.25
play 50
sleep 0.25
use_synth :prophet
play 57
sleep 0.25

Now at the same time:

use_synth :tb303
play 38
sleep 0.25
use_synth :dsaw
play 50
sleep 0.25
use_synth :prophet
play 57
sleep 0.25

Notice that the use_synth command only affects the following calls to play. Think of it like a big switch - new calls to play will play
whatever synth it’s currently pointing to. You can move the switch to a new synth with use_synth.

Discovering Synths

To see which synths Sonic Pi has for you to play with take a look at the Synths option in the far left vertical menu (above Fx). There are
over 20 to choose from. Here are a few of my favourites:

:prophet
:dsaw
:fm
:tb303
:pulse

Now play around with switching synths during your music. Have fun combining synths to make new sounds as well as using different
synths for different sections of your music.

2.4 - Duration with Envelopes
In an earlier section, we looked at how we can use the sleep command to control when to trigger our sounds. However, we haven’t yet
been able to control the duration of our sounds.

In order to give us a simple, yet powerful means of controlling the duration of our sounds, Sonic Pi provides the notion of an ADSR
amplitude envelope (we’ll cover what ADSR means later in this section). An amplitude envelope offers two useful aspects of control:

control over the duration of a sound
control over the amplitude of a sound

Duration

The duration is the length the sound lasts for. A longer duration means that you hear the sound for longer. Sonic Pi’s sounds all have a
controllable amplitude envelope, and the total duration of that envelope is the duration of the sound. Therefore, by controlling the envelope
you control the duration.

Amplitude

The ADSR envelope not only controls duration, it also gives you fine control over the amplitude of the sound. All audible sounds start and
end silent and contain some non-silent part in-between. Envelopes allow you to slide and hold the amplitude of non-silent parts of the
sound. It’s like giving someone instructions on how to turn up and down the volume of a guitar amplifier. For example you might ask
someone to “start at silence, slowly move up to full volume, hold it for a bit, then quickly fall back to silence.” Sonic Pi allows you to
program exactly this behaviour with envelopes.

Just to recap, as we have seen before, an amplitude of 0 is silence and an amplitude of 1 is normal volume.

Now, let us look at each of the parts of the envelopes in turn.

Release Phase

The only part of the envelope that’s used by default is the release time. This is the time it takes for the synth’s sound to fade out. All synths
have a release time of 1 which means that by default they have a duration of 1 beat (which at the default BPM of 60 is 1 second):

play 70

The note will be audible for 1 second. Go ahead and time it :-) This is short hand for the longer more explicit version:

play 70, release: 1

Notice how this sounds exactly the same (the sound lasts for one second). However, it’s now very easy to change the duration by
modifying the value of the release: opt:

play 60, release: 2

We can make the synth sound for a very short amount of time by using a very small release time:

play 60, release: 0.2

The duration of the release of the sound is called the release phase and by default is a linear transition (i.e. a straight line). The following
diagram illustrates this transition:

The vertical line at the far left of the diagram shows that the sound starts at 0 amplitude, but goes up to full amplitude immediately (this is
the attack phase which we’ll cover next). Once at full amplitude it then moves in a straight line down to zero taking the amount of time
specified by release:. Longer release times produce longer synth fade outs.

You can therefore change the duration of your sound by changing the release time. Have a play adding release times to your music.

Attack Phase

By default, the attack phase is 0 for all synths which means they move from 0 amplitude to 1 immediately. This gives the synth an initial
percussive sound. However, you may wish to fade your sound in. This can be achieved with the attack: opt. Try fading in some sounds:

play 60, attack: 2
sleep 3
play 65, attack: 0.5

You may use multiple opts at the same time. For example for a short attack and a long release try:

play 60, attack: 0.7, release: 4

This short attack and long release envelope is illustrated in the following diagram:

Of course, you may switch things around. Try a long attack and a short release:

play 60, attack: 4, release: 0.7

Finally, you can also have both short attack and release times for shorter sounds.

play 60, attack: 0.5, release: 0.5

Sustain Phase

In addition to specifying attack and release times, you may also specify a sustain time to control the sustain phase. This is the time for
which the sound is maintained at full amplitude between the attack and release phases.

play 60, attack: 0.3, sustain: 1, release: 1

The sustain time is useful for important sounds you wish to give full presence in the mix before entering an optional release phase. Of
course, it’s totally valid to set both the attack: and release: opts to 0 and just use the sustain to have absolutely no fade in or fade out
to the sound. However, be warned, a release of 0 can produce clicks in the audio and it’s often better to use a very small value such as
0.2.

Decay Phase

For an extra level of control, you can also specify a decay time. This is a phase of the envelope that fits between the attack and sustain
phases and specifies a time where the amplitude will drop from the attack_level: to the decay_level: (which unless you explicitly
set it will be set to the sustain_level:). By default, the decay: opt is 0 and both the attack and sustain levels are 1 so you’ll need to
specify them for the decay time to have any effect:

play 60, attack: 0.1, attack_level: 1, decay: 0.2, sustain_level: 0.4, sustain: 1, release: 0.5

Decay Level

One last trick is that although the decay_level: opt defaults to be the same value as sustain_level: you can explicitly set them to
different values for full control over the envelope. This allows you to to create envelopes such as the following:

play 60, attack: 0.1, attack_level: 1, decay: 0.2, decay_level: 0.3, sustain: 1, sustain_level: 0.4, release: 0.5

It’s also possible to set the decay_level: to be higher than sustain_level::

play 60, attack: 0.1, attack_level: 0.1, decay: 0.2, decay_level: 1, sustain: 0.5, sustain_level: 0.8, release: 1.5

ADSR Envelopes

So to summarise, Sonic Pi’s ADSR envelopes have the following phases:

1. attack - time from 0 amplitude to the attack_level,
2. decay - time to move amplitude from attack_level to decay_level,
3. sustain - time to move the amplitude from decay_level to sustain_level,
4. release - time to move amplitude from sustain_level to 0

It’s important to note that the duration of a sound is the summation of the times of each of these phases. Therefore the following sound will
have a duration of 0.5 + 1 + 2 + 0.5 = 4 beats:

play 60, attack: 0.5, attack_level: 1, decay: 1, sustain_level: 0.4, sustain: 2, release: 0.5

Now go and have a play adding envelopes to your sounds…

3 - Samples
Another great way to develop your music is to use pre-recorded sounds. In great hip-hop tradition, we call these pre-recorded sounds
samples. So, if you take a microphone outside, go and record the gentle sound of rain hitting canvas, you’ve just created a sample.

Sonic Pi lets you do lots of fun things with samples. Not only does it ship with over 90 public domain samples ready for you to jam with, it
lets you play and manipulate your own. Let’s get to it…

3.1 - Triggering Samples
Playing beeps is only the beginning. Something that’s a lot of fun is triggering pre-recorded samples. Try it:

sample :ambi_lunar_land

Sonic Pi includes many samples for you to play with. You can use them just like you use the play command. To play multiple samples
and notes just write them one after another:

play 36
play 48
sample :ambi_lunar_land
sample :ambi_drone

If you want to space them out in time, use the sleep command:

sample :ambi_lunar_land
sleep 1
play 48
sleep 0.5
play 36
sample :ambi_drone
sleep 1
play 36

Notice how Sonic Pi doesn’t wait for a sound to finish before starting the next sound. The sleep command only describes the separation
of the triggering of the sounds. This allows you to easily layer sounds together creating interesting overlap effects. Later in this tutorial we’ll
take a look at controlling the duration of sounds with envelopes.

Discovering Samples

There are two ways to discover the range of samples provided in Sonic Pi. First, you can use this help system. Click on Samples in the far
left vertical menu, choose your category and then you’ll see a list of available sounds.

Alternatively you can use the auto-completion system. Simply type the start of a sample group such as: sample :ambi_ and you’ll see a
drop-down of sample names appear for you to select. Try the following category prefixes:

:ambi_
:bass_
:elec_
:perc_
:guit_
:drum_
:misc_
:bd_

Now start mixing samples into your compositions!

3.2 - Sample Parameters: Amp and Pan
As we saw with synths, we can easily control our sounds with parameters. Samples support exactly the same parameterisation
mechanism. Let’s revisit our friends amp: and pan:.

Amping samples

You can change the amplitude of samples with exactly the same approach you used for synths:

sample :ambi_lunar_land, amp: 0.5

Panning samples

We’re also able to use the pan: parameter on samples. For example, here’s how we’d play the amen break in the left ear and then half
way through play it again through the right ear:

sample :loop_amen, pan: -1
sleep 0.877
sample :loop_amen, pan: 1

Note that 0.877 is half the duration of the :loop_amen sample in seconds.

Finally, note that if you set some synth defaults with use_synth_defaults (which we will discuss later), these will be ignored by
sample.

3.3 - Stretching Samples
Now that we can play a variety of synths and samples to create some music, it’s time to learn how to modify both the synths and samples
to make the music even more unique and interesting. First, let’s explore the ability to stretch and squash samples.

Sample Representation

Samples are pre-recorded sounds stored as numbers which represent how to move the speaker cone to reproduce the sound. The
speaker cone can move in and out, and so the numbers just need to represent how far in and out the cone needs to be for each moment in
time. To be able to faithfully reproduce a recorded sound the sample typically needs to store many thousands of numbers per second!
Sonic Pi takes this list of numbers and feeds them at the right speed to move your computer’s speaker in and out in just the right way to
reproduce the sound. However, it’s also fun to change the speed with which the numbers are fed to the speaker to change the sound.

Changing Rate

Let’s play with one of the ambient sounds: :ambi_choir. To play it with the default rate, you can pass a rate: opt to sample:

sample :ambi_choir, rate: 1

This plays it at normal rate (1), so nothing special yet. However, we’re free to change that number to something else. How about 0.5:

sample :ambi_choir, rate: 0.5

Woah! What’s going on here? Well, two things. Firstly, the sample takes twice as long to play, secondly the sound is an octave lower. Let’s
explore these things in a little more detail.

Let’s stretch

A sample that’s fun to stretch and compress is the Amen Break. At normal rate, we might imagine throwing it into a drum ‘n’ bass track:

sample :loop_amen

However by changing the rate we can switch up genres. Try half speed for old school hip-hop:

sample :loop_amen, rate: 0.5

If we speed it up, we enter jungle territory:

sample :loop_amen, rate: 1.5

Now for our final party trick - let’s see what happens if we use a negative rate:

sample :loop_amen, rate: -1

Woah! It plays it backwards! Now try playing with lots of different samples at different rates. Try very fast rates. Try crazy slow rates. See
what interesting sounds you can produce.

A Simple Explanation of Sample Rate

A useful way to think of samples is as springs. Playback rate is like squashing and stretching the spring. If you play the sample at rate 2,
you’re squashing the spring to half its normal length. The sample therefore takes half the amount of time to play as it’s shorter. If you play
the sample at half rate, you’re stretching the spring to double its length. The sample therefore takes twice the amount of time to play as it’s
longer. The more you squash (higher rate), the shorter it gets, the more you stretch (lower rate), the longer it gets.

Compressing a spring increases its density (the number of coils per cm) - this is similar to the sample sounding higher pitched. Stretching
the spring decreases its density and is similar to the sound having a lower pitch.

The Maths Behind Sample Rate

(This section is provided for those that are interested in the details. Please feel free to skip it…)

As we saw above, a sample is represented by a big long list of numbers representing where the speaker should be through time. We can
take this list of numbers and use it to draw a graph which would look similar to this:

You might have seen pictures like this before. It’s called the waveform of a sample. It’s just a graph of numbers. Typically a waveform like
this will have 44100 points of data per second (this is due to the Nyquist-Shannon sampling theorem). So, if the sample lasts for 2
seconds, the waveform will be represented by 88200 numbers which we would feed to the speaker at a rate of 44100 points per second.
Of course, we could feed it at double rate which would be 88200 points per second. This would therefore take only 1 second to play back.
We could also play it back at half rate which would be 22050 points per second taking 4 seconds to play back.

The duration of the sample is affected by the playback rate:

Doubling the playback rate halves the playback time,
Halving the playback rate doubles the playback time,
Using a playback rate of one fourth quadruples the playback time,
Using a playback rate of 1/10 makes playback last 10 times longer.

We can represent this with the formula:

new_sample_duration = (1 / rate) * sample_duration

Changing the playback rate also affects the pitch of the sample. The frequency or pitch of a waveform is determined by how fast it moves
up and down. Our brains somehow turn fast movement of speakers into high notes and slow movement of speakers into low notes. This is
why you can sometimes even see a big bass speaker move as it pumps out super low bass - it’s actually moving a lot slower in and out
than a speaker producing higher notes.

If you take a waveform and squash it it will move up and down more times per second. This will make it sound higher pitched. It turns out
that doubling the amount of up and down movements (oscillations) doubles the frequency. So, playing your sample at double rate will
double the frequency you hear it. Also, halving the rate will halve the frequency. Other rates will affect the frequency accordingly.

3.4 - Enveloped Samples
It is also possible to modify the duration and amplitude of a sample using an ADSR envelope. However, this works slightly differently to the
ADSR envelope available on synths. Sample envelopes only allow you to reduce the amplitude and duration of a sample - and never to
increase it. The sample will stop when either the sample has finished playing or the envelope has completed - whichever is first. So, if you
use a very long release:, it won’t extend the duration of the sample.

Amen Envelopes

Let’s return to our trusty friend the Amen Break:

sample :loop_amen

With no opts, we hear the full sample at full amplitude. If we want to fade this in over 1 second we can use the attack: param:

sample :loop_amen, attack: 1

For a shorter fade in, choose a shorter attack value:

sample :loop_amen, attack: 0.3

Auto Sustain

Where the ADSR envelope’s behaviour differs from the standard synth envelope is in the sustain value. In the standard synth envelope,
the sustain defaulted to 0 unless you set it manually. With samples, the sustain value defaults to an automagical value - the time left to
play the rest of the sample. This is why we hear the full sample when we pass no defaults. If the attack, decay, sustain and release values
were all 0 we’d never hear a peep. Sonic Pi therefore calculates how long the sample is, deducts any attack, decay and release times and
uses the result as your sustain time. If the attack, decay and release values add up to more than the duration of the sample, the sustain is
simply set to 0.

Fade Outs

To explore this, let’s consider our Amen break in more detail. If we ask Sonic Pi how long the sample is:

print sample_duration :loop_amen

It will print out 1.753310657596372 which is the length of the sample in seconds. Let’s just round that to 1.75 for convenience here.
Now, if we set the release to 0.75, something surprising will happen:

sample :loop_amen, release: 0.75

It will play the first second of the sample at full amplitude before then fading out over a period of 0.75 seconds. This is the auto sustain in
action. By default, the release always works from the end of the sample. If our sample was 10.75 seconds long, it would play the first 10
seconds at full amplitude before fading out over 0.75s.

Remember: by default, release: fades out at the end of a sample.

Fade In and Out

We can use both attack: and release: together with the auto sustain behaviour to fade both in and out over the duration of the
sample:

sample :loop_amen, attack: 0.75, release: 0.75

As the full duration of the sample is 1.75s and our attack and release phases add up to 1.5s, the sustain is automatically set to 0.25s. This
allows us to easily fade the sample in and out.

Explicit sustain

We can easily get back to our normal synth ADSR behaviour by manually setting sustain: to a value such as 0:

sample :loop_amen, sustain: 0, release: 0.75

Now, our sample only plays for 0.75 seconds in total. With the default for attack: and decay: at 0, the sample jumps straight to full
amplitude, sustains there for 0s then releases back down to 0 amplitude over the release period - 0.75s.

Percussive cymbals

We can use this behaviour to good effect to turn longer sounding samples into shorter, more percussive versions. Consider the sample
:drum_cymbal_open:

sample :drum_cymbal_open

You can hear the cymbal sound ringing out over a period of time. However, we can use our envelope to make it more percussive:

sample :drum_cymbal_open, attack: 0.01, sustain: 0, release: 0.1

You can then emulate hitting the cymbal and then dampening it by increasing the sustain period:

sample :drum_cymbal_open, attack: 0.01, sustain: 0.3, release: 0.1

Now go and have fun putting envelopes over the samples. Try changing the rate too for really interesting results.

3.5 - Partial Samples
This section will conclude our exploration of Sonic Pi’s sample player. Let’s do a quick recap. So far we’ve looked at how we can trigger
samples:

sample :loop_amen

We then looked at how we can change the rate of samples such as playing them at half speed:

sample :loop_amen, rate: 0.5

Next, we looked at how we could fade a sample in (let’s do it at half speed):

sample :loop_amen, rate: 0.5, attack: 1

We also looked at how we could use the start of a sample percussively by giving sustain: an explicit value and setting both the attack
and release to be short values:

sample :loop_amen, rate: 2, attack: 0.01, sustain: 0, release: 0.35

However, wouldn’t it be nice if we didn’t have to always start at the beginning of the sample? Wouldn’t it also be nice if we didn’t have to
always finish at the end of the sample?

Choosing a starting point

It is possible to choose an arbitrary starting point in the sample as a value between 0 and 1 where 0 is the start of the sample, 1 is the end
and 0.5 is half way through the sample. Let’s try playing only the last half of the amen break:

sample :loop_amen, start: 0.5

How about the last quarter of the sample:

sample :loop_amen, start: 0.75

Choosing a finish point

Similarly, it is possible to choose an arbitrary finish point in the sample as a value between 0 and 1. Let’s finish the amen break half way
through:

sample :loop_amen, finish: 0.5

Specifying start and finish

Of course, we can combine these two to play arbitrary segments of the audio file. How about only a small section in the middle:

sample :loop_amen, start: 0.4, finish: 0.6

What happens if we choose a start position after the finish position?

sample :loop_amen, start: 0.6, finish: 0.4

Cool! It plays it backwards!

Combining with rate

We can combine this new ability to play arbitrary segments of audio with our friend rate:. For example, we can play a very small section
of the middle of the amen break very slowly:

sample :loop_amen, start: 0.5, finish: 0.7, rate: 0.2

Combining with envelopes

Finally, we can combine all of this with our ADSR envelopes to produce interesting results:

sample :loop_amen, start: 0.5, finish: 0.8, rate: -0.2, attack: 0.3, release: 1

Now go and have a play mashing up samples with all of this fun stuff…

3.6 - External Samples
Whilst the built-in samples can get you up and started quickly, you might wish to experiment with other recorded sounds in your music.
Sonic Pi totally supports this. First though, let’s have a quick discussion on the portability of your piece.

Portability

When you compose your piece purely with built-in synths and samples, the code is all you need to faithfully reproduce your music. Think
about that for a moment - that’s amazing! A simple piece of text you can email around or stick in a Gist represents everything you need to
reproduce your sounds. That makes it really easy to share with your friends as they just need to get hold of the code.

However, if you start using your own pre-recorded samples, you lose this portability. This is because to reproduce your music other people
not only need your code, they need your samples too. This limits the ability for others to manipulate, mash-up and experiment with your
work. Of course this shouldn’t stop you from using your own samples, it’s just something to consider.

Local Samples

So how do you play any arbitrary WAV or AIFF file on your computer? All you need to do is pass the path of that file to sample:

Raspberry Pi, Mac, Linux
sample "/Users/sam/Desktop/my-sound.wav"
Windows
sample "C:/Users/sam/Desktop/my-sound.wav"

Sonic Pi will automatically load and play the sample. You can also pass all the standard params you’re used to passing sample:

Raspberry Pi, Mac, Linux
sample "/Users/sam/Desktop/my-sound.wav", rate: 0.5, amp: 0.3
Windows
sample "C:/Users/sam/Desktop/my-sound.wav", rate: 0.5, amp: 0.3

https://gist.github.com

4 - Randomisation
A great way to add some interest into your music is using some random numbers. Sonic Pi has some great functionality for adding
randomness to your music, but before we start we need to learn a shocking truth: in Sonic Pi random is not truly random. What on earth
does this mean? Well, let’s see.

Repeatability

A really useful random function is rrand which will give you a random value between two numbers - a min and a max. (rrand is short for
ranged random). Let’s try playing a random note:

play rrand(50, 95)

Ooh, it played a random note. It played note 83.7527. A nice random note between 50 and 95. Woah, wait, did I just predict the exact
random note you got too? Something fishy is going on here. Try running the code again. What? It chose 83.7527 again? That can’t be
random!

The answer is that it is not truly random, it’s pseudo-random. Sonic Pi will give you random-like numbers in a repeatable manner. This is
very useful for ensuring that the music you create on your machine sounds identical on everybody else’s machine - even if you use some
randomness in your composition.

Of course, in a given piece of music, if it ‘randomly’ chose 83.7527 every time, then it wouldn’t be very interesting. However, it doesn’t.
Try the following:

loop do
 play rrand(50, 95)
 sleep 0.5
end

Yes! It finally sounds random. Within a given run subsequent calls to random functions will return random values. However, the next run
will produce exactly the same sequence of random values and sound exactly the same. It’s as if all Sonic Pi code went back in time to
exactly the same point every time the Run button was pressed. It’s the Groundhog Day of music synthesis!

Haunted Bells

A lovely illustration of randomisation in action is the haunted bells example which loops the :perc_bell sample with a random rate and
sleep time between bell sounds:

loop do
 sample :perc_bell, rate: (rrand 0.125, 1.5)
 sleep rrand(0.2, 2)
end

Random cutoff

Another fun example of randomisation is to modify the cutoff of a synth randomly. A great synth to try this out on is the :tb303 emulator:

use_synth :tb303

loop do
 play 50, release: 0.1, cutoff: rrand(60, 120)
 sleep 0.125
end

Random seeds

So, what if you don’t like this particular sequence of random numbers Sonic Pi provides? Well it’s totally possible to choose a different
starting point via use_random_seed. The default seed happens to be 0, so choose a different seed for a different random experience!

Consider the following:

5.times do
 play rrand(50, 100)
 sleep 0.5
end

Every time you run this code, you’ll hear the same sequence of 5 notes. To get a different sequence simply change the seed:

use_random_seed 40
5.times do
 play rrand(50, 100)
 sleep 0.5
end

This will produce a different sequence of 5 notes. By changing the seed and listening to the results you can find something that you like -
and when you share it with others, they will hear exactly what you heard too.

Let’s have a look at some other useful random functions.

choose

A very common thing to do is to choose an item randomly from a list of known items. For example, I may want to play one note from the
following: 60, 65 or 72. I can achieve this with choose which lets me choose an item from a list. First, I need to put my numbers in a list
which is done by wrapping them in square brackets and separating them with commas: [60, 65, 72]. Next I just need to pass them to
choose:

choose([60, 65, 72])

Let’s hear what that sounds like:

loop do
 play choose([60, 65, 72])
 sleep 1
end

rrand

We’ve already seen rrand, but let’s run over it again. It returns a random number between two values exclusively. That means it will
never return either the top or bottom number - always something in between the two. The number will always be a float - meaning it’s not a
whole number but a fraction of a number. Examples of floats returned by rrand(20, 110):

87.5054931640625
86.05255126953125
61.77825927734375

rrand_i

Occasionally you’ll want a whole random number, not a float. This is where rrand_i comes to the rescue. It works similarly to rrand
except it may return the min and max values as potential random values (which means it’s inclusive rather than exclusive of the range).
Examples of numbers returned by rrand_i(20, 110) are:

88
86
62

rand

This will return a random float between 0 (inclusive) and the max value you specify (exclusive). By default it will return a value between 0
and one. It’s therefore useful for choosing random amp: values:

loop do
 play 60, amp: rand
 sleep 0.25
end

rand_i

Similar to the relationship between rrand_i and rrand, rand_i will return a random whole number between 0 and the max value you
specify.

dice

Sometimes you want to emulate a dice throw - this is a special case of rrand_i where the lower value is always 1. A call to dice
requires you to specify the number of sides on the dice. A standard dice has 6 sides, so dice(6) will act very similarly - returning values
of either 1, 2, 3, 4, 5, or 6. However, just like fantasy role-play games, you might find value in a 4 sided dice, or a 12 sided dice, or a 20
sided dice - perhaps even a 120 sided dice!

one_in

Finally you may wish to emulate throwing the top score of a dice such as a 6 in a standard dice. one_in therefore returns true with a
probability of one in the number of sides on the dice. Therefore one_in(6) will return true with a probability of 1 in 6 or false otherwise.
True and false values are very useful for if statements which we will cover in a subsequent section of this tutorial.

Now, go and jumble up your code with some randomness!

5 - Programming Structures
Now that you’ve learned the basics of creating sounds with play and sample and creating simple melodies and rhythms by sleeping
between sounds, you might be wondering what else the world of code can offer you…

Well, you’re in for an exciting treat! It turns out that basic programming structures such as looping, conditionals, functions and threads give
you amazingly powerful tools to express your musical ideas.

Let’s get stuck in with the basics…

5.1 - Blocks
A structure you’ll see a lot in Sonic Pi is the block. Blocks allow us to do useful things with large chunks of code. For example, with synth
and sample parameters we were able to change something that happened on a single line. However, sometimes we want to do something
meaningful to a number of lines of code. For example, we may wish to loop it, to add reverb to it, to only run it 1 time out of 5, etc. Consider
the following code:

play 50
sleep 0.5
sample :elec_plip
sleep 0.5
play 62

To do something with a chunk of code, we need to tell Sonic Pi where the code block starts and where it ends. We use do for start and
end for end. For example:

do
 play 50
 sleep 0.5
 sample :elec_plip
 sleep 0.5
 play 62
end

However, this isn’t yet complete and won’t work (try it and you’ll get an error) as we haven’t told Sonic Pi what we want to do with this
do/end block. We tell Sonic Pi this by writing some special code before the do. We’ll see a number of these special pieces of code later on
in this tutorial. For now, it’s important to know that wrapping your code within do and end tells Sonic Pi you wish to do something special
with that chunk of code.

5.2 - Iteration and Loops
So far we’ve spent a lot of time looking at the different sounds you can make with play and sample blocks. We’ve also learned how to
trigger these sounds through time using sleep.

As you’ve probably found out, there’s a lot of fun you can have with these basic building blocks. However, a whole new dimension of fun
opens up when you start using the power of code to structure your music and compositions. In the next few sections we’ll explore some of
these powerful new tools. First up is iteration and loops.

Repetition

Have you written some code you’d like to repeat a few times? For example, you might have something like this:

play 50
sleep 0.5
sample :elec_blup
sleep 0.5
play 62
sleep 0.25

What if we wished to repeat this 3 times? Well, we could do something simple and just copy and paste it three times:

play 50
sleep 0.5
sample :elec_blup
sleep 0.5
play 62
sleep 0.25

play 50
sleep 0.5
sample :elec_blup
sleep 0.5
play 62
sleep 0.25

play 50
sleep 0.5
sample :elec_blup
sleep 0.5
play 62
sleep 0.25

Now that’s a lot of code! What happens if you want to change the sample to :elec_plip? You’re going to have to find all the places with
the original :elec_blup and switch them over. More importantly, what if you wanted to repeat the original piece of code 50 times or
1000? Now that would be a lot of code, and a lot of lines of code to alter if you wanted to make a change.

Iteration

In fact, repeating the code should be as easy as saying do this three times. Well, it pretty much is. Remember our old friend the code
block? We can use it to mark the start and end of the code we’d like to repeat three times. We then use the special code 3.times. So,
instead of writing do this three times, we write 3.times do - that’s not too hard. Just remember to write end at the end of the code you’d
like to repeat:

3.times do
 play 50
 sleep 0.5
 sample :elec_blup
 sleep 0.5
 play 62
 sleep 0.25
end

Now isn’t that much neater than cutting and pasting! We can use this to create lots of nice repeating structures:

4.times do
 play 50
 sleep 0.5
end

8.times do
 play 55, release: 0.2
 sleep 0.25
end

4.times do
 play 50
 sleep 0.5
end

Nesting Iterations

We can put iterations inside other iterations to create interesting patterns. For example:

4.times do
 sample :drum_heavy_kick
 2.times do
 sample :elec_blip2, rate: 2
 sleep 0.25
 end
 sample :elec_snare
 4.times do
 sample :drum_tom_mid_soft
 sleep 0.125
 end
end

Looping

If you want something to repeat a lot of times, you might find yourself using really large numbers such as 1000.times do. In this case,
you’re probably better off asking Sonic Pi to repeat forever (at least until you press the stop button!). Let’s loop the amen break forever:

loop do
 sample :loop_amen
 sleep sample_duration :loop_amen
end

The important thing to know about loops is that they act like black holes for code. Once the code enters a loop it can never leave until you
press stop - it will just go round and round the loop forever. This means if you have code after the loop you will never hear it. For example,
the cymbal after this loop will never play:

loop do
 play 50
 sleep 1
end

sample :drum_cymbal_open

Now, get structuring your code with iteration and loops!

5.3 - Conditionals
A common thing you’ll likely find yourself wanting to do is to not only play a random note (see the previous section on randomness) but
also make a random decision and based on the outcome run some code or some other code. For example, you might want to randomly
play a drum or a cymbal. We can achieve this with an if statement.

Flipping a Coin

So, let’s flip a coin: if it’s heads, play a drum, if it’s tails, play a cymbal. Easy. We can emulate a coin flip with our one_in function
(introduced in the section on randomness) specifying a probability of 1 in 2: one_in(2). We can then use the result of this to decide
between two pieces of code, the code to play the drum and the code to play the cymbal:

loop do

 if one_in(2)
 sample :drum_heavy_kick
 else
 sample :drum_cymbal_closed
 end

 sleep 0.5

end

Notice that if statements have three parts:

The question to ask
The first choice of code to run (if the answer to the question is yes)
The second choice of code to run (if the answer to the question is no)

Typically in programming languages, the notion of yes is represented by the term true and the notion of no is represented by the term
false. So we need to find a question that will give us a true or false answer which is exactly what one_in does.

Notice how the first choice is wrapped between the if and the else and the second choice is wrapped between the else and the end.
Just like do/end blocks you can put multiple lines of code in either place. For example:

loop do

 if one_in(2)
 sample :drum_heavy_kick
 sleep 0.5
 else
 sample :drum_cymbal_closed
 sleep 0.25
 end

end

This time we’re sleeping for a different amount of time depending on which choice we make.

Simple if

Sometimes you want to optionally execute just one line of code. This is possible by placing if and then the question at the end. For
example:

use_synth :dsaw

loop do
 play 50, amp: 0.3, release: 2
 play 53, amp: 0.3, release: 2 if one_in(2)
 play 57, amp: 0.3, release: 2 if one_in(3)
 play 60, amp: 0.3, release: 2 if one_in(4)
 sleep 1.5
end

This will play chords of different numbers with the chance of each note playing having a different probability.

5.4 - Threads
So you’ve made your killer bassline and a phat beat. How do you play them at the same time? One solution is to weave them together
manually - play some bass, then a bit of drums, then more bass… However, the timing soon gets hard to think about, especially when you
start weaving in more elements.

What if Sonic Pi could weave things for you automatically? Well, it can, and you do it with a special thing called a thread.

Infinite Loops

To keep this example simple, you’ll have to imagine that this is a phat beat and a killer bassline:

loop do
 sample :drum_heavy_kick
 sleep 1
end

loop do
 use_synth :fm
 play 40, release: 0.2
 sleep 0.5
end

As we’ve discussed previously, loops are like black holes for the program. Once you enter a loop you can never exit from it until you hit
stop. How do we play both loops at the same time? We have to tell Sonic Pi that we want to start something at the same time as the rest of
the code. This is where threads come to the rescue.

Threads to the Rescue

in_thread do
 loop do
 sample :drum_heavy_kick
 sleep 1
 end
end

loop do
 use_synth :fm
 play 40, release: 0.2
 sleep 0.5
end

By wrapping the first loop in an in_thread do/end block we tell Sonic Pi to run the contents of the do/end block at exactly the same time
as the next statement after the do/end block (which happens to be the second loop). Try it and you’ll hear both the drums and the bassline
weaved together!

Now, what if we wanted to add a synth on top. Something like:

in_thread do
 loop do
 sample :drum_heavy_kick
 sleep 1
 end
end

loop do
 use_synth :fm
 play 40, release: 0.2
 sleep 0.5
end

loop do
 use_synth :zawa
 play 52, release: 2.5, phase: 2, amp: 0.5
 sleep 2
end

Now we have the same problem as before. The first loop is played at the same time as the second loop due to the in_thread. However,
the third loop is never reached. We therefore need another thread:

in_thread do
 loop do
 sample :drum_heavy_kick
 sleep 1
 end

end

in_thread do
 loop do
 use_synth :fm
 play 40, release: 0.2
 sleep 0.5
 end
end

loop do
 use_synth :zawa
 play 52, release: 2.5, phase: 2, amp: 0.5
 sleep 2
end

Runs as threads

What may surprise you is that when you press the Run button, you’re actually creating a new thread for the code to run. This is why
pressing it multiple times will layer sounds over each other. As the runs themselves are threads, they will automatically weave the sounds
together for you.

Scope

As you learn how to master Sonic Pi, you’ll learn that threads are the most important building blocks for your music. One of the important
jobs they have is to isolate the notion of current settings from other threads. What does this mean? Well, when you switch synths using
use_synth you’re actually just switching the synth in the current thread - no other thread will have their synth switched. Let’s see this in
action:

play 50
sleep 1

in_thread do
 use_synth :tb303
 play 50
end

sleep 1
play 50

Notice how the middle sound was different to the others? The use_synth statement only affected the thread it was in and not the outer
main run thread.

Inheritance

When you create a new thread with in_thread, the new thread will automatically inherit all of the current settings from the current thread.
Let’s see that:

use_synth :tb303
play 50
sleep 1

in_thread do
 play 55
end

Notice how the second note is played with the :tb303 synth even though it was played from a separate thread? Any of the settings
modified with the various use_* functions will behave in the same way.

When threads are created, they inherit all the settings from their parent but they don’t share any changes back.

Naming Threads

Finally, we can give our threads names:

in_thread(name: :bass) do
 loop do
 use_synth :prophet
 play chord(:e2, :m7).choose, release: 0.6
 sleep 0.5
 end
end

in_thread(name: :drums) do
 loop do

 sample :elec_snare
 sleep 1
 end
end

Look at the log pane when you run this code. See how the log reports the name of the thread with the message?

[Run 36, Time 4.0, Thread :bass]
 |- synth :prophet, {release: 0.6, note: 47}

Only One Thread per Name Allowed

One last thing to know about named threads is that only one thread of a given name may be running at the same time. Let’s explore this.
Consider the following code:

in_thread do
 loop do
 sample :loop_amen
 sleep sample_duration :loop_amen
 end
end

Go ahead and paste that into a buffer and press the Run button. Press it again a couple of times. Listen to the cacophony of multiple amen
breaks looping out of time with each other. Ok, you can press Stop now.

This is the behaviour we’ve seen again and again - if you press the Run button, sound layers on top of any existing sound. Therefore if you
have a loop and press the Run button three times, you’ll have three layers of loops playing simultaneously.

However, with named threads it is different:

in_thread(name: :amen) do
 loop do
 sample :loop_amen
 sleep sample_duration :loop_amen
 end
end

Try pressing the Run button multiple times with this code. You’ll only ever hear one amen break loop. You’ll also see this in the log:

==> Skipping thread creation: thread with name :amen already exists.

Sonic Pi is telling you that a thread with the name :amen is already playing, so it’s not creating another.

This behaviour may not seem immediately useful to you now - but it will be very handy when we start to live code…

5.5 - Functions
Once you start writing lots of code, you may wish to find a way to organise and structure things to make them tidier and easier to
understand. Functions are a very powerful way to do this. They give us the ability to give a name to a bunch of code. Let’s take a look.

Defining functions

define :foo do
 play 50
 sleep 1
 play 55
 sleep 2
end

Here, we’ve defined a new function called foo. We do this with our old friend the do/end block and the magic word define followed by
the name we wish to give to our function. We didn’t have to call it foo, we could have called it anything we want such as bar, baz or
ideally something meaningful to you like main_section or lead_riff.

Remember to prepend a colon : to the name of your function when you define it.

Calling functions

Once we have defined our function we can call it by just writing its name:

define :foo do
 play 50
 sleep 1
 play 55
 sleep 0.5
end

foo

sleep 1

2.times do
 foo
end

We can even use foo inside iteration blocks or anywhere we may have written play or sample. This gives us a great way to express
ourselves and to create new meaningful words for use in our compositions.

Functions are remembered across runs

So far, every time you’ve pressed the Run button, Sonic Pi has started from a completely blank slate. It knows nothing except for what is in
the buffer. You can’t reference code in another buffer or another thread. However, functions change that. When you define a function,
Sonic Pi remembers it. Let’s try it. Delete all the code in your buffer and replace it with:

foo

Press the Run button - and hear your function play. Where did the code go? How did Sonic Pi know what to play? Sonic Pi just
remembered your function - so even after you deleted it from the buffer, it remembered what you had typed. This behaviour only works
with functions created using define (and defonce).

Parameterised functions

You might be interested in knowing that just like you can pass min and max values to rrand, you can teach your functions to accept
arguments. Let’s take a look:

define :my_player do |n|
 play n
end

my_player 80
sleep 0.5
my_player 90

This isn’t very exciting, but it illustrates the point. We’ve created our own version of play called my_player which is parameterised.

The parameters need to go after the do of the define do/end block, surrounded by vertical goalposts | and separated by commas ,. You
may use any words you want for the parameter names.

The magic happens inside the define do/end block. You may use the parameter names as if they were real values. In this example I’m
playing note n. You can consider the parameters as a kind of promise that when the code runs, they will be replaced with actual values.
You do this by passing a parameter to the function when you call it. I do this with my_player 80 to play note 80. Inside the function

definition, n is now replaced with 80, so play n turns into play 80. When I call it again with my_player 90, n is now replaced with 90,
so play n turns into play 90.

Let’s see a more interesting example:

define :chord_player do |root, repeats|
 repeats.times do
 play chord(root, :minor), release: 0.3
 sleep 0.5
 end
end

chord_player :e3, 2
sleep 0.5
chord_player :a3, 3
chord_player :g3, 4
sleep 0.5
chord_player :e3, 3

Here I used repeats as if it was a number in the line repeats.times do. I also used root as if it was a note name in my call to play.

See how we’re able to write something very expressive and easy to read by moving a lot of our logic into a function!

5.6 - Variables
A useful thing to do in your code is to create names for things. Sonic Pi makes this very easy, you write the name you wish to use, an
equal sign (=), then the thing you want to remember:

sample_name = :loop_amen

Here, we’ve ‘remembered’ the symbol :loop_amen in the variable sample_name. We can now use sample_name everywhere we might
have used :loop_amen. For example:

sample_name = :loop_amen
sample sample_name

There are three main reasons for using variables in Sonic Pi: communicating meaning, managing repetition and capturing the results of
things.

Communicating Meaning

When you write code it’s easy to just think you’re telling the computer how to do stuff - as long as the computer understands it’s OK.
However, it’s important to remember that it’s not just the computer that reads the code. Other people may read it too and try to understand
what’s going on. Also, you’re likely to read your own code in the future and try to understand what’s going on. Although it might seem
obvious to you now - it might not be so obvious to others or even your future self!

One way to help others understand what your code is doing is to write comments (as we saw in a previous section). Another is to use
meaningful variable names. Look at this code:

sleep 1.7533

Why does it use the number 1.7533? Where did this number come from? What does it mean? However, look at this code:

loop_amen_duration = 1.7533
sleep loop_amen_duration

Now, it’s much clearer what 1.7533 means: it’s the duration of the sample :loop_amen! Of course, you might say why not simply write:

sleep sample_duration(:loop_amen)

Which, of course, is a very nice way of communicating the intent of the code.

Managing Repetition

Often you see a lot of repetition in your code and when you want to change things, you have to change it in a lot of places. Take a look at
this code:

sample :loop_amen
sleep sample_duration(:loop_amen)
sample :loop_amen, rate: 0.5
sleep sample_duration(:loop_amen, rate: 0.5)
sample :loop_amen
sleep sample_duration(:loop_amen)

We’re doing a lot of things with :loop_amen! What if we wanted to hear what it sounded like with another loop sample such as
:loop_garzul? We’d have to find and replace all :loop_amens with :loop_garzul. That might be fine if you have lots of time - but
what if you’re performing on stage? Sometimes you don’t have the luxury of time - especially if you want to keep people dancing.

What if you’d written your code like this:

sample_name = :loop_amen
sample sample_name
sleep sample_duration(sample_name)
sample sample_name, rate: 0.5
sleep sample_duration(sample_name, rate: 0.5)
sample sample_name
sleep sample_duration(sample_name)

Now, that does exactly the same as above (try it). It also gives us the ability to just change one line sample_name = :loop_amen to
sample_name = :loop_garzul and we change it in many places through the magic of variables.

Capturing Results

Finally, a good motivation for using variables is to capture the results of things. For example, you may wish to do things with the duration of
a sample:

sd = sample_duration(:loop_amen)

We can now use sd anywhere we need the duration of the :loop_amen sample.

Perhaps more importantly, a variable allows us to capture the result of a call to play or sample:

s = play 50, release: 8

Now we have caught and remembered s as a variable, which allows us to control the synth as it is running:

s = play 50, release: 8
sleep 2
control s, note: 62

We’ll look into controlling synths in more detail in a later section.

5.7 - Thread Synchronisation
Once you have become sufficiently advanced live coding with a number of functions and threads simultaneously, you’ve probably noticed
that it’s pretty easy to make a mistake in one of the threads which kills it. That’s no big deal, because you can easily restart the thread by
hitting Run. However, when you restart the thread it is now out of time with the original threads.

Inherited Time

As we discussed earlier, new threads created with in_thread inherit all of the settings from the parent thread. This includes the current
time. This means that threads are always in time with each other when started simultaneously.

However, when you start a thread on its own it starts with its own time which is unlikely to be in sync with any of the other currently running
threads.

Cue and Sync

Sonic Pi provides a solution to this problem with the functions cue and sync.

cue allows us to send out heartbeat messages to all other threads. By default the other threads aren’t interested and ignore these
heartbeat messages. However, you can easily register interest with the sync function.

The important thing to be aware of is that sync is similar to sleep in that it stops the current thread from doing anything for a period of
time. However, with sleep you specify how long you want to wait while with sync you don’t know how long you will wait - as sync waits
for the next cue from another thread which may be soon or a long time away.

Let’s explore this in a little more detail:

in_thread do
 loop do
 cue :tick
 sleep 1
 end
end

in_thread do
 loop do
 sync :tick
 sample :drum_heavy_kick
 end
end

Here we have two threads - one acting like a metronome, not playing any sounds but sending out :tick heartbeat messages every beat.
The second thread is synchronising on tick messages and when it receives one it inherits the time of the cue thread and continues
running.

As a result, we will hear the :drum_heavy_kick sample exactly when the other thread sends the :tick message, even if the two
threads didn’t start their execution at the same time:

in_thread do
 loop do
 cue :tick
 sleep 1
 end
end

sleep(0.3)

in_thread do
 loop do
 sync :tick
 sample :drum_heavy_kick
 end
end

That naughty sleep call would typically make the second thread out of phase with the first. However, as we’re using cue and sync, we
automatically sync the threads bypassing any accidental timing offsets.

Cue Names

You are free to use whatever name you’d like for your cue messages - not just :tick. You just need to ensure that any other threads are
syncing on the correct name - otherwise they’ll be waiting for ever (or at least until you press the Stop button).

Let’s play with a few cue names:

in_thread do

 loop do
 cue [:foo, :bar, :baz].choose
 sleep 0.5
 end
end

in_thread do
 loop do
 sync :foo
 sample :elec_beep
 end
end

in_thread do
 loop do
 sync :bar
 sample :elec_flip
 end
end

in_thread do
 loop do
 sync :baz
 sample :elec_blup
 end
end

Here we have a main cue loop which is randomly sending one of the heartbeat names :foo, :bar or :baz. We then also have three loop
threads syncing on each of those names independently and then playing a different sample. The net effect is that we hear a sound every
0.5 beats as each of the sync threads is randomly synced with the cue thread and plays its sample.

This of course also works if you order the threads in reverse as the sync threads will simply sit and wait for the next cue.

6 - Studio FX
One of the most rewarding and fun aspects of Sonic Pi is the ability to easily add studio effects to your sounds. For example, you may wish
to add some reverb to parts of your piece, or some echo or perhaps even distort or wobble your basslines.

Sonic Pi provides a very simple yet powerful way of adding FX. It even allows you to chain them (so you can pass your sounds through
distortion, then echo and then reverb) and also control each individual FX unit with opts (in a similar way to giving params to synths and
samples). You can even modify the opts of the FX whilst it’s still running. So, for example, you could increase the reverb on your bass
throughout the track…

Guitar Pedals

If all of this sounds a bit complicated, don’t worry. Once you play around with it a little, it will all become quite clear. Before you do though,
a simple analogy is that of guitar FX pedals. There are many kinds of FX pedals you can buy. Some add reverb, others distort etc. A
guitarist will plug his or her guitar into one FX pedal - i.e. distortion -, then take another cable and connect (chain) a reverb pedal. The
output of the reverb pedal can then be plugged into the amplifier:

Guitar -> Distortion -> Reverb -> Amplifier

This is called FX chaining. Sonic Pi supports exactly this. Additionally, each pedal often has dials and sliders to allow you to control how
much distortion, reverb, echo etc. to apply. Sonic Pi also supports this kind of control. Finally, you can imagine a guitarist playing whilst
someone plays with the FX controls whilst they’re playing. Sonic Pi also supports this - but instead of needing someone else to control
things for you, that’s where the computer steps in.

Let’s explore FX!

6.1 - Adding FX
In this section we’ll look at a couple of FX: reverb and echo. We’ll see how to use them, how to control their opts and how to chain them.

Sonic Pi’s FX system uses blocks. So if you haven’t read section 5.1 you might want to take a quick look and then head back.

Reverb

If we want to use reverb we write with_fx :reverb as the special code to our block like this:

with_fx :reverb do
 play 50
 sleep 0.5
 sample :elec_plip
 sleep 0.5
 play 62
end

Now play this code and you’ll hear it played with reverb. It sounds good, doesn’t it! Everything sounds pretty nice with reverb.

Now let’s look what happens if we have code outside the do/end block:

with_fx :reverb do
 play 50
 sleep 0.5
 sample :elec_plip
 sleep 0.5
 play 62
end

sleep 1
play 55

Notice how the final play 55 isn’t played with reverb. This is because it is outside the do/end block, so it isn’t captured by the reverb FX.

Similarly, if you make sounds before the do/end block, they also won’t be captured:

play 55
sleep 1

with_fx :reverb do
 play 50
 sleep 0.5
 sample :elec_plip
 sleep 0.5
 play 62
end

sleep 1
play 55

Echo

There are many FX to choose from. How about some echo?

with_fx :echo do
 play 50
 sleep 0.5
 sample :elec_plip
 sleep 0.5
 play 62
end

One of the powerful aspects of Sonic Pi’s FX blocks is that they may be passed parameters similar to parameters we’ve already seen with
play and sample. For example a fun echo parameter to play with is phase: which represents the duration of a given echo in beats. Let’s
make the echo slower:

with_fx :echo, phase: 0.5 do
 play 50
 sleep 0.5
 sample :elec_plip
 sleep 0.5
 play 62
end

Let’s also make the echo faster:

with_fx :echo, phase: 0.125 do
 play 50
 sleep 0.5
 sample :elec_plip
 sleep 0.5
 play 62
end

Let’s make the echo take longer to fade away by setting the decay: time to 8 beats:

with_fx :echo, phase: 0.5, decay: 8 do
 play 50
 sleep 0.5
 sample :elec_plip
 sleep 0.5
 play 62
end

Nesting FX

One of the most powerful aspects of the FX blocks is that you can nest them. This allows you to very easily chain FX together. For
example, what if you wanted to play some code with echo and then with reverb? Easy, just put one inside the other:

with_fx :reverb do
 with_fx :echo, phase: 0.5, decay: 8 do
 play 50
 sleep 0.5
 sample :elec_blup
 sleep 0.5
 play 62
 end
end

Think about the audio flowing from the inside out. The sound of all the code within the inner do/end block such as play 50 is first sent to
the echo FX and the sound of the echo FX is in turn sent out to the reverb FX.

We may use very deep nestings for crazy results. However, be warned, the FX can use a lot of resources and when you nest them you’re
effectively running multiple FX simultaneously. So be sparing with your use of FX especially on low powered platforms such as the
Raspberry Pi.

Discovering FX

Sonic Pi ships with a large number of FX for you to play with. To find out which ones are available, click on FX in the far left of this help
system and you’ll see a list of available options. Here’s a list of some of my favourites:

wobble,
reverb,
echo,
distortion,
slicer

Now go crazy and add FX everywhere for some amazing new sounds!

6.2 - FX in Practice
Although they look deceptively simple on the outside, FX are actually quite complex beasts internally. Their simplicity often entices people
to overuse them in their pieces. This may be fine if you have a powerful machine, but if - like me - you use a Raspberry Pi to jam with, you
need to be careful about how much work you ask it to do if you want to ensure the beats keep flowing.

Consider this code:

loop do
 with_fx :reverb do
 play 60, release: 0.1
 sleep 0.125
 end
end

In this code we’re playing note 60 with a very short release time, so it’s a short note. We also want reverb so we’ve wrapped it in a reverb
block. All good so far. Except…

Let’s look at what the code does. First we have a loop which means everything inside of it is repeated forever. Next we have a with_fx
block. This means we will create a new reverb FX every time we loop. This is like having a separate FX reverb pedal for every time you
pluck a string on a guitar. It’s cool that you can do this, but it’s not always what you want. For example, this code will struggle to run nicely
on a Raspberry Pi. All the work of creating the reverb and then waiting until it needs to be stopped and removed is all handled by with_fx
for you, but this takes CPU power which may be precious.

How do we make it more similar to a traditional setup where our guitarist has just one reverb pedal which all sounds pass through? Simple:

with_fx :reverb do
 loop do
 play 60, release: 0.1
 sleep 0.125
 end
end

We put our loop inside the with_fx block. This way we only create a single reverb for all notes played in our loop. This code is a lot more
efficient and would work fine on a Raspberry Pi.

A compromise is to use with_fx over an iteration within a loop:

loop do
 with_fx :reverb do
 16.times do
 play 60, release: 0.1
 sleep 0.125
 end
 end
end

This way we’ve lifted the with_fx out of the inner part of the loop and we’re now creating a new reverb every 16 notes.

Remember, there are no mistakes, just possibilities. However, each of these approaches will have a different sound and also different
performance characteristics. So play around and use the approach that sounds best to you whilst also working within the performance
constraints of your platform.

7 - Controlling running sounds
So far we’ve looked at how you can trigger synths and samples, and also how to change their default opts such as amplitude, pan,
envelope settings and more. Each sound triggered is essentially its own sound with its own list of options set for the duration of the sound.

Wouldn’t it also be cool if you could change a sound’s opts whilst it’s still playing, just like you might bend a string of a guitar whilst it’s still
vibrating?

You’re in luck - this section will show you how to do exactly this.

7.1 - Controlling Running Synths
So far we’ve only concerned ourselves with triggering new sounds and FX. However, Sonic Pi gives us the ability to manipulate and
control currently running sounds. We do this by using a variable to capture a reference to a synth:

s = play 60, release: 5

Here, we have a run-local variable s which represents the synth playing note 60. Note that this is run-local - you can’t access it from other
runs like functions.

Once we have s, we can start controlling it via the control function:

s = play 60, release: 5
sleep 0.5
control s, note: 65
sleep 0.5
control s, note: 67
sleep 3
control s, note: 72

The thing to notice is that we’re not triggering 4 different synths here - we’re just triggering one synth and then change the pitch 3 times
afterwards, while it’s playing.

We can pass any of the standard opts to control, so you can control things like amp:, cutoff: or pan:.

Non-controllable Options

Some of the opts can’t be controlled once the synth has started. This is the case for all the ADSR envelope parameters. You can find out
which opts are controllable by looking at their documentation in the help system. If the documentation says Can not be changed once set,
you know it’s not possible to control the opt after the synth has started.

7.2 - Controlling FX
It is also possible to control FX, although this is achieved in a slightly different way:

with_fx :reverb do |r|
 play 50
 sleep 0.5
 control r, mix: 0.7
 play 55
 sleep 1
 control r, mix: 0.9
 sleep 1
 play 62
end

Instead of using a variable, we use the goalpost parameters of the do/end block. Inside the | bars, we need to specify a unique name for
our running FX which we then reference from the containing do/end block. This behaviour is identical to using parameterised functions.

Now go and control some synths and FX!

7.3 - Sliding Opts
Whilst exploring the synth and FX opts, you might have noticed that there are a number of opts ending with _slide. You might have even
tried calling them and seeing no effect. This is because they’re not normal parameters, they’re special opts that only work when you control
synths as introduced in the previous section.

Consider the following example:

s = play 60, release: 5
sleep 0.5
control s, note: 65
sleep 0.5
control s, note: 67
sleep 3
control s, note: 72

Here, you can hear the synth pitch changing immediately on each control call. However, we might want the pitch to slide between
changes. As we’re controlling the note: parameter, to add slide, we need to set the note_slide parameter of the synth:

s = play 60, release: 5, note_slide: 1
sleep 0.5
control s, note: 65
sleep 0.5
control s, note: 67
sleep 3
control s, note: 72

Now we hear the notes being bent between the control calls. It sounds nice, doesn’t it? You can speed up the slide by using a shorter
time such as note_slide: 0.2 or slow it down by using a longer slide time.

Every parameter that can be controlled has a corresponding _slide parameter for you to play with.

Sliding is sticky

Once you’ve set a _slide parameter on a running synth, it will be remembered and used every time you slide the corresponding
parameter. To stop sliding you must set the _slide value to 0 before the next control call.

Sliding FX Opts

It is also possible to slide FX opts:

with_fx :wobble, phase: 1, phase_slide: 5 do |e|
 use_synth :dsaw
 play 50, release: 5
 control e, phase: 0.025
end

Now have fun sliding things around for smooth transitions and flowing control…

8 - Data Structures
A very useful tool in a programmer’s toolkit is a data structure.

Sometimes you may wish to represent and use more than one thing. For example, you may find it useful to have a series of notes to play
one after another. Programming languages have data structures to allow you do exactly this.

There are many exciting and exotic data structures available to programmers - and people are always inventing new ones. However, for
now we only really need to consider a very simple data structure - the list.

Let’s look at it in more detail. We’ll cover its basic form and then also how lists can be used to represent scales and chords.

8.1 - Lists
In this section we’ll take a look at a data structure which is very useful - the list. We met it very briefly before in the section on
randomisation when we randomly chose from a list of notes to play:

play choose([50, 55, 62])

In this section we’ll explore using lists to also represent chords and scales. First let’s recap how we might play a chord. Remember that if
we don’t use sleep, sounds all happen at the same time:

play 52
play 55
play 59

Let’s look at other ways to represent this code.

Playing a List

One option is to place all the notes in a list: [52, 55, 59]. Our friendly play function is smart enough to know how to play a list of
notes. Try it:

play [52, 55, 59]

Ooh, that’s already nicer to read. Playing a list of notes doesn’t stop you from using any of the parameters as normal:

play [52, 55, 59], amp: 0.3

Of course, you can also use the traditional note names instead of the MIDI numbers:

play [:E3, :G3, :B3]

Now those of you lucky enough to have studied some music theory might recognise that chord as E Minor played in the 3rd octave.

Accessing a List

Another very useful feature of a list is the ability to get information out of it. This may sound a bit strange, but it’s no more complicated than
someone asking you to turn a book to page 23. With a list, you’d say, what’s the element at index 23? The only strange thing is that in
programming indexes usually start at 0 not 1.

With list indexes we don’t count 1, 2, 3… Instead we count 0, 1, 2…

Let’s look at this in a little more detail. Take a look at this list:

[52, 55, 59]

There’s nothing especially scary about this. Now, what’s the second element in that list? Yes, of course, it’s 55. That was easy. Let’s see if
we can get the computer to answer it for us too:

puts [52, 55, 59][1]

OK, that looks a bit weird if you’ve never seen anything like it before. Trust me though, it’s not too hard. There are three parts to the line
above: the word puts , our list 52, 55, 59 and our index [1]. Firstly we’re saying puts because we want Sonic Pi to print the answer
out for us in the log. Next, we’re giving it our list, and finally our index is asking for the second element. We need to surround our index with
square brackets and because counting starts at 0, the index for the second element is 1. Look:

indexes: 0 1 2
 [52, 55, 59]

Try running the code puts [52, 55, 59][1] and you’ll see 55 pop up in the log. Change the index 1 to other indexes, try longer lists
and think about how you might use a list in your next code jam. For example, what musical structures might be represented as a series of
numbers…

8.2 - Chords
Sonic Pi has built-in support for chord names which will return lists. Try it for yourself:

play chord(:E3, :minor)

Now, we’re really getting somewhere. That looks a lot more pretty than the raw lists (and is easier to read for other people). So what other
chords does Sonic Pi support? Well, a lot. Try some of these:

chord(:E3, :m7)
chord(:E3, :minor)
chord(:E3, :dim7)
chord(:E3, :dom7)

Arpeggios

We can easily turn chords into arpeggios with the function play_pattern:

play_pattern chord(:E3, :m7)

Ok, that’s not so fun - it played it really slowly. play_pattern will play each note in the list separated with a call to sleep 1 between
each call to play. We can use another function play_pattern_timed to specify our own timings and speed things up:

play_pattern_timed chord(:E3, :m7), 0.25

We can even pass a list of times which it will treat as a circle of times:

play_pattern_timed chord(:E3, :m13), [0.25, 0.5]

This is the equivalent to:

play 52
sleep 0.25
play 55
sleep 0.5
play 59
sleep 0.25
play 62
sleep 0.5
play 66
sleep 0.25
play 69
sleep 0.5
play 73

Which would you prefer to write?

8.3 - Scales
Sonic Pi has support for a wide range of scales. How about playing a C3 major scale?

play_pattern_timed scale(:c3, :major), 0.125, release: 0.1

We can even ask for more octaves:

play_pattern_timed scale(:c3, :major, num_octaves: 3), 0.125, release: 0.1

How about all the notes in a pentatonic scale?

play_pattern_timed scale(:c3, :major_pentatonic, num_octaves: 3), 0.125, release: 0.1

Random notes

Chords and scales are great ways of constraining a random choice to something meaningful. Have a play with this example which picks
random notes from the chord E3 minor:

use_synth :tb303
loop do
 play choose(chord(:E3, :minor)), release: 0.3, cutoff: rrand(60, 120)
 sleep 0.25
end

Try switching in different chord names and cutoff ranges.

Discovering Chords and Scales

To find out which scales and chords are supported by Sonic Pi simply click the Lang button on the far left of this tutorial and then choose
either chord or scale in the API list. In the information in the main panel, scroll down until you see a long list of chords or scales (depending
on which you’re looking at).

Have fun and remember: there are no mistakes, only opportunities.

8.4 - Rings
An interesting spin on standard lists are rings. If you know some programming, you might have come across ring buffers or ring arrays.
Here, we’ll just go for ring - it’s short and simple.

In the previous section on lists we saw how we could fetch elements out of them by using the indexing mechanism:

puts [52, 55, 59][1]

Now, what happens if you want index 100? Well, there’s clearly no element at index 100 as the list has only three elements in it. So Sonic
Pi will return you nil which means nothing.

However, consider you have a counter such as the current beat which continually increases. Let’s create our counter and our list:

counter = 0
notes = [52, 55, 59]

We can now use our counter to access a note in our list:

puts notes[counter]

Great, we got 52. Now, let’s increment our counter and get another note:

counter = (inc counter)
puts notes[counter]

Super, we now get 55 and if we do it again we get 59. However, if we do it again, we’ll run out of numbers in our list and get nil. What if
we wanted to just loop back round and start at the beginning of the list again? This is what rings are for.

Creating Rings

We can create rings one of two ways. Either we use the ring function with the elements of the ring as parameters:

(ring 52, 55, 59)

Or we can take a normal list and convert it to a ring by sending it the .ring message:

[52, 55, 59].ring

Indexing Rings

Once we have a ring, you can use it in exactly the same way you would use a normal list with the exception that you can use indexes that
are negative or larger than the size of the ring and they’ll wrap round to always point at one of the ring’s elements:

(ring 52, 55, 59)[0] #=> 52
(ring 52, 55, 59)[1] #=> 55
(ring 52, 55, 59)[2] #=> 59
(ring 52, 55, 59)[3] #=> 52
(ring 52, 55, 59)[-1] #=> 59

Using Rings

Let’s say we’re using a variable to represent the current beat number. We can use this as an index into our ring to fetch notes to play, or
release times or anything useful we’ve stored in our ring regardless of the beat number we’re currently on.

Scales and Chords are Rings

A useful thing to know is that the lists returned by scale and chord are also rings and allow you to access them with arbitrary indexes.

Ring Constructors

In addition to ring there are a number of other functions which will construct a ring for us.

range invites you specify a starting point, end point and step size.
bools allows you to use 1s and 0s to succinctly represent booleans.
knit allows you to knit a sequence of repeated values.
spread creates a ring of bools with a Euclidean distribution.

Take a look at their respective documentation for more information.

9 - Live Coding
One of the most exciting aspects of Sonic Pi is that it enables you to write and modify code live to make music, just like you might perform
live with a guitar. One advantage of this approach is to give you more feedback whilst composing (get a simple loop running and keep
tweaking it till it sounds just perfect). However, the main advantage is that you can take Sonic Pi on stage and gig with it.

In this section we’ll cover the fundamentals of turning your static code compositions into dynamic performances.

Hold on to your seats…

9.1 - Live Coding
Now we’ve learned enough to really start having some fun. In this section we’ll draw from all the previous sections and show you how you
can start making your music compositions live and turning them into a performance. For that we’ll need 3 main ingredients:

An ability to write code that makes sounds - CHECK!
An ability to write functions - CHECK!
An ability to use (named) threads - CHECK!

Alrighty, let’s get started. Let’s live code our first sounds. We first need a function containing the code we want to play. Let’s start simple.
We also want to loop calls to that function in a thread:

define :my_loop do
 play 50
 sleep 1
end

in_thread(name: :looper) do
 loop do
 my_loop
 end
end

If that looks a little too complicated to you, go back and re-read the sections on functions and threads. It’s not too complicated if you’ve
already wrapped your head around these things.

What we have here is a function definition which just plays note 50 and sleeps for a beat. We then define a named thread called :looper
which just loops around calling my_loop repeatedly.

If you run this code, you’ll hear note 50 repeating again and again…

Changing it up

Now, this is where the fun starts. Whilst the code is still running change 50 to another number, say 55, then press the Run button again.
Woah! It changed! Live!

It didn’t add a new layer because we’re using named threads which only allow one thread for each name. Also, the sound changed
because we redefined the function. We gave :my_loop a new definition. When the :looper thread looped around it simply called the
new definition.

Try changing it again, change the note, change the sleep time. How about adding a use_synth statement? For example, change it to:

define :my_loop do
 use_synth :tb303
 play 50, release: 0.3
 sleep 0.25
end

Now it sounds pretty interesting, but we can spice it up further. Instead of playing the same note again and again, try playing a chord:

define :my_loop do
 use_synth :tb303
 play chord(:e3, :minor), release: 0.3
 sleep 0.5
end

How about playing random notes from the chord:

define :my_loop do
 use_synth :tb303
 play choose(chord(:e3, :minor)), release: 0.3
 sleep 0.25
end

Or using a random cutoff value:

define :my_loop do
 use_synth :tb303
 play choose(chord(:e3, :minor)), release: 0.2, cutoff: rrand(60, 130)
 sleep 0.25
end

Finally, add some drums:

define :my_loop do
 use_synth :tb303
 sample :drum_bass_hard, rate: rrand(0.5, 2)

 play choose(chord(:e3, :minor)), release: 0.2, cutoff: rrand(60, 130)
 sleep 0.25
end

Now things are getting exciting!

However, before you jump up and start live coding with functions and threads, stop what you’re doing and read the next section on
live_loop which will change the way you code in Sonic Pi forever…

9.2 - Live Loops
Ok, so this section of the tutorial is the real gem. If you only read one section, it should be this one. If you read the previous section on Live
Coding Fundamentals, live_loop is a simple way of doing exactly that but without having to write so much.

If you didn’t read the previous section, live_loop is the best way to jam with Sonic Pi.

Let’s play. Write the following in a new buffer:

live_loop :foo do
 play 60
 sleep 1
end

Now press the Run button. You hear a basic beep every beat. Nothing fun there. However, don’t press Stop just yet. Change the 60 to 65
and press Run again.

Woah! It changed automatically without missing a beat. This is live coding.

Why not change it to be more bass like? Just update your code whilst it’s playing:

live_loop :foo do
 use_synth :prophet
 play :e1, release: 8
 sleep 8
end

Then hit Run.

Let’s make the cutoff move around:

live_loop :foo do
 use_synth :prophet
 play :e1, release: 8, cutoff: rrand(70, 130)
 sleep 8
end

Hit Run again.

Add some drums:

live_loop :foo do
 sample :loop_garzul
 use_synth :prophet
 play :e1, release: 8, cutoff: rrand(70, 130)
 sleep 8
end

Change the note from e1 to c1:

live_loop :foo do
 sample :loop_garzul
 use_synth :prophet
 play :c1, release: 8, cutoff: rrand(70, 130)
 sleep 8
end

Now stop listening to me and play around yourself! Have fun!

9.3 - Multiple Live Loops
Consider the following live loop:

live_loop :foo do
 play 50
 sleep 1
end

You may have wondered why it needs the name :foo. This name is important because it signifies that this live loop is different from all
other live loops.

There can never be two live loops running with the same name.

This means that if we want multiple concurrently running live loops, we just need to give them different names:

live_loop :foo do
 use_synth :prophet
 play :c1, release: 8, cutoff: rrand(70, 130)
 sleep 8
end

live_loop :bar do
 sample :bd_haus
 sleep 0.5
end

You can now update and change each live loop independently and it all just works.

Syncing Live Loops

One thing you might have already noticed is that live loops work automatically with the thread cue mechanism we explored previously.
Every time the live loop loops, it generates a new cue event with the name of the live loop. We can therefore sync on these cues to
ensure our loops are in sync without having to stop anything.

Consider this badly synced code:

live_loop :foo do
 play :e4, release: 0.5
 sleep 0.4
end

live_loop :bar do
 sample :bd_haus
 sleep 1
end

Let’s see if we can fix the timing and sync without stopping it. First, let’s fix the :foo loop to make the sleep a factor of 1 - something like
0.5 will do:

live_loop :foo do
 play :e4, release: 0.5
 sleep 0.5
end

live_loop :bar do
 sample :bd_haus
 sleep 1
end

We’re not quite finished yet though - you’ll notice that the beats don’t quite line up correctly. This is because the loops are out of phase.
Let’s fix that by syncing one to the other:

live_loop :foo do
 play :e4, release: 0.5
 sleep 0.5
end

live_loop :bar do
 sync :foo
 sample :bd_haus
 sleep 1
end

Wow, everything is now perfectly in time - all without stopping.

Now, go forth and live code with live loops!

9.4 - Ticking
Something you’ll likely find yourself doing a lot when live coding is looping through rings. You’ll be putting notes into rings for melodies,
sleeps for rhythms, chord progressions, timbral variations, etc. etc.

Ticking Rings

Sonic Pi provides a very handy tool for working with rings within live_loops. It’s called the tick system. It provides you with the ability to
tick through rings. Let’s look at an example:

live_loop :arp do
 play (scale :e3, :minor_pentatonic).tick, release: 0.1
 sleep 0.125
end

Here, we’re just grabbing the scale E3 minor pentatonic and ticking through each element. This is done by adding .tick to the end of the
scale declaration. This tick is local to the live loop, so each live loop can have its own independent tick:

live_loop :arp do
 play (scale :e3, :minor_pentatonic).tick, release: 0.1
 sleep 0.125
end

live_loop :arp2 do
 use_synth :dsaw
 play (scale :e2, :minor_pentatonic, num_octaves: 3).tick, release: 0.25
 sleep 0.25
end

Tick

You can also call tick as a standard fn and use the value as an index:

live_loop :arp do
 idx = tick
 play (scale :e3, :minor_pentatonic)[idx], release: 0.1
 sleep 0.125
end

However, it is much nicer to call .tick at the end. The tick fn is for when you want to do fancy things with the tick value and for when
you want to use ticks for other things than indexing into rings.

Look

The magical thing about tick is that not only does it return a new index (or the value of the ring at that index) it also makes sure that next
time you call tick, it’s the next value. Take a look at the examples in the docs for tick for many ways of working with this. However, for
now, it’s important to point out that sometimes you’ll want to just look at the current tick value and not increase it. This is available via the
look fn. You can call look as a standard fn or by adding .look to the end of a ring.

Naming Ticks

Finally, sometimes you’ll need more than one tick per live loop. This is achieved by giving your tick a name:

live_loop :arp do
 play (scale :e3, :minor_pentatonic).tick(:foo), release: 0.1
 sleep (ring 0.125, 0.25).tick(:bar)
end

Here we’re using two ticks one for the note to play and another for the sleep time. As they’re both in the same live loop, to keep them
separate we need to give them unique names. This is exactly the same kind of thing as naming live_loops - we just pass a symbol
prefixed with a :. In the example above we called one tick :foo and the other :bar. If we want to look at these we also need to pass the
name of the tick to look.

Don’t make it too complicated

Most of the power in the tick system isn’t useful when you get started. Don’t try and learn everything in this section. Just focus on ticking
through a single ring. That’ll give you most of the joy and simplicity of ticking through rings in your live_loops.

Take a look at the documentation for tick where there are many useful examples and happy ticking!

10 - Essential Knowledge
This section will cover some very useful - in fact essential - knowledge for getting the most out of your Sonic Pi experience.

We’ll cover how to take advantage of the many keyboard shortcuts available to you, how to share your work and some tips on performing
with Sonic Pi.

10.1 - Using Shortcuts
Sonic Pi is as much an instrument as a coding environment. Shortcuts can therefore make playing Sonic Pi much more efficient and
natural - especially when you’re playing live in front of an audience.

Much of Sonic Pi can be controlled through the keyboard. As you gain more familiarity working and performing with Sonic Pi, you’ll likely
start using the shortcuts more and more. I personally touch-type (I recommend you consider learning too) and find myself frustrated
whenever I need to reach for the mouse as it slows me down. I therefore use all of these shortcuts on a very regular basis!

Therefore, if you learn the shortcuts, you’ll learn to use your keyboard effectively and you’ll be live coding like a pro in no time.

However, don’t try and learn them all at once, just try and remember the ones you use most and then keep adding more to your practice.

Consistency across Platforms

Imagine you’re learning the clarinet. You’d expect all clarinets of all makes to have similar controls and fingerings. If they didn’t, you’d have
a tough time switching between different clarinets and you’d be stuck to using just one make.

Unfortunately the three major operating systems (Linux, Mac OS X and Windows) come with their own standard defaults for actions such
as cut and paste etc. Sonic Pi will try and honour these standards. However priority is placed on consistency across platforms within Sonic
Pi rather than attempting to conform to a given platform’s standards. This means that when you learn the shortcuts whilst playing with
Sonic Pi on your Raspberry Pi, you can move to the Mac or PC and feel right at home.

Control and Meta

Part of the notion of consistency is the naming of shortcuts. In Sonic Pi we use the names Control and Meta to refer to the two main
combination keys. On all platforms Control is the same. However, on Linux and Windows, Meta is actually the Alt key while on Mac Meta is
the Command key. For consistency we’ll use the term Meta - just remember to map that to the appropriate key on your operating system.

Abbreviations

To help keep things simple and readable, we’ll use the abbreviations C- for Control plus another key and M- for Meta plus another key. For
example, if a shortcut requires you to hold down both Meta and r we’ll write that as M-r. The - just means “at the same time as.”

The following are some of the shortcuts I find most useful.

Stopping and starting

Instead of always reaching for the mouse to run your code, you can simply press M-r. Similarly, to stop running code you can press M-s.

Navigation

I’m really lost without the navigation shortcuts. I therefore highly recommend you spend the time to learn them. These shortcuts also work
extremely well when you’ve learned to touch type as they use the standard letters rather than requiring you to move your hand to the
mouse or the arrow keys on your keyboard.

You can move to the beginning of the line with C-a, the end of the line with C-e, up a line with C-p, down a line with C-n, forward a
character with C-f, and back a character with C-b. You can even delete all the characters from the cursor to the end of the line with C-k.

Tidy Code

To auto-align your code simply press M-m.

Help System

To toggle the help system you can press M-i. However, a much more useful shortcut to know is C-i which will look up the word
underneath the cursor and display the docs if it finds anything. Instant help!

For a full list take a look at section 10.2 Shortcut Cheatsheet.

10.2 - Shortcut Cheatsheet
The following is a summary of the main shortcuts available within Sonic Pi. Please see Section 10.1 for motivation and background.

Conventions

In this list, we use the following conventions (where Meta is one of Alt on Windows/Linux or Cmd on Mac):

C-a means hold the Control key then press the a key whilst holding them both at the same time, then releasing.
M-r means hold the Meta key and then press the r key whilst holding them both at the same time, then releasing.
S-M-z means hold the Shift key, then the Meta key, then finally the z key all at the same time, then releasing.
C-M-f means hold the Control key, then press Meta key, finally the f key all at the same time, then releasing.

Main Application Manipulation

M-r - Run code
M-s - Stop code
M-i - Toggle Help System
M-p - Toggle Preferences
M-{ - Switch buffer to the left
M-} - Switch buffer to the right
M-+ - Increase text size of current buffer
M-- - Decrease text size of current buffer

Selection/Copy/Paste

M-a - Select all
M-c - Copy selection to paste buffer
M-] - Copy selection to paste buffer
M-x - Cut selection to paste buffer
C-] - Cut selection to paste buffer
C-k - Cut to the end of the line
M-v - Paste from paste buffer to editor
C-y - Paste from paste buffer to editor
C-SPACE - Set mark. Navigation will now manipulate highlighted region. Use C-g to escape.

Text Manipulation

M-m - Align all text
Tab - Align current line/selection (or complete list)
C-l - Centre editor
M-/ - Comment/Uncomment current line
C-t - Transpose/swap characters
M-u - Convert next word (or selection) to upper case.
M-l - Convert next word (or selection) to lower case.

Navigation

C-a - Move to beginning of line
C-e - Move to end of line
C-p - Move to previous line
C-n - Move to next line
C-f - Move forward one character
C-b - Move backward one character
M-f - Move forward one word
M-b - Move backward one word
C-M-n - Move line or selection down
C-M-p - Move line or selection up
S-M-u - Move up 10 lines
S-M-d - Move down 10 lines
M-< - Move to beginning of buffer
M-> - Move to end of buffer

Deletion

C-h - Delete previous character
C-d - Delete next character

Advanced Editor Features

C-i - Show docs for word under cursor
M-z - Undo

S-M-z - Redo
C-g - Escape
S-M-f - Toggle fullscreen mode
S-M-b - Toggle visibility of buttons
S-M-l - Toggle visibility of log
S-M-m - Toggle between light/dark modes

10.3 - Sharing
Sonic Pi is all about sharing and learning with each other.

Once you’ve learned how to code music, sharing your compositions is as simple as sending an email containing your code. Please do
share your code with others so they can learn from your work and even use parts in a new mash-up.

If you’re unsure of the best way to share your work with others I recommend putting your code on GitHub and your music on SoundCloud.
That way you’ll be able to easily reach a large audience.

Code -> GitHub

GitHub is a site for sharing and working with code. It’s used by professional developers as well as artists for sharing and collaborating with
code. The simplest way to share a new piece of code (or even an unfinished piece) is to create a Gist. A Gist is a simple way of uploading
your code in a simple way that others can see, copy and share.

Audio -> SoundCloud

Another important way of sharing your work is to record the audio and upload it to SoundCloud. Once you’ve uploaded your piece, other
users can comment and discuss your work. I also recommend placing a link to a Gist of your code in the track description.

To record your work, hit the Rec button in the toolbar, and recording starts immediately. Hit Run to start your code if it isn’t already in
progress. When you’re done recording, press the flashing Rec button again, and you’ll be prompted to enter a filename. The recording will
be saved as a WAV file, which can be edited and converted to MP3 by any number of free programs (try Audacity for instance).

Hope

I encourage you to share your work and really hope that we’ll all teach each other new tricks and moves with Sonic Pi. I’m really excited by
what you’ll have to show me.

https://github.com
https://soundcloud.com
https://github.com
https://gist.github.com
https://gist.github.com
https://soundcloud.com
https://gist.github.com

10.4 - Performing
One of the most exciting aspects of Sonic Pi is that it enables you to use code as a musical instrument. This means that writing code live
can now be seen as a new way of performing music.

We call this Live Coding.

Show Your Screen

When you live code I recommend you show your screen to your audience. Otherwise it’s like playing a guitar but hiding your fingers and
the strings. When I practice at home I use a Raspberry Pi and a little mini projector on my living room wall. You could use your TV or one
of your school/work projectors to give a show. Try it, it’s a lot of fun.

Form a Band

Don’t just play on your own - form a live coding band! It’s a lot of fun jamming with others. One person could do beats, another ambient
background, etc. See what interesting combinations of sounds you can have together.

TOPLAP

Live coding isn’t completely new - a small number of people have been doing it for a few years now, typically using bespoke systems
they’ve built for themselves. A great place to go and find out more about other live coders and systems is TOPLAP.

Algorave

Another great resource for exploring the live coding world is Algorave. Here you can find all about a specific strand of live coding for
making music in nightclubs.

http://toplap.org
http://algorave.com

11 - Minecraft Pi
Sonic Pi now supports a simple API for interacting with Minecraft Pi - the special edition of Minecraft which is installed by default on the
Raspberry Pi’s Raspbian Linux-based operating system.

No need to import libraries

The Minecraft Pi integration has been designed to be insanely easy to use. All you need to do is to launch Minecraft Pi and create a world.
You’re then free to use the mc_* fns just like you might use play and synth. There’s no need to import anything or install any libraries -
it’s all ready to go and works out of the box.

Automatic Connection

The Minecraft Pi API takes care of managing your connection to the Minecraft Pi application. This means you don’t need to worry about a
thing. If you try and use the Minecraft Pi API when Minecraft Pi isn’t open, Sonic Pi will politely tell you. Similarly, if you close Minecraft Pi
whilst you’re still running a live_loop that uses the API, the live loop will stop and politely tell you that it can’t connect. To reconnect, just
launch Minecraft Pi again and Sonic Pi will automatically detect and re-create the connection for you.

Designed to be Live Coded

The Minecraft Pi API has been designed to work seamlessly within live_loops. This means it’s possible to synchronise modifications in
your Minecraft Pi worlds with modifications in your Sonic Pi sounds. Instant Minecraft-based music videos! Note however that Minecraft Pi
is alpha software and is known to be slightly buggy. If you encounter any problems simply restart Minecraft Pi and carry on as before.
Sonic Pi’s automatic connection functionality will take care of things for you.

Requires a Raspberry Pi 2.0

It is highly recommended that you use a Raspberry Pi 2 if you wish to run both Sonic Pi and Minecraft at the same time - especially if you
want to use Sonic Pi’s sound capabilities.

API Support

At this stage, Sonic Pi supports basic block and player manipulations which are detailed in Section 11.1. Support for event callbacks
triggered by player interactions in the world is planned for a future release.

11.1 - Basic Minecraft Pi API
Sonic Pi currently supports the following basic interactions with Minecraft Pi:

Displaying chat messages
Setting the position of the user
Getting the position of the user
Setting the block type at a given coordinate
Getting the block type at a given coordinate

Let’s look at each of these in turn.

Displaying chat messages

Let’s see just how easy it is to control Minecraft Pi from Sonic Pi. First, make sure you have both Minecraft Pi and Sonic Pi open at the
same time and also make sure you’ve entered a Minecraft world and can walk around.

In a fresh Sonic Pi buffer simply enter the following code:

mc_message "Hello from Sonic Pi"

When you hit the Run button, you’ll see your message flash up on the Minecraft window. Congratulations, you’ve written your first
Minecraft code! That was easy wasn’t it.

Setting the position of the user

Now, let’s try a little magic. Let’s teleport ourselves somewhere! Try the following:

mc_teleport 50, 50, 50

When you hit Run - boom! You’re instantantly transported to a new place. Most likely it was somewhere in the sky and you fell down either
to dry land or into water. Now, what are those numbers: 50, 50, 50? They’re the coordinates of the location you’re trying to teleport to.
Let’s take a brief moment to explore what coordinates are and how they work because they’re really, really important for programming
Minecraft.

Coordinates

Imagine a pirate’s map with a big X marking the location of some treasure. The exact location of the X can be described with two numbers
- how far along the map from left to right and how far along the map from bottom to top. For example 10cm across and 8cm up. These two
numbers 10 and 8 are coordinates. You could easily imagine describing the locations of other stashes of treasure with other pairs of
numbers. Perhaps there’s a big chest of gold at 2 across and 9 up…

Now, in Minecraft two numbers isn’t quite enough. We also need to know how high we are. We therefore need three numbers:

How far from right to left in the world - x
How far from front to back in the world - z
How high up we are in the world - y One more thing - we typically describe these coordinates in this order x, y, z.

Finding your current coordinates

Let’s have a play with coordinates. Navigate to a nice place in the Minecraft map and then switch over to Sonic Pi. Now enter the following:

puts mc_location

When you hit the Run button you’ll see the coordinates of your current position displayed in the log window. Take a note of them, then
move forward in the world and try again. Notice how the coordinates changed! Now, I recommend you spend some time repeating exactly
this - move a bit in the world, take a look at the coordinates and repeat. Do this until you start to get a feel for how the coordinates change
when you move. Once you’ve understood how coordinates work, programming with the Minecraft API will be a complete breeze.

Let’s Build!

Now that you know how to find the current position and to teleport using coordinates, you have all the tools you need to start building
things in Minecraft with code. Let’s say you want to make the block with coordinates 40, 50, 60 to be glass. That’s super easy:

mc_set_block :glass, 40, 50, 60

Haha, it really was that easy. To see your handywork just teleport nearby and take a look:

mc_teleport 35, 50, 60

Now turn around and you should see your glass block! Try changing it to diamond:

mc_set_block :diamond, 40, 50, 60

If you were looking in the right direction you might have even seen it change in front of your eyes! This is the start of something exciting…

Looking at blocks

Let’s look at one last thing before we move onto something a bit more involved. Given a set of coordinates we can ask Minecraft what the
type of a specific block is. Let’s try it with the diamond block you just created:

puts mc_get_block 40, 50, 60

Yey! It’s :diamond. Try changing it back to glass and asking again - does it now say :glass? I’m sure it does :-)

Available block types

Before you go on a Minecraft Pi coding rampage, you might find this list of available block types useful:

 :air
 :stone
 :grass
 :dirt
 :cobblestone
 :wood_plank
 :sapling
 :bedrock
 :water_flowing
 :water
 :water_stationary
 :lava_flowing
 :lava
 :lava_stationary
 :sand
 :gravel
 :gold_ore
 :iron_ore
 :coal_ore
 :wood
 :leaves
 :glass
 :lapis
 :lapis_lazuli_block
 :sandstone
 :bed
 :cobweb
 :grass_tall
 :flower_yellow
 :flower_cyan
 :mushroom_brown
 :mushroom_red
 :gold_block
 :gold
 :iron_block
 :iron
 :stone_slab_double
 :stone_slab
 :brick
 :brick_block
 :tnt
 :bookshelf
 :moss_stone
 :obsidian
 :torch
 :fire
 :stairs_wood
 :chest
 :diamond_ore
 :diamond_block
 :diamond
 :crafting_table
 :farmland
 :furnace_inactive
 :furnace_active
 :door_wood
 :ladder
 :stairs_cobblestone
 :door_iron
 :redstone_ore
 :snow

 :ice
 :snow_block
 :cactus
 :clay
 :sugar_cane
 :fence
 :glowstone_block
 :bedrock_invisible
 :stone_brick
 :glass_pane
 :melon
 :fence_gate
 :glowing_obsidian
 :nether_reactor_core

12 - Conclusions
This concludes the Sonic Pi introductory tutorial. Hopefully you’ve learned something along the way. Don’t worry if you feel you didn’t
understand everything - just play and have fun and you’ll pick things up in your own time. Feel free to dive back in when you have a
question that might be covered in one of the sections.

If you have any questions that haven’t been covered in the tutorial, then please jump onto the Sonic Pi forums and ask your question there.
You’ll find someone friendly and willing to lend a hand.

Finally, I also invite you to take a deeper look at the rest of the documentation in this help system. There are a number of features that
haven’t been covered in this tutorial that are waiting for your discovery.

So play, have fun, share your code, perform for your friends, show your screens and remember:

There are no mistakes, only opportunities.

Sam Aaron

http://groups.google.com/group/sonic-pi/
http://twitter.com/samaaron

Beep
Blade
Bnoise
Cnoise
Dark Ambience
Dsaw
Dull Bell
Fm
Gnoise
Growl
Hollow
Hoover
Mod Beep
Mod Dsaw
Mod Fm
Mod Pulse
Mod Saw
Mod Sine
Mod Tri
Noise
Piano
Pnoise
Pretty Bell
Prophet
Pulse
Saw
Sine
Square
Subpulse
Supersaw
Tb303
Tri
Zawa

Sine Wave
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2

use_synth :beep

A simple pure sine wave. The sine wave is the simplest, purest sound there is and is the fundamental building block of all noise. The
mathematician Fourier demonstrated that any sound could be built out of a number of sine waves (the more complex the sound, the more
sine waves needed). Have a play combining a number of sine waves to design your own sounds!

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Blade Runner style strings
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 100
vibrato_rate: 6 vibrato_depth: 0.15 vibrato_delay: 0.5 vibrato_onset: 0.1

use_synth :blade

Straight from the 70s, evoking the mists of Blade Runner, this simple electro-style string synth is based on filtered saw waves and a
variable vibrato.

Introduced in v2.6

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

vibrato_rate:

Number of wobbles per second. For realism this should be between 6 and 8, maybe even faster for really high notes.

Default: 6
Must be a value greater than or equal to 0.0,must be a value less than or equal to 20.0
May be changed whilst playing
Has slide parameters to shape changes

vibrato_depth:

Amount of variation around the central note. 1 is the sensible maximum (but you can go up to 5 if you want a special effect), 0
would mean no vibrato. Works well around 0.15 but you can experiment.

Default: 0.15
Must be a value greater than or equal to 0.0,must be a value less than or equal to 5.0
May be changed whilst playing
Has slide parameters to shape changes

vibrato_delay:

How long in seconds before the vibrato kicks in.

Default: 0.5
Must be zero or greater
Can not be changed once set

vibrato_onset:

How long in seconds before the vibrato reaches full power.

Default: 0.1
Must be zero or greater
Can not be changed once set

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Brown Noise
amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0 release: 1
attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 110 res: 0

use_synth :bnoise

Noise whose spectrum falls off in power by 6 dB per octave. Useful for generating percussive sounds such as snares and hand claps. Also
useful for simulating wind or sea effects.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

env_curve: Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 110
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a whistling sound around
the cutoff frequency. Smaller values produce less resonance.

Default: 0
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Clip Noise
amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0 release: 1
attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 110 res: 0

use_synth :cnoise

Generates noise whose values are either -1 or 1. This produces the maximum energy for the least peak to peak amplitude. Useful for
generating percussive sounds such as snares and hand claps. Also useful for simulating wind or sea effects.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

env_curve: Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 110
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a whistling sound around
the cutoff frequency. Smaller values produce less resonance.

Default: 0
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Dark Ambience
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 110
res: 0.7 detune1: 12 detune2: 24 noise: 0 ring: 0.2 room: 70
reverb_time: 100

use_synth :dark_ambience

A slow rolling bass with a sparkle of light trying to escape the darkness. Great for an ambient sound.

Introduced in v2.4

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 110
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a whistling sound around
the cutoff frequency. Smaller values produce less resonance.

Default: 0.7
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

detune1:

Distance (in MIDI notes) between the main note and the second component of sound. Affects thickness, sense of tuning and
harmony.

Default: 12
Can not be changed once set
Has slide parameters to shape changes

detune2:

Distance (in MIDI notes) between the main note and the third component of sound. Affects thickness, sense of tuning and
harmony. Tiny values such as 0.1 create a thick sound.

Default: 24
Can not be changed once set
Has slide parameters to shape changes

noise:

Noise source. Has a subtle effect on the timbre of the sound. 0=pink noise (the default), 1=brown noise, 2=white noise, 3=clip
noise and 4=grey noise

Default: 0
Must be one of the following values: [0, 1, 2, 3, 4]
May be changed whilst playing

ring:

Amount of ring in the sound. Lower values create a more rough sound, higher values produce a sound with more focus.

Default: 0.2
Must be a value between 0.1 and 50 inclusively
May be changed whilst playing

room:

Room size in squared metres used to calculate the reverb.

Default: 70
Must be a value greater than or equal to 0.1,must be a value less than or equal to 300
Can not be changed once set

reverb_time:

How long in beats the reverb should go on for.

Default: 100
Must be zero or greater
Can not be changed once set

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Detuned Saw wave
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 100
detune: 0.1

use_synth :dsaw

A pair of detuned saw waves passed through a low pass filter. Two saw waves with slightly different frequencies generates a nice thick
sound which is the basis for a lot of famous synth sounds. Thicken the sound by increasing the detune value, or create an octave-playing
synth by choosing a detune of 12 (12 MIDI notes is an octave).

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

detune:

Distance (in MIDI notes) between components of sound. Affects thickness, sense of tuning and harmony. Tiny values such as 0.1
create a thick sound. Larger values such as 0.5 make the tuning sound strange. Even bigger values such as 5 create chord-like
sounds.

Default: 0.1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Dull Bell
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2

use_synth :dull_bell

A simple dull discordant bell sound.

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:
Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Basic FM synthesis
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 100
divisor: 2 depth: 1

use_synth :fm

A sine wave with a fundamental frequency which is modulated at audio rate by another sine wave with a specific modulation, division and
depth. Useful for generating a wide range of sounds by playing with the divisor and depth params. Great for deep powerful bass and crazy
70s sci-fi sounds.

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

divisor:

Modifies the frequency of the modulator oscillator relative to the carrier. Don’t worry too much about what this means - just try
different numbers out!

Default: 2
May be changed whilst playing
Has slide parameters to shape changes

depth:

Modifies the depth of the carrier wave used to modify fundamental frequency. Don’t worry too much about what this means - just
try different numbers out!

Default: 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Grey Noise
amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0 release: 1
attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 110 res: 0

use_synth :gnoise

Generates noise which results from flipping random bits in a word. The spectrum is emphasised towards lower frequencies. Useful for
generating percussive sounds such as snares and hand claps. Also useful for simulating wind or sea effects.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

env_curve: Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 110
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a whistling sound around
the cutoff frequency. Smaller values produce less resonance.

Default: 0
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Growl
note: 52 amp: 1 pan: 0 attack: 0.1 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 130
res: 0.7

use_synth :growl

A deep rumbling growl with a bright sine shining through at higher notes.

Introduced in v2.4

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0.1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:
Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 130
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a whistling sound around
the cutoff frequency. Smaller values produce less resonance.

Default: 0.7
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Hollow
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 90
res: 0.99 noise: 1 norm: 0

use_synth :hollow

A hollow breathy sound constructed from random noise

Introduced in v2.4

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:
Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 90
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Only functional if a cutoff value is specified. Large amounts of resonance (a res:
near 1) can create a whistling sound around the cutoff frequency. Smaller values produce less resonance.

Default: 0.99
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

noise:

Noise source. Has a subtle effect on the timbre of the sound. 0=pink noise, 1=brown noise (the default), 2=white noise, 3=clip
noise and 4=grey noise

Default: 1
Must be one of the following values: [0, 1, 2, 3, 4]
May be changed whilst playing

norm:

Normalise the audio (make quieter parts of the sample louder and louder parts quieter) - this is similar to the normaliser FX. This
may emphasise any clicks caused by clipping.

Default: 0
Must be one of the following values: [0, 1]
May be changed whilst playing

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Hoover
note: 52 amp: 1 pan: 0 attack: 0.05 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 130
res: 0.1

use_synth :hoover

Classic early 90’s rave synth - ‘a sort of slurry chorussy synth line like the classic Dominator by Human Resource’. Based on Dan Stowell’s
implementation in SuperCollider and Daniel Turczanski’s port to Overtone. Works really well with portamento (see docs for the ‘control’
method).

Introduced in v2.6

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0.05
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 130
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a whistling sound around
the cutoff frequency. Smaller values produce less resonance.

Default: 0.1
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Modulated Sine Wave
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 100
mod_phase: 0.25 mod_range: 5 mod_pulse_width: 0.5 mod_phase_offset: 0 mod_invert_wave: 0 mod_wave: 1

use_synth :mod_beep

A sine wave passed through a low pass filter which modulates between two separate notes via a variety of control waves.

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in
the right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a
value of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of
the sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack +
decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final
part of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full
length of sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly
set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared,
7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound
round and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

mod_phase:

Phase duration in beats of oscillations between the two notes. Time it takes to switch between the notes.

Default: 0.25
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

mod_range:

The size of gap between modulation notes. A gap of 12 is one octave.

Default: 5
May be changed whilst playing
Has slide parameters to shape changes

mod_pulse_width:

The width of the modulated pulse wave as a value between 0 and 1. A width of 0.5 will produce a square wave. Only valid if
mod wave is type pulse.

Default: 0.5
Must be a value between 0 and 1 exclusively
May be changed whilst playing
Has slide parameters to shape changes

mod_phase_offset:

Initial modulation phase offset (a value between 0 and 1).

Default: 0
Must be a value between 0 and 1 inclusively
Can not be changed once set

mod_invert_wave:

Invert mod waveform (i.e. flip it on the y axis). 0=normal wave, 1=inverted wave.

Default: 0
Must be one of the following values: [0, 1]
May be changed whilst playing

mod_wave:

Wave shape of mod wave. 0=saw wave, 1=pulse, 2=triangle wave and 3=sine wave.

Default: 1
Must be one of the following values: [0, 1, 2, 3]
May be changed whilst playing

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Modulated Detuned Saw Waves
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 100
mod_phase: 0.25 mod_range: 5 mod_pulse_width: 0.5 mod_phase_offset: 0 mod_invert_wave: 0 mod_wave: 1
detune: 0.1

use_synth :mod_dsaw

A pair of detuned saw waves (see the dsaw synth) which are modulated between two fixed notes at a given rate.

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in
the right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a
value of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of
the sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack +
decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final
part of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full
length of sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly
set

Default: sustain_level
Must be zero or greater
Can not be changed once set

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared,
7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound
round and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

mod_phase:

Phase duration in beats of oscillations between the two notes. Time it takes to switch between the notes.

Default: 0.25
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

mod_range:

The size of gap between modulation notes. A gap of 12 is one octave.

Default: 5
May be changed whilst playing
Has slide parameters to shape changes

mod_pulse_width:

The width of the modulated pulse wave as a value between 0 and 1. A width of 0.5 will produce a square wave. Only valid if
mod wave is type pulse.

Default: 0.5
Must be a value between 0 and 1 exclusively
May be changed whilst playing
Has slide parameters to shape changes

mod_phase_offset:

Initial modulation phase offset (a value between 0 and 1).

Default: 0
Must be a value between 0 and 1 inclusively
Can not be changed once set

mod_invert_wave:

Invert mod waveform (i.e. flip it on the y axis). 0=normal wave, 1=inverted wave.

Default: 0
Must be one of the following values: [0, 1]
May be changed whilst playing

mod_wave:

Wave shape of mod wave. 0=saw wave, 1=pulse, 2=triangle wave and 3=sine wave.

Default: 1
Must be one of the following values: [0, 1, 2, 3]
May be changed whilst playing

detune:

Distance (in MIDI notes) between components of sound. Affects thickness, sense of tuning and harmony. Tiny values such
as 0.1 create a thick sound. Larger values such as 0.5 make the tuning sound strange. Even bigger values such as 5 create
chord-like sounds.

Default: 0.1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment

_slide_curve: up and down respectively.

Default: 0

Basic FM synthesis with frequency modulation.
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 100
divisor: 2 depth: 1 mod_phase: 0.25 mod_range: 5 mod_pulse_width: 0.5 mod_phase_offset: 0
mod_invert_wave: 0 mod_wave: 1

use_synth :mod_fm

The FM synth modulating between two notes - the duration of the modulation can be modified using the mod_phase arg, the range
(number of notes jumped between) by the mod_range arg and the width of the jumps by the mod_width param. The FM synth is a sine
wave with a fundamental frequency which is modulated at audio rate by another sine wave with a specific modulation, division and depth.
Useful for generating a wide range of sounds by playing with the :divisor and :depth params. Great for deep powerful bass and crazy
70s sci-fi sounds.

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in
the right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a
value of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of
the sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack +
decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final
part of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full
length of sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly
set

Default: sustain_level
Must be zero or greater
Can not be changed once set

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared,
7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound
round and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

divisor:

Modifies the frequency of the modulator oscillator relative to the carrier. Don’t worry too much about what this means - just
try different numbers out!

Default: 2
May be changed whilst playing
Has slide parameters to shape changes

depth:

Modifies the depth of the carrier wave used to modify fundamental frequency. Don’t worry too much about what this means -
just try different numbers out!

Default: 1
May be changed whilst playing
Has slide parameters to shape changes

mod_phase:

Phase duration in beats of oscillations between the two notes. Time it takes to switch between the notes.

Default: 0.25
Must be greater than zero
May be changed whilst playing
Scaled with current BPM value

mod_range:
The size of gap between modulation notes. A gap of 12 is one octave.

Default: 5
May be changed whilst playing

mod_pulse_width:

The width of the modulated pulse wave as a value between 0 and 1. A width of 0.5 will produce a square wave. Only valid if
mod wave is type pulse.

Default: 0.5
Must be a value between 0 and 1 exclusively
May be changed whilst playing

mod_phase_offset:

Initial modulation phase offset (a value between 0 and 1).

Default: 0
Must be a value between 0 and 1 inclusively
Can not be changed once set

mod_invert_wave:

Invert mod waveform (i.e. flip it on the y axis). 0=normal wave, 1=inverted wave.

Default: 0
Must be one of the following values: [0, 1]
May be changed whilst playing

mod_wave:

Wave shape of mod wave. 0=saw wave, 1=pulse, 2=triangle wave and 3=sine wave.

Default: 1
Must be one of the following values: [0, 1, 2, 3]
May be changed whilst playing

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Modulated Pulse
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 100
mod_phase: 0.25 mod_range: 5 mod_pulse_width: 0.5 mod_phase_offset: 0 mod_invert_wave: 0 mod_wave: 1
pulse_width: 0.5

use_synth :mod_pulse

A pulse wave with a low pass filter modulating between two notes via a variety of control waves (see mod_wave: arg). The pulse wave
defaults to a square wave, but the timbre can be changed dramatically by adjusting the pulse_width arg between 0 and 1.

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in
the right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a
value of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of
the sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack +
decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final
part of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full
length of sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly
set

Default: sustain_level

Must be zero or greater
Can not be changed once set

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared,
7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound
round and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

mod_phase:

Phase duration in beats of oscillations between the two notes. Time it takes to switch between the notes.

Default: 0.25
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

mod_range:

The size of gap between modulation notes. A gap of 12 is one octave.

Default: 5
May be changed whilst playing
Has slide parameters to shape changes

mod_pulse_width:

The width of the modulated pulse wave as a value between 0 and 1. A width of 0.5 will produce a square wave. Only valid if
mod wave is type pulse.

Default: 0.5
Must be a value between 0 and 1 exclusively
May be changed whilst playing
Has slide parameters to shape changes

mod_phase_offset:

Initial modulation phase offset (a value between 0 and 1).

Default: 0
Must be a value between 0 and 1 inclusively
Can not be changed once set

mod_invert_wave:

Invert mod waveform (i.e. flip it on the y axis). 0=normal wave, 1=inverted wave.

Default: 0
Must be one of the following values: [0, 1]
May be changed whilst playing

mod_wave:

Wave shape of mod wave. 0=saw wave, 1=pulse, 2=triangle wave and 3=sine wave.

Default: 1
Must be one of the following values: [0, 1, 2, 3]
May be changed whilst playing

pulse_width:

The width of the pulse wave as a value between 0 and 1. A width of 0.5 will produce a square wave. Different values will
change the timbre of the sound. Only valid if wave is type pulse.

Default: 0.5
Must be a value between 0 and 1 exclusively
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:

Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Modulated Saw Wave
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 100
mod_phase: 0.25 mod_range: 5 mod_pulse_width: 0.5 mod_phase_offset: 0 mod_invert_wave: 0 mod_wave: 1

use_synth :mod_saw

A saw wave passed through a low pass filter which modulates between two separate notes via a variety of control waves.

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in
the right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a
value of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of
the sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack +
decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final
part of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full
length of sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly
set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared,
7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound
round and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

mod_phase:

Phase duration in beats of oscillations between the two notes. Time it takes to switch between the notes.

Default: 0.25
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

mod_range:

The size of gap between modulation notes. A gap of 12 is one octave.

Default: 5
May be changed whilst playing
Has slide parameters to shape changes

mod_pulse_width:

The width of the modulated pulse wave as a value between 0 and 1. A width of 0.5 will produce a square wave. Only valid if
mod wave is type pulse.

Default: 0.5
Must be a value between 0 and 1 exclusively
May be changed whilst playing
Has slide parameters to shape changes

mod_phase_offset:

Initial modulation phase offset (a value between 0 and 1).

Default: 0
Must be a value between 0 and 1 inclusively
Can not be changed once set

mod_invert_wave:

Invert mod waveform (i.e. flip it on the y axis). 0=normal wave, 1=inverted wave.

Default: 0
Must be one of the following values: [0, 1]
May be changed whilst playing

mod_wave:

Wave shape of mod wave. 0=saw wave, 1=pulse, 2=triangle wave and 3=sine wave.

Default: 1
Must be one of the following values: [0, 1, 2, 3]
May be changed whilst playing

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Modulated Sine Wave
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 100
mod_phase: 0.25 mod_range: 5 mod_pulse_width: 0.5 mod_phase_offset: 0 mod_invert_wave: 0 mod_wave: 1

use_synth :mod_sine

A sine wave passed through a low pass filter which modulates between two separate notes via a variety of control waves.

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in
the right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a
value of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of
the sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack +
decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final
part of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full
length of sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly
set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared,
7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound
round and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

mod_phase:

Phase duration in beats of oscillations between the two notes. Time it takes to switch between the notes.

Default: 0.25
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

mod_range:

The size of gap between modulation notes. A gap of 12 is one octave.

Default: 5
May be changed whilst playing
Has slide parameters to shape changes

mod_pulse_width:

The width of the modulated pulse wave as a value between 0 and 1. A width of 0.5 will produce a square wave. Only valid if
mod wave is type pulse.

Default: 0.5
Must be a value between 0 and 1 exclusively
May be changed whilst playing
Has slide parameters to shape changes

mod_phase_offset:

Initial modulation phase offset (a value between 0 and 1).

Default: 0
Must be a value between 0 and 1 inclusively
Can not be changed once set

mod_invert_wave:

Invert mod waveform (i.e. flip it on the y axis). 0=normal wave, 1=inverted wave.

Default: 0
Must be one of the following values: [0, 1]
May be changed whilst playing

mod_wave:

Wave shape of mod wave. 0=saw wave, 1=pulse, 2=triangle wave and 3=sine wave.

Default: 1
Must be one of the following values: [0, 1, 2, 3]
May be changed whilst playing

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Modulated Triangle Wave
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 100
mod_phase: 0.25 mod_range: 5 mod_pulse_width: 0.5 mod_phase_offset: 0 mod_invert_wave: 0 mod_wave: 1

use_synth :mod_tri

A triangle wave passed through a low pass filter which modulates between two separate notes via a variety of control waves.

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in
the right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a
value of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of
the sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack +
decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final
part of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full
length of sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly
set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared,
7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound
round and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

mod_phase:

Phase duration in beats of oscillations between the two notes. Time it takes to switch between the notes.

Default: 0.25
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

mod_range:

The size of gap between modulation notes. A gap of 12 is one octave.

Default: 5
May be changed whilst playing
Has slide parameters to shape changes

mod_pulse_width:

The width of the modulated pulse wave as a value between 0 and 1. A width of 0.5 will produce a square wave. Only valid if
mod wave is type pulse.

Default: 0.5
Must be a value between 0 and 1 exclusively
May be changed whilst playing
Has slide parameters to shape changes

mod_phase_offset:

Initial modulation phase offset (a value between 0 and 1).

Default: 0
Must be a value between 0 and 1 inclusively
Can not be changed once set

mod_invert_wave:

Invert mod waveform (i.e. flip it on the y axis). 0=normal wave, 1=inverted wave.

Default: 0
Must be one of the following values: [0, 1]
May be changed whilst playing

mod_wave:

Wave shape of mod wave. 0=saw wave, 1=pulse, 2=triangle wave and 3=sine wave.

Default: 1
Must be one of the following values: [0, 1, 2, 3]
May be changed whilst playing

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Noise
amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0 release: 1
attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 110 res: 0

use_synth :noise

Noise that contains equal amounts of energy at every frequency - comparable to radio static. Useful for generating percussive sounds
such as snares and hand claps. Also useful for simulating wind or sea effects.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

env_curve: Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 110
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a whistling sound around
the cutoff frequency. Smaller values produce less resonance.

Default: 0
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

SynthPiano
note: 52 amp: 1 pan: 0 vel: 0.2 attack: 0 decay: 0
sustain: 0 release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 hard: 0.5
stereo_width: 0

use_synth :piano

A basic piano synthesiser. Note that due to the plucked nature of this synth the envelope opts such as attack:, sustain: and
release: do not work as expected. They can only shorten the natural length of the note, not prolong it. Also, the note: opt will only
honour whole tones.

Introduced in v2.6

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3. Note
that the piano synth can only play whole tones such as 60 and does not handle floats such as 60.3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

vel:

Velocity of keypress.

Default: 0.2
Must be a value between 0 and 1 inclusively
Can not be changed once set

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. With the piano synth, this opt can only
have the effect of shortening the attack phase, not prolonging it.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level). With
the piano synth, this opt can only have the effect of controlling the amp within the natural duration of the note and can not
prolong the sound.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. With the
piano synth, this opt can only have the effect of controlling the amp within the natural duration of the note and can not prolong
the sound.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. With the piano
synth, this opt can only have the effect of controlling the amp within the natural duration of the note and can not prolong the
sound.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

hard:

Hardness of keypress.

Default: 0.5
Must be a value between 0 and 1 inclusively
Can not be changed once set

stereo_width:

Width of the stereo effect (which makes low notes sound towards the left, high notes towards the right). 0 to 1.

Default: 0
Must be a value between 0 and 1 inclusively
Can not be changed once set

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Pink Noise
amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0 release: 1
attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 110 res: 0

use_synth :pnoise

Noise whose spectrum falls off in power by 3 dB per octave. Useful for generating percussive sounds such as snares and hand claps. Also
useful for simulating wind or sea effects.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

env_curve: Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 110
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a whistling sound around
the cutoff frequency. Smaller values produce less resonance.

Default: 0
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Pretty Bell
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2

use_synth :pretty_bell

A pretty bell sound. Works well with short attacks and long decays.

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:
Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

The Prophet
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 110
res: 0.7

use_synth :prophet

Dark and swirly, this synth uses Pulse Width Modulation (PWM) to create a timbre which continually moves around. This effect is created
using the pulse ugen which produces a variable width square wave. We then control the width of the pulses using a variety of LFOs - sin-
osc and lf-tri in this case. We use a number of these LFO modulated pulse ugens with varying LFO type and rate (and phase in some
cases) to provide the LFO with a different starting point. We then mix all these pulses together to create a thick sound and then feed it
through a resonant low pass filter (rlpf). For extra bass, one of the pulses is an octave lower (half the frequency) and its LFO has a little bit
of randomisation thrown into its frequency component for that extra bit of variety.

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 110
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a whistling sound around
the cutoff frequency. Smaller values produce less resonance.

Default: 0.7
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Pulse Wave
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 100
pulse_width: 0.5

use_synth :pulse

A simple pulse wave with a low pass filter. This defaults to a square wave, but the timbre can be changed dramatically by adjusting the
pulse_width arg between 0 and 1. The pulse wave is thick and heavy with lower notes and is a great ingredient for bass sounds.

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

pulse_width:

The width of the pulse wave as a value between 0 and 1. A width of 0.5 will produce a square wave. Different values will change
the timbre of the sound. Only valid if wave is type pulse.

Default: 0.5
Must be a value between 0 and 1 exclusively
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Saw Wave
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2

use_synth :saw

A saw wave with a low pass filter. Great for using with FX such as the built in low pass filter (available via the cutoff arg) due to the
complexity and thickness of the sound.

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:
Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Sine Wave
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2

use_synth :sine

A simple pure sine wave. The sine wave is the simplest, purest sound there is and is the fundamental building block of all noise. The
mathematician Fourier demonstrated that any sound could be built out of a number of sine waves (the more complex the sound, the more
sine waves needed). Have a play combining a number of sine waves to design your own sounds!

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Square Wave
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 100

use_synth :square

A simple square wave with a low pass filter. The square wave is thick and heavy with lower notes and is a great ingredient for bass
sounds. If you wish to modulate the width of the square wave see the synth pulse.

Introduced in v2.2

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:
Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Pulse Wave with sub
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 100
pulse_width: 0.5 sub_amp: 1 sub_detune: -12

use_synth :subpulse

A pulse wave with a sub sine wave passed through a low pass filter. The pulse wave is thick and heavy with lower notes and is a great
ingredient for bass sounds - especially with the sub wave.

Introduced in v2.6

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

pulse_width:

The width of the pulse wave as a value between 0 and 1. A width of 0.5 will produce a square wave. Different values will change
the timbre of the sound. Only valid if wave is type pulse.

Default: 0.5
Must be a value between 0 and 1 exclusively
May be changed whilst playing
Has slide parameters to shape changes

sub_amp:

Amplitude for the additional sine wave.

Default: 1
May be changed whilst playing
Has slide parameters to shape changes

sub_detune:

Amount of detune from the note for the additional sine wave. Default is -12

Default: -12
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Supersaw
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 130
res: 0.7

use_synth :supersaw

Thick swirly saw waves sparkling and moving about to create a rich trancy sound.

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:
Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 130
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a whistling sound around
the cutoff frequency. Smaller values produce less resonance.

Default: 0.7
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

TB-303 Emulation
note: 52 amp: 1 pan: 0 attack: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1
cutoff_min: 30 cutoff_attack: attack cutoff_decay: decay cutoff_sustain: sustain
cutoff_decay_level: cutoff_sustain_level cutoff_sustain_level: 1 res: 0.9 wave: 0

use_synth :tb303

Emulation of the classic Roland TB-303 Bass Line synthesiser. Overdrive the res (i.e. use very large values) for that classic late 80s acid
sound.

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or
:Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the
sound louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much
is in the right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both
ears and a value of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial
part of the sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of
sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude
(sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds.
Full length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes
the final part of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out
gently. Full length of sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless

decay_level:
Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless
explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared,
7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

The maximum cutoff value as a MIDI note

Default: 120
Must be a value less than or equal to 130
May be changed whilst playing
Has slide parameters to shape changes

cutoff_min:

The minimum cutoff value.

Default: 30
Must be a value less than or equal to 130
May be changed whilst playing
Has slide parameters to shape changes

cutoff_attack:

Attack time for cutoff filter. Amount of time (in beats) for sound to reach full cutoff value. Default value is set to match
amp envelope’s attack value.

Default: attack
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

cutoff_decay:

Decay time for cutoff filter. Amount of time (in beats) for sound to reach full cutoff value. Default value is set to match
amp envelope’s decay value.

Default: decay
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

cutoff_sustain:

Amount of time for cutoff value to remain at sustain level in beats. Default value is set to match amp envelope’s
sustain value.

Default: sustain
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

cutoff_release:

Amount of time (in beats) for sound to move from cutoff sustain value to cutoff min value. Default value is set to match
amp envelope’s release value.

Default: release
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

cutoff_attack_level:

The peak cutoff (value of cutoff at peak of attack) as a value between 0 and 1 where 0 is the :cutoff_min and 1 is the
:cutoff value

Default: 1
Must be a value between 0 and 1 inclusively
Can not be changed once set

cutoff_decay_level:

The level of cutoff after the decay phase as a value between 0 and 1 where 0 is the :cutoff_min and 1 is the :cutoff
value

Default: cutoff_sustain_level
Must be a value between 0 and 1 inclusively
Can not be changed once set

cutoff_sustain_level:

The sustain cutoff (value of cutoff at sustain time) as a value between 0 and 1 where 0 is the :cutoff_min and 1 is the
:cutoff value.

Default: 1
Must be a value between 0 and 1 inclusively
Can not be changed once set

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a whistling sound
around the cutoff frequency. Smaller values produce less resonance.

res: Default: 0.9
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

wave:

Wave type - 0 saw, 1 pulse, 2 triangle. Different waves will produce different sounds.

Default: 0
Must be one of the following values: [0, 1, 2]
May be changed whilst playing

pulse_width:

The width of the pulse wave as a value between 0 and 1. A width of 0.5 will produce a square wave. Different values
will change the timbre of the sound. Only valid if wave is type pulse.

Default: 0.5
Must be a value between 0 and 1 exclusively
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Triangle Wave
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 cutoff: 100
pulse_width: 0.5

use_synth :tri

A simple triangle wave with a low pass filter.

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater
Can not be changed once set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:
Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

Default: 2
Must be one of the following values: [1, 2, 3, 4, 6, 7]
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

pulse_width:

The width of the pulse wave as a value between 0 and 1. A width of 0.5 will produce a square wave. Different values will change
the timbre of the sound. Only valid if wave is type pulse.

Default: 0.5
Must be a value between 0 and 1 exclusively
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Zawa
note: 52 amp: 1 pan: 0 attack: 0 decay: 0 sustain: 0
release: 1 attack_level: 1 decay_level: sustain_level sustain_level: 1 cutoff: 100 res: 0.9
phase: 1 phase_offset: 0 wave: 3 invert_wave: 0 range: 24 disable_wave: 0
pulse_width: 0.5

use_synth :zawa

Saw wave with oscillating timbre. Produces moving saw waves with a unique character controllable with the control oscillator (usage
similar to mod synths).

Introduced in v2.0

Parameters

note:

Note to play. Either a MIDI number or a symbol representing a note. For example: 30, 52, :C, :C2, :Eb4 , or :Ds3

Default: 52
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t make the sound
louder, they will just reduce the quality of all the sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear, and how much is in the
right ear. With a value of -1, the sound is completely in the left ear, a value of 0 puts the sound equally in both ears and a value
of 1 puts the sound in the right ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

attack:

Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently. Full length of sound is attack + decay +
sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

decay:

Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

sustain:

Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

Default: 0
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

release:

Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently. Full length of
sound is attack + decay + sustain + release.

Default: 1
Must be zero or greater
Can not be changed once set
Scaled with current BPM value

attack_level:

Amplitude level reached after attack phase and immediately before decay phase

Default: 1
Must be zero or greater
Can not be changed once set

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Default: sustain_level
Must be zero or greater

Can not be changed once set

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
Must be zero or greater
Can not be changed once set

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30 makes the sound round
and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a whistling sound around
the cutoff frequency. Smaller values produce less resonance.

Default: 0.9
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

phase:

Phase duration in beats of timbre modulation.

Default: 1
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

phase_offset:

Initial phase offset of the sync wave (a value between 0 and 1).

Default: 0
Must be a value between 0 and 1 inclusively
Can not be changed once set

wave:

Wave shape controlling freq sync saw wave. 0=saw wave, 1=pulse, 2=triangle wave and 3=sine wave.

Default: 3
Must be one of the following values: [0, 1, 2, 3]
May be changed whilst playing

invert_wave:

Invert sync freq control waveform (i.e. flip it on the y axis). 0=uninverted wave, 1=inverted wave.

Default: 0
Must be one of the following values: [0, 1]
May be changed whilst playing

range:

Range of the associated sync saw in MIDI notes from the main note. Modifies timbre.

Default: 24
Must be a value between 0 and 90 inclusively
May be changed whilst playing
Has slide parameters to shape changes

disable_wave:

Enable and disable sync control wave (setting to 1 will stop timbre movement).

Default: 0
Must be one of the following values: [0, 1]
May be changed whilst playing

pulse_width:

The width of the pulse wave as a value between 0 and 1. A width of 0.5 will produce a square wave. Different values will change
the timbre of the sound. Only valid if wave is type pulse.

Default: 0.5
Must be a value between 0 and 1 exclusively
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and _slide_shape. For example, 'amp' is
slidable, so you can also set amp_slide, amp_slide_curve, and amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value means that the parameter takes a long
time to slide from the previous value to the new value. A parameter_slide of 0 means that the parameter instantly changes to the
new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g. amp_slide_curve:), 6: squared, 7:
cubed.

Default: 5

Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and negative numbers curve the segment
up and down respectively.

Default: 0

Ambient Sounds
Bass Drums
Bass Sounds
Drum Sounds
Electric Sounds
Miscellaneous Sounds
Percussive Sounds
Snare Drums
Sounds featuring guitars
Sounds for Looping

Ambient Sounds

amp: 1 pan: 0 attack: 0 decay: 0 sustain: -
1 release: 0

attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 rate: 1 start: 0
finish: 1 res: 0 cutoff: 0 norm: 0

sample :ambi_soft_buzz
sample :ambi_swoosh
sample :ambi_drone
sample :ambi_glass_hum
sample :ambi_glass_rub
sample :ambi_haunted_hum
sample :ambi_piano
sample :ambi_lunar_land
sample :ambi_dark_woosh
sample :ambi_choir

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be
used, but won't make the sound louder, they will just reduce the quality of all the sounds
currently being played (due to compression.)

Default: 1
must be zero or greater
May be changed whilst playing

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the
left ear, and how much is in the right ear. With a value of -1, the sound is completely in the left
ear, a value of 0 puts the sound equally in both ears and a value of 1 puts the sound in the right
ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
must be a value between -1 and 1 inclusively
May be changed whilst playing

attack:
Duration of the attack phase of the envelope.

Default: 0
must be zero or greater

decay:
Duration of the decay phase of the envelope.

Default: 0
must be zero or greater

sustain:
Duration of the sustain phase of the envelope.

Default: -1
must either be a positive value or -1

release:
Duration of the release phase of the envelope.

Default: 0
must be zero or greater

attack_level:
Amplitude level reached after attack phase and immediately before decay phase

Default: 1
must be zero or greater

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to
sustain_level unless explicitly set

Default: sustain_level
must be zero or greater

sustain_level:
Amplitude level reached after decay phase and immediately before release phase.

Default: 1
must be zero or greater

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine,
4=welch, 6=squared, 7=cubed

Default: 2
must be one of the following values: [1, 2, 3, 4, 6, 7]

rate:

Rate with which to play back - default is 1. Playing the sample at rate 2 will play it back at
double the normal speed. This will have the effect of doubling the frequencies in the sample
and halving the playback time. Use rates lower than 1 to slow the sample down. Negative rates
will play the sample in reverse.

Default: 1
must not be zero

start:

A fraction (between 0 and 1) representing where in the sample to start playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 0
must be a value between 0 and 1 inclusively

finish:

A fraction (between 0 and 1) representing where in the sample to finish playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 1
must be a value between 0 and 1 inclusively

res:

Filter resonance as a value between 0 and 1. Only functional if a cutoff value is specified. Large
amounts of resonance (a res: near 1) can create a whistling sound around the cutoff frequency.
Smaller values produce less resonance.

Default: 0
must be zero or greater,must be a value less than 1
May be changed whilst playing

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value
like 30 makes the sound round and dull, a high value like 100 makes the sound buzzy and
crispy.

Default: 0
must be zero or greater,must be a value less than 131
May be changed whilst playing

norm:

Normalise the audio (make quieter parts of the sample louder and louder parts quieter) - this is
similar to the normaliser FX. This may emphasise any clicks caused by clipping.

Default: 0
must be one of the following values: [0, 1]

Bass Drums

amp: 1 pan: 0 attack: 0 decay: 0 sustain: -
1 release: 0

attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 rate: 1 start: 0
finish: 1 res: 0 cutoff: 0 norm: 0

sample :bd_ada
sample :bd_pure
sample :bd_808
sample :bd_zum
sample :bd_gas
sample :bd_sone
sample :bd_haus
sample :bd_zome
sample :bd_boom
sample :bd_klub
sample :bd_fat
sample :bd_tek

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be
used, but won't make the sound louder, they will just reduce the quality of all the sounds
currently being played (due to compression.)

Default: 1
must be zero or greater
May be changed whilst playing

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the
left ear, and how much is in the right ear. With a value of -1, the sound is completely in the left
ear, a value of 0 puts the sound equally in both ears and a value of 1 puts the sound in the right
ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
must be a value between -1 and 1 inclusively
May be changed whilst playing

attack:
Duration of the attack phase of the envelope.

Default: 0
must be zero or greater

decay:
Duration of the decay phase of the envelope.

Default: 0
must be zero or greater

sustain:
Duration of the sustain phase of the envelope.

Default: -1
must either be a positive value or -1

release:
Duration of the release phase of the envelope.

Default: 0
must be zero or greater

attack_level:
Amplitude level reached after attack phase and immediately before decay phase

Default: 1
must be zero or greater

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to
sustain_level unless explicitly set

decay_level: Default: sustain_level
must be zero or greater

sustain_level:
Amplitude level reached after decay phase and immediately before release phase.

Default: 1
must be zero or greater

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine,
4=welch, 6=squared, 7=cubed

Default: 2
must be one of the following values: [1, 2, 3, 4, 6, 7]

rate:

Rate with which to play back - default is 1. Playing the sample at rate 2 will play it back at
double the normal speed. This will have the effect of doubling the frequencies in the sample
and halving the playback time. Use rates lower than 1 to slow the sample down. Negative rates
will play the sample in reverse.

Default: 1
must not be zero

start:

A fraction (between 0 and 1) representing where in the sample to start playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 0
must be a value between 0 and 1 inclusively

finish:

A fraction (between 0 and 1) representing where in the sample to finish playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 1
must be a value between 0 and 1 inclusively

res:

Filter resonance as a value between 0 and 1. Only functional if a cutoff value is specified. Large
amounts of resonance (a res: near 1) can create a whistling sound around the cutoff frequency.
Smaller values produce less resonance.

Default: 0
must be zero or greater,must be a value less than 1
May be changed whilst playing

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value
like 30 makes the sound round and dull, a high value like 100 makes the sound buzzy and
crispy.

Default: 0
must be zero or greater,must be a value less than 131
May be changed whilst playing

norm:

Normalise the audio (make quieter parts of the sample louder and louder parts quieter) - this is
similar to the normaliser FX. This may emphasise any clicks caused by clipping.

Default: 0
must be one of the following values: [0, 1]

Bass Sounds

amp: 1 pan: 0 attack: 0 decay: 0 sustain: -
1 release: 0

attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 rate: 1 start: 0
finish: 1 res: 0 cutoff: 0 norm: 0

sample :bass_hit_c
sample :bass_hard_c
sample :bass_thick_c
sample :bass_drop_c
sample :bass_woodsy_c
sample :bass_voxy_c
sample :bass_voxy_hit_c
sample :bass_dnb_f

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be
used, but won't make the sound louder, they will just reduce the quality of all the sounds
currently being played (due to compression.)

Default: 1
must be zero or greater
May be changed whilst playing

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the
left ear, and how much is in the right ear. With a value of -1, the sound is completely in the left
ear, a value of 0 puts the sound equally in both ears and a value of 1 puts the sound in the right
ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
must be a value between -1 and 1 inclusively
May be changed whilst playing

attack:
Duration of the attack phase of the envelope.

Default: 0
must be zero or greater

decay:
Duration of the decay phase of the envelope.

Default: 0
must be zero or greater

sustain:
Duration of the sustain phase of the envelope.

Default: -1
must either be a positive value or -1

release:
Duration of the release phase of the envelope.

Default: 0
must be zero or greater

attack_level:
Amplitude level reached after attack phase and immediately before decay phase

Default: 1
must be zero or greater

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to
sustain_level unless explicitly set

Default: sustain_level
must be zero or greater

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:
Amplitude level reached after decay phase and immediately before release phase.

Default: 1
must be zero or greater

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine,
4=welch, 6=squared, 7=cubed

Default: 2
must be one of the following values: [1, 2, 3, 4, 6, 7]

rate:

Rate with which to play back - default is 1. Playing the sample at rate 2 will play it back at
double the normal speed. This will have the effect of doubling the frequencies in the sample
and halving the playback time. Use rates lower than 1 to slow the sample down. Negative rates
will play the sample in reverse.

Default: 1
must not be zero

start:

A fraction (between 0 and 1) representing where in the sample to start playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 0
must be a value between 0 and 1 inclusively

finish:

A fraction (between 0 and 1) representing where in the sample to finish playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 1
must be a value between 0 and 1 inclusively

res:

Filter resonance as a value between 0 and 1. Only functional if a cutoff value is specified. Large
amounts of resonance (a res: near 1) can create a whistling sound around the cutoff frequency.
Smaller values produce less resonance.

Default: 0
must be zero or greater,must be a value less than 1
May be changed whilst playing

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value
like 30 makes the sound round and dull, a high value like 100 makes the sound buzzy and
crispy.

Default: 0
must be zero or greater,must be a value less than 131
May be changed whilst playing

norm:

Normalise the audio (make quieter parts of the sample louder and louder parts quieter) - this is
similar to the normaliser FX. This may emphasise any clicks caused by clipping.

Default: 0
must be one of the following values: [0, 1]

Drum Sounds

amp: 1 pan: 0 attack: 0 decay: 0 sustain: -
1 release: 0

attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 rate: 1 start: 0
finish: 1 res: 0 cutoff: 0 norm: 0

sample :drum_heavy_kick
sample :drum_tom_mid_soft
sample :drum_tom_mid_hard
sample :drum_tom_lo_soft
sample :drum_tom_lo_hard
sample :drum_tom_hi_soft
sample :drum_tom_hi_hard
sample :drum_splash_soft
sample :drum_splash_hard
sample :drum_snare_soft
sample :drum_snare_hard
sample :drum_cymbal_soft
sample :drum_cymbal_hard
sample :drum_cymbal_open
sample :drum_cymbal_closed
sample :drum_cymbal_pedal
sample :drum_bass_soft
sample :drum_bass_hard

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be
used, but won't make the sound louder, they will just reduce the quality of all the sounds
currently being played (due to compression.)

Default: 1
must be zero or greater
May be changed whilst playing

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the
left ear, and how much is in the right ear. With a value of -1, the sound is completely in the left
ear, a value of 0 puts the sound equally in both ears and a value of 1 puts the sound in the right
ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
must be a value between -1 and 1 inclusively
May be changed whilst playing

attack:
Duration of the attack phase of the envelope.

Default: 0
must be zero or greater

decay:
Duration of the decay phase of the envelope.

Default: 0
must be zero or greater

sustain:
Duration of the sustain phase of the envelope.

Default: -1
must either be a positive value or -1

release:
Duration of the release phase of the envelope.

Default: 0
must be zero or greater

Amplitude level reached after attack phase and immediately before decay phase

attack_level:
Amplitude level reached after attack phase and immediately before decay phase

Default: 1
must be zero or greater

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to
sustain_level unless explicitly set

Default: sustain_level
must be zero or greater

sustain_level:
Amplitude level reached after decay phase and immediately before release phase.

Default: 1
must be zero or greater

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine,
4=welch, 6=squared, 7=cubed

Default: 2
must be one of the following values: [1, 2, 3, 4, 6, 7]

rate:

Rate with which to play back - default is 1. Playing the sample at rate 2 will play it back at
double the normal speed. This will have the effect of doubling the frequencies in the sample
and halving the playback time. Use rates lower than 1 to slow the sample down. Negative rates
will play the sample in reverse.

Default: 1
must not be zero

start:

A fraction (between 0 and 1) representing where in the sample to start playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 0
must be a value between 0 and 1 inclusively

finish:

A fraction (between 0 and 1) representing where in the sample to finish playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 1
must be a value between 0 and 1 inclusively

res:

Filter resonance as a value between 0 and 1. Only functional if a cutoff value is specified. Large
amounts of resonance (a res: near 1) can create a whistling sound around the cutoff frequency.
Smaller values produce less resonance.

Default: 0
must be zero or greater,must be a value less than 1
May be changed whilst playing

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value
like 30 makes the sound round and dull, a high value like 100 makes the sound buzzy and
crispy.

Default: 0
must be zero or greater,must be a value less than 131
May be changed whilst playing

norm:

Normalise the audio (make quieter parts of the sample louder and louder parts quieter) - this is
similar to the normaliser FX. This may emphasise any clicks caused by clipping.

Default: 0
must be one of the following values: [0, 1]

Electric Sounds

amp: 1 pan: 0 attack: 0 decay: 0 sustain: -
1 release: 0

attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 rate: 1 start: 0
finish: 1 res: 0 cutoff: 0 norm: 0

sample :elec_triangle
sample :elec_snare
sample :elec_lo_snare
sample :elec_hi_snare
sample :elec_mid_snare
sample :elec_cymbal
sample :elec_soft_kick
sample :elec_filt_snare
sample :elec_fuzz_tom
sample :elec_chime
sample :elec_bong
sample :elec_twang
sample :elec_wood
sample :elec_pop
sample :elec_beep
sample :elec_blip
sample :elec_blip2
sample :elec_ping
sample :elec_bell
sample :elec_flip
sample :elec_tick
sample :elec_hollow_kick
sample :elec_twip
sample :elec_plip
sample :elec_blup

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be
used, but won't make the sound louder, they will just reduce the quality of all the sounds
currently being played (due to compression.)

Default: 1
must be zero or greater
May be changed whilst playing

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the
left ear, and how much is in the right ear. With a value of -1, the sound is completely in the left
ear, a value of 0 puts the sound equally in both ears and a value of 1 puts the sound in the right
ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
must be a value between -1 and 1 inclusively
May be changed whilst playing

attack:
Duration of the attack phase of the envelope.

Default: 0
must be zero or greater

decay:
Duration of the decay phase of the envelope.

Default: 0
must be zero or greater

Duration of the sustain phase of the envelope.

sustain: Default: -1
must either be a positive value or -1

release:
Duration of the release phase of the envelope.

Default: 0
must be zero or greater

attack_level:
Amplitude level reached after attack phase and immediately before decay phase

Default: 1
must be zero or greater

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to
sustain_level unless explicitly set

Default: sustain_level
must be zero or greater

sustain_level:
Amplitude level reached after decay phase and immediately before release phase.

Default: 1
must be zero or greater

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine,
4=welch, 6=squared, 7=cubed

Default: 2
must be one of the following values: [1, 2, 3, 4, 6, 7]

rate:

Rate with which to play back - default is 1. Playing the sample at rate 2 will play it back at
double the normal speed. This will have the effect of doubling the frequencies in the sample
and halving the playback time. Use rates lower than 1 to slow the sample down. Negative rates
will play the sample in reverse.

Default: 1
must not be zero

start:

A fraction (between 0 and 1) representing where in the sample to start playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 0
must be a value between 0 and 1 inclusively

finish:

A fraction (between 0 and 1) representing where in the sample to finish playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 1
must be a value between 0 and 1 inclusively

res:

Filter resonance as a value between 0 and 1. Only functional if a cutoff value is specified. Large
amounts of resonance (a res: near 1) can create a whistling sound around the cutoff frequency.
Smaller values produce less resonance.

Default: 0
must be zero or greater,must be a value less than 1
May be changed whilst playing

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value
like 30 makes the sound round and dull, a high value like 100 makes the sound buzzy and
crispy.

Default: 0
must be zero or greater,must be a value less than 131
May be changed whilst playing

norm:

Normalise the audio (make quieter parts of the sample louder and louder parts quieter) - this is
similar to the normaliser FX. This may emphasise any clicks caused by clipping.

Default: 0

must be one of the following values: [0, 1]

Miscellaneous Sounds

amp: 1 pan: 0 attack: 0 decay: 0 sustain: -
1 release: 0

attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 rate: 1 start: 0
finish: 1 res: 0 cutoff: 0 norm: 0

sample :misc_burp

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be
used, but won't make the sound louder, they will just reduce the quality of all the sounds
currently being played (due to compression.)

Default: 1
must be zero or greater
May be changed whilst playing

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the
left ear, and how much is in the right ear. With a value of -1, the sound is completely in the left
ear, a value of 0 puts the sound equally in both ears and a value of 1 puts the sound in the right
ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
must be a value between -1 and 1 inclusively
May be changed whilst playing

attack:
Duration of the attack phase of the envelope.

Default: 0
must be zero or greater

decay:
Duration of the decay phase of the envelope.

Default: 0
must be zero or greater

sustain:
Duration of the sustain phase of the envelope.

Default: -1
must either be a positive value or -1

release:
Duration of the release phase of the envelope.

Default: 0
must be zero or greater

attack_level:
Amplitude level reached after attack phase and immediately before decay phase

Default: 1
must be zero or greater

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to
sustain_level unless explicitly set

Default: sustain_level
must be zero or greater

sustain_level:
Amplitude level reached after decay phase and immediately before release phase.

Default: 1
must be zero or greater

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine,
4=welch, 6=squared, 7=cubed

Default: 2
must be one of the following values: [1, 2, 3, 4, 6, 7]

rate:

Rate with which to play back - default is 1. Playing the sample at rate 2 will play it back at
double the normal speed. This will have the effect of doubling the frequencies in the sample
and halving the playback time. Use rates lower than 1 to slow the sample down. Negative rates
will play the sample in reverse.

Default: 1
must not be zero

start:

A fraction (between 0 and 1) representing where in the sample to start playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 0
must be a value between 0 and 1 inclusively

finish:

A fraction (between 0 and 1) representing where in the sample to finish playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 1
must be a value between 0 and 1 inclusively

res:

Filter resonance as a value between 0 and 1. Only functional if a cutoff value is specified. Large
amounts of resonance (a res: near 1) can create a whistling sound around the cutoff frequency.
Smaller values produce less resonance.

Default: 0
must be zero or greater,must be a value less than 1
May be changed whilst playing

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value
like 30 makes the sound round and dull, a high value like 100 makes the sound buzzy and
crispy.

Default: 0
must be zero or greater,must be a value less than 131
May be changed whilst playing

norm:

Normalise the audio (make quieter parts of the sample louder and louder parts quieter) - this is
similar to the normaliser FX. This may emphasise any clicks caused by clipping.

Default: 0
must be one of the following values: [0, 1]

Percussive Sounds

amp: 1 pan: 0 attack: 0 decay: 0 sustain: -
1 release: 0

attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 rate: 1 start: 0
finish: 1 res: 0 cutoff: 0 norm: 0

sample :perc_bell
sample :perc_snap
sample :perc_snap2

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be
used, but won't make the sound louder, they will just reduce the quality of all the sounds
currently being played (due to compression.)

Default: 1
must be zero or greater
May be changed whilst playing

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the
left ear, and how much is in the right ear. With a value of -1, the sound is completely in the left
ear, a value of 0 puts the sound equally in both ears and a value of 1 puts the sound in the right
ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
must be a value between -1 and 1 inclusively
May be changed whilst playing

attack:
Duration of the attack phase of the envelope.

Default: 0
must be zero or greater

decay:
Duration of the decay phase of the envelope.

Default: 0
must be zero or greater

sustain:
Duration of the sustain phase of the envelope.

Default: -1
must either be a positive value or -1

release:
Duration of the release phase of the envelope.

Default: 0
must be zero or greater

attack_level:
Amplitude level reached after attack phase and immediately before decay phase

Default: 1
must be zero or greater

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to
sustain_level unless explicitly set

Default: sustain_level
must be zero or greater

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
must be zero or greater

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine,
4=welch, 6=squared, 7=cubed

env_curve: Default: 2
must be one of the following values: [1, 2, 3, 4, 6, 7]

rate:

Rate with which to play back - default is 1. Playing the sample at rate 2 will play it back at
double the normal speed. This will have the effect of doubling the frequencies in the sample
and halving the playback time. Use rates lower than 1 to slow the sample down. Negative rates
will play the sample in reverse.

Default: 1
must not be zero

start:

A fraction (between 0 and 1) representing where in the sample to start playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 0
must be a value between 0 and 1 inclusively

finish:

A fraction (between 0 and 1) representing where in the sample to finish playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 1
must be a value between 0 and 1 inclusively

res:

Filter resonance as a value between 0 and 1. Only functional if a cutoff value is specified. Large
amounts of resonance (a res: near 1) can create a whistling sound around the cutoff frequency.
Smaller values produce less resonance.

Default: 0
must be zero or greater,must be a value less than 1
May be changed whilst playing

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value
like 30 makes the sound round and dull, a high value like 100 makes the sound buzzy and
crispy.

Default: 0
must be zero or greater,must be a value less than 131
May be changed whilst playing

norm:

Normalise the audio (make quieter parts of the sample louder and louder parts quieter) - this is
similar to the normaliser FX. This may emphasise any clicks caused by clipping.

Default: 0
must be one of the following values: [0, 1]

Snare Drums

amp: 1 pan: 0 attack: 0 decay: 0 sustain: -
1 release: 0

attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 rate: 1 start: 0
finish: 1 res: 0 cutoff: 0 norm: 0

sample :sn_dub
sample :sn_dolf
sample :sn_zome

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be
used, but won't make the sound louder, they will just reduce the quality of all the sounds
currently being played (due to compression.)

Default: 1
must be zero or greater
May be changed whilst playing

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the
left ear, and how much is in the right ear. With a value of -1, the sound is completely in the left
ear, a value of 0 puts the sound equally in both ears and a value of 1 puts the sound in the right
ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
must be a value between -1 and 1 inclusively
May be changed whilst playing

attack:
Duration of the attack phase of the envelope.

Default: 0
must be zero or greater

decay:
Duration of the decay phase of the envelope.

Default: 0
must be zero or greater

sustain:
Duration of the sustain phase of the envelope.

Default: -1
must either be a positive value or -1

release:
Duration of the release phase of the envelope.

Default: 0
must be zero or greater

attack_level:
Amplitude level reached after attack phase and immediately before decay phase

Default: 1
must be zero or greater

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to
sustain_level unless explicitly set

Default: sustain_level
must be zero or greater

sustain_level:

Amplitude level reached after decay phase and immediately before release phase.

Default: 1
must be zero or greater

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine,
4=welch, 6=squared, 7=cubed

env_curve: Default: 2
must be one of the following values: [1, 2, 3, 4, 6, 7]

rate:

Rate with which to play back - default is 1. Playing the sample at rate 2 will play it back at
double the normal speed. This will have the effect of doubling the frequencies in the sample
and halving the playback time. Use rates lower than 1 to slow the sample down. Negative rates
will play the sample in reverse.

Default: 1
must not be zero

start:

A fraction (between 0 and 1) representing where in the sample to start playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 0
must be a value between 0 and 1 inclusively

finish:

A fraction (between 0 and 1) representing where in the sample to finish playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 1
must be a value between 0 and 1 inclusively

res:

Filter resonance as a value between 0 and 1. Only functional if a cutoff value is specified. Large
amounts of resonance (a res: near 1) can create a whistling sound around the cutoff frequency.
Smaller values produce less resonance.

Default: 0
must be zero or greater,must be a value less than 1
May be changed whilst playing

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value
like 30 makes the sound round and dull, a high value like 100 makes the sound buzzy and
crispy.

Default: 0
must be zero or greater,must be a value less than 131
May be changed whilst playing

norm:

Normalise the audio (make quieter parts of the sample louder and louder parts quieter) - this is
similar to the normaliser FX. This may emphasise any clicks caused by clipping.

Default: 0
must be one of the following values: [0, 1]

Sounds featuring guitars

amp: 1 pan: 0 attack: 0 decay: 0 sustain: -
1 release: 0

attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 rate: 1 start: 0
finish: 1 res: 0 cutoff: 0 norm: 0

sample :guit_harmonics
sample :guit_e_fifths
sample :guit_e_slide
sample :guit_em9

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be
used, but won't make the sound louder, they will just reduce the quality of all the sounds
currently being played (due to compression.)

Default: 1
must be zero or greater
May be changed whilst playing

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the
left ear, and how much is in the right ear. With a value of -1, the sound is completely in the left
ear, a value of 0 puts the sound equally in both ears and a value of 1 puts the sound in the right
ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
must be a value between -1 and 1 inclusively
May be changed whilst playing

attack:
Duration of the attack phase of the envelope.

Default: 0
must be zero or greater

decay:
Duration of the decay phase of the envelope.

Default: 0
must be zero or greater

sustain:
Duration of the sustain phase of the envelope.

Default: -1
must either be a positive value or -1

release:
Duration of the release phase of the envelope.

Default: 0
must be zero or greater

attack_level:
Amplitude level reached after attack phase and immediately before decay phase

Default: 1
must be zero or greater

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to
sustain_level unless explicitly set

Default: sustain_level
must be zero or greater

sustain_level:
Amplitude level reached after decay phase and immediately before release phase.

Default: 1
must be zero or greater

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine,

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine,
4=welch, 6=squared, 7=cubed

Default: 2
must be one of the following values: [1, 2, 3, 4, 6, 7]

rate:

Rate with which to play back - default is 1. Playing the sample at rate 2 will play it back at
double the normal speed. This will have the effect of doubling the frequencies in the sample
and halving the playback time. Use rates lower than 1 to slow the sample down. Negative rates
will play the sample in reverse.

Default: 1
must not be zero

start:

A fraction (between 0 and 1) representing where in the sample to start playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 0
must be a value between 0 and 1 inclusively

finish:

A fraction (between 0 and 1) representing where in the sample to finish playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 1
must be a value between 0 and 1 inclusively

res:

Filter resonance as a value between 0 and 1. Only functional if a cutoff value is specified. Large
amounts of resonance (a res: near 1) can create a whistling sound around the cutoff frequency.
Smaller values produce less resonance.

Default: 0
must be zero or greater,must be a value less than 1
May be changed whilst playing

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value
like 30 makes the sound round and dull, a high value like 100 makes the sound buzzy and
crispy.

Default: 0
must be zero or greater,must be a value less than 131
May be changed whilst playing

norm:

Normalise the audio (make quieter parts of the sample louder and louder parts quieter) - this is
similar to the normaliser FX. This may emphasise any clicks caused by clipping.

Default: 0
must be one of the following values: [0, 1]

Sounds for Looping

amp: 1 pan: 0 attack: 0 decay: 0 sustain: -
1 release: 0

attack_level: 1 decay_level: sustain_level sustain_level: 1 env_curve: 2 rate: 1 start: 0
finish: 1 res: 0 cutoff: 0 norm: 0

sample :loop_industrial
sample :loop_compus
sample :loop_amen
sample :loop_amen_full
sample :loop_garzul
sample :loop_mika

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be
used, but won't make the sound louder, they will just reduce the quality of all the sounds
currently being played (due to compression.)

Default: 1
must be zero or greater
May be changed whilst playing

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the
left ear, and how much is in the right ear. With a value of -1, the sound is completely in the left
ear, a value of 0 puts the sound equally in both ears and a value of 1 puts the sound in the right
ear. Values in between -1 and 1 move the sound accordingly.

Default: 0
must be a value between -1 and 1 inclusively
May be changed whilst playing

attack:
Duration of the attack phase of the envelope.

Default: 0
must be zero or greater

decay:
Duration of the decay phase of the envelope.

Default: 0
must be zero or greater

sustain:
Duration of the sustain phase of the envelope.

Default: -1
must either be a positive value or -1

release:
Duration of the release phase of the envelope.

Default: 0
must be zero or greater

attack_level:
Amplitude level reached after attack phase and immediately before decay phase

Default: 1
must be zero or greater

decay_level:

Amplitude level reached after decay phase and immediately before sustain phase. Defaults to
sustain_level unless explicitly set

Default: sustain_level
must be zero or greater

sustain_level:
Amplitude level reached after decay phase and immediately before release phase.

Default: 1
must be zero or greater

env_curve:

Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine,
4=welch, 6=squared, 7=cubed

Default: 2
must be one of the following values: [1, 2, 3, 4, 6, 7]

rate:

Rate with which to play back - default is 1. Playing the sample at rate 2 will play it back at
double the normal speed. This will have the effect of doubling the frequencies in the sample
and halving the playback time. Use rates lower than 1 to slow the sample down. Negative rates
will play the sample in reverse.

Default: 1
must not be zero

start:

A fraction (between 0 and 1) representing where in the sample to start playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 0
must be a value between 0 and 1 inclusively

finish:

A fraction (between 0 and 1) representing where in the sample to finish playback. 1 represents
the end of the sample, 0.5 half-way through etc.

Default: 1
must be a value between 0 and 1 inclusively

res:

Filter resonance as a value between 0 and 1. Only functional if a cutoff value is specified. Large
amounts of resonance (a res: near 1) can create a whistling sound around the cutoff frequency.
Smaller values produce less resonance.

Default: 0
must be zero or greater,must be a value less than 1
May be changed whilst playing

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value
like 30 makes the sound round and dull, a high value like 100 makes the sound buzzy and
crispy.

Default: 0
must be zero or greater,must be a value less than 131
May be changed whilst playing

norm:

Normalise the audio (make quieter parts of the sample louder and louder parts quieter) - this is
similar to the normaliser FX. This may emphasise any clicks caused by clipping.

Default: 0
must be one of the following values: [0, 1]

Band Eq
Bitcrusher
BPF
Compressor
Distortion
Echo
Flanger
HPF
Ixi Techno
Krush
Level
LPF
NBPF
NHPF
NLPF
Normaliser
NRBPF
NRHPF
NRLPF
Pan
Panslicer
Pitch Shift
RBPF
Reverb
RHPF
Ring Mod
RLPF
Slicer
Wobble

Band EQ Filter
amp: 1 mix: 1 pre_amp: 1 freq: 100 res: 0.6 db: 0.6

with_fx :band_eq do
 play 50
end

Attenuate or Boost a frequency band

Introduced in v2.8

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

freq:

Centre frequency of the band in MIDI.

Default: 100
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes

res:

Width of the band as a value between 0 and 1

Default: 0.6
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

db:

Amount of boost or attenuation of the frequency band. A positive value boosts frequencies in the band, a
negative value attenuates them.

Default: 0.6
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and

_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Bitcrusher
amp: 1 mix: 1 pre_amp: 1 sample_rate: 10000 bits: 8 cutoff: 0

with_fx :bitcrusher do
 play 50
end

Creates lo-fi output by decimating and deconstructing the incoming audio by lowering both the sample rate
and bit depth. The default sample rate for CD audio is 44100, so use values less than that for that crunchy
chip-tune sound full of artefacts and bitty distortion. Similarly, the default bit depth for CD audio is 16, so use
values less than that for lo-fi sound.

Introduced in v2.3

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used,
but won’t make the sound louder, they will just reduce the quality of all the sounds currently being
played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0
and 1. For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that
only the FX is heard (typically the default) and a mix of 0.5 means that half the original and half of
the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

sample_rate:

The sample rate the audio will be resampled at.

Default: 10000
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes

bits:

The bit depth of the resampled audio.

Default: 8
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like
30 makes the sound round and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 0
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Band Pass Filter
amp: 1 mix: 1 pre_amp: 1 centre: 100 res: 0.6

with_fx :bpf do
 play 50
end

Combines low pass and high pass filters to only allow a ‘band’ of frequencies through. If the band is very
narrow (a low res value like 0.0001) then the BPF will reduce the original sound, almost down to a single
frequency (controlled by the centre opt).

With higher values for res we can simulate other filters e.g. telephone lines, by cutting off low and high
frequencies.

Use FX :band_eq with a negative db for the opposite effect - to attenuate a given band of frequencies.

Introduced in v2.3

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

centre:

Centre frequency for the filter as a MIDI note.

Default: 100
Must be a value greater than or equal to 0
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a
whistling sound around the cutoff frequency. Smaller values produce less resonance.

Default: 0.6
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Compressor
amp: 1 mix: 1 pre_amp: 1 threshold: 0.2 clamp_time: 0.01 slope_above: 0.5
slope_below: 1 relax_time: 0.01

with_fx :compressor do
 play 50
end

Compresses the dynamic range of the incoming signal. Equivalent to automatically turning the amp down
when the signal gets too loud and then back up again when it’s quiet. Useful for ensuring the containing
signal doesn’t overwhelm other aspects of the sound. Also a general purpose hard-knee dynamic range
processor which can be tuned via the opts to both expand and compress the signal.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used,
but won’t make the sound louder, they will just reduce the quality of all the sounds currently being
played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0
and 1. For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that
only the FX is heard (typically the default) and a mix of 0.5 means that half the original and half of
the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

threshold:

Threshold value determining the break point between slope_below and slope_above.

Default: 0.2
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

clamp_time:

Time taken for the amplitude adjustments to kick in fully (in seconds). This is usually pretty small
(not much more than 10 milliseconds). Also known as the time of the attack phase

Default: 0.01
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

slope_above:

Slope of the amplitude curve above the threshold. A value of 1 means that the output of signals
with amplitude above the threshold will be unaffected. Greater values will magnify and smaller
values will attenuate the signal.

Default: 0.5
May be changed whilst playing

Has slide parameters to shape changes

slope_below:

Slope of the amplitude curve below the threshold. A value of 1 means that the output of signals
with amplitude below the threshold will be unaffected. Greater values will magnify and smaller
values will attenuate the signal.

Default: 1
May be changed whilst playing
Has slide parameters to shape changes

relax_time:

Time taken for the amplitude adjustments to be released. Usually a little longer than clamp_time. If
both times are too short, you can get some (possibly unwanted) artefacts. Also known as the time
of the release phase.

Default: 0.01
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Distortion
amp: 1 mix: 1 pre_amp: 1 distort: 0.5

with_fx :distortion do
 play 50
end

Distorts the signal reducing clarity in favour of raw crunchy noise.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

distort:

Amount of distortion to be applied (as a value between 0 and 1)

Default: 0.5
Must be a value greater than or equal to 0,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:

Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Echo
amp: 1 mix: 1 pre_amp: 1 phase: 0.25 decay: 2 max_phase: 2

with_fx :echo do
 play 50
end

Standard echo with variable phase duration (time between echoes) and decay (length of echo fade out). If
you wish to have a phase duration longer than 2s, you need to specify the longest phase duration you’d like
with the arg max_phase. Be warned, echo FX with very long phases can consume a lot of memory and take
longer to initialise.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and
1. For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the
FX is heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is
heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

phase:

The time between echoes in beats.

Default: 0.25
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

decay:

The time it takes for the echoes to fade away in beats.

Default: 2
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

max_phase:

The maximum phase duration in beats.

Default: 2
Must be greater than zero
Can not be changed once set

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Flanger
amp: 1 mix: 1 pre_amp: 1 phase: 4 phase_offset: 0 wave: 4
invert_wave: 0 stereo_invert_wave: 0 delay: 5 max_delay: 20 depth: 5 decay: 2
feedback: 0 invert_flange: 0

with_fx :flanger do
 play 50
end

Mix the incoming signal with a copy of itself which has a rate modulating faster and slower than the original.
Creates a swirling/whooshing effect.

Introduced in v2.3

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may
be used, but won’t make the sound louder, they will just reduce the quality of all the
sounds currently being played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value
between 0 and 1. For example, a mix of 0 means that only the original sound is heard, a
mix of 1 means that only the FX is heard (typically the default) and a mix of 0.5 means
that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

phase:

Phase duration in beats of flanger modulation.

Default: 4
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

phase_offset:

Initial modulation phase offset (a value between 0 and 1).

Default: 0
Must be a value between 0 and 1 inclusively
Can not be changed once set

wave:

Wave type - 0 saw, 1 pulse, 2 triangle, 3 sine, 4 cubic. Different waves will produce
different flanging modulation effects.

Default: 4
Must be one of the following values: [0, 1, 2, 3, 4]
May be changed whilst playing

Invert flanger control waveform (i.e. flip it on the y axis). 0=uninverted wave, 1=inverted

invert_wave:

Invert flanger control waveform (i.e. flip it on the y axis). 0=uninverted wave, 1=inverted
wave.

Default: 0
Must be one of the following values: [0, 1]
May be changed whilst playing

stereo_invert_wave:

Make the flanger control waveform in the left ear an inversion of the control waveform in
the right ear. 0=uninverted wave, 1=inverted wave. This happens after the standard
wave inversion with param :invert_wave.

Default: 0
Must be one of the following values: [0, 1]
May be changed whilst playing

delay:

Amount of delay time between original and flanged version of audio.

Default: 5
May be changed whilst playing
Has slide parameters to shape changes

max_delay:

Max delay time. Used to set internal buffer size.

Default: 20
Must be zero or greater
Can not be changed once set

depth:

Flange depth - greater depths produce a more prominent effect.

Default: 5
May be changed whilst playing
Has slide parameters to shape changes

decay:

Flange decay time in ms

Default: 2
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

feedback:

Amount of feedback.

Default: 0
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

invert_flange:

Invert flanger signal. 0=no inversion, 1=inverted signal.

Default: 0
Must be one of the following values: [0, 1]
May be changed whilst playing

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

High Pass Filter
amp: 1 mix: 1 pre_amp: 1 cutoff: 100

with_fx :hpf do
 play 50
end

Dampens the parts of the signal that are lower than the cutoff point (typically the bass of the sound) and
keeps the higher parts (typically the crunchy fizzy harmonic overtones). Choose a lower cutoff to keep more
of the bass/mid and a higher cutoff to make the sound more light and crispy.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30
makes the sound round and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.

_slide_shape: amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Techno from IXI Lang
amp: 1 mix: 1 pre_amp: 1 phase: 4 phase_offset: 0 cutoff_min: 60
cutoff_max: 120 res: 0.8

with_fx :ixi_techno do
 play 50
end

Moving resonant low pass filter between min and max cutoffs. Great for sweeping effects across long synths
or samples.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used,
but won’t make the sound louder, they will just reduce the quality of all the sounds currently being
played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0
and 1. For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that
only the FX is heard (typically the default) and a mix of 0.5 means that half the original and half of
the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

phase:

The phase duration (in beats) for filter modulation cycles

Default: 4
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

phase_offset:

Initial modulation phase offset (a value between 0 and 1).

Default: 0
Must be a value between 0 and 1 inclusively
Can not be changed once set

cutoff_min:

Minimum (MIDI) note that filter will move to whilst wobbling. Choose a lower note for a higher
range of movement. Full range of movement is the distance between cutoff_max and cutoff_min

Default: 60
Must be zero or greater,must be a value less than 130
May be changed whilst playing
Has slide parameters to shape changes

Maximum (MIDI) note that filter will move to whilst wobbling. Choose a higher note for a higher

cutoff_max:

Maximum (MIDI) note that filter will move to whilst wobbling. Choose a higher note for a higher
range of movement. Full range of movement is the distance between cutoff_max and cutoff_min

Default: 120
Must be zero or greater,must be a value less than 130
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can
create a whistling sound around the cutoff frequency. Smaller values produce less resonance.

Default: 0.8
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

krush
amp: 1 mix: 1 pre_amp: 1 gain: 5 cutoff: 100 res: 0

with_fx :krush do
 play 50
end

Krush that sound!

Introduced in v2.6

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

gain:

Amount of crushing to serve

Default: 5
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30
makes the sound round and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a
whistling sound around the cutoff frequency. Smaller values produce less resonance.

Default: 0
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Level Amplifier
amp: 1

with_fx :level do
 play 50
end

Amplitude modifier. All FX have their own amp built in, so it may be the case that you don’t specifically need
an isolated amp FX. However, it is useful to be able to control the overall amplitude of a number of running
synths. All sounds created in the FX block will have their amplitudes multipled by the amp level of this FX.
For example, use an amp of 0 to silence all internal synths.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but won’t
make the sound louder, they will just reduce the quality of all the sounds currently being played (due to
compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Low Pass Filter
amp: 1 mix: 1 pre_amp: 1 cutoff: 100

with_fx :lpf do
 play 50
end

Dampens the parts of the signal that are above than the cutoff point (typically the crunchy fizzy harmonic
overtones) and keeps the lower parts (typically the bass/mid of the sound). Choose a higher cutoff to keep
more of the high frequences/treble of the sound and a lower cutoff to make the sound more dull and only
keep the bass.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30
makes the sound round and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Normalised Band Pass Filter
amp: 1 mix: 1 pre_amp: 1 centre: 100 res: 0.6

with_fx :nbpf do
 play 50
end

Like the Band Pass Filter but normalised. The normaliser is useful here as some volume is lost when filtering
the original signal.

Introduced in v2.3

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

centre:

Centre frequency for the filter as a MIDI note.

Default: 100
Must be a value greater than or equal to 0
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a
whistling sound around the cutoff frequency. Smaller values produce less resonance.

Default: 0.6
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value

_slide:
Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Normalised High Pass Filter
amp: 1 mix: 1 pre_amp: 1 cutoff: 100 res: 0.5

with_fx :nhpf do
 play 50
end

A high pass filter chained to a normaliser. Ensures that the signal is both filtered by a standard high pass
filter and then normalised to ensure the amplitude of the final output is constant. A high pass filter will reduce
the amplitude of the resulting signal (as some of the sound has been filtered out) the normaliser can
compensate for this loss (although will also have the side effect of flattening all dynamics). See doc for hpf.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30
makes the sound round and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a
whistling sound around the cutoff frequency. Smaller values produce less resonance.

Default: 0.5
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and

amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Normalised Low Pass Filter.
amp: 1 mix: 1 pre_amp: 1 cutoff: 100

with_fx :nlpf do
 play 50
end

A low pass filter chained to a normaliser. Ensures that the signal is both filtered by a standard low pass filter
and then normalised to ensure the amplitude of the final output is constant. A low pass filter will reduce the
amplitude of the resulting signal (as some of the sound has been filtered out) the normaliser can compensate
for this loss (although will also have the side effect of flattening all dynamics). See doc for lpf.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30
makes the sound round and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Normaliser
amp: 1 mix: 1 pre_amp: 1 level: 1

with_fx :normaliser do
 play 50
end

Raise or lower amplitude of sound to a specified level. Evens out the amplitude of incoming sound across the
frequency spectrum by flattening all dynamics.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

level:

The peak output amplitude level at which to normalise the input.

Default: 1
Must be a value greater than or equal to 0
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Normalised Resonant Band Pass Filter
amp: 1 mix: 1 pre_amp: 1 centre: 100 res: 0.5

with_fx :nrbpf do
 play 50
end

Like the Band Pass Filter but normalised, with a resonance (slight volume boost) around the target
frequency. This can produce an interesting whistling effect, especially when used with smaller values for the
res opt.

The normaliser is useful here as some volume is lost when filtering the original signal.

Introduced in v2.3

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

centre:

Centre frequency for the filter as a MIDI note.

Default: 100
Must be a value greater than or equal to 0
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a
whistling sound around the cutoff frequency. Smaller values produce less resonance.

Default: 0.5
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and

amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Normalised Resonant High Pass Filter
amp: 1 mix: 1 pre_amp: 1 cutoff: 100 res: 0.5

with_fx :nrhpf do
 play 50
end

Dampens the parts of the signal that are above than the cutoff point (typically the crunchy fizzy harmonic
overtones) and keeps the lower parts (typically the bass/mid of the sound). behaviour, The resonant part of
the resonant low pass filter emphasises/resonates the frequencies around the cutoff point. The amount of
emphasis is controlled by the res param with a lower res resulting in greater resonance. High amounts of
resonance (rq ~0) can create a whistling sound around the cutoff frequency.

Choose a higher cutoff to keep more of the high frequences/treble of the sound and a lower cutoff to make
the sound more dull and only keep the bass.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30
makes the sound round and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a
whistling sound around the cutoff frequency. Smaller values produce less resonance.

Default: 0.5
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Normalised Resonant Low Pass Filter
amp: 1 mix: 1 pre_amp: 1 cutoff: 100 res: 0.5

with_fx :nrlpf do
 play 50
end

Dampens the parts of the signal that are above than the cutoff point (typically the crunchy fizzy harmonic
overtones) and keeps the lower parts (typically the bass/mid of the sound). behaviour, The resonant part of
the resonant low pass filter emphasises/resonates the frequencies around the cutoff point. The amount of
emphasis is controlled by the res param with a lower res resulting in greater resonance. High amounts of
resonance (rq ~0) can create a whistling sound around the cutoff frequency.

Choose a higher cutoff to keep more of the high frequences/treble of the sound and a lower cutoff to make
the sound more dull and only keep the bass.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30
makes the sound round and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a
whistling sound around the cutoff frequency. Smaller values produce less resonance.

Default: 0.5
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Pan
amp: 1 mix: 1 pre_amp: 1 pan: 0

with_fx :pan do
 play 50
end

Specify where in the stereo field the sound should be heard. A value of -1 for pan will put the sound in the left
speaker, a value of 1 will put the sound in the right speaker and values in between will shift the sound
accordingly.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

pan:

Position of sound in stereo. With headphones on, this means how much of the sound is in the left ear,
and how much is in the right ear. With a value of -1, the sound is completely in the left ear, a value of 0
puts the sound equally in both ears and a value of 1 puts the sound in the right ear. Values in between -1
and 1 move the sound accordingly.

Default: 0
Must be a value between -1 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Pan Slicer
amp: 1 mix: 1 pre_amp: 1 phase: 0.25 pan_min: -1 pan_max: 1
pulse_width: 0.5 phase_offset: 0 wave: 1 invert_wave: 0 probability: 0 prob_pos: 0
seed: 0 smooth: 0 smooth_up: 0 smooth_down: 0

with_fx :panslicer do
 play 50
end

Slice the pan automatically from left to right. Behaves similarly to slicer and wobble FX but modifies stereo
panning of sound in left and right speakers. Default slice wave form is square (hard slicing between left and
right) however other wave forms can be set with the wave: opt.

Introduced in v2.6

Parameters

amp:

The amplitude of the resulting effect.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0
and 1. For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that
only the FX is heard (typically the default) and a mix of 0.5 means that half the original and half of
the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

phase:

The phase duration (in beats) of the slices

Default: 0.25
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

pan_min:

Minimum pan value (-1 is the left speaker only)

Default: -1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pan_max:

Maximum pan value (+1 is the right speaker only)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pulse_width:

The width of the pulse wave as a value between 0 and 1. A width of 0.5 will produce a square
wave. Different values will change the timbre of the sound. Only valid if wave is type pulse.

Default: 0.5
Must be a value between 0 and 1 exclusively
May be changed whilst playing
Has slide parameters to shape changes

phase_offset:

Initial phase offset.

Default: 0
Must be a value between 0 and 1 inclusively
Can not be changed once set

wave:

Control waveform used to modulate the amplitude. 0=saw, 1=pulse, 2=tri, 3=sine

Default: 1
Must be one of the following values: [0, 1, 2, 3]
May be changed whilst playing

invert_wave:

Invert control waveform (i.e. flip it on the y axis). 0=uninverted wave, 1=inverted wave.

Default: 0
Must be one of the following values: [0, 1]
May be changed whilst playing

probability:

Probability (as a value between 0 and 1) that a given slice will be replaced by the value of the
prob_pos opt (which defaults to 0, i.e. silence)

Default: 0
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

prob_pos:

Position of the slicer that will be jumped to when the probability test passes as a value between 0
and 1

Default: 0
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

seed:
Seed value for rand num generator used for probability test

Default: 0
Can not be changed once set

smooth:

Amount of time in seconds to transition from the current value to the next. Allows you to round off
harsh edges in the slicer wave which may cause clicks.

Default: 0
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

smooth_up:

Amount of time in seconds to transition from the current value to the next only when the value is
going up. This smoothing happens before the main smooth mechanism.

Default: 0
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

smooth_down:

Amount of time in seconds to transition from the current value to the next only when the value is
going down. This smoothing happens before the main smooth mechanism.

Default: 0
Must be zero or greater

May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Pitch shift
amp: 1 pre_amp: 1 mix: 1 window_size: 0.2 pitch: 0 pitch_dis: 0.0
time_dis: 0.0

with_fx :pitch_shift do
 play 50
end

Changes the pitch of a signal without affecting tempo. Does this mainly through the pitch parameter which
takes a midi number to transpose by. You can also play with the other params to produce some interesting
textures and sounds.

Introduced in v2.5

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used,
but won’t make the sound louder, they will just reduce the quality of all the sounds currently being
played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0
and 1. For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that
only the FX is heard (typically the default) and a mix of 0.5 means that half the original and half of
the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

window_size:

Pitch shift works by chopping the input into tiny slices, then playing these slices at a higher or
lower rate. If we make the slices small enough and overlap them, it sounds like the original sound
with the pitch changed.

The window_size is the length of the slices and is measured in seconds. It needs to be around 0.2
(200ms) or greater for pitched sounds like guitar or bass, and needs to be around 0.02 (20ms) or
lower for percussive sounds like drum loops. You can experiment with this to get the best sound
for your input.

Default: 0.2
Must be a value greater than 5.0e-05
May be changed whilst playing
Has slide parameters to shape changes

pitch:

Pitch adjustment in semitones. 1 is up a semitone, 12 is up an octave, -12 is down an octave etc.
Maximum upper limit of 24 (up 2 octaves). Lower limit of -72 (down 6 octaves). Decimal numbers
can be used for fine tuning.

Default: 0
Must be a value greater than or equal to -72,must be a value less than or equal to 24
May be changed whilst playing

Has slide parameters to shape changes

pitch_dis:

Pitch dispersion - how much random variation in pitch to add. Using a low value like 0.001 can help
to “soften up” the metallic sounds, especially on drum loops. To be really technical,
pitch_dispersion is the maximum random deviation of the pitch from the pitch ratio (which is set by
the pitch param)

Default: 0.0
Must be a value greater than or equal to 0
May be changed whilst playing
Has slide parameters to shape changes

time_dis:

Time dispersion - how much random delay before playing each grain (measured in seconds).
Again, low values here like 0.001 can help to soften up metallic sounds introduced by the effect.
Large values are also fun as they can make soundscapes and textures from the input, although
you will most likely lose the rhythm of the original. NB - This won’t have an effect if it’s larger than
window_size.

Default: 0.0
Must be a value greater than or equal to 0
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Resonant Band Pass Filter
amp: 1 mix: 1 pre_amp: 1 centre: 100 res: 0.5

with_fx :rbpf do
 play 50
end

Like the Band Pass Filter but with a resonance (slight volume boost) around the target frequency. This can
produce an interesting whistling effect, especially when used with smaller values for the res opt.

Introduced in v2.3

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

centre:

Centre frequency for the filter as a MIDI note.

Default: 100
Must be a value greater than or equal to 0
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a
whistling sound around the cutoff frequency. Smaller values produce less resonance.

Default: 0.5
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value

_slide:
Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Reverb
amp: 1 mix: 0.4 pre_amp: 1 room: 0.6 damp: 0.5

with_fx :reverb do
 play 50
end

Make the incoming signal sound more spacious or distant as if it were played in a large room or cave. Signal
may also be dampened by reducing the amplitude of the higher frequencies.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 0.4
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

room:

The room size - a value between 0 (no reverb) and 1 (maximum reverb).

Default: 0.6
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

damp:

High frequency dampening - a value between 0 (no dampening) and 1 (maximum dampening)

Default: 0.5
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A

_slide: parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Resonant High Pass Filter
amp: 1 mix: 1 pre_amp: 1 cutoff: 100 res: 0.5

with_fx :rhpf do
 play 50
end

Dampens the parts of the signal that are lower than the cutoff point (typically the bass of the sound) and
keeps the higher parts (typically the crunchy fizzy harmonic overtones). The resonant part of the resonant
high pass filter emphasises/resonates the frequencies around the cutoff point. The amount of emphasis is
controlled by the res param with a lower res resulting in greater resonance. High amounts of resonance (rq
~0) can create a whistling sound around the cutoff frequency.

Choose a lower cutoff to keep more of the bass/mid and a higher cutoff to make the sound more light and
crispy.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30
makes the sound round and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a
whistling sound around the cutoff frequency. Smaller values produce less resonance.

Default: 0.5
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Ring Modulator
freq: 30 amp: 1 mix: 1 pre_amp: 1 mod_amp: 1

with_fx :ring_mod do
 play 50
end

Attack of the Daleks! Ring mod is a classic effect often used on soundtracks to evoke robots or aliens as it
sounds hollow or metallic. We take a ‘carrier’ signal (a sine wave controlled by the freq opt) and modulate its
amplitude using the signal given inside the fx block. This produces a wide variety of sounds - the best way to
learn is to experiment!

Introduced in v2.3

Parameters

freq:

Frequency of the carrier signal (as a midi note).

Default: 30
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

mod_amp:

Amplitude of the modulation

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Resonant Low Pass Filter
amp: 1 mix: 1 pre_amp: 1 cutoff: 100 res: 0.5

with_fx :rlpf do
 play 50
end

Dampens the parts of the signal that are above than the cutoff point (typically the crunchy fizzy harmonic
overtones) and keeps the lower parts (typically the bass/mid of the sound). behaviour, The resonant part of
the resonant low pass filter emphasises/resonates the frequencies around the cutoff point. The amount of
emphasis is controlled by the res param with a lower res resulting in greater resonance. High amounts of
resonance (rq ~0) can create a whistling sound around the cutoff frequency.

Choose a higher cutoff to keep more of the high frequences/treble of the sound and a lower cutoff to make
the sound more dull and only keep the bass.

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used, but
won’t make the sound louder, they will just reduce the quality of all the sounds currently being played
(due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0 and 1.
For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that only the FX is
heard (typically the default) and a mix of 0.5 means that half the original and half of the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

cutoff:

MIDI note representing the highest frequencies allowed to be present in the sound. A low value like 30
makes the sound round and dull, a high value like 100 makes the sound buzzy and crispy.

Default: 100
Must be zero or greater,must be a value less than 131
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can create a
whistling sound around the cutoff frequency. Smaller values produce less resonance.

Default: 0.5
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Slicer
amp: 1 mix: 1 pre_amp: 1 phase: 0.25 amp_min: 0 amp_max: 1
pulse_width: 0.5 phase_offset: 0 wave: 1 invert_wave: 0 probability: 0 prob_pos: 0
seed: 0 smooth: 0 smooth_up: 0 smooth_down: 0

with_fx :slicer do
 play 50
end

Modulates the amplitude of the input signal with a specific control wave and phase duration. With the default
pulse wave, slices the signal in and out, with the triangle wave, fades the signal in and out and with the saw
wave, phases the signal in and then dramatically out. Control wave may be inverted with the arg invert_wave
for more variety.

Introduced in v2.0

Parameters

amp:

The amplitude of the resulting effect.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0
and 1. For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that
only the FX is heard (typically the default) and a mix of 0.5 means that half the original and half of
the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

phase:

The phase duration (in beats) of the slices

Default: 0.25
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

amp_min:

Minimum amplitude of the slicer

Default: 0
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

amp_max:

Maximum amplitude of the slicer

Default: 1
Must be zero or greater
May be changed whilst playing

Has slide parameters to shape changes

pulse_width:

The width of the pulse wave as a value between 0 and 1. A width of 0.5 will produce a square
wave. Different values will change the timbre of the sound. Only valid if wave is type pulse.

Default: 0.5
Must be a value between 0 and 1 exclusively
May be changed whilst playing
Has slide parameters to shape changes

phase_offset:

Initial phase offset.

Default: 0
Must be a value between 0 and 1 inclusively
Can not be changed once set

wave:

Control waveform used to modulate the amplitude. 0=saw, 1=pulse, 2=tri, 3=sine

Default: 1
Must be one of the following values: [0, 1, 2, 3]
May be changed whilst playing

invert_wave:

Invert control waveform (i.e. flip it on the y axis). 0=uninverted wave, 1=inverted wave.

Default: 0
Must be one of the following values: [0, 1]
May be changed whilst playing

probability:

Probability (as a value between 0 and 1) that a given slice will be replaced by the value of the
prob_pos opt (which defaults to 0, i.e. silence)

Default: 0
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

prob_pos:

Position of the slicer that will be jumped to when the probability test passes as a value between 0
and 1

Default: 0
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

seed:
Seed value for rand num generator used for probability test

Default: 0
Can not be changed once set

smooth:

Amount of time in seconds to transition from the current value to the next. Allows you to round off
harsh edges in the slicer wave which may cause clicks.

Default: 0
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

smooth_up:

Amount of time in seconds to transition from the current value to the next only when the value is
going up. This smoothing happens before the main smooth mechanism.

Default: 0
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

smooth_down:

Amount of time in seconds to transition from the current value to the next only when the value is
going down. This smoothing happens before the main smooth mechanism.

Default: 0

Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

Wobble
amp: 1 mix: 1 pre_amp: 1 phase: 0.5 cutoff_min: 60 cutoff_max: 120
res: 0.8 phase_offset: 0 wave: 0 invert_wave: 0 pulse_width: 0.5 filter: 0
probability: 0 prob_pos: 0 seed: 0 smooth: 0 smooth_up: 0 smooth_down: 0

with_fx :wobble do
 play 50
end

Versatile wobble FX. Will repeatedly modulate a range of filters (rlpf, rhpf) between two cutoff values using a
range of control wave forms (saw, pulse, tri, sine). You may alter the phase duration of the wobble, and the
resonance of the filter. Combines well with the dsaw synth for crazy dub wobbles. Cutoff value is at
cutoff_min at the start of phase

Introduced in v2.0

Parameters

amp:

The amplitude of the sound. Typically a value between 0 and 1. Higher amplitudes may be used,
but won’t make the sound louder, they will just reduce the quality of all the sounds currently being
played (due to compression.)

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

mix:

The amount (percentage) of FX present in the resulting sound represented as a value between 0
and 1. For example, a mix of 0 means that only the original sound is heard, a mix of 1 means that
only the FX is heard (typically the default) and a mix of 0.5 means that half the original and half of
the FX is heard.

Default: 1
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

pre_amp:

Amplification applied to the input signal immediately before it is passed to the FX.

Default: 1
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

phase:

The phase duration (in beats) for filter modulation cycles

Default: 0.5
Must be greater than zero
May be changed whilst playing
Has slide parameters to shape changes
Scaled with current BPM value

cutoff_min:

Minimum (MIDI) note that filter will move to whilst wobbling. Choose a lower note for a higher
range of movement. Full range of movement is the distance between cutoff_max and cutoff_min

Default: 60
Must be zero or greater,must be a value less than 130
May be changed whilst playing
Has slide parameters to shape changes

Maximum (MIDI) note that filter will move to whilst wobbling. Choose a higher note for a higher
range of movement. Full range of movement is the distance between cutoff_max and cutoff_min

cutoff_max: Default: 120
Must be zero or greater,must be a value less than 130
May be changed whilst playing
Has slide parameters to shape changes

res:

Filter resonance as a value between 0 and 1. Large amounts of resonance (a res: near 1) can
create a whistling sound around the cutoff frequency. Smaller values produce less resonance.

Default: 0.8
Must be zero or greater,must be a value less than 1
May be changed whilst playing
Has slide parameters to shape changes

phase_offset:

Initial modulation phase offset (a value between 0 and 1).

Default: 0
Must be a value between 0 and 1 inclusively
Can not be changed once set

wave:

Wave shape of wobble. Use 0 for saw wave, 1 for pulse, 2 for triangle wave and 3 for a sine
wave.

Default: 0
Must be one of the following values: [0, 1, 2, 3]
May be changed whilst playing

invert_wave:

Invert control waveform (i.e. flip it on the y axis). 0=uninverted wave, 1=inverted wave.

Default: 0
Must be one of the following values: [0, 1]
May be changed whilst playing

pulse_width:

Only valid if wave is type pulse.

Default: 0.5
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

filter:

Filter used for wobble effect. Use 0 for a resonant low pass filter or 1 for a resonant high pass
filter

Default: 0
Must be one of the following values: [0, 1]
May be changed whilst playing

probability:

Probability (as a value between 0 and 1) that a given wobble will be replaced by the value of the
prob_pos opt (which defaults to 0, i.e. min_cutoff)

Default: 0
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

prob_pos:

Position of the wobble that will be jumped to when the probability test passes as a value between
0 and 1

Default: 0
Must be a value between 0 and 1 inclusively
May be changed whilst playing
Has slide parameters to shape changes

seed:
Seed value for rand num generator used for probability test

Default: 0
Can not be changed once set

Amount of time in seconds to transition from the current value to the next. Allows you to round off
harsh edges in the slicer wave which may cause clicks.

smooth: Default: 0
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

smooth_up:

Amount of time in seconds to transition from the current value to the next only when the value is
going up. This smoothing happens before the main smooth mechanism.

Default: 0
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

smooth_down:

Amount of time in seconds to transition from the current value to the next only when the value is
going down. This smoothing happens before the main smooth mechanism.

Default: 0
Must be zero or greater
May be changed whilst playing
Has slide parameters to shape changes

Slide Parameters

Any parameter that is slidable has three additional parameters named _slide, _slide_curve, and
_slide_shape. For example, 'amp' is slidable, so you can also set amp_slide, amp_slide_curve, and
amp_slide_shape with the following effects:

_slide:

Amount of time (in beats) for the parameter value to change. A long parameter_slide value
means that the parameter takes a long time to slide from the previous value to the new value. A
parameter_slide of 0 means that the parameter instantly changes to the new value.

Default: 0

_slide_shape:
Shape of curve. 0: step, 1: linear, 3: sine, 4: welch, 5: custom (use *_slide_curve: opt e.g.
amp_slide_curve:), 6: squared, 7: cubed.

Default: 5

_slide_curve:
Shape of the slide curve (only honoured if slide shape is 5). 0 means linear and positive and
negative numbers curve the segment up and down respectively.

Default: 0

all_sample_names
at
bools
choose
chord
chord_degree
chord_names
comment
control
cue
current_arg_checks
current_beat_duration
current_bpm
current_debug
current_sample_defaults
current_sample_pack
current_sample_pack_aliases
current_sched_ahead_time
current_synth
current_synth_defaults
current_transpose
current_volume
dec
define
defonce
degree
density
dice
factor?
hz_to_midi
in_thread
inc
invert_chord
kill
knit
line
live_loop
load_sample
load_samples
load_synthdefs
look
mc_block_id
mc_block_ids
mc_block_name
mc_block_names
mc_camera_fixed
mc_camera_normal
mc_camera_set_location
mc_camera_third_person
mc_chat_post
mc_checkpoint_restore
mc_checkpoint_save
mc_get_block
mc_get_height
mc_get_pos
mc_get_tile
mc_ground_height
mc_location
mc_message
mc_set_area
mc_set_block
mc_set_pos
mc_set_tile
mc_surface_teleport
mc_teleport
midi_notes
midi_to_hz
ndefine
note
note_info
note_range
one_in
pitch_to_ratio
play
play_chord
play_pattern
play_pattern_timed

print
puts
quantise
ramp
rand
rand_back
rand_i
rand_reset
rand_skip
range
ratio_to_pitch
rdist
rest?
ring
rrand
rrand_i
rt
sample
sample_buffer
sample_duration
sample_groups
sample_info
sample_loaded?
sample_names
scale
scale_names
set_control_delta!
set_mixer_control!
set_sched_ahead_time!
set_volume!
shuffle
sleep
spark
spark_graph
spread
status
stop
stretch
sync
synth
tick
tick_reset
tick_reset_all
tick_set
uncomment
use_arg_bpm_scaling
use_arg_checks
use_bpm
use_bpm_mul
use_cue_logging
use_debug
use_merged_synth_defaults
use_random_seed
use_sample_bpm
use_sample_defaults
use_sample_pack
use_sample_pack_as
use_synth
use_synth_defaults
use_transpose
use_tuning
vector
version
vt
wait
with_arg_bpm_scaling
with_arg_checks
with_bpm
with_bpm_mul
with_cue_logging
with_debug
with_fx
with_merged_synth_defaults
with_random_seed
with_sample_bpm
with_sample_defaults
with_sample_pack

with_sample_pack_as
with_synth
with_synth_defaults
with_transpose
with_tuning

Get all sample names
all_sample_names

Return a list of all the sample names available

Introduced in v2.0

Asynchronous Time. Run a block at the given time(s)
at times (list), params (list)

Given a list of times, run the block once after waiting each given time. If passed an optional params list, will pass each param individually
to each block call. If size of params list is smaller than the times list, the param values will act as rings (rotate through). If the block is given
1 arg, the times are fed through. If the block is given 2 args, both the times and the params are fed through. A third block arg will receive
the index of the time.

Introduced in v2.1

Examples

Example 1

at [1, 2, 4] do
 play 75
 end

plays a note after waiting 1 beat,
then after 1 more beat,
then after 2 more beats (4 beats total)

Example 2

at [1, 2, 3], [75, 76, 77] do |n|
 play n
 end

plays 3 different notes

Example 3

at [1, 2, 3],
 [{:amp=>0.5}, {:amp=> 0.8}] do |p|
 sample :drum_cymbal_open, p
 end

alternate soft and loud
cymbal hits three times

Example 4

at [0, 1, 2] do |t|
 puts t
 end

when no params are given to at, the times are fed through to the block
#=> prints 0, 1, then 2

Example 5

at [0, 1, 2], [:a, :b] do |t, b|
 puts [t, b]
 end

#If you specify the block with 2 args, it will pass through both the time and the param
#=> prints out [0, :a], [1, :b], then [2, :a]

Example 6

at [0, 0.5, 2] do |t, idx|
 puts [t, idx]
 end

#If you specify the block with 2 args, and no param list to at, it will pass through both the time and the index
#=> prints out [0, 0], [0.5, 1], then [2, 2]

Example 7

at [0, 0.5, 2], [:a, :b] do |t, b, idx|
 puts [t, b, idx]
 end

#If you specify the block with 3 args, it will pass through the time, the param and the index
#=> prints out [0, :a, 0], [0.5, :b, 1], then [2, :a, 2]

Create a ring of boolean values
bools list (array)

Create a new ring of booleans values from 1s, and 0s which can be easier to write and manipulate in a live setting.

Introduced in v2.2

Examples

Example 1

(bools 1, 0) #=> (ring true, false)

Example 2

(bools 1, 0, true, false, nil) #=> (ring true, false, true, false, false)

Random list selection
choose list (array)

Choose an element at random from a list (array).

Introduced in v2.0

Example

Example 1

loop do
 play choose([60, 64, 67])
 sleep 1
 play chord(:c, :major).choose
 sleep 1
 end

#=> plays one of 60, 64 or 67 at random

#=> You can also call .choose on the list

Create chord
chord tonic (symbol), name (symbol)

Creates a ring of Midi note numbers when given a tonic note and a chord type

Introduced in v2.0

Options

invert: Apply the specified num inversions to chord. See the fn
invert_chord.

num_octaves: Create an arpeggio of the chord over n octaves

Examples

Example 1

puts chord(:e, :minor) # returns a list of midi notes - [64, 67, 71]

Example 2

play chord(:e, :minor)
Play all the notes together

Example 3

loop do
 play chord(:e, :minor).choose
 sleep 0.2
end

looping over arpeggios can sound good
Here we use choose to pick a random note from the chord

Example 4

use_bpm 150
play chord(:C, '1')
sleep 1
play chord(:C, '5')
sleep 1
play chord(:C, '+5')
sleep 1
play chord(:C, 'm+5')
sleep 1
play chord(:C, :sus2)
sleep 1
play chord(:C, :sus4)
sleep 1
play chord(:C, '6')
sleep 1
play chord(:C, :m6)
sleep 1
play chord(:C, '7sus2')
sleep 1
play chord(:C, '7sus4')
sleep 1
play chord(:C, '7-5')
sleep 1
play chord(:C, 'm7-5')
sleep 1
play chord(:C, '7+5')
sleep 1
play chord(:C, 'm7+5')
sleep 1
play chord(:C, '9')
sleep 1
play chord(:C, :m9)
sleep 1
play chord(:C, 'm7+9')
sleep 1
play chord(:C, :maj9)
sleep 1
play chord(:C, '9sus4')
sleep 1
play chord(:C, '6*9')
sleep 1
play chord(:C, 'm6*9')
sleep 1
play chord(:C, '7-9')
sleep 1
play chord(:C, 'm7-9')
sleep 1
play chord(:C, '7-10')
sleep 1
play chord(:C, '9+5')

Sonic Pi supports a large range of chords
Notice that the more exotic ones have to be surrounded by ' quotes
this is just to get through all the chords more quickly

sleep 1
play chord(:C, 'm9+5')
sleep 1
play chord(:C, '7+5-9')
sleep 1
play chord(:C, 'm7+5-9')
sleep 1
play chord(:C, '11')
sleep 1
play chord(:C, :m11)
sleep 1
play chord(:C, :maj11)
sleep 1
play chord(:C, '11+')
sleep 1
play chord(:C, 'm11+')
sleep 1
play chord(:C, '13')
sleep 1
play chord(:C, :m13)
sleep 1
play chord(:C, :major)
sleep 1
play chord(:C, :M)
sleep 1
play chord(:C, :minor)
sleep 1
play chord(:C, :m)
sleep 1
play chord(:C, :major7)
sleep 1
play chord(:C, :dom7)
sleep 1
play chord(:C, '7')
sleep 1
play chord(:C, :M7)
sleep 1
play chord(:C, :minor7)
sleep 1
play chord(:C, :m7)
sleep 1
play chord(:C, :augmented)
sleep 1
play chord(:C, :a)
sleep 1
play chord(:C, :diminished)
sleep 1
play chord(:C, :dim)
sleep 1
play chord(:C, :i)
sleep 1
play chord(:C, :diminished7)
sleep 1
play chord(:C, :dim7)
sleep 1
play chord(:C, :i7)
sleep 1

Construct chords of stacked thirds, based on scale degrees
chord_degree degree (symbol_or_number), tonic (symbol), scale (symbol), number_of_notes (number)

In music we build chords from scales. For example, a C major chord is made by taking the 1st, 3rd and 5th notes of the C major scale (C,
E and G). If you do this on a piano you might notice that you play one, skip one, play one, skip one etc. If we use the same spacing and
start from the second note in C major (which is a D), we get a D minor chord which is the 2nd, 4th and 6th notes in C major (D, F and A).
We can move this pattern all the way up or down the scale to get different types of chords. chord_degree is a helper method that returns
a ring of midi note numbers when given a degree (starting point in a scale) which is a symbol :i, :ii, :iii, :iv, :v, :vi, :vii or a
number 1-7. The second argument is the tonic note of the scale, the third argument is the scale type and finally the fourth argument is
number of notes to stack up in the chord. If we choose 4 notes from degree :i of the C major scale, we take the 1st, 3rd, 5th and 7th
notes of the scale to get a C major 7 chord.

Introduced in v2.1

Examples

Example 1

puts chord_degree(:i, :A3, :major) # returns a ring of midi notes - (ring 57, 61, 64, 68) - an A major 7 chord

puts chord_degree(:i, :A3, :major) # returns a ring of midi notes - (ring 57, 61, 64, 68) - an A major 7 chord

Example 2

play chord_degree(:i, :A3, :major, 3)

Example 3

play chord_degree(:ii, :A3, :major, 3) # Chord ii in A major is a B minor chord

Example 4

play chord_degree(:iii, :A3, :major, 3) # Chord iii in A major is a C# minor chord

Example 5

play chord_degree(:iv, :A3, :major, 3) # Chord iv in A major is a D major chord

Example 6

play chord_degree(:i, :C4, :major, 4) # Taking four notes is the default. This gives us 7th chords - here it plays a C major 7

Example 7

play chord_degree(:i, :C4, :major, 5) # Taking five notes gives us 9th chords - here it plays a C major 9 chord

All chord names
chord_names

Returns a ring containing all chord names known to Sonic Pi

Introduced in v2.6

Example

Example 1

puts chord_names #=> prints a list of all the chords

Block level commenting
comment

Does not evaluate any of the code within the block. However, any optional args passed before the block will be evaluated although they
will be ignored. See uncomment for switching commenting off without having to remove the comment form.

Introduced in v2.0

Example

Example 1

comment do # starting a block level comment:

comment do
 play 50
 sleep 1
 play 62
 end

starting a block level comment:
not played
no sleep happens
not played

Control running synth
control node (synth_node)

Control a running synth node by passing new parameters to it. A synth node represents a running synth and can be obtained by assigning
the return value of a call to play or sample or by specifying a parameter to the do/end block of an FX. You may modify any of the
parameters you can set when triggering the synth, sample or FX. See documentation for opt details. If the synth to control is a chord, then
control will change all the notes of that chord group at once to a new target set of notes - see example.

Introduced in v2.0

Examples

Example 1

my_node = play 50, release: 5, cutoff: 60
sleep 1
control my_node, cutoff: 70
sleep 1
control my_node, cutoff: 90

Basic control

play note 50 with release of 5 and cutoff of 60. Assign return value to variable my_node
Sleep for a second
Now modify cutoff from 60 to 70, sound is still playing
Sleep for another second
Now modify cutoff from 70 to 90, sound is still playing

Example 2

s = synth :prophet, note: :e1, cutoff: 70, cutoff_slide: 8, release: 8
control s, cutoff: 130

Combining control with slide opts allows you to create nice transitions.

start synth and specify slide time for cutoff opt
Change the cutoff value with a control.
Cutoff will now slide over 8 beats from 70 to 130

Example 3

notes = (scale :e3, :minor_pentatonic, num_octaves: 2).shuffle

s = synth :beep, note: :e3, sustain: 8, note_slide: 0.05
64.times do
 control s, note: notes.tick
 sleep 0.125
end

Use a short slide time and many controls to create a sliding melody

get a random ordering of a scale

Start our synth running with a long sustain and short note slide time

Keep quickly changing the note by ticking through notes repeatedly

Example 4

with_fx :bitcrusher, sample_rate: 1000, sample_rate_slide: 8 do |bc|

 sample :loop_garzul, rate: 1
 control bc, sample_rate: 5000

end

Controlling FX

Start FX but also use the handy || goalposts
to grab a handle on the running FX. We can call
our handle anything we want. Here we've called it bc

We can use our handle bc now just like we used s in the
previous example to modify the FX as it runs.

Example 5

cg = play (chord :e4, :minor), sustain: 2
sleep 1
control cg, notes: (chord :c3, :major)

Controlling chords
start a chord

transition to new chord.

Each note in the original chord is mapped onto
the equivalent in the new chord.

Example 6

cg = play (chord :e4, :minor), sustain: 4, note_slide: 3
sleep 1
control cg, notes: (chord :c3, :major)

Sliding between chords

start a chord

slide to new chord.
Each note in the original chord is mapped onto
the equivalent in the new chord.

Example 7

cg = play (chord :e3, :m13), sustain: 4, note_slide: 3
sleep 1
control cg, notes: (chord :c3, :major)

Sliding from a larger to smaller chord
start a chord with 7 notes

slide to new chord with fewer notes (3)
Each note in the original chord is mapped onto
the equivalent in the new chord using ring-like indexing.
This means that the 4th note in the original chord will
be mapped onto the 1st note in the second chord and so-on.

Example 8

cg = play (chord :c3, :major), sustain: 4, note_slide: 3
sleep 1
control cg, notes: (chord :e3, :m13)

Sliding from a smaller to larger chord
start a chord with 3 notes

slide to new chord with more notes (7)
Each note in the original chord is mapped onto
the equivalent in the new chord.
This means that the 4th note in the new chord
will not sound as there is no 4th note in the
original chord.

Cue other threads
cue cue_id (symbol)

Send a heartbeat synchronisation message containing the (virtual) timestamp of the current thread. Useful for syncing up external threads
via the sync fn. Any opts which are passed are given to the thread which syncs on the cue_id as a map. The values of the opts must be
immutable. Currently only numbers, symbols and booleans are supported.

Introduced in v2.0

Options

your_key: Your value

another_key: Another value

key: All these opts are passed through to the thread which
syncs

Examples

Example 1

in_thread do
 sync :foo
 sample :ambi_lunar_land
 end

 sleep 5

 cue :foo

this parks the current thread waiting for a foo cue message to be received.

We send a cue message from the main thread.
This then unblocks the thread above and we then hear the sample

Example 2

in_thread do
 loop do
 cue :tick
 sleep 0.5
 end
 end

 loop do
 sync :tick
 sample :drum_heavy_kick
 end

Start a metronome thread
Loop forever:
sending tick heartbeat messages
and sleeping for 0.5 beats between ticks

We can now play sounds using the metronome.
In the main thread, just loop
waiting for :tick cue messages
after which play the drum kick sample

Example 3

in_thread do
 loop do
 cue [:foo, :bar, :baz].choose
 sleep 0.5
 end
 end

 in_thread do
 loop do
 sync :foo
 sample :elec_beep
 end
 end

 in_thread do
 loop do
 sync :bar
 sample :elec_flip
 end
 end

 in_thread do
 loop do
 sync :baz
 sample :elec_blup
 end
 end

Start a metronome thread
Loop forever:
sending one of three tick heartbeat messages randomly
and sleeping for 0.5 beats between ticks

We can now play sounds using the metronome:

In the main thread, just loop
waiting for :foo cue messages
after which play the elec beep sample

In the main thread, just loop
waiting for :bar cue messages
after which play the elec flip sample

In the main thread, just loop
waiting for :baz cue messages
after which play the elec blup sample

Get current arg checking status
current_arg_checks

Returns the current arg checking setting (true or false).

Introduced in v2.0

Example

Example 1

puts current_arg_checks # Print out the current arg check setting

Duration of current beat
current_beat_duration

Get the duration of the current beat in seconds. This is the actual length of time which will elapse with sleep 1.

Introduced in v2.6

Example

Example 1

use_bpm 60
 puts current_beat_duration

 use_bpm 120
 puts current_beat_duration

#=> 1

#=> 0.5

Get current tempo
current_bpm

Returns the current tempo as a bpm value.

Introduced in v2.0

Example

Example 1

puts current_bpm # Print out the current bpm

Get current debug status
current_debug

Returns the current debug setting (true or false).

Introduced in v2.0

Example

Example 1

puts current_debug # Print out the current debug setting

Get current sample defaults
current_sample_defaults

Returns the current sample defaults. This is a map of synth arg names to either values or functions.

Introduced in v2.5

Example

Example 1

use_sample_defaults amp: 0.5, cutoff: 80
sample :loop_amen
puts current_sample_defaults

Plays amen break with amp 0.5 and cutoff 80
#=> Prints {amp: 0.5, cutoff: 80}

Get current sample pack
current_sample_pack

Returns the current sample pack.

Introduced in v2.0

Example

Example 1

puts current_sample_pack # Print out the current sample pack

Get current sample pack aliases
current_sample_pack_aliases

Returns a map containing the current sample pack aliases.

Introduced in v2.0

Example

Example 1

puts current_sample_pack_aliases # Print out the current sample pack aliases

Get current sched ahead time
current_sched_ahead_time

Returns the current schedule ahead time.

Introduced in v2.0

Example

Example 1

set_sched_ahead_time! 0.5
puts current_sched_ahead_time

Prints 0.5

Get current synth
current_synth

Returns the current synth name.

Introduced in v2.0

Example

Example 1

puts current_synth # Print out the current synth name

Get current synth defaults
current_synth_defaults

Returns the current synth defaults. This is a map of synth arg names to either values or functions.

Introduced in v2.0

Example

Example 1

use_synth_defaults amp: 0.5, cutoff: 80
play 50
puts current_synth_defaults

Plays note 50 with amp 0.5 and cutoff 80
#=> Prints {amp: 0.5, cutoff: 80}

Get current transposition
current_transpose

Returns the current transpose value.

Introduced in v2.0

Example

Example 1

puts current_transpose # Print out the current transpose value

Get current volume
current_volume

Returns the current volume.

Introduced in v2.0

Examples

Example 1

puts current_volume # Print out the current volume

Example 2

set_volume! 2
puts current_volume

#=> 2

Decrement
dec n (number)

Decrement a number by 1. Equivalent to n - 1

Introduced in v2.1

Examples

Example 1

dec 1 # returns 0

Example 2

dec -1 # returns -2

Define a new function
define name (symbol)

Allows you to group a bunch of code and give it your own name for future re-use. Functions are very useful for structuring your code. They
are also the gateway into live coding as you may redefine a function whilst a thread is calling it, and the next time the thread calls your
function, it will use the latest definition.

Introduced in v2.0

Example

Example 1

 define :foo do
 play 50
 sleep 1
 end

 foo

 3.times do
 foo
 end

Define a new function called foo

Call foo on its own

You can use foo anywhere you would use normal code.
For example, in a block:

Define a named value only once
defonce name (symbol)

Allows you to assign the result of some code to a name, with the property that the code will only execute once - therefore stopping re-
definitions. This is useful for defining values that you use in your compositions but you don’t want to reset every time you press run. You
may force the block to execute again regardless of whether or not it has executed once already by using the override option (see
examples).

Introduced in v2.0

Options

override: If set to true, re-definitions are allowed and this acts like
define

Examples

Example 1

defonce :foo do
 sleep 1

 puts "hello"
 10
 end

Define a new function called foo
Sleep for a beat in the function definition. Note that this amount
of time in seconds will depend on the current BPM of the live_loop
or thread calling this function.
Print hello
Return a value of 10

 puts foo

 puts foo

 defonce :foo do
 puts "you can't redefine me"
 15
 end

 puts foo

 3.times do
 play foo
 end

Call foo on its own
The run sleeps for a beat and prints "hello" before returning 10

Try it again:
This time the run doesn't sleep or print anything out. However, 10 is still returned.

Try redefining foo

We still don't see any printing or sleeping, and the result is still 10

You can use foo anywhere you would use normal code.
For example, in a block:

play 10

Example 2

defonce :bar do
 50
 end

 play bar

 defonce :bar do
 70
 end

 play bar

 defonce :bar, override: true do
 80
 end

 play bar

plays 50

This redefinition doesn't work due to the behaviour of defonce

Still plays 50

Force definition to take place with override option

plays 80

Convert a degree into a note
degree degree (symbol_or_number), tonic (symbol), scale (symbol)

For a given scale and tonic it takes a symbol :i, :ii, :iii, :iv,:v, :vi, :vii or a number 1-7 and resolves it to a midi note.

Introduced in v2.1

Example

Example 1

play degree(:ii, :D3, :major)
play degree(2, :C3, :minor)

Squash and repeat time
density d (density)

Runs the block d times with the bpm for the block also multiplied by d. Great for repeating sections a number of times faster yet keeping
within a fixed time. If d is less than 1, then time will be stretched accordingly and the block will take longer to complete.

Introduced in v2.3

Examples

Example 1

use_bpm 60

 density 2 do

 sample :bd_hause
 sleep 0.5
 end

Set the BPM to 60

BPM for block is now 120
block is called 2.times
sample is played twice
sleep is 0.25s

Example 2

density 2 do |idx|
 puts idx
 sleep 0.5
 end

You may also pass a param to the block similar to n.times
prints out 0, 1
sleep is 0.25s

Example 3

density 0.5 do

 play 80, release: 1
 sleep 0.5
 end

Specifying a density val of < 1 will stretch out time
A density of 0.5 will double the length of the block's
execution time.
plays note 80 with 2s release
sleep is 1s

Random dice throw
dice num_sides (number)

Throws a dice with the specified num_sides (defaults to 6) and returns the score as a number between 1 and num_sides.

Introduced in v2.0

Examples

Example 1

dice

will return a number between 1 and 6 inclusively
(with an even probability distribution).

Example 2

dice 3 # will return a number between 1 and 3 inclusively

Factor test
factor? val (number), factor (number)

Test to see if factor is indeed a factor of val. In other words, can val be divided exactly by factor.

Introduced in v2.1

Examples

Example 1

factor?(10, 2) # true - 10 is a multiple of 2 (2 * 5 = 10)

Example 2

factor?(11, 2) #false - 11 is not a multiple of 2

factor?(11, 2) #false - 11 is not a multiple of 2

Example 3

factor?(2, 0.5) #true - 2 is a multiple of 0.5 (0.5 * 4 = 2)

Hz to MIDI conversion
hz_to_midi freq (number)

Convert a frequency in hz to a midi note. Note that the result isn’t an integer and there is a potential for some very minor rounding errors.

Introduced in v2.0

Example

Example 1

hz_to_midi(261.63) #=> 60.0003

Run code block at the same time
in_thread

Execute a given block (between do … end) in a new thread. Use for playing multiple ‘parts’ at once. Each new thread created inherits all
the use/with defaults of the parent thread such as the time, current synth, bpm, default synth args, etc. Despite inheriting defaults from the
parent thread, any modifications of the defaults in the new thread will not affect the parent thread. Threads may be named with the name:
optional arg. Named threads will print their name in the logging pane when they print their activity. Finally, if you attempt to create a new
named thread with a name that is already in use by another executing thread, no new thread will be created.

Introduced in v2.0

Options

name: Make this thread a named thread with name. If a thread with this name already exists, a new thread will not be
created.

delay: Initial delay in beats before the thread starts. Default is 0.

Examples

Example 1

loop do
 play 50
 sleep 1
 end

 loop do
 play 55
 sleep 0.5
 end

If you write two loops one after another like this,
then only the first loop will execute as the loop acts
like a trap not letting the flow of control out

This code is never executed.

Example 2

In order to play two loops at the same time, the first loops need to
be in a thread (note that it's probably more idiomatic to use live_loop
when performing):

By wrapping our loop in an in_thread block, we split the
control flow into two parts. One flows into the loop (a) and
the other part flows immediately after the in_thread block (b).
both parts of the control flow execute at exactly the same time.

 in_thread do

 loop do

 play 50
 sleep 1
 end
 end

 loop do
 play 55
 sleep 0.5
 end

(a)

(a)

(b)

This loop is executed thanks to the thread above

Example 3

use_bpm 120
 use_synth :dsaw

 in_thread do
 play 50
 use_synth :fm
 sleep 1
 play 38
 end

 play 62
 sleep 2
 play 67

Set the bpm to be double rate
Set the current synth to be :dsaw

Create a new thread
Play note 50 at time 0
Switch to fm synth (only affects this thread)
sleep for 0.5 seconds (as we're double rate)
Play note 38 at time 0.5

Play note 62 at time 0 (with dsaw synth)
sleep 1s
Play note 67 at time 1s (also with dsaw synth)

Example 4

in_thread(name: :foo) do
 loop do
 sample :drum_bass_hard
 sleep 1
 end
 end

 in_thread(name: :foo) do
 loop do
 sample :elec_chime
 sleep 0.5
 end
 end

Here we've created a named thread

This thread isn't created as the name is
the same as the previous thread which is
still executing.

Example 5

 define :foo do
 play 50
 sleep 1
 end

 in_thread(name: :main) do
 loop do
 foo
 end
 end

Named threads work well with functions for live coding:
Create a function foo
which does something simple
and sleeps for some time

Create a named thread
which loops forever
calling our function

We are now free to modify the contents of :foo and re-run the entire buffer.
We'll hear the effect immediately without having to stop and re-start the code.
This is because our fn has been redefined, (which our thread will pick up) and
due to the thread being named, the second re-run will not create a new similarly
named thread. This is a nice pattern for live coding and is the basis of live_loop.

Example 6

 in_thread delay: 1 do
 sample :ambi_lunar_land

#Delaying the start of a thread

this sample is not triggered at time 0 but after 1 beat

 end

 play 80

Note 80 is played at time 0

Increment
inc n (number)

Increment a number by 1. Equivalent to n + 1

Introduced in v2.1

Examples

Example 1

inc 1 # returns 2

Example 2

inc -1 # returns 0

Invert a chord
invert_chord notes (list), shift (number)

Given a set of notes, apply a number of inversions indicated by Shift. Inversions being an increase to notes if Shift is positive or decreasing
the notes if Shift is negative.

Introduced in v2.6

Example

Example 1

play invert_chord(chord(:A3, "M"), 0)
sleep 1
play invert_chord(chord(:A3, "M"), 1)
sleep 1
play invert_chord(chord(:A3, "M"), 2)

#No inversion

#First chord inversion

#Second chord inversion

Kill synth
kill node (synth_node)

Kill a running synth sound or sample. In order to kill a sound, you need to have stored a reference to it in a variable.

Introduced in v2.0

Examples

Example 1

foo = play 50, release: 4
sleep 1

kill foo

store a reference to a running synth in a variable called foo:

foo is still playing, but we can kill it early:

Example 2

bar = sample :loop_amen
sleep 0.5
kill bar

Knit a sequence of repeated values
knit value (anything), count (number)

Knits a series of value, count pairs to create a ring buffer where each value is repeated count times.

Introduced in v2.2

Examples

Example 1

(knit 1, 5) #=> (ring 1, 1, 1, 1, 1)

Example 2

(knit :e2, 2, :c2, 3) #=> (ring :e2, :e2, :c2, :c2, :c2)

Create a ring buffer representing a straight line
line start (number), finish (number)

Create a ring buffer representing a straight line between start and finish of num_slices elements. Num slices defaults to 8. Indexes wrap
around positively and negatively. Similar to range.

Introduced in v2.5

Options

steps: number of slices or segments along the line

inclusive: boolean value representing whether or not to include finish value in
line

Examples

Example 1

(line 0, 4, steps: 4) #=> (ring 0.0, 1.0, 2.0, 3.0)

Example 2

(line 5, 0, steps: 5) #=> (ring 5.0, 4.0, 3.0, 2.0, 1.0)

Example 3

(line 0, 3, inclusive: true) #=> (ring 0.0, 1.0, 2.0, 3.0)

A loop for live coding
live_loop name (symbol)

Run the block in a new thread with the given name, and loop it forever. Also sends a cue with the same name each time the block runs. If
the block is given a parameter, this is given the result of the last run of the loop (with initial value either being 0 or an init arg).

Introduced in v2.1

Options

init: initial value for optional block arg

auto_cue: enable or disable automatic cue (default is true)

delay: Initial delay in beats before the live_loop starts. Default is
0.

seed: override initial random generator seed before starting loop.

Examples

Example 1

live_loop :ping do
 sample :elec_ping
 sleep 1
end

Example 2

live_loop :foo do |a|
 puts a
 sleep 1
 a += 1
end

pass a param (a) to the block (inits to 0)
prints out all the integers

increment a by 1 (last value is passed back into the loop)

Pre-load sample
load_sample path (string)

Given a path to a .wav, .wave, .aif or .aiff file, this loads the file and makes it available as a sample. See load_samples for
loading multiple samples in one go.

Introduced in v2.0

Example

Example 1

load_sample :elec_blip
sample :elec_blip

:elec_blip is now loaded and ready to play as a sample
No delay takes place when attempting to trigger it

Pre-load samples
load_samples paths (list)

Given an array of paths to .wav, .wave, .aif or .aiff files, loads them all into memory so that they may be played with via sample with
no delay. See load_sample.

Introduced in v2.0

Examples

Example 1

sample :ambi_choir

load_samples [:elec_plip, :elec_blip]
sample :elec_plip

This has to first load the sample before it can play it which may
cause unwanted delay.

Let's load some samples in advance of using them
When we play :elec_plip, there is no extra delay
as it has already been loaded.

Example 2

load_samples :elec_plip, :elec_blip

sample :elec_blip

You may omit the square brackets, and
simply list all samples you wish to load
Before playing them.

Example 3

load_samples ["/home/pi/samples/foo.wav"]
sample "/home/pi/sample/foo.wav"

You may also load full paths to samples.
And then trigger them with no more loading.

Load external synthdefs
load_synthdefs path (string)

Load all pre-compiled synth designs in the specified directory. The binary files containing synth designs need to have the extension
.scsyndef. This is useful if you wish to use your own SuperCollider synthesiser designs within Sonic Pi.

Important note

If you wish your synth to work with Sonic Pi’s automatic stereo sound infrastructure you need to ensure your synth outputs a stereo signal
to an audio bus with an index specified by a synth arg named out_bus. For example, the following synth would work nicely:

(
SynthDef(piTest,
 {|freq = 200, amp = 1, out_bus = 0 |
 Out.ar(out_bus,
 SinOsc.ar([freq,freq],0,0.5)* Line.kr(1, 0, 5, amp, doneAction: 2))}
).store;
)

Introduced in v2.0

Example

Example 1

load_synthdefs "~/Desktop/my_noises" # Load all synthdefs in my_noises folder

Obtain value of a tick
look

Read and return value of default tick. If a key is specified, read the value of that specific tick. Ticks are in_thread and live_loop local,
so the tick read will be the tick of the current thread calling look.

Introduced in v2.6

Options

offset: Offset to add to index returned. Useful when calling look on lists, rings and vectors to offset the returned
value

Examples

Example 1

puts look
 puts look
 puts look

#=> 0
#=> 0
#=> 0 # look doesn't advance the tick, it just returns the current value

Example 2

puts look
 tick
 puts look
 tick
 puts look
 puts look
 tick
 puts look

#=> 0 # A look is always 0 before the first tick
advance the tick
#=> 0 # Note: a look is still 0 after the first tick.

#=> 1
#=> 1 # making multiple calls to look doesn't affect tick value

#=> 2

Example 3

tick(:foo)
 tick(:foo)
 puts look(:foo)
 puts look
 puts look(:bar)

#=> 1 (keyed look :foo has been advanced)
#=> 0 (default look hasn't been advanced)
#=> 0 (other keyed looks haven't been advanced either)

Example 4

 live_loop :foo do
 tick
 use_synth :beep
 play (scale :e3, :minor_pentatonic).look
 sleep 0.5
 use_synth :square
 play (ring :e1, :e2, :e3).look, release: 0.25
 sleep 0.25
 end

You can call look on lists and rings

advance the default tick

look into the default tick to play all notes in sequence

use the same look on another ring

Minecraft Pi - normalise block code
mc_block_id name (symbol_or_number)

Given a block name or id will return a number representing the id of the block or throw an exception if the name or id isn’t valid

Introduced in v2.5

Examples

Example 1

puts mc_block_id :air #=> 0

Example 2

puts mc_block_id 0 #=> 0

Example 3

puts mc_block_id 19 #=> Throws an invalid block id exception

Example 4

puts mc_block_id :foo #=> Throws an invalid block name exception

Minecraft Pi - list all block ids
mc_block_ids

Returns a list of all the valid block ids as numbers. Note not all numbers are valid block ids. For example, 19 is not a valid block id.

Introduced in v2.5

Example

Example 1

puts mc_block_ids #=> [0, 1, 2, 3, 4, 5...

Minecraft Pi - normalise block name
mc_block_name id (number_or_symbol)

Given a block id or a block name will return a symbol representing the block name or throw an exception if the id or name isn’t valid.

Introduced in v2.5

Examples

Example 1

puts mc_block_name :air #=> :air

Example 2

puts mc_block_name 0 #=> :air

Example 3

puts mc_block_name 19 #=> Throws an invalid block id exception

Example 4

puts mc_block_name :foo #=> Throws an invalid block name exception

Minecraft Pi - list all block names
mc_block_names

Returns a list of all the valid block names as symbols

Introduced in v2.5

Example

Example 1

puts mc_block_names #=> [:air, :stone, :grass, :dirt, :cobblestone...

Minecraft Pi - fixed camera mode
mc_camera_fixed

Set the camera mode to fixed.

Introduced in v2.5

Example

Example
1

Minecraft Pi - normal camera mode
mc_camera_normal

Set the camera mode to normal.

Introduced in v2.5

Example

Example
1

Minecraft Pi - move camera
mc_camera_set_location

Move the camera to a new location.

Introduced in v2.5

Example

Example
1

Minecraft Pi - third person camera mode
mc_camera_third_person

Set the camera mode to third person

Introduced in v2.5

Example

Example
1

Minecraft Pi - synonym for mc_message
mc_chat_post

See mc_message

Introduced in v2.5

Minecraft Pi - restore checkpoint
mc_checkpoint_restore

Restore the world to the last snapshot taken with mc_checkpoint_save.

Introduced in v2.5

Example

Example
1

Minecraft Pi - save checkpoint
mc_checkpoint_save

Take a snapshot of the world and save it. Restore back with mc_checkpoint_restore

Introduced in v2.5

Example

Example
1

Minecraft Pi - get type of block at coords
mc_get_block x (number), y (number), z (number)

Returns the type of the block at the coords x, y, z as a symbol.

Introduced in v2.5

Example

Example 1

puts mc_get_block 40, 50, 60 #=> :air

Minecraft Pi - synonym for mc_ground_height

mc_get_height

See mc_ground_height

Introduced in v2.5

Minecraft Pi - synonym for mc_location
mc_get_pos

See mc_location

Introduced in v2.5

Minecraft Pi - get location of current tile/block
mc_get_tile

Returns the coordinates of the nearest block that the player is next to. This is more course grained than mc_location as it only returns
whole number coordinates.

Introduced in v2.5

Example

Example 1

puts mc_get_tile #=> [10, 20, 101]

Minecraft Pi - get ground height at x, z coords
mc_ground_height x (number), z (number)

Returns the height of the ground at the specified x and z coords.

Introduced in v2.5

Example

Example 1

puts mc_ground_height 40, 50 #=> 43 (height of world at x=40, z=50)

Minecraft Pi - get current location
mc_location

Returns a list of floats [x, y, z] coords of the current location for Steve. The coordinates are finer grained than raw block coordinates
but may be used anywhere you might use block coords.

Introduced in v2.5

Examples

Example 1

puts mc_location #=> [10.1, 20.67, 101.34]

Example 2

x, y, z = mc_location #=> Find the current location and store in x, y and z variables.

x, y, z = mc_location #=> Find the current location and store in x, y and z variables.

Minecraft Pi - post a chat message
mc_message msg (string)

Post contents of msg on the Minecraft chat display

Introduced in v2.5

Example

Example 1

mc_message "Hello from Sonic Pi" #=> Displays "Hello from Sonic Pi" on Minecraft's chat display

Minecraft Pi - set area of blocks
mc_set_area block_name (symbol_or_number), x (number), y (number), z (number), x2 (number), y2 (number)

Set an area/box of blocks of type block_name defined by two distinct sets of coordinates.

Introduced in v2.5

Minecraft Pi - set block at specific coord
mc_set_block x (number), y (number), z (number), block_name (symbol_or_number)

Change the block type of the block at coords x, y, z to block_type. The block type may be specified either as a symbol such as :air or
a number. See mc_block_ids and mc_block_types for lists of valid symbols and numbers.

Introduced in v2.5

Example

Example 1

mc_set_block :glass, 40, 50, 60 #=> set block at coords 40, 50, 60 to type glass

Minecraft Pi - synonym for mc_teleport
mc_set_pos

See mc_teleport

Introduced in v2.5

Minecraft Pi - set location to coords of specified tile/block
mc_set_tile x (number), y (number), z (number)

Introduced in v2.5

Example

Example
1

Minecraft Pi - teleport to world surface at x and z coords
mc_surface_teleport x (number), z (number)

Teleports you to the specified x and z coordinates with the y automatically set to place you on the surface of the world. For example, if the
x and z coords target a mountain, you’ll be placed on top of the mountain, not in the air or under the ground. See mc_ground_height for
discovering the height of the ground at a given x, z point.

Introduced in v2.5

Example

Example 1

mc_surface_teleport 40, 50 #=> Teleport user to coords x = 40, y = height of surface, z = 50

Minecraft Pi - teleport to a new location
mc_teleport x (number), y (number), z (number)

Magically teleport the player to the location specified by the x, y, z coordinates. Use this for automatically moving the player either small or
large distances around the world.

Introduced in v2.5

Example

Example 1

mc_teleport 40, 50, 60

The player will be moved to the position with coords:
x: 40, y: 50, z: 60

Create a ring buffer of midi note numbers
midi_notes list (array)

Create a new immutable ring buffer of notes from args. Indexes wrap around positively and negatively. Final ring consists only of MIDI
numbers and nil.

Introduced in v2.7

Examples

Example 1

(midi_notes :d3, :d4, :d5) #=> (ring 50, 62, 74)

Example 2

(midi_notes :d3, 62, nil) #=> (ring 50, 62, nil)

MIDI to Hz conversion
midi_to_hz note (symbol_or_number)

Convert a midi note to hz

Introduced in v2.0

Example

Example 1

midi_to_hz(60) #=> 261.6256

Define a new function
ndefine name (symbol)

Does nothing. Use to stop a define from actually defining. Simpler than wrapping whole define in a comment block or commenting each
individual line out.

Introduced in v2.1

Describe note
note note (symbol_or_number)

Takes a midi note, a symbol (e.g. :C) or a string (e.g. "C") and resolves it to a midi note. You can also pass an optional octave:
parameter to get the midi note for a given octave. Please note - octave: param overrides any octave specified in a symbol i.e. :c3. If the
note is nil, :r or :rest, then nil is returned (nil represents a rest)

Introduced in v2.0

Options

octave: The octave of the note. Overrides any octave declaration in the note symbol such as :c2. Default is
4

Examples

Example 1

puts note(60)
puts note(:C)
puts note(:C4)
puts note('C')

These all return 60 which is the midi number for middle C (octave 4)

Example 2

puts note(60, octave: 2)

puts note(:C, octave: 2)
puts note(:C4, octave: 2)
puts note('C', octave: 2)

returns 60 - octave param has no effect if we pass in a number

These all return 36 which is the midi number for C2 (two octaves below middle C)

note the octave param overrides any octaves specified in a symbol

Get note info
note_info note (symbol_or_number)

Returns an instance of SonicPi::Note. Please note - octave: param overrides any octave specified in a symbol i.e. :c3

Introduced in v2.0

Options

octave: The octave of the note. Overrides any octave declaration in the note symbol such as :c2. Default is
4

Example

Example 1

puts note_info(:C, octave: 2)
returns #<SonicPi::Note:0x0000010206bf78 @pitch_class="C", @octave=2, @interval=0, @midi_note=36, @midi_string="C0">

Get a range of notes
note_range low_note (note), high_note (note)

Produces a ring of all the notes between a low note and a high note. By default this is chromatic (all the notes) but can be filtered with a
:pitches argument. This opens the door to arpeggiator style sequences and other useful patterns. If you try to specify only pitches which
aren’t in the range it will raise an error - you have been warned!

Introduced in v2.6

Options

pitches: An array of notes (symbols or ints) to filter on. Octave information is
ignored.

Examples

Example 1

(note_range :c4, :c5) # => (ring 60,61,62,63,64,65,66,67,68,69,70,71,72)

Example 2

(note_range :c4, :c5, pitches: (chord :c, :major)) # => (ring 60,64,67,72)

Example 3

(note_range :c4, :c6, pitches: (chord :c, :major)) # => (ring 60,64,67,72,76,79,84)

Example 4

(note_range :c4, :c5, pitches: (scale :c, :major)) # => (ring 60,62,64,65,67,69,71,72)

Example 5

(note_range :c4, :c5, pitches: [:c4, :g2]) # => (ring 60,67,72)

Example 6

live_loop :arpeggiator do

 play (note_range :c4, :c5, pitches: (chord :c, :major)).tick
 sleep 0.125
end

try changing the chord

Random true value with specified probability
one_in num (number)

Returns true or false with a specified probability - it will return true every one in num times where num is the param you specify

Introduced in v2.0

Examples

Example 1

one_in 2 # will return true with a probability of 1/2, false with probability 1/2

Example 2

one_in 3 # will return true with a probability of 1/3, false with a probability of 2/3

Example 3

one_in 100 # will return true with a probability of 1/100, false with a probability of 99/100

Relative MIDI pitch to frequency ratio
pitch_to_ratio pitch (midi_number)

Convert a midi note to a ratio which when applied to a frequency will scale the frequency by the number of semitones. Useful for changing
the pitch of a sample by using it as a way of generating the rate.

Introduced in v2.5

Examples

Example 1

pitch_to_ratio 12 #=> 2.0

Example 2

pitch_to_ratio 1 #=> 1.05946

Example 3

pitch_to_ratio -12 #=> 0.5

Example 4

sample :ambi_choir, rate: pitch_to_ratio(3) # Plays :ambi_choir 3 semitones above default.

Example 5

(range 0, 16).each do |n|
 sample :ambi_choir, rate: pitch_to_ratio(n)
 sleep 0.5
end

Play a chromatic scale of semitones
For each note in the range 0->16
play :ambi_choir at the relative pitch
and wait between notes

Play current synth
play note (symbol_or_number)

Play note with current synth. Accepts a set of standard options which include control of an amplitude envelope with attack:, decay:,
sustain: and release: phases. These phases are triggered in order, so the duration of the sound is attack + decay + sustain + release
times. The duration of the sound does not affect any other notes. Code continues executing whilst the sound is playing through its
envelope phases.

Accepts optional args for modification of the synth being played. See each synth’s documentation for synth-specific opts. See use_synth
and with_synth for changing the current synth.

If note is nil, :r or :rest, play is ignored and treated as a rest.

Introduced in v2.0

Options

amp: The amplitude of the note

amp_slide: The duration in beats for amplitude changes to take place

pan: The stereo position of the sound. -1 is left, 0 is in the middle and 1 is on the right. You may use a value in between -1 and 1 such
as 0.25

pan_slide: The duration in beats for the pan value to change

attack: Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently.

decay: Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

sustain: Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

release: Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently.

attack_level: Amplitude level reached after attack phase and immediately before decay phase

decay_level: Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

sustain_level: Amplitude level reached after decay phase and immediately before release phase.

env_curve: Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

slide: Default slide time in beats for all slide opts. Individually specified slide opts will override this value

Examples

Example 1

play 50 # Plays note 50 on the current synth

Example 2

play 50, attack: 1 # Plays note 50 with a fade-in time of 1s

Example 3

play 62, pan: -1, release: 3 # Play note 62 in the left ear with a fade-out time of 3s.

Play notes simultaneously

play_chord notes (list)

Play a list of notes at the same time.

Accepts optional args for modification of the synth being played. See each synth’s documentation for synth-specific opts. See use_synth
and with_synth for changing the current synth.

Introduced in v2.0

Options

amp: The amplitude of the note

amp_slide: The duration in beats for amplitude changes to take place

pan: The stereo position of the sound. -1 is left, 0 is in the middle and 1 is on the right. You may use a value in between -1 and 1 such
as 0.25

pan_slide: The duration in beats for the pan value to change

attack: Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently.

decay: Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

sustain: Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

release: Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently.

attack_level: Amplitude level reached after attack phase and immediately before decay phase

decay_level: Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

sustain_level: Amplitude level reached after decay phase and immediately before release phase.

env_curve: Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

slide: Default slide time in beats for all slide opts. Individually specified slide opts will override this value

Examples

Example 1

play_chord [40, 45, 47]

play 40
play 45
play 47

same as:

Example 2

play_chord [40, 45, 47], amp: 0.5

play 40, amp: 0.5
play 45, amp: 0.5
play 47, amp: 0.5

same as:

Example 3

play_chord chord(:e3, :minor)

Play pattern of notes

play_pattern notes (list)

Play list of notes with the current synth one after another with a sleep of 1

Accepts optional args for modification of the synth being played. See each synth’s documentation for synth-specific opts. See use_synth
and with_synth for changing the current synth.

Introduced in v2.0

Examples

Example 1

play_pattern [40, 41, 42]

Same as:
play 40
sleep 1
play 41
sleep 1
play 42

Example 2

play_pattern [:d3, :c1, :Eb5] # You can use keyword notes

Example 3

play_pattern [:d3, :c1, :Eb5], amp: 0.5, cutoff: 90 # Supports the same arguments as play:

Play pattern of notes with specific times
play_pattern_timed notes (list), times (list_or_number)

Play each note in a list of notes one after another with specified times between them. The notes should be a list of MIDI numbers, symbols
such as :E4 or chords such as chord(:A3, :major) - identical to the first parameter of the play function. The times should be a list of times
between the notes in beats.

If the list of times is smaller than the number of gaps between notes, the list is repeated again. If the list of times is longer than the number
of gaps between notes, then some of the times are ignored. See examples for more detail.

Accepts optional args for modification of the synth being played. See each synth’s documentation for synth-specific opts. See use_synth
and with_synth for changing the current synth.

Introduced in v2.0

Options

amp: The amplitude of the note

amp_slide: The duration in beats for amplitude changes to take place

pan: The stereo position of the sound. -1 is left, 0 is in the middle and 1 is on the right. You may use a value in between -1 and 1 such
as 0.25

pan_slide: The duration in beats for the pan value to change

attack: Amount of time (in beats) for sound to reach full amplitude (attack_level). A short attack (i.e. 0.01) makes the initial part of the
sound very percussive like a sharp tap. A longer attack (i.e 1) fades the sound in gently.

decay: Amount of time (in beats) for the sound to move from full amplitude (attack_level) to the sustain amplitude (sustain_level).

sustain: Amount of time (in beats) for sound to remain at sustain level amplitude. Longer sustain values result in longer sounds. Full
length of sound is attack + decay + sustain + release.

release: Amount of time (in beats) for sound to move from sustain level amplitude to silent. A short release (i.e. 0.01) makes the final part
of the sound very percussive (potentially resulting in a click). A longer release (i.e 1) fades the sound out gently.

attack_level: Amplitude level reached after attack phase and immediately before decay phase

decay_level: Amplitude level reached after decay phase and immediately before sustain phase. Defaults to sustain_level unless explicitly set

Amplitude level reached after decay phase and immediately before release phase.

sustain_level:
Amplitude level reached after decay phase and immediately before release phase.

env_curve: Select the shape of the curve between levels in the envelope. 1=linear, 2=exponential, 3=sine, 4=welch, 6=squared, 7=cubed

slide: Default slide time in beats for all slide opts. Individually specified slide opts will override this value

Examples

Example 1

play_pattern_timed [40, 42, 44, 46], [1, 2, 3]

play 40
sleep 1
play 42
sleep 2
play 44
sleep 3
play 46

same as:

Example 2

play_pattern_timed [40, 42, 44, 46, 49], [1, 0.5]

play 40
sleep 1
play 42
sleep 0.5
play 44
sleep 1
play 46
sleep 0.5
play 49

same as:

Example 3

play_pattern_timed [40, 42, 44, 46], [0.5]

play 40
sleep 0.5
play 42
sleep 0.5
play 44
sleep 0.5
play 46

same as:

Example 4

play_pattern_timed [40, 42, 44], [1, 2, 3, 4, 5]

play 40
sleep 1
play 42
sleep 2
play 44

#same as:

Display a message in the output pane
print output (string)

Displays the information you specify as a string inside the output pane. This can be a number, symbol, or a string itself. Useful for

debugging. Synonym for puts.

Introduced in v2.0

Examples

Example 1

print "hello there" #=> will print the string "hello there" to the output pane

Example 2

print 5 #=> will print the number 5 to the output pane

Example 3

print foo #=> will print the contents of foo to the output pane

Display a message in the output pane
puts output (string)

Displays the information you specify as a string inside the output pane. This can be a number, symbol, or a string itself. Useful for
debugging. Synonym for print.

Introduced in v2.0

Examples

Example 1

print "hello there" #=> will print the string "hello there" to the output pane

Example 2

print 5 #=> will print the number 5 to the output pane

Example 3

print foo #=> will print the contents of foo to the output pane

Quantise a value to resolution
quantise n (number), step (positive_number)

Round value to the nearest multiple of step resolution.

Introduced in v2.1

Examples

Example 1

quantise(10, 1) # 10 is already a multiple of 1, so returns 10

Example 2

quantise(10, 1.1) # Returns 9.9 which is 1.1 * 9

Example 3

quantise(13.3212, 0.1) # 13.3

Example 4

quantise(13.3212, 0.2) # 13.4

Example 5

quantise(13.3212, 0.3) # 13.2

Example 6

quantise(13.3212, 0.5) # 13.5

Create a ramp vector
ramp list (array)

Create a new immutable ramp vector from args. Indexes always return first or last value if out of bounds.

Introduced in v2.6

Examples

Example 1

(ramp 1, 2, 3)[0] #=> 1

Example 2

(ramp 1, 2, 3)[1] #=> 2

Example 3

(ramp 1, 2, 3)[2] #=> 3

Example 4

(ramp 1, 2, 3)[3] #=> 3

Example 5

(ramp 1, 2, 3)[1000] #=> 3

Example 6

(ramp 1, 2, 3)[-1] #=> 1

(ramp 1, 2, 3)[-1] #=> 1

Example 7

(ramp 1, 2, 3)[-1000] #=> 1

Generate a random float below a value
rand max (number_or_range)

Given a max number, produces a float between 0 and the supplied max value. If max is a range, produces a float within the range. With no
args returns a random value between 0 and 1.

Introduced in v2.0

Example

Example 1

print rand(0.5) #=> will print a number like 0.375030517578125 to the output pane

Roll back random generator
rand_back amount (number)

Roll the random generator back essentially ‘undoing’ the last call to rand. You may specify an amount to roll back allowing you to skip
back n calls to rand.

Introduced in v2.7

Examples

Example 1

 puts rand

 rand_back

 puts rand
 puts rand

Basic rand stream rollback

prints 0.75006103515625

roll random stream back one
the result of the next call to rand will be
exactly the same as the previous call

prints 0.75006103515625 again!
prints 0.733917236328125

Example 2

 puts rand
 puts rand
 puts rand
 puts rand

 rand_back(3)

 puts rand
 puts rand

Jumping back multiple places in the rand stream

prints 0.75006103515625
prints 0.733917236328125
prints 0.464202880859375
prints 0.24249267578125

roll random stream back three places
the result of the next call to rand will be
exactly the same as the result 3 calls to
rand ago.

prints 0.733917236328125 again!
prints 0.464202880859375

Generate a random whole number below a value (exclusive)
rand_i max (number_or_range)

Given a max number, produces a whole number between 0 and the supplied max value exclusively. If max is a range produces an int
within the range. With no args returns either 0 or 1

Introduced in v2.0

Example

Example 1

print rand_i(5) #=> will print a either 0, 1, 2, 3, or 4 to the output pane

Reset rand generator to last seed
rand_reset ()

Resets the random stream to the last specified seed. See use_random_seed for changing the seed.

Introduced in v2.7

Example

Example 1

puts rand
 puts rand
 puts rand
 puts rand
 rand_reset
 puts rand

prints 0.75006103515625
prints 0.733917236328125
prints 0.464202880859375
prints 0.24249267578125
reset the random stream
prints 0.75006103515625

Jump forward random generator
rand_skip amount (number)

Jump the random generator forward essentially skipping the next call to rand. You may specify an amount to jump allowing you to skip n
calls to rand.

Introduced in v2.7

Examples

Example 1

 puts rand

 rand_skip

 puts rand

Basic rand stream skip

prints 0.75006103515625

jump random stream forward one
typically the next rand is 0.733917236328125

prints 0.464202880859375

Example 2

 puts rand
 puts rand
 puts rand
 puts rand

Jumping forward multiple places in the rand stream

prints 0.75006103515625
prints 0.733917236328125
prints 0.464202880859375
prints 0.24249267578125

 rand_reset

 puts rand

 rand_skip(2)

 puts rand 0.24249267578125

reset the random stream

prints 0.75006103515625

jump random stream forward three places
the result of the next call to rand will be
exactly the same as if rand had been called
three times

Create a ring buffer with the specified start, finish and step size
range start (number), finish (number), step_size (number)

Create a new ring buffer from the range arguments (start, finish and step size). Step size defaults to 1. Indexes wrap around positively and
negatively

Introduced in v2.2

Options

step: Size of increment between steps; step size.

inclusive: If set to true, range is inclusive of finish
value

Examples

Example 1

(range 1, 5) #=> (ring 1, 2, 3, 4)

Example 2

(range 1, 5, inclusive: true) #=> (ring 1, 2, 3, 4, 5)

Example 3

(range 1, 5, step: 2) #=> (ring 1, 3)

Example 4

(range 1, -5, step: 2) #=> (ring 1, -1, -3)

Example 5

(range 1, -5, step: 2)[-1] #=> -3

Relative frequency ratio to MIDI pitch
ratio_to_pitch ratio (number)

Convert a frequency ratio to a midi note which when added to a note will transpose the note to match the frequency ratio.

Introduced in v2.7

Examples

Example 1

ratio_to_pitch 2 #=> 12.0

Example 2

ratio_to_pitch 0.5 #=> -12.0

Random number in centred distribution
rdist width (number), centre (number)

Returns a random number within the range with width around centre. If optional arg step: is used, the result is quantised by step.

Introduced in v2.3

Options

step: Step size of value to quantise
to.

Examples

Example 1

print rdist(1, 0) #=> will print a number between -1 and 1

Example 2

print rdist(1) #=> centre defaults to 0 so this is the same as rdist(1, 0)

Example 3

loop do
 play :c3, pan: rdist(1)
 sleep 0.125
 end

#=> Will play :c3 with random L/R panning

Determine if note or args is a rest
rest? note_or_args (number_symbol_or_map)

Given a note or an args map, returns true if it represents a rest and false if otherwise

Introduced in v2.1

Examples

Example 1

puts rest? nil # true

Example 2

puts rest? :r # true

Example 3

puts rest? :rest # true

Example 4

puts rest? 60 # false

Example 5

puts rest? {} # false

Example 6

puts rest? {note: :rest} # true

Example 7

puts rest? {note: nil} # true

Example 8

puts rest? {note: 50} # false

Create a ring buffer
ring list (array)

Create a new immutable ring buffer from args. Indexes wrap around positively and negatively

Introduced in v2.2

Examples

Example 1

(ring 1, 2, 3)[0] #=> 1

Example 2

(ring 1, 2, 3)[1] #=> 2

Example 3

(ring 1, 2, 3)[3] #=> 1

Example 4

(ring 1, 2, 3)[-1] #=> 3

Generate a random float between two numbers
rrand min (number), max (number)

Given two numbers, this produces a float between the supplied min and max values exclusively. Both min and max need to be supplied.
For random integers, see rrand_i. If optional arg step: is used, the result is quantised by step.

Introduced in v2.0

Options

step: Step size of value to quantise
to.

Examples

Example 1

print rrand(0, 10) #=> will print a number like 8.917730007820797 to the output pane

Example 2

loop do
 play rrand(60, 72)
 sleep 0.125
 end

#=> Will play a random non-integer midi note between C4 (60) and C5 (72) such as 67.3453 or 71.2393

Generate a random whole number between two points inclusively
rrand_i min (number), max (number)

Given two numbers, this produces a whole number between the min and max you supplied inclusively. Both min and max need to be
supplied. For random floats, see rrand

Introduced in v2.0

Examples

Example 1

print rrand_i(0, 10) #=> will print a random number between 0 and 10 (e.g. 4, 0 or 10) to the output pane

Example 2

loop do
 play rrand_i(60, 72)
 sleep 0.125
 end

#=> Will play a random midi note between C4 (60) and C5 (72)

Real time conversion
rt seconds (number)

Real time representation. Returns the amount of beats for the value in real-time seconds. Useful for bypassing any bpm scaling

Introduced in v2.0

Example

Example 1

use_bpm 120
 play 50
 sleep 1
 play 62
 sleep rt(1)
 play 72

modifies all time to be half

actually sleeps for half of a second

bypasses bpm scaling and sleeps for a second

Trigger sample
sample name_or_path (symbol_or_string)

This is the main method for playing back recorded sound files (samples). Sonic Pi comes with lots of great samples included (see the
section under help) but you can also load and play .wav, .wave, .aif or .aiff files from anywhere on your computer too. The rate:
parameter affects both the speed and the pitch of the playback. See the examples for details. Check out the use_sample_pack and
use_sample_pack_as fns for details on making it easy to work with a whole folder of your own sample files. Note, that on the first trigger
of a sample, Sonic Pi has to load the sample which takes some time and may cause timing issues. To preload the samples you wish to
work with consider using load_sample or load_samples.

Introduced in v2.0

Options

rate: Rate with which to play back the sample. Higher rates mean an increase in pitch and a decrease in duration. Default is 1.

beat_stretch: Stretch (or shrink) the sample to last for exactly the specified number of beats. Please note - this does not keep the pitch
constant and is essentially the same as modifying the rate directly.

pitch_stretch:
Stretch (or shrink) the sample to last for exactly the specified number of beats. This attempts to keep the pitch constant using the
pitch: opt. Note, it’s very likely you’ll need to experiment with the window_size: pitch_dis: and time_dis: opts depending on the
sample and the amount you’d like to stretch/shrink from original size.

attack: Time to reach full volume. Default is 0

sustain: Time to stay at full volume. Default is to stretch to length of sample (minus attack and release times).

release: Time (from the end of the sample) to go from full amplitude to 0. Default is 0

start: Position in sample as a fraction between 0 and 1 to start playback. Default is 0.

finish: Position in sample as a fraction between 0 and 1 to end playback. Default is 1.

pan: Stereo position of audio. -1 is left ear only, 1 is right ear only, and values in between position the sound accordingly. Default is 0

amp: Amplitude of playback

norm: Normalise the audio (make quieter parts of the sample louder and louder parts quieter) - this is similar to the normaliser FX. This
may emphasise any clicks caused by clipping.

cutoff: Cutoff value of the built-in low pass filter (lpf) in MIDI notes. Unless specified, the lpf is not added to the signal chain.

res: Cutoff-specific opt. Only honoured if cutoff: is specified. Filter resonance as a value between 0 and 1. Large amounts of
resonance (a res: near 1) can create a whistling sound around the cutoff frequency. Smaller values produce less resonance.

rpitch: Rate modified pitch. Multiplies the rate by the appropriate ratio to shift up or down the specified amount in MIDI notes. Please
note - this does not keep the duration and rhythmical rate constant and ie essentially the same as modifying the rate directly.

pitch: Pitch adjustment in semitones. 1 is up a semitone, 12 is up an octave, -12 is down an octave etc. Maximum upper limit of 24 (up
2 octaves). Lower limit of -72 (down 6 octaves). Decimal numbers can be used for fine tuning.

window_size:

Pitch shift-specific opt - only honoured if the pitch: opt is used. Pitch shift works by chopping the input into tiny slices, then
playing these slices at a higher or lower rate. If we make the slices small enough and overlap them, it sounds like the original
sound with the pitch changed. The window_size is the length of the slices and is measured in seconds. It needs to be around 0.2
(200ms) or greater for pitched sounds like guitar or bass, and needs to be around 0.02 (20ms) or lower for percussive sounds
like drum loops. You can experiment with this to get the best sound for your input.

pitch_dis:
Pitch shift-specific opt - only honoured if the pitch: opt is used. Pitch dispersion - how much random variation in pitch to add.
Using a low value like 0.001 can help to “soften up” the metallic sounds, especially on drum loops. To be really technical,
pitch_dispersion is the maximum random deviation of the pitch from the pitch ratio (which is set by the pitch param)

time_dis:
Pitch shift-specific opt - only honoured if the pitch: opt is used. Time dispersion - how much random delay before playing each
grain (measured in seconds). Again, low values here like 0.001 can help to soften up metallic sounds introduced by the effect.
Large values are also fun as they can make soundscapes and textures from the input, although you will most likely lose the
rhythm of the original. NB - This won’t have an effect if it’s larger than window_size.

slide: Default slide time in beats for all slide opts. Individually specified slide opts will override this value

Examples

Example 1

sample :perc_bell # plays one of Sonic Pi's built in samples

Example 2

sample '/home/yourname/path/to/a/sample.wav' # plays a wav|wave|aif|aiff file from your local filesystem

Example 3

sample :loop_amen
sleep sample_duration(:loop_amen)

sample :loop_amen, rate: 0.5
sleep sample_duration(:loop_amen, rate: 0.5)

sample :loop_amen, rate: 0.05
sleep sample_duration(:loop_amen, rate: 0.05)

Let's play with the rate parameter
play one of the included samples

this sleeps for exactly the length of the sample

Setting a rate of 0.5 will cause the sample to
a) play half as fast
b) play an octave down in pitch
#
Listen:

Setting a really low number means the sample takes
a very long time to finish! Also it sounds very
different to the original sound

Example 4

sample :loop_amen, rate: -1
sleep sample_duration(:loop_amen, rate: 1)

sample :loop_amen, rate: -0.5
sleep sample_duration(:loop_amen, rate: 0.5)

Setting a really negative number can be lots of fun
It plays the sample backwards!

there's no need to give sample_duration a negative number though

Using a rate of -0.5 is just like using the positive 0.5
(lower in pitch and slower) except backwards

there's no need to give sample_duration a negative number though

Example 5

puts sample_duration(:loop_amen, rate: 0)

BE CAREFUL
Don't set the rate to 0 though because it will get stuck
and won't make any sound at all!
We can see that the following would take Infinity seconds to finish

Example 6

s = sample :loop_amen_full, rate: 0.05
sleep 1
control(s, rate: 0.2)
sleep 1
control(s, rate: 0.4)
sleep 1
control(s, rate: 0.6)
sleep 1
control(s, rate: 0.8)
sleep 1
control(s, rate: 1)

Just like the play method, we can assign our sample player
to a variable and control the rate parameter whilst it's playing.
#
The following example sounds a bit like a vinyl speeding up
Note, this technique only works when you don't use envelope or start/finish opts.

Example 7

sample :loop_amen, start: 0.5, finish: 1

Using the :start and :finish parameters you can play a section of the sample.
The default start is 0 and the default finish is 1
play the last half of a sample

Example 8

sample :loop_amen, start: 1, finish: 0.5

You can also play part of any sample backwards by using a start value that's
higher than the finish
play the last half backwards

Example 9

sample {sample_name: :loop_amen, rate: 2}
You can also specify the sample using a Hash with a `:sample_name` key

Example 10

sample lambda { [:loop_amen, :loop_garzul].choose }

You can also specify the sample using a lambda that yields a symbol
although you probably don't need a lambda for this in most cases.

Get sample data
sample_buffer path (string)

Alias for the load_sample method. Loads sample if necessary and returns buffer information.

Introduced in v2.0

Example

Example 1

see load_sample

Get duration of sample in beats
sample_duration path (string)

Given the name of a loaded sample, or a path to a .wav, .wave, .aif or .aiff file returns the length of time in beats that the sample
would play for. sample_duration understands and accounts for all the opts you can pass to sample which have an effect on the
playback duration such as rate:. The time returned is scaled to the current bpm.

Introduced in v2.0

Options

rate: Rate modifier. For example, doubling the rate will halve the duration.

start: Start position of sample playback as a value from 0 to 1

finish: Finish position of sample playback as a value from 0 to 1

attack: Duration of the attack phase of the envelope.

decay: Duration of the decay phase of the envelope.

Duration of the sustain phase of the envelope.

sustain: Duration of the sustain phase of the envelope.

release: Duration of the release phase of the envelope.

beat_stretch: Change the rate of the sample so that its new duration matches the specified number of beats.

pitch_stretch: Change the rate of the sample so that its new duration matches the specified number of beats but attempt to preserve
pitch.

rpitch: Change the rate to shift the pitch up or down the specified number of MIDI notes.

Examples

Example 1

puts sample_duration(:loop_garzul)
Simple use
returns 8.0 because this sample is 8 seconds long

Example 2

use_bpm 120
puts sample_duration(:loop_garzul)
use_bpm 90
puts sample_duration(:loop_garzul)
use_bpm 21
puts sample_duration(:loop_garzul)

The result is scaled to the current BPM

=> 16.0

=> 12.0

=> 2.8

Example 3

live_loop :avoid_this do
 with_fx :slicer do
 sample :loop_amen
 sleep sample_duration(:loop_amen)
 end
end

live_loop :prefer_this do
 use_sample_bpm :loop_amen
 with_fx :slicer do
 sample :loop_amen
 sleep 1
 end
end

live_loop :or_this do
 with_fx :slicer do
 sample :loop_amen, beat_stretch: 1
 sleep 1
 end
end

Avoid using sample_duration to set the sleep time in live_loops

It is possible to use sample_duration to drive the frequency of a live loop.
However, if you're using a rhythmical sample such as a drum beat and it isn't
in the same BPM as the current BPM, then the FX such as this slicer will be
badly out of sync. This is because the slicer slices at the current BPM and
this live_loop is looping at a different BPM (that of the sample)

Instead prefer to set the BPM of the live_loop to match the sample. It has
two benefits. Now our sleep is a nice and simple 1 (as it's one beat).
Also, our slicer now works with the beat and sounds much better.

Alternatively we can beat_stretch the sample to match the current BPM. This has the
side effect of changing the rate of the sample (and hence the pitch). However, the
FX works nicely in time and the sleep time is also a simple 1.

Example 4

sample_duration :loop_garzul, rate: 1

sample_duration :loop_garzul, rate: 0.5

sample_duration :loop_garzul, rate: 2

sample_duration :loop_garzul, rate: -2

sample_duration :loop_garzul, attack: 1
sample_duration :loop_garzul, attack: 100
sample_duration :loop_garzul, attack: 0

The standard sample opts are also honoured

Playing a sample at standard speed will return standard length
=> 8.0

Playing a sample at half speed will double duration
=> 16.0

Playing a sample at double speed will halve duration
=> 4.0

Playing a sample backwards at double speed will halve duration
=> 4.0

Without an explicit sustain: opt attack: just affects amplitude not duration
=> 8.0
=> 8.0
=> 8.0

sample_duration :loop_garzul, release: 1
sample_duration :loop_garzul, release: 100
sample_duration :loop_garzul, release: 0

sample_duration :loop_garzul, decay: 1
sample_duration :loop_garzul, decay: 100
sample_duration :loop_garzul, decay: 0

sample_duration :loop_garzul, sustain: 0, attack: 0.5
sample_duration :loop_garzul, sustain: 0, decay: 0.1
sample_duration :loop_garzul, sustain: 0, release: 1
sample_duration :loop_garzul, sustain: 2, attack: 0.5, release: 1

sample_duration :loop_garzul, sustain: 0, attack: 8, release: 3

sample_duration :loop_garzul, rate: 10
sample_duration :loop_garzul, sustain: 0, attack: 0.9, rate: 10

sample_duration :loop_garzul, rpitch: 12
sample_duration :loop_garzul, rpitch: -12

sample_duration :loop_garzul, rpitch: 12, rate: 2

sample_duration :loop_garzul, beat_stretch: 3
sample_duration :loop_garzul, beat_stretch: 3, rate: 0.5

sample_duration :loop_garzul, pitch_stretch: 3
sample_duration :loop_garzul, pitch_stretch: 3, rate: 0.5

sample_duration :loop_garzul, start: 0.5
sample_duration :loop_garzul, start: 0.5, finish: 0.75
sample_duration :loop_garzul, finish: 0.5, start: 0.75
sample_duration :loop_garzul, rate: 2, finish: 0.5, start: 0.75

Without an explicit sustain: opt release: just affects amplitude not duration
=> 8.0
=> 8.0
=> 8.0

Without an explicit sustain: opt decay: just affects amplitude not duration
=> 8.0
=> 8.0
=> 8.0

With an explicit sustain: opt, if the attack + decay + sustain + release envelope
duration is less than the sample duration time, the envelope will shorten the
sample time.
=> 0.5
=> 0.1
=> 1.0
=> 3.5

If the envelope duration is longer than the sample it will not affect the
sample duration
=> 8

All other opts are taken into account before the comparison with the envelope opts.
=> 0.8
=> 0.8 (The duration of the sample is less than the envelope length so wins)

The rpitch: opt will modify the rate to shift the pitch of the sample up and down
and therefore affects duration.
=> 4.0
=> 16

The rpitch: and rate: opts combine together.
=> 2.0

The beat_stretch: opt stretches the sample so that its duration matches the value.
It also combines with rate:
=> 3.0
=> 6.0

The pitch_stretch: opt acts identically to beat_stretch when just considering sample
duration.
=> 3.0
=> 6.0

The start: and finish: opts can also shorten the sample duration and also combine
with other opts such as rate:
=> 4.0
=> 2.0
=> 2.0
=> 1.0

Example 5

sample :loop_amen
sleep sample_duration(:loop_amen)
sample :loop_amen

Triggering samples one after another

start the :loop_amen sample
wait for the duration of :loop_amen before
starting it again

Get all sample groups
sample_groups

Return a list of all the sample groups available

Introduced in v2.0

Get sample information
sample_info path (string)

Alias for the load_sample method. Loads sample if necessary and returns sample information.

Introduced in v2.0

Example

Example 1

see load_sample

Test if sample was pre-loaded
sample_loaded? path (string)

Given a path to a .wav, .wave, .aif or .aiff file, returns true if the sample has already been loaded.

Introduced in v2.2

Example

Example 1

load_sample :elec_blip
puts sample_loaded? :elec_blip
puts sample_loaded? :misc_burp

:elec_blip is now loaded and ready to play as a sample
prints true because it has been pre-loaded
prints false because it has not been loaded

Get sample names
sample_names group (symbol)

Return a list of sample names for the specified group

Introduced in v2.0

Create scale
scale tonic (symbol), name (symbol)

Creates a ring of MIDI note numbers when given a tonic note and a scale type. Also takes an optional num_octaves: parameter (octave
1 is the default)

Introduced in v2.0

Options

num_octaves: The number of octaves you’d like the scale to consist of. More octaves means a larger scale. Default is
1.

Examples

Example 1

puts scale(:C, :major) # returns the list [60, 62, 64, 65, 67, 69, 71, 72]

Example 2

play_pattern scale(:C, :major)
anywhere you can use a list of notes, you can also use scale

Example 3

play_pattern(:C, :major, num_octaves: 2)
you can use the :num_octaves parameter to get more notes

Example 4

use_bpm 300
play_pattern scale(:C, :diatonic)
play_pattern scale(:C, :ionian)
play_pattern scale(:C, :major)
play_pattern scale(:C, :dorian)
play_pattern scale(:C, :phrygian)
play_pattern scale(:C, :lydian)
play_pattern scale(:C, :mixolydian)
play_pattern scale(:C, :aeolian)
play_pattern scale(:C, :minor)
play_pattern scale(:C, :locrian)
play_pattern scale(:C, :hex_major6)
play_pattern scale(:C, :hex_dorian)
play_pattern scale(:C, :hex_phrygian)
play_pattern scale(:C, :hex_major7)
play_pattern scale(:C, :hex_sus)
play_pattern scale(:C, :hex_aeolian)
play_pattern scale(:C, :minor_pentatonic)
play_pattern scale(:C, :yu)
play_pattern scale(:C, :major_pentatonic)
play_pattern scale(:C, :gong)
play_pattern scale(:C, :egyptian)
play_pattern scale(:C, :shang)
play_pattern scale(:C, :jiao)
play_pattern scale(:C, :zhi)
play_pattern scale(:C, :ritusen)
play_pattern scale(:C, :whole_tone)
play_pattern scale(:C, :whole)
play_pattern scale(:C, :chromatic)
play_pattern scale(:C, :harmonic_minor)
play_pattern scale(:C, :melodic_minor_asc)
play_pattern scale(:C, :hungarian_minor)
play_pattern scale(:C, :octatonic)
play_pattern scale(:C, :messiaen1)
play_pattern scale(:C, :messiaen2)
play_pattern scale(:C, :messiaen3)
play_pattern scale(:C, :messiaen4)
play_pattern scale(:C, :messiaen5)
play_pattern scale(:C, :messiaen6)
play_pattern scale(:C, :messiaen7)
play_pattern scale(:C, :super_locrian)
play_pattern scale(:C, :hirajoshi)
play_pattern scale(:C, :kumoi)
play_pattern scale(:C, :neapolitan_major)
play_pattern scale(:C, :bartok)
play_pattern scale(:C, :bhairav)
play_pattern scale(:C, :locrian_major)
play_pattern scale(:C, :ahirbhairav)
play_pattern scale(:C, :enigmatic)
play_pattern scale(:C, :neapolitan_minor)
play_pattern scale(:C, :pelog)
play_pattern scale(:C, :augmented2)
play_pattern scale(:C, :scriabin)
play_pattern scale(:C, :harmonic_major)
play_pattern scale(:C, :melodic_minor_desc)
play_pattern scale(:C, :romanian_minor)
play_pattern scale(:C, :hindu)
play_pattern scale(:C, :iwato)
play_pattern scale(:C, :melodic_minor)
play_pattern scale(:C, :diminished2)
play_pattern scale(:C, :marva)
play_pattern scale(:C, :melodic_major)
play_pattern scale(:C, :indian)
play_pattern scale(:C, :spanish)
play_pattern scale(:C, :prometheus)
play_pattern scale(:C, :diminished)
play_pattern scale(:C, :todi)
play_pattern scale(:C, :leading_whole)
play_pattern scale(:C, :augmented)
play_pattern scale(:C, :purvi)
play_pattern scale(:C, :chinese)
play_pattern scale(:C, :lydian_minor)

Sonic Pi supports a large range of scales.
otherwise playing all these will take ages...

All scale names
scale_names

Returns a ring containing all scale names known to Sonic Pi

Introduced in v2.6

Example

Example 1

puts scale_names #=> prints a list of all the scales

Set control delta globally
set_control_delta! time (number)

Specify how many seconds between successive modifications (i.e. trigger then controls) of a specific node on a specific thread. Set larger
if you are missing control messages sent extremely close together in time.

Introduced in v2.1

Example

Example 1

set_control_delta! 0.1

s = play 70, release: 8, note_slide: 8
control s, note: 82

Set control delta to 0.1

Play a note and set the slide time
immediately start sliding note.
This control message might not be
correctly handled as it is sent at the
same virtual time as the trigger.
If you don't hear a slide, try increasing the
control delta until you do.

Control master mixer
set_mixer_control!

The master mixer is the final mixer that all sound passes through. This fn gives you control over the master mixer allowing you to
manipulate all the sound playing through Sonic Pi at once. For example, you can sweep a lpf or hpf over the entire sound.

Introduced in v2.7

Options

pre_amp: Controls the amplitude of the signal prior to the FX stage of the mixer (prior to lpf/hpf stages). Has slide opts. Default
1.

amp: Controls the amplitude of the signal after the FX tage. Has slide opts. Default 1.

hpf: Global hpf FX. Has slide opts. Default 0.

lpf: Global lpf FX. Has slide opts. Default 135.5.

hpf_bypass: Bypass the global hpf. 0=no bypass, 1=bypass. Default 0.

lpf_bypass: Bypass the global lpf. 0=no bypass, 1=bypass. Default 0.

limiter_bypass: Bypass the final limiter. 0=no bypass, 1=bypass. Default 0.

leak_dc_bypass: Bypass the final DC leak correction FX. 0=no bypass, 1=bypass. Default 0.

Example

Example 1

set_mixer_control! lpf: 30, lpf_slide: 16 # slide the global lpf to 30 over 16 beats.

Set sched ahead time globally
set_sched_ahead_time! time (number)

Specify how many seconds ahead of time the synths should be triggered. This represents the amount of time between pressing ‘Run’ and
hearing audio. A larger time gives the system more room to work with and can reduce performance issues in playing fast sections on
slower platforms. However, a larger time also increases latency between modifying code and hearing the result whilst live coding.

Introduced in v2.0

Example

Example 1

set_sched_ahead_time! 1 # Code will now run approximately 1 second ahead of audio.

Set Volume globally
set_volume! vol (number)

Set the main system volume to vol. Accepts a value between 0 and 5 inclusive. Vols greater or smaller than the allowed values are
trimmed to keep them within range. Default is 1.

Introduced in v2.0

Examples

Example 1

set_volume! 2 # Set the main system volume to 2

Example 2

set_volume! -1 # Out of range, so sets main system volume to 0

Example 3

set_volume! 7 # Out of range, so sets main system volume to 5

Randomise order of a list
shuffle list (array)

Returns a new list with the same elements as the original but with their order shuffled. Also works for strings

Introduced in v2.1

Examples

Example 1

shuffle [1, 2, 3, 4] #=> Would return something like: [3, 4, 2, 1]

Example 2

shuffle "foobar" #=> Would return something like: "roobfa"

Wait for duration
sleep beats (number)

Wait for a number of beats before triggering the next command. Beats are converted to seconds by scaling to the current bpm setting.

Introduced in v2.0

Examples

Example 1

 play 50
 play 55
 play 62

 sleep 1

 play 50
 sleep 0.5
 play 55
 sleep 0.5
 play 62

Without calls to sleep, all sounds would happen at once:

This is actually a chord with all notes played simultaneously

Create a gap, to allow a moment's pause for reflection...

Let's try the chord again, but this time with sleeps:
With the sleeps, we turn a chord into an arpeggio

Example 2

 use_bpm 120
 play 50
 sleep 1
 play 55
 sleep 1
 play 62

 use_bpm 30
 play 50
 sleep 1
 play 55
 sleep 1
 play 62

The amount of time sleep pauses for is scaled to match the current bpm. The default bpm is 60. Let's double it:

This actually sleeps for 0.5 seconds as we're now at double speed

Let's go down to half speed:

This now sleeps for 2 seconds as we're now at half speed.

Print a string representing a list of numeric values as a spark graph/bar
chart
spark

Given a list of numeric values, this method turns them into a string of bar heights and prints them out. Useful for quickly graphing the
shape of an array.

Introduced in v2.5

Examples

Example 1

spark (range 1, 5)) #=> ▁▃▅█

Example 2

spark (range 1, 5).shuffle) #=> ▃█▅▁

Returns a string representing a list of numeric values as a spark
graph/bar chart
spark_graph

Given a list of numeric values, this method turns them into a string of bar heights. Useful for quickly graphing the shape of an array.
Remember to use puts so you can see the output. See spark for a simple way of printing a spark graph.

Introduced in v2.5

Examples

Example 1

puts (spark_graph (range 1, 5)) #=> ▁▃▅█

Example 2

puts (spark_graph (range 1, 5).shuffle) #=> ▃█▅▁

Euclidean distribution for beats
spread num_accents (number), size (number)

Creates a new ring of boolean values which space a given number of accents as evenly as possible throughout a bar. This is an
implementation of the process described in ‘The Euclidean Algorithm Generates Traditional Musical Rhythms’ (Toussaint 2005).

Introduced in v2.4

Options

rotate: rotate to the next strong beat allowing for easy permutations of the original rhythmic grouping (see
example)

Examples

Example 1

(spread 3, 8) #=> (ring true, false, false, true, false, false, true, false) a spacing of 332

Example 2

(spread 3, 8, rotate: 1) #=> (ring true, false, false, true, false, true, false, false) a spacing of 323

Example 3

Easily create interesting polyrhythmic beats

 live_loop :euclid_beat do
 sample :elec_bong, amp: 1.5 if (spread 3, 8).tick
 sample :perc_snap, amp: 0.8 if (spread 7, 11).look
 sample :bd_haus, amp: 2 if (spread 1, 4).look
 sleep 0.125
 end

Spread 3 bongs over 8
Spread 7 snaps over 11
Spread 1 bd over 4

Example 4

 (spread 2, 5)

 (spread 3, 4)

 (spread 3, 5)

 (spread 3, 7)

 (spread 3, 8)

 (spread 4, 7)

 (spread 4, 9)

 (spread 4, 11)

 (spread 5, 6)

 (spread 5, 7)

 (spread 5, 8)

 (spread 5, 9)

 (spread 5, 11)

 (spread 5, 12)

 (spread 5, 16)

 (spread 7, 8)

 (spread 7, 12)

 (spread 7, 16)

 (spread 9, 16)

 (spread 11, 24)

 (spread 13, 24)

Spread descriptions from
'The Euclidean Algorithm Generates Traditional Musical Rhythms' (Toussaint 2005).
A thirteenth century Persian rhythm called Khafif-e-ramal.

The archetypal pattern of the Cumbria from Columbia, as well
as a Calypso rhythm from Trinidad

When started on the second onset, is another thirteenth
century Persian rhythm by the name of Khafif-e-ramal, as well
as a Romanian folk-dance rhythm.

A ruchenitza rhythm used in a Bulgarian folk-dance.

The Cuban tresillo pattern

Another Ruchenitza Bulgarian folk-dance rhythm

The Aksak rhythm of Turkey.

The metric pattern used by Frank Zappa in his piece Outside Now

Yields the York-Samai pattern, a popular Arab rhythm, when
started on the second onset.

The Nawakhat pattern, another popular Arab rhythm.

The Cuban cinquillo pattern.

A popular ARab rhythm called Agsag-Samai.

The metric pattern used by Moussorgsky in Pictures at an
Exhibition

The Venda clapping pattern of a South African children's
song.

The Bossa-Nova rhythm necklace of Brazil.

A typical rhythm played on the Bendir (frame drum)

A common West African bell pattern.

A Samba rhythm necklace from Brazil.

A rhythm necklace used in the Central African Republic.

A rhythm necklace of the Aka Pygmies of Central Africa.

Another rhythm necklace of the Aka Pygmies of the upper
Sangha.

Get server status
status

This returns a Hash of information about the synthesis environment. Mostly used for debugging purposes.

Introduced in v2.0

Example

Example 1

puts status

Returns something similar to:
{
:ugens=>10,
:synths=>1,
:groups=>7,

:sdefs=>61,
:avg_cpu=>0.20156468451023102,
:peak_cpu=>0.36655542254447937,
:nom_samp_rate=>44100.0,
:act_samp_rate=>44099.9998411752,
:audio_busses=>2,
:control_busses=>0
}

Stop current thread or run
stop

Stops the current thread or if not in a thread, stops the current run. Does not stop any running synths triggered previously in the run/thread
or kill any existing sub-threads.

Introduced in v2.5

Examples

Example 1

sample :loop_amen
 sleep 0.5
 stop
 sample :loop_garzul

#=> this sample is played until completion

#=> signal to stop executing this run
#=> this never executes

Example 2

in_thread do
 play 60
 stop
 sleep 0.5
 play 72
 end

 play 80

#=> this note plays

#=> this sleep never happens
#=> this play never happens

#=> this plays as the stop only affected the above thread

Example 3

 live_loop :foo
 sample :bd_haus
 sleep 1
 stop
 end

 live_loop :bar
 sample :elec_blip
 sleep 0.25
 end

Stopping live loops

live loop :foo will now stop and no longer loop

live loop :bar will continue looping

Stretch a sequence of values
stretch list (anything), count (number)

Stretches a list of values each value repeated count times. Always returns a ring regardless of the type of the list that is stretched. To
preserve type, consider using .stretch i.e. (ramp 1, 2, 3).stretch(2) #=> (ramp 1, 1, 2, 2, 3, 3)

Introduced in v2.6

Examples

Example 1

(stretch [1,2], 3) #=> (ring 1, 1, 1, 2, 2, 2)

(stretch [1,2], 3) #=> (ring 1, 1, 1, 2, 2, 2)

Example 2

(stretch [:e2, :c3], 1, [:c2, :d3], 2) #=> (ring :e2, :c3, :c2, :c2, :d3, :d3)

Sync with other threads
sync cue_id (symbol)

Pause/block the current thread until a cue heartbeat with a matching cue_id is received. When a matching cue message is received,
unblock the current thread, and continue execution with the virtual time set to match the thread that sent the cue heartbeat. The current
thread is therefore synced to the cue thread. If multiple cue ids are passed as arguments, it will sync on the first matching cue_id. By
default the BPM of the cueing thread is inherited. This can be disabled using the bpm_sync: opt.

Introduced in v2.0

Options

bpm_sync: Inherit the BPM of the cueing thread. Default is
false

Examples

Example 1

in_thread do
 sync :foo
 sample :ambi_lunar_land
 end

 sleep 5

 cue :foo

this parks the current thread waiting for a foo sync message to be received.

We send a sync message from the main thread.
This then unblocks the thread above and we then hear the sample

Example 2

in_thread do
 loop do
 cue :tick
 sleep 0.5
 end
 end

 loop do
 sync :tick
 sample :drum_heavy_kick
 end

Start a metronome thread
Loop forever:
sending tick heartbeat messages
and sleeping for 0.5 beats between ticks

We can now play sounds using the metronome.
In the main thread, just loop
waiting for :tick sync messages
after which play the drum kick sample

Example 3

sync :foo, :bar # Wait for either a :foo or :bar cue

Example 4

in_thread do
 loop do
 cue [:foo, :bar, :baz].choose
 sleep 0.5
 end
 end

Start a metronome thread
Loop forever:
sending one of three tick heartbeat messages randomly
and sleeping for 0.5 beats between ticks

 in_thread do
 loop do
 sync :foo
 sample :elec_beep
 end
 end

 in_thread do
 loop do
 sync :bar
 sample :elec_flip
 end
 end

 in_thread do
 loop do
 sync :baz
 sample :elec_blup
 end
 end

We can now play sounds using the metronome:

In the main thread, just loop
waiting for :foo sync messages
after which play the elec beep sample

In the main thread, just loop
waiting for :bar sync messages
after which play the elec flip sample

In the main thread, just loop
waiting for :baz sync messages
after which play the elec blup sample

Trigger specific synth
synth synth_name (symbol)

Trigger specified synth with given arguments. Bypasses current synth value, yet still honours synth defaults.

Introduced in v2.0

Options

slide: Default slide time in beats for all slide opts. Individually specified slide opts will override this
value

Examples

Example 1

synth :fm, note: 60, amp: 0.5 # Play note 60 of the :fm synth with an amplitude of 0.5

Example 2

use_synth_defaults release: 5
synth :dsaw, note: 50

Play note 50 of the :dsaw synth with a release of 5

Increment a tick and return value
tick value (number)

Increment the default tick by 1 and return value. Successive calls to tick will continue to increment the default tick. If a key is specified,
increment that specific tick. If an increment value is specified, increment key by that value rather than 1. Ticks are in_thread and
live_loop local, so incrementing a tick only affects the current thread’s version of that tick. See tick_reset and tick_set for directly
manipulating the tick vals.

Introduced in v2.6

Options

step: The amount to tick up by. Default is 1.

offset: Offset to add to index returned. Useful when calling tick on lists, rings and vectors to offset the returned value. Default is
0.

Examples

Example 1

puts tick
 puts tick
 puts tick
 puts tick

#=> 0
#=> 1
#=> 2
#=> 3

Example 2

puts tick(:foo)
 puts tick(:foo)
 puts tick(:foo)
 puts tick(:bar)

#=> 0 # named ticks have their own counts
#=> 1
#=> 2
#=> 0 # tick :bar is independent of tick :foo

Example 3

 live_loop :fast_tick do
 puts tick
 sleep 2
 end

 live_loop :slow_tick do
 puts tick
 sleep 4

 end

Each_live loop has its own separate ticks

the fast_tick live_loop's tick will
be updated every 2 seconds

the slow_tick live_loop's tick is
totally independent from the fast_tick
live loop and will be updated every 4
seconds

Example 4

live_loop :regular_tick do
 puts tick
 sleep 1
 end

 live_loop :random_reset_tick do
 if one_in 3
 tick_reset
 puts "reset tick!"
 end
 puts tick
 sleep 1

 end

the regular_tick live_loop's tick will
be updated every second

randomly reset tick

this live_loop's tick is totally
independent and the reset only affects
this tick.

Example 5

 live_loop :scale do
 play [:c, :d, :e, :f, :g].tick
 sleep 1
 end

Ticks work directly on lists, and will tick through each element
However, once they get to the end, they'll return nil

play all notes just once, then rests

Example 6

 live_loop :odd_scale do
 tick
 play [:c, :d, :e, :f, :g, :a].tick

 sleep 1
 end

Normal ticks interact directly with list ticks

Increment the default tick
this now play every *other* note just once,
then rests

Example 7

 live_loop :looped_scale do
 play (ring :c, :d, :e, :f, :g).tick
 sleep 1
 end

Ticks work wonderfully with rings
as the ring ensures the tick wraps
round internally always returning a
value

play all notes just once, then repeats

Example 8

 live_loop :looped_scale do
 play (scale :e3, :minor_pentatonic).tick
 sleep 0.25
 end

Ticks work wonderfully with scales
which are also rings

play all notes just once, then repeats

Reset tick to 0
tick_reset

Reset default tick to 0. If a key is referenced, set that tick to 0 instead. Same as calling tick_set(0)

Introduced in v2.6

Examples

Example 1

 tick
 tick
 tick
 puts look
 tick_set 0
 puts look

increment default tick a few times

#=> 2 (default tick is now 2)
default tick is now 0
#=> 0 (default tick is now 0

Example 2

 tick :foo
 tick :foo
 tick :foo
 puts look(:foo)
 tick_set 0
 puts look(:foo)
 tick_set :foo, 0
 puts look(:foo)

increment tick :foo a few times

#=> 2 (tick :foo is now 2)
default tick is now 0
#=> 2 (tick :foo is still 2)
reset tick :foo
#=> 0 (tick :foo is now 0)

Reset all ticks
tick_reset_all value (number)

Reset all ticks - default and keyed

Introduced in v2.6

Example

Example 1

tick # increment default tick and tick :foo

tick
 tick
 tick :foo
 tick :foo
 tick :foo
 puts look
 puts look(:foo)
 tick_reset_all
 puts look
 puts look(:foo)

increment default tick and tick :foo

#=> 1
#=> 2

#=> 0
#=> 0

Set tick to a specific value
tick_set value (number)

Set the default tick to the specified value. If a key is referenced, set that tick to value instead. Next call to look will return value.

Introduced in v2.6

Examples

Example 1

tick_set 40
 puts look

set default tick to 40
#=> 40

Example 2

tick_set :foo, 40
 puts look(:foo)
 puts look

set tick :foo to 40
#=> 40 (tick :foo is now 40)
#=> 0 (default tick is unaffected)

Block level comment ignoring
uncomment

Evaluates all of the code within the block. Use to reverse the effect of the comment without having to explicitly remove it.

Introduced in v2.0

Example

Example 1

uncomment do
 play 50
 sleep 1
 play 62
 end

starting a block level comment:
played
sleep happens
played

Enable and disable BPM scaling
use_arg_bpm_scaling bool (boolean)

Turn synth argument bpm scaling on or off for the current thread. This is on by default. Note, using rt for args will result in incorrect times
when used after turning arg bpm scaling off.

Introduced in v2.0

Examples

Example 1

use_bpm 120
play 50, release: 2
sleep 2
use_arg_bpm_scaling false
play 50, release: 2
sleep 2

release is actually 1 due to bpm scaling
actually sleeps for 1 second

release is now 2
still sleeps for 1 second

Example 2

use_bpm 120
play 50, release: rt(2)
sleep rt(2)
use_arg_bpm_scaling false
play 50, release: rt(2)
sleep rt(2)

Interaction with rt

release is 2 seconds
sleeps for 2 seconds

** Warning: release is NOT 2 seconds! **
still sleeps for 2 seconds

Enable and disable arg checks
use_arg_checks true_or_false (boolean)

When triggering synths, each argument is checked to see if it is sensible. When argument checking is enabled and an argument isn’t
sensible, you’ll see an error in the debug pane. This setting allows you to explicitly enable and disable the checking mechanism. See
with_arg_checks for enabling/disabling argument checking only for a specific do/end block.

Introduced in v2.0

Example

Example 1

play 50, release: 5
use_arg_checks false
play 50, release: 5

Args are checked

Args are not checked

Set the tempo
use_bpm bpm (number)

Sets the tempo in bpm (beats per minute) for everything afterwards. Affects all subsequent calls to sleep and all temporal synth
arguments which will be scaled to match the new bpm. If you wish to bypass scaling in calls to sleep, see the fn rt. Also, if you wish to
bypass time scaling in synth args see use_arg_bpm_scaling. See also with_bpm for a block scoped version of use_bpm.

For dance music here’s a rough guide for which BPM to aim for depending on your genre:

Dub: 60-90 bpm
Hip-hop: 60-100 bpm
Downtempo: 90-120 bpm
House: 115-130 bpm
Techno/trance: 120-140 bpm
Dubstep: 135-145 bpm
Drum and bass: 160-180 bpm

Introduced in v2.0

Example

Example 1

 4.times do
 play 50, attack: 0.5, release: 0.25
 sleep 1
 end

 sleep 2

default tempo is 60 bpm

attack is 0.5s and release is 0.25s
sleep for 1 second

sleep for 2 seconds

 use_bpm 120
 4.times do
 play 62, attack: 0.5, release: 0.25
 sleep 1
 end

 sleep 2

 use_bpm 240
 8.times do
 play 62, attack: 0.5, release: 0.25
 sleep 1
 end

Let's make it go faster...
double the bpm

attack is scaled to 0.25s and release is now 0.125s
actually sleeps for 0.5 seconds

sleep for 1 second

Let's make it go even faster...
bpm is 4x original speed!

attack is scaled to 0.125s and release is now 0.0625s
actually sleeps for 0.25 seconds

Set new tempo as a multiple of current tempo
use_bpm_mul mul (number)

Sets the tempo in bpm (beats per minute) as a multiplication of the current tempo. Affects all containing calls to sleep and all temporal
synth arguments which will be scaled to match the new bpm. See also use_bpm

Introduced in v2.3

Example

Example 1

use_bpm 60
 play 50
 sleep 1
 play 62
 sleep 2
 use_bpm_mul 0.5
 play 50
 sleep 1
 play 62

Set the BPM to 60

Sleeps for 1 seconds

Sleeps for 2 seconds
BPM is now (60 * 0.5) == 30

Sleeps for 2 seconds

Enable and disable cue logging
use_cue_logging true_or_false (boolean)

Enable or disable log messages created on cues. This does not disable the cues themselves, it just stops them from being printed to the
log

Introduced in v2.6

Examples

Example 1

use_cue_logging true # Turn on cue messages

Example 2

use_cue_logging false # Disable cue messages

Enable and disable debug
use_debug true_or_false (boolean)

Enable or disable messages created on synth triggers. If this is set to false, the synths will be silent until debug is turned back on. Silencing
debug messages can reduce output noise and also increase performance on slower platforms. See with_debug for setting the debug
value only for a specific do/end block.

Introduced in v2.0

Examples

Example 1

use_debug true # Turn on debug messages

Example 2

use_debug false # Disable debug messages

Merge synth defaults
use_merged_synth_defaults

Specify synth arg values to be used by any following call to play. Merges the specified values with any previous defaults, rather than
replacing them.

Introduced in v2.0

Examples

Example 1

play 50

use_merged_synth_defaults amp: 0.5
play 50

use_merged_synth_defaults cutoff: 80
play 50

use_merged_synth_defaults amp: 0.7
play 50

#=> Plays note 50

#=> Plays note 50 with amp 0.5

#=> Plays note 50 with amp 0.5 and cutoff 80

#=> Plays note 50 with amp 0.7 and cutoff 80

Example 2

use_synth_defaults amp: 0.5, cutoff: 80, pan: -1
use_merged_synth_defaults amp: 0.7
play 50

#=> Plays note 50 with amp 0.7, cutoff 80 and pan -1

Set random seed generator to known seed
use_random_seed seed (number)

Resets the random number generator to the specified seed. All subsequently generated random numbers and randomisation functions
such as shuffle and choose will use this new generator and the current generator is discarded. Use this to change the sequence of
random numbers in your piece in a way that can be reproduced. Especially useful if combined with iteration. See examples.

Introduced in v2.0

Examples

Example 1

 use_random_seed 1

Basic usage

reset random seed to 1

 puts rand
 use_random_seed 1
 puts rand

=> 0.417022004702574
reset random seed back to 1
#=> 0.417022004702574

Example 2

 notes = (scale :eb3, :minor_pentatonic)

 with_fx :reverb do
 live_loop :repeating_melody do

 use_random_seed 300

 8.times do

 play notes.choose, release: 0.1

 sleep 0.125
 end
 end
 end

Generating melodies
Create a set of notes to choose from.
Scales work well for this

Create a live loop

Set the random seed to a known value every
time around the loop. This seed is the key
to our melody. Try changing the number to
something else. Different numbers produce
different melodies

Now iterate a number of times. The size of
the iteration will be the length of the
repeating melody.

'Randomly' choose a note from our ring of
notes. See how this isn't actually random
but uses a reproducible method! These notes
are therefore repeated over and over...

Sample-duration-based bpm modification
use_sample_bpm string_or_number (sample_name_or_duration)

Modify bpm so that sleeping for 1 will sleep for the duration of the sample.

Introduced in v2.1

Options

num_beats: The number of beats within the sample. By default this is
1.

Examples

Example 1

use_sample_bpm :loop_amen

live_loop :dnb do
 sample :bass_dnb_f
 sample :loop_amen
 sleep 1
end

#Set bpm based on :loop_amen duration

#`sleep`ing for 1 actually sleeps for duration of :loop_amen

Example 2

use_sample_bpm :loop_amen, num_beats: 4

live_loop :dnb do
 sample :bass_dnb_f
 sample :loop_amen
 sleep 4

end

Set bpm based on :loop_amen duration
but also specify that the sample duration
is actually 4 beats long.

#`sleep`ing for 4 actually sleeps for duration of :loop_amen
as we specified that the sample consisted of
4 beats

Use new sample defaults
use_sample_defaults

Specify new default values to be used by all subsequent calls to sample. Will remove and override any previous defaults.

Introduced in v2.5

Example

Example 1

sample :loop_amen

use_sample_defaults amp: 0.5, cutoff: 70

sample :loop_amen

use_sample_defaults cutoff: 90

sample :loop_amen

plays amen break with default arguments

plays amen break with an amp of 0.5, cutoff of 70 and defaults for rest of args

plays amen break with a cutoff of 90 and defaults for rest of args - note that amp is no longer 0.5

Use sample pack
use_sample_pack pack_path (string)

Given a path to a folder of samples on your filesystem, this method makes any .wav, .wave, .aif or .aiff files in that folder available
as samples. Consider using use_sample_pack_as when using multiple sample packs. Use use_sample_pack :default To revert
back to the default built-in samples.

Introduced in v2.0

Example

Example 1

use_sample_pack '/home/yourname/path/to/sample/dir'
sample :foo

sample :bd_haus

use_sample_pack :default
sample :bd_haus

#=> plays /home/yourname/path/to/sample/dir/foo.{wav|wave|aif|aiff}
where {wav|wave|aif|aiff} means one of wav, wave aif or aiff.
#=> will not work unless there's a sample in '/home/yourname/path/to/sample/dir'
called bd_haus.{wav|wave|aif|aiff}

#=> will play the built-in bd_haus.wav sample

Use sample pack alias
use_sample_pack_as path (string), alias (string)

Similar to use_sample_pack except you can assign prefix aliases for samples. This lets you ‘namespace’ your sounds so that they don’t
clash, even if they have the same filename.

Introduced in v2.0

Example

Example 1

use_sample_pack_as '/home/yourname/my/cool/samples/guitar', :my_guitars
use_sample_pack_as '/home/yourname/my/cool/samples/drums', :my_drums

sample :my_guitars__bass

let's say you have two folders of your own sample files,
and they both contain a file named 'bass.wav'

You can now play both the 'bass.wav' samples, as they've had the symbol stuck on the front
#=> plays '/home/yourname/my/cool/samples/guitar/bass.wav'

sample :my_drums__bass #=> plays '/home/yourname/my/cool/samples/drums/bass.wav'

Switch current synth
use_synth synth_name (symbol)

Switch the current synth to synth_name. Affects all further calls to play. See with_synth for changing the current synth only for a
specific do/end block.

Introduced in v2.0

Example

Example 1

play 50
use_synth :mod_sine
play 50

Plays with default synth

Plays with mod_sine synth

Use new synth defaults
use_synth_defaults

Specify new default values to be used by all subsequent calls to play. Will remove and override any previous defaults.

Introduced in v2.0

Example

Example 1

play 50

use_synth_defaults amp: 0.5, cutoff: 70

play 50

use_synth_defaults cutoff: 90

play 50

plays note 50 with default arguments

plays note 50 with an amp of 0.5, cutoff of 70 and defaults for rest of args

plays note 50 with a cutoff of 90 and defaults for rest of args - note that amp is no longer 0.5

Note transposition
use_transpose note_shift (number)

Transposes your music by shifting all notes played by the specified amount. To shift up by a semitone use a transpose of 1. To shift down
use negative numbers. See with_transpose for setting the transpose value only for a specific do/end block.

Introduced in v2.0

Examples

Example 1

play 50
use_transpose 1
play 50

Plays note 50

Plays note 51

Example 2

You may change the transposition multiple times:

play 62
use_transpose -12
play 62
use_transpose 3
play 62

Plays note 62

Plays note 50

Plays note 65

Use alternative tuning systems
use_tuning tuning (symbol), fundamental_note (symbol_or_number)

In most music we make semitones by dividing the octave into 12 equal parts, which is known as equal temperament. However there are
lots of other ways to tune the 12 notes. This method adjusts each midi note into the specified tuning system. Because the ratios between
notes aren’t always equal, be careful to pick a centre note that is in the key of the music you’re making for the best sound. Currently
available tunings are :just, :pythagorean, :meantone and the default of :equal

Introduced in v2.6

Examples

Example 1

play :e4
use_tuning :just, :c
play :e4

play 64

Plays note 64

Plays note 63.8631
transparently changes midi notes too
Plays note 63.8631

Example 2

play 64
use_tuning :just
play 64
use_tuning :equal
play 64

You may change the tuning multiple times:
Plays note 64

Plays note 63.8631

Plays note 64

Create a vector
vector list (array)

Create a new immutable vector from args. Out of range indexes return nil.

Introduced in v2.6

Examples

Example 1

(vector 1, 2, 3)[0] #=> 1

Example 2

(vector 1, 2, 3)[1] #=> 2

Example 3

(vector 1, 2, 3)[2] #=> 3

Example 4

(vector 1, 2, 3)[3] #=> nil

(vector 1, 2, 3)[3] #=> nil

Example 5

(vector 1, 2, 3)[1000] #=> nil

Example 6

(vector 1, 2, 3)[-1] #=> nil

Example 7

(vector 1, 2, 3)[-1000] #=> nil

Get current version information
version

Return information representing the current version of Sonic Pi. This information may be further inspected with version.major,
version.minor, version.patch and version.dev

Introduced in v2.0

Examples

Example 1

puts version # => Prints out the current version such as v2.0.1

Example 2

puts version.major # => Prints out the major version number such as 2

Example 3

puts version.minor # => Prints out the minor version number such as 0

Example 4

puts version.patch # => Prints out the patch level for this version such as 0

Get virtual time
vt

Get the virtual time of the current thread.

Introduced in v2.1

Example

Example 1

puts vt # prints 0

puts vt
 sleep 1
 puts vt

prints 0

prints 1

Wait for duration
wait beats (number)

Synonym for sleep - see sleep

Introduced in v2.0

Block-level enable and disable BPM scaling
with_arg_bpm_scaling

Turn synth argument bpm scaling on or off for the supplied block. Note, using rt for args will result in incorrect times when used within this
block.

Introduced in v2.0

Examples

Example 1

use_bpm 120
play 50, release: 2
with_arg_bpm_scaling false do
 play 50, release: 2
end

release is actually 1 due to bpm scaling

release is now 2

Example 2

use_bpm 120
play 50, release: rt(2)
sleep rt(2)
with_arg_bpm_scaling false do
 play 50, release: rt(2)
 sleep rt(2)
end

Interaction with rt

release is 2 seconds
sleeps for 2 seconds

** Warning: release is NOT 2 seconds! **
still sleeps for 2 seconds

Block-level enable and disable arg checks
with_arg_checks true_or_false (boolean)

Similar to use_arg_checks except only applies to code within supplied do/end block. Previous arg check value is restored after block.

Introduced in v2.0

Example

Example 1

use_arg_checks true

play 80, cutoff: 100

with_arg_checks false do

 play 50, release: 3
 sleep 1
 play 72
end

Turn on arg checking:

Args are checked

#Arg checking is now disabled
Args are not checked

Arg is not checked

play 90
Arg checking is re-enabled
Args are checked

Set the tempo for the code block
with_bpm bpm (number)

Sets the tempo in bpm (beats per minute) for everything in the given block. Affects all containing calls to sleep and all temporal synth
arguments which will be scaled to match the new bpm. See also use_bpm

For dance music here’s a rough guide for which BPM to aim for depending on your genre:

Dub: 60-90 bpm
Hip-hop: 60-100 bpm
Downtempo: 90-120 bpm
House: 115-130 bpm
Techno/trance: 120-140 bpm
Dubstep: 135-145 bpm
Drum and bass: 160-180 bpm

Introduced in v2.0

Example

Example 1

 4.times do
 sample :drum_bass_hard
 sleep 1
 end

 sleep 5

 with_bpm 120 do
 4.times do
 sample :drum_bass_hard
 sleep 1
 end
 end

 sleep 5

 4.times do
 sample :drum_bass_hard
 sleep 1
 end

default tempo is 60 bpm

sleeps for 1 second

sleeps for 5 seconds

with_bpm sets a tempo for everything between do ... end (a block)
Hear how it gets faster?
set bpm to be twice as fast

now sleeps for 0.5 seconds

bpm goes back to normal

sleeps for 1 second

Set new tempo as a multiple of current tempo for block
with_bpm_mul mul (number)

Sets the tempo in bpm (beats per minute) for everything in the given block as a multiplication of the current tempo. Affects all containing
calls to sleep and all temporal synth arguments which will be scaled to match the new bpm. See also with_bpm

Introduced in v2.3

Example

Example 1

use_bpm 60
 play 50
 sleep 1
 play 62
 sleep 2
 with_bpm_mul 0.5 do
 play 50

Set the BPM to 60

Sleeps for 1 second

Sleeps for 2 seconds
BPM is now (60 * 0.5) == 30

 sleep 1
 play 62
 end
 sleep 1

Sleeps for 2 seconds

BPM is now back to 60, therefore sleep is 1 second

Block-level enable and disable cue logging
with_cue_logging true_or_false (boolean)

Similar to use_cue_logging except only applies to code within supplied do/end block. Previous cue log value is restored after block.

Introduced in v2.6

Example

Example 1

 use_cue_logging true

 cue :foo

 with_cue_logging false do

 cue :bar
 end
 sleep 1

 cue :quux

Turn on debugging:

cue message is printed to log

#Cue logging is now disabled
cue *is* sent but not displayed in log

Debug is re-enabled
cue is displayed in log

Block-level enable and disable debug
with_debug true_or_false (boolean)

Similar to use_debug except only applies to code within supplied do/end block. Previous debug value is restored after block.

Introduced in v2.0

Example

Example 1

use_debug true

play 80

with_debug false do

 play 50
 sleep 1
 play 72
end

play 90

Turn on debugging:

Debug message is sent

#Debug is now disabled
Debug message is not sent

Debug message is not sent

Debug is re-enabled
Debug message is sent

Use Studio FX
with_fx fx_name (symbol)

This applies the named effect (FX) to everything within a given do/end block. Effects may take extra parameters to modify their behaviour.
See FX help for parameter details.

For advanced control, it is also possible to modify the parameters of an effect within the body of the block. If you define the block with a

single argument, the argument becomes a reference to the current effect and can be used to control its parameters (see examples).

Introduced in v2.0

Options

reps: Number of times to repeat the block in an iteration.

kill_delay: Amount of time to wait after all synths triggered by the block have completed before stopping and freeing the effect
synthesiser.

Examples

Example 1

with_fx :distortion do
 play 50
 sleep 1
 sample :loop_amen
end

Basic usage
Use the distortion effect with default parameters
=> plays note 50 with distortion

=> plays the loop_amen sample with distortion too

Example 2

with_fx :level, amp: 0.3 do
 play 50
 sleep 1
 sample :loop_amen
end

Specify effect parameters
Use the level effect with the amp parameter set to 0.3

Example 3

with_fx :reverb, mix: 0.1 do |fx|

 play 60
 sleep 2

 control fx, mix: 0.5
 play 60
 sleep 2

 control fx, mix: 1
 play 60
 sleep 2
end

Controlling the effect parameters within the block

here we set the reverb level quite low to start with (0.1)
and we can change it later by using the 'fx' reference we've set up

plays note 60 with a little bit of reverb

change the parameters of the effect to add more reverb
again note 60 but with more reverb

change the parameters of the effect to add more reverb
plays note 60 with loads of reverb

Example 4

with_fx :reverb, reps: 16 do
 play (scale :e3, :minor_pentatonic), release: 0.1
 sleep 0.125
end

with_fx :reverb do
 16.times do
 play (scale :e3, :minor_pentatonic), release: 0.1
 sleep 0.125
 end
end

Repeat the block 16 times internally

The above is a shorthand for this:

Block-level merge synth defaults

with_merged_synth_defaults

Specify synth arg values to be used by any following call to play within the specified do/end block. Merges the specified values with any
previous defaults, rather than replacing them. After the do/end block has completed, previous defaults (if any) are restored.

Introduced in v2.0

Examples

Example 1

with_merged_synth_defaults amp: 0.5, pan: 1 do
 play 50
end

=> plays note 50 with amp 0.5 and pan 1

Example 2

play 50
with_merged_synth_defaults amp: 0.5 do
 play 50

 with_merged_synth_defaults pan: -1 do
 with_merged_synth_defaults amp: 0.7 do
 play 50
 end
 end
 play 50
end

#=> plays note 50

#=> plays note 50 with amp 0.5

#=> plays note 50 with amp 0.7 and pan -1

#=> plays note 50 with amp 0.5

Specify random seed for code block
with_random_seed seed (number)

Resets the random number generator to the specified seed for the specified code block. All generated random numbers and randomisation
functions such as shuffle and choose within the code block will use this new generator. Once the code block has completed, the
original generator is restored and the code block generator is discarded. Use this to change the sequence of random numbers in your
piece in a way that can be reproduced. Especially useful if combined with iteration. See examples.

Introduced in v2.0

Examples

Example 1

use_random_seed 1
 puts rand
 puts rand
 use_random_seed 1
 puts rand
 with_random_seed 1 do
 puts rand
 puts rand
 end
 puts rand

reset random seed to 1
=> 0.417022004702574
#=> 0.7203244934421581
reset it back to 1
=> 0.417022004702574
reset seed back to 1 just for this block
=> 0.417022004702574
#=> 0.7203244934421581

=> 0.7203244934421581
notice how the original generator is restored

Example 2

 notes = (scale :eb3, :minor_pentatonic, num_octaves: 2)

 with_fx :reverb do
 live_loop :repeating_melody do

 with_random_seed 300 do

Generating melodies
Create a set of notes to choose from.
Scales work well for this

Create a live loop

Set the random seed to a known value every
time around the loop. This seed is the key
to our melody. Try changing the number to
something else. Different numbers produce
different melodies

 8.times do

 play notes.choose, release: 0.1

 sleep 0.125
 end
 end

 play notes.choose, amp: 1.5, release: 0.5

 end
 end

Now iterate a number of times. The size of
the iteration will be the length of the
repeating melody.

'Randomly' choose a note from our ring of
notes. See how this isn't actually random
but uses a reproducible method! These notes
are therefore repeated over and over...

Note that this line is outside of
the with_random_seed block and therefore
the randomisation never gets reset and this
part of the melody never repeats.

Block-scoped sample-duration-based bpm modification
with_sample_bpm string_or_number (sample_name_or_duration)

Block-scoped modification of bpm so that sleeping for 1 will sleep for the duration of the sample.

Introduced in v2.1

Options

num_beats: The number of beats within the sample. By default this is
1.

Examples

Example 1

live_loop :dnb do
 with_sample_bpm :loop_amen do
 sample :bass_dnb_f
 sample :loop_amen
 sleep 1
 end
end

#Set bpm based on :loop_amen duration

#`sleep`ing for 1 sleeps for duration of :loop_amen

Example 2

live_loop :dnb do
 with_sample_bpm :loop_amen, num_beats: 4 do

 sample :bass_dnb_f
 sample :loop_amen
 sleep 4

 end
end

Set bpm based on :loop_amen duration
but also specify that the sample duration
is actually 4 beats long.

#`sleep`ing for 4 sleeps for duration of :loop_amen
as we specified that the sample consisted of
4 beats

Block-level use new sample defaults
with_sample_defaults

Specify new default values to be used by all subsequent calls to sample within the do/end block. After the do/end block has completed,
the previous sampled defaults (if any) are restored. For the contents of the block, will remove and override any previous defaults.

Introduced in v2.5

Example

Example 1

sample :loop_amen

use_sample_defaults amp: 0.5, cutoff: 70

sample :loop_amen

with_sample_defaults cutoff: 90 do
 sample :loop_amen
end

sample :loop_amen

plays amen break with default arguments

plays amen break with an amp of 0.5, cutoff of 70 and defaults for rest of args

plays amen break with a cutoff of 90 and defaults for rest of args - note that amp is no longer 0.5

plays amen break with a cutoff of 70 and amp is 0.5 again as the previous defaults are restored.

Block-level use sample pack
with_sample_pack pack_path (string)

Given a path to a folder of samples on your filesystem, this method makes any .wav, .wave, .aif, or .aiff files in that folder available
as samples inside the given block. Consider using with_sample_pack_as when using multiple sample packs.

Introduced in v2.0

Example

Example 1

with_sample_pack '/path/to/sample/dir' do
 sample :foo
end

#=> plays /path/to/sample/dir/foo.{wav|wave|aif|aiff}

Block-level use sample pack alias
with_sample_pack_as pack_path (string)

Similar to with_sample_pack except you can assign prefix aliases for samples. This lets you ‘namespace’ your sounds so that they
don’t clash, even if they have the same filename.

Introduced in v2.0

Example

Example 1

with_sample_pack_as '/home/yourname/path/to/sample/dir', :my_samples do

 sample :my_samples__foo
end

The foo sample is now available, with a prefix of 'my_samples'
#=> plays /home/yourname/path/to/sample/dir/foo.{wav|wave|aif|aiff}

Block-level synth switching
with_synth synth_name (symbol)

Switch the current synth to synth_name but only for the duration of the do/end block. After the do/end block has completed, the previous
synth is restored.

Introduced in v2.0

Example

Example 1

play 50
sleep 2
use_synth :supersaw
play 50
sleep 2
with_synth :saw_beep do
 play 50
end
sleep 2

play 50

Plays with default synth

Plays with supersaw synth

Plays with saw_beep synth

Previous synth is restored
Plays with supersaw synth

Block-level use new synth defaults
with_synth_defaults

Specify new default values to be used by all calls to play within the do/end block. After the do/end block has completed the previous
synth defaults (if any) are restored.

Introduced in v2.0

Example

Example 1

play 50

use_synth_defaults amp: 0.5, pan: -1

play 50

with_synth_defaults amp: 0.6, cutoff: 80 do
 play 50
end

play 60

plays note 50 with default arguments

plays note 50 with an amp of 0.5, pan of -1 and defaults for rest of args

plays note 50 with an amp of 0.6, cutoff of 80 and defaults for rest of args (including pan)

plays note 60 with an amp of 0.5, pan of -1 and defaults for rest of args

Block-level note transposition
with_transpose note_shift (number)

Similar to use_transpose except only applies to code within supplied do/end block. Previous transpose value is restored after block.

Introduced in v2.0

Example

Example 1

use_transpose 3
play 62

with_transpose 12 do
 play 50
 sleep 1
 play 72
end

play 80

Plays note 65

Plays note 62

Plays note 84

Original transpose value is restored
Plays note 83

Block-level tuning modification

with_tuning tuning (symbol), fundamental_note (symbol_or_number)

Similar to use_tuning except only applies to code within supplied do/end block. Previous tuning value is restored after block.

Introduced in v2.6

Example

Example 1

use_tuning :equal, :c
play :e4
with_tuning :just, :c do
 play :e4
 sleep 1
 play :c4
end

play :e4

Plays note 64

Plays note 63.8631

Plays note 60

Original tuning value is restored
Plays note 64

[Apprentice] Haunted
[Illusionist] Fm Noise
[Illusionist] Jungle
[Illusionist] Reich Phase
[Illusionist] Filtered Dnb
[Illusionist] Ocean
[Magician] Tron Bike
[Magician] Ambient
[Magician] Idm Breakbeat
[Magician] Compus Beats
[Magician] Echo Drama
[Magician] Wob Rhyth
[Magician] Acid
[Sorcerer] Driving Pulse
[Sorcerer] Square Skit
[Sorcerer] Rerezzed
[Sorcerer] Bach
[Sorcerer] Monday Blues
[Wizard] Tilburg 2
[Wizard] Shufflit
[Wizard] Blip Rhythm
[Wizard] Blimp Zones
[Wizard] Time Machine
[Algomancer] Sonic Dreams

Haunted Play Example

Coded by Sam Aaron

live_loop :haunted do
 sample :perc_bell, rate: rrand(-1.5, 1.5)
 sleep rrand(0.1, 2)
end

Fm Noise Play Example

Coded by Sam Aaron

use_synth :fm

live_loop :sci_fi do
 p = play (chord :Eb3, :minor).choose - [0, 12, -12].choose, divisor: 0.01, div_slide: rrand(0, 10), depth: rrand(0.001, 2), attack: 0.01, release: rrand(0, 5), amp: 0.5
 control p, divisor: rrand(0.001, 50)
 sleep [0.5, 1, 2].choose
end

Jungle Play Example

Coded by Sam Aaron
use_bpm 50

with_fx :lpf, cutoff: 90 do
 with_fx :reverb, mix: 0.5 do
 with_fx :compressor, pre_amp: 40 do
 with_fx :distortion, distort: 0.4 do
 live_loop :jungle do
 use_random_seed 667
 4.times do
 sample :loop_amen, beat_stretch: 1, rate: [1, 1, 1, -1].choose / 2.0, finish: 0.5, amp: 0.5
 sample :loop_amen, beat_stretch: 1
 sleep 1
 end
 end
 end
 end
 end
end

Reich Phase Play Example

Steve Reich's Piano Phase
See: https://en.wikipedia.org/wiki/Piano_Phase

use_synth :piano
notes = (ring :E4, :Fs4, :B4, :Cs5, :D5, :Fs4, :E4, :Cs5, :B4, :Fs4, :D5, :Cs5)

live_loop :slow do
 play notes.tick, release: 0.1
 sleep 0.3
end

live_loop :faster do
 play notes.tick, release: 0.1
 sleep 0.295
end

Filtered Dnb Play Example

Coded by Sam Aaron

use_sample_bpm :loop_amen

with_fx :rlpf, cutoff: 10, cutoff_slide: 4 do |c|
 live_loop :dnb do
 sample :bass_dnb_f, amp: 5
 sample :loop_amen, amp: 5
 sleep 1
 control c, cutoff: rrand(40, 120), cutoff_slide: rrand(1, 4)
 end
end

Ocean Play Example

Coded by Sam Aaron

with_fx :reverb, mix: 0.5 do
 live_loop :oceans do
 s = synth [:bnoise, :cnoise, :gnoise].choose, amp: rrand(0.5, 1.5), attack: rrand(0, 4), sustain: rrand(0, 2), release: rrand(1, 5), cutoff_slide: rrand(0, 5), cutoff: rrand(60, 100), pan: rrand(-1, 1), pan_slide: rrand(1, 5), amp: rrand(0.5, 1)
 control s, pan: rrand(-1, 1), cutoff: rrand(60, 110)
 sleep rrand(2, 4)
 end
end

Tron Bike Play Example

Coded by Sam Aaron

use_random_seed 10
notes = (ring :b1, :b2, :e1, :e2, :b3, :e3)

live_loop :tron do
 with_synth :dsaw do
 with_fx(:slicer, phase: [0.25,0.125].choose) do
 with_fx(:reverb, room: 0.5, mix: 0.3) do

 n1 = (chord notes.choose, :minor).choose
 n2 = (chord notes.choose, :minor).choose

 p = play n1, amp: 2, release: 8, note_slide: 4, cutoff: 30, cutoff_slide: 4, detune: rrand(0, 0.2)
 control p, note: n2, cutoff: rrand(80, 120)
 end
 end
 end

 sleep 8
end

Ambient Play Example

Coded by Sam Aaron

load_samples(sample_names :ambi)
sleep 2

with_fx :reverb, mix: 0.8 do
 live_loop :foo do
 # try changing the sp_ vars..
 sp_name = choose sample_names :ambi
 # sp_name = choose sample_names :drum
 sp_time = [1, 2].choose
 #sp_time = 0.5
 sp_rate = 1
 #sp_rate = 4

 s = sample sp_name, cutoff: rrand(70, 130), rate: sp_rate * choose([0.5, 1]), pan: rrand(-1, 1), pan_slide: sp_time
 control s, pan: rrand(-1, 1)
 sleep sp_time
 end
end

Idm Breakbeat Play Example

Coded by Sam Aaron

live_loop :idm_bb do
 n = [1,2,4,8,16].choose
 sample :drum_heavy_kick, amp: 2
 sample :ambi_drone, rate: [0.25, 0.5, 0.125, 1].choose, amp: 0.25 if one_in(8)
 sample :ambi_lunar_land, rate: [0.5, 0.125, 1, -1, -0.5].choose, amp: 0.25 if one_in(8)
 sample :loop_amen, attack: 0, release: 0.05, start: 1 - (1.0 / n), rate: [1,1,1,1,1,1,-1].choose
 sleep sample_duration(:loop_amen) / n
end

Compus Beats Play Example

Coded by Sam Aaron

use_sample_bpm :loop_compus, num_beats: 4

live_loop :loopr do
 sample :loop_compus, rate: [0.5, 1, 1, 1, 1, 2].choose unless one_in(10)
 sleep 4
end

live_loop :bass do
 sample :bass_voxy_c, amp: rrand(0.1, 0.2), rate: [0.5, 0.5, 1, 1,2,4].choose if one_in(4)
 use_synth :mod_pulse
 use_synth_defaults mod_invert_wave: 1
 play :C1, mod_range: 12, amp: rrand(0.5, 1), mod_phase: [0.25, 0.5, 1].choose, release: 1, cutoff: rrand(50, 90)
 play :C2, mod_range: [24, 36, 34].choose, amp: 0.35, mod_phase: 0.25, release: 2, cutoff: 60, pulse_width: rand
 sleep 1
end

Echo Drama Play Example

Coded by Sam Aaron

use_synth :tb303
use_bpm 45
use_random_seed 3
use_debug false

with_fx :reverb do
 with_fx(:echo, delay: 0.5, decay: 4) do
 live_loop :echoes do
 play chord([:b1, :b2, :e1, :e2, :b3, :e3].choose, :minor).choose, cutoff: rrand(40, 100), amp: 0.5, attack: 0, release: rrand(1, 2), cutoff_max: 110
 sleep [0.25, 0.5, 0.5, 0.5, 1, 1].choose
 end
 end
end

Wob Rhyth Play Example

Coded by Sam Aaron

use_debug false

with_fx :reverb do
 live_loop :choral do
 r = (ring 0.5, 1.0/3, 3.0/5).choose
 cue :choir, rate: r
 8.times do
 sample :ambi_choir, rate: r, pan: rrand(-1, 1)
 sleep 0.5
 end
 end
end

live_loop :wub_wub do
 with_fx :wobble, phase: 2, reps: 16 do |w|
 with_fx :echo, mix: 0.6 do
 sample :drum_heavy_kick
 sample :bass_hit_c, rate: 0.8, amp: 0.4
 sleep 1
 ## try changing the wobble's phase duration:
 # control w, phase: (ring 0.5, 1, 2).choose
 end
 end
end

Acid Play Example

Coded by Sam Aaron

use_debug false
load_sample :bd_fat

8.times do
 sample :bd_fat, amp: (line 0, 5, steps: 8).tick
 sleep 0.5
end

live_loop :drums do
 sample :bd_fat, amp: 5
 sleep 0.5
end

live_loop :acid do
 cue :foo
 4.times do |i|
 use_random_seed 667
 16.times do
 use_synth :tb303
 play chord(:e3, :minor).choose, attack: 0, release: 0.1, cutoff: rrand_i(50, 90) + i * 10
 sleep 0.125
 end
 end

 cue :bar
 32.times do |i|
 use_synth :tb303
 play chord(:a3, :minor).choose, attack: 0, release: 0.05, cutoff: rrand_i(70, 98) + i, res: rrand(0.9, 0.95)
 sleep 0.125
 end

 cue :baz
 with_fx :reverb, mix: 0.3 do |r|
 32.times do |m|
 control r, mix: 0.3 + (0.5 * (m.to_f / 32.0)) unless m == 0 if m % 8 == 0
 use_synth :prophet
 play chord(:e3, :minor).choose, attack: 0, release: 0.08, cutoff: rrand_i(110, 130)
 sleep 0.125
 end
 end

 cue :quux
 in_thread do
 use_random_seed 668
 with_fx :echo, phase: 0.125 do
 16.times do
 use_synth :tb303
 play chord(:e3, :minor).choose, attack: 0, release: 0.1, cutoff: rrand(50, 100)
 sleep 0.25
 end
 end
 end

 sleep 4
end

Driving Pulse Play Example

Coded by Sam Aaron

load_sample :drum_heavy_kick

live_loop :drums do
 sample :drum_heavy_kick, rate: 0.75
 sleep 0.5
 sample :drum_heavy_kick
 sleep 0.5
end

live_loop :synths do
 use_synth :mod_pulse
 use_synth_defaults amp: 1, mod_range: 15, cutoff: 80, pulse_width: 0.2, attack: 0.03, release: 0.6, mod_phase: 0.25, mod_invert_wave: 1
 play 30
 sleep 0.25
 play 38
 sleep 0.25
end

Square Skit Play Example

Coded by Sam Aaron

use_debug false

live_loop :skit do
 with_fx :slicer, phase: 1, invert_wave: 1, wave: 0 do
 with_fx :slicer, wave: 0, phase: 0.25 do
 sample :loop_mika, rate: 1, amp: 2
 end
 sleep 8
 end
end

live_loop :foo, auto_cue: false do
 tick(:note) if factor? tick, 4
 use_synth :square
 density 2 do
 play (knit :c2, 2, :e1, 1, :f3, 1).look(:note), release: 0, attack: 0.25, amp: 1, cutoff: rrand_i(70, 130)
 sleep 0.5
 end
end

live_loop :kik, auto_cue: false do
 density 1 do
 sample :bd_haus, amp: 2
 sleep 0.5
 end
end

live_loop :piano, auto_cue: false do
 sleep 4
 with_fx :slicer, phase: 0.25, wave: 1 do
 sleep 4
 sample :ambi_piano, amp: 2
 end
end

Rerezzed Play Example

Coded by Sam Aaron

use_debug false
notes = (scale :e1, :minor_pentatonic, num_octaves: 2).shuffle

live_loop :rerezzed do
 tick_reset
 t = 0.04
 sleep -t
 with_fx :bitcrusher do
 s = synth :dsaw, note: :e3, sustain: 8, note_slide: t, release: 0
 64.times do
 sleep 0.125
 control s, note: notes.tick
 end
 end
 sleep t
end

live_loop :industry do
 sample :loop_industrial, beat_stretch: 1
 sleep 1
end

live_loop :drive do
 sample :bd_haus, amp: 3
 sleep 0.5
end

Bach Play Example

Bach Minuet in G
#
Coded by Robin Newman

use_bpm 60
use_synth_defaults release: 0.5, amp: 0.7, cutoff: 90
use_synth :beep

Each section of the minuet is repeated
2.times do

 ## First start a thread for the first 8 bars of the bass left hand part
 in_thread do
 play_chord [55,59]#b1
 sleep 1
 play_pattern_timed [57],[0.5]
 play_pattern_timed [59],[1.5] #b2
 play_pattern_timed [60],[1.5] #b3
 play_pattern_timed [59],[1.5] #b4
 play_pattern_timed [57],[1.5] #b5
 play_pattern_timed [55],[1.5] #b6
 play_pattern_timed [62,59,55],[0.5] #b7
 play_pattern_timed [62],[0.5] #b8
 play_pattern_timed [50,60,59,57],[0.25]
 end

 ## Play concurrently the first 8 bars of the right hand part
 play_pattern_timed [74],[0.5]#b1
 play_pattern_timed [67,69,71,72],[0.25]
 play_pattern_timed [74,67,67],[0.5]#b2
 play_pattern_timed [76],[0.5]#b3
 play_pattern_timed [72,74,76,78],[0.25]
 play_pattern_timed [79,67,67],[0.5]#b4
 play_pattern_timed [72],[0.5] #b5
 play_pattern_timed [74,72,71,69],[0.25]
 play_pattern_timed [71],[0.5] #b6
 play_pattern_timed [72,71,69,67],[0.25]
 play_pattern_timed [66],[0.5] #b7
 play_pattern_timed [67,69,71,67],[0.25]
 play_pattern_timed [71,69],[0.5,1] #b8

 ## Start a new thread for bars 9-16 of the left hand part
 in_thread do
 play_chord [55,59]#b9=b1
 sleep 1
 play 57
 sleep 0.5
 play_pattern_timed [55,59,55],[0.5] #b10
 play_pattern_timed [60],[1.5] #b11=b3
 play_pattern_timed [59,60,59,57,5],[0.5,0.25,0.25,0.25,0.25] #b12=b4]
 play_pattern_timed [57,54],[1,0.5] #b13
 play_pattern_timed [55,59],[1,0.5] #b14
 play_pattern_timed [60,62,50],[0.5] #b15
 play_pattern_timed [55,43],[1,0.5] #b16
 end

 ## Play concurrently bars 9-16 of the right hand part the first six
 ## bars repeat bars 1-6
 play_pattern_timed [74],[0.5]#b9 = b1
 play_pattern_timed [67,69,71,72],[0.25]
 play_pattern_timed [74,67,67],[0.5]#b10=b2
 play_pattern_timed [76],[0.5]#b11=b3
 play_pattern_timed [72,74,76,78],[0.25]
 play_pattern_timed [79,67,67],[0.5]#b12=b4
 play_pattern_timed [72],[0.5] #b13=b5
 play_pattern_timed [74,72,71,69],[0.25]
 play_pattern_timed [71],[0.5] #b14=b6
 play_pattern_timed [72,71,69,67],[0.25]
 play_pattern_timed [69],[0.5] #b15
 play_pattern_timed [71,69,67,66],[0.25]

 play_pattern_timed [67],[1.5] #b16
end

==========second section starts here======
The second section is also repeated
2.times do

 ## Start a thread for bars 17-24 of the left hand part
 in_thread do
 play_pattern_timed [55],[1.5] #b17
 play_pattern_timed [54],[1.5] #b18
 play_pattern_timed [52,54,52],[0.5] #b19
 play_pattern_timed [57,45],[1,0.5] #b20
 play_pattern_timed [57],[1.5] #b21
 play_pattern_timed [59,62,61],[0.5] #b22
 play_pattern_timed [62,54,57],[0.5] #b23
 play_pattern_timed [62,50,60],[0.5] #b24
 end

 ## Play bars 17 to 24 of the right hand concurrently with the left
 ## hand thread
 play_pattern_timed [83],[0.5] #b17
 play_pattern_timed [79,81,83,79],[0.25]
 play_pattern_timed [81],[0.5] #b18
 play_pattern_timed [74,76,78,74],[0.25]
 play_pattern_timed [79],[0.5] #b19
 play_pattern_timed [76,78,79,74],[0.25]
 play_pattern_timed [73,71,73,69],[0.5,0.25,0.25,0.5] #b20
 play_pattern_timed [69,71,73,74,76,78],[0.25] #b21
 play_pattern_timed [79,78,76],[0.5] #b22
 play_pattern_timed [78,69,73],[0.5] #b23
 play 74 #b24
 sleep 1.5

 ## Start a new thread for bars 25-32 of the left hand part
 in_thread do
 play_pattern_timed [59,62,59],[0.5] #b25
 play_pattern_timed [60,64,60],[0.5] #b26
 play_pattern_timed [59,57,55],[0.5] #b27
 play 62 #b28
 sleep 1.5 #includes a rest
 play_pattern_timed [50,54],[1,0.5] #b29
 play_pattern_timed [52,55,54],[0.5] #b30
 play_pattern_timed [55,47,50],[0.5] #b31
 play_pattern_timed [55,50,43],[0.5] #b32
 end

 ## Play bars 25-32 of the right hand part concurrently with the left
 ## hand thread
 play_pattern_timed [74,67,66,67],[0.5,0.25,0.25,0.5] #b25
 play_pattern_timed [76,67,66,67],[0.5,0.25,0.25,0.5] #b26
 play_pattern_timed [74,72,71],[0.5] #b27
 play_pattern_timed [69,67,66,67,69],[0.25,0.25,0.25,0.25,0.5] #b28
 play_pattern_timed [62,64,66,67,69,71],[0.25] #b29
 play_pattern_timed [72,71,69],[0.5] #b30
 play_pattern_timed [71,74,67,66],[0.25,0.25,0.5,0.5] #b31
 play_chord [67,59] #b32
 sleep 1.5
end

Monday Blues Play Example

Coded by Sam Aaron

use_debug false
load_samples [:drum_heavy_kick, :drum_snare_soft]

live_loop :drums do
 puts "slow drums"
 6.times do
 sample :drum_heavy_kick, rate: 0.8
 sleep 0.5
 end

 puts "fast drums"
 8.times do
 sample :drum_heavy_kick, rate: 0.8
 sleep 0.125
 end
end

live_loop :synths, delay: 6 do
 puts "how does it feel?"
 use_synth :mod_saw
 use_synth_defaults amp: 0.5, attack: 0, sustain: 1, release: 0.25, mod_range: 12, mod_phase: 0.5, mod_invert_wave: 1
 notes = (ring :F, :C, :D, :D, :G, :C, :D, :D)
 notes.each do |n|
 tick
 play note(n, octave: 1), cutoff: (line 90, 130, steps: 16).look
 play note(n, octave: 2), cutoff: (line 90, 130, steps: 32).look
 sleep 1
 end
end

live_loop :snare, delay: 12.5 do
 sample :drum_snare_soft
 sleep 1
end

Tilburg 2 Play Example

Coded by Sam Aaron

use_debug false
load_samples :guit_em9, :bd_haus

live_loop :low do
 tick
 synth :zawa, wave: 1, phase: 0.25, release: 5, note: (knit :e1, 12, :c1, 4).look, cutoff: (range 60, 120, 10).look
 sleep 4
end

live_loop :lands, auto_cue: false do
 with_fx :reverb, room: 1, reps: 4 do
 use_synth :dsaw
 use_random_seed 310003
 ns = (scale :e2, :minor_pentatonic, num_octaves: 4).take(4)
 16.times do
 play ns.choose, detune: 12, release: 0.1, amp: 2, amp: rand + 0.5, cutoff: rrand(70, 120), amp: 2
 sleep 0.125
 end
 end
end

live_loop :fietsen do
 sleep 0.25
 sample :guit_em9, rate: -1
 sleep 7.75
end

live_loop :tijd, auto_cue: true do
 sample :bd_haus, amp: 2.5, cutoff: 100
 sleep 0.5
end

live_loop :ind do
 # sync :tijd
 sample :loop_industrial, beat_stretch: 1
 sleep 1
end

Shufflit Play Example

Coded by Sam Aaron

use_debug false
use_random_seed 667
load_sample :ambi_lunar_land
sleep 1

live_loop :travelling do
 use_synth :beep
 notes = scale(:e3, :minor_pentatonic, num_octaves: 1)
 use_random_seed 679
 tick_reset_all
 with_fx :echo, phase: 0.125, mix: 0.4, reps: 16 do
 sleep 0.25
 play notes.choose, attack: 0, release: 0.1, pan: (range -1, 1, step: 0.125).tick, amp: rrand(2, 2.5)
 end
end

live_loop :comet, auto_cue: false do
 if one_in 4
 sample :ambi_lunar_land
 puts :comet_landing
 end
 sleep 8
end

live_loop :shuff, auto_cue: false do
 with_fx :hpf, cutoff: 10, reps: 8 do
 tick
 sleep 0.25
 sample :bd_tek, amp: factor?(look, 8) ? 6 : 4
 sleep 0.25
 use_synth :tb303
 use_synth_defaults cutoff_attack: 1, cutoff_release: 0, env_curve: 2
 play (knit :e2, 24, :c2, 8).look, release: 1.5, cutoff: (range 70, 90).look, depth: 10 , amp: 2 if factor?(look, 2)
 sample :sn_dub, rate: -1, sustain: 0, release: (knit 0.05, 3, 0.5, 1).look
 end
end

Blip Rhythm Play Example

Coded by Sam Aaron

load_samples [:drum_heavy_kick, :elec_plip, :elec_blip]
use_bpm 100
use_random_seed 100

with_fx :reverb, mix: 0.6, room: 0.8 do
 with_fx :echo, room: 0.8, decay: 8, phase: 1, mix: 0.4 do
 live_loop :blip do
 n = [:e2, :e2, :a3].choose

 with_synth :dsaw do
 with_transpose -12 do
 in_thread do
 2.times do
 play n, attack: 0.6, release: 0.8, detune: rrand(0, 0.1), cutoff: rrand(80, 120)
 sleep 3
 end
 end
 end
 end

 sleep 4

 with_synth :tri do
 play chord(n, :m7), amp: 5, release: 0.8
 end

 sleep 2
 end
 end
end

with_fx :echo, room: 0.8, decay: 8, phase: 0.25, mix: 0.4 do
 live_loop :rhythm do
 sample :drum_heavy_kick, amp: 0.5
 sample :elec_plip, rate: [0.5, 2, 1, 4].choose * [1, 2, 3, 10].choose, amp: 0.6
 sleep 2
 end
end

Blimp Zones Play Example

Coded by Sam Aaron

use_debug false
use_random_seed 667
load_sample :ambi_lunar_land
sleep 1

live_loop :foo do
 with_fx :reverb, kill_delay: 0.2, room: 0.3 do
 4.times do
 use_random_seed 4000
 8.times do
 sleep 0.25
 play chord(:e3, :m7).choose, release: 0.1, pan: rrand(-1, 1, res: 0.9), amp: 1
 end
 end
 end
end

live_loop :bar, auto_cue: false do
 if rand < 0.25
 sample :ambi_lunar_land
 puts :comet_landing
 end
 sleep 8
end

live_loop :baz, auto_cue: false do
 tick
 sleep 0.25
 cue :beat, count: look
 sample :bd_haus, amp: factor?(look, 8) ? 3 : 2
 sleep 0.25
 use_synth :fm
 play :e2, release: 1, amp: 1 if factor?(look, 4)
 synth :noise, release: 0.051, amp: 0.5
end

Time Machine Play Example

Coded by Sam Aaron

use_debug false

live_loop :time do
 synth :tb303, release: 8, note: :e1, cutoff: (range 90, 60, -10).tick
 sleep 8
end

live_loop :machine do
 sample :loop_garzul, rate: (knit 1, 3, -1, 1).tick
 sleep 8
end

live_loop :vortex, auto_cue: false do
 use_synth [:pulse, :beep].choose
 sleep 0.125 / 2
 play scale(:e1, :minor_pentatonic).tick, attack: 0.125, release: 0, amp: 2, cutoff: (ring 70, 90, 100, 130).look
 sleep 0.125 / 2
end

live_loop :moon_bass, auto_cue: false do
 sample :bd_haus, amp: 1.5
 sleep 0.5
end

Sonic Dreams Play Example

rand-seed-ver 32
#
Coded by Sam Aaron
#
Video: https://vimeo.com/110416910

use_debug false
load_samples [:bd_haus, :elec_blip, :ambi_lunar_land]

define :ocean do |num, amp_mul=1|
 num.times do
 s = synth [:bnoise, :cnoise, :gnoise].choose, amp: rrand(0.5, 1.5) * amp_mul, attack: rrand(0, 1), sustain: rrand(0, 2), release: rrand(0, 5) + 0.5, cutoff_slide: rrand(0, 5), cutoff: rrand(60, 100), pan: rrand(-1, 1), pan_slide: 1
 control s, pan: rrand(-1, 1), cutoff: rrand(60, 110)
 sleep rrand(0.5, 4)
 end
end

define :echoes do |num, tonics, co=100, res=0.9, amp=1|
 num.times do
 play chord(tonics.choose, :minor).choose, res: res, cutoff: rrand(co - 20, co + 20), amp: 0.5 * amp, attack: 0, release: rrand(0.5, 1.5), pan: rrand(-0.7, 0.7)
 sleep [0.25, 0.5, 0.5, 0.5, 1, 1].choose
 end
end

define :bd do
 cue :in_relentless_cycles
 16.times do
 sample :bd_haus, amp: 4, cutoff: 120
 sleep 0.5
 end
 cue :winding_everywhichway
 2.times do
 2.times do
 sample :bd_haus, amp: 4, cutoff: 120
 sleep 0.25
 end
 sample :ambi_lunar_land
 sleep 0.25
 end
end

define :drums do |level, b_level=1, rand_cf=false|
 synth :fm, note: :e2, release: 0.1, amp: b_level * 3, cutoff: 130
 co = rand_cf ? rrand(110, 130) : 130
 a = rand_cf ? rrand(0.3, 0.5) : 0.6
 n = rand_cf ? :bnoise : :noise
 synth :noise, release: 0.05, cutoff: co, res: 0.95, amp: a if level > 0
 sample :elec_blip, amp: 2, rate: 2, pan: rrand(-0.8, 0.8) if level > 1
 sleep 1
end

define :synths do |s_name, co, n=:e2|
 use_synth s_name
 use_transpose 0
 use_synth_defaults detune: [12,24].choose, amp: 1, pan: lambda{rrand(-1, 1)}, cutoff: co, pulse_width: 0.12, attack: rrand(0.2, 0.5), release: 0.5 , mod_phase: 0.25, mod_invert_wave: 1

 play :e1, mod_range: [7, 12].choose
 sleep 0.125

 play :e3, mod_range: [7, 12].choose
 sleep [0.25, 0.5].choose

 play n, mod_range: 12
 sleep 0.5

 play chord(:e2, :minor).choose, mod_range: 12
 sleep 0.25
end

define :play_synths do

 with_fx :reverb do |r|
 with_fx :echo, phase: 0.25 do |e|
 synths = [:mod_pulse, :mod_saw, :mod_dsaw, :mod_dsaw, :mod_dsaw, :mod_dsaw]
 cutoffs = [108, 78, 88, 98]
 synth = synths.rotate!.first
 4.times do |t|
 puts shuffle("0" * (30 - t) + ("1" * t)) unless t == 0
 co = cutoffs.rotate!.first + (t * 2)
 7.times do
 n = chord([:e2, :e3, :e4, :e5][t], :minor).choose
 synths(synth, co, n)
 end
 sleep 2
 end
 sleep 1
 cue :within
 end
 end
end

define :binary_celebration do |n=1, st=1|
 in_thread do
 n.times do
 puts (0..30).map{|_| ["0", "1"].choose}.join
 sleep st
 end
 end
end

puts 'Introduction'
puts 'The Curved Ebb of Carpentry'
sleep 2

cue :oceans
at [7, 12], [:crash, :within_oceans] do |m|
 cue m
end

uncomment do
 use_random_seed 1000
 with_bpm 45 do
 with_fx :reverb do
 with_fx(:echo, delay: 0.5, decay: 4) do
 in_thread do
 use_random_seed 2
 ocean 5
 ocean 1, 0.5
 ocean 1, 0.25
 end
 sleep 10
 use_random_seed 1200
 echoes(5, [:b1, :b2, :e1, :e2, :b3, :e3])
 cue :a_distant_object
 echoes(5, [:b1, :e1, :e2, :e3])
 cue :breathes_time
 in_thread do
 echoes(5, [:e1, :e2, :e3])
 end
 use_synth :tb303
 echoes(1, [:e1, :e2, :e3], 60, 0.9, 0.5)
 echoes(1, [:e1, :e2, :e3], 62)
 echoes(1, [:e1, :e2, :e3], 64, 0.97)
 echoes(1, [:e1, :e2, :e3], 66)
 echoes(1, [:e1, :e2, :e3], 68)
 cue :liminality_holds_fast
 echoes(4, [:b1, :e1, :e2, :b3, :e3], 80)
 echoes(1, [:b1, :b2, :e1, :e2, :b3, :e3], 85, 0.98)
 cue :within_reach
 echoes(5, [:e1, :b2], 90)
 cue :as_it_unfolds
 in_thread do
 echoes(5, [:e1], 90)
 end
 end

 end
 end
end

in_thread(name: :bassdrums) do
 use_random_seed 0
 sleep 22
 3.times do
 bd
 end
 sleep 28
 live_loop :bd do
 bd
 end
end

in_thread(name: :drums) do
 use_random_seed 0
 level = -1
 with_fx :echo do |e|
 sleep 2
 drums -1, 0.1
 drums -1, 0.2
 drums -1, 0.4
 drums -1, 0.7
 puts "Part 2"
 puts "Inside the Machine"
 3.times do
 8.times do
 drums level, 0.8
 end
 6.times do
 drums(level)
 end

 sleep 1
 level += 1
 end
 sleep 4
 cue :dreams
 8.times do
 drums 1, 1, true
 end

 10.times do
 m = choose [shuffle(:within_dreams), :within_dreams, :dreams_within]
 cue m
 drums 2, 1, true
 end

 6.times do
 m = choose [shuffle("within") + "_dreams", :within_dreams.shuffle, "dreams_" + shuffle("within")]
 cue m
 drums 2
 end

 live_loop :drums do
 8.times do |i|
 drums 1
 end

 16.times do |i|
 cue " " * rand_i(32)
 at 1 do
 cue " " * i
 end
 drums 2
 end
 end
 end
end

in_thread name: :synths do

 use_random_seed 0
 sleep 12
 cue :the_flow_of_logic
 play_synths
end

in_thread do
 use_random_seed 0
 sync :within
 puts "Part 3"
 puts "Reality A"
 sleep 12
 use_synth_defaults phase: 0.5, res: 0.5, cutoff: 80, release: 3.3, wave: 1

 2.times do
 [80, 90, 100, 110].each do |cf|
 use_merged_synth_defaults cutoff: cf
 puts "1" * 30
 synth :zawa, note: :e2, phase: 0.25
 synth :zawa, note: :a1
 sleep 3
 end
 4.times do |t|
 binary_celebration(6, 0.5)
 synth :zawa, note: :e2, phase: 0.25, res: rrand(0.8, 0.9), cutoff: [100, 105, 110, 115][t]
 sleep 3
 end
 end

 puts 'Part n'
 puts 'The Observer becomes the Observed'
 # Your turn...
end

