

About	This	E-Book
EPUB	is	an	open,	industry-standard	format	for	e-books.	However,	support	for
EPUB	and	its	many	features	varies	across	reading	devices	and	applications.	Use
your	device	or	app	settings	to	customize	the	presentation	to	your	liking.	Settings
that	you	can	customize	often	include	font,	font	size,	single	or	double	column,
landscape	or	portrait	mode,	and	figures	that	you	can	click	or	tap	to	enlarge.	For
additional	information	about	the	settings	and	features	on	your	reading	device	or
app,	visit	the	device	manufacturer’s	Web	site.

Many	titles	include	programming	code	or	configuration	examples.	To	optimize
the	presentation	of	these	elements,	view	the	e-book	in	single-column,	landscape
mode	and	adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting
code	and	configurations	in	the	reflowable	text	format,	we	have	included	images
of	the	code	that	mimic	the	presentation	found	in	the	print	book;	therefore,	where
the	reflowable	format	may	compromise	the	presentation	of	the	code	listing,	you
will	see	a	“Click	here	to	view	code	image”	link.	Click	the	link	to	view	the	print-
fidelity	code	image.	To	return	to	the	previous	page	viewed,	click	the	Back	button
on	your	device	or	app.

Data	Analytics	with	Spark	Using
Python

Jeffrey	Aven

Boston	•	Columbus	•	Indianapolis	•	New	York	•	San	Francisco	•	Amsterdam
Cape	Town	•	Dubai	•	London	•	Madrid	•	Milan	•	Munich	•	Paris	Montreal	•
Toronto	•	Delhi	•	Mexico	City	•	São	Paulo	•	Sydney	Hong	Kong	•	Seoul	•

Singapore	•	Taipei	•	Tokyo

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their
products	are	claimed	as	trademarks.	Where	those	designations	appear	in	this
book,	and	the	publisher	was	aware	of	a	trademark	claim,	the	designations	have
been	printed	with	initial	capital	letters	or	in	all	capitals.

The	author	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but
make	no	expressed	or	implied	warranty	of	any	kind	and	assume	no	responsibility
for	errors	or	omissions.	No	liability	is	assumed	for	incidental	or	consequential
damages	in	connection	with	or	arising	out	of	the	use	of	the	information	or
programs	contained	herein.

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales
opportunities	(which	may	include	electronic	versions;	custom	cover	designs;	and
content	particular	to	your	business,	training	goals,	marketing	focus,	or	branding
interests),	please	contact	our	corporate	sales	department	at
corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact
governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact	intlcs@pearson.com.

Visit	us	on	the	Web:	informit.com/aw

Library	of	Congress	Control	Number:	2018938456

©	2018	Pearson	Education,	Inc.

All	rights	reserved.	This	publication	is	protected	by	copyright,	and	permission
must	be	obtained	from	the	publisher	prior	to	any	prohibited	reproduction,	storage
in	a	retrieval	system,	or	transmission	in	any	form	or	by	any	means,	electronic,
mechanical,	photocopying,	recording,	or	likewise.	For	information	regarding
permissions,	request	forms,	and	the	appropriate	contacts	within	the	Pearson
Education	Global	Rights	&	Permissions	Department,	please	visit
www.pearsoned.com/permissions/.

Microsoft	and/or	its	respective	suppliers	make	no	representations	about	the
suitability	of	the	information	contained	in	the	documents	and	related	graphics
published	as	part	of	the	services	for	any	purpose.	All	such	documents	and	related
graphics	are	provided	“as	is”	without	warranty	of	any	kind.	Microsoft	and/	or	its
respective	suppliers	hereby	disclaim	all	warranties	and	conditions	with	regard	to
this	information,	including	all	warranties	and	conditions	of	merchantability,
whether	express,	implied	or	statutory,	fitness	for	a	particular	purpose,	title	and

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

non-infringement.	In	no	event	shall	Microsoft	and/or	its	respective	suppliers	be
liable	for	any	special,	indirect	or	consequential	damages	or	any	damages
whatsoever	resulting	from	loss	of	use,	data	or	profits,	whether	in	an	action	of
contract,	negligence	or	other	tortious	action,	arising	out	of	or	in	connection	with
the	use	or	performance	of	information	available	from	the	services.	The
documents	and	related	graphics	contained	herein	could	include	technical
inaccuracies	or	typographical	errors.	Changes	are	periodically	added	to	the
information	herein.	Microsoft	and/or	its	respective	suppliers	may	make
improvements	and/or	changes	in	the	product(s)	and/or	the	program(s)	described
herein	at	any	time.	Partial	screenshots	may	be	viewed	in	full	within	the	software
version	specified.

Microsoft®	Windows®,	and	Microsoft	Office®	are	registered	trademarks	of	the
Microsoft	Corporation	in	the	U.S.A.	and	other	countries.	This	book	is	not
sponsored	or	endorsed	by	or	affiliated	with	the	Microsoft	Corporation.

ISBN-13:	978-0-13-484601-9
ISBN-10:	0-13-484601-X

1	18

Editor-in-Chief

Greg	Wiegand

Executive	Editor	Trina	MacDonald

Development	Editor	Amanda	Kaufmann

Managing	Editor
Sandra	Schroeder	Senior	Project	Editor	Lori	Lyons

Technical	Editor	Yaniv	Rodenski

Copy	Editor
Catherine	D.	Wilson	Project	Manager
Dhayanidhi	Karunanidhi	Indexer
Erika	Millen

Proofreader
Jeanine	Furino

Cover	Designer

Chuti	Prasertsith	Compositor
codemantra

Contents	at	a	Glance
Preface

Introduction

I:	Spark	Foundations

1	Introducing	Big	Data,	Hadoop,	and	Spark

2	Deploying	Spark

3	Understanding	the	Spark	Cluster	Architecture

4	Learning	Spark	Programming	Basics

II:	Beyond	the	Basics

5	Advanced	Programming	Using	the	Spark	Core	API

6	SQL	and	NoSQL	Programming	with	Spark

7	Stream	Processing	and	Messaging	Using	Spark

8	Introduction	to	Data	Science	and	Machine	Learning	Using	Spark

Index

Table	of	Contents
Preface

Introduction

I:	Spark	Foundations

1	Introducing	Big	Data,	Hadoop,	and	Spark
Introduction	to	Big	Data,	Distributed	Computing,	and	Hadoop
A	Brief	History	of	Big	Data	and	Hadoop
Hadoop	Explained

Introduction	to	Apache	Spark
Apache	Spark	Background
Uses	for	Spark
Programming	Interfaces	to	Spark
Submission	Types	for	Spark	Programs
Input/Output	Types	for	Spark	Applications
The	Spark	RDD
Spark	and	Hadoop

Functional	Programming	Using	Python
Data	Structures	Used	in	Functional	Python	Programming
Python	Object	Serialization
Python	Functional	Programming	Basics

Summary

2	Deploying	Spark
Spark	Deployment	Modes
Local	Mode
Spark	Standalone
Spark	on	YARN
Spark	on	Mesos

Preparing	to	Install	Spark

Getting	Spark
Installing	Spark	on	Linux	or	Mac	OS	X
Installing	Spark	on	Windows
Exploring	the	Spark	Installation
Deploying	a	Multi-Node	Spark	Standalone	Cluster
Deploying	Spark	in	the	Cloud
Amazon	Web	Services	(AWS)
Google	Cloud	Platform	(GCP)
Databricks

Summary

3	Understanding	the	Spark	Cluster	Architecture
Anatomy	of	a	Spark	Application
Spark	Driver
Spark	Workers	and	Executors
The	Spark	Master	and	Cluster	Manager

Spark	Applications	Using	the	Standalone	Scheduler
Spark	Applications	Running	on	YARN

Deployment	Modes	for	Spark	Applications	Running	on	YARN
Client	Mode
Cluster	Mode
Local	Mode	Revisited

Summary

4	Learning	Spark	Programming	Basics
Introduction	to	RDDs
Loading	Data	into	RDDs
Creating	an	RDD	from	a	File	or	Files
Methods	for	Creating	RDDs	from	a	Text	File	or	Files
Creating	an	RDD	from	an	Object	File
Creating	an	RDD	from	a	Data	Source
Creating	RDDs	from	JSON	Files
Creating	an	RDD	Programmatically

Operations	on	RDDs
Key	RDD	Concepts
Basic	RDD	Transformations
Basic	RDD	Actions
Transformations	on	PairRDDs
MapReduce	and	Word	Count	Exercise
Join	Transformations
Joining	Datasets	in	Spark
Transformations	on	Sets
Transformations	on	Numeric	RDDs

Summary

II:	Beyond	the	Basics

5	Advanced	Programming	Using	the	Spark	Core	API
Shared	Variables	in	Spark
Broadcast	Variables
Accumulators
Exercise:	Using	Broadcast	Variables	and	Accumulators

Partitioning	Data	in	Spark
Partitioning	Overview
Controlling	Partitions
Repartitioning	Functions
Partition-Specific	or	Partition-Aware	API	Methods

RDD	Storage	Options
RDD	Lineage	Revisited
RDD	Storage	Options
RDD	Caching
Persisting	RDDs
Choosing	When	to	Persist	or	Cache	RDDs
Checkpointing	RDDs
Exercise:	Checkpointing	RDDs

Processing	RDDs	with	External	Programs

Data	Sampling	with	Spark
Understanding	Spark	Application	and	Cluster	Configuration
Spark	Environment	Variables
Spark	Configuration	Properties

Optimizing	Spark
Filter	Early,	Filter	Often
Optimizing	Associative	Operations
Understanding	the	Impact	of	Functions	and	Closures
Considerations	for	Collecting	Data
Configuration	Parameters	for	Tuning	and	Optimizing	Applications
Avoiding	Inefficient	Partitioning
Diagnosing	Application	Performance	Issues

Summary

6	SQL	and	NoSQL	Programming	with	Spark
Introduction	to	Spark	SQL
Introduction	to	Hive
Spark	SQL	Architecture
Getting	Started	with	DataFrames
Using	DataFrames
Caching,	Persisting,	and	Repartitioning	DataFrames
Saving	DataFrame	Output
Accessing	Spark	SQL
Exercise:	Using	Spark	SQL

Using	Spark	with	NoSQL	Systems
Introduction	to	NoSQL
Using	Spark	with	HBase
Exercise:	Using	Spark	with	HBase
Using	Spark	with	Cassandra
Using	Spark	with	DynamoDB
Other	NoSQL	Platforms

Summary

7	Stream	Processing	and	Messaging	Using	Spark
Introducing	Spark	Streaming
Spark	Streaming	Architecture
Introduction	to	DStreams
Exercise:	Getting	Started	with	Spark	Streaming
State	Operations
Sliding	Window	Operations

Structured	Streaming
Structured	Streaming	Data	Sources
Structured	Streaming	Data	Sinks
Output	Modes
Structured	Streaming	Operations

Using	Spark	with	Messaging	Platforms
Apache	Kafka
Exercise:	Using	Spark	with	Kafka
Amazon	Kinesis

Summary

8	Introduction	to	Data	Science	and	Machine	Learning	Using	Spark
Spark	and	R
Introduction	to	R
Using	Spark	with	R
Exercise:	Using	RStudio	with	SparkR

Machine	Learning	with	Spark
Machine	Learning	Primer
Machine	Learning	Using	Spark	MLlib
Exercise:	Implementing	a	Recommender	Using	Spark	MLlib
Machine	Learning	Using	Spark	ML

Using	Notebooks	with	Spark
Using	Jupyter	(IPython)	Notebooks	with	Spark
Using	Apache	Zeppelin	Notebooks	with	Spark

Summary

Index

Preface
Spark	is	at	the	heart	of	the	disruptive	Big	Data	and	open	source	software
revolution.	The	interest	in	and	use	of	Spark	have	grown	exponentially,	with	no
signs	of	abating.	This	book	will	prepare	you,	step	by	step,	for	a	prosperous
career	in	the	Big	Data	analytics	field.

Focus	of	the	Book
This	book	focuses	on	the	fundamentals	of	the	Spark	project,	starting	from	the
core	and	working	outward	into	Spark’s	various	extensions,	related	or
subprojects,	and	the	broader	ecosystem	of	open	source	technologies	such	as
Hadoop,	Kafka,	Cassandra,	and	more.

Although	the	foundational	understanding	of	Spark	concepts	covered	in	this	book
—including	the	runtime,	cluster	and	application	architecture—are	language
independent	and	agnostic,	the	majority	of	the	programming	examples	and
exercises	in	this	book	are	written	in	Python.	The	Python	API	for	Spark
(PySpark)	provides	an	intuitive	programming	environment	for	data	analysts,	data
engineers,	and	data	scientists	alike,	offering	developers	the	flexibility	and
extensibility	of	Python	with	the	distributed	processing	power	and	scalability	of
Spark.

The	scope	of	this	book	is	quite	broad,	covering	aspects	of	Spark	from	core	Spark
programming	to	Spark	SQL,	Spark	Streaming,	machine	learning,	and	more.	This
book	provides	a	good	introduction	and	overview	for	each	topic—enough	of	a
platform	for	you	to	build	upon	any	particular	area	or	discipline	within	the	Spark
project.

Who	Should	Read	This	Book
This	book	is	intended	for	data	analysts	and	engineers	looking	to	enter	the	Big
Data	space	or	consolidate	their	knowledge	in	this	area.	The	demand	for
engineers	with	skills	in	Big	Data	and	its	preeminent	processing	framework,
Spark,	is	exceptionally	high	at	present.	This	book	aims	to	prepare	readers	for	this
growing	employment	market	and	arm	them	with	the	skills	employers	are	looking

for.

Python	experience	is	useful	but	not	strictly	necessary	for	readers	of	this	book	as
Python	is	quite	intuitive	for	anyone	with	any	programming	experience
whatsoever.	A	good	working	knowledge	of	data	analysis	and	manipulation
would	also	be	helpful.	This	book	is	especially	well	suited	to	data	warehouse
professionals	interested	in	expanding	their	careers	into	the	Big	Data	area.

How	to	Use	This	Book
This	book	is	structured	into	two	parts	and	eight	chapters.	Part	I,	“Spark
Foundations,”	includes	four	chapters	designed	to	build	a	solid	understanding	of
what	Spark	is,	how	to	deploy	Spark,	and	how	to	use	Spark	for	basic	data
processing	operations:

	Chapter	1,	“Introducing	Big	Data,	Hadoop	and	Spark,”	provides	a	good
overview	of	the	Big	Data	ecosystem,	including	the	genesis	and	evolution	of
the	Spark	project.	Key	properties	of	the	Spark	project	are	discussed,
including	what	Spark	is	and	how	it	is	used,	as	well	as	how	Spark	relates	to
the	Hadoop	project.

	Chapter	2,	“Deploying	Spark,”	demonstrates	how	to	deploy	a	Spark	cluster,
including	the	various	Spark	cluster	deployment	modes	and	the	different
ways	you	can	leverage	Spark.

	Chapter	3,	“Understanding	the	Spark	Cluster	Architecture,”	discusses	how
Spark	clusters	and	applications	operate,	providing	a	solid	understanding	of
exactly	how	Spark	works.

	Chapter	4,	“Learning	Spark	Programming	Basics,”	focuses	on	the	basic
programming	building	blocks	of	Spark	using	the	Resilient	Distributed
Dataset	(RDD)	API.

Part	II,	“Beyond	the	Basics,”	includes	the	final	four	chapters,	which	extend
beyond	the	Spark	core	into	its	uses	with	SQL	and	NoSQL	systems,	streaming
applications,	and	data	science	and	machine	learning:

	Chapter	5,	“Advanced	Programming	Using	the	Spark	Core	API,”	covers
advanced	constructs	used	to	extend,	accelerate,	and	optimize	Spark
routines,	including	different	shared	variables	and	RDD	storage	and
partitioning	concepts	and	implementations.

	Chapter	6,	“SQL	and	NoSQL	Programming	with	Spark,”	discusses	Spark’s
integration	into	the	vast	SQL	landscape	as	well	as	its	integration	with	non-
relational	stores.

	Chapter	7,	“Stream	Processing	and	Messaging	Using	Spark,”	introduces	the
Spark	streaming	project	and	the	fundamental	DStream	object.	It	also	covers
Spark’s	use	with	popular	messaging	systems	such	as	Apache	Kafka.

	Chapter	8,	“Introduction	to	Data	Science	and	Machine	Learning	Using
Spark,”	provides	an	introduction	to	predictive	modeling	using	Spark	with	R
as	well	as	the	Spark	MLlib	subproject	used	to	implement	machine	learning
with	Spark.

Book	Conventions
Key	terms	or	concepts	are	highlighted	in	italic.	Code,	object,	and	file	references
are	displayed	in	a	monospaced	font.

Step-by-step	exercises	are	provided	to	consolidate	each	topic.

Accompanying	Code	and	Data	for	the	Exercises
Sample	data	and	source	code	for	each	of	the	exercises	in	this	book	is	available	at
http://sparkusingpython.com.	You	can	also	view	or	clone	the	GitHub	repository
for	this	book	at	https://github.com/sparktraining/spark_using_python.

Register	This	Book
Register	 your	 copy	 of	 Data	 Analytics	 with	 Spark	 Using	 Python	 on	 the
InformIT	 site	 for	 convenient	 access	 to	 updates	 and/or	 corrections	 as	 they
become	 available.	 To	 start	 the	 registration	 process,	 go	 to
informit.com/register	 and	 log	 in	 or	 create	 an	 account.	 Enter	 the	 product
ISBN	(9780134846019)	and	click	Submit.	Look	on	the	Registered	Products
tab	for	an	Access	Bonus	Content	link	next	to	this	product,	and	follow	that
link	 to	 access	 any	 available	 bonus	 materials.	 If	 you	 would	 like	 to	 be
notified	of	exclusive	offers	on	new	editions	and	updates,	please	check	the
box	to	receive	email	from	us.

http://sparkusingpython.com
https://github.com/sparktraining/spark_using_python
http://informit.com/register

About	the	Author
Jeffrey	Aven	is	an	independent	Big	Data,	open	source	software	and	cloud
computing	professional	based	out	of	Melbourne,	Australia.	Jeffrey	is	a	highly
regarded	consultant	and	instructor	and	has	authored	several	other	books
including	Teach	Yourself	Apache	Spark	in	24	Hours	and	Teach	Yourself	Hadoop
in	24	Hours.

Introduction

Spark	is	a	first-class	data	processing	platform	and	programming	interface	for	Big
Data	which	is	inexorably	linked	to	the	Big	Data	technology	wave.	At	the	time	of
this	writing,	Spark	is	one	of	the	most	active	open	source	projects	under	the
Apache	Software	Foundation	(ASF)	framework,	and	it’s	one	of	the	most	active
open	source	Big	Data	projects	ever.

With	so	much	interest	in	Spark	from	the	analytics,	data	processing,	and	data
science	communities,	it’s	important	to	understand	what	Spark	is,	what	purpose	it
serves,	what	advantages	it	provides,	and	how	to	leverage	Spark	for	Big	Data
analytics.	This	book	covers	all	that.

Unlike	many	other	publications	dedicated	to	Spark,	which	almost	exclusively
use	the	Scala	API,	this	book	focuses	on	the	Python	API	for	Spark,	or	PySpark.
Python	was	selected	as	the	basis	for	this	book	because	it	is	an	intuitive,
interpreted	language	that	is	widely	known	and	easily	learned	by	those	who
haven’t	used	it.	Moreover,	Python	is	a	very	popular	programming	language	with
data	scientists,	a	major	constituency	of	the	Spark	community.

This	book	takes	it	from	the	top	with	Big	Data	and	Spark	and	is	suitable	whether
you	have	had	zero	exposure	to	Spark	and	Hadoop	or	have	had	some	exposure
but	are	looking	to	get	a	holistic	understanding	of	how	Spark	operates	and	how
best	to	leverage	its	vast	capabilities.

Throughout	the	book	you	will	learn	about	adjacent	and	complementary
platforms,	projects,	and	technologies	such	as	Hadoop,	HBase,	Kafka,	and	many
others,	and	see	how	they	interact	and	integrate	with	Spark.

I	have	dedicated	the	past	several	years	of	my	career	to	this	subject	area,	teaching
courses	and	consulting	with	clients	on	analytics	and	Big	Data.	I	have	seen	the
emergence	and	maturity	of	Spark	and	the	Big	Data	and	open	source	movements
more	generally	and	have	been	part	of	their	assimilation	into	the	enterprise.	I	have
tried	to	synthesize	my	personal	learning	journey	into	this	book.

I	have	supplied	sample	data	and	source	code	for	each	of	the	exercises	in	this
book,	which	is	available	at	http://sparkusingpython.com.	You	can	also	view	or
clone	the	GitHub	repository	for	this	book	at
https://github.com/sparktraining/spark_using_python.

I	hope	this	book	launches	or	assists	in	your	journey	to	becoming	a	Big	Data	and
Spark	practitioner.

http://sparkusingpython.com
https://github.com/sparktraining/spark_using_python

I

Spark	Foundations

1	Introducing	Big	Data,	Hadoop,	and	Spark

2	Deploying	Spark

3	Understanding	the	Spark	Cluster	Architecture

4	Learning	Spark	Programming	Basics

1

Introducing	Big	Data,	Hadoop,	and
Spark

In	pioneer	days	they	used	oxen	for	heavy	pulling,	and	when	one	ox	couldn’t
budge	a	log,	they	didn’t	try	to	grow	a	larger	ox.	We	shouldn’t	be	trying	for	bigger

computers,	but	for	more	systems	of	computers.

Rear	Admiral	Grace	Murray	Hopper,	American	computer	scientist

In	This	Chapter:
	Introduction	to	Big	Data	and	the	Apache	Hadoop	project
	Basic	overview	of	the	Hadoop	core	components	(HDFS	and	YARN)
	Introduction	to	Apache	Spark
	Python	fundamentals	required	for	PySpark	programming,	including
functional	programming	basics

The	Hadoop	and	Spark	projects	are	inexorably	linked	to	the	Big	Data	movement.
From	their	early	beginnings	at	search	engine	providers	and	in	academia	to	the
vast	array	of	current	applications	that	range	from	data	warehousing	to	complex
event	processing	to	machine	learning	and	more,	Hadoop	and	Spark	have
indelibly	altered	the	data	landscape.

This	chapter	introduces	some	basic	distributed	computing	concepts,	the	Hadoop
and	Spark	projects,	and	functional	programming	using	Python,	providing	a	solid

platform	to	build	your	knowledge	upon	as	you	progress	through	this	book.

Introduction	to	Big	Data,	Distributed	Computing,	and
Hadoop
Before	discussing	Spark,	it	is	important	to	take	a	step	back	and	understand	the
history	of	what	we	now	refer	to	as	Big	Data.	To	be	proficient	as	a	Spark
professional,	you	need	to	understand	not	only	Hadoop	and	its	use	with	Spark	but
also	some	of	the	concepts	at	the	core	of	the	Hadoop	project,	such	as	data	locality,
shared	nothing,	and	MapReduce,	as	these	are	all	applicable	and	integral	to
Spark.

A	Brief	History	of	Big	Data	and	Hadoop
The	set	of	storage	and	processing	methodologies	commonly	known	as	Big	Data
emerged	from	the	search	engine	providers	in	the	early	2000s,	principally	Google
and	Yahoo!.	The	search	engine	providers	were	the	first	group	of	users	faced	with
Internet	scale	problems,	mainly	how	to	process	and	store	indexes	of	all	the
documents	in	the	Internet	universe.	This	seemed	an	insurmountable	challenge	at
the	time,	even	though	the	entire	body	of	content	in	the	Internet	was	a	fraction	of
what	it	is	today.

Yahoo!	and	Google	independently	set	about	developing	a	set	of	capabilities	to
meet	this	challenge.	In	2003,	Google	released	a	whitepaper	titled	“The	Google
File	System.”	Subsequently,	in	2004,	Google	released	another	whitepaper,	titled
“MapReduce:	Simplified	Data	Processing	on	Large	Clusters.”	Around	the	same
time,	Doug	Cutting,	who	is	generally	acknowledged	as	the	initial	creator	of
Hadoop,	and	Mike	Cafarella	were	working	on	a	web	crawler	project	called
Nutch,	which	was	based	on	Cutting’s	open	source	Lucene	project	(now	Apache
Lucene).	The	Google	whitepapers	inspired	Cutting	to	take	the	work	he	had	done
on	the	Nutch	project	and	incorporate	the	storage	and	processing	principles
outlined	in	these	whitepapers.	The	resulting	product	is	what	we	know	today	as
Hadoop.	Later	in	2006,	Yahoo!	decided	to	adopt	Hadoop	and	hire	Doug	Cutting
to	work	full	time	on	the	project.	Hadoop	joined	the	Apache	Software	Foundation
in	2006.

The	Apache	Software	Foundation

The	Apache	Software	Foundation	(ASF)	is	a	nonprofit	organization	founded
in	1999	to	provide	an	open	source	software	structure	and	framework	for
developers	to	contribute	to	projects.	The	ASF	encourages	collaboration	and
community	involvement	and	protects	volunteers	from	litigation.	ASF	is
premised	on	the	concept	of	meritocracy,	meaning	projects	are	governed	by
merit.
Contributors	are	developers	who	contribute	code	or	documentation	to
projects.	They	are	typically	active	on	mailing	lists	and	support	forums,	and
they	provide	suggestions,	criticism,	and	patches	to	address	defects.
Committers	are	developers	whose	expertise	merits	giving	them	access	to	a
commit	code	to	the	main	repository	for	a	project.	Committers	sign	a
contributor	license	agreement	(CLA)	and	have	an	apache.org	email	address.
Committers	act	as	a	committee	to	make	decisions	about	projects.
More	information	about	the	Apache	Software	Foundation	can	be	found	at
http://apache.org/.

Around	the	same	time	the	Hadoop	project	was	born,	several	other	technology
innovations	were	afoot,	including	the	following:

	The	rapid	expansion	of	ecommerce

	The	birth	and	rapid	growth	of	the	mobile	Internet

	Blogs	and	user-driven	web	content

	Social	media

These	innovations	cumulatively	led	to	an	exponential	increase	in	the	amount	of
data	generated.	This	deluge	of	data	accelerated	the	expansion	of	the	Big	Data
movement	and	led	to	the	emergence	of	other	related	projects,	such	as	Spark,
open	source	messaging	systems	such	as	Kafka,	and	NoSQL	platforms	such	as
HBase	and	Cassandra,	all	of	which	we’ll	discuss	in	detail	later	in	this	book.

But	it	all	started	with	Hadoop.

Hadoop	Explained
Hadoop	is	a	data	storage	and	processing	platform	initially	based	on	a	central
concept:	data	locality.	Data	locality	refers	to	the	pattern	of	processing	data	where
it	resides	by	bringing	the	computation	to	the	data	rather	than	the	typical	pattern

http://apache.org
http://apache.org/

of	requesting	data	from	its	location—for	example,	a	database	management
system—and	sending	the	data	to	a	remote	processing	system	or	host.

With	Internet-scale	data—Big	Data—it	is	no	longer	efficient,	practical,	or	even
possible	in	some	cases	to	move	the	large	volumes	of	data	required	for	processing
across	the	network	at	compute	time.

Hadoop	enables	large	datasets	to	be	processed	locally	on	the	nodes	of	a	cluster
using	a	shared	nothing	approach,	where	each	node	can	independently	process	a
much	smaller	subset	of	the	entire	dataset	without	needing	to	communicate	with
other	nodes.	This	characteristic	is	enabled	through	its	implementation	of	a
distributed	filesystem.

Hadoop	is	schemaless	with	respect	to	its	write	operations;	it	is	what’s	known	as	a
schema-on-read	system.	This	means	it	can	store	and	process	a	wide	range	of
data,	from	unstructured	text	documents,	to	semi-structured	JSON	(JavaScript
Object	Notation)	or	XML	documents,	to	well-structured	extracts	from	relational
database	systems.

Schema-on-read	systems	are	a	fundamental	departure	from	the	relational
databases	we	are	accustomed	to,	which	are,	in	contrast,	broadly	categorized	as
schema-on-write	systems,	where	data	is	typically	strongly	typed	and	a	schema	is
predefined	and	enforced	upon	INSERT,	UPDATE,	or	UPSERT	operations.

NoSQL	platforms,	such	as	HBase	or	Cassandra,	are	also	classified	as	schema-
on-read	systems.	You	will	learn	more	about	NoSQL	platforms	in	Chapter	6,
“SQL	and	NoSQL	Programming	with	Spark.”

Because	the	schema	is	not	interpreted	during	write	operations	to	Hadoop,	there
are	no	indexes,	statistics,	or	other	constructs	often	employed	by	database
systems	to	optimize	query	operations	and	filter	or	reduce	the	amount	of	data
returned	to	a	client.	This	further	necessitates	data	locality.

Hadoop	is	designed	to	find	needles	in	haystacks	by	dividing	and	conquering
large	problems	into	sets	of	smaller	problems	and	applying	the	concepts	of	data
locality	and	shared	nothing.	Spark	applies	the	very	same	concepts.

Core	Components	of	Hadoop
Hadoop	has	two	core	components:	HDFS	(Hadoop	Distributed	File	System)	and
YARN	(Yet	Another	Resource	Negotiator).	HDFS	is	Hadoop’s	storage
subsystem,	whereas	YARN	can	be	thought	of	as	Hadoop’s	processing,	or
resource	scheduling,	subsystem	(see	Figure	1.1).

Figure	1.1	Hadoop	core	components.

Each	component	is	independent	of	the	other	and	can	operate	in	its	own	cluster.
However,	when	a	HDFS	cluster	and	a	YARN	cluster	are	collocated	with	each
other,	the	combination	of	both	systems	is	considered	to	be	a	Hadoop	cluster.
Spark	can	leverage	both	Hadoop	core	components,	as	discussed	in	more	detail
later	in	this	chapter.

Cluster	Terminology
A	cluster	is	a	collection	of	systems	that	work	together	to	perform	functions,
such	as	computational	or	processing	functions.	Individual	servers	within	a
cluster	are	referred	to	as	nodes.
Clusters	can	have	many	 topologies	and	communication	models;	one	 such
model	 is	 the	 master/slave	 model.	 Master/slave	 is	 a	 model	 of
communication	whereby	 one	 process	 has	 control	 over	 one	 or	more	 other
processes.	 In	 some	systems,	a	master	 is	 selected	 from	a	group	of	eligible
processes	 at	 runtime	or	 during	 processing,	while	 in	 other	 cases—such	 as
with	 a	HDFS	or	YARN	cluster—the	master	 and	 slave	 processes	 are	 pre-
designated	static	roles	for	the	lifetime	of	the	cluster.

Any	other	projects	that	interact	or	integrate	with	Hadoop	in	some	way—for

instance,	data	ingestion	projects	such	as	Flume	or	Sqoop	or	data	analysis	tools
such	as	Pig	or	Hive—are	called	Hadoop	“ecosystem”	projects.	You	could
consider	Spark	an	ecosystem	project,	but	this	is	debatable	because	Spark	does
not	require	Hadoop	to	run.

HDFS:	Files,	Blocks,	and	Metadata
HDFS	is	a	virtual	filesystem	where	files	are	composed	of	blocks	distributed
across	one	or	more	nodes	of	the	cluster.	Files	are	split	indiscriminately,
according	to	a	configured	block	size	upon	uploading	data	into	the	filesystem,	in
a	process	known	as	ingestion.	The	blocks	are	then	distributed	and	replicated
across	cluster	nodes	to	achieve	fault	tolerance	and	additional	opportunities	for
processing	data	locally	(the	design	goal	of	“bringing	the	computation	to	the
data”).	HDFS	blocks	are	stored	and	managed	on	a	slave	node	HDFS	cluster
process	called	the	DataNode.

The	DataNode	process	is	the	HDFS	slave	node	daemon	that	runs	on	one	or	more
nodes	of	the	HDFS	cluster.	DataNodes	are	responsible	for	managing	block
storage	and	access	for	reading	and	writing	of	data,	as	well	as	for	block
replication,	which	is	part	of	the	data	ingestion	process,	shown	in	Figure	1.2.

Figure	1.2	HDFS	data	ingestion,	block	distribution,	and	replication.

There	are	typically	many	hosts	running	the	DataNode	process	in	a	fully
distributed	Hadoop	cluster.	Later	you	will	see	that	the	DataNode	process
provides	input	data	in	the	form	of	partitions	to	distributed	Spark	worker
processes	for	Spark	applications	deployed	on	Hadoop.

The	information	about	the	filesystem	and	its	virtual	directories,	files,	and	the
physical	blocks	that	comprise	the	files	is	stored	in	the	filesystem	metadata.	The
filesystem	metadata	is	stored	in	resident	memory	on	the	HDFS	master	node
process	known	as	the	NameNode.	The	NameNode	in	a	HDFS	cluster	provides
durability	to	the	metadata	through	a	journaling	function	akin	to	a	relational
database	transaction	log.	The	NameNode	is	responsible	for	providing	HDFS
clients	with	block	locations	for	read	and	write	operations,	with	which	the	clients
communicate	directly	with	the	DataNodes	for	data	operations.	Figure	1.3	shows
the	anatomy	of	an	HDFS	read	operation,	and	Figure	1.4	shows	the	anatomy	of	a
write	operation	in	HDFS.

Figure	1.3	Anatomy	of	an	HDFS	read	operation.

Figure	1.4	Anatomy	of	an	HDFS	write	operation.

Application	Scheduling	Using	YARN
YARN	governs	and	orchestrates	the	processing	of	data	in	Hadoop,	which	usually
is	data	sourced	from	and	written	to	HDFS.	The	YARN	cluster	architecture	is	a
master/slave	cluster	framework	like	HDFS,	with	a	master	node	daemon	called
the	ResourceManager	and	one	or	more	slave	node	daemons	called
NodeManagers	running	on	worker,	or	slave,	nodes	in	the	cluster.

The	ResourceManager	is	responsible	for	granting	cluster	compute	resources	to
applications	running	on	the	cluster.	Resources	are	granted	in	units	called
containers,	which	are	predefined	combinations	of	CPU	cores	and	memory.
Container	allotments,	including	minimum	and	maximum	thresholds,	are
configurable	on	the	cluster.	Containers	are	used	to	isolate	resources	dedicated	to
a	process	or	processes.

The	ResourceManager	also	tracks	available	capacity	on	the	cluster	as
applications	finish	and	release	their	reserved	resources,	and	it	tracks	the	status	of
applications	running	on	the	cluster.	The	ResourceManager	serves	an	embedded

web	UI	on	port	8088	of	the	host	running	this	daemon,	which	is	useful	for
displaying	the	status	of	applications	running,	completed,	or	failed	on	the	cluster,
as	shown	in	Figure	1.5.	You	often	use	this	user	interface	when	managing	the
status	of	Spark	applications	running	on	a	YARN	cluster.

Figure	1.5	YARN	ResourceManager	user	interface.

Clients	submit	applications,	such	as	Spark	applications,	to	the
ResourceManager;	the	ResourceManager	then	allocates	the	first	container	on	an
available	NodeManager	in	the	cluster	as	a	delegate	process	for	the	application
called	the	ApplicationMaster;	the	ApplicationMaster	then	negotiates	all	further
containers	required	to	run	tasks	for	the	application.

The	NodeManager	is	the	slave	node	YARN	daemon	that	manages	containers	on
the	slave	node	host.	Containers	are	used	to	execute	the	tasks	involved	in	an
application.	As	Hadoop’s	approach	to	solving	large	problems	is	to	“divide	and
conquer,”	a	large	problem	is	deconstructed	into	a	set	of	tasks,	many	of	which	can
be	run	in	parallel;	recall	the	concept	of	shared	nothing.	These	tasks	are	run	in
containers	on	hosts	running	the	NodeManager	process.

Most	containers	simply	run	tasks.	However,	the	ApplicationMaster	has	some
additional	responsibilities	for	managing	an	application.	As	discussed	earlier	in
this	chapter,	the	ApplicationMaster	is	the	first	container	allocated	by	the
ResourceManager	to	run	on	a	NodeManager.	Its	job	is	to	plan	the	application,
including	determining	what	resources	are	required—often	based	on	how	much
data	is	being	processed—and	to	work	out	resourcing	for	application	stages,
which	you’ll	learn	about	shortly.	The	ApplicationMaster	requests	these	resources
from	the	ResourceManager	on	behalf	of	the	application.	The	ResourceManager
grants	resources	on	the	same	or	other	NodeManagers	to	the	ApplicationMaster

to	use	for	the	lifetime	of	the	specific	application.	The	ApplicationMaster—in	the
case	of	Spark,	as	detailed	later—monitors	the	progress	of	tasks,	stages	(groups	of
tasks	that	can	be	performed	in	parallel),	and	dependencies.	The	summary
information	is	provided	to	the	ResourceManager	to	display	in	its	user	interface,
as	shown	earlier.	A	generalization	of	the	YARN	application	submission,
scheduling,	and	execution	process	is	shown	in	Figure	1.6.

Figure	1.6	YARN	application	submission,	scheduling,	and	execution	(Hadoop
6.6).

The	process	pictured	in	Figure	1.6	works	as	follows:
1.	A	client	submits	an	application	to	the	ResourceManager.

2.	The	ResourceManager	allocates	an	ApplicationMaster	process	on	a
NodeManager	with	sufficient	capacity	to	be	assigned	this	role.

3.	The	ApplicationMaster	negotiates	task	containers	with	the
ResourceManager	to	be	run	on	NodeManagers—which	can	include	the
NodeManager	on	which	the	ApplicationMaster	is	running	as	well—and
dispatches	processing	to	the	NodeManagers	hosting	the	task	containers	for
the	application.

4.	The	NodeManagers	report	their	task	attempt	status	and	progress	to	the
ApplicationMaster.

5.	The	ApplicationMaster	reports	progress	and	the	status	of	the	application	to
the	ResourceManager.

6.	The	ResourceManager	reports	application	progress,	status,	and	results	to	the
client.

We	will	explore	how	YARN	is	used	to	schedule	and	orchestrate	Spark	programs
running	on	a	Hadoop	cluster	in	Chapter	3,	“Understanding	the	Spark	Cluster
Architecture.”

Hadoop	MapReduce
Following	Google’s	release	of	the	whitepaper	“The	Google	File	System”	in
2003,	 which	 influenced	 the	 HDFS	 project,	 Google	 released	 another
whitepaper,	 titled	 “MapReduce:	 Simplified	 Data	 Processing	 on	 Large
Clusters,”	 in	 December	 2004.	 The	MapReduce	whitepaper	 gives	 a	 high-
level	 description	 of	 Google’s	 approach	 to	 processing—specifically
indexing	 and	 ranking—large	 volumes	 of	 text	 data	 for	 search	 engine
processing.	MapReduce	would	become	the	programming	model	at	the	core
of	Hadoop	and	would	ultimately	inspire	and	influence	the	Spark	project.

Introduction	to	Apache	Spark
Apache	Spark	was	created	as	an	alternative	to	the	implementation	of
MapReduce	in	Hadoop	to	gain	efficiencies	measured	in	orders	of	magnitude.
Spark	also	delivers	unrivaled	extensibility	and	is	effectively	a	Swiss	Army	knife
for	data	processing,	delivering	SQL	access,	streaming	data	processing,	graph	and
NoSQL	processing,	machine	learning,	and	much	more.

Apache	Spark	Background

Apache	Spark	is	an	open	source	distributed	data	processing	project	started	in
2009	by	Matei	Zaharia	at	the	University	of	California,	Berkeley,	RAD	Lab.
Spark	was	created	as	part	of	the	Mesos	research	project,	designed	to	look	at	an
alternative	resource	scheduling	and	orchestration	system	to	MapReduce.	(For
more	information	on	Mesos,	see	http://mesos.apache.org/.)

Using	Spark	became	an	alternative	to	using	traditional	MapReduce	on	Hadoop,
which	was	unsuited	for	interactive	queries	or	real-time,	low-latency	applications.
A	major	disadvantage	of	Hadoop’s	MapReduce	implementation	was	its
persistence	of	intermediate	data	to	disk	between	the	Map	and	Reduce	processing
phases.

As	an	alternative	to	MapReduce,	Spark	implements	a	distributed,	fault-tolerant,
in-memory	structure	called	a	Resilient	Distributed	Dataset	(RDD).	Spark
maximizes	the	use	of	memory	across	multiple	machines,	significantly	improving
overall	performance.	Spark’s	reuse	of	these	in-memory	structures	makes	it	well
suited	to	iterative	machine	learning	operations	as	well	as	interactive	queries.

Spark	is	written	in	Scala,	which	is	built	on	top	of	the	Java	Virtual	Machine
(JVM)	and	Java	runtime.	This	makes	Spark	a	cross-platform	application	capable
of	running	on	Windows	as	well	as	Linux;	many	consider	Spark	to	be	the	future
of	data	processing	in	Hadoop.

Spark	enables	developers	to	create	complex,	multi-stage	data	processing
routines,	providing	a	high-level	API	and	fault-tolerant	framework	that	lets
programmers	focus	on	logic	rather	than	infrastructure	or	environmental	issues,
such	as	hardware	failure.

As	a	top-level	Apache	Software	Foundation	project,	Spark	has	more	than	400
individual	contributors	and	committers	from	companies	such	as	Facebook,
Yahoo!,	Intel,	Netflix,	Databricks,	and	others.

Uses	for	Spark
Spark	supports	a	wide	range	of	applications,	including	the	following:

	Extract-transform-load	(ETL)	operations

	Predictive	analytics	and	machine	learning

	Data	access	operations,	such	as	SQL	queries	and	visualizations

	Text	mining	and	text	processing

http://mesos.apache.org/

	Real-time	event	processing

	Graph	applications

	Pattern	recognition

	Recommendation	engines

At	the	time	of	this	writing,	more	than	1,500	organizations	worldwide	are	using
Spark	in	production,	with	some	organizations	running	Spark	on	hundreds	to
thousands	of	cluster	nodes	against	petabytes	of	data.

Spark’s	speed	and	versatility	are	further	complemented	by	the	numerous
extensions	now	included	with	Spark,	including	Spark	SQL,	Spark	Streaming,
and	SparkR,	to	name	a	few.

Programming	Interfaces	to	Spark
As	mentioned	earlier	in	this	chapter,	Spark	is	written	in	Scala,	and	it	runs	in
JVMs.	Spark	provides	native	support	for	programming	interfaces	including	the
following:

	Scala

	Python	(using	Python’s	functional	programming	operators)

	Java

	SQL

	R

In	addition,	Spark	includes	extended	support	for	Clojure	and	other	languages.

Submission	Types	for	Spark	Programs
Spark	programs	can	run	interactively	or	as	batch	jobs,	including	mini-batch	and
micro-batch	jobs.

Interactive	Submission
Interactive	programming	shells	are	available	in	Python	and	Scala.	The	PySpark
and	Scala	shells	are	shown	in	Figures	1.7	and	1.8,	respectively.

Figure	1.7	PySpark	shell.

Figure	1.8	Scala	shell.

Interactive	R	and	SQL	shells	are	included	with	Spark	as	well.

Non-interactive	or	Batch	Submission
Non-interactive	applications	can	be	submitted	using	the	spark-submit
command,	as	shown	in	Listing	1.1.

Listing	1.1	Using	spark-submit	to	Run	a	Spark	Application
Non-interactively
Click	here	to	view	code	image

$SPARK_HOME/bin/spark-submit	\

--class	org.apache.spark.examples.SparkPi	\

--master	yarn-cluster	\

--num-executors	4	\

--driver-memory	10g	\

--executor-memory	10g	\

--executor-cores	1	\

$SPARK_HOME/examples/jars/spark-examples*.jar	10

Input/Output	Types	for	Spark	Applications
Although	Spark	is	mostly	used	to	process	data	in	Hadoop,	Spark	can	be	used
with	a	multitude	of	other	source	and	target	systems,	including	the	following:

	Local	or	network	filesystems

	Object	storage	such	as	Amazon	S3	or	Ceph

	Relational	database	systems

	NoSQL	stores,	including	Cassandra,	HBase,	and	others

	Messaging	systems	such	as	Kafka

The	Spark	RDD
We	will	discuss	the	Spark	Resilient	Distributed	Dataset	(RDD)	throughout	this
book,	so	it	is	worthwhile	to	introduce	it	now.	The	Spark	RDD,	the	primary	data
abstraction	structure	for	Spark	applications,	is	one	of	the	main	differentiators
between	Spark	and	other	cluster	computing	frameworks.	Spark	RDDs	can	be
thought	of	as	in-memory	collections	of	data	distributed	across	a	cluster.	Spark

programs	using	the	Spark	core	API	consist	of	loading	input	data	into	an	RDD,
transforming	the	RDD	into	subsequent	RDDs,	and	then	storing	or	presenting	the
final	output	for	an	application	from	the	resulting	final	RDD.	(Don’t	worry	…
there	is	much	more	about	this	in	upcoming	chapters	of	this	book!)

Spark	and	Hadoop
As	noted	earlier,	Hadoop	and	Spark	are	closely	related	to	each	other	in	their
shared	history	and	implementation	of	core	parallel	processing	concepts,	such	as
shared	nothing	and	data	locality.	Let’s	look	at	the	ways	in	which	Hadoop	and
Spark	are	commonly	used	together.

HDFS	as	a	Data	Source	for	Spark
Spark	can	be	deployed	as	a	processing	framework	for	data	in	Hadoop,	typically
in	HDFS.	Spark	has	built-in	support	for	reading	and	writing	to	and	from	HDFS
in	various	file	formats,	including	the	following:

	Native	text	file	format

	Sequence	file	format

	Parquet	format

In	addition,	Spark	includes	extended	support	for	Avro,	ORCFile	formats,	and
others.	Reading	a	file	from	HDFS	using	Spark	is	as	easy	as	this:
Click	here	to	view	code	image

textfile	=	sc.textFile("hdfs://mycluster/data/file.txt")

Writing	data	from	a	Spark	application	to	HDFS	is	as	easy	as	this:
Click	here	to	view	code	image

myRDD.saveAsTextFile("hdfs://mycluster/data/output")

YARN	as	a	Resource	Scheduler	for	Spark
YARN	is	one	of	the	most	commonly	used	process	schedulers	for	Spark
applications.	Because	YARN	is	usually	collocated	with	HDFS	on	Hadoop
clusters,	YARN	is	a	convenient	platform	for	managing	Spark	applications.

Also,	because	YARN	governs	available	compute	resources	across	distributed

nodes	in	a	Hadoop	cluster,	it	can	schedule	Spark	processing	stages	to	run	in
parallel	wherever	possible.	Furthermore,	where	HDFS	is	used	as	the	input	source
for	a	Spark	application,	YARN	can	schedule	map	tasks	to	take	full	advantage	of
data	locality,	thereby	minimizing	the	amount	of	data	that	needs	to	be	transferred
across	the	network	during	the	critical	initial	stages	of	processing.

Functional	Programming	Using	Python
Python	is	an	amazingly	useful	language.	Its	uses	range	from	automation	to	web
services	to	machine	learning	and	everything	in	between.	Python	has	risen	to	be
one	of	the	most	widely	used	languages	today.

As	a	multi-paradigm	programming	language,	Python	combines	imperative	and
procedural	programming	paradigms	with	full	support	for	the	object-oriented	and
functional	paradigms.

The	following	sections	examine	the	functional	programming	concepts	and
elements	included	in	Python,	which	are	integral	to	Spark’s	Python	API
(PySpark)—and	are	the	basis	of	Spark	programming	throughout	this	book—
including	anonymous	functions,	common	higher-order	functions,	and	immutable
and	iterable	data	structures.

Data	Structures	Used	in	Functional	Python
Programming
Python	RDDs	in	Spark	are	simply	representations	of	distributed	collections	of
Python	objects,	so	it	is	important	to	understand	the	various	data	structures
available	in	Python.

Lists
Lists	in	Python	are	zero-based	indexed	sequences	of	mutable	values	with	the	first
value	numbered	zero.	You	can	remove	or	replace	elements	in	a	list	as	well	as
append	elements	to	the	end	of	a	list.	Listing	1.2	shows	a	simple	example	of	a	list
in	Python.

Listing	1.2	Lists
Click	here	to	view	code	image

>>>	tempc	=	[38.4,	19.2,	12.8,	9.6]

>>>	print(tempc[0])

38.4

>>>	print(len(tempc))

4

As	you	can	see	from	Listing	1.2,	individual	list	elements	are	accessible	using	the
index	number	in	square	brackets.

Importantly,	lists	support	the	three	primary	functional	programming	constructs
—map(),	reduce(),	and	filter()—as	well	as	other	built-in	methods,
including	count(),	sort(),	and	more.	In	this	book	we	will	spend	a
considerable	amount	of	time	working	with	Spark	RDDs,	which	are	essentially
representations	of	Python	lists.	Listing	1.3	provides	a	basic	example	of	a	Python
list	and	a	map()	function.	Note	that	the	map()	function,	which	we	will	cover
in	more	detail	later,	operates	on	an	input	list	and	returns	a	new	list.	This	example
is	in	pure	Python;	the	equivalent	PySpark	operation	has	slightly	different	syntax.

Listing	1.3	Python	map()	Function
Click	here	to	view	code	image

>>>	tempf	=	map(lambda	x:	(float(9)/5)*x	+	32,	tempc)

>>>	tempf

[101.12,	66.56,	55.040000000000006,	49.28]

Although	Python	lists	are	mutable	by	default,	list	objects	contained	within
Python	RDDs	in	Spark	are	immutable,	as	is	the	case	with	any	objects	created
within	Spark	RDDs.

Sets	are	a	similar	object	type	available	in	Python;	they	are	based	upon	the	set
mathematical	abstraction.	Sets	are	unordered	collections	of	unique	values
supporting	common	mathematical	set	operations,	such	as	union(),
intersection(),	and	others.

Tuples
Tuples	are	an	immutable	sequence	of	objects,	though	the	objects	contained	in	a
tuple	can	themselves	be	immutable	or	mutable.	Tuples	can	contain	different

underlying	object	types,	such	as	a	mixture	of	string,	int,	and	float
objects,	or	they	can	contain	other	sequence	types,	such	as	sets	and	other	tuples.

For	simplicity,	think	of	tuples	as	being	similar	to	immutable	lists.	However,	they
are	different	constructs	and	have	very	different	purposes.

Tuples	are	similar	to	records	in	a	relational	database	table,	where	each	record	has
a	structure,	and	each	field	defined	with	an	ordinal	position	in	the	structure	has	a
meaning.	List	objects	simply	have	an	order,	and	because	they	are	mutable	by
default,	the	order	is	not	directly	related	to	the	structure.

Tuples	consist	of	one	or	more	values	separated	by	commas	enclosed	in
parentheses.	Elements	are	accessed	from	Python	tuples	similarly	to	the	way	they
are	accessed	from	lists:	using	square	brackets	with	a	zero-based	index
referencing	the	specific	element.

Tuple	objects	have	methods	for	comparing	tuples	with	other	tuples,	as	well	as
returning	the	length	of	a	tuple	(the	number	of	elements	in	the	tuple).	You	can
also	convert	a	list	in	Python	to	a	tuple	by	using	the	tuple(list)	function.

Listing	1.4	shows	the	creation	and	usage	of	tuples	in	native	Python.

Listing	1.4	Tuples
Click	here	to	view	code	image

>>>	rec0	=	"Jeff",	"Aven",	46

>>>	rec1	=	"Barack",	"Obama",	54

>>>	rec2	=	"John	F",	"Kennedy",	46

>>>	rec3	=	"Jeff",	"Aven",	46

>>>	rec0

('Jeff',	'Aven',	46)

>>>	len(rec0)

3

>>>	print("first	name:	"	+	rec0[0])

first	name:	Jeff

#	create	tuple	of	tuples

>>>	all_recs	=	rec0,	rec1,	rec2,	rec3

>>>	all_recs

(('Jeff',	'Aven',	46),	('Barack',	'Obama',	54),

('John	F',	'Kennedy',	46),	('Jeff',	'Aven',	46))

#	create	list	of	tuples

>>>	list_of_recs	=	[rec0,	rec1,	rec2,	rec3]

>>>	list_of_recs

[('Jeff',	'Aven',	46),	('Barack',	'Obama',	54),

('John	F',	'Kennedy',	46),	('Jeff',	'Aven',	46)]

As	you	can	see	from	Listing	1.4,	it	is	very	important	to	distinguish	square
brackets	from	parentheses	because	they	have	very	different	structural	meanings.

Tuples	are	integral	objects	in	Spark,	as	they	are	typically	used	to	represent
key/value	pairs,	which	are	often	the	fundamental	unit	of	data	in	Spark
programming.

Dictionaries
Dictionaries,	or	dicts,	in	Python	are	unordered	mutable	sets	of	key/value	pairs.
Dict	objects	are	denoted	by	curly	braces	({}),	which	you	can	create	as	empty
dictionaries	by	simply	executing	a	command	such	as	my_empty_dict	=	{}.
Unlike	with	lists	and	tuples,	where	an	element	is	accessed	by	its	ordinal	position
in	the	sequence	(its	index),	an	element	in	a	dict	is	accessed	by	its	key.	A	key	is
separated	from	its	value	by	a	colon	(:),	whereas	key/value	pairs	in	a	dict	are
separated	by	commas.

Dicts	are	useful	because	their	elements	are	self-describing	rather	than	relying	on
a	predefined	schema	or	ordinality.	Dict	elements	are	accessed	by	key,	as	shown
in	Listing	1.5.	This	listing	also	shows	how	to	add	or	remove	elements	from	a
dict,	and	it	shows	some	useful	dict	methods,	including	keys(),	values(),
cmp(),	and	len().

Listing	1.5	Dictionaries
Click	here	to	view	code	image

>>>	dict0	=	{'fname':'Jeff',	'lname':'Aven',	'pos':'author'}

>>>	dict1	=	{'fname':'Barack',	'lname':'Obama',	'pos':'president'}

>>>	dict2	=	{'fname':'Ronald',	'lname':'Reagan',	'pos':'president'}

>>>	dict3	=	{'fname':'John',	'mi':'F',	'lname':'Kennedy',	

'pos':'president'}

>>>	dict4	=	{'fname':'Jeff',	'lname':'Aven',	'pos':'author'}

>>>	len(dict0)

3

>>>	print(dict0['fname'])

Jeff

>>>	dict0.keys()

['lname',	'pos',	'fname']

>>>	dict0.values()

['Aven',	'author',	'Jeff']

#	compare	dictionaries

>>>	cmp(dict0,	dict1)

1	##	keys	match	but	values	dont

>>>	cmp(dict0,	dict4)

0	##	all	key	value	pairs	match

>>>	cmp(dict1,	dict2)

−1	##	some	key	value	pairs	match

Dicts	can	be	used	as	immutable	objects	within	a	Python	RDD.

Python	Object	Serialization
Serialization	is	the	process	of	converting	an	object	into	a	structure	that	can	be
unpacked	(deserialized)	at	a	later	point	in	time	on	the	same	system	or	on	a
different	system.

Serialization,	or	the	ability	to	serialize	and	deserialize	data,	is	a	necessary
function	of	any	distributed	processing	system	and	features	heavily	throughout
the	Hadoop	and	Spark	projects.

JSON
JSON	(JavaScript	Object	Notation)	is	a	common	serialization	format.	JSON	has
extended	well	beyond	JavaScript	and	is	used	in	a	multitude	of	platforms,	with
support	in	nearly	every	programming	language.	It	is	a	common	response
structure	returned	from	web	services.

JSON	is	supported	natively	in	Python	using	the	json	package.	A	package	is	a
set	of	libraries	or	a	collection	of	modules	(which	are	essentially	Python	files).
The	json	package	is	used	to	encode	and	decode	JSON.	A	JSON	object	consists
of	key/value	pairs	(dictionaries)	and/or	arrays	(lists),	which	can	be	nested	within
each	other.	The	Python	JSON	object	includes	methods	for	searching,	adding,	and
deleting	keys;	updating	values;	and	printing	objects.	Listing	1.6	demonstrates
creating	a	JSON	object	in	Python	and	performing	various	actions.

Listing	1.6	Using	a	JSON	Object	in	Python
Click	here	to	view	code	image

>>>	import	json

>>>	from	pprint	import	pprint

>>>	json_str	=	'''{

...	"people"	:	[

...	{"fname":	"Jeff",

...	"lname":	"Aven",

...	"tags":	["big	data","hadoop"]},

...	{"fname":	"Doug",

...	"lname":	"Cutting",

...	"tags":	["hadoop","avro","apache","java"]},

...	{"fname":	"Martin",

...	"lname":	"Odersky",

...	"tags":	["scala","typesafe","java"]},

...	{"fname":	"John",

...	"lname":	"Doe",

...	"tags":	[]}

...]}'''

>>>	people	=	json.loads(json_str)

>>>	len(people["people"])

4

>>>	print(people["people"][0]["fname"])

Jeff

#	add	tag	item	to	the	first	person

people["people"][0]["tags"].append(u'spark')

#	delete	the	fourth	person

del	people["people"][3]

#	"pretty	print"	json	object

pprint(people)

{u'people':	[{u'fname':	u'Jeff',

														u'lname':	u'Aven',

														u'tags':	[u'big	data',	u'hadoop',	u'spark']},

													{u'fname':	u'Doug',

														u'lname':	u'Cutting',

														u'tags':	[u'hadoop',	u'avro',	u'apache',	u'java']},

													{u'fname':	u'Martin',

														u'lname':	u'Odersky',

														u'tags':	[u'scala',	u'typesafe',	u'java']}]}

JSON	objects	can	be	used	within	RDDs	in	PySpark;	we	will	look	at	this	in	detail
a	bit	later	in	this	book.

Pickle
Pickle	is	a	serialization	method	that	is	proprietary	to	Python.	Pickle	is	faster	than
JSON.	However,	it	lacks	the	portability	of	JSON,	which	is	a	universally
interchangeable	serialization	format.

The	Python	pickle	module	converts	a	Python	object	or	objects	into	a	byte
stream	that	can	be	transmitted,	stored,	and	reconstructed	into	its	original	state.

cPickle,	as	the	name	suggests,	is	implemented	in	C	instead	of	Python,	and
thus	it	is	much	faster	than	the	Python	implementation.	There	are	some
limitations,	however.	The	cPickle	module	does	not	support	subclassing,
which	is	possible	using	the	pickle	module.	Pickling	and	unpickling	an	object
in	Python	is	a	straightforward	process,	as	shown	in	Listing	1.7.	Notice	that	the
load	and	dump	idioms	are	analogous	to	the	way	you	serialize	and	deserialize
objects	using	JSON.	The	pickle.dump	approach	saves	the	pickled	object	to	a
file,	whereas	pickle.dumps	returns	the	pickled	representation	of	the	object	as
a	string	that	may	look	strange,	although	it	is	not	designed	to	be	human	readable.

Listing	1.7	Object	Serialization	Using	Pickle	in	Python
Click	here	to	view	code	image

>>>	import	cPickle	as	pickle

>>>	obj	=	{	"fname":	"Jeff",	\

...	"lname":	"Aven",	\

...	"tags":	["big	data","hadoop"]}

>>>	str_obj	=	pickle.dumps(obj)

>>>	pickled_obj	=	pickle.loads(str_obj)

>>>	print(pickled_obj["fname"])

Jeff

>>>	pickled_obj["tags"].append('spark')

>>>	print(str(pickled_obj["tags"]))

['big	data',	'hadoop',	'spark']

#	dump	pickled	object	to	a	string

>>>	pickled_obj_str	=	pickle.dumps(pickled_obj)

#	dump	pickled	object	to	a	pickle	file

>>>	pickle.dump(pickled_obj,	open('object.pkl',	'wb'))

The	PickleSerializer	is	used	in	PySpark	to	load	objects	into	a	pickled	format	and
to	unpickle	objects;	this	includes	reading	preserialized	objects	from	other
systems,	such	as	SequenceFiles	in	Hadoop,	and	converting	them	into	a	format
that	is	usable	by	Python.

PySpark	includes	two	methods	for	handling	pickled	input	and	output	files:
pickleFile	and	saveAsPickleFile.	pickleFile	is	an	efficient
format	for	storing	and	transferring	files	between	PySpark	processes.	We	will
examine	these	methods	later	in	this	book.

Aside	from	its	explicit	use	by	developers,	pickling	is	also	used	by	many	internal
Spark	processes	in	the	execution	of	Spark	applications	in	Python.

Python	Functional	Programming	Basics
Python’s	functional	support	embodies	all	of	the	functional	programming
paradigm	characteristics	that	you	would	expect,	including	the	following:

	Functions	as	first-class	objects	and	the	fundamental	unit	of	programming

	Functions	with	input	and	output	only	(Statements,	which	could	result	in	side
effects,	are	not	allowed.)

	Support	for	higher-order	functions

	Support	for	anonymous	functions

The	next	few	sections	look	at	some	of	functional	programming	concepts	and
their	implementation	in	Python.

Anonymous	Functions	and	the	lambda	Syntax
Anonymous	functions,	or	unnamed	functions,	are	a	consistent	feature	of
functional	programming	languages	such	as	Lisp,	Scala,	JavaScript,	Erlang,
Clojure,	Go,	and	many	more.

Anonymous	functions	in	Python	are	implemented	using	the	lambda	construct
rather	than	using	the	def	keyword	for	named	functions.	Anonymous	functions
accept	any	number	of	input	arguments	but	return	just	one	value.	This	value	could
be	another	function,	a	scalar	value,	or	a	data	structure	such	as	a	list.

Listing	1.8	shows	two	similar	functions;	one	is	a	named	function	and	one	is	an
anonymous	function.

Listing	1.8	Named	Functions	and	Anonymous	Functions	in	Python
Click	here	to	view	code	image

#	named	function

>>>	def	plusone(x):	return	x+1

...

>>>	plusone(1)

2

>>>	type(plusone)

<type	'function'>

#	anonymous	function

>>>	plusonefn	=	lambda	x:	x+1

>>>	plusonefn(1)

2

>>>	type(plusonefn)

<type	'function'>

>>>	plusone.func_name

'plusone'

>>>	plusonefn.func_name

'<lambda>'

As	you	can	see	in	Listing	1.8,	the	named	function	plusone	keeps	a	reference
to	the	function	name,	whereas	the	anonymous	function	plusonefn	keeps	a
<lambda>	name	reference.

Named	functions	can	contain	statements	such	as	print,	but	anonymous
functions	can	contain	only	a	single	or	compound	expression,	which	could	be	a
call	to	another	named	function	that	is	in	scope.	Named	functions	can	also	use	the
return	statement,	which	is	not	supported	with	anonymous	functions.

The	true	power	of	anonymous	functions	is	evident	when	you	look	at	higher-
order	functions,	such	as	map(),	reduce(),	and	filter(),	and	start
chaining	single-use	functions	together	in	a	processing	pipeline,	as	you	do	in
Spark.

Higher-Order	Functions

A	higher-order	function	accepts	functions	as	arguments	and	can	return	a	function
as	a	result.	map(),	reduce(),	and	filter()	are	examples	of	higher-order
functions.	These	functions	accept	a	function	as	an	argument.

The	flatMap(),	filter(),	map(),	and	reduceByKey()	functions	in
Listing	1.9	are	all	examples	of	higher-order	functions	because	they	accept	and
expect	an	anonymous	function	as	input.

Listing	1.9	Examples	of	Higher-Order	Functions	in	Spark
Click	here	to	view	code	image

>>>	lines	=	sc.textFile("file:///opt/spark/licenses")

>>>	counts	=	lines.flatMap(lambda	x:	x.split('	'))	\

...	.filter(lambda	x:	len(x)	>	0)	\

...	.map(lambda	x:	(x,	1))	\

...	.reduceByKey(lambda	x,	y:	x	+	y)	\

...	.collect()

>>>	for	(word,	count)	in	counts:

...					print("%s:	%i"	%	(word,	count))

Functions	that	return	functions	as	a	return	value	are	also	considered	higher-order
functions.	This	characteristic	defines	callbacks	implemented	in	asynchronous
programming.

Don't	stress	…	We	will	cover	all	these	functions	in	detail	in	Chapter	4,
“Learning	Spark	Programming	Basics.”	For	now	it	is	only	important	to
understand	the	concept	of	higher-order	functions.

Closures
Closures	are	function	objects	that	enclose	the	scope	at	the	time	they	were
instantiated.	This	can	include	any	external	variables	or	functions	used	when	the
function	was	created.	Closures	“remember”	the	values	by	enclosing	the	scope.

Listing	1.10	is	a	simple	example	of	closures	in	Python.

Listing	1.10	Closures	in	Python
Click	here	to	view	code	image

>>>	def	generate_message(concept):

...					def	ret_message():

...													return	'This	is	an	example	of	'	+	concept

...					return	ret_message

...

>>>	call_func	=	generate_message('closures	in	Python')

>>>	call_func

<function	ret_message	at	0x7fd138aa55f0>

>>>	call_func()

'This	is	an	example	of	closures	in	Python'

#	inspect	closure

>>>	call_func.__closure__

(<cell	at	0x7fd138aaa638:	str	object	at	0x7fd138aaa688>,)

>>>	type(call_func.__closure__[0])

<type	'cell'>

>>>	call_func.__closure__[0].cell_contents

'closures	in	Python'

#	delete	function

del	generate_message

#	call	closure	again

call_func()

'This	is	an	example	of	closures	in	Python'

#	the	closure	still	works!

In	Listing	1.10,	the	function	ret_message()	is	the	closure,	and	the	value	for
concept	is	enclosed	in	the	function	scope.	You	can	use	the	__closure__
function	member	to	see	information	about	the	closure.	The	references	enclosed
in	the	function	are	stored	in	a	tuple	of	cells.	You	can	access	the	cell	contents	by
using	the	cell_contents	function,	as	shown	in	this	listing.	To	prove	the
concept	of	closures,	you	can	delete	the	outer	function,	generate_message,
and	find	that	the	referencing	function,	call_func,	still	works.

The	concept	of	closures	is	important	to	grasp	because	closures	can	be	of
significant	benefit	in	a	distributed	Spark	application.	Conversely,	closures	can
have	a	detrimental	impact	as	well,	depending	on	how	the	function	you	are	using
is	constructed	and	called.

Summary

In	this	chapter	you	have	gained	an	understanding	of	the	history,	motivation,	and
uses	of	Spark,	as	well	as	a	solid	background	on	Hadoop,	a	project	that	is	directly
correlated	to	Spark.	You	have	learned	the	basic	fundamentals	or	HDFS	and
YARN,	the	core	components	of	Hadoop,	and	how	these	components	are	used	by
Spark.	This	chapter	discussed	the	beginnings	of	the	Spark	project	along	with
how	Spark	is	used.	This	chapter	also	provided	a	primer	on	basic	functional
programming	concepts	and	their	implementations	in	Python	and	PySpark.	Many
of	the	concepts	introduced	in	this	chapter	are	referenced	throughout	the
remainder	of	this	book.

2

Deploying	Spark

The	value	of	an	idea	lies	in	the	using	of	it.

Thomas	A.	Edison,	American	inventor

In	This	Chapter:
	Overview	of	the	different	Spark	deployment	modes
	How	to	install	Spark
	The	contents	of	a	Spark	installation
	Overview	of	the	various	methods	available	for	deploying	Spark	in	the
cloud

This	chapter	covers	the	basics	of	how	Spark	is	deployed,	how	to	install	Spark,
and	how	to	get	Spark	clusters	up	and	running.	It	discusses	the	various
deployment	modes	and	schedulers	available	for	Spark	clusters,	as	well	as	options
for	deploying	Spark	in	the	cloud.	If	you	complete	the	installation	exercises	in
this	chapter,	you	will	have	a	fully	functional	Spark	programming	and	runtime
environment	that	you	can	use	for	the	remainder	of	the	book.

Spark	Deployment	Modes
There	are	several	common	deployment	modes	for	Spark,	including	the
following:

	Local	mode

	Spark	Standalone

	Spark	on	YARN	(Hadoop)

	Spark	on	Mesos

Each	deployment	mode	implements	the	Spark	runtime	architecture—detailed	in
Chapter	3,	“Understanding	the	Spark	Cluster	Architecture”—similarly,	with
differences	only	in	the	way	resources	are	managed	across	one	or	many	nodes	in
the	computing	cluster.

In	the	case	of	deploying	Spark	using	an	external	scheduler	such	as	YARN	or
Mesos,	you	need	to	have	these	clusters	deployed,	whereas	running	Spark	in
Local	mode	or	using	the	Spark	Standalone	scheduler	removes	dependencies
outside	Spark.

All	Spark	deployment	modes	can	be	used	for	interactive	(shell)	and	non-
interactive	(batch)	applications,	including	streaming	applications.

Local	Mode
Local	mode	allows	all	Spark	processes	to	run	on	a	single	machine,	optionally
using	any	number	of	cores	on	the	local	system.	Using	Local	mode	is	often	a
quick	way	to	test	a	new	Spark	installation,	and	it	allows	you	to	quickly	test
Spark	routines	against	small	datasets.

Listing	2.1	shows	an	example	of	submitting	a	Spark	job	in	local	mode.

Listing	2.1	Submitting	a	Spark	Job	in	Local	Mode
Click	here	to	view	code	image

$SPARK_HOME/bin/spark-submit	\

--class	org.apache.spark.examples.SparkPi	\

--master	local	\

$SPARK_HOME/examples/jars/spark-examples*.jar	10

You	specify	the	number	of	cores	to	use	in	Local	mode	by	supplying	the	number
in	brackets	after	the	local	directive.	For	instance,	to	use	two	cores,	you	specify
local[2];	to	use	all	the	cores	on	the	system,	you	specify	local[*].

When	running	Spark	in	Local	mode,	you	can	access	any	data	on	the	local
filesystem	as	well	as	data	from	HDFS,	S3,	or	other	filesystems,	assuming	that
you	have	the	appropriate	configuration	and	libraries	available	on	the	local
system.

Although	Local	mode	allows	you	to	get	up	and	running	quickly,	it	is	limited	in
its	scalability	and	effectiveness	for	production	use	cases.

Spark	Standalone
Spark	Standalone	refers	to	the	built-in,	or	“standalone,”	scheduler.	We	will	look
at	the	function	of	a	scheduler,	or	cluster	manager,	in	more	detail	in	Chapter	3.

The	term	standalone	can	be	confusing	because	it	has	nothing	to	do	with	the
cluster	topology,	as	might	be	interpreted.	For	instance,	you	can	have	a	Spark
deployment	in	Standalone	mode	on	a	fully	distributed,	multi-node	cluster;	in	this
case,	Standalone	simply	means	that	it	does	not	need	an	external	scheduler.

Multiple	host	processes,	or	services,	run	in	a	Spark	Standalone	cluster,	and	each
service	plays	a	role	in	the	planning,	orchestration,	and	management	of	a	given
Spark	application	running	on	the	cluster.	Figure	2.1	shows	a	fully	distributed
Spark	Standalone	reference	cluster	topology.	(Chapter	3	details	the	functions	that
these	services	provide.)

Figure	2.1	Spark	Standalone	cluster.

You	can	submit	applications	to	a	Spark	Standalone	cluster	by	specifying	spark
as	the	URI	scheme,	along	with	the	designated	host	and	port	that	the	Spark
Master	process	is	running	on.	Listing	2.2	shows	an	example	of	this.

Listing	2.2	Submitting	a	Spark	Job	to	a	Spark	Standalone	Cluster
Click	here	to	view	code	image

$SPARK_HOME/bin/spark-submit	\

--class	org.apache.spark.examples.SparkPi	\

--master	spark://mysparkmaster:7077	\

$SPARK_HOME/examples/jars/spark-examples*.jar	10

With	Spark	Standalone,	you	can	get	up	and	running	quickly	with	few
dependencies	or	environmental	considerations.	Each	Spark	release	includes
everything	you	need	to	get	started,	including	the	binaries	and	configuration	files
for	any	host	to	assume	any	specified	role	in	a	Spark	Standalone	cluster.	Later	in
this	chapter	you	will	deploy	your	first	cluster	in	Spark	Standalone	mode.

Spark	on	YARN
As	introduced	in	Chapter	1,	“Introducing	Big	Data,	Hadoop,	and	Spark,”	the
most	common	deployment	method	for	Spark	is	using	the	YARN	resource
management	framework	provided	with	Hadoop.	Recall	that	YARN	is	the
Hadoop	core	component	that	allows	you	to	schedule	and	manage	workloads	on	a
Hadoop	cluster.

According	to	a	Databricks	annual	survey	(see
https://databricks.com/resources/type/infographic-surveys),	YARN	and
standalone	are	neck	and	neck,	with	Mesos	trailing	behind.

As	first-class	citizens	in	the	Hadoop	ecosystem,	Spark	applications	can	be	easily
submitted	and	managed	with	minimal	incremental	effort.	Spark	processes	such
as	the	Driver,	Master,	and	Executors	(covered	in	Chapter	3)	are	hosted	or
facilitated	by	YARN	processes	such	as	the	ResourceManager,	NodeManager,
and	ApplicationMaster.

The	spark-submit,	pyspark,	and	spark-shell	programs	include
command	line	arguments	used	to	submit	Spark	applications	to	YARN	clusters.
Listing	2.3	provides	an	example	of	this.

https://databricks.com/resources/type/infographic-surveys

Listing	2.3	Submitting	a	Spark	Job	to	a	YARN	Cluster
Click	here	to	view	code	image

$SPARK_HOME/bin/spark-submit	\

--class	org.apache.spark.examples.SparkPi	\

--master	yarn	\

--deploy-mode	cluster	\

$SPARK_HOME/examples/jars/spark-examples*.jar	10

There	are	two	cluster	deployment	modes	when	using	YARN	as	a	scheduler:
cluster	and	client.	We	will	distinguish	between	the	two	in	Chapter	3	when
we	look	at	the	runtime	architecture	for	Spark.

Spark	on	Mesos
Apache	Mesos	is	an	open	source	cluster	manager	developed	at	University	of
California,	Berkeley;	it	shares	some	of	its	lineage	with	the	creation	of	Spark.
Mesos	is	capable	of	scheduling	different	types	of	applications,	offering	fine-
grained	resource	sharing	that	results	in	more	efficient	cluster	utilization.	Listing
2.4	shows	an	example	of	a	Spark	application	submitted	to	a	Mesos	cluster.

Listing	2.4	Submitting	a	Spark	Job	to	a	Mesos	Cluster
Click	here	to	view	code	image

$SPARK_HOME/bin/spark-submit	\

--class	org.apache.spark.examples.SparkPi	\

--master	mesos://mesosdispatcher:7077	\

--deploy-mode	cluster	\

--supervise	\

--executor-memory	20G	\

--total-executor-cores	100	\

$SPARK_HOME/examples/jars/spark-examples*.jar	1000

This	book	focuses	on	the	more	common	schedulers	for	Spark:	Spark	Standalone
and	YARN.	However,	if	you	are	interested	in	Mesos,	a	good	place	to	start	is
http://mesos.apache.org.

http://mesos.apache.org

Preparing	to	Install	Spark
Spark	is	a	cross-platform	application	that	can	be	deployed	on	the	following
operating	systems:

	Linux	(all	distributions)

	Windows

	Mac	OS	X

Although	there	are	no	specific	hardware	requirements,	general	Spark	instance
hardware	recommendations	are	as	follows:

	8	GB	or	more	of	memory	(Spark	is	predominantly	an	in-memory	processing
framework,	so	the	more	memory	the	better.)

	Eight	or	more	CPU	cores

	10	GB	or	greater	network	speed

	Sufficient	local	disk	space	for	storage,	if	required	(SSD	is	preferred	for
RDD	disk	storage.	If	the	instance	is	hosting	a	distributed	filesystem	such	as
HDFS,	then	a	JBOD	configuration	of	multiple	disks	is	preferred.	JBOD
stands	for	“just	a	bunch	of	disks,”	referring	to	independent	hard	disks	not	in
a	RAID,	or	redundant	array	of	independent	disks,	configuration.)

Spark	is	written	in	Scala,	a	language	compiled	to	run	on	a	Java	virtual	machine
(JVM)	with	programming	interfaces	in	Python	(PySpark),	Scala,	and	Java.	The
following	are	software	prerequisites	for	installing	and	running	Spark:

	Java	(JDK	preferably)

	Python,	if	you	intend	to	use	PySpark

	R,	if	you	wish	to	use	Spark	with	R;	as	discussed	in	Chapter	8,	“Introduction
to	Data	Science	and	Machine	Learning	Using	Spark”

	Git,	Maven,	or	SBT,	which	may	be	useful	if	you	intend	to	build	Spark	from
source	or	compile	Spark	programs

Getting	Spark
Using	a	Spark	release	is	often	the	easiest	way	to	install	Spark	on	a	given	system.
Spark	releases	are	downloadable	from	http://spark.apache.org/downloads.html.

http://spark.apache.org/downloads.html

These	releases	are	cross-platform:	They	target	a	JVM	environment,	which	is
platform	agnostic.
Using	the	build	instructions	provided	on	the	official	Spark	website,	you	could
also	download	the	source	code	for	Spark	and	build	it	yourself	for	your	target
platform.	This	method	is	more	complicated	however.

If	you	download	a	Spark	release,	you	should	select	the	builds	with	Hadoop,	as
shown	in	Figure	2.2.	The	“with	Hadoop”	Spark	releases	do	not	actually	include
Hadoop,	as	the	name	may	imply.	These	releases	simply	include	libraries	to
integrate	with	the	Hadoop	clusters	and	distributions	listed.	Many	of	the	Hadoop
classes	are	required,	regardless	of	whether	you	are	using	Hadoop	with	Spark.

Figure	2.2	Downloading	a	Spark	release.

Using	the	“Without	Hadoop”	Builds
You	may	 be	 tempted	 to	 download	 the	 “without	Hadoop,”	 “user-provided
Hadoop,”	 or	 “spark-x.x.x-bin-without-hadoop.tgz”	 options	 if	 you	 are
installing	 in	 Standalone	 mode	 and	 not	 using	 Hadoop.	 The	 nomenclature
can	be	confusing,	but	 this	build	expects	many	of	 the	required	classes	 that
are	 implemented	 in	 Hadoop	 to	 be	 present	 on	 the	 system.	 Generally
speaking,	 you	 are	 usually	 better	 off	 downloading	 one	 of	 the	 spark-x.x.x-

bin-hadoopx.x	builds.

Spark	is	typically	available	with	most	commercial	Hadoop	distributions,
including	the	following:

	Cloudera	Distribution	of	Hadoop	(CDH)

	Hortonworks	Data	Platform	(HDP)

	MapR	Converged	Data	Platform

In	addition,	Spark	is	available	from	major	cloud	providers	through	managed
Hadoop	offerings,	including	AWS	EMR,	Google	Cloud	Dataproc,	and	Microsoft
Azure	HDInsight.

If	you	have	a	Hadoop	environment,	you	may	have	everything	you	need	to	get
started	and	can	skip	the	subsequent	sections	on	installing	Spark.

Installing	Spark	on	Linux	or	Mac	OS	X
Linux	is	the	most	common	and	easiest	platform	to	install	Spark	on,	followed	by
Mac	OS	X.	Installation	on	these	two	platforms	is	similar	because	they	share	the
same	kernel	and	have	a	similar	shell	environment.	This	exercise	shows	how	to
install	Spark	on	an	Ubuntu	distribution	of	Linux;	however,	the	steps	are	similar
for	installing	Spark	on	another	distribution	of	Linux	or	on	Mac	OS	X	(only	using
different	package	managers,	such	as,	yum).	Follow	these	steps	to	install	Spark
on	Linux:

1.	Install	Java.	It	is	general	practice	to	install	a	JDK	(Java	Development	Kit),
which	includes	the	Java	Runtime	Engine	(JRE)	and	tools	for	building	and
managing	Java	or	Scala	applications.	To	do	so,	run	the	following:

Click	here	to	view	code	image
$	sudo	apt-get	install	openjdk-8-jdk-headless

Test	the	installation	by	running	java	-version	in	a	terminal	session;
you	should	see	output	similar	to	the	following	if	the	installation	is
successful:

Click	here	to	view	code	image
openjdk	version	"1.8.0_131"

OpenJDK	Runtime	Environment	(build	1.8.0_131-8u131-b11-

2ubuntu1.17.04.3-b11)

OpenJDK	64-Bit	Server	VM	(build	25.131-b11,	mixed	mode)

On	macOS,	the	java	installation	command	is	as	follows:
Click	here	to	view	code	image

$	brew	cask	install	java

2.	Get	Spark.	Download	a	release	of	Spark,	using	wget	and	the	appropriate
URL	to	download	the	release;	you	can	obtain	the	actual	download	address
from	the	http://spark.apache.org/downloads.html	page	shown	in	Figure	2.2.
Although	there	is	likely	to	be	a	later	release	available	to	you	by	the	time	you
read	this	book,	the	following	example	shows	a	download	of	release	2.2.0:

Click	here	to	view	code	image
$	wget	https://d3kbcqa49mib13.cloudfront.net/spark-2.2.0-bin-

hadoop2.7.tgz

3.	Unpack	the	Spark	release.	Unpack	the	Spark	release	and	move	it	into	a
shared	directory,	such	as	/opt/spark:

Click	here	to	view	code	image
$	tar	-xzf	spark-2.2.0-bin-hadoop2.7.tgz

$	sudo	mv	spark-2.2.0-bin-hadoop2.7	/opt/spark

4.	Set	the	necessary	environment	variables.	Set	the	SPARK_HOME	variable
and	update	the	PATH	variable	as	follows:

Click	here	to	view	code	image
$	export	SPARK_HOME=/opt/spark

$	export	PATH=$SPARK_HOME/bin:$PATH

You	may	wish	to	set	these	on	a	persistent	or	permanent	basis	(for	example,
using	/etc/environment	on	an	Ubuntu	instance).

5.	Test	the	installation.	Test	the	Spark	installation	by	running	the	built-in	Pi
Estimator	example	in	Local	mode,	as	follows:

Click	here	to	view	code	image
$	spark-submit	--class	org.apache.spark.examples.SparkPi	\

--master	local	\

$SPARK_HOME/examples/jars/spark-examples*.jar	1000

If	successful,	you	should	see	output	similar	to	the	following	among	a	large
amount	of	informational	log	messages	(which	you	will	learn	how	to
minimize	later	in	this	chapter):
Pi	is	roughly	3.1414961114149613

You	can	test	the	interactive	shells,	pyspark	and	spark-shell,	at	the
terminal	prompt	as	well.

http://spark.apache.org/downloads.html
https://d3kbcqa49mib13.cloudfront.net/spark-2.2.0-bin-hadoop2.7.tgz

Congratulations!	You	have	just	successfully	installed	and	tested	Spark	on	Linux.
How	easy	was	that?

Installing	Spark	on	Windows
Installing	Spark	on	Windows	can	be	more	involved	than	installing	Spark	on
Linux	or	Mac	OS	X	because	many	of	the	dependencies,	such	as	Python	and
Java,	need	to	be	addressed	first.	This	example	uses	Windows	Server	2012,	the
server	version	of	Windows	8.1.	You	need	a	decompression	utility	capable	of
extracting	.tar.gz	and	.gz	archives	because	Windows	does	not	have	native
support	for	these	archives.	7-Zip,	which	you	can	obtain	from	http://7-
zip.org/download.html,	is	a	suitable	program	for	this.	When	you	have	the	needed
compression	utility,	follow	these	steps:

1.	Install	Python.	As	mentioned	earlier,	Python	is	not	included	with	Windows,
so	you	need	to	download	and	install	it.	You	can	obtain	a	Windows	installer
for	Python	from	https://www.python.org/getit/	or
https://www.python.org/downloads/windows/.	This	example	uses	Python
2.7.10,	so	select	C:\Python27	as	the	target	directory	for	the	installation.

2.	Install	Java.	In	this	example,	you	will	download	and	install	the	latest
Oracle	JDK.	You	can	obtain	a	Windows	installer	package	from
http://www.oracle.com/technetwork/java/javase/downloads/index.html.	To
confirm	that	Java	has	been	installed	correctly	and	is	available	in	the	system
ta	PATH,	type	java	-version	at	the	Windows	command	prompt;	you
should	see	the	version	installed	returned.

3.	Download	and	unpack	a	Hadoop	release.	Download	the	latest	Hadoop
release	from	http://hadoop.apache.org/releases.html.	Unpack	the	Hadoop
release	(using	7-Zip	or	a	similar	decompression	utility)	into	a	local	directory,
such	as	C:\Hadoop.

4.	Install	Hadoop	binaries	for	Windows.	In	order	to	run	Spark	on	Windows,
you	need	several	Hadoop	binaries	compiled	for	Windows,	including
hadoop.dll	and	winutils.exe.	The	Windows-specific	libraries	and
executables	required	for	Hadoop	are	obtainable	from
https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-winutils.
Download	the	hadoop-winutils	archive	and	unpack	the	contents	to	the
bin	subdirectory	of	your	Hadoop	release	(C:\Hadoop\bin).

5.	Download	and	unpack	Spark.	Download	the	latest	Spark	release	from

http://7-zip.org/download.html
https://www.python.org/getit/
https://www.python.org/downloads/windows/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://hadoop.apache.org/releases.html
https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-winutils

https://spark.apache.org/downloads.html,	as	shown	in	Figure	2.2.	As
discussed,	use	the	“pre-built	for	Apache	Hadoop”	release	corresponding	to
the	Hadoop	release	downloaded	in	step	3.	Unpack	the	Spark	release	into	a
local	directory,	such	as	C:\Spark.

6.	Disable	IPv6.	Disable	IPv6	for	Java	applications	by	running	the	following
command	as	an	administrator	from	the	Windows	command	prompt:

Click	here	to	view	code	image
C:\>	setx	_JAVA_OPTIONS	"-Djava.net.preferIPv4Stack=true"

If	you	are	using	Windows	PowerShell,	you	can	enter	the	following
equivalent	command:

Click	here	to	view	code	image
PS	C:\>[Environment]::SetEnvironmentVariable("_JAVA_OPTIONS",

"-Djava.net.preferIPv4Stack=true",	"User")

Note	that	you	need	to	run	these	commands	as	a	local	administrator.	For
simplicity,	this	example	shows	applying	all	configuration	settings	at	a	user
level.	However,	you	can	instead	choose	to	apply	any	of	the	settings	shown	at
a	machine	level—for	instance,	if	you	have	multiple	users	on	a	system.
Consult	the	documentation	for	Microsoft	Windows	for	more	information
about	this.

7.	Set	the	necessary	environment	variables.	Set	the	HADOOP_HOME
environment	variable	by	running	the	following	command	at	the	Windows
command	prompt:

Click	here	to	view	code	image
C:\>	setx	HADOOP_HOME	C:\Hadoop

Here	is	the	equivalent	using	the	Windows	PowerShell	prompt:
Click	here	to	view	code	image

PS	C:\>[Environment]::SetEnvironmentVariable("HADOOP_HOME",	

"C:\Hadoop",	"User")

8.	Set	up	the	local	metastore.	You	need	to	create	a	location	and	set	the
appropriate	permissions	to	a	local	metastore.	We	discuss	the	role	of	the
metastore	specifically	in	Chapter	6,	“SQL	and	NoSQL	Programming	with
Spark,”	when	we	begin	to	look	at	Spark	SQL.	For	now,	just	run	the
following	commands	from	the	Windows	or	PowerShell	command	prompt:

Click	here	to	view	code	image
C:\>	mkdir	C:\tmp\hive

C:\>	Hadoop\bin\winutils.exe	chmod	777	/tmp/hive

https://spark.apache.org/downloads.html

9.	Test	the	installation.	Open	a	Windows	command	prompt	or	PowerShell
session	and	change	directories	to	the	bin	directory	of	your	Spark
installation,	as	follows:

Click	here	to	view	code	image
C:\>	cd	C:\Spark\bin

At	the	subsequent	prompt,	enter	the	pyspark	command	to	open	an
interactive	Python	Spark	shell:

Click	here	to	view	code	image
C:\Spark\bin>	pyspark	–-master	local

Figure	2.3	shows	an	example	of	what	you	should	expect	to	see	using
Windows	PowerShell.

Figure	2.3	PySpark	in	Windows	PowerShell.

Enter	quit()	to	exit	the	shell.

Now	run	the	built-in	Pi	Estimator	sample	application	by	running	the
following	from	the	command	prompt:

Click	here	to	view	code	image
C:\Spark\bin>	spark-submit	--class	org.apache.spark.examples.SparkPi

	--master	local	C:\Spark\examples\jars\spark-examples*.jar	100

You	now	see	a	lot	of	informational	logging	messages;	within	these	messages
you	should	see	something	that	resembles	the	following:

Click	here	to	view	code	image
Pi	is	roughly	3.1413223141322315

Congratulations!	You	have	just	successfully	installed	and	tested	Spark	on
Windows.

Exploring	the	Spark	Installation
It	is	worth	getting	familiar	with	the	contents	of	the	Spark	installation	directory,
sometimes	referred	to	as	the	SPARK_HOME.	Table	2.1	provides	an	overview	of
the	directories	within	the	SPARK_HOME.

Table	2.1	Spark	Installation	Contents

Directory Description

bin/ Contains	all	the	commands/scripts	to	run	Spark	applications
interactively	through	shell	programs	such	as	pyspark,
spark-shell,	spark-sql,	and	sparkR,	or	in	batch	mode
using	spark-submit.

conf/ Contains	templates	for	Spark	configuration	files,	which	you	can
use	to	set	Spark	configuration	values	(spark-
defaults.conf.template),	as	well	as	a	shell	script	used
to	set	environment	variables	required	for	Spark	processes
(spark-env.sh.template).	There	are	also	configuration
templates	to	control	logging
(log4j.properties.template),	a	metrics	collection
(metrics.properties.template),	and	a	template	for
the	slaves	file	(slaves.template),	which	controls	which
slave	nodes	can	join	the	Spark	cluster	running	in	Standalone
mode.

data/ Contains	sample	datasets	used	for	testing	the	mllib,	graphx,
and	streaming	libraries	within	the	Spark	project	(all	of	which
are	discussed	later	in	this	book).

examples/ Contains	the	source	code	and	compiled	assemblies	(jar	files)	for
all	the	examples	shipped	with	the	Spark	release,	including	the	Pi

Estimator	application	used	in	previous	examples.	Sample
programs	are	included	in	Java,	Python,	R,	and	Scala.	You	can
also	find	the	latest	code	for	the	included	examples	at
https://github.com/apache/spark/tree/master/examples.

jars/ Contains	the	main	assemblies	for	Spark	as	well	as	assemblies
for	support	services	used	by	Spark,	such	as	snappy,	py4j,
parquet,	and	more.	This	directory	is	included	in	the
CLASSPATH	for	Spark	by	default.

licenses/ Includes	license	files	covering	other	included	projects,	such	as
Scala	and	JQuery.	These	files	are	for	legal	compliance	purposes
only	and	are	not	required	to	run	Spark.

python/ Contains	all	the	Python	libraries	required	to	run	PySpark.	You
generally	don’t	need	to	access	these	files	directly.

R/ Contains	the	SparkR	package	and	associated	libraries	and
documentation.	You	will	learn	about	SparkR	in	Chapter	8,
“Introduction	to	Data	Science	and	Machine	Learning	Using
Spark.”

sbin/ Contains	administrative	scripts	to	start	and	stop	master	and	slave
services	for	Spark	clusters	running	in	Standalone	mode,	locally
or	remotely,	as	well	as	start	processes	related	to	YARN	and
Mesos.	You	will	use	some	of	these	scripts	in	the	next	section
when	you	deploy	a	multi-node	cluster	in	Standalone	mode.

yarn/ Contains	support	libraries	for	Spark	applications	running	on
YARN.	This	includes	the	shuffle	service,	a	support	service
Spark	uses	to	move	data	between	processes	in	a	YARN	cluster.

The	remainder	of	this	book	references	many	of	the	directories	listed	in	Table	2.1.

Deploying	a	Multi-Node	Spark	Standalone	Cluster
Now	that	you	have	installed	and	tested	a	Spark	installation	in	Local	mode,	it’s
time	to	unleash	the	true	power	of	Spark	by	creating	a	fully	distributed	Spark
cluster.	For	this	exercise,	you	will	use	four	Linux	hosts	to	create	a	simple	three-
node	cluster	using	the	Standalone	scheduler.	Follow	these	steps:

1.	Plan	a	cluster	topology	and	install	Spark	on	multiple	systems.	Because

https://github.com/apache/spark/tree/master/examples

this	is	a	distributed	system,	you	need	to	install	Spark,	as	shown	in	the
previous	exercises,	on	three	additional	hosts.	In	addition,	you	need	to
designate	one	host	as	the	Spark	Master	and	the	other	hosts	as	Workers.	For
this	exercise,	the	first	host	is	named	sparkmaster,	and	the	additional	hosts
are	names	sparkworker1,	sparkworker2,	and	sparkworker3.

2.	Configure	networking.	All	nodes	in	the	Spark	cluster	need	to	communicate
will	all	other	hosts	in	the	cluster.	The	easiest	way	to	accomplish	this	is	by
using	hosts	files	(entries	for	all	hosts	in	/etc/hosts	on	each	system).
Ensure	that	each	node	can	resolve	the	other.	The	ping	command	can	be
used	for	this;	for	example,	here	is	how	you	use	it	from	the	sparkmaster	host:

Click	here	to	view	code	image
$	ping	sparkworker1

3.	Create	and	edit	a	spark-defaults.conf	file	on	each	host.	To	create
and	configure	a	spark-defaults.conf	file	on	each	node,	run	the
following	commands	on	the	sparkmaster	and	sparkworker	hosts:

Click	here	to	view	code	image
$	cd	$SPARK_HOME/conf

$	sudo	cp	spark-defaults.conf.template	spark-defaults.conf

$	sudo	sed	-i	"\$aspark.master\tspark://sparkmaster:7077"	spark-

defaults.conf

4.	Create	and	edit	a	spark-env.sh	file	on	each	host.	To	create	and
configure	a	spark-env.sh	file	on	each	node,	complete	the	following
tasks	on	the	sparkmaster	and	sparkworker	hosts:

Click	here	to	view	code	image
$	cd	$SPARK_HOME/conf

$	sudo	cp	spark-env.sh.template	spark-env.sh

$	sudo	sed	-i	"\$aSPARK_MASTER_IP=sparkmaster"	spark-env.sh

5.	Start	the	Spark	Master.	On	the	sparkmaster	host,	run	the	following
command:

Click	here	to	view	code	image
$	sudo	$SPARK_HOME/sbin/start-master.sh

Test	the	Spark	Master	process	by	viewing	the	Spark	Master	web	UI	at
http://sparkmaster:8080/.

6.	Start	the	Spark	Workers.	On	each	sparkworker	node,	run	the	following
command:

Click	here	to	view	code	image

http://sparkmaster:8080/

$	sudo	$SPARK_HOME/sbin/start-slave.sh	spark://sparkmaster:7077

Check	the	Spark	Worker	UIs	on	http://sparkslaveN:8081/.
7.	Test	the	multi-node	cluster.	Run	the	built-in	Pi	Estimator	example	from	the
terminal	of	any	node	in	the	cluster:

Click	here	to	view	code	image
$	spark-submit	--class	org.apache.spark.examples.SparkPi	\

--master	spark://sparkmaster:7077	\

--driver-memory	512m	\

--executor-memory	512m	\

--executor-cores	1	\

$SPARK_HOME/examples/jars/spark-examples*.jar	10000

You	should	see	output	similar	to	that	from	the	previous	exercises.

You	could	also	enable	passwordless	SSH	(Secure	Shell)	for	the	Spark	Master	to
the	Spark	Workers.	This	is	required	to	enable	remote	login	for	the	slave	daemon
startup	and	shutdown	actions.

Deploying	Spark	in	the	Cloud
The	proliferation	of	public	and	private	cloud	technology,	Software-as-a-Service
(SaaS),	Infrastructure-as-a-Service	(IaaS),	and	Platform-as-a-Service	(PaaS)
have	been	game	changers	in	terms	of	the	way	organizations	deploy	technology.

You	can	deploy	Spark	in	the	cloud	to	provide	a	fast,	scalable,	and	elastic
processing	environment.	Several	methods	are	available	to	deploy	Spark
platforms,	applications,	and	workloads	in	the	cloud;	the	following	sections
explore	them.

Amazon	Web	Services	(AWS)
Amazon	has	spent	years	designing	and	building	scalable	infrastructure,
platforms,	services,	and	APIs	to	manage	its	vast	business	requirements.	The
majority	of	these	services	are	exposed	for	public	consumption	(paid,	of	course!)
through	Amazon	Web	Services	(AWS).

The	AWS	portfolio	contains	dozens	of	different	services,	from	IaaS	products
such	as	Elastic	Compute	Cloud	(EC2),	storage	services	such	as	S3,	and	PaaS
products	such	as	Redshift.	AWS	compute	resources	can	be	provisioned	on

http://sparkslaveN:8081/

demand	and	paid	for	on	an	hourly	basis.	They	are	also	available	as	“spot”
instances,	which	use	a	market	mechanism	to	offer	lower	usage	costs	by	taking
advantage	of	low-demand	periods.

There	are	two	primary	methods	for	creating	Spark	clusters	in	AWS:	EC2	and
Elastic	MapReduce	(EMR).	To	use	any	of	the	AWS	deployment	options,	you
need	a	valid	AWS	account	and	API	keys	if	you	are	using	the	AWS	software
development	kit	(SDK)	or	command	line	interface	(CLI).

Spark	on	EC2
You	can	launch	Spark	clusters	(or	Hadoop	clusters	capable	of	running	Spark)	on
EC2	instances	in	AWS.	Typically	this	is	done	within	a	Virtual	Private	Cloud
(VPC),	which	allows	you	to	isolate	cluster	nodes	from	public	networks.
Deployment	of	Spark	clusters	on	EC2	usually	involves	deployment	of
configuration	management	tools	such	as	Ansible,	Chef,	Puppet,	or	AWS
CloudFormation,	which	can	automate	deployment	routines	using	an
Infrastructure-as-Code	(IaC)	discipline.

In	addition,	there	are	several	predeveloped	Amazon	Machine	Images	(AMIs)
available	in	the	AWS	Marketplace;	these	have	a	pre-installed	and	configured
release	of	Spark.

You	can	also	create	Spark	clusters	on	containers	by	using	the	EC2	Container
Service.	There	are	numerous	options	to	create	these,	from	existing	projects
available	in	GitHub	and	elsewhere.

Spark	on	EMR
Elastic	MapReduce	(EMR)	is	Amazon’s	Hadoop-as-a-Service	platform.	EMR
clusters	are	essentially	Hadoop	clusters	with	a	variety	of	configurable	ecosystem
projects,	such	as	Hive,	Pig,	Presto,	Zeppelin,	and,	of	course,	Spark.

You	can	provision	EMR	clusters	using	the	AWS	Management	Console	or	via	the
AWS	APIs.	Options	for	creating	EMR	clusters	include	number	of	nodes,	node
instance	types,	Hadoop	distribution,	and	additional	applications	to	install,
including	Spark.

EMR	clusters	are	designed	to	read	data	and	output	results	directly	to	and	from
S3.	EMR	clusters	are	intended	to	be	provisioned	on	demand,	run	a	discrete	work
flow	or	job	flow,	and	terminate.	They	do	have	local	storage,	but	they	are	not
intended	to	run	in	perpetuity.	Therefore,	you	should	use	this	local	storage	only

for	transient	data.

Listing	2.5	demonstrates	creating	a	simple	three-node	EMR	cluster	with	Spark
and	Zeppelin	using	the	AWS	CLI.

Listing	2.5	Creating	an	EMR	Cluster	by	Using	the	AWS	CLI
Click	here	to	view	code	image

$	aws	emr	create-cluster	\

--name	"MyEMRCluster"	\

--instance-type	m1.xlarge	\

--instance-count	3	\

--ec2-attributes	KeyName=YOUR_KEY	\

--use-default-roles	\

--applications	Name=Spark	Name=Zeppelin-Sandbox

Figure	2.4	shows	an	EMR	cluster	console	session.

Figure	2.4	EMR	console.

Figure	2.5	shows	the	Zeppelin	notebook	interface	included	with	the	EMR

deployment,	which	can	be	used	as	a	Spark	programming	environment.

Figure	2.5	Zeppelin	interface.

Using	EMR	is	a	quick	and	scalable	deployment	method	for	Spark.	For	more
information	about	EMR,	go	to	https://aws.amazon.com/elasticmapreduce/.

Google	Cloud	Platform	(GCP)
Much	like	Amazon	does	with	AWS,	Google	deploys	its	vast	array	of	global
services,	such	as	Gmail	and	Maps,	using	its	cloud	computing	platform	known	as
the	Google	Cloud	Platform	(GCP).	Google’s	cloud	offering	supports	most	of	the
services	available	in	AWS,	but	the	company	has	many	other	offerings	as	well,
including	making	available	TPUs	(Tensor	Processing	Units).

TensorFlow
TensorFlow	 is	 an	 open	 source	 software	 library	 that	 Google	 created
specifically	 for	 training	 neural	 networks,	 an	 approach	 to	 deep	 learning.
Neural	networks	are	used	to	discover	patterns,	sequences,	and	relations	in
much	the	same	way	that	the	human	brain	does.

https://aws.amazon.com/elasticmapreduce/

As	with	AWS,	you	could	choose	to	deploy	Spark	using	Google’s	IaaS	offering,
Compute,	which	requires	you	to	deploy	the	underlying	infrastructure.	However,
there	is	a	managed	Hadoop	and	Spark	platform	available	with	GCP	called	Cloud
Dataproc,	and	it	may	be	an	easier	option.

Cloud	Dataproc	offers	a	similarly	managed	software	stack	to	AWS	EMR,	and
you	can	deploy	it	to	a	cluster	of	nodes.

Databricks
Databricks	is	an	integrated	cloud-based	Spark	workspace	that	allows	you	to
launch	managed	Spark	clusters	and	ingest	and	interact	with	data	from	S3	or
other	relational	database	or	flat-file	data	sources,	either	in	the	cloud	or	from	your
environment.	The	Databricks	platform	uses	your	AWS	credentials	to	create	its
required	infrastructure	components,	so	you	effectively	have	ownership	of	these
assets	in	your	AWS	account.	Databricks	provides	the	deployment,	management,
and	user/application	interface	framework	for	a	cloud-based	Spark	platform	in
AWS.

Databricks	has	several	pricing	plans	available,	with	different	features	spanning
support	levels,	security	and	access	control	options,	GitHub	integration,	and
more.	Pricing	is	subscription	based,	with	a	flat	monthly	fee	plus	nominal
utilization	charges	(charged	per	hour	per	node).	Databricks	offers	a	14-day	free
trial	period	to	get	started.	You	are	responsible	for	the	instance	costs	incurred	in
AWS	for	Spark	clusters	deployed	using	the	Databricks	platform;	however,
Databricks	allows	you	to	use	discounted	spot	instances	to	minimize	AWS	costs.
For	the	latest	pricing	and	subscription	information,	go	to
https://databricks.com/product/pricing.

Databricks	provides	a	simple	deployment	and	user	interface,	shown	in	Figure
2.6,	which	abstracts	the	underlying	infrastructure	and	security	complexities
involved	in	setting	up	a	secure	Spark	environment	in	AWS.	The	Databricks
management	console	allows	you	to	create	notebooks,	similar	to	the	Zeppelin
notebook	deployed	with	AWS	EMR.	There	are	APIs	available	from	Databricks
for	deployment	and	management	as	well.	These	notebooks	are	automatically
associated	with	your	Spark	cluster	and	provide	seamless	programmatic	access	to
Spark	functions	using	Python,	Scala,	SQL,	or	R.

https://databricks.com/product/pricing

Figure	2.6	Databricks	console.

Databricks	has	its	own	distributed	filesystem	called	the	Databricks	File	System
(DBFS).	DBFS	allows	you	to	mount	existing	S3	buckets	and	make	them
seamlessly	available	in	your	Spark	workspace.	You	can	also	cache	data	on	the
solid-state	disks	(SSDs)	of	your	worker	nodes	to	speed	up	access.	The	dbutils
library	included	in	your	Spark	workspace	allows	you	to	configure	and	interact
with	the	DBFS.

The	Databricks	platform	and	management	console	allows	you	to	create	data
objects	as	tables—which	is	conceptually	similar	to	tables	in	a	relational	database
—from	a	variety	of	sources,	including	AWS	S3	buckets,	Java	Database
Connectivity	(JDBC)	data	sources,	the	DBFS,	or	by	uploading	your	own	files
using	drag-and-drop	functionality.	You	can	also	create	jobs	by	using	the
Databricks	console,	and	you	can	run	them	non-interactively	on	a	user-defined
schedule.

The	core	AMP	Labs	team	that	created—and	continues	to	be	a	major	contributor
to—the	Spark	project	founded	the	Databricks	company	and	platform.	Spark
releases	and	new	features	are	typically	available	in	the	Databricks	platform

before	they	are	shipped	with	other	distributions,	such	as	CDH	or	HDP.	More
information	about	Databricks	is	available	at	http://databricks.com.

Summary
In	this	chapter,	you	have	learned	how	to	install	Spark	and	considered	the	various
prerequisite	requirements	and	dependencies.	You	have	also	learned	about	the
various	deployment	modes	available	for	deploying	a	Spark	cluster,	including
Local,	Spark	Standalone,	YARN,	and	Mesos.	In	the	first	exercise,	you	set	up	a
fully	functional	Spark	Standalone	cluster.	In	this	chapter	you	also	looked	at	some
of	the	cloud	deployment	options	available	for	deploying	Spark	clusters,	such	as
AWS	EC2	or	EMR	clusters,	Google	Cloud	Dataproc,	and	Databricks.	Any	of	the
deployments	discussed	or	demonstrated	in	this	chapter	can	be	used	for
programming	exercises	throughout	the	remainder	of	this	book—and	beyond.

http://databricks.com

3

Understanding	the	Spark	Cluster
Architecture

It	is	not	the	beauty	of	a	building	you	should	look	at;	it’s	the	construction	of	the
foundation	that	will	stand	the	test	of	time.

David	Allan	Coe,	American	songwriter

In	This	Chapter:
	Detailed	overview	of	the	Spark	application	and	cluster	components
	Spark	resource	schedulers	and	Cluster	Managers
	How	Spark	applications	are	scheduled	on	YARN	clusters
	Spark	deployment	modes

Before	you	begin	your	journey	as	a	Spark	programmer,	you	should	have	a	solid
understanding	of	the	Spark	application	architecture	and	how	applications	are
executed	on	a	Spark	cluster.	This	chapter	closely	examines	the	components	of	a
Spark	application,	looks	at	how	these	components	work	together,	and	looks	at
how	Spark	applications	run	on	Standalone	and	YARN	clusters.

Anatomy	of	a	Spark	Application
A	Spark	application	contains	several	components,	all	of	which	exist	whether

you’re	running	Spark	on	a	single	machine	or	across	a	cluster	of	hundreds	or
thousands	of	nodes.
Each	component	has	a	specific	role	in	executing	a	Spark	program.	Some	of	these
roles,	such	as	the	client	components,	are	passive	during	execution;	other	roles
are	active	in	the	execution	of	the	program,	including	components	executing
computation	functions.

The	components	of	a	Spark	application	are	the	Driver,	the	Master,	the	Cluster
Manager,	and	the	Executor(s),	which	run	on	worker	nodes,	or	Workers.	Figure
3.1	shows	all	the	Spark	components	in	the	context	of	a	Spark	Standalone
application.	You	will	learn	more	about	each	component	and	its	function	in	more
detail	later	in	this	chapter.

Figure	3.1	Spark	Standalone	cluster	application	components.

All	Spark	components,	including	the	Driver,	Master,	and	Executor	processes,	run
in	Java	virtual	machines	(JVMs).	A	JVM	is	a	cross-platform	runtime	engine	that
can	execute	instructions	compiled	into	Java	bytecode.	Scala,	which	Spark	is
written	in,	compiles	into	bytecode	and	runs	on	JVMs.

It	is	important	to	distinguish	between	Spark’s	runtime	application	components
and	the	locations	and	node	types	on	which	they	run.	These	components	run	in
different	places	using	different	deployment	modes,	so	don’t	think	of	these

components	in	physical	node	or	instance	terms.	For	instance,	when	running
Spark	on	YARN,	there	would	be	several	variations	of	Figure	3.1.	However,	all
the	components	pictured	are	still	involved	in	the	application	and	have	the	same
roles.

Spark	Driver
The	life	of	a	Spark	application	starts	and	finishes	with	the	Spark	Driver.	The
Driver	is	the	process	that	clients	use	to	submit	applications	in	Spark.	The	Driver
is	also	responsible	for	planning	and	coordinating	the	execution	of	the	Spark
program	and	returning	status	and/or	results	(data)	to	the	client.	The	Driver	can
physically	reside	on	a	client	or	on	a	node	in	the	cluster,	as	you	will	see	later.

SparkSession
The	Spark	Driver	is	responsible	for	creating	the	SparkSession.	The	SparkSession
object	represents	a	connection	to	a	Spark	cluster.	The	SparkSession	is
instantiated	at	the	beginning	of	a	Spark	application,	including	the	interactive
shells,	and	is	used	for	the	entirety	of	the	program.

Prior	to	Spark	2.0,	entry	points	for	Spark	applications	included	the
SparkContext,	used	for	Spark	core	applications;	the	SQLContext	and
HiveContext,	used	with	Spark	SQL	applications;	and	the	StreamingContext,
used	for	Spark	Streaming	applications.	The	SparkSession	object	introduced	in
Spark	2.0	combines	all	these	objects	into	a	single	entry	point	that	can	be	used	for
all	Spark	applications.

Through	its	SparkContext	and	SparkConf	child	objects,	the	SparkSession	object
contains	all	the	runtime	configuration	properties	set	by	the	user,	including
configuration	properties	such	as	the	Master,	application	name,	number	of
Executors,	and	more.	Figure	3.2	shows	the	SparkSession	object	and	some	of	its
configuration	properties	within	a	pyspark	shell.

Figure	3.2	SparkSession	properties.

SparkSession	Name
The	object	name	for	the	SparkSession	instance	is	arbitrary.	By	default,	the
SparkSession	instantiation	in	the	Spark	interactive	shells	is	named	spark.
For	 consistency,	 you	 always	 instantiate	 the	 SparkSession	 as	 spark;
however,	the	name	is	up	to	the	developer’s	discretion.

Listing	3.1	demonstrates	how	to	create	a	SparkSession	within	a	non-interactive
Spark	application,	such	as	a	program	submitted	using	spark-submit.

Listing	3.1	Creating	a	SparkSession
Click	here	to	view	code	image

from	pyspark.sql	import	SparkSession

spark	=	SparkSession.builder	\

				.master("spark://sparkmaster:7077")	\

				.appName("My	Spark	Application")	\

				.config("spark.submit.deployMode",	"client")	\	.getOrCreate()

numlines	=	spark.sparkContext.textFile("file:///opt/spark/licenses")	\

				.count()

print("The	total	number	of	lines	is	"	+	str(numlines))

Application	Planning
One	of	the	main	functions	of	the	Driver	is	to	plan	the	application.	The	Driver
takes	the	application	processing	input	and	plans	the	execution	of	the	program.
The	Driver	takes	all	the	requested	transformations	(data	manipulation
operations)	and	actions	(requests	for	output	or	prompts	to	execute	programs)	and
creates	a	directed	acyclic	graph	(DAG)	of	nodes,	each	representing	a
transformational	or	computational	step.

Directed	Acyclic	Graph	(DAG)
A	DAG	 is	 a	mathematical	 construct	 that	 is	 commonly	 used	 in	 computer
science	 to	 represent	 dataflows	 and	 their	 dependencies.	 DAGs	 contain
vertices,	or	nodes,	and	edges.	Vertices	in	a	dataflow	context	are	steps	in	the
process	flow.	Edges	in	a	DAG	connect	vertices	to	one	another	in	a	directed
orientation	 and	 in	 such	 a	 way	 that	 it	 is	 impossible	 to	 have	 circular
references.

A	Spark	application	DAG	consists	of	tasks	and	stages.	A	task	is	the	smallest	unit
of	schedulable	work	in	a	Spark	program.	A	stage	is	a	set	of	tasks	that	can	be	run
together.	Stages	are	dependent	upon	one	another;	in	other	words,	there	are	stage
dependencies.

In	a	process	scheduling	sense,	DAGs	are	not	unique	to	Spark.	For	instance,	they
are	used	in	other	Big	Data	ecosystem	projects,	such	as	Tez,	Drill,	and	Presto	for
scheduling.	DAGs	are	fundamental	to	Spark,	so	it	is	worth	being	familiar	with
the	concept.

Application	Orchestration
The	Driver	also	coordinates	the	running	of	stages	and	tasks	defined	in	the	DAG.
Key	driver	activities	involved	in	the	scheduling	and	running	of	tasks	include	the
following:

	Keeping	track	of	available	resources	to	execute	tasks

	Scheduling	tasks	to	run	“close”	to	the	data	where	possible	(the	concept	of
data	locality)

Other	Functions
In	addition	to	planning	and	orchestrating	the	execution	of	a	Spark	program,	the

Driver	is	also	responsible	for	returning	the	results	from	an	application.	These
could	be	return	codes	or	data	in	the	case	of	an	action	that	requests	data	to	be
returned	to	the	client	(for	example,	an	interactive	query).
The	Driver	also	serves	the	application	UI	on	port	4040,	as	shown	in	Figure	3.3.
This	UI	is	created	automatically;	it	is	independent	of	the	code	submitted	or	how
it	was	submitted	(that	is,	interactive	using	pyspark	or	non-interactive	using
spark-submit).

Figure	3.3	Spark	application	UI.

If	subsequent	applications	launch	on	the	same	host,	successive	ports	are	used	for
the	application	UI	(for	example,	4041,	4042,	and	so	on).

Spark	Workers	and	Executors

Spark	Executors	are	the	processes	on	which	Spark	DAG	tasks	run.	Executors
reserve	CPU	and	memory	resources	on	slave	nodes,	or	Workers,	in	a	Spark
cluster.	An	Executor	is	dedicated	to	a	specific	Spark	application	and	terminated
when	the	application	completes.	A	Spark	program	normally	consists	of	many
Executors,	often	working	in	parallel.

Typically,	a	Worker	node—which	hosts	the	Executor	process—has	a	finite	or
fixed	number	of	Executors	allocated	at	any	point	in	time.	Therefore,	a	cluster—
being	a	known	number	of	nodes—has	a	finite	number	of	Executors	available	to
run	at	any	given	time.	If	an	application	requires	Executors	in	excess	of	the
physical	capacity	of	the	cluster,	they	are	scheduled	to	start	as	other	Executors
complete	and	release	their	resources.

As	mentioned	earlier	in	this	chapter,	JVMs	host	Spark	Executors.	The	JVM	for
an	Executor	is	allocated	a	heap,	which	is	a	dedicated	memory	space	in	which	to
store	and	manage	objects.	The	amount	of	memory	committed	to	the	JVM	heap
for	an	Executor	is	set	by	the	property	spark.executor.memory	or	as	the	-
-executor-memory	argument	to	the	pyspark,	spark-shell,	or
spark-submit	commands.

Executors	store	output	data	from	tasks	in	memory	or	on	disk.	It	is	important	to
note	that	Workers	and	Executors	are	aware	only	of	the	tasks	allocated	to	them,
whereas	the	Driver	is	responsible	for	understanding	the	complete	set	of	tasks	and
the	respective	dependencies	that	comprise	an	application.

By	using	the	Spark	application	UI	on	port	404x	of	the	Driver	host,	you	can
inspect	Executors	for	the	application,	as	shown	in	Figure	3.4.

Figure	3.4	Executors	tab	in	the	Spark	application	UI.

For	Spark	Standalone	cluster	deployments,	a	worker	node	exposes	a	user
interface	on	port	8081,	as	shown	in	Figure	3.5.

Figure	3.5	Spark	Worker	UI.

The	Spark	Master	and	Cluster	Manager
The	Spark	Driver	plans	and	coordinates	the	set	of	tasks	required	to	run	a	Spark
application.	The	tasks	themselves	run	in	Executors,	which	are	hosted	on	Worker
nodes.

The	Master	and	the	Cluster	Manager	are	the	central	processes	that	monitor,
reserve,	and	allocate	the	distributed	cluster	resources	(or	containers,	in	the	case
of	YARN	or	Mesos)	on	which	the	Executors	run.	The	Master	and	the	Cluster
Manager	can	be	separate	processes,	or	they	can	combine	into	one	process,	as	is
the	case	when	running	Spark	in	Standalone	mode.

Spark	Master

The	Spark	Master	is	the	process	that	requests	resources	in	the	cluster	and	makes
them	available	to	the	Spark	Driver.	In	all	deployment	modes,	the	Master
negotiates	resources	or	containers	with	Worker	nodes	or	slave	nodes	and	tracks
their	status	and	monitors	their	progress.

When	running	Spark	in	Standalone	mode,	the	Spark	Master	process	serves	a	web
UI	on	port	8080	on	the	Master	host,	as	shown	in	Figure	3.6.

Figure	3.6	Spark	Master	UI.

Spark	Master	Versus	Spark	Driver
It	 is	 important	 to	 distinguish	 the	 runtime	 functions	 of	 the	Driver	 and	 the
Master.	 The	 name	Master	 may	 be	 inferred	 to	 mean	 that	 this	 process	 is

governing	 the	 execution	 of	 the	 application—but	 this	 is	 not	 the	 case.	The
Master	 simply	 requests	 resources	 and	makes	 those	 resources	 available	 to
the	 Driver.	 Although	 the	Master	 monitors	 the	 status	 and	 health	 of	 these
resources,	 it	 is	 not	 involved	 in	 the	 execution	 of	 the	 application	 and	 the
coordination	of	its	tasks	and	stages.	That	is	the	job	of	the	Driver.

Cluster	Manager
The	Cluster	Manager	is	the	process	responsible	for	monitoring	the	Worker	nodes
and	reserving	resources	on	these	nodes	upon	request	by	the	Master.	The	Master
then	makes	these	cluster	resources	available	to	the	Driver	in	the	form	of
Executors.

As	discussed	earlier,	the	Cluster	Manager	can	be	separate	from	the	Master
process.	This	is	the	case	when	running	Spark	on	Mesos	or	YARN.	In	the	case	of
Spark	running	in	Standalone	mode,	the	Master	process	also	performs	the
functions	of	the	Cluster	Manager.	Effectively,	it	acts	as	its	own	Cluster	Manager.

A	good	example	of	the	Cluster	Manager	function	is	the	YARN
ResourceManager	process	for	Spark	applications	running	on	Hadoop	clusters.
The	ResourceManager	schedules,	allocates,	and	monitors	the	health	of
containers	running	on	YARN	NodeManagers.	Spark	applications	then	use	these
containers	to	host	Executor	processes,	as	well	as	the	Master	process	if	the
application	is	running	in	cluster	mode;	we	will	look	at	this	shortly.

Spark	Applications	Using	the	Standalone	Scheduler
In	Chapter	2,	“Deploying	Spark,”	you	learned	about	the	Standalone	scheduler	as
a	deployment	option	for	Spark.	You	also	deployed	a	fully	functional	multi-node
Spark	Standalone	cluster	in	one	of	the	exercises	in	Chapter	2.	As	discussed
earlier,	in	a	Spark	cluster	running	in	Standalone	mode,	the	Spark	Master	process
performs	the	Cluster	Manager	function	as	well,	governing	available	resources	on
the	cluster	and	granting	them	to	the	Master	process	for	use	in	a	Spark
application.

Spark	Applications	Running	on	YARN
As	discussed	previously,	Hadoop	is	a	very	popular	and	common	deployment
platform	for	Spark.	Some	industry	pundits	believe	that	Spark	will	soon	supplant

MapReduce	as	the	primary	processing	platform	for	applications	in	Hadoop.
Spark	applications	on	YARN	share	the	same	runtime	architecture	but	have	some
slight	differences	in	implementation.

ResourceManager	as	the	Cluster	Manager
In	contrast	to	the	Standalone	scheduler,	the	Cluster	Manager	in	a	YARN	cluster
is	the	YARN	ResourceManager.	The	ResourceManager	monitors	resource	usage
and	availability	across	all	nodes	in	a	cluster.	Clients	submit	Spark	applications	to
the	YARN	ResourceManager.	The	ResourceManager	allocates	the	first	container
for	the	application,	a	special	container	called	the	ApplicationMaster.

ApplicationMaster	as	the	Spark	Master
The	ApplicationMaster	is	the	Spark	Master	process.	As	the	Master	process	does
in	other	cluster	deployments,	the	ApplicationMaster	negotiates	resources
between	the	application	Driver	and	the	Cluster	Manager	(or	ResourceManager	in
this	case);	it	then	makes	these	resources	(containers)	available	to	the	Driver	for
use	as	Executors	to	run	tasks	and	store	data	for	the	application.	The
ApplicationMaster	remains	for	the	lifetime	of	the	application.

Deployment	Modes	for	Spark	Applications	Running
on	YARN
Two	deployment	modes	can	be	used	when	submitting	Spark	applications	to	a
YARN	cluster:	Client	mode	and	Cluster	mode.	Let’s	look	at	them	now.

Client	Mode
In	Client	mode,	the	Driver	process	runs	on	the	client	submitting	the	application.
It	is	essentially	unmanaged;	if	the	Driver	host	fails,	the	application	fails.	Client
mode	is	supported	for	both	interactive	shell	sessions	(pyspark,	spark-
shell,	and	so	on)	and	non-interactive	application	submission	(spark-
submit).	Listing	3.2	shows	how	to	start	a	pyspark	session	using	the	Client
deployment	mode.

Listing	3.2	YARN	Client	Deployment	Mode

Click	here	to	view	code	image

$SPARK_HOME/bin/pyspark	\

--master	yarn-client	\

--num-executors	1	\

--driver-memory	512m	\

--executor-memory	512m	\

--executor-cores	1

#	OR

$SPARK_HOME/bin/pyspark	\

--master	yarn	\

--deploy-mode	client	\

--num-executors	1	\

--driver-memory	512m	\

--executor-memory	512m	\

--executor-cores	1

Figure	3.7	provides	an	overview	of	a	Spark	application	running	on	YARN	in
Client	mode.

Figure	3.7	Spark	application	running	in	YARN	Client	mode.

The	steps	shown	in	Figure	3.7	are	described	here:
1.	The	client	submits	a	Spark	application	to	the	Cluster	Manager	(the	YARN
ResourceManager).	The	Driver	process,	SparkSession,	and	SparkContext	are
created	and	run	on	the	client.

2.	The	ResourceManager	assigns	an	ApplicationMaster	(the	Spark	Master)	for
the	application.

3.	The	ApplicationMaster	requests	containers	to	be	used	for	Executors	from
the	ResourceManager.	With	the	containers	assigned,	the	Executors	spawn.

4.	The	Driver,	located	on	the	client,	then	communicates	with	the	Executors	to
marshal	processing	of	tasks	and	stages	of	the	Spark	program.	The	Driver
returns	the	progress,	results,	and	status	to	the	client.

The	Client	deployment	mode	is	the	simplest	mode	to	use.	However,	it	lacks	the
resiliency	required	for	most	production	applications.

Cluster	Mode
In	contrast	to	the	Client	deployment	mode,	with	a	Spark	application	running	in
YARN	Cluster	mode,	the	Driver	itself	runs	on	the	cluster	as	a	subprocess	of	the
ApplicationMaster.	This	provides	resiliency:	If	the	ApplicationMaster	process
hosting	the	Driver	fails,	it	can	be	re-instantiated	on	another	node	in	the	cluster.

Listing	3.3	shows	how	to	submit	an	application	by	using	spark-submit	and
the	YARN	Cluster	deployment	mode.	Because	the	Driver	is	an	asynchronous
process	running	in	the	cluster,	Cluster	mode	is	not	supported	for	the	interactive
shell	applications	(pyspark	and	spark-shell).

Listing	3.3	YARN	Cluster	Deployment	Mode
Click	here	to	view	code	image

$SPARK_HOME/bin/spark-submit	\

--master	yarn-cluster	\

--num-executors	1	\

--driver-memory	512m	\

--executor-memory	512m	\

--executor-cores	1

$SPARK_HOME/examples/src/main/python/pi.py	10000

#	OR

$SPARK_HOME/bin/spark-submit	\

--master	yarn	\

--deploy-mode	cluster	\

--num-executors	1	\

--driver-memory	512m	\

--executor-memory	512m	\

--executor-cores	1

$SPARK_HOME/examples/src/main/python/pi.py	10000

Figure	3.8	provides	an	overview	of	a	Spark	application	running	on	YARN	in
Cluster	mode.

Figure	3.8	Spark	application	running	in	YARN	Cluster	mode.

The	steps	shown	in	Figure	3.8	are	described	here:

1.	The	client,	a	user	process	that	invokes	spark-submit,	submits	a	Spark
application	to	the	Cluster	Manager	(the	YARN	ResourceManager).

2.	The	ResourceManager	assigns	an	ApplicationMaster	(the	Spark	Master)	for
the	application.	The	Driver	process	is	created	on	the	same	cluster	node.

3.	The	ApplicationMaster	requests	containers	for	Executors	from	the
ResourceManager.	Executors	are	spawned	within	the	containers	allocated	to
the	ApplicationMaster	by	the	ResourceManager.	The	Driver	then
communicates	with	the	Executors	to	marshal	processing	of	tasks	and	stages
of	the	Spark	program.

4.	The	Driver,	running	on	a	node	in	the	cluster,	returns	progress,	results,	and
status	to	the	client.

The	Spark	application	web	UI,	as	shown	previously,	is	available	from	the
ApplicationMaster	host	in	the	cluster;	a	link	to	this	user	interface	is	available
from	the	YARN	ResourceManager	UI.

Local	Mode	Revisited
In	Local	mode,	the	Driver,	the	Master,	and	the	Executor	all	run	in	a	single	JVM.
As	discussed	earlier	in	this	chapter,	this	is	useful	for	development,	unit	testing,
and	debugging,	but	it	has	limited	use	for	running	production	applications
because	it	is	not	distributed	and	does	not	scale.	Furthermore,	failed	tasks	in	a
Spark	application	running	in	Local	mode	are	not	re-executed	by	default.	You	can
override	this	behavior,	however.

When	running	Spark	in	Local	mode,	the	application	UI	is	available	at
http://localhost:4040.	The	Master	and	Worker	UIs	are	not	available	when
running	in	Local	mode.

Summary
In	this	chapter,	you	have	learned	about	the	Spark	runtime	application	and	cluster
architecture,	the	components	or	a	Spark	application,	and	the	functions	of	these
components.	The	components	of	a	Spark	application	include	the	Driver,	Master,
Cluster	Manager,	and	Executors.	The	Driver	is	the	process	that	the	client
interacts	with	when	launching	a	Spark	application,	either	through	one	of	the
interactive	shells	or	through	the	spark-submit	script.	The	Driver	is

http://localhost:4040

responsible	for	creating	the	SparkSession	object	(the	entry	point	for	any	Spark
application)	and	planning	an	application	by	creating	a	DAG	consisting	of	tasks
and	stages.	The	Driver	communicates	with	a	Master,	which	in	turn
communicates	with	a	Cluster	Manager	to	allocate	application	runtime	resources
(containers)	on	which	Executors	will	run.	Executors	are	specific	to	a	given
application	and	run	all	tasks	for	the	application;	they	also	store	output	data	from
completed	tasks.	Spark’s	runtime	architecture	is	essentially	the	same	regardless
of	the	cluster	resource	scheduler	used	(Standalone,	YARN,	Mesos,	and	so	on).

Now	that	we	have	explored	Spark’s	cluster	architecture,	it’s	time	to	put	the
concepts	into	action	starting	in	the	next	chapter.

4

Learning	Spark	Programming	Basics

Talk	is	cheap.	Show	me	the	code.

Linus	Torvalds,	Finnish-American	creator	of	Linux

In	This	Chapter:
	Resilient	Distributed	Datasets	(RDDs)
	How	to	load	data	into	Spark	RDDs
	Transformation	and	actions	on	RDDs
	How	to	perform	operations	on	multiple	RDDs

Now	that	we’ve	covered	Spark’s	runtime	architecture	and	how	to	deploy	Spark,
it’s	time	to	learn	Spark	programming	in	Python,	starting	with	the	basics.	This
chapter	discusses	a	foundational	concept	in	Spark	programming	and	execution:
Resilient	Distributed	Datasets	(RDDs).	You	will	also	learn	how	to	work	with	the
Spark	API,	including	the	fundamental	Spark	transformations	and	actions	and
their	usage.	This	is	an	intense	chapter,	but	by	the	end	of	it,	you	will	have	all	the
basic	building	blocks	you	need	to	create	any	Spark	application.

Introduction	to	RDDs
A	Resilient	Distributed	Dataset	(RDD)	is	the	most	fundamental	data	object	used
in	Spark	programming.	RDDs	are	datasets	within	a	Spark	application,	including

the	initial	dataset(s)	loaded,	any	intermediate	dataset(s),	and	the	final	resultant
dataset(s).	Most	Spark	applications	load	an	RDD	with	external	data	and	then
create	new	RDDs	by	performing	operations	on	the	existing	RDDs;	these
operations	are	transformations.	This	process	is	repeated	until	an	output	operation
is	ultimately	required—for	instance,	to	write	the	results	of	an	application	to	a
filesystem;	these	types	of	operations	are	actions.
RDDs	are	essentially	distributed	collections	of	objects	that	represent	the	data
used	in	Spark	programs.	In	the	case	of	PySpark,	RDDs	consist	of	distributed
Python	objects,	such	as	lists,	tuples,	and	dictionaries.	Objects	within	RDDs,	such
as	elements	in	a	list,	can	be	of	any	object	type,	including	primitive	data	types
such	as	integers,	floating	point	numbers,	and	strings,	as	well	as	complex	types
such	as	tuples,	dictionaries,	or	other	lists.	If	you	are	using	the	Scala	or	Java
APIs,	RDDs	consist	of	collections	of	Scala	and	Java	objects,	respectively.

Although	there	are	options	for	persisting	RDDs	to	disk,	RDDs	are	predominantly
stored	in	memory,	or	at	least	they	are	intended	to	be	stored	in	memory.	Because
one	of	the	initial	uses	for	Spark	was	to	support	machine	learning,	Spark’s	RDDs
provided	a	restricted	form	of	shared	memory	that	could	make	efficient	reuse	of
data	for	successive	and	iterative	operations.

Moreover,	one	of	the	main	downsides	of	Hadoop’s	implementation	of
MapReduce	was	its	persistence	of	intermediate	data	to	disk	and	the	copying	of
this	data	between	nodes	at	runtime.	Although	the	MapReduce	distributed
processing	method	of	sharing	data	did	provide	resiliency	and	fault	tolerance,	it
was	at	the	cost	of	latency.	This	design	limitation	was	one	of	the	major	catalysts
for	the	Spark	project.	As	data	volumes	increased	along	with	the	necessity	for
real-time	data	processing	and	insights,	Spark’s	mainly	in-memory	processing
framework	based	on	RDDs	grew	in	popularity.

The	term	Resilient	Distributed	Dataset	is	an	accurate	and	succinct	descriptor	for
the	concept.	Here’s	how	it	breaks	down:

	Resilient:	RDDs	are	resilient,	meaning	that	if	a	node	performing	an
operation	in	Spark	is	lost,	the	dataset	can	be	reconstructed.	This	is	because
Spark	knows	the	lineage	of	each	RDD,	which	is	the	sequence	of	steps	to
create	the	RDD.

	Distributed:	RDDs	are	distributed,	meaning	the	data	in	RDDs	is	divided
into	one	or	many	partitions	and	distributed	as	in-memory	collections	of
objects	across	Worker	nodes	in	the	cluster.	As	mentioned	earlier	in	this
chapter,	RDDs	provide	an	effective	form	of	shared	memory	to	exchange

data	between	processes	(Executors)	on	different	nodes	(Workers).

	Dataset:	RDDs	are	datasets	that	consist	of	records.	Records	are	uniquely
identifiable	data	collections	within	a	dataset.	A	record	can	be	a	collection	of
fields	similar	to	a	row	in	a	table	in	a	relational	database,	a	line	of	text	in	a
file,	or	multiple	other	formats.	RDDs	are	created	such	that	each	partition
contains	a	unique	set	of	records	and	can	be	operated	on	independently.	This
is	an	example	of	the	shared	nothing	approach	discussed	in	Chapter	1.

Another	key	property	of	RDDs	is	their	immutability,	which	means	that	after	they
are	instantiated	and	populated	with	data,	they	cannot	be	updated.	Instead,	new
RDDs	are	created	by	performing	transformations	such	as	map	or	filter
functions,	discussed	later	in	this	chapter,	on	existing	RDDs.

Actions	are	the	other	operations	performed	on	RDDs.	Actions	produce	output
that	can	be	in	the	form	of	data	from	an	RDD	returned	to	a	Driver	program,	or
they	can	save	the	contents	of	an	RDD	to	a	filesystem	(local,	HDFS,	S3,	or
other).	There	are	many	other	actions	as	well,	including	returning	a	count	of	the
number	of	records	in	an	RDD.

Listing	4.1	shows	a	sample	Spark	program	loading	data	into	an	RDD,	creating	a
new	RDD	using	a	filter	transformation,	and	then	using	an	action	to	save	the
resultant	RDD	to	disk.	We	will	look	at	each	of	these	operations	in	this	chapter.

Listing	4.1	Sample	PySpark	Program	to	Search	for	Errors	in	Log
Files
Click	here	to	view	code	image

#	load	log	files	from	local	filesystem

logfilesrdd	=	sc.textFile("file:///var/log/hadoop/hdfs/hadoop-hdfs-*")

#	filter	log	records	for	errors	only

onlyerrorsrdd	=	logfilesrdd.filter(lambda	line:	"ERROR"	in	line)

#	save	onlyerrorsrdd	as	a	file

onlyerrorsrdd.saveAsTextFile("file:///tmp/onlyerrorsrdd")

You	can	find	more	detail	about	RDD	concepts	in	the	University	of	California,
Berkeley,	paper	“Resilient	Distributed	Datasets:	A	Fault-Tolerant	Abstraction	for
In-Memory	Cluster	Computing,”
https://amplab.cs.berkeley.edu/publication/resilient-distributed-datasets-a-fault-
tolerant-abstraction-for-in-memory-cluster-computing/.

https://amplab.cs.berkeley.edu/publication/resilient-distributed-datasets-a-fault-tolerant-abstraction-for-in-memory-cluster-computing/

Loading	Data	into	RDDs
RDDs	are	effectively	created	after	they	are	populated	with	data.	This	can	be	the
result	of	transformations	on	an	existing	RDD	being	written	into	a	new	RDD	as
part	of	a	Spark	program.

To	start	any	Spark	routine,	you	need	to	initialize	at	least	one	RDD	with	data
from	an	external	source.	This	initial	RDD	is	then	used	to	create	further
intermediate	RDDs	or	the	final	RDD	through	a	series	of	transformations	and
actions.	The	initial	RDD	can	be	created	in	several	ways,	including	the	following:

	Loading	data	from	a	file	or	files

	Loading	data	from	a	data	source,	such	as	a	SQL	or	NoSQL	datastore

	Loading	data	programmatically

	Loading	data	from	a	stream,	as	discussed	in	Chapter	7,	“Stream	Processing
and	Messaging	Using	Spark”

Creating	an	RDD	from	a	File	or	Files
Spark	provides	API	methods	to	create	RDDs	from	a	file,	files,	or	the	contents	of
a	directory.	Files	can	be	of	various	formats,	from	unstructured	text	files,	to	semi-
structured	files	such	as	JSON	files,	to	structured	data	sources	such	as	CSV	files.
Spark	also	supports	several	common	serialized	binary	encoded	formats,	such	as
SequenceFiles	and	protocol	buffers	(protobufs),	as	well	as	columnar	file	formats
such	as	Parquet	and	ORC	(which	we	will	discuss	later).

Spark	and	File	Compression
Spark	includes	native	support	for	several	lossless	compression	formats.	Spark
can	seamlessly	read	from	common	compressed	file	formats,	including	GZIP	and
ZIP	(or	any	other	compressed	archives	created	using	the	DEFLATE	compression
method),	as	well	as	BZIP2	compressed	archives.

Spark	also	provides	native	codecs,	which	are	libraries	for	compressing	and
decompressing	data,	that	enable	both	reading	and	writing	of	compressed	files.
Built-in	codecs	include	LZ4	and	LZF,	which	are	LZ77-based	lossless
compression	formats,	and	Snappy.

Snappy	is	a	fast,	splittable,	low-CPU	data	compression	and	decompression
library	from	Google	that	is	commonly	used	in	the	Hadoop	core	and	ecosystem
projects.	Snappy	is	used	by	default	for	compressing	data	internal	to	Spark,	such
as	the	data	in	RDD	partitions	exchanged	across	the	network	between	Workers.

Splittable	Versus	Non-splittable	Compression	Formats
It’s	important	to	distinguish	between	splittable	and	non-splittable
compression	formats	when	using	distributed	processing	platforms	such	as
Spark	or	Hadoop.
Splittable	compression	formats	are	indexed	so	they	can	split—typically	on
block	boundaries—without	compromising	the	integrity	of	the	archive.	Non-
splittable	formats	are	not	indexed	and	cannot	split.	This	means	that	a	non-
splittable	archive	must	be	readable	in	its	entirety	on	one	system	because	it
cannot	be	distributed.
Although	common	desktop	compression	formats	such	as	ZIP	and	GZIP	can
achieve	 high	 rates	 of	 compression,	 they	 are	 not	 splittable.	 This	 may	 be
okay	 for	 small	 files	 containing	 lookup	 data,	 but	 for	 larger	 datasets,
splittable	 compression	 formats	 such	as	Snappy	or	LZO	are	preferable.	 In
some	 cases,	 you	 are	 better	 off	 decompressing	 files	 altogether	 before
ingesting	them	into	a	distributed	filesystem	such	as	HDFS.

Data	Locality	with	RDDs
By	default,	Spark	tries	to	read	data	into	an	RDD	from	the	nodes	close	to	it.
Because	Spark	usually	accesses	distributed	partitioned	data,	such	as	data	from
HDFS	or	S3,	to	optimize	transformation	operations,	it	creates	partitions	to	hold
the	underlying	blocks	from	the	distributed	filesystem.	Figure	4.1	depicts	how
blocks	from	a	file	in	a	distributed	filesystem	such	as	HDFS	are	used	to	create
RDD	partitions	on	Workers,	which	are	collocated	with	the	data.

Figure	4.1	Loading	an	RDD	from	a	text	file	in	a	distributed	filesystem.

Loading	RDDs	from	a	Local	Filesystem
If	you	are	not	using	a	distributed	filesystem—for	instance,	if	you	are
creating	an	RDD	from	a	file	on	your	local	filesystem—you	need	to	ensure
that	the	file	you	are	loading	is	available	in	the	same	relative	path	on	all
worker	nodes	in	the	cluster.	Otherwise,	you	will	get	the	following	error:

Click	here	to	view	code	image

java.io.FileNotFoundException:	File	does	not	exist

For	this	reason,	it’s	preferable	to	use	a	distributed	filesystem	such	as	HDFS
or	S3	as	a	file-based	source	for	Spark	RDDs;	in	this	case,	you	upload	a	file
from	your	local	filesystem	to	the	distributed	system	first	and	then	create	the
RDD	from	the	distributed	object,	if	possible.	Another	alternative	approach
to	using	a	local	filesystem	is	to	use	a	shared	network	filesystem	instead.

Methods	for	Creating	RDDs	from	a	Text	File	or	Files
The	Spark	methods	for	creating	an	RDD	from	a	file	or	files	support	several
filesystems.	The	scheme	in	the	URI	specifies	these	filesystems.	This	scheme	is
the	prefix	followed	by	://.	You	see	this	all	the	time	with	Internet	resources
referred	to	by	the	scheme	http://	or	https://.	Table	4.1	summarizes	schemes	and
URI	structures	for	common	filesystems	supported	by	Spark.

Table	4.1	Filesystem	Schemes	and	URI	Structures

Filesystem URI	Structure

Local	filesystem file:///path

HDFS* hdfs://hdfs_path

Amazon	S3* s3://bucket/path	(also	used	are	s3a	and	s3n)

OpenStack	Swift* swift://container.PROVIDER/path

*	Requires	filesystem	configuration	parameters	to	be	set.

You	can	use	text	files	and	the	methods	described	in	the	following	sections	to
create	RDDs.

textFile()

Syntax:
Click	here	to	view	code	image

sc.textFile(name,	minPartitions=None,	use_unicode=True)

The	textFile()	method	is	used	to	create	RDDs	from	files	(compressed	or
uncompressed),	directories,	or	glob	patterns	(file	patterns	with	wildcards).

The	name	argument	specifies	the	path	or	glob	to	be	referenced,	including	the
filesystem	scheme,	as	shown	in	Table	4.1.

The	minPartitions	argument	determines	the	number	of	partitions	to	create.
By	default,	if	you	are	using	HDFS,	each	block	of	the	file	(typically	128MB)
creates	a	single	partition,	as	demonstrated	in	Figure	4.1.	You	can	request	more
partitions	than	there	are	blocks;	however,	any	number	of	partitions	specified	that
is	less	than	the	number	of	blocks	will	revert	to	the	default	behavior	of	one	block
to	one	partition.

The	use_unicode	argument	specifies	whether	to	use	Unicode	or	UTF-8	as	the
character	encoding	scheme.

The	minPartitions	and	use_unicode	arguments	are	optional	as	they
have	default	values	configured.	In	most	cases,	it’s	not	necessary	to	supply	these
parameters	explicitly	unless	you	need	to	override	the	defaults.

Consider	the	Hadoop	filesystem	directory	shown	in	Figure	4.2.

Figure	4.2	HDFS	directory	listing.

To	read	files	in	HDFS	from	Spark,	the	HADOOP_CONF_DIR	environment
variable	must	be	set	on	all	worker	nodes	of	the	cluster.	The	Hadoop	config
directory	contains	all	the	information	used	by	Spark	to	connect	to	the	appropriate
HDFS	cluster.	You	can	set	this	automatically	by	using	the	spark-env.sh
script	located	in	the	conf/	directory	of	each	Spark	installation.	The	command
used	to	set	this	variable	on	Linux	systems	is	as	follows:
Click	here	to	view	code	image

export	HADOOP_CONF_DIR=/etc/hadoop/conf

Listing	4.2	provides	examples	of	the	textFile()	method	loading	the	data
from	the	HDFS	directory	pictured	in	Figure	4.2.

Listing	4.2	Creating	RDDs	Using	the	textFile()	Method
Click	here	to	view	code	image

#	load	the	contents	of	the	entire	directory

logs	=	sc.textFile("hdfs:///demo/data/Website/Website-Logs/")

#	load	an	individual	file

logs	=	sc.textFile("hdfs:///demo/data/Website/Website-

Logs/IB_WebsiteLog_1001.txt")

#	load	a	file	or	files	using	a	glob	pattern

logs	=	sc.textFile("hdfs:///demo/data/Website/Website-Logs/*_1001.txt")

In	each	of	the	examples	in	Listing	4.2,	an	RDD	named	logs	is	created,	with
each	line	of	the	file	represented	as	a	record.

wholeTextFiles()

Syntax:

Click	here	to	view	code	image

sc.wholeTextFiles(path,	minPartitions=None,	use_unicode=True)

The	wholeTextFiles()	method	lets	you	read	a	directory	containing
multiple	files.	Each	file	is	represented	as	a	record	consisting	of	a	key	containing
the	filename	and	a	value	containing	the	contents	of	the	file.	In	contrast,	when
reading	all	files	in	a	directory	with	the	textFile()	method,	each	line	of	each
file	represents	a	separate	record	with	no	context	of	the	line’s	file	origin.
Typically	with	event	processing,	the	originating	filename	is	not	required	because
the	record	contains	a	timestamp	field.

As	each	record	contains	the	contents	of	the	entire	file	with	the
wholeTextFiles()	method,	this	method	is	intended	for	use	with	small	files.
The	minPartitions	and	use_unicode	arguments	behave	similarly	to	the
textFile()	method.

Using	the	HDFS	directory	shown	in	Figure	4.2,	Listing	4.3	provides	an	example
of	the	wholeTextFiles()	method.

Listing	4.3	Creating	RDDs	by	Using	the	wholeTextFiles()
Method
Click	here	to	view	code	image

#	load	the	contents	of	the	entire	directory	into	key/value	pairs

logs	=	sc.wholeTextFiles("hdfs:///demo/data/Website/Website-Logs/")

To	demonstrate	the	difference	between	the	textFile()	and
wholeTextFiles()	methods	in	Spark,	let’s	look	at	an	example.	This	is	an
example	you	can	try	for	yourself	on	any	Spark	installation.	The	Spark
installation	includes	a	directory	named	licenses	that	contains	license	files	for
all	the	open	source	projects	used	within	the	Spark	project	(for	example,	Scala).

Using	the	licenses	directory	as	a	source	of	text	files	to	load	different	RDDs,
Listing	4.4	shows	the	difference	between	the	textFile()	and
wholeTextFiles()	methods.

Listing	4.4	Comparing	the	textFile()	and
wholeTextFiles()	Methods

Click	here	to	view	code	image

#	load	the	contents	of	the	entire	directory	into	an	RDD	named	

licensefiles

licensefiles	=	sc.textFile("file:///opt/spark/licenses/")

#	inspect	the	object	created

licensefiles

#	returns:

#			file:///opt/spark/licenses/	MapPartitionsRDD[1]	at	textFile	at

#			NativeMethodAccessorImpl.java:0

licensefiles.take(1)

#	returns	a	list	containing	the	first	line	of	the	first	file	read	in	the	

directory:

#		[u'The	MIT	License	(MIT)']

licensefiles.getNumPartitions()

#	there	is	a	partition	created	for	each	file	in	the	directory,	in	this	

case	the

#	return	value	is	36

licensefiles.count()

#	this	action	will	count	the	combined	total	number	of	lines	in	all	the	

files,	in

#	this	case	the	return	value	is	1075

	

#	now	let's	perform	a	similar	exercise	using	the	same	directory	using	

the

#	wholeTextFiles()	method	instead

licensefile_pairs	=	sc.wholeTextFiles("file:///opt/spark/licenses/")	#	

inspect	the	object	created

licensefile_pairs

#	returns:

#			org.apache.spark.api.java.JavaPairRDD@3f714d2d

licensefile_pairs.take(1)

#	returns	the	first	key/value	pair	as	a	list	of	tuples,	with	the	key	

being	each	file	#	and	the	value	being	the	entire	contents	of	that	file:

#			[(u'file:/opt/spark/licenses/LICENSE-scopt.txt',	u'The	MIT	License	

(MIT)\n...)..]

licensefile_pairs.getNumPartitions()

#	this	method	will	create	a	single	partition	(1)	containing	key/value	

pairs	for	each	#	file	in	the	directory

licensefile_pairs.count()

#	this	action	will	count	the	number	of	files	or	key/value	pairs

#	in	this	case	the	return	value	is	36

Creating	an	RDD	from	an	Object	File
Spark	supports	several	common	object	file	implementations.	The	term	object
files	refers	to	serialized	data	structures	that	are	not	normally	human	readable	and
that	are	designed	to	provide	structure	and	context	to	data,	making	access	to	data
more	efficient	for	the	requesting	platform.

Sequence	files	are	encoded	serialized	files	commonly	used	in	Hadoop.	You	can
create	RDDs	by	using	the	sequenceFile()	method.	There	is	also	a	similar
method	called	hadoopFile().	(For	brevity,	we	won’t	cover	sequence	files	in
detail	in	this	book	because	it	would	require	more	knowledge	about	serialization
in	Hadoop,	which	is	beyond	the	book’s	scope.)

In	addition,	there	is	support	for	reading	and	writing	Pickle	files,	a	special
serialization	format	for	Python.	Similar	functionality	is	available	for	serialized
Java	objects	with	the	objectFile()	method.

Spark	also	has	native	support	for	JSON	files,	which	we	will	look	at	shortly.

Creating	an	RDD	from	a	Data	Source
It	is	commonly	required	to	load	data	from	a	database	into	an	RDD	in	a	Spark
program	as	a	source	of	historical	data,	master	data,	or	reference	or	lookup	data.
This	data	can	come	from	a	variety	of	host	systems	and	database	platforms,
including	Oracle,	MySQL,	Postgres,	and	SQL	Server.

As	with	the	creation	of	RDDs	using	external	files,	RDDs	created	using	data	from
an	external	database—a	MySQL	database,	for	example—attempt	to	move	the
data	into	multiple	partitions	across	multiple	Workers.	This	maximizes
parallelism	during	processing,	especially	during	the	initial	stages.	In	addition,	if
you	divide	the	table,	typically	by	key	space,	into	different	partitions,	the
partitions	can	load	in	parallel	as	well,	and	each	partition	is	responsible	for
fetching	a	unique	set	of	rows.	This	concept	is	depicted	in	Figure	4.3.

Figure	4.3	Loading	an	RDD	from	a	table	in	a	relational	database.

The	preferred	methods	of	creating	an	RDD	from	a	relational	database	table	or
query	involve	using	functions	from	the	SparkSession	object.	Recall	that	this	is
the	main	entry	point	for	working	with	all	types	of	data	in	Spark,	including
tabular	data.	The	SparkSession	exposes	a	read	function,	which	returns	a
DataFrameReader	object.	You	can	then	use	this	object	to	read	data	in	a
DataFrame,	a	special	type	of	RDD	previously	referred	to	as	a	SchemaRDD.
(Chapter	6,	“SQL	and	NoSQL	Programming	with	Spark,”	covers	DataFrames	in
more	detail.)

The	read()	method	has	a	jdbc	function	that	can	connect	to	and	collect	data
from	any	JDBC-compliant	data	source.

Java	Database	Connectivity	(JDBC)
Java	Database	Connectivity	 (JDBC)	 is	 a	 popular	 Java	API	 for	 accessing
different	 (mainly	 relational)	 database	 management	 systems	 (DBMSs),
managing	functions	such	as	connecting	to	and	disconnecting	from	a	DBMS
and	 running	 queries.	 Database	 vendors	 typically	 provide	 drivers	 or
connectors	 to	 provide	 access	 to	 their	 database	 platforms	 via	 JDBC.

Because	 Spark	 processes	 run	 in	 Java	 virtual	machines	 (JVMs),	 JDBC	 is
natively	available	to	Spark.

Consider	a	MySQL	Server	called	mysqlserver	with	a	database	named
employees	with	a	table	called	employees.	The	employees	table	has	a
primary	key	named	emp_no	that	is	a	logical	candidate	to	use	for	dividing	the
key	space	from	the	table	into	multiple	partitions.	To	access	the	MySQL	database
via	JDBC,	you	need	to	launch	pyspark	providing	the	mysql-
connector.jar	in	the	driver	class	path.	Connectors,	such	as	the	mysql-
connector.jar,	are	generally	available	from	your	target	database	platform
vendor’s	website.	An	example	of	this	is	shown	in	Listing	4.5.

Listing	4.5	Launching	pyspark	and	Supplying	the	JDBC	MySQL
Connector	JAR	File
Click	here	to	view	code	image

#	download	the	latest	jdbc	connector	for	your	target	database,	include	

as	follows:

$SPARK_HOME/bin/pyspark	\

--driver-class-path	mysql-connector-java-5.*-bin.jar	\

--master	local

Once	you	have	launched	an	interactive	or	non-interactive	Spark	application,
including	the	relevant	JDBC	connection	library	for	your	target	database,	you	can
use	the	jdbc	method	of	the	DataFrame	reader	object.

read.jdbc()

Syntax:
Click	here	to	view	code	image

spark.read.jdbc(url,	table,

				column=None,

				lowerBound=None,

				upperBound=None,

				numPartitions=None,

				predicates=None,

				properties=None)

The	url	and	table	arguments	specify	the	target	database	and	table	to	read.

The	column	argument	helps	Spark	choose	the	appropriate	column,	preferably	a
long	or	int	datatype,	to	create	the	number	of	partitions	specified	by
numPartitions.	The	upperBound	and	lowerBound	arguments	are	used
in	conjunction	with	the	column	argument	to	assist	Spark	in	creating	the
partitions.	These	represent	the	minimum	and	maximum	values	for	the	specified
column	in	the	source	table.	If	any	one	of	these	arguments	is	supplied	with	the
read.jdbc()	function,	all	must	be	supplied.

The	optional	argument	predicates	allows	for	including	WHERE	conditions	to
filter	unneeded	records	while	loading	partitions.	You	can	use	the	properties
argument	to	pass	parameters	to	the	JDBC	API,	such	as	the	database	user
credentials;	if	supplied,	this	argument	must	be	a	Python	dictionary,	a	set	of
name/value	pairs	representing	the	various	configuration	options.

Listing	4.6	shows	the	creation	of	an	RDD	using	the	read.jdbc()	method.

Listing	4.6	Loading	Data	from	a	JDBC	Data	Source	by	Using
read.jdbc()

Click	here	to	view	code	image

employeesdf	=	

spark.read.jdbc(url="jdbc:mysql://localhost:3306/employees",

				

table="employees",column="emp_no",numPartitions="2",lowerBound="10001",

				upperBound="499999",properties={"user":"<user>","password":"<pwd>"})

employeesdf.rdd.getNumPartitions()

#	should	return	2	as	we	specified	numPartitions=2

The	read.jdbc()	function	returns	a	DataFrame	(a	special	Spark	object
against	which	SQL	queries	can	be	executed),	as	shown	in	Listing	4.7.

Listing	4.7	Running	SQL	Queries	Against	Spark	DataFrames
Click	here	to	view	code	image

sqlContext.registerDataFrameAsTable(employeesdf,	"employees")

df2	=	spark.sql("SELECT	emp_no,	first_name,	last_name	FROM	employees	

LIMIT	2")

df2.show()

#	will	return	a	'pretty	printed'	result	set	similar	to:

#+------+----------+---------+

#|emp_no|first_name|last_name|

#+------+----------+---------+

#|	10001|				Georgi|		Facello|

#|	10002|			Bezalel|			Simmel|

#+------+----------+---------+

Creating	Too	Many	Partitions	Using	the	read.jdbc()
Function
Be	careful	 not	 to	 specify	 too	many	partitions	when	 loading	 a	DataFrame
from	 a	 relational	 data	 source.	 Each	 partition	 running	 on	 each	 individual
worker	 node	 connects	 to	 the	 DBMS	 independently	 and	 queries	 its
designated	 portion	 of	 the	 dataset.	 If	 you	 have	 hundreds	 or	 thousands	 of
partitions,	 this	 could	 be	 misconstrued	 as	 a	 distributed	 denial-of-service
(DDoS)	attack	on	the	host	database	system.

Creating	RDDs	from	JSON	Files
JSON	(JavaScript	Object	Notation)	is	a	popular	data-interchange	format.	JSON
is	a	“self-describing”	format,	which	is	human	readable	and	commonly	used	to
return	responses	from	web	services	and	RESTful	APIs.	JSON	objects	are	treated
as	data	sources	and	accessed	using	the	read.json()	method	that	is	exposed
through	the	SparkSession	entry	point.

read.json()

Syntax:
Click	here	to	view	code	image

spark.read.json(path,	schema=None)

The	path	argument	specifies	the	full	path	to	the	JSON	file	you	are	using	as	a
data	source.	You	can	use	the	optional	schema	argument	to	specify	the	target
schema	for	creating	the	DataFrame.

Consider	a	JSON	file	named	people.json	that	contains	the	names	and,

optionally,	the	ages	of	people.	This	file	happens	to	be	in	the	examples
directory	of	the	Spark	installation,	as	shown	in	Figure	4.4.

Figure	4.4	JSON	file.

Listing	4.8	demonstrates	the	creation	of	a	DataFrame	named	people	using	the
people.json	file.

Listing	4.8	Creating	and	Working	with	a	DataFrame	Created
from	a	JSON	File
Click	here	to	view	code	image

people	=	

spark.read.json("/opt/spark/examples/src/main/resources/people.json")

#	inspect	the	object	created

people

#	notice	that	a	DataFrame	is	created	which	includes	the	following	

schema:

#	DataFrame[age:	bigint,	name:	string]

#	this	schema	was	inferred	from	the	object

people.dtypes

#	the	dtypes	method	returns	the	column	names	and	datatypes	in	this	case	

it	returns:

#[('age',	'bigint'),	('name',	'string')]

people.show()

#	you	should	see	the	following	output

#+----+-------+

#|	age|			name|

#+----+-------+

#|null|Michael|

#|		30|			Andy|

#|		19|	Justin|

#+----+-------+

#	as	with	all	DataFrames	you	can	create	use	them	to	run	SQL	queries	as	

follows

sqlContext.registerDataFrameAsTable(people,	"people")

df2	=	spark.sql("SELECT	name,	age	FROM	people	WHERE	age	>	20")

df2.show()

#	you	should	see	the	resultant	output	below

#+----+---+

#|name|age|

#+----+---+

#|Andy|	30|

#+----+---+

Creating	an	RDD	Programmatically
It	is	possible	to	create	an	RDD	programmatically	from	data	in	your	program,
whether	the	data	is	in	lists,	arrays,	or	collections.	The	data	from	your	collection
is	partitioned	and	distributed	in	much	the	same	way	as	it	is	using	the	previous
methods.	However,	creating	RDDs	this	way	can	be	limiting	because	it	requires
all	of	the	dataset	to	exist	or	be	created	in	memory	on	one	system.	The	following
sections	describe	methods	exposed	by	the	SparkContext	that	allow	you	to	create
RDDs	from	lists	in	your	program.

parallelize()

Syntax:
Click	here	to	view	code	image

sc.parallelize(c,	numSlices=None)

The	parallelize()	method	assumes	that	you	have	a	list	created	already	and
that	you	supply	it	as	the	c	(for	collection)	argument.	The	numSlices	argument
specifies	the	desired	number	of	partitions	to	create.	An	example	of	the

parallelize()	method	is	shown	in	Listing	4.9.

Listing	4.9	Creating	an	RDD	by	Using	the	parallelize()
Method
Click	here	to	view	code	image

parallelrdd	=	sc.parallelize([0,	1,	2,	3,	4,	5,	6,	7,	8])

parallelrdd

#	notice	the	type	of	RDD	created:

#	ParallelCollectionRDD[0]	at	parallelize	at	PythonRDD.scala:423

parallelrdd.count()

#	this	action	will	return	9	as	this	is	the	number	of	elements	in	our	

collection

parallelrdd.collect()

#	will	return	the	parallel	collection	as	a	list	as	follows:

#	[0,	1,	2,	3,	4,	5,	6,	7,	8]

range()

Syntax:
Click	here	to	view	code	image

sc.range(start,	end=None,	step=1,	numSlices=None)

The	range()	method	generates	a	list	for	you	and	creates	and	distributes	the
RDD.	The	start,	end,	and	step	arguments	define	the	sequence	of	values,
and	numSlices	specifies	the	desired	number	of	partitions.	An	example	of	the
range()	method	is	shown	in	Listing	4.10.

Listing	4.10	Creating	an	RDD	by	Using	the	range()	Method
Click	here	to	view	code	image

#	create	an	RDD	with	1000	integers	starting	at	0	in	increments	of	1

#	across	2	partitions

range_rdd	=	sc.range(0,	1000,	1,	2)

range_rdd

#	note	the	PythonRDD	type,	as	range	is	a	native	Python	function

#	PythonRDD[1]	at	RDD	at	PythonRDD.scala:43

range_rdd.getNumPartitions()

#	should	return	2	as	we	requested	numSlices=2	range_rdd.min()

#	should	return	0	as	this	was	out	start	argument

range_rdd.max()

#	should	return	999	as	this	is	1000	increments	of	1	starting	from	0

range_rdd.take(5)

#	should	return	[0,	1,	2,	3,	4]

Operations	on	RDDs
Now	that	you	have	learned	how	to	create	RDDs	from	files	in	various
filesystems,	from	relational	data	sources,	and	programmatically,	let’s	look	at	the
types	of	operations	you	can	perform	against	RDDs	and	some	of	the	key	RDD
concepts.

Key	RDD	Concepts
Recall	that	transformations	in	Spark	are	functions	that	operate	on	an	RDD	and
return	a	new	RDD,	whereas	actions	operate	against	an	RDD	and	return	a	value
or	perform	an	output	operation.	We	will	look	at	many	examples	of	both	shortly,
but	first	we	need	to	introduce	two	concepts:	coarse-grained	transformations	and
lazy	evaluation.

Coarse-Grained	Versus	Fine-Grained	Transformations
Operations	performed	against	RDDs	are	considered	to	be	coarse	grained	as	they
apply	a	function	(a	map	or	filter	function,	for	example,	which	we	will
discuss	shortly)	against	every	element	in	the	dataset,	and	they	return	a	new
dataset	with	the	transformations	applied.	In	contrast	to	coarse-grained
transformations,	fine-grained	transformations	can	manipulate	a	single	record	or
data	cell,	such	as	single-row	updates	in	a	relational	database	or	put	operations
in	a	NoSQL	database.	Coarse-grained	transformations	are	conceptually	similar	to
Hadoop’s	implementation	of	the	MapReduce	programming	model.

Transformations,	Actions,	and	Lazy	Evaluation
Transformations	are	operations	performed	against	RDDs	that	result	in	the
creation	of	new	RDDs.	Common	transformations	include	map	and	filter

functions.	The	following	example	shows	a	new	RDD	created	from	a
transformation	of	an	existing	RDD:
Click	here	to	view	code	image

originalrdd	=	sc.parallelize([0,	1,	2,	3,	4,	5,	6,	7,	8])

newrdd	=	originalrdd.filter(lambda	x:	x	%	2)

originalrdd	originated	from	a	parallelized	collection	of	numbers.	The
filter()	transformation	was	then	applied	to	each	element	in	the
originalrdd	to	bypass	even	numbers	in	the	collection.	This	transformation
results	in	the	RDD	called	newrdd.

In	contrast	to	transformations,	which	return	new	RDD	objects,	actions	return
values	or	data	to	the	driver	program.	Common	actions	include	reduce(),
collect(),	count(),	and	saveAsTextFile().	The	following	example
uses	the	collect()	action	to	display	the	contents	of	newrdd:
Click	here	to	view	code	image

newrdd.collect()	#	will	return	[1,	3,	5,	7]

Spark	uses	lazy	evaluation,	also	called	lazy	execution,	in	processing	Spark
programs.	Lazy	evaluation	defers	processing	until	an	action	is	called	(that	is,
when	output	is	required).	This	is	easily	demonstrated	using	an	interactive	shell,
where	you	can	enter	one	or	more	transformation	methods	to	RDDs	one	after	the
other	without	any	processing	starting.	Instead,	each	statement	is	parsed	for
syntax	and	object	references	only.	After	requesting	an	action	such	as	count()
or	saveAsTextFile(),	a	DAG	is	created	along	with	logical	and	physical
execution	plans.	The	Driver	then	orchestrates	and	manages	these	plans	across
Executors.

This	lazy	evaluation	allows	Spark	to	combine	operations	where	possible,	thereby
reducing	processing	stages	and	minimizing	the	amount	of	data	transferred
between	Spark	Executors	in	a	process	called	shuffling.

RDD	Persistence	and	Reuse
RDDs	are	created	and	exist	predominantly	in	memory	on	Executors.	By	default,
RDDs	are	transient	objects	that	exist	only	while	they	are	required.	After	they
transform	into	new	RDDs	and	aren’t	needed	for	any	other	operations,	they	are
removed	permanently.	This	may	be	problematic	if	an	RDD	is	required	for	more
than	one	action	because	it	must	be	reevaluated	in	its	entirety	each	time.	An
option	to	address	this	is	to	cache	or	persist	the	RDD	by	using	the	persist()

method.	Listings	4.11	and	4.12	demonstrate	the	effects	of	persisting	an	RDD.

Listing	4.11	Using	an	RDD	for	Multiple	Actions	Without
Persistence
Click	here	to	view	code	image

numbers	=	sc.range(0,	1000000,	1,	2)

evens	=	numbers.filter(lambda	x:	x	%	2)

noelements	=	evens.count()

#	processes	evens	RDD

print	"There	are	%s	elements	in	the	collection"	%	(noelements)

#	returns	"There	are	500000	elements	in	the	collection"

listofelements	=	evens.collect()

#	REPROCESSES	evens	RDD

print	"The	first	five	elements	include	"	+	(str(listofelements[0:5]))

#	returns	"The	first	five	elements	include	[1,	3,	5,	7,	9]"

Listing	4.12	Using	an	RDD	for	Multiple	Actions	with	Persistence
Click	here	to	view	code	image

numbers	=	sc.range(0,	1000000,	1,	2)

evens	=	numbers.filter(lambda	x:	x	%	2)

evens.persist()

#	instructs	Spark	to	persist	evens	RDD	when	the	next	action	requires	it

noelements	=	evens.count()

#	processes	and	persists	evens	RDD	in	memory

print	"There	are	%s	elements	in	the	collection"	%	(noelements)

#	returns	"There	are	500000	elements	in	the	collection"

listofelements	=	evens.collect()

#	does	NOT	have	to	recompute	the	evens	RDD

print	"The	first	five	elements	include	"	+	(str(listofelements[0:5]))

#	returns	"The	first	five	elements	include	[1,	3,	5,	7,	9]"

After	a	request	to	persist	the	RDD	using	the	persist()	method	(note	that
there	is	a	similar	cache()	method	as	well),	the	RDD	remains	in	memory	on	all
the	nodes	in	the	cluster	where	it	is	computed	after	the	first	action	called	on	it.
You	can	see	the	persisted	RDD	in	your	Spark	application	UI	in	the	Storage	tab,

as	shown	in	Figure	4.5.

Figure	4.5	Storage	tab	in	the	Spark	application	UI.

RDD	Lineage
Spark	keeps	track	of	each	RDD’s	lineage—that	is,	the	sequence	of
transformations	that	resulted	in	the	RDD.	As	discussed	previously,	every	RDD
operation	recomputes	the	entire	lineage	by	default	unless	RDD	persistence	is
requested.

In	an	RDD’s	lineage,	each	RDD	has	a	parent	RDD	and/or	a	child	RDD.	Spark
creates	a	directed	acyclic	graph	(DAG)	consisting	of	dependencies	between
RDDs.	RDDs	are	processed	in	stages,	which	are	sets	of	transformations.	RDDs
and	stages	have	dependencies	that	can	be	narrow	or	wide.

Narrow	dependencies,	or	narrow	operations,	are	categorized	by	the	following
traits:

	Operations	can	collapse	into	a	single	stage;	for	instance,	a	map()	and
filter()	operation	against	elements	in	the	same	dataset	can	be

processed	in	a	single	pass	of	each	element	in	the	dataset.

	Only	one	child	RDD	depends	on	the	parent	RDD;	for	instance,	an	RDD	is
created	from	a	text	file	(the	parent	RDD),	with	one	child	RDD	to	perform
the	set	of	transformations	in	one	stage.

	No	shuffling	of	data	between	nodes	is	required.

Narrow	operations	are	preferred	because	they	maximize	parallel	execution	and
minimize	shuffling,	which	is	quite	expensive	and	can	be	a	bottleneck.

Wide	dependencies	of	wide	operations,	in	contrast,	have	the	following	traits:

	Operations	define	new	stages	and	often	require	shuffling.

	RDDs	have	multiple	dependencies;	for	instance,	a	join()	operation
(covered	shortly)	requires	an	RDD	to	be	dependent	upon	two	or	more
parent	RDDs.

Wide	operations	are	unavoidable	when	grouping,	reducing,	or	joining	datasets,
but	you	should	be	aware	of	the	impacts	and	overhead	involved	with	these
operations.

Lineage	can	be	visualized	by	using	the	DAG	Visualization	option	link	from	the
Jobs	or	Stages	detail	page	in	the	Spark	application	UI.	Figure	4.6	shows	a	DAG
with	multiple	stages	as	a	result	of	a	wide	operation	(reduceByKey()	in	this
case).

Figure	4.6	DAG	visualization	in	the	Spark	application	UI.

Fault	Tolerance	with	RDDs
Spark	records	the	lineage	of	each	RDD,	including	the	lineage	of	all	parent	RDDs
and	parents’	parents,	and	so	on.	Any	RDD	with	all	of	its	partitions	can	be
reconstructed	to	the	state	it	was	in	at	the	time	of	the	failure,	which	could	have
resulted	from	a	node	failure,	for	example.	Because	RDDs	are	distributed,	they
can	tolerate	and	recover	from	the	failure	of	any	single	node.

Non-deterministic	Functions	and	Fault	Tolerance
The	 use	 of	 non-deterministic	 functions	 in	 a	 Spark	 program—that	 is,
functions	that	can	produce	different	output	given	the	same	inputs,	such	as
random()—will	 impact	 the	 ability	 to	 re-create	 RDDs	 in	 a	 consistent,
repeatable	 state.	 This	 is	 further	 complicated	 if	 you	 use	 the	 non-
deterministic	function	as	a	condition,	which	affects	the	logic	or	flow	of	the
program.	Use	caution	when	implementing	non-deterministic	functions.

You	can	avert	long	recovery	periods	for	complex	processing	operations	by

checkpointing,	or	saving	the	data	to	a	persistent	file-based	object.	(Chapter	5,
“Advanced	Programming	Using	the	Spark	Core	API,”	discusses	checkpointing.)

Types	of	RDDs
Aside	from	the	base	RDD	class	that	contains	members	(properties	or	attributes
and	functions)	common	to	all	RDDs,	there	are	some	specific	RDD
implementations	that	enable	additional	operators	and	functions.	These	additional
RDD	types	include	the	following:

	PairRDD:	An	RDD	of	key/value	pairs.	You	have	already	seen	this	type	of
RDD	as	it	is	automatically	created	by	using	the	wholeTextFiles()
method.

	DoubleRDD:	An	RDD	consisting	of	a	collection	of	double	values	only.
Because	the	values	are	of	the	same	numeric	type,	several	additional
statistical	functions	are	available,	including	mean(),	sum(),	stdev(),
variance(),	and	histogram(),	among	others.

	DataFrame	(formerly	known	as	SchemaRDD):	A	distributed	collection
of	data	organized	into	named	and	typed	columns.	A	DataFrame	is
equivalent	to	a	relational	table	in	Spark	SQL.	DataFrames	originated	with
the	read.jdbc()	and	read.json()	functions	discussed	earlier.

	SequenceFileRDD:	An	RDD	created	from	a	SequenceFile,	either
compressed	or	uncompressed.

	HadoopRDD:	An	RDD	that	provides	core	functionality	for	reading	data
stored	in	HDFS	using	the	v1	MapReduce	API.

	NewHadoopRDD:	An	RDD	that	provides	core	functionality	for	reading
data	stored	in	Hadoop—for	example,	files	in	HDFS,	sources	in	HBase,	or
S3—using	the	new	MapReduce	API	(org.apache.hadoop.mapreduce).

	CoGroupedRDD:	An	RDD	that	cogroups	its	parents.	For	each	key	in
parent	RDDs,	the	resulting	RDD	contains	a	tuple	with	the	list	of	values	for
that	key.	(We	will	discuss	the	cogroup()	function	later	in	this	chapter.)

	JdbcRDD:	An	RDD	resulting	from	a	SQL	query	to	a	JDBC	connection.	It
is	available	in	the	Scala	API	only.

	PartitionPruningRDD:	An	RDD	used	to	prune	RDD	partitions	or	other
partitions	to	avoid	launching	tasks	on	all	partitions.	For	example,	if	you
know	the	RDD	is	partitioned	by	range,	and	the	execution	DAG	has	a	filter

on	the	key,	you	can	avoid	launching	tasks	on	partitions	that	don’t	have	the
range	covering	the	key.

	ShuffledRDD:	The	resulting	RDD	from	a	shuffle,	such	as	repartitioning	of
data.

	UnionRDD:	An	RDD	resulting	from	a	union()	operation	against	two	or
more	RDDs.

There	are	other	RDD	variants,	including	ParallelCollectionRDD	and
PythonRDD,	which	are	created	from	the	parallelize()	and	range()
functions	discussed	previously.

Throughout	this	book,	in	addition	to	the	base	RDD	class,	you	will	mainly	use	the
PairRDD,	DoubleRDD,	and	DataFrame	RDD	classes,	but	it’s	worthwhile	to	be
familiar	with	all	the	various	RDD	types.	Documentation	and	more	information
about	the	types	of	RDDs	can	be	found	in	the	Spark	Scala	API	documentation	at
https://spark.apache.org/docs/latest/api/scala/index.html.

Basic	RDD	Transformations
The	most	commonly	used	Spark	functions	include	map(),	flatMap(),
filter(),	and	distinct(),	which	are	covered	in	the	following	sections.
You	will	also	learn	about	the	groupBy()	and	sortBy()	functions,	which	are
commonly	implemented	by	other	functions.	Grouping	data	is	a	normal	precursor
to	performing	aggregation	or	summary	functions	such	as	summing,	counting,
and	so	on.	Sorting	data	is	another	useful	operation	for	preparing	output	or	for
looking	at	the	top	or	bottom	records	in	a	dataset.	The	groupBy()	and
sortBy()	functions	should	be	familiar	to	you	if	you	have	experience	in
relational	database	programming	because	they	are	analogous	to	the	GROUP	BY
and	ORDER	BY	functions	in	SQL.

map()

Syntax:
Click	here	to	view	code	image

RDD.map(<function>,	preservesPartitioning=False)

The	map()	transformation	is	the	most	basic	of	all	transformations.	It	evaluates	a
named	or	anonymous	function	for	each	element	within	a	dataset	partition.	One

https://spark.apache.org/docs/latest/api/scala/index.html

or	many	map()	functions	can	run	asynchronously	because	they	shouldn’t
produce	any	side	effects,	maintain	state,	or	attempt	to	communicate	or
synchronize	with	other	map()	operations.	That	is,	they	are	shared	nothing
operations.

The	preservesPartitioning	argument	is	an	optional	Boolean	argument
intended	for	use	with	RDDs	with	a	partitioner	defined—typically	a	key/value
pair	RDD	(as	discussed	later	in	this	chapter)	in	which	a	key	is	defined	and
grouped	by	a	key	hash	or	key	range.	If	this	parameter	is	set	to	True,	the
partitions	stay	intact.	This	parameter	can	be	used	by	the	Spark	scheduler	to
optimize	subsequent	operations,	such	as	joins	based	on	the	partitioned	key.

Consider	Figure	4.7,	where	the	map()	transformation	evaluates	a	function	for
each	input	record	and	emits	a	transformed	output	record.	In	this	case,	the	split
function	takes	a	string	and	produces	a	list,	and	each	string	element	in	the	input
data	maps	to	a	list	element	in	the	output.	The	result,	in	this	case,	is	a	list	of	lists.

Figure	4.7	The	map()	transformation.

flatMap()

Syntax:
Click	here	to	view	code	image

RDD.flatMap(<function>,	preservesPartitioning=False)

The	flatMap()	transformation	is	similar	to	the	map()	transformation	in	that
it	runs	a	function	against	each	record	in	the	input	dataset.	However,
flatMap()	“flattens”	the	output,	meaning	it	removes	a	level	of	nesting.	For

example,	given	a	list	containing	lists	of	strings,	flattening	would	result	in	a
single	list	of	strings—“flattening”	all	of	the	nested	lists.	Figure	4.8	shows	the
effect	of	a	flatMap()	transformation	using	the	same	anonymous	(lambda)
function	as	the	map()	operation	shown	in	Figure	4.7.	Notice	that	instead	of
each	string	producing	a	respective	list	object,	all	elements	are	flattened	into	one
list.	In	other	words,	flatMap(),	in	this	case,	produces	one	combined	list	as
output,	in	contrast	to	the	list	of	lists	in	the	map()	example.

Figure	4.8	The	flatMap()	transformation.

The	preservesPartitioning	argument	works	the	same	in	flatMap()
as	it	does	in	the	map()	function.

filter()

Syntax:
Click	here	to	view	code	image

RDD.filter(<function>)

The	filter	transformation	evaluates	a	Boolean	expression,	usually	expressed
as	an	anonymous	function,	against	each	element	in	the	dataset.	The	Boolean
value	returned	determines	whether	the	record	is	included	in	the	resultant	output
RDD.	This	is	another	common	transformation	used	to	remove	from	RDD
records	that	are	not	required	for	intermediate	processing	and	that	are	not
included	in	the	final	output.

Listing	4.13	shows	an	example	of	using	the	map(),	flatMap(),	and

filter()	transformations	together	to	convert	input	text	to	uppercase.	It	uses
map()	and	flatMap()	to	split	the	text	into	a	combined	list	of	words	and	then
uses	filter()	to	filter	the	list	to	return	only	words	that	are	greater	than	four
characters	long.

Listing	4.13	The	map(),	flatMap(),	and	filter()
Transformations
Click	here	to	view	code	image

licenses	=	sc.textFile('file:///opt/spark/licenses')

words	=	licenses.flatMap(lambda	x:	x.split('	'))

words.take(5)

#	returns	[u'The',	u'MIT',	u'License',	u'(MIT)',	u'']

lowercase	=	words.map(lambda	x:	x.lower())

lowercase.take(5)

#	returns	[u'the',	u'mit',	u'license',	u'(mit)',	u'']

longwords	=	lowercase.filter(lambda	x:	len(x)	>	12)

longwords.take(2)

#	returns	[u'documentation',	u'merchantability,']

There	is	a	standard	axiom	in	the	world	of	Big	Data	programming:	“Filter	early,
filter	often.”	This	refers	to	the	fact	that	there	is	no	value	in	carrying	records	or
fields	through	a	process	where	they	are	not	needed.	Both	the	filter()	and
map()	functions	can	be	used	to	achieve	this	objective.	That	said,	in	many	cases
Spark—through	its	key	runtime	characteristic	of	lazy	execution—attempts	to
optimize	routines	for	you	even	if	you	do	not	explicitly	do	this	yourself.

distinct()

Syntax:
Click	here	to	view	code	image

RDD.distinct(numPartitions=None)

The	distinct()	transformation	returns	a	new	RDD	containing	distinct
elements	from	the	input	RDD.	It	is	used	to	remove	duplicates,	where	duplicates
are	defined	as	having	all	elements	or	fields	within	a	record	that	are	the	same	as
other	records	in	the	dataset.	The	numPartitions	argument	can	redistribute
data	to	a	target	number	of	partitions;	if	this	is	not	supplied	or	is	left	at	the

default,	the	number	of	partitions	returned	by	the	distinct()	transformation
is	identical	to	the	number	of	partitions	from	the	RDD	operated	against.

Listing	4.14	demonstrates	the	use	of	the	distinct()	function.

Listing	4.14	The	distinct()	Transformation
Click	here	to	view	code	image

licenses	=	sc.textFile('file:///opt/spark/licenses')

words	=	licenses.flatMap(lambda	x:	x.split('	'))

lowercase	=	words.map(lambda	x:	x.lower())

allwords	=	lowercase.count()

distinctwords	=	lowercase.distinct().count()

print	"Total	words:	%s,	Distinct	Words:	%s"	%	(allwords,	distinctwords)

#	returns	"Total	words:	11484,	Distinct	Words:	892"

groupBy()

Syntax:
Click	here	to	view	code	image

RDD.groupBy(<function>,	numPartitions=None)

The	groupBy()	transformation	returns	an	RDD	of	items	grouped	by	a
specified	function.	The	<function>	argument	is	an	anonymous	or	named
function	used	to	nominate	a	key	by	which	to	group	all	elements	or	to	specify	an
expression	to	evaluate	against	elements	to	determine	a	group,	such	as	when
grouping	elements	by	odd	or	even	numbers	of	a	numeric	field	in	the	data.

You	can	use	the	numPartitions	argument	to	create	a	specified	number	of
partitions	automatically	by	computing	hashes	of	the	key	space	from	the	output	of
the	grouping	function.	For	instance,	if	you	want	to	group	an	RDD	by	the	days	in
a	week	and	process	each	day	separately,	specify	numPartitions=7.	You	will
see	numPartitions	specified	in	numerous	Spark	transformations,	where	its
behavior	is	analogous.

Listing	4.15	demonstrates	the	use	of	the	groupBy()	function.	Notice	that
groupBy()	returns	an	iterable	object;	we	will	look	at	how	to	handle	this	type
of	object	later	in	this	chapter.

Listing	4.15	Grouping	Data	in	Spark	by	Using	the	groupBy()
Function
Click	here	to	view	code	image

licenses	=	sc.textFile('file:///opt/spark/licenses')

words	=	licenses.flatMap(lambda	x:	x.split('	'))	\

																.filter(lambda	x:	len(x)	>	0)

groupedbyfirstletter	=	words.groupBy(lambda	x:	x[0].lower())

groupedbyfirstletter.take(1)

#	returns:

#	[('l',	<pyspark.resultiterable.ResultIterable	object	at	

0x7f678e9cca20>)]

Consider	Other	Functions	for	Grouping	Data
If	 your	 ultimate	 intention	 in	 using	 groupBy()	 is	 to	 aggregate	 values,
such	as	when	performing	a	sum()	or	count()	operation,	you	should	opt
for	 more	 efficient	 operators	 for	 this	 purpose	 in	 Spark,	 including
aggregateByKey()	 and	 reduceByKey(),	 which	 we	 will	 discuss
shortly.	The	groupBy()	transformation	does	not	perform	any	aggregation
prior	to	shuffling	data,	resulting	in	more	data	being	shuffled.	Furthermore,
groupBy()	requires	that	all	values	for	a	given	key	fit	into	memory.	The
groupBy()	 transformation	 is	 useful	 in	 some	 cases,	 but	 you	 should
consider	these	factors	before	deciding	to	use	this	function.

sortBy()

Syntax:
Click	here	to	view	code	image

RDD.sortBy(<keyfunc>,	ascending=True,	numPartitions=None)

The	sortBy()	transformation	sorts	an	RDD	by	the	<keyfunc>	argument	(a
named	or	anonymous	function)	that	nominates	the	key	for	a	given	dataset.	It
sorts	according	to	the	sort	order	of	the	key	object	type.	For	instance,	int	and
double	data	types	are	sorted	numerically,	whereas	String	types	are	sorted	in
lexicographical	order.

The	ascending	argument	is	a	Boolean	argument	that	defaults	to	True	and
specifies	the	sort	order	to	be	used.	A	descending	sort	order	is	specified	by	setting

ascending=False.

An	example	of	the	sortBy()	function	is	shown	in	Listing	4.16.

Listing	4.16	Sorting	Data	by	Using	the	sortBy()	Function
Click	here	to	view	code	image

readme	=	sc.textFile('file:///opt/spark/README.md')

words	=	readme.flatMap(lambda	x:	x.split('	'))	\

																.filter(lambda	x:	len(x)	>	0)

sortbyfirstletter	=	words.sortBy(lambda	x:	x[0].lower(),	

ascending=False)

sortbyfirstletter.take(5)

#	returns	['You',	'you',	'You',	'you',	'you']

Basic	RDD	Actions
Recall	that	actions	in	Spark	either	return	values,	as	is	the	case	with	count();
return	data,	as	is	the	case	with	collect();	or	save	data	externally,	as	is	the
case	with	saveAsTextFile().	In	all	cases,	actions	force	computation	of	an
RDD	and	all	of	its	parents.	Some	actions	return	either	a	count,	an	aggregation	of
the	data,	or	part	or	all	of	the	data	in	an	RDD.	In	contrast,	foreach()	is	an
action	that	performs	a	function	on	each	element	of	an	RDD.	The	following
sections	look	at	some	of	the	basic	actions	in	the	core	Spark	API.

count()

Syntax:
RDD.count()

The	count()	action	takes	no	arguments	and	returns	a	long	value,	which
represents	the	count	of	the	elements	in	the	RDD.	Listing	4.17	shows	a	simple
count()	example.	Note	that	with	actions	that	take	no	arguments,	you	need	to
include	empty	parentheses,	(),	after	the	action	name.

Listing	4.17	The	count()	Action
Click	here	to	view	code	image

licenses	=	sc.textFile('file:///opt/spark/licenses')

words	=	licenses.flatMap(lambda	x:	x.split('	'))

words.count()

#	returns	11484

collect()

Syntax:
RDD.collect()

The	collect()	action	returns	a	list	that	contains	all	the	elements	in	an	RDD
to	the	Spark	Driver.	Because	collect()	does	not	restrict	the	output,	which
can	be	quite	large	and	can	potentially	cause	out-of-memory	errors	on	the	Driver,
it	is	typically	useful	for	only	small	RDDs	or	development.	Listing	4.18
demonstrates	the	collect()	action.

Listing	4.18	The	collect()	Action
Click	here	to	view	code	image

licenses	=	sc.textFile('file:///opt/spark/licenses')

words	=	licenses.flatMap(lambda	x:	x.split('	'))

words.collect()

#	returns	[u'The',	u'MIT',	u'License',	u'(MIT)',	u'',	u'Copyright',	...]

take()

Syntax:
RDD.take(n)

The	take()	action	returns	the	first	n	elements	of	an	RDD.	The	elements	taken
are	not	in	any	particular	order;	in	fact,	the	elements	returned	from	a	take()
action	are	non-deterministic,	meaning	they	can	differ	if	the	same	action	is	run
again,	particularly	in	a	fully	distributed	environment.	There	is	a	similar	Spark
function,	takeOrdered(),	which	takes	the	first	n	elements	ordered	based	on
a	key	supplied	by	a	key	function.

For	RDDs	that	span	more	than	one	partition,	take()	scans	one	partition	and
uses	the	results	from	that	partition	to	estimate	the	number	of	additional	partitions

needed	to	satisfy	the	number	requested.

Listing	4.19	shows	an	example	of	the	take()	action.

Listing	4.19	The	take()	Action
Click	here	to	view	code	image

licenses	=	sc.textFile('file:///opt/spark/licenses')

words	=	licenses.flatMap(lambda	x:	x.split('	'))

words.take(3)

#	returns	[u'The',	u'MIT',	u'License']

top()

Syntax:
RDD.top(n,	key=None)

The	top()	action	returns	the	top	n	elements	from	an	RDD,	but	unlike	with
take(),	with	top()	the	elements	are	ordered	and	returned	in	descending
order.	Order	is	determined	by	the	object	type,	such	as	numeric	order	for	integers
or	dictionary	order	for	strings.

The	key	argument	specifies	the	key	by	which	to	order	the	results	to	return	the
top	n	elements.	This	is	an	optional	argument;	if	it	is	not	supplied,	the	key	will	be
inferred	from	the	elements	in	the	RDD.

Listing	4.20	shows	the	top	three	distinct	words	sorted	from	a	text	file	in
descending	lexicographical	order.

Listing	4.20	The	top()	Action
Click	here	to	view	code	image

readme	=	sc.textFile('file:///opt/spark/README.md')

words	=	readme.flatMap(lambda	x:	x.split('	'))

words.distinct().top(3)

#	returns	[u'your',	u'you',	u'with']

first()

Syntax:
RDD.first()

The	first()	action	returns	the	first	element	in	this	RDD.	Similar	to	the
take()	and	collect()	actions	and	unlike	the	top()	action,	first()
does	not	consider	the	order	of	elements	and	is	a	non-deterministic	operation,
especially	in	fully	distributed	environments.

As	you	can	see	from	Listing	4.21,	the	primary	difference	between	first()	and
take(1)	is	that	first()	returns	an	atomic	data	element,	and	take()	(even
if	n	=	1)	returns	a	list	of	data	elements.	The	first()	action	is	useful	for
inspecting	the	output	of	an	RDD	as	part	of	development	or	data	exploration.

Listing	4.21	The	first()	Action
Click	here	to	view	code	image

readme	=	sc.textFile('file:///opt/spark/README.md')

words	=	readme.flatMap(lambda	x:	x.split('	'))	\

						.filter(lambda	x:	len(x)	>	0)

words.distinct().first()

#	returns	a	string:	u'project.'

words.distinct().take(1)

#	returns	a	list	with	one	string	element:	[u'project.']

The	reduce()	and	fold()	actions	are	aggregate	actions,	each	of	which
executes	a	commutative	and/or	an	associative	operation,	such	as	summing	a	list
of	values,	against	an	RDD.	Commutative	and	associative	are	the	operative	terms
here.	This	makes	the	operations	independent	of	the	order	in	which	they	run,	and
this	is	integral	to	distributed	processing	because	the	order	isn’t	guaranteed.	Here
is	the	general	form	of	the	commutative	characteristics:
x	+	y	=	y	+	x

And	here	is	the	general	form	of	the	associative	characteristics:
(x	+	y)	+	z	=	x	+	(y	+	z)

The	following	sections	look	at	the	main	Spark	actions	that	perform	aggregations.

reduce()

Syntax:
RDD.reduce(<function>)

The	reduce()	action	reduces	the	elements	of	an	RDD	using	a	specified
commutative	and/or	associative	operator.	The	<function>	argument	specifies
two	inputs	(lambda	x,	y:	...)	that	represent	values	in	a	sequence	from	the
specified	RDD.	Listing	4.22	shows	an	example	of	a	reduce()	operation	to
produce	a	sum	against	a	list	of	numbers.

Listing	4.22	Summing	Values	in	an	RDD	by	Using	the	reduce()
Action
Click	here	to	view	code	image

numbers	=	sc.parallelize([1,2,3,4,5,6,7,8,9])

numbers.reduce(lambda	x,	y:	x	+	y)

#	returns	45

fold()

Syntax:
RDD.fold(zeroValue,	<function>)

The	fold()	action	aggregates	the	elements	of	each	partition	of	an	RDD	and
then	performs	the	aggregate	operation	against	the	results	for	all,	using	a	given
function	and	a	zeroValue.	Although	reduce()	and	fold()	are	similar
in	function,	they	differ	in	that	fold()	is	not	commutative,	and	thus	an	initial
and	final	value	(zeroValue)	is	required.	A	simple	example	is	a	fold()
action	with	zeroValue=0,	as	shown	in	Listing	4.23.

Listing	4.23	The	fold()	Action
Click	here	to	view	code	image

numbers	=	sc.parallelize([1,2,3,4,5,6,7,8,9])

numbers.fold(0,	lambda	x,	y:	x	+	y)

#	returns	45

The	fold()	action	in	Listing	4.23	looks	exactly	the	same	as	the	reduce()

action	in	Listing	4.22.	However,	Listing	4.24	demonstrates	a	clear	functional
difference	in	the	two	actions.	The	fold()	action	provides	a	zeroValue	that
is	added	to	the	beginning	and	end	of	the	function	supplied	as	input	to	the
fold()	action,	generalized	here:
Click	here	to	view	code	image

result		=		zeroValue		+		(1	+	2)	+	3	.	.	.		+	zeroValue

This	allows	fold()	to	operate	on	an	empty	RDD,	whereas	reduce()
produces	an	exception	with	an	empty	RDD.

Listing	4.24	The	fold()	Action	Compared	with	reduce()
Click	here	to	view	code	image

empty	=	sc.parallelize([])

empty.reduce(lambda	x,	y:	x	+	y)

#	returns:

#	ValueError:	Cannot	reduce()	empty	RDD

empty.fold(0,	lambda	x,	y:	x	+	y)

#	returns	0

There	is	also	a	similar	aggregate()	action	in	the	Spark	RDD	API.

foreach()

Syntax:
RDD.foreach(<function>)

The	foreach()	action	applies	a	function	specified	in	the	<function>
argument,	anonymous	or	named,	to	all	elements	of	an	RDD.	Because
foreach()	is	an	action	rather	than	a	transformation,	you	can	perform
functions	otherwise	not	possible	or	intended	in	transformations,	such	as	a
print()	function.	Although	Python	lambda	functions	don’t	allow	you	to
execute	a	print()	statement	directly,	you	can	use	a	named	function	that
executes	print()	instead.	Listing	4.25	shows	an	example	of	this.

Listing	4.25	The	foreach()	Action
Click	here	to	view	code	image

def	printfunc(x):

				print(x)

licenses	=	sc.textFile('file:///opt/spark/licenses')

longwords	=	licenses.flatMap(lambda	x:	x.split('	'))	\

											.filter(lambda	x:	len(x)	>	12)

longwords.foreach(lambda	x:	printfunc(x))

#	returns:

#	...

#	Redistributions

#	documentation

#	distribution.

#	MERCHANTABILITY

#	...

Transformations	on	PairRDDs
Key/value	pair	RDDs,	or	simply	PairRDDs,	contain	records	consisting	of	keys
and	values.	The	keys	can	be	simple	objects	such	as	integer	or	string	objects	or
complex	objects	such	as	tuples.	The	values	can	range	from	scalar	values	to	data
structures	such	as	lists,	tuples,	dictionaries,	or	sets.	This	is	a	common	data
representation	in	multi-structured	data	analysis	on	schema-on-read	and	NoSQL
systems.	PairRDDs	and	their	constituent	functions	are	integral	to	functional
Spark	programming.	These	functions	are	broadly	classified	into	four	categories:

	Dictionary	functions

	Functional	transformations

	Grouping,	aggregation,	and	sorting	operations

	Join	functions,	which	we	discuss	specifically	in	the	next	section

Dictionary	functions	return	a	set	of	keys	or	values	from	a	key/value	pair	RDD.
Examples	include	keys()	and	values().

Earlier	in	this	chapter	we	looked	at	other	aggregate	operations,	including
reduce()	and	fold().	These	are	conceptually	similar	in	that	they	aggregate
values	in	an	RDD	based	on	a	key,	but	there	is	a	fundamental	difference:
reduce()	and	fold()	are	actions,	which	means	they	force	computation	and
produce	a	result,	whereas	reduceByKey()	and	foldByKey(),	which	we
discuss	shortly,	are	transformations,	meaning	they	are	lazily	evaluated	and	return

a	new	RDD.

keys()

Syntax:
RDD.keys()

The	keys()	function	returns	an	RDD	with	the	keys	from	a	key/value	pair	RDD
or	the	first	element	from	each	tuple	in	a	key/value	pair	RDD.	Listing	4.26
demonstrates	using	the	keys()	function.

Listing	4.26	The	keys()	Function
Click	here	to	view	code	image

kvpairs	=	sc.parallelize([('city','Hayward')

																									,('state','CA')

																									,('zip',94541)

																									,('country','USA')])

kvpairs.keys().collect()

#	returns	['city',	'state',	'zip',	'country']

values()

Syntax:
RDD.values()

The	values()	function	returns	an	RDD	with	values	from	a	key/value	pair
RDD	or	the	second	element	from	each	tuple	in	a	key/value	pair	RDD.	Listing
4.27	demonstrates	using	the	values()	function.

Listing	4.27	The	values()	Function
Click	here	to	view	code	image

kvpairs	=	sc.parallelize([('city','Hayward')

																									,('state','CA')

																									,('zip',94541)

																									,('country','USA')])

kvpairs.values().collect()

#	returns	['Hayward',	'CA',	94541,	'USA']

keyBy()

Syntax:
RDD.keyBy(<function>)

The	keyBy()	transformation	creates	a	tuple	consisting	of	a	key	and	a	value
from	the	elements	in	the	RDD	by	applying	a	function	specified	by	the
<function>	argument.	The	value	is	the	complete	tuple	from	which	the	key
was	derived.

Consider	a	list	of	locations	as	tuples	with	a	schema	of	city,	country,
location_no.	Say	that	you	want	the	location_no	field	to	be	your	key.
The	example	in	Listing	4.28	demonstrates	the	use	of	the	keyBy()	function	to
create	new	tuples	in	which	the	first	element	is	the	key	and	the	second	element,
the	value,	is	a	tuple	containing	all	fields	from	the	original	tuple.

Listing	4.28	The	keyBy()	Transformation
Click	here	to	view	code	image

locations	=	sc.parallelize([('Hayward',	'USA',	1)

																											,('Baumholder','Germany',	2)

																											,('Alexandria','USA',	3)

																											,('Melbourne','Australia',	4)])

bylocno	=	locations.keyBy(lambda	x:	x[2])

bylocno.collect()

#	returns:

#[(1,	('Hayward',	'USA',	1)),	(2,	('Baumholder',	'Germany',	2)),

#	(3,	('Alexandria',	'USA',	3)),	(4,	('Melbourne',	'Australia',	4))]

Recall	that	x[2]	in	Listing	4.28	refers	to	the	third	element	in	list	x,	as	Python
list	elements	are	ordinal	numbers,	starting	with	0.

Functional	transformations	available	for	key/value	pair	RDDs	work	similarly	to
the	more	general	functional	transformations	you	learned	about	earlier.	The
difference	is	that	these	functions	operate	specifically	on	either	the	key	or	value
element	within	a	tuple—the	key/value	pair,	in	this	case.	Functional
transformations	include	mapValues()	and	flatMapValues().

mapValues()

Syntax:
RDD.mapValues(<function>)

The	mapValues()	transformation	passes	each	value	in	a	key/value	pair	RDD
through	a	function	(a	named	or	anonymous	function	specified	by	the
<function>	argument)	without	changing	the	keys.	Like	its	generalized
equivalent	map(),	mapValues()	outputs	one	element	for	each	input	element.

The	original	RDD’s	partitioning	is	not	affected.

flatMapValues()

Syntax:
RDD.flatMapValues(<function>)

The	flatMapValues()	transformation	passes	each	value	in	a	key/value	pair
RDD	through	a	function	without	changing	the	keys	and	produces	a	flattened	list.
It	works	exactly	like	flatMap(),	which	we	looked	at	earlier,	returning	zero	to
many	output	elements	per	input	element.

Much	as	with	mapValues(),	with	flatMapValues()	the	original	RDD’s
partitioning	is	retained.

The	easiest	way	to	contrast	mapValues()	and	flatMapValues()	is	to
look	at	a	practical	example.	Consider	a	text	file	containing	a	city	and	a	pipe-
delimited	list	of	temperatures,	as	shown	here:
Click	here	to	view	code	image

Hayward,71|69|71|71|72

Baumholder,46|42|40|37|39

Alexandria,50|48|51|53|44

Melbourne,88|101|85|77|74

Listing	4.29	simulates	the	loading	of	this	data	into	an	RDD	and	uses
mapValues()	to	create	a	list	of	key/value	pair	tuples	containing	the	city	and	a
list	of	temperatures	for	the	city.	It	shows	the	use	of	flatMapValues()	with
the	same	function	against	the	same	RDD	to	create	tuples	containing	the	city	and
a	number	for	each	temperature	recorded	for	the	city.

A	simple	way	to	describe	this	is	that	mapValues()	creates	one	element	per
city	containing	the	city	name	and	a	list	of	five	temperatures	for	the	city,	whereas

flatMapValues()	flattens	the	lists	to	create	five	elements	per	city	with	the
city	name	and	a	temperature	value.

Listing	4.29	The	mapValues()	and	flatMapValues()
Transformations
Click	here	to	view	code	image

locwtemps	=	sc.parallelize(['Hayward,71|69|71|71|72',

																												'Baumholder,46|42|40|37|39',

																												'Alexandria,50|48|51|53|44',

																												'Melbourne,88|101|85|77|74'])

kvpairs	=	locwtemps.map(lambda	x:	x.split(','))

kvpairs.take(4)

#	returns	:

#	[['Hayward',	'71|69|71|71|72'],

#		['Baumholder',	'46|42|40|37|39'],

#		['Alexandria',	'50|48|51|53|44'],

#		['Melbourne',	'88|101|85|77|74']]

locwtemplist	=	kvpairs.mapValues(lambda	x:	x.split('|'))	\

																						.mapValues(lambda	x:	[int(s)	for	s	in	x])

locwtemplist.take(4)

#	returns	:

#	[('Hayward',	[71,	69,	71,	71,	72]),

#		('Baumholder',	[46,	42,	40,	37,	39]),

#		('Alexandria',	[50,	48,	51,	53,	44]),

#		('Melbourne',	[88,	101,	85,	77,	74])]

locwtemps	=	kvpairs.flatMapValues(lambda	x:	x.split('|'))	\

																			.map(lambda	x:	(x[0],	int(x[1])))

locwtemps.take(3)

#	returns	:

#	[('Hayward',	71),	('Hayward',	69),	('Hayward',	71)]

Grouping,	aggregation,	and	sorting	operations	are	functionally	analogous	to	their
more	generalized	forms	discussed	earlier	in	this	chapter	(groupBy()	and
sortBy()),	again	with	the	difference	being	that	these	functions	operate
specifically	on	RDDs	composed	of	key/value	pairs.

Be	Cautious	of	the	Repartitioning	and	Shuffling	Effects	of

Some	Functions
Be	 aware	 that	 some	 functions,	 such	 as	 groupByKey()	 and
reduceByKey(),	 may	 result	 in	 a	 repartitioning	 or	 require	 shuffling.
Shuffling	 is	 a	 relatively	 expensive	 operation	 because	 it	 requires	 the
movement	 of	 data	 between	 Spark	 Executors,	 often	 located	 on	 different
Worker	nodes.	These	operations	are	often	necessary	and	unavoidable,	but
in	some	cases,	by	understanding	the	planning	and	execution	of	an	RDD’s
lineage,	 you	 may	 be	 able	 to	 optimize	 these	 operations.	 We	 discuss
partitioning	in	more	detail	in	Chapter	5.

groupByKey()

Syntax:
Click	here	to	view	code	image

RDD.groupByKey(numPartitions=None,	partitionFunc=<hash_fn>)

The	groupByKey()	transformation	groups	the	values	for	each	key	in	a
key/value	pair	RDD	into	a	single	sequence.

The	numPartitions	argument	specifies	how	many	partitions—how	many
groups,	that	is—to	create.	The	partitions	are	created	using	the
partitionFunc	argument,	which	defaults	to	Spark’s	built-in	hash	partitioner.
If	numPartitions	is	None,	which	is	the	default,	then	the	configured	system
default	number	of	partitions	is	used	(spark.default.parallelism).

Consider	the	output	from	Listing	4.29.	If	you	want	to	calculate	the	average
temperature	by	city,	you	first	need	to	group	all	the	values	together	by	their	city
and	then	compute	the	averages.	Listing	4.30	shows	how	to	use	groupByKey()
to	accomplish	this.

Listing	4.30	The	groupByKey()	Transformation
Click	here	to	view	code	image

#	continued	from	Listing	4.29

grouped	=	locwtemps.groupByKey()

grouped.take(1)

#	returns:

#	[('Melbourne',	<pyspark.resultiterable.ResultIterable	object	at	

0x7f121ce11390>)]

avgtemps	=	grouped.mapValues(lambda	x:	sum(x)/len(x))

avgtemps.collect()

#	returns:

#	[('Melbourne',	85),	('Baumholder',	40),	('Alexandria',	49),	

('Hayward',	70)]

Notice	that	groupByKey()	returns	a	resultiterable	object	for	the
grouped	values.	An	iterable	object	in	Python	is	a	sequence	object	that	can	loop
over.	Many	functions	in	Python	accept	iterables	as	input,	such	as	the	sum()	and
len()	functions.

Consider	Using	reduceByKey()	or	foldByKey()	Instead
of	groupByKey()
If	 you	 group	 values	 for	 the	 purposes	 of	 aggregation,	 such	 as	 by	 using	 a
sum()	 or	 count()	 for	 each	 key,	 then	 using	 reduceByKey()	 or
foldByKey()	provides	much	better	performance	in	many	cases.	This	is
because	 the	 results	 of	 the	 aggregation	 function	 are	 combined	 before	 the
shuffle,	resulting	in	a	reduced	amount	of	data	being	shuffled.

reduceByKey()

Syntax:
Click	here	to	view	code	image

RDD.reduceByKey(<function>,	numPartitions=None,	partitionFunc=<hash_fn>)

The	reduceByKey()	transformation	merges	the	values	for	the	keys	by	using
an	associative	function.	The	reduceByKey()	method	is	called	on	a	dataset	of
key/value	pairs	and	returns	a	dataset	of	key/value	pairs,	aggregating	values	for
each	key.	This	function	is	expressed	as	follows:
vn,	vn+1	=>	vresult

The	numPartitions	and	partitionFunc	arguments	behave	exactly	the
same	as	in	the	groupByKey()	function.	The	numPartitions	value	is
effectively	the	number	of	reduce	tasks	to	execute,	and	you	can	increase	this	to
obtain	a	higher	degree	of	parallelism.	The	numPartitions	value	also	affects
the	number	of	files	produced	with	saveAsTextFile()	or	other	file-
producing	Spark	actions.	For	instance,	numPartitions=2	produces	two

output	files	when	the	RDD	saves	to	disk.

Listing	4.31	takes	the	same	input	key/value	pairs	and	produces	the	same	results
(average	temperatures	per	city)	as	the	previous	groupByKey()	example—but
using	the	reduceByKey()	function	instead.	This	method	is	preferred	for
reasons	we	will	discuss	shortly.

Listing	4.31	Using	the	reduceByKey()	Function	to	Average
Values	by	Key
Click	here	to	view	code	image

#	continued	from	Listing	4.29

temptups	=	locwtemps.mapValues(lambda	x:	(x,	1))

#	creates	tuples	(city,	(temp,	1))

inputstoavg	=	temptups.reduceByKey(lambda	x,	y:	(x[0]+y[0],	x[1]+y[1]))

#	sums	temperatures	by	city

averages	=	inputstoavg.map(lambda	x:	(x[0],	x[1][0]/x[1][1]))

#	divides	the	sum	of	temperatures	by	key	by	the	number	of	readings

averages.take(4)

#	returns	:

#	[('Baumholder',	40.8),

#		('Melbourne',	85.0),

#		('Alexandria',	49.2),

#		('Hayward',	70.8)]

Averaging	is	not	an	associative	operation;	you	can	get	around	this	by	creating
tuples	containing	the	sum	total	of	values	for	each	key	and	the	count	for	each	key
—operations	that	are	associative	and	commutative—and	then	computing	the
average	as	a	final	step,	as	shown	in	Listing	4.31.

Note	that	reduceByKey()	is	efficient	because	it	combines	values	locally	on
each	Executor	before	each	of	the	combined	lists	sends	to	a	remote	Executor	or
Executors	running	the	final	reduce	stage.	This	is	a	shuffle	operation.

Because	the	same	associative	and	commutative	function	are	run	on	the	local
Executor	or	Worker	and	again	on	a	remote	Executor	or	Executors,	taking	a	sum
function,	for	example,	you	can	think	of	this	as	adding	a	list	of	sums	as	opposed
to	summing	a	bigger	list	of	individual	values.	Because	there	is	less	data	sent	in
the	shuffle	phase,	reduceByKey()	using	a	sum	function	generally	performs

better	than	groupByKey()	followed	by	a	sum()	function.

foldByKey()

Syntax:
Click	here	to	view	code	image

RDD.foldByKey(zeroValue,	<function>,	numPartitions=None,

partitionFunc=<hash_fn>)

The	foldByKey()	transformation	is	functionally	similar	to	the	fold()
action	discussed	in	the	previous	section.	However,	foldByKey()	is	a
transformation	that	works	with	predefined	key/value	pair	elements	(see	Listing
4.32).	Both	foldByKey()	and	fold()	provide	a	zeroValue	argument	of
the	same	type	to	be	used	if	the	RDD	is	empty.

The	function	supplied	is	in	the	generalized	aggregate	function	form:
vn,	vn+1	=>	vresult

This	is	the	same	generalization	used	by	the	reduceByKey()	transformation.

The	numPartitions	and	the	partitionFunc	arguments	have	the	same
effect	as	they	do	with	the	groupByKey()	and	reduceByKey()
transformations.

Listing	4.32	A	foldByKey()	Example	to	Find	Maximum	Value
by	Key
Click	here	to	view	code	image

#continued	from	Listing	4.29

maxbycity	=	locwtemps.foldByKey(0,	lambda	x,	y:	x	if	x	>	y	else	y)

maxbycity.collect()

#	returns	:

#	[('Baumholder',	46),	('Melbourne',	101),	('Alexandria',	53),	

('Hayward',	72)]

There	is	also	a	similar	method	called	aggregateByKey()	in	the	Spark	RDD
API.

sortByKey()

Syntax:
Click	here	to	view	code	image

RDD.sortByKey(ascending=True,	numPartitions=None,	keyfunc=<function>)

The	sortByKey()	transformation	sorts	a	key/value	pair	RDD	by	the
predefined	key.	The	sort	order	is	dependent	on	the	underlying	key	object	type,
where	numeric	types	are	sorted	numerically	and	so	on.	The	difference	between
sort(),	discussed	earlier,	and	sortByKey()	is	that	sort()	requires	you	to
identify	the	key	by	which	to	sort,	whereas	sortByKey()	is	aware	of	the	key
already.

Keys	are	sorted	in	the	order	provided	by	the	ascending	argument,	which
defaults	to	True.	The	numPartitions	argument	specifies	how	many
resultant	partitions	to	output	using	a	range	partitioning	function.	The	keyfunc
argument	is	an	optional	parameter	to	use	if	you	want	to	derive	a	key	from
passing	the	predefined	key	through	another	function,	as	in	this	example:
Click	here	to	view	code	image

keyfunc=lambda	k:	k.lower()

Listing	4.33	shows	the	use	of	the	sortByKey()	transformation.	The	first
example	shows	a	simple	sort	based	on	the	key:	a	string	representing	the	city
name,	sorted	alphabetically.	In	the	second	example,	the	keys	and	values	are
inverted	to	make	the	temperature	the	key	and	then	use	sortByKey()	to	list	the
temperatures	in	descending	numeric	order,	with	the	highest	temperatures	first.

Listing	4.33	The	sortByKey()	Transformation
Click	here	to	view	code	image

#	continued	from	Listing	4.29

sortedbykey	=	locwtemps.sortByKey()

sortedbykey.take(4)

#	returns:

#	[('Alexandria',	50),	('Alexandria',	48),	('Alexandria',	51),	

('Alexandria',	53)]

sortedbyval	=	locwtemps.map(lambda	x:	(x[1],x[0]))	\

																							.sortByKey(ascending=False)

sortedbyval.take(4)

#	returns:

#	[(101,	'Melbourne'),	(88,	'Melbourne'),	(85,	'Melbourne'),	(77,	

'Melbourne')]

MapReduce	and	Word	Count	Exercise
MapReduce	is	a	platform-	and	language-independent	programming	model	or
design	pattern	at	the	heart	of	most	Big	Data	and	NoSQL	platforms.	Although
many	abstractions	of	MapReduce	exist,	such	as	Pig	and	Hive,	which	allow	you
to	process	data	without	explicitly	implementing	map	or	reduce	functions,
understanding	the	concepts	behind	MapReduce	is	fundamental	to	truly
understanding	distributed	programming	and	data	processing	in	Spark.

Word	Count,	a	sample	program	often	referred	to	as	the	“Hello	World”	of
MapReduce,	is	a	simple	algorithm	often	used	to	represent	and	demonstrate	the
MapReduce	programming	model.	If	you	have	previously	read	any	Hadoop	or
Spark	training	material	or	tutorials,	you	are	probably	tired	of	seeing	Word	Count
examples,	or	you	may	be	scratching	your	head,	trying	to	understand	the	fixation
with	counting	words.

Word	Count	is	the	most	prevalent	example	used	when	describing	the
MapReduce	programming	model	because	it	is	easy	to	understand	and
demonstrates	all	the	components	of	the	MapReduce	model.	Many	real-life
problems	solved	with	MapReduce	are	simply	adaptations	or	derivations	of	Word
Count	(for	instance,	counting	occurrences	of	events	in	a	large	corpus	of	log	files,
or	text	mining	functions	such	as	TF-IDF	[Term	Frequency-Inverse	Document
Frequency]).	When	you	understand	Word	Count,	you	understand	MapReduce,
and	the	problem-solving	possibilities	are	endless.	Let’s	walk	through	a	simple
example	using	Spark	now:
1.	Using	your	single-node	Spark	installation,	download	the
shakespeare.txt	file	(works	of	Shakespeare)	from	this	link:

Click	here	to	view	code	image
https://s3.amazonaws.com/sparkusingpython/shakespeare/shakespeare.txt

You	can	use	wget	or	curl	to	download	this	file.

2.	Place	the	file	in	the	/opt/spark/data	directory	of	your	Spark
installation:

Click	here	to	view	code	image
$	sudo	mv	shakespeare.txt	/opt/spark/data

https://s3.amazonaws.com/sparkusingpython/shakespeare/shakespeare.txt

Note	that	if	you	have	HDFS	available	to	you	(for	example,	with	AWS	EMR,
Databricks,	or	a	Hadoop	distribution	that	includes	Spark),	you	can	upload
the	file	to	HDFS	and	use	it	as	an	alternative.

3.	Open	a	PySpark	shell	in	local	mode:
Click	here	to	view	code	image

$	pyspark	--master	local

If	you	have	a	Hadoop	cluster	or	distributed	Spark	Standalone	cluster
accessible,	you	are	free	to	use	it	instead	by	specifying	one	of	the	following:

Click	here	to	view	code	image
--master	yarn

--master	spark://<yoursparkmaster>:7077

Note	that	if	your	Python	binary	is	not	python	(for	instance,	it	may	be	py	or
python3	depending	upon	your	release),	you	need	to	direct	Spark	to	the
correct	file.	This	can	be	done	using	the	following	environment	variable
settings:

Click	here	to	view	code	image
$	export	PYSPARK_PYTHON=python3

$	export	PYSPARK_DRIVER_PYTHON=python3

4.	From	your	PySpark	session,	import	the	Python	re	(Regular	Expression)
module,	which	you	will	use	to	tokenize	the	file:
import	re

5.	Load	the	shakespeare.txt	file	into	an	RDD	named	doc:
Click	here	to	view	code	image

doc	=	sc.textFile("file:///opt/spark/data/shakespeare.txt")

6.	Filter	empty	lines	from	the	RDD,	split	lines	by	whitespace,	and	flatten	the
lists	of	words	into	one	list:

Click	here	to	view	code	image
flattened	=	doc.filter(lambda	line:	len(line)	>	0)	\

					.flatMap(lambda	line:	re.split('\W+',	line))

7.	Inspect	the	flattened	RDD:
flattened.take(6)

8.	Map	text	to	lowercase,	remove	empty	strings,	and	then	convert	to	key/value
pairs	in	the	form	(word,	1):

Click	here	to	view	code	image

kvpairs	=	flattened.filter(lambda	word:	len(word)	>	0)	\

	.map(lambda	word:(word.lower(),1))

9.	Inspect	the	kvpairs	RDD.	Notice	that	the	RDD	created	is	a	PairRDD
representing	a	collection	of	key/value	pairs:
kvpairs.take(5)

10.	Count	each	word	and	sort	results	in	reverse	alphabetic	order:
Click	here	to	view	code	image

countsbyword	=	kvpairs.reduceByKey(lambda	v1,	v2:	v1	+	v2)	\

		.sortByKey(ascending=False)

11.	Inspect	the	countsbyword	RDD:
countsbyword.take(5)

12.	Find	the	top	five	most-used	words:
Click	here	to	view	code	image

#	invert	the	kv	pair	to	make	the	count	the	key	and	sort

topwords	=	countsbyword.map(lambda	x:	(x[1],x[0]))	\

.sortByKey(ascending=False)

13.	Inspect	the	topwords	RDD:
topwords.take(5)

Note	how	the	map()	function	is	used	in	step	12	to	invert	the	key	and	value.
This	is	a	common	approach	to	performing	an	operation	known	as	a
secondary	sort,	which	is	a	means	to	sort	values	that	are	not	sorted	by	default.

Now	exit	your	pyspark	session	by	pressing	Ctrl+D.

14.	Now	put	it	all	together	and	run	it	as	a	complete	Python	program	by	using
spark-submit.	First,	minimize	the	amount	of	logging	by	creating	and
configuring	a	log4j.properties	file	in	the	conf	directory	of	your
Spark	installation.	Do	this	by	executing	the	following	command	from	a
Linux	terminal	(or	an	analogous	operation	if	you	are	using	another	operating
system):

Click	here	to	view	code	image
sed	\

"s/log4j.rootCategory=INFO,	console/log4j.rootCategory=ERROR,	

console/"	\

$SPARK_HOME/conf/log4j.properties.template	\

>	$SPARK_HOME/conf/log4j.properties

15.	Create	a	new	file	named	wordcounts.py	and	add	the	following	code	to
the	file:

Click	here	to	view	code	image
import	sys,	re

from	pyspark	import	SparkConf,	SparkContext

conf	=	SparkConf().setAppName('Word	Counts')

sc	=	SparkContext(conf=conf)

	

#	check	command	line	arguments

if	(len(sys.argv)	!=	3):

				print("""\

This	program	will	count	occurrences	of	each	word	in	a	document	or	

documents

and	return	the	counts	sorted	by	the	most	frequently	occurring	words

	

Usage:		wordcounts.py	<input_file_or_dir>	<output_dir>

""")

				sys.exit(0)

else:

				inputpath	=	sys.argv[1]

				outputdir	=	sys.argv[2]

	

#	count	and	sort	word	occurrences

wordcounts	=	sc.textFile("file://"	+	inputpath)	\

															.filter(lambda	line:	len(line)	>	0)	\

															.flatMap(lambda	line:	re.split('\W+',	line))	\	

.filter(lambda	word:	len(word)	>	0)	\

															.map(lambda	word:(word.lower(),1))	\

															.reduceByKey(lambda	v1,	v2:	v1	+	v2)	\

															.map(lambda	x:	(x[1],x[0]))	\

															.sortByKey(ascending=False)	\

															.persist()

wordcounts.saveAsTextFile("file://"	+	outputdir)

top5words	=	wordcounts.take(5)

justwords	=	[]

for	wordsandcounts	in	top5words:

				justwords.append(wordsandcounts[1])

print("The	top	five	words	are	:	"	+	str(justwords))

print("Check	the	complete	output	in	"	+	outputdir)

16.	Execute	your	program	by	using	the	following	command:

Click	here	to	view	code	image
$	spark-submit	--master	local	\

wordcounts.py	\

$SPARK_HOME/data/shakespeare.txt	\

$SPARK_HOME/data/wordcounts

You	should	see	the	top	five	words	displayed	in	the	console.	Check	the	output
directory	$SPARK_HOME/data/wordcounts;	you	should	see	one	file	in
this	directory	(part-00000)	because	you	used	only	one	partition	for	this
exercise.	If	you	used	more	than	one	partition,	you	would	see	additional	files
(part-00001,	part-00002,	and	so	on).	Open	the	file	and	inspect	the
contents.

17.	Run	the	command	from	step	16	again.	It	should	fail	because	the
wordcounts	directory	already	exists	and	cannot	be	overwritten.	Simply
remove	or	rename	this	directory	or	change	the	output	directory	for	the	next
operation	to	a	directory	that	does	not	exist,	such	as	wordcounts2.

The	complete	source	code	for	this	exercise	can	be	found	in	the	wordcount
folder	at	https://github.com/sparktraining/spark_using_python.

Join	Transformations
Join	operations	are	analogous	to	the	JOIN	operations	you	routinely	see	in	SQL
programming.	Join	functions	combine	records	from	two	RDDs	based	on	a
common	field,	a	key.	Because	join	functions	in	Spark	require	a	key	to	be
defined,	they	operate	on	key/value	pair	RDDs.

The	following	is	a	quick	refresher	on	joins—which	you	may	want	to	skip	if	you
have	a	relational	database	background:

	A	join	operates	on	two	different	datasets,	where	one	field	in	each	dataset	is
nominated	as	a	key	(a	join	key).	The	datasets	are	referred	to	in	the	order	in
which	they	are	specified.	For	instance,	the	first	dataset	specified	is
considered	the	left	entity	or	dataset,	and	the	second	dataset	specified	is
considered	the	right	entity	or	dataset.

	An	inner	join,	often	simply	called	a	join	(where	the	“inner”	is	inferred),
returns	all	elements	or	records	from	both	datasets,	where	the	nominated	key
is	present	in	both	datasets.

	An	outer	join	does	not	require	keys	to	match	in	both	datasets.	Outer	joins

https://github.com/sparktraining/spark_using_python

are	implemented	as	either	a	left	outer	join,	a	right	outer	join,	or	a	full	outer
join.

	A	left	outer	join	returns	all	records	from	the	left	(or	first)	dataset	along	with
matched	records	only	(by	the	specified	key)	from	the	right	(or	second)
dataset.

	A	right	outer	join	returns	all	records	from	the	right	(or	second)	dataset	along
with	matched	records	only	(by	the	specified	key)	from	the	left	(or	first)
dataset.

	A	full	outer	join	returns	all	records	from	both	datasets	whether	there	is	a	key
match	or	not.

Joins	are	some	of	the	most	commonly	required	transformations	in	the	Spark	API,
so	it	is	imperative	that	you	understand	these	functions	and	become	comfortable
using	them.

To	illustrate	the	use	of	the	different	join	types	in	the	Spark	RDD	API,	let’s
consider	a	dataset	from	a	fictitious	retailer	that	includes	an	entity	containing
stores	and	an	entity	containing	salespeople,	loaded	into	RDDs,	as	shown	in
Listing	4.34.

Listing	4.34	Datasets	Used	to	Demonstrate	Join	Types	in	Spark
Click	here	to	view	code	image

stores	=	sc.parallelize([(100,	'Boca	Raton'),

																									(101,	'Columbia'),

																									(102,	'Cambridge'),

																									(103,	'Naperville')])

#	stores	schema	(store_id,	store_location)

salespeople	=	sc.parallelize([(1,	'Henry',	100),

																														(2,	'Karen',	100),

																														(3,	'Paul',	101),

																														(4,	'Jimmy',	102),

																														(5,	'Janice',	None)])

#	salespeople	schema	(salesperson_id,	salesperson_name,	store_id)

The	following	sections	look	at	the	available	join	transformations	in	Spark,	their
usage,	and	some	examples.

join()

Syntax:
Click	here	to	view	code	image

RDD.join(<otherRDD>,	numPartitions=None)

The	join()	transformation	is	an	implementation	of	an	inner	join,	matching
two	key/value	pair	RDDs	by	their	key.

The	optional	numPartitions	argument	determines	how	many	partitions	to
create	in	the	resultant	dataset.	If	this	is	not	specified,	the	default	value	for	the
spark.default.parallelism	configuration	parameter	is	used.	The
numPartitions	argument	has	the	same	behavior	for	other	types	of	join
operations	in	the	Spark	API	as	well.

The	RDD	returned	is	a	structure	containing	the	matched	key	and	a	value	that	is	a
tuple	containing	all	the	matched	records	from	both	RDDs	as	a	list	object.	(This	is
where	it	may	sound	a	bit	foreign	to	you	if	you	are	used	to	performing	INNER
JOIN	operations	in	SQL,	which	returns	a	flattened	list	of	columns	from	both
entities.)

Listing	4.35	demonstrates	how	a	join()	operation	works	in	Spark.

Listing	4.35	The	join()	Transformation
Click	here	to	view	code	image

salespeople.keyBy(lambda	x:	x[2])	\

											.join(stores).collect()

#	returns:	[(100,	((1,	'Henry',	100),	'Boca	Raton')),

#											(100,	((2,	'Karen',	100),	'Boca	Raton')),

#											(102,	((4,	'Jimmy',	102),	'Cambridge')),

#											(101,	((3,	'Paul',	101),	'Columbia'))]

This	join()	operation	returns	all	salespeople	assigned	to	stores	keyed	by	the
store	ID	(the	join	key)	along	with	the	entire	store	record	and	salesperson	record.
Notice	that	the	resultant	RDD	contains	duplicate	data.	You	could	(and	should	in
many	cases)	follow	the	join()	with	a	map()	transformation	to	prune	fields	or
project	only	the	fields	required	for	further	processing.

Optimizing	Joins	in	Spark
Joins	involving	RDDs	that	span	more	than	one	partition—and	many	do—
require	 a	 shuffle.	 Spark	 generally	 plans	 and	 implements	 this	 activity	 to
achieve	 the	most	optimal	performance	possible;	however,	a	simple	axiom
to	 remember	 is	 “join	 large	 by	 small.”	 This	means	 to	 reference	 the	 large
RDD	(the	one	with	the	most	elements,	if	this	is	known)	first,	followed	by
the	smaller	of	the	two	RDDs.	This	will	seem	strange	for	users	coming	from
relational	 database	 programming	 backgrounds,	 but	 unlike	 with	 relational
database	systems,	joins	in	Spark	are	relatively	inefficient.	And	unlike	with
most	databases,	there	are	no	indexes	or	statistics	to	optimize	the	join,	so	the
optimizations	you	provide	are	essential	to	maximizing	performance.

leftOuterJoin()

Syntax:
Click	here	to	view	code	image

RDD.leftOuterJoin(<otherRDD>,	numPartitions=None)

The	leftOuterJoin()	transformation	returns	all	elements	or	records	from
the	first	RDD	referenced.	If	keys	from	the	first	(or	left)	RDD	are	present	in	the
right	RDD,	then	the	right	RDD	record	is	returned	along	with	the	left	RDD
record.	Otherwise,	the	right	RDD	record	is	None	(empty).

The	example	shown	in	Listing	4.36	uses	the	leftOuterJoin()
transformation	to	identify	salespeople	with	no	stores.

Listing	4.36	The	leftOuterJoin()	Transformation
Click	here	to	view	code	image

salespeople.keyBy(lambda	x:	x[2])	\

											.leftOuterJoin(stores)	\

											.filter(lambda	x:	x[1][1]	is	None)	\

											.map(lambda	x:	"salesperson	"	+	x[1][0][1]	+	"	has	no	store")	

\

											.collect()

#	returns	['salesperson	Janice	has	no	store']

rightOuterJoin()

Syntax:
Click	here	to	view	code	image

RDD.rightOuterJoin(<otherRDD>,	numPartitions=None)

The	rightOuterJoin()	transformation	returns	all	elements	or	records	from
the	second	RDD	referenced.	If	keys	from	the	second	(or	right)	RDD	are	present
in	the	left	RDD,	then	the	left	RDD	record	is	returned	along	with	the	right	RDD
record.	Otherwise,	the	left	RDD	record	is	None	(empty).

Listing	4.37	shows	an	example	of	how	the	rightOuterJoin()
transformation	can	be	used	to	identify	stores	with	no	salespeople.

Listing	4.37	The	rightOuterJoin()	Transformation
Click	here	to	view	code	image

salespeople.keyBy(lambda	x:	x[2])	\

											.rightOuterJoin(stores)	\

											.filter(lambda	x:	x[1][0]	is	None)	\

											.map(lambda	x:	x[1][1]	+	"	store	has	no	salespeople")	\

											.collect()

#	returns	['Naperville	store	has	no	salespeople']

fullOuterJoin()

Syntax:
Click	here	to	view	code	image

RDD.fullOuterJoin(<otherRDD>,	numPartitions=None)

The	fullOuterJoin()	transforms	all	elements	from	both	RDDs	whether
there	is	a	key	matched	or	not.	Keys	not	matched	from	either	the	left	or	right
dataset	are	represented	as	None	(empty).

Listing	4.38	shows	an	example	of	how	the	fullOuterJoin()	transformation
can	be	used	to	identify	stores	with	no	salespeople	as	well	as	salespeople	with	no
stores.

Listing	4.38	The	fullOuterJoin()	Transformation

Click	here	to	view	code	image

salespeople.keyBy(lambda	x:	x[2])	\

											.fullOuterJoin(stores)	\

											.filter(lambda	x:	x[1][0]	is	None	or	x[1][1]	is	None)	\

											.collect()

#	returns	[(,([5,'Janice',],	None)),(103,(None,[103,'Naperville']))]

cogroup()

Syntax:
Click	here	to	view	code	image

RDD.cogroup(<otherRDD>,	numPartitions=None)

The	cogroup()	transformation	groups	multiple	key/value	pair	datasets	by	a
key.	It	is	somewhat	similar	conceptually	to	a	fullOuterJoin(),	but	there
are	a	few	key	differences	in	its	implementation:

	The	cogroup()	transformation	returns	an	iterable	object,	similar	to	the
object	returned	from	the	groupByKey()	function	you	saw	earlier.

	The	cogroup()	transformation	groups	multiple	elements	from	both
RDDs	into	iterable	objects,	whereas	fullOuterJoin()	creates	separate
output	elements	for	the	same	key.

	The	cogroup()	transformation	can	group	three	or	more	RDDs	using	the
Scala	API	or	the	groupWith()	function	alias.

The	resultant	RDD	output	from	a	cogroup()	operation	of	two	RDDs	(A,	B)
with	a	key	K	could	be	summarized	as:
Click	here	to	view	code	image

[K,	Iterable(K,VA,	…),	Iterable(K,VB,	…)]

If	an	RDD	does	not	have	elements	for	a	given	key	that	is	present	in	the	other
RDD,	the	corresponding	iterable	is	empty.	Listing	4.39	shows	a	cogroup()
transformation	using	the	salespeople	and	stores	RDDs	from	the	preceding
examples.

Listing	4.39	The	cogroup()	Transformation
Click	here	to	view	code	image

salespeople.keyBy(lambda	x:	x[2])	\

											.cogroup(stores).take(1)

#	returns:

#	[(None,	(<pyspark.resultiterable.ResultIterable	object	at	...>,

#		<pyspark.resultiterable.ResultIterable	object	at	...>))]

salespeople.keyBy(lambda	x:	x[2])	\

											.cogroup(stores)	\

											.mapValues(lambda	x:	[item	for	sublist	in	x	for	item	in	

sublist])	\

											.collect()

#	using	the	mapValues()	to	process	the	Iterable	object	returns:

#	[(None,	[(5,	'Janice',	None)]),

#		(100,	[(1,	'Henry',	100),	(2,	'Karen',	100),	'Boca	Raton']),

#		(102,	[(4,	'Jimmy',	102),	'Cambridge']),	(101,	[(3,	'Paul',	101),	

'Columbia']),

#		(103,	['Naperville'])]

cartesian()

Syntax:
RDD.cartesian(<otherRDD>)

The	cartesian()	transformation,	sometimes	referred	to	by	its	colloquial
name,	cross	join,	generates	every	possible	combination	of	records	from	both
RDDs.	The	number	of	records	produced	by	this	transformation	is	equal	to	the
number	of	records	in	the	first	RDD	multiplied	by	the	number	of	records	in	the
second	RDD.

Listing	4.40	demonstrates	the	use	of	the	cartesian()	transformation.

Listing	4.40	The	cartesian()	Transformation
Click	here	to	view	code	image

salespeople.keyBy(lambda	x:	x[2])	\

											.cartesian(stores).take(1)

#	returns:

#	[((100,	(1,	'Henry',	100)),	(100,	'Boca	Raton'))]

salespeople.keyBy(lambda	x:	x[2])	\

											.cartesian(stores).count()

#	returns	20	as	there	are	5	x	4	=	20	records

Use	the	cartesian()	Transformation	Cautiously
Cartesian,	or	cross-product,	operations	can	yield	excessively	large	amounts
of	data.	Although	this	is	a	useful	function	for	testing	multiple	combinations
of	items	for	machine	learning,	you	could	create	a	Big	Data	problem	where
one	otherwise	did	not	exist!

Joining	Datasets	in	Spark
For	this	example	you	will	use	data	from	the	Bay	Area	Bike	Share	Data
Challenge.	The	Bay	Area	Bike	Share	program	enables	members	to	pick	up	bikes
from	designated	stations	and	then	drop	off	the	bikes	at	the	same	station	or	a
different	one.	Bay	Area	Bike	Share	has	made	trip	data	available	for	public	use
through	the	group’s	Open	Data	program.	For	more	information,	see	these	sites:

http://www.bayareabikeshare.com/open-data
https://www.fordgobike.com/system-data

To	make	your	job	easier,	the	data	files	for	this	exercise	are	available	in	this
book’s	AWS	S3	bucket:

https://s3.amazonaws.com/sparkusingpython/bike-share/stations/stations.csv
https://s3.amazonaws.com/sparkusingpython/bike-share/status/status.csv
https://s3.amazonaws.com/sparkusingpython/bike-share/trips/trips.csv
https://s3.amazonaws.com/sparkusingpython/bike-share/weather/weather.csv

You	can	download	these	files	to	your	local	Spark	installation	and	access	them
locally.	For	this	exercise,	you	should	download	the	files	and	store	them	in	your
$SPARK_HOME/data	directory	as	follows:

http://www.bayareabikeshare.com/open-data
https://www.fordgobike.com/system-data
https://s3.amazonaws.com/sparkusingpython/bike-share/stations/stations.csv
https://s3.amazonaws.com/sparkusingpython/bike-share/status/status.csv
https://s3.amazonaws.com/sparkusingpython/bike-share/trips/trips.csv
https://s3.amazonaws.com/sparkusingpython/bike-share/weather/weather.csv

In	this	exercise,	you	will	use	this	data	to	return	the	average	number	of	bikes
available	by	the	hour	for	one	week	(February	22	to	February	28)	for	stations
located	in	the	San	Jose	area	only.	Follow	these	steps:
1.	Open	an	interactive	pyspark	session:

Click	here	to	view	code	image
$	pyspark	--master	local

2.	Create	an	RDD	named	stations:
Click	here	to	view	code	image

stations	=	sc.textFile('/opt/spark/data/bike-share/stations')

Table	4.2	shows	the	schema	or	structure	of	the	files	in	the	stations
directory.

Table	4.2	Fields	in	stations.csv

Field	Name Description

station_id Station	ID	number

name Name	of	the	station

lat Latitude

long Longitude

dockcount Number	of	docks	at	the	station

landmark City

installation Original	date	the	station	was	installed

3.	Create	an	RDD	named	status:
Click	here	to	view	code	image

status	=	sc.textFile('/opt/spark/data/bike-share/status')

Table	4.3	shows	the	schema	or	structure	of	the	files	in	the	status
directory.

Table	4.3	Fields	in	status.csv

Field	Name Description

station_id Station	ID	number

bikes_available Number	of	available	bikes

docks_available Number	of	available	docks

time Date	and	time,	PST

4.	Split	the	status	data	into	discrete	fields,	projecting	only	the	fields
necessary,	and	decompose	the	date	string	so	that	you	can	filter	records	by
date	more	easily	in	the	next	step:

Click	here	to	view	code	image
status2	=	status.map(lambda	x:	x.split(','))	\

.map(lambda	x:	(x[0],	x[1],	x[2],	x[3].replace('"','')))	\

.map(lambda	x:	(x[0],	x[1],	x[2],	x[3].split('	')))	\

.map(lambda	x:	(x[0],	x[1],	x[2],	x[3][0].split('-'),	x[3]

[1].split(':')))	\

.map(lambda	x:	(int(x[0]),	int(x[1]),	int(x[3][0]),	int(x[3][1]),	

int(x[3][2]),	int(x[4][0])))

Inspect	the	status2	RDD:
status2.first()

The	schema	for	the	status2	RDD	is	as	follows:
Click	here	to	view	code	image

[(station_id,	bikes_available,	year,	month,	day,	hour),...]

5.	Because	status.csv	is	the	biggest	of	the	datasets	(more	than	36	million
records),	restrict	the	dataset	to	only	the	dates	required	and	then	drop	the	date
fields	because	they	are	no	longer	necessary:

Click	here	to	view	code	image

status3	=	status2.filter(lambda	x:	x[2]==2015	and	\

								x[3]==2	and	\

								x[4]>=22)	\

								.map(lambda	x:	(x[0],	x[1],	x[5]))

The	schema	for	status3	is	the	same	as	the	schema	for	status2	because
you	have	just	removed	unnecessary	records.

6.	Filter	the	stations	dataset	to	include	only	stations	where
landmark='San	Jose':

Click	here	to	view	code	image
stations2	=	stations.map(lambda	x:	x.split(','))	\

								.filter(lambda	x:	x[5]	==	'San	Jose')	\

								.map(lambda	x:	(int(x[0]),	x[1]))

Inspect	the	stations2	RDD:
stations2.first()

7.	Convert	both	RDDs	to	key/value	pair	RDDs	to	prepare	for	a	join()
operation:

Click	here	to	view	code	image
status_kv	=	status3.keyBy(lambda	x:	x[0])

stations_kv	=	stations2.keyBy(lambda	x:	x[0])

Inspect	both	newly	created	PairRDDs:
Click	here	to	view	code	image

status_kv.first()

stations_kv.first()

8.	Join	the	status_kv	key/value	pair	RDD	to	the	stations_kv	key/value
pair	RDD	by	their	keys	(station_id):

Click	here	to	view	code	image
joined	=	status_kv.join(stations_kv)

Inspect	the	joined	RDD:
joined.first()

9.	Clean	the	joined	RDD:
Click	here	to	view	code	image

cleaned	=	joined.map(lambda	x:	(x[0],	x[1][0][1],	x[1][0][2],	x[1]

[1][1]))

Inspect	the	cleaned	RDD:

cleaned.first()

The	schema	for	the	cleaned	RDD	is	as	follows:
Click	here	to	view	code	image

[(station_id,bikes_available,hour,name),...]

10.	Create	a	key/value	pair	with	the	key	as	a	tuple	consisting	of	the	station
name	and	the	hour	and	then	compute	the	averages	by	each	hour	for	each
station:

Click	here	to	view	code	image
avgbyhour	=	cleaned.keyBy(lambda	x:	(x[3],x[2]))	\

								.mapValues(lambda	x:	(x[1],	1))	\

								.reduceByKey(lambda	x,	y:	(x[0]	+	y[0],	x[1]	+	y[1]))	\

								.mapValues(lambda	x:	(x[0]/x[1]))

Inspect	the	avgbyhour	RDD:
avgbyhour.first()

The	schema	for	the	cleaned	RDD	is	as	follows:
Click	here	to	view	code	image

[((name,hour),bikes_available),...]

11.	Find	the	top	10	averages	by	station	and	hour	by	using	the	sortBy()
function:

Click	here	to	view	code	image
topavail	=	avgbyhour.keyBy(lambda	x:	x[1])	\

								.sortByKey(ascending=False)	\

								.map(lambda	x:	(x[1][0][0],	x[1][0][1],	x[0]))

topavail.take(10)

The	complete	source	code	for	this	exercise	can	be	found	in	the	joining-
datasets	folder	at	https://github.com/sparktraining/spark_using_python.

Transformations	on	Sets
Set	operations	are	conceptually	similar	to	mathematical	set	operations.	A	set
function	operates	against	two	RDDs	and	results	in	one	RDD.	Consider	the	Venn
diagram	shown	in	Figure	4.9,	which	shows	a	set	of	odd	integers	and	a	subset	of
Fibonacci	numbers.	The	following	sections	use	these	two	sets	to	demonstrate	the
various	set	transformations	available	in	the	Spark	API.

https://github.com/sparktraining/spark_using_python

Figure	4.9	Set	Venn	diagram.

union()

Syntax:
RDD.union(<otherRDD>)

The	union()	transformation	takes	one	RDD	and	appends	another	RDD	to	it,
resulting	in	a	combined	output	RDD.	The	RDDs	are	not	required	to	have	the
same	schema	or	structure.	For	instance,	the	first	RDD	can	have	five	fields,
whereas	the	second	can	have	more	or	fewer	than	five	fields.

The	union()	transformation	does	not	filter	duplicates	from	the	output	RDD	in
the	case	that	two	unioned	RDDs	have	records	that	are	identical	to	each	other.	To
filter	duplicates,	you	could	follow	the	union()	transformation	with	the
distinct()	function	discussed	previously.

The	RDD	that	results	from	a	union()	operation	is	not	sorted	either,	but	you
could	sort	it	by	following	union()	with	a	sortBy()	function.

Listing	4.41	shows	an	example	using	union().

Listing	4.41	The	union()	Transformation
Click	here	to	view	code	image

odds	=	sc.parallelize([1,3,5,7,9])

fibonacci	=	sc.parallelize([0,1,2,3,5,8])

odds.union(fibonacci).collect()

#	returns	[1,	3,	5,	7,	9,	0,	1,	2,	3,	5,	8]

intersection()

Syntax:
RDD.intersection(<otherRDD>)

The	intersection()	transformation	returns	elements	that	are	present	in
both	RDDs.	In	other	words,	it	returns	the	overlap	between	two	sets.	The
elements	or	records	must	be	identical	in	both	sets,	with	each	respective	record’s
data	structure	and	all	of	its	fields	matching	in	both	RDDs.

Listing	4.42	demonstrates	the	intersection()	transformation.

Listing	4.42	The	intersection()	Transformation
Click	here	to	view	code	image

odds	=	sc.parallelize([1,3,5,7,9])

fibonacci	=	sc.parallelize([0,1,2,3,5,8])

odds.intersection(fibonacci).collect()

#	returns	[1,	3,	5]

subtract()

Syntax:
Click	here	to	view	code	image

RDD.subtract(<otherRDD>,	numPartitions=None)

The	subtract()	transformation,	as	shown	in	Listing	4.43,	returns	all
elements	from	the	first	RDD	that	are	not	present	in	the	second	RDD.	This	is	an
implementation	of	a	mathematical	set	subtraction.

Listing	4.43	The	subtract()	Transformation
Click	here	to	view	code	image

odds	=	sc.parallelize([1,3,5,7,9])

fibonacci	=	sc.parallelize([0,1,2,3,5,8])

odds.subtract(fibonacci).collect()

#	returns	[7,	9]

subtractByKey()

Syntax:
Click	here	to	view	code	image

RDD.subtractByKey(<otherRDD>,	numPartitions=None)

The	subtractByKey()	transformation	is	a	set	operation	similar	to	the
subtract	transformation.	The	subtractByKey()	transformation	returns
key/value	pair	elements	from	an	RDD	with	keys	that	are	not	present	in	key/value
pair	elements	from	otherRDD.

The	numPartitions	argument	specifies	how	many	output	partitions	are	to	be
created	in	the	resultant	RDD,	and	it	defaults	to	the	configured
spark.default.parallelism	value.

Listing	4.44	demonstrates	subtractByKey()	by	using	two	RDDs	containing
city	names	as	the	key	and	a	tuple	containing	location	data	for	the	city.

Listing	4.44	The	subtractByKey()	Transformation
Click	here	to	view	code	image

cities1	=	sc.parallelize([('Hayward',(37.668819,-122.080795)),

																										('Baumholder',(49.6489,7.3975)),

																										('Alexandria',(38.820450,-77.050552)),

																										('Melbourne',	(37.663712,144.844788))])

cities2	=	sc.parallelize([('Boulder	Creek',(64.0708333,-148.2236111)),

																										('Hayward',(37.668819,-122.080795)),

																										('Alexandria',(38.820450,-77.050552)),

																										('Arlington',	(38.878337,-77.100703))])

cities1.subtractByKey(cities2).collect()

#	returns:

#	[('Baumholder',	(49.6489,	7.3975)),	('Melbourne',	(37.663712,	

144.844788))]

cities2.subtractByKey(cities1).collect()

#	returns:

#	[('Boulder	Creek',	(64.0708333,	-148.2236111)),

#		('Arlington',	(38.878337,	-77.100703))]

Transformations	on	Numeric	RDDs
Numeric	RDDs	consist	of	only	numeric	values.	They	are	commonly	used	for
statistical	analysis,	so	you	will	see	that	many	of	the	functions	available	to
numeric	RDDs	are	your	common	statistical	functions.	An	example	of	a	numeric
RDD	is	the	DoubleRDD	discussed	earlier	in	this	chapter.	The	following	sections
look	at	these	functions	and	provide	some	simple	examples.

min()

Syntax:
RDD.min(key=None)

The	min()	function	is	an	action	that	returns	the	minimum	value	for	a	numeric
RDD.	The	key	argument	is	a	function	used	to	generate	a	key	for	comparing.
Listing	4.45	shows	the	use	of	the	min()	function.

Listing	4.45	The	min()	Function
Click	here	to	view	code	image

numbers	=	sc.parallelize([0,1,1,2,3,5,8,13,21,34])

numbers.min()

#	returns	0

max()

Syntax:
RDD.max(key=None)

The	max()	function	is	an	action	that	returns	the	maximum	value	for	a	numeric
RDD.	The	key	argument	is	a	function	used	to	generate	a	key	for	comparing.
Listing	4.46	shows	the	use	of	the	max()	function.

Listing	4.46	The	max()	Function
Click	here	to	view	code	image

numbers	=	sc.parallelize([0,1,1,2,3,5,8,13,21,34])

numbers.max()

#	returns	34

mean()

Syntax:
RDD.mean()

The	mean()	function	computes	the	arithmetic	mean	from	a	numeric	RDD.
Listing	4.47	demonstrates	the	use	of	the	mean()	function.

Listing	4.47	The	mean()	Function
Click	here	to	view	code	image

numbers	=	sc.parallelize([0,1,1,2,3,5,8,13,21,34])

numbers.mean()

#	returns	8.8

sum()

Syntax:
RDD.sum()

The	sum()	function	returns	the	sum	of	a	list	of	numbers	from	a	numeric	RDD.
Listing	4.48	shows	the	use	of	the	sum()	function.

Listing	4.48	The	sum()	Function
Click	here	to	view	code	image

numbers	=	sc.parallelize([0,1,1,2,3,5,8,13,21,34])

numbers.sum()

#	returns	88

stdev()

Syntax:
RDD.stdev()

The	stdev()	function	is	an	action	that	computes	the	standard	deviation	for	a
series	of	numbers	from	a	numeric	RDD.	Listing	4.49	shows	an	example	of
stdev().

Listing	4.49	The	stdev()	Function
Click	here	to	view	code	image

numbers	=	sc.parallelize([0,1,1,2,3,5,8,13,21,34])

numbers.stdev()

#	returns	10.467091286503619

variance()

Syntax:
RDD.variance()

The	variance()	function	computes	the	variance	in	a	series	of	numbers	in	a
numeric	RDD.	Variance	is	a	measure	of	how	far	a	set	of	numbers	are	spread	out.
Listing	4.50	shows	an	example	of	variance().

Listing	4.50	The	variance()	Function
Click	here	to	view	code	image

numbers	=	sc.parallelize([0,1,1,2,3,5,8,13,21,34])

numbers.variance()

#	returns	109.55999999999999

stats()

Syntax:
RDD.stats()

The	stats()	function	returns	a	StatCounter	object,	which	is	a	structure

containing	the	count(),	mean(),	stdev(),	max(),	and	min()	in	one
operation.	Listing	4.51	demonstrates	the	stats()	function.

Listing	4.51	The	stats()	Function
Click	here	to	view	code	image

numbers	=	sc.parallelize([0,1,1,2,3,5,8,13,21,34])

numbers.stats()

#	returns	(count:	10,	mean:	8.8,	stdev:	10.4670912865,	max:	34.0,	min:	

0.0)

Summary
This	chapter	covers	the	fundamentals	of	Spark	programming,	starting	with	a
closer	look	at	Spark	RDDs	(the	most	fundamental	atomic	data	object	in	the
Spark	programming	model),	including	looking	at	how	to	load	data	into	RDDs,
how	RDDs	are	evaluated	and	processed,	and	how	RDDs	achieve	fault	tolerance
and	resiliency.	This	chapter	also	discusses	the	concepts	of	transformations	and
actions	in	Spark	and	provides	specific	descriptions	and	examples	of	the	most
important	functions	in	the	Spark	core	(or	RDD)	API.	This	chapter	is	arguably	the
most	important	chapter	in	this	book	as	it	has	laid	the	foundations	for	all
programming	in	Spark,	including	stream	processing,	machine	learning,	and
SQL.	The	remainder	of	the	book	regularly	refers	to	the	functions	and	concepts
covered	in	this	chapter.

II

Beyond	the	Basics

5	Advanced	Programming	Using	the	Spark	Core	API

6	SQL	and	NoSQL	Programming	with	Spark

7	Stream	Processing	and	Messaging	Using	Spark

8	Introduction	to	Data	Science	and	Machine	Learning	Using	Spark

5

Advanced	Programming	Using	the
Spark	Core	API

Technology	feeds	on	itself.	Technology	makes	more	technology	possible.

Alvin	Toffler,	American	writer	and	futurist

In	This	Chapter:
	Introduction	to	shared	variables	(broadcast	variables	and	accumulators)	in
Spark
	Partitioning	and	repartitioning	of	Spark	RDDs
	Storage	options	for	RDDs
	Caching,	distributed	persistence,	and	checkpointing	of	RDDs

This	chapter	focuses	on	the	additional	programming	tools	at	your	disposal	with
the	Spark	API,	including	broadcast	variables	and	accumulators	as	shared
variables	across	different	Workers	in	a	Spark	cluster.	This	chapter	also	dives	into
the	important	topics	of	Spark	partitioning	and	RDD	storage.	You	will	learn	about
the	various	storage	functions	available	for	program	optimization,	durability,	and
process	restart	and	recovery.	You	will	also	learn	how	to	use	external	programs
and	scripts	to	process	data	in	Spark	RDDs	in	a	Spark-managed	lineage.	The
information	in	this	chapter	builds	on	the	Spark	API	transformations	you	learned
about	in	Chapter	4,	“Learning	Spark	Programming	Basics,”	and	gives	you	the

additional	tools	required	to	build	efficient	end-to-end	Spark	processing	pipelines.

Shared	Variables	in	Spark
The	Spark	API	provides	two	mechanisms	for	creating	and	using	shared	variables
in	a	Spark	cluster	(that	is,	variables	that	are	accessible	or	mutable	by	different
Workers	in	the	Spark	cluster).	These	mechanisms	are	called	broadcast	variables
and	accumulators,	and	we	look	at	them	both	now.

Broadcast	Variables
Broadcast	variables	are	read-only	variables	set	by	the	Spark	Driver	program	that
are	made	available	to	the	Worker	nodes	in	a	Spark	cluster,	which	means	they	are
available	to	any	tasks	running	on	Executors	on	the	Workers.	Broadcast	variables
are	read	only	after	being	set	by	the	Driver.	Broadcast	variables	are	shared	across
Workers	using	an	efficient	peer-to-peer	sharing	protocol	based	on	BitTorrent;
this	enables	greater	scalability	than	simply	pushing	variables	directly	to	Executor
processes	from	the	Spark	Driver.	Figure	5.1	demonstrates	how	broadcast
variables	are	initialized,	disseminated	among	Workers,	and	accessed	by	nodes
within	tasks.

Figure	5.1	Spark	broadcast	variables.

The	“Performance	and	Scalability	of	Broadcast	in	Spark”	whitepaper	at
www.cs.berkeley.edu/~agearh/cs267.sp10/files/mosharaf-spark-bc-report-
spring10.pdf	documents	the	BitTorrent	broadcast	method	as	well	as	the	other
broadcast	mechanisms	considered	for	Spark;	it’s	worth	a	read.

A	broadcast	variable	is	created	under	a	SparkContext	and	is	then	accessible	as	an
object	in	the	context	of	the	Spark	application.	The	following	sections	describe
the	syntax	for	creating	and	accessing	broadcast	variables.

broadcast()

Syntax:
sc.broadcast(value)

The	broadcast()	method	creates	an	instance	of	a	Broadcast	object	within
the	specific	SparkContext.	The	value	is	the	object	to	be	serialized	and

http://www.cs.berkeley.edu/~agearh/cs267.sp10/files/mosharaf-spark-bc-report-spring10.pdf

encapsulated	in	the	Broadcast	object;	this	could	be	any	valid	Python	object.
After	they’re	created,	these	variables	are	available	to	all	tasks	running	in	the
application.	Listing	5.1	shows	an	example	of	the	broadcast()	method.

Listing	5.1	Initializing	a	Broadcast	Variable	by	Using	the
broadcast()	Function
Click	here	to	view	code	image

stations	=	sc.broadcast({'83':'Mezes	Park',	'84':'Ryland	Park'})

stations

#	returns	<pyspark.broadcast.Broadcast	object	at	0x…>

You	can	also	create	broadcast	variables	from	the	contents	of	a	file,	either	on	a
local,	network,	or	distributed	filesystem.	Consider	a	file	named
stations.csv,	which	contains	comma-delimited	data,	as	follows:
Click	here	to	view	code	image

83,Mezes	Park,37.491269,-122.236234,15,Redwood	City,2/20/2014

84,Ryland	Park,37.342725,-121.895617,15,San	Jose,4/9/2014

Listing	5.2	shows	an	example	of	how	to	create	a	broadcast	variable	by	using	a
file.

Listing	5.2	Creating	a	Broadcast	Variable	from	a	File
Click	here	to	view	code	image

stationsfile	=	'/opt/spark/data/stations.csv'

stationsdata	=	dict(map(lambda	x:	(x[0],x[1]),	\

																				map(lambda	x:	x.split(','),	\

																				open(stationsfile))))

stations	=	sc.broadcast(stationsdata)

stations.value["83"]

#	returns	'Mezes	Park'

Listing	5.2	shows	how	to	create	a	broadcast	variable	from	a	csv	file
(stations.csv)	consisting	of	a	dictionary	of	key/value	pairs,	including	the
station	ID	and	the	station	name.	You	can	now	access	this	dictionary	from	within
any	map()	or	filter()	RDD	operations.

For	initialized	broadcast	variable	objects,	a	number	of	methods	can	be	called
within	the	SparkContext,	as	described	in	the	following	sections.

value()

Syntax:
Broadcast.value()

Listing	5.2	demonstrates	the	use	of	the	value()	function	to	return	the	value
from	the	broadcast	variable;	in	that	example,	the	value	is	a	dict	(or	map)	that
can	access	values	from	the	map	by	their	keys.	The	value()	function	can	be
used	within	a	lambda	function	in	a	map()	or	filter()	operation	in	a	Spark
program.

unpersist()

Syntax:
Broadcast.unpersist(blocking=False)

The	unpersist()	method	of	the	Broadcast	object	is	used	to	remove	a
broadcast	variable	from	memory	on	all	Workers	in	the	cluster	where	it	was
present.

The	Boolean	blocking	argument	specifies	whether	this	operation	should
block	until	the	variable	unpersists	from	all	nodes	or	whether	this	can	be	an
asynchronous,	non-blocking	operation.	If	you	require	memory	to	be	released
immediately,	set	this	argument	to	True.

An	example	of	the	unpersist()	method	is	provided	in	Listing	5.3.

Listing	5.3	The	unpersist()	Method
Click	here	to	view	code	image

stations	=	sc.broadcast({'83':'Mezes	Park',	'84':'Ryland	Park'})

stations.value['84']

#	returns	'Ryland	Park'

stations.unpersist()

#	broadcast	variable	will	eventually	get	evicted	from	cache

There	are	also	several	Spark	configuration	options	related	to	broadcast	variables,
as	described	in	Table	5.1.	Typically,	you	can	leave	these	at	their	default	settings,
but	it	is	useful	to	know	about	them.

Table	5.1	Spark	Configuration	Options	Related	to	Broadcast	Variables

Configuration	Option Description

spark.broadcast.compress Specifies	whether	to	compress	broadcast
variables	before	transferring	them	to
Workers.	Defaults	to	True
(recommended).

spark.broadcast.factory Specifies	which	broadcast
implementation	to	use.	Defaults	to
TorrentBroadcastFactory.

spark.broadcast.blockSize Specifies	the	size	of	each	block	of	the
broadcast	variable	(used	by
TorrentBroadcastFactory).
Defaults	to	4MB.

spark.broadcast.port Specifies	the	port	for	the	Driver’s	HTTP
broadcast	server	to	listen	on.	Defaults	to
random.

What	are	the	advantages	of	broadcast	variables?	Why	are	they	useful	or	even
required	in	some	cases?	As	discussed	in	Chapter	4,	it	is	often	necessary	to
combine	two	datasets	to	produce	a	resultant	dataset.	This	can	be	achieved	in
multiple	ways.

Consider	two	associated	datasets:	stations	(a	relatively	small	lookup	data
set)	and	status	(a	large	eventful	data	source).	These	two	datasets	can	join	on	a
natural	key,	station_id.	You	could	join	the	two	datasets	as	RDDs	directly	in
your	Spark	application,	as	shown	in	Listing	5.4.

Listing	5.4	Joining	Lookup	Data	by	Using	an	RDD	join()
Click	here	to	view	code	image

status	=	sc.textFile('file:///opt/spark/data/bike-share/status')	\

											.map(lambda	x:	x.split(','))	\

											.keyBy(lambda	x:	x[0])

stations	=	sc.textFile('file:///opt/spark/data/bike-share/stations')	\

													.map(lambda	x:	x.split(','))	\

													.keyBy(lambda	x:	x[0])

status.join(stations)	\

			.map(lambda	x:	(x[1][0][3],x[1][1][1],x[1][0][1],x[1][0][2]))	\

			.count()

#	returns	907200

This	most	likely	would	result	in	an	expensive	shuffle	operation.

It	would	be	better	to	set	a	table	variable	in	the	Driver	for	stations;	this	will
then	be	available	as	a	runtime	variable	for	Spark	tasks	implementing	map()
operations,	eliminating	the	requirement	for	a	shuffle	(see	Listing	5.5).

Listing	5.5	Joining	Lookup	Data	by	Using	a	Driver	Variable
Click	here	to	view	code	image

stationsfile	=	'/opt/spark/data/bike-share/stations/stations.csv'

sdata	=	dict(map(lambda	x:	(x[0],x[1]),	\

																				map(lambda	x:	x.split(','),	\

																				open(stationsfile))))

status	=	sc.textFile('file:///opt/spark/data/bike-share/status')	\

											.map(lambda	x:	x.split(','))	\

											.keyBy(lambda	x:	x[0])

status.map(lambda	x:	(x[1][3],	sdata[x[0]],	x[1][1],	x[1][2]))	\

						.count()

#	returns	907200

This	works	and	is	better	in	most	cases	than	the	first	option;	however,	it	lacks
scalability.	In	this	case,	the	variable	is	part	of	a	closure	within	the	referencing
function.	This	may	result	in	unnecessary	and	less	efficient	transfer	and
duplication	of	data	on	the	Worker	nodes.

The	best	option	would	be	to	initialize	a	broadcast	variable	for	the	smaller
stations	table.	This	involves	using	peer-to-peer	replication	to	make	the
variable	available	to	all	Workers,	and	the	single	copy	is	usable	by	all	tasks	on	all
Executors	belonging	to	an	application	running	on	the	Worker.	Then	you	can	use
the	variable	in	your	map()	operations,	much	as	in	the	second	option.	An

example	of	this	is	provided	in	Listing	5.6.

Listing	5.6	Joining	Lookup	Data	by	Using	a	Broadcast	Variable
Click	here	to	view	code	image

stationsfile	=	'/opt/spark/data/bike-share/stations/stations.csv'

sdata	=	dict(map(lambda	x:	(x[0],x[1]),	\

																				map(lambda	x:	x.split(','),	\

																				open(stationsfile))))

stations	=	sc.broadcast(sdata)	status	=	

sc.textFile('file:///opt/spark/data/bike-share/status')	\

											.map(lambda	x:	x.split(','))	\

											.keyBy(lambda	x:	x[0])

status.map(lambda	x:	(x[1][3],	stations.value[x[0]],	x[1][1],	x[1][2]))	

\

						.count()

#	returns	907200

As	you	can	see	in	the	scenario	just	described,	using	broadcast	variables	is	an
efficient	method	for	sharing	data	at	runtime	between	processes	running	on
different	nodes	of	a	Spark	cluster.	Consider	the	following	points	about	broadcast
variables:

	Using	them	eliminates	the	need	for	a	shuffle	operation.

	They	use	an	efficient	and	scalable	peer-to-peer	distribution	mechanism.

	They	replicate	data	once	per	Worker,	as	opposed	to	replicating	once	per	task
—which	is	important	as	there	may	be	thousands	of	tasks	in	a	Spark
application.

	Many	tasks	can	reuse	them	multiple	times.

	They	are	serialized	objects,	so	they	are	efficiently	read.

Accumulators
Another	type	of	shared	variable	in	Spark	is	an	accumulator.	Unlike	with
broadcast	variables,	you	can	update	accumulators;	more	specifically,	they	are
numeric	values	that	be	incremented.

Think	of	accumulators	as	counters	that	you	can	use	in	a	number	of	ways	in
Spark	programming.	Accumulators	allow	you	to	aggregate	multiple	values	while
your	program	is	running.

Accumulators	are	set	by	the	Driver	and	updated	by	Executors	running	tasks	in
the	respective	SparkContext.	The	Driver	can	then	read	back	the	final	value	from
the	accumulator,	typically	at	the	end	of	the	program.

Accumulators	update	only	once	per	successfully	completed	task	in	a	Spark
application.	Worker	nodes	send	the	updates	to	the	accumulator	back	to	the
Driver,	which	is	the	only	process	that	can	read	the	accumulator	value.
Accumulators	can	use	integer	or	float	values.	Listing	5.7	and	Figure	5.2
demonstrate	how	accumulators	are	created,	updated,	and	read.

Listing	5.7	Creating	and	Accessing	Accumulators
Click	here	to	view	code	image

acc	=	sc.accumulator(0)

def	addone(x):

				global	acc

				acc	+=	1

				return	x	+	1

myrdd=sc.parallelize([1,2,3,4,5])

myrdd.map(lambda	x:	addone(x)).collect()

#	returns	[2,	3,	4,	5,	6]

print("records	processed:	"	+	str(acc.value))

#	returns	"records	processed:	5"

Figure	5.2	Accumulators.

From	a	programming	standpoint,	accumulators	are	very	straightforward.	The
functions	related	to	accumulators	in	Spark	programming,	used	in	Listing	5.7,	are
documented	in	the	following	sections.

accumulator()

Syntax:
sc.accumulator(value,	accum_param=None)

The	accumulator()	method	creates	an	instance	of	an	Accumulator	object
within	the	specific	SparkContext	and	initializes	with	a	given	initial	value
specified	by	the	value	argument.	The	accum_param	argument	is	used	to
define	custom	accumulators,	which	we	discuss	next.

value()

Syntax:
Accumulator.value()

The	value()	method	retrieves	the	accumulator’s	value.	This	method	can	be
used	only	in	the	Driver	program.

Custom	Accumulators
Standard	accumulators	created	in	a	SparkContext	support	primitive	numeric
datatypes,	including	int	and	float.	Custom	accumulators	can	perform
aggregate	operations	on	variables	of	types	other	than	scalar	numeric	values.
Custom	accumulators	are	created	using	the	AccumulatorParam	helper
object.	The	only	requirement	is	that	the	operations	performed	must	be
associative	and	commutative,	meaning	the	order	and	sequence	of	operation	are
irrelevant.

A	common	use	of	custom	accumulators	is	to	accumulate	vectors	as	either	lists	or
dictionaries.	Conceptually,	the	same	principle	applies	in	a	non-mathematical
context	to	non-numeric	operations—for	instance,	when	you	create	a	custom
accumulator	to	concatenate	string	values.

To	use	custom	accumulators,	you	need	to	define	a	custom	class	that	extends	the
AccumulatorParam	class.	The	class	needs	to	include	two	specific	member
functions:	addInPlace(),	used	to	operate	against	two	objects	of	the	custom
accumulators	datatype	and	to	return	a	new	value,	and	zero(),	which	provides	a
“zero	value”	for	the	type—for	instance,	an	empty	map	for	a	map	type.

Listing	5.8	shows	an	example	of	a	custom	accumulator	used	to	sum	vectors	as	a
Python	dictionary.

Listing	5.8	Custom	Accumulators
Click	here	to	view	code	image

from	pyspark	import	AccumulatorParam

class	VectorAccumulatorParam(AccumulatorParam):

				def	zero(self,	value):

								dict1={}

								for	i	in	range(0,len(value)):

												dict1[i]=0

								return	dict1

				def	addInPlace(self,	val1,	val2):

								for	i	in	val1.keys():

												val1[i]	+=	val2[i]

								return	val1

rdd1=sc.parallelize([{0:	0.3,	1:	0.8,	2:	0.4},	{0:	0.2,	1:	0.4,	2:	

0.2}])

vector_acc	=	sc.accumulator({0:	0,	1:	0,	2:	0},	

VectorAccumulatorParam())

def	mapping_fn(x):

				global	vector_acc

				vector_acc	+=	x

#	do	some	other	rdd	processing...

rdd1.foreach(mapping_fn)

print	vector_acc.value

#	returns	{0:	0.5,	1:	1.2000000000000002,	2:	0.6000000000000001}

Uses	for	Accumulators
Accumulators	are	typically	used	for	operational	purposes,	such	as	for	counting
the	number	of	records	processed	or	tracking	the	number	of	malformed	records.
You	can	also	use	them	for	notional	counts	of	different	types	of	records;	an
example	would	be	a	count	of	different	response	codes	discovered	during	the
mapping	of	log	events.

In	some	cases,	as	shown	in	the	following	exercise,	you	can	use	accumulators	for
processing	within	an	application.

Potential	for	Erroneous	Results	in	Accumulators
If	 accumulators	 are	 used	 in	 transformations,	 such	 as	 when	 calling
accumulators	to	perform	add-in-place	operations	to	calculate	results	inside
a	 map()	 operation,	 the	 results	 may	 be	 erroneous.	 Stage	 retries	 or
speculative	 execution	 can	 cause	 accumulator	 values	 to	 be	 counted	 more
than	once,	resulting	in	incorrect	counts.	If	absolute	correctness	is	required,
you	 should	 use	 accumulators	 only	within	 actions	 computed	 by	 the	Spark
Driver,	 such	 as	 the	 foreach()	 action.	 If	 you	 are	 looking	 only	 for
notional	 or	 indicative	 counts	 on	 very	 large	 datasets,	 then	 it	 is	 okay	 to
update	 accumulators	 in	 transformations.	 This	 behavior	 may	 change	 in
future	releases	of	Spark;	for	now,	this	is	a	caveat	emptor.

Exercise:	Using	Broadcast	Variables	and

Accumulators
This	exercise	shows	how	to	calculate	the	average	word	length	from	the	words	in
the	works	of	Shakespeare	text,	downloaded	in	the	section	“MapReduce	and
Word	Count	Exercise”	in	Chapter	4.	In	this	exercise,	you	will	remove	known
stop	words	(“a,”	“and,”	“or,”	“the”)	by	using	a	broadcast	variable	and	then
compute	average	word	length	by	using	accumulators.	Follow	these	steps:

1.	Open	a	PySpark	shell	using	whatever	mode	is	available	to	you	(Local,
YARN	Client,	or	Standalone).	Use	a	single-instance	Spark	deployment	in
Local	mode	for	this	example:
$	pyspark	--master	local

2.	Import	a	list	of	English	stop	words	(stop-word-list.csv)	from	the
book’s	S3	bucket	using	the	built-in	urllib2	Python	module	(Python3)	and
then	convert	the	data	into	a	Python	list	by	using	the	split()	function:

Click	here	to	view	code	image
import	urllib.request

stopwordsurl	=	

"https://s3.amazonaws.com/sparkusingpython/stopwords/stop-word-

list.csv"

req	=	urllib.request.Request(stopwordsurl)

with	urllib.request.urlopen(req)	as	response:

				stopwordsdata	=	response.read().decode("utf-8")

stopwordslist	=	stopwordsdata.split(",")

3.	Create	a	broadcast	variable	for	the	stopwordslist	object:
stopwords	=	sc.broadcast(stopwordslist)

4.	Initialize	accumulators	for	the	cumulative	word	count	and	cumulative	total
length	of	all	words:

Click	here	to	view	code	image
word_count	=	sc.accumulator(0)

total_len	=	sc.accumulator(0.0)

Note	that	you	have	created	total_len	as	a	float	because	you	will	use	it	as
the	numerator	in	a	division	operation	later,	when	you	want	to	keep	the
precision	in	the	result.

5.	Create	a	function	to	accumulate	word	count	and	the	total	word	length:
Click	here	to	view	code	image

def	add_values(word,word_count,total_len):

https://s3.amazonaws.com/sparkusingpython/stopwords/stop-word-list.csv

word_count	+=	1

total_len	+=	len(word)

6.	Create	an	RDD	by	loading	the	Shakespeare	text,	tokenizing	and	normalizing
all	text	in	the	document,	and	filtering	stop	words	by	using	the	stopwords
broadcast	variable:

Click	here	to	view	code	image
words	=	sc.textFile('file:///opt/spark/data/shakespeare.txt')	\

				.flatMap(lambda	line:	line.split())	\

				.map(lambda	x:	x.lower())	\

				.filter(lambda	x:	x	not	in	stopwords.value)

7.	Use	the	foreach	action	to	iterate	through	the	resultant	RDD	and	call	your
add_values	function:

Click	here	to	view	code	image
words.foreach(lambda	x:	add_values(x,	word_count,	total_len))

8.	Calculate	the	average	word	length	from	your	accumulator-shared	variables
and	display	the	final	result:

Click	here	to	view	code	image
avgwordlen	=	total_len.value/word_count.value

print("Total	Number	of	Words:	"	+	str(word_count.value))

print("Average	Word	Length:	"	+	str(avgwordlen))

This	should	return	966958	for	the	total	number	of	words	and
3.608722405730135	for	the	average	word	length.

7.	Now	put	all	the	code	for	this	exercise	in	a	file	named
average_word_length.py	and	execute	the	program	using	spark-
submit.	Recall	that	you	need	to	add	the	following	to	the	beginning	of	your
script:

Click	here	to	view	code	image
from	pyspark	import	SparkConf,	SparkContext

conf	=	SparkConf().setAppName('Broadcast	Variables	and	

Accumulators')

sc	=	SparkContext(conf=conf)

The	complete	source	code	for	this	exercise	can	be	found	in	the	average-
word-length	folder	at	https://github.com/sparktraining/spark_using_python.

https://github.com/sparktraining/spark_using_python

Partitioning	Data	in	Spark
Partitioning	is	integral	to	Spark	processing	in	most	cases.	Effective	partitioning
can	improve	application	performance	by	orders	of	magnitude.	Conversely,
inefficient	partitioning	can	result	in	programs	failing	to	complete,	producing
problems	such	as	Executor-out-of-memory	errors	for	excessively	large
partitions.

The	following	sections	recap	what	you	already	know	about	RDD	partitions	and
then	discuss	API	methods	that	can	affect	partitioning	behavior	or	that	can	access
data	within	partitions	more	effectively.

Partitioning	Overview
The	number	of	partitions	to	create	from	an	RDD	transformation	is	usually
configurable.	There	are	some	default	behaviors	you	should	be	aware	of,
however.

Spark	creates	an	RDD	partition	per	block	when	using	HDFS	(typically	the	size
of	a	block	in	HDFS	is	128MB),	as	in	this	example:
Click	here	to	view	code	image

myrdd	=	sc.textFile("hdfs:///dir/filescontaining10blocks")

myrdd.getNumPartitions()

#	returns	10

Shuffle	operations	such	as	the	ByKey	operations—groupByKey(),
reduceByKey()—and	other	operations	in	which	the	numPartitions
value	is	not	supplied	as	an	argument	to	the	method	will	result	in	a	number	of
partitions	equal	to	the	spark.default.parallelism	configuration	value.
Here	is	an	example:
Click	here	to	view	code	image

#	with	spark.default.parallelism=4

myrdd	=	sc.textFile("hdfs:///dir/filescontaining10blocks")

mynewrdd	=	myrdd.flatMap(lambda	x:	x.split())	\

		.map(lambda	x:(x,1))	\

		.reduceByKey(lambda	x,	y:	x	+	y)

mynewrdd.getNumPartitions()

#	returns	4

If	the	spark.default.parallelism	configuration	parameter	is	not	set,

the	number	of	partitions	that	a	transformation	creates	will	equal	the	highest
number	of	partitions	defined	by	an	upstream	RDD	in	the	current	RDDs	lineage.
Here	is	an	example:
Click	here	to	view	code	image

#	with	spark.default.parallelism	not	set

myrdd	=	sc.textFile("hdfs:///dir/filescontaining10blocks")

mynewrdd	=	myrdd.flatMap(lambda	x:	x.split())	\

		.map(lambda	x:(x,1))	\

		.reduceByKey(lambda	x,	y:	x	+	y)

mynewrdd.getNumPartitions()

#	returns	10

The	default	partitioner	class	that	Spark	uses	is	HashPartitioner;	it	hashes
all	keys	with	a	deterministic	hashing	function	and	then	uses	the	key	hash	to
create	approximately	equal	buckets.	The	aim	is	to	disperse	data	evenly	across	the
specified	number	of	partitions	based	on	the	key.

Some	Spark	transformations,	such	as	the	filter()	transformation,	do	not
allow	you	to	change	the	partitioning	behavior	of	the	resultant	RDD.	For
example,	if	you	applied	a	filter()	function	to	an	RDD	with	four	partitions,	it
would	result	in	a	new,	filtered	RDD	with	four	partitions,	using	the	same
partitioning	scheme	as	the	original	RDD	(that	is,	hash	partitioned).

Although	the	default	behavior	is	normally	acceptable,	in	some	circumstances	it
can	lead	to	inefficiencies.	Fortunately,	Spark	provides	several	mechanisms	to
address	these	potential	issues.

Controlling	Partitions
How	many	partitions	should	an	RDD	have?	There	are	issues	at	both	ends	of	the
spectrum	when	it	comes	to	answering	this	question.	Having	too	few,	very	large
partitions	can	result	in	out-of-memory	issues	on	Executors.	Having	too	many
small	partitions	isn’t	optimal	because	too	many	tasks	spawn	for	trivial	input	sets.
A	mix	of	large	and	small	partitions	can	result	in	speculative	execution	occurring
needlessly,	if	this	is	enabled.	Speculative	execution	is	a	mechanism	that	a	cluster
scheduler	uses	to	preempt	slow-running	processes;	if	the	root	cause	of	the
slowness	of	one	or	more	processes	in	a	Spark	application	is	inefficient
partitioning,	then	speculative	execution	won’t	help.

Consider	the	scenario	in	Figure	5.3.

Figure	5.3	Skewed	partitions.

The	filter()	operation	creates	a	new	partition	for	every	input	partition	on	a
one-to-one	basis,	with	only	records	that	meet	the	filter	condition.	This	can	result
in	some	partitions	having	significantly	less	data	than	others,	which	can	lead	to
bad	outcomes,	such	as	data	skewing,	the	potential	for	speculative	execution,	and
suboptimal	performance	in	subsequent	stages.

In	such	cases,	you	can	use	one	of	the	repartitioning	methods	in	the	Spark	API;
these	include	partitionBy(),	coalesce(),	repartition(),	and
repartitionAndSortWithinPartitions(),	all	of	which	are	explained
shortly.

These	functions	take	a	partitioned	input	RDD	and	create	a	new	RDD	with	n
partitions,	where	n	could	be	more	or	fewer	than	the	original	number	of
partitions.	Take	the	example	from	Figure	5.3.	In	Figure	5.4,	a
repartition()	function	is	applied	to	consolidate	the	four	unevenly
distributed	partitions	to	two	“evenly”	distributed	partitions,	using	the	default
HashPartitioner.

Figure	5.4	The	repartition()	function.

Determining	the	Optimal	Number	of	Partitions
Often,	 determining	 the	 optimal	 number	 of	 partitions	 involves
experimenting	with	different	values	until	you	find	the	point	of	diminishing
returns	 (the	 point	 at	 which	 each	 additional	 partition	 starts	 to	 degrade
performance).	As	a	starting	point,	a	simple	axiom	is	 to	use	 two	times	 the
number	of	cores	 in	your	cluster—that	 is,	 two	times	the	aggregate	number
of	 cores	 across	 all	Worker	 nodes.	 In	 addition,	 as	 a	 dataset	 changes,	 it	 is
advisable	to	revisit	the	number	of	partitions	used.

Repartitioning	Functions
The	main	functions	used	to	repartition	RDDs	are	documented	in	the	following
sections.

partitionBy()

Syntax:
Click	here	to	view	code	image

RDD.partitionBy(numPartitions,	partitionFunc=portable_hash)

The	partitionBy()	method	returns	a	new	RDD	containing	the	same	data	as
the	input	RDD	but	with	the	number	of	partitions	specified	by	the
numPartitions	argument,	using	the	portable_hash	function
(HashPartitioner)	by	default.	An	example	of	partitionBy()	is	shown

in	Listing	5.9.

Listing	5.9	The	partitionBy()	Function
Click	here	to	view	code	image

kvrdd	=	sc.parallelize([(1,'A'),(2,'B'),(3,'C'),(4,'D')],4)

kvrdd.getNumPartitions()

#	returns	4

kvrdd.partitionBy(2).getNumPartitions()

#	returns	2

The	partitionBy()	function	is	also	called	by	other	functions,	such	as
sortByKey(),	which	calls	partitionBy()	using	rangePartitioner
instead	of	the	portable_hash	function.	The	rangePartitioner
partitions	records	sorted	by	their	key	into	equally	sized	ranges;	this	is	an
alternative	to	hash	partitioning.

The	partitionBy()	transformation	is	also	a	useful	function	for
implementing	a	custom	partitioner,	such	as	a	function	to	bucket	web	logs	into
monthly	partitions.	A	custom	partition	function	must	take	a	key	as	input	and
return	a	number	between	zero	and	the	numPartitions	specified	in	the
partitionBy()	function	and	then	use	that	return	value	to	direct	elements	to
their	target	partition.

repartition()

Syntax:
RDD.repartition(numPartitions)

The	repartition()	method	returns	a	new	RDD	with	the	same	data	as	the
input	RDD,	consisting	of	exactly	the	number	of	partitions	specified	by	the
numPartitions	argument.	The	repartition()	method	may	require	a
shuffle,	and,	unlike	partitionBy(),	it	has	no	option	to	change	the	partitioner
or	partitioning	function.	The	repartition()	method	also	lets	you	create
more	partitions	in	the	target	RDD	than	existed	in	the	input	RDD.	Listing	5.10
shows	an	example	of	the	repartition()	function.

Listing	5.10	The	repartition()	Function

Click	here	to	view	code	image

kvrdd	=	sc.parallelize([(1,'A'),(2,'B'),(3,'C'),(4,'D')],4)

kvrdd.repartition(2).getNumPartitions()

#	returns	2

coalesce()

Syntax:
RDD.coalesce(numPartitions,	shuffle=False)

The	coalesce()	method	returns	a	new	RDD	consisting	of	the	number	of
partitions	specified	by	the	numPartitions	argument.	The	coalesce()
method	also	allows	you	to	control	whether	the	repartitioning	triggers	a	shuffle,
using	the	Boolean	shuffle	argument.	The	operation	coalesce(n,
shuffle=True)	is	functionally	equivalent	to	repartition(n).

The	coalesce()	method	is	an	optimized	implementation	of
repartition().	Unlike	repartition(),	however,	coalesce()	gives
you	more	control	over	the	shuffle	behavior	and,	in	many	cases,	allows	you	to
avoid	data	movement.	Also,	unlike	repartition(),	coalesce()	only	lets
you	decrease	the	number	of	target	partitions	from	the	number	of	partitions	in
your	input	RDD.

Listing	5.11	demonstrates	the	use	of	the	coalesce()	function	with	the
shuffle	argument	set	to	False.

Listing	5.11	The	coalesce()	Function
Click	here	to	view	code	image

kvrdd	=	sc.parallelize([(1,'A'),(2,'B'),(3,'C'),(4,'D')],4)

kvrdd.coalesce(2,	shuffle=False).getNumPartitions()

#	returns	2

repartitionAndSortWithinPartitions()

Syntax:
Click	here	to	view	code	image

RDD.repartitionAndSortWithinPartitions(numPartitions=None,

partitionFunc=portable_hash,

ascending=True,

keyfunc=<lambda	function>)

The	repartitionAndSortWithinPartitions()	method	repartitions
the	input	RDD	into	the	number	of	partitions	directed	by	the	numPartitions
argument	and	is	partitioned	according	to	the	function	specified	by	the
partitionFunc	argument.	Within	each	resulting	partition,	records	are	sorted
by	their	keys,	as	defined	by	the	keyfunc	argument,	in	the	sort	order
determined	by	the	ascending	argument.

The	repartitionAndSortWithinPartitions()	method	is	commonly
used	to	implement	a	secondary	sort.	The	sorting	capability	for	key/value	pair
RDDs	is	normally	based	on	an	arbitrary	key	hash	or	a	range;	this	becomes	more
challenging	with	key/value	pairs	with	composite	keys,	such	as	((k1,	k2),	v).	If
you	wanted	to	sort	on	k1	first	and	then	within	a	partition	sort	the	k2	values	for
each	k1,	this	would	involve	a	secondary	sort.

Listing	5.12	demonstrates	the	use	of	the
repartitionAndSortWithinPartitions()	method	to	perform	a
secondary	sort	on	a	key/value	pair	RDD	with	a	composite	key.	The	first	part	of
the	key	is	grouped	in	separate	partitions;	the	second	part	of	the	key	is	then	sorted
in	descending	order.	Note	the	use	of	the	glom()	function	to	inspect	partitions;
we	discuss	this	function	shortly.

Listing	5.12	The
repartitionAndSortWithinPartitions()	Function
Click	here	to	view	code	image

kvrdd	=	sc.parallelize([((1,99),'A'),((1,101),'B'),((2,99),'C'),

((2,101),'D')],2)

kvrdd.glom().collect()

#	returns:

#	[[((1,	99),	'A'),	((1,	101),	'B')],	[((2,	99),	'C'),	((2,	101),	'D')]]

kvrdd2	=	kvrdd.repartitionAndSortWithinPartitions(\

numPartitions=2,

ascending=False,

keyfunc=lambda	x:	x[1])

kvrdd2.glom().collect()

#	returns:

#	[[((1,	101),	'B'),	((1,	99),	'A')],	[((2,	101),	'D'),	((2,	99),	'C')]]

Partition-Specific	or	Partition-Aware	API	Methods
Many	of	Spark’s	methods	are	designed	to	interact	with	partitions	as	atomic	units;
these	include	both	actions	and	transformations.	Some	of	the	methods	are
described	in	the	following	sections.

foreachPartition()

Syntax:
RDD.foreachPartition(func)

The	foreachPartition()	method	is	an	action	similar	to	the	foreach()
action,	applying	a	function	specified	by	the	func	argument	to	each	partition	of
an	RDD.	Listing	5.13	shows	an	example	of	the	foreachPartition()
method.

Listing	5.13	The	foreachPartition()	Action
Click	here	to	view	code	image

def	f(x):

				for	rec	in	x:

								print(rec)

kvrdd	=	sc.parallelize([((1,99),'A'),((1,101),'B'),((2,99),'C'),

((2,101),'D')],2)

kvrdd.foreachPartition(f)

#	returns:

#	((1,	99),	'A')

#	((1,	101),	'B')

#	((2,	99),	'C')

#	((2,	101),	'D')

Keep	in	mind	that	foreachPartition()	is	an	action,	not	a	transformation,
and	it	therefore	triggers	evaluation	of	the	input	RDD	and	its	entire	lineage.
Furthermore,	the	function	results	in	data	going	to	the	Driver,	so	be	mindful	of	the

final	RDD	data	volumes	when	running	this	function.

glom()

Syntax:
RDD.glom()

The	glom()	method	returns	an	RDD	created	by	coalescing	all	the	elements
within	each	partition	into	a	list.	This	is	useful	for	inspecting	RDD	partitions	as
collated	lists;	you	saw	an	example	of	this	function	in	Listing	5.12.

lookup()

Syntax:
RDD.lookup(key)

The	lookup()	method	returns	the	list	of	values	in	an	RDD	for	the	key
referenced	by	the	key	argument.	If	used	against	an	RDD	partitioned	with	a
known	partitioner,	lookup()	uses	the	partitioner	to	narrow	its	search	to	only
the	partitions	where	the	key	would	be	present.

Listing	5.14	shows	an	example	of	the	lookup()	method.

Listing	5.14	The	lookup()	Method
Click	here	to	view	code	image

kvrdd	=	sc.parallelize([(1,'A'),(1,'B'),(2,'C'),(2,'D')],2)

kvrdd.lookup(1)

#	returns	['A',	'B']

mapPartitions()

Syntax:
Click	here	to	view	code	image

RDD.mapPartitions(func,	preservesPartitioning=False)

The	mapPartitions()	method	returns	a	new	RDD	by	applying	a	function
(the	func	argument)	to	each	partition	of	this	RDD.	Listing	5.15	demonstrates
using	the	mapPartitions()	method	to	invert	the	key	and	value	within	each

partition.

Listing	5.15	The	mapPartitions()	Function
Click	here	to	view	code	image

kvrdd	=	sc.parallelize([(1,'A'),(1,'B'),(2,'C'),(2,'D')],2)

def	f(iterator):	yield	[(b,	a)	for	(a,	b)	in	iterator]

kvrdd.mapPartitions(f).collect()

#	returns	[[('A',	1),	('B',	1)],	[('C',	2),	('D',	2)]]

One	of	the	biggest	advantages	of	the	mapPartitions()	method	is	that	the
function	referenced	is	called	once	per	partition	as	opposed	to	once	per	element;
this	can	be	particularly	beneficial	if	the	function	has	notable	overhead	for
creation.

Many	of	Spark’s	other	transformations	use	the	mapPartitions()	function
internally.	There	is	also	a	related	transformation	called
mapPartitionsWithIndex(),	which	returns	functions	similarly	but	tracks
the	index	of	the	original	partition.

RDD	Storage	Options
Thus	far,	we	have	discussed	RDDs	as	distributed	immutable	collections	of
objects	that	reside	in	memory	on	cluster	Worker	nodes.	There	are,	however,
other	storage	options	for	RDDs	that	are	beneficial	for	a	number	of	reasons.
Before	we	discuss	the	various	RDD	storage	levels	and	then	caching	and
persistence,	let’s	review	the	concept	of	RDD	lineage.

RDD	Lineage	Revisited
Recall	that	Spark	plans	the	execution	of	a	program	as	a	DAG	(directed	acyclic
graph),	which	is	a	set	of	operations	separated	into	stages	with	stage
dependencies.	Some	operations,	such	as	map()	operations,	can	be	completely
parallelized,	and	some	operations,	such	as	reduceByKey(),	require	a	shuffle.
This	naturally	introduces	a	stage	dependency.

The	Spark	Driver	keeps	track	of	every	RDD’s	lineage—that	is,	the	series	of
transformations	performed	to	yield	an	RDD	or	a	partition	thereof.	This	enables

every	RDD	at	every	stage	to	be	reevaluated	in	the	event	of	a	failure,	which
provides	the	resiliency	in	Resilient	Distributed	Datasets.
Consider	the	simple	example	involving	only	one	stage	shown	in	Figure	5.5.

Figure	5.5	RDD	lineage.

Listing	5.16	shows	a	summary	of	a	physical	execution	plan	created	by	Spark
using	the	toDebugString()	function.

Listing	5.16	The	toDebugString()	Function
Click	here	to	view	code	image

>>>	print(longwords.toDebugString())

(1)	PythonRDD[6]	at	collect	at	<stdin>:1	[]

|	MapPartitionsRDD[1]	at	textFile	at	..[]

|	file://lorem.txt	HadoopRDD[0]	at	textFile	at	..[]

The	action	longwords.count()	forces	evaluation	of	each	of	the	parent
RDDs	to	longwords.	If	this	or	any	other	action,	such	as
longwords.take(1)	or	longwords.collect(),	is	called	a	subsequent
time,	the	entire	lineage	is	reevaluated.	In	simple	cases,	with	small	amounts	of
data	with	one	or	two	stages,	these	reevaluations	are	not	an	issue,	but	in	many
circumstances,	they	can	be	inefficient	and	impact	recovery	times	in	the	event	of
failure.

RDD	Storage	Options
RDDs	are	stored	in	their	partitions	on	various	worker	nodes	in	a	Spark	YARN,
Standalone,	or	Mesos	cluster.	RDDs	have	six	basic	storage	levels	available,	as
summarized	in	Table	5.2.

Table	5.2	RDD	Storage	Levels

Storage	Level Description

MEMORY_ONLY RDD	partitions	are	stored	in	memory	only.	This
is	the	default.

MEMORY_AND_DISK RDD	partitions	that	do	not	fit	in	memory	are
stored	on	disk.

MEMORY_ONLY_SER* RDD	partitions	are	stored	as	serialized	objects
in	memory.	Use	this	option	to	save	memory,	as
serialized	objects	may	consume	less	space	than
the	deserialized	equivalent.

MEMORY_AND_DISK_SER* RDD	partitions	are	stored	as	serialized	objects
in	memory.	Objects	that	do	not	fit	into	memory
spill	to	disk.

DISK_ONLY RDD	partitions	are	stored	on	disk	only.

OFF_HEAP RDD	partitions	are	stored	as	serialized	objects
in	memory.	This	requires	that	off-heap	memory
be	enabled.	Note	that	this	storage	option	is	for
experimental	use	only.

*	These	options	are	relevant	for	Java	or	Scala	use	only.	Using	the	Spark	Python
API,	objects	are	always	serialized	using	the	Pickle	library,	so	it	is	not	necessary
to	specify	serialization.

In	addition,	there	are	replicated	storage	options	available	with	each	of	the	basic
storage	levels	listed	in	Table	5.2.	These	replicate	each	partition	to	more	than	one
cluster	node.	Replication	of	RDDs	consumes	more	space	across	the	cluster	but
enables	tasks	to	continue	to	run	in	the	event	of	a	failure	without	having	to	wait
for	lost	partitions	to	reprocess.	Although	fault	tolerance	is	provided	for	all	Spark
RDDs,	regardless	of	their	storage	level,	replicated	storage	levels	provide	much
faster	fault	recovery.

Storage-Level	Flags
A	storage	level	is	implemented	as	a	set	of	flags	that	control	the	RDD	storage.
There	are	flags	that	determine	whether	to	use	memory,	whether	to	spill	data	to
disk	if	it	does	not	fit	in	memory,	whether	to	store	objects	in	serialized	format,
and	whether	to	replicate	the	RDD	partitions	to	multiple	nodes.	Flags	are
implemented	in	the	StorageClass	constructor,	as	shown	in	Listing	5.17.

Listing	5.17	StorageClass	Constructor
Click	here	to	view	code	image

StorageLevel(useDisk,

				useMemory,

				useOffHeap,

				deserialized,

				replication=1)

The	useDisk,	useMemory,	useOffHeap,	and	deserialized	arguments
are	Boolean	values,	whereas	the	replication	argument	is	an	integer	value
that	defaults	to	1.	The	RDD	storage	levels	listed	in	Table	5.2	are	actually	static
constants	that	you	can	use	for	common	storage	levels.	Table	5.3	shows	these
static	constants	with	their	respective	flags.

Table	5.3	StorageLevel	Constants	and	Flags

Constant useDisk useMemory useOffHeap deserialized

MEMORY_ONLY False True False True

MEMORY_AND_DISK True True False True

MEMORY_ONLY_SER False True False False

MEMORY_AND_DISK_SER True True False False

DISK_ONLY True False False False

MEMORY_ONLY_2 False True False True

MEMORY_AND_DISK_2 True True False True

MEMORY_ONLY_SER_2 False True False False

MEMORY_AND_DISK_SER_2 True True False False

DISK_ONLY_2 True False False False

OFF_HEAP False False True False

getStorageLevel()

Syntax:
RDD.getStorageLevel()

The	Spark	API	includes	a	function	called	getStorageLevel()	that	you	can
use	to	inspect	the	storage	level	for	an	RDD.	The	getStorageLevel()
function	returns	the	different	storage	option	flags	set	for	an	RDD.	The	return
value	in	the	case	of	PySpark	is	an	instance	of	the	class
pyspark.StorageLevel.	Listing	5.18	shows	how	to	use	the
getStorageLevel()	function.

Listing	5.18	The	getStorageLevel()	Function
Click	here	to	view	code	image

>>>	lorem	=	sc.textFile('file://lorem.txt')

>>>	lorem.getStorageLevel()

StorageLevel(False,	False,	False,	False,	1)

#	get	individual	flags

>>>	lorem_sl	=	lorem.getStorageLevel()

>>>	lorem_sl.useDisk

False

>>>	lorem_sl.useMemory

False

>>>	lorem_sl.useOffHeap

False

>>>	lorem_sl.deserialized

False

>>>	lorem_sl.replication

1

Choosing	a	Storage	Level
RDD	storage	levels	enable	you	to	tune	Spark	jobs	and	to	accommodate	large-
scale	operations	that	would	otherwise	not	fit	into	the	aggregate	memory
available	across	the	cluster.	In	addition,	replication	options	for	the	available
storage	levels	can	reduce	recovery	times	in	the	event	of	a	task	or	node	failure.

Generally	speaking,	if	an	RDD	fits	into	the	available	memory	across	the	cluster,
the	default	memory-only	storage	level	is	sufficient	and	will	provide	the	best
performance.

RDD	Caching
A	Spark	RDD,	including	all	of	its	parent	RDDs,	is	normally	recomputed	for	each
action	called	in	the	same	session	or	application.	Caching	an	RDD	persists	the
data	in	memory;	the	same	routine	can	then	reuse	it	multiple	times	when
subsequent	actions	are	called,	without	requiring	reevaluation.

Caching	does	not	trigger	execution	or	computation;	rather,	it	is	a	suggestion.	If
there	is	not	enough	memory	available	to	cache	the	RDD,	it	is	reevaluated	for
each	lineage	triggered	by	an	action.	Caching	never	spills	to	disk	because	it	only
uses	memory.	The	cached	RDD	persists	using	the	MEMORY_ONLY	storage	level.

Under	the	appropriate	circumstances,	caching	is	a	useful	tool	to	increase
application	performance.	Listing	5.19	shows	an	example	of	caching	with	RDDs.

Listing	5.19	Caching	RDDs
Click	here	to	view	code	image

doc	=	sc.textFile("file:///opt/spark/data/shakespeare.txt")

words	=	doc.flatMap(lambda	x:	x.split())	\

				.map(lambda	x:	(x,1))	\

				.reduceByKey(lambda	x,	y:	x	+	y)

words.cache()

words.count()	#	triggers	computation

#	returns:	33505

words.take(3)	#	no	computation	required

#	returns:	[('Quince',	8),	('Begin',	9),	('Just',	12)]

words.count()	#	no	computation	required

#	returns:	33505

Persisting	RDDs
Cached	partitions,	partitions	of	an	RDD	where	the	cache()	method	ran,	are
stored	in	memory	on	Executor	JVMs	on	Spark	Worker	nodes.	If	one	of	the
Worker	nodes	were	to	fail	or	become	unavailable,	Spark	would	need	to	re-create
the	cached	partition	from	its	lineage.

The	persist()	method,	introduced	in	Chapter	4,	offers	additional	storage
options,	including	MEMORY_AND_DISK,	DISK_ONLY,	MEMORY_ONLY_SER,
MEMORY_AND_DISK_SER,	and	MEMORY_ONLY,	which	is	the	same	as	the
cache()	method.	When	using	persistence	with	one	of	the	disk	storage	options,
the	persisted	partitions	are	stored	as	local	files	on	the	Worker	nodes	running
Spark	Executors	for	the	application.	You	can	use	the	persisted	data	on	disk	to
reconstitute	partitions	lost	due	to	Executor	or	memory	failure.

In	addition,	persist()	can	use	replication	to	persist	the	same	partition	on
more	than	one	node.	Replication	makes	reevaluation	less	likely	because	more
than	one	node	would	need	to	fail	or	be	unavailable	to	trigger	recomputation.

Persistence	offers	additional	durability	over	caching,	while	still	offering
increased	performance.	It	is	worth	reiterating	that	Spark	RDDs	are	fault	tolerant
regardless	of	persistence	and	can	always	be	re-created	in	the	event	of	a	failure.
Persistence	simply	expedites	this	process.

Persistence,	like	caching,	is	only	a	suggestion,	and	it	takes	place	only	after	an
action	is	called	to	trigger	evaluation	of	an	RDD.	If	sufficient	resources	are	not
available—for	instance,	if	there	is	not	enough	memory	available—persistence	is
not	implemented.

You	can	inspect	the	persistence	state	and	current	storage	levels	from	any	RDD	at
any	stage	by	using	the	getStorageLevel()	method,	discussed	earlier	in	this
chapter.

The	methods	available	for	persisting	and	unpersisting	RDDs	are	documented	in
the	following	sections.

persist()

Syntax:
Click	here	to	view	code	image

RDD.persist(storageLevel=StorageLevel.MEMORY_ONLY_SER)

The	persist()	method	specifies	the	desired	storage	level	and	storage
attributes	for	an	RDD.	The	desired	storage	options	are	implemented	the	first
time	the	RDD	is	evaluated.	If	this	is	not	possible—for	example,	if	there	is
insufficient	memory	to	persist	the	RDD	in	memory—Spark	reverts	to	its	normal
behavior	of	retaining	only	required	partitions	in	memory.

The	storageLevel	argument	is	expressed	as	either	a	static	constant	or	a	set
of	storage	flags	(see	the	section	“RDD	Storage	Options,”	earlier	in	this	chapter).
For	example,	to	set	a	storage	level	of	MEMORY_AND_DISK_SER_2,	you	could
use	either	of	the	following:
Click	here	to	view	code	image

myrdd.persist(StorageLevel.MEMORY_AND_DISK_SER_2)

myrdd.persist(StorageLevel(True,	True,	False,	False,	2))

The	default	storage	level	is	MEMORY_ONLY.

unpersist()

Syntax:
RDD.unpersist()

The	unpersist()	method	“unpersists”	the	RDD.	Use	it	if	you	no	longer	need
the	RDD	to	persist.	Also,	if	you	want	to	change	the	storage	options	for	a
persisted	RDD,	you	must	unpersist	the	RDD	first.	If	you	attempt	to	change	the
storage	level	of	an	RDD	marked	for	persistence,	you	get	the	exception	“Cannot
change	storage	level	of	an	RDD	after	it	was	already	assigned	a	level.”

Listing	5.20	shows	several	examples	of	persistence.

Listing	5.20	Persisting	an	RDD
Click	here	to	view	code	image

doc	=	sc.textFile("file:///opt/spark/data/shakespeare.txt")

words	=	doc.flatMap(lambda	x:	x.split())	\

				.map(lambda	x:	(x,1))	\

				.reduceByKey(lambda	x,	y:	x	+	y)

words.persist()

words.count()

#	returns:	33505

words.take(3)

#	returns:	[('Quince',	8),	('Begin',	9),	('Just',	12)]

print(words.toDebugString().decode("utf-8"))

#	returns:

#	(1)	PythonRDD[46]	at	RDD	at	PythonRDD.scala:48	[Memory	Serialized	1x	

Replicated]

#		|							CachedPartitions:	1;	MemorySize:	644.8	KB;	

ExternalBlockStoreSize:	...

#		|		MapPartitionsRDD[45]	at	mapPartitions	at	PythonRDD.scala:427	[...]

#		|		ShuffledRDD[44]	at	partitionBy	at	NativeMethodAccessorImpl.java:0	

[...]

#		+-(1)	PairwiseRDD[43]	at	reduceByKey	at	<stdin>:3	[Memory	Serialized	

1x	...]

#					|		PythonRDD[42]	at	reduceByKey	at	<stdin>:3	[Memory	Serialized	1x	

Replicated]

#					|		file:///opt/spark/data/shakespeare.txt	MapPartitionsRDD[41]	at	

textFile	...

#					|		file:///opt/spark/data/shakespeare.txt	HadoopRDD[40]	at	

textFile	at	...

Note	that	the	unpersist()	method	can	also	be	used	to	remove	an	RDD	that
was	cached	using	the	cache()	method.

Persisted	RDDs	are	also	viewable	in	the	Spark	application	UI	via	the	Storage
tab,	as	shown	in	Figures	5.6	and	5.7.

Figure	5.6	Viewing	persisted	RDDs	in	the	Spark	application	UI.

Figure	5.7	Viewing	details	of	a	persisted	RDD	in	the	Spark	application	UI.

Choosing	When	to	Persist	or	Cache	RDDs
Caching	can	improve	performance	or	reduce	recovery	times.	If	an	RDD	is	likely
to	be	reused	and	if	sufficient	memory	is	available	on	Worker	nodes	in	the	cluster,
it	is	typically	beneficial	to	cache	these	RDDs.	Iterative	algorithms	such	as	those
used	in	machine	learning	routines	are	often	good	candidates	for	caching.

Caching	reduces	recovery	times	in	the	event	of	failure	because	RDDs	need	to	be
recomputed	only	starting	from	the	cached	RDDs.	However,	if	you	require	a
higher	degree	of	in-process	durability,	consider	one	of	the	disk-based	persistence
options	or	a	higher	replication	level,	which	increases	the	likelihood	that	a
persisted	replica	of	an	RDD	exists	somewhere	in	the	Spark	cluster.

Checkpointing	RDDs

Checkpointing	involves	saving	data	to	a	file.	Unlike	the	disk-based	persistence
option	just	discussed,	which	deletes	the	persisted	RDD	data	when	the	Spark
Driver	program	finishes,	checkpointed	data	persists	beyond	the	application.

Checkpointing	eliminates	the	need	for	Spark	to	maintain	RDD	lineage,	which
can	be	problematic	when	the	lineage	gets	long,	such	as	with	streaming	or
iterative	processing	applications.	Long	lineage	typically	leads	to	long	recovery
times	and	the	possibility	of	a	stack	overflow.

Checkpointing	data	to	a	distributed	filesystem	such	as	HDFS	provides	additional
storage	fault	tolerance	as	well.	Checkpointing	is	expensive,	so	implement	it	with
some	consideration	about	when	you	should	checkpoint	an	RDD.

As	with	the	caching	and	persistence	options,	checkpointing	happens	only	after
an	action	is	called	against	an	RDD	to	force	computation,	such	as	count().
Note	that	checkpointing	must	be	requested	before	any	action	is	requested	against
an	RDD.

The	methods	associated	with	checkpointing	are	documented	in	the	following
sections.

setCheckpointDir()

Syntax:
sc.setCheckpointDir(dirName)

The	setCheckpointDir()	method	sets	the	directory	under	which	RDDs
will	be	checkpointed.	If	you	are	running	Spark	on	a	Hadoop	cluster,	the	directory
specified	by	the	dirName	argument	must	be	an	HDFS	path.

checkpoint()

Syntax:
RDD.checkpoint()

The	checkpoint()	method	marks	the	RDD	for	checkpointing.	It	will	be
checkpointed	upon	the	first	action	executed	against	the	RDD,	and	the	files	saved
to	the	directory	will	be	configured	using	the	setCheckpointDir()	method.
The	checkpoint()	method	must	be	called	before	any	action	is	requested
against	the	RDD.

When	checkpointing	is	complete,	the	complete	RDD	lineage,	including	all

references	to	the	RDDs	and	parent	RDDs,	are	removed.

Specifying	the	Checkpoint	Directory	Prior	to	Running
checkpoint()

You	must	specify	the	checkpoint	directory	by	using	the
setCheckpointDir()	method	before	attempting	to	checkpoint	an
RDD;	otherwise,	you	will	receive	the	following	error:

Click	here	to	view	code	image
org.apache.spark.SparkException:

Checkpoint	directory	has	not	been	set	in	the	SparkContext

The	checkpoint	directory	is	valid	only	for	the	current	SparkContext,	so	you	need
to	execute	setCheckpointDir()	for	each	separate	Spark	application.	In
addition,	the	checkpoint	directory	cannot	be	shared	across	different	Spark
applications.

isCheckpointed()

Syntax:
RDD.isCheckpointed()

The	isCheckpointed()	function	returns	a	Boolean	response	about	whether
the	RDD	was	checkpointed.

getCheckpointFile()

Syntax:
RDD.	getCheckpointFile()

The	getCheckpointFile()	function	returns	the	name	of	the	file	to	which
the	RDD	was	checkpointed.

Listing	5.21	demonstrates	the	use	of	checkpointing.

Listing	5.21	Checkpointing	RDDs
Click	here	to	view	code	image

sc.setCheckpointDir('file:///opt/spark/data/checkpoint')

doc	=	sc.textFile("file:///opt/spark/data/shakespeare.txt")

words	=	doc.flatMap(lambda	x:	x.split())	\

				.map(lambda	x:	(x,1))	\

				.reduceByKey(lambda	x,	y:	x	+	y)

words.checkpoint()

words.count()

#	returns:	33505

words.isCheckpointed()

#	returns:	True

words.getCheckpointFile()

#	returns:

#	'file:/opt/spark/data/checkpoint/df6370eb-7b5f-4611-99a8-

bacb576c2ea1/rdd-15'

Exercise:	Checkpointing	RDDs
This	exercise	shows	the	impact	that	checkpointing	can	have	on	an	iterative
routine.	Use	any	installation	of	Spark	for	this	exercise	and	follow	these	steps:

1.	For	this	exercise,	you	will	run	a	script	in	non-interactive	mode	and	need	to
suppress	informational	log	messages,	so	perform	the	following	steps:
a.	Make	a	copy	of	the	default	log4j.properties	template	file,	as
follows:

Click	here	to	view	code	image
cd	/opt/spark/conf

cp	log4j.properties.template	log4j.properties.erroronly

b.	Use	a	text	editor	(such	as	Vi	or	Nano)	to	open	the	newly	created
log4j.properties.erroronly	file	and	locate	the	following	line:
log4j.rootCategory=INFO,	console

c.	Change	the	line	to	the	following:
log4j.rootCategory=ERROR,	console

Save	the	file.
2.	Create	a	new	script	called	looping_test.py,	and	copy	and	paste	the
code	below	into	the	file:

Click	here	to	view	code	image
import	sys

from	pyspark	import	SparkConf,	SparkContext

sc	=	SparkContext()

sc.setCheckpointDir("file:///tmp/checkpointdir")

rddofints	=	sc.parallelize([1,2,3,4,5,6,7,8,9,10])

try:

				#	this	will	create	a	very	long	lineage	for	rddofints

				for	i	in	range(1000):

								rddofints	=	rddofints.map(lambda	x:	x+1)

								if	i	%	10	==	0:

												print("Looped	"	+	str(i)	+	"	times")

												#rddofints.checkpoint()

												rddofints.count()

except	Exception	as	e:

				print("Exception	:	"	+	str(e))

				print("RDD	Debug	String	:	")

				print(rddofints.toDebugString())

				sys.exit()

print("RDD	Debug	String	:	")

print(rddofints.toDebugString())

3.	Execute	the	looping_test.py	script	by	using	spark-submit	and
your	custom	log4j.properties	file,	as	follows:

Click	here	to	view	code	image
$	spark-submit	\

--master	local	\

--driver-java-options	\

"-Dlog4j.configuration=log4j.properties.erroronly"	\

looping_test.py

After	a	certain	number	of	iterations,	you	should	see	an	exception	like	this:
Click	here	to	view	code	image

PicklingError:	Could	not	pickle	object	as	excessively	deep	recursion	

required.

4.	Open	the	looping_test.py	file	again	with	a	text	editor	and	uncomment
the	following	line:

Click	here	to	view	code	image
#rddofints.checkpoint()

So	the	file	should	now	read:

...

print("Looped	"	+	str(i)	+	"	times")

rddofints.checkpoint()

rddofints.count()

...

5.	Execute	the	script	again,	using	spark-submit,	as	shown	in	step	3.	You
should	now	see	that	all	1,000	iterations	have	completed,	thanks	to	the
periodic	checkpointing	of	the	RDD.	Furthermore,	note	the	debug	string
printed	after	the	routine:

Click	here	to	view	code	image
(1)	PythonRDD[301]	at	RDD	at	PythonRDD.scala:43	[]

|	PythonRDD[298]	at	RDD	at	PythonRDD.scala:43	[]

|	ReliableCheckpointRDD[300]	at	count	at	...

Checkpointing,	caching,	and	persistence	are	useful	functions	in	Spark
programming.	They	can	not	only	improve	performance	but,	in	some	cases,	as
you	have	just	seen,	can	mean	the	difference	between	a	program	completing
successfully	or	not.

Find	the	complete	source	code	for	this	exercise	in	the	checkpointing	folder
at	https://github.com/sparktraining/spark_using_python.

Processing	RDDs	with	External	Programs
Spark	provides	a	mechanism	to	run	functions	(transformations)	using	languages
other	than	those	native	to	Spark	(Scala,	Python,	and	Java).	You	can	also	use
Ruby,	Perl,	or	Bash,	among	others.	The	languages	do	not	need	to	be	scripting
languages,	either;	you	can	use	Spark	with	C	or	FORTRAN,	for	example.

There	are	different	reasons	for	wanting	to	do	use	languages	other	than	those
native	to	Spark,	such	as	wanting	to	use	in	your	Spark	programs	some	existing
code	libraries	that	are	not	in	Python,	Scala,	or	Java	without	having	to	rewrite
them	in	a	native	Spark	language.

Using	external	programs	with	Spark	is	achieved	through	the	pipe()	function.

Possible	Issues	with	External	Processes	in	Spark
Use	 the	pipe()	 function	 carefully	 because	 piped	 commands	 may	 fork
excessive	 amounts	 of	RAM.	Because	 the	 forked	 subprocesses	 created	 by
the	pipe()	function	are	out	of	Spark’s	resource	management	scope,	they
may	also	cause	performance	degradation	for	other	tasks	running	on	Worker

https://github.com/sparktraining/spark_using_python

nodes.

pipe()

Syntax:
Click	here	to	view	code	image

RDD.pipe(command,	env=None,	checkCode=False)

The	pipe()	method	returns	an	RDD	created	by	“piping”	elements	through	a
forked	external	process	specified	by	the	command	argument.	The	env	argument
is	a	dict	of	environment	variables	that	defaults	to	None.	The	checkCode
parameter	specifies	whether	to	check	the	return	value	of	the	shell	command.

The	script	or	program	you	supply	as	the	command	argument	needs	to	read	from
STDIN	and	write	its	output	to	STDOUT.

Consider	the	Perl	script	saved	as	parsefixedwidth.pl	in	Listing	5.22;	it	is
used	to	parse	fixed-width	output	data,	a	common	file	format	with	extracts	from
mainframes	and	legacy	systems.	To	make	this	script	executable,	you	need	to	use
the	following:
chmod	+x	parsefixedwidth.pl.

Listing	5.22	Sample	External	Transformation	Program
(parsefixedwidth.pl)
Click	here	to	view	code	image

#!/usr/bin/env	perl

my	$format	=	'A6	A8	A20	A2	A5';

while	(<>)	{

				chomp;

				my($custid,	$orderid,	$date,

					$city,	$state,	$zip)	=

				unpack($format,	$_);

				print	"$custid\t$orderid\t$date\t$city\t$state\t$zip";

}

Listing	5.23	demonstrates	the	use	of	the	pipe()	command	to	run	the
parsefixedwidth.pl	script	from	Listing	5.22.

Listing	5.23	The	pipe()	Function
Click	here	to	view	code	image

sc.addFile("/home/ubuntu/parsefixedwidth.pl")

fixed_width	=	sc.parallelize(['3840961028752220160317Hayward					

CA94541'])

piped	=	fixed_width.pipe("parsefixedwidth.pl")	\

.map(lambda	x:	x.split('\t'))

piped.collect()

#	returns	[['384096',	'10287522',	'20160317',	'Hayward',	'CA',	'94541']]

The	addFile()	operation	is	required	because	you	need	to	distribute	the
parsefixedwidth.pl	Perl	script	to	all	Worker	nodes	participating	in	the
cluster	prior	to	running	the	pipe()	transformation.

Note	that	you	also	need	to	ensure	that	the	interpreter	or	host	program	(in	this
case,	Perl)	exists	in	the	path	of	all	Worker	nodes.	The	complete	source	code	for
this	example	is	in	the	using-	external-programs	folder	at
https://github.com/sparktraining/spark_using_python.

Data	Sampling	with	Spark
When	using	Spark	for	development	and	discovery,	you	may	need	to	sample	data
in	RDDs	before	running	a	process	across	the	entirety	of	an	input	dataset	or
datasets.	The	Spark	API	includes	several	functions	to	sample	RDDs	and	produce
new	RDDs	from	the	sampled	data.	These	sample	functions	include
transformations	that	return	new	RDDs	and	actions	that	return	data	to	the	Spark
Driver	program.	The	following	sections	look	at	a	couple	sampling
transformations	and	actions	that	Spark	provides.

sample()

Syntax:
Click	here	to	view	code	image

RDD.sample(withReplacement,	fraction,	seed=None)

The	sample()	transformation	creates	a	sampled	subset	RDD	from	an	original
RDD,	based	on	a	percentage	of	the	overall	dataset.

https://github.com/sparktraining/spark_using_python

The	withReplacement	argument	is	a	Boolean	value	that	specifies	whether
elements	in	an	RDD	can	be	sampled	multiple	times.

The	fraction	argument	is	a	double	value	between	0	and	1	that	represents	the
probability	an	element	will	be	chosen.	Effectively,	this	represents	the
approximate	percentage	of	the	dataset	you	wish	to	return	to	the	resultant	sampled
RDD.	Note	that	if	you	specify	a	value	larger	than	1	for	this	argument,	it	defaults
to	1	anyway.

The	optional	seed	argument	is	an	integer	representing	a	seed	for	the	random
number	generator	used	to	determine	whether	to	include	an	element	in	the	return
RDD.

Listing	5.24	shows	an	example	of	the	sample()	transformation	used	to	create
approximately	a	10%	subset	of	web	log	events	from	a	corpus	of	web	logs.

Listing	5.24	Sampling	Data	Using	the	sample()	Function
Click	here	to	view	code	image

doc	=	sc.textFile("file:///opt/spark/data/shakespeare.txt")

doc.count()

#	returns:	129107

sampled_doc	=	doc.sample(False,	0.1,	seed=None)

sampled_doc.count()

#	returns:	12879	(approximately	10%	of	the	original	RDD)

There	is	also	a	similar	sampleByKey()	function	that	operates	on	a	key/value
pair	RDD.

takeSample()

Syntax:
Click	here	to	view	code	image

RDD.takeSample(withReplacement,	num,	seed=None)

The	takeSample()	action	returns	a	random	list	of	values	(elements	or
records)	from	the	sampled	RDD.

The	num	argument	is	the	number	of	randomly	selected	records	to	be	returned.

The	withReplacement	and	seed	arguments	behave	similarly	to	the

sample()	function	just	described.

Listing	5.25	shows	an	example	of	the	takeSample()	action.

Listing	5.25	Using	the	takeSample()	Function
Click	here	to	view	code	image

dataset	=	sc.parallelize([1,2,3,4,5,6,7,8,9,10])

dataset.takeSample(False,	3)

#	returns	[6,	7,	5]	(your	results	may	vary!)

Understanding	Spark	Application	and	Cluster
Configuration
Practically	everything	in	Spark	is	configurable,	and	everything	that	is
configurable	typically	has	a	default	setting.	This	section	takes	a	closer	look	at
configuration	for	Spark	applications	and	clusters,	focusing	specifically	on	the
settings	and	concepts	you	need	to	be	aware	of	as	a	Spark	engineer	or	developer.

Spark	Environment	Variables
Spark	environment	variables	are	set	by	the	spark-env.sh	script	located	in
the	$SPARK_HOME/conf	directory.	The	variables	set	Spark	daemon	behavior
and	configuration,	and	they	set	environment-level	application	configuration
settings,	such	as	which	Spark	Master	an	application	should	use.	The	spark-
env.sh	script	is	read	by	the	following:

	Spark	Standalone	Master	and	Worker	daemons	upon	startup

	Spark	applications,	using	spark-submit

Listing	5.26	provides	some	examples	of	settings	for	some	common	environment
variables;	these	could	be	set	in	your	spark-env.sh	file	or	as	environment
variables	in	your	shell	prior	to	running	an	interactive	Spark	process	such	as
pyspark	or	spark-shell.

Listing	5.26	Spark	Environment	Variables

Click	here	to	view	code	image

export	SPARK_HOME=${SPARK_HOME:-/usr/lib/spark}

export	SPARK_LOG_DIR=${SPARK_LOG_DIR:-/var/log/spark}

export	HADOOP_HOME=${HADOOP_HOME:-/usr/lib/hadoop}

export	HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-/etc/hadoop/conf}

export	HIVE_CONF_DIR=${HIVE_CONF_DIR:-/etc/hive/conf}

export	STANDALONE_SPARK_MASTER_HOST=sparkmaster.local

export	SPARK_MASTER_PORT=7077

export	SPARK_MASTER_IP=$STANDALONE_SPARK_MASTER_HOST

export	SPARK_MASTER_WEBUI_PORT=8080

export	SPARK_WORKER_DIR=${SPARK_WORKER_DIR:-/var/run/spark/work}

export	SPARK_WORKER_PORT=7078

export	SPARK_WORKER_WEBUI_PORT=8081

export	SPARK_DAEMON_JAVA_OPTS="-XX:OnOutOfMemoryError='kill	-9	%p'"

The	following	sections	take	a	look	at	some	of	the	most	common	Spark
environment	variables	and	their	use.

Cluster	Manager	Independent	Variables
Some	of	the	environment	variables	that	are	independent	of	the	cluster	manager
used	are	described	in	Table	5.4.

Table	5.4	Cluster	Manager	Independent	Variables

Environment	Variable Description

SPARK_HOME The	root	of	the	Spark	installation	directory
(for	example,	/opt/spark	or
/usr/lib/spark).	You	should	always	set
this	variable,	especially	if	you	have	multiple
versions	of	Spark	installed	on	a	system.
Failing	to	set	this	variable	is	a	common	cause
of	issues	when	running	Spark	applications.

JAVA_HOME The	location	where	Java	is	installed.

PYSPARK_PYTHON The	Python	binary	executable	to	use	for
PySpark	in	both	the	Driver	and	Workers.	If
not	specified,	the	default	Python	installation	is

used	(resolved	by	the	which	python
command).	This	should	definitely	be	set	if
you	have	more	than	one	version	of	Python	on
any	Driver	or	Worker	instances.

PYSPARK_DRIVER_PYTHON The	Python	binary	executable	to	use	for
PySpark	in	the	Driver	only;	defaults	to	the
value	defined	for	PYSPARK_PYTHON.

SPARKR_DRIVER_R The	R	binary	executable	to	use	for	the	SparkR
shell;	the	default	is	R.

Hadoop-Related	Environment	Variables
The	variables	described	in	Table	5.5	are	required	for	Spark	applications	that	need
access	to	HDFS	from	any	deployment	mode,	YARN	if	running	in	YARN	Client
or	YARN	Cluster	mode,	and	objects	in	HCatalog	or	Hive.

Table	5.5	Hadoop-Related	Environment	Variables

Environment
Variable

Description

HADOOP_CONF_DIR

or	YARN_CONF_DIR
The	location	of	the	Hadoop	configuration	files
(typically	/etc/hadoop/conf).	Spark	uses	this	to
locate	the	default	filesystem,	usually	the	URI	of	the
HDFS	NameNode,	and	the	address	of	the	YARN
ResourceManager.	Either	of	these	environment
variables	can	be	set,	but	typically,
HADOOP_CONF_DIR	is	preferred.

HADOOP_HOME The	location	where	Hadoop	is	installed.	Spark	uses	this
to	locate	the	Hadoop	configuration	files.

HIVE_CONF_DIR The	location	of	the	Hive	configuration	files.	Spark	uses
this	to	locate	the	Hive	metastore	and	other	Hive
properties	when	instantiating	a	HiveContext	object.
There	are	also	environment	variables	specific	to
HiveServer2,	such	as
HIVE_SERVER2_THRIFT_BIND_HOST	and
HIVE_SERVER2_THRIFT_PORT.	Typically,	just

setting	HADOOP_CONF_DIR	is	sufficient	because
Spark	can	infer	the	other	properties	relative	to	this.

YARN-Specific	Environment	Variables
The	environment	variables	described	in	Table	5.6	are	specific	to	Spark
applications	running	on	a	YARN	cluster,	either	in	Cluster	or	Client	deployment
mode.

Table	5.6	YARN-Specific	Environment	Variables

Environment	Variable Description

SPARK_EXECUTOR_INSTANCES The	number	of	Executor	processes	to	start
in	the	YARN	cluster;	defaults	to	2.

SPARK_EXECUTOR_CORES The	number	of	CPU	cores	allocated	to
each	Executor;	defaults	to	1.

SPARK_EXECUTOR_MEMORY The	amount	of	memory	allocated	to	each
Executor;	defaults	to	1GB.

SPARK_DRIVER_MEMORY The	amount	of	memory	allocated	to
Driver	processes	when	running	in	Cluster
deployment	mode;	defaults	to	1GB.

SPARK_YARN_APP_NAME The	name	of	your	application.	This
displays	in	the	YARN	ResourceManager
UI;	defaults	to	Spark.

SPARK_YARN_QUEUE The	named	YARN	queue	to	which
applications	are	submitted	by	default;
defaults	to	default.	Can	also	be	set	by
a	spark-submit	argument.	This
determines	allocation	of	resources	and
scheduling	priority.

SPARK_YARN_DIST_FILES	or
SPARK_YARN_DIST_ARCHIVES

A	comma-separated	list	of	files	of
archives	to	be	distributed	with	the	job.
Executors	can	then	reference	these	files	at
runtime.

As	previously	mentioned,	you	must	set	the	HADOOP_CONF_DIR	environment

variable	when	deploying	a	Spark	application	on	YARN.

Cluster	Application	Deployment	Mode	Environment	Variables
The	variables	listed	in	Table	5.7	are	used	for	applications	submitted	in	Cluster
mode—that	is,	applications	using	the	Standalone	or	YARN	cluster	managers
submitted	with	the	--deploy-mode	cluster	option	to	spark-submit.
In	the	case	of	YARN,	this	property	can	combine	with	the	master	argument	as
--master	yarn-cluster.	These	variables	are	read	by	Executor	and	Driver
processes	running	on	Workers	in	the	cluster	(Spark	Workers	or	YARN
NodeManagers).

Table	5.7	Cluster	Application	Deployment	Mode	Environment	Variables

Environment	Variable Description

SPARK_LOCAL_IP The	IP	address	of	the	machine	for	binding	Spark
processes.

SPARK_PUBLIC_DNS The	hostname	the	Spark	Driver	uses	to	advertise	to
other	hosts.

SPARK_CLASSPATH The	default	classpath	for	Spark.	This	is	important	if
you	are	importing	additional	classes	not	packaged
with	Spark	that	you	will	refer	to	at	runtime.

SPARK_LOCAL_DIRS The	directories	to	use	on	the	system	for	RDD	storage
and	shuffled	data.

When	running	an	interactive	Spark	session	(using	pyspark	or	spark-
shell),	the	spark-env.sh	file	is	not	read,	and	the	environment	variables	in
the	current	user	environment	(if	set)	are	used.

Many	Spark	environment	variables	have	equivalent	configuration	properties	that
you	can	set	in	a	number	of	additional	ways;	we	discuss	this	shortly.

Spark	Standalone	Daemon	Environment	Variables
The	environment	variables	shown	in	Table	5.8	are	read	by	daemons—Masters
and	Workers—in	a	Spark	Standalone	cluster.

Table	5.8	Spark	Standalone	Daemon	Environment	Variables

Environment	Variable Description

SPARK_MASTER_IP The	hostname	or	IP	address	of	the	host
running	the	Spark	Master	process.	This
should	be	set	on	all	nodes	of	the	Spark
cluster	and	on	any	client	hosts	that	will	be
submitting	applications.

SPARK_MASTER_PORT	and
SPARK_MASTER_

WEBUI_PORT

The	ports	used	for	IPC	communication	and
the	Master	web	UI,	respectively.	If	not
specified,	the	defaults	7077	and	8080	are
used.

SPARK_MASTER_OPTS	and
SPARK_WORKER_OPTS

Additional	Java	options	supplied	to	the	JVM
hosting	the	Spark	Master	or	Spark	Worker
processes.	If	used,	the	value	should	be	in	the
standard	form	-Dx=y.	Alternatively,	you
can	set	the	SPARK_DAEMON_JAVA_OPTS
environment	variable,	which	applies	to	all
Spark	daemons	running	on	the	system.

SPARK_DAEMON_MEMORY The	amount	of	memory	to	allocate	to	the
Master,	Worker,	and	HistoryServer
processes;	defaults	to	1GB.

SPARK_WORKER_INSTANCES The	number	of	Worker	processes	per	slave
node;	defaults	to	1.

SPARK_WORKER_CORES The	number	of	CPU	cores	for	the	Spark
Worker	process	used	by	Executors	on	the
system.

SPARK_WORKER_MEMORY The	amount	of	total	memory	Workers	have
to	grant	to	Executors.

SPARK_WORKER_PORT	and
SPARK_WORKER_

WEBUI_PORT

The	ports	used	for	IPC	communication	and
the	Worker	web	UI,	respectively.	If	not
specified,	the	defaults	of	8081	for	the	web
UI	and	a	random	port	for	the	Worker	port	are
used.

SPARK_WORKER_DIR Sets	the	working	directory	for	Worker

processes.

Spark	Configuration	Properties
Spark	configuration	properties	are	typically	set	on	a	node,	such	as	a	Master	or
Worker	node,	or	an	application	by	the	Driver	host	submitting	the	application.
They	often	have	a	more	restricted	scope—such	as	for	the	life	of	an	application—
than	their	equivalent	environment	variables,	and	they	take	higher	precedence
than	environment	variables.

There	are	numerous	Spark	configuration	properties	related	to	different
operational	aspects;	some	of	the	most	common	ones	are	described	in	Table	5.9.

Table	5.9	Common	Spark	Configuration	Properties

Property Description

spark.master The	address	of	the	Spark
Master	(for	example,
spark://

<masterhost>:7077	for	a
Standalone	cluster).	If	the
value	is	yarn,	the	Hadoop
configuration	files	are	read	to
locate	the	YARN
ResourceManager.	There	is	no
default	value	for	this	property.

spark.driver.memory The	amount	of	memory
allocated	to	the	Driver;	defaults
to	1GB.

spark.executor.memory The	amount	of	memory	to	use
per	Executor	process;	defaults
to	1GB.

spark.executor.cores The	number	of	cores	to	use	on
each	Executor.	In	Standalone
mode,	this	property	defaults	to
using	all	available	cores	on	the
Worker	node.	Setting	this

property	to	a	value	less	than
the	available	number	of	cores
enables	multiple	concurrent
Executor	processes	to	spawn.
In	YARN	mode,	this	property
defaults	to	1	core	per	Executor.

spark.driver.extraJavaOptions

and
spark.executor.extraJavaOptions

Additional	Java	options
supplied	to	the	JVM	hosting
the	Spark	Driver	or	Executor
processes.	If	used,	the	value
should	be	in	the	standard	form
-Dx=y.

spark.driver.extraClassPath	and
spark.executor.extraClassPath

Additional	classpath	entries	for
the	Driver	and	Executor
processes	if	you	require
additional	classes	that	are	not
packaged	with	Spark	to	be
imported.

spark.dynamicAllocation.enabled

and
spark.shuffle.service.enabled

Properties	that	are	used
together	to	modify	the	default
scheduling	behavior	in	Spark.
(Dynamic	allocation	is
discussed	later	in	this	chapter.)

Setting	Spark	Configuration	Properties
Spark	configuration	properties	are	set	through	the
$SPARK_HOME/conf/spark-defaults.conf	file,	read	by	Spark
applications	and	daemons	upon	startup.	Listing	5.27	shows	an	excerpt	from	a
typical	spark-defaults.conf	file.

Listing	5.27	Spark	Configuration	Properties	in	the	spark-
defaults.conf	File
Click	here	to	view	code	image

spark.master																					yarn

spark.eventLog.enabled											true

spark.eventLog.dir															hdfs:///var/log/spark/apps

spark.history.fs.logDirectory				hdfs:///var/log/spark/apps

spark.executor.memory												2176M

spark.executor.cores													4

Spark	configuration	properties	can	also	be	set	programmatically	in	your	Driver
code	by	using	the	SparkConf	object,	as	shown	in	Listing	5.28.

Listing	5.28	Setting	Spark	Configuration	Properties
Programmatically
Click	here	to	view	code	image

from	pyspark.context	import	SparkContext

from	pyspark.conf	import	SparkConf

conf	=	SparkConf()

conf.set("spark.executor.memory","3g")

sc	=	SparkContext(conf=conf)

There	are	also	several	SparkConf	methods	for	setting	specific	common
properties.	These	methods	appear	in	Listing	5.29.

Listing	5.29	Spark	Configuration	Object	Methods
Click	here	to	view	code	image

from	pyspark.context	import	SparkContext

from	pyspark.conf	import	SparkConf

conf	=	SparkConf()

conf.setAppName("MySparkApp")

conf.setMaster("yarn")

conf.setSparkHome("/usr/lib/spark")

sc	=	SparkContext(conf=conf)

In	most	cases,	setting	Spark	configuration	properties	using	arguments	to
spark-shell,	pyspark,	and	spark-submit	is	recommended,	as	setting
configuration	properties	programmatically	requires	code	changes	or	rebuilding
in	the	case	of	Scala	or	Java	applications.

Setting	configuration	properties	as	arguments	to	spark-shell,	pyspark,
and	spark-submit	is	done	using	specific	named	arguments	for	common
properties,	such	as	--executor-memory.	Properties	not	exposed	as	named
arguments	are	provided	using	--conf	PROP=VALUE	to	set	an	arbitrary	Spark
configuration	property	or	--properties-file	FILE	to	load	additional
arguments	from	a	configuration	file.	Listing	5.30	provides	examples	of	both
methods.

Listing	5.30	Passing	Spark	Configuration	Properties	to	spark-
submit

Click	here	to	view	code	image

#	setting	config	properties	using	arguments

$SPARK_HOME/bin/spark-submit	--executor-memory	1g	\

	--conf	spark.dynamicAllocation.enabled=true	\

	myapp.py	#	setting	config	properties	using	a	conf	file

$SPARK_HOME/bin/spark-submit	\

	--properties-file	test.conf	\

	myapp.py

You	can	use	the	SparkConf.toDebugString()	method	to	print	out	the
current	configuration	for	a	Spark	application,	as	demonstrated	in	Listing	5.31.

Listing	5.31	Showing	the	Current	Spark	Configuration
Click	here	to	view	code	image

from	pyspark.context	import	SparkContext

from	pyspark.conf	import	SparkConf

conf	=	SparkConf()

print(conf.toDebugString())

...

spark.app.name=PySparkShell

spark.master=yarn-client

spark.submit.deployMode=client

spark.yarn.isPython=true	...

As	you	can	see,	there	are	several	ways	to	pass	the	same	configuration	parameter,

including	as	an	environment	variable,	as	a	Spark	default	configuration	property,
or	as	a	command	line	argument.	Table	5.10	shows	just	a	few	of	the	various	ways
to	set	the	same	property	in	Spark.	Many	other	properties	have	analogous
settings.

Table	5.10	Spark	Configuration	Options

Argument Configuration	Property Environment	Variable

--master spark.master SPARK_MASTER_IP/

SPARK_MASTER_PORT

--name spark.app.name SPARK_YARN_APP_NAME

--queue spark.yarn.queue SPARK_YARN_QUEUE

--

executor-

memory

spark.executor.memory SPARK_EXECUTOR_MEMORY

--

executor-

cores

spark.executor.cores SPARK_EXECUTOR_CORES

Defaults	for	Environment	Variables	and	Configuration
Properties
Looking	 at	 the	 conf	 directory	 of	 a	 fresh	 Spark	 deployment,	 you	 may
notice	 that	 by	 default	 the	 spark-defaults.conf	 and	 spark-
env.sh	 files	 are	 not	 implemented.	 Instead,	 templates	 are	 provided
(spark-defaults.conf.template	 and	 spark-

env.sh.template).	 You	 are	 encouraged	 to	 copy	 these	 templates	 and
rename	them	without	the	.template	extension	and	make	the	appropriate
modifications	for	your	environment.

Spark	Configuration	Precedence
Configuration	properties	set	directly	within	an	application	using	a	SparkConf
object	take	the	highest	precedence,	followed	by	arguments	passed	to	spark-
submit,	pyspark,	or	spark-shell,	followed	by	options	set	in	the

spark-defaults.conf	file.	Many	configuration	properties	have	system
default	values	used	in	the	absence	of	properties	explicitly	set	through	the	other
means	discussed.	Figure	5.8	shows	the	order	of	precedence	for	Spark
configuration	properties.

Figure	5.8	Spark	configuration	precedence.

Configuration	Management
Managing	configuration	is	one	of	the	biggest	challenges	involved	in
administering	a	Spark	cluster—or	any	other	cluster,	for	that	matter.	Often,
configuration	settings	need	to	be	consistent	across	different	hosts,	such	as
different	Worker	nodes	in	a	Spark	cluster.	Configuration	management	and
deployment	tools	such	as	Puppet	and	Chef	can	be	useful	for	managing	Spark
deployments	and	their	configurations.	If	you	are	rolling	out	and	managing	Spark
as	part	of	a	Hadoop	deployment	using	a	commercial	Hadoop	distribution,	you
can	manage	Spark	configuration	by	using	the	Hadoop	vendor’s	management
interface,	such	as	Cloudera	Manager	for	Cloudera	installations	or	Ambari	for
Hortonworks	installations.

In	addition,	there	are	other	options	for	configuration	management,	such	as
Apache	Amaterasu	(http://amaterasu.incubator.apache.org/),	which	uses
pipelines	to	build,	run,	and	manage	environments	as	code.

http://amaterasu.incubator.apache.org/

Optimizing	Spark
The	Spark	runtime	framework	generally	does	its	best	to	optimize	stages	and
tasks	in	a	Spark	application.	However,	as	a	developer,	you	can	make	many
optimizations	for	notable	performance	improvements.	We	discuss	some	of	them
in	the	following	sections.

Filter	Early,	Filter	Often
It	sounds	obvious,	but	filtering	nonrequired	records	or	fields	early	in	your
application	can	have	a	significant	impact	on	performance.	Big	Data	(particularly
event	data,	log	data,	or	sensor	data)	is	often	characterized	by	a	low	signal-to-
noise	ratio.	Filtering	out	noise	early	saves	processing	cycles,	I/O,	and	storage	in
subsequent	stages.	Use	filter()	transformations	to	remove	unneeded	records
and	map()	transformations	to	project	only	required	fields	in	an	RDD.	Perform
these	operations	before	operations	that	may	invoke	a	shuffle,	such	as
reduceByKey()	or	groupByKey().	Also	use	them	before	and	after	a
join()	operation.	These	small	changes	can	make	the	difference	between	hours
and	minutes	or	minutes	and	seconds.

Optimizing	Associative	Operations
Associative	operations	such	as	sum()	and	count()	are	common	requirements
when	programming	in	Spark,	and	you	have	seen	numerous	examples	of	these
operations	throughout	this	book.	Often	on	distributed,	partitioned	datasets,	these
associative	key/value	operations	may	involve	shuffling.	Typically,	join(),
cogroup(),	and	transformations	that	have	By	or	ByKey	in	their	name,	such	as
groupByKey()	or	reduceByKey(),	can	involve	shuffling.	This	is	not
necessarily	a	bad	thing	because	it	is	often	required.

However,	if	you	need	to	perform	a	shuffle	with	the	ultimate	objective	of
performing	an	associative	operation—counting	occurrences	of	a	key,	for	instance
—different	approaches	that	can	provide	very	different	performance	outcomes.
The	best	example	of	this	is	the	difference	between	using	groupByKey()	and
using	reduceByKey()	to	perform	a	sum()	or	count()	operation.	Both
operations	can	achieve	the	same	result.	However,	if	you	group	by	a	key	on	a
partitioned	or	distributed	dataset	solely	for	the	purposes	of	aggregating	values
for	each	key,	using	reduceByKey()	is	generally	a	better	approach.

reduceByKey()combines	values	for	each	key	prior	to	any	required	shuffle
operation,	thereby	reducing	the	amount	of	data	sent	over	the	network	and	also
reducing	the	computation	and	memory	requirements	for	tasks	in	the	next	stage.
Consider	the	two	code	examples	in	Listing	5.32.	Both	provide	the	same	result.

Listing	5.32	Associative	Operations	in	Spark
Click	here	to	view	code	image

rdd.map(lambda	x:	(x[0],1))	\

		.groupByKey()	\

		.mapValues(lambda	x:	sum(x))	\

		.collect()

#	preferred	method

rdd.map(lambda	x:	(x[0],1))	\

		.reduceByKey(lambda	x,	y:	x	+	y)	\

		.collect()

Now	consider	Figure	5.9,	which	depicts	the	groupByKey()	implementation.

Figure	5.9	groupByKey()	for	an	associative	operation.

Contrast	what	you	have	just	seen	with	Figure	5.10,	which	shows	the	functionally
equivalent	reduceByKey()	implementation.

As	you	can	see	from	the	preceding	figures,	reduceByKey()	combines	records
locally	by	key	before	shuffling	the	data;	this	is	often	referred	to	as	a	combiner	in
MapReduce	terminology.	Combining	can	result	in	a	dramatic	decrease	in	the
amount	of	data	shuffled	and	thus	a	corresponding	increase	in	application
performance.

Some	other	alternatives	to	groupByKey()	are	combineByKey(),	which

you	can	use	if	the	inputs	and	outputs	to	your	reduce	function	are	different,	and
foldByKey(),	which	performs	an	associative	operation	providing	a	zero
value.	Additional	functions	to	consider	include	treeReduce(),
treeAggregate(),	and	aggregateByKey().

Figure	5.10	reduceByKey()	for	an	associative	operation.

Understanding	the	Impact	of	Functions	and	Closures
Recall	the	discussions	of	functions	and	closures	in	Chapter	1,	“Introducing	Big
Data,	Hadoop,	and	Spark.”	Functions	are	sent	to	Executors	in	a	Spark	cluster,
enclosing	all	bound	and	free	variables.	This	process	enables	efficient,	shared-

nothing	distributed	processing.	It	can	also	be	a	potential	issue	that	impacts
performance	and	stability	at	the	same	time.	It’s	important	to	understand	this.

A	key	example	of	an	issue	that	could	arise	is	passing	too	much	data	to	a	function
in	a	Spark	application.	This	would	cause	excessive	data	to	be	sent	to	the
application	Executors	at	runtime,	resulting	in	excess	network	I/O,	and	it	could
result	in	memory	issues	on	Spark	Workers.

Listing	5.33	shows	a	fictitious	example	of	declaring	a	function	that	encloses	a
large	object	and	then	passing	that	function	to	a	Spark	map()	transformation.

Listing	5.33	Passing	Large	Amounts	of	Data	to	a	Function
Click	here	to	view	code	image

...

massive_list	=	[...]

def	big_fn(x):

#	function	enclosing	massive_list

...

...

rdd.map(lambda	x:	big_fn(x)).saveAsTextFile...

#	parallelize	data	which	would	have	otherwise	been	enclosed

massive_list_rdd	=	sc.parallelize(massive_list)	

rdd.join(massive_list_rdd).saveAsTextFile...

A	better	approach	might	be	to	use	the	broadcast	method	to	create	a	broadcast
variable,	as	discussed	earlier	in	this	chapter;	recall	that	broadcast	variables	are
distributed	using	an	efficient	peer-to-peer	sharing	protocol	based	on	BitTorrent.
You	could	also	consider	parallelizing	larger	objects,	if	possible.	This	is	not
meant	to	discourage	you	from	passing	data	in	functions,	but	you	do	need	to	be
aware	of	how	closures	operate.

Considerations	for	Collecting	Data
Two	useful	functions	in	Spark	are	collect()	and	take().	Recall	that	these
actions	trigger	evaluation	of	an	RDD,	including	its	entire	lineage.	When
executing	collect(),	all	resultant	records	from	the	RDD	return	to	the	Driver
from	the	Executors	on	which	the	final	tasks	in	the	lineage	are	executed.	For	large

datasets,	this	can	be	in	gigabytes	or	terabytes	of	magnitude.	It	can	create
unnecessary	network	I/O	and,	in	many	cases,	result	in	exceptions	if	there	is
insufficient	memory	on	the	Driver	host	to	store	the	collected	objects.

If	you	just	need	to	inspect	the	output	data,	take(n)	and	takeSample()	are
better	options.	If	the	transformation	is	part	of	an	ETL	routine,	the	best	practice	is
to	save	the	dataset	to	a	filesystem	such	as	HDFS	or	a	database.

The	key	point	here	is	not	to	bring	too	much	data	back	to	the	Driver	if	it’s	not
required.

Configuration	Parameters	for	Tuning	and	Optimizing
Applications
In	addition	to	application	development	optimizations,	there	are	also	some
systemwide	or	platform	changes	that	can	provide	substantial	increases	to
performance	and	throughput.	The	following	sections	look	at	some	of	the	many
configuration	settings	that	can	influence	performance.

Optimizing	Parallelism
A	specific	configuration	parameter	that	could	be	beneficial	to	set	at	an
application	level	or	using	spark-defaults.conf	is	the
spark.default.parallelism	setting.	This	setting	specifies	the	default
number	of	RDD	partitions	returned	by	transformations	such	as
reduceByKey(),	join(),	and	parallelize()	where	the
numPartitions	argument	is	not	supplied.	You	saw	the	effect	of	this
configuration	parameter	earlier	in	this	chapter.

It	is	often	recommended	to	make	the	value	for	this	setting	equal	to	or	double	the
number	of	cores	on	each	Worker.	As	with	many	other	settings,	you	may	need	to
experiment	with	different	values	to	find	the	optimal	setting	for	your
environment.

Dynamic	Allocation
Spark’s	default	runtime	behavior	is	that	the	Executors	requested	or	provisioned
for	an	application	are	retained	for	the	life	of	the	application.	If	an	application	is
long	lived,	such	as	a	pyspark	session	or	Spark	Streaming	application,	this	may

not	be	optimal,	particularly	if	the	Executors	are	idle	for	long	periods	of	time	and
other	applications	are	unable	to	get	the	resources	they	require.
With	dynamic	allocation,	Executors	can	be	released	back	to	the	cluster	resource
pool	if	they	are	idle	for	a	specified	period	of	time.	Dynamic	allocation	is
typically	implemented	as	a	system	setting	to	help	maximize	use	of	system
resources.

Listing	5.34	shows	the	configuration	parameters	used	to	enable	dynamic
allocation.

Listing	5.34	Enabling	Spark	Dynamic	Allocation
Click	here	to	view	code	image

#	enable	Dynamic	Allocation,	which	is	disabled	by	default

spark.dynamicAllocation.enabled=True

spark.dynamicAllocation.minExecutors=n

#	lower	bound	for	the	number	of	Executors

spark.dynamicAllocation.maxExecutors=n

#	upper	bound	for	the	number	of	Executors	

spark.dynamicAllocation.executorIdleTimeout=ns

#	the	time	at	which	an	Executor	will	be	removed	if	it	has	been	idle,	

defaults	to	60s

Avoiding	Inefficient	Partitioning
Inefficient	partitioning	is	one	of	the	major	contributors	to	suboptimal
performance	in	a	distributed	Spark	processing	environment.	The	following
sections	take	a	closer	look	at	some	of	the	common	causes	for	inefficient
partitioning.

Small	Files	Resulting	in	Too	Many	Small	Partitions
Small	partitions,	or	partitions	containing	a	small	amount	of	data,	are	inefficient,
as	they	result	in	many	small	tasks.	Often,	the	overhead	of	spawning	these	tasks	is
greater	than	the	processing	required	to	execute	the	tasks.

A	filter()	operation	on	a	partitioned	RDD	may	result	in	some	partitions
being	much	smaller	than	others.	The	solution	to	this	problem	is	to	follow	the

filter()	operation	with	a	repartition()	or	coalesce()	function	and
specify	a	number	less	than	the	input	RDD;	this	combines	small	partitions	into
fewer	more	appropriately	sized	partitions.

Recall	that	the	difference	between	repartition()	and	coalesce()	is	that
repartition()	always	shuffles	records	if	required,	whereas	coalesce()
accepts	a	shuffle	argument	that	can	be	set	to	False,	avoiding	a	shuffle.
Therefore,	coalesce()	can	only	reduce	the	number	of	partitions,	whereas
repartition()	can	increase	or	reduce	the	number	of	partitions.

Working	with	small	files	in	a	distributed	filesystem	results	in	small,	inefficient
partitions	as	well.	This	is	especially	true	for	filesystems	such	as	HDFS,	where
blocks	form	the	natural	boundary	for	Spark	RDD	partitions	created	from	a
textFile()	operation,	for	example.	In	such	cases,	a	block	can	only	associate
with	one	file	object,	so	a	small	file	results	in	a	small	block,	which	in	turn	results
in	a	small	RDD	partition.	One	option	for	addressing	this	issue	is	to	specify	the
numPartitions	argument	of	the	textFile()	function,	which	specifies
how	many	RDD	partitions	to	create	from	the	input	data	(see	Figure	5.11).

Figure	5.11	Optimizing	partitions	loaded	from	small	files.

The	spark.default.parallelism	configuration	property	mentioned	in
the	previous	section	can	also	be	used	to	designate	the	desired	number	of

partitions	for	an	RDD.

Avoiding	Exceptionally	Large	Partitions
Exceptionally	large	partitions	can	cause	performance	issues.	A	common	reason
for	large	partitions	is	loading	an	RDD	from	one	or	more	large	files	compressed
using	an	unsplittable	compression	format	such	as	Gzip.

Because	unsplittable	compressed	files	are	not	indexed	and	cannot	be	split	(by
definition),	the	entire	file	must	be	processed	by	one	Executor.	If	the
uncompressed	data	size	exceeds	the	memory	available	to	the	Executor,	the
partition	may	spill	to	disk,	causing	performance	issues.

Solutions	to	this	problem	include	the	following:

	Avoid	using	unsplittable	compression,	if	possible.

	Uncompress	each	file	locally	(for	example,	to	/tmp)	before	loading	the	file
into	an	RDD.

	Repartition	immediately	after	the	first	transformation	against	the	RDD.

Moreover,	large	partitions	can	also	result	from	a	shuffle	operation	using	a
custom	partitioner,	such	as	a	month	partitioner	for	a	corpus	of	log	data	where
one	month	is	disproportionately	larger	than	the	others.	In	this	case,	the	solution
is	to	use	repartition()	or	coalesce()	after	the	reduce	operation,	using
a	hash	partitioner.

Another	good	practice	is	to	repartition	before	a	large	shuffle	operation	as	this	can
provide	a	significant	performance	benefit.

Determining	the	Right	Number	or	Size	of	Partitions
Generally,	if	you	have	fewer	partitions	than	Executors,	some	of	the	Executors
will	be	idle.	However,	the	optimal,	or	“Goldilocks,”	number	or	size	for	partitions
is	often	found	only	by	trial	and	error.	A	good	practice	is	to	make	this	an	input
parameter	(or	parameters)	to	your	program	so	you	can	easily	experiment	with
different	values	and	see	what	works	best	for	your	system	or	your	application.

Diagnosing	Application	Performance	Issues
You	have	seen	many	application	development	practices	and	programming

techniques	in	this	chapter	and	throughout	the	book	that	can	provide	significant
performance	improvement.	This	section	provides	a	simple	introduction	to
identifying	potential	performance	bottlenecks	in	your	application	so	you	can
address	them.

Using	the	Application	UI	to	Diagnose	Performance	Issues
The	Spark	application	UI	that	you	have	seen	throughout	this	book	is	probably
the	most	valuable	source	of	information	about	application	performance.	The
application	UI	contains	detailed	information	and	metrics	about	tasks,	stages,
scheduling,	storage,	and	more	to	help	you	diagnose	performance	issues.	Recall
from	our	discussions	that	the	application	UI	is	served	on	port	4040	(or
successive	ports	if	more	than	one	application	is	running)	of	the	host	running	the
Driver	for	the	application.	For	YARN	clusters,	the	application	UI	is	available	via
the	ApplicationMaster	link	in	the	YARN	ResourceManager	UI.	The	following
sections	take	a	further	look	at	how	you	can	identify	various	performance	issues
using	the	application	UI.

Shuffle	and	Task	Execution	Performance
Recall	that	an	application	consists	of	one	or	more	jobs,	as	a	result	of	an	action
such	as	saveAsTextFile(),	collect(),	or	count().	A	job	consists	of
one	or	more	stages	that	consist	of	one	or	more	tasks.	Tasks	operate	against	an
RDD	partition.	The	first	place	to	look	when	diagnosing	performance	issues	is	the
stage	summary	from	the	Stages	tab	of	the	application	UI.	On	this	tab,	you	can
see	the	duration	of	each	stage	as	well	as	the	amount	of	data	shuffled,	as	shown	in
Figure	5.12.

Figure	5.12	Spark	application	UI	stage	summary.

By	clicking	on	a	stage	in	the	Description	column	of	the	Completed	Stages	table,
you	can	see	details	for	that	stage,	including	the	duration	and	write	time	for	each
task	in	the	stage.	This	is	where	you	may	see	disparity	in	the	values	of	different
tasks,	as	shown	in	Figure	5.13.

Figure	5.13	Spark	application	UI	stage	detail.

The	difference	in	task	durations	or	write	times	may	be	an	indication	of
inefficient	partitioning,	as	discussed	in	the	previous	section.

Collection	Performance
If	your	program	has	a	collection	stage,	you	can	get	summary	and	detailed
performance	information	from	the	Spark	application	UI.	From	the	Details	page,
you	can	see	metrics	related	to	the	collection	process,	including	the	data	size
collected,	as	well	as	the	duration	of	collection	tasks;	this	is	shown	in	Figure	5.14.

Figure	5.14	Spark	application	UI	stage	detail:	collection	information.

Using	the	Spark	History	UI	to	Diagnose	Performance	Issues
The	application	UI	(served	on	port	404x)	is	available	only	during	an
application’s	lifetime,	which	makes	it	handy	for	diagnosing	issues	with	running
applications.	It’s	useful	and	sometimes	necessary	to	profile	the	performance	of
completed	applications,	successful	or	otherwise,	as	well.	The	Spark	History
Server	provides	the	same	information	as	the	application	UI	for	completed
applications.	Moreover,	you	can	often	use	completed	application	information	in
the	Spark	History	Server	as	an	indicative	benchmark	for	the	same	applications
that	are	currently	running.	Figure	5.15	shows	an	example	of	the	Spark	History

Server	UI,	typically	served	on	port	18080	of	the	host	running	this	process.

Figure	5.15	Spark	History	Server.

Summary
This	chapter	completes	our	coverage	of	the	Spark	core	(or	RDD)	API	using
Python.	This	chapter	introduces	the	different	shared	variables	available	in	the
Spark	API,	including	broadcast	variables	and	accumulators,	along	with	their
purpose	and	usage.	Broadcast	variables	are	useful	for	distributing	reference
information,	such	as	lookup	tables,	to	Workers	to	avoid	expensive	“reduce	side”
joins.	Accumulators	are	useful	as	general-purpose	counters	in	Spark	applications
and	also	can	be	used	to	optimize	processing.	This	chapter	also	discusses	RDD

partitioning	in	much	more	detail,	as	well	as	the	methods	available	for
repartitioning	RDDs,	including	repartition()	and	coalesce(),	as	well
as	functions	designed	to	work	on	partitions	atomically,	such	as
mapPartitions().	This	chapter	also	looks	at	the	behavior	of	partitioning
and	its	influence	on	performance	as	well	as	RDD	storage	options.	You	have
learned	about	the	effects	of	checkpointing	RDDs,	which	is	especially	useful	for
periodic	saving	of	state	for	iterative	algorithms,	where	elongated	lineage	can
make	recovery	very	expensive.	In	addition,	you	have	learned	about	the	pipe()
function,	which	you	can	use	with	external	programs	with	Spark.	Finally,	you	got
a	look	at	how	to	sample	data	in	Spark	and	explored	some	considerations	for
optimizing	Spark	programs.

6

SQL	and	NoSQL	Programming	with
Spark

Data	is	a	precious	thing	and	will	last	longer	than	the	systems	themselves.

Tim	Berners-Lee,	father	of	the	World	Wide	Web

In	This	Chapter:
	Introduction	to	Hive	and	Spark	SQL
	Introduction	to	the	SparkSession	object	and	DataFrame	API
	Creating	and	accessing	Spark	DataFrames
	Using	Spark	SQL	with	external	applications
	Introduction	to	NoSQL	concepts	and	systems
	Using	Spark	with	HBase,	Cassandra,	and	DynamoDB

Moore’s	law	and	the	birth	and	explosion	of	mobile	ubiquitous	computing	have
permanently	altered	the	data,	computing,	and	database	landscape.	This	chapter
focuses	on	how	Spark	can	be	used	in	SQL	applications	using	well-known
semantics,	as	well	as	how	Spark	can	be	used	in	NoSQL	applications	where	a
SQL	approach	is	not	practical.

Introduction	to	Spark	SQL

Structured	Query	Language	(SQL)	is	the	language	most	commonly	and	widely
used	to	define	and	express	questions	about	data.	The	vast	majority	of	operational
data	that	exists	today	is	stored	in	tabular	format	in	relational	database	systems.
Many	data	analysts	innately	deconstruct	complex	problems	into	a	series	of	SQL
Data	Manipulation	Language	(DML)	or	SELECT	statements.	A	discussion	of
Spark	SQL	requires	a	basic	understanding	of	the	Hive	project,	which	was	born
from	the	Hadoop	ecosystem.

Introduction	to	Hive
Many	of	the	SQL	abstractions	to	Big	Data	processing	platforms,	such	as	Spark,
are	based	on	the	Hive	project.	Hive	and	the	Hive	metastore	remain	integral
components	to	projects	such	as	Spark	SQL.

The	Apache	Hive	project	started	at	Facebook	in	2010	to	provide	a	high-level
SQL-like	abstraction	on	top	of	Hadoop	MapReduce.	Hive	introduced	a	new
language	called	Hive	Query	Language	(HiveQL),	which	implements	a	subset	of
SQL-92,	an	internationally	accepted	standard	specification	for	the	SQL
language,	with	some	extensions.

The	creation	of	Hive	was	motivated	by	the	fact	that,	at	the	time,	few	analysts	had
Java	MapReduce	programming	skills,	but	most	analysts	were	proficient	in	SQL.
Furthermore,	SQL	is	the	common	language	for	BI	and	visualization	and
reporting	tools,	which	commonly	use	ODBC/JDBC	as	a	standard	interface.

In	Hive’s	original	implementation,	HiveQL	was	parsed	by	the	Hive	client	and
mapped	to	a	sequence	of	Java	MapReduce	operations,	which	were	then
submitted	as	jobs	on	the	Hadoop	cluster.	The	progress	was	monitored,	and
results	were	returned	to	the	client	or	written	to	the	desired	location	in	HDFS.
Figure	6.1	provides	a	high-level	depiction	of	how	Hive	processes	data	on	HDFS.

Figure	6.1	Hive	high-level	overview.

Hive	Objects	and	the	Hive	Metastore
Hive	implements	a	tabular	abstraction	to	objects	in	HDFS,	presenting	directories
and	all	files	they	contain	as	tables	in	its	programming	model.	Just	as	in	a
conventional	relational	database,	tables	have	predefined	columns	with
designated	datatypes.	The	data	in	HDFS	is	accessible	via	SQL	DML	statements,
as	with	a	normal	database	management	system.	This	is	where	the	similarity	ends,
however,	as	Hive	is	a	“schema-on-read”	platform,	backed	by	an	immutable
filesystem,	HDFS.	As	Hive	simply	implements	SQL	tabular	abstractions	over
raw	files	in	HDFS,	the	following	key	differences	exist	between	Hive	and	a
conventional	relational	database	platform:

	UPDATE	is	not	really	supported.	Although	UPDATE	was	introduced	into	the
HiveQL	dialect,	HDFS	is	still	an	immutable	filesystem,	so	this	abstraction

involves	applying	coarse-grained	transformations,	whereas	a	true	UPDATE
in	an	RDBMS	is	a	fine-grained	operation.

	There	are	no	transactions,	journaling,	rollbacks,	or	real	transaction	isolation
levels.

	There	is	no	declarative	referential	integrity	(DRI),	which	means	there	are	no
definitions	for	primary	keys	or	foreign	keys.

	Incorrectly	formatted	data,	such	as	mistyped	data	or	malformed	records,	are
simply	represented	to	the	client	as	null	values.

The	mapping	of	tables	to	their	directory	locations	in	HDFS	and	the	columns	and
their	definitions	is	maintained	in	the	Hive	metastore.	The	metastore	is	a
relational	database	written	to	and	read	by	the	Hive	client.	The	object	definitions
also	include	the	input	and	output	formats	for	the	files	represented	by	the	table
objects	(CSVInputFormat	and	so	on)	and	SerDes
(Serialization/Deserialization),	which	instruct	Hive	on	how	to	extract	records
and	fields	from	the	files.	Figure	6.2	shows	a	high-level	example	of	interactions
between	Hive	and	the	metastore.

Figure	6.2	Hive	metastore	interaction.

The	metastore	can	be	an	embedded	Derby	database	(the	default)	or	a	local	or
remote	database,	such	as	MySQL	or	Postgres.	In	most	cases,	you	want	to
implement	a	shared	database,	which	enables	developers	and	analysts	to	share

object	definitions.

There	is	also	a	Hive	subproject	called	HCatalog,	an	initiative	to	extend	objects
created	in	Hive	to	other	projects	with	a	common	interface,	such	as	Apache	Pig.
Spark	SQL	leverages	the	Hive	metastore,	as	we	soon	discuss.

Accessing	Hive
Hive	provides	a	client	command	line	interface	(CLI)	that	accepts	and	parses
HiveQL	input	commands.	This	is	a	common	method	for	performing	ad	hoc
queries.	Figure	6.3	shows	the	Hive	CLI.

Figure	6.3	The	Hive	command	line	interface.

The	Hive	CLI	is	used	when	the	Hive	client	or	driver	application	deploys	to	the
local	machine,	including	the	connection	to	the	metastore.	For	large-scale
implementations,	a	client/server	approach	is	often	more	appropriate	because	the
details	about	the	connection	to	the	metastore	stay	in	one	place	on	the	server,	and
access	can	be	controlled	to	the	cluster.	This	approach	uses	a	server	component
called	HiveServer2.

HiveServer2	can	now	act	as	a	multi-session	driver	application	for	multiple
clients.	HiveServer2	provides	a	JDBC	interface	that	is	usable	by	external	clients,
such	as	visualization	tools,	as	well	as	a	lightweight	CLI	called	Beeline.	Beeline
is	included	and	usable	directly	with	Spark	SQL.	In	addition,	a	web-based
interface	called	Beeswax	is	used	within	the	Hadoop	User	Experience	(HUE)

project.

Hive	Datatypes	and	Data	Definition	Language	(DDL)
Hive	supports	most	common	primitive	datatypes,	similar	to	those	found	in	most
database	systems,	as	well	as	several	complex	datatypes.	These	types,	used	as	the
underlying	types	for	Spark	SQL,	are	listed	in	Table	6.1.

Table	6.1	Hive	Datatypes

Datatype Category Description

TINYINT Primitive 1-btye	signed	integer

SMALLINT Primitive 2-byte	signed	integer

INT Primitive 4-byte	signed	integer

BIGINT Primitive 8-byte	signed	integer

FLOAT Primitive 4-byte	single	precision	floating-point	number

DOUBLE Primitive 8-byte	double	precision	floating-point	number

BOOLEAN Primitive True/false	value

STRING Primitive Character	string

BINARY Primitive Byte	array

TIMESTAMP Primitive Timestamp	with	nanosecond	precision

DATE Primitive Year/month/day,	in	the	form	YYYYMMDD

ARRAY Complex Ordered	collection	of	fields	of	the	same	type

MAP Complex Unordered	collection	of	key	value	pairs

STRUCT Complex Collection	of	named	fields	of	varying	types

Listing	6.1	provides	an	example	of	a	typical	Hive	DDL	statement	used	to	create
a	table	in	Hive.

Listing	6.1	Hive	CREATE	TABLE	Statement

Click	here	to	view	code	image

CREATE	EXTERNAL	TABLE	stations	(

station_id	INT,

name	STRING,

lat	DOUBLE,

long	DOUBLE,

dockcount	INT,

landmark	STRING,

installation	STRING)

ROW	FORMAT	DELIMITED	FIELDS	TERMINATED	BY	','

STORED	AS	TEXTFILE

LOCATION	'hdfs:///data/bike-share/stations';

Internal	Tables	Versus	External	Tables	in	Hive
When	 you	 create	 tables	 in	 Hive,	 the	 default	 option	 is	 to	 create	 a	 Hive
“internal”	table.	Hive	manages	directories	for	 internal	 tables,	and	a	DROP
TABLE	statement	for	an	internal	table	deletes	the	corresponding	files	from
HDFS.	It	is	recommended	to	use	external	tables	by	specifying	the	keyword
EXTERNAL	 in	the	CREATE	TABLE	statement.	This	provides	the	schema
and	location	for	 the	object	 in	HDFS,	but	a	DROP	TABLE	operation	does
not	delete	the	directory	and	files.

Spark	SQL	Architecture
Spark	SQL	provides	a	mainly	HiveQL-compatible	SQL	abstraction	to	its	RDD-
based	storage,	scheduling,	and	execution	model.	Many	of	the	key	characteristics
of	the	core	Spark	project	are	in	Spark	SQL,	including	lazy	evaluation	and	mid-
query	fault	tolerance.	Moreover,	Spark	SQL	is	usable	with	the	Spark	core	API
within	a	single	application.

Spark	SQL	includes	some	key	extensions	to	the	core	API	that	are	designed	to
optimize	typical	relational	access	patterns.	These	include	the	following:

	Partial	DAG	execution	(PDE):	PDE	enables	DAGs	to	be	changed	and
optimized	on	the	fly	as	information	about	the	data	is	discovered	during
processing.	The	DAG	modifications	include	optimization	for	performing
joins,	handling	skew	in	the	data,	and	altering	the	degree	of	parallelism	that

Spark	uses.

	Partition	statistics:	Spark	SQL	maintains	statistics	about	data	within
partitions,	which	can	be	leveraged	in	PDE,	and	provides	the	capability	to
do	map	pruning	(pruning	or	filtering	of	partitions	based	on	columnar
statistics)	and	optimize	normally	expensive	join	operations.

	The	DataFrame	API:	We	discuss	this	in	detail	later	in	this	chapter,	in	the
section	“Getting	Started	with	DataFrames.”

	Columnar	storage:	Spark	SQL	stores	objects	in	memory	using	columnar
storage,	which	organizes	data	by	columns	instead	of	by	rows.	This	has	a
significant	performance	impact	on	SQL	access	patterns.	Figure	6.4	shows
the	difference	between	columnar	and	row-oriented	data	storage.

Figure	6.4	Column-oriented	storage.

Spark	SQL	also	includes	native	support	for	files	in	Parquet	format,	which	is	a
columnar	file-based	storage	format	optimized	for	relational	access.

Spark	SQL	is	designed	for	use	with	environments	already	using	Hive,	with	a
Hive	metastore	and	Hive	(or	HCatalog)	object	definitions	for	data	stored	in
HDFS,	S3,	or	other	sources.	The	SQL	dialect	that	Spark	SQL	supports	is	a	subset
of	HiveQL	and	supports	many	HiveQL	built-in	functions	and	user-defined
functions	(UDFs).	Spark	SQL	can	also	be	used	without	Hive	or	a	Hive

metastore.	Figure	6.5	shows	a	high-level	overview	of	the	Spark	SQL
architecture,	along	with	the	interfaces	exposed	by	Spark	SQL.

Figure	6.5	Spark	SQL	high-level	architecture.

For	more	information	on	the	Spark	SQL	architecture,	see	the	whitepaper	“Spark
SQL:	Relational	Data	Processing	in	Spark,”	which	is	available	at
http://people.csail.mit.edu/matei/papers/2015/sigmod_spark_sql.pdf.

The	SparkSession	Entry	Point
Just	as	the	SparkContext	is	the	main	entry	point	for	an	application	using	the
Spark	core	API,	the	SparkSession	object	is	the	main	entry	point	for	Spark
SQL	applications.	Prior	to	release	2	of	Spark,	special	contexts	called	the
SQLContext	and	HiveContext	were	the	main	entry	points	for	Spark	SQL
applications.	The	SparkSession	object	encapsulates	these	contexts	into	one
succinct	entry	point.

A	SparkSession	entry	point,	instantiated	as	spark	in	the	interactive	shells,
contains	a	reference	to	a	metastore	to	hold	object	(table)	definitions.	If	Hive	is
available	and	configured,	its	metastore	is	used;	otherwise,	it	uses	its	own	local
metastore.

http://people.csail.mit.edu/matei/papers/2015/sigmod_spark_sql.pdf

Configure	Hive	for	use	with	Spark	can	be	achieved	by	placing	your	hive-
site.xml,	core-site.xml	(for	security	configuration),	and	hdfs-
site.xml	(for	HDFS	configuration)	files	in	the	conf/	directory	of	your
$SPARK_HOME.	The	primary	Hive	configuration	file,	hive-site.xml,
includes	location	and	connection	details	for	the	Hive	metastore.

Listing	6.2	shows	instantiation	of	a	SparkSession	for	a	batch	application.
Note	that	this	instantiation	is	not	necessary	when	using	the	shells	pyspark	and
spark-shell.

SparkSession	and	SQLContext
You	 may	 still	 find	 references	 to	 the	 SQLContext	 object	 in	 various
examples,	typically	instantiated	as	sqlContext.	This	object	is	available
in	 the	 interactive	 Spark	 shells	 and	 can	 be	 used	 interchangeably	with	 the
spark	 object.	 It	 is	 generally	 preferable	 to	 use	 an	 instantiation	 of	 the
SparkSession	 object,	 as	 the	 SQLContext	 may	 be	 deprecated	 in	 a
future	release.

Listing	6.2	Creating	a	SparkSession	Object	with	Hive	Support
Click	here	to	view	code	image

from	pyspark.sql	import	SparkSession

spark	=	SparkSession	\

				.builder	\

				.appName("My	Spark	SQL	Application")	\

				.enableHiveSupport()	\

				.getOrCreate()

...

The	SparkSession	object	exposes	the	DataFrame	API,	which	we	discuss	in
the	next	section,	and	enables	you	to	create	and	query	table	objects	using	SQL
statements	and	operators.	If	you	have	Hive	available	and	configured	as	shown	in
Listing	6.2,	you	can	query	objects	referenced	in	the	Hive	metastore	using
HiveQL	statements	as	shown	in	Listing	6.3.

Listing	6.3	Hive	Queries	Using	Spark	SQL
Click	here	to	view	code	image

#	SparkSession	available	as	'spark'

sql_cmd	=	"""SELECT	name,	lat,	long	FROM	stations	WHERE	landmark	=	'San	

Jose'"""

spark.sql(sql_cmd).show()

#	returns:

#	+--------------------+---------+-----------+

#	|																name|						lat|							long|

#	+--------------------+---------+-----------+

#	|San	Jose	Diridon	...|37.329732|−121.901782|

#	|San	Jose	Civic	Ce...|37.330698|−121.888979|

#	|Santa	Clara	at	Al...|37.333988|−121.894902|

#	|				Adobe	on	Almaden|37.331415|		−121.8932|

#	|				San	Pedro	Square|37.336721|−121.894074|

#	+--------------------+---------+-----------+

#	only	showing	top	5	rows

Getting	Started	with	DataFrames
Spark	SQL	DataFrames	are	distributed	collections	of	records,	all	with	the	same
defined	schema,	conceptually	analogous	to	a	sharded	table	from	a	relational
database.	Spark	SQL	DataFrames	were	first	introduced	as	SchemaRDD	objects;
they	are	loosely	based	on	the	DataFrame	object	constructs	in	R,	discussed	in
Chapter	8,	“Introduction	to	Data	Science	and	Machine	Learning	Using	Spark,”
and	Pandas	(the	Python	library	for	data	manipulation	and	analysis).

DataFrames	are	an	abstraction	for	Spark	RDDs.	However,	unlike	primitive
RDDs,	DataFrames	track	their	schema	and	provide	native	support	for	many
common	SQL	functions	and	relational	operators.	DataFrames,	like	RDDs,	are
evaluated	as	DAGs,	using	lazy	evaluation	and	providing	lineage	and	fault
tolerance.	Also	like	RDDs,	DataFrames	support	caching	and	persistence	using
methods	similar	to	those	discussed	in	the	previous	chapter.

DataFrames	can	be	created	in	many	different	ways,	including	from	the
following:

	An	existing	RDD

	A	JSON	file

	A	text	file,	a	Parquet	file,	or	an	ORC	file

	A	table	in	Hive

	A	table	in	an	external	database

	A	temporary	table	in	Spark

The	following	sections	look	at	some	of	the	common	methods	of	constructing
DataFrames	if	there	is	an	existing	SparkSession	object.

Creating	a	DataFrame	from	an	Existing	RDD
The	main	function	used	to	create	DataFrames	from	RDDs	is	the
createDataFrame()	method,	described	next.

createDataFrame()

Syntax:
Click	here	to	view	code	image

SparkSession.createDataFrame(data,	schema=None,	samplingRatio=None)

The	createDataFrame()	method	creates	a	DataFrame	object	from	an
existing	RDD.	The	data	argument	is	a	reference	to	a	named	RDD	object
consisting	of	tuples	or	list	elements.	The	schema	argument	refers	to	the	schema
to	be	projected	to	the	DataFrame	object.	The	samplingRatio	argument	is	for
sampling	the	data	if	the	schema	is	inferred.	(You’ll	learn	more	about	defining	or
inferring	schemas	for	DataFrame	objects	shortly.)	Listing	6.4	shows	an	example
of	loading	a	DataFrame	from	an	existing	RDD.

Listing	6.4	Creating	a	DataFrame	from	an	RDD
Click	here	to	view	code	image

myrdd	=	sc.parallelize([('Jeff',	48),('Kellie',	45)])

spark.createDataFrame(myrdd).collect()

#	returns:

#	[Row(_1=u'Jeff',	_2=48),	Row(_1=u'Kellie',	_2=45)]

Notice	that	the	return	value	from	the	collect	action	is	a	list	of	Row
(pyspark.sql.Row)	objects.	In	this	case,	because	the	schema,	including	the
field	names,	is	unspecified,	the	fields	are	referenced	by	_<fieldnumber>,

where	the	field	number	starts	at	one.

Creating	a	DataFrame	from	a	Hive	Table
To	load	data	from	a	Hive	table	into	a	Spark	SQL	DataFrame,	you	need	to	create
a	HiveContext.	Recall	that	the	HiveContext	reads	the	Hive	client
configuration	(hive-site.xml)	to	obtain	connection	details	for	the	Hive
metastore.	This	enables	seamless	access	to	Hive	tables	from	a	Spark	application.
You	can	do	this	in	a	couple	different	ways,	including	using	the	sql()	method
or	the	table()	method,	as	described	in	the	following	sections.

sql()

Syntax:
SparkSession.sql(sqlQuery)

The	sql()	method	creates	a	DataFrame	object	from	a	table	in	Hive	by
supplying	a	sqlQuery	argument	and	performing	a	DML	operation	from	a	table
in	Hive.	If	the	table	is	in	a	database	other	than	the	Hive	default	database,	it	needs
to	be	referenced	using	the	<databasename>.<tablename>	format.	The
sqlQuery	can	be	any	valid	HiveQL	statement,	including	SELECT	*	or	a
SELECT	statement	with	a	WHERE	clause	or	a	JOIN	predicate.	Listing	6.5	shows
an	example	of	creating	a	DataFrame	using	a	HiveQL	query	against	a	table	in	the
Hive	default	database.

Listing	6.5	Creating	a	DataFrame	from	a	Table	in	Hive
Click	here	to	view	code	image

sql_cmd	=	"""SELECT	name,	lat,	long

													FROM	stations

													WHERE	landmark	=	'San	Jose'"""

df	=	spark.sql(sql_cmd)

df.count()

#	returns:	16

df.show(5)

#	returns:

#	+--------------------+---------+-----------+

#	|																name|						lat|							long|

#	+--------------------+---------+-----------+

#	|San	Jose	Diridon	...|37.329732|−121.901782|

#	|San	Jose	Civic	Ce...|37.330698|−121.888979|

#	|Santa	Clara	at	Al...|37.333988|−121.894902|

#	|				Adobe	on	Almaden|37.331415|		−121.8932|

#	|				San	Pedro	Square|37.336721|−121.894074|

#	+--------------------+---------+-----------+

#	only	showing	top	5	rows

table()

Syntax:
SparkSession.table(tableName)

The	table()	method	creates	a	DataFrame	object	from	a	table	in	Hive.	Unlike
with	the	sql()	method,	there	is	no	opportunity	to	prune	columns	with	a	column
list	or	filter	rows	with	a	WHERE	clause.	The	entire	table	loads	into	the
DataFrame.	Listing	6.6	demonstrates	the	table()	method.

Listing	6.6	table()	Method	for	Creating	a	DataFrame	from	a
Table	in	Hive
Click	here	to	view	code	image

df	=	spark.table('stations')

df.columns

#	returns:

#	['station_id',	'name',	'lat',	'long',	'dockcount',	'landmark',	

'installation']

df.count()

#	returns:	70

There	are	other	useful	methods	for	interrogating	the	Hive	system	and	database
catalogs,	such	as	the	tables()	method,	which	returns	a	DataFrame	containing
names	of	tables	in	a	given	database,	and	the	tableNames()	method,	which
returns	a	list	of	names	of	tables	in	a	given	Hive	database.

Creating	DataFrames	from	JSON	Objects
JSON	is	a	common,	standard,	human-readable	serialization	or	wire	transfer

format	often	used	in	web	service	responses.	Because	JSON	is	a	semi-structured
source	with	a	schema,	support	for	JSON	is	included	in	Spark	SQL.

read.json()

Syntax:
Click	here	to	view	code	image

DataFrameReader.read.json(path,

																										schema=None,

																										primitivesAsString=None,

																										prefersDecimal=None,

																										allowComments=None,

																										allowUnquotedFieldNames=None,

																										allowSingleQuotes=None,

																										allowNumericLeadingZero=None,

																										allowBackslashEscapingAnyCharacter=None,

																										mode=None,

																										columnNameOfCorruptRecord=None,

																										dateFormat=None,

																										timestampFormat=None,

																										multiLine=None)

The	json()	method	of	the	DataFrameReader	creates	a	DataFrame	object
from	a	JSON	file.	Listing	6.7	demonstrates	the	read.json()	method;	notice
that	the	DataFrameReader	is	accessible	from	the	SparkSession	object.
The	path	argument	refers	to	the	fully	qualified	path	(in	a	local	or	remote
filesystem	such	as	HDFS)	of	the	JSON	file.	The	schema	argument	can
explicitly	define	a	target	schema	for	the	resultant	DataFrame,	which	we	look	at
later	in	this	chapter.	Many	additional	arguments	are	used	to	specify	formatting
options,	and	the	full	description	of	them	is	in	the	Spark	SQL	Python	API
documentation	at
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrameReader

Listing	6.7	read.json()	Method	for	Creating	a	DataFrame
from	a	JSON	File
Click	here	to	view	code	image

people_json_file	=	'/opt/spark/examples/src/main/resources/people.json'

people_df	=	spark.read.json(people_json_file)

https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrameReader

people_df.show()

#	returns:

#	+----+-------+

#	|	age|			name|

#	+----+-------+

#	|null|Michael|

#	|		30|			Andy|

#	|		19|	Justin|

#	+----+-------+

Note	that	each	line	in	a	JSON	file	must	be	a	valid	JSON	object.	The	schemas,	or
keys,	do	not	need	to	be	uniform	across	all	JSON	objects	in	a	file.	Keys	that	are
not	present	in	a	given	JSON	object	are	represented	as	null	in	the	resultant
DataFrame.

In	addition,	the	read.json()	method	allows	you	to	create	a	DataFrame	from
an	existing	RDD	consisting	of	a	list	of	one	or	more	discrete	JSON	objects	as
strings	(see	Listing	6.8).

Listing	6.8	Creating	a	DataFrame	from	a	JSON	RDD
Click	here	to	view	code	image

rdd=	sc.parallelize(\

	['{"name":"Adobe	on	Almaden",	"lat":37.331415,	"long":−121.8932}',	\

		'{"name":"Japantown",	"lat":37.348742,	"long":−121.894715}'])

json_df	=	spark.read.json(rdd)

json_df.show()

#	returns:

#	+---------+-----------+----------------+

#	|						lat|							long|												name|

#	+---------+-----------+----------------+

#	|37.331415|		−121.8932|Adobe	on	Almaden|

#	|37.348742|−121.894715|							Japantown|

#	+---------+-----------+----------------+

Creating	DataFrames	from	Flat	Files
The	DataFrameReader	can	also	be	used	to	load	DataFrames	from	other

types	of	files,	such	as	CSV	files,	as	well	as	external	SQL	and	NoSQL	data
sources.	The	following	sections	look	at	some	examples	of	creating	DataFrames
from	plaintext	files	and	columnar	storage	files,	including	Parquet	and	ORC.

text()

Syntax:
DataFrameReader.read.text(path)

The	text()	method	of	the	DataFrameReader	is	used	to	load	DataFrames
from	text	files	in	an	external	filesystem	(local,	NFS,	HDFS,	S3,	or	others).	Its
behavior	is	similar	to	its	RDD	equivalent,	sc.textFile().	The	path
argument	refers	to	a	path	that	could	be	a	file,	directory,	or	file	glob.	(“Globbing”
expressions	are	similar	to	regular	expressions	used	to	return	a	list	of	files
satisfying	the	glob	pattern.)

Listing	6.9	demonstrates	the	read.text()	function.

Listing	6.9	Creating	a	DataFrame	from	a	Plaintext	File	or	Files
Click	here	to	view	code	image

#	read	an	individual	file

df	=	spark.read.text('file:///opt/spark/data/bike-

share/stations/stations.csv')

df.take(1)

#	returns:

#	[Row(value=u'9,Japantown,37.348742,−121.894715,15,San	Jose,8/5/2013')]

#	you	can	also	read	all	files	from	a	directory...

df	=	spark.read.text('file:///opt/spark/data/bike-share/stations/')

df.count()

#	returns:	83

Note	that	the	Row	object	returned	for	each	line	in	the	text	file	or	files	contains
one	string,	which	is	the	entire	line	of	the	file.

Columnar	Storage	and	Parquet	Files
Columnar	 storage	 concepts,	 introduced	 earlier	 in	 this	 chapter,	 extend
beyond	in-memory	structures	to	persistent	file	formats	such	as	Parquet	and

ORC	 (Optimized	 Row	 Columnar)	 files.	 Apache	 Parquet	 is	 a	 popular,
generalized	 columnar	 storage	 format	 designed	 for	 integration	 with	 any
Hadoop	 ecosystem	 project.	 Parquet	 is	 a	 “first-class	 citizen”	 in	 the	 Spark
project	and	is	the	preferred	storage	format	for	Spark	SQL	processing.	ORC
is	a	successor	to	RCFile,	a	columnar	storage	format	built	to	improve	Hive
read	 performance.	 If	 you	 need	 to	 share	 data	 structures	 with	 Hive	 and
accommodate	 non-Spark	 access	 patterns,	 such	 as	 Tez,	 ORC	 may	 be	 an
appropriate	format.	Parquet	support	is	available	through	the	Hive	project	as
well.

parquet()

Syntax:
DataFrameReader.read.parquet(paths)

The	parquet()	method	of	the	DataFrameReader	is	for	loading	files
stored	with	the	Parquet	columnar	storage	format.	These	files	are	often	the	output
of	another	process,	such	as	output	from	a	previous	Spark	process.	The	paths
argument	refers	to	a	Parquet	file	or	files,	or	a	directory	containing	Parquet	files.

The	Parquet	format	encapsulates	the	schema	and	data	in	one	structure,	so	the
schema	is	applied	and	available	to	the	resultant	DataFrame.

Given	an	existing	file	in	Parquet	format,	Listing	6.10	demonstrates	the	use	of	the
DataFrameReader.read.parquet()	method.

Listing	6.10	Creating	a	DataFrame	from	a	Parquet	File	or	Files
Click	here	to	view	code	image

df	=	spark.read.parquet('hdfs:///user/hadoop/stations.parquet')

df.printSchema()

#	returns:

#	root

#		|--	station_id:	integer	(nullable	=	true)

#		|--	name:	string	(nullable	=	true)

#		|--	lat:	double	(nullable	=	true)

#		|--	long:	double	(nullable	=	true)

#		|--	dockcount:	integer	(nullable	=	true)

#		|--	landmark:	string	(nullable	=	true)

#		|--	installation:	string	(nullable	=	true)

df.take(1)

#	returns:

#	[Row(station_id=2,	name=u'San	Jose	Diridon	Caltrain	Station',	

lat=37.329732...)]

Parquet	and	Compression
By	default,	Spark	uses	the	Gzip	codec	to	compress	Parquet	files.	If	you
require	an	alternative	codec	(such	as	Snappy)	to	read	or	write	compressed
Parquet	files,	supply	the	following	config:

Click	here	to	view	code	image
sqlContext.setConf("spark.sql.parquet.compression.codec.",	

"snappy")

orc()

Syntax:
DataFrameReader.read.orc(path)

The	orc()	method	of	the	DataFrameReader	is	used	to	load	a	DataFrame
from	a	file	or	directory	consisting	of	ORC	format	files.	ORC	is	a	format	native
to	the	Hive	project.	The	path	argument	refers	to	a	directory	containing	ORC
files,	typically	associated	with	a	table	in	ORC	format	in	a	Hive	warehouse.
Listing	6.11	shows	the	use	of	the	orc()	method	to	load	the	ORC	files
associated	with	a	Hive	table	stored	as	ORC.

Listing	6.11	Creating	a	DataFrame	from	Hive	ORC	Files
Click	here	to	view	code	image

df	=	spark.read.orc('hdfs:///user/hadoop/stations_orc/')

df.printSchema()

#	returns:

#	root

#	|--	station_id:	integer	(nullable	=	true)

	#	|--	name:	string	(nullable	=	true)

#	|--	lat:	double	(nullable	=	true)

#	|--	long:	double	(nullable	=	true)

#	|--	dockcount:	integer	(nullable	=	true)

#	|--	landmark:	string	(nullable	=	true)

#	|--	installation:	string	(nullable	=	true)

df.take(1)

#	returns:

#	[Row(station_id=2,	name=u'San	Jose	Diridon	Caltrain	Station',	

lat=37.329732	...)]

You	can	also	use	the	DataFrameReader	and	the	spark.read.jdbc()
method	to	load	data	from	external	data	sources	such	as	MySQL,	Oracle,	or
others.

Converting	DataFrames	to	RDDs
You	can	easily	convert	DataFrames	to	native	RDDs	by	using	the	rdd()
method,	as	shown	in	Listing	6.12.	The	resultant	RDD	consists	of
pyspark.sql.Row	objects.

Listing	6.12	Converting	a	DataFrame	to	an	RDD
Click	here	to	view	code	image

stationsdf	=	spark.read.parquet('hdfs:///user/hadoop/stations.parquet')

stationsrdd	=	stationsdf.rdd

stationsrdd

#	returns:

#	MapPartitionsRDD[4]	at	javaToPython	at	...

stationsrdd.take(1)

#	returns:

#	[Row(station_id=2,	name=u'San	Jose	Diridon	Caltrain	Station',	

lat=37.329732	...)]

DataFrame	Data	Model:	Primitive	Types
The	data	model	for	the	DataFrame	API	is	based	on	the	Hive	data	model.
Datatypes	used	with	DataFrames	map	directly	to	their	equivalents	in	Hive.	This
includes	all	common	primitive	types	as	well	as	complex,	nested	types	such	as	the
equivalents	to	lists,	dictionaries,	and	tuples.

Table	6.2	lists	the	primitive	types	encapsulated	by	PySpark	types	derived	from
the	base	class	pyspark.sql.types.DataType.

Table	6.2	Spark	SQL	Primitive	Types	(pyspark.sql.types)

Type Hive	Equivalent Python	Equivalent

ByteType TINYINT int

ShortType SMALLINT int

IntegerType INT int

LongType BIGINT long

FloatType FLOAT float

DoubleType DOUBLE float

BooleanType BOOLEAN bool

StringType STRING string

BinaryType BINARY bytearray

TimestampType TIMESTAMP datetime.datetime

DateType DATE datetime.date

DataFrame	Data	Model:	Complex	Types
Complex,	nested	structures	are	accessible	in	Spark	SQL	using	native	HiveQL-
based	operators.	Table	6.3	lists	the	complex	types	in	the	DataFrame	API,	along
with	their	Hive	and	Python	equivalents.

Table	6.3	Spark	SQL	Complex	Types	(pyspark.sql.types)

Type Hive	Equivalent Python	Equivalent

ArrayType ARRAY list,	tuple,	or	array

MapType MAP dict

StructType STRUCT list	or	tuple

Inferring	DataFrame	Schemas

The	schema	for	a	Spark	SQL	DataFrame	can	be	explicitly	defined	or	inferred.	In
previous	examples,	the	schema	was	not	explicit,	so	in	each	case,	it	was	inferred.
Inferring	the	schema	is	the	simplest	method.	However,	it	is	generally	better
practice	to	define	the	schema	in	your	code.

Spark	SQL	uses	reflection,	a	process	of	examining	an	object	to	determine	its
composition,	to	infer	the	schema	of	a	DataFrame	object.	Reflection	can	interpret
a	schema	for	an	RDD	converted	to	a	DataFrame.	In	this	case,	the	process
involves	creating	a	Row	object	from	each	record	in	the	RDD	and	assigning	a
datatype	from	each	field	in	the	RDD.	The	datatypes	are	inferred	from	the	first
record,	so	it	is	important	for	the	first	record	to	be	representative	of	the	dataset
and	to	have	no	missing	values.

Listing	6.13	shows	an	example	of	schema	inference	for	a	DataFrame	created
from	an	RDD.	Note	the	use	of	the	printSchema()	DataFrame	method	to
print	the	schema	to	the	console	in	a	tree	format.

Listing	6.13	Schema	Inference	for	a	DataFrame	Created	from	an
RDD
Click	here	to	view	code	image

rdd	=	sc.textFile('file:///home/hadoop/stations.csv')	\

								.map(lambda	x:	x.split(','))	\

								.map(lambda	x:	(int(x[0]),	str(x[1]),

																								float(x[2]),	float(x[3]),

																								int(x[4]),	str(x[5]),	str(x[6])))

rdd.take(1)	#	returns:

#	[(2,	'San	Jose	Diridon	Caltrain	Station',	37.329732,	−121.901782,	27,	

'San	Jose',

#	'8/6/2013')]

df	=	spark.createDataFrame(rdd)

df.printSchema()

#	returns:

#	root

#		|--	_1:	long	(nullable	=	true)

#		|--	_2:	string	(nullable	=	true)

#		|--	_3:	double	(nullable	=	true)

#		|--	_4:	double	(nullable	=	true)

#		|--	_5:	long	(nullable	=	true)

#		|--	_6:	string	(nullable	=	true)

#		|--	_7:	string	(nullable	=	true)

Note	that	the	fields	use	the	_<fieldnumber>	convention	for	their	identifiers
and	have	a	nullable	property	value	set	to	True,	meaning	these	values	are	not
required.	Also	notice	that	the	larger	type	variants	are	assumed.	For	instance,	the
lat	and	long	fields	in	this	RDD	are	cast	as	float	values,	yet	the	inferred
schema	in	the	resultant	DataFrame	uses	double	(actually,	an	instance	of	the
DoubleType)	for	the	same	fields.	Likewise,	long	values	are	inferred	from
int	values.

Schema	inference	is	performed	automatically	for	DataFrames	created	from
JSON	documents,	as	shown	in	Listing	6.14.

Listing	6.14	Schema	Inference	for	DataFrames	Created	from
JSON	Objects
Click	here	to	view	code	image

rdd	=	sc.parallelize(\

						['{"name":"Adobe	on	Almaden",	"lat":37.331415,	"long":−121.8932}',	

\

							'{"name":"Japantown",	"lat":37.348742,	"long":−121.894715}'])

df	=	spark.read.json(rdd)

df.printSchema()

#	returns:

#	root

#		|--	lat:	double	(nullable	=	true)

#		|--	long:	double	(nullable	=	true)

#		|--	name:	string	(nullable	=	true)

The	schema	for	a	DataFrame	created	from	a	Hive	table	is	automatically	inherited
from	its	Hive	definition,	as	shown	in	Listing	6.15.

Listing	6.15	Schema	for	a	DataFrame	Created	from	a	Hive	Table
Click	here	to	view	code	image

df	=	spark.table("stations")

df.printSchema()

#	returns:

#	root

	#	|--	station_id:	integer	(nullable	=	true)

#	|--	name:	string	(nullable	=	true)

#	|--	lat:	double	(nullable	=	true)

#	|--	long:	double	(nullable	=	true)

#	|--	dockcount:	integer	(nullable	=	true)

#	|--	landmark:	string	(nullable	=	true)

#	|--	installation:	string	(nullable	=	true)

Defining	DataFrame	Schemas
The	preferred	method	of	defining	a	schema	for	DataFrame	objects	is	to	explicitly
supply	it	in	your	code.	To	create	a	schema,	you	need	to	create	a	StructType
object	containing	a	collection	of	StructField	objects.	You	then	apply	this
schema	to	your	DataFrame	when	it	is	created.	Listing	6.16	shows	an	example	of
explicitly	defining	a	schema	using	a	previous	example.	Notice	the	difference	in
behavior	between	the	inferred	and	defined	schemas.

Listing	6.16	Defining	the	Schema	for	a	DataFrame	Explicitly
Click	here	to	view	code	image

from	pyspark.sql.types	import	*

myschema	=	StructType([\

											StructField("station_id",	IntegerType(),	True),	\

											StructField("name",	StringType(),	True),	\

											StructField("lat",	FloatType(),	True),	\

											StructField("long",	FloatType(),	True),	\

											StructField("dockcount",	IntegerType(),	True),	\

											StructField("landmark",	StringType(),	True),	\

											StructField("installation",	StringType(),	True)	\

])

rdd	=	sc.textFile('file:///home/hadoop/stations.csv')	\

								.map(lambda	x:	x.split(','))	\

								.map(lambda	x:	(int(x[0]),	str(x[1]),

																								float(x[2]),	float(x[3]),

																								int(x[4]),	str(x[5]),	str(x[6])))

df	=	spark.createDataFrame(rdd,	myschema)

df.printSchema()

#	returns:

#	root

#		|--	station_id:	integer	(nullable	=	true)

#		|--	name:	string	(nullable	=	true)

#		|--	lat:	float	(nullable	=	true)

#		|--	long:	float	(nullable	=	true)

#		|--	dockcount:	integer	(nullable	=	true)

#		|--	landmark:	string	(nullable	=	true)

#		|--	installation:	string	(nullable	=	true)

Using	DataFrames
The	DataFrame	API	is	currently	one	of	the	fastest-moving	areas	in	the	Spark
project.	New	and	significant	features	and	functions	appear	with	every	minor
release.	Extensions	to	the	Spark	SQL	DataFrame	model,	such	as	the	Datasets
API,	are	moving	equally	quickly.	In	fact,	Spark	SQL,	including	its	core
component,	the	DataFrame	API,	could	warrant	its	own	book.	The	following
sections	cover	the	basics	of	the	DataFrame	API	using	Python,	providing	enough
information	to	get	you	up	and	running	with	DataFrames.	The	rest	is	up	to	you!

DataFrame	Metadata	Operations
Several	metadata	functions	are	available	with	the	DataFrame	API.	These	are
functions	that	return	information	about	the	data	structure,	not	the	data	itself.	You
have	already	seen	one	of	the	available	functions,	printSchema(),	which
returns	the	schema	defined	for	a	DataFrame	object	in	a	tree	format.	The
following	sections	explore	some	of	the	additional	metadata	functions.

columns()

Syntax:
DataFrame.columns()

The	columns()	method	returns	a	list	of	column	names	for	the	given
DataFrame.	An	example	is	provided	in	Listing	6.17.

Listing	6.17	Returning	a	List	of	Columns	from	a	DataFrame
Click	here	to	view	code	image

df	=	spark.read.parquet('hdfs:///user/hadoop/stations.parquet')

df.columns

#	returns:

#	['station_id',	'name',	'lat',	'long',	'dockcount',	'landmark',	

'installation']

dtypes()

Syntax:
DataFrame.dtypes()

The	dtypes()	method	returns	a	list	of	tuples,	with	each	tuple	consisting	of	the
column	names	and	the	datatypes	for	a	column	for	a	given	DataFrame	object.
This	may	be	more	useful	than	the	previously	discussed	printSchema()
method	because	you	can	access	it	programmatically.	Listing	6.18	demonstrates
the	dtypes()	method.

Listing	6.18	Returning	Column	Names	and	Datatypes	from	a
DataFrame
Click	here	to	view	code	image

df	=	spark.read.parquet('hdfs:///user/hadoop/stations.parquet')

df.dtypes

#	returns:

#	[('station_id',	'int'),	('name',	'string'),	('lat',	'double'),	

('long',	'double'),

#	('dockcount',	'int'),	('landmark',	'string'),	('installation',	

'string')]

Basic	DataFrame	Operations
Because	DataFrames	are	columnar	abstractions	of	RDDs,	you	see	many	similar
functions,	such	as	transformations	and	actions,	that	are	direct	descendants	of
RDD	methods,	with	some	additional	relational	methods	such	as	select(),
drop(),	and	where().	Core	functions	such	as	count(),	collect(),
take(),	and	foreach()	are	functionally	and	syntactically	analogous	to	the
functions	with	the	same	names	in	the	RDD	API.	As	with	the	RDD	API,	each	of
these	methods,	as	an	action,	triggers	evaluation	of	the	DataFrame	and	its	lineage.

Much	as	with	the	collect()	and	take()	actions,	you	may	have	noticed	an
alternative	method,	show(),	used	in	previous	examples.	show()	is	an	action
that	triggers	evaluation	of	a	DataFrame	if	the	DataFrame	does	not	exist	in	cache.

The	select(),	drop(),	filter(),	where(),	and	distinct()
methods	can	prune	columns	or	filter	rows	from	a	DataFrame.	In	each	case,	the
results	of	these	operations	create	a	new	DataFrame	object.

show()

Syntax:
DataFrame.show(n=20,	truncate=True)

The	show()	method	prints	the	first	n	rows	of	a	DataFrame	to	the	console.
Unlike	collect()	or	take(n),	show()	cannot	return	to	a	variable.	It	is
solely	intended	for	viewing	the	contents	or	a	subset	of	the	contents	in	the	console
or	notebook.	The	truncate	argument	specifies	whether	to	truncate	long
strings	and	align	cells	to	the	right.

The	output	of	the	show()	command	is	“pretty	printed,”	meaning	it	is	formatted
as	a	grid	result	set,	including	column	headings	for	readability.

select()

Syntax:
DataFrame.select(*cols)

The	select()	method	returns	a	new	DataFrame	object	from	the	list	of
columns	specified	by	the	cols	argument.	You	can	use	an	asterisk	(*)	to	select
all	columns	from	the	DataFrame	with	no	manipulation.	Listing	6.19	shows	an
example	of	the	select()	function.

Listing	6.19	select()	Method	in	Spark	SQL
Click	here	to	view	code	image

df	=	spark.read.parquet('hdfs:///user/hadoop/stations.parquet')

newdf	=	df.select((df.name).alias("Station	Name"))

newdf.show(2)

#	returns:

#	+--------------------+

#	|								Station	Name|

#	+--------------------+

#	|San	Jose	Diridon	...|

#	|San	Jose	Civic	Ce...|

#	+--------------------+

#	only	showing	top	2	rows

As	you	can	see	from	Listing	6.19,	you	can	also	apply	column	aliases	with
select()	by	using	the	alias	operator;	select()	is	also	the	primary
method	for	applying	column-level	functions	in	DataFrame	transformation
operations.	You	will	see	an	example	of	this	shortly.

drop()

Syntax:
DataFrame.drop(col)

The	drop()	method	returns	a	new	DataFrame	with	the	column	specified	by	the
col	argument	removed.	Listing	6.20	demonstrates	the	use	of	the	drop()
method.

Listing	6.20	Dropping	a	Column	from	a	DataFrame
Click	here	to	view	code	image

df	=	spark.read.parquet('hdfs:///user/hadoop/stations.parquet')

df.columns

#	returns:

#	['station_id',	'name',	'lat',	'long',	'dockcount',	'landmark',	

'installation']

newdf	=	df.drop(df.installation)

newdf.columns

#	returns:

#	['station_id',	'name',	'lat',	'long',	'dockcount',	'landmark']

filter()

Syntax:
DataFrame.filter(condition)

The	filter()	method	returns	a	new	DataFrame	that	contains	only	rows	that
satisfy	the	given	condition,	an	expression	provided	by	the	condition
argument	that	evaluates	to	True	or	False.	Listing	6.21	demonstrates	the	use	of
filter().

Listing	6.21	Filtering	Rows	from	a	DataFrame
Click	here	to	view	code	image

df	=	spark.read.parquet('hdfs:///user/hadoop/stations.parquet')

df.filter(df.name	==	'St	James	Park')	\

		.select(df.name,df.lat,df.long)	\

		.show()

#	returns:	

#	+-------------+---------+-----------+

#	|									name|						lat|							long|

#	+-------------+---------+-----------+

#	|St	James	Park|37.339301|−121.889937|

#	+-------------+---------+-----------+

The	where()	method	is	an	alias	for	filter(),	and	the	two	can	be	used
interchangeably.

distinct()

Syntax:
DataFrame.distinct()

The	distinct()	method	returns	a	new	DataFrame	that	contains	the	distinct
rows	in	the	input	DataFrame,	essentially	filtering	out	duplicate	rows.	A	duplicate
row	is	a	row	where	all	values	for	all	columns	are	the	same	as	for	another	row	in
the	same	DataFrame.	Listing	6.22	shows	an	example	of	the	distinct()
method.

Listing	6.22	Filtering	Duplicate	Rows	from	a	DataFrame
Click	here	to	view	code	image

rdd	=	sc.parallelize([('Jeff',	48),('Kellie',	45),('Jeff',	48)])

df	=	spark.createDataFrame(rdd)

df.show()

#	returns:

#	+------+---+

#	|				_1|	_2|

#	+------+---+

#	|		Jeff|	48|

#	|Kellie|	45|

#	|		Jeff|	48|

#	+------+---+

df.distinct().show()

#	returns:

#	+------+---+

#	|				_1|	_2|

#	+------+---+

#	|Kellie|	45|

#	|		Jeff|	48|

#	+------+---+

Note	that	drop_duplicates()	is	a	similar	method	that	also	lets	you
optionally	consider	certain	columns	to	filter	for	duplicates.

In	addition,	map()	and	flatMap()	are	available,	using
DataFrame.rdd.map()	and	DataFrame.rdd.flatMap(),
respectively.	Prior	to	Spark’s	2.0	release,	you	could	run	the	map()	and
flatMap()	methods	directly	on	a	DataFrame	object;	however,	these	were
simply	aliases	for	the	rdd.map()	and	rdd.flatMap()	methods.

Along	with	the	select()	method,	you	can	use	the	rdd.map()	and
rdd.flatMap()	methods	to	apply	column-level	functions	to	rows	in	Spark
SQL	DataFrames,	as	well	as	project-specific	columns,	including	computed
columns.	However,	select()	operates	on	a	DataFrame	and	returns	a	new
DataFrame,	whereas	the	rdd.map()	and	rdd.flatMap()	methods	operate
on	a	DataFrame	and	return	an	RDD.

Conceptually,	these	methods	function	like	their	named	equivalents	in	the	RDD
API.	However,	when	dealing	with	DataFrames	with	named	columns,	the
lambda	functions	are	slightly	different.	Listing	6.23	uses	the	rdd.map()
method	to	project	a	column	from	a	DataFrame	into	a	new	RDD	named	rdd.

Listing	6.23	map()	Functions	with	Spark	SQL	DataFrames

Click	here	to	view	code	image

df	=	spark.read.parquet('hdfs:///user/hadoop/stations.parquet')

rdd	=	df.rdd.map(lambda	r:	r.name)

rdd

#	returns:

#	PythonRDD[62]	at	RDD	at	PythonRDD.scala:48

rdd.take(1)

#	returns:

#	[u'San	Jose	Diridon	Caltrain	Station']

If	you	want	the	result	of	a	mapping	operation	to	return	a	new	DataFrame	instead
of	an	RDD,	select()	is	a	better	option.

Some	other	operations	in	the	Spark	SQL	DataFrame	API	are	worth	mentioning.
The	methods	sample()	and	sampleBy()work	similarly	to	their	RDD
equivalents,	and	the	limit()	function	creates	a	new	DataFrame	with	a	specific
number	of	arbitrary	rows	from	the	originating	DataFrame.	All	these	methods	are
helpful	for	working	with	data	at	scale,	limiting	the	working	set	during
development.

Another	useful	method	during	development	is	explain().	The	explain()
method	returns	a	query	plan,	including	a	logical	and	physical	plan	for	evaluating
the	DataFrame.	This	can	be	helpful	in	troubleshooting	or	optimizing	Spark	SQL
programs.

You	are	encouraged	to	explore	the	documentation	to	learn	more	about	all	the
functions	available	in	the	DataFrame	API.	Notably,	Python	docstrings	are
included	with	all	functions	in	the	Python	Spark	SQL	API.	You	can	use	them	to
explore	the	syntax	and	usage	of	any	function	in	Spark	SQL,	as	well	as	any	other
functions	in	the	Spark	Python	API.	Python	docstrings	are	accessible	using	the
__doc__	method	of	a	function	with	the	fully	qualified	class	path,	as	shown	in
Listing	6.24.

Listing	6.24	Getting	Help	for	Spark	SQL	Functions
Click	here	to	view	code	image

from	pyspark.sql	import	DataFrame

print(DataFrame.sample.__doc__)

#	returns:

#	Returns	a	sampled	subset	of	this	:class:`DataFrame`.

#..	note::	This	is	not	guaranteed	to	provide	exactly	the	fraction	

specified	of	the

#	total

#		count	of	the	given	:class:`DataFrame`.

#	>>>	df.sample(False,	0.5,	42).count()

#	2

#..	versionadded::	1.3

DataFrame	Built-in	Functions
Numerous	functions	available	in	Spark	SQL	are	present	in	most	other	common
DBMS	implementations	of	SQL.	Using	the	Python	Spark	API,	these	built-in
functions	are	available	through	the	pyspark.sql.functions	module.
Functions	include	scalar	and	aggregate	functions	and	can	operate	on	fields,
columns,	or	rows,	depending	on	the	function.	Table	6.4	shows	a	sampling	of	the
functions	available	in	the	pyspark.sql.functions	library.

Table	6.4	Examples	of	Built-in	Functions	Available	in	Spark	SQL

Type Available	Functions

String
functions

startswith,	substr,	concat,	lower,	upper,
regexp_extract,	regexp_replace

Math
functions

abs,	ceil,	floor,	log,	round,	sqrt

Statistical
functions

avg,	max,	min,	mean,	stddev

Date
functions

date_add,	datediff,	from_utc_timestamp

Hashing
functions

md5,	sha1,	sha2

Algorithmic
functions

soundex,	levenshtein

Windowing over,	rank,	dense_rank,	lead,	lag,	ntile

functions

Implementing	User-Defined	Functions	in	the	DataFrame	API
If	you	can’t	find	a	function	for	what	you	want	to	do,	you	can	create	a	user-
defined	function	(UDF)	in	Spark	SQL.	You	can	create	column-level	UDFs	to
incorporate	into	Spark	programs	by	using	the	udf()	method	described	next.

udf()

Syntax:
Click	here	to	view	code	image

pyspark.sql.functions.udf(func,	returnType=StringType)

The	udf	method	creates	a	column	expression	representing	a	user-defined
function;	func	is	a	named	or	anonymous	function,	using	the	lambda	syntax,
that	operates	on	a	column	within	a	DataFrame	row.	The	returnType
argument	specifies	the	datatype	of	the	object	returned	from	the	function.	This
type	is	a	member	of	pyspark.sql.types	or	a	subtype	of	the
pyspark.sql.types.DataType	class.

Suppose	you	want	to	define	functions	to	convert	decimal	latitudinal	and
longitudinal	coordinates	to	their	geopositional	direction	with	respect	to	the
equator	and	the	prime	meridian.	Listing	6.25	demonstrates	creating	two	UDFs	to
take	the	decimal	latitude	and	longitude	coordinates	and	return	N,	S,	E,	or	W,	as
appropriate.

Listing	6.25	User-Defined	Functions	in	Spark	SQL
Click	here	to	view	code	image

from	pyspark.sql.functions	import	*

from	pyspark.sql.types	import	*

df	=	spark.read.parquet('hdfs:///user/hadoop/stations.parquet')

lat2dir	=	udf(lambda	x:	'N'	if	x	>	0	else	'S',	StringType())

lon2dir	=	udf(lambda	x:	'E'	if	x	>	0	else	'W',	StringType())

df.select(df.lat,	lat2dir(df.lat).alias('latdir'),

										df.long,	lon2dir(df.lat).alias('longdir'))	\

										.show(5)

#	returns:

	#	+---------+------+-----------+-------+

#	|						lat|latdir|							long|longdir|

#	+---------+------+-----------+-------+

#	|37.329732|					N|−121.901782|						E|

#	|37.330698|					N|−121.888979|						E|

#	|37.333988|					N|−121.894902|						E|

#	|37.331415|					N|		−121.8932|						E|

#	|37.336721|					N|−121.894074|						E|

#	+---------+------+-----------+-------+

#	only	showing	top	5	rows

Operations	on	Multiple	DataFrames
Set	operations,	such	as	join()	and	union(),	are	common	requirements	for
DataFrames	because	they	are	integral	operations	in	relational	SQL	programming.

Joining	DataFrames	support	all	join	operations	supported	in	the	RDD	API	and	in
HiveQL,	including	inner	joins,	outer	joins,	and	left	semi-joins.

join()

Syntax:
Click	here	to	view	code	image

DataFrame.join(other,	on=None,	how=None)

The	join()	method	creates	a	new	DataFrame	from	the	results	of	a	join
operation	against	the	DataFrame	referenced	in	the	other	argument	(the	right
side	of	the	argument).	The	on	argument	specifies	a	column,	a	list	of	columns,	or
an	expression	to	evaluate	the	join	operation.	The	how	argument	specifies	the
type	of	join	to	be	performed.	Valid	values	include	inner	(default),	outer,
left_outer,	right_outer,	and	leftsemi.

Consider	a	new	entity	from	the	bike-share	dataset	called	trips,	which	includes
two	fields,	start_terminal	and	end_terminal,	that	correspond	to
station_id	in	the	stations	entity.	Listing	6.26	demonstrates	an	inner	join
between	these	two	entities,	using	the	join()	method.

Listing	6.26	Joining	DataFrames	in	Spark	SQL
Click	here	to	view	code	image

trips	=	spark.table("trips")

stations	=	spark.table("stations")

joined	=	trips.join(stations,	trips.startterminal	==	

stations.station_id)

joined.printSchema()

#	returns:

#	root

#		|--	tripid:	integer	(nullable	=	true)

#		|--	duration:	integer	(nullable	=	true)

#		|--	startdate:	string	(nullable	=	true)

#		|--	startstation:	string	(nullable	=	true)

#		|--	startterminal:	integer	(nullable	=	true)

#		|--	enddate:	string	(nullable	=	true)

#		|--	endstation:	string	(nullable	=	true)

	#		|--	endterminal:	integer	(nullable	=	true)

#		|--	bikeno:	integer	(nullable	=	true)

#		|--	subscribertype:	string	(nullable	=	true)

#		|--	zipcode:	string	(nullable	=	true)

#		|--	station_id:	integer	(nullable	=	true)

#		|--	name:	string	(nullable	=	true)

#		|--	lat:	double	(nullable	=	true)

#		|--	long:	double	(nullable	=	true)

#		|--	dockcount:	integer	(nullable	=	true)

#		|--	landmark:	string	(nullable	=	true)

#		|--	installation:	string	(nullable	=	true)

joined.select(joined.startstation,	joined.duration)	\

						.show(2)

#	returns:

#	+--------------------+--------+

#	|								startstation|duration|

#	+--------------------+--------+

#	|Harry	Bridges	Pla...|					765|

#	|San	Antonio	Shopp...|				1036|

#	+--------------------+--------+

#	only	showing	top	2	rows

Other	set	operations	such	as	intersect()	and	subtract()	are	available
functions	for	Spark	SQL	DataFrames	and	function	like	the	equivalent	RDD
functions	described	previously	in	this	book.	In	addition,	a	unionAll()
method	is	available	for	DataFrames	instead	of	union(),	also	described

previously.	Note	that	if	you	need	to	remove	duplicates,	you	can	do	so	after	the
unionAll()	operation	by	using	the	aforementioned	distinct()	or	drop_
duplicates()	functions.

The	DataFrame	API	also	includes	several	standard	methods	for	sorting	or
ordering,	as	described	in	the	following	sections.

orderBy()

Syntax:
Click	here	to	view	code	image

DataFrame.orderBy(cols,	ascending)

The	orderBy()	method	creates	a	new	DataFrame	ordered	by	the	columns
specified	in	the	cols	argument;	ascending	is	a	Boolean	argument	that
defaults	to	True,	which	determines	the	sort	order	for	the	column.	Listing	6.27
shows	an	example	of	the	orderBy()	function.

Listing	6.27	Ordering	a	DataFrame
Click	here	to	view	code	image

stations	=	spark.read.parquet('hdfs:///user/hadoop/stations.parquet')

stations.orderBy([stations.name],	ascending=False)	\

				.select(stations.name)	\

				.show(2)

#	returns:

	#	+--------------------+

#	|																name|

#	+--------------------+

#	|Yerba	Buena	Cente...|

#	|Washington	at	Kea...|

#	+--------------------+

#	only	showing	top	2	rows

Note	that	sort()	is	a	function	synonymous	with	orderBy()	in	the
DataFrame	API.

Grouping	is	a	common	precursor	to	performing	aggregations	on	a	column	or
columns	in	a	DataFrame.	The	DataFrame	API	includes	the	groupBy()	method

(also	aliased	by	groupby()),	which	groups	the	DataFrame	on	specific
columns.	This	function	returns	a	pyspark.sql.GroupedData	object,	a
special	type	of	DataFrame	that	contains	grouped	data	exposing	common
aggregate	functions,	such	as	sum()	and	count().

groupBy()

Syntax:
DataFrame.groupBy(cols)

The	groupBy()	method	creates	a	new	DataFrame	containing	the	input
DataFrame	grouped	by	the	column	or	columns	specified	in	the	cols	argument.
Listing	6.28	demonstrates	the	use	of	groupBy()	to	average	trip	durations	from
the	trips	entity	in	the	bike-share	dataset.

Listing	6.28	Grouping	and	Aggregating	Data	in	DataFrames
Click	here	to	view	code	image

trips	=	spark.table("trips")

averaged	=	trips.groupBy([trips.startterminal]).avg('duration')	\

																.show(2)

#	returns:

#	+-------------+------------------+

#	|startterminal|					avg(duration)|

#	+-------------+------------------+

#	|											31|2747.6333021515434|

#	|											65|	626.1329988365329|

#	+-------------+------------------+

#	only	showing	top	2	rows

Caching,	Persisting,	and	Repartitioning	DataFrames
The	DataFrame	API	supports	methods	for	caching,	persisting,	and	repartitioning
that	are	similar	to	those	in	the	Spark	RDD	API	for	these	operations.

Methods	for	caching	and	persisting	DataFrames	include	cache(),
persist(),	and	unpersist(),	which	behave	like	the	RDD	functions	with
the	same	names.	In	addition,	Spark	SQL	adds	the	cacheTable()	method,

which	caches	a	table	from	Spark	SQL	or	Hive	in	memory.	The	clearCache()
method	removes	a	cached	table	from	memory.	DataFrames	also	support	the
coalesce()	and	repartition()	methods	for	repartitioning	DataFrames.

Saving	DataFrame	Output
The	DataFrameWriter	is	the	interface	used	to	write	a	DataFrame	to	external
storage	systems	such	as	a	file	system	or	a	database.	The	DataFrameWriter	is
accessible	using	DataFrame.write().	The	following	sections	provide	some
examples.

Writing	Data	to	a	Hive	Table
Earlier	in	this	chapter,	you	saw	how	to	load	data	into	a	DataFrame	from	a	Hive
table.	Similarly,	you	may	often	need	to	write	data	from	a	DataFrame	to	a	Hive
table;	you	can	do	this	by	using	the	saveAsTable()	function.

saveAsTable()

Syntax:
Click	here	to	view	code	image

DataFrame.write.saveAsTable(name,	format=None,	mode=None,	

partitionBy=None)

The	saveAsTable()	method	writes	the	data	from	a	DataFrame	into	the	Hive
table	specified	in	the	name	argument.	The	format	argument	specifies	the
output	format	for	the	target	table;	the	default	is	Parquet	format.	Likewise,	mode
is	the	behavior	with	respect	to	an	existing	object,	and	valid	values	are	append,
overwrite,	error,	and	ignore.	Listing	6.29	shows	an	example	of	the
saveAsTable()	method.

Listing	6.29	Saving	a	DataFrame	to	a	Hive	Table
Click	here	to	view	code	image

stations	=	spark.table("stations")

stations.select([stations.station_id,stations.name]).write	\

								.saveAsTable("station_names")

#	load	new	table

station_names	=	spark.table("station_names")

station_names.show(2)

#	returns:

#	+----------+--------------------+

#	|station_id|																name|

#	+----------+--------------------+

#	|									2|San	Jose	Diridon	...|

#	|									3|San	Jose	Civic	Ce...|

#	+----------+--------------------+

#	only	showing	top	2	rows

There	is	also	a	similar	method	in	the	DataFrame	API	named	insertInto().

Writing	Data	to	Files
Data	from	DataFrames	can	write	to	files	in	any	supported	filesystem:	local,
network,	or	distributed.	Output	is	written	as	a	directory	with	files	emitted	for
each	partition,	much	as	with	the	RDD	output	examples	shown	earlier	in	this
chapter.

Comma-separated	values	(CSV)	is	a	common	file	export	format.	DataFrames
can	export	to	CSV	files	by	using	the	DataFrameWriter.write.csv()
method.

Parquet	is	a	popular	columnar	format	that	is	optimized	for	Spark	SQL.	You	have
seen	several	examples	so	far	from	Parquet	format	files.	DataFrames	can	write	to
Parquet	format	files	by	using	the	DataFrameWriter.write.parquet()
method.

write.csv()

Syntax:
Click	here	to	view	code	image

DataFrameWriter.write.csv(path,

																										mode=None,

																										compression=None,

																										sep=None,

																										quote=None,

																										escape=None,

																										header=None,

																										nullValue=None,

																										escapeQuotes=None,

																										quoteAll=None,

																										dateFormat=None,

																										timestampFormat=None,

																										ignoreLeadingWhiteSpace=None,

																										ignoreTrailingWhiteSpace=None)

The	write.csv()	method	of	the	DataFrameWriter	class,	accessed
through	the	DataFrame.write.csv()	interface,	writes	the	content	of	a
DataFrame	to	CSV	files	in	the	path	specified	by	the	path	argument.	The	mode
argument	defines	the	behavior	if	a	target	directory	already	exists	for	the
operation;	valid	values	include	append,	overwrite,	ignore,	and	error
(the	default).	The	mode	argument	is	available	on	all	DataFrame.write()
method.	Additional	arguments	define	the	desired	formatting	for	the	output	CSV
files.	For	example,	the	quoteAll	argument	indicates	whether	all	values	should
always	be	enclosed	in	quotes.	Specific	information	on	all	arguments	available
for	the	write.csv()	method	is	available	at
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrameWriter
Listing	6.30	demonstrates	the	use	of	the	write.csv()	method.

Listing	6.30	Writing	a	DataFrame	to	a	CSV	File	or	Files
Click	here	to	view	code	image

spark.table("stations")	\

				.write.csv("stations_csv")

The	target	for	a	write.csv()	operation	could	be	a	local	filesystem	(using	the
file://	scheme),	HDFS,	S3,	or	any	other	filesystem	available	to	you	and
configured	for	access	from	your	Spark	environment.	In	Listing	6.30,	the
filesystem	defaults	to	the	home	directory	in	HDFS	of	the	user	running	the
command;	stations_csv	is	a	directory	in	HDFS,	the	contents	of	which	are
shown	in	Figure	6.6.

https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrameWriter

Figure	6.6	HDFS	directory	contents	from	a	write.csv()	DataFrame
operation.

parquet()

Syntax:
Click	here	to	view	code	image

DataFrameWriter.write.parquet(path,	mode=None,	partitionBy=None)

The	write.parquet()	method	writes	out	the	data	from	a	DataFrame	to	a
directory	containing	Parquet	format	files.	Files	compress	according	to	the
compression	configuration	settings	in	the	current	SparkContext.	The	mode
argument	specifies	the	behavior	if	the	directory	or	files	exist.	Valid	values	for
mode	are	append,	overwrite,	ignore,	and	error	(the	default);
partitionBy	specifies	the	names	of	columns	by	which	to	partition	the	output
files	(using	the	hash	partitioner).	Listing	6.31	demonstrates	using	parquet()
to	save	a	DataFrame	to	a	Parquet	file	using	Snappy	compression.

Listing	6.31	Saving	a	DataFrame	to	a	Parquet	File	or	Files
Click	here	to	view	code	image

spark	=	SparkSession.builder	\

				.config("spark.sql.parquet.compression.codec.",	"snappy")	\

				.getOrCreate()

stations	=	spark.table("stations")

stations.select([stations.station_id,stations.name]).write	\

								.parquet("file:///home/hadoop/stations.parquet",	

mode='overwrite')

Figure	6.7	shows	a	listing	of	the	local	directory	containing	the	Snappy-
compressed	Parquet-formatted	output	file	from	the	operation	performed	in
Listing	6.31.

Figure	6.7	Output	files	created	from	a	write.parquet()	operation.

ORC	files	can	be	written	using	the	orc()	method,	which	is	similar	in	usage	to
parquet().	JSON	files	can	also	be	written	using	the	json()	method.

You	can	save	DataFrames	to	external	JDBC-compliant	databases	by	using	the
DataFrameWriter.write.jdbc()	method.

Accessing	Spark	SQL
So	far	in	this	chapter,	the	examples	of	Spark	SQL	have	been	within	the	Python
(PySpark)	interface.	However,	PySpark	may	not	be	the	appropriate	interface	for

users	who	are	not	programmers.	A	SQL	shell	or	access	to	the	Spark	SQL	engine
from	a	visualization	tool	such	as	Tableau	or	Excel	via	ODBC	may	be	more
applicable.

Accessing	Spark	SQL	Using	the	spark-sql	Shell
Spark	includes	a	SQL	shell	utility	called	spark-sql	in	the	bin	directory	of
your	Spark	installation.	The	spark-sql	shell	program	is	a	lightweight	REPL
(read-evaluate-print	loop)	shell	that	can	access	Spark	SQL	and	Hive	using	your
local	configuration	and	Spark	Driver	binaries.	The	shell	accepts	HiveQL
statements,	including	metadata	operations	such	as	SHOW	TABLES	and
DESCRIBE.	Figure	6.8	shows	an	example	of	the	spark-sql	shell.

Note	that	spark-sql	is	useful	for	testing	SQL	commands	locally	as	a
developer,	but	it	is	limited	because	it’s	not	a	SQL	engine	that	is	accessible	by
other	users	and	remote	applications.	This	is	where	the	Thrift	JDBC/ODBC
server	comes	into	play.

Figure	6.8	The	spark-sql	shell.

Running	the	Thrift	JDBC/ODBC	Server
Spark	SQL	is	useful	as	a	distributed	query	engine	with	a	JDBC/ODBC	interface.
As	with	the	spark-sql	shell,	the	JDBC/ODBC	server	enables	users	to	run

SQL	queries	without	writing	Python	or	Scala	Spark	code.	External	applications,
such	as	visualization	tools,	can	connect	to	the	server	and	interact	directly	with
Spark	SQL.
The	JDBC/ODBC	interface	is	implemented	through	a	Thrift	JDBC/ODBC
server.	Thrift	is	an	Apache	project	used	for	cross-language	service	development.
The	Spark	SQL	Thrift	JDBC/ODBC	server	is	based	on	the	HiveServer2	project,
a	server	interface	that	enables	remote	clients	to	execute	queries	against	Hive	and
retrieve	the	results.

The	Thrift	JDBC/ODBC	server	is	included	with	the	Spark	release.	To	run	the
server,	execute	the	following	command:
Click	here	to	view	code	image

$SPARK_HOME/sbin/start-thriftserver.sh

All	valid	spark-submit	command	line	arguments,	such	as	--master,	are
accepted	by	the	start-thriftserver.sh	script.	In	addition,	you	can
supply	Hive-specific	properties	by	using	the	--hiveconf	option.	The	Thrift
JDBC/OBDC	server	listens	on	port	10000,	but	you	can	change	this	by	using	a
special	environment	variable,	as	shown	here:
Click	here	to	view	code	image

export	HIVE_SERVER2_THRIFT_PORT=<customport>

You	can	use	beeline,	discussed	next,	to	test	the	JDBC/ODBC	server.	To	stop
the	Thrift	server,	simply	execute	the	following:
Click	here	to	view	code	image

$SPARK_HOME/sbin/stop-thriftserver.sh

Using	beeline
You	can	use	beeline,	a	command	line	shell,	to	connect	to	HiveServer2	or	the
Spark	SQL	Thrift	JDBC/ODBC	server.	beeline	is	a	lightweight	JDBC	client
application	that	is	based	on	the	SQLLine	CLI	project
(http://sqlline.sourceforge.net/).

Like	SQLLine,	beeline	is	a	Java	console–based	utility	for	connecting	to
relational	databases	and	executing	SQL	commands.	It	is	designed	to	function
similarly	to	other	command	line	database	access	utilities,	such	as	sqlplus	for
Oracle,	mysql	for	MySQL,	and	isql	or	osql	for	Sybase/	SQL	Server.

Because	beeline	is	a	JDBC	client,	you	can	use	it	to	test	the	Spark	SQL	JDBC

http://sqlline.sourceforge.net/

Thrift	server	when	you	start	it.	Use	the	beeline	CLI	utility	included	with	the
Spark	release	as	follows:
$SPARK_HOME/bin/beeline

At	the	beeline	prompt,	you	need	to	connect	to	a	JDBC	server—the	Spark
SQL	Thrift	server	you	started	previously.	Do	this	as	follows:
Click	here	to	view	code	image

beeline>	!connect	jdbc:hive2://localhost:10000

You	are	prompted	for	a	username	and	password	to	connect	to	the	server.	Figure
6.9	shows	an	example	of	a	beeline	CLI	session	connecting	to	the	Spark	SQL
Thrift	server.

Figure	6.9	The	beeline	Spark	SQL	JDBC	client.

Using	External	Applications	via	JDBC/ODBC
The	Spark	JDBC/ODBC	Thrift	server	can	also	connect	to	other	JDBC/ODBC
client	applications,	such	as	Tableau	or	Excel.	This	usually	requires	that	you

install	the	relevant	JDBC/ODBC	drivers	on	your	client.	You	can	then	create	a
data	source	and	connect	to	Spark	SQL	to	access	and	process	data	in	Hive.
Consult	your	visualization	tool	vendor	for	more	information	or	to	obtain	the
specific	drivers	required.

Exercise:	Using	Spark	SQL
This	exercise	shows	how	to	start	a	Spark	SQL	Thrift	server	and	use	the
beeline	client	utility	to	connect	to	the	server.	You	will	create	Hive	tables
based	on	sample	data	and	use	beeline	and	Thrift	to	run	a	SQL	query	against
the	data,	executed	by	Spark	SQL.	You	will	use	the	bike-share	dataset	used	for
exercises	in	the	previous	chapter.	Follow	these	steps:

1.	Start	the	JDBC/ODBC	Thrift	server:
Click	here	to	view	code	image

$	sudo	$SPARK_HOME/sbin/start-thriftserver.sh	\

--master	local	\

--hiveconf	hive.server2.thrift.port=10001	\

--hiveconf	hive.server2.thrift.bind.host=10001

You	can	start	the	server	in	YARN	mode	instead	by	using	--master
yarn-cluster	if	you	have	a	YARN	cluster	available	to	you.

2.	Open	a	beeline	session:
$SPARK_HOME/bin/beeline

3.	At	the	beeline>	prompt,	create	a	connection	to	your	Thrift	server:
Click	here	to	view	code	image

beeline>	!connect	jdbc:hive2://localhost:10001

Enter	username	for	jdbc:hive2://localhost:10001:	hadoop

Enter	password	for	jdbc:hive2://localhost:10001:	*********

You	are	prompted	for	a	username	and	password,	as	shown	above.	The
username	provided	must	exist	on	the	Thrift	server	and	have	the	appropriate
permissions	on	the	filesystem.

4.	After	you	connect	to	the	server,	create	the	trips	table	from	the	bike-share
demo	by	entering	the	following	HiveQL	DDL	command:

Click	here	to	view	code	image
CREATE	EXTERNAL	TABLE	trips	(

TripID	int,

Duration	int,

StartDate	string,

StartStation	string,

StartTerminal	int,

EndDate	string,

EndStation	string,

EndTerminal	int,

BikeNo	int,

SubscriberType	string,	ZipCode	string)

ROW	FORMAT	DELIMITED

FIELDS	TERMINATED	BY	','

LOCATION	'file:///opt/spark/data/bike-share/trips/';

5.	Execute	the	following	SQL	query	against	the	table	you	just	created:
Click	here	to	view	code	image

SELECT	StartTerminal,	StartStation,	COUNT(1)	AS	count

FROM	trips

GROUP	BY	StartTerminal,	StartStation

ORDER	BY	count	DESC

LIMIT	10;

6.	View	your	Spark	application	web	UI	to	confirm	that	your	query	executed
using	Spark	SQL.	Recall	that	this	is	accessible	using	port	4040	of	your
localhost	if	you	are	running	Spark	locally	or	the	application	master	host	if
you	are	using	YARN	(accessible	from	the	Resource	Manager	UI).	Figure
6.10	shows	the	SQL	tab	in	the	application	UI	as	well.

Figure	6.10	Spark	application	UI	for	a	Spark	SQL	session.

Using	Spark	with	NoSQL	Systems
Increasingly	aggressive	non-functional	and	non-relational	requirements
necessitate	alternative	approaches	to	data	storage,	management,	and	processing.
Enter	NoSQL,	a	new	data	paradigm	that	allows	you	to	look	at	data	in	terms	of
cells	rather	than	just	the	relational	paradigm	of	tables,	rows,	and	columns.	This	is
not	to	say	that	the	relational	database	is	dead—far	from	it—but	the	NoSQL
approach	provides	a	new	set	of	capabilities	to	solve	today’s—and	tomorrow’s—
problems.

This	section	introduces	NoSQL	systems	and	methodologies	and	looks	at	their
integration	with	Spark-processing	workflows.	First,	let’s	look	at	some	of	the	core
concepts	of	NoSQL	systems.

Introduction	to	NoSQL
There	is	some	friendly	disagreement	about	what	NoSQL	means;	some	say	it
means	“not	SQL,”	others	say	“not	only	SQL,”	and	others	have	other
interpretations	or	definitions.	Regardless	of	the	disagreement	around	the
nomenclature,	NoSQL	systems	have	specific	defining	characteristics	and	come
in	different	variants.

NoSQL	System	Characteristics
All	NoSQL	variants	share	some	common	properties,	including	the	following:

	They	are	schemaless	at	design	time	and	“schema-on-read”	at	runtime:
This	means	they	do	not	have	predefined	columns,	but	columns	are	created
with	each	PUT	(INSERT)	operation,	and	each	record,	document,	or	data
instance	can	have	a	different	schema	than	the	previous	instance.

	Data	has	no	predefined	relationship	to	any	other	object:	This	means
there	is	no	concept	of	foreign	keys	or	referential	integrity,	declarative	or
otherwise.	Relationships	may	exist	between	data	objects	or	instances,	but
they	are	discovered	or	leveraged	at	runtime	rather	than	prescribed	at	design
time.

	Joins	are	typically	avoided:	In	most	NoSQL	implementations,	joins	are
kept	to	an	absolute	minimum	or	avoided	altogether.	This	is	typically
accomplished	by	denormalizing	data,	often	with	the	trade-off	of	storing
duplicate	data.	However,	with	most	NoSQL	implementations	leveraging
cost-efficient	commodity	or	cloud	infrastructure,	the	material	cost	is	offset
by	the	computation	cost	reduction	of	not	having	to	perform	excessive	joins
when	the	data	is	accessed.

In	all	cases,	there	is	no	logical	or	physical	model	that	dictates	how	data	is
structured,	unlike	with	a	third	normal	form	data	warehouse	or	an	online
transaction	processing	system.

Moreover,	NoSQL	systems	are	typically	distributed	(for	example,	Apache
Cassandra,	HBase)	and	structured	for	fast	lookups.	Write	operations	are	typically
faster	and	more	scalable	as	well,	as	many	of	the	processes	of	traditional
relational	database	systems	that	lead	to	overhead	are	not	used,	such	as	datatype
or	domain	checks,	atomic/blocking	transactions,	and	management	of	transaction
isolation	levels.

In	the	majority	of	cases,	NoSQL	systems	are	built	for	scale	and	scalability	(from
petabytes	of	storage	to	queries	bounded	in	terabytes),	performance,	and	low
friction	(or	having	the	ability	to	adapt	to	changes).	NoSQL	systems	are	often
comparatively	analytically	friendly,	as	they	provide	a	denormalized	structure,
which	is	conducive	to	feature	extraction,	machine	learning,	and	scoring.

Types	of	NoSQL	Systems

As	mentioned	earlier	in	this	chapter,	NoSQL	systems	come	in	several	variants	or
categories:	key/value	stores,	document	stores,	and	graph	stores	(see	Table	6.5).

Table	6.5	Types	of	NoSQL	Systems

Type Description Examples

Key/value
stores/
column
family
stores

A	key/value	store	contains	a	set	or	sets	of	indexed
keys	and	associated	values.	Values	are	typically
uninterpreted	byte	arrays	but	can	represent	complex
objects	such	as	nested	maps,	structs,	or	lists.	The
schema	is	not	defined	at	design	time;	however,	some
storage	properties	such	as	column	families,	which
are	effectively	storage	containers	for	values,	and
compression	attributes	can	be	defined	at	table	design
time.

HBase,
Cassandra,
and
DynamoDB

Document
stores

Document	stores,	or	document	databases,	store
complex	objects,	documents	such	as	JSON	or
BSON	objects,	or	other	complex	nested	objects.
Each	document	is	assigned	a	key	or	document	ID,
and	the	contents	are	the	semi-structured	document
data.

MongoDB
and
CouchDB

Graph
stores

Graph	stores	are	based	on	graph	theory	and	used	to
describe	relationships	between	objects	or	entities.

Neo4J	and
GraphBase

Using	Spark	with	HBase
HBase	is	a	Hadoop	ecosystem	project	designed	to	deliver	a	distributed,
massively	scalable	key/value	store	on	top	of	HDFS.	Before	we	discuss	the	use	of
Spark	with	HBase,	it	is	important	that	you	understand	some	basic	HBase
concepts.

Introduction	to	HBase
HBase	stores	data	as	a	sparse,	multidimensional,	sorted	map.	The	map	is	indexed
by	its	key	(the	row	key),	and	values	are	stored	in	cells,	each	consisting	of	a
column	key	and	a	column	value.	The	row	key	and	column	keys	are	strings,	and
the	column	value	is	an	uninterpreted	byte	array	that	could	represent	any

primitive	or	complex	datatype.	HBase	is	multidimensional;	that	is,	each	cell	is
versioned	with	a	timestamp.

At	table	design	time,	one	or	more	column	families	is	defined.	Column	families
are	used	as	physical	storage	groups	for	columns.	Different	column	families	may
have	different	physical	storage	characteristics,	such	as	block	size,	compression
settings,	or	the	number	of	cell	versions	to	retain.

Although	there	are	projects	such	as	Hive	and	Phoenix	to	provide	SQL-like
access	to	data	in	HBase,	the	natural	methods	for	accessing	and	updating	data	in
HBase	are	essentially	get,	put,	scan,	and	delete.	HBase	includes	a	shell
program	as	well	as	programmatic	interfaces	for	multiple	languages.	The	HBase
shell	is	an	interactive	Ruby	REPL	shell	with	access	to	HBase	API	functions	to
create	and	modify	tables	and	read	and	write	data.	The	shell	application	is
accessible	only	by	entering	hbase	shell	on	a	system	with	the	HBase	client
binaries	and	configuration	available	(see	Figure	6.11).

Figure	6.11	HBase	shell.

Listing	6.32	demonstrates	the	use	of	hbase	shell	to	create	a	table	and	insert
data	into	the	table.

Listing	6.32	Creating	a	Table	and	Inserting	Data	in	HBase
Click	here	to	view	code	image

hbase>	create	'my-hbase-table',	\

hbase*	{NAME	=>	'cf1',	COMPRESSION	=>	'SNAPPY',	VERSIONS	=>	20},	\

hbase*	{NAME	=>	'cf2'}

hbase>	put	'my-hbase-table',	'rowkey1',	'cf1:fname',	'John'

hbase>	put	'my-hbase-table',	'rowkey1',	'cf1:lname',	'Doe'

hbase>	put	'my-hbase-table',	'rowkey2',	'cf1:fname',	'Jeffrey'

hbase>	put	'my-hbase-table',	'rowkey2',	'cf1:lname',	'Aven'

hbase>	put	'my-hbase-table',	'rowkey2',	'cf1:city',	'Hayward'

hbase>	put	'my-hbase-table',	'rowkey2',	'cf2:password',	

'c9cb7dc02b3c0083eb70898e549'

The	create	statement	creates	a	new	HBase	table	with	two	column	families:
cf1	and	cf2.	One	column	family	is	configured	to	use	compression,	and	the
other	is	not.	The	subsequent	put	statements	insert	data	into	a	cell	as	defined	by
the	row	key	(rowkey1	or	rowkey2,	in	this	case)	and	a	column	specified	in	the
format	<column_family>:<column_name>.	Unlike	with	a	traditional
database,	the	columns	are	not	defined	at	table	design	time	and	are	not	typed.
(Recall	that	all	data	is	an	uninterpreted	array	of	bytes.)	A	scan	command	of	the
new	table	is	shown	in	Listing	6.33.

Listing	6.33	Scanning	the	HBase	Table
Click	here	to	view	code	image

hbase>	scan	'my-hbase-table'

ROW																				COLUMN+CELL

	rowkey1															column=cf1:fname,	timestamp=1508291546300,	

value=John

	rowkey1															column=cf1:lname,	timestamp=1508291560041,	

value=Doe

	rowkey2															column=cf1:city,	timestamp=1508291579756,	

value=Hayward

	rowkey2															column=cf1:fname,	timestamp=1508291566663,	

value=Jeffrey	rowkey2															column=cf1:lname,	

timestamp=1508291572939,	value=Aven

	rowkey2															column=cf2:password,	timestamp=1508291585467,	

value=	c9cb7dc02b3c0083eb70898e549

2	row(s)	in	0.0390	seconds

Figure	6.12	shows	a	conceptual	view	of	the	data	inserted	in	this	example.

Figure	6.12	HBase	data.

As	you	can	see	in	Figure	6.12,	HBase	supports	sparsity.	That	is,	not	every
column	needs	to	exist	in	each	row	in	a	table,	and	nulls	are	not	stored.

Although	HBase	data	is	stored	on	HDFS,	an	immutable	file	system,	HBase
allows	in-place	updates	to	cells	in	HBase	tables.	It	does	this	by	creating	a	new
version	of	the	cell	with	a	new	timestamp	if	the	column	key	already	exists,	and
then	a	background	compaction	process	collapses	multiple	files	into	a	smaller
number	of	larger	files.

Listing	6.34	demonstrates	an	update	to	an	existing	cell	and	the	resultant	new
version.

Listing	6.34	Updating	a	Cell	in	HBase
Click	here	to	view	code	image

hbase>	put	'my-hbase-table',	'rowkey2',	'cf1:city',	'Melbourne'

hbase>	get	'my-hbase-table',	'rowkey2',	{COLUMNS	=>	['cf1:city']}

COLUMN																	CELL

	cf1:city														timestamp=1508292292811,	value=Melbourne

1	row(s)	in	0.0390	seconds

hbase>	get	'my-hbase-table',	'rowkey2',	{COLUMNS	=>	['cf1:city'],	

VERSIONS	=>	2}

COLUMN																	CELL

	cf1:city														timestamp=1508292546999,	value=Melbourne

	cf1:city														timestamp=1508292538926,	value=Hayward

1	row(s)	in	0.0110	seconds

Notice	in	Listing	6.34	that	HBase	supports	cell	versioning.	The	number	of
versions	retained	is	defined	by	the	column	family	upon	table	creation.

HBase	data	is	stored	in	HFile	objects	in	HDFS.	An	HFile	object	is	the

intersection	of	a	column	family	(storage	group)	and	a	sorted	range	of	row	keys.
Ranges	of	sorted	row	keys	are	referred	to	as	regions	and	are	also	known	as
tablets	in	other	implementations.	Regions	are	assigned	to	a	region	server	by
HBase;	see	Figure	6.13.	Regions	are	used	to	provide	fast	row	key	lookups,	as	the
regions	and	row	keys	they	contain	are	known	by	HBase.	HBase	splits	and
compacts	regions	as	necessary	as	part	of	its	normal	operation.	Non-row	key–
based	lookups,	such	as	looking	for	a	column	key	and	value	satisfying	a	criterion,
are	slower.	However,	HBase	uses	bloom	filters	to	help	expedite	the	search.

Figure	6.13	HBase	regions.

HBase	and	Spark
The	most	failsafe	method	of	reading	and	writing	to	HBase	from	Spark	using	the
Python	API	is	to	use	the	HappyBase	Python	package
(https://happybase.readthedocs.io/en/latest/).	HappyBase	is	a	Python	library	built
for	accessing	and	manipulating	data	in	an	HBase	cluster.	To	use	HappyBase,	you
must	first	install	the	Python	package	by	using	pip	or	easy_install,	as
shown	here:
$	sudo	pip	install	happybase

If	you	require	more	scalability,	consider	using	either	the	Scala	API	for	Spark	or
various	third-party	HBase	connectors	for	Spark,	available	as	Spark	packages
(https://spark-packages.org/).

Exercise:	Using	Spark	with	HBase

https://happybase.readthedocs.io/en/latest/
https://spark-packages.org/

Setting	up	HBase	is	beyond	the	scope	of	this	book.	However,	HBase	is	a	normal
component	of	many	Hadoop	vendor	distributions,	such	as	Cloudera	and
Hortonworks,	including	the	sandbox	VM	environments	provided	by	these
vendors.	You	can	provision	HBase	as	an	additional	application	in	the	AWS
EMR-managed	Hadoop	service	offering.	For	this	exercise,	you	need	a	system
with	Hadoop,	HBase,	and	Spark	installed	and	running.	Follow	these	steps:

1.	Open	the	HBase	shell:
$	hbase	shell

2.	From	the	hbase	shell	prompt,	create	a	table	named	people	with	a	single-
column	family	cf1	(using	the	default	storage	options):

Click	here	to	view	code	image
hbase>	create	'people',	'cf1'

3.	Create	several	cells	in	two	records	in	the	table	by	using	the	put	method:
Click	here	to	view	code	image

hbase>	put	'people',	'userid1',	'cf1:fname',	'John'

hbase>	put	'people',	'userid1',	'cf1:lname',	'Doe'

hbase>	put	'people',	'userid1',	'cf1:age',	'41'	hbase>	put	'people',	

'userid2',	'cf1:fname',	'Jeffrey'

hbase>	put	'people',	'userid2',	'cf1:lname',	'Aven'

hbase>	put	'people',	'userid2',	'cf1:age',	'48'

hbase>	put	'people',	'userid2',	'cf1:city',	'Hayward'

4.	View	the	data	in	the	table	by	using	the	scan	method,	as	follows:
Click	here	to	view	code	image

hbase>	scan	'people'

ROW	COLUMN+CELL	userid1		column=cf1:age,	timestamp=1461296454933,	

value=41	...

5.	Open	another	terminal	session	and	launch	pyspark	by	using	the
arguments	shown	here:
$	pyspark	--master	local

You	can	instead	use	YARN	Client	mode	if	you	have	a	YARN	cluster
available	to	you.

6.	Read	the	data	from	the	people	table	by	using	happybase	and	create	a
Spark	RDD:

Click	here	to	view	code	image
import	happybase

connection	=	happybase.Connection('localhost')

table	=	connection.table('people')

hbaserdd	=	sc.parallelize(table.scan())

hbaserdd.collect()

The	output	should	resemble	the	following:
Click	here	to	view	code	image

[('userid1',	{'cf1:age':	'41',	'cf1:lname':	'Doe',	'cf1:fname':	

'John'}),

('userid2',	{'cf1:age':	'48',	'cf1:lname':	'Aven',	'cf1:fname':	

'Jeffrey',

'cf1:city':	'Hayward'})]

7.	Within	your	pyspark	shell,	create	a	new	parallelized	collection	of	users
and	save	the	contents	of	the	Spark	RDD	to	the	people	table	in	HBase:

Click	here	to	view	code	image
newpeople	=	sc.parallelize([('userid3',	'cf1:fname',	'NewUser')])

for	person	in	newpeople.collect():

				table.put(person[0],	{person[1]	:	person[2]})

8.	In	your	hbase	shell,	run	the	scan	method	again	to	confirm	that	the	new
user	from	the	Spark	RDD	in	step	7	exists	in	the	HBase	people	table:

Click	here	to	view	code	image
hbase>	scan	'people'	ROW	COLUMN+CELL	userid1	column=cf1:age,

timestamp=1461296454933,	value=41	...	userid3	column=cf1:fname,

timestamp=146...,	value=NewUser

Although	this	book	is	based	on	Python,	there	are	other	Spark	HBase	connector
projects	designed	for	the	Scala	API,	such	as	spark-hbase-connector,	at
https://github.com/nerdammer/spark-hbase-connector.	If	you	are	using	Spark
with	HBase,	be	sure	to	look	at	the	available	projects	for	Spark	HBase
connectivity.

Using	Spark	with	Cassandra
Another	notable	NoSQL	project	is	Apache	Cassandra,	initially	developed	at
Facebook	and	later	released	as	an	open	source	project	under	the	Apache	software
licensing	scheme.

Introduction	to	Cassandra

https://github.com/nerdammer/spark-hbase-connector

Cassandra	is	similar	to	HBase	in	its	application	of	the	core	NoSQL	principles,
such	as	not	requiring	a	predefined	schema	(although	Cassandra	lets	you	define
one)	and	not	having	referential	integrity.	However,	there	are	differences	in	its
physical	implementation,	predominantly	in	the	fact	that	HBase	has	many
Hadoop	ecosystem	dependencies,	such	as	HDFS,	ZooKeeper,	and	more,	whereas
Cassandra	is	more	monolithic	in	its	implementation,	having	fewer	external
dependencies.	They	also	have	differences	in	their	cluster	architecture:	Whereas
HBase	is	a	master/slave	architecture,	Cassandra	is	a	symmetric	architecture	that
uses	a	“gossip”	protocol	to	pass	messages	and	govern	cluster	processes.	There
are	many	other	differences,	including	the	way	the	systems	manage	consistency,
but	they	are	beyond	the	scope	of	this	discussion.

Much	like	HBase,	Cassandra	is	a	multidimensional,	distributed	map.	Cassandra
tables,	called	keyspaces,	contain	row	keys	and	column	families	referred	to	as
tables.	Columns	exist	within	column	families	but	are	not	defined	at	table	design
time.	Data	is	located	at	the	intersection	of	a	row	key,	column	family,	and	column
key.

In	addition	to	row	keys,	Cassandra	also	supports	primary	keys,	which	can	also
contain	a	partition	key	and	a	clustering	key	in	the	case	of	composite	primary
keys.	These	directives	are	for	storage	and	distribution	of	data	and	allow	fast
lookups	by	key.

Unlike	HBase,	Cassandra	enables,	and	even	encourages,	you	to	define	structure
(a	schema)	for	your	data	and	assign	datatypes.	Cassandra	supports	collections
within	a	table,	which	are	used	to	store	nested	or	complex	data	structures	such	as
sets,	lists,	and	maps.	Furthermore,	Cassandra	enables	defining	secondary	indexes
to	expedite	lookups	based	on	non-key	values.

The	Cassandra	Query	Language	(CQL)	is	a	SQL-like	language	for	interacting
with	Cassandra.	CQL	supports	the	full	set	of	DDL	and	DML	operations	for
creating,	reading,	updating,	and	deleting	objects	in	Cassandra.	Because	CQL	is	a
SQL-like	language,	it	supports	ODBC	and	JDBC	interfaces,	enabling	access
from	common	SQL	and	visualization	utilities.	CQL	is	also	available	from	an
interactive	shell	environment,	cqlsh.

Listing	6.35	demonstrates	creating	a	keyspace	and	table	in	Cassandra	by	using
the	cqlsh	utility.

Listing	6.35	Creating	a	Keyspace	and	Table	in	Cassandra
Click	here	to	view	code	image

cqlsh>	CREATE	KEYSPACE	mykeyspace	WITH	REPLICATION	=	{	'class'	:	

'SimpleStrategy',

							'replication_factor'	:	1	};

cqlsh>	USE	mykeyspace;

cqlsh:mykeyspace>	CREATE	TABLE	users	(

														user_id	int	PRIMARY	KEY,

										fname	text,

										lname	text

);

cqlsh:mykeyspace>	INSERT	INTO	users	(user_id,		fname,	lname)

										VALUES	(1745,	'john',	'smith');

cqlsh:mykeyspace>	INSERT	INTO	users	(user_id,		fname,	lname)	VALUES	

(1744,	'john',	'doe');

cqlsh:mykeyspace>	INSERT	INTO	users	(user_id,		fname,	lname)

										VALUES	(1746,	'jane',	'smith');

cqlsh:mykeyspace>	SELECT	*	FROM	users;

	user_id	|	fname	|	lname

---------+-------+-------

				1745	|		john	|	smith

				1744	|		john	|			doe

				1746	|		jane	|	smith

This	should	look	very	familiar	to	you	if	your	background	includes	relational
databases	such	as	SQL	Server,	Oracle,	or	Teradata.

Cassandra	and	Spark
Because	the	Cassandra	and	Spark	movements	are	closely	linked	in	their	ties	back
to	the	Big	Data/open	source	software	community,	there	are	several	projects	and
libraries	available	to	enable	read/write	access	to	Cassandra	from	Spark
programs.	The	following	are	some	of	the	projects	providing	this	support:

https://github.com/datastax/spark-cassandra-connector
http://tuplejump.github.io/calliope/pyspark.html
https://github.com/TargetHolding/pyspark-cassandra
https://github.com/anguenot/pyspark-cassandra

Many	of	the	available	projects	have	been	built	and	provisioned	as	Spark
packages,	available	at	https://spark-packages.org/.

https://github.com/datastax/spark-cassandra-connector
http://tuplejump.github.io/calliope/pyspark.html
https://github.com/TargetHolding/pyspark-cassandra
https://github.com/anguenot/pyspark-cassandra
https://spark-packages.org/

DataStax	Enterprise,	which	is	a	commercial	Cassandra	offering	by	DataStax,
also	ships	with	Spark	and	YARN	as	well.

This	section	uses	the	pyspark-cassandra	package	here,	but	you	are
encouraged	to	investigate	all	the	connectivity	options	available—or	write	your
own!

With	many	projects,	classes,	scripts,	examples,	or	artifacts	in	the	open	source
world,	you	will	often	find	system,	library,	or	class	dependencies	that	you	need	to
satisfy.	Resourcefulness	is	a	necessity	when	working	with	open	source	software.

For	the	following	examples,	run	the	pyspark	command	provided	in	Listing
6.36	first	and	note	the	conf	option	required	to	configure	the	Cassandra
connection.

Listing	6.36	Using	the	pyspark-cassandra	Package
Click	here	to	view	code	image

pyspark	--master	local	\

--packages	anguenot:pyspark-cassandra:0.6.0	\

--conf	spark.cassandra.connection.host=127.0.0.1

Listing	6.37	shows	how	to	load	the	contents	of	the	users	table	created	in
Listing	6.35	into	an	RDD.

Listing	6.37	Reading	Cassandra	Data	into	a	Spark	RDD
Click	here	to	view	code	image

import	pyspark_cassandra

spark.createDataFrame(sc.cassandraTable("mykeyspace",	"users")	\

				.collect()).show()

#	returns:

#	+-----+-------+-----+

#	|lname|user_id|fname|

#	+-----+-------+-----+

#	|smith|			1746|	jane|

#	|smith|			1745|	john|

#	|		doe|			1744|	john|

#	+-----+-------+-----+

#	(3	rows)

Listing	6.38	demonstrates	writing	Spark	data	out	to	a	Cassandra	table.

Listing	6.38	Updating	Data	in	a	Cassandra	Table	Using	Spark
Click	here	to	view	code	image

import	pyspark_cassandra

rdd	=	sc.parallelize([{	"user_id":	1747,	"fname":	"Jeffrey",	"lname":	

"Aven"	}])

rdd.saveToCassandra("mykeyspace",	"users",)

Running	a	SELECT	*	FROM	users	command	in	cqlsh,	you	can	see	the
results	of	the	INSERT	from	Listing	6.38	in	Listing	6.39.

Listing	6.39	Cassandra	INSERT	Results
Click	here	to	view	code	image

cqlsh>	USE	mykeyspace;

cqlsh:mykeyspace>	SELECT	*	FROM	users;

	user_id	|	fname			|	lname

---------+---------+-------

				1745	|				john	|	smith

				1747	|	Jeffrey	|		Aven

				1744	|				john	|			doe

				1746	|				jane	|	smith

(4	rows)

Using	Spark	with	DynamoDB
DynamoDB	is	the	AWS	NoSQL	PaaS	offering.	DynamoDB’s	data	model
comprises	tables	containing	items,	each	of	which	contains	one	or	more
attributes.	Like	a	Cassandra	table,	a	DynamoDB	table	has	a	primary	key	used
for	storage	and	fast	retrieval.	DynamoDB	also	supports	secondary	indexes.
DynamoDB	is	a	key/value	store	and	a	document	store,	as	objects	can	be	treated
as	documents.

Because	DynamoDB	originated	as	a	web	service,	it	has	rich	integration	with
many	other	language	bindings	and	software	development	kits.	You	can
implement	DDL	and	DML	statements	by	using	Dynamo’s	API	endpoints	and
JSON-based	DSL.

As	with	HBase,	there	are	several	ways	to	read	and	write	data	to	and	from
DynamoDB	using	Spark.	The	simplest	and	most	failsafe	method	for	accessing
DynamoDB	from	Spark	using	the	Python	API	is	to	use	the	boto3	Python
library,	which	is	designed	to	interact	with	AWS	services.	To	use	boto3,	you
need	to	install	the	package	using	pip	or	easy_install,	as	shown	here:
$	sudo	pip	install	boto3

You	also	need	your	AWS	API	credentials	to	connect	to	AWS.

Although	other	approaches	using	Spark	packages	or	the	Scala	API	may	provide
greater	scalability,	boto3	always	works	for	connecting	to	AWS	services	using
Python.

Consider	the	DynamoDB	table	shown	in	Figure	6.14,	which	contains
information	about	stocks.

Figure	6.14	DynamoDB	table.

Listing	6.40	demonstrates	how	to	load	the	items	from	this	DynamoDB	table	into
a	Spark	RDD.

Listing	6.40	Accessing	Amazon	DynamoDB	from	Spark
Click	here	to	view	code	image

import	boto3

from	pyspark.sql.types	import	*

myschema	=	StructType([\

											StructField("code",	StringType(),	True),	\

											StructField("name",	StringType(),	True),	\

											StructField("sector",	StringType(),	True)	\

])

client	=	boto3.client('dynamodb','us-east-1')	dynamodata	=	

sc.parallelize(client.scan(TableName='myDynamoDBTable')['Items'])

dynamordd	=	dynamodata.map(lambda	x:	(x['code']['S'],	x['name']['S'],

x['sector']['S'])).collect()

spark.createDataFrame(dynamordd,	myschema).show()

#	returns:

#	+----+--------------------+------+

#	|code|																name|sector|

#	+----+--------------------+------+

#	|	NAB|NATIONAL	AUSTRALI...|	Banks|

#	|	CBA|COMMONWEALTH	BANK...|	Banks|

#	|	ANZ|AUSTRALIA	AND	NEW...|	Banks|

#	+----+--------------------+------+

Other	NoSQL	Platforms
In	addition	to	the	HBase,	Cassandra,	and	DynamoDB	projects,	there	are
countless	other	NoSQL	platforms,	including	document	stores	such	as	MongoDB
and	CouchDB,	key/value	stores	such	as	Couchbase	and	Riak,	and	memory-
centric	key/value	stores	such	as	Memcached	and	Redis.	There	are	also	full	text
search	and	indexing	platforms	adapted	to	become	general-purpose	NoSQL
platforms.	These	include	Apache	Solr	and	Elasticsearch,	which	are	both	based
on	the	Lucene	search	engine	processing	project.

Many	of	the	NoSQL	platforms	have	available	connectors	or	libraries	that	enable
them	to	read	and	write	RDD	data	in	Spark.	Check	the	project	or	vendor’s
website	or	GitHub	for	your	selected	NoSQL	platform’s	integration.	If	an
integration	does	not	exist,	you	can	always	develop	your	own.

Summary
This	chapter	focuses	on	some	of	the	important	extensions	to	Spark	for	data
manipulation	and	access:	SQL	and	NoSQL.

Spark	SQL	is	one	of	the	most	popular	extensions	to	Spark.	Spark	SQL	enables
interactive	queries,	supporting	business	intelligence	and	visualization	tools	and
making	Spark	accessible	to	a	much	wider	audience	of	analysts.	Spark	SQL
provides	access	to	the	powerful	Spark	runtime	distributed	processing	framework,
using	SQL	interfaces	and	a	relational	database-like	programming	approach.
Spark	SQL	introduces	many	optimizations	aimed	specifically	at	relational-type
access	patterns	using	SQL.	These	optimizations	include	columnar	storage,
maintaining	column-	and	partition-level	statistics,	and	Partial	DAG	execution,
which	allows	DAGs	to	change	during	processing	based	on	statistics	and	skew
observed	in	the	data.	Spark	SQL	also	introduces	the	DataFrame,	a	structured,
columnar	abstraction	of	the	Spark	RDD.	The	DataFrame	API	enables	many
features	and	functions	familiar	to	most	SQL	developers,	analysts,	enthusiasts,
and	general	users.	Spark	SQL	is	evolving	rapidly,	and	new	and	interesting
functions	and	capabilities	are	added	with	every	minor	release.	With	its	familiar
programming	interface,	Spark	SQL	opens	up	a	world	of	possibilities	for	a	much
wider	community	of	analysts.

NoSQL	databases	have	become	a	viable	complement	and	alternative	to
traditional	SQL	systems,	offering	Internet-scale	storage	capabilities	and	query
boundaries,	as	well	as	fast	read	and	write	access	to	support	distributed	device
and	mobile	application	interactions.	NoSQL	concepts	and	implementations	have
emerged	in	parallel	with	Spark,	as	these	concepts	both	emanated	from	early
Google	and	Yahoo!	work.	This	chapter	covers	some	fundamental	NoSQL
concepts	and	looks	at	some	practical	applications	of	key/value	and	document
stores—Apache	HBase,	Apache	Cassandra,	and	Amazon	DynamoDB—to
demonstrate	how	Spark	can	interact	with	NoSQL	platforms	as	both	a	consumer
and	provider	of	data.

7

Stream	Processing	and	Messaging
Using	Spark

Never	confuse	motion	with	action.

Benjamin	Franklin,	American	founding	father

In	This	Chapter:
	Introduction	to	Spark	Streaming,	the	StreamingContext,	and
DStreams
	Operations	on	DStreams
	Sliding	window	and	state	operations	on	DStreams
	Introduction	to	Structured	Streaming	in	Spark
	Spark	with	Apache	Kafka
	Spark	Streaming	with	Amazon	Kinesis	Streams

Real-time	event	processing	has	become	a	defining	feature	of	Big	Data	systems.
From	sensors	and	network	data	processing	to	fraud	detection	to	website
monitoring	and	much	more,	the	capability	to	consume,	process,	and	derive
insights	from	streaming	data	sources	has	never	been	more	relevant.	To	this	point
in	the	book,	the	processing	covered	for	the	Spark	core	API	and	with	Spark	SQL
has	been	batch	oriented.	This	chapter	focuses	on	stream	processing	and	another
key	extension	to	Spark:	Spark	Streaming.

Introducing	Spark	Streaming
Event	processing,	also	called	stream	processing,	is	a	key	component	of	Big	Data
platforms.	The	Spark	project	includes	a	subproject	that	enables	low	latency
processing	with	fault	tolerance	and	data	guarantees:	Spark	Streaming.

Spark	Streaming	delivers	an	event-processing	system	integrated	with	its	RDD-
based	batch	framework,	and	it	delivers	a	guarantee	that	each	event	will
processed	exactly	once,	even	if	a	node	failure	or	similar	fault	occurs.

The	design	goals	for	Spark	Streaming	include	the	following:

	Low	(second-scale)	latency

	One-time	(and	only	one-time)	event	processing

	Linear	scalability

	Integration	with	the	Spark	core	and	DataFrame	APIs

Perhaps	the	biggest	advantage	of	Spark	Streaming	(and	its	overriding	design
goal)	is	that	it	provides	a	unified	programming	model	for	both	stream	and	batch
operations.

Spark	Streaming	Architecture
Spark	Streaming	introduces	the	concept	of	discretized	streams,	or	DStreams.
DStreams	are	essentially	batches	of	data	stored	in	multiple	RDDs,	each	batch
representing	a	time	window,	typically	in	seconds.	The	resultant	RDDs	can	then
be	processed	using	the	core	Spark	RDD	API	and	all	the	available
transformations	discussed	so	far	in	this	book.	(The	section	“Introduction	to
DStreams,”	later	in	this	chapter,	discusses	DStreams	in	more	detail.)	Figure	7.1
shows	a	high-level	overview	of	Spark	Streaming.

Figure	7.1	High-level	overview	of	Spark	Streaming.

As	with	the	SparkContext	and	SparkSession	program	entry	points
discussed	earlier	in	this	book,	Spark	Streaming	applications	have	an	entry	point
called	the	StreamingContext.	The	StreamingContext	represents	a
connection	to	a	Spark	platform	or	cluster	using	an	existing	SparkContext.
You	can	use	the	StreamingContext	to	create	DStreams	from	streaming
input	sources	and	govern	streaming	computation	and	DStream	transformations.

The	StreamingContext	also	specifies	the	batchDuration	argument,
which	is	a	time	interval,	in	seconds,	by	which	streaming	data	is	split	into
batches.	After	instantiating	a	StreamingContext,	you	create	a	connection	to
a	data	stream	and	define	a	series	of	transformations	to	be	performed.	You	can
use	the	start()	method	(or	ssc.start())	to	trigger	evaluation	of	the
incoming	data	after	establishing	a	StreamingContext.	You	can	stop	the
StreamingContext	programmatically	by	using	ssc.stop()	or
ssc.awaitTermination(),	as	shown	in	Listing	7.1.

Listing	7.1	Creating	a	StreamingContext
Click	here	to	view	code	image

from	pyspark.streaming	import	StreamingContext

ssc	=	StreamingContext(sc,	1)

...

#	Initialize	Data	Stream

#	DStream	transformations

...

ssc.start()

...

#	ssc.stop()	or	ssc.awaitTermination()

Note	that	just	as	sc	and	sqlContext	are	common	conventions	for	object
instantiations	of	the	SparkContext	and	SQLContext	or	HiveContext
classes,	respectively,	ssc	is	a	common	convention	for	an	instance	of	the
StreamingContext.	Unlike	the	former	entry	points,	however,	the
StreamingContext	is	not	automatically	instantiated	in	the	interactive	shells
pyspark	and	spark-shell.

Introduction	to	DStreams
Discretized	streams	(DStreams)	are	the	basic	programming	object	in	the	Spark
Streaming	API.	A	DStream	represents	a	continuous	sequence	of	RDDs	created
from	a	continuous	stream	of	data,	with	each	underlying	RDD	representing	a	time
window	within	the	stream.

DStreams	are	created	from	streaming	data	sources	such	as	TCP	sockets,
messaging	systems,	streaming	APIs	(such	as	the	Twitter	streaming	API),	and
more.	As	an	RDD	abstraction,	DStreams	are	also	created	from	transformations
performed	on	existing	DStreams,	such	as	map(),	flatMap(),	and	other
operations.

DStreams	support	two	types	of	operations:

	Transformations

	Output	operations

Output	operations	are	analogous	to	RDD	actions.	DStreams	execute	lazily	upon

the	request	of	an	output	operation,	which	is	similar	to	lazy	evaluation	with	Spark
RDDs.

Figure	7.2	represents	a	DStream,	with	each	t	interval	representing	a	window	of
time	specified	by	the	batchDuration	argument	in	the
StreamingContext	instantiation.

Figure	7.2	Spark	discretized	streams	(DStreams).

DStream	Sources
DStreams	are	defined	within	a	StreamingContext	for	a	specified	input	data
stream,	much	the	same	way	that	RDDs	are	created	for	input	data	sources	within
a	SparkContext.	Many	common	streaming	input	sources	are	included	in	the
Streaming	API,	such	as	sources	to	read	data	from	a	TCP	socket	or	for	reading
data	as	it	is	written	to	HDFS.

The	basic	input	data	sources	for	creating	DStreams	are	described	in	the
following	sections.

socketTextStream()

Syntax:
Click	here	to	view	code	image

StreamingContext.socketTextStream(hostname,

								port,

								storageLevel=StorageLevel(True,	True,	False,	False,	2))

Use	the	socketTextStream()	method	to	create	a	DStream	from	an	input
TCP	source	defined	by	the	hostname	and	port	arguments.	The	data	received
is	interpreted	using	UTF8	encoding,	and	new	line	termination	is	used	to	define
new	records.	The	storageLevel	argument	that	defines	the	storage	level	for
the	DStream	defaults	to	MEMORY_AND_DISK_SER.	Listing	7.2	demonstrates
the	use	of	the	socketTextStream()	method.

Listing	7.2	socketTextStream()	Method
Click	here	to	view	code	image

from	pyspark.streaming	import	StreamingContext

ssc	=	StreamingContext(sc,	1)

lines	=	ssc.socketTextStream('localhost',	9999)

counts	=	lines.flatMap(lambda	line:	line.split("	"))	\

														.map(lambda	word:	(word,	1))	\

														.reduceByKey(lambda	a,	b:	a+b)

counts.pprint()	ssc.start()

ssc.awaitTermination()

textFileStream()

Syntax:
Click	here	to	view	code	image

StreamingContext.textFileStream(directory)

Use	the	textFileStream()	method	to	create	a	DStream	by	monitoring	a
directory	from	an	instance	of	HDFS,	as	specified	by	the	current	system	or
application	configuration	settings.	textFileStream()	listens	for	the
creation	of	new	files	in	the	directory	specified	by	the	directory	argument	and
captures	the	data	written	as	a	streaming	source.	Listing	7.3	shows	the	use	of	the
textFileStream()	method.

Listing	7.3	textFileStream()	Method
Click	here	to	view	code	image

from	pyspark.streaming	import	StreamingContext

ssc	=	StreamingContext(sc,	1)

lines	=	ssc.textFileStream('hdfs:///data/incoming/')

counts	=	lines.flatMap(lambda	line:	line.split("	"))	\

														.map(lambda	x:	(x,	1))	\

														.reduceByKey(lambda	a,	b:	a+b)

counts.pprint()

ssc.start()

ssc.awaitTermination()

There	are	built-in	sources	for	common	messaging	platforms	such	as	Apache
Kafka,	Amazon	Kinesis,	Apache	Flume,	and	more.	We	look	at	some	of	them
shortly.	You	can	also	create	custom	streaming	data	sources	by	implementing	a
custom	receiver	for	your	desired	source.	At	this	stage,	custom	receivers	must	be
written	in	Scala	or	Java.

DStream	Transformations
The	DStream	API	contains	many	of	the	transformations	available	through	the
RDD	API.	DStream	transformations,	like	RDD	transformations,	create	new
DStreams	by	applying	functions	to	existing	DStreams.	Listing	7.4	and	Figure	7.3
show	a	simplified	example	of	DStream	transformations.

Listing	7.4	DStream	Transformations
Click	here	to	view	code	image

from	pyspark.streaming	import	StreamingContext

ssc	=	StreamingContext(sc,	30)

lines	=	ssc.socketTextStream('localhost',	9999)

counts	=	lines.map(lambda	word:	(word,	1))	\

														.reduceByKey(lambda	a,	b:	a+b)

counts.pprint()

ssc.start()

ssc.awaitTermination()

	#	output:

#	----------------------------

#	Time:	2017-10-21	19:57:30

#	----------------------------

#	(u'Lorem',1)

#	(u'ipsum',1)

#	----------------------------

#	Time:	2017-10-21	19:58:00

#	----------------------------

#	(u'dolor',1)

#	(u'vitae',1)

#	----------------------------

#	Time:	2017-10-21	19:58:30

#	----------------------------

#	(u'sit',1)

#	(u'amet',1)

#	----------------------------

#	Time:	2017-10-21	19:59:00

#	----------------------------

#	...

Figure	7.3	DStream	transformations.

DStream	Lineage	and	Checkpointing
The	lineage	of	each	DStream	is	maintained	for	fault	tolerance	much	the	same
way	that	RDDs	and	DataFrames	maintain	their	lineage.	Because	streaming

applications	are	by	definition	long-lived	applications,	checkpointing	is	often
necessary.	Checkpointing	with	DStreams	is	similar	to	that	in	the	RDD	and
DataFrame	APIs.	The	methods	are	slightly	different,	however,	and	to	make
things	confusing,	the	methods	have	the	same	names	but	are	members	of	two
separate	classes.	These	are	discussed	in	the	following	sections.

StreamingContext.checkpoint()

Syntax:
Click	here	to	view	code	image

StreamingContext.checkpoint(directory)

The	StreamingContext.checkpoint()	method	enables	periodic
checkpointing	of	DStream	operations	for	durability	and	fault	tolerance.	The
application	DAG	is	checkpointed	at	each	batch	interval,	as	defined	in	the
StreamingContext.	The	directory	argument	configures	the	directory,
typically	in	HDFS,	where	the	checkpoint	data	persists.

DStream.checkpoint()

Syntax:
DStream.checkpoint(interval)

The	DStream.checkpoint	method	can	enable	periodic	checkpointing	of
RDDs	of	a	particular	DStream.	The	interval	argument	is	the	time,	in
seconds,	after	which	the	underlying	RDDs	in	a	DStream	are	checkpointed.

Note	that	the	interval	argument	must	be	a	positive	multiple	of	the
batchDuration	set	in	the	StreamingContext.

Listing	7.5	demonstrates	the	use	of	the	functions	to	control	checkpointing
behavior	in	Spark	Streaming.

Listing	7.5	Checkpointing	in	Spark	Streaming
Click	here	to	view	code	image

from	pyspark.streaming	import	StreamingContext

ssc	=	StreamingContext(sc,	30)

ssc.checkpoint('file:///opt/spark/data')

lines	=	ssc.socketTextStream('localhost',	9999)

counts	=	lines.map(lambda	word:	(word,	1))	\

														.reduceByKey(lambda	a,	b:	a+b)

counts.checkpoint(30)

counts.pprint()

ssc.start()

ssc.awaitTermination()

Caching	and	Persistence	with	DStreams
DStreams	support	caching	and	persistence	using	interfaces	with	the	same	name
and	usage	as	their	RDD	counterparts,	cache()	and	persist().	These
options	are	especially	handy	for	DStreams	used	more	than	once	in	downstream
processing	operations.	Storage	levels	work	the	same	with	DStreams	as	they	do
with	RDDs.

Broadcast	Variables	and	Accumulators	with	Streaming
Applications
Broadcast	variables	and	accumulators	are	available	for	use	in	Spark	Streaming
applications	in	the	same	way	they	are	implemented	in	native	Spark	applications.
Broadcast	variables	are	useful	for	distributing	lookup	or	reference	data
associated	with	DStream	RDD	contents.	You	can	use	accumulators	as	counters.

There	are	some	limitations	with	recovery	when	using	broadcast	variables	or
accumulators	with	checkpointing	enabled.	If	you	are	developing	production
Spark	Streaming	applications	and	using	broadcast	variables	or	accumulators,
consult	the	latest	Spark	Streaming	programming	guide.

DStream	Output	Operations
Output	operations	with	DStreams	are	similar	in	concept	to	actions	with	RDDs.
DStream	output	operations	write	data,	results,	events,	or	other	data	to	a	console,
a	filesystem,	a	database,	or	another	destination,	such	as	a	messaging	platform
like	Kafka.	The	basic	DStream	output	operations	are	described	in	the	following
sections.

pprint()

Syntax:

DStream.pprint(num=10)

The	pprint()	method	prints	the	first	number	of	elements	specified	by	the
num	argument	for	each	RDD	in	the	DStream	(where	num	is	10	by	default).
Using	pprint()	is	a	common	way	to	get	interactive	console	feedback	from	a
streaming	application.	Figure	7.4	shows	the	console	output	from	a	pprint()
operation.

Figure	7.4	pprint()	DStream	console	output.

saveAsTextFiles()

Syntax:
Click	here	to	view	code	image

DStream.saveAsTextFiles(prefix,	suffix-=None)

The	saveAsTextFiles()	method	saves	each	RDD	in	a	DStream	as	a	text
file	in	a	target	filesystem,	local	HDFS,	or	other	filesystem.	A	directory	of	files	is
created	with	string	representations	of	the	elements	contained	in	the	DStream.
Listing	7.6	shows	the	use	of	the	saveAsTextFiles()	method	and	the	output
directory	created.	Figure	7.5	provides	a	look	at	the	file	contents.

Listing	7.6	Saving	DStream	Output	to	Files

Click	here	to	view	code	image

from	pyspark.streaming	import	StreamingContext

ssc	=	StreamingContext(sc,	30)

lines	=	ssc.socketTextStream('localhost',	9999)

counts	=	lines.map(lambda	word:	(word,	1))	\

														.reduceByKey(lambda	a,	b:	a+b)

counts.saveAsTextFiles("file:///opt/spark/data/counts")

ssc.start()

ssc.awaitTermination()

Figure	7.5	Output	from	the	saveAsTextFiles()	DStream	method.

foreachRDD()

Syntax:
DStream.foreachRDD(func)

The	foreachRDD()	output	operation	is	similar	to	the	foreach()	action	in
the	Spark	RDD	API.	It	applies	the	function	specified	by	the	func	argument	to
each	RDD	in	a	DStream.	The	foreachRDD()	method	is	executed	by	the
Driver	process	running	the	streaming	application	and	usually	forces	the
computation	of	the	DStream	RDDs.	The	function	used	can	be	a	named	one	or	an

anonymous	lambda	function,	as	with	foreach().	Listing	7.7	shows	a	simple
example	of	the	foreachRDD()	method.

Listing	7.7	Performing	Functions	on	Each	RDD	in	a	DStream
Click	here	to	view	code	image

from	pyspark.streaming	import	StreamingContext

def	printx(x):	print("received	:	"	+	x)

ssc	=	StreamingContext(sc,	30)

lines	=	ssc.socketTextStream('localhost',	9999)

lines.foreachRDD(lambda	x:	x.foreach(lambda	y:	printx(y)))

ssc.start()

ssc.awaitTermination()

#	output:

#	received	:	Lorem

#	received	:	ipsum

#	received	:	dolor

#	received	:	vitae

#	received	:	sit

#	received	:	amet

Exercise:	Getting	Started	with	Spark	Streaming
This	exercise	shows	how	to	stream	lines	from	a	Shakespeare	text	and	consume
the	lines	with	the	Spark	Streaming	application.	It	also	shows	how	to	perform	a
streaming	word	count	against	the	incoming	data,	much	like	word	count	examples
shown	earlier	in	this	book.	Follow	these	steps:
1.	Use	wget	or	curl	to	download	the	shakespeare.txt	file	from
https://s3.amazonaws.com/sparkusingpython/shakespeare/shakespeare.txt	to
a	local	directory	such	as	/opt/spark/data.

2.	Open	a	pyspark	shell.	Note	that	if	you’re	using	Local	mode,	you	need	to
specify	at	least	two	worker	threads,	as	shown	here:

3.	Enter	the	following	commands,	line	by	line,	in	the	pyspark	shell:
Click	here	to	view	code	image

import	re

from	pyspark.streaming	import	StreamingContext

https://s3.amazonaws.com/sparkusingpython/shakespeare/shakespeare.txt

ssc	=	StreamingContext(sc,	30)

lines	=	ssc.socketTextStream('localhost',	9999)

wordcounts	=	lines.filter(lambda	line:	len(line)	>	0)	\

														.flatMap(lambda	line:	re.split('\W+',	line))	\

														.filter(lambda	word:	len(word)	>	0)	\

														.map(lambda	word:	(word.lower(),	1))	\

														.reduceByKey(lambda	x,	y:	x	+	y)	wordcounts.pprint()

ssc.start()

ssc.awaitTermination()

Note	that	until	you	start	a	stream	on	the	defined	socket,	you	see	exceptions
appear	in	the	console	output.	This	is	normal.

4.	In	another	terminal,	using	the	directory	containing	the	local
shakespeare.txt	file	from	step	1	as	the	current	directory,	execute	the
following	command:

Click	here	to	view	code	image
$	while	read	line;	do	echo	-e	"$line\n";	sleep	1;	done	\

	<	shakespeare.txt	|	nc	-lk	9999

This	command	reads	a	line	from	the	shakespeare.txt	file	every	second
and	sends	it	to	the	netcat	server.

You	should	see	that	every	30	seconds	(the	batchInterval	set	on	the
StreamingContext	in	step	3),	the	lines	received	from	the	latest	batch	are
transformed	into	key/value	pairs	and	counted,	with	output	to	the	console
similar	to	the	output	shown	here:

Click	here	to	view	code	image
--

Time:	2017-10-21	20:10:00

--

(u'and',	11)

(u'laugh',	1)

(u	'old',	1)

(u'have',	1)

(u'trifles',	1)

(u'imitate',	1)

(u'neptune',	1)

(u'is',	2)

(u'crown',	1)

(u'changeling',	1)

...

Find	the	complete	source	code	for	this	exercise	in	the	streaming-
wordcount	folder	at	https://github.com/sparktraining/spark_using_python.

State	Operations
So	far,	the	examples	of	Spark	Streaming	applications	in	this	chapter	have	dealt
with	data	statelessly	processing	each	batch	during	a	batch	interval,	independent
of	any	other	batches	in	a	stream.	Often	you	want	or	need	to	maintain	state	across
batches	of	data,	with	the	state	updated	as	each	new	batch	is	processed.	You	can
accomplish	this	by	using	a	state	DStream.

State	DStreams	are	created	and	updated	using	the	special
updateStateByKey()	transformation.	This	is	preferred	over	using
accumulators	as	shared	variables	in	streaming	applications	because
updateStateByKey()	is	automatically	checkpointed	for	integrity,
durability,	and	recoverability.

updateStateByKey()

Syntax:
Click	here	to	view	code	image

DStream.updateStateByKey(updateFunc,	numPartitions=None)

The	updateStateByKey()	method	returns	a	new	state	DStream,	where	the
state	for	each	key	updates	by	applying	the	function	specified	by	the
updateFunc	argument	against	the	previous	state	of	the	key	and	the	new	values
of	the	key.

The	updateStateByKey()	method	expects	key/value	pair	input	and	returns
a	corresponding	key/value	pair	output,	with	the	values	updated	according	to	the
updateFunc	setting.

The	numPartitions	argument	can	repartition	the	output	similarly	to	the
RDD	methods	with	this	argument.

Note	that	checkpointing	must	be	enabled	using
ssc.checkpoint(directory)	in	the	StreamingContext	before	you
can	use	the	updateStateByKey()	method	and	create	and	update	state
DStreams.

Consider	this	input	stream:

https://github.com/sparktraining/spark_using_python

Click	here	to	view	code	image

Lorem	ipsum	dolor

<pause	for	more	than	30	seconds>

Lorem	ipsum	dolor

Listing	7.8	shows	how	to	use	updateStateByKey()	to	create	and	update	the
counts	for	the	words	received	on	the	stream.

Listing	7.8	State	DStreams
Click	here	to	view	code	image

from	pyspark.streaming	import	StreamingContext

ssc	=	StreamingContext(sc,	30)

ssc.checkpoint("checkpoint")

def	updateFunc(new_values,	last_sum):

return	sum(new_values)	+	(last_sum	or	0)

lines	=	ssc.socketTextStream('localhost',	9999)

wordcounts	=	lines.map(lambda	word:	(word,	1))	\

																		.updateStateByKey(updateFunc)

wordcounts.pprint()

ssc.start()

ssc.awaitTermination()

#	output:

#...

#	--

#	Time:	2016-03-31	00:02:30

#	--

#	(u'Lorem',	1)

#	(u'ipsum',	1)

#	(u'dolor',	1)

#...

	#	--

#	Time:	2016-03-31	00:03:00

#	--

#	(u'Lorem',	2)

#	(u'ipsum',	2)

#	(u'dolor',	2)

Sliding	Window	Operations
The	state	operations	you	learned	about	in	the	previous	section	apply	to	all	RDDs
in	the	DStream.	It	is	useful	to	look	at	aggregations	over	a	specific	window,	such
as	the	last	hour	or	day.	Because	this	window	is	relative	to	a	point	in	time,	it’s
called	a	sliding	window.

Sliding	window	operations	in	Spark	Streaming	span	RDDs	within	a	DStream
over	a	specified	duration	(the	window	length)	and	are	evaluated	at	specific
intervals	(the	slide	interval).	Consider	Figure	7.6.	If	you	want	to	count	the	words
in	the	last	two	intervals	(window	length)	every	two	intervals	(slide	interval),	you
can	use	the	reduceByKeyAndWindow()	function	to	create	“windowed”
RDDs.

Figure	7.6	Sliding	windows	and	windowed	RDDs	in	Spark	Streaming.

Sliding	window	functions	available	in	the	Spark	Streaming	API	include
window(),	countByWindow(),	reduceByWindow(),
reduceByKeyAndWindow(),	and	count	ByValueAndWindow().	The
following	sections	cover	a	couple	of	these	basic	functions.

window()

Syntax:
Click	here	to	view	code	image

DStream.window(windowLength,	slideInterval)

The	window()	method	returns	a	new	DStream	from	specified	batches	of	the
input	DStream.	window()	creates	a	new	DStream	object	every	interval,	as
specified	by	the	slideInterval	argument,	consisting	of	elements	from	the
input	DStream	for	the	specified	windowLength.

Both	slideInterval	and	windowLength	must	be	multiples	of	the
batchDuration	set	in	the	StreamingContext.	Listing	7.9	demonstrates
the	use	of	the	window()	function.

Listing	7.9	window()	Function
Click	here	to	view	code	image

#	send	date	to	netcat	every	second:

#	while	sleep	1;	do	echo	'date';	done	|	nc	-lk	9999

from	pyspark.streaming	import	StreamingContext

ssc	=	StreamingContext(sc,	5)

dates	=	ssc.socketTextStream('localhost',	9999)

windowed	=	dates.window(10,10)

windowed.pprint()

ssc.start()

ssc.awaitTermination()

#	output:

#	...

#	---

#	Time:	2017-10-23	09:28:15

#	---

#	Mon	23	Oct	09:28:05	AEDT	2017

#	Mon	23	Oct	09:28:06	AEDT	2017

#	Mon	23	Oct	09:28:07	AEDT	2017

#	Mon	23	Oct	09:28:08	AEDT	2017

#	Mon	23	Oct	09:28:09	AEDT	2017

#	Mon	23	Oct	09:28:10	AEDT	2017

#	Mon	23	Oct	09:28:11	AEDT	2017

#	Mon	23	Oct	09:28:12	AEDT	2017

#	Mon	23	Oct	09:28:13	AEDT	2017

#...

#	---

#	Time:	2017-10-23	09:28:25

#	---

#	Mon	23	Oct	09:28:14	AEDT	2017

#	Mon	23	Oct	09:28:15	AEDT	2017

#	Mon	23	Oct	09:28:16	AEDT	2017

#	Mon	23	Oct	09:28:17	AEDT	2017

#	Mon	23	Oct	09:28:18	AEDT	2017

#	Mon	23	Oct	09:28:19	AEDT	2017

#	Mon	23	Oct	09:28:20	AEDT	2017

#	Mon	23	Oct	09:28:21	AEDT	2017	#	Mon	23	Oct	09:28:22	AEDT	2017

#	Mon	23	Oct	09:28:24	AEDT	2017

reduceByKeyAndWindow()

Syntax:
Click	here	to	view	code	image

DStream.reduceByKeyAndWindow(func,

																													invFunc,

																													windowDuration,

																													slideDuration=None,

																													numPartitions=None,

																													filterFunc=None)

The	reduceByKeyAndWindow()	method	creates	a	new	DStream	by
performing	an	associative	reduce	function,	as	specified	by	the	func	argument,
to	a	sliding	window,	as	defined	by	the	windowDuration	and
slideDuration	arguments.	The	invFunc	argument	is	an	inverse	function
to	the	func	argument.	invFunc	is	included	for	efficiency	to	remove	(or
subtract)	counts	from	the	previous	window;	numPartitions	is	an	optional
argument	supported	for	repartitioning	the	output	DStream.	The	optional
filterFunc	argument	can	filter	expired	key/value	pairs;	in	this	case,	only
key/value	pairs	that	satisfy	the	function	are	retained	in	the	resultant	DStream.
Listing	7.10	demonstrates	the	use	of	the	reduceByKeyAndWindow()
function.

Note	that	checkpointing	must	be	enabled	when	using	the

reduceByKeyAndWindow()	function.

Listing	7.10	The	reduceByKeyAndWindow()	Function
Click	here	to	view	code	image

from	pyspark.streaming	import	StreamingContext

ssc	=	StreamingContext(sc,	5)

ssc.checkpoint("checkpoint")

lines	=	ssc.socketTextStream('localhost',	9999)

windowedWordCounts	=	lines.map(lambda	word:	(word,	1))	\

																										.reduceByKeyAndWindow(lambda	x,	y:	x	+	y,	\

																													lambda	x,	y:	x	-	y,	30,	10)

windowedWordCounts.pprint()

ssc.start()

ssc.awaitTermination()

Structured	Streaming
Stream	processing	in	Spark	is	not	limited	to	the	RDD	API;	by	using	Structured
Streaming,	Spark	Streaming	is	fully	integrated	with	the	Spark	DataFrame	API	as
well.	Using	Structured	Streaming,	streaming	data	sources	are	treated	as	an
unbounded	table	that	is	continually	appended	to.	SQL	queries	can	run	against
these	tables	much	as	they	are	able	to	run	from	tables	representing	static
DataFrames.	Figure	7.7	shows	a	high-level	overview	of	Structured	Streaming
with	Spark.

Figure	7.7	Structured	Streaming.

Structured	Streaming	Data	Sources
The	DataFrameReader	(detailed	in	Chapter	6)	includes	several	built-in
sources	designed	to	ingest	streaming	data.	These	data	sources	include	support	for
file,	socket,	and	Kafka—which	we	discuss	shortly—data	streams.	The
DataFrameReader.readStream()	method,	available	through	the
SparkSession	object,	includes	a	format()	member	used	to	define	the
streaming	source.

File	Sources
The	file	source	reads	new	files	written	in	a	directory	as	a	stream	of	data.	Most	of
the	file	formats	supported	by	the	DataFrameReader	are	supported	as
Structured	Streaming	sources,	including	CSV,	text,	JSON,	and	Parquet	ORC.
Listing	7.11	demonstrates	how	to	use	a	file	source	(CSV	in	this	case)	for	a
Structured	Streaming	application.	Note	that	you	must	supply	a	schema	unless
there	are	existing	files	in	the	input	directory	from	which	the	schema	can	be

inferred.

Listing	7.11	Structured	Streaming	Using	a	File	Source
Click	here	to	view	code	image

from	pyspark.sql.types	import	*

tripsSchema	=	StructType()	\

								.add("TripID",	"integer")	\

								.add("Duration",	"integer")	\

								.add("StartDate",	"string")	\

								.add("StartStation",	"string")	\

								.add("StartTerminal",	"integer")	\

								.add("EndDate",	"string")	\

								.add("EndStation",	"string")	\	.add("EndTerminal",	"integer")	\

								.add("BikeNo",	"integer")	\

								.add("SubscriberType",	"string")	\

								.add("ZipCode",	"string")

csv_input	=	spark	\

				.readStream	\

				.schema(tripsSchema)	\

				.csv("/tmp/trips")

...

Socket	Sources
The	socket	source	reads	text	data	in	UTF8	format	from	a	socket	connection	in
much	the	same	way	as	the	socketTextStream()	method	in	the	Spark
Streaming	RDD	API.	Listing	7.12	demonstrates	the	use	of	a	socket	data	source
to	perform	a	Structured	Streaming	word	count.

Listing	7.12	Structured	Streaming	Using	a	Socket	Source
Click	here	to	view	code	image

socket_input	=	spark	\

				.readStream	\

				.format("socket")	\

				.option("host",	"localhost")	\

				.option("port",	9999)	\

				.load()

...

Structured	Streaming	Data	Sinks
As	discussed	earlier	in	this	chapter,	each	data	item	arriving	on	a	stream	is	treated
like	a	new	record	appended	to	a	table,	referred	to	as	the	Input	Table.	The	output
from	a	Structured	Streaming	operation—that	is,	what	is	written	out—is	referred
to	as	the	Result	Table.	Output	from	Structured	Streaming	operations	is	written
out	by	the	DataFrameWriter	object	and,	in	particular,	the
DataFrameWriter.writeStream()	method.

Output	sinks	in	Spark’s	Structured	Streaming	define	where	the	Result	Table	is
written	to.	Output	sinks	themselves	are	defined	using	the	format()	member	of
the	DataFrameWriter.writeStream()	method.

There	are	built-in	output	sinks	for	writing	data	to	files,	memory,	or	the	console.

File	Sink
The	file	sink	stores	the	Result	Table	in	a	directory	in	a	supported	filesystem
(HDFS,	local	filesystem,	S3,	and	so	on).	Listing	7.13	demonstrates	the	file	sink.

Listing	7.13	File	Output	Sink
Click	here	to	view	code	image

...

output.writeStream	\

				.format("parquet")	\

				.option("path",	"/tmp/streaming_output")	\

				.start()

#	could	also	be	"orc",	"json",	"csv"

To	use	a	file	output	sink,	you	need	to	set	a	checkpoint	location;	this	can	be	done
as	shown	here:
Click	here	to	view	code	image

spark.conf.set("spark.sql.streaming.checkpointLocation",	

"/tmp/checkpoint_dir")

Console	Sink
The	console	sink	prints	the	Result	Table	to	the	console.	This	is	useful	for
debugging	but	could	be	impractical	for	large	output	sets.	Listing	7.14
demonstrates	the	console	sink.

Listing	7.14	Console	Output	Sink
Click	here	to	view	code	image

...

output.writeStream	\

				.format("console")	\

				.start()

Memory	Sink
The	memory	stores	the	Result	Table	as	a	table	in	memory;	this	type	of	sink	is
also	useful	for	debugging	but	should	be	used	with	caution	for	larger	output	data
sets.	Listing	7.15	demonstrates	the	memory	sink.

Listing	7.15	Memory	Output	Sink
Click	here	to	view	code	image

...

output.writeStream	\

				.format("memory")	\

				.queryName("trips")	\

				.start()

spark.sql("select	*	from	trips").show()

Output	Modes
Just	as	output	sinks	define	where	to	send	the	output	of	a	Structured	Streaming
operation,	output	modes	define	how	the	output	is	treated.	There	are	several
different	output	modes:

	append:	Outputs	only	new	rows	added	to	the	Result	Table	since	the	last

trigger.	This	mode,	which	is	the	default,	is	useful	for	operations	that	are
simply	projecting	or	filtering	new	data,	including	where(),	select(),
and	filter().

	complete:	Outputs	the	entire	Result	Table,	including	all	updates	and
transformations,	after	each	trigger.	This	is	useful	for	aggregate	functions
such	as	count(),	sum(),	and	so	on.

	update:	Outputs	only	rows	in	the	Result	Table	that	have	updated	since	the
last	trigger	are	output.

The	output	mode	is	specified	using	the	outputMode()	member	of	the
writeStream()	method.

Structured	Streaming	Operations
Because	Structured	Streaming	builds	on	the	DataFrame	API,	most	DataFrame
operations	are	available,	including	the	following:

	Filtering	records

	Projecting	columns

	Performing	column-level	transformations	using	built-in	or	user-defined
functions

	Grouping	records	and	aggregating	columns

	Joining	streaming	DataFrames	with	static	DataFrames	(with	some
limitations)

However,	some	operations	in	the	DataFrame	API	are	not	available	with
streaming	DataFrames,	including	the	following:

	limit	and	take(n)	operations

	distinct	operations

	sort	operations	(supported	only	in	complete	output	mode	after	an
aggregation)

	Full	outer	join	operations

	Any	type	of	join	between	two	streaming	DataFrames

	Additional	conditions	on	left	and	right	outer	join	operations

Listing	7.16	puts	together	all	the	Structured	Streaming	concepts	and	showcases
various	operations	that	perform	on	streaming	DataFrames.

Listing	7.16	Structured	Streaming	Operations
Click	here	to	view	code	image

#	declare	a	schema	for	a	streaming	source

from	pyspark.sql.types	import	*

tripsSchema	=	StructType()	\

								.add("TripID",	"integer")	\

								.add("Duration",	"integer")	\

								.add("StartDate",	"string")	\

								.add("StartStation",	"string")	\

								.add("StartTerminal",	"integer")	\

								.add("EndDate",	"string")	\

								.add("EndStation",	"string")	\

								.add("EndTerminal",	"integer")	\	.add("BikeNo",	"integer")	\

								.add("SubscriberType",	"string")	\

								.add("ZipCode",	"string")

#	read	from	an	input	stream

trips	=	spark	\

				.readStream	\

				.schema(tripsSchema)	\

				.csv("/tmp/trips")

#	perform	a	streaming	DataFrame	aggregation

result	=	trips.select(trips.StartTerminal,	trips.StartStation)	\

												.groupBy(trips.StartTerminal,	trips.StartStation)	\

												.agg({"*":	"count"})

#	write	out	the	result	table	to	the	console

result.writeStream	\

				.format("console")	\

				.outputMode("complete")	\

				.start()

#	returns:

#	<pyspark.sql.streaming.StreamingQuery	object	at	0x7fb1c5c2a0f0>

#	---

#	Batch:	0

#	---

#	+-------------+--------------------+--------+

#	|StartTerminal|								StartStation|count(1)|

#	+-------------+--------------------+--------+

#	|												7|Paseo	de	San	Antonio|					856|

#	|											65|					Townsend	at	7th|			13752|

#	|											26|Redwood	City	Medi...|					150|

#	|											38|							Park	at	Olive|					376|

#	...

Using	Spark	with	Messaging	Platforms
Messaging	systems	originally	formed	to	provide	middleware	functionality—
more	specifically,	message-oriented	middleware	(MOM).	This	area	saw	rapid
expansion	in	the	1980s,	in	integrating	legacy	systems	with	newer	systems,	such
as	mainframe	and	early	distributed	systems.	Today	messaging	systems	and
platforms	provide	much	more	functionality	than	just	simple	integration.	They	are
a	critical	part	of	the	mobile	computing	and	Internet	of	Things	(IoT)	landscape.
Projects	such	as	JMS	(Java	Message	Service),	Kafka,	ActiveMQ,	ZeroMQ
(ØMQ),	RabbitMQ,	Amazon	SQS	(Simple	Queue	Service),	and	Kinesis	have
added	to	the	existing	landscape	of	more	established	commercial	solutions	such
as	TIBCO	EMS	(Enterprise	Message	Service),	IBM	WebSphere	MQ,	and
Microsoft	Message	Queuing	(MSMQ).

The	following	sections	look	at	some	messaging	systems	commonly	used	with
Big	Data	and	Spark	implementations.

Apache	Kafka
Originally	developed	at	LinkedIn,	Apache	Kafka	is	a	popular	open	source
project	written	in	Scala	and	designed	for	message	brokering	and	queuing
between	various	Hadoop	ecosystem	projects.

Kafka	Architecture
Kafka	is	a	distributed,	reliable,	low-latency,	pub-sub	messaging	platform.
Conceptually,	Kafka	acts	as	a	write-ahead	log	(WAL)	for	messages,	much	the
same	way	a	transaction	log	or	journal	functions	in	an	ACID	data	store.	This	log-
based	design	provides	durability,	consistency,	and	the	capability	for	subscribers

to	replay	messages.

Publishers,	called	producers,	write	data	to	topics.	Subscribers,	called	consumers,
read	messages	from	specified	topics.	Figure	7.8	summarizes	the	relationships
among	producers,	topics,	and	consumers.	Messages	themselves	are	uninterpreted
byte	arrays	that	can	represent	any	object	or	primitive	datatype.	Common
message	content	formats	include	JSON	and	Avro,	an	open	source	Hadoop
ecosystem	data-serialization	project.

Figure	7.8	Kafka	producers,	consumers,	and	topics.

Kafka	is	a	distributed	system	that	consists	of	one	or	more	brokers,	typically	on
separate	nodes	of	a	cluster.	Brokers	manage	partitions,	which	are	ordered,
immutable	sequences	of	messages	for	a	particular	topic.	Partitions	replicate
across	multiple	nodes	in	a	cluster	to	provide	fault	tolerance.	A	topic	may	have
many	partitions.

Each	topic	in	Kafka	is	treated	as	a	log—a	collection	of	messages—with	a	unique
offset	assigned	to	each	message.	Topics	are	ordered	within	a	partition.
Consumers	can	access	messages	from	a	topic	based	on	these	offsets,	which
means	a	consumer	can	replay	previous	messages.

Kafka	retains	messages	for	only	a	specified	period	of	time.	After	the	specified

retention	period,	messages	are	purged,	and	consumers	no	longer	have	access	to
these	messages.

Kafka	uses	Apache	ZooKeeper	to	maintain	state	between	brokers.	ZooKeeper	is
an	open	source	distributed	configuration	and	synchronization	service	used	by
many	other	Hadoop	ecosystem	projects,	including	HBase.	ZooKeeper	is
typically	implemented	in	a	cluster	configuration	called	an	ensemble,	and	it’s
typically	deployed	in	odd	numbers,	such	as	three	or	five.

A	majority	of	nodes,	or	a	quorum	of	nodes,	successfully	performing	an	action
(such	as	updating	a	state)	is	required.	A	quorum	must	“elect”	a	leader,	which	in	a
Kafka	cluster	is	the	node	responsible	for	all	reads	and	writes	for	a	specific
partition;	every	partition	has	a	leader.

Other	nodes	are	considered	followers.	Followers	consume	messages	and	update
their	partitions.	If	the	leader	is	unavailable,	Kafka	elects	a	new	leader.

Figure	7.9	presents	the	Kafka	cluster	architecture.

Figure	7.9	Kafka	cluster	architecture.

More	detailed	information	about	Kafka	is	available	at	http://kafka.apache.org/.

Using	Spark	with	Kafka

http://kafka.apache.org/

Spark’s	support	for	Kafka	closely	aligns	with	the	Spark	Streaming	project.
Kafka’s	performance	and	durability	make	it	a	platform	that’s	well	suited	to
servicing	Spark	Streaming	processes.

Common	usage	scenarios	for	Kafka	and	Spark	include	Spark	Streaming
processes	reading	data	from	a	Kafka	topic	and	performing	event	processing	on
the	data	stream	or	a	Spark	process	serving	as	a	producer	and	writing	output	to	a
Kafka	topic.

There	are	two	approaches	to	consuming	messages	from	a	Kafka	topic	using
Spark:

	Using	receivers

	Accessing	messages	directly	from	a	broker	(referred	to	as	Direct	Stream
Access)

Receivers	are	processes	that	run	within	Spark	Executors.	Each	receiver	is
responsible	for	an	input	DStream	created	from	messages	from	a	Kafka	topic.
Receivers	query	the	ZooKeeper	quorum	for	information	about	brokers,	topics,
partitions,	and	offsets.	In	addition,	receivers	implement	a	separate	WAL—
typically	stored	in	HDFS—for	durability	and	consistency.	Messages	and	offsets
are	committed	to	the	WAL,	and	then	receipt	of	the	message	is	acknowledged
with	an	update	of	the	consumed	offset	in	ZooKeeper.	This	ensures	that	messages
process	once	and	only	once	across	multiple	receivers,	if	this	guarantee	is
required.

The	WAL	implementation	ensures	durability	and	crash	consistency	in	the	event
of	receiver	failure.	Figure	7.10	summarizes	the	operation	of	Spark	Streaming
Kafka	receivers.

Figure	7.10	Spark	Streaming	Kafka	receivers.

Although	the	receiver	method	for	reading	messages	from	Kafka	provides
durability	and	once-	and-only-once	processing,	the	blocking	WAL	write
operations	impact	performance.	A	newer,	alternative	approach	to	stream
consumption	from	Kafka	is	the	direct	approach.	The	direct	approach	does	not
use	receivers	or	WAL.	Instead,	the	Spark	Driver	queries	Kafka	for	updates	to
offsets	for	each	topic	and	directs	application	Executors	to	consume	specified
offsets	in	topic	partitions	directly	from	Kafka	brokers.

The	direct	approach	uses	the	SimpleConsumer	Kafka	API	as	opposed	to	the
high-level	ConsumerConnector	API	that	is	used	with	the	receiver	approach.
The	direct	method	provides	durability	and	recoverability,	and	it	enables	“once-
and-only-once”	(transactional)	processing	semantics	equivalent	to	the	receiver
approach	without	the	WAL	overhead.	Figure	7.11	summarizes	the	operation	of
the	Spark	Streaming	Kafka	Direct	API.

Figure	7.11	Spark	Streaming	Kafka	Direct	API.

KafkaUtils

In	both	the	receiver	and	direct	approaches	to	stream	acquisition	from	a	Kafka
topic,	you	can	use	the	KafkaUtils	package	with	the	Scala,	Java,	or	Python

API.	First,	you	need	to	download	or	compile	the	spark-streaming-
kafka-assembly.jar	file;	alternatively,	you	can	use	a	ready-made	Spark
package.	Listing	7.17	shows	an	example	of	starting	a	pyspark	session,
including	the	spark-streaming-kafka	package.	The	same	process	applies
for	spark-shell	or	spark-submit.

Listing	7.17	Using	Spark	KafkaUtils
Click	here	to	view	code	image

$SPARK_HOME/bin/pyspark	\

							--packages	org.apache.spark:spark-streaming-kafka-0-8_2.11:2.2.0

With	the	spark-streaming-kafka-assembly.jar	file	or	Spark
package	included	in	a	Spark	session	and	a	StreamingContext	available,
you	can	access	methods	from	the	KafkaUtils	class,	including	methods	to
create	a	stream	using	the	receiver	approach	or	direct	approach.	The	following
sections	describe	these	methods.

createDirectStream()

Syntax:
Click	here	to	view	code	image

KafkaUtils.createDirectStream(ssc,

																														topics,

																														kafkaParams,

																														fromOffsets=None,

																														keyDecoder=utf8_decoder,

																														valueDecoder=utf8_decoder,

																														messageHandler=None)

Use	the	createDirectStream()	method	to	create	a	Spark	Streaming
DStream	object	from	a	Kafka	topic	or	topics.	The	DStream	consists	of	key/value
pairs,	where	the	key	is	the	message	key,	and	the	value	is	the	message	itself.	The
ssc	argument	is	a	StreamingContext	object.	The	topics	argument	is	a
list	of	one	or	more	Kafka	topics	to	consume.	The	kafkaParams	argument
passes	additional	parameters	to	Kafka,	such	as	a	list	of	Kafka	brokers	to
communicate	with.	The	fromOffsets	argument	specifies	the	reading	start
point	for	the	stream.	If	it	is	not	supplied,	the	stream	is	consumed	from	either	the

smallest	or	largest	offset	available	in	Kafka	(controlled	by	the
auto.offset.reset	setting	in	the	kafkaParams	argument).	The	optional
keyDecoder	and	valueDecoder	arguments	decode	message	key	and	value
objects,	defaulting	to	doing	so	using	UTF8.	The	messageHandler	argument
is	an	optional	argument	for	supplying	a	function	to	access	message	metadata.
Listing	7.18	demonstrates	the	use	of	the	createDirectStream()	method.

Listing	7.18	KafkaUtils.createDirectStream()	Method
Click	here	to	view	code	image

from	pyspark.streaming	import	StreamingContext

from	pyspark.streaming.kafka	import	KafkaUtils

ssc	=	StreamingContext(sc,	30)

stream	=	KafkaUtils.createDirectStream	\

			(ssc,	["my_kafka_topic"],	{"metadata.broker.list":	"localhost:9092"})

There	is	a	similar	direct	method	in	the	KafkaUtils	package,	createRDD(),
which	is	designed	for	batch	access	from	a	Kafka	buffer;	with	it,	you	specify	start
and	end	offsets	for	a	topic	and	partition.

createStream()

Syntax:
Click	here	to	view	code	image

KafkaUtils.createStream(ssc,

																								zkQuorum,

																								groupId,

																								topics,

																								kafkaParams=None,

																								storageLevel=StorageLevel(True,	True,	False,	

False,	2),

																								keyDecoder=utf8_decoder,

																								valueDecoder=utf8_decoder)

The	createStream()	method	creates	a	Spark	Streaming	DStream	object
from	a	Kafka	topic	or	topics	using	a	high-level	Kafka	consumer	API	and
receiver,	including	a	WAL.	The	ssc	argument	is	a	StreamingContext
object	instantiation.	The	zkQuorum	argument	specifies	a	list	of	ZooKeeper

nodes	for	the	receiver	to	interact	with.	The	groupId	argument	specifies	the
group	ID	for	the	consumer.	The	topics	argument	is	a	dictionary	consisting	of
the	topic	name	to	consume	and	the	number	of	partitions	to	create;	each	partition
is	consumed	using	a	separate	thread.	The	kafkaParams	argument	specifies
additional	parameters	to	pass	to	Kafka.	The	storageLevel	argument	is	the
storage	level	to	use	for	the	WAL;	the	default	is	MEMORY_AND_DISK_SER_2.
The	keyDecoder	and	valueDecoder	arguments	specify	functions	to
decode	message	keys	and	values,	respectively.	Both	default	to	the
utf8_decoder	function.	Listing	7.19	demonstrates	the	use	of	the
createStream()	method.

Listing	7.19	KafkaUtils.createStream()	(Receiver)
Method
Click	here	to	view	code	image

from	pyspark.streaming	import	StreamingContext

from	pyspark.streaming.kafka	import	KafkaUtils

ssc	=	StreamingContext(sc,	1)

stream	=	KafkaUtils.createStream(ssc,	\

										"localhost:2181",	\

										"spark-streaming-consumer",	\

										{"mykafkatopic":	1})

Exercise:	Using	Spark	with	Kafka
This	exercise	shows	how	to	install	a	single-node	Kafka	system.	You	can	use	this
platform	to	create	messages	through	a	producer	and	consume	these	messages	as
a	DStream	in	a	Spark	Streaming	application.	For	this	exercise	requires	you	need
to	have	ZooKeeper	installed,	and	it	shows	you	how	to	do	it.	ZooKeeper	is	a
requirement	for	installing	HBase,	so	if	you	have	an	installation	of	HBase,	you
can	use	it.	More	information	about	ZooKeeper	is	available	at
https://zookeeper.apache.org/.

1.	Download	the	latest	release	of	Apache	ZooKeeper	(in	this	case,	release
3.4.10)	from	https://zookeeper.apache.org/releases.html.

2.	Unpack	the	ZooKeeper	release:
$	tar	-xvf	zookeeper-3.4.10.tar.gz

https://zookeeper.apache.org/
https://zookeeper.apache.org/releases.html

3.	Change	directories	into	your	unpacked	ZooKeeper	release	directory:
$	cd	zookeeper-3.4.10

4.	Create	a	simple	ZooKeeper	config	file	(zoo.cfg)	in	the	ZooKeeper
configuration	directory,	using	a	text	editor	such	as	vi:
$	vi	conf/zoo.cfg

5.	Add	the	following	configuration	to	the	zoo.cfg	file:
Click	here	to	view	code	image

tickTime=2000

dataDir=/tmp/zookeeper

clientPort=2181

Save	the	file	and	then	exit	the	text	editor

6.	Start	the	ZooKeeper	Server	service:
$	bin/zkServer.sh	start

7.	Download	the	latest	Kafka	release	(in	this	case,	Kafka	release	1.0.0)	from
http://kafka.apache.org/downloads.html.

8.	Unpack	the	tar.gz	archive	and	create	a	Kafka	home:
Click	here	to	view	code	image

$	tar	-xvf	kafka_2.11-1.0.0.tgz

$	sudo	mv	kafka_2.11-1.0.0/	/opt/kafka/

$	export	KAFKA_HOME=/opt/kafka

9.	Start	the	Kafka	server:
Click	here	to	view	code	image

$KAFKA_HOME/bin/kafka-server-start.sh	\

$KAFKA_HOME/config/server.properties

You	need	to	open	several	terminals	concurrently	for	this	exercise;	refer	to
this	terminal	as	terminal	1.

10.	Open	a	second	terminal	(terminal	2)	and	create	a	test	topic	named
mykafkatopic:

Click	here	to	view	code	image
export	KAFKA_HOME=/opt/kafka

$KAFKA_HOME/bin/kafka-topics.sh	\

--create	\

--zookeeper	localhost:2181	\

--replication-factor	1	\

http://kafka.apache.org/downloads.html

--partitions	1	\

--topic	mykafkatopic

11.	In	terminal	2,	list	the	available	topics,	and	you	should	see	the	topic	you	just
created:

Click	here	to	view	code	image
$KAFKA_HOME/bin/kafka-topics.sh	\

--list	\

--zookeeper	localhost:2181

12.	In	terminal	2,	create	a	consumer	process	to	read	from	your	Kafka	topic:
Click	here	to	view	code	image

$KAFKA_HOME/bin/kafka-console-consumer.sh	\

--bootstrap-server	localhost:9092	\

--topic	mykafkatopic	\

--from-beginning

13.	Open	a	new	terminal	(terminal	3)	and	use	this	terminal	to	start	a	new
producer	process	to	write	to	your	Kafka	topic:

Click	here	to	view	code	image
export	KAFKA_HOME=/opt/kafka

$KAFKA_HOME/bin/kafka-console-producer.sh	\

--broker-list	localhost:9092	\

--topic	mykafkatopic

14.	Enter	messages,	such	as	this	is	a	test	message,	in	your	producer
in	terminal	3;	you	should	see	these	messages	appear	in	your	consumer	in
terminal	2.

15.	Use	Ctrl+C	to	close	the	consumer	process	running	in	terminal	2	and	the
producer	process	running	in	terminal	3.

16.	Using	terminal	2,	create	a	new	topic	named	shakespeare:
Click	here	to	view	code	image

$KAFKA_HOME/bin/kafka-topics.sh	\

--create	\

--zookeeper	localhost:2181	\

--replication-factor	1	\

--partitions	1	\

--topic	shakespeare

17.	In	terminal	2,	open	a	pyspark	session	using	the	Spark	Streaming
assembly	package	(which	is	required	for	Kafka	support):

Click	here	to	view	code	image
$SPARK_HOME/bin/pyspark	--master	local[2]	\

--jars	spark-streaming-kafka-0-10-assembly_2.11-2.2.0.jar

This	example	uses	Local	mode;	however,	you	can	use	a	Standalone	or
YARN	Cluster	mode	(if	you	have	a	YARN	cluster	available).

18.	In	the	pyspark	session,	enter	the	following	statements:
Click	here	to	view	code	image

from	pyspark.streaming	import	StreamingContext

from	pyspark.streaming.kafka	import	KafkaUtils

ssc	=	StreamingContext(sc,	30)

brokers	=	"localhost:9092"

topic	=	"shakespeare"

stream	=	KafkaUtils.createDirectStream	\

(ssc,	[topic],	{"metadata.broker.list":	brokers})

lines	=	stream.map(lambda	x:	x[1])

counts	=	lines.flatMap(lambda	line:	line.split("	"))	\

														.map(lambda	word:	(word,	1))	\

														.reduceByKey(lambda	a,	b:	a+b)

counts.pprint()

ssc.start()

ssc.awaitTermination()

19.	In	terminal	3,	run	the	following	command	to	send	the	contents	of	the
shakespeare.txt	file	to	your	Kafka	topic:

Click	here	to	view	code	image
while	read	line;	do	echo	-e	"$line\n";	sleep	1;	done	\

<	/opt/spark/data/shakespeare.txt	\

|	$KAFKA_HOME/bin/kafka-console-producer.sh	\

--broker-list	localhost:9092	\

--topic	shakespeare

20.	Check	terminal	2;	you	should	see	results	similar	to	the	following:
Click	here	to	view	code	image

Time:	2017-11-03	05:24:30

('',	37)

('step',	1)

('bring',	1)

('days',	2)

('quickly',	2)

('four',	1)

('but',	1)

('pomp',	2)

('thy',	1)

('dowager',	1)

...

The	complete	source	code	for	this	exercise	is	in	the	kafka-streaming-
wordcount	folder	at	https://github.com/sparktraining/spark_using_python.

Amazon	Kinesis
Amazon	Kinesis	from	Amazon	Web	Services	is	a	fully	managed	distributed
messaging	platform	inspired	by,	or	at	least	very	similar	to,	Apache	Kafka.
Kinesis	is	the	AWS	next-generation	message	queue	service,	and	it	introduces
real-time	stream	processing	at	scale	as	an	additional	messaging	alternative	to	the
company’s	original	SQS	offering.

The	AWS	Kinesis	product	family	includes	Amazon	Kinesis	Analytics,	which
enables	SQL	queries	against	streaming	data,	and	Amazon	Kinesis	Firehose,
which	provides	the	capability	to	capture	and	load	streaming	data	directly	into
Amazon	S3,	Amazon	Redshift	(an	AWS	cloud-based	data	warehouse	platform),
and	other	services.	The	Kinesis	component	we	discuss	here	is	Amazon	Kinesis
Streams.

Kinesis	Streams
A	Kinesis	Streams	application	involves	producers	and	consumers	in	the	same
way	as	the	other	messaging	platforms	already	discussed	in	this	chapter.
Producers	and	consumers	can	be	mobile	applications	or	other	systems	within
AWS	(or	note).

A	Kinesis	stream	is	an	ordered	sequence	of	data	records;	each	record	has	a
sequence	number	and	is	assigned	to	a	shard	(similar	to	a	partition)	based	on	a
partition	key.	Shards	are	distributed	across	multiple	instances	in	the	AWS
environment.	Producers	put	data	into	shards,	and	consumers	get	data	from
shards.	See	Figure	7.12.

https://github.com/sparktraining/spark_using_python

Figure	7.12	Amazon	Kinesis	streams.

You	can	create	these	streams	by	using	the	AWS	console,	the	CLI,	or	the	Streams
API.	Figure	7.13	demonstrates	creating	a	stream	using	the	AWS	Management
Console.

Figure	7.13	Creating	a	Kinesis	stream	by	using	the	AWS	Management	Console.

Amazon	Kinesis	Producer	Library
The	Amazon	Kinesis	Producer	Library	(KPL)	is	the	set	of	API	objects	and
methods	used	for	producers	to	send	records	out	to	a	Kinesis	stream.	The	KPL
enables	producers	to	put	records	into	Kinesis	with	the	capability	to	buffer
records,	receive	the	result	of	a	put	as	an	asynchronous	callback,	write	to	multiple
shards,	and	more.

Amazon	Kinesis	Client	Library
The	Amazon	Kinesis	Client	Library	(KCL)	is	the	consumer	API	to	connect	to	a
stream	and	consume	data	records.	The	KCL	is	typically	an	entry	point	for	record
processing,	such	as	event	stream	processing	using	Spark	Streaming,	from	a
Kinesis	stream.	The	KCL	also	performs	important	functions,	such	as
checkpointing	processed	records,	using	Amazon’s	DynamoDB	key/value	store	to

maintain	a	durable	copy	of	the	Stream	application’s	state.	This	table	appears
automatically	in	the	same	region	as	your	Streams	application,	using	your	AWS
credentials.	The	KCL	is	available	in	various	common	languages,	including	Java,
Node.js,	Ruby,	and	Python.

Using	Spark	with	Amazon	Kinesis
You	can	access	Kinesis	Streams	from	a	Spark	Streaming	application	by	using	the
createStream()	method	and	the	KinesisUtils	package
(pyspark.streaming.kinesis.KinesisUtils).	The
createStream()	method	creates	a	receiver	using	the	KCL	and	returns	a
DStream	object.

Note	that	the	KCL	is	licensed	under	the	Amazon	Software	License	(ASL).	The
terms	and	conditions	of	the	ASL	scheme	vary	somewhat	from	the	Apache,	GPL,
and	other	open	source	licensing	frameworks.	Find	more	information	at
https://aws.amazon.com/asl/.

To	use	the	KinesisUtils.createStream()	function,	you	need	an	AWS
account	and	API	access	credentials	(Access	Key	ID	and	Secret	Access	Key);	you
also	need	to	create	a	Kinesis	Stream,	though	that	process	is	beyond	the	scope	of
this	book.	You	also	need	to	supply	the	necessary	Kinesis	libraries,	which	you	do
by	supplying	the	required	jar	using	the	--jars	argument.	Listing	7.20	shows
an	example	of	how	to	submit	an	application	with	Kinesis	support.

Listing	7.20	Submitting	a	Streaming	Application	with	Kinesis
Support
Click	here	to	view	code	image

spark-submit	\

	--jars	/usr/lib/spark/external/lib/spark-streaming-kinesis-asl-

assembly.jar

	...

Given	these	prerequisites,	the	following	section	shows	a	description	and	an
example	of	the	KinesisUtils.createStream()	method.

createStream()

https://aws.amazon.com/asl/

Syntax:
Click	here	to	view	code	image

KinesisUtils.createStream(ssc,

																										kinesisAppName,

																										streamName,

																										endpointUrl,

																										regionName,

																										initialPositionInStream,

																										checkpointInterval,

																										storageLevel=StorageLevel(True,	True,	False,	

True,	2),

																										awsAccessKeyId=None,

																										awsSecretKey=None,

																										decoder=utf8_decoder)

The	createStream()	method	creates	an	input	stream	that	pulls	messages
from	a	Kinesis	stream	using	the	KCL	and	returns	a	DStream	object.	The	ssc
argument	is	an	instantiated	Spark	StreamingContext.	The
kinesisAppName	argument	is	a	unique	name	used	by	the	KCL	to	update	state
in	the	DynamoDB	backing	table.	The	streamName	is	the	Kinesis	stream	name
assigned	when	the	stream	was	created.	The	endpointUrl	and	regionName
arguments	are	references	to	the	AWS	Kinesis	service	and	region—for	example,
https://kinesis.us-east-1.amazonaws.com	and	us-east-1.
The	initialPositionInStream	is	the	initial	starting	position	for
messages	in	the	stream;	if	checkpointing	information	is	available,	this	argument
is	not	used.	The	checkpointInterval	is	the	interval	for	Kinesis
checkpointing.	The	storageLevel	argument	is	the	RDD	storage	level	to	use
for	storing	received	objects;	it	defaults	to
StorageLevel.MEMORY_AND_DISK_2.	The	awsAccessKeyId	and
awsSecretKey	arguments	are	your	AWS	API	credentials.	The	decoder	is
the	function	used	to	decode	message	byte	arrays,	and	it	defaults	to
utf8_decoder.	Listing	7.21	shows	an	example	of	using	the
createStream()	method.

Listing	7.21	Spark	Streaming	Using	Amazon	Kinesis
Click	here	to	view	code	image

from	pyspark.streaming	import	StreamingContext

https://kinesis.us-east-1.amazonaws.com

from	pyspark	import	StorageLevel

from	pyspark.streaming.kinesis	import	KinesisUtils

from	pyspark.streaming.kinesis	import	InitialPositionInStream

ssc	=	StreamingContext(sc,	30)

appName	=	"KinesisCountApplication"

streamName	=	"my_kinesis_stream"

endpointUrl	=	"https://kinesis.ap-southeast-2.amazonaws.com"

regionName	=	"ap-southeast-2"

awsAccessKeyId	=	"YOURAWSACCESSKEYID"

awsSecretKey	=	"YOURAWSSECRETKEY"

#	connect	to	Kinesis	Stream

records	=	KinesisUtils.createStream(

											ssc,	appName,	streamName,	endpointUrl,	regionName,

											InitialPositionInStream.LATEST,	2,

											StorageLevel.MEMORY_AND_DISK_2,

											awsAccessKeyId,	awsSecretKey)

#	do	some	processing

output.pprint()

ssc.start()

ssc.awaitTermination()

Much	more	information	about	Kinesis	is	available	at
https://aws.amazon.com/kinesis/.

Summary
Spark	Streaming	is	a	key	extension	to	the	Spark	core	API,	and	it	introduces
objects	and	functions	designed	to	process	streams	of	data.	One	such	object	is	the
discretized	stream	(DStream),	which	is	an	RDD	abstraction	comprising	streams
of	data	batched	into	RDDs	based	on	time	intervals.	Transformations	applied	to
DStreams	provide	functions	to	each	underlying	RDD	in	the	DStream.	DStreams
also	have	the	capability	to	maintain	state,	which	is	accessible	and	updatable	in
real	time—a	key	capability	in	stream	processing	use	cases.	Spark	DStreams	also
support	sliding	window	operations,	which	operate	on	data	“windows”	(such	as
the	last	hour,	day,	and	so	on).

This	chapter	covers	some	of	the	key	open	source	messaging	systems,	such	as
Apache	Kafka,	which	enable	disparate	systems	to	exchange	messages,	such	as
control	messages	or	event	messages,	in	an	asynchronous	yet	reliable	manner.
The	Spark	Streaming	project	provides	out-of-the-box	support	for	Kafka,	Kinesis,

https://kinesis.ap-southeast-2.amazonaws.com
https://aws.amazon.com/kinesis/

and	other	messaging	platforms.	When	you	use	the	messaging	platform	consumer
libraries	and	utilities	provided	with	the	Spark	Streaming	subproject,	Spark
Streaming	applications	can	connect	to	message	brokers	and	consume	messages
into	DStream	objects.
Messaging	systems	are	common	data	sources	in	complex	event-processing
pipelines	powered	by	Spark	applications.	As	the	universe	of	connected	devices
continues	to	expand	and	machine-	to-machine	(M2M)	data	exchange
proliferates,	Spark	Streaming	and	messaging	will	become	even	more	important.

8

Introduction	to	Data	Science	and
Machine	Learning	Using	Spark

When	the	facts	change,	I	change	my	mind.

John	Maynard	Keynes,	British	economist

In	This	Chapter:
	Introduction	to	R	and	SparkR
	Statistical	functions	and	predictive	models	with	SparkR
	Machine	learning	and	Spark	using	Spark	MLlib
	Notebooks	with	Spark

Machine	learning	and	data	science	are	exciting	areas	of	computer	science.	As
more	storage	and	computing	capability	become	available	at	lower	costs,	we	can
harness	the	true	power	of	machine	learning	to	help	make	better	decisions.	Spark
and	the	wider	Big	Data	ecosystem	are	great	enablers	and	accelerators	of	this
capability.

Spark	and	R
R	is	a	powerful	programming	language	and	software	environment	for	statistical
computing,	visual	analytics,	and	predictive	modeling.	For	data	analysts,

statisticians,	mathematicians,	and	data	scientists	already	using	R,	Spark	provides
a	scalable	runtime	engine	for	R:	SparkR.	For	developers	and	analysts	new	to	R,
this	chapter	provides	an	introduction	and	shows	how	R	can	seamlessly	integrate
with	Spark.

Introduction	to	R
R	is	an	open	source	language	and	runtime	environment	for	statistical	computing
and	graphics,	based	on	a	language	called	S	originally	developed	at	Bell	Labs	in
the	late	1970s.	The	R	language	is	widely	used	among	statisticians,	data	analysts,
and	data	scientists	as	a	popular	alternative	to	SAS,	IBM	SPSS,	and	other	similar
commercial	software	packages.

Native	R	is	primarily	written	in	C	and	compiled	into	machine	code	for	the
targeted	platform.	Precompiled	binary	versions	are	available	for	various
operating	systems,	including	Linux,	macOS,	and	Windows.	R	programs	can	run
from	the	command	line	as	batch	scripts	or	through	the	interactive	shell.	In
addition,	there	are	several	graphical	user	interfaces	available	for	R,	including
desktop	applications	and	web-based	interfaces,	discussed	later	in	this	chapter.
R’s	graphical	rendering	capabilities	combine	its	mathematical	modeling	strength
with	the	capability	to	produce	visual	statistics	and	analytics,	as	shown	in	Figure
8.1.

Figure	8.1	Visual	statistics	and	analytics	in	R.

R	is	a	case-sensitive,	interpreted	language.	R	code	is	generally	easy	to	spot	by	its
non-conventional	assignment	operator	(<-),	as	in	the	following	example:
y	<-	x	+	2

The	following	sections	look	at	some	of	the	building	blocks	of	the	R
programming	language.

R	Basic	Datatypes
R	has	several	basic	datatypes	used	to	represent	data	elements	held	within	the
data	structures.	The	main	R	datatypes	used	to	represent	data	elements	are
summarized	in	Table	8.1.

Table	8.1	Primary	R	Datatypes

Datatype Description Example

Logical Boolean	value TRUE,	FALSE

Numeric Double-precision	numeric	value 3,	1.4,	1.1e+10

Integer 32-bit	signed	integer 3L,	384L

Character String	value	of	arbitrary	length 'spark',	'123',	'A'

Integers	can	cause	some	confusion,	especially	because	the	L	notation	declares
them	in	R.	R	integer	types	are	a	subset	of	the	Numeric	type.	At	the	time	of	this
writing,	an	R	integer	is	a	32-bit	(or	4-byte)	signed	integer,	in	contrast	to	a	long
type	in	most	programming	languages,	which	is	a	64-bit	or	8-byte	signed	integer,
often	declared	using	the	nL	syntax.	For	conventional	long	numbers,	you
typically	use	the	Numeric	type	in	R,	which	is	a	double-precision	number
capable	of	storing	much	larger	numbers.

Listing	8.1	shows	the	use	of	system	functions	to	display	the	maximum	values	for
Integer	and	Numeric	(double)	types	in	R.

Listing	8.1	Max	Values	for	R	Integer	and	Numeric	(Double)
Types
Click	here	to	view	code	image

>	.Machine$integer.max

[1]	2147483647

>	.Machine$double.xmax

[1]	1.797693e+308

There	are	also	more	obscure	types	for	complex	numbers	and	raw	byte	arrays.
However,	they	are	beyond	the	scope	of	this	book.

Data	Structures	in	R
R’s	data	model	is	based	on	the	concept	of	vectors.	A	vector	is	a	sequence	of	data
elements	of	the	same	type.	The	members	of	a	vector	are	called	components.
More	complex	structures	are	built	on	vectors,	such	as	matrices,	which	are	two-
dimensional	data	structures	with	data	elements	of	the	same	type,	and	arrays,
which	are	multidimensional	objects	(with	more	than	two	dimensions).

Importantly,	R	has	an	additional	data	structure	called	a	data	frame.	Data	frames
in	R	are	conceptually	similar	to	DataFrames	in	Spark	SQL.	In	fact,	the	Spark
SQL	DataFrame	was	inspired	by	the	data	frame	construct	in	R.	R	data	frames	are
two-dimensional	data	structures	where	columns	may	be	of	different	types,	but	all

the	values	within	a	column	are	of	the	same	type.	Basically,	this	is	tantamount	to
a	table	object	in	a	relational	database.
Figure	8.2	shows	a	representation	of	the	basic	data	structures	in	R	with	sample
data.

Figure	8.2	Data	structures	in	R.

R	has	no	concept	of	scalar	values,	akin	to	primitive	types	available	in	most
common	programming	languages.	The	equivalent	of	a	scalar	variable	is
represented	as	a	vector	with	a	length	of	1	in	R.	Consider	Listing	8.2.	If	you	want
to	create	a	simple	variable,	var,	with	a	scalar-like	assignment	equal	to	1,	var	is
created	as	a	vector	with	one	component.

Listing	8.2	A	Simple	R	Vector
Click	here	to	view	code	image

>	var	<-	1

>	var

[1]	1

A	multivalued	vector	is	created	using	the	combine,	or	c(),	function,	as
demonstrated	in	Listing	8.3.

Listing	8.3	Using	the	c()	Function	to	Create	an	R	Vector
Click	here	to	view	code	image

>	vec	<-	c(1,2,3)

>	vec

[1]	1	2	3

A	two-dimensional	matrix	is	created	using	the	matrix	command.	An	example
of	creating	a	333	matrix	using	the	c()	function	is	shown	in	Listing	8.4.	By
default,	elements	fill	in	by	column.	However,	you	can	specify	byrow=TRUE	to
fill	in	a	matrix	row	by	row.

Listing	8.4	Creating	an	R	Matrix
Click	here	to	view	code	image

>	mat	=	matrix(

+					c(1,2,3,4,5,6,7,8,9),

+					nrow=3,

+					ncol=3)

>	mat

					[,1]	[,2]	[,3]

[1,]				1				4				7

[2,]				2				5				8

[3,]				3				6				9

Elements	of	a	matrix	are	accessible	using	subscripts	and	brackets.	For	instance,
x[i,]	is	a	reference	to	the	ith	row	of	the	matrix	x;	x[,j]	is	a	reference	to	the
jth	column	of	a	matrix	x;	and	x[i,j]	refers	to	the	intersection	of	the	ith	row

and	jth	column.	An	example	of	this	is	shown	in	Listing	8.5.

Listing	8.5	Accessing	Data	Elements	in	an	R	Matrix
Click	here	to	view	code	image

>	mat[1,]

[1]	1	4	7

>	mat[,1]

[1]	1	2	3

>	mat[3,3]

[1]	9

Creating	and	Accessing	R	Data	Frames
Arguably,	the	most	important	data	structure	in	R	is	the	data	frame.	Think	of	data
frames	in	R	as	data	tables,	with	rows	and	columns,	where	columns	can	be	of
mixed	types.	The	important	difference	between	data	frames	and	other	data
structures	in	R	is	that	data	frames	allow	for	column	and	row-specific	operations
such	as	projections	and	filtering.	The	R	data	frame	is	the	primary	data	structure
used	to	interact	with	SparkR,	as	discussed	shortly.

You	create	data	frames	from	column	vectors	by	using	the	data.frame
function,	as	shown	in	Listing	8.6.

Listing	8.6	Creating	an	R	Data	Frame	from	Column	Vectors
Click	here	to	view	code	image

>	col1	=	c("A",	"B",	"C")

>	col2	=	c(8,9,4)

>	col3	=	c(1.4,2.1,3.2)

>	df	=	data.frame(col1,col2,col3)

>	df			col1	col2	col3

1				A				8		1.4

2				B				9		2.1

3				C				4		3.2

You	can	also	create	R	data	frames	from	external	sources	by	using	the	read
command;	read	supports	different	sources,	summarized	in	Table	8.2.

Table	8.2	Functions	to	Create	an	R	Data	Frame	from	an	External	Source

Function Description

read.table() Reads	a	new	line–terminated	file	with	fields	delimited	by
whitespace	in	table	format	and	creates	a	data	frame.

read.csv() Same	as	read.table()	using	commas	(,)	as	field
separators.

read.fwf() Reads	a	table	of	fixed-width	formatted	data,	a	common
extract	format	for	many	mainframe	and	other	legacy
systems.

There	are	several	other	SparkR-specific	methods	for	creating	distributed	data
frames	in	SparkR	from	external	sources,	as	discussed	shortly.

In	R,	several	methods	can	be	used	to	inspect	and	access	data	from	within	a	data
frame.	Some	of	these	are	demonstrated	in	Listing	8.7,	using	the	sample	data
frame	created	in	Listing	8.6.

Listing	8.7	Accessing	and	Inspecting	Data	in	R	Data	Frames
Click	here	to	view	code	image

>	#	get	element	in	row	1,	col	2

>	df[1,2]	[1]	8

>	#	get	number	of	cols	in	the	dataframe

>	ncol(df)	[1]	3

>	#	get	number	of	rows	in	the	dataframe

>	nrow(df)	[1]	3

>	#	display	first	row	from	the	dataframe

>	head(df,	1)

		col1	col2	col3

1				A				8		1.4

R	Functions	and	Packages
Most	R	programs	involve	manipulating	data	elements	or	data	structures	using
functions.	R,	like	most	other	languages,	includes	many	common	built-in
functions.	Table	8.3	provides	a	sampling	of	the	available	built-in	functions.

Table	8.3	Sample	Built-in	R	Functions

Category Examples	of	Functions

Numeric abs(),	sqrt(),	ceiling(),	floor(),	log(),	exp()

Character substr(),	grep(),	strsplit(),	toupper()

Statistical mean(),	sd(),	median(),	quantile(),	sum(),	min()

Probability dnorm(),	pnorm(),	qnorm(),	dpois(),	ppois()

The	true	power	of	R,	however,	is	in	libraries	and	packages	written	for	R.
Packages	are	collections	of	R	functions,	data,	and	compiled	code	in	a	well-
defined	and	well-described	format.	The	directory	on	the	system	where	the
packages	reside	is	the	library.

R	ships	with	a	standard	set	of	packages,	including	several	sample	datasets,	which
we	will	look	at	shortly.	You	can	also	obtain	custom	R	packages	from	a	publicly
available	collection	of	packages	from	an	R	user	community	called	CRAN.	Find
more	information	about	the	R	packages	available	from	CRAN	at	https://cran.r-
project.org/.

If	you	cannot	find	a	built-in	function,	an	included	package,	or	a	CRAN	package
to	do	what	you	need,	you	can	author	your	own	packages.

You	install	by	using	the	R	CMD	INSTALL	<package>	command	on	the
system	running	the	R	program.	After	a	package	is	installed,	you	can	load	into	the
current	R	session	by	using	the	library(<package>)	command.

You	can	use	the	library()	function	with	no	arguments	to	view	all	the
packages	loaded	and	available	in	the	current	R	session,	as	shown	in	Listing	8.8.

Listing	8.8	Listing	R	Packages	Installed	and	Available	in	an	R
Session
Click	here	to	view	code	image

>	library()

Packages	in	library	'/opt/spark/R/lib':

	

SparkR																		R	Frontend	for	Apache	Spark

	

https://cran.r-project.org/

Packages	in	library	'/usr/lib/R/library':

	

base																				The	R	Base	Package

boot																				Bootstrap	Functions	(Originally	by	Angelo	Canty

																								for	S)

class																			Functions	for	Classification

cluster																	"Finding	Groups	in	Data":	Cluster	Analysis

																								Extended	Rousseeuw	et	al.

codetools															Code	Analysis	Tools	for	R

compiler																The	R	Compiler	Package

datasets																The	R	Datasets	Package

foreign																	Read	Data	Stored	by	Minitab,	S,	SAS,	SPSS,

																								Stata,	Systat,	Weka,	dBase,	...

graphics																The	R	Graphics	Package

...

As	you	can	see	in	Listing	8.8,	SparkR	itself	is	an	R	package,	as	discussed	in	the
next	section.

Using	Spark	with	R
The	SparkR	package	for	R	provides	an	interface	to	access	Spark	from	R,
including	the	implementation	of	distributed	data	frames	and	large-scale
statistical	analysis,	probability,	and	predictive	modeling	operations.	SparkR
comes	with	the	Spark	release.	The	package	library	is	available	in
$SPARK_HOME/R/lib/SparkR.	SparkR	provides	an	R	programming
environment	that	enables	R	programmers	to	use	Spark	as	a	processing	engine.
Specific	documentation	about	the	SparkR	API	is	available	at
https://spark.apache.org/docs/latest/api/R/index.html.

Accessing	SparkR
Using	the	sparkR	shell	is	the	easiest	way	to	get	started	with	Spark	and	R.	The
command	to	launch	the	sparkR	shell	is	sparkR,	which	is	available	in	the	bin
directory	of	your	Spark	installation	(the	same	directory	as	the	other	interactive
shells,	including	pyspark,	spark-sql,	and	beeline);	sparkR	starts	an	R
session	using	the	SparkR	package	with	the	Spark	environment	defaults	for	the
specific	system,	such	as	spark.master	and	spark.driver.memory.
Figure	8.3	shows	an	example	of	the	sparkR	shell.

https://spark.apache.org/docs/latest/api/R/index.html

Figure	8.3	The	sparkR	shell.

Notice	that,	as	with	pyspark,	a	SparkSession	object	named	spark	is
created	automatically.	Likewise,	a	SparkContext	is	available	as	sc.	The
SparkContext	and	SparkSession	objects	are	required	as	entry	points	to
connect	your	R	program	to	a	Spark	cluster	and	to	be	able	to	use	data	frames.

You	can	also	use	the	sparkR	command	to	run	R	programs	in	batch	mode,	using
spark-submit,	which	recognizes	an	R	program	by	its	file	extension	(.R).
Given	an	R	program	named	helloworld.R,	Figure	8.4	demonstrates	how	to
run	the	program	in	batch	mode,	using	spark-submit.

Figure	8.4	Running	R	programs	in	batch	mode	by	using	sparkR.

Creating	Data	Frames	in	SparkR
You	can	create	SparkR	data	frames	in	a	number	of	ways.

You	can	easily	convert	native	R	data	frames	into	distributed	data	frames	in
SparkR.	To	demonstrate	this,	you	can	use	the	built-in	R	dataset	mtcars,	which
consists	of	data	extracted	from	the	1974	issues	of	the	American	magazine	Motor
Trend,	including	fuel	consumption	and	10	aspects	of	automobile	design	and
performance	for	32	automobiles	(1973–1974	models).

The	R	datasets	Package
One	of	the	packages	included	with	R	is	the	datasets	package.	This
package	includes	more	than	100	diverse	datasets	from	worldwide
contributors,	ranging	from	airline	passenger	numbers	to	air	quality
measurements	to	road	casualties	and	violent	crime	rates.	The	datasets
package	also	includes	the	famous	Edgar	Anderson’s	Iris	Data	dataset,	which
provides	the	measurements	of	sepal	and	petal	length	and	width	for	50
flowers	from	three	species	of	irises—the	“Hello,	World”	of	data	mining.	You
can	view	a	complete	list	of	the	sample	R	datasets	available	in	the
datasets	package	by	entering	the	following	in	your	R	or	sparkR
interactive	shell:

>	library(help	=	"datasets")

The	mtcars	sample	dataset	is	an	R	data	frame	with	32	observations	on	11

variables.	In	Listing	8.9,	using	a	sparkR	session,	the	mtcars	sample	dataset	is
loaded	into	an	R	data	frame	named	df,	and	then	the	nrow(),	ncol(),	and
head()	functions	inspect	the	data	frame.

Listing	8.9	mtcars	Data	Frame	in	R
Click	here	to	view	code	image

>	r_df	<-	mtcars

>	nrow(r_df)

[1]	32

>	ncol(r_df)

[1]	11

>	head(r_df,	2)

														mpg	cyl	disp		hp		drat				wt		qsec	vs	am	gear	carb

Mazda	RX4						21			6		160	110		3.9	2.620	16.46		0		1				4				4

Mazda	RX4	Wag		21			6		160	110		3.9	2.875	17.02		0		1				4				4

Note	that	because	R	is	a	scientific	and	modeling	language,	the	data	terminology
used	to	refer	to	elements	and	constructs	has	an	experimental	science	and
mathematical	modeling	context.	For	instance,	in	the	sample	mtcars	datasets,
rows	are	observations,	and	fields	within	rows	representing	columns	are
variables.

The	R	data	frame,	r_df,	created	in	Listing	8.9	can	help	create	a	SparkR	data
frame	using	the	createDataFrame()	SparkR	API	method,	as	demonstrated
in	Listing	8.10.

Listing	8.10	Creating	a	SparkR	Data	Frame	from	an	R	Data
Frame
Click	here	to	view	code	image

>	spark_df	<-	createDataFrame(r_df)

>	spark_df

SparkDataFrame[mpg:double,	cyl:double,	disp:double,	hp:double,	

drat:double,	wt:double,	qsec:double,	vs:double,	am:double,	gear:double,	

carb:double]

Another	common	requirement	is	to	create	SparkR	data	frames	from	comma-

separated	value	(CSV)	files.	The	simplest	method	for	loading	a	SparkR	data
frame	from	a	CSV	file	is	to	use	the	SparkR	read.df()	method,	as	shown	in
Listing	8.11.

Listing	8.11	Creating	a	SparkR	Data	Frame	from	a	CSV	File
Click	here	to	view	code	image

>	csvPath	<-	

'file:///usr/lib/spark/examples/src/main/resources/people.txt'

>	df	<-	read.df(csvPath,	'csv',	header	=	'false',	inferSchema	=	'true')

>	head(df)

						_c0	_c1

1	Michael		29

2				Andy		30

3		Justin		19

The	approach	shown	in	Listing	8.11	results	in	an	inferred	schema	for	the
resultant	data	frame.	You	can	also	explicitly	define	the	schema	for	data	in	a	CSV
file	by	creating	a	schema	object	and	supplying	it	to	the	schema	argument	in	the
read.df()	method,	as	demonstrated	in	Listing	8.12.

Listing	8.12	Defining	the	Schema	for	a	SparkR	Data	Frame
Click	here	to	view	code	image

>	csvPath	<-	

'file:///usr/lib/spark/examples/src/main/resources/people.txt'

>	people_schema	<-	structType(structField("Name",	"string"),

+	structField("age",	"double"))

>	df	<-	read.df(csvPath,	'csv',	header	=	'false',	schema	=	

people_schema)

>	head(df)

					Name	age

1	Michael		29

2				Andy		30

3		Justin		19

There	are	also	purpose-built	functions	in	the	SparkR	API	to	create	SparkR	data
frames	from	other	common	Spark	SQL	external	data	sources,	such	as

read.parquet()	and	read.json().

You	can	also	create	SparkR	data	frames	from	Hive	tables.	The
sparkR.session()	function	creates	a	connection	to	the	configured	Hive
metastore;	once	this	connection	is	available	within	a	sparkR	session,	the
sql()	function	in	R	can	populate	a	SparkR	data	frame	with	the	results	of	a
Hive	query.	The	sql()	function	can	also	be	used	to	execute	any	Spark	SQL
statement,	such	as	querying	views	and	tables	directly.	Listing	8.13	shows	an
example	of	creating	a	SparkR	data	frame	from	a	table	in	Hive.

Listing	8.13	Creating	a	SparkR	Data	Frame	from	a	Hive	Table
Click	here	to	view	code	image

>	sparkR.session()

>	results	<-	sql("FROM	stations	SELECT	station_id,	lat,	long")

		station_id						lat						long

1										2	37.32973	−121.9018

2										3	37.33070	−121.8890

3										4	37.33399	−121.8949

4										5	37.33141	−121.8932

5										6	37.33672	−121.8941

6										7	37.33380	−121.8869

After	creating	a	SparkR	data	frame,	you	can	reference	columns	by	using	the
<dataframe>$<column_name>	syntax.	An	example	of	this	is	shown	in
Listing	8.14.

Listing	8.14	Accessing	Columns	in	a	SparkR	Data	Frame
Click	here	to	view	code	image

>	head(filter(results,	results$station_id	>	10.0),	2)

		station_id						lat						long

1									11	37.33588	−121.8857

2									12	37.33281	−121.8839

SparkR	and	Predictive	Analytics
Predictive	analytics	at	scale	is	one	of	the	key	functional	drivers	of	Big	Data

platforms.	Retailers	want	to	better	understand	customers	and	predict	their	buying
behavior	and	propensity,	credit	providers	want	to	assess	risk	involved	with
products	and	applicants,	utilities	companies	want	to	predict	and	preempt
customer	churn,	and	so	on.

The	primary	cases	for	using	SparkR,	like	R,	are	performing	statistical	analysis	of
data	and	building	predictive	models	from	observations	and	variables.	SparkR
provides	the	ability	to	do	this	at	a	much	greater	scale	than	R	itself	because	it
capitalizes	on	Spark’s	powerful	distributed	computing	framework.

Introduction	to	Data	Mining	and	Predictive	Modeling
If	you’re	a	data	scientist,	feel	free	to	skip	the	next	few	paragraphs.	If	you’re	not	a
data	scientist,	the	next	few	paragraphs	will	give	you	a	soft	introduction	to	data
science	and	how	the	processes	and	methods	data	scientists	use	can	be	extended
to	leverage	Spark.

Data	mining	is	the	process	of	discovering	patterns	within	data	that	can	be
combined	to	predict	an	outcome.	The	process	of	discovering	the	inputs	to	these
predictions	is	called	predictive	modeling.	Predictive	modeling	usually	falls	into
one	of	two	categories:	supervised	learning	or	unsupervised	learning.

Supervised	learning	observations	receive	labels	such	as	“spam,”	“notspam,”	and
“defaulted.”	This	label	is	then	used	when	observing	patterns	in	the	associated
data	to	determine	the	influence	that	these	patterns	have	on	the	outcome	(the
label).	You	“teach”	the	system	what	a	desirable	(or	undesirable)	outcome	looks
like—hence	the	name	supervised.

In	contrast,	unsupervised	learning	does	not	involve	classified	observations.
Typically,	unsupervised	learning	involves	identifying	similarity	between
observations	or	clustering	instances,	which	can	also	facilitate	identifying	outliers
or	detecting	anomalies.	In	either	case,	the	process	of	building	a	model	typically
follows	the	workflow	pictured	in	Figure	8.5.

Figure	8.5	Steps	involved	in	predictive	modeling.

In	this	book,	we	have	looked	at	how	to	import	data	and	spent	a	considerable
amount	of	time	on	the	preparation	and	curation	of	data.	The	following	process	is
what	R	is	exceptionally	good	at:

	Fitting	a	statistical	model	to	the	data	(or	training	the	model)

	Testing	the	model	against	a	known	set	of	data	not	used	in	the	training	phase

	Deploying	the	model	to	predict	outcomes	for	new	data	observations

Linear	Regression
One	of	the	simplest	forms	of	a	predictive	model	is	the	linear	regression	model.

Without	going	into	the	mathematics	behind	this	type	of	model,	a	linear
regression	model	assigns	coefficients	(weights)	to	variables	and	creates	a
generalized	linear	function,	the	result	of	which	is	a	prediction.

After	being	trained,	tested,	and	deployed,	the	regression	function	performs
against	new	data	(observations)	to	predict	outcomes,	given	the	known	variables.
The	general	linear	model	is	defined	as	follows:

yi	=	β0	+	β1x1	+	…	+	βpxp	+	ε

In	this	model,	yi	is	the	response	(or	predicted	outcome),	b	represents	the
coefficients	or	weight,	and		represents	error.

R	and	SparkR	include	the	function	glm(),	which	creates	a	generalized	linear
model;	glm()	builds	a	model	from	observations	in	a	data	frame	using	an	input
formula	in	the	following	form:

y	~	x1	1	x2	…

Where	y	is	the	response,	and	x1	and	x2	are	continuous	or	categorical	variables.
Listing	8.15	shows	the	use	of	the	glm()	function	in	SparkR	to	create	a
generalized	linear	model	to	predict	sepal	length	from	the	iris	dataset.	The
summary()	function	can	describe	the	model	after	it	is	built.

Listing	8.15	Building	a	Generalized	Linear	Model	with	SparkR
Click	here	to	view	code	image

>	#	prepare	data	frame	and	build	model

>	iris_df	<-	createDataFrame(iris)

>	training	<-	sample(iris_df,	FALSE,	0.8)

>	test	<-	sample(iris_df,	FALSE,	0.2)

>	model	<-	glm(Sepal_Length	~	Sepal_Width	+	Species,	data	=	training,	

family	=	"gaussian")

>	summary(model)

Deviance	Residuals:

(Note:	These	are	approximate	quantiles	with	relative	error	<=	0.01)

					Min								1Q				Median								3Q							Max

−1.31166		−0.25586		−0.05586			0.17351			1.40303

	Coefficients:

																				Estimate		Std.	Error		t	value				Pr(>|t|)

(Intercept)										2.08211					0.43376			4.8001		4.7693e-06

Sepal_Width										0.85317					0.12417			6.8708		3.3820e-10

Species_versicolor			1.47019					0.12693		11.5830		0.0000e+00

Species_virginica				1.99662					0.11553		17.2827		0.0000e+00	

(Dispersion	parameter	for	gaussian	family	taken	to	be	0.1969856)					

Null	deviance:	82.826		on	119		degrees	of	freedom

Residual	deviance:	22.850		on	116		degrees	of	freedom

AIC:	151.5	Number	of	Fisher	Scoring	iterations:	1

After	you’ve	built	your	model	in	SparkR,	you	can	apply	it	to	new	data	to	make
predictions	by	using	the	predict()	function	(see	Listing	8.16).

Listing	8.16	Using	a	GLM	to	Make	Predictions	on	New	Data
Click	here	to	view	code	image

>	#	predict	new	data

>	predictions	<-	predict(model,	test)

>	head(select(predictions,	"Sepal_Length",	"prediction"))

		Sepal_Length	prediction

1										5.1			5.068201

2										4.9			4.641617

3										4.7			4.812251

4										4.8			4.641617

5										4.3			4.641617

6										4.8			4.982885

Using	SparkR	with	RStudio
So	far,	you	have	interacted	with	SparkR	by	using	the	sparkR	shell	interface.
Although	this	exposes	all	the	key	functions	in	R	for	data	manipulation,
preparation,	analysis,	and	modeling,	it	lacks	the	rich	visualization	capabilities	of
a	desktop	or	browser-based	interface.

RStudio	is	an	open	source	Integrated	Development	Environment	(IDE)	for	R.
RStudio	is	available	as	a	desktop	application,	RStudio	Desktop,	and	as	a	server-
based	application,	RStudio	Server.	RStudio	Server	enables	clients	to	connect	and
interact	with	an	R	environment	using	a	web	browser.	Figure	8.6	shows	the
RStudio	client	interface.

RStudio	provides	the	full	set	of	capabilities	available	from	the	command	line

interface,	including	built-in	functions	and	packages,	as	well	as	the	capability	to
create	and	export	publication-quality	visual	analytic	outputs.

RStudio	is	easily	configurable	for	using	SparkR	as	its	runtime	engine	for
execution.

Figure	8.6	RStudio	web	interface.

Exercise:	Using	RStudio	with	SparkR
This	exercise	shows	how	to	install	RStudio	alongside	your	Spark	installation	and
configure	RStudio	to	use	SparkR	as	its	processing	engine.	This	example	uses	a
Spark	installation	on	a	Red	Hat/Centos	system.	RStudio	is	a	compiled
application	with	builds	for	various	platforms.	To	obtain	the	specific	build	for
your	platform,	go	to	www.rstudio.com/products/rstudio/download-server/	and
follow	these	steps:

1.	From	your	system,	download	and	install	your	specific	build	of	RStudio:
Click	here	to	view	code	image

$	wget	https://download2.rstudio.org/...x86_64.rpm

$	sudo	yum	install	--nogpgcheck	rstudio-server-rhel-....rpm

2.	To	ensure	that	RStudio	is	available	on	port	8787	of	your	server,	go	to
http://<yourserver>:8787/.

http://www.rstudio.com/products/rstudio/download-server/
https://download2.rstudio.org/...x86_64.rpm
http://yourserver:8787/

3.	Create	a	new	R	user:
Click	here	to	view	code	image

$	sudo	useradd	-d	/home/r-user	-m	r-user

$	sudo	passwd	r-user

R	users	require	a	home	directory	because	R	automatically	saves	the	user’s
“workspace”	to	this	directory.	Note	that	you	also	need	to	create	a	home
directory	for	the	user	in	HDFS	if	you	are	running	RStudio	on	a	Hadoop
cluster.

4.	Log	in	to	RStudio	by	using	the	r-user	account	created	in	step	3.

5.	From	the	console	window	on	the	left	side	of	the	RStudio	interface,	at	the	R
prompt,	enter	the	following	commands	to	load	the	SparkR	package	and
initialize	a	SparkR	session:

Click	here	to	view	code	image
>	Sys.setenv(SPARK_HOME	=	"/opt/spark")

>	library(SparkR,	lib.loc	=	c(file.path("/opt/spark/R/lib")))

>	sparkR.session()

6.	Test	some	simple	visualizations	using	the	built-in	iris	dataset	by	entering
the	following	at	the	console	prompt:

Click	here	to	view	code	image
>	hist(iris$Sepal.Length,xlim=c(4,8),col="blue",freq=FALSE)

>	lines(density(iris$Sepal.Length))

In	the	Plots	window,	you	should	see	the	histogram	shown	in	Figure	8.7.

Figure	8.7	Histogram

7.	Try	creating	a	SparkR	data	frame	from	one	of	the	included	R	datasets.
Recall	that	you	can	see	information	about	available	datasets	by	using	the
following	command:
>	library(help	=	"datasets")

Then	use	functions	from	the	SparkR	API	to	manipulate,	analyze,	or	create
and	test	a	model	from	the	data.	Documentation	for	the	SparkR	API	is
available	at	https://spark.apache.org/docs/latest/api/R/index.html.

Machine	Learning	with	Spark
Machine	learning	is	the	science	of	creating	algorithms	capable	of	learning	based
on	the	data	provided	to	them.	Common	applications	of	machine	learning	are
around	every	day,	from	recommendation	engines	to	spam	filters	to	fraud
detection	and	much	more.	Machine	learning	is	the	process	of	automating	data
mining.	Spark	includes	two	purpose-built	libraries,	MLlib	and	ML,	to	make
practical	machine	learning	scalable,	easy,	and	seamlessly	integrated	into	Spark.

https://spark.apache.org/docs/latest/api/R/index.html

Machine	Learning	Primer
Machine	learning	is	a	specific	discipline	within	the	field	of	predictive	analytics,
which	refers	to	programs	that	leverage	the	data	they	collect	to	influence	the
program’s	future	behavior.	In	other	words,	the	program	“learns”	from	the	data
rather	than	relying	on	explicit	instructions.

Machine	learning	is	often	associated	with	data	at	scale.	As	more	data	is	observed
in	the	learning	process,	the	higher	the	accuracy	of	the	model,	or	the	better	it	is	at
making	predictions.

You	can	see	practical	examples	of	machine	learning	in	everyday	life,	including
recommendation	engines	in	ecommerce	websites,	optical	character	recognition,
facial	recognition,	spam	filtering,	fraud	detection,	and	so	on.

Three	primary	techniques	are	used	in	machine	learning:

	Classification

	Collaborative	filtering

	Clustering

The	following	sections	take	a	high-level	look	at	each	of	these	techniques.

Classification
Classification	is	a	supervised	learning	technique	that	takes	a	set	of	data	with
known	labels	and	learns	how	to	label	new	data	based	on	that	information.
Consider	a	spam	filter	on	an	email	server	that	determines	whether	an	incoming
message	should	be	classified	as	“spam”	or	“not	spam.”	The	classification
algorithm	trains	itself	by	observing	user	behavior	to	discover	what’s	classified	as
spam.	Learning	from	this	observed	behavior,	the	algorithm	classifies	new	mail
accordingly.	The	classification	process	for	this	example	is	pictured	in	Figure	8.8.

Figure	8.8	Classification	of	incoming	email	messages.

Classification	techniques	appear	in	a	wide	variety	of	applications	across	various
domains,	ranging	from	oncology,	where	a	classifier	may	be	trained	to	distinguish
benign	tumors	from	malignant	tumors,	to	credit	risk	analysis,	where	a	classifier
may	be	trained	to	identify	a	customer	at	risk	of	defaulting	on	a	credit	product.

Collaborative	Filtering
Collaborative	filtering	is	a	technique	for	making	recommendations.	It	is
commonly	denoted	by	the	“You	might	also	like…”	or	similar	sidebars	or	callouts
on	shopping	websites.	The	algorithm	processes	large	numbers	of	data
observations	to	find	entities	with	similar	traits	or	characteristics	and	then	makes
recommendations	or	suggestions	to	newly	observed	entities	based	on	the
previous	observations.

Collaborative	filtering,	unlike	classification,	is	an	unsupervised	learning
technique.	And	unlike	with	supervised	learning,	unsupervised	learning
algorithms	can	derive	patterns	in	data	without	supplied	labels.

Collaborative	filtering	is	domain	agnostic.	It	can	be	used	in	a	wide	variety	of
cases,	from	online	retailing	to	streaming	music	and	video	services	to	travel	sites
to	online	gaming	and	more.	Figure	8.9	depicts	the	process	of	collaborative
filtering	for	the	purpose	of	generating	recommendations.

Figure	8.9	Collaborative	filtering.

Clustering
Clustering	is	the	process	of	discovering	structure	within	collections	of	data
observations,	especially	where	a	formal	structure	is	not	obvious.	Clustering
algorithms	discover,	or	“learn,”	what	groupings	naturally	occur	in	the	data
provided	to	them.

Clustering	is	another	example	of	an	unsupervised	learning	technique	often	used
for	exploratory	analysis.	You	can	determine	clusters	in	several	ways,	including
by	density,	proximity,	location,	levels	of	connectivity,	or	size.

Some	examples	of	clustering	applications	include	the	following:

	Market	or	customer	segmentation

	Finding	related	news	articles,	tweets,	or	blog	posts

	Image-recognition	applications	where	clusters	of	pixels	cohere	into
discernible	objects

	Epidemiological	studies,	such	as	identifying	“cancer	clusters”

Figure	8.10	clearly	shows	three	clusters	when	you	look	at	the	relationship
between	sepal	length	and	sepal	width	in	the	iris	dataset.	The	center	of	each
cluster	is	the	centroid.	The	centroid	is	a	vector	representing	the	mean	of	a
variable	for	the	observations	in	the	cluster	that	are	usable	for	approximating
distances	between	clusters.

Figure	8.10	Clustering.

Features	and	Feature	Extraction
In	machine	learning,	a	feature	is	a	measurable	attribute	or	characteristic	of	an
observation.	Variables	for	developing	models	are	sourced	from	a	pool	of
features.	Examples	of	simple	features	for	building	a	retail	or	financial	services
propensity	or	risk	model	are	annual	income,	total	amount	spent	in	the	past	12
months	in	a	particular	category,	and	a	three-month	moving-average	credit	card
balance.

Often	features	don’t	present	in	the	data	itself;	they	derive	from	the	data,
historical	data,	or	other	available	data	sources.	Moreover,	features	can	be
aggregated	or	summarized	from	the	underlying	data.	Creating	the	set	of	features
used	by	an	algorithm	in	a	machine	learning	program	is	the	process	of	feature
extraction.	Selecting	and	extracting	an	appropriate	set	of	features	is	as	important
as,	if	not	more	important	than,	algorithm	selection	or	tuning.

Features	often	represent	as	numeric	vectors.	Sometimes	it	is	necessary	to
represent	text-based	data	as	feature	vectors.	There	are	many	established
techniques	for	doing	so,	including	TF-IDF	(Term	Frequency–Inverse	Document
Frequency).	TF-IDF	measures	the	significance	of	an	element	relevant	to	other
elements	within	a	set.	This	technique	is	common	in	text	mining	and	search.	For
instance,	you	could	assess	how	important	the	term	“Spark”	is	in	this	book

compared	to	all	the	other	books	available	on	Amazon.com.

Machine	Learning	Using	Spark	MLlib
Spark	MLlib	is	a	Spark	subproject	that	provides	machine	learning	functions	that
can	be	used	with	RDDs.	MLlib,	like	Spark	Streaming	and	Spark	SQL,	is	an
integral	component	in	the	Spark	program	and	has	come	with	Spark	since	the	0.8
release.

Classification	Using	Spark	MLlib
Common	approaches	or	algorithms	used	for	classification	in	machine	learning
include	decision	trees	and	naive	Bayes.	Both	techniques	learn	from	previous
observations	and	make	classification	judgments	based	on	probability.

Decision	trees	are	an	intuitive	form	of	classification	in	which	a	decision	process
is	represented	as	a	tree.	Nodes	of	the	tree	signify	decisions	that	usually	compare
an	attribute	from	the	dataset	with	a	constant	or	a	label.	Each	decision	node
creates	a	fork	in	the	structure	until	the	end	of	the	tree	is	reached	and	a
classification	prediction	is	made.

A	simple	example	used	to	describe	decision	trees	is	a	golf	(or	weather)	dataset.
This	simple	example	is	often	cited	in	data	mining	textbooks	as	a	sample	dataset
for	generating	a	decision	tree.	This	small	dataset,	shown	in	Table	8.4,	contains
14	instances	(or	observations)	and	5	primary	attributes:	outlook,	temperature,
humidity,	windy,	and	play.	The	temperature	and	humidity	attributes	appear	in
nominal	and	numeric	formats.	The	last	attribute,	play,	is	the	class	attribute,
which	can	have	a	value	of	“Yes”	or	“No.”

Table	8.4	Golf/Weather	Dataset

Outlook Numeric
Temp

Nominal
Temp

Numeric
Humidity

Nominal
Humidity

Windy Play?

Overcast 83 Hot 86 High False Yes

Overcast 64 Cool 65 Normal True Yes

Overcast 72 Mild 90 High True Yes

http://Amazon.com

Overcast 81 Hot 75 Normal False Yes

Rainy 70 Mild 96 High False Yes

Rainy 68 Cool 80 Normal False Yes

Rainy 65 Cool 70 Normal True No

Rainy 75 Mild 80 Normal False Yes

Rainy 71 Mild 91 High True No

Sunny 85 Hot 85 High False No

Sunny 80 Hot 90 High True No

Sunny 72 Mild 95 High False No

Sunny 69 Cool 70 Normal False Yes

Sunny 75 Mild 70 Normal True Yes

The	weather	dataset	is	also	included	in	the	WEKA	(Waikato	Environment	for
Knowledge	Analysis)	machine	learning	software	package,	a	popular	free
software	package	developed	at	the	University	of	Waikato,	New	Zealand.
Although	not	directly	related	to	Spark,	this	is	a	recommended	package	for	those
who	wish	to	explore	machine	learning	algorithms	in	more	detail.

After	using	a	machine	learning	decision	tree	classification	algorithm	against	a
set	of	input	data,	the	model	produced	evaluates	each	attribute	and	progresses
through	the	tree	until	a	decision	node	is	reached.	Figure	8.11	shows	the	decision
tree	that	results	for	the	sample	weather	dataset	using	the	nominal	(or	categorical)
features.

Figure	8.11	Decision	tree	for	the	weather	dataset.

Spark	MLlib	supports	decision	trees	for	both	continuous	(numeric)	and
categorical	features.	The	training	process	parallelizes	instances	from	a	training
dataset	and	iterates	over	these	instances	to	develop	the	resultant	decision	tree.

Splitting	Data	into	Training	and	Test	Datasets
In	 supervised	 machine	 learning	 model	 development,	 it’s	 generally
recommended	that	you	split	your	input	dataset	into	two	subsets:	a	training
dataset	and	a	test	dataset.	The	training	dataset	trains	the	model	and	usually
comprises	 60%	 or	 more	 of	 the	 overall	 input	 dataset.	 The	 test	 dataset
comprises	the	remaining	data	from	the	input	dataset	and	makes	predictions
to	 validate	 the	 accuracy	 of	 the	 trained	 model.	 Spark	 includes	 the
randomSplit()	 function	 to	 split	 a	 dataset	 into	 multiple	 datasets	 for
training	and	testing;	randomSplit()	accepts	as	input	argument	weights
—that	is,	a	list	of	weightings	for	the	respective	output	datasets.	Listing	8.17
shows	an	example	of	the	randomSplit()	function.

Listing	8.17	Splitting	Data	into	Training	and	Test	Datasets
Click	here	to	view	code	image

data	=	sc.parallelize([1,2,3,4,5,6,7,8,9,10])

training,	test	=	data.randomSplit([0.6,	0.4])

training.collect()

#	returns:	[1,	2,	5,	6,	9,	10]

test.collect()

#	returns:	[3,	4,	7,	8]

To	construct	an	example	of	a	decision	tree	classifier	using	the	training	dataset,
you	first	need	to	create	an	RDD	consisting	of	LabeledPoint
(pyspark.mllib.regression.LabeledPoint)	objects.	A
LabeledPoint	object	contains	the	label	or	class	attribute	for	an	instance,
along	with	the	associated	instance	attributes.	Listing	8.18	shows	an	example	of
creating	an	RDD	containing	LabeledPoint	objects.	For	brevity,	this	section
shows	how	to	use	this	RDD	in	some	of	the	examples.

NumPy	and	Pandas
NumPy	 is	 a	 Python	 library	 used	 for	 scientific	 computing.	 Its	 special-
purpose	array	objects	are	used	by	PySpark	MLlib	internally	and,	therefore,
it	 is	 a	 required	 package	 if	 you	 are	 using	MLlib	 with	 Python.	 NumPy	 is
easily	installed	using	pip	(for	example,	pip	install	numpy).	More
information	about	NumPy	is	at	http://www.numpy.org/.	Pandas	 is	 another
useful	Python	library;	although	not	required	for	MLlib,	Pandas	is	useful	for
structuring	 and	 analyzing	 data.	 More	 information	 about	 Pandas	 is	 at
http://pandas.pydata.org/.

Listing	8.18	Creating	an	RDD	of	LabeledPoint	Objects
Click	here	to	view	code	image

from	pyspark.mllib.regression	import	LabeledPoint

outlook	=	{“sunny”:	0.0,	“overcast”:	1.0,	“rainy”:	2.0}

labeledpoints	=	[

				LabeledPoint(0.0,[outlook[“sunny”],85,85,False]),

				LabeledPoint(0.0,[outlook[“sunny”],80,90,True]),

				LabeledPoint(1.0,[outlook[“overcast”],83,86,False]),

				LabeledPoint(1.0,[outlook[“rainy”],70,96,False]),

				LabeledPoint(1.0,[outlook[“rainy”],68,80,False]),

				LabeledPoint(0.0,[outlook[“rainy”],65,70,True]),

				LabeledPoint(1.0,[outlook[“overcast”],64,65,True]),

http://www.numpy.org/
http://pandas.pydata.org/

				LabeledPoint(0.0,[outlook[“sunny”],72,95,False]),

				LabeledPoint(1.0,[outlook[“sunny”],69,70,False]),

				LabeledPoint(1.0,[outlook[“sunny”],75,80,False]),

				LabeledPoint(1.0,[outlook[“sunny”],75,70,True]),

				LabeledPoint(1.0,[outlook[“overcast”],72,90,True]),

				LabeledPoint(1.0,[outlook[“overcast”],81,75,False]),

				LabeledPoint(0.0,[outlook[“rainy”],71,91,True])

]

data	=	sc.parallelize(labeledpoints)

LabeledPoint	object	attributes	must	be	float	values	or	objects	that	can	be
converted	to	float	values,	such	as	Boolean	or	int.	With	a	categorical
feature	(outlook),	you	need	to	create	a	dictionary	or	map	to	associate	the
float	value	used	in	the	LabeledPoint	with	a	categorical	key.

Input	Data	Formats	for	Machine	Learning	in	Spark
Spark’s	machine	 learning	libraries	support	many	input	formats	commonly
used	in	classification	or	regression	modeling.	An	example	is	the	libsvm
file	 format,	 a	 format	 from	 a	 library	 designed	 for	 support	 vector
classification.	 Many	 other	 data	 structures	 from	 popular	 scientific	 and
statistical	 packages,	 such	 as	NumPy	 and	 SciPy,	 are	 supported	 in	 Spark’s
machine	learning	libraries	as	well.

Using	the	RDD	containing	LabeledPoint	objects	created	in	Listing	8.18,	you
can	now	train	a	decision	tree	model	by	using	the
DecisionTree.trainClassifier()	function	in	the	Spark	mllib
package,	as	shown	in	Listing	8.19.

Listing	8.19	Training	a	Decision	Tree	Model	with	Spark	MLlib
Click	here	to	view	code	image

from	pyspark.mllib.tree	import	DecisionTree

model	=	DecisionTree.trainClassifier(data=data,

									numClasses=2,

									categoricalFeaturesInfo={0:	3})

print(model.toDebugString())

#	returns:

#	DecisionTreeModel	classifier	of	depth	3	with	9	nodes

#			If	(feature	0	in	{0.0,2.0})

#				If	(feature	2	<=	80.0)

#					If	(feature	1	<=	65.0)

#						Predict:	0.0

#					Else	(feature	1	>	65.0)

#						Predict:	1.0

#				Else	(feature	2	>	80.0)

#					If	(feature	1	<=	70.0)

#						Predict:	1.0

#					Else	(feature	1	>	70.0)

#						Predict:	0.0

#			Else	(feature	0	not	in	{0.0,2.0})

#				Predict:	1.0

The	DecisionTree.trainClassifier()	function	creates	a	model	by
training	the	data,	a	parallelized	collection	of	LabeledPoint	objects.	The
numClasses	argument	specifies	how	many	discrete	classes	to	predict;	in	this
case,	it	is	two	because	the	example	simply	predicts	a	binary	outcome	of	yes/no.
The	categoricalFeaturesInfo	argument	is	a	dictionary	or	map	that
specifies	which	features	are	categorical	and	how	many	categorical	values	each	of
those	features	can	take.	In	this	case,	you	need	to	direct	the
trainClassifier()	method	that	the	values	representing	the	outlook
category	are	discrete—for	example,	"sunny"	or	"rainy"	or	"overcast".
Any	features	not	specified	in	the	categoricalFeaturesInfo	argument
are	treated	as	continuous.

When	you	have	a	model,	what	is	next?	Now	you	need	a	method	to	predict	the
class	attribute	from	new	data	that	does	not	include	the	class	attribute.	Spark
MLlib	provides	the	predict()	function	to	do	this.	Listing	8.20	demonstrates
the	use	of	the	predict()	method.

Listing	8.20	Using	a	Spark	MLlib	Decision	Tree	Model	to	Classify
New	Data
Click	here	to	view	code	image

model.predict([outlook["overcast"],85,85,True])

#	returns:	1.0

As	you	can	see	in	Listing	8.20,	given	the	inputs	outlook="overcast",

temperature=85,	humidity=85,	and	windy=True,	the	decision	to	play
is	1.0,	or	yes.	This	follows	the	logic	from	the	decision	tree	you	created.

Naive	Bayes	is	another	popular	technique	for	classification	in	machine	learning.
Naive	Bayes	is	based	upon	Bayes’	theorem,	which	describes	how	the	conditional
probability	of	an	outcome	can	be	evaluated	from	the	known	probabilities	of	its
causes.	Bayes’	theorem	is	modeled	mathematically	as	shown	here:

P(A|B)=P(B|A)P(A)P(B)

In	this	case,	A	and	B	are	independent	events;	P(A)	and	P(B)	are	the	probabilities
of	A	and	B	without	regard	to	each	other;	P(A|B)	is	the	probability	of	observing
event	A	given	that	B	is	true;	and	P(B|A)	is	the	probability	of	observing	event	B
given	that	A	is	true.

You	implement	naive	Bayes	classification	by	using	Spark	MLlib	with	the
NaiveBayes.train()	method	from	the
pyspark.mllib.classification.NaiveBayes	package.

NaiveBayes.train()	takes	an	input	RDD	consisting	of	LabeledPoint
objects,	as	in	the	decision	tree	example,	and	includes	an	optional	smoothing
parameter,	lambda_.	The	output	is	a	NaiveBayesModel
(pyspark.mllib.classification.NaiveBayesModel)	that	can
classify	new	data	using	the	predict()	method.

Listing	8.21	uses	the	weather	dataset	to	create	a	model	using	the	naive	Bayes
algorithm	implementation	in	Spark	MLlib	and	then	uses	this	model	to	predict	the
class	attribute	of	new	data.

Listing	8.21	Implementing	a	Naive	Bayes	Classifier	Using	Spark
MLlib
Click	here	to	view	code	image

from	pyspark.mllib.classification	import	NaiveBayes,	NaiveBayesModel

model	=	NaiveBayes.train(data=data,	lambda_=1.0)

model.predict([1.0,85,85,True])

#	returns:	1.0

Collaborative	Filtering	Using	Spark	MLlib
Collaborative	filtering	is	one	of	the	most	common	applications	of	machine

learning	in	use	in	many	different	domains.	Spark	uses	the	ALS	(or	Alternating
Least	Squares)	technique	in	its	collaborative	filtering	or	recommendation
module.	ALS	is	an	algorithm	for	performing	matrix	factorization.	Matrix
factorization	is	the	process	of	factorizing	a	matrix	into	a	product	of	matrixes.	A
simple	example	is	shown	in	Figure	8.12.

Figure	8.12	Matrix	factorization.

A	deep	dive	into	matrix	factorization	and	the	ALS	algorithm	is	beyond	the	scope
of	this	book.	However,	ALS	is	the	preferred	implementation	method	for	machine
learning	in	Spark	because	it	is	a	fully	parallelizable	algorithm.

The	exercise	that	follows	shows	an	implementation	of	a	recommender	using
Spark	MLlib	and	ALS.

Exercise:	Implementing	a	Recommender	Using	Spark
MLlib
This	exercise	uses	a	subset	of	the	Movielens	dataset,	which	originated	at	the
University	of	Minnesota	as	a	data	exploration	and	recommendation	project.	The
Movielens	dataset	captures	movie	ratings	by	user,	along	with	user	and	movie
attributes,	and	can	be	used	for	collaborative	filtering	exercises.	The	website	for
the	Movielens	project	is	https://movielens.org/.	You	can	download	the	subset	of
data	used	for	this	exercise	at
https://s3.amazonaws.com/sparkusingpython/movielens/movielens.dat.	This
dataset	contains	100,000	ratings	by	943	users	on	1,682	items,	with	each	user
having	rated	at	least	20	movies.	The	ratings	data	(movielens.dat)	is	a	tab-
delimited,	new	line–terminated	text	file	with	this	structure:
Click	here	to	view	code	image

user	id	|	item	id	|	rating	|	timestamp

For	the	following	exercise	you	need	to	be	running	Spark	on	a	Hadoop	cluster
and	must	have	the	movielens.dat	file	saved	to	a	directory	named
/data/movielens.	Follow	these	steps:

1.	Start	a	pyspark	shell.

2.	Import	the	required	MLlib	libraries:
Click	here	to	view	code	image

from	pyspark.mllib.recommendation	\

import	ALS,	MatrixFactorizationModel,	Rating

3.	Load	the	Movielens	dataset	and	create	an	RDD	containing	Rating	objects:
Click	here	to	view	code	image

data	=	sc.textFile("hdfs:///data/movielens")

ratings	=	data.map(lambda	x:	x.split('	'))	\

				.map(lambda	x:	Rating(int(x[0]),	int(x[1]),	float(x[2])))

Rating	is	a	special	tuple	Spark	uses	and	represents	(user,	product,
rating).	Note	also	that	you	filter	the	timestamp	field	because	it	is	not
necessary	in	this	case.

https://movielens.org/
https://s3.amazonaws.com/sparkusingpython/movielens/movielens.dat

4.	Train	a	model	using	the	ALS	algorithm:
Click	here	to	view	code	image

rank	=	10

numIterations	=	10

model	=	ALS.train(ratings,	rank,	numIterations)

Note	that	rank	and	numIterations	are	algorithm	tuning	parameters;
rank	is	the	number	of	latent	factors	in	the	model,	and	numIterations	is
the	number	of	iterations	to	run.

5.	Now	you	can	test	the	model	against	the	same	dataset	without	the	rating
(use	the	model	to	predict	this	attribute).	Then	compare	the	results	of	the
predictions	with	the	actual	ratings	to	determine	the	mean	squared	error,
measuring	the	accuracy	of	the	model:

Click	here	to	view	code	image
testdata	=	ratings.map(lambda	p:	(p[0],	p[1]))

predictions	=	model.predictAll(testdata)	\

					.map(lambda	r:	((r[0],	r[1]),	r[2]))

ratesAndPreds	=	ratings.map(lambda	r:	((r[0],	r[1]),	r[2]))	\

					.join(predictions)

MSE	=	ratesAndPreds.map(lambda	r:	(r[1][0]	-	r[1][1])**2)	\

					.mean()

print("Mean	Squared	Error	=	"	+	str(MSE))

#	returns:	Mean	Squared	Error	=	0.482478475145

As	discussed	earlier	in	this	chapter,	a	good	practice	is	to	divide	your	input
dataset	into	two	discrete	sets,	one	for	training	and	another	for	testing.	This
helps	avoid	overfitting	your	model.

6.	To	save	the	model	for	use	with	new	recommendations,	use	the
model.save()	function,	as	shown	here:
model.save(sc,	"ratings_model")

This	saves	the	model	to	a	folder	named	ratings_model	in	your	current
user’s	home	directory	in	HDFS.

7.	To	reload	the	model	in	a	new	session—for	instance,	to	deploy	the	model
against	real-time	data	from	a	Spark	DStream—use	the
MatrixFactorizationModel.load()	function,	as	shown	here:

Click	here	to	view	code	image
from	pyspark.mllib.recommendation	\

import	MatrixFactorizationModel

reloaded_model	=	MatrixFactorizationModel.load	\

																(sc,	"ratings_model")

The	complete	source	code	for	this	exercise	is	in	the	recommendation-
engine	folder	at	https://github.com/sparktraining/spark_using_python.

Clustering	Using	Spark	MLlib
As	discussed	earlier	in	this	chapter,	clustering	algorithms	discover	groups	or
clusters	of	associated	instances	within	a	collection	of	data.	A	common	approach
to	clustering	is	the	k-means	technique.

By	definition,	k-means	clustering	is	an	iterative	algorithm	used	in	machine
learning	and	graph	analysis.	Consider	a	set	of	data	in	a	plane—which	could
represent	a	variable	and	an	independent	variable	on	an	x,	y	axis,	for	simplicity.
The	objective	of	the	k-means	algorithm	is	to	find	the	center	of	each	cluster	(the
centroid)	presented	in	the	data,	as	pictured	in	Figure	8.13.

Figure	8.13	k-means	clustering.

The	k-means	approach	works	as	follows:

	Select	k	random	points	as	starting	center	points	(centroids).

	For	each	point,	find	the	closest	k	and	allocate	the	point	to	the	cluster

https://github.com/sparktraining/spark_using_python

associated	with	k.

	Calculate	the	mean	(center)	of	each	cluster	by	averaging	all	the	points	in
that	cluster.

	Iterate	until	no	points	reassign	to	new	clusters.

As	you	can	see,	this	is	a	brute-force,	parallelizable,	iterative	routine,	which
makes	it	very	well	suited	to	Spark.

To	implement	k-means	in	Spark,	use	the
pyspark.mllib.clustering.KMeans	package.	Listing	8.22
demonstrates	how	to	train	a	k-means	clustering	machine	learning	model	using
the	sample	kmeans_data	dataset	provided	as	part	of	the	Spark	release.

Listing	8.22	Training	a	k-Means	Clustering	Model	Using	Spark
MLlib
Click	here	to	view	code	image

from	pyspark.mllib.clustering	import	KMeans,	KMeansModel

from	numpy	import	array

from	math	import	sqrt

#	Load	and	parse	the	data

data	=	sc.textFile("file:///opt/spark/data/mllib/kmeans_data.txt")

parsedData	=	data.map(lambda	line:	array(\

														[float(x)	for	x	in	line.split('	')]))

#	Build	the	model	(cluster	the	data)

clusters	=	KMeans.train(parsedData,	2,	maxIterations=10,

				initializationMode="random")

Notice	that	this	example	uses	the	NumPy	library	mentioned	earlier.	When	you
have	a	k-means	clustering	model,	you	can	evaluate	the	error	rate	within	each
cluster,	as	shown	in	Listing	8.23.

Listing	8.23	Evaluating	a	k-Means	Clustering	Model
Click	here	to	view	code	image

#	Evaluate	clustering	by	computing	Within	Set	Sum	of	Squared	Errors

def	error(point):

				center	=	clusters.centers[clusters.predict(point)]

				return	sqrt(sum([x**2	for	x	in	(point	-	center)]))

WSSSE	=	parsedData.map(lambda	point:	error(point))	\

			.reduce(lambda	x,	y:	x	+	y)

print("Within	Set	Sum	of	Squared	Error	=	"	+	str(WSSSE))

#	returns:

#	Within	Set	Sum	of	Squared	Error	=	0.692820323028

As	with	the	collaborative	filtering	and	classification	models,	with	a	k-means
model	you	typically	need	to	persist	the	model	so	it	can	load	into	a	new	session	to
evaluate	new	data.	Listing	8.24	demonstrates	the	use	of	the	save	and	load
functions	to	accomplish	this.

Listing	8.24	Saving	and	Reloading	a	Clustering	Model
Click	here	to	view	code	image

#	Save	and	load	model

clusters.save(sc,	"kmeans_model")

reloaded_model	=	KMeansModel.load(sc,	"kmeans_model")

Machine	Learning	Using	Spark	ML
Spark	ML	extends	the	MLlib	library	and	functions	to	Spark	SQL	DataFrames.
Spark	ML	may	be	a	more	natural	choice	for	machine	learning	if	you	use	Spark
SQL	DataFrames	for	data	processing.

Classification	Using	Spark	ML
Spark	ML	supports	various	classification	methods,	including	logistic	regression,
binomial	logistic	regression,	multinomial	logistic	regression,	decision	trees,
random	forest,	gradient-boosted	tree,	multilayer	perceptron,	linear	support	vector
machine,	one-versus-rest,	and	naive	Bayes.

Just	as	Spark	MLlib	classification	algorithms	require	an	RDD	of
LabeledPoint	objects,	Spark	ML	algorithms	require	a	DataFrame	of	Row
objects,	including	labels	and	features.	The	label	column	specifies	the
classification	for	the	observation,	and	the	features	column	contains	either	a
SparseVector	or	a	DenseVector	object.	A	DenseVector	is	used	when
each	observation	contains	the	same	features,	whereas	a	SparseVector	is	used

when	features	may	vary	from	instance	to	instance—that	is,	some	features	may	be
null	or	not	populated	for	certain	instances.	The	main	advantage	of
SparseVector	is	that	it	only	stores	features	that	have	a	value,	which	requires
less	space	in	datasets	that	contain	null	values.

Listing	8.25	demonstrates	a	Spark	ML	implementation	of	a	decision	tree
classifier	example	using	the	golf/weather	dataset	from	earlier	in	this	chapter.

Listing	8.25	Decision	Tree	Classifier	Using	Spark	ML
Click	here	to	view	code	image

from	pyspark.ml.linalg	import	DenseVector

from	pyspark.ml.classification	import	DecisionTreeClassifier

from	pyspark.ml.evaluation	import	MulticlassClassificationEvaluator

from	pyspark.sql	import	Row	#	Prepare	DataFrame	of	labeled	observations

outlook	=	{"sunny":	0.0,	"overcast":	1.0,	"rainy":	2.0}

observations	=	[

Row(label=0,	features=DenseVector([outlook["sunny"],85,85,False])),

Row(label=0,	features=DenseVector([outlook["sunny"],80,90,True])),

Row(label=1,	features=DenseVector([outlook["overcast"],83,86,False])),

Row(label=1,	features=DenseVector([outlook["rainy"],70,96,False])),

Row(label=1,	features=DenseVector([outlook["rainy"],68,80,False])),

Row(label=0,	features=DenseVector([outlook["rainy"],65,70,True])),

Row(label=1,	features=DenseVector([outlook["overcast"],64,65,True])),

Row(label=0,	features=DenseVector([outlook["sunny"],72,95,False])),

Row(label=1,	features=DenseVector([outlook["sunny"],69,70,False])),

Row(label=1,	features=DenseVector([outlook["sunny"],75,80,False])),

Row(label=1,	features=DenseVector([outlook["sunny"],75,70,True])),

Row(label=1,	features=DenseVector([outlook["overcast"],72,90,True])),

Row(label=1,	features=DenseVector([outlook["overcast"],81,75,False])),

Row(label=0,	features=DenseVector([outlook["rainy"],71,91,True]))

]

rdd	=	sc.parallelize(observations)	data	=	spark.createDataFrame(rdd)	#	

Split	data	into	training	and	test	sets

(trainingData,	testData)	=	data.randomSplit([0.7,	0.3])	#	Train	decision	

tree	model

dt	=	DecisionTreeClassifier()

model	=	dt.fit(trainingData)

#	returns:

#	DecisionTreeClassificationModel	

(uid=DecisionTreeClassifier_495f9e5bcc6aaffa81c5)	of	depth	4	with	13	

nodes	#	Make	predictions	using	the	test		dataset

predictions	=	model.transform(testData)

predictions.show()

#	returns:

#	+-------------------+-----+-------------+-----------+----------+

#	|											features|label|rawPrediction|probability|prediction|

#	+-------------------+-----+-------------+-----------+----------+

#	|[0.0,75.0,80.0,0.0]|				1|				[0.0,4.0]|		[0.0,1.0]|							1.0|

#	+-------------------+-----+-------------+-----------+----------+	#	

Evaluate	model	accuracy

evaluator	=	MulticlassClassificationEvaluator(

				labelCol="label",	predictionCol="prediction",	metricName="accuracy")

accuracy	=	evaluator.evaluate(predictions)

print("Test	Error	=	%g	"	%	(1.0	-	accuracy))

#	returns:	Test	Error	=	0

Collaborative	Filtering	Using	Spark	ML
As	with	Spark	MLlib,	the	Spark	ML	collaborative	filtering	implementation	uses
the	ALS	algorithm.	Listing	8.26	demonstrates	collaborative	filtering	using	Spark
ML.

Listing	8.26	Collaborative	Filtering	Example	Using	Spark	ML
Click	here	to	view	code	image

from	pyspark.ml.evaluation	import	RegressionEvaluator

from	pyspark.ml.recommendation	import	ALS

from	pyspark.sql	import	Row	#	load	and	prepare	data,	split	data	into	

training	and	test		datasets

ratings_rdd	=	sc.textFile("/opt/spark/data/movielens")	\

				.map(lambda	x:	x.split('	'))	\

				.map(lambda	x:	Row(userId=int(x[0]),	movieId=int(x[1]),

												rating=float(x[2]),	timestamp=int(x[3])))

ratings	=	spark.createDataFrame(ratings_rdd)	(training,	test)	=	

ratings.randomSplit([0.7,	0.3])	#	train	model

als	=	ALS(maxIter=5,	regParam=0.01,	userCol="userId",	itemCol="movieId",	

ratingCol="rating",

										coldStartStrategy="drop")

model	=	als.fit(training)	#	evaluate	model

predictions	=	model.transform(test)

evaluator	=	RegressionEvaluator(metricName="rmse",	labelCol="rating",

				predictionCol="prediction")

rmse	=	evaluator.evaluate(predictions)

print("Root-mean-square	error	=	"	+	str(rmse))

#	returns:	Root-mean-square	error	=	1.093931162606997	#	movie	

recommendations	for	each	user

model.recommendForAllUsers(3).show(3)

#	returns:

#	+------+--------------------+

#	|userId|					recommendations|

#	+------+--------------------+

#	|			471|[[1206,9.413772],...|

#	|			463|[[1206,6.576718],...|

#	|			833|[[853,5.8933687],...|

#	+------+--------------------+	#	user	recommendations	for	each	movie

model.recommendForAllItems(3).show(3)

#	returns:

#	+-------+--------------------+

#	|movieId|					recommendations|

#	+-------+--------------------+

#	|			1580|[[475,1.8473656],...|

#	|				471|[[628,5.776228],	...|

#	|			1591|[[777,8.130051],	...|

#	+-------+--------------------+

Clustering	Using	Spark	ML
Clustering	techniques	supported	in	Spark	ML	include	k-means,	bisecting	k-
means,	latent	Dirichlet	allocation	(LDA),	and	Gaussian	mixture	model	(GMM).
Listing	8.27	demonstrates	k-means	clustering	using	Spark	ML.

Listing	8.27	k-Means	Clustering	with	Spark	ML
Click	here	to	view	code	image

from	pyspark.ml.clustering	import	KMeans

	

#	load	data

dataset	=

spark.read.format("libsvm").load("/opt/spark/data/mllib/sample_kmeans_data.txt")

	

#	train	a	k-means	model

kmeans	=	KMeans().setK(2).setSeed(1)

model	=	kmeans.fit(dataset)

	

#	evaluate	using	Within	Set	Sum	of	Squared	Errors

wssse	=	model.computeCost(dataset)

print("Within	Set	Sum	of	Squared	Errors	=	"	+	str(wssse))

#	returns:

#	Within	Set	Sum	of	Squared	Errors	=	0.11999999999994547

	

#	show	results

centers	=	model.clusterCenters()

print("Cluster	Centers:	")

for	center	in	centers:

				print(center)

#	returns:

#	[0.1		0.1		0.1]

#	[9.1		9.1		9.1]

libsvm	Format
LIBSVM	 (library	 for	 support	 vector	 machines)	 provides	 a	 format
specification	for	files	containing	training	data.	The	libsvm	format	allows
for	 sparse	 data.	 The	 Spark	 DataFrameReader	 and
DataFrameWriter	 include	 native	 support	 for	 the	libsvm	 format,	 as
shown	in	Listing	8.27.	The	libsvm	format	provides	a	useful	way	to	store
and	process	training	data	for	machine	learning	algorithms	using	Spark	ML.

ML	Pipelines
Spark	ML	introduces	support	for	machine	learning	pipelines.	The	Scikit-learn
project	(Python	machine	learning	library)	inspired	the	pipeline	concept.
Pipelines	allow	you	to	chain	data	preparation	and	feature	extraction	steps	with
models	to	encapsulate	all	of	your	workflow.	Pipeline	components	include
transformers,	estimators,	and	parameters.

A	Transformer	object	transforms	a	DataFrame	into	another	DataFrame	by
implementing	a	transform()	method.	An	Estimator	object	is	an
algorithm	that	can	fit	on	a	DataFrame	to	produce	a	model	by	implementing	a
fit()	method.	A	Pipeline	object	chains	multiple	Transformer	and
Estimator	objects	together	to	encapsulate	a	Spark	ML	workflow.	The
Parameter	API	provides	a	uniform	mechanism	for	Transformer	and
Estimator	objects	to	specify	parameters.	Listing	8.28	demonstrates	a	Spark
ML	pipeline	for	classifying	text.

Listing	8.28	Spark	ML	Pipelines
Click	here	to	view	code	image

from	pyspark.ml	import	Pipeline

from	pyspark.ml.classification	import	LogisticRegression

from	pyspark.ml.feature	import	HashingTF,	Tokenizer	#	Prepare	training	

documents	from	a	list	of	(id,	text,	label)	tuples.

training	=	spark.createDataFrame([

				(0,	"a	b	c	d	e	spark",	1.0),

				(1,	"b	d",	0.0),

				(2,	"spark	f	g	h",	1.0),

				(3,	"hadoop	mapreduce",	0.0)

],	["id",	"text",	"label"])	#	Configure	an	ML	pipeline,	which	consists	

of	3	stages:	tokenizer,	hashingTF,	and	lr.

tokenizer	=	Tokenizer(inputCol="text",	outputCol="words")

hashingTF	=	HashingTF(inputCol=tokenizer.getOutputCol(),	

outputCol="features")

lr	=	LogisticRegression(maxIter=10,	regParam=0.001)

pipeline	=	Pipeline(stages=[tokenizer,	hashingTF,	lr])	#	Fit	the	

pipeline	to	training	documents.

model	=	pipeline.fit(training)	#	Make	predictions	on	test	documents	...

Using	Notebooks	with	Spark
Notebooks	have	become	popular	tools	in	the	Spark	development	community.
Notebooks	provide	the	capability	to	combine	different	languages	along	with
visualization,	rich	text,	and	markup	and	markdown	facilities,	making	it	easy	to
explore	and	visualize	data	in	an	interactive	environment.	Importantly,	notebooks
allow	you	to	use	data	to	tell	a	story	and	can	encapsulate	data	preparation,	model

training	and	testing,	and	visualization	in	a	single,	succinct	document,	making	it
easy	to	follow	or	reproduce	your	thought	process.

Using	Jupyter	(IPython)	Notebooks	with	Spark
Jupyter,	formally	known	as	the	IPython	notebook,	provides	a	web-based
notebook	experience	that	includes	extensions	for	Ruby,	R,	and	other	languages.
Jupyter	notebook	files	are	an	open	document	format	using	JSON.	Notebook	files
contain	source	code,	text,	markup,	media	content,	metadata,	and	more.	Notebook
contents	are	stored	in	cells	in	a	document.	Figure	8.14	and	Listing	8.29	show	an
example	of	a	Jupyter	notebook	and	an	excerpt	from	the	associated	JSON
document.

Figure	8.14	Jupyter	notebook.

Listing	8.29	Jupyter	Notebook	JSON	Document
Click	here	to	view	code	image

{"cells":	[

		{

			"cell_type":	"markdown",

			"metadata":	{},

			"source":	[

				"#	Calculate	Pearson	Coefficient"

]

		},

		{

			"cell_type":	"code",

			"execution_count":	null,

			"metadata":	{},

			"outputs":	[],

			"source":	[

				"import	numpy	as	np\n",

				"from	pyspark.mllib.stat	import	Statistics\n",

				"spark_df	=	

spark.read.parquet('hdfs://namenode:8020/data/closingprices/')\n",

				"seriesX	=	

spark_df.select('Close').where(\"Stock='KO'\").rdd.map(lambda	x:	

float(x.Close))\n",	"seriesY	=	

spark_df.select('Close').where(\"Stock='PEP'\").rdd.map(lambda	x:	

float(x.Close))\n",

				"correlation	=	str(Statistics.corr(seriesX,	seriesY,	

method=\"pearson\"))\n",

				"printmd('#	Pearson	Correlation	between	KO	and	PEP	is:	<span

style=\"color:red\">'	+	correlation	+	'	')"

]

		},

		{

			"cell_type":	"code",

			"execution_count":	null,

			"metadata":	{

				"collapsed":	true

			},

			"outputs":	[],

			"source":	[]

		}

],

	"metadata":	{

		"kernelspec":	{

			"display_name":	"Python	2",

			"language":	"python",

			"name":	"python2"

		},

		"language_info":	{

			"codemirror_mode":	{

				"name":	"ipython",

				"version":	2

			},

			"file_extension":	".py",

			"mimetype":	"text/x-python",

			"name":	"python",

			"nbconvert_exporter":	"python",

			"pygments_lexer":	"ipython2",

			"version":	"2.7.13"

		}

	}}

Jupyter/IPython	notebooks	communicate	with	back-end	systems	using	kernels.
Kernels	are	processes	that	run	interactive	code	in	a	particular	programming
language	and	return	output	to	the	user.	Kernels	also	respond	to	tab	completion
and	introspection	requests.	Kernels	communicate	with	notebooks	using	the
Interactive	Computing	Protocol,	which	is	an	open	network	protocol	based	on
JSON	data	over	ZMQ	and	WebSocket.

Kernels	are	currently	available	for	Scala,	Ruby,	JavaScript,	Erlang,	Bash,	Perl,
PHP,	PowerShell,	Clojure,	Go,	Spark,	and	many	other	languages.	Of	course,
there	is	a	kernel	to	communicate	with	IPython	(which	was	the	basis	of	the
Jupyter	project).	The	IPython	kernel	is	known	as	Kernel	Zero,	and	it	is	the
reference	implementation	for	all	other	kernels.

Using	Apache	Zeppelin	Notebooks	with	Spark
Apache	Zeppelin	is	a	web-based,	multilanguage,	interactive	notebook
application	with	native	Spark	integration.	Zeppelin	provides	a	query
environment	for	Spark,	and	it	provides	data-	visualization	capabilities.

Figure	8.15	shows	a	Zeppelin	notebook	running	a	PySpark	program.

Figure	8.15	Zeppelin	notebook.

Zeppelin	Interpreters
Zeppelin	 interpreters	 are	 analogous	 to	 the	 Jupyter	 kernels	 just	 discussed.
Interpreters	 allow	 Zeppelin	 to	 use	 various	 programming	 interfaces	 and
runtimes.	 As	 an	 example,	 to	 use	 the	 PySpark	 language	 and	 runtime	 in
Zeppelin,	 you	 need	 the	 %spark.pyspark	 interpreter.	 Other	 available
interpreters	 include	 %md	 (Markdown),	 %angular	 (AngularJS),
%python,	%sh	(Shell	commands),	%spark.sql,	%spark	(Spark	using

the	Scala	API),	and	many	others.

Summary
Predictive	analytics	and	machine	learning	are	core	use	cases	for	Spark.	Spark
provides	seamless	integration	to	R	through	the	SparkR	API,	a	package	that
provides	access	to	Spark	and	distributed	data	frame	operations	from	an	R
environment	using	the	R	programming	language.

SparkR	provides	various	methods	for	creating	data	frames,	including	loading
data	from	external	sources	such	as	flat	files	in	a	local	or	distributed	file	system
or	from	a	Hive	table.	SparkR	enables	the	use	of	R	data	frames	for	distributed
operations	with	Spark,	including	statistical	analysis	and	building,	testing,	and
deployment	of	simple	linear	regression	models.	SparkR	is	accessible	from	an
integrated	REPL	shell	environment,	sparkR,	and	through	the	graphical	RStudio
programming	interface.

R	continues	to	grow	in	popularity;	it	is	finding	its	way	from	researchers	at
universities	to	business	and	data	analysts	in	commercial	and	government
organizations.	As	R	becomes	the	standard	for	statistical	analysis	and	modeling	in
many	organizations,	SparkR	and	the	Spark	distributed	processing	runtime
become	compelling	features	for	analysis	at	scale.

Machine	learning	is	a	rapidly	emerging	area	of	computer	science	that	enables
systems	and	models	to	“learn”	from	observations	and	data.	The	three	primary
techniques	used	in	machine	learning	are	classification,	collaborative	filtering,
and	clustering.	This	chapter	examines	all	of	these	approaches,	using	Spark’s
built-in	machine	learning	libraries	(MLlib	and	ML),	including	their	specific
applications	and	common	uses	and	implementations.

MLlib	is	built	on	the	Spark	core	RDD	API,	and	ML	is	built	on	the	DataFrame
API.	Both	the	MLlib	and	ML	packages	include	many	common	machine	learning
algorithms	and	utilities	to	perform	data	preparation,	feature	extraction,	model
training,	and	testing.	MLlib	and	ML	are	designed	for	succinct,	user-friendly	yet
functionally	rich,	powerful,	and	scalable	machine	learning	abstraction	on	top	of
Spark.

This	chapter	looks	at	using	notebooks	with	Spark;	notebooks	are	a	popular
development	interface	for	researchers	and	data	scientists.	The	IPython	notebook
Jupyter	and	Apache	Zeppelin	both	enable	you	to	combine	multiple	languages
with	visualizations,	rich	text,	and	markdown.

You	have	finished	the	first	part	of	your	journey	of	learning	Spark	using	Python.	I
hope	this	book	has	helped	you	in	building	solid	foundations	as	a	Spark	and
Python	practitioner.	Thank	you	for	your	time,	and	I	wish	you	all	the	best	in	your
career!

Index

Symbols
<-	(assignment)	operator,	244
:	(colon),	19
{	}	(curly	braces),	19
()	(parentheses),	19
[]	(square	brackets),	19
0MQ	(ZeroMQ),	228
7-Zip,	34

A
accumulator()	method,	117
accumulators,	116–117

accumulator()	method,	117
custom,	117–118
DStreams,	216
sample	exercise,	119–120
uses	for,	118
value()	method,	117

actions,	48,	81
collect(),	82,	128,	152
count(),	81,	128
defined,	59,	60
example	of,	72
first(),	83

fold(),	84–85
foreach(),	85
reduce(),	84
take(),	82,	152
takeSample(),	152
top(),	82–83

ActiveMQ,	228
addInPlace()	function,	118
aggregateByKey()	function,	150
algorithmic	functions,	184
allocation,	dynamic,	153
ALS	(Alternating	Least	Squares)	technique

Spark	ML,	272–273
Spark	MLlib,	266

Amaterasu,	148
Amazon	Kinesis,	237

Analytics,	237
documentation,	240
Firehose,	237
KCL	(Kinesis	Client	Library),	238–239
KPL	(Kinesis	Producer	Library),	238
Spark	support	for,	239
Streams

createStream()	method,	239–240
defined,	237–238

Amazon	Redshift,	237
Amazon	S3,	237
Amazon	Software	License	(ASL),	239
Amazon	SQS	(Simple	Queue	Service),	228
Amazon	Web	Services.	See	AWS	(Amazon	Web	Services),	Spark
deployment	on

Ambari	for	Hortonworks,	148
Analytics,	Amazon	Kinesis,	237
Anderson,	Edgar,	251
%angular	(AngularJS)	interpreter,	279
anonymous	functions,	23–24

Apache	Amaterasu,	148
Apache	Cassandra,	201–204
Apache	Hive,	8,	40

accessing,	164
CLI	(command-line	interface),	164
data	model

complex	types,	176
primitive	types,	175–176

datatypes,	164–165
HCatalog,	164
HiveServer2,	164
metastore,	163–164
objects,	163–164
overview	of,	162
tables

creating	DataFrames	from,	170–171
writing	DataFrame	output	to,	188

Apache	Kafka
architecture,	229–230
createDirectStream()	method,	232–234
KafkaUtils,	232
sample	application,	234–237
Spark	support	for,	230–232

Apache	Lucene,	6
Apache	Mesos,	30
Apache	Parquet

file	compression,	174
overview	of,	173

Apache	Pig,	8,	40,	164
Apache	Software	Foundation	(ASF),	6
Apache	Solr,	206
Apache	Zeppelin

interpreters,	279
notebooks,	278–279

Apache	ZooKeeper,	230,	234–237
APIs	(application	programming	interfaces)

ConsumerConnector,	231
SimpleConsumer,	231

append	output	mode,	226
ApplicationMasters

overview	of,	11–12
as	Spark	Master,	53

applications
application	UI,	48–49
architecture,	45–46

Cluster	Managers,	52–53
Driver,	46–49
Executors,	49–51
illustrated,	46
Masters,	51–52
Standalone	scheduler,	53
Workers,	49–51
YARN	(Yet	Another	Resource	Negotiator),	53–57

Bay	Area	Bike	Share	exercise,	100–103
checkpointing	exercise,	136–138
external

accessing	Spark	SQL	with,	194
processing	RDDs	with,	138–139

optimizing,	152–153
dynamic	allocation,	153
parallelism,	152–153
performance	issues,	155–159

orchestration,	48
planning,	48
scheduling,	10–13
Spark	Streaming	exercise,	218–219
Spark	with	Kafka	exercise,	234–237
WordCount	exercise,	92–95

architecture
Apache	Kafka,	229–230
Spark	clusters,	45–46

Cluster	Managers,	52–53

Driver,	46–48
Executors,	49–51
illustrated,	46
Masters,	51–52
Standalone	scheduler,	53
Workers,	49–51
YARN	(Yet	Another	Resource	Negotiator),	53–57

Spark	SQL,	166–167
extensions,	166,	167
SparkSession	entry	point,	167–168

Spark	Streaming,	210–211
ARRAY	datatype,	165
arrays

Hive,	165
R	language,	245
Spark	primitive	type,	176

ArrayType,	176
ASF	(Apache	Software	Foundation),	6
ASL	(Amazon	Software	License),	239
assignment	operator	(<-),	244
associative	operations,	optimizing,	149–150
average-word-length	folder	(GitHub),	120
Avro,	17,	229
awaitTermination()	method,	211
AWS	(Amazon	Web	Services),	Spark	deployment	on,	39

EC2	(Elastic	Compute	Cloud),	39
EMR	(Elastic	MapReduce),	40–41
GCP	(Google	Cloud	Platform),	41

B
batch	submissions,	16,	251
Bay	Area	Bike	Share	exercise,	100–103
Bayes’	theorem,	266
beeline	shell

overview	of,	193
sample	exercise,	194–195

Beeswax,	164
Berners-Lee,	Tim,	161
Big	Data,	history	of,	6–7.	See	also	Hadoop
BIGINT	datatype,	165
bin/	directory,	36
BINARY	datatype,	165
BinaryType,	176
bisecting	k-means,	273
bloom	filters,	199
BOOLEAN	datatype,	165
Boolean	types

DataFrame	API,	176
Hive,	165

BooleanType,	176
boto3	library,	205
broadcast()	method,	112–113
broadcast	variables,	112

broadcast()	method,	112–113
DStreams,	216
sample	exercise,	119–120
unpersist()	method,	114–116
value()	method,	113

brokers	(Kafka),	229
built-in	DataFrame	functions,	183–184
ByteType,	175
BZIP2	format,	62

C
c()	function,	246
cache()	method,	74,	187,	215
cacheTable()	method,	187
caching

DataFrames,	187
DStreams,	215
RDDs	(Resilient	Distributed	Datasets)

example	of,	131
when	to	use,	134

Cafarella,	Mike,	6
call_func	function,	25
cartesian()	function,	99–100
Cassandra,	7,	201–204
Cassandra	Query	Language	(CQL),	202
CDH	(Cloudera	Distribution	of	Hadoop),	32
cell_contents	function,	25
cells	(HBase),	updating,	199
Character	datatype,	245
character	functions,	249
checkpoint()	method,	135,	215
checkpointing,	134–135

checkpoint()	method,	135,	215
DStreams,	214–215
getCheckpointFile()	method,	136
isCheckpointed()	method,	136
sample	exercise,	136–138
setCheckpointDir()	method,	135

checkpointing	folder	(GitHub),	138
child	RDDs	(Resilient	Distributed	Datasets),	74–75
CLA	(contributor	license	agreement),	6
classes.	See	also	objects

CoGroupedRDD,	76
DataFrameReader,	224
DataFrames,	76
DoubleRDD,	76
HadoopRDD,	76
HashPartitioner,	121
JdbcRDD,	77
KafkaUtils,	232
NewHadoopRDD,	76

PairRDD,	76
PartitionPruningRDD,	77
SchemaRDD,	76
SequenceFileRDD,	76
ShuffledRDD,	77
SparkSession,	167–168
UnionRDD,	77

classification
decision	trees,	262–266,	271–272
defined,	259–260
Naive	Bayes,	266
Spark	ML,	271–272
Spark	MLlib,	262

clearCache()	method,	187
Client	deployment	mode,	28–29,	53–55
Client	Library	(Kinesis),	238–239
closures,	24–25,	151–152
cloud,	Spark	deployment	in,	39

AWS	(Amazon	Web	Services),	39–41
Databricks,	42–43

Cloud	Dataproc,	41
Cloudera	Distribution	of	Hadoop	(CDH),	32
Cloudera	Manager,	148
cluster	architecture,	8,	45–46

application	clustering,	260–261
Cluster	deployment	mode,	28–29,	55–56,	143–144
Cluster	Managers,	52–53
clustering	keys,	202
Driver,	46–49
Executors,	49–51
illustrated,	46
k-means

Spark	ML,	273–274
Spark	MLlib,	269–270

Masters,	51–52
multi-node	standalone	clusters,	37–39

nodes,	8
Spark	ML,	273–274
Standalone	scheduler,	53
Workers,	49–51
YARN	(Yet	Another	Resource	Negotiator),	53–57

Cluster	deployment	mode,	28–29,	55–56,	143–144
Cluster	Managers,	52–53,	142
cmp()	method,	20
coalesce()	method,	124,	154
coarse-grained	transformations,	72
Coe,	David	Allan,	45
cogroup()	function,	98–99
CoGroupedRDD,	76
collaborative	filtering

defined,	260
Spark	ML,	272–273
Spark	MLlib,	266–267

collect()	action,	82,	128,	152
collection	of	data,	optimizing,	152
collections,	157–158,	202
colon	(:),	19
columnar	storage,	166,	173
columns()	method,	179
combineByKey()	function,	150
combiners,	150
commands

cqlsh,	202
easy_install,	200
java	-version,	33,	34
library,	249
matrix,	247
pip,	200
pyspark,	30
R	CMD	INSTALL,	249
read,	248
sparkR,	250

spark-shell,	30
spark-submit,	16,	30,	55–56,	192
wget,	33

comma-separated	value	files.	See	CSV	(comma-separated	value)	files
complete	output	mode,	227
complex	types,	176
compression,	file,	61
conf/	directory,	37
configuration,	Spark.	See	Spark	configuration
console	sinks,	226
ConsumerConnector	API,	231
consumers	(Kafka),	229
containers,	11
contributor	license	agreement	(CLA),	6
Core	API.	See	RDDs	(Resilient	Distributed	Datasets)
Couchbase,	206
CouchDB,	206
count()	action,	81,	128
cPickle	module,	22
CQL	(Cassandra	Query	Language),	202
cqlsh	utility,	202
CRAN,	249
CREATE	TABLE	statement,	165
createDataFrame()	method,	169,	252
createDirectStream()	method,	232–234
createRDD()	method,	233
createStream()	method,	239–240
cross	joins,	99–100
CSV	(comma-separated	value)	files

creating	data	frames	from,	252
writing	DataFrame	output	to,	188–191

csv()	method,	189–190
curly	braces	({}),	19
custom	accumulators,	117–118
Cutting,	Doug,	6

D
daemon	environment	variables,	144
DAGs	(directed	acyclic	graphs),	48,	127
data	collection,	optimizing,	152
data/	directory,	37
data	frames	(R),	247–248.	See	also	DataFrames

creating,	251–253
defined,	245

data	locality,	7,	62–63
Data	Manipulation	Language	(DML),	161
data	mining,	SparkR	and,	254–255
data	model	(Hive)

complex	types,	176
primitive	types,	175–176

data	sampling,	139
sample()	function,	140
takeSample()	function,	140–141

data	science,	with	R	language,	14,	244.	See	also	machine	learning
data	frames,	creating,	247–248,	251–253
data	structures,	245–247
datatypes,	245
functions,	248–249
packages,	248–249
SparkR,	243

accessing,	250–251
data	frames,	251–253
data	mining,	254–255
documentation,	250
linear	regression,	255–256
predictive	analytics,	253–254
predictive	modeling,	254–255
RStudio	with,	257–258

data	sinks,	225
console	sinks,	226
file	sinks,	225–226

memory	sinks,	226
data	sources

creating	RDDs	from,	66–69
Structured	Streaming,	224

file	sources,	224–225
socket	sources,	225

data	structures
Python

dicts,	19–20
lists,	18
sets,	18
tuples,	18–19

R	language,	245–247
Databricks,	Spark	deployment	on,	42–43
Databricks	File	System	(DBFS),	43
DataFrameReader,	224,	274
DataFrames,	76

caching,	187
complex	types,	176
converting	to	RDDs,	175
creating

from	existing	RDDs,	169
from	flat	files,	172–175
from	Hive	tables,	170–171
from	JSON	objects,	171–172

defined,	168–169
metadata,	179
multiple

grouping,	187
joining,	185–186
ordering,	186–187

operations
built-in	functions,	183–184
cache(),	187
cacheTable(),	187
clearCache(),	187

columns(),	179
createDataFrame(),	169
csv(),	189–190
distinct(),	182–183
drop(),	181
dtypes(),	179
explain(),	183
filter(),	181
groupBy(),	187
intersect(),	186
join(),	185–186
json(),	171–172
orc(),	174–175
orderBy(),	186–187
parquet(),	173–174,	190–191
persist(),	187
printSchema(),	176
rdd(),	175
sample(),	183
sampleBy(),	183
saveAsTable(),	188
select(),	180–181
show(),	180
sql(),	170
subtract(),	186
table(),	170–171
text(),	173
udf(),	184–185
unpersist(),	187

output,	saving
to	files,	188–191
to	Hive	tables,	188

persistence,	187
primitive	types,	175–176
repartitioning,	187
schemas

defining,	178
inferring,	176

DataFrameWriter,	274
DataNode	process,	8–9
datasets.	See	also	RDDs	(Resilient	Distributed	Datasets)

datasets	package,	251
golf/weather,	262–263
Movielens,	267–269
mtcars,	251–252
splitting,	263–264

DataStax	Enterprise,	203
datatypes

DataFrame	data	model
complex	types,	176
primitive	types,	175–176

Hive,	164–165
R	language,	245

DATE	datatype,	165
date	datatypes

Hive,	165
Spark	primitive,	176

date	functions,	184
DateType,	176
DBFS	(Databricks	File	System),	43
dbutils	library,	43
decision	trees,	262–266,	271–272
DecisionTree.trainClassifier()	function,	265
declarative	referential	integrity	(DRI),	163
deep	learning,	41
def	keyword,	23
DEFLATE	compression	method,	62
DenseVector	object,	271
dependencies,	stage,	48
deployment,	Spark.	See	Spark	deployment
deployment	modes

Client,	28–29,	53–55

Cluster,	28–29,	55–56
Local,	28,	56–57
on	Mesos,	30
Spark	Standalone,	28–29

diagrams,	Venn,	103
dicts	(dictionaries),	19–20
Direct	Stream	Access,	231
directed	acyclic	graphs	(DAGs),	48,	127
directives,	local,	28
directories,	Spark	installation,	36–37
disabling	IPv6,	35
discretized	streams.	See	DStreams
DISK_ONLY	constant,	129,	130
DISK_ONLY_2	constant,	130
distinct()	method,	79–80,	182–183
DML	(Data	Manipulation	Language),	161
docstrings,	183
document	stores,	197
documentation

Amazon	Kinesis,	240
RDDs	(Resilient	Distributed	Datasets),	77
SparkR,	250

DOUBLE	datatype,	165
double	datatypes

Hive,	165
Spark	primitive	type,	176

DoubleRDD,	76
DoubleType,	176
downloading	Spark,	31–32
DRI	(declarative	referential	integrity),	163
Drivers,	46

application	orchestration,	48
application	planning,	48
application	UI,	48–49
SparkSession,	46–48

drop()	method,	181

DROP	TABLE	statement,	165
drop_duplicates()	method,	182
DStreams,	211–212

broadcast	variables	and	accumulators,	216
caching	and	persistence,	215
lineage	and	checkpointing,	214–215

DStream.checkpoint()	method,	215
StreamingContext.checkpoint()	method,	215

output	operations,	216–218
foreachRDD()	method,	217–218
pprint()	method,	216
saveAsTextFiles()	method,	217

sources,	212
socketTextStream()	method,	212–213
textFileStream()	method,	213

transformations,	213–214
dtypes()	method,	179
dynamic	allocation,	153
DynamoDB,	204–206

E
easy_install	command,	200
EC2	(Elastic	Compute	Cloud),	Spark	deployment	on,	39
Edison,	Thomas,	27
Elastic	MapReduce.	See	EMR	(Elastic	MapReduce)
Elasticsearch,	206
EMR	(Elastic	MapReduce)

GCP	(Google	Cloud	Platform),	41
Spark	deployment	on,	40–41

EMS	(Enterprise	Message	Service),228
ensembles,	230
environment	variables,	141–142

defaults,	147
HADOOP_CONF_DIR,	142

HADOOP_HOME,	35,	142
HIVE_CONF_DIR,	143
JAVA_HOME,	142
PYSPARK_DRIVER_PYTHON,	142
PYSPARK_PYTHON,	142
SPARK_CLASSPATH,	144
SPARK_DAEMON_MEMORY,	144
SPARK_DRIVER_MEMORY,	143
SPARK_EXECUTOR_CORES,	143
SPARK_EXECUTOR_INSTANCES,	143
SPARK_EXECUTOR_MEMORY,	143
SPARK_HOME,	33,	142
SPARK_LOCAL_IP,	144
SPARK_MASTER_IP,	144
SPARK_MASTER_OPTS,	144
SPARK_MASTER_PORT,	144
SPARK_MASTER_WEBUI_PORT,	144
SPARK_PUBLIC_DNS,	144
SPARK_WORKER_CORES,	144
SPARK_WORKER_DIR,	144
SPARK_WORKER_INSTANCES,	144
SPARK_WORKER_MEMORY,	144
SPARK_WORKER_OPTS,	144
SPARK_WORKER_PORT,	144
SPARK_WORKER_WEBUI_PORT,	144
SPARK_YARN_APP_NAME,	143
SPARK_YARN_DIST_ARCHIVES,	143
SPARK_YARN_DIST_FILES,	143
SPARK_YARN_QUEUE,	143
SPARKR_DRIVER_R,	142
YARN_CONF_DIR,	142

errors,	searching	log	files	for,	61
Estimator	objects,	274
evaluation,	lazy,	73
event	processing.	See	Spark	Streaming
examples/	directory,	37

execution,	lazy,	73
Executors	(Spark),	49–51
explain()	function,	183
extensions,	Spark	SQL,	166
external	applications,	accessing	Spark	SQL	with,	194
external	programs,	processing	RDDs	with,	138

pipe()	method,	138–139
potential	problems	with,	138

extraction,	features,	261

F
fault	tolerance,	RDDs	(Resilient	Distributed	Datasets),	76
features

defined,	261
extraction,	261

file	sinks,	225–226
file	sources	(Structured	Streaming),	224–225
file	systems

DBFS	(Databricks	File	System),	43
HDFS	(Hadoop	Distributed	File	System),	7–8.	See	also	HBase

blocks,	8–9
as	data	source	for	Spark,	17
defined,	7–8
metadata,	9
processes,	8–9
read	operations,	9–10
write	operations,	9–10

schemes	and	URI	structures,	63
FileNotFoundException,	63
files

compression,	61
creating	data	frames	from,	172–175,	252
creating	RDDs	from,	61

data	locality,	62–63

file	compression,	61
JSON	files,	69–70
object	files,	66
text	files,	63–66

hadoop.dll,	34
log,	searching,	61
log4j.properties,	136
log4j.properties.erroronly,	136
looping_test.py,	137
ORC	(Optimized	Row	Columnar),	173
saving	RDDs	as,	217
shakespeare.txt,	219
spark-defaults.conf,	38
spark-env.sh,	38
spark-streaming-kafka-assembly.jar	file,	232
stop-word-list.csv,	119
winutils.exe,	34
writing	DataFrame	output	to,	188–191

filter()	function,	24,	79,	122,	153,	181
filtering

bloom	filters,	199
collaborative

defined,	260
Spark	ML,	272–273
Spark	MLlib,	266–267

DataFrames,	181
optimization	and,	149

fine-grained	transformations,	72
Firehose,	Amazon	Kinesis,	237
first()	action,	83
fit()	method,	274
flags,	storage-level,	129–130
flat	files,	DataFrames	created	from,	172–175

orc()	method,	174–175
parquet()	method,	173–174
text()	method,	173

flatMap()	function,	24,	78,	182
flatMapValues()	function,	87–89
FLOAT	datatype,	165
FloatType,	176
Flume,	8
fold()	action,	84–85
foldByKey()	function,	91,	150
folders,	GitHub

average-word-length,	120
checkpointing,	138
joining-datasets,	103
recommendation-engine,	269
streaming-wordcount,	219

followers	(Kafka),	230
foreach()	action,	85
foreachPartition()	method,	125–126
foreachRDD()	method,	217–218
format()	method,	224,	225
frame()	function,	247–248
Franklin,	Benjamin,	209
full	outer	joins

defined,	96
fullOuterJoin()	transformation,	98

fullOuterJoin()	function,	98
functions	and	methods

accumulator(),	117
addInPlace(),	118
aggregateByKey(),	150
anonymous,	23–24
awaitTermination(),	211
broadcast(),	112–113
built-in,	183–184
c(),	246
cache(),	74,	187,	215
cacheTable(),	187
call_func,	25

cartesian(),	99–100
cell_contents,	25
checkpoint(),	135,	215
clearCache(),	187
closures,	24–25
cmp(),	20
coalesce(),	124,	154
cogroup(),	98–99
collect(),	82,	128,	152
columns(),	179
combineByKey(),	150
count(),	81,	128
createDataFrame(),	169,	252
createDirectStream(),	232–234
createRDD(),	233
createStream(),	239–240
csv(),	189–190,	248
df(),	252
distinct(),	79–80,	182–183
drop(),	181
drop_duplicates(),	182
dtypes(),	179
explain(),	183
filter(),	24,	79,	122,	153,	181
first(),	83
fit(),	274
flatMap(),	24,	78,	182
flatMapValues(),	87–89
fold(),	84–85
foldByKey(),	91,	150
foreach(),	85
foreachRDD(),	217–218
format(),	224,	225
frame(),	247–248
fullOuterJoin(),	98
fwf(),	248

generate_message,	25
getCheckpointFile(),	136
getStorageLevel(),	130
glm(),	255
groupBy(),	80,	187
groupByKey(),	89,	149
hadoopFile(),	66
higher-order	functions,	24
intersect(),	186
intersection(),	104
isCheckpointed(),	136
jdbc(),	68–69
join(),	96–97,	185–186
json(),	69–70,	171–172,	253
keyBy(),	86–87
keys(),	20,	86
lambda	syntax,	23–24
leftOuterJoin(),	97
len(),	20
library(),	249
load(),	268
map(),	18,	24,	77–78,	182
mapValues(),	87
max(),	106
mean(),	106
min(),	105–106
named,	23–24
objectFile(),	66
optimizing,	151–152
orc(),	174–175
orderBy(),	186–187
outputMode(),	227
parallelize(),	71
parquet(),	173–174,	190–191,	253
partitionBy(),	123
persist(),	73–74,	132,	187,	215

pickleFile(),	22
pipe(),	138–139
pprint(),	216
predict(),	256,	266,	266
printSchema(),	176
quit(),	36
randomSplit(),	263–264
range(),	71–72
rdd(),	175
read(),	67
readStream(),	224
reduce(),	84
reduceByKey(),	24,	90,	149–150
reduceByKeyAndWindow(),	223
repartition(),	123–124,	154
repartitionAndSortWithinPartitions(),	124–125
ret_message(),	25
rightOuterJoin(),	97
sample(),	140,	183
sampleBy(),	183
save(),	268
saveAsPickleFile(),	22
saveAsTable(),	188
saveAsTextFile(),	17
saveAsTextFiles(),	217
select(),	180–181,	183
sequenceFile(),	66
session(),	253
setCheckpointDir(),	135
show(),	180
socketTextStream(),	212–213,	225
sortBy(),	81
sortByKey(),	91–92
sql(),	170,	253
start(),	211
stats(),	108

stdev(),	107
stop(),	211
subtract(),	104–105,	186
subtractByKey(),	105
sum(),	107
summary(),	255–256
table(),	170–171,	248
take(),	82,	152
takeSample(),	140–141,	152
text(),	173
textFile(),	17,	63–64
textFileStream(),	213
toDebugString(),	128
top(),	82–83
train(),	266
trainClassifier(),	265
transform(),	274
treeAggregate(),	150
treeReduce(),	150
tuple(),	19
udf(),	184–185
union(),	104
unpersist(),	114–116,	132–134,	187
updateStateByKey(),	220–221
value(),	113,	117
values(),	20,	86
variance(),	107
wholeTextFiles(),	64–66,	76
window(),	222–223
writeStream(),	227
zero(),	118

G
Gaussian	mixture	model	(GMM),	273

GCP	(Google	Cloud	Platform),	Spark	deployment	on,	41
generate_message	function,	25
getCheckpointFile()	method,	136
getStorageLevel()	function,	130
GitHub	folders

average-word-length,	120
checkpointing,	138
joining-datasets,	103
recommendation-engine,	269
streaming-wordcount,	219

glm()	function,	255
glom()	method,	126
GMM	(Gaussian	mixture	model),	273
golf	dataset,	262–263
Google	Cloud	Platform	(GCP),	Spark	deployment	on,	41
Google	whitepapers

“The	Google	File	System”,	6
“MapReduce:	Simplified	Data	Processing	on	Large	Clusters”,	6,	13

graph	stores,	197
groupBy()	function,	80,	187
groupByKey()	function,	89,	149
grouping	DataFrames,	187
GZIP	format,	62

H
HaaS	(Hadoop-as-a-Service),	40
Hadoop,	7.	See	also	HBase

CDH	(Cloudera	Distribution	of	Hadoop),	32
core	components	of,	7–8
data	locality,	7
development	of,	6–7
“ecosystem”	projects,	8
environment	variables,	142–143
HaaS	(Hadoop-as-a-Service),	40

HDFS	(Hadoop	Distributed	File	System)
blocks,	8–9
as	data	source	for	Spark,	17
defined,	7–8
metadata,	9
processes,	8–10
read	operations,	9–10
write	operations,	9–10

HDP	(Hortonworks	Data	Platform),	32
HUE	(Hadoop	User	Experience),	164
installation,	34
MapReduce,	13
schema-on-read	system,	7
shared	nothing	approach,	7
YARN	(Yet	Another	Resource	Negotiator),	7–8

application	scheduling	with,	10–13
ApplicationMaster,	11–12
NodeManagers,	10–12
as	resource	scheduler	for	Spark,	17
ResourceManager,	10–12
Spark	jobs,	submitting,	30
Spark	on,	28–29

HADOOP_CONF_DIR	environment	variable,	142
HADOOP_HOME	environment	variable,	35,	142
hadoop.dll,	34
hadoopFile()	method,	66
HadoopRDD,	76
HappyBase	Python	package,	200
hashing	functions,	184
HashPartitioner	class,	121
HBase

defined,	197
HappyBase	Python	package,	200
HFile	objects,	199
overview	of,	7,	197–200
sample	exercise,	200–201

Scala	API,	200
sparsity,	199
tables,	scanning,	198

HCatalog,	164
HDFS	(Hadoop	Distributed	File	System).	See	also	HBase

blocks,	8–9
as	data	source	for	Spark,	17
defined,	7–8
metadata,	9
processes

DataNode,	8–9
NameNode,	9

read	operations,	9–10
write	operations,	9–10

HDP	(Hortonworks	Data	Platform),	32
HFile	objects,	199
higher-order	functions,	24
Hive

accessing,	164
CLI	(command-line	interface),	164
data	model

complex	types,	176
primitive	types,	175–176

datatypes,	164–165
HCatalog,	164
HiveServer2,	164
metastore,	163–164
objects,	163–164
overview	of,	8,	40,	162
tables

creating	data	frames	from,	170–171,	253
writing	DataFrame	output	to,	188

HIVE_CONF_DIR	environment	variable,	143
HiveContext,	47
Hopper,	Grace	Murray,	5
Hortonworks	Data	Platform	(HDP),	32

HUE	(Hadoop	User	Experience),	164

I
IaaS	(Infrastructure-as-a-Service),	39
IaC	(Infrastructure-as-Code),	39
IBM	WebSphere	MQ,	228
immutable	lists.	See	tuples
indexes,	secondary

Apache	Cassandra,	202
DynamoDB,	204

inferring	DataFrame	schemas,	176
Infrastructure-as-a-Service	(IaaS),	39
Infrastructure-as-Code	(IaC),	39
ingestion,	8–9
initializing	RDDs	(Resilient	Distributed	Datasets),	61
inner	joins,	96
Input	Tables,	225
input/output	types,	16
installation

Hadoop,	34
JDK	(Java	Development	Kit)

on	Linux	or	Mac	OS	X,	33
on	Windows,	34

Python,	34
Spark.	See	Spark	deployment

INT	datatype,	165
Integer	datatype,	245
IntegerType,	175
Interactive	Computing	Protocol,	277
interactive	submission,	15
interpreters,	Zeppelin,	279
intersect()	function,	186
intersection()	transformation,	104
IPv6,	disabling,	35

IPython,	275–277
Iris	Data	dataset,	251
isCheckpointed()	method,	136
items	(DynamoDB),	204

J
jars/	directory,	37
Java,	Spark	support	for,	14
Java	Database	Connectivity.	See	JDBC	(Java	Database	Connectivity)
Java	Development	Kit.	See	JDK	(Java	Development	Kit),	installing	Java
Message	Service	(JMS),	228

java	-version	command,	33,	34
Java	Virtual	Machine	(JVM),	13,	46
JAVA_HOME	environment	variable,	142
JavaScript	Object	Notation.	See	JSON	(JavaScript	Object	Notation)
JDBC	(Java	Database	Connectivity),	43,	67

JDBC/ODBC	interface,	192
JdbcRDD,	77

jdbc()	method,	68–69
JDK	(Java	Development	Kit),	installing

on	Linux	or	Mac	OS	X,	33
on	Windows,	34

JMS	(Java	Message	Service),	228
jobs	(Spark),	submitting

in	Local	mode,	28
to	Mesos	cluster,	30
to	standalone	cluster,	29
to	YARN	cluster,	30

join()	function,	96–97,	185–186
join	operations

Bay	Area	Bike	Share	exercise,	100–103
cartesian(),	99–100
cogroup(),	98–99
DataFrames,	185–186

defined,	95
fullOuterJoin(),	98
join(),	96–97,	185–186
leftOuterJoin(),	97
optimizing,	97
rightOuterJoin(),	97
types	of,	95–96

joining-datasets	folder	(GitHub),	103
JSON	(JavaScript	Object	Notation),	20–21

creating	DataFrames	from,	171–172
files,	creating	RDDs	from,	69–70
json	package,	20–21
Jupyter	(IPython)	notebooks,	275–277

json()	method,	69–70,	171–172
Jupyter	(IPython),	275–277
JVM	(Java	Virtual	Machine),	13,	46

K
Kafka

architecture,	229–230
createDirectStream()	method,	232–234
KafkaUtils,	232
sample	application,	234–237
Spark	support	for,	230–232

KafkaUtils	class,	232
KCL	(Kinesis	Client	Library),	238–239
kernels,	Jupyter,	277
keyBy()	function,	86–87
Keynes,	John	Maynard,	243
keys	(Cassandra),	202
keys()	function,	20,	86
keyspaces,	202
key/value	stores,	19,	197
Kinesis,	237

Analytics,	237
documentation,	240
Firehose,	237
KCL	(Kinesis	Client	Library),	238–239
KPL	(Kinesis	Producer	Library),	238
Spark	support	for,	239
Streams

createStream()	method,	239–240
defined,	237–238

k-means	clustering
Spark	ML,	273–274
Spark	MLlib,	269–270

KMeans	package,	270
KPL	(Kinesis	Producer	Library),	238

L
LabeledPoint	objects,	264–265
lambda	syntax,	23–24
latent	Dirichlet	allocation	(LDA),	273
lazy	evaluation,	73
LDA	(latent	Dirichlet	allocation),	273
learning

deep,	41
machine.	See	machine	learning
supervised,	254
unsupervised,	254

left	outer	joins
defined,	96
leftOuterJoin()	transformation,	97

leftOuterJoin()	function,	97
len()	method,	20
levels,	storage

choosing,	131
table	of,	128–129

libraries
boto3,	205
dbutils,	43
KCL	(Kinesis	Client	Library),	238–239
KPL	(Kinesis	Producer	Library),	238
LIBSVM	(library	for	support	vector	machines),	274
NumPy,	264
Pandas,	264
R,	249

library()	function,	249
LIBSVM	(library	for	support	vector	machines),	274
licenses,	contributor,	6
licenses/	directory,	37
lineage

DStreams,	214–215
DStream.checkpoint()	method,	215
StreamingContext.checkpoint()	method,	215

RDDs	(Resilient	Distributed	Datasets),	74–75,	127–128
linear	regression,	SparkR	and,	255–256
Linux,	Spark	installation	on,	32–34
lists,	18,	19
load()	function,	268
loading	data	into	RDDs	(Resilient	Distributed	Datasets),	61
Local	deployment	mode,	28,	56–57
local	directive,	28
locality,	data,	7,	62–63
log	files,	searching	for	errors,	61
log4j.properties	file,	136
log4j.properties.erroronly	file,	136
Logical	datatype,	245
LongType,	175
longwords.collect()	action,	128
longwords.count()	action,	128
lookup()	method,	126
looping_test.py	file,	137
Lucene,	6

M
Mac	OS	X,	Spark	installation	on,	32–34
machine	learning,	259

classification
decision	trees,	262–266,	271–272
defined,	259–260
Naive	Bayes,	266
Spark	ML,	271–273
Spark	MLlib,	262

clustering,	260–261
k-means,	269–270,	273–274

Spark	ML,	273–274
collaborative	filtering

defined,	260
Spark	MLlib,	266–267

feature	extraction,	261
pipelines,	274–275
Spark	ML

classification,	271–272
clustering,	273–274
collaborative	filtering,	272–273
pipelines,	274–275

Spark	MLlib
classification,	262
clustering,	269–270
collaborative	filtering,	266–267
movie	recommender	application,	266–267

MAP	datatype,	165
map()	function,	18,	24,	77–78,	182
mapPartitions()	method,	126–127
MapR	Converged	Data	Platform,	32
MapReduce

GCP	(Google	Cloud	Platform),	41
Spark	deployment	on,	40–41
WordCount	exercise,	92–95

“MapReduce:	Simplified	Data	Processing	on	Large	Clusters”	(whitepaper),
6,	13

MapType,	176
mapValues()	function,	87
Masters,	38,	51–52
master/slave	model,	8
math	functions,	184
matrices,	245–247
matrix	command,	247
matrix	factorization,	266
MatrixFactorizationModel.load()	function,	268
max()	transformation,	106

%md	(Markdown)	interpreter,	279
mean()	transformation,	106
Memcached,	206
memory	sinks,	226
MEMORY_AND_DISK	constant,	129,	130
MEMORY_AND_DISK_2	constant,	130
MEMORY_AND_DISK_SER	constant,	130
MEMORY_AND_DISK_SER*	constant,	129
MEMORY_AND_DISK_SER_2	constant,	130
MEMORY_ONLY	constant,	129,	130
MEMORY_ONLY_2	constant,	130
MEMORY_ONLY_SER	constant,	130
MEMORY_ONLY_SER*	constant,	129
MEMORY_ONLY_SER_2	constant,	130
Mesos,	30
message-oriented	middleware	(MOM),	228
messaging	systems,	Spark	with,	228

Amazon	Kinesis,	237
Analytics,	237
createStream()	method,	239–240
documentation,	240
Firehose,	237
KCL	(Kinesis	Client	Library),	238–239
Kinesis	Streams,	237–238
KPL	(Kinesis	Producer	Library),	238
Spark	support	for,	239

Apache	Kafka
architecture,	229–230
createDirectStream()	method,	232–234
KafkaUtils,	232
sample	application,	234–237
Spark	support	for,	230–232

MOM	(message-oriented	middleware),	228
metadata,	9

columns()	method,	179
dtypes()	method,	179

operations,	179
metastores

configuration,	35
Hive,	163–164

methods.	See	functions	and	methods
Microsoft	Message	Queuing	(MSMQ),	228
min()	transformation,	105–106
MLlib

classification,	262
clustering,	269–270
collaborative	filtering,	266–267
movie	recommender	application,	266–267

model.save()	function,	268
modules

cPickle,	22
pickle,	22
urllib2,	119

MOM	(message-oriented	middleware),	228
MongoDB,	206
movie	recommender	application,	266–267
Movielens	dataset,	267–269
MSMQ	(Microsoft	Message	Queuing),	228
mtcars	dataset,	251–252
multi-node	standalone	clusters,	37–39
multiple	DataFrames

grouping,	187
joining,	185–186
ordering,	186–187

N
Naive	Bayes,	266
NaiveBayes	package,	266
named	functions,	23–24
NameNode	process,	9

names,	SparkSession,	47
narrow	operations,	74
neural	networks,	41
NewHadoopRDD,	76
NodeManagers,	10–12
nodes,	8

DAGs	(directed	acyclic	graphs)	of,	48
quorum	of,	230

non-interactive	submission,	16
non-splittable	compression	formats,	62
NoSQL	systems,	7,	195–196

Apache	Cassandra,	201–204
characteristics	of,	196
DynamoDB,	204–206
HBase

defined,	197
HappyBase	Python	package,	200
overview	of,	197–200
sample	exercise,	200–201
Scala	API,	200

types	of,	196–197
notebooks,	275

Apache	Zeppelin,	278–279
Jupyter	(IPython),	275–277

Numeric	datatype,	245
numeric	value	operations,	105–106,	249

max(),	106
mean(),	106
min(),	105–106
stats(),	108
stdev(),	107
sum(),	107
variance(),	107

NumPy,	264
Nutch,	6

O
object	files

creating	RDDs	from,	66
defined,	66

objectFile()	method,	66
objects.	See	also	classes;	DataFrames

DenseVector,	271
DStreams,	211–212

broadcast	variables	and	accumulators,	216
caching	and	persistence,	215
lineage	and	checkpointing,	214–215
output	operations,	216–218
sources,	212–213
transformations,	213–214

Estimator,	274
HFile,	199
Hive,	163–164
HiveContext,	47
JSON	(JavaScript	Object	Notation),	creating	DataFrames	from,	171–172
LabeledPoint,	264–265
Pipeline,	274
Row,	271
SparkConf,	47
SparkContext,	47,	211
SparkSession,	46–48,	211,	250
SparseVector,	271
SQLContext,	47
StreamingContext,	47,	211
StructField,	178
Transformer,	274

observations	(R),	252
OFF_HEAP	constant,	130
OFF_HEAP	storage	level,	129
operations.	See	also	functions	and	methods

narrow,	74

wide,	75
operators,	assignment	(<-),	244
Optimized	Row	Columnar	(ORC)	files,	173
optimizing	Spark,	148

applications,	152–153
dynamic	allocation,	153
parallelism,	152–153
performance	issues,	155–159

associative	operations,	149–150
data	collection,	152
filtering,	149
functions	and	closures,	151–152
join	operations,	97
partitions,	153–155

ORC	(Optimized	Row	Columnar)	files,	173
orc()	method,	174–175
ORCFile	format,	Spark	support	for,	17
orderBy()	function,	186–187
outer	joins

defined,	96
transformations

fullOuterJoin(),	98
leftOuterJoin(),	97
rightOuterJoin(),	97

output	modes	(Spark	Streaming),	226–227
output	operations,	DStreams,	216–218

foreachRDD()	method,	217–218
pprint()	method,	216
saveAsTextFiles()	method,	217

output	sinks,	225
console	sinks,	226
file	sinks,	225–226
memory	sinks,	226

outputMode()	method,	227

P
PaaS	(Platform-as-a-Service),	39
packages

datasets,	251
defined,	20–21
HappyBase,	200
json,	20–21
KMeans,	270
NaiveBayes,	266
pyspark-cassandra,	203
R	language,	248–249

PairRDDs
defined,	76
transformations,	85–92

flatMapValues(),	87–89
foldByKey(),	91
groupByKey(),	89
keyBy(),	86–87
keys(),	86
mapValues(),	87
reduceByKey(),	90
sortByKey(),	91–92
values(),	86

Pandas,	264
ParallelCollectionRDD,	77
parallelism,	optimizing,	152–153
parallelize()	method,	71
parent	RDDs	(Resilient	Distributed	Datasets),	74–75
parentheses	(),	19
Parquet

file	compression,	174
overview	of,	173

parquet()	method,	173–174,	190–191
Partial	DAG	execution	(PDE),	166
partitionBy()	function,	123

PartitionPruningRDD,	77
partitions,	120

Apache	Kafka,	229
API	methods

foreachPartition(),	125–126
glom(),	126
lookup(),	126
mapPartitions(),	126–127

controlling,	121–122
keys,	202
optimal	number	of,	123
optimizing,	153–155
overview	of,	120–121
repartitioning	functions

coalesce(),	124
partitionBy(),	123
repartition(),	123–124
repartitionAndSortWithinPartitions(),	124–125

statistics,	166
PDE	(Partial	DAG	execution),	166
persist()	method,	73–74,	132,	187,	215
persistence

DataFrames,	187
DStreams,	215
RDDs	(Resilient	Distributed	Datasets),	73–74,	131–132

persist()	method,	132
unpersist()	method,	132–134
when	to	use,	134

Pi	Estimator,	33,	38
Pickle,	22
pickleFile()	method,	22
Pig,	8,	40,	164
pip	command,	200
pipe()	method,	138–139
pipelines,	Spark	ML,	274–275
planning	applications,	48

Platform-as-a-Service	(PaaS),	39
populating	RDDs	(Resilient	Distributed	Datasets),	61
pprint()	method,	216
precedence,	Spark	configuration	properties,	148
predict()	function,	256,	266,	266
predictive	analytics,	SparkR	and,	253–254
predictive	modeling,	SparkR	and,	254–255
Presto,	40
primary	keys,	202
primitive	types,	175–176
printSchema()	method,	176
probability	functions,	249
processes

DataNode,	8–9
NameNode,	9

Producer	Library	(Kinesis),	238
producers	(Kafka),	229
programming	(Spark)

PySpark	shell,	15
RDD	(Resilient	Distributed	Dataset),	16
Scala	shell,	15
Standalone	scheduler

multi-node	standalone	clusters,	37–39
Standalone	deployment	mode,	28–29

submission	types
interactive,	15
non-interactive,	16

Workers,	38
programming	interfaces,	14
properties

RDDs	(Resilient	Distributed	Datasets),	60
Spark	configuration

configuration	management,	148
precedence,	148
setting,	145–147
table	of,	145

pyspark	command,	30
PySpark	shell,	15,	53–54
PYSPARK_DRIVER_PYTHON	environment	variable,	142
PYSPARK_PYTHON	environment	variable,	142
pyspark-cassandra	package,	203
pyspark.mllib.clustering.KMeans	package.270
Python,	17.	See	also	functions	and	methods

data	structures
dicts,	19–20
lists,	18
sets,	18
tuples,	18–19

docstrings,	183
functions

anonymous	functions,	23–24
closures,	24–25
higher-order	functions,	24
lambda	syntax,	23–24
named	functions,	23–24

HappyBase	package,	200
installation,	34
libraries

boto3,	205
NumPy,	264
Pandas,	264

modules
cPickle,	22
pickle,	22
urllib2,	119

PySpark	shell,	15,	53–54
serialization

JSON	(JavaScript	Object	Notation),	20–21
Pickle,	22

python/	directory,	37
%python	interpreter,	279
PythonRDD,	77

Q
quit()	method,	36
quorum	of	nodes,	230

R
R	CMD	INSTALL	command,	249
R/	directory,	37
R	language,	244.	See	also	functions	and	methods;	methods

batch	mode,	251
data	frames

creating,	247–248,	251–253
defined,	245

data	structures,	245–247
datasets

golf/weather,	262–263
Movielens,	267–269
mtcars,	251–252
splitting,	263–264

datatypes,	245
functions,	248–249
history	of,	244
packages,	248–249,	251
SparkR,	243

accessing,	250–251
data	frames,	251–253
data	mining,	254–255
documentation,	250
linear	regression,	255–256
predictive	analytics,	253–254
predictive	modeling,	254–255
RStudio	with,	257–258

RabbitMQ,	228
randomSplit()	function,	263–264

range()	method,	71–72
rdd()	method,	175
RDDs	(Resilient	Distributed	Datasets),	111

actions,	81
collect(),	82
count(),	81
defined,	59,	60
example	of,	72
first(),	83
fold(),	84–85
foreach(),	85
reduce(),	84
take(),	82
top(),	82–83

caching
example	of,	131
when	to	use,	134

checkpointing,	134–135
checkpoint()	method,	135
getCheckpointFile()	method,	136
isCheckpointed()	method,	136
sample	exercise,	136–138
setCheckpointDir()	method,	135

converting	DataFrames	to,	175
creating

from	data	sources,	66–69
from	files,	61–63
from	JSON	files,	69–70
from	object	files,	66
programmatically,	71–72
from	text	files,	63–66

data	sampling,	139
sample()	function,	140
takeSample()	function,	140–141

DataFrames	created	from,	169
defined,	16

documentation	for,	77
explained,	59–61
fault	tolerance,	76
join	operations

Bay	Area	Bike	Share	exercise,	100–103
cartesian(),	99–100
cogroup(),	98–99
defined,	95
fullOuterJoin(),	98
join(),	96–97
leftOuterJoin(),	97
optimizing,	97
rightOuterJoin(),	98
types	of,	95–96

lazy	evaluation,	73
lineage,	74–75,	127–128
loading	data	into,	61
MapReduce

GCP	(Google	Cloud	Platform),	41
Spark	deployment	on,	40–41
WordCount	exercise,	92–95

numeric	value	operations,	105–106
max(),	106
mean(),	106
min(),	105–106
stats(),	108
stdev(),	107
sum(),	107
variance(),	107

PairRDDs
defined,	76
transformations,	85–92

parent/child,	74–75
partitions,	120

controlling,	121–122
foreachPartition()	method,	125–126

glom()	method,	126
lookup()	method,	126
mapPartitions()	method,	126–127
optimal	number	of,	123
optimizing,	153–155
overview	of,	120–121
statistics,	166

performing	functions	on,	217–218
persistence,	73–74,	131–132

persist()	method,	132
unpersist()	method,	132–134
when	to	use,	134

processing	with	external	programs,	138
pipe()	method,	138–139
potential	problems	with,	138

properties	of,	60
repartitioning	functions

coalesce(),	124
partitionBy(),	123
repartition(),	123–124
repartitionAndSortWithinPartitions(),	124–125

reuse,	73–74
saving	as	text	files,	217
set	operations,	103

intersection(),	104
subtract(),	104–105
subtractByKey(),	105
union(),	104

shared	variables
accumulators,	116–119
broadcast	variables,	112–116
sample	exercise,	119–120

storage	options
getStorageLevel()	function,	130
storage	levels,	128–129
storage-level	flags,	129–130

transformations,	77
cartesian(),	99–100
coarse-grained,	72
cogroup(),	98–99
defined,	59
distinct(),	79–80
example	of,	72
filter(),	79
fine-grained,	72
flatMap(),	78
flatMapValues(),	87–89
foldByKey(),	91
fullOuterJoin(),	98
groupBy(),	80
groupByKey(),	89
intersection(),	104
join(),	96–97
keyBy(),	86–87
keys(),	86
leftOuterJoin(),	97
map(),	77–78
mapValues(),	87
max(),	106
mean(),	106
min(),	105–106
reduceByKey(),	90
rightOuterJoin(),	97
sortBy(),	81
sortByKey(),	91–92
stats(),	108
stdev(),	107
subtract(),	104–105
subtractByKey(),	105
sum(),	107
union(),	104
values(),	86

variance(),	107
types	of,	76–77

read	command,	248
read.csv(),	248
read.df(),	252
read.fwf(),	248
read.jdbc(),	68–69
read.json(),	69–70,	171–172,	253
read.parquet(),	253
read.table(),	248

read()	method,	67
read	operations	(HDFS),	9–10
readStream()	method,	224
receivers	(Kafka),	231
recommendation-engine	folder	(GitHub),	269
recommender	application,	266–267
Redis,	206
Redshift,	237
reduce()	action,	84
reduceByKey()	function,	24,	90,	149–150
reduceByKeyAndWindow()	method,	223
reflection,	176
region	servers,	199
regions,	199
regression,	linear,	255–256
repartition()	method,	123–124,	154
repartitionAndSortWithinPartitions()	method,	124–125
repartitioning

DataFrames,	187
RDDs	(Resilient	Distributed	Datasets)

coalesce(),	124
partitionBy(),	123
repartition(),	123–124
repartitionAndSortWithinPartitions(),	124–125

Resilient	Distributed	Datasets.	See	RDDs	(Resilient	Distributed	Datasets)
ResourceManagers,	10–12,	53

Result	Tables,	225
ret_message()	function,	25
Riak,	206
right	outer	joins

defined,	96
rightOuterJoin()	transformation,	97

rightOuterJoin()	function,	97
Row	objects,	271
RStudio,	SparkR	and,	257–258

S
S3,	237
SaaS	(Software-as-a-Service),	39
sample()	function,	140,	183
sampleBy()	function,	183
sampling	data,	139

sample()	function,	140
takeSample()	function,	140–141

save()	function,	268
saveAsPickleFile()	method,	22
saveAsTable()	method,	188
saveAsTextFile()	function,	17
saveAsTextFiles()	method,	217
saving	DataFrame	output

to	files,	188–191
to	Hive	tables,	188

sbin/	directory,	37
Scala,	13,	14,	15,	31,	200
scanning	HBase	tables,	198
scheduler.	See	Standalone	scheduler
scheduling	applications,	10–13
schema-on-read	systems,	7
schema-on-write	systems,	7
SchemaRDD,	76

schemas,	DataFrame,	252–253
defining,	178
inferring,	176

schemes,	filesystem,	63
Scikit-learn	project,	274
searching,	log	files	for	errors,	61
secondary	indexes

Apache	Cassandra,	202
DynamoDB,	204

select()	method,	180–181,	183
sequenceFile()	method,	66
SequenceFileRDD,	76
serialization

JSON	(JavaScript	Object	Notation),	20–21
Pickle,	22

servers
region	servers,	199
Spark	History	Server,	158–159
Thrift	JDBC/ODBC,	192,	194–195

session()	function,	253
set	operations,	103

intersection(),	104
subtract(),	104–105
subtractByKey(),	105
union(),	104

setCheckpointDir()	method,	135
%sh	(Shell	commands)	interpreter,	279
Shakespeare	text-streaming	application,	218–219
shared	nothing	operations,	7,	77
shared	variables,	111

accumulators,	116–117
accumulator()	method,	117
custom,	117–118
uses	for,	118
value()	method,	117

broadcast	variables,	112

broadcast()	method,	112–113
unpersist()	method,	114–116
value()	method,	113

sample	exercise,	119–120
shells

beeline
overview	of,	193
sample	exercise,	194–195

PySpark,	15,	53–54
Scala,	15
sparkR,	250
spark-sql,	191

ShortType,	175
show()	method,	180
ShuffledRDD,	77
shuffling,	73,	156–157
Simple	Queue	Service	(SQS),	228
SimpleConsumer	API,	231
sinks,	data,	225

console	sinks,	226
file	sinks,	225–226
memory	sinks,	226

sliding	window	operations,	221
reduceByKeyAndWindow()	method,	223
window()	method,	222–223

SMALLINT	datatype,	165
Snappy,	62
socket	sources	(Structured	Streaming),	225
socketTextStream()	method,	212–213,	225
Software-as-a-Service	(SaaS),	39
Solr,	206
sortBy()	function,	81
sortByKey()	function,	91–92
sources

DStream,	212,	213
socketTextStream()	method,	212–213

textFileStream()	method,	213
Structured	Streaming,	224

file	sources,	224–225
socket	sources,	225

Spark,	overview	of,	13,	257–258
Hadoop	and

HDFS	(Hadoop	Distributed	File	System),	17
YARN	(Yet	Another	Resource	Negotiator),	17

history	of,	13
input/output	types,	16
programming	interfaces,	14
uses	for,	14

Spark	cluster	architecture,	45–46
Cluster	Managers,	52–53
Driver,	46–49
Executors,	49–51
illustrated,	46
Masters,	51–52
Standalone	scheduler,	53
Workers,	49–51
YARN	(Yet	Another	Resource	Negotiator),	53–57

Spark	configuration
environment	variables,	141–142

defaults,	147
HADOOP_CONF_DIR,	142
HADOOP_HOME,	142
HIVE_CONF_DIR,	143
JAVA_HOME,	142
PYSPARK_DRIVER_PYTHON,	142
PYSPARK_PYTHON,	142
SPARK_CLASSPATH,	144
SPARK_DAEMON_MEMORY,	144
SPARK_DRIVER_MEMORY,	143
SPARK_EXECUTOR_CORES,	143
SPARK_EXECUTOR_INSTANCES,	143
SPARK_EXECUTOR_MEMORY,	143

SPARK_HOME,	142
SPARK_LOCAL_IP,	144
SPARK_MASTER_IP,	144
SPARK_MASTER_OPTS,	144
SPARK_MASTER_PORT,	144
SPARK_MASTER_WEBUI_PORT,	144
SPARK_PUBLIC_DNS,	144
SPARK_WORKER_CORES,	144
SPARK_WORKER_DIR,	144
SPARK_WORKER_INSTANCES,	144
SPARK_WORKER_MEMORY,	144
SPARK_WORKER_OPTS,	144
SPARK_WORKER_PORT,	144
SPARK_WORKER_WEBUI_PORT,	144
SPARK_YARN_APP_NAME,	143
SPARK_YARN_DIST_ARCHIVES,	143
SPARK_YARN_DIST_FILES,	143
SPARK_YARN_QUEUE,	143
SPARKR_DRIVER_R,	142
YARN_CONF_DIR,	142

optimizing,	148
applications,	152–153,	155–159
associative	operations,	149–150
data	collection,	152
filtering,	149
functions	and	closures,	151–152
partitions,	153–155

properties
configuration	management,	148
precedence,	148
setting,	145–147
table	of,	145

Spark	Core	API.	See	RDDs	(Resilient	Distributed	Datasets)
Spark	deployment,	27

in	the	cloud,	39
AWS	(Amazon	Web	Services),	39–41

Databricks,	42–43
installation	directory	contents,	36–37
on	Linux	or	Mac	OS	X,	32–34
Masters,	38
modes

Client,	28–29,	53–55
Cluster,	28–29,	55–56
Local,	28,	56–57
on	Mesos,	30
Spark	Standalone,	28–29

multi-node	standalone	clusters,	37–39
preparation	for,	30–31
releases,	downloading,	31–32
requirements	for,	31
on	Windows,	34–36

Spark	History	Server,	158–159
%spark	interpreter,	279
Spark	ML

classification,	271–272
clustering,	273–274
collaborative	filtering,	272–273
pipelines,	274–275

Spark	MLlib
classification,	262
clustering,	269–270
collaborative	filtering,	266–267
movie	recommender	application,	266–267

Spark	SQL,	161.	See	also	DataFrames
accessing,	191

beeline	shell,	193,	194–195
external	applications,	194
sample	exercise,	194–195
spark-sql	shell,	191
Thrift	JDBC/ODBC	server,	192,	194–195

architecture,	166–167
extensions,	166

high-level	architecture,	167
SparkSession	entry	point,	167–168

HBase
HFile	objects,	199
sparsity,	199

Hive
accessing,	164
CLI	(command-line	interface),	164
datatypes,	164–165
HCatalog,	164
HiveServer2,	164
metastore,	163–164
objects,	163–164
overview	of,	162
writing	DataFrame	output	to,	188

NoSQL	systems,	195–196
Apache	Cassandra,	201–204
characteristics	of,	196
DynamoDB,	204–206
HBase,	196–201
types	of,	196–197

reflection,	176
Spark	Streaming,	209–210

architecture,	210–211
DataFrames

basic	operations,	180–183
metadata	operations,	179

DStreams,	211–212
broadcast	variables	and	accumulators,	216
caching	and	persistence,	215
lineage	and	checkpointing,	214–215
output	operations,	216–218
sources,	212–213
transformations,	213–214

goals	of,	210
messaging	systems,	228

Amazon	Kinesis,	237–240
Apache	Kafka,	229–237

output	modes,	226–227
sample	application,	218–219
sliding	window	operations,	221

reduceByKeyAndWindow()	method,	223
window()	method,	222–223

state	operations,	219–221
Structured	Streaming,	223–224

data	sinks,	225–226
data	sources,	224–225

structured	streaming	operations,	227–228
SPARK_CLASSPATH	environment	variable,	144
SPARK_DAEMON_MEMORY	environment	variable,	144
SPARK_DRIVER_MEMORY	environment	variable,	143
SPARK_EXECUTOR_CORES	environment	variable,	143
SPARK_EXECUTOR_INSTANCES	environment	variable,	143
SPARK_EXECUTOR_MEMORY	environment	variable,	143
SPARK_HOME	directory,	36–37
SPARK_HOME	environment	variable,	33,	142
SPARK_LOCAL_IP	environment	variable,	144
SPARK_MASTER_IP	environment	variable,	144
SPARK_MASTER_OPTS	environment	variable,	144
SPARK_MASTER_PORT	environment	variable,	144
SPARK_MASTER_WEBUI_PORT	environment	variable,	144
SPARK_PUBLIC_DNS	environment	variable,	144
SPARK_WORKER_CORES	environment	variable,	144
SPARK_WORKER_DIR	environment	variable,	144
SPARK_WORKER_INSTANCES	environment	variable,	144
SPARK_WORKER_MEMORY	environment	variable,	144
SPARK_WORKER_OPTS	environment	variable,	144
SPARK_WORKER_PORT	environment	variable,	144
SPARK_WORKER_WEBUI_PORT	environment	variable,	144
SPARK_YARN_APP_NAME	environment	variable,	143
SPARK_YARN_DIST_ARCHIVES	environment	variable,	143
SPARK_YARN_DIST_FILES	environment	variable,	143

SPARK_YARN_QUEUE	environment	variable,	143
spark.broadcast.blockSize	option,	114
spark.broadcast.compress	option,	114
spark.broadcast.factory	option,	114
spark.broadcast.port	option,	114
SparkConf,	47
SparkContext,	47,	211
spark.default.parallelism	property,	121
spark-defaults.conf	file,	38
spark.driver.extraClassPath	property,	145–147
spark.driver.extraJavaOptions	property,	145–147
spark.driver.memory	property,	145–147
spark.dynamicAllocation.enabled	property,	145–147
spark-env.sh	file,	38
spark.executor.cores	property,	145–147
spark.executor.extraClassPath	property,	145–147
spark.executor.extraJavaOptions	property,	145–147
spark.executor.memory	property,	145–147
spark-hbase-connector,	201
spark.master	property,	145–147
%spark.pyspark	interpreter,	279
SparkR,	243,	250

accessing,	250–251
data	frames,	creating,	251–253
data	mining,	254–255
documentation,	250
linear	regression,	255–256
predictive	analytics,	253–254
predictive	modeling,	254–255
RStudio	and,	257–258

SPARKR_DRIVER_R	environment	variable,	142
sparkR.session()	function,	253
SparkSession,	46–48,	167–168,	211,	250
spark-shell	command,	30
spark.shuffle.service.enabled	property,	145–147
%spark.sql	interpreter,	279

spark-sql	shell,	191
spark-streaming-kafka-assembly.jar	file,	232
spark-submit	command,	16,	30,	55–56,	192
SparseVector	object,	271
sparsity,	HBase	support	for,	199
splittable	compression	formats,	62
splitting	datasets,	263–264
SQL	(Structured	Query	Language).	See	Spark	SQL
sql()	function,	170,	253
SQLContext,	47
Sqoop,	8
SQS	(Simple	Queue	Service),	228
square	brackets	([]),	19
stages

defined,	48
dependencies,	48

Standalone	deployment	mode	(Spark),	28–29
Standalone	scheduler,	53

daemon	environment	variables,	144
multi-node	standalone	clusters,	37–39
Standalone	deployment	mode,	28–29

start()	method,	211
state	operations	(Spark	Streaming),	219–221
statements

CREATE	TABLE,	165
def,	23
DROP	TABLE,	165
UPDATE,	163

statistical	functions,	184,	249
statistics,	partition,	166
stats()	transformation,	108
stdev()	transformation,	107
stop()	method,	211
stop-word-list.csv	file,	119
storage,	173

columnar,	166

getStorageLevel()	function,	130
storage	levels

choosing,	131
table	of,	128–129

storage-level	flags,	129–130
StorageClass	constructor,	129
storage-level	flags,	129–130
stream	processing.	See	Spark	Streaming
StreamingContext,	47,	211,	215
streaming-wordcount	folder,	219
STRING	datatype,	165
string	datatypes

Hive,	165
Spark	primitive	type,	176

string	functions,	184
StringType,	176
STRUCT	datatype,	165
struct	datatypes

Hive,	165
Spark	primitive	type,	176

StructField	objects,	178
StructType,	176,	178
Structured	Query	Language.	See	Spark	SQL
Structured	Streaming,	223–224

data	sinks,	225
console	sinks,	226
file	sinks,	225–226
memory	sinks,	226

data	sources,	224
file	sources,	224–225
socket	sources,	225

operations,	227–228
structures,	data.	See	data	structures
submitting	Spark	jobs

interactive,	15
in	Local	mode,	28

to	Mesos	cluster,	30
non-interactive,	16
to	standalone	cluster,	29
to	YARN	cluster,	30

subtract()	function,	104–105,	186
subtractByKey()	transformation,	105
sum()	transformation,	107
summary()	function,	255–256
supervised	learning,	254

T
table()	function,	170–171
tables

Cassandra,	202
DynamoDB,	204
HBase,	198
Hive

creating	data	frames	from,	170–171,	253
writing	DataFrame	output	to,	188

tablets,	199
take()	action,	82,	152
takeSample()	function,	140–141,	152
tasks

defined,	48
optimizing	execution	of,	156–157

Tensor	Processing	Units	(TPUs),	41
TensorFlow,	41
Term	Frequency-Inverse	Document	Frequency	(TF-IDF),	92,	261
testing

multi-node	standalone	clusters,	38
Spark	installation

on	Linux	or	Mac	OS	X,	33
on	Windows,	35

text	files

creating	RDDs	from,	63
textFile()	method,	63–64
wholeTextFiles()	method,	64–66

saving	RDDs	as,	217
text()	method,	173
textFile()	method,	17,	63–64
Tez,	173
TF-IDF	(Term	Frequency-Inverse	Document	Frequency),	92,	261
Thrift	JDBC/ODBC	server

overview	of,	192
sample	exercise,	194–195

TIBCO	EMS	(Enterprise	Message	Service),	228
TIMESTAMP	datatype,	165
timestamp	types

Hive,	165
Spark	primitive,	176

TimestampType,	176
TINYINT	datatype,	165
toDebugString()	function,	128
Toffler,	Alvin,	111
top()	action,	82–83
Torvalds,	Linus,	59
TPUs	(Tensor	Processing	Units),	41
train()	method,	266
trainClassifier()	function,	265
transform()	method,	274
transformations,	48,	77

cartesian(),	99–100
coarse-grained,	72
cogroup(),	98–99
defined,	59
distinct(),	79–80
DStreams,	213–214
example	of,	72
filter(),	79
fine-grained,	72

flatMap(),	78
flatMapValues(),	87–89
foldByKey(),	91
fullOuterJoin(),	98
groupBy(),	80
groupByKey(),	89
intersection(),	104
join(),	96–97
keyBy(),	86–87
keys(),	86
leftOuterJoin(),	97
map(),	77–78
mapValues(),	87
max(),	106
mean(),	106
min(),	105–106
reduceByKey(),	90
rightOuterJoin(),	97
sortBy(),	81
sortByKey(),	91–92
stats(),	108
stdev(),	107
subtract(),	104–105
subtractByKey(),	105
sum(),	107
union(),	104
values(),	86
variance(),	107

Transformer	objects,	274
treeAggregate()	function,	150
treeReduce()	function,	150
tuple()	function,	19
tuples,	18–19

U

udf()	method,	184–185
UDFs	(user-defined	functions),	184–185
union()	transformation,	104
UnionRDD,	77
unpersist()	method,	114–116,	132–134,	187
unsupervised	learning,	254
update	output	mode,	227
UPDATE	statement,	163
updateStateByKey()	method,	220–221
URI	structures,	63
urllib2	Python	module,	119
user-defined	functions	(UDFs),	184–185

V
value()	method,	113,	117
values()	method,	20,	86
var	structure,	245–246
variables

environment,	141–142
defaults,	147
HADOOP_CONF_DIR,	142
HADOOP_HOME,	35,	142
HIVE_CONF_DIR,	143
JAVA_HOME,	142
PYSPARK_DRIVER_PYTHON,	142
PYSPARK_PYTHON,	142
SPARK_CLASSPATH,	144
SPARK_DAEMON_MEMORY,	144
SPARK_DRIVER_MEMORY,	143
SPARK_EXECUTOR_CORES,	143
SPARK_EXECUTOR_INSTANCES,	143
SPARK_EXECUTOR_MEMORY,	143
SPARK_HOME,	33,	142
SPARK_LOCAL_IP,	144

SPARK_MASTER_IP,	144
SPARK_MASTER_OPTS,	144
SPARK_MASTER_PORT,	144
SPARK_MASTER_WEBUI_PORT,	144
SPARK_PUBLIC_DNS,	144
SPARK_WORKER_CORES,	144
SPARK_WORKER_DIR,	144
SPARK_WORKER_INSTANCES,	144
SPARK_WORKER_MEMORY,	144
SPARK_WORKER_OPTS,	144
SPARK_WORKER_PORT,	144
SPARK_WORKER_WEBUI_PORT,	144
SPARK_YARN_APP_NAME,	143
SPARK_YARN_DIST_ARCHIVES,	143
SPARK_YARN_DIST_FILES,	143
SPARK_YARN_QUEUE,	143
SPARKR_DRIVER_R,	142
YARN_CONF_DIR,	142

R,	252
shared,	111

accumulators,	116–119
broadcast	variables,	112–116
sample	exercise,	119–120

variance()	transformation,	107
vectors,	245–246
Venn	diagrams,	103
Virtual	Private	Cloud	(VPC),	39
VPC	(Virtual	Private	Cloud),	39

W
Waikato	Environment	for	Knowledge	Analysis	(WEKA),	263
WALs	(write-ahead	logs),	229
weather	dataset,	262–263
WEKA	(Waikato	Environment	for	Knowledge	Analysis),	263

wget	command,	33
wholeTextFiles()	method,	64–66,	76
wide	operations,	75
window()	method,	222–223
windowing	functions,	184
windows,	sliding	window	operations,	221

reduceByKeyAndWindow()	method,	223
window()	method,	222–223

Windows,	Spark	installation	on,	34–36
winutils.exe,	34
WordCount	exercise,	92–95
Workers,	38,	49–51
write	operations	(HDFS),	9–10
write-ahead	logs	(WALs),	229
write.csv()	method,	189–190
write.parquet()	method,	190–191
writeStream()	method,	227
writing	DataFrame	output

to	files,	188–191
to	Hive	tables,	188

X-Y
Yahoo!,	6
YARN	(Yet	Another	Resource	Negotiator),	7–8

application	scheduling	with,	10–13
ApplicationMaster,	11–12
applications	running	on,	53–57

ApplicationMaster,	53
deployment	modes,	53–57
ResourceManager,	53

environment	variables,	143
NodeManagers,	10–12
as	resource	scheduler	for	Spark,	17
ResourceManager,	10–12

Spark	jobs,	submitting,	30
Spark	on,	28–29

yarn/	directory,	37
YARN_CONF_DIR	environment	variable,	142
Yet	Another	Resource	Negotiator.	See	YARN	(Yet	Another	Resource
Negotiator)

Z
Zaharia,	Matei,	13
Zeppelin,	40–41

interpreters,	279
notebooks,	278–279

zero()	function,	118
ZeroMQ	(ØMQ),	228
ZIP	format,	62
ZooKeeper,	230,	234–237

Code	Snippets

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About This E-Book
	Preface
	Introduction
	I: Spark Foundations
	1 Introducing Big Data, Hadoop, and Spark
	Introduction to Big Data, Distributed Computing, and Hadoop
	A Brief History of Big Data and Hadoop
	Hadoop Explained

	Introduction to Apache Spark
	Apache Spark Background
	Uses for Spark
	Programming Interfaces to Spark
	Submission Types for Spark Programs
	Input/Output Types for Spark Applications
	The Spark RDD
	Spark and Hadoop

	Functional Programming Using Python
	Data Structures Used in Functional Python Programming
	Python Object Serialization
	Python Functional Programming Basics

	Summary

	2 Deploying Spark
	Spark Deployment Modes
	Local Mode
	Spark Standalone
	Spark on YARN
	Spark on Mesos

	Preparing to Install Spark
	Getting Spark
	Installing Spark on Linux or Mac OS X
	Installing Spark on Windows
	Exploring the Spark Installation
	Deploying a Multi-Node Spark Standalone Cluster
	Deploying Spark in the Cloud
	Amazon Web Services (AWS)
	Google Cloud Platform (GCP)
	Databricks

	Summary

	3 Understanding the Spark Cluster Architecture
	Anatomy of a Spark Application
	Spark Driver
	Spark Workers and Executors
	The Spark Master and Cluster Manager

	Spark Applications Using the Standalone Scheduler
	Spark Applications Running on YARN

	Deployment Modes for Spark Applications Running on YARN
	Client Mode
	Cluster Mode
	Local Mode Revisited

	Summary

	4 Learning Spark Programming Basics
	Introduction to RDDs
	Loading Data into RDDs
	Creating an RDD from a File or Files
	Methods for Creating RDDs from a Text File or Files
	Creating an RDD from an Object File
	Creating an RDD from a Data Source
	Creating RDDs from JSON Files
	Creating an RDD Programmatically

	Operations on RDDs
	Key RDD Concepts
	Basic RDD Transformations
	Basic RDD Actions
	Transformations on PairRDDs
	MapReduce and Word Count Exercise
	Join Transformations
	Joining Datasets in Spark
	Transformations on Sets
	Transformations on Numeric RDDs

	Summary

	II: Beyond the Basics
	5 Advanced Programming Using the Spark Core API
	Shared Variables in Spark
	Broadcast Variables
	Accumulators
	Exercise: Using Broadcast Variables and Accumulators

	Partitioning Data in Spark
	Partitioning Overview
	Controlling Partitions
	Repartitioning Functions
	Partition-Specific or Partition-Aware API Methods

	RDD Storage Options
	RDD Lineage Revisited
	RDD Storage Options
	RDD Caching
	Persisting RDDs
	Choosing When to Persist or Cache RDDs
	Checkpointing RDDs
	Exercise: Checkpointing RDDs

	Processing RDDs with External Programs
	Data Sampling with Spark
	Understanding Spark Application and Cluster Configuration
	Spark Environment Variables
	Spark Configuration Properties

	Optimizing Spark
	Filter Early, Filter Often
	Optimizing Associative Operations
	Understanding the Impact of Functions and Closures
	Considerations for Collecting Data
	Configuration Parameters for Tuning and Optimizing Applications
	Avoiding Inefficient Partitioning
	Diagnosing Application Performance Issues

	Summary

	6 SQL and NoSQL Programming with Spark
	Introduction to Spark SQL
	Introduction to Hive
	Spark SQL Architecture
	Getting Started with DataFrames
	Using DataFrames
	Caching, Persisting, and Repartitioning DataFrames
	Saving DataFrame Output
	Accessing Spark SQL
	Exercise: Using Spark SQL

	Using Spark with NoSQL Systems
	Introduction to NoSQL
	Using Spark with HBase
	Exercise: Using Spark with HBase
	Using Spark with Cassandra
	Using Spark with DynamoDB
	Other NoSQL Platforms

	Summary

	7 Stream Processing and Messaging Using Spark
	Introducing Spark Streaming
	Spark Streaming Architecture
	Introduction to DStreams
	Exercise: Getting Started with Spark Streaming
	State Operations
	Sliding Window Operations

	Structured Streaming
	Structured Streaming Data Sources
	Structured Streaming Data Sinks
	Output Modes
	Structured Streaming Operations

	Using Spark with Messaging Platforms
	Apache Kafka
	Exercise: Using Spark with Kafka
	Amazon Kinesis

	Summary

	8 Introduction to Data Science and Machine Learning Using Spark
	Spark and R
	Introduction to R
	Using Spark with R
	Exercise: Using RStudio with SparkR

	Machine Learning with Spark
	Machine Learning Primer
	Machine Learning Using Spark MLlib
	Exercise: Implementing a Recommender Using Spark MLlib
	Machine Learning Using Spark ML

	Using Notebooks with Spark
	Using Jupyter (IPython) Notebooks with Spark
	Using Apache Zeppelin Notebooks with Spark

	Summary

	Index
	Code Snippets

