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Preface
In just over a decade, matplotlib has grown to offer the Python scientific computing 
community a world-class plotting and visualization library. When combined with 
related projects, such as Jupyter, NumPy, SciPy, and SymPy, matplotlib competes 
head-to-head with commercial software, which is far more established in the 
industry. Furthermore, the growth experienced by this open source software project 
is reflected again and again by individuals around the world, who make their way 
through the thorny wilds that face the newcomer and who develop into strong 
intermediate users with the potential to be very productive.

In essence, Mastering matplotlib is a very practical book. Yet every chapter was written 
considering this learning process, as well as a larger view of the same. It is not just the 
raw knowledge that defines how far developers progress in their goal. It is also the 
ability of motivated individuals to apply meta-levels of analysis to the problem and 
the obstacles that must be surmounted. Implicit in the examples that are provided in 
each chapter are multiple levels of analysis, which are integral to the mastery of the 
subject matter. These levels of analysis involve the processes of defining the problem, 
anticipating potential solutions, evaluating approaches without losing focus, and 
enriching your experience with a wider range of useful projects.

Finding resources that facilitate developers in their journey towards advanced 
knowledge and beyond can be difficult. This is not due to the lack of materials. 
Rather, it is because of the complex interaction of learning styles, continually 
improving codebases with strong legacies, and the very flexible nature of the  
Python programming language itself. The matplotlib developers who aspire to  
attain an advanced level, must tackle all of this and more. This book aims to be  
a guide for those in search of such mastery.
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What this book covers
Chapter 1, Getting Up to Speed, covers some history and background of matplotlib, 
goes over some of the latest features of the library, provides a refresher on Python 
3 and IPython Notebooks, and whets the reader's appetite with some advanced 
plotting examples.

Chapter 2, The matplotlib Architecture, reviews the original design goals of matplotlib 
and then proceeds to discuss its current architecture in detail, providing visualizations 
of the conceptual structure and relationships between the Python modules.

Chapter 3, matplotlib APIs and Integrations, walks the reader through the matplotlib 
APIs, adapting a single example accordingly, examines how third-party libraries  
are integrated with matplotlib, and gives migration advice to the advanced users  
of the deprecated pylab API.

Chapter 4, Event Handling and Interactive Plots, provides a review of the event-based 
systems, covers event loops in matplotlib and IPython, goes over a selection of 
matplotlib events, and shows how to take advantage of these to create interactive plots.

Chapter 5, High-level Plotting and Data Analysis, combines the interrelated topics, 
providing a historical background of plotting, a discussion on the grammar of 
graphics, and an overview of high-level plotting libraries. This is then put to use  
in a detailed analysis of weather-related data that spans 120 years.

Chapter 6, Customization and Configuration, covers the custom styles in matplotlib  
and the use of grid specs to create a dashboard effect with the combined plots. The 
lesser-known configuration options are also discussed with an eye to optimization.

Chapter 7, Deploying matplotlib in Cloud Environments, explores a use case for 
matplotlib in a remote deployment, which is followed by a detailed programmatic 
batch-job example using Docker and Amazon AWS.

Chapter 8, matplotlib and Big Data, provides detailed examples of working with  
large local data sets, as well as distributed ones, covering options such as  
numpy.memmap, HDF5, and Hadoop. Plots with millions of points will also  
be demonstrated.

Chapter 9, Clustering for matplotlib, introduces parallel programming and clusters  
that are designed for use with matplotlib, demonstrating how to distribute the  
parts of a problem and then assemble the results for analysis in matplotlib.
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What you need for this book
For this book, you will need Python 3.4.2 or a later version of this as is available  
with Ubuntu 15.04 and Mac OS X 10.10. This book was written using Python 3.4.2  
on Mac OS X.

You will also need graphviz, HDF5, and their respective development libraries 
installed. Obtaining the code for each chapter depends upon the Git binary being 
present on your system. The other software packages that are used in this book will 
be automatically downloaded and installed for you in a virtual environment when 
you clone and set up the code for each chapter. Some of the chapters explore the use 
of matplotlib in Cloud environments. This is demonstrated by using Amazon AWS. 
As such, an AWS account will be needed for the users who wish to go through all  
the steps for these chapters.

If you are new to Python 3, the first chapter provides a brief overview of the same. 
It will provide you with the level of comfort that is needed when dealing with the 
examples in the book.

Who this book is for
If you are a scientist, programmer, software engineer, or a student who has working 
knowledge of matplotlib and now want to extend your usage of matplotlib to plot 
complex graphs and charts and handle large datasets, then this book is for you.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"The axes and projections directories form a crucial part of the artist layer."

A block of code is set as follows:

#! /usr/bin/env python3.4
import matplotlib.pyplot as plt

def main () -> None:
  plt.plot([1,2,3,4])
  plt.ylabel('some numbers')
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  plt.savefig('simple-line.png')

if __name__ == '__main__':
  main()

Any command-line input or output is written as follows:

$ git clone https://github.com/masteringmatplotlib/architecture.git

$ cd architecture

$ make

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: " For 
instance, when the Zoom-to-Rectangle button is clicked, the mode will be set to 
zoom rect "

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think  
about this book—what you liked or disliked. Reader feedback is important for  
us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and  
mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

www.packtpub.com/authors
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Downloading the example code
Each chapter in Mastering matplotlib provides instructions on obtaining the example 
code and notebook from Github. A master list has been provided at https://github.
com/masteringmatplotlib/notebooks. You can download the example code files 
from your account at http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the 
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/7542OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

www.allitebooks.com

https://github.com/masteringmatplotlib/notebooks
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Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.
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Getting Up to Speed
Over the past 12 years of its existence, matplotlib has made its way into the 
classrooms, labs, and hearts of the scientific computing world. With Python's rise 
in popularity for serious professional and academic work, matplotlib has taken 
a respected seat beside long-standing giants such as Mathematica by Wolfram 
Research and MathWorks' MATLAB products. As such, we feel that the time is  
ripe for an advanced text on matplotlib that guides its more sophisticated users 
into new territory by not only allowing them to become experts in their own right, 
but also providing a clear path that will help them apply their new knowledge in a 
number of environments.

As a part of a master class series by Packt Publishing, this book focuses almost entirely 
on a select few of the most requested advanced topics in the world of matplotlib, 
which includes everything from matplotlib internals to high-performance computing 
environments. In order to best support this, we want to make sure that our readers 
have a chance to prepare for the material of this book, so we will start off gently.

The topics covered in this chapter include the following:

• A brief historical overview of matplotlib
• What's new in matplotlib
• Who is an advanced, beginner, or an intermediate matplotlib user
• The software dependencies for many of the book's examples
• An overview of Python 3
• An overview of the coding style used in this book
• References for installation-related instructions
• A refresher on IPython Notebooks
• A teaser of a complicated plot in matplotlib
• Additional resources to obtain advanced beginner and intermediate 

matplotlib knowledge
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A brief historical overview of matplotlib
The open source project that we now know as matplotlib had its inception at the 
beginning of the millennium when John Hunter and his colleagues were conducting 
epilepsy research using proprietary data analysis software. They migrated to 
MATLAB as it was more flexible and less expensive. However, it was not designed 
to handle the data formats and diverse data sources that they had to contend with  
on a daily basis.

It was with this realization that John Hunter created the first version of matplotlib—a 
GTK+ visualization tool for electroencephalography and electrocorticography analysis. 
Having been built in Python, adding support for new features as the team needed 
them was a straightforward task. Before long, this led to the idea of providing a similar 
interactive command mode to generate plots on the fly, as MATLAB does.

One of the oldest sources available for matplotlib code online is the GitHub 
repository. The first commit in this repository was with regard to migration from 
Subversion to Git, though the original repository was CVS. This commit was 
authored in May 2003, though this repository records a CHANGELOG file whose  
first entry was made in December 2002. By the time this book goes into publication, 
matplotlib will have celebrated its 13th birthday.

What's new in matplotlib 1.4
In the past 12 years, a great deal has happened in the matplotlib codebase. Of 
particular interest are the new features that have been added to the most recent  
release at the time of writing this book—version 1.4.3. Here are some of its highlights:

• A new IPython Notebook backend for interactive matplotlib plot support
• A new style package that allows for greater control over the visual  

presentation of plots
• The new Qt5 backend
• Google App Engine integration
• New plotting features
• New configuration options

The intermediate matplotlib user
If you've read the preface, then you know who this book is for—developers with 
intermediate or advanced knowledge of matplotlib as well as the motivated 
beginners. But who are they exactly? What do such users know?



Chapter 1

[ 3 ]

Answers to such questions are fairly open-ended. We have the following guidelines. 
The intermediate matplotlib user should have some limited knowledge to passing 
experience with the following:

• Installation of matplotlib in multiple environments
• Creation of basic to moderately complicated matplotlib plots
• Basic matplotlib APIs, styling, backends, and customizations
• Using matplotlib objects, subplots, and overlays
• Advanced third-party tools such as Seaborn, Pandas, ggplot, distributed 

IPython, and StarCluster
• Completed reading most or all of the following books, Matplotlib for Python 

Developers, Sandro Tosi, Packt Publishing, and matplotlib Plotting Cookbook, 
Alexandre Devert, Packt Publishing

Prerequisites for this book
This book assumes that you have previous experience with matplotlib and that it has 
been installed on your preferred development platform. If you need a refresher on the 
steps to accomplish that, the first chapter of Sandro Tosi's excellent book, Matplotlib for 
Python Developers, provides instructions to install matplotlib and its dependencies.

In addition to matplotlib, you will need a recent installation of IPython to run 
many of the examples and exercises provided. For help in getting started with 
IPython, there many great resources available on the project's site. Cyrille Rossant 
has authored Learning IPython for Interactive Computing and Data Visualization, Packt 
Publishing, which is a great resource as well.

In the course of this book, we will install, configure, and use additional open  
source libraries and frameworks. We will cover the setup of these as we get to  
them, but all the programs in this book will require you to have the following 
installed on your machine:

• Git
• GNU make
• GNU Compiler Collection (gcc)

Your operating system's package manager should have a package that installs 
common developer tools—these tools should be installed as well, and may  
provide most of the tools automatically.
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All the examples in this book will be implemented using a recent release of Python, 
version 3.4.2. Many of the examples will not work with the older versions of Python, 
so please note this carefully. In particular, the setup of virtual environments uses a 
feature that is new in Python 3.4.2, and some examples use the new type annotations. 
At the time of writing this book, the latest version of Ubuntu ships with Python 3.4.2.

Though matplotlib, NumPy, IPython, and the other libraries will be installed for 
you by set scripts provided in the code repositories for each chapter. For the sake of 
clarity, we will mention the versions used for some of these here:

• matplotlib 1.4.3
• NumPy 1.9.2
• SciPy 0.15.1
• IPython 3.1.0 (also known as Jupyter)

Python 3
On this note, it's probably good to discuss Python 3 briefly as there has been  
continued debate on the choice between the two most recent versions of the 
programming language (the other being the 2.7.x series). Python 3 represents a  
massive community-wide effort to adopt better coding practices as well as 
improvements in the maintenance of long-lived libraries, frameworks, and 
applications. The primary impetus and on-going strength of this effort, though,  
is a general overhaul of the mechanisms underlying Python itself. This will 
ultimately allow the Python programming language greater maintainability and 
longevity in the coming years, not to mention better support for the ongoing 
performance enhancements.

In case you are new to Python 3, the following table, which compares some of the 
major syntactical differences between Python 2 and Python 3, has been provided:

Syntactical 
Differences

Python 2 Python 3

Division with floats x = 15 / 3.0 x = 15 / 3

Division with 
truncation

x = 15 / 4 x = 15 // 4

Longs y = long(x * 10) y = int(x * 10)

Not equal x <> y x != y

The unicode function u = unicode(s) u = str(s)

Raw unicode u = ur"\t\s" u = r"\t\s"
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Syntactical 
Differences

Python 2 Python 3

Printing print x, y, z print(x, y, z)

Raw user input y = raw_input(x) y = input(x)

User input y = input(x) y = 
eval(input(x))

Formatting "%d %s" % (n, s) "{} {}".
format(n,s)

Representation 'x' repr(x)

Function application apply(fn, args) fn(*args)

Filter itertools.ifilter filter

Map itertools.imap map

Zip itertools.izip zip

Range xrange range

Reduce reduce functools.
reduce

Iteration iterator.next() next(iterator)

The execute code exec code exec(code)

The execute file execfile(file) exec(fh.read())

Exceptions try:

...

except val, err:

...

try:

...

except val as 
err:

...

Coding style
The coding style used throughout this book and in the example code conforms to  
the standards laid out in PEP 8, with one exception. When entering code into an 
IPython Notebook or providing modules that will be displayed in the notebook,  
we will not use two lines to separate what would be module-level blocks of code.  
We will just use one line. This is done to save screen space.

Something that might strike you as different in our code is the use of an extraordinary 
feature of Python 3—function annotations. The work for this was done in PEP 3107 
and was added in the first release of Python 3. The use of types and static analysis 
in programming, though new to Python, is a boon to the world of software. It saves 
time in development of a program by catching bugs before they even arise as well 
as streamlining unit tests. The benefit of this in our particular case, with regard to 
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the examples in this book, is quick, intuitive code clarification. When you look at the 
functions, you will instantly know what is being passed and returned.

Finally, there is one best practice that we adhere to that is not widely adopted in the 
Python programming community—functions and methods are kept small in all of 
our code. If more than one logical thing is happening in a function, we break it into 
multiple functions and compose as needed. This keeps the code clean and clear, 
making examples much easier to read. It also makes it much easier to write unit tests 
without some of the excessive parameterization or awkward, large functions and 
methods that are often required in unit tests. We hope that this leaves a positive, 
long-lasting impression on you so that this practice receives wider adoption.

Installing matplotlib
Given that this is a book on an advanced topic and the target audience will have 
installed matplotlib and the related dependencies more than once (most likely  
many times), detailed instructions will not be provided here. Two excellent books  
on matplotlib that cover this topic in their respective first chapters are Matplotlib  
for Python Developers and matplotlib Plotting Cookbook.

That being said, each chapter will have its own Git repository with scripts to  
install dependencies and set up Python's virtual environments. These scripts are  
a great resource, and reading them should provide additional details to those who 
seek to know more about installing matplotlib and the related libraries in Python 
virtual environments.

Using IPython Notebooks with matplotlib
Python virtual environments are the recommended way of working with Python 
projects. They keep your system, Python, and default libraries safe from disruption. 
We will continue this tradition in this book, but you are welcome to transcend 
tradition and utilize the matplotlib library and the provided code in whatever way 
you see fit.

Using the native venv Python environment management package, each project may 
define its own versions of dependent libraries, including those of matplotlib and 
IPython. The sample code for this book does just that—listing the dependencies  
in one or more requirements.txt files.

With the addition of the nbagg IPython Notebook backend to matplotlib in version 
1.4, users can now work with plots in a browser very much like they've been able  
to do in the GTK and Qt apps on the desktop. We will take full advantage of this  
new feature.
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In the IPython examples of this book, most of the notebooks will start off with  
the following:

In [1]: import matplotlib  
        matplotlib.use('nbagg')

In [2]: %matplotlib inline

In [3]: import matplotlib.pyplot as plt

Downloading the example code
Each chapter in Mastering matplotlib provides instructions on 
obtaining the example code and notebook from Github. A 
master list has been provided at https://github.com/
masteringmatplotlib/notebooks. You can download the 
example code files from your account at http://www.packtpub.
com for all the Packt Publishing books you have purchased. 
If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files 
e-mailed directly to you." This configures our notebooks to 
use matplotlib in the way that we need. The example in the 
following section starts off with just those commands.

A final note about IPython—the project has recently changed its name to Jupyter in 
an effort to embrace the language-agnostic growth the project and community has 
experienced as well as the architectural changes that will make the adding of new 
language backends much easier. The user experience will not change (except for the 
better), but you will notice a different name and logo when you open the chapter 
notebooks for this book.

Advanced plots – a preview
To give a taste of what's to come, let's start up a matplotlib IPython Notebook 
and look at an example. You will need to download the example from a GitHub 
repository first:

$ git clone https://github.com/masteringmatplotlib/preview.git

$ cd preview

You only need to do the following in order to bootstrap an environment with all  
the notebook dependencies and start up the notebook server:

$ make

https://github.com/masteringmatplotlib/notebooks
https://github.com/masteringmatplotlib/notebooks
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
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This will do several things for you automatically, some of which are as follows:

• Clone a support repository holding various include files
• Create a Python virtual environment
• Install matplotlib and other scientific computing Python modules into this 

virtual environment
• Start an IPython Notebook server that runs on local host
• Open a browser window and load the preview notebook in it

In this browser window, you can run the code yourself by selecting each code section 
and hitting the Shift and Enter keys to execute it. Let's go through an example.

Setting up the interactive backend
As mentioned above, our notebooks will all start with the following, as does this 
preview notebook:

In [1]: import matplotlib

        matplotlib.use('nbagg')

        %matplotlib inline

In [2]: import matplotlib.pyplot as plt

        import seaborn as sns

        import numpy as np

        from scipy import stats

        import pandas as pd

These commands do the following:

• Set up the interactive backend for plotting
• Allow us to evaluate images in-line, as opposed doing the same in a  

pop-up window
• Provide the standard alias to the matplotlib.pyplot sub package and 

import other packages that we will need

Joint plots with Seaborn
Our first preview example will take a look at the Seaborn package, an open source 
third-party library for data visualization and attractive statistical graphs. Seaborn 
depends upon not only matplotlib, but also NumPy and SciPy (among others).  
These were already installed for you when you ran make (pulled from the 
requirements.txt file).
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We'll cover Seaborn palettes in more detail later in the book, so the following 
command is just a sample. Let's use a predefined palette with a moderate color 
saturation level:

In [3]: sns.set_palette("BuPu_d", desat=0.6)

        sns.set_context("notebook", font_scale=2.0)

Next, we'll generate two sets of random data (with a random seed of our choosing), 
one for the x axis and the other for the y axis. We're then going to plot the overlap  
of these distributions in a hex plot. Here are the commands for the same:

In [4]: np.random.seed(42424242)

In [5]: x = stats.gamma(5).rvs(420)

        y = stats.gamma(13).rvs(420)

In [6]: with sns.axes_style("white"):

            sns.jointplot(x, y, kind="hex", size=16);

The generated graph is as follows:

www.allitebooks.com

http://www.allitebooks.org
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Scatter plot matrix graphs with Pandas
In the second preview, we will use Pandas to graph a matrix of scatter plots whose 
diagonal will be the statistical graphs representing the kernel density estimation. 
We're going to go easy on the details for now; this is just to whet your appetite  
for more!

Pandas is a statistical data analysis library for Python that provides high-performance 
data structures, allowing one to carry out an entire scientific computing workflow in 
Python (as opposed to having to switch to something like R or Fortran for parts of it).

Let's take the seven columns (inclusive) from the baseball.csv data file between 
Runs (r) and Stolen Bases (sb) for players between the years of 1871 and 2007 and 
look at them at the same time in one graph:

In [7]: baseball = pd.read_csv("../data/baseball.csv")

In [8]: plt.style.use('../styles/custom.mplstyle')

        data = pd.scatter_matrix(

             baseball.loc[:,'r':'sb'],

             figsize=(16,10))

The generated graph is as follows:

Command 8 will take a few seconds longer than our previous plot since it's 
crunching a lot of data.
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For now, the plot may look like something only a sabermetrician could read,  
but by the end of this book, complex graph matrices will be only one of many 
advanced topics in matplotlib that will have you reaching for new heights.

One last teaser before we close out the chapter—you may have noticed that the 
plots for the baseball data took a while to generate. Imagine doing 1,000 of these. 
Or 1,000,000. Traditionally, that's a showstopper for matplotlib projects, but in the 
latter half of this book, we will cover material that will not only show you how to 
overcome that limit, but also offer you several options to make it happen.

It's going to be a wild ride.

Summary
In this chapter, you got to learn a little more about matplotlib's origins and the latest 
features that were released at the time of writing this book. You've seen the software 
that we're going to use, including the version of the Python programming language 
that we've chosen. Furthermore, we've given you a peek into the future of this book 
(and matplotlib) with a custom IPython Notebook, which highlights the Seaborn  
and Pandas projects.

In the next couple of chapters, we're going to focus on matplotlib's internals.  
In particular, Chapter 2, The matplotlib Architecture will cover the architecture of  
the project, giving you an insight into how it all works together.
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The matplotlib Architecture
As software systems age, they tend to undergo a natural evolution through processes 
such as feature addition and debugging. The resultant codebase embodies the 
familiar tension between maintaining the old code and at the same time offering 
the end users an improved product. Architectures for long-term projects are not 
something that were originally carved in stone and adhered to monomaniacally  
ever since. Rather, they are living, adaptive concepts that guide the plans and 
activities of a project's contributors.

The matplotlib module arose out of such an environment, and it has continuous 
goals of refining and improving its architecture and updating its older bits to follow 
the best practices of and the latest advances in not only the project itself, but also the 
wider Python community over the years since its inception.

In this chapter, we will perform the following tasks:

• Review the original design goals of matplotlib and explore its evolution
• Examine the current architecture at a high level using the metaphors put 

forth by the core developers of matplotlib
• Dive into the details of the three major layers of the matplotlib architecture
• Explore the matplotlib namespace in relation to the architectural layers
• Create a dependency graph for a standard matplotlib script to gain 

additional insight on a project's structure in relation to the user scripts
• Take a look at the additional packages that were not a part of the matplotlib 

release and identify their connection with the overall architecture
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The original design goals
As mentioned in Chapter 1, Getting Up to Speed, the creators of matplotlib were 
originally focused on building a GTK+ application for researchers and providing  
a command interface for the interactive plotting of data, not unlike that provided  
by MATLAB.

Both of these aims helped drive the development of improved abstractions for 
matplotlib. It was in this dual crucible that the top-level object of the rendered plots 
in matplotlib gained its rightful prominence—the Figure. These ideas led to various 
foundational objects in matplotlib, and the relationships between them ultimately 
provided the basis for the architecture of this library.

The current matplotlib architecture
The current matplotlib architecture revolves around the operations that are 
necessary for the users to create, render, and update the Figure objects. Figures 
can be displayed and interacted with via common user interface events such as the 
keyboard and mouse inputs. This layer of interaction with common user interface 
is called the backend layer. A Figure needs to be composed of multiple objects that 
should be individually modifiable, but it should be implemented in such a way 
that it has a positive and predictable impact on the other aspects of the Figure. This 
logical layer is responsible for the abstraction of each visual component that one 
sees in a Figure. Due to its highly visual nature, this layer was identified as the more 
general concept of creating visual art and is thus referred to as the artist layer. Lastly, 
the Figure needs to support programmatic interaction and provide the users with the 
ability to manipulate Figures with a syntax that is as clean and intuitive as possible. 
This is called the scripting layer.
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The following figure shows the relation between the three layers of matplotlib 
architecture (backend, artist, and scripting):

The backend layer rests at the bottom of the matplotlib architecture and it  
only knows about its own interfaces. The subsequent layers at the top of the  
stack know only about themselves and the layers below. Thus, complexities are 
properly isolated to the higher levels. In describing this, we are taking some liberties 
with the simplification that we've generated, which is a small sacrifice that was  
made to help clarify the roles of the layers. We will cover each layer of this stack in 
detail in the following sections. We will provide examples, references to code, and 
diagrams. Part of this will include revealing the complexity behind the initial sketch 
that you just saw.

As we explore the depths of matplotlib in the following sections, it might be helpful 
to keep a mental placeholder for the layers as they relate to data and the Figure 
object for a given plot in the following way:

• The user creates either the data that he/she wants to plot or the functions 
that generate this data

• This data is either created or loaded in the scripting layer
• The data is transformed into various objects in the artist layer; it is adjusted  

as scripted
• These objects are then rendered by the backend, which ultimately provides 

the configured toolkit with the raw data necessary to place an image on the 
toolkit's canvas

Let's explore this in more detail now, starting from the bottom—the backend layer.
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The backend layer
Seasoned computer scientists, engineers, and software developers all know that one 
of the subtler and trickier problems that arise in our industry is naming. It sounds 
a bit silly and it is repeatedly the subject of jokes, but the difficulty remains—how 
do you speak or write explicitly on a subject whose very nature requires exquisite 
precision and yet has great ambiguity that arises in different contexts?

We have the same problem with the term backend. Here, as in so many other 
instances, the context is everything. Our context is matplotlib, a set of tools, and a 
framework where everything is done in support of the visualizing of data and their 
relationships. The term backend has to be viewed from this perspective to support the 
generation of plots. The matplotlib backend has nothing to do with other noteworthy 
backends such as databases, servers, messaging systems, or dispatchers of various 
sorts. The backend of matplotlib is an abstraction layer over various components 
that are capable of rendering a Figure. Such plots appear in desktop applications 
that are embedded in widgets or web pages; other plots are images in publications 
(digital and print). They can be generated with code, through user interfaces, or by 
deploying a combination of both. These plots might be the creation of a single user 
tweaking a widget or a batch processing job on a high-performance computing grid. 
All are supported by and require a matplotlib backend.

As you might have been able to deduce from the examples given in the previous 
sections, the backends in matplotlib can be divided into two functional categories:

• User interface backends (interactive)
• Hardcopy backends (noninteractive)

User interface backends include the following:

• GTK 2.x and GTK 3.x
• wxWidgets
• Tk
• Qt4 and Qt5
• Mac OS X Cocoa
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The hardcopy backends comprise of the following:

• PS
• PDF
• SVG
• PNG

Hardcopy backends can be further divided based on the support of raster graphics, 
vector graphics, or both of these.

Furthermore, the user-interface and hardcopy backends are built upon some core 
abstractions. The base classes for these are as follows:

• FigureCanvasBase and FigureManagerBase
• RendererBase and GraphicsContextBase
• Event, ShowBase, and Timer

Examining these base classes brings us to the nuts and bolts of the matplotlib 
backend architecture.

FigureCanvasBase
The FigureCanvasBase class is a base class that is used by the user interface and 
hardcopy backends. It represents the canvas in which the Figure will render. Its 
responsibilities include the following:

• Holding a reference to the Figure
• Updating the Figure with a reference to the canvas
• Defining event methods that run registered
• Translating native toolkit events into the matplotlib event abstraction 

framework
• Defining draw methods to render the Figure
• Methods to start and stop non-GUI event loops
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When used by hardcopy backends, the FigureCanvasBase classes can register the 
file types supported by hardcopy backends (for example, .tiff and .jpg). When 
used by the user interface backends, the FigureCanvasBase classes provide the 
means by which the matplotlib canvas is inserted into the native toolkit window 
(even when it is GTK, Mac OS X Cocoa, Qt, or Tk).

Additionally, there is a FigureManagerBase class that is used by matplotlib when 
running in pyplot mode. This class wraps FigureCanvasBase as well as various 
GUI toolkit methods for the easier rendering of figures and interfaces.

RendererBase
In matplotlib, the renderer handles the drawing operations. RendererBase was 
originally inspired by the GIMP drawing toolkit's Drawable class, and this is evident 
when one examines its drawing methods to render paths, images, Gouraud triangles, 
text, markers, path collections, and quad meshes.

Note that many of the render operations are handed off to an additional 
abstraction—GraphicsContextBase. This abstraction provides a clean separation 
for code that handles color, line styles, hatching styles, blending properties, and 
antialiasing options, among others.

Event
There are several aspects of the matplotlib backend that have to do with events, 
event loops, and timing. These responsibilities are divided across three base classes:

• Event: This is the base class for DrawEvent, MouseEvent, and KeyEvent, 
among others

• ShowBase: This is subclassed at the module level in the GUI backends
• TimerBase: This is the base class for TimerQT, TimerGTK3, and TimerWx, to 

name a few

As mentioned in a previous section, FigureCanvasBase defines event methods 
that are used when translating to and from native GUI toolkit events. These 
methods instantiate the Event classes and are connected to the callbacks stored in 
CallbackRegistry, which is itself stored as an attribute on FigureCanvasBase.
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Depending on the nature of the event, it may need to track the data in the artist layer, 
work with renderers, and so on. As such, some of the Event classes carry references 
to more than just their event properties, allowing callback functions to easily access 
this data.

At the core of every GUI toolkit is an event loop. Every user interface backend that 
integrates with a toolkit needs to define a module-level Show class, subclassing 
ShowBase. Its mainloop method is what pyplot uses to start up the given toolkit's 
main loop. However, in order for this to work, matplotlib needs something to 
connect to the native toolkit's timer.

This is what implementations such as TimerQT, TimerGTK3, and TimerTornado 
provide. These classes have a callbacks attribute that is a simple list of (function, args, 
and kwards) tuples that get called upon by timer events. The TimerQT and TimerGTK3 
classes integrate the GUI main loops, while the TimerTornado class integrates the 
I/O or event loop of the Tornado asynchronous networking library.

A practical example of how these can work together will include things such as a key 
press, a mouse click, or the picking of events. Key presses can be used to develop 
custom keyboard commands that change a plot based on the interactive input from 
the user. The ability to pick events allows the developers to support the interactive 
panning and zooming of their plots. All of these events are intercepted by the 
matplotlib event system and then forwarded to the native toolkits after the backend 
does the appropriate translation.

Visualizing the backend layer
The matplotlib backend components work together in order to provide a seamless 
experience regardless of:

• The GUI toolkit being used (if any)
• The type of output being produced (raster, vector, file type, and so on)
• Whether the events are being handled
• Whether the images are static or animated

www.allitebooks.com
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We now have the information needed to visually summarize the backend layer.  
This information is portrayed in the following image:

Note that in reality, the backend layer and its components are more complex 
than this graphic portrays. There are multiple relationships, as is exemplified by 
RendererBase and FigureCanvasBase appearing twice. The intent is to show the 
main backend base classes. The FigureManagerBase function has one of the other 
backend base classes as a supporting component (its canvas attribute).

This concludes our overview of matplotlib's backend layer. In the next section, we 
will move higher up the stack.

The artist layer
The artist layer constitutes the bulk of what matplotlib actually does—the generation 
of the plots for the purpose of display, manipulation, and publication. Most work in 
the artist layer is performed by a number of classes, most of which are derived from 
the Artist base class.



Chapter 2

[ 21 ]

The artist layer is concerned with things such as the lines, shapes, axes, text, and  
so on. These are the subclasses of the Artist class that define things such as  
the following:

• A canvas-artist coordinate transformation
• Visibility
• A clip box that defines the paintable area
• Labels
• A callback registry instance to handle user interaction events

The Artist subclasses can be classified into one of the following two groups:

• Primitives
• Containers

The following two sections provide more details about these groups.

Primitives
The matplotlib artist primitives are classes of graphical objects that are supposed to 
be painted on a figure's canvas. These include, but are not limited to, the following:

• Line2D

• Shape (patch) classes such as Rectangle, Polygon, Ellipse, Circle, 
ArcText, Annotation, and TextPath

• AxesImage and FigureImage

Each of these primitive classes is a subclass of Artist, and as such have at their core 
the same definition of purpose—something that renders into an implementation of 
FigureCanvasBase.
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Containers
This is another set of classes that subclass from Artist and which have additional 
responsibilities. They offer a useful abstraction to gather primitives. Examples of the 
containers include the following:

• Figure

• XAxis and YAxis
• Axes, PolarAxes, HammerAxes, MollweideAxes, and LambertAxes
• Subplot

Typically, a Figure would be instantiated and used to create one or more Axes or 
Subplot instances. The methods available for these objects would then be used to 
create the primitives as needed. Thus the user does not have to manually track the 
creation of the primitives and store them in the appropriate containers.

Of all the containers, the Axes class is one of the most important. It is the primary 
mover and shaker in the artist layer. The reason for this is simple—the Axes 
instances are where most of the matplotlib objects go (both primitives and other 
containers). In addition to the creation of primitives, the methods of this class can 
prepare the supplied data that is needed for the creation of primitives such as lines 
and shapes, add them to the appropriate containers, and draw them when called by 
some other objects.

Furthermore, the Axes objects set the coordinate system for the figure and track 
callbacks that can be connected to the xlim_changed and ylim_changed events.  
The callbacks will be called with the Axes instances as an argument.

Collections
Another component of the artist layer that we will touch on briefly is collections. 
These are the classes that provide for the efficient drawing of large numbers of 
similar objects. If you find yourself creating tens or hundreds of thousands of circles, 
polygons, lines, and so on, in most cases you will get much better performance 
from matplotlib if you put these in collections. The available classes include, 
but are not limited to PathCollection, CircleCollection, PolyCollection, 
EllipseCollection, LineCollection, and EventCollection.
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A view of the artist layer
We now have enough additional information to create a diagram of the artist layer:

You may notice that a base class may paradoxically contain a parent class. This is 
really just a reference to a parent class that is often created at the time of creating the 
base class. Keeping this in mind is helpful when investigating matplotlib internals.

Like the logical backend diagram, the matplotlib internals is not intended to be 
comprehensive. However, it was meant to provide a conceptual aid for the visually 
oriented when thinking about how the bits fit together.

With this, we are brought to the final layer of the matplotlib architecture.
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The scripting layer
While the backend layer focuses on providing a common interface to the toolkits  
and rendering the primitives and containers of the artist layer, the scripting layer  
is the user-facing interface that simplifies the task of working with other layers.

Programmers who integrate matplotlib with application servers will often  
find it more convenient to work directly with the backend and artist layers. 
However, for the scientists' daily use, data visualization, or exploratory interactions, 
pyplot—the scripting layer—is a better option. This is what we use in most of the 
IPython Notebooks in this book.

The pyplot interface is much less verbose; one can get insights into one's data in 
very few steps. Under the covers, pyplot uses module-level objects to track the state 
of the data so that the user does not have to create things like figures, axes, canvases, 
figure canvas managers, or preferred backends.

We will take a quick look at pyplot's internals later in this chapter (as well as again 
later in the book). However, for now, here are the important points that you need to 
know about pyplot:

• When imported, pyplot selects either the default backend for your system, 
or the one that you have previously configured

• After selecting a backend, pyplot calls a setup function which does  
the following:

 ° Creates a figure manager factory function, which when called will 
create a new figure manager appropriate for the selected backend

 ° Prepares the drawing function that should be used with the selected 
backend (taking into account whether the backend is a hardcopy or a 
user interface)

 ° Identifies the callable function that integrates with the backend 
mainloop function

 ° Provides the module for the selected backend
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The pyplot interface defines a series of functions that depend on the components 
returned by the setup function. These include the following functions:

• plot(): This function calls the plot method in the current figure's  
Axes object and the figure canvas's draw* method (as identified in the 
preceding setup)

• title(): This function sets the title of the current figure's Axes instance
• savefig(): This function saves the current figure
• draw(): This function redraws the current figure
• gcf(): This function returns the current figure
• gca(): This function returns the Axes instance of the current figure
• get_current_fig_manager(): This returns the current figure manager
• figure(): This is a Figure factory function
• switch_backend(): This is a function that lets one easily change the  

selected backend

If one wishes to use the scripting layer, pyplot is the community-recommended 
approach. However, you may come across references to another scripting layer 
interface when digging through the source code or poking around in matplotlib's 
documentation, pylab.

The pylab interface is the procedural interface of matplotlib, and it was modeled 
after the commands that MATLAB provides. Many of the functions in pylab take 
their names from not only the MATLAB analogs, but also their function arguments. 
In support of this, pylab imports the mlab module as well as large chunks of NumPy. 
Additionally, pyplot is made available in the pylab namespace.

The pylab provided one of the most compelling features of matplotlib for scientists 
and students who wished to transition to an open source alternative, and it is given a 
lot of credit for matplotlib's initial adoption and success. However, note that pylab is 
deprecated and its use is discouraged by the community. Users should transition to 
pyplot for all of their scripting layer needs.
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This overview provides us with sufficient information to create a logical diagram of 
the scripting layer's architecture:

The supporting components of the  
matplotlib stack
In addition to the three major components of the matplotlib stack, there are 
supporting components. These include the following:

• Configuration support
• Utility modules and functions
• C extensions
• External libraries upon which matplotlib depends

We will touch on these in the coming chapters. They are related to the given topics 
at hand, but they do not impact the structure or nature of matplotlib's overall 
architecture.
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Combining the details uncovered in the previous sections, the following diagram 
portrays a logical architecture for matplotlib that glosses over the finer details:

To make this more of a living reality, we will follow this high-level description with 
some more detailed examinations, which consist of the following:

• Learning about matplotlib modules and associated namespaces
• Creating a sample import graph
• Following the execution of the pyplot functions through the matplotlib stack
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matplotlib modules
When discussing the architecture of software libraries, it is of great use to relate a 
conceptual overview to concrete software components. This not only increases the 
immediate knowledge with more definite context, but also provides a foundation for 
a quicker learning process during future explorations. Let's examine the modules in 
the matplotlib Python package.

Exploring the filesystem
Start by obtaining the IPython Notebook for this chapter, installing the dependencies, 
starting up the IPython server, and loading the notebook in your browser in the 
following way:

$ git clone https://github.com/masteringmatplotlib/architecture.git

$ cd architecture

$ make

Once the notebook is loaded, go ahead and run the initial setup commands:

In [1]: import matplotlib

        matplotlib.use('nbagg')

        %matplotlib inline

Now let's create two sets of imports, one for our dependencies and the other for 
modules that we've created specifically for this notebook:

In [2]: from glob import glob

        from modulefinder import Module

        from modulefinder import ModuleFinder

        from os.path import dirname

        from pprint import pprint

        import sys

        import trace

        import urllib.request

        import matplotlib.pyplot as plt

        from IPython.core.display import Image
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        from pycallgraph import Config

        from pycallgraph import GlobbingFilter

        from pycallgraph import PyCallGraph

        from pycallgraph.output import GraphvizOutput

In [3]: sys.path.append("../lib")

        from modarch import matplotlib_groupings

        import modfind

        import modgraph

        from modutil import ls, rm

Next, let's take a look at matplotlib's top-level Python modules (output elided for 
compactness):

In [4]: libdir = "../.venv/lib/python3.4/site-packages/matplotlib"

        ls(libdir)

        ['matplotlib/__init__.py',

         'matplotlib/_cm.py',

         'matplotlib/_mathtext_data.py',

         'matplotlib/_pylab_helpers.py',

         'matplotlib/afm.py',

         'matplotlib/animation.py',

         'matplotlib/artist.py',

          ]

There are about 60 top-level modules in the resultant listing. This can be seen using 
the following command lines:

In [5]: toplevel = glob(libdir + "/*.py")

        modules = ["matplotlib" + x.split(libdir)[1]

                   for x in toplevel]

        len(modules)Out[5]: 59
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Some of these modules should be pretty familiar to you now:

• artist.py

• backend_bases.py

• figure.py

• lines.py

• pyplot.py

• text.py

You can get a nicer display of these modules with the following:

In [6]: pprint(modules)

To see matplotlib's subpackages, run the following code:

In [7]: from os.path import dirname

        modfile = "/__init__.py"

        subs = [dirname(x) for x in glob(libdir + "/*" + modfile)]

        pprint(["matplotlib" + x.split(libdir)[1] for x in subs])

        ['matplotlib/axes',

         'matplotlib/backends',

         'matplotlib/compat',

         'matplotlib/delaunay',

         'matplotlib/projections',

         'matplotlib/sphinxext',

         'matplotlib/style',

         'matplotlib/testing',

         'matplotlib/tests',

         'matplotlib/tri']

The backends directory contains all the modules that support the user interface 
and hardcopy backends. The axes and projections directories form a crucial part 
of the artist layer. This brings up a point worth clarifying—there is no correlation 
in matplotlib code between the software (modules, subpackages, classes, and so 
on) and the architectural layers that we discussed. One is focused on the nuts and 
bolts of a plotting library and the other is concerned with helping us conceptually 
organize functional areas of the library.
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That being said, there's no reason why we can't create a mapping. In fact, we did just 
that in the utility module for this notebook. If you execute the next set of commands 
in the IPython Notebook, you can see how we classified the matplotlib modules and 
subpackages (again, the output has been elided for compactness):

In [9]: pprint(matplotlib_groupings)

        {'artist layer': ['matplotlib.afm',

                          'matplotlib.animation',

                          'matplotlib.artist',

                          ...],

         'backend layer': ['matplotlib.backend',

                           'matplotlib.blocking',

                           'matplotlib.dviread',

                           ...],

         'configuration': ['matplotlib.rcsetup',

                           'matplotlib.style'],

         'scripting layer': ['matplotlib.mlab',

                             'matplotlib.pylab',

                             'matplotlib.pyplot'],

         'utilities': ['matplotlib.bezier',

                       'matplotlib.cbook',

                       'mpl_tool']}

Note that not all strings in the key/list pairs exactly match matplotlib's modules or 
subpackages. This is so because the strings in the preceding data structure are used 
to match the beginnings of the module names and subpackages. Their intended use 
is in a call, such as x.startswith(mod_name_part).

We will use this data structure later in this section when building organized graphs 
of matplotlib imports. However for now, this offers additional insight into how one 
can view the Python modules that comprise matplotlib.
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Exploring imports visually
The previous section showed us what the modules look like on the filesystem  
(as interpreted by Python, of course). Next we're going to see what happens when 
we import these modules and how this relates to the architecture of matplotlib.

Continuing with the same notebook session in your browser, execute the following 
command lines:

In [10]: #! /usr/bin/env python3.4

         import matplotlib.pyplot as plt

         def main () -> None:

             plt.plot([1,2,3,4])

             plt.ylabel('some numbers')

             plt.savefig('simple-line.png')

         if __name__ == '__main__':

             main()

These command lines are taken from the script in the repository saved in scripts/
simple-line.py. As its name suggests (and as you will see when entering the 
preceding code into the IPython Notebook), this bit of matplotlib code draws a 
simple line on an axis. The idea here is to load a very simple matplotlib script so  
that we can examine matplotlib internals without distraction.

The first thing this script does is import the matplotlib scripting layer, and it's the 
import that we are interested in. So let's start digging.

ModuleFinder
The Python standard library provides an excellent tool to examine imports—the 
modulefinder module. Let's take the default finder for a spin in the same notebook 
session:

In [11]:  finder = ModuleFinder()

         finder.run_script('../scripts/simple-line.py')

In [12]: len(finder.modules)

Out[12]: 1068
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Running the script for the first time and examining all the imports will take a few 
seconds. If you take a look at the data in finder.modules, you will see modules  
that are from not only matplotlib and NumPy, but also IPython, ZeroMQ, setuptools, 
Tornado, and the Python standard library.

We're only interested in matplotlib. So we need to create a custom finder that gives 
us just what we're looking for. Of course we did just that and saved it in  
the modfind module.

Skipping ahead a bit in the notebook, we will use our customer finder in exactly  
the same way as the one in the standard library:

In [16]: finder = modfind.CustomFinder()

        finder.run_script('../scripts/simple-line.py')

        len(finder.modules)

Out[16]: 62

That's much more manageable. One of the key things that the ModuleFinder does 
is keep track of which modules import which other modules. As such, once finder 
has run the given script, it has data on all the relationships between the modules that 
import other modules (and each other). This type of data is perfectly suited for graph 
data structures. It just so happens that this is something that matplotlib is able to 
work with as well, thanks to the NetworkX library and its matplotlib integration.

ModGrapher
In addition to CustomFinder, this notebook also has a class called ModGrapher.  
This module does the following:

• Creates an instance of CustomFinder and runs it
• Builds weight values for nodes based on the number of times a module is 

imported
• Colors nodes based on the similarity of names (more or less)
• Provides several ways to refine the relationships between imported modules
• Draws configured graphs using NetworkX and matplotlib

Due to the second bullet point, it is clear that the ModGrapher provides visualization 
for the usage and the extent to which one module is imported by another module.
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Let's use ModGrapher to generate the import data (by using CustomGrapher behind 
the scenes) and then display a graph of the import relationships:

In [17]: grapher = modgraph.ModGrapher(

             source='../scripts/simple-line.py',

             layout='neato')

         grapher.render()

The following is the graph of the import relationships:

As you can see, the result looks somewhat chaotic. Even so, we are provided with 
useful meta information. A bit of a heads-up—when you start digging into the 
matplotlib code earnestly, you can expect the code in any given module to use 
classes and functions across the entire matplotlib code base.
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However, it would be nice to see more structure in the relationships. This is where 
our use of the previously mentioned modarch.matplotlib_groupings comes in. We 
have at our disposal a data structure that maps the matplotlib modules to the various 
layers of the matplotlib architecture. There is a convenient function in modarch that 
does this, and the ModGrapher class uses this function in several of its methods to 
group imports according to the matplotlib architecture that we defined.

Let's try the simplest method first, re-rendering the graph with a different mode:

In [21]: grapher.render(mode="reduced-structure")

The following figure is the result of the preceding command:
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The chaos is gone, but so are the interesting features. What we need is a combination 
of the two—something that shows the various modules that are imported as well as 
the overall usage of the architectural elements. All that is required is that you ensure 
that the imports of any one area of matplotlib's architecture that go outside the group 
terminate inside the group instead of crossing into the other groups (otherwise, we'd 
end up with the same graph that we started with).

This too has been coded in our module, and we just need to use the appropriate 
mode to render it:

In [22]: grapher.render(layout="neato", labels=True,

                        mode="simple-structure")

The following figure is the result of the preceding command:
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The code behind this graph does some additional simplification—it only goes two 
levels deep in the matplotlib namespace. For instance, matplotlib.a.b.c will be 
rolled up (with its weights contributing) into matplotlib.a. There is an additional 
mode, full-structure, which you can use to see all the imported matplotlib modules, 
as mapped to the architectural areas.

This brings us to the end of the our exploration of matplotlib's modules and module 
imports. Next, we will take a look at the architecture as reflected in the running code.

The execution flow
At the beginning of this chapter, we briefly sketched the flow of data from user 
creation to its display in a user interface. Having toured matplotlib's architecture, 
which included taking a side trip to the namespaces and dependency graphs,  
there is enough context to appreciate the flow of data through the code.

As we trace through our simple line example, remember that we used the pyplot 
interface. There are several other ways by which one may use matplotlib. For each  
of these ways, the code execution flow will be slightly different.

An overview of the script
As a refresher, here's our code from simple-line.py:

#! /usr/bin/env python3.4
import matplotlib.pyplot as plt

def main () -> None:
  plt.plot([1,2,3,4])
  plt.ylabel('some numbers')
  plt.savefig('simple-line.png')

if __name__ == '__main__':
  main()

At the script level, here's what we've got:

1. Operating system shell executes the script.
2. Python 3.4 is invoked, which then runs the script.
3. matplotlib is imported.
4. A main() function is defined.
5. The script then executes the main() function.
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Having reviewed familiar territory, let's jump into what matplotlib does in the script. 
Here's a brief summary of the trace:

• Using the import matplotlib.pyplot command line:
1. Select the backend.
2. Import and run pylab_setup from matplotlib.backends.

• Using the pylab_setup function:
1. Import the previously selected backend.
2. Get the figure manager factory function.
3. Select the show instance that you want to use, which can be  

integrated with the selected backend's mainloop function.
4. Return all of these.

• Plot the given data:
1. Get the figure manager (or create one if it doesn't exist).
2. Get its figure canvas.
3. From this, get the figure object of the canvas.
4. From the figure object, get the current axes object (or create it if it 

doesn't exist).
5. Once the figure's axes object is available, call its plot function.
6. The axes plot function clears the axes and creates some lines based 

on the provided data.
7. Get the active figure manager.
8. Call the figure manager's canvas.draw() function.

• Set the y axis label. This updates the _text attribute of the label object on  
the y axis.

• Save the plot as a .png image. This writes the file to filesystem by using the 
hardcopy backend, which correlates to the extension on the filename.
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An interactive session
We can get a hands-on look at many of these via IPython either through an 
interactive shell in the terminal, or with this chapter's notebook in your browser. 
Note that if you run the following code in the notebook, you will get different  
results since a different backend is being used.

The following command in the terminal will ensure that you get an interactive 
IPython prompt, which has access to all the dependencies:

$ make repl

Let's examine some of the things that we covered in the execution flow outline in  
the preceding section. We'll start by importing pyplot and looking at the top-level 
setup that pyplot initiates after the import:

In [1]: import matplotlib.pyplot as plt

In [2]: plt.rcParams['backend']

Out[2]: 'MacOSX'

In some of the following calls, we will be able to access objects, methods, and so  
on that have been named according to the private Python naming convention.  
We will do this simply to explore some of the undocumented depths of matplotlib. 
The keyword here is undocumented. The private variables are subject to change 
without warning. So please do not use these in any projects.

In [3]: plt._backend_mod.__name__

Out[3]: 'matplotlib.backends.backend_macosx'

In [4]: plt._show

Out[4]: <matplotlib.backends.backend_macosx.Show at 0x1074bc940>

If we try to get a figure or its figure manager right now, nothing will be returned 
since one hasn't been created yet:

In [5]: plt._pylab_helpers.Gcf

Out[5]: matplotlib._pylab_helpers.Gcf

In [6]: plt._pylab_helpers.Gcf.get_active()
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However, we can get the default figure manager in the following way:

In [7]: plt.get_current_fig_manager()

Out[7]: FigureManager object 0x106e1ea48 wrapping NSWindow 0x103e74e90

However, note that the figure manager too doesn't have a figure yet, this can be seen 
in the following way:

In [8]: plt.get_current_fig_manager().figure

-----------------------------------------------------------

AttributeError              Traceback (most recent call last)

<ipython-input-8-a80f1a99bf26> in <module>()

----> 1 plt.get_current_fig_manager().figure

AttributeError: 'FigureManagerMac' object has no attribute 'figure'

Now, let's call the plot function and see what's available:

In [9]: plt.plot([1,2,3,4])

Out[9]: [<matplotlib.lines.Line2D at 0x1088367b8>]

In [10]: plt._pylab_helpers.Gcf.get_active()

Out[10]: FigureManager object 0x1074c4a88 wrapping NSWindow 0x107026030

In [11]: plt._pylab_helpers.Gcf.get_active().canvas

Out[11]: FigureCanvas object 0x1074c45c8 wrapping NSView 0x10761cd60

In [12]: plt._pylab_helpers.Gcf.get_active().canvas.figure

Out[12]: <matplotlib.figure.Figure at 0x1074b5898>

Depending upon the operating system and backend that you are currently  
using, you may get results (or no results) that are different from the ones in  
the preceding section.
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Better yet, by using the API function and its attributes:

In [13]: plt.get_current_fig_manager()

Out[13]: FigureManager object 0x1074c4a88 wrapping NSWindow 0x107026030

In [14]: plt.get_current_fig_manager().canvas

Out[14]: FigureCanvas object 0x1074c45c8 wrapping NSView 0x10761cd60

In [15]: plt.get_current_fig_manager().canvas.figure

Out[15]: <matplotlib.figure.Figure at 0x1074b5898>

In [16]: plt.get_current_fig_manager().canvas.figure.axes

Out[16]: [<matplotlib.axes._subplots.AxesSubplot at 0x108826160>]

In [17]: plt.get_current_fig_manager().canvas.figure.axes[0].lines

Out[17]: [<matplotlib.lines.Line2D at 0x1088367b8>]

However, the most consistent results will be obtained when we use the pyplot 
utility functions in the following way:

In [18]: plt.gcf()

Out[18]: <matplotlib.figure.Figure at 0x1074b5898>

In [19]: plt.gca()

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x108826160>

In [20]: plt.gca().lines

Out[20]: [<matplotlib.lines.Line2D at 0x1088367b8>]

The next step is to add a label in the following way:

In [21]: plt.gca().get_ylabel()

Out[21]: ''

In [22]: plt.ylabel('some numbers')
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Out[22]: <matplotlib.text.Text at 0x1088464a8>

In [23]: plt.gca().get_ylabel()

Out[23]: 'some numbers'

Finally, we will save the image in the following way:

In [24]: ls -al *.png

ls: *.png: No such file or directory

In [25]: plt.savefig('simple-line.png')

In [26]: ls -al *.png

-rw-r--r--  1 oubiwann  staff  22473 Nov  9 15:49 simple-line.png

A note on tracing. What we did in the previous section is a bit like sightseeing—a 
quick overview, some interesting moments, and then we move on to the next thing. 
When you really want to dive deep into the execution flow of a program, script, or 
a function, you perform the operation of tracing. As you might expect, the Python 
standard library has a module for this as well—the trace module.

It's beyond the scope of this chapter to trace this script, but this is an excellent 
exercise for the motivated reader. Here is an example that illustrates the trace 
module's usage:

In [46]: def plotit():

             plt.plot([1,2,3,4])

             plt.ylabel('some numbers')

             plt.show()

         tracer = trace.Trace(countfuncs=1, countcallers=1)

         _ = tracer.runfunc(plotit)

This will take some time to run. When runfunc() completes, the tracing results will 
be stored in tracer.results, an instance of trace.CoverageResults:

In [47]: results = tracer.results()

         _ = results.write_results(show_missing=True, summary=True,

                                   coverdir=".")
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Note that by enabling countcallers, our results will have the call relationship 
tracking data. With this information, you should be able to build some highly 
detailed graphs using NetworkX and matplotlib that visually reveal which functions 
in matplotlib call where and which layers of the architecture call the other layers.

The matplotlib architecture as it relates 
to this book
The previous sections covered some heavy material, and it can be sometimes   
difficult to remember the big picture when examining the details under the 
proverbial microscope. As a preventative measure, we'd like to bring the  
discussion back to a macroscopic scale as it relates to knowledge acquisition.

The three layers that we've talked about in matplotlib's architecture are the backend, 
artist, and the scripting layers. As an intermediate user of matplotlib, you've very 
likely used all the three layers. However, you've most probably spent a lot of of time 
on the scripting layer with pyplot. This is where most users of matplotlib not only 
start, but usually stay. The introductory material in this book focuses on getting the 
users up to speed with the scripting layer so that they can be as effective as possible. 
Intermediate materials (such as the books for reference mentioned earlier in the 
chapter) also focus on this.

An in-depth usage of the artist layer is usually required when tackling complex tasks 
in matplotlib that require a deeper understanding of the library as a whole. These 
tasks might include operations such as custom transforms, scaling axes in unique 
ways according to the requirements of the data sets, or creating new primitives that 
need to be rendered by matplotlib.

As for the backend layer, it is similar to the artist layer. Custom work on the backend 
will arise when you either need to integrate with a new or unsupported GUI toolkit, 
or have specialized requirements to generate files from the plots.

With regard to the architecture of matplotlib, this book will spend some time 
covering certain aspects of the scripting layer, but it will spend more time on the 
artist and backend layers. Finally, we will move beyond matplotlib's architecture.
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Summary
In this chapter, we covered a lot of detailed material by starting with a high-level 
logical overview of matplotlib's structure. We then learned about the source code 
and examined how the matplotlib modules were laid out. We figured out the 
modules that were associated with different logical layers. Finally, we peered into 
the depths of matplotlib by tracing the function and method calls through the code. 
This was done by using a sample script in an interactive Python session.

One of the most commonly recommended practices for open source developers 
who want to improve is to read copious amounts of source code for the projects that 
you use the most and care about deeply. Similarly, as you develop your mastery of 
matplotlib, you will find yourself spending more and more time reading the source, 
exploring its depths, and ultimately making contributions to the project. This chapter 
is your first step in this direction.

The next step is learn more about the scripting layer and its best practices—the 
matplotlib APIs.
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matplotlib APIs and 
Integrations

In the previous chapter, we examined the architecture of matplotlib by using 
the library itself to visualize some aspects of the structure of module imports, 
particularly the ones related to the scripting, artist, and backend layers of the 
matplotlib architecture. In this chapter, we are going to examine the developer 
interfaces against the backdrop of this architectural discussion.

The matplotlib module comes with what are essentially three different application 
programming interfaces:

• The pylab interface, a MATLAB analog (deprecated)
• The pyplot interface, which is synonymous with the scripting layer from the 

last chapter
• The matplotlib object-oriented interface

We will define these and talk more about them in the following sections. Since they 
are covered in great detail elsewhere, we won't spend much time going over each of 
the functions that is available in the API. Rather we will demonstrate typical good 
usage for each API type and the circumstances under which their use would be 
recommended. Afterwards we will take a look at how matplotlib is integrated with 
the other scientific computing and visualization libraries.

To follow along with this chapter's code, clone the notebook's repository and start up 
IPython by using the following commands:

$ git clone https://github.com/masteringmatplotlib/apis.git

$ cd apis

$ make
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We're going to create some more libraries in this chapter, and we will use a custom 
color palette for our results. So, let's set them up now in the following way:

In [1]: import matplotlib 

        matplotlib.use('nbagg')

        %matplotlib inline

In [2]: import numpy as np

        import matplotlib.pyplot as plt

        import matplotlib as mpl

        from matplotlib.backends import backend_agg

        from matplotlib.colors import LinearSegmentedColormap

        from matplotlib.gridspec import GridSpec

        import seaborn as sns

        from IPython.display import Image 

In [3]: pallete_name = "husl"

        colors = sns.color_palette(pallete_name, 8)

        colors.reverse()

        cmap = mpl.colors.LinearSegmentedColormap.from_list(

            pallete_name, colors)

The procedural pylab API
The pylab API is a procedural interface to matplotlib's underlying object-oriented 
Python API. As mentioned in the previous chapter and stated in the matplotlib  
FAQ, the pylab module has been deprecated. The pyplot module is the preferred 
API for scripting. The original vision of pylab—to provide MATLAB users a 
nearly one-to-one mapping of the software they knew with that of an open source 
platform—has been accomplished. In the 12 years since its inception, matplotlib  
has become a household name in scientific computing circles, and as a result the 
need for pylab has decreased greatly.

The drawbacks of pylab include the following:

• It hides the workings (and thus, the deeper knowledge) of matplotlib, thus 
preventing the natural discovery of deeper feature sets that are available to 
the user through matplotlib objects.
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• The additional development and maintenance of pylab are a burden for the 
matplotlib team in its continued efforts to provide the MATLAB functionality 
that wraps the already-existing functions from NumPy and matplotlib.

• The import * expression is used to pull pylab into the current namespace 
(thus, going against Python's philosophical tenet of explicit is better than 
implicit). The gains of simplicity in this are debatable. What's more, with 
import *, you don't know the module from which a function or an object 
comes.

Despite the reasons for not using pylab, there are some motivating factors for 
discussing this old API here:

• Completeness; pylab is still released with matplotlib
• A warning to the readers—don't base your new projects on it
• Most importantly, pylab introduces the means by which users may migrate 

from their MATLAB-based pylab projects to the preferred matplotlib API

It is the last point in particular that we are the most interested in—providing the 
recent matplotlib adopters with extensive knowledge of MATLAB and ways to 
utilize their old skills and apply them to the supported matplotlib APIs. First,  
let's have a quick overview of what pylab provides.

The pylab interface is comprised of functions that are categorized into the  
following areas:

• Plotting
• Event handling
• Matrices
• Probability
• Statistics
• Time series analysis
• Dates

It also includes a final Other category consisting of a handful of miscellaneous 
functions ranging from utility functions that save data to polynomial fitting. These 
functions are all actually defined elsewhere, though this defining is not done in 
the pylab module itself. Many of them are pulled from NumPy and the rest are 
imported from matplotlib.mlab.



matplotlib APIs and Integrations

[ 48 ]

To motivate notes on migration, let's start with a simple MATLAB example.  
Check out the following function:

Now, let's plot the gradient for the preceding function. Here is the MATLAB code 
that accomplishes this:

[X,Y] = meshgrid(-2:.2:2);
Z = X.*exp(-X.^2 - Y.^2);
[DX,DY] = gradient(Z,.2,.2);
figure
contour(X,Y,Z)
hold on
quiver(X,Y,DX,DY)
hold off

Using the deprecated pylab interface, we can obtain the same result and in the 
process recognize the near isomorphism between MATLAB and pylab:

In [5]: from matplotlib.pylab import *

        (y, x) = mgrid[-2:2.1:0.2,-2:2.1:0.2]

        z = x * exp(-x ** 2 - y ** 2)

        (dy, dx) = gradient(z)

        quiver(x, y, dx, dy, z, cmap=cmap)

        hold(True)

        contour(x, y, z, 10, cmap=cmap)

        show()

From this, we will get the following plot, which is a nearly exact (arguably better 
looking) match of the graph presented in the MATLAB quiver documentation:
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In the pylab code, we saw the following calls:

• mgrid, exp, and gradient
• quiver, hold, contour, and show

The first set of functions that are listed are from NumPy; the second set is from 
matplotlib. Knowing this will allow us to migrate from pylab * to numpy.* and 
matplotlib.pyplot. However, if you are unfamiliar with these libraries, how does 
one know where to look?
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If you open the pylab.py file from a git clone repository of matplotlib or look at  
the files online, you will see that this module consists entirely of docstrings and 
imports and it has no actual function definitions. Most of the code comes from the 
following sources:

• matplotlib.mlab

• matplotlib.pyplot

• matplotlib.cbook (which is also known as a cookbook—a utility  
function module)

• numpy

• Various numpy.* modules

The following rules of thumb can be used to figure out whether you need to  
find your desired function in the matplotlib or NumPy code bases:

• If the function call has to deal directly with either the plotting, axes, figures, 
projections, and other transformations, or other visual elements of the plot, 
look for the function in matplotlib

• Likewise, if the function is concerned with the saving of images, the 
configuring of formats, the selecting of colors, and so on, look for it in 
matplotlib

• If the function is concerned with data, data types, mathematical operations, 
or transformations of data, search for the function in NumPy

To give you a better sense of the last item, some of the other NumPy functions 
imported by pylab are from the following modules:

• The fast Fourier transform (FFT) module
• The linear algebra module
• The masked array module

The other matplotlib libraries that were imported in pylab include the dates and 
finance modules.
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All of these can represent many potential places that you can look at when trying 
to figure out how to use the recommended matplotlib API. Deducing the probable 
module from the function name should be enough most of the time. If your first 
guess doesn't locate the function's module, it might be a great idea to grep the source. 
When migrating from pylab to pyplot, you might want to keep a check on matplotlib 
and NumPy in the following way:

$ cd ~/lab

$ git clone https://github.com/numpy/numpy.git

$ git clone https://github.com/matplotlib/matplotlib.git

If you had assumed that gradient was in matplotlib and after a quick look in 
matplotlib.mlab, you didn't see it, you can then hop into the repository clone to 
locate the desired function by using the following commands:

$ git grep 'def gradient'

.../tests/test_triangulation.py:    def gradient_quad(x, y):

.../tri/triinterpolate.py:    def gradient(self, x, y):

.../tri/triinterpolate.py:    def gradient(self, x, y):

After taking a look at the content of these files, you'd realize that your desired 
gradient function wasn't present. Then you can try NumPy:

$ cd ../numpy

$ git grep 'def gradient'

numpy/lib/function_base.py:dezf gradient(f, *varargs, **kwargs):

Sure enough, this is more promising. Taking a look at numpy.__init__, which will 
then point you to numpy.lib.__init__, you will see that function_base gets 
pulled into the numpy namespace. This is the function that we were looking for. Now 
that we have gone through all these efforts, you should know about a shortcut that 
may provide you with insights when searching for the modules that house a given 
class or function. In an interactive Python session, you can use the help command. In 
addition to printing docstrings and function signatures, the help command will also 
indicate the module of the function or class in the very first line of the output. In our 
case, help(gradient) shows numpy.lib.function_base in the first line.
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The place held by pylab is a venerable, even if an aging one; it has enormously 
helped the adoption of matplotlib, Python, and other general open source software 
in the world of scientific computing. Academia in many ways is the native home of 
open source and as such, matplotlib and Python are by now very much at home here. 
Now that matplotlib has secured its place in the scientific computing community 
along with the deprecation of pylab, it's time to use one of the two recommended 
methodologies to have an interface with the library.

The pyplot scripting API
Nearly all introductory matplotlib texts and a large portion of intermediate 
matplotlib material focuses on the pyplot scripting layer in matplotlib. The pyplot 
interface offers a highly flexible and convenient means to get data into the plots 
with no hassles. The simple-line.py script from the last chapter highlighted this. 
However, this can lead one to make an incorrect assessment of pyplot.

The pyplot API is not simply a tool for beginners, especially with the advanced use 
of data taking place in the object-oriented API. Rather, in pyplot's simplicity rests its 
power. It is the right tool to use when you need the following:

• One-off scripts
• Instant feedback for the visualization of newly obtained datasets
• The means to demonstrate plot features or workflow in an IPython 

matplotlib notebook
• Visualization and a manual check of data from laboratory experiments
• Ways to work through problems with a publication in a textbook or journal 

article, in graduate work, or for undergraduate classes
• A match for workflows that previously used the pylab API

Let's explore the pyplot API a bit with a real-world example that matches several of 
the use cases described in the preceding sections. The example is pertaining to the 
plotting of magnetic fields.

The following vector equation describes the magnetic field along an infinite wire by 
using cylindrical coordinates:
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This states that the magnetic vector B
�

 is defined as the product of the magnetic 
constant 0µ  and the current I in the wire divided by 2π and the distance from s to 
a point. This gives us the magnitude of the magnetic field. The direction off the 
cylindrical axis is indicated by the θ̂  component, thus giving us a cylindrical vector.

To convert this to the Cartesian coordinates ( x̂  and ŷ  components instead of a  
component) that can be used in this example, we can use trigonometry to make  
the following substitution:
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In the preceding equation, s2 = x2 + y2. Due to the defined value of the magnetic s 
constant, we can reduce our equation to the following:

2 2
ˆ ˆB= y xI x y
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 
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In the preceding equation, the value of μ is 2x10-7 volt seconds per ampere meters. 
For this problem, we're interested in looking at an x-y plane cross-section of a wire 
in the z axis carrying a current of 50 A (positive direction). We will calculate the 
numerical solutions for an area of 4 square meters.

Let's set our initial values:

In [10]: u = 2.0e-7

        I = 50

        (xmin, xmax, _) = xrange = (-2.0, 2.0, 30)

        (ymin, ymax, _) = yrange = (-2.0, 2.0, 30)

The last value of each tuple represents the number of points that we want to  
define along each axis. We won't use these values individually (only as a part of 
the xrange and yrange variables). So, we will assign them to the ignore variable, 
the underscore. We can now create a 30 × 30 grid (evenly spaced throughout the 4 
square meters) and from this grid, we can calculate the squared distance values in 
the following way:

In [11]: x, y = np.meshgrid(

            np.linspace(*xrange),

            np.linspace(*yrange))

         s2 = (x ** 2) + (y ** 2)
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Since we are not using pylab anymore, we will need to access NumPy functions from 
their own namespace. We've imported and aliased these functions to np according 
to the community convention. In this case, we've used the linspace function to 
provide us with a range of values which take as arguments a minimum for the range, 
a maximum, and the total number of values to generate between these two. The 
resulting arrays are then given as an input for the meshgrid function. The meshgrid 
function returns the coordinate matrices, which are used for the evaluations of vector 
fields over a grid defined by the inputs. In other words, this is how we perform 
n-dimensional vector field computations in NumPy.

Lastly, we will create another grid that represents the squared values for each 
coordinate in our grid.

Now that we have the x and y components for the coordinates over the given range 
as well as the squared distance s2, we can obtain the vector components of the 
magnetic field and use each of these to create the final equation for the complete 
magnetic field for the chosen values, that is, the vector components sum:

In [12]: Bx = u * I * (-y / s2)

         By = u * I * (x / s2)

         B = Bx + By

Step by step, we have converted the magnetic field equation in Cartesian coordinates 
to a set of numerical values that can be accepted by matplotlib. In this section, we 
will use the scripting layer. So, all the calls will be through the pyplot module, 
which is imported as plt.

Let's feed pyplot:

In [13]: plt.figure(figsize=(12,10))

         plt.quiver(x, y, Bx, By, B, cmap=cmap)

         plt.axis(ranges=1, aspect=1)

         plt.title('Magnetic Field of a Wire with I=50 A', 

                   fontsize=20)

         plt.xlabel('$x \mathrm{(m)}$', fontsize=16)

         plt.ylabel('$y \mathrm{(m)}$', fontsize=16)

         plt.colorbar(orientation='vertical')

         plt.show()
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The following plot is the result of the preceding command:

Most of the preceding plt.* calls should be familiar to you owing to your 
experience with matplotlib. The one thing that may be new for you is the use of the 
in-lined LaTeX for the x and y labels.

Let's zoom in on the magnetic field and overlay our vectors on an image generated 
from the continuous values in our previously defined range:

In [14]: figure, axes = plt.subplots(figsize=(12,10))

         im = axes.imshow(B, extent=ranges,

                          cmap=sns.dark_palette("#666666", 

                          as_cmap=True))
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         q = axes.quiver(x, y, Bx, By, B, cmap=cmap)

         figure.colorbar(q, shrink=0.96)

         plt.axis([-0.5, 0.5, -0.5, 0.5], aspect=1)

         plt.title('Magnetic Field of a Wire with I=50 A', 

                   fontsize=20)

         plt.xlabel('$x \mathrm{(m)}$', fontsize=16)

         plt.ylabel('$y \mathrm{(m)}$', fontsize=16)

         plt.show()

The following plot is the result of the preceding command:
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As you know, the zooming of the magnetic field plot is accomplished by defining 
new limits on the axes. With this plot, we are able to see not only the vectors (the 
magnitude and direction) of the selected grid and the evenly distributed coordinates, 
but also the smooth and continuous magnitude of the magnetic field, which appears 
in shades of grey.

Note that even though we are defining objects in this example, we are 
still doing so using only the pyplot interface.

We have seen some use cases that are a good fit for the pyplot API, and we have 
gone through an example. The next question that you may naturally ask is: when 
should we not use pyplot? All the examples in the bullet list at the beginning of this 
section have one thing in common—they imply that one or more individuals are 
working on problems in a simple, manual workflow. There are other workflows.

If you're going to generate huge numbers of plots, process vast quantities of data, or 
have particular needs for highly customized plots, you'll want to skip the scripting 
layer and work directly with the artist or backend layers.

The matplotlib object-oriented API
Before we begin, a caveat about the terminology is in order. We use the phrase 
matplotlib object-oriented API to refer to a direct access to matplotlib's artist and 
backend layers. The pyplot scripting layer is also object-oriented in that it is 
composed of functions and instances that are object-oriented by design. The pyplot 
interface is built upon the OOP methodologies utilized by matplotlib. The distinction 
that we attempt to make in this section is that we will be creating these objects 
directly instead of using a scripting layer that does the same for us.

As with the previous section, we acknowledge that the object-oriented API for 
matplotlib has been covered in great detail in other materials and we will therefore 
simply provide an overview of the interface via an example, much like with the 
pyplot API overview.

Of the many circumstances that require fine-grained control over the elements of a 
plot or the customized use of the backend, a very clear use case to directly access the 
object-oriented matplotlib API is a noninteractive, programmatic generation of plots.
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Let's assume that you have just received an enormous amount of data from some 
experiments that measured magnetic fields under varying conditions, and you need 
to generate plots for all the interesting datasets, which happen to number in the 
hundreds. Unless you are a very unlucky grad student (who doesn't have this book), 
this is a task for which you will have to create specialized code. This is not something 
that you would want to do manually, creating one image file at a time. You might 
even run your new code on a cluster, splitting the plotting tasks up across many 
machines, allowing your results to be viewed much more quickly.

Let's get started by refactoring one of the pylab examples from the  
notebook—magnetic fields that are generated due to the current that flows  
through two wires. We will need to accomplish the following:

• Convert the pyplot procedural-style definition of values to functions that 
return values

• Create an object that wraps the experimental data
• Create an object that wraps the configuration data that is needed by our plots
• Create an object that manages the matplotlib instances that we need for  

our plot
• Create some experiments and have their plots saved in separate files

The first three points represent the work that has to be done in support of our use of 
matplotlib; the last two points are the focus of the following section. Let's get started.

Equations
This is another magnetic field example, but to keep things interesting, we are going 
to use a different equation. We will use the equation that describes the magnetic  
field that is generated due to the current passing through two wires in opposite 
directions (again, in the z axis). Here's the equation that represents this, and  
which we will solve:

A note for the curious reader—if you are following along in the 
IPython Notebook for this chapter, you will see a link in the 
section where this equation is presented. This link will take you to 
another notebook accompanying this chapter, which guides you 
through the preceding derivation.
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Let's convert this to a function. The following code should look very familiar after 
the last section—one function is responsible for the building of the vectors that will 
feed the quiver plot function, and the other for doing the hard work of computing 
the vectors of the magnetic field:

In [35]: def get_grid_values(xrange: tuple, yrange:tuple) -> tuple:

             return np.meshgrid(np.linspace(*xrange),

                                np.linspace(*yrange))

         def get_field_components(distance: float, currents: tuple,

                                  magconst: float, xrange: tuple,

                                  yrange:tuple) -> tuple:

             (x, y) = get_grid_values(xrange, yrange)

             x1 = x - distance

             x2 = x + distance

             s12 = x1 ** 2 + y ** 2

             s22 = x2 ** 2 + y ** 2

             (I1, I2) = currents

             const = magconst / (s12 * s22)

             Bx = const * -y * ((I1 * s22) + (I2 * s12))

             By = const * ((I1 * s22 * x1) + (I2 * s12 * x2))

             return (Bx, By)

Helper classes
As mentioned at the beginning of the preceding section, we are going to create  
some classes that will make our code cleaner. The code will be easier to read six 
months from now, and it will be easier to troubleshoot it should something go 
wrong. There are two areas that need to be addressed:

• A class that is used to organize experimental data
• A class that is used to configure data

The Experiment class just needs to accept experimental data in its constructor  
and then provide access to this data via the attributes. As such, only a single  
method is needed—its constructor:

In [36]: class Experiment:

            def __init__(self, d: float, Is: tuple,

                         xrange, yrange, m: float=2.0e-7):
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                self.distance = d

                self.magconst = m

                (self.current1, self.current2) = Is

                self.xrange = xrange

                (self.xmin, self.xmax, _) = xrange

                self.yrange = yrange

                (self.ymin, self.ymax, _) = yrange

                (self.x, self.y) = get_grid_values(xrange, yrange)

                self.ranges = [self.xmin, self.xmax,

                               self.ymin, self.ymax]

                (self.Bx, self.By) = get_field_components(

                    self.distance, Is, self.magconst,

                    self.xrange, self.yrange)

                self.B = self.Bx + self.By

Next, let's create a configuration class. This will hold everything the artist and 
backend layers need to create the plots:

In [37]: from matplotlib.colors import LinearSegmentedColormap

         class ExperimentPlotConfig:

            def __init__(self, size: tuple, title_size: int=14,

                         label_size: int=10,

                         bgcolor: str="#aaaaaa", num_colors: int=8,

                         colorbar_adjust: float=1.0,

                         aspect_ratio=1.0):

                self.size = size

                self.title_size = title_size

                self.label_size = label_size

                self.bgcolor = bgcolor

                self.num_colors = num_colors

                self.colorbar_adjust = colorbar_adjust

                self.aspect_ratio = aspect_ratio

            def fg_cmap(self, palette_name="husl"):

                colors = sns.color_palette(
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                    pallete_name, self.num_colors)

                colors.reverse()

                return LinearSegmentedColormap.from_list(

                    pallete_name, colors)

            def bg_cmap(self):

                return sns.dark_palette(self.bgcolor, as_cmap=True)

The Plotter class
We've arrived at the point where we need to create the most significant bit  
of functionality in our task. This code will serve the same purpose as pyplot  
in matplotlib. In our particular case, it will batch jobs via matplotlib's  
object-oriented interface.

From your previous reading (as well as this book's chapter on the matplotlib 
architecture), you'll remember that the Plotter class needs to do the following tasks:

• Create a figure manager
• Provide access to the managed figure instance
• Create and configure the axes
• Plot the data
• Save the plot to a file

In our case, we will have two plots—one representing the magnitude of the vector 
field at any given point (this will be a background image), on top of which will be  
the second plot, which is a quiver plot of the vectors from the grid of coordinates.

Here's the Plotter class, which demonstrates the object-oriented API of matplotlib:

In [38]: class Plotter:

            def __init__(self, index, plot_config, experiment):

                self.cfg = plot_config

                self.data = experiment

                self.figure_manager = backend_agg.new_figure_manager(

                    index, figsize=self.cfg.size)

                self.figure = self.figure_manager.canvas.figure

            def get_axes(self):
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                gs = GridSpec(1, 1)

                return self.figure.add_subplot(gs[0, 0])

            def update_axes(self, axes):

                tmpl = ('Magnetic Field for Two Wires\n'

                        '$I_1$={} A, $I_2$={} A, at d={} m')

                title = tmpl.format(self.data.current1,

                                    self.data.current2,

                                    self.data.distance)

                axes.set_title(

                    title, fontsize=self.cfg.title_size)

                axes.set_xlabel(

                    '$x$ m', fontsize=self.cfg.label_size)

                axes.set_ylabel(

                    '$y$ m', fontsize=self.cfg.label_size)

                axes.axis(

                    self.data.ranges,

                    aspect=self.cfg.aspect_ratio)

                return axes

            def make_background(self, axes):

                return axes.imshow(

                    self.data.B, extent=self.data.ranges,

                    cmap=self.cfg.bg_cmap())

            def make_quiver(self, axes):

                return axes.quiver(

                    self.data.x, self.data.y,

                    self.data.Bx, self.data.By,

                    self.data.B, cmap=self.cfg.fore_cmap())

            def make_colorbar(self, figure, quiver):

                return self.figure.colorbar(
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                    quiver, shrink=self.cfg.colorbar_adjust)

            def save(self, filename, **kwargs):

                axes = self.update_axes(self.get_axes())

                back = self.make_background(axes)

                quiver = self.make_quiver(axes)

                colorbar = self.make_colorbar(self.figure, quiver)

                self.figure.savefig(filename, **kwargs)

                print("Saved {}.".format(filename))

Take a look at the creation of the figure manager in the constructor method of the 
Plotter class—we directly interfaced with the backend layer. Likewise, when we 
obtain the figure reference from the canvas, this is the domain of the backend layer.

Most of the remaining code interfaces with the artist layer of the matplotlib 
architecture. There are some points worth making in some of this code:

• We named the axes-generating method intuitively. It is not obvious, 
however, that the Figure.add_subplot method returns an Axes instance.

• The Axes.imshow method may not be immediately obvious either. It is 
named show and the docstring says that it displays, but what it really does is 
create an AxesImage instance from the given data and add the image to the 
Axes instance (returning the AxesImage instance).

• We used the shrink keyword in the Figure.colorbar call for an aesthetic 
purpose. It balanced the relative size of the colorbar with the plot.

The last bit that touches the backend layer is done indirectly through the artist 
layer—via the call to savefig. Under the hood, what really happens here is that 
the backend layer's particular canvas instance (in our case, FigureCanvasAgg) calls 
its print_figure method (which, in turn, calls a method appropriate for the given 
output format).

Running the jobs
To bring all of these together, we need some code to perform the following tasks:

• Create a configuration instance that the Plotter class can use
• Create a list of the Experiment instances, complete with the data that has to 

be plotted
• Iterate through each of these instances, saving the plots to a file
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Here's the code for this:

In [39]: plot_config = ExperimentPlotConfig(

            size=(12,10),

            title_size=20,

            label_size=16,

            bgcolor="#666666",

            colorbar_adjust=0.96)

        experiments = [

            Experiment(d=0.04, Is=(1,1),

                       xrange=(-0.1, 0.1, 20),

                       yrange=(-0.1, 0.1, 20)),

            Experiment(d=2.0, Is=(10,20),

                       xrange=(-1.2, 1.2, 70),

                       yrange=(-1.2, 1.2, 70)),

            Experiment(d=4.0, Is=(45,15),

                       xrange=(-5.3, 5.3, 60),

                       yrange=(-5.3, 5.3, 60)),

            Experiment(d=2.0, Is=(1,2),

                       xrange=(-8.0, 8.0, 50),

                       yrange=(-8.0, 8.0, 50))]

        for (index, experiment) in enumerate(experiments):

            filename = "expmt_{}.png".format(index)

            Plotter(index,

                    plot_config,

                    experiment).save(filename)

When you press the Shift + Enter keys for the cell in the IPython Notebook, you will 
see whether the output for each file that it saves is printed or not. You can also verify 
the same with the following code:

In [40]: ls -1 expmt*.png

         expmt_0.png

         expmt_1.png
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         expmt_2.png

         expmt_3.png

If you would like to view the files in the notebook, you can import the image display 
class from IPython in the following way:

In [41]: Image("expmt_1.png")

The following plot is the result of the preceding command:

In [42]: Image("expmt_2.png")
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The following plot is the result of the preceding command:

This brings the review of the object-oriented matplotlib API to a close.  
However, before we finish the chapter, we will take a look at how the other  
libraries use matplotlib.

matplotlib in other frameworks
In general, third-party libraries that depend on or provide support to the process of 
interfacing with matplotlib do so mostly through the scripting layer. Here is a quick 
summary of a few libraries that use matplotlib:

• Seaborn: This library uses all the matplotlib.pyplot functions.
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• NetworkX: This library essentially uses all the matplotlib.pyplot 
functions, with the only exception being some backend and artist layer 
interfacing that is used to generate the project's gallery (which is another 
good example of the programmatic approach for batched jobs).

• Pandas: This library mostly uses matplotlib.pyplot, but it sometimes also 
uses the deprecated pylab interface. It also has some custom transforms and 
tickers in its time series converter code.

• scikit-learn: This library mostly uses matplotlib.pyplot along with some 
custom use of the font manager and color mapping. It also takes advantage 
of the collections, finance, and mpl_toolkits modules, among others. 
Additionally, this library performs some custom backend tweaking.

This is just a partial sampling of the respectable scientific computing libraries 
available that use matplotlib. The overwhelming impression that one is left  
with is twofold:

• The matplotlib module has been put to some very impressive use.
• The pyplot API in matplotlib is extensively used by every project in the 

community. Respect.

An important note on IPython
While discussing matplotlib in other frameworks, I would be remiss if the following 
was not mentioned. As of April 2014, IPython no longer supports starting with 
the –pylab flag. This is a big change, and many tutorials, books, and open source 
documents need to be updated with new best practices to start up IPython along 
with matplotlib. The preferred way of using matplotlib in the IPython Notebooks is 
demonstrated in the following code:

In [1]: %matplotlib inline

        import numpy as np

        import matplotlib.pyplot as plt

This change in IPython came as a result of the project's expansive growth in  
non-Python communities. With the ongoing development in the support of Julia  
and Haskell, their architecture is becoming language-agnostic. In fact, the project 
now has a new, more inclusive name (with a nice nod to its Python roots)—Jupyter.
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Summary
As indicated, this chapter is connected to the previous one by the virtue of the 
relationship between matplotlib's architecture and the software library's APIs. While 
material for various matplotlib APIs is available online and in other books, we strove 
to view these from a different perspective. Firstly, in sources that cover matplotlib 
APIs exhaustively, one can be exposed to too many use cases. This can lead to a 
slight confusion on the part of the reader who is attempting to gain mastery over the 
subject area (matplotlib). Instead, we aimed for an overview approach that focused 
on some real-world examples in order to keep the story clear.

Secondly, we wanted to emphasize that there are many advanced users of matplotlib 
whose sole experience with regard to the library is via its deprecated compatibility 
layer with MATLAB. We wanted to provide useful material for those who wish to 
make the leap into the land of matplotlib.

Finally, it almost goes without saying that this chapter's work of the APIs builds 
upon our efforts in the previous chapter. Having just read about matplotlib's 
architecture and internals, our study of its APIs and integrations has us with 
additional insight, giving us a deeper understanding of how it all fits together.

This chapter brings to a close our exploration of the big picture. From here on out, 
we will engage with very specific advanced topics that are accompanied by in-depth 
exercises. Our first stop on the next leg of the journey will be event handling and 
interactive plots.
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Event Handling and 
Interactive Plots

This chapter marks the beginning of our transition into specialized topics.  
While we will continue making references to the preceding overview, the  
subsequent chapters will focus on taking you deeper into the domain of  
advanced matplotlib usage.

In this chapter, we will delve into matplotlib events and interactive plots and  
cover the following topics:

• A general overview of event-based systems
• The anatomy of an event loop
• The GUI toolkit event loop basics
• Event loops in IPython and matplotlib
• Event handling in matplotlib
• Events for mouse, keyboard, axes, figures, and picking
• Compound events

The material presented here will be pulled from matplotlib's artist and backend 
layers, and it should provide a nice starting point for the vast world of user 
interaction in data visualization.

To follow along with this chapter's code, clone the notebook's repository and  
start up IPython by using the following code:

$ git clone https://github.com/masteringmatplotlib/interaction.git

$ cd interaction

$ make
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Since we will be using the IPython Notebook backend—which is also known  
as nbagg—for interactive plots, we will not enter the usual %matplotlib  
inline command:

In [1]: import matplotlib

        matplotlib.use('nbagg')

We'll use the regular imports as well as a few other imports in the  
following examples:

In [2]: import random

        import sys

        import time

        import numpy as np

        import matplotlib as mpl

        import matplotlib.pyplot as plt

        import seaborn as sns

        from IPython.display import Image

        from typecheck import typecheck

        sys.path.append("../lib")

        import topo

Event loops in matplotlib
In the chapter on matplotlib architecture, we mentioned the event loops that the 
GUI toolkits use and which are integrated with matplotlib. As you dig through the 
matplotlib libraries, you will eventually come across several mentions with regard to 
the event loops that are not from the GUI toolkits. So that we can better understand 
the difference between these and, more importantly, the event handling and user 
interaction with plots, we're going to spend some time learning more about these 
event loops in matplotlib.
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Event-based systems
In general, event loops are part of a recurring set of patterns that are used together  
in various computing frameworks. Often, they comprise of the following:

• An incoming event
• A mechanism that is used to respond to an event
• A looping construct (for example, the while loop, listener, and the message 

dispatch mechanism)

Event-based systems are typically asynchronous in nature, allowing events to be 
sent to the system and then responded to in any order without the slower operations 
preventing the faster ones from being executed sooner. It is this characteristic that 
makes the event-based systems such a compelling option for software architects and 
developers. When used properly, asynchronous programming can lead to significant 
improvements in the perceived performance of an application.

Event-based systems take many forms. Some common examples for the same  
include the following:

• Asynchronous networking libraries
• Toolkits that are used to build graphical user interfaces
• Enterprise messaging systems
• Game engines

It is a combination of the first two examples with which we will occupy ourselves in 
this chapter. Before we tackle this though, let's take a look at the basic workings of 
event-based systems, and in particular, the event loop.

The event loop
So, what did we mean previously when we said a looping construct? Well, the 
simplest loop that you can create in Python is the following:

while True:
    pass
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This will just run forever until you press the Ctrl + C keys or the power goes out. 
However, this particular loop does nothing useful. Here's another loop that will  
run until its event fires a change of a value from True to False:

In [4]: x = True

        while x:

            time.sleep(1)

            if random.random() < 0.1:

                x = False

So, what relation do these simple loops have with the loops that power toolkits, such 
as GTK and Qt, or frameworks, such as Twisted and Tornado, possess? Usually, the 
event systems have the following:

• A way to start the event loop
• A way to stop the event loop
• Means to register events
• Means to respond to events

During each run, a loop will usually check a data structure to see whether there 
are any new events that occurred since the last time it looped. In a network event 
system, each loop will check to see whether any file descriptors are ready to read 
or write. In a GUI toolkit, each loop will check to see whether any clicks or button 
presses occurred.

Given the preceding simple criteria, let's explore another slightly more sophisticated 
and minimally demonstrative event loop. To keep this small, we are not going to 
integrate with socket or GUI events. The event that our loop will respond to will be 
quite minimal indeed—a keyboard interrupt:

In [5]: class EventLoop:

            def __init__(self):

                self.command = None

                self.status = None

                self.handlers = {"interrupt": self.handle_interrupt}

                self.resolution = 0.1

            def loop(self):

                self.command = "loop"
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                while self.command != "stop":

                    self.status = "running"

                    time.sleep(self.resolution)

            def start(self):

                self.command = "run"

                try:

                    self.loop()

                except KeyboardInterrupt:

                    self.handle_event("interrupt")

            def stop(self):

                self.command = "stop"

            @typecheck

            def add_handler(self, fn: callable, event: str):

                self.handlers[event] = fn

            @typecheck

            def handle_event(self, event: str):

                self.handlers[event]()

            def handle_interrupt(self):

                print("Stopping event loop ...")

                self.stop()

Here's what we did:

• We created a class that maintains a data structure for event handlers
• We added a default handler for the interrupt event
• We also created a loop method
• We created methods to start and stop the loop via an attribute change
• In the start method, we checked for an interrupt signal and fired off an 

interrupt handler for the signal
• We created a method to add event handlers to the handler data structure 

(should we want to add more)
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Now, you can run this loop in the notebook by using the following code:

In [*]: el = EventLoop()

        el.start()

When you evaluate this cell, IPython will display the usual indicator that a cell 
is running, in other words, the In [*] cell. When you're satisfied that the loop 
is merrily looping, go to the IPython Notebook menu and navigate to Kernel | 
Interrupt. The cell with a loop in it will finish, and the asterisk will be replaced  
by the input number. The interrupt handler will be printed out as a status message  
as well:

In [6]: el = EventLoop()

        el.start()

Stopping event loop ...

Though this event loop is fairly different from the power networking libraries or GUI 
toolkits, it's very close (both in nature as well as the code) to the default event loops 
matplotlib provides for its canvas objects. As such, this is a perfect starting place if 
you want to have a deeper understanding of matplotlib. To continue in this vein, 
reading the matplotlib backend source code will serve you well.

The preceding practical background information should be enough for you to more 
fully appreciate the following few sections.

GUI toolkit main loops
How are the main loops in the GUI toolkits different from the preceding ones? Well, 
for one, the GTK and Qt event systems aren't written in Python. The GTK main loop 
is written in C, and it is a part of one of the libraries underlying GTK—GLib. More 
importantly, the GUI toolkits are designed to respond to the user input from many 
types of devices, and sometimes, at a very fine-grained level. The loop demonstrated 
previously is a simple, generic loop that allows one to define any sort of event, which 
can also be connected to a callback.
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However, even with all the differences, they can still be mapped to each other.  
The GLib event loop documentation provides the following diagram:

In the simple EventLoop class, setting the initial value of the handlers attribute 
is similar to what GLib can do in a prepare() or query() call. Our version of 
the check() call is really just a part of the Python control flow; we took the easy 
route with a try/except method wrapped around the loop call. The only way the 
class can monitor the outside world for events is through a KeyboardInterrupt 
exception. Our dispatch() is the call to the registered handler for the interrupt 
event. Hence, despite the simplicity of our example, one can see how it relates to  
the fully featured, real-world event systems.

An in-depth exploration of the GUI main loops is well beyond the scope of this  
book, but before we leave the topic entirely behind, let's look at what's running 
under IPython's bonnet.

IPython Notebook event loops
IPython originally started as an advanced read-eval-print loop (REPL) for Python. 
After about a decade of becoming a powerful tool for Python scientific computing, 
using NumPy and matplotlib, and providing parallel computing features, IPython 
added support for HTML notebooks. Since then, the popularity of IPython 
Notebook and the user-created content that runs on it has exploded. The matplotlib 
development community has responded with a matplotlib backend that enables 
interaction in the browser, which is similar to what users might expect when running 
a GTK or Qt backend.
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The IPython Notebook requires two main components—an HTTP server and a web 
client, such as your browser. The functionality of a websocket-enabled HTTP server 
is provided by Tornado, a Python web framework, and an asynchronous networking 
library. Your browser provides the infrastructure necessary to support the websocket 
communications with the web server. Through ZeroMQ, IPython provides the 
means to send the data it receives over websockets to the rest of the components in 
the IPython architecture.

Some of these components have their own event loops. They include the following:

• The browser's event loop
• Tornado's HTTP Server event loop
• IPython's PyZMQ event loops (for instance, pollers)

However, what this picture is missing is how this relates to matplotlib. In order for a 
web-based matplotlib backend to work, it needs the following:

• A means to send data and receive results for display
• A figure manager that establishes two-way communications with IPython
• A figure canvas with its own event loop
• A timer class to get events to the Tornado ioloop in IPython Notebook app
• An event loop for each canvas

matplotlib event loops
The last bullet item may cause confusion. So, it is important to make this clear—the 
event loops that matplotlib uses for its canvases are completely different and quite 
separate from the GUI event loops. In fact, the default figure canvas event loop is 
very similar to the loop method in the EventLoop class from the previous section.

The GUI and matplotlib event loops have different code. Yet, they are still  
connected. In the case of an IPython Notebook app, the web browser's JavaScript 
events and websockets ultimately communicate with the IPython kernel, which  
in turn communicates with the instances of matplotlib figure managers, figures,  
and canvases.
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Understanding how these pieces work together and communicate is the key to 
mastering the matplotlib events, both for the creation of more advanced plots, as 
well as the inevitable debugging that they will need. The best resource for a deeper 
understanding of these events is the matplotlib source code. Spend time getting to 
know how figures and canvases respond to events, messages get sent from one class 
to another, how matplotlib generalizes the event experience across the GUI toolkits, 
and how this affects the toolkit of your choice.

Event handling
We now have a good background for some practical work with matplotlib events. 
We are now ready to explore the nitty-gritty. Let's begin with the list of events that 
matplotlib supports:

Event name Class  Description
button_press_event MouseEvent The mouse button is pressed
button_release_event MouseEvent The mouse button is released
draw_event DrawEvent The canvas draw occurs
key_press_event KeyEvent A key is pressed
key_release_event KeyEvent A key is released
motion_notify_event MouseEvent Motion of the mouse
pick_event PickEvent An object in the canvas is 

selected
resize_event ResizeEvent The figure canvas is resized
scroll_event MouseEvent The scroll wheel of the mouse is 

rolled
figure_enter_event LocationEvent The mouse enters a figure
figure_leave_event LocationEvent The mouse leaves a figure
axes_enter_event LocationEvent The mouse enters an axes object
axes_leave_event LocationEvent The mouse leaves an axes object

Note that the classes listed in the preceding events table are defined in matplotlib.
backend_bases.
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The perceptual field of matplotlib is the canvas object—this is where the events take 
place, and this is the object that provides the interface to connect the code to the 
events. The canvas object has an mpl_connect method, which must be called if you 
want to provide custom user interaction features along with your plots. This method 
just takes the following two arguments:

• A string value for the event, which can be any of the values listed in the 
Event Name column of the preceding table

• A callback function or method

We will demonstrate some ways to use mpl_connect in the subsequent examples.

Mouse events
In matplotlib, the mouse events may be any of the following:

• button_press_event: This event involves a mouse button press
• button_release_event: This event involves a mouse button release
• scroll_event: This event involves scrolling of the mouse
• motion_notify_event: This event involves a notification pertaining to the 

mouse movement

The notebook for this chapter has a section on mouse events, which shows several 
examples. We will take a look at one of these in particular; it demonstrates the press 
and release events, and it does so with an almost tactile feedback mechanism.  
These are the tasks that it does:

• It connects a callback for mouse press and mouse release
• It records the time of the click
• It records the time of the release
• It draws a circle at the coordinates of the click
• It draws another partially transparent circle whose size is determined by the 

amount of time that passed between the click and the release

Let's take a look at the code so that you can clearly see how to implement each of the 
aforementioned things:

In [8]: class Callbacks:

            def __init__(self):
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                (figure, axes) = plt.subplots()

                axes.set_aspect(1)

                figure.canvas.mpl_connect(

                    'button_press_event', self.press)

                figure.canvas.mpl_connect(

                    'button_release_event', self.release)

            def start(self):

                plt.show()

            def press(self, event):

                self.start_time = time.time()

            def release(self, event):

                self.end_time = time.time()

                self.draw_click(event)

            def draw_click(self, event):

                size = 4 * (self.end_time - self.start_time) ** 2

                c1 = plt.Circle(

                    [event.xdata, event.ydata], 0.002,)

                c2 = plt.Circle(

                    [event.xdata, event.ydata], 0.02 * size,

                    alpha=0.2)

                event.canvas.figure.gca().add_artist(c1)

                event.canvas.figure.gca().add_artist(c2)

                event.canvas.figure.show()

        cbs = Callbacks()

        cbs.start()

Here, we saw the aforementioned mpl_connect method in action. The constructor 
in our class sets up the figure's canvas instance with two callbacks. One will be fired 
when the canvas detects button_press_event, and the other will be fired when the 
canvas detects button_release_event.
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When you run the preceding code in the notebook and click on the resulting graph, 
you will see something like this (depending on where you click and how long you 
hold down the mouse button):

There are a few things worth highlighting here:

• We don't need to store any references to the canvas or the figure in this 
object; we utilize the constructor merely to set up the callbacks for the  
two events

• We utilized the canvas' mpl_connect method to register callbacks,  
as previously discussed

• The event object not only provides access to event-specific attributes such as 
the coordinates of the mouse click, but also has references to useful objects, 
such as the canvas instance and therefore, the figure instance as well
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Keyboard events
Keyboard events are similar to the mouse events, though there are only two of them:

• key_press_event

• key_release_event

These are used in the same way as the corresponding mouse button events, though 
they provide an interesting opportunity for the ergonomically sensitive user.

As of matplotlib version 1.4 and IPython version 2.3, keyboard events for plots 
are not supported in the nbagg backend. Therefore, we will use IPython from the 
terminal for this section.

In the following section, we're going to take a look at an example that may give you 
some ideas with regard to the customization of your own plots. We're going to make 
a simple data viewer. Before we look at the code, let's describe what we want to do:

• We want to easily navigate through large datasets with simple keyboard 
commands

• Given a large dataset, we would like to have each subset displayed in its  
own plots

• In the GUI, we would like to navigate forwards and backwards through  
the datasets, visualizing the plot of each set on the fly

• We would like to return to the beginning of the datasets with a key press

This is pretty straightforward, and it an excellent use case for keyboard events.  
We'll have to build some pieces for this, though. Here's what we will need:

• A function that returns each member of our large dataset one after the other
• A class that lets us move forwards and backwards through our dataset  

(by making use of the preceding function)
• A class that performs the basic configuration and setup
• Additional support functions to create and update the plots
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In a terminal IPython session, we can perform the initial imports and run the color 
map setup in the following way:

In [1]: import numpy as np

In [2]: import matplotlib as mpl

In [3]: from matplotlib import pyplot as plt

In [4]: import seaborn as sns

In [5]: pallete_name = "husl"

In [6]: colors = sns.color_palette(pallete_name, 8)

In [7]: colors.reverse()

In [8]: cmap = mpl.colors.LinearSegmentedColormap.from_list(

            pallete_name, colors)

Next, we need a function that can act as a given dataset as well as another function 
that will act as the very large dataset (infinite, in this case). The second function is a 
good fit if you wish to use a generator:

In [9]: def make_data(n, c):

            r = 4 * c * np.random.rand(n) ** 2

            theta = 2 * np.pi * np.random.rand(n)

            area = 200 * r**2 * np.random.rand(n)

            return (r, area, theta)

In [10]: def generate_data(n, c):

             while True:

                 yield make_data(n, c)

We've now received an endless number of datasets that can be used in our viewer. 
Now, let's create the data Carousel class. It's needs to perform the following tasks:

• Maintain a reference to the data
• Move to the next data in the set, putting the viewed data into a queue
• Move back to the previous data items, pushing the ones it passes onto a 

separate queue while it takes them off the other queue
• Provide a callback for key_press_event and then dispatch to the other 

functions, depending on the pressed key
• Provide an initial plot as well as the event-handling functions for  

specific keys
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Here's what the data Carousel class looks like:

In [13]: class Carousel:

             def __init__(self, data):

                 (self.left, self.right) = ([], [])

                 self.gen = data

                 self.last_key = None

             def start(self, axes):

                 make_plot(*self.next(), axes=axes)

             def prev(self):

                 if not self.left:

                     return []

                 data = self.left.pop()

                 self.right.insert(0, data)

                 return data

             def next(self):

                 if self.right:

                     data = self.right.pop(0)

                 else:

                     data = next(self.gen)

                 self.left.append(data)

                 return data

             def reset(self):

                 self.right = self.left + self.right

                 self.left = []

             def dispatch(self, event):

                 if event.key == "right":

                     self.handle_right(event)

                 elif event.key == "left":

                     self.handle_left(event)

                 elif event.key == "r":

                     self.handle_reset(event)

             def handle_right(self, event):

                 print("Got right key ...")

                 if self.last_key == "left":

                     self.next()
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                 update_plot(*self.next(), event=event)

                 self.last_key = event.key

             def handle_left(self, event):

                 print("Got left key ...")

                 if self.last_key == "right":

                     self.prev()

                 data = self.prev()

                 if data:

                     update_plot(*data, event=event)

                 self.last_key = event.key

             def handle_reset(self, event):

                 print("Got reset key ...")

                 self.reset()

                 update_plot(*self.next(), event=event)

                 self.last_key = event.key

In [14]: %paste

The class that will perform the setup and configuration duties, including the 
connecting of key_press_event to the callback and the instantiating of the  
Carousel object, is as follows:

In [15]: class CarouselManager:

             def __init__(self, density=300, multiplier=1):

                 (figure, self.axes) = plt.subplots(

                     figsize=(12,12), subplot_kw={"polar": "True"})

                 self.axes.hold(False)

                 data = generate_data(density, multiplier)

                 self.carousel = Carousel(data)

                 _ = figure.canvas.mpl_connect(

                     'key_press_event', self.carousel.dispatch)

             def start(self):

                 self.carousel.start(self.axes)

                 plt.show()

In [16]: %paste
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Note that after pasting the code for each class, IPython will need 
you to use the %paste command so that it can accurately parse 
what was pasted.

And with this, we're ready to navigate through our data visually. We'll make the 
displayed circles larger than the default size by setting the multiplier to a higher 
number in the following way:

In [17]: cm = CarouselManager(multiplier=2)

In [18]: cm.start()

This will make a GUI window pop up on the screen with an image that looks  
like this:
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Now try pressing the right and left arrows of your keyboard to view the different 
(randomly generated) datasets. As coded in the Carousel class, pressing R will 
return us to the beginning of the data.

Depending on the web browser that you are using, you may see 
different results, experience poor performance, or find out that 
some actions don't work at all. We have found out that the best 
user experience with regard to a browser for matplotlib is with 
the Firefox and Chrome browsers.

The most practical understanding that you can take away, which you can use in 
your own projects, is that you need to write a dispatch method or function for every 
key (or key combination) press and release event. The simplicity of the matplotlib 
interface of providing a single key press event for all the keys ensures that the 
matplotlib code stays compact while keeping the options open for the developers. 
The flip side is that you need to implement the individual key handling yourself for 
whichever keys your particular use case has a need of.

Axes and figure events
We can execute callbacks when the mouse enters and leaves figures or axes in a 
way that is similar to the connection of the keyboard and mouse events. This can be 
helpful if you have complex plots with many subplots. It will allow you to provide 
a visual feedback to the user regarding the subplot that is our focus or even expose 
a larger view of the focused plot. The IPython Notebook for this chapter covers an 
example of this.

Object picking
The next event that we will mention is a special one—the event of an object being 
picked. Object picking is one of the greatest, although unsung, features of matplotlib 
as it allows one to essentially create a custom data browser that is capable of 
revealing the details in the deeply nested or rich data across large scales.

Every Artist instance (naturally including subclasses of Artist) has an  
attribute called picker. The setting of this attribute is what enables object  
picking in matplotlib.
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The definition of picked can vary, depending on the context. For instance, setting 
Artist.picker can have the following results:

• If the result is True, picking is enabled for the artist object and pick_event 
will be fired every time a mouse event occurs over the artist object in the 
figure.

• If the result is a number (for instance, float or int), the value is interpreted 
as a tolerance. If the event's data (such as the x and y values) is within the 
value of this tolerance, pick_event will be fired.

• If the result is a callable, then the provided function or method returns a 
boolean value, which determines whether pick_event is fired.

• If the result is None, picking is disabled.

The object picking feature provides the means by which a programmer can create 
dynamic views on data. This feature is rivaled only by expensive proprietary 
software. Thanks to this capability, in conjunction with matplotlib's custom styles, 
one can easily create beautiful, compelling data visualization applications that are 
tailored for the needs of the user.

The IPython Notebook in this chapter covers an example of this, and it should serve 
as a source of inspiration for a great number of use cases.

Compound event handling
This section discusses the combining of multiple events or other sources of data in 
order to provide a more highly customized user experience for visual plot updates, 
the preparation of data, the setting of object properties, or the updating of widgets. 
The multiple events or decisions that are made based on multiple or cascading 
events is what we will refer to as compound events.

The navigation toolbar
The first example of compound events that we will touch upon are those managed 
by a backend widget for interactive navigation. This widget is available for all 
backends (including the nbagg backend for IPython when it is not in the inline 
mode). The navigation toolbar widget has multiple buttons, each with a specific 
function. In brief, the functionality associated with each button is as follows:

• Home: This button returns the figure to its originally rendered state.
• Previous: This returns to the previous view in the plot's history.
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• Next: This moves to the next view in the plot's history.
• Pan/Zoom: You can pan across the plot by clicking and holding the left 

mouse button. You can zoom by clicking and holding the right mouse button 
(behavior differs between the Cartesian and Polar plots).

• Zoom-to-Rectangle: You can zoom in on a selected portion of the plot by 
using this button.

• Subplot Configuration: With this button, you can configure the display of 
subplots via a pop-up widget with various parameters.

• Save: This button will save the plot in its currently displayed state to a file.

Furthermore, when a toolbar action is engaged, the toolbar instance sets the 
toolbar's current mode. For instance, when the Zoom-to-Rectangle button is clicked, 
the mode will be set to zoom rect. When in Pan/Zoom, the mode will be set to pan/
zoom. These can be used in conjunction with the supported events to fire callbacks in 
response to the toolbar activity.

As a matter of fact, the matplotlib.backend_bases.NavigationToolbar2 toolbar 
class is an excellent place to look for examples of compound events. Let's examine 
the Pan/Zoom button. The class tracks the following via the attributes that can be set:

• The connection ID for a press event
• The connection ID for a release event
• The connection ID for a mouse move event (this is correlated to a mouse drag 

later in the code)
• Whether the toolbar is active
• The toolbar mode
• The zoom mode

During the toolbar setup, the toolbar button events are connected to callbacks.  
When these buttons are pressed and the callbacks are fired, old events are 
disconnected and the new ones are connected. In this way, a chain of events may be 
set up with a particular sequence of events firing only a particular set of callbacks in 
a particular order.
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Specialized events
The code in NavigationToolbar2 is a great starting place if you want some ideas 
on how you can combine events in your own projects. You can have a workflow that 
requires responses to plot updates only if a series of other events have taken place 
first. You can accomplish this by connecting the events to and disconnecting them 
from various callbacks.

Interactive panning and zooming
Let's utilize a combination of the toolbar mode and a mouse button release for a 
practical example that demonstrates the creation of a compound event.

The problem that we want to address is this—when a user pans or zooms out  
of the range of the previously computed data in a plotted area, the user is presented 
with parts of an empty grid with no visualization in the newly exposed area. It 
would be nice if we could put our newfound event callback skills to use in order  
to solve this issue.

One possible example where it would be useful to refresh the plot figure when it  
has been panned is a plot for a topographic map. We're going to do a few things  
with this example:

• Add a custom cmap (matplotlib's color map) method to give the altitudes  
the look of a physical map

• Provide the altitude in meters and the distance in kilometers
• Create a class that can update the map via a method call

The custom color map and the equations to generate a topographical map have 
been saved to ./lib/topo.py in this chapter's IPython Notebook repository. We 
imported this module at the beginning of the notebook. So it's ready to use. The first 
class that we will define is TopoFlowMap, a wrapper class that will be used to update 
the plot when we pan:

In [21]: class TopoFlowMap:

             def __init__(self, xrange=None, yrange=None, seed=1):

                 self.xrange = xrange or (0,1)

                 self.yrange = yrange or (0,1)

                 self.seed = seed

                 (self.figure, self.axes) = plt.subplots(
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                    figsize=(12,8))

                 self.axes.set_aspect(1)

                 self.colorbar = None

                 self.update()

             def get_ranges(self, xrange, yrange):

                 if xrange:

                     self.xrange = xrange

                 if yrange:

                     self.yrange = yrange

                 return (xrange, yrange)

             def get_colorbar_axes(self):

                 colorbar_axes = None

                 if self.colorbar:

                     colorbar_axes = self.colorbar.ax

                     colorbar_axes.clear()

                 return colorbar_axes

             def get_filled_contours(self, coords):

                 return self.axes.contourf(

                    cmap=topo.land_cmap, *coords.values())

             def update_contour_lines(self, filled_contours):

                 contours = self.axes.contour(

                    filled_contours, colors="black", linewidths=2)

                 self.axes.clabel(

                    contours, fmt="%d", colors="#330000")

             def update_water_flow(self, coords, gradient):

                 self.axes.streamplot(

                     coords.get("x")[:,0],

                     coords.get("y")[0,:],
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                     gradient.get("dx"),

                     gradient.get("dy"),

                     color="0.6",

                     density=1,

                     arrowsize=2)

             def update_labels(self):

                 self.colorbar.set_label("Altitude (m)")

                 self.axes.set_title(

                    "Water Flow across Land Gradients", fontsize=20)

                 self.axes.set_xlabel("$x$ (km)")

                 self.axes.set_ylabel("$y$ (km)")

             def update(self, xrange=None, yrange=None):

                 (xrange, yrange) = self.get_ranges(xrange, yrange)

                 (coords, grad) = topo.make_land_map(

                    self.xrange, self.yrange, self.seed)

                 self.axes.clear()

                 colorbar_axes = self.get_colorbar_axes()

                 filled_contours = self.get_filled_contours(coords)

                 self.update_contour_lines(filled_contours)

                 self.update_water_flow(coords, grad)

                 self.colorbar = self.figure.colorbar(

                    filled_contours, cax=colorbar_axes)

                 self.update_labels()

The notebook returns to the IPython backend to display the graph (previously using 
a different backend for other examples):

In [22]: plt.switch_backend('nbAgg')

In [23]: tfm = TopoFlowMap(

           xrange=(0,1.5), yrange=(0,1.5), seed=1732)

         plt.show()
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The preceding code gives us the following plot:

If you click on the Pan/Zoom button in the navigation toolbar and then drag the 
plotted data about, you will see that the empty grid contains the data that hasn't been 
plotted (the area that was outside the axes prior to the panning action).

Since we do want to redraw and there is no pan event to connect to, what are our 
options? Well, two come to mind:

• Piggyback on draw_event, which fires each time the canvas is moved
• Use button_release_event, which will fire when the panning is complete

If our figure was easy to draw with simple equations, the first option would probably 
be fine. However, we're performing some multivariate calculus on our simulated 
topography. As you might have noticed, our plot does not render immediately.  
So, let's go with the second option.

To make our lives easier, we will take advantage of the mode attribute of 
NavigationTool2, which will let us know when one of the events that we care 
about, pan/zoom, has taken place.
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Here's the manager class for the plot-refresh feature:

In [24]: class TopoFlowMapManager:

         def __init__(self, xrange=None, yrange=None, seed=1):

             self.map = TopoFlowMap(xrange, yrange, seed)

             _ = self.map.figure.canvas.mpl_connect(

                 'button_release_event',

                 self.handle_pan_zoom_release)

         def start(self):

             plt.show()

         def handle_pan_zoom_release(self, event):

             if event.canvas.toolbar.mode != "pan/zoom":

                 return

             self.map.update(event.inaxes.get_xlim(),

                             event.inaxes.get_ylim())

             event.canvas.draw()

As with the other examples, we used the constructor to set up the event callback  
for a mouse button release. The callback will be fired for every button click. 
However, the code will not execute past the conditional if we are not in the pan/zoom 
mode. In our case, the callback does two crucial things for our feature:

• It recalculates the ranges of the x and y axes
• It calls the update method on the TopoFlowMap instance, which changes the 

range for the NumPy mgrid function and recalculates the gradients for this 
new range

You can test this out with the following code:

In [25]: tfmm = TopoFlowMapManager(

             xrange=(0,1.5), yrange=(0,1.5), seed=1732)

         tfmm.start()

This particular plot is fairly involved, and hence, it is potentially similar to  
some real-world examples that you may come across. However, keep in mind  
that if you have simple data to display with little or no calculation, firing your 
callback on draw_event instead of button_release_event will render the update  
as you move the mouse.
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Summary
In this chapter, we covered details on event systems, event loops, and how these 
relate to matplotlib. We also covered details on event types in matplotlib and ways  
to employ them to build interactive plots

The first area comprised of the background, which helped us appreciate the inner 
workings of matplotlib's event system. It also armed us with the knowledge that 
avoids confusion between the GUI toolkit event loops that matplotlib ties to and  
the matplotlib event loops that power the ability of the canvas to respond to the 
events on plots.

There are even more examples of plot interaction in the notebook for this chapter.  
So, be sure to check out the repository for extra goodies.

In the next chapter, we will take a new direction. Instead of low-level internals,  
we will focus on high-level operations and data analysis.
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High-level Plotting and  
Data Analysis

A significant aspect of gaining matplotlib mastery is familiarizing oneself with the 
use of the other Python tools in the scientific programming ecosystem. Libraries 
such as NumPy, SciPy, Pandas, or SymPy are just the beginning. The tools available 
in the community cover an enormous amount of ground, entailing the spectrum of 
many fields and subspecialties. Projects such as scikit-learn, AstroPy, h5py, and so 
on, build upon the foundations provided by others, thus being able to provide more 
functionality quicker than, if they had to start from scratch themselves.

Those who may want to look more deeply into these and other tools may benefit 
from a guided tour into one area that could serve as a template for future exploration 
into many other areas. This is our mission in this chapter, with our entry points for 
further examination being the following:

• A background and overview of high-level plotting
• Practical high-level plotting, using a data analysis example

We will use the term high-level plotting to describe things such as wrapping 
matplotlib functionality for use in new contexts, combining different libraries for 
particular plots that are not available in matplotlib, and visualization of complex 
datasets using wrapper functions, classes, and libraries.

The following high-level plotting topics will be covered in this chapter:

• Historical background
• matplotlib libraries, and high-level plotting
• An introduction to the grammar of graphics
• Libraries inspired by the grammar of graphics
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When speaking of data analysis, our focus will be on the pragmatic aspects of 
parsing, grouping, filtering, applying computational workflows to, and subjecting 
to statistical methods to various sources of data, all in the context of high-level data 
visualization. The topics we will cover in this area will include:

• Selected functions and methods from Pandas, SciPy, and NumPy
• Examination and manipulation of a Pandas dataset
• A tour of the various plots that are useful to have at one's fingertips when 

performing visualization tasks of a statistical nature

We have another IPython Notebook for you to work with while reading this chapter. 
You can clone the repository and run it with the following:

$ git clone https://github.com/masteringmatplotlib/high-level.git

$ cd high-level

$ make

Some of the examples in this chapter use Pygraphviz, which needs 
the graphviz C header files that are present on the system. This is 
usually accomplished by installing graphviz and its development 
libraries, although you may need to upset Pygraphviz's setup.py, 
to point to the location of the graphviz header files.

High-level plotting
In this book, when we mention high-level, we are referring not to some assessment of 
value or improvement over something, but rather to layers of abstraction, or more 
precisely, layers of interaction. When engaged in high-level plotting, we expect that 
users and developers will be creating visualizations of complex data with fewer 
commands or steps required than by using matplotlib's basic functionality directly. 
This is a result of complex tasks wrapping a greater number of smaller, simpler tasks.

Plotting itself is a high-level activity: raw data and often calculations on that data are 
combined, processed, some more in anticipation of user consumption, arranged or 
grouped in ways suitable for conveying the desired information, and then applied to 
some medium in ways that one hopes will render greater insight. By our definition, 
each activity upon that original raw data is, in some way, high-level.

Before we look at examples of modern high-level plotting, let us gain some perspective 
through examining the historical context by which we arrived at matplotlib and its 
ecosystem of related libraries.
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Historical background
In 2005, Princeton Alum and Professor of Psychology, Michael Friendly, published 
the paper, Milestones in the History of Data Visualization: A Case Study in Statistical 
Historiography, which provided an excellent overview of data visualization 
and perhaps the first comprehensive summary of the entire development of visual 
thinking and the visual representation of data. Dr. Friendly's paper and his related, 
and extraordinary, work on the Milestones Timeline are the sources used for the 
background presented in this section.

Flemish astronomer Michael Florent van Langren is credited with the first visual 
representation of statistical data in a 1644 graph of 12 contemporary estimates for  
the distance between Toledo and Rome.

Visual representation of statistical data of distances by Michael Florent van Langren, 1644

In 1669, Christiaan Huygens created the first graph of a continuous  
distribution function. A few years later, in 1686, Edmond Halley created a 
plot predicting barometric pressure versus altitude, which was derived from 
experimental observation.

Graph of pressure prediction by Edmond Halley, 1686
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The first line graph and bar chart came in 1786, with the pie chart and circle graph 
following in 1801, both due to noted Scottish engineer and political economist 
William Playfair. This is commonly considered to be the birth of modern graphical 
methods in statistics:

First line graph by William Playfair, 1786

Though the intervening years did bring advances in visual representation, it 
wasn't until the mid-20th century that significant strides were made, both in the 
deeper understanding of visual methods themselves as well as a growing set of 
tools via the rise of computing science. In 1968, the Macsyma (short for Mac's 
Symbolic Manipulator) project was started at MIT (short for Massachusetts 
Institute of Technology). Written in Lisp, this was the first comprehensive symbolic 
mathematics system created, many of whose ideas were later adopted by software 
programs such as Mathematica and Maple. In 1976, the S programming language 
was invented at Bell Labs. It was from this language that the R programming 
language was derived, since then gaining fame as a highly respected platform for 
data analysis and visualization. In 1979, Chris Cole and Stephen Wolfram created the 
computer algebra system SMP, often considered version 0 of Mathematica. 1980 saw 
the first release of the Maple computer algebra system, with MATLAB arriving on 
the scene in 1984, and Mathematica in 1988.
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It is this heritage to which matplotlib owes its existence: both the historical work 
done with ink and paper, as well as the advances made in the software. At the time of 
matplotlib's genesis, the Python programming language was beginning to establish 
itself in the world of high-level languages, already seeing adoption in applications of 
the scientific computing field. As we can see, the plotting that we do now has a richer 
and more diverse background that we might have initially imagined, and provides the 
foundation for the lofty aspirations of high-level plotting.

matplotlib
As we have discussed, matplotlib provides mid-level access to the mechanics plotting 
using the programmatic, object-oriented API of the backend and artist layers. One 
could then make the argument that the scripting layer, as represented by pyplot 
or the deprecated pylab, provides APIs for high-level plotting. A better example 
would be if there was any use of pyplot in matplotlib itself, employed as a means of 
providing a simple interface for a complex plotting task. It turns out that there is an 
example of this in the codebase, and it occurs in the sankey.py file.

The Sankey diagram is named after Captain Matthew Henry Phineas Riall Sankey, 
who used it in 1898 to visually depict the thermal efficiency of steam engines. Sankey 
diagrams in matplotlib have been supported since 2010 when the matplotlib.
sankey module was contributed by Yannick Copin and Kevin Davies. The following 
diagram is that of a Rankine power cycle, another example of Sankey diagrams:
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Though named after Captain Sankey, the first such diagram was 
created years earlier by French civil engineer Charles Joseph Minard.

In this module, pyplot is imported and used simply to generate a figure and an 
axes object. However, the impressive demo image is only fully appreciated when 
the contents of sankey.py are examined and one sees the extensive logic used, to 
render these flow diagrams in matplotlib. The module not only uses pyplot, but also 
combines paths, patches, and transforms to give users the ability to generate plots 
containing these extraordinary diagrams—an excellent and concise example of  
high-level plotting.

For the rest of the chapter, we will look at other libraries offering similar examples 
of wrapping matplotlib plotting functionality. Each of these accomplish a great deal 
with considerably less effort that would be exerted than if we were left to our own 
devices and had to use only matplotlib to produce the desired effect.

NetworkX
In Chapter 2, The matplotlib Architecture, we encountered the graph library NetworkX 
and used it in conjunction with matplotlib, something that NetworkX supports 
directly. Let us take a deeper look at this library from the perspective of our high-
level plotting topic.

We'll start with a commented code sample and plot, and then go into more details. 
The following example is adapted from one in the NetworkX gallery by Aric 
Hagberg of Los Alamos National Laboratory:

In [5]: import sys

        sys.path.append("../lib")

        import lanl

        # Set up the plot's figure instance

        plt.figure(figsize=(14,14))

        # Generate the data graph structure representing

        # the route relationships

        G = lanl.get_routes_graph(debug=True)

        # Perform the high-level plotting operations in

        # NetworkX
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        pos = nx.graphviz_layout(G, prog="twopi", root=0)

        nx.draw(G, pos,

                node_color=[G.rtt[v] for v in G],

                with_labels=False,

                alpha=0.5,

                node_size=50,

                cmap=cmap)

        # Update the ranges

        xmax = 1.02 * max(xx for xx, _ in pos.values())

        ymax = 1.02 * max(yy for _, yy in pos.values())

        # Final matplotlib tweaks and rendering

        plt.xlim(0, xmax)

        plt.ylim(0, ymax)

        plt.show()

The following plot is the result of the preceding code:
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In Chapter 2, The matplotlib Architecture, we needed to employ some custom logic to  
refine graph relationships, which accounted for both the structure of the modules 
and the conceptual architecture of matplotlib. Dr. Hagberg had to do something 
similar when rendering the Internet routes from Los Alamos National Laboratory. 
We've put this code in the lanl module for this notebook repository; that is where  
all the logic is defined for converting the route data to graph relationships.

We can see clearly from the code comments where the high-level plotting occurs:

• The call to nx.graphviz_layout
• The call to nx.draw

We can learn how NetworkX acts as a high-level plotting library by taking a look  
at these, starting with the layout function.

NetworkX provides several possible graph library backends, and to do so in a 
manner that makes it easier for the end user, some of the imports can be quite 
obscured. Let us get the location of the graphviz_layout function the easy way:

In [6]: nx.graphviz_layout

Out [6]: <function networkx.drawing.nx_agraph.graphviz_layout>

If you open that file (either in your virtual environment's site-packages or on 
GitHub), you can see that graphviz_layout wraps the pygraphviz_layout 
function. From there, we see that NetworkX is converting pygraphviz's node data 
structure to something general, which can be used for all NetworkX backends. At 
this point, we're already several layers deep in NetworkX's high-level API internals. 
Let us continue:

In [7]: nx.draw

Out [7]: <function networkx.drawing.nx_pylab.draw>

nx_pylab gives us a nice hint that we're getting closer to matplotlib itself. In fact,  
the draw function makes direct use of matplotlib.pyplot in order to achieve  
the following:

• Get the current figure from pyplot
• Or, if it exists, from the axes object
• Hold and un-hold the matplotlib figures
• Call a matplotlib draw function
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It also makes a subsequent call to the NetworkX graph backend to draw the actual 
edges and nodes. Theses additional calls get node, edge, and label data and make 
further calls to matplotlib draw functions. None of which we have to do; we simply 
call nx.draw (with appropriate parameters). Thus the benefits of high-level plotting!

Pandas
The following example is from a library whose purpose is to provide Python users 
and developers extensive support for high-level data analysis. Pandas offers several 
high performant data structures for this purpose, in a large part, built around the 
NumPy scientific computing library.

How does this relate to a high-level plotting? In addition to providing such things 
as its Series, DataFrame, and Panel data structures, Pandas incorporate a plotting 
functionality into some of these as well.

Let us take a look at an example, where we generate some random data and then 
utilize the plot function made available on the DataFrame object. We'll start with 
generating some random data samples:

In [8]: from scipy.stats import norm, rayleigh

        a = rayleigh.rvs(loc=5, scale=2, size=1000) + 1

        b = rayleigh.rvs(loc=5, scale=2, size=1000)

        c = rayleigh.rvs(loc=5, scale=2, size=1000) – 1

With these, we can populate our Pandas data structure:

In [9]: data = pd.DataFrame(

            {"a": a, "b": b, "c": c},

            columns=["a", "b", "c"])

And then, view it via a call in IPython:

In [10]: data.plot(

            kind="hist", stacked=True, bins=30,

            figsize=(16, 8))

         axes.set_title("Fabricated Wind Speed Data",

            fontsize=20)
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         axes.set_xlabel("Mean Hourly Wind Speed (km/hr)",

            fontsize=16)

         _ = axes.set_ylabel("Velocity Counts", fontsize=16)

The following plot is the result of the preceding code:

Let us go spelunking in the Pandas source, to get a better understanding of how 
Pandas is doing this. In the Pandas source code directory, open the file pandas/
core/frame.py. This is where the DataFrame object is defined. If you search for 
DataFrame.plot, you will see that plot is actually an attribute of DataFrame, not a 
defined method. Furthermore, the code for the plot implementation is in pandas.
tools.plotting.plot_frame.

After opening that module's file, search for def plot_frame. What we see here is a 
short chain of functions that are handing all sorts of configuration and options for us, 
allowing us to easily use a plot method on the data structure. The Pandas developers 
have very kindly returned the matplotlib result of the plot call (the top-level axes 
object) so that we may work with it in the same way as other matplotlib results.

We're going to shift gears a bit now, and take a new look at high-level plotting. It is 
what many consider to be the future of data visualization: the grammar of graphics.
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The grammar of graphics
In the section, where we covered the historical background of plotting, we briefly 
made reference to the rebirth of data visualization in the mid-20th century. One 
of the prominent works of this time was by famed French cartographer Jacques 
Bertin, author of the Semiologie Graphique. Published in 1967, this was the first 
significant work dedicated to identifying the theoretical underpinnings of visualized 
information. In 1977, the American mathematician known for creating of one of 
the most common FFT algorithms, John Tukey, published the book Exploratory 
Data Analysis, Sage Publications, in which he introduced the world to the box plot. 
The method of data analysis described in this work inspired development in the S 
programming language, which later carried over to the R programming language. 
This work allowed statisticians to better identify trends and recognize patterns in 
large datasets. Dr. Tukey set the data visualization world on its current course by 
advocating for the examination of data itself, to lead to insights. The next big leap in 
the visualization of data for statistical analysis came with the 1985 publication of the 
book, The Elements of Graphing Data, William S. Cleveland, Hobart Press, representing  
20 years of work in active research and scientific journal article publication.

32 years after Jacques Bertin's seminal work, during which time leaders of the 
field had been pursuing meta-graphical concepts, Leland Wilkinson published 
the book, The Grammar of Graphics, Springer Publishing, which, as had been the case 
with Dr. Cleveland, was the culmination from a combined background of academic 
research and teaching with professional experience of developing statistical software 
platforms. The first software implementation that was inspired by this book was 
SPSS's nViZn (pronounced as envision). This was followed by R's ggplot2, and in  
the Python world, Bokeh, among others.

But what is this grammar? What did three decades of intensive research and 
reflection reveal about the nature of data visualization and plotting of statistical 
results? In essence, the grammar of graphics did for the world of statistical data 
plotting and visualization what design patterns did for a subset of programming, 
and a pattern language did for architecture and urban design. The grammar of 
graphics explores the space of data, its graphical representation, the human minds 
that view these, and the ways in which these are connected, both obviously and 
subtly. The book provides a conceptual framework for the cognitive analysis of our 
statistical tools and how we can make them better, allowing us to ultimately create 
visualizations that are more clear, meaningful, and reveal more of the underlying 
problem space.
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A grammar such as this is not only helpful in providing a consistent framework 
for concisely describing and discussing plots, but it is of an inestimable value for 
developers who wish to create a well thought-out and logically structured plotting 
library. The grammar of graphics provides a means by which we can clearly organize 
components such as geometric objects, scales, or coordinate systems while relating 
this to both the data they will represent (including related statistical use cases) and  
a well-defined visual aesthetic.

Bokeh
One of the first Python libraries to explore the space of the grammar of graphics 
was the Bokeh project. In many ways, Bokeh views itself as a natural successor to 
matplotlib, offering their view of improvements in the overall architecture, scalability 
of problem datasets, APIs, and usability. However, in contrast to matplotlib, Bokeh 
focuses its attention on the web browser.

Since this is a matplotlib book, and not a Bokeh book, we won't go into too much 
detail, but it is definitely worth mentioning, that Bokeh provides a matplotlib 
compatibility layer. It doesn't cover the complete matplotlib API usage a given 
project may entail, but enough so that one should be able to very easily incorporate 
Bokeh into existing matplotlib projects.

The ŷhat ggplot
A few years ago, the ŷhat company open-sourced a project of theirs: a clone of 
R's ggplot2 for Python. The developers at ŷhat wanted to have a Python API that 
matched ggplot2 so that they could move easily between the two.

A quick view of the project's web site shows the similarity with ggplot2:
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The comparison of the following two code samples shows the extraordinary similarity 
between R's ggplot2 and Python's ggplot. The code for R's ggplot2 is as follows:

library(ggplot2)

ggplot(movie_data, aes(year, budget)) +
  geom_line(colour='red') +
  scale_x_date(breaks=date_breaks('7 years') +
  scale_y_continuous(labels=comma)

And the code for Python's ggplot:

from ggplot import *

ggplot(movie_data, aes('year','budget')) + \
    geom_line(color='red') + \
    scale_x_date(breaks=date_breaks('7 years')) + \
    scale_y_continuous(labels='comma')

A demonstration of how the Python ggplot provides a high-level experience for the 
developer is given, when examining the matplotlib code necessary, to duplicate the 
preceding ggplot code:

import matplotlib.pyplot as plt
from matplotlib.dates import YearLocator

tick_every_n = YearLocator(7)
x = movie_data.date
y = movie_data.budget
fig, ax = plt.subplots()
ax.plot(x, y, 'red')
ax.xaxis.set_major_locator(tick_every_n)
plt.show()

Here's an example of ggplot usage from the IPython Notebook for this chapter:

In [12]: import ggplot

         from ggplot import components, geoms, scales, stats

         from ggplot import exampledata

In [13]: data = exampledata.movies

         aesthetics = components.aes(x='year', y='budget')

         (ggplot.ggplot(aesthetics, data=data) +
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          stats.stat_smooth(span=.15, color='red', se=True) +

          geoms.ggtitle("Movie Budgets over Time") +

          geoms.xlab("Year") +

          geoms.ylab("Dollars"))

Out[13]:

The following plot is the result of the preceding code:

New styles in matplotlib
Not to be left behind, matplotlib has embraced the sensibilities of the ggplot world 
and has supported the ggplot style since its 1.4 release. You can view the available 
styles in matplotlib with the following:

In [20]: plt.style.available

Out[20]: ['ggplot', 'fivethirtyeight', 'dark_background',

          'grayscale', 'bmh']

To enable the ggplot style, simply do this:

In [21]: plt.style.use('ggplot')



Chapter 5

[ 109 ]

Here's a comparison of several plots before and after enabling; the plots on the right 
are the ones using the ggplot style:

Seaborn
The development of Seaborn has been greatly inspired by the grammar of graphics, 
and R's ggplot in particular. The original goals of Seaborn were twofold: to make 
computationally-based research more reproducible, and to improve the visual 
presentation of statistical results.

This is further emphasized in the introductory material on the project site, with 
Seaborn's stated aims being to make visualization a central part of exploring and 
understanding data. Its goals are similar to those of R's ggplot2, though Seaborn  
takes a different approach: it uses a combined imperative and object-oriented  
approach with a focus on easy, straight-forward construction of sophisticated plots.

The fact that Seaborn has accomplished undeniable success in these aims is evident 
by looking at the impressive example plots that it provides, which are generated by 
relatively few lines of code. The notebook for this chapter shows several examples; 
we'll highlight just one here, the facet grid plot.

When you want to split up a dataset by one or more variables and then group 
subplots of these separated variables, you will probably want to use a facet grid. 
Another use case for the facet grid plot is when you need to examine repeated runs 
of an experiment to reveal potentially conditional relationships between variables. 
Below is a concocted instance of the latter from the Seaborn examples. It displays 
data from a generated dataset, simulating repeated observations of a walking 
behavior, examining positions of each step of a multi-step walk.
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The following demo assumes that you have previously performed the following 
imports in the notebook, to add this chapter's library to the Python's search path:

In [18]: import sys

         sys.path.append("../lib")

         import mplggplot

With that done, let us run the demo:

In [25]: import seademo

         sns.set(style="ticks")

         data = seademo.get_data_set()

         grid = sns.FacetGrid(data, col="walk", hue="walk",

                              col_wrap=5, size=2)

         grid.map(plt.axhline, y=0, ls=":", c=".5")

         grid.map(plt.plot, "step", "position", marker="o", ms=4)

         grid.set(xticks=np.arange(5), yticks=[-3, 3],

                  xlim=(-.5, 4.5), ylim=(-3.5, 3.5))

         grid.fig.tight_layout(w_pad=1)

The following plot is the result of the preceding code:
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There will be more Seaborn examples in the hands-on part of this chapter, where we 
will save huge amounts of time by using several very high-level Seaborn functions 
for creating sophisticated plots.

With this, we conclude our overview of high-level plotting with regard to the topic 
of the grammar of graphics in the Python (particularly matplotlib) world. Next, we 
will look at high-level plotting examples in the context of a particular dataset and 
various methods for analyzing trends in that data.

Data analysis
The following is the definition of data analysis given by Wikipedia:

"Analysis of data is a process of inspecting, cleaning, transforming, and modeling 
data with the goal of discovering useful information, suggesting conclusions, and 
supporting decision-making."
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In the Python scientific computing community, the definition tends to lean away 
from the software business applications and more towards a statistical analysis. In 
this section, while we will see a little math, our purpose is not to engage in a rigorous 
exploration of mathematical analysis, but rather provide a plausible context for 
using various tools in the matplotlib ecosystem that assist in high-level plotting and 
various related activities.

Pandas, SciPy, and Seaborn
We've just learned more about Seaborn, and we'll be working more with it in this 
section. We've used Pandas a bit, but haven't formally introduced it, nor SciPy.

The Pandas project describes generic Python as a great tool for data managing and 
preparation, but not much strong in the areas of data analysis and modeling. This 
is the area that Pandas was envisioned to focus upon, filling a much-needed gap in 
the suite of available libraries, and allowing one to carry out the entire data analysis 
workflows in Python without having to switch to tools like R or SPSS.

The scipy library is one of the core packages, that make up the SciPy stack, providing 
many user-friendly and efficient numerical calculation routines such as those for 
numerical integration, clustering, signal processing, and statistics, among others.

We have imported pandas as pd and will import stats from scipy. The seaborn 
module is already imported in our chapter notebook as sns. As you see these various 
module aliases, note that we are taking an advantage of these high-level libraries: to 
great effect, as you will soon see.

Examining and shaping a dataset
For demonstration purposes in this chapter, we requested the mean monthly 
temperatures (in Fahrenheit) and mean monthly precipitation (in inches) for the 
century ranging from 1894 to 2013, in the small farming town of Saint Francis, Kansas 
from the United States Historical Climatology Network (USHCN). Our goal is to 
select a dataset amenable to statistical analysis and explore the various ways in which 
the data (raw and analyzed) may be presented to reveal patterns, which may be more 
easily uncovered using the tools of high-level plotting in matplotlib.

Let us do some more imports and then use Pandas to read this CSV data and 
instantiate a DataFrame object with it:

In [27]: import calendar

         from scipy import stats

         sns.set(style="darkgrid")
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In [28]: data_file = "../data/KS147093_0563_data_only.csv"

         data = pd.read_csv(data_file)

As part of creating the DataFrame object, the headers of the CSV file are converted to 
column names, by which we can refer to the data later:

In [29]: data.columns

Out[29]: Index(['State ID', 'Year', 'Month',

                'Precipitation (in)',

                'Mean Temperature (F)'],

                dtype='object')

As a quick sanity check on our data loading, we can view the first few lines of the set 
with this command:

In [30]: data.head()

Out[30]:

The following table is the result of the preceding command:

State ID Year Month Precipitation (in) Mean temperature (F)

0 '147093' 1894 1 0.43 25.4

1 '147093' 1894 2 0.69 22.5

2 '147093' 1894 3 0.45 42.1

3 '147093' 1894 4 0.62 53.7

4 '147093' 1894 5 0.64 62.9

The months in our dataset are numbers; that's exactly what we want for some 
calculations; for others (and for display purposes) we will sometimes need these as 
names. In fact, we will need month names, month numbers, and a lookup dictionary 
with both. Let us do that now:

month_nums = list(range(1, 13))
month_lookup = {x: calendar.month_name[x] for x in month_nums}
month_names = [x[1] for x in sorted(month_lookup.items())]

We can use the lookup to edit our data in-place with the following:

data["Month"] = data["Month"].map(month_lookup)
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If you run data.head(), you will see that the month numbers have been replaced 
with the month names that we defined in the lookup dictionary.

Since we have changed our dataset now, let us reload the CSV for the cases when  
 want to use the raw data as is with its month numbers:

data_raw = pd.read_csv(data_file)

For the purposes of keeping the example code clear, we'll define some more  
variables as well, and then confirm that we have data that makes sense.

In [32]: years = data["Year"].values

         temps_degrees = data["Mean Temperature (F)"].values

         precips_inches = data["Precipitation (in)"].values

In [33]: years_min = data.get("Year").min()

         years_min

Out[33]: 1894

In [34]: years_max = data.get("Year").max()

         years_max

Out[34]: 2013

In [35]: temp_max = data.get("Mean Temperature (F)").max()

         temp_max

Out[35]: 81.799999999999997

In [36]: temp_min = data.get("Mean Temperature (F)").min()

         temp_min

Out[36]: 13.199999999999999

In [37]: precip_max = data.get("Precipitation (in)").max()

         precip_max

Out[37]: 11.31

In [38]: precip_min = data.get("Precipitation (in)").min()

         precip_min

Out[38]: 0.0

Next, we are going to create a Pandas pivot table. This spreadsheet-like feature of 
Pandas allows one to create new views of old data, creating new indices, limiting 
columns, and so on. The DataFrame object we obtained when reading the CSV data 
provided us with an automatic, incremented index and all the data from our file, in 
columns. We're going to need a view of the data, where the rows are months and  
the columns are years. Our first pivot table will give us a DataFrame object with  
just that setup:

In [39]: temps = data_raw.pivot(
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             "Month", "Year", "Mean Temperature (F)")

         temps.index = [calendar.month_name[x] for x in temps.index]

Typing temps by itself in the notebook will render an elided table of values, showing 
you what the shape of this new DataFrame is.

Let us do the same thing with the precipitation data in our dataset:

In [40]: precips = data_raw.pivot(

             "Month", "Year", "Precipitation (in)")

         precips.index = [

             calendar.month_name[x] for x in precips.index]

We've just taken the necessary steps of preparing our data for analysis and plotting, 
which we're going to be doing for the rest of this chapter.

Analysis of temperature
We will be utilizing the temperature portion of our dataset (for the period of  
1894-2013) in this section, to demonstrate functionality in Pandas, SciPy, and 
Seaborn, as it relates to the use of these for the purpose of high-level plotting  
and associated data analysis.

Throughout the rest of the chapter, do keep in mind that this analysis is done to 
provide examples of usage of libraries. It is not meant to provide deep insights into the 
nature of climatology or to draw conclusions about the state of our environment. To 
that point, this dataset is for a single small farming town in the American High Plains. 
There's not enough data in this set to do much science, but there's plenty to explore.

Since we will be discussing temperature, we should create a palette of colors that 
intuitively translates to the range of temperatures we will be examining. After some 
experimentation, we have settled on the following:

In [41]: temps_colors = ["#FCF8D4", "#FAEAB9", "#FAD873",

                         "#FFA500", "#FF8C00", "#B22222"]

         sns.palplot(temps_colors)
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The following set of colors forming a palette is the result of the preceding code:

Next, let us convert this list of colors to a color map that can be used by matplotlib:

In [42]: temps_cmap = mpl.colors.LinearSegmentedColormap.from_list(

             "temp colors", temps_colors)

That being said and done, our first plot won't actually use color. We first need to 
build some intuition about our raw data. Let us see what it looks like. Keep in mind 
that our temperature data points represent the mean temperature for every month, 
from 1894 through the end of 2013. Given that these are discrete data points, a scatter 
plot is a good choice for a first view of the data, as it will quickly reveal any obvious 
patterns such as clustering. The scatter plot is created as follows:

In [43]: sns.set(style="ticks")

         (figure, axes) = plt.subplots(figsize=(18,6))

         scatter = axes.scatter(

             years, temps_degrees, s=100, color="0.5",

             alpha=0.5)

         axes.set_xlim([years_min, years_max])

         axes.set_ylim([temp_min - 5, temp_max + 5])

         axes.set_title(

             ("Mean Monthly Temperatures from 1894-2013\n"

              "Saint Francis, KS, USA"),

             fontsize=20)

         axes.set_xlabel("Years", fontsize=16)

         _ = axes.set_ylabel(

             "Temperature (F)", fontsize=16)
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The following scatter plot is the result of the preceding code:

We've seen code like this before, so there are no surprises. The one bit that may 
be new is the Seaborn style that we set at the beginning. Some of the plots we'll be 
generating look better with ticks, with white backgrounds, with darker backgrounds, 
and so on. As such, you will notice that we occasionally make calls to Seaborn's 
styling functions.

Something else you might have noticed was that we assigned the last call to the 
don't care variable. Sometimes we want IPython to print its results and sometimes 
we don't. We've decided to enable output by default, so if we're not interested in 
seeing the output of a function call (in this case it would have been a Python object's 
representation), we simply assign it to a variable.

There are a few things that we might notice upon first seeing this data rendered as a 
scatter plot:

• There appears to be a banding at the minimum and maximum temperatures
• The banding in the minimum temperatures looks like it might be a bit wider
• It appears that the mean temperatures are trending slightly upward
• The lower temperatures seem to trend upward more than the higher 

temperatures
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The first point, we can address immediately with a logical inference: we are examining 
data that is cyclic in nature (due primarily to the axial tilt of the planet, and thus the 
corresponding temperatures). Cyclic processes can be described with trigonometric 
functions such as the sine or cosine of a scalar value. If we were to sample points from 
a continuous trigonometric and scatter plot them on a Cartesian coordinate system, 
we'd see a familiar banding pattern: as the y values reach the maximum level, the 
density of points appears greater, due to the fact that the same vertical space is being 
used to plot the increase to and then the decrease from the maximum.

For our dataset, we can expect that mean temperatures increase during the summer 
months, typically hold there for a month or two, and then decrease towards the 
minimum, where the same pattern will apply for the winter months.

As for the other three points of observation, we will need to do some analysis to 
discern whether those observations are valid or not. Where should we start? How 
about the following:

1. Let us get the minimum and maximum values for every year.
2. Then, find the line that describes those values across the century.
3. Examine the slopes of the minimum and maximum lines.
4. Then, compare the slopes with each other.

Our first bullet is actually a matter of performing a linear regression on the 
maximum and minimum values. SciPy has just the thing for us: scipy.stats.
linregress. We'll use the results from that function to create a Pandas data Series, 
with which we can run calculations. We'll define a quick little function to make that  
a bit easier, and then use it:

In [44]: def get_fit(series, m, b):

             x = series.index

             y = m * x + b

             return pd.Series(y, x)

         temps_max_x = temps.max().index

         temps_max_y = temps.max().values

         temps_min_x = temps.min().index

         temps_min_y = temps.min().values

         (temps_max_slope,



Chapter 5

[ 119 ]

          temps_max_intercept,

          _, _, _) = stats.linregress(temps_max_x, temps_max_y)

         temps_max_fit = get_fit(

             temps.max(), temps_max_slope, temps_max_intercept)

         (temps_min_slope,

          temps_min_intercept,

          _, _, _) = stats.linregress(temps_min_x, temps_min_y)

         temps_min_fit = get_fit(

             temps.min(), temps_min_slope, temps_min_intercept)

The linregress function returns the slope of the regression line, its intercept, the 
correlation coefficient, and the p-value. For our purposes, we're just interested in this 
slope and intercept; so we ignore the other values. Let us look at the results:

In [45]: (temps_max_slope, temps_min_slope)

Out[45]: (0.015674352385582326, 0.04552191124383638)

So what does this mean? Let us do a quick refresher: the slope m is defined as the 
change in y values over the change in x values:

In our case, the y values are the minimum and maximum mean monthly 
temperatures in degrees Fahrenheit; the x values are the years these measurements 
were taken.

The slope for the minimum mean monthly temperatures over the last 120 years is 
about three times greater than that of the maximum mean monthly temperatures:

In [46]: temps_min_slope/temps_max_slope

Out[46]: 2.9042291588205336

Let us go back to our scatter plot and superimpose our linear fits for the maximum 
and minimum annual means:

In [47]: (figure, axes) = plt.subplots(figsize=(18,6))

         scatter = axes.scatter(

             years, temps_degrees, s=100, color="0.5", alpha=0.5)
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         temps_max_fit.plot(

             ax=axes, lw=5, color=temps_colors[5], alpha=0.7)

         temps_min_fit.plot(

             ax=axes, lw=5, color=temps_colors[3], alpha=0.7)

         axes.set_xlim([years_min, years_max])

         axes.set_ylim([temp_min - 5, temp_max + 5])

         axes.set_title(("Mean Monthly Temperatures from 1894-2013\n"

                         "Saint Francis, KS, USA\n"

                         "(with max and min fit)"), fontsize=20)

         axes.set_xlabel("Years", fontsize=16)

         _ = axes.set_ylabel("Temperature (F)",

         fontsize=16)

The following scatter plot is the result of the preceding code:

It still looks like there is a greater rise in the minimum mean temperatures than 
the maximums. We can get a better visual by superimposing the two lines. Let us 
remove the vertical distance and compare:

In [48]: diff_1894 = temps_max_fit.iloc[0] - temps_min_fit.iloc[0]



Chapter 5

[ 121 ]

         diff_2013 = temps_max_fit.iloc[-1] - temps_min_fit.iloc[-1]

         (diff_1894, diff_2013)

Out[48]: (53.125096418732781, 49.573236914600542)

Note that, we have used the iloc attribute on our Pandas Series objects. The iloc 
attribute allows one to extract elements in a Series based on integer indices.

With this, we have the difference between high and low in 1894 and then the same 
difference in 2013, the latter being a smaller difference by a few degrees. We can 
overlay our two linear regression lines by shifting one of them downwards, so that 
they converge on the same point (this is done solely for comparison reasons):

In [49]: vert_shift = temps_max_fit - diff_2013

         (figure, axes) = plt.subplots(figsize=(18,6))

         vert_shift.plot(

             ax=axes, lw=5, color=temps_colors[5], alpha=0.7)

         temps_min_fit.plot(

             ax=axes, lw=5, color=temps_colors[3], alpha=0.7)

         axes.set_xlim([years_min, years_max])

         axes.set_ylim([vert_shift.min() - 5, vert_shift.max() + 1])

         axes.set_title(("Mean Monthly Temperature Difference "

                         "from 1894-2013\nSaint Francis, KS, USA\n"

                         "(vertical offset adjusted to "

                         "converge at 2013)"),

                        fontsize=20)

         axes.set_xlabel("Years", fontsize=16)

         _ = axes.set_ylabel(

             "Temperature\nDifference (F)", fontsize=16)
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The following plot is the result of the preceding code:

Now, we can really see the difference and can confirm that the rise in minimum mean 
temperatures is greater than the rise in maximum means.

Let us take a big jump from scatter plots and liner regressions to the heatmap 
functionality that Seaborn provides. Despite the name, heat maps don't have any 
intrinsic relationship with temperatures. The idea behind heat maps is to present 
a dataset in a matrix where each value in the matrix is encoded as a color, thus 
allowing one to easily see patterns of values across an entire dataset. Creating a  
heat map in matplotlib directly can be a rather complicated affair, although Seaborn 
makes this very easy for us, as shown in the following manner:

In [50]: sns.set(style="darkgrid")

In [51]: (figure, axes) = plt.subplots(figsize=(17,9))

         axes.set_title(("Heat Map\nMean Monthly Temperatures, "

                         "1894-2013\nSaint Francis, KS, USA"),

                        fontsize=20)

         sns.heatmap(

             temps, cmap=temps_cmap,

             cbar_kws={"label": "Temperature (F)"})

         figure.tight_layout()
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The following heat map is the result of the preceding code:

Given that this is a town in the Northern hemisphere near to the 40th parallel, we 
don't see any surprises:

• Highest temperatures are in the summer
• Lowest temperatures are in the winter

There is some interesting summer banding in the 1930s, which indicates several years 
of hotter-than-normal summers. We see something similar for a few years, starting 
around 1998 and 1999. There also seems to be a wide band of cold Decembers from 
1907 through to about 1932.

Next, we're going to look at Seaborn's clustermap functionality. Cluster maps of this 
sort are very useful in sorting out data that may have hidden (or not) hierarchical 
structure. We don't expect that with this dataset, so this is more of a demonstration 
of the plot than anything. However, it might have a few insights for us. We shall see.

Due to the fact that this is a composite plot, we'll need to access subplot axes, as 
provided by the clustermap class:

In [53]:clustermap = sns.clustermap(

        temps, figsize=(19, 12),
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        cbar_kws={"label": "Temperature\n(F)"},

        cmap=temps_cmap)

        _ = clustermap.ax_col_dendrogram.set_title(

            ("Cluster Map\nMean Monthly Temperatures, 1894-2013\n"

            "Saint Francis, KS, USA"),

            fontsize=20)

The following heat map is the result of the preceding code:

You've probably noticed that everything got rearranged; here's what happened: while 
keeping the temperatures for each year together, the x (years) and y (months) values 
have been sorted/grouped to be close to those with which it shares the most similarity. 
Here's what we can discern from the graph with regard to our current dataset:

• The century's temperature patterns each year can be viewed in two groups: 
higher and lower temperatures

• January and December share similar low-temperature patterns, with the next 
closest being February

• The next grouping of similar temperature patterns are November and 
March, sibling to the January/December/February grouping

• The last grouping of the low-temperature months is the April/October pairing
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A similar analysis (with no surprises) can be done for the high-temperature months.

Looking across the x axis, we can view patterns/groupings by year. With careful 
tracing (ideally with a larger rendering of the cluster map), one could identify 
similar temperature patterns in various years. Though this doesn't reveal anything 
intrinsically, it could assist in additional analysis (for example, pointing towards the 
historical records to examine the possibility, trends may be discovered).

In the preceding cluster map, we passed a value for the color map to use, the one 
we defined at the beginning of this section. If we leave that out, Seaborn will do 
something quite nice: it will normalize our data and then select a color map that 
highlights values above and below the mean:

In [53]: clustermap = sns.clustermap(

    temps, z_score=1, figsize=(19, 12),

    cbar_kws={"label": "Normalized\nTemperature (F)"})

_ = clustermap.ax_col_dendrogram.set_title(

        ("Normalized Cluster Map\nMean Monthly Temperatures, "

         "1894-2013\nSaint Francis, KS, USA"),

        fontsize=20)

The following normalized cluster map is the result:



High-level Plotting and Data Analysis

[ 126 ]

Note that we get the same grouping as in the previous heat map; the internal values 
at each coordinate of the map (and the associated color) are all that have changed. 
This view offers great insight for statistical data: not only do we see the large and 
obvious grouping between the above and below the mean, but the colors give 
obvious insights as to how far any given point is from the overall mean.

With the following plot, we're going to return two previous plots:

• The temperature heat map
• The scatter plot for our temperature data

Seaborn has an option for heat maps to display a histogram above them. We will 
see this usage when we examine the precipitation. However, for the temperatures, 
counts for a year isn't quite as meaningful as the actual values for each month of  
that year. As such, we will replace the standard histogram with our scatter plot:

In [54]: figure = plt.figure(figsize=(18,13))

         grid_spec = plt.GridSpec(2, 2,

                                  width_ratios=[50, 1],

                                  height_ratios=[1, 3],

                                  wspace=0.05, hspace=0.05)

         scatter_axes = figure.add_subplot(grid_spec[0])

         cluster_axes = figure.add_subplot(grid_spec[2])

         colorbar_axes = figure.add_subplot(grid_spec[3])

         scatter_axes.scatter(years,

                              temps_degrees,

                              s=40,

                              c="0.3",

                              alpha=0.5)

         scatter_axes.set(xticks=[], ylabel="Yearly. Temp. (F)")

         scatter_axes.set_xlim([years_min, years_max])

         scatter_axes.set_title(

             ("Heat Map with Scatter Plot\nMean Monthly "

             "Temperatures, 1894-2013\nSaint Francis, KS, USA"),

             fontsize=20)

         sns.heatmap(temps,

                     cmap=temps_cmap,

                     ax=cluster_axes,

                     cbar_ax=colorbar_axes,
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                     cbar_kws={"orientation": "vertical"})

         _ = colorbar_axes.set(xlabel="Temperature\n(F)")

The following scatter plot and heat map are the result:

Next, we're going to take a closer look at the average monthly temperatures by 
month using a histogram matrix. To do this, we'll need a new pivot. Our first one 
created a pivot with the Month data being the index; now, we want to index by Year. 
We'll do the same trick of keeping the data in the correct month order by converting 
the month numbers to names after we create the pivot table, however, in the case of 
the histogram matrix plot, that won't actually help us: to keep the sorting correct, 
we'll need to pre-pend the zero-filled month number:

In [55]: temps2 = data_raw.pivot(

             "Year", "Month", "Mean Temperature (F)")

         temps2.columns = [

           str(x).zfill(2) + " - " + calendar.month_name[x]

           for x in temps2.columns]

         monthly_means = temps2.mean()
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We'll use the histogram provided by Pandas for this. Unfortunately, Pandas does not 
return the figure and axes that it creates with its hist wrapper. Instead, it returns 
a NumPy array of subplots. As such, we're left with fewer options than we might 
like for further tweaking of the plot. Our use of plt.text is a quick hack (of trial 
and error) that lets us label the overall figure (instead of the enclosing axes, as we'd 
prefer).

In [56]: axes = temps2.hist(figsize=(16,12))

         plt.text(-20, -10, "Temperatures (F)", fontsize=16)

         plt.text(-74, 77, "Counts", rotation="vertical", fontsize=16)

         _ = plt.suptitle(

             ("Temperatue Counts by Month, 1894-2013\n"

              "Saint Francis, KS, USA"),

             fontsize=20)

The following plots are the result of the preceding code:
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This provides a nice view on the number of occurrences for temperature ranges in 
each month over the course of the century. For the most part, these have roughly 
normal distributions, as we would expect.

Now what we'd like to do is:

• Look at the mean temperature for all months over the century
• Show the constituent data that generated that mean
• Trace the maximum, mean, and minimum temperatures

Let us tackle that last one, first. The minimum, maximum, and means are discrete 
values in our case, one for each month. What we'd like to do is see what a smooth 
curve through those points might look like (as a visual aid more than anything). 
At first, one might think of using NumPy's or Pandas' histogram and distribution 
plotting capabilities. That would be perfect if we were just binning data. That is not 
what we are doing, though: we are not generating counts for data that falls in a  
given range. We are looking at temperatures in a given range. The next thought 
might be to use the 2D histogram capabilities of NumPy, and while that does  
work, it's a rather different type of a plot than what we want.

Instead of trying to fit our needs into the tools, what data do we have and what work 
could we do on that with the tools at hand? We already have our maximums, means, 
and minimums. We have temperatures per month over the course of the century. We 
just need to connect our discrete points with a smooth, continuous line.

SciPy provides just the thing: spline interpolation. This will give us a smooth curve 
for our discrete values:

In [57]: from scipy.interpolate import UnivariateSpline

         smooth_mean = UnivariateSpline(

             month_nums, list(monthly_means), s=0.5)

         means_xs = np.linspace(0, 13, 2000)

         means_ys = smooth_mean(means_xs)

         smooth_maxs = UnivariateSpline(

             month_nums, list(temps2.max()), s=0)

         maxs_xs = np.linspace(0, 13, 2000)
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         maxs_ys = smooth_maxs(maxs_xs)

         smooth_mins = UnivariateSpline(

             month_nums, list(temps2.min()), s=0)

         mins_xs = np.linspace(0, 13, 2000)

         mins_ys = smooth_mins(mins_xs)

We'll use the raw data from the beginning of this section, since we'll be doing 
interpolation on our x values (month numbers):

In [58]: temps3 = data_raw[["Month", "Mean Temperature (F)"]]

Now we can plot our means for all months, a scatter plot (with data points as 
lines, in this case) for each month superimposed over each mean, and finally our 
maximum / mean / minimum interpolations:

In [59]: (figure, axes) = plt.subplots(figsize=(18,10))

         axes.bar(

             month_nums, monthly_means, width=0.96, align="center",

             alpha=0.6)

         axes.scatter(

             temps3["Month"], temps3["Mean Temperature (F)"],

             s=2000, marker="_", alpha=0.6)

         axes.plot(means_xs, means_ys, "b", linewidth=6, alpha=0.6)

         axes.plot(maxs_xs, maxs_ys, "r", linewidth=6, alpha=0.2)

         axes.plot(mins_xs, mins_ys, "y", linewidth=6, alpha=0.5)

         axes.axis(

             (0.5, 12.5,

             temps_degrees.min() - 5, temps_degrees.max() + 5))

         axes.set_title(

             ("Mean Monthly Temperatures from 1894-2013\n"

              "Saint Francis, KS, USA",

             fontsize=20)

         axes.set_xticks(month_nums)

         axes.set_xticklabels(month_names)

         _ = axes.set_ylabel("Temperature (F)", fontsize=16)

The following plot is the result of the preceding code:
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You may have noticed that these plot components have echoes of the box plot in 
them. They do, in fact, share some basic qualities in common with the box plot. The 
box plot was invented by the famous statistical mathematician John Tukey.

The inventor of many important concepts, John Tukey is often 
forgotten as the person who coined the term bit. A term which 
now permeates multiple industries and has made its way into the 
vocabularies of non-specialists, too.

Box plots concisely and visually convey the following bits (couldn't resist) of 
information:

• Upper part of the box: approximate distribution, 75th percentile
• Line across box: median
• Lower part of the box: approximate distribution, 25th percentile
• Height of the box: fourth spread
• Upper line out of box: greatest non-outlying value
• Lower line out of box: smallest non-outlying value
• Dots above and below: outliers

Sometimes, you will see box plots of different width; the width indicates the relative 
size of the datasets.

The box plot allows one to view data without making any assumptions about it; the 
basic statistics are there to view, in plain sight.
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The following plot will overlay a box plot on our bar chart of medians (and line 
scatter plot of values):

In [64]: (figure, axes) = plt.subplots(figsize=(18,10))

         axes.bar(

             month_nums, monthly_means, width=0.96, align="center",

             alpha=0.6)

         axes.scatter(

             temps3["Month"], temps3["Mean Temperature (F)"],

             s=2000, marker="_", alpha=0.6)

         sns.boxplot(temps2, ax=axes)

         axes.axis(

             (0.5, 12.5,

              temps_degrees.min() - 5, temps_degrees.max() + 5))

         axes.set_title(

             ("Mean Monthly Temperatures, 1894-2013\n"

              "Saint Francis, KS, USA"),

             fontsize=20)

         axes.set_xticks(month_nums)

         axes.set_xticklabels(month_names)

         _ = axes.set_ylabel("Temperature (F)", fontsize=16)

The following plot is the result of the preceding code:
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Now, we can easily identify the spread, the outliers, the area that contains half of the 
distribution, and so on. Though pretty, the color of the box plots merely represents 
relative closeness of values to that of its neighbors and as such holds no significant 
sources for insight.

A variation on the box plot that focuses on the probability distribution rather than 
quartiles is the violin plot, an example of which we saw earlier in the introduction to 
Seaborn. We will configure a violin plot to show our data points as lines (the stick 
option), thus combining our use of the line-scatter plot above with the box plot:

In [65]: sns.set(style="whitegrid")

In [66]: (figure, axes) = plt.subplots(figsize=(18, 10))

         sns.violinplot(temps2, bw=0.2, lw=1, inner="stick")

         axes.set_title(

             ("Violin Plots\nMean Monthly Temperatures, 1894-2013\n"

              "Saint Francis, KS, USA"),

             fontsize=20)

         axes.set_xticks(month_nums)

         axes.set_xticklabels(month_names)

         _ = axes.set_ylabel("Temperature (F)", fontsize=16)

The following violin plot is the result of the preceding code:
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In the violin plot, the outliers are part of the probability distribution, though they 
are just as easy to identify as they are in the box plot due to the thinning of the 
distribution at these points.

For our final plot of this section, we will dip back into mathematics and finish up 
with a feature from the Pandas library with a plot of Andrews' curves. Andrews' 
curves can be useful when attempting to uncover a hidden structure in datasets 
of higher dimensions. As such, it may be a bit forced in our case; we're essentially 
looking at just two dimensions: the temperature and the time of year. That being 
said, it is such a useful tool that it's worth covering, if only on a toy example.

Andrews' curves are groups of lines where each line represents a point in the input 
dataset, and the line is a transformation of that point. In fact, the line is a plot of a 
finite Fourier series, and is defined as follows:

This function is then plotted for the interval from -π < t < π. Thus, each data point 
may be viewed as a line between -π and π. The following formula can be thought of 
as the projection of the data point onto the vector:

Let us see it in action:

In [67]: months_cmap = sns.cubehelix_palette(

             8, start=-0.5, rot=0.75, as_cmap=True)

         (figure, axes) = plt.subplots(figsize=(18, 10))

         temps4 = data_raw[["Mean Temperature (F)", "Month"]]

         axes.set_xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi])

         axes.set_xticklabels(

             [r"$-{\pi}$", r"$-\frac{\pi}{2}$",

              r"$0$", r"$\frac{\pi}{2}$", r"${\pi}$"])

         axes.set_title(

             ("Andrews Curves for\nMean Monthly Temperatures,

              "1894-2013\nSaint Francis, KS, USA"),

             fontsize=20)

         axes.set_xlabel(
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             (r"Data points mapped to lines in the range "

               "$[-{\pi},{\pi}]$"),

             fontsize=16)

         axes.set_ylabel(r"$f_{x}(t)$", fontsize=16)

         pd.tools.plotting.andrews_curves(

             temps4, class_column="Month", ax=axes,

             colormap=months_cmap)

         axes.axis(

             [-np.pi, np.pi] + [x * 1.025 for x in axes.axis()[2:]])

         _ = axes.legend(labels=month_names, loc=(0, 0.67))

The following plot is the result of the preceding code:

If we examine the rendered curves, we see the same patterns that we identified in the 
cluster map plots:

• The temperatures of January and December are similar (thus the light and 
dark banding, staying close together)

• Likewise for the temperatures during the summer months
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• The alternate banding of colors represent the same relationship that we saw 
in the cluster map, where months of similar temperature patterns (though at 
different times of year) were paired together

Notice that the curves preserve the distance between the high and low temperatures. 
This is another property of Andrews' curves. Others include the following:

• The mean is preserved
• Linear relationships are preserved
• The variance is preserved

Things to keep in mind when using Andrews' curves in your projects:
• The order of the variables matters; changing that order will 

result in different curves
• The lower frequencies show up better; as such, put the 

variables you feel to be more important first

For example, if we did have a dataset with more variables that contributed to the 
temperature, such as atmospheric pressure or wind speed, we might have defined 
our Pandas DataFrame with the columns in this order:

temps4 = data_raw[
    ["Mean Temperature (F)", "Wind Speed (kn)",
     "Pressure (Pa)", "Month"]]

Analysis of precipitation
In the Analysis of precipitation section of the IPython Notebook for this chapter, 
all the graphs that are explored in the temperature section are also created for the 
precipitation data. We will leave that review as an exercise for the interested reader. 
However, it is worth noting a few of the differences between the two aspects of the 
datasets, so we will highlight those here.

Our setup for the precipitation colors are as follows:

In [68]: sns.set(style="darkgrid")

In [69]: precips_colors = ["#f2d98f", "#f8ed39", "#a7cf38",

                           "#7fc242", "#4680c2", "#3a53a3",

                           "#6e4a98"]

         sns.palplot(precips_colors)
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The following graph is obtained as the result of the preceding code:

The first precipitation graph will be the one we had mentioned before: a combination 
of the precipitation amount heat map and a histogram of the total counts for the 
corresponding year:

In [72]: figure = plt.figure(figsize=(18, 13))

         grid_spec = plt.GridSpec(2, 2,

                                  width_ratios=[50, 1],

                                  height_ratios=[1, 3],

                                  wspace=0.05, hspace=0.05)

         hist_axes = figure.add_subplot(grid_spec[0])

         cluster_axes = figure.add_subplot(grid_spec[2])

         colorbar_axes = figure.add_subplot(grid_spec[3])

         precips_sum = precips.sum(axis=0)

         years_unique = data["Year"].unique()

         hist_axes.bar(years_unique, precips_sum, 1,

                       ec="w", lw=2, color="0.5", alpha=0.5)

         hist_axes.set(

             xticks=[], ylabel="Total Yearly\nPrecip. (in)")

         hist_axes.set_xlim([years_min, years_max])

         hist_axes.set_title(

             ("Heat Map with Histogram\nMean Monthly Precipitation,"

              "1894-2013\nSaint Francis, KS, USA"),

             fontsize=20)

         sns.heatmap(precips,

                     cmap=precips_cmap,

                     ax=cluster_axes,

                     cbar_ax=colorbar_axes,

                     cbar_kws={"orientation": "vertical"})

         _ = colorbar_axes.set(xlabel="Precipitation\n(in)")
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The following plot is the result of the preceding code:

This plot very nicely allows us to scan the heat map and then trace upwards to the 
histogram for a quick summary for any year we find interesting. In point of fact, we 
notice the purple month of May in 1923 right away. The histogram confirms for us 
that this was the rainiest year of the century for Saint Francis, KS. A quick search 
on the Internet for kansas rain 1923 yields a USGS page discussing major floods 
along the Arkansas River where they mention "flood stages on the Ninnescah [river] 
were the highest known."

In contrast to the temperature data, we can see that the precipitation is highly 
irregular. This is confirmed when rendering the histogram for the months of 
the century: few or no normal distributions. The cluster map does bear more 
examination, however, the clustering of the years could reveal stretches of drought.

The other plot we will include in this section, is the precipitation box plot, as there 
are some pretty significant outliers:

In [84]: (figure, axes) = plt.subplots(figsize=(18,10))

         axes.bar(

             month_nums, monthly_means, width=0.99, align="center",
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             alpha=0.6)

         axes.scatter(

             precips3["Month"], precips3["Precipitation (in)"],

             s=2000, marker="_", alpha=0.6)

         sns.boxplot(precips2, ax=axes)

         axes.axis(

             (0.5, 12.5,

              precips_inches.min(), precips_inches.max() + 0.25))

         axes.set_title(

             ("Mean Monthly Precipitation from 1894-2013\n"

              "Saint Francis, KS, USA"),

             fontsize=20)

         axes.set_xticks(month_nums)

         axes.set_xticklabels(month_names)

         _ = axes.set_ylabel("Precipitation (in)", fontsize=16)

The following plot is the result of the preceding code:

The greatest amount of rain we saw was in May of 1923, and there is its outlying 
data point in the plot. We see another one almost as high in August. Referencing our 
precipitation heat map, we easily locate the other purple month corresponding to the 
heaviest rains, and sure enough: it's in August (1933).
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Summary
In this chapter, we covered a great deal of material:

• A quick review of the evolution of high-level plotting
• An examination of third-party libraries, which wrap matplotlib functionality 

for high-level plotting results
• An overview of the grammar of graphics and the implementations available 

in the Python world
• A tour of a one town's data climate over a century, and the ways in which 

this might be rendered in various high-level plots

Our goal was to not only provide more context into the world of data visualization 
where each layer builds upon one before it, but to also demonstrate practical usage 
on a real-world dataset, identifying the ways in which one might need to modify the 
collected or supplied data, and then apply various methods to gain deeper insights 
about the data. Sometimes those insights come as a result of simply highlighting 
different relationships within a dataset; other times they come when supplementing 
a dataset with new calculations.

It is our hope that having walked with us through this valley of high-level plotting 
and data analysis, you are better prepared to strike out on your own adventures in 
the high-plains of the vast datasets and analysis that await you.
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Customization and 
Configuration

This chapter marks a conceptual dividing line for the book. We've focused on topics 
such as matplotlib internals and APIs, plot interaction, high-level plotting, and the use 
of third-party libraries. We will continue in that vein in the first part of this chapter 
as we discuss advanced customization techniques for matplotlib. We will finish the 
chapter by discussing the elements of the advanced and lesser-known matplotlib 
configuration. The configuration theme will continue into the next chapter and then go 
beyond that into the realm of deployment. As such, this chapter will mark a transition 
to our exploration of matplotlib in the real world and its usage in computationally 
intensive tasks.

This chapter will provide an overview of the following, giving you enough 
confidence to tackle these in more depth at your own pace:

• Customization
 ° matplotlib styles
 ° Subplots
 ° Further exploration

• Configuration

 ° The matplotlib run control
 ° Options in IPython
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To follow along with this chapter's code, clone the notebook's repository and start up 
IPython in the following way:

$ git clone https://github.com/masteringmatplotlib/custom-and-config.git

$ cd custom-and-config

$ make

Customization
On the journey through the lands of matplotlib, one of the signposts for  
intermediate territories is an increased need for fine-grained control over the  
libraries in the ecosystem. In our case, this means being able to tweak matplotlib  
for particular use cases such as specialty scales or projections, complex layouts,  
or a custom look and feel.

Creating a custom style
The first customization topic that we will cover is that of the new style support 
introduced in matplotlib 1.4. In the previous notebook, we saw how to get a list  
of the available styles:

In [2]: print(plt.style.available)

        ['bmh', 'ggplot', 'fivethirtyeight', 'dark_background',

        'grayscale']

Now, we're going to see how we can create and use one of our own custom styles.

You can create custom styles and use them by calling style.use with the path or 
URL to the style sheet. Alternatively, if you save the <style-name>.mplstyle file 
to the ~/.matplotlib/stylelib directory (you may need to create it), you can 
reuse your custom style sheet with a call to style.use(<style-name>). Note that a 
custom style sheet in ~/.matplotlib/stylelib will override a style sheet defined 
by matplotlib if the styles have the same name.

There is a custom matplotlib style sheet included in this chapter's IPython Notebook 
git repository, but before we go further, let's create a function that will generate a 
demo plot for us. We'll then render it by using the default style in the following way, 
thus having a baseline to compare our work to:

In [3]: def make_plot ():

            x = np.random.randn(5000, 6)

            (figure, axes) = plt.subplots(figsize=(16,10))
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            (n, bins, patches) = axes.hist(

                x, 12, normed=1, histtype='bar',

                label=['Color 1', 'Color 2', 'Color 3',

                       'Color 4', 'Color 5', 'Color 6'])

            axes.set_title(

                "Histogram\nfor a\nNormal Distribution", fontsize=24)

            axes.set_xlabel("Data Points", fontsize=16)

            axes.set_ylabel("Counts", fontsize=16)

            axes.legend()

            plt.show()

In [4]: make_plot()

The following is the sample plot obtained as result of the preceding code:

The preceding plot is the default style for matplotlib plots. Let's do something fun 
by copying the style of Thomas Park's Superhero Bootstrap theme. It's a darker theme 
with muted blues and desaturated accent colors. There is a screenshot of a demo 
website in the IPython Notebook for this chapter.



Customization and Configuration

[ 144 ]

There are two styles provided, which differ only in the coloring of the text:

In [6]: ls -l ../styles

total 16

-rw-r--r--  1 u  g  473 Feb  4 14:54 superheroine-1.mplstyle

-rw-r--r--  1 u  g  473 Feb  4 14:53 superheroine-2.mplstyle

Let's take a look at the second one's contents, which show the hexadecimal colors 
that we copied from the Bootstrap theme:

In [7]: cat ../styles/superheroine-2.mplstyle

lines.color: 4e5d6c

patch.edgecolor: 4e5d6c

text.color: df691b

axes.facecolor: 2b3e50

axes.edgecolor: 4e5d6c

axes.labelcolor: df691b

axes.color_cycle: df691b, 5cb85c, 5bc0de, f0ad4e, d9534f, 4e5d6c

axes.axisbelow: True

xtick.color: 8c949d

ytick.color: 8c949d

grid.color: 4e5d6c

figure.facecolor: 2b3e50

figure.edgecolor: 2b3e50

savefig.facecolor: 2b3e50

savefig.edgecolor: 2b3e50

legend.fancybox: True

legend.shadow: True

legend.frameon: True

legend.framealpha: 0.6
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The idea behind the matplotlib styles is wonderfully simple—don't reinvent 
anything, just offer an option for easy organization of data. If the preceding 
code looks familiar, it's because it is also available in the matplotlib run control 
configuration file, matplotlibrc, which will be discussed at the end of the chapter. 
Let's see how our custom style overrides the default color definitions:

In [8]: plt.style.use("../styles/superheroine-2.mplstyle")

In [9]: make_plot()

The following is the plot obtained as result of the preceding code:

For a tiny bit of an effort, we have a significantly different visual impact. We'll 
continue using this style for the remainder of the chapter. In particular, we'll see  
what it looks like in the following section, when we assemble a collection of subplots.

Subplots
In this section, we'll create a sophisticated subplot to give you a sense of matplotlib's 
plot layout capabilities. The system is flexible enough to accommodate everything 
from simple adjustments to the creation of dashboards in a single plot.
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For this section, we have chosen to ingest data from the well-known UCI Machine 
Learning Repository. In particular, we'll use the 1985 Automobile Data Set. It serves 
as an example of data that can be used to assess the insurance risks for different 
vehicles. We will use it in an effort to compare 21 automobile manufacturers (using 
the 1985 data) along the following dimensions:

• Mean price
• Mean city MPG
• Mean highway MPG
• Mean horsepower
• Mean curb weight
• Mean relative average loss payment
• Mean insurance riskiness

We will limit ourselves to automobile manufacturers that have data for losses, as 
well as six or more rows of data. Our subplot will comprise of the following sections:

• An overall title
• Line plots for maximum, mean, and minimum prices
• A stacked bar chart for combined riskiness or losses
• A stacked bar chart for riskiness
• A stacked bar chart for losses
• Radar charts for each automobile manufacturer
• A combined scatterplot for the city and highway MPG

These will be composed as subplots in the following manner:

--------------------------------------------
|               overall title              |
--------------------------------------------
|               price ranges               |
--------------------------------------------
| combined loss/risk |                     |
|                    |        radar        |
----------------------        plots        |
|  risk   |   loss   |                     |
--------------------------------------------
|                   mpg                    |
--------------------------------------------
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Revisiting Pandas
We've going to use a set of demonstration libraries that we included with this 
notebook to extract and manipulate the automobile maker data. Like we did before, 
we will take advantage of the power provided by the Pandas statistical analysis 
library. Let's load our modules by using the following code:

In [10]: import sys

         sys.path.append("../lib")

         import demodata, demoplot

As you can see in the IPython Notebook, there's more data there than what we need 
for the subplotting tasks. Let's created a limited set by using the following code:

In [11]: limited_data = demodata.get_limited_data()

         limited_data.head()

Out[11]:

The following table is obtained as a result of the preceding command:

make price city 
mpg

highway 
mpg horsepower weight riskiness losses

0 audi 13950 24 30 102 2337 2 164

1 audi 17450 18 22 115 2824 2 164

2 audi 17710 19 25 110 2844 1 158

3 audi 23875 17 20 140 3086 1 158

4 bmw 16430 23 29 101 2395 2 192

This has provided us with the full set of data minus the columns that we don't care 
about right now. However, we want to apply an additional constraint—we want to 
exclude auto manufacturers that have fewer than six rows in our dataset. We will do 
so with the help of the following command:

In [16]: data = demodata.get_limited_data(lower_bound=6)
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We've got the data that we want, but we still have some preparations left to do. In 
particular, how are we going to compare data of different scales and relationships? 
Normalization seems like the obvious answer, but we want to make sure that the 
normalized values compare appropriately. High losses and a high riskiness factor are 
less favorable, while a higher number of miles per gallon is more favorable. All this 
is taken care of by the following code:

In [19]: normed_data = data.copy()

         normed_data.rename(

             columns={"horsepower": "power"}, inplace=True)

In [20]: demodata.norm_columns(

             ["city mpg", "highway mpg", "power"], normed_data)

In [21]: demodata.invert_norm_columns(

             ["price", "weight", "riskiness", "losses"],

             normed_data)

What we did in the preceding code was make a copy of the limited data that we've 
established as our starting point, and then we updated the copied set by calling two 
functions—the first function normalized the given columns whose values are more 
favorable when higher, and the other function inverted the normalized values to 
match the first normalization (as their pre-inverted values are more favorable when 
lower). We now have a normalized dataset in which all the values are more favorable 
when higher.

If you would like to have more exposure to Pandas in action, be sure to view the 
functions in the demodata module. There are several useful tricks that are employed 
there to manipulate data.

Individual plots
Before jumping into subplots, let's take a look at a few individual plots for our 
dataset that will be included as subplots. The first one that we will generate is for  
the automobile price ranges:

In [22]: figure = plt.figure(figsize=(15, 5))

         prices_gs = mpl.gridspec.GridSpec(1, 1)

         prices_axes = demoplot.make_autos_price_plot(

             figure, prices_gs, data)

         plt.show()
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Note that we didn't use the usual approach that we had taken, in which we get the 
figure and axes objects from a call to plt.subplots. Instead, we opted to use the 
GridSpec class to generate our axes (in the make_autos_price_plot function). 
We've done this because later, we wish to use GridSpec to create our subplots.

Here is the output that is generated from the call to plt.show():

Keep in mind that the preceding plot is a bit contrived (there's no inherent meaning 
in connecting manufacturer maximum, mean, and minimum values). Its sole purpose 
is to simply provide some eye candy for the subplot that we will be creating. As you 
can see from the instantiation of GridSpec, this plot has one set of axes that takes up 
the entire plot. Most of our individual plots will have the same geometry. The one 
exception to this is the radar plot that we will be creating.

Radar plots are useful when you wish to compare normalized data to multiple 
variables and populations. Radar plots are capable of providing visual cues that 
reveal insights instantly. For example, consider the following figure:



Customization and Configuration

[ 150 ]

The preceding figure shows the data that was consolidated from several 1985 Volvo 
models across the dimensions of price, inverse losses to insurers, inverse riskiness, 
weight, horsepower, and the highway and city miles per gallon. Since the data has 
been normalized for the highest values as the most positive, the best scenario would be 
for a manufacturer to have colored polygons at the limits of the axes. The conclusions 
that we can draw from this is this—relative to the other manufacturers in the dataset, 
the 1985 Volvos are heavy, expensive, and have a pretty good horsepower. However, 
where they really shine is in the safety for insurance companies—low losses and a very 
low risk (again, the values that are larger are better). Even Volvo's minimum values are 
high in these categories. That's one manufacturer. Let's look at the whole group:

In [27]: figure = plt.figure(figsize=(15, 5))

         radar_gs = mpl.gridspec.GridSpec(

             3, 7, height_ratios=[1, 10, 10], wspace=0.50,

             hspace=0.60, top=0.95, bottom=0.25)

         radar_axes = demoplot.make_autos_radar_plot(

             figure, radar_gs, normed_data)

         plt.show()

The following table is obtained as a result of the preceding code:

There are interesting conclusions to the graph from this view of the data, but we will 
focus on the code that generated it. In particular, note the geometry of the grid—three 
by seven. What does this mean and how are we going to use it? We have two rows 
of six manufacturers. However, we added an extra row for an empty (and hidden) 
axis. This is used at the top for the overall title. We then added an extra column for 
the legend, which spans two rows. This brings us from a grid of two by six to a grid 
of three by seven. The remaining 12 axes in the grid are populated with a highly 
customized polar plot, giving us the radar plots for each of the manufacturers.
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This example was included not only because it's visually compelling, but also 
because it will show how flexible the grid specification system for matplotlib is  
when we put them together. We have the ability to place plots within plots.

Bringing everything together
We've seen a small aspect of the GridSpec usage. This has been a tiny warm-up 
exercise compared to what's coming! Let's refresh with the ASCII sketch of the 
subplots that we wanted to create. Flip back to that page and look at the layout. We 
have three axes that will be stretching all the way across the title, price ranges, and 
the MPG data at the bottom. The three riskiness or losses plots will then be placed  
on the left-hand side in the middle of the page, and the radar plots will take the other 
half of that part of the plot on the right-hand side.

We can plot what this will look like before adding any of the data, just by creating 
the grid and subplot specification objects. The following may look a bit hairy, but 
keep in mind that when splicing the subplot specs, you're using the same technique 
that was used when splicing the NumPy array data:

In [28]: figure = plt.figure(figsize=(10, 8))

         gs_master = mpl.gridspec.GridSpec(

             4, 2, height_ratios=[1, 2, 8, 2])

         # Layer 1 - Title

         gs_1 = mpl.gridspec.GridSpecFromSubplotSpec(

             1, 1, subplot_spec=gs_master[0, :])

         title_axes = figure.add_subplot(gs_1[0])

         # Layer 2 - Price

         gs_2 = mpl.gridspec.GridSpecFromSubplotSpec(

             1, 1, subplot_spec=gs_master[1, :])

         price_axes = figure.add_subplot(gs_2[0])

         # Layer 3 - Risks & Radar

         gs_31 = mpl.gridspec.GridSpecFromSubplotSpec(

             2, 2, height_ratios=[2, 1],

             subplot_spec=gs_master[2, :1])

         risk_and_loss_axes = figure.add_subplot(gs_31[0, :])

         risk_axes = figure.add_subplot(gs_31[1, :1])

         loss_axes = figure.add_subplot(gs_31[1:, 1])

         gs_32 = mpl.gridspec.GridSpecFromSubplotSpec(

             1, 1, subplot_spec=gs_master[2, 1])
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         radar_axes = figure.add_subplot(gs_32[0])

         # Layer 4 - MPG

         gs_4 = mpl.gridspec.GridSpecFromSubplotSpec(

             1, 1, subplot_spec=gs_master[3, :])

         mpg_axes = figure.add_subplot(gs_4[0])

         # Tidy up

         gs_master.tight_layout(figure)

         plt.show()

In the preceding code, when we instantiated GridSpec, we provided a geometry of 
four rows and two columns. We then passed the data for the height ratios so that 
each row will have an appropriate size that is relative to the others. In the section at 
the middle, for the risk and radar plots, we gave a geometry of two rows and two 
columns, and again passed the height ratios that provide the proportions we desire. 
This code results in the following plot:
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That's exactly what we were aiming for. Now, we're ready to start adding individual 
plots. The code that generated the preceding skeleton plot differs from the final 
result in the following three key ways:

• The axes that are created will now get passed to the plot functions
• The plot functions will update the axes with their results (and thus no longer 

be empty)
• The skeleton radar plot had a one-by-one geometry; the real version will 

instead have a five-by-three geometry in the same area

Here is the code that inserts all the individual plots into their own subplots:

In [29]: figure = plt.figure(figsize=(15, 15))

         gs_master = mpl.gridspec.GridSpec(

             4, 2, height_ratios=[1, 24, 128, 32], hspace=0,

             wspace=0)

         # Layer 1 - Title

         gs_1 = mpl.gridspec.GridSpecFromSubplotSpec(

             1, 1, subplot_spec=gs_master[0, :])

         title_axes = figure.add_subplot(gs_1[0])

         title_axes.set_title(

             "Demo Plots for 1985 Auto Maker Data",

             fontsize=30, color="#cdced1")

         demoplot.hide_axes(title_axes)

         # Layer 2 - Price

         gs_2 = mpl.gridspec.GridSpecFromSubplotSpec(

             1, 1, subplot_spec=gs_master[1, :])

         price_axes = figure.add_subplot(gs_2[0])

         demoplot.make_autos_price_plot(
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             figure, pddata=data, axes=price_axes)

         # Layer 3, Part I - Risks

         gs_31 = mpl.gridspec.GridSpecFromSubplotSpec(

             2, 2, height_ratios=[2, 1], hspace=0.4,

             subplot_spec=gs_master[2, :1])

         risk_and_loss_axes = figure.add_subplot(gs_31[0, :])

         demoplot.make_autos_loss_and_risk_plot(

            figure, pddata=normed_data,

            axes=risk_and_loss_axes, x_label=False,

            rotate_ticks=True)

         risk_axes = figure.add_subplot(gs_31[1, :1])

         demoplot.make_autos_riskiness_plot(

             figure, pddata=normed_data, axes=risk_axes,

             legend=False, labels=False)

         loss_axes = figure.add_subplot(gs_31[1:, 1])

         demoplot.make_autos_losses_plot(

             figure, pddata=normed_data, axes=loss_axes,

             legend=False, labels=False)

         # Layer 3, Part II - Radar

         gs_32 = mpl.gridspec.GridSpecFromSubplotSpec(

            5, 3, height_ratios=[1, 20, 20, 20, 20],

            hspace=0.6, wspace=0,

            subplot_spec=gs_master[2, 1])

         (rows, cols) = geometry = gs_32.get_geometry()

         title_axes = figure.add_subplot(gs_32[0, :])

         inner_axes = []

         projection = radar.RadarAxes(spoke_count=len(

             normed_data.groupby("make").mean().columns))
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         [inner_axes.append(figure.add_subplot(

             m, projection=projection))

             for m in [n for n in gs_32][cols:]]

         demoplot.make_autos_radar_plot(

             figure, pddata=normed_data,

             title_axes=title_axes, inner_axes=inner_axes,

             legend_axes=False, geometry=geometry)

         # Layer 4 - MPG

         gs_4 = mpl.gridspec.GridSpecFromSubplotSpec(

             1, 1, subplot_spec=gs_master[3, :])

         mpg_axes = figure.add_subplot(gs_4[0])

         demoplot.make_autos_mpg_plot(

             figure, pddata=data, axes=mpg_axes)

         # Tidy up

         gs_master.tight_layout(figure)

         plt.show()

Though there is a lot of code here, keep in mind that it's essentially the same as the 
skeleton of subplots that we created. For most of the plots, all we had to do was 
make a call to the function that creates the desired plot, passing the axes that we 
created by splicing a part of the spec and adding a subplot for that splice to the 
figure. The one that wasn't so straightforward was the radar plot collection. This 
is due to the fact that we not only needed to define the projection for each radar 
plot, but also needed to create the 12 axes needed for each manufacturer. Despite 
this complication, the use of GridSpec and GridSpecFromSubplotSpec clearly 
demonstrates the ease with which complicated visual data can be assembled to 
provide all the power and convenience of a typical dashboard view.
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The following plot is the result of the preceding code:

The creation of complex subplots in matplotlib can be perceived as a daunting task. 
However, the following basic practices can help you make it a painless process of 
creating visual goodness:

1. Write down an explicit plan for what you want to present, which data you 
want to combine, where you will use the stacked data and means, and so on.

2. Sketch out on paper or in an ASCII diagram the desired layout. This will 
often reveal something that you hadn't considered.

3. With the layout decided upon, create a GridSpec- and 
GridSpecFromSubplotSpec-based collection of subplots with empty axes. 
Don't add any plot data. Your grid-tweaking should happen at this point.

4. With your girds ironed out, update your axes with the desired plots.
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Further explorations in customization
We have covered two areas of customization that come up frequently in various 
online forums. The other topics in advanced matplotlib customization include the 
creation of axes, scales, projections, and backends for some particular data or project 
requirements. Each of these have tutorials or examples that are provided by the 
matplotlib project, and given your newly attained comfort level with reading the 
matplotlib sources directly, these are now within your reach.

Several of these are worth mentioning specifically:

• The API example code for custom_projection_example.py provides 
a highly detailed look into the means by which you can create custom 
projections. Another example of this is the radar plot that we created earlier 
in this chapter. If you view the library files for this chapter, you will see that 
we based the work on the polar projection that comes with matplotlib.

• The API example code for custom_scale_example.py shows how to create 
a new scale for the y axis, which uses the same system as that of the Mercator 
map projection. This is a smaller amount of code, which is more easily 
digestible than the preceding projection example.

• The matplotlib Transformations Tutorial will teach you how to create data 
transforms between coordinate systems, use axes transforms to keep the text 
bubbles in fixed positions while zooming, and blend transformations for the 
highlighting portions of the plotted data.

Finally, Joe Kington, a geophysicist, created an open source project for equal-angle 
Stereonets in matplotlib. Stereonets, or Wulff net are used in geological studies and 
research, and Dr. Kington's code provides excellent examples of custom transforms 
and projections. All of this has been documented very well. This is an excellent 
project to examine in detail after working on the matplotlib.org tutorials and 
examples on creating custom projections, scales, and transformations.

Configuration
We've just covered some examples of matplotlib customization. Hand in hand with 
this topic is that of configuration—the tweaking of predefined values to override 
default behaviors. The matplotlib module offers two ways to override the default 
values for the configuration settings—you can either run the control files, or run the 
control parameters that are stored in-memory to make changes to a running instance.

matplotlib.org
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The run control for matplotlib
While commonly expanded to the run control, the .rc extension and -rc suffix 
trace their origins to 1965 and the Multics (short for Multiplexed Information and 
Computing Service) operating system, where rc stood for the run command. Like 
many software systems that were developed on UNIX- or BSD-based machines, 
matplotlib has an rc file where the control of matplotlib may be configured. This 
control is not limited to configuration files; one may also access an rc object via  
the matplotlib API. Each of these is covered in the following few sections.

File and directory locations
The configuration of matplotlib is possible through the creation and editing of  
the matplotlibrc file. The matplotlib module will search for this file in the 
following locations:

• The current working directory
• The $HOME/.matplotlib directory
• INSTALL/matplotlib/mpl-data/, where INSTALL is the Python site-

packages directory where matplotlib was installed
• A temporary directory created by Python, in case $HOME/.matplotlib is  

not writable
• The directory defined by the MPLCONFIGDIR environment variable (if defined, 

this directory will override the use of $HOME/.matplotlib)

You can use matplotlib to find the location of your configuration directory by using 
the following code:

In [30]: mpl.get_configdir()

Out[30]: '/Users/yourusername/.matplotlib'

Similarly, you can display the currently active matplotlibrc file with the help of  
the following code:

In [31]: mpl.matplotlib_fname()

Out[31]: '/Users/yourusername/mastering-matplotlib/.venv-mmpl/lib/
python3.4/site-packages/matplotlib/mpl-data/matplotlibrc'

Using the matplotlibrc file
There are hundreds of configuration options that are available to you via the 
matplotlibrc file:

In [32]: len(mpl.rcParams.keys())

Out[32]: 200
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You can have a look at some of these with the following code:

In [33]: dict(list(mpl.rcParams.items())[:10])

Out[33]: {'axes.grid': False,

          'mathtext.fontset': 'cm',

          'mathtext.cal': 'cursive',

          'docstring.hardcopy': False,

          'animation.writer': 'ffmpeg',

          'animation.mencoder_path': 'mencoder',

          'backend.qt5': 'PyQt5',

          'keymap.fullscreen': ['f', 'ctrl+f'],

          'image.resample': False,

          'animation.ffmpeg_path': 'ffmpeg'}

The configuration options that you need depend entirely upon your use cases, and 
thanks to matplotlib's ability to search multiple locations, you can have a global 
configuration file as well as per-project configurations.

We've already run into a special case of matplotlib configuration—the contents of 
the style files that we saw at the beginning of this chapter. If you were so inclined, 
all of those values could be entered into a matplotlibrc file, thus setting the default 
global look and feel for matplotlib.

A complete template for the matplotlbrc file is available in the matplotlib 
repository on GitHub. This is the canonical reference for all your matplotlib 
configuration needs. However, we will point out a few that may be helpful if you 
keep them in mind, including some that may be used to decrease the render times:

• agg.path.chunksize: 20000: This improves the speed of operations 
slightly and prevents an Agg rendering failure

• path.simplify: true: This removes the invisible points to reduce the file 
size and increase the rendering speed

• savefig.jpeg_quality: xx: This lowers the default .jpg quality of the 
saved files

• axes.formatter.limits: This indicates when you use scientific notations 
for exponents

• webagg.port: This is the port that you should use for the web server in the 
WebAgg backend

• webagg.port_retries: With this, the number of other random ports will be 
tried until the one that is available is found
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Updating the settings dynamically
In addition to setting the options in the matplotlibrc file, you have the ability 
to change the configuration values on the fly by directly accessing the rcParams 
dictionary that we saw earlier:

In [34]: mpl.rcParams['savefig.jpeg_quality'] = 72

Out[34]: mpl.rcParams['axes.formatter.limits'] = [-5, 5]

If you either find out that your changes have caused some problems, or you want to 
revert to the default values for any reason, you can do so with mpl.rcdefaults(), 
which is demonstrated in the following code:

In [35]: mpl.rcParams['axes.formatter.limits']

Out[35]: [-5, 5]

In [36]: mpl.rcdefaults()

In [37]: mpl.rcParams['axes.formatter.limits']

Out[37]: [-7, 7]

Options in IPython
If you are using matplotlib via IPython, as many do, there are IPython matplotlib 
configuration options that you should be aware of, especially if you regularly 
use different backends or integrate with different event loops. When you start up 
IPython, you have the ability to configure matplotlib for interactive use by setting  
a default matplotlib backend in the following way:

--matplotlib=XXX

In the preceding code, XXX is one of auto, gtk, gtk3, inline, nbagg, osx, qt, qt4, 
qt5, tk, or wx. Similarly, you can enable a GUI event loop integration with the 
following option:

--gui=XXX

In the preceding code, XXX is one of glut, gtk, gtk3, none, osx, pyglet, qt, qt4, tk, 
or wx.

While you may see the --pylab or %pylab option being referred to in older 
books and various online resources (including some of matplotlib's own official 
documentation), its use has been discouraged since IPython version 1.0. It is better 
to import the modules that you will be using explicitly and not use the deprecated 
pylab interface at all.
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Summary
In this chapter, we covered two areas of detailed customization—the creation of 
custom styles, as well as complex subplots. In the previous chapters, you have been 
exposed to the means by which you can discover more of matplotlib's functionality 
through its sources. It was in this context that the additional topics in customization 
were mentioned. With this, we transitioned into the topic of matplotlib configuration 
via files as well as rcParams. This is a transitional topic that will be picked up again 
at the beginning of the next chapter, where we will cover matplotlib deployments.
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Deploying matplotlib in  
Cloud Environments

With this chapter, we will move into the topics that focus on the computationally 
intensive matplotlib tasks. This is not something that is usually associated with 
matplotlib directly, but rather with libraries like NumPy, Pandas, or scikit-learn, 
which are often brought to bear on large number-crunching jobs. However, there 
are a number of situations in which organizations or individual researchers need 
to generate a large number of plots. In the remainder of the book, our exploration 
of matplotlib in advanced usage scenarios will rely on the free or low-cost modern 
techniques that are available to the public. In the early 1960s, the famous computer 
scientist John McCarthy predicted a day when computational resources would be 
available like the public utilities of electricity and water. This has indeed come to 
pass, and we will now turn our focus to these types of environments.

We will cover the following topics in this chapter:

• Making a use case for matplotlib in the Cloud
 ° Preparing a well-defined workflow
 ° Choosing technologies

• AWS and Docker

 ° Local setup
 ° Using Docker
 ° Thinking about deployment
 ° Working with AWS
 ° Running matplotlib tasks
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To follow along with this chapter's code, clone the notebook's repository and start up 
IPython by using the following code:

$ git clone https://github.com/masteringmatplotlib/cloud-deploy.git

$ cd cloud-deploy

$ make

Making a use case for matplotlib in the 
Cloud
At first blush, it may seem odd that we are contemplating the distributed use of a 
library that has historically been focused on desktop-type environments. However, 
if we pause to ponder over this, we will see its value. You will have probably noticed 
that with large data sets or complex plots, matplotlib runs more slowly than we 
might like. What should we do when we need to generate a handful of plots for very 
large data sets or thousands of plots from diverse sources? If this sounds far-fetched, 
keep in mind that there are companies that have massive PDF-generating farms of 
servers for such activities.

This chapter will deal with a similar use case. You are a researcher working for a 
small company, tracking climactic patterns and possible changes at both the poles. 
Your team is focused on the Arctic and your assignment is to process the satellite 
imagery for the east coast of Greenland, which includes not only the new images as 
they come (every 16 days), but also the previously captured satellite data. For the 
newer material (2013 onwards), you will be utilizing the Landsat 8 data, which was 
made available through the combined efforts of the United States Geological Survey 
(USGS) and the NASA Landsat 8 project and the USGS EROS data archival services.

The data source
For your project, you will be acquiring data from the EROS archives by using the 
USGS EarthExplorer site (downloads require a registered user account, which 
is free). You will use their map to locate scenes—specific geographic areas of 
satellite imagery that can be downloaded using the EarthExplorer Bulk Download 
Application (BDA). Your initial focus will be data from scoresbysund, the largest 
and longest fjord system in the world. Your first set of data will come from the 
LC82260102014232LGN00 scene ID, a capture that was taken in August 2014 as 
shown in the following screenshot:
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Once you have marked the area in EarthExplorer, click the Data Sets view, expand 
Landsat Archive, and then select L8 OLI/TIRS. After clicking on Results, you will be 
presented with a list of scenes, each with a preview. You can click on the thumbnail 
image to see the preview, to check whether you have the right scene. Once you have 
located the scene, click on the tiny little package icon (it will be light brown/tan in 
color). If you haven't logged in, you will be prompted to. Add it to your cart, and 
then go to your cart to complete the free order.

Next, you will need to open the BDA and download your order from there (when 
the BDA opens, it will show the pending orders and present you with the option of 
downloading them). BDA will download a tarball (tar archive) to the given directory. 
From that directory, you can create a scene directory and unpack the files.

Defining a workflow
Before creating a Cloud workflow, we need to step through the process manually to 
identify all the steps and indicate those that may be automated. We will be using a 
data set from a specific point in time, but what we will define here should be usable 
by any Landsat 8 data, and some of it will be usable by the older satellite remote 
sensing data.
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We will start by organizing the data. The BDA will save its downloads to a specific 
location (different for each operating system). Let's move all the data that you've 
taken with the EarthExplorer BDA to a location that we can easily reference in our 
IPython Notebook—/EROSData/L8_OLI_TIRS. Ensure that your scene data is in the 
LC82260102014232LGN00 directory.

Next, let's perform the necessary imports and the variable definitions, as follows:

In [1]: import matplotlib

        matplotlib.use('nbagg')

        %matplotlib inline

In [2]: from IPython.display import Image 

        import sys

        sys.path.append("../lib")

        import eros

With the last line of code, we bring in the custom code created for this chapter and 
task (based on the demonstration code by Milos Miljkovic, which he delivered as  
a part of a talk at the PyData 2014 conference). Here are the variables that we will  
be using:

In [3]: path = "/EROSData/L8_OLI_TIRS"

        scene_id = "LC82260102014232LGN00"

With this in place, we're ready to read some Landsat data and write them to the  
files in the following way:

In [4]: rgb_image = eros.extract_rgb(path, scene_id)

If you examine the source for the last two function calls, you will see that identifying 
the files that are associated with the Landsat band data, extracting them from the 
source data, and then creating a data structure to represent the red, blue, and green 
channels needed for digital color images. The Landsat 8 bands are as follows:

• Band 1: It's represented by deep blue and violet. It is useful for tracking 
coastal waters and fine particles in the air.

• Band 2: It's represented by visible blue light.
• Band 3: It's represented by visible green light.
• Band 4: It's represented by visible red light.
• Band 5: It's represented by Near-Infrared (NIR) light. It is useful for  

viewing healthy plants.
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• Band 6 and 7: They are represented by Short-Wavelength Infrared (SWIR) 
light. It is useful for identifying wet and dry earth. It shows the contrast 
between the rocks and soil.

• Band 8: It's represented by a panchromatic emulsion like a black and white 
film; this band combines all the colors. Due to its sharp contrast and high 
resolution, it's useful if you want to zoom in on the details.

• Band 9: This is a narrow slice of wavelengths that is used by a few  
space-based instruments. It is useful for examining the cloud  
cover and very bright objects.

• Band 10 and 11: They are represented by a thermal infrared light. It is  
useful when you want to obtain the temperature of the air.

In your task, you will use bands 1 through 4 for water and RGB, 5 for vegetation,  
and 7 to pick out the rocks. Let's take a look at the true-color RGB image for the 
bands that we just extracted by using the following code:

In [5]: eros.show_image(

    rgb_image, "RGB image, data set " + scene_id,

    figsize=(20, 20))

The following image is the result of the preceding code:
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The preceding image isn't very clear. The colors are all quite muted. We can gain 
some insight into this by looking at a histogram of the data files for each color 
channel by using the following code:

In [6]: eros.show_color_hist(

    rgb_image, xlim=[5000,20000], ylim=[0,10000],

    figsize=(20, 7))

The following histogram is the result of the preceding code:

As you can see, a major part of the color information is concentrated in a narrower 
band, while the other data is still included. Let's create a new image by using ranges 
based on a visual assessment of the preceding histogram. We'll limit the red channel 
to the range of 5900-11000, green to 6200-11000, and blue to 7600-11000:

In [7]: rgb_image_he = eros.update_image(

    rgb_image,

    (5900, 11000), (6200, 11000), (7600, 11000))

        eros.show_image(

    rgb_image_he, "RGB image, histogram equalized",

    figsize=(20, 20))
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The following image is the result of the preceding code:

With the preceding changes, the colors really pop out of the satellite data. Next, you 
need to create your false-color image.

You will use the Landsat 8 band 1 (coastal aerosol) as blue, band 5 (NIR) as green, 
and band 7 (SWIR) as red to gain an insight into the presence of water on land, ice 
coverage, levels of healthy vegetation, and exposed rock or open ground. These 
will be used to generate a false color image. You will use the same method as with 
the previous image—generating a histogram, analyzing it for the best points of the 
color spectrum, and then displaying the image. This can be done with the help of the 
following code:

In [8]: swir2nirg_image = eros.extract_swir2nirg(path, scene_id)

In [9]: eros.show_color_hist(

    swir2nirg_image, xlim=[4000,30000], ylim=[0,10000],

    figsize=(20, 7))
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The following histogram is the result of the preceding code:

Let's create the image for the histogram using the following code:

In[10]: swir2nirg_image_he = eros.update_image(

    swir2nirg_image,

    (5900, 15000), (6200, 15000), (7600, 15000))

        eros.show_image(swir2nirg_image_he, "",

    figsize=(20, 20))

The following is the resultant image: 
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On a 2009 iMac (Intel Core i7, 8 GB RAM), the processing of the Landsat 8 data and 
the generation of the associated images took about 7 minutes with the RAM usage 
peaking at around 9 GB. For multiple runs, the IPython kernel needs to be restarted 
just to free up the RAM quickly enough. It's quite clear that performing these tasks 
on a moderately equipped workstation would be a logistically and economically 
unfeasible proposition for thousands (or even hundreds) of scenes.

So, you will instead accomplish these tasks with the help of utility computing. The 
following are the necessary steps that are used to carry out the tasks:

1. Define a Landsat 8 scene ID.
2. Ensure that the data is available.
3. Extract the coastal/aerosol, RGB, NIR, and SWIR data.
4. Identify the optimum ranges for display in each channel. We'll skip this  

step when we automate. However, this is an excellent exercise for the 
motivated readers.

5. Generate the image files for the extracted data.

These need to be migrated to the desired Cloud platform and augmented according 
to the needs of the associated tools. This brings us to the important question: Which 
technology should we use?

Choosing technologies
There is a dizzying array of choices when it comes to selecting a combination of a 
vendor, an operating system, vendor service options, a configuration management 
solution, and deployment options for Cloud environments. You can select one of 
the several OpenStack providers, such as Google Cloud Platform, Amazon AWS, 
Heroku, and Docker's dotCloud. Linux or BSD is probably the best choice for the 
host and guest OS, but even that leaves open many possibilities. Some vendors offer 
RESTful web services, SOAP, or dedicated client libraries that either wrap one of 
these or provide direct access.

In your case, you've done some testing on the speed needed to transfer considerably 
large files that are approximately 150 MB in size for each Landsat 8 band from a storage 
service to a running instance. Combining the speed requirements with usability, 
you found out that at the current time, Amazon's AWS came up as the winner in a 
close race against its contending Cloud service platforms. Since we will be using the 
recent versions of Python (3.4.2) and matplotlib (1.4.2) and we need a distribution that 
provides these pre-built, we have opted for Ubuntu 15.04. You will spin up the guest 
OS instances to run each image processing job, but now you need to decide how to 
configure these and determine the level of automation that is needed.
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Configuration management
It was in this capacity that Docker made its way into the Linux world of 
configuration management. Systems administrators were looking for more 
straightforward solutions to problems that did not require the feature sets and 
complexities of larger tools. Configuration management can encompass topics  
such as version control, packaging, software distribution, build management, 
deployment, and change control, just to name a few. For our purposes, we will  
focus on configuration management as it concerns the following:

• High-level dependency management
• The creation and management of baseline systems as well as the task of 

building on the same
• Deployment of a highly specified system to a particular environment

In the world of open source software configuration management, there are two 
giants that stand out—Chef and Puppet. Both of these were originally written in 
Ruby, with the Chef server having been rewritten in Erlang. In the world of Python, 
Salt and Ansible have risen to great prominence. Unfortunately, neither of the 
Python solutions currently support Python 3. Systems like Chef and Puppet are 
fairly complex and suited to addressing the problems of managing large numbers 
of systems with a multitude of possible configurations under continually changing 
circumstances. Unless one already has an expertise in these systems, their use is 
outside the scope of our current task.

This brings us to an interesting option that is almost outside the realm of 
configuration management—Docker. Docker is a software that wraps access to the 
Linux container technology, allowing the fast creation of operating system images 
that can then be run on a host system. Thus, this software utilizes a major part of 
the underlying system while providing an isolated environment, which can be 
customized according to the specific needs.

It was in this capacity that Docker made its way into the Linux world of 
configuration management via the system administrators, who were looking for 
more straightforward solutions for problems that did not require the feature sets  
and complexities of larger tools. Likewise, it is a perfect match for our needs. As 
a part of this chapter, we have provided various baselines for your use. These 
baselines are as follows:

• masteringmatplotlib/python: This is a Python 3.4.2 image built on the 
official Ubuntu 15.05 Docker image

• masteringmatplotlib/scipy: This is a NumPy 1.8.2, SciPy 0.14.1,  
and matplotlib 1.4.2 image that is based on the masteringmatplotlib/
python image



Chapter 7

[ 173 ]

• masteringmatplotlib/eros: This is a custom image that contains not  
only the software used in this chapter based on the masteringmatplotlib/
scipy image, but also the Python Python Imaging Library (PIL) and 
scikit-image libraries

We will discuss the Docker images in more detail shortly.

Types of deployment
Docker had its genesis in a Cloud platform and as one might guess, it is ideally suited 
for deployments on multiple Cloud platforms including the likes of Amazon AWS, 
Google Cloud Platform, Azure, OpenStack, dotCloud, Joyent, and OpenShift. Each 
of these differs from the others—only slightly when it comes to some features and 
enormously with regard to the others. Conceptually though, they offer utility-scale 
virtualization services, which is something that is particularly well suited to Docker. 
Which one is the best for your general needs depends on many of the same criteria  
that exist for any hosting scenario, regardless of the underlying technology.

Each of these will also let you spin up multiple Docker containers, allowing for entire 
application stacks to run an assortment of Docker images. With Docker's support 
of orchestration with a new set of tools, the number of possibilities for deployment 
options and the associated flexibility has been greatly increased.

As mentioned previously, in your tests for the Landsat 8 data scenario, you assessed 
AWS as the best fit. You looked at Elastic Beanstalk, but opted for a very simple 
solution that offers you more control—you will deploy a large Elastic Compute 
Cloud (EC2) Linux instance and use it to fire up the satellite-data-processing Docker 
containers as needed.

An example – AWS and Docker
The rest of this chapter is dedicated to the running of the matplotlib USGS/EROS 
image generation task in AWS using EC2, S3, and Docker. We are going to need to 
perform two stages of preparation—work that needs to be done locally and the setup 
that needs to happen in the Cloud. With these complete, we will be ready to execute 
our prepared task.

Getting set up locally
Your local setup will include an installation of Docker (and boot2docker if you are 
using Mac or Windows). It will create or download Dockerfiles, generate images 
from these files, extend the base images as necessary, and start up a Docker image  
to ensure that everything is in working order.
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Requirements
Here's what you will need for the remainder of this chapter:

• Docker
• boot2docker (for easily using Docker from Windows or Mac)

If you're running Linux, you can skip the rest of this section. If you haven't run 
boot2docker before, you'll need to run the following command first:

$ boot2docker init

If you have previously initiated boot2docker, you can just do the following code:

$ boot2docker up

At this point, you will see an output that looks like the following:

Waiting for VM and Docker daemon to start......ooo

Started.

Writing ~/.boot2docker/certs/boot2docker-vm/ca.pem

Writing ~/.boot2docker/certs/boot2docker-vm/cert.pem

Writing ~/.boot2docker/certs/boot2docker-vm/key.pem

To connect the Docker client to the Docker daemon, please set:

export DOCKER_CERT_PATH=~/.boot2docker/certs/boot2docker-vm

export DOCKER_TLS_VERIFY=1

export DOCKER_HOST=tcp://192.168.59.103:2376

You can either manually export the environment variables, or run the following 
code from your shell prompt:

$ $(boot2docker shellinit)

The preceding code will set the appropriate variables in your shell environment for 
you automatically. At this point, Docker is ready for use.

Dockerfiles and the Docker images
The heart of configuration management is the Dockerfile. This will be used to 
generate the Docker image that you need to run the Docker containers, which is where 
your matplotlib tasks will actually happen. If you are unfamiliar with Docker, here's a 
quick summary of how to think about the components that we have just mentioned:

• Dockerfile: This is the specification that is used to build extendible images
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• The Docker image: This is a read-only template, which is somewhat like  
a filesystem

• The Docker container: This is an isolated and secure application platform; 
this is what actually gets run

One of the features of Docker is that through its underlying use of a unification 
file system one is able to load images, starting with a base image and adding 
increasingly more specific images until the desired configuration state is achieved. 
This is exactly what we will do. The company that you work for, as stated earlier, is 
a Python 3 shop. So, they've built a Docker image that has all the basic goodies for 
Python 3 on Ubuntu 15.04. Furthermore, since the research and computation groups 
make heavy use of NumPy, SciPy, Pandas, and matplotlib, a second image has been 
created by using the Python 3 image as a base.

Here's what the Python 3 Dockerfile looks like:

In [11]: cat ../docker/python/Dockerfile

         FROM ubuntu:vivid

         MAINTAINER Duncan McGreggor <oubiwann@gmail.com>

         ENV DEBIAN_FRONTEND noninteractive

         RUN apt-get update

         RUN apt-get upgrade -y

         RUN apt-get install -y -q apt-utils

         RUN apt-get install -y -q \

             ca-certificates git build-essential

         RUN apt-get install -y -q \

             libssl-dev libcurl4-openssl-dev

         RUN apt-get install -y -q curl

         RUN apt-get install -y -q \

             cython3 libpython3.4-dev python3.4-dev \

             python3-setuptools python3-pip

         CMD python3

Note that this Dockerfile has not been created from scratch. Rather, it is based 
on another Docker image—the official ubuntu:vivid image. It has a maintainer 
that sets an environment variable, which will be available for each of the RUN and 
CMD directives as well as when the Docker image is running (with and without 
an interactive session). Each of the RUN commands is executed when building the 
Docker image. The CMD command is what will be run by default when executing 
Docker run on the command line.
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This Dockerfile has been used to generate an image, which has been published 
to Docker Hub with the masteringmatplotlib/python tag. As such, you will not 
need to build this yourself.

The next Dockerfile that we will look at is the one that your group uses for the 
majority of its scientific computing tasks. Here is a Dockerfile:

In [12]: cat ../docker/scipy/Dockerfile

         FROM masteringmatplotlib/python

         MAINTAINER Duncan McGreggor <oubiwann@gmail.com>

         ENV DEBIAN_FRONTEND noninteractive

         RUN apt-get install -y -q \

             libatlas3-base libblas-dev libblas3 \

             libatlas-base-dev libatlas-dev \

             liblapack-dev gfortran

         ENV LAPACK /usr/lib/liblapack.so

         ENV ATLAS /usr/lib/libatlas.so

         ENV BLAS /usr/lib/libblas.so

         RUN apt-get install -y -q \

             python3-six python3-flake8 \

             python3-dateutil python3-pyparsing \

             python3-numpy python3-scipy \

             python3-matplotlib python3-pandas

         RUN pip3 install seaborn

         CMD python3

In this case, the Dockerfile is based on the Python 3 Dockerfile. It is extended 
by additional installations of the libraries that are commonly needed for scientific 
computing that is performed by using Python. The Dockerfile is used to create an 
image and pushed to Docker Hub using the masteringmatplotlib/scipy tag. This 
is the one that we will be extending for our task.

Extending a Docker image
The preceding scipy Docker image has almost everything we need. It's just missing 
a few dependencies, which are available in this chapter's Git repository. These 
dependencies include the following:

• PIL
• The scikit-image library
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• A custom code to work with the USGS EROS/NASA Landsat 8 data

So, how can we customize the scipy image to include the preceding dependencies? 
There are two ways to do this:

• Make changes to the image and commit these changes
• Create a Dockerfile that is based on the image

We will use the second option so that we are able to easily track changes in the 
source code of the Dockerfile. We've provided the following file in the notebook 
repository:

In [13]: cat ../docker/simple/Dockerfile

         FROM masteringmatplotlib/scipy

         MAINTAINER Py3 Hacker <you@py.hacker>

         ENV HOME /root

         ENV REPO cloud-deploy

         RUN cd $HOME && \

             git clone \

             https://github.com/masteringmatplotlib/${REPO}.git

         RUN cd $HOME/$REPO && \

             make docker-setup

         CMD PYTHONPATH=$HOME/$REPO/lib:$PYTHONPATH \

             python3

Points to note:
• The preceding Dockerfile extends the 

masteringmatplotlib/scipy Docker image.
• Being able to use the standard development workflows that 

we are used to, like cloning the required code, is an incredibly 
powerful tool, which is quite easy to accomplish thanks to the 
simple design of Docker.

• For ease of demonstration, we're going to simply use the 
notebook repository and add it to PYTHONPATH. In most 
situations, you have to create a setup.py file for your Python 
library and install it with pip in the Dockerfile build steps. 
Thus, you don't have to mess with PYTHONPATH when running 
your commands in the Dockerfile.
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Building a new image
Let's build a new image! First, run the following code:

$ docker build -t yourname/eros ./docker/simple/Dockerfile

The -t parameter instructs docker to tag the image with the provided name once it's 
built. The prefix before / should match the name used on Docker Hub if you're going 
to publish the image there. This can be a username or an organization.

Once you execute the preceding command, you will see the following output:

Sending build context to Docker daemon  2.56 kB

Sending build context to Docker daemon

Step 0 : FROM ipython/scipystack

 ---> 113395173d25

Step 1 : MAINTAINER Py Hacker <you@py.hacker>

 ---> Using cache

 ---> fd520c92b33b

[snip]

Removing intermediate container 90983e9fdd54

Step 6 : CMD PYTHONPATH=./cloud-deploy/lib:$PYTHONPATH python3

 ---> Running in b7a022f2ac29

 ---> abde2bb0eeaa

Removing intermediate container b7a022f2ac29

Successfully built abde2bb0eeaa

Let's make sure that the library is present in our new image by using the -i option 
for docker run to indicate that we will need an interactive session with the container 
(this keeps STDIN open):

$ docker run -t -i yourname/eros python3

>>> import eros

>>> ^D

$

Looks like our simple image that was built on the top of masteringmatplotlib/
scipy worked like a charm. Now, let's make some changes to it.
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Preparing for deployment
We need to make a couple of changes to the simple case so that it fulfills the 
following conditions:

• Our code will know that it's being called from Docker (used to set the 
backend to something that doesn't require a DISPLAY environment)

• We can execute a dispatch function, which will generate the desired type of 
satellite image

Both of the preceding conditions can be fulfilled simply by changing the Docker CMD 
directive in the following way:

In [14]: cat ../docker/eros/Dockerfile

FROM masteringmatplotlib/scipy

MAINTAINER Py3 Hacker <you@py.hacker>

ENV HOME /root

ENV REPO cloud-deploy

RUN cd $HOME && \

    git clone https://github.com/masteringmatplotlib/${REPO}.git

RUN cd $HOME/$REPO && \

    make docker-setup

CMD DOCKER_CONTAINER=true \

    PYTHONPATH=${HOME}/${REPO}/lib:$PYTHONPATH \

    python3 -c "import eros;eros.s3_generate_image();"

The s3_generate_image function is the dispatcher, and depending upon the 
environment variables that are set when running Docker, it will take different 
actions. We will discuss this more in a later section.

Getting the setup on AWS
Having prepared the local machine to create the Docker images that we will use in 
the Cloud, we now need to set up the other end—getting the Cloud ready for our 
images. In the following sections, we will copy the Landsat image data to a remote 
storage service, create a virtual machine in the Cloud that will be the host OS for the 
Docker images, and finally ensure that we can read and write data in our images to 
and from the storage service.
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Pushing the source data to S3
The Landsat 8 data files that we are working with are sizable, with each file ranging 
from about 150 MB to 600 MB. As such, we want to be selective with regard to what 
we'll be pushing to S3. For your project, the following Landsat bands are needed:

• Coastal/aerosol (band 1)
• Red, green, and blue (bands 4, 3, and 2)
• SWIR, 2100-2300 nm (band 7)
• NIR, 845-885 nm (band 5)

All the files for a particular scene weigh over 2 GB, so we'll just want to push the files 
for the bands we need as per the Landsat bands that were noted in the preceding 
section. Given that we define the following shell variables:

$ SCENE_PATH="/EROSData/L8_OLI_TIRS"

$ SCENE=LC82260102014232LGN00

The files that we need to upload can be identified with the help of the following code:

$ find $SCENE_PATH/$SCENE \

    -name "*_B[1-5,7].TIF" \

    -exec basename {} \;

LC82260102014232LGN00_B1.TIF

LC82260102014232LGN00_B2.TIF

LC82260102014232LGN00_B3.TIF

LC82260102014232LGN00_B4.TIF

LC82260102014232LGN00_B5.TIF

LC82260102014232LGN00_B7.TIF

Before running the following commands, you need to make sure that the user 
associated with the access and secret keys has the appropriate S3 permissions  
(for example, the ability to upload the files). This is done in the AWS Management 
Console in the IAM screen through various means (your preference with regard  
to the combination of users, groups, roles, and policies).

Let's start by setting some AWS shell variables in a terminal window on your  
local machine by using the following code:

$ export AWS_ACCESS_KEY_ID=YOURACCESSKEY

$ export AWS_SECRET_ACCESS_KEY=YOURSECRETKEY
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These will be used by the aws command-line utility, which was installed when you 
ran the make command in the IPython Notebook repository at the beginning of the 
chapter. Let's also set a bucket name variable by using the following code:

$ S3_BUCKET=scoresbysund

Note that the Amazon S3 bucket names are global like DNS. As such, this bucket 
may already exist. So, be ready with an alternate name.

Now we can create the S3 bucket in the following way:

$ aws s3 mb s3://$S3_BUCKET

With the new bucket in place, we can now upload the selected Landsat 8 scene files:

$ for FILE in "$SCENE_PATH"/$SCENE/*_B[2-5,7].TIF

    do

    aws s3 cp "$FILE" s3://$S3_BUCKET

    done

That's a total of about 888 MB. So, depending on the upload speed of your Internet 
connection, you may be in for a wait.

The files that the satellite image processing task will need have been uploaded. The 
next step is to set up a server on which the Docker container tasks will run.

Creating a host server on EC2
In the previous testing, you discovered that an m3/xlarge EC2 instance, along with 
its 15 GB RAM, will be required due to the intensive memory requirements for the 
task of image processing. The next step involved an instance the requires a 7.5 GB 
RAM; this generated out-of-memory errors, indicating that the RAM was insufficient 
for the instance.

To create an EC2 instance on AWS, perform the following steps:

1. Log in to the AWS console and click on the Launch Instance button.
2. Select your preferred Volume Type (for example, Red Hat, SUSE, Ubuntu, 

and so on). We will use an Ubuntu 64 EC2 Amazon Machine Image (AMI) 
with 4 virtual CPUs and 15 GB of RAM.

3. Select or create the security group that will allow an in-bound Secure Shell 
(SSH) access (port 22) to the EC2 instance from your workstation.

4. Launch the EC2 instance.
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The following screenshot shows the Review Instance Launch step:

Once the instance is up and running, get the IP address from the AWS Management 
Console from where you launched it and use it to SSH into it:

$ ssh -i /path/to/your-ec2-key-pair.pem \

    ubuntu@instance-ip-address

Once you have activated SSH into the running EC2 instance, prep the instance by 
installing Docker and saving your AWS credentials on the filesystem. You will 
need access to these credentials when you start up the Docker containers so that the 
Python script on the container can read from and write to S3:

ubuntu@ip-address:~$ sudo apt-get install -y docker.io

ubuntu@ip-address:~$ sudo mkdir /etc/aws

ubuntu@ip-address:~$ sudo vi /etc/aws/access

ubuntu@ip-address:~$ sudo vi /etc/aws/secret

ubuntu@ip-address:~$ sudo chmod 600 /etc/aws/*

ubuntu@ip-address:~$ sudo chown ubuntu /etc/aws/*
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Using Docker on EC2
Now, you need to pull down the Docker image that we've created for this task and 
then run a container by using this image in the interactive mode with the help of 
Python as the shell. You can use either the Docker image that you created or the one 
that we did (masteringmatplotlib/eros):

ubuntu@ip-address:~$ sudo docker run -i \

    -t masteringmatplotlib/eros python3

Python 3.4.3 (default, Feb 27 2015, 02:35:54)

[GCC 4.9.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

This will attempt to run the masteringmatplotlib/scipy Docker image, which 
won't be present on your EC2 instance. So, it will then download it from Docker Hub 
(also downloading all the images upon which it is built). Once this finishes, do a 
quick test to make sure that everything is in place:

>>> import eros

>>>

You should get no errors. This will indicate that you are all set for the next step!

Reading and writing with S3
In order to read your scene data from the files that you uploaded to S3, you'll need to 
do the following:

1. Update your bucket permissions with a policy that allows your EC2 instance 
to access it.

2. Obtain the HTTP URL for your bucket on the S3 screen in the AWS Console.
3. Keep the IP address of your newly started EC2 instance handy.

The easiest way to read data from S3 in EC2 is to open the HTTP URL for the file in 
question. To do this, you need to do the following:

1. Go to the S3 section in the AWS Console.
2. Click on the bucket that you will be using.
3. In the new page that loads, click on Properties.
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4. In the Properties section, click on Edit bucket policy.
5. In the form that appears, paste the following, substituting your EC2 IP address:

{
    "Version": "2012-10-17",
    "Id": "S3ScoresbySundGetPolicy",
    "Statement": [
        {
            "Sid": "IPAllow",
            "Effect": "Allow",
            "Principal": "*",
            "Action": "s3:*",
            "Resource": "arn:aws:s3:::scoresbysund/*",
            "Condition" : {
                "IpAddress" : {
                    "aws:SourceIp": "YOUREC2IPADDRESS/32" 
                }
            } 
        } 
    ]
}

The following screenshot shows the code pasted in the Bucket Policy Editor:
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With this change, your storage dependencies are now complete and your scripts on 
the EC2 instance, which use the appropriate AWS access credentials, will be able to 
read from and write to S3.

Running the task
As it is evident from the work that we have done till now, the operation of 
processing in remote environments requires a great deal of preparation and attention 
to detail. We have now made the way clear for our matplotlib satellite image 
generation task. We are ready to pass the parameters to Docker, which will let us 
flexibly handle many tasks with one image. We are also going to first tweak the 
Python code to handle these parameters and then finally execute our task.

Environment variables and Docker
When the EC2 instance starts up a Docker container that has to build images from 
the Landsat 8 data files, the Docker container will need to know a few things, which 
are as follows:

• The Landsat 8 scene ID
• The AWS access key that is used to access S3
• The AWS secret key that is used to access S3

We can pass this information to the Docker container by using the -e flag, which will 
set the environment variables in the container once it starts. Before we try using this 
in a script, let's make sure that the feature behaves according to our expectations by 
starting up a Docker container in the EC2 instance in the following way:

ubuntu@ip-address:~$ sudo docker run -i \

  -e "PYTHONPATH=/root/cloud-deploy" \

  -e "EROS_SCENE_ID=LC82260102014232LGN00" \

  -e "AWS_ACCESS_KEY_ID=`cat /etc/aws/access`" \

  -e "AWS_SECRET_ACCESS_KEY=`cat /etc/aws/secret`" \

  -t masteringmatplotlib/eros \

  python3
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This will drop us into a Python prompt in the container, where we can check out the 
environment variables:

>>> import os

>>> os.getenv("EROS_SCENE_ID")

'dummy001'

>>> os.getenv("AWS_ACCESS_KEY_ID")

'YOURACCESSKEY'

>>> os.getenv("AWS_SECRET_ACCESS_KEY")

'YOURSECRETACCESSKEY'

Everything worked perfectly, just as one might have expected.

Changes to the Python module
Now that you've confirmed that you can get the data that you need into the Docker 
containers, you can update your code to check for some specific data that you will 
set when running a container to generate satellite images. For instance, towards the 
beginning of the lib/ec2s3eros.py module, we have the following:

bucket_name = os.environ.get("S3_BUCKET_NAME")
scene_id = os.environ.get("EROS_SCENE_ID")
s3_path = os.environ.get("S3_PATH")
s3_title = os.environ.get("S3_IMAGE_TITLE")
s3_filename = os.environ.get("S3_IMAGE_FILENAME")
s3_image_type = os.environ.get("S3_IMAGE_TYPE", "").lower()
access_key = os.environ.get("AWS_ACCESS_KEY_ID")
secret_key = os.environ.get("AWS_SECRET_ACCESS_KEY")

The preceding lines of code are what the code will use to create the suitable image 
and save it to the appropriate place with the expected name. You can see this clearly 
if you scroll towards the end of the file. Here's an example of one of these variables 
getting used to dispatch the appropriate image-generating function:

def s3_generate_image():
    if s3_image_type == "rgb":
        s3_image_rgb()
    elif s3_image_type == "swir2nirg":
        s3_image_swir2nirg()
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There's another important change that we had to make. In order for matplotlib to 
run successfully on EC2, we need to set an explicit backend. The matplotlib module 
is only smart enough to choose a backend based on the operating system. As it has 
been designed for use with GUIs, it makes an assumption that you not only have a 
DISPLAY environment variable set, but more importantly, there is an actual display 
to which this variable points.

On EC2 and other Cloud environments, this will almost always not be the case. If 
you look at the top of the lib/ec2s3eros.py module, you will see the following:

import matplotlib as mpl
if  os.environ.get("DOCKER_CONTAINER") == "true":
    mpl.use("Agg")

The environment variable that you see in the preceding code is the one that set in  
the CMD directive of the Dockerfile:

CMD DOCKER_CONTAINER=true \
    PYTHONPATH=${HOME}/${REPO}/lib:$PYTHONPATH \
    python3 -c "import eros;eros.s3_generate_image();"

As you can see in the module, we used the environment variable to determine 
whether the module is being used in a Docker container (with no variable set).  
If it is being used in Docker, we explicitly set the backend to something that will  
not throw errors if there is no display.

In the preceding example, we have done this in the code, since the file already 
existed and it was just a two-line change. However, we can also provide a custom 
matplotlibrc file, which will set the default backend. For the long term, this is 
probably the better approach because of the following reasons:

• The new file will only need to be created once in the Dockerfile 
that installs matplotlib (for us, this was the one that generated the 
masteringmatplotlib/scipy Docker image)

• The images that extend that one will then benefit from the presence of the 
matplotlibrc file, and you will not need to make any code changes to run  
in virtualized environments.

Subsequently, the developer and user experience for these Docker images will be 
greatly improved. The administrators who are responsible for the creation of new 
images with these as the basis will have less work to do and the users will have  
one less error to face when getting started.
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Back on your workstation, having made the necessary changes to your custom 
Dockerfile, you can now create an updated version of your Docker image with the 
help of the following code:

$ docker build -t yourname/eros ./docker/eros/

Next, you'll need to publish the image to Docker Hub so that you can pull it down on 
your EC2 instance:

$ docker push yourname/eros

On your EC2 instance, get the latest version of yourname/eros that you just published:

ubuntu@ip-address:~$ sudo docker pull yourname/eros

With the last step, everything is now in place and your jobs are ready to be executed.

Execution
At this point, you can run a Docker container from your latest Docker image to 
generate a file for the RGB satellite image data by using the following code:

ubuntu@ip-address:~$ export S3_BUCKET=scoresbysund

ubuntu@ip-address:~$ export SCENE=LC82260102014232LGN00

ubuntu@ip-address:~$ export IMGTYPE=rgb

ubuntu@ip-address:~$ sudo docker run \

  -e "S3_IMAGE_TITLE=RGB Image: Scene $SCENE" \

  -e "S3_IMAGE_TYPE=$IMGTYPE" \

  -e "S3_IMAGE_FILENAME=$SCENE-$IMGTYPE-`date "+%Y%m%d%H%M%S"`.png" \

  -e "S3_BUCKET_NAME=$BUCKET" \

  -e "S3_PATH=https://s3-us-west-2.amazonaws.com/$S3_BUCKET" \

  -e "EROS_SCENE_ID=$SCENE" \

  -e "AWS_ACCESS_KEY_ID=`cat /etc/aws/access`" \

  -e "AWS_SECRET_ACCESS_KEY=`cat /etc/aws/secret`" \

  -t yourname/eros

As the task runs, you will see the following output:

Generating scene image ...

Saving image to S3 ...

0.0/100
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27.499622350156933/100

54.99924470031387/100

82.4988670504708/100

100.0/100

Remember that on a relatively modern iMac, this job took about 7 to 8 minutes. 
Executing it on EC2 just now only took about 15 seconds.

For the false-color short-wave and the IR image, you can run a similar command,  
as follows:

ubuntu@ip-address:~$ export IMGTYPE=swir2nirg

ubuntu@ip-address:~$ sudo docker run \

  -e "S3_IMAGE_TITLE=False-Color Image: Scene $SCENE" \

  -e "S3_IMAGE_TYPE=$IMGTYPE" \

  -e "S3_IMAGE_FILENAME=$SCENE-$IMGTYPE-`date "+%Y%m%d%H%M%S"`.png" \

  -e "S3_BUCKET_NAME=$BUCKET" \

  -e "S3_PATH=https://s3-us-west-2.amazonaws.com/$S3_BUCKET" \

  -e "EROS_SCENE_ID=$SCENE" \

  -e "AWS_ACCESS_KEY_ID=`cat /etc/aws/access`" \

  -e "AWS_SECRET_ACCESS_KEY=`cat /etc/aws/secret`" \

  -t yourname/eros

Generating scene image ...

Saving image to S3 ...

0.0/100

26.05542715379233/100

52.11085430758466/100

78.16628146137698/100

100.0/100

You can confirm that both of the images have been saved to your bucket by 
refreshing the S3 screen in your AWS Console.

Though it may seem awkward to parameterize the Docker container with so many 
environment variables, this allows you to easily change the data that you pass 
without having to regenerate the Docker image. Your Docker image produces 
containers that are generally useful for the task at hand—and potentially many  
other tasks—allowing you to process any scene without any code changes.
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Summary
We covered some interesting ground in this chapter. We explored the fascinating 
world of satellite imagery, showing with just a few lines of code how to work 
with it. Hitting the hardware limitations of a modest workstation, we uncovered 
a straightforward use case to put matplotlib in the Cloud. Docker provides a fresh 
outlook towards the world of configuration management and does so in a way that 
has a very low barrier to entry. It uses the existing Linux skills that many developers 
may have already gained by the time they reach the early stages of an advanced level. 
Working with Docker in EC2 and S3 proved to be painless, as it offers an array of 
potential ways to extend the initial workflow. Furthermore, the use of Docker provides 
for a no-lock-in scenario with the Cloud vendors. As soon as you identify a provider 
with better data transfer rates, features on instances, or price, you'll be able to make  
the switch due to the ubiquity of Docker in Cloud environments. In the next chapter, 
we will continue with our foray into the Cloud environments and distributed 
workloads, where we will explore some topics in the arena of large datasets.



matplotlib and Big Data
In the spirit of adapting the established tools to new challenges, the last chapter saw 
us finding ways to work around the limitations of matplotlib on a single workstation. 
In this chapter, we will explore ways around some of the other limitations that 
matplotlib users may run up against when working on problems with very large 
datasets. Note that this investigation will often cause us to bump up against the topic 
of clustering. We will be setting these explorations aside for now though. Lest you 
feel that a critical aspect of the problem domain is being ignored, take heart—this 
will be the primary focus of the next chapter.

The material in the final two chapters of this book attempt to provide the reader with 
enough additional context to easily understand the origins of these technologies and 
their uses and thus apply them to their own computation, analysis, and ultimately 
their plotting needs.

There are two major areas of the problem domain that we will cover in this chapter:

• Preparing large data for use by matplotlib
• Visualizing the prepared data

These are the two distinct areas, each with their own engineering problems that need 
to be solved and with which matplotlib needs to be able to function. We will take a 
look at several aspects of each area.

We will cover the following topics in this chapter:

• Big data and its use in matplotlib
• Working with large datasets

 ° Data on local filesystems
 ° Distributed data
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• Visualizing large datasets

 ° Determining the limits of matplotlib
 ° Working around the limits

To follow along with this chapter's code, clone the notebook's repository, start up 
IPython, and execute the following command lines:

$ git clone https://github.com/masteringmatplotlib/big-data.git

$ cd big-data

$ make

Big data
The term "big data" is semantically ambiguous due to the varying contexts to which 
it is applied and the motivations of the users applying it. The first question that 
may have occurred to you on seeing this chapter's title is "how is this applicable to 
matplotlib or even plotting in general?" Before we answer this question though,  
let's establish a working definition of big data.

The Wikipedia article on big data opens with the following informal definition:

"Big data is a broad term for data sets so large or complex that traditional data 
processing applications are inadequate."

This description is honest, as it admits that the definition is imprecise. It also implies 
that the definition may change given the differing contexts. The words large and 
complex are relative, and the term traditional data processing is not going to mean the 
same thing in different segments of the industry. In fact, different departments in a 
single organization may have widely varying data processing "traditions".

The canonical example of big data is related to its origins in web search. Google 
is generally credited with starting the big data movement with the publication of 
the paper MapReduce: Simplified Data Processing on Large Clusters, by Jeffrey Dean 
and Sanjay Ghemawat. The paper describes the means by which Google was able 
to quickly search an enormous volume of textual data (crawled web pages and log 
files, for example) amounting, in 2004, to around 20 terabytes of data. In the decade 
that followed, more and more companies, institutions, and even individuals were 
faced with the need to quickly process datasets varying in sizes, from hundreds of 
gigabytes to multiples of exabytes.
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Every scenario encompassed in this spectrum can be viewed as a big data-related 
problem. To a small business that used to manage hundreds of megabytes and is 
now facing several orders of magnitude in data sources for analysis, 250 gigabytes 
is considered big data. For intelligence agencies storing information from untold 
data sources, even a few terabytes is a small amount of data. For them, hundreds of 
petabytes is considered big data.

For each organization though, the general problem remains the same—what 
worked before on smaller datasets is no longer feasible. New methodologies, 
novel approaches towards the usage of hardware, communication protocols, data 
distribution, search, analysis, and visualization, among many others, are required.

Finally, no matter which methodologies are used to support a big data project, one 
of the last steps in most of them is the presentation of the analyzed data to human 
eyes. This can be anything from a decision maker to an end user, but the need is the 
same—a visual representation of the data collected, searched, and analyzed. This is 
where tools such as matplotlib come into play.

Working with large data sources
Most of the data that users feed into matplotlib when generating plots is from 
NumPy. NumPy is one of the fastest ways of processing numerical and array-based 
data in Python (if not the fastest), so this makes sense. However by default, NumPy 
works on in-memory database. If the dataset that you want to plot is larger than the 
total RAM available on your system, performance is going to plummet.

In the following section, we're going to take a look at an example that illustrates this 
limitation. But first, let's get our notebook set up, as follows:

In [1]: import matplotlib

        matplotlib.use('nbagg')

        %matplotlib inline

Here are the modules that we are going to use:

In [2]: import glob, io, math, os

        import psutil

        import numpy as np

        import pandas as pd

        import tables as tb

        from scipy import interpolate

        from scipy.stats import burr, norm
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        import matplotlib as mpl

        import matplotlib.pyplot as plt

        from IPython.display import Image

We'll use the custom style sheet that we created earlier, as follows:

In [3]: plt.style.use("../styles/superheroine-2.mplstyle")

An example problem
To keep things manageable for an in-memory example, we're going to limit our 
generated dataset to 100 million points by using one of SciPy's many statistical 
distributions, as follows:

In [4]: (c, d) = (10.8, 4.2)

        (mean, var, skew, kurt) = burr.stats(c, d, moments='mvsk')

The Burr distribution, also known as the Singh–Maddala distribution, is commonly 
used to model household income. Next, we'll use the burr object's method to 
generate a random population with our desired count, as follows:

In [5]: r = burr.rvs(c, d, size=100000000)

Creating 100 million data points in the last call took about 10 seconds on a 
moderately recent workstation, with the RAM usage peaking at about 2.25 GB  
(before the garbage collection kicked in).

Let's make sure that it's the size we expect, as follows:

In [6]: len(r)

Out[6]: 100000000

If we save this to a file, it weighs in at about three-fourths of a gigabyte:

In [7]: r.tofile("../data/points.bin")

In [8]: ls -alh ../data/points.bin

        -rw-r--r-- 1 oubiwann staff 763M Mar 20 11:35 points.bin

This actually does fit in the memory on a machine with a RAM of 8 GB, but 
generating much larger files tends to be problematic. We can reuse it multiple  
times though, to reach a size that is larger than what can fit in the system RAM.

Before we do this, let's take a look at what we've got by generating a smooth curve 
for the probability distribution, as follows:

In [9]:  x = np.linspace(burr.ppf(0.0001, c, d),
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                         burr.ppf(0.9999, c, d), 100)

         y = burr.pdf(x, c, d)

In [10]: (figure, axes) = plt.subplots(figsize=(20, 10))

         axes.plot(x, y, linewidth=5, alpha=0.7)

         axes.hist(r, bins=100, normed=True)

         plt.show()

The following plot is the result of the preceding code:

Our plot of the Burr probability distribution function, along with the 100-bin 
histogram with a sample size of 100 million points, took about 7 seconds to render. 
This is due to the fact that NumPy handles most of the work, and we only displayed 
a limited number of visual elements. What would happen if we did try to plot all the 
100 million points? This can be checked by the following code:

In [11]: (figure, axes) = plt.subplots()

         axes.plot(r)

         plt.show()

formatters.py:239: FormatterWarning:

Exception in image/png formatter: Allocated too many blocks

After about 30 seconds of crunching, the preceding error was thrown—the Agg 
backend (a shared library) simply couldn't handle the number of artists required 
to render all the points. We'll examine this sort of situation towards the end of the 
chapter and discuss ways to work around it. 
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But for now, this case clarifies the point that we stated a while back—our first plot 
rendered relatively quickly because we were selective about the data we chose to 
present, given the large number of points with which we are working.

However, let's say we have data from the files that are too large to fit into the memory. 
What do we do about this? Possible ways to address this include the following:

• Moving the data out of the memory and into the filesystem
• Moving the data off the filesystem and into the databases

We will explore examples of these in the following section.

Big data on the filesystem
The first of the two proposed solutions for large datasets involves not burdening the 
system memory with data, but rather leaving it on the filesystem. There are several 
ways to accomplish this, but the following two methods in particular are the most 
common in the world of NumPy and matplotlib:

• NumPy's memmap function: This function creates memory-mapped files 
that are useful if you wish to access small segments of large files on the disk 
without having to read the whole file into the memory.

• PyTables: This is a package that is used to manage hierarchical datasets. 
It is built on the top of the HDF5 and NumPy libraries and is designed to 
efficiently and easily cope with extremely large amounts of data.

We will examine each in turn.

NumPy's memmap function
Let's restart the IPython kernel by going to the IPython menu at the top of notebook 
page, selecting Kernel, and then clicking on Restart. When the dialog box pops up, 
click on Restart. Then, re-execute the first few lines of the notebook by importing the 
required libraries and getting our style sheet set up.

Once the kernel is restarted, take a look at the RAM utilization on your system for a 
fresh Python process for the notebook:

In [4]: Image("memory-before.png")

Out[4]:
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The following screenshot shows the RAM utilization for a fresh Python process:

Now, let's load the array data that we previously saved to disk and recheck the 
memory utilization, as follows:

In [5]: data = np.fromfile("../data/points.bin")

        data_shape = data.shape

        data_len = len(data)

        data_len

Out[5]: 100000000

In [6]: Image("memory-after.png")

Out[6]:
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The following screenshot shows the memory utilization after loading the array data:

This took about five seconds to load, with the memory consumption equivalent to 
the file size of the data. This means that if we wanted to build some sample data that 
was too large to fit in the memory, we'd need about 11 of those files concatenated,  
as follows:

In [7]: 8 * 1024

Out[7]: 8192

In [8]: filesize = 763

        8192 / filesize

Out[8]: 10.73656618610747

However, this is only if the entire memory was available. Let's see how much 
memory is available right now, as follows:

In  [9]: del data

In [10]: psutil.virtual_memory().available / 1024**2

Out[10]: 2449.1796875
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That's 2.5 GB. So, to overrun our RAM, we'll just need a fraction of the total. This is 
done in the following way:

In [11]: 2449 / filesize

Out[11]: 3.2096985583224114

The preceding output means that we only need four of our original files to create a file 
that won't fit in memory. However, in the following section, we will still use 11 files to 
ensure that data, if loaded into the memory, will be much larger than the memory.

How do we create this large file for demonstration purposes (knowing that in a  
real-life situation, the data would already be created and potentially quite large)?  
We can try to use numpy.tile to create a file of the desired size (larger than 
memory), but this can make our system unusable for a significant period of time. 
Instead, let's use numpy.memmap, which will treat a file on the disk as an array, thus 
letting us work with data that is too large to fit into the memory.

Let's load the data file again, but this time as a memory-mapped array, as follows:

In [12]: data = np.memmap(

            "../data/points.bin", mode="r", shape=data_shape)

The loading of the array to a memmap object was very quick (compared to the process 
of bringing the contents of the file into the memory), taking less than a second to 
complete. Now, let's create a new file to write the data to. This file must be larger in 
size as compared to our total system memory (if held on in-memory database, it will 
be smaller on the disk):

In [13]: big_data_shape = (data_len * 11,)

         big_data = np.memmap(

             "../data/many-points.bin", dtype="uint8",

             mode="w+", shape=big_data_shape)

The preceding code creates a 1 GB file, which is mapped to an array that has the 
shape we requested and just contains zeros:

In [14]: ls -alh ../data/many-points.bin

         -rw-r--r-- 1 oubiwann staff 1.0G Apr 2 11:35 many-points.bin

In [15]: big_data.shape

Out[15]: (1100000000,)

In [16]: big_data

Out[16]: memmap([0, 0, 0, ..., 0, 0, 0], dtype=uint8)
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Now, let's fill the empty data structure with copies of the data we saved to the 763 
MB file, as follows:

In [17]: for x in range(11):

             start = x * data_len

             end = (x * data_len) + data_len

             big_data[start:end] = data

         big_data

Out[17]: memmap([ 90, 71, 15, ..., 33, 244, 63], dtype=uint8)

If you check your system memory before and after, you will only see minimal changes, 
which confirms that we are not creating an 8 GB data structure on in-memory. 
Furthermore, checking your system only takes a few seconds.

Now, we can do some sanity checks on the resulting data and ensure that we have 
what we were trying to get, as follows:

In [18]: big_data_len = len(big_data)

         big_data_len

Out[18]: 1100000000

In [19]: data[100000000 – 1]

Out[19]: 63

In [20]: big_data[100000000 – 1]

Out[20]: 63

Attempting to get the next index from our original dataset will throw an error  
(as shown in the following code), since it didn't have that index:

In [21]: data[100000000]

-----------------------------------------------------------

IndexError                Traceback (most recent call last)

...

IndexError: index 100000000 is out of bounds ...

But our new data does have an index, as shown in the following code:

In [22]: big_data[100000000

Out[22]: 90

And then some:

In [23]: big_data[1100000000 – 1]

Out[23]: 63
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We can also plot data from a memmaped array without having a significant lag time. 
However, note that in the following code, we will create a histogram from 1.1 million 
points of data, so the plotting won't be instantaneous:

In [24]: (figure, axes) = plt.subplots(figsize=(20, 10))

         axes.hist(big_data, bins=100)

         plt.show()

The following plot is the result of the preceding code:

The plotting took about 40 seconds to generate.

The odd shape of the histogram is due to the fact that, with our data file-hacking, 
we have radically changed the nature of our data since we've increased the sample 
size linearly without regard for the distribution. The purpose of this demonstration 
wasn't to preserve a sample distribution, but rather to show how one can work with 
large datasets. What we have seen is not too shabby. Thanks to NumPy, matplotlib 
can work with data that is too large for memory, even if it is a bit slow iterating over 
hundreds of millions of data points from the disk.

Can matplotlib do better?
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HDF5 and PyTables
A commonly used file format in the scientific computing community is Hierarchical 
Data Format (HDF). HDF is a set of file formats (namely HDF4 and HDF5) that were 
originally developed at the National Center for Supercomputing Applications 
(NCSA), a unit of the University of Illinois at Urbana-Champaign, to store and 
organize large amounts of numerical data.

The NCSA is a great source of technical innovation in the computing 
industry—a Telnet client, the first graphical web browser, a web server 
that evolved into the Apache HTTP server, and HDF, which is of 
particular interest to us, were all developed here. It is a little known fact 
that NCSA's web browser code was the ancestor to both the Netscape web 
browser as well as a prototype of Internet Explorer that was provided to 
Microsoft by a third party.

HDF is supported by Python, R, Julia, Java, Octave, IDL, and MATLAB, to name a few. 
HDF5 offers significant improvements and useful simplifications over HDF4. It uses 
B-trees to index table objects and, as such, works well for write-once/read-many time 
series data. Common use cases span fields such as meteorological studies, biosciences, 
finance, and aviation. The HDF5 files of multiterabyte sizes are common in these 
applications. Its typically constructed from the analyses of multiple HDF5 source  
files, thus providing a single (and often extensive) source of grouped data for a 
particular application.

The PyTables library is built on the top of the Python HDF5 library and NumPy. 
As such, it not only provides access to one of the most widely used large data file 
formats in the scientific computing community, but also links data extracted from 
these files with the data types and objects provided by the fast Python numerical 
processing library.

PyTables is also used in other projects. Pandas wraps PyTables, thus extending its 
convenient in-memory data structures, functions, and objects to large on-disk files. 
To use HDF data with Pandas, you'll want to create pandas.HDFStore, read from the 
HDF data sources with pandas.read_hdf, or write to one with pandas.to_hdf. Files 
that are too large to fit in the memory may be read and written by utilizing chunking 
techniques. Pandas does support the disk-based DataFrame operations, but these 
are not very efficient due to the required assembly on columns of data upon reading 
back into the memory.

One project to keep an eye on under the PyData umbrella of projects is Blaze. It's an 
open wrapper and a utility framework that can be used when you wish to work with 
large datasets and generalize actions such as the creation, access, updates, 
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and migration. Blaze supports not only HDF, but also SQL, CSV, and JSON. The 
API usage between Pandas and Blaze is very similar, and it offers a nice tool for 
developers who need to support multiple backends.

In the following example, we will use PyTables directly to create an HDF5 file that 
is too large to fit in the memory (for an 8 GB RAM machine). We will follow the 
following steps:

• Create a series of CSV source data files that take up approximately 14 GB of 
disk space

• Create an empty HDF5 file
• Create a table in the HDF5 file and provide the schema metadata and 

compression options
• Load the CSV source data into the HDF5 table
• Query the new data source once the data has been migrated

Remember the temperature precipitation data for St. Francis, in Kansas, USA, from 
a previous notebook? We are going to generate random data with similar columns 
for the purposes of the HDF5 example. This data will be generated from a normal 
distribution, which will be used in the guise of the temperature and precipitation 
data for hundreds of thousands of fictitious towns across the globe for the last 
century, as follows:

In [25]: head = "country,town,year,month,precip,temp\n"

         row = "{},{},{},{},{},{}\n"

         filename = "../data/{}.csv"

         town_count = 1000

         (start_year, end_year) = (1894, 2014)

         (start_month, end_month) = (1, 13)

         sample_size = (1 + 2

                        * town_count * (end_year – start_year)

                        * (end_month - start_month))

         countries = range(200)

         towns = range(town_count)

         years = range(start_year, end_year)

         months = range(start_month, end_month)

         for country in countries:

             with open(filename.format(country), "w") as csvfile:

                 csvfile.write(head)

                 csvdata = ""
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                 weather_data = norm.rvs(size=sample_size)

                 weather_index = 0

                 for town in towns:

                     for year in years:

                         for month in months:

                             csvdata += row.format(

                                 country, town, year, month,

                                 weather_data[weather_index],

                                 weather_data[weather_index + 1])

                             weather_index += 2

                 csvfile.write(csvdata)

Note that we generated a sample data population that was twice as large as the 
expected size in order to pull both the simulated temperature and precipitation data 
at the same time (from the same set). This will take about 30 minutes to run. When 
complete, you will see the following files:

In [26]: ls -rtm ../data/*.csv

         ../data/0.csv, ../data/1.csv, ../data/2.csv, 

         ../data/3.csv, ../data/4.csv, ../data/5.csv, 

         ...

         ../data/194.csv, ../data/195.csv, ../data/196.csv, 

         ../data/197.csv, ../data/198.csv, ../data/199.csv

A quick look at just one of the files reveals the size of each, as follows:

In [27]: ls -lh ../data/0.csv

         -rw-r--r-- 1 oubiwann staff 72M Mar 21 19:02 ../data/0.csv

With each file that is 72 MB in size, we have data that takes up 14 GB of disk space, 
which exceeds the size of the RAM of the system in question.

Furthermore, running queries against so much data in the .csv files isn't going to be 
very efficient. It's going to take a long time. So what are our options? Well, to read 
this data, HDF5 is a very good fit. In fact, it is designed for jobs like this. We will use 
PyTables to convert the .csv files to a single HDF5. We'll start by creating an empty 
table file, as follows:

In [28]: tb_name = "../data/weather.h5t"

         h5 = tb.open_file(tb_name, "w")

         h5
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Out[28]: File(filename=../data/weather.h5t, title='', mode='w', 

              root_uep='/', filters=Filters(

                 complevel=0, shuffle=False, fletcher32=False, 

                 least_significant_digit=None))

         / (RootGroup) ''

Next, we'll provide some assistance to PyTables by indicating the data types of each 
column in our table, as follows:

In [29]: data_types = np.dtype(

             [("country", "<i8"),

              ("town", "<i8"),

              ("year", "<i8"),

              ("month", "<i8"),

              ("precip", "<f8"),

              ("temp", "<f8")])

Also, let's define a compression filter that can be used by PyTables when saving our 
data, as follows:

In [30]: filters = tb.Filters(complevel=5, complib='blosc')

Now, we can create a table inside our new HDF5 file, as follows:

In [31]: tab = h5.create_table(

             "/", "weather",

             description=data_types,

             filters=filters)

With that done, let's load each CSV file, read it in chunks so that we don't overload 
the memory, and then append it to our new HDF5 table, as follows:

In [32]: for filename in glob.glob("../data/*.csv"):

         it = pd.read_csv(filename, iterator=True, chunksize=10000)

         for chunk in it:

             tab.append(chunk.to_records(index=False))

             tab.flush()

Depending on your machine, the entire process of loading the CSV file,  
reading it in chunks, and appending to a new HDF5 table can take anywhere  
from 5 to 10 minutes. 
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However, what started out as a collection of the .csv files that weigh in at 14 GB is 
now a single compressed 4.8 GB HDF5 file, as shown in the following code:

In [33]: h5.get_filesize()

Out[33]: 4758762819

Here's the metadata for the PyTables-wrapped HDF5 table after the data insertion:

In [34]: tab

Out[34]: /weather (Table(288000000,), shuffle, blosc(5)) ''

  description := {

  "country": Int64Col(shape=(), dflt=0, pos=0),

  "town": Int64Col(shape=(), dflt=0, pos=1),

  "year": Int64Col(shape=(), dflt=0, pos=2),

  "month": Int64Col(shape=(), dflt=0, pos=3),

  "precip": Float64Col(shape=(), dflt=0.0, pos=4),

  "temp": Float64Col(shape=(), dflt=0.0, pos=5)}

  byteorder := 'little'

  chunkshape := (1365,)

Now that we've created our file, let's use it. Let's excerpt a few lines with an array 
slice, as follows:

In [35]: tab[100000:100010]

Out[35]: array([(0, 69, 1947, 5, -0.2328834718674, 0.06810312195695),

         (0, 69, 1947, 6, 0.4724989007889, 1.9529216219569),

         (0, 69, 1947, 7, -1.0757216683235, 1.0415374480545),

         (0, 69, 1947, 8, -1.3700249968748, 3.0971874991576),

         (0, 69, 1947, 9, 0.27279758311253, 0.8263207523831),

         (0, 69, 1947, 10, -0.0475253104621, 1.4530808932953),

         (0, 69, 1947, 11, -0.7555493935762, -1.2665440609117),

         (0, 69, 1947, 12, 1.540049376928, 1.2338186532516),

         (0, 69, 1948, 1, 0.829743501445, -0.1562732708511),

         (0, 69, 1948, 2, 0.06924900463163, 1.187193711598)],

         dtype=[('country', '<i8'), ('town', '<i8'),

               ('year', '<i8'), ('month', '<i8'),

               ('precip', '<f8'), ('temp', '<f8')])

In [36]: tab[100000:100010]["precip"]

Out[36]: array([-0.23288347,  0.4724989 , -1.07572167,
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                -1.370025  ,  0.27279758, -0.04752531,

                -0.75554939,  1.54004938,  0.8297435 ,

                0.069249  ])

When we're done with the file, we do the same thing that we would do with any 
other file-like object:

In [37]: h5.close()

If we want to work with it again, simply load it, as follows:

In [38]: h5 = tb.open_file(tb_name, "r")

         tab = h5.root.weather

Let's try plotting the data from our HDF5 file:

In [39]: (figure, axes) = plt.subplots(figsize=(20, 10))

         axes.hist(tab[:1000000]["temp"], bins=100)

         plt.show()

Here's a plot for the first million data points:

This histogram was rendered quickly, with a much better response time than  
what we've seen before. Hence, the process of accessing the HDF5 data is very fast. 
The next question might be "What about executing calculations against this data?" 
Unfortunately, running the following will consume an enormous amount of RAM:

tab[:]["temp"].mean()
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We've just asked for all of the data—all of its 288 million rows. We are going to end 
up loading everything into the RAM, grinding the average workstation to a halt. 
Ideally though, when you iterate through the source data and create the HDF5 file, 
you also crunch the numbers that you will need, adding supplemental columns or 
groups to the HDF5 file that can be used later by you and your peers.

If we have data that we will mostly be selecting (extracting portions) and which 
has already been crunched and grouped as needed, HDF5 is a very good fit. This 
is why one of the most common use cases that you see for HDF5 is the sharing and 
distribution of the processed data.

However, if we have data that we need to process repeatedly, then we will either 
need to use another method besides the one that will cause all the data to be loaded 
into the memory, or find a better match for our data processing needs.

In the following section, we will look at the last point in more detail. However before 
that, let's give HDF5 another chance.

We saw in the previous section that the selection of data is very fast in HDF5. What 
about calculating the mean for a small section of data? If we've got a total of 288 
million rows, let's select a divisor of the number that gives us several hundred 
thousand rows at a time—2,81,250 rows, to be more precise. Let's get the mean for 
the first slice, as follows:

In [40]: tab[0:281250]["temp"].mean()

Out[40]: 0.0030696632864265312

This took about 1 second to calculate. What about iterating through the records in 
a similar fashion? Let's break up the 288 million records into chunks of the same 
size; this will result in 1024 chunks. We'll start by getting the ranges needed for an 
increment of 281,250 and then, we'll examine the first and the last row as a sanity 
check, as follows:

In [41]: limit = 281250

         ranges = [(x * limit, x * limit + limit)

             for x in range(2 ** 10)]

         (ranges[0], ranges[-1])

Out[41]: ((0, 281250), (287718750, 288000000))

Now, we can use these ranges to generate the mean for each chunk of 281,250 rows 
of temperature data and print the total number of means that we generated to make 
sure that we're getting our counts right, as follows:
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In [42]: means = [tab[x * limit:x * limit + limit]["temp"].mean()

             for x in range(2 ** 10)]

         len(means)

Out[42]: 1024

Depending on your machine, that should take between 30 and 60 seconds. With this 
work done, it's now easy to calculate the mean for all of the 288 million points of 
temperature data:

In [43]: sum(means) / len(means)

Out[43]: -5.3051780413782918e-05

Through HDF5's efficient file format and implementation, combined with the splitting 
of our operations into tasks that would not copy the HDF5 data into memory, we were 
able to perform calculations across a significant fraction of a billion records in less than 
a minute. HDF5 even supports parallelization. So, this can be improved upon with a 
little more time and effort.

However, there are many cases where HDF5 is not a practical choice. You may have 
some free-form data, and preprocessing it will be too expensive. Alternatively, the 
datasets may be actually too large to fit on a single machine. This is when you may 
consider using matplotlib with distributed data.

Distributed data
We've looked at the following two ways to handle data that is too large for  
the memory:

• NumPy's memmap function
• The general HDF5 format wrapped by PyTables

However, there is another situation that may come into play for projects that need 
to use matplotlib to visualize all or parts of large data sets—data that is too large to 
fit on a hard drive. This can be anything from large datasets, such as the ones created 
by super-colliders and radio telescopes, to the high-volume streaming data used in 
systems analysis (and social media) and financial markets data. All of these are  
either too large to fit on a machine, or too ephemeral to store and need to be 
processed in real time.

The latter of these is the realm of projects such as Apache Spark (developed at the 
UC Berkeley AMPLab), Apache Storm (originally developed at BackType and  
then acquired by Twitter), Apache Kafka (created at LinkedIn), and Amazon's 
Kinesis. We will not discuss these in this notebook. Instead, we will focus on the 
former—processing large datasets in a distributed environment; in particular, 
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we will concentrate on MapReduce. Understanding how to use matplotlib and 
NumPy with a MapReduce framework will provide the foundation necessary for the 
reader to extend this to the scenarios that involve streaming data.

Even though we have chosen to demonstrate a solution with MapReduce, there 
are many other options to address problems like these—distributed RDMSes and 
NoSQL solutions such as Riak, Redis, and Cassandra, to name a few.

MapReduce
So what is MapReduce, and why are we looking at it in the context of running 
computations against large sets of data? Wikipedia gives the following definition:

MapReduce is a programming model for processing and generating large data 
sets with a parallel, distributed algorithm on a cluster. A MapReduce program is 
composed of a Map procedure that performs filtering and sorting, and a Reduce 
procedure that performs a summary operation. The "MapReduce System" 
orchestrates the processing by marshalling the distributed servers, running the 
various tasks in parallel, managing all communications and data transfers between 
the various parts of the system, and providing for redundancy and fault tolerance.

A little context as to why it is potentially very useful to visualize large datasets with 
matplotlib will make the definition more clear.

Between 1999 and 2004, Google engineering had created hundreds of proprietary, 
special-purpose functions, scripts, and programs to process the huge amounts of  
data that were generated by web crawling, HTTP access logs, and so on.  
The many kinds of processing tasks that were developed were in large part used 
to create the page-ranked search results of Google search. At the time, this was a 
vast improvement over the other search engine results. Though each individual 
computation was pretty straightforward and nothing about it was new, the manner 
in which these were combined was unique and provided a vastly improved 
experience for users.

However, in a span of five years, the computation tasks needed to be split across 
hundreds, and later thousands, of machines in order to finish in a timely manner. 
The difficulties of parallelizing code were introduced—not only the decomposition 
of tasks into parallelizable parts, but also the parallelization of data and handling 
failures. As a result of these difficulties as well as some related issues, engineers  
were no longer able to easily add new features to the system

After five years, inspiration struck and Google adopted a new paradigm for 
distributed, parallelized workloads. 
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Interestingly enough, the muse behind this new approach to Google's problem came 
from the second oldest programming language that is still in use—Lisp (Fortan being 
the oldest). The authors of the Google MapReduce paper were reminded of the fact 
that many of their processing jobs consisted of a simple action against a dataset. Here's 
a simple illustration of this pattern using Lisp Flavored Erlang (LFE), a modern Lisp:

> (set data "some words to examine")

"some words to examine"

> (lists:map #'length/1 (string:tokens data " "))

(4 5 2 7)

The preceding code represents a common pattern in functional programming 
languages where, in this example, the tokenized data is mapped over a  
length function.

What's more is that Google didn't just stop here. Their engineers were then  
performing additional operations on the processed data. Here's an example that takes 
the preceding processed list and creates a new result by "folding" the results into a 
secondary analytical result:

> (lists:foldl #'+/2 0 (4 5 2 7))

18

The preceding function is called folding due to the fact that there is a recursive 
operation in place, with each item in the list being folded into an accumulator after 
being applied to a function. In this case, the folding function is the function that 
performs the operation of addition (with a parity of 2, thus the +/2). The initial value 
for the first fold that was provided is 0. Note that if the folding function created 
items in a list rather than adding two integers for a sum, the initial value would have 
been a list (empty or otherwise).

The map and fold operations can be combined in the fashion that is typical of  
higher-order functions, as follows:

> (lists:foldl

    #'+/2

    0

    (lists:map

      #'length/1

      (string:tokens data " ")))

18
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As you may have guessed by now (or known already), there is another term by 
which folding is known. It is named not for the process employed, but by the nature 
of the results it creates—reduce. In this case, a list of integers is reduced to a single 
value by the means of the addition function that we provided.

To summarize, given an initial dataset, we executed a length function (with a parity 
of one) against every element of the data that has been split on the "space" character. 
The results were integers representing the length of each word in the dataset. Then, 
we folded the list of length values with the + function, one element at a time, into an 
accumulator with an initial value of 0. The end result represented the sum of all the 
word lengths. If we wanted a running average instead of a running sum, we would 
have supplied a different function. It still would take two arguments and add them. 
It would just divide that result by two, as follows:

> (defun ave (number accum)

    (/ (+ number accum) 2))

ave

> (lists:foldl

    #'ave/2

    0

    (lists:map

      #'length/1

      (string:tokens data " ")))

4.875

The average word length in our data is 4.875 ASCII characters.

The last example makes the latent power clear in solutions like these—for completely 
new results, we only need to change one function.

Various Lisps and functional programming languages have the fold or reduce 
functionality, but this is not just the domain of functional programming. Python 3 
has a library dedicated to the functional programming idioms—functools. Here's 
how the preceding examples will be implemented in Python:

>>> data = "some words to examine"

>>> [x for x in map(len, data.split(" ")]

[4, 5, 2, 7]

>>> functools.reduce(operator.add, [4, 5, 2, 7], 0)

18
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Similarly, these may be composed in Python, as follows:

>>> functools.reduce(operator.add,

...                  map(len, data.split(" ")),

...                  0)

18

To calculate the running average, we will use the following code:

>>> def ave(number, accum):

...     return (number + accum) / 2

...

>>> functools.reduce(ave,

...                  map(len, data.split(" ")),

...                  0)

4.875

The really important part to realize here—given the context of Google's needs in 2004 
and the later fluorescence of MapReduce via the Hadoop project—is that each map 
call of len is independent of all the others. Therefore, these can be called on the same 
machine in the same process or in different processes, on different cores, or on another 
machine altogether (given the appropriate framework, of course). In a similar fashion, 
the data provided to the reduce function can be from any number of local or remote 
sources. In fact, the reduce step can be split across multiple computational resources.  
It will just need a final reduce step to aggregate the reduce results.

This insight led to an innovation in the development process at Google in support 
of the tasks that had steadily grown in complexity and had been encumbered by 
reduced maintainability. They created such infrastructure so that engineers only 
needed to create their own mapper and reducer functions; these could then be 
run against the desired data sources on the appropriate MapReduce clusters. This 
approach to the problem space allowed for the automated parallelization of tasks as 
well as the distribution of workload across a number of servers running in Google's 
large computation clusters in their data centers.

What started by applying old techniques from an old language resulted in a whole 
new industry dominated by the Java MapReduce implementation, Hadoop, but 
utilized extensively by Python programmers who use the Hadoop streaming. In the 
next section, we will take a look at Hadoop and others in the open source community 
of big data frameworks. Let's first close this section with a return to the practical 
world—what is MapReduce good for, other than for the counting of letters and words?
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The main benefit that MapReduce offers is the ability to split a specific class of data 
processing problems across a potentially large number of machines without the need 
for specialized hardware. Once a MapReduce framework is in place, developers only 
need to focus on creating new tasks and need not worry, for the most part, about 
how all the pieces of infrastructure fit together or whether those pieces need to be 
adjusted for a different job. A caveat here is that authors of mappers and reducers do 
need to be aware of the tradeoffs between the computation and communication costs 
in their distributed environment when running the particular tasks that they have 
designed. We will examine this topic in more detail in the next chapter when we 
tackle parallelization and clustering.

MapReduce is useful in a wide range of applications, which includes the following:

• Distributed pattern-based searching
• Distributed sorting
• Web link-graph reversal
• Singular Value Decomposition (SVD)
• Web access log statistics
• Inverted index construction
• Document clustering
• Machine learning
• Statistical machine translation

Moreover, the MapReduce model has been adapted to several computing 
environments, which include the following:

• Multi-core systems
• Desktop grids
• Volunteer computing environments
• Dynamic cloud environments
• Mobile environments

As great an impact as MapReduce has had on the industry, nothing is permanent 
and evolution continues to push products and services to new uses and improved 
user experiences. In 2014, Google announced that it had stopped relying on 
MapReduce for its petabyte-scale operations. Since then, it moved on to technologies 
such as Percolator, Flume, and MillWheel, which offer streaming operations and 
updates instead of batch processing. This allowed them to integrate live search 
results without rebuilding the complete search index. 
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Furthermore, these technologies are not limited to the concept of map and  
reduce workflows. Rather, they are open to the more general concept of data  
pipeline workflows.

Despite this news, MapReduce certainly isn't dead; the frameworks that support it 
aren't going away. We have been seeing an evolution in the industry since Google 
popularized the concept of distributed workloads across commodity hardware 
with MapReduce, and both proprietary and open source solutions are offering their 
users the fruits of these innovations, such as the previously mentioned Apache 
Spark project. We will likely see MapReduce platforms such as Hadoop offer 
more generalized workflows, with MapReduce being just one of many workflows 
available to the users.

Open source options
We've mentioned Hadoop several times now, and most readers who may have just 
a passing familiarity with big data must have heard of Hadoop. A member project 
of the Apache Software Foundation, Hadoop is an open source distributed storage 
and processing framework designed to work with very large datasets on commodity 
hardware computing clusters. The distributed storage part of the project is called 
HDFS and the processing part is named MapReduce. When a user uploads data to 
the Hadoop filesystem, the files are split into pieces and then distributed across the 
cluster nodes. When a user creates some code to run on Hadoop MapReduce, the 
custom mappers and reducers—similar in concept to what we saw in the previous 
section—are copied to the MapReduce nodes in the cluster, which are then executed 
against the data stored at each node.

Hadoop's predecessor was created at the Internet Archive in 2002 in an attempt to 
build a better web page crawler and indexer. When the papers on the Google File 
System and Google's MapReduce were published in 2003 and 2004 respectively, the 
creators of Hadoop re-envisioned their project and created a framework upon which 
it could run more efficiently. This led to the creation of Hadoop. Yahoo! invested 
heavily in the project a few years later and open sourced it and at the same time 
provided its researchers an access to a testing cluster. The last project sowed the seed 
for Hadoop's very strong role in the field of machine learning.

Though Hadoop is the primary driver for the big data market—projected to generate 
23 billion USD by 2016—it is not the only big data framework available in the open 
source community. A notable, if quiet, contender is the Disco project.

In 2008, the Nokia Research Center needed a tool that would allow them to process 
enormous amounts of data in real time. They wanted their researchers—many of 
them proficient in Python—to be able to easily and quickly create MapReduce jobs 
against their large datasets. 
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They also needed their system to be fault-tolerant and scalable. They built the server 
on top of the Erlang distributed programming language and created a protocol and 
a Python client that could talk to it, thus allowing their users to continue using the 
language they knew so well.

Since then, Disco has continued to evolve. It provides a generalized workflow on top 
of its distributed file system—the Disco pipelines. The pipeline workflow enables 
data scientists to create distributed processing tasks, which go beyond the original 
vision of MapReduce.

The functionality of MapReduce is no longer available only in the domain of 
the MapReduce frameworks. The rise of NoSQL databases, which subsequently 
extended their functionality to distributed data, have started offering MapReduce 
features in their products. For instance, the Redis clusters make it easy for you to 
implement the MapReduce functionality. Riak is a distributed NoSQL key-value 
data store that is based on the Amazon Dynamo paper (not to be confused with 
the DynamoDB product from Amazon). This data store offers built-in MapReduce 
capabilities and an API to execute the MapReduce jobs against the nodes in a cluster 
and is supported by the Python Riak client library. MongoDB is another NoSQL 
database that offers built-in support for MapReduce.

In our case though, we will focus on the Hadoop implementation of MapReduce, 
utilizing its support for Python via its streaming protocol. In particular, we will 
take advantage of a service provider that allows us to quickly and easily set up the 
Hadoop clusters. We will use Amazon's Elastic MapReduce (EMR) service.

An example – working with data on EMR
We are now going to return to the data that we generated to build the large .csv 
files for the HDF5 example. In this case though, we're not going to take advantage 
of the speed offered by HDF5. Instead, we're going to use the data to simulate the 
experience of working with extremely large datasets. This will be a simulation for 
practical reasons. The generation of a large dataset for demonstration purposes is 
prohibitively expensive with regard to both time as well as the computing resources. 
That being said, this simulation will offer all the insight that is necessary to adapt a 
small dataset to much larger ones.

In this section, we will use Hadoop on Amazon EMR service and perform the 
following tasks:

• Create a cluster
• Push a dataset to the cluster
• Write the mapper and reducer functions in Python
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• Test the mapper and reducer functions against small local data
• Add nodes to the EMR cluster to prepare it for our job
• Execute the MapReduce job against the EMR cluster that we created
• Examine the results

In the previous chapter, the aws command-line tool was installed. We will use aws 
extensively for the rest of this section. To ensure that you have access to it, you will 
need to activate the Python virtual environment in your terminal. From the directory 
for this chapter's notebook git repository (see the beginning of this chapter), execute 
the following code:

$ . ../.venv-mmpl/bin/activate

The preceding code will provide the visual result of adding (.venv-mmpl) to your 
system prompt. You should now have an access to the aws tool. You can confirm 
your access using the usual technique, as follows:

$ which aws

/Users/oubiwann/lab/mastering-matplotlib/.venv-mmpl/bin/aws

This section assumes that you have created a key pair on AWS for use in ssh'ing to 
the EC2 instances and, as we will soon implement, ssh'ing to the EMR master nodes.

We will now ready to create a Hadoop cluster on EMR:

$ aws emr create-cluster --name "Weather" --ami-version 3.6.0 \

    --applications Name=Hue Name=Hive Name=Pig Name=HBase \

    --use-default-roles --ec2-attributes KeyName=YourKeyName \

    --instance-type c1.xlarge --instance-count 3

j-63JNVV2BYHC

We have enabled the standard Hadoop tools—Hue, Hive, Pig, and HBase. However, 
we will not use them in the following section. These tools are provided in case you 
would like to use them in further explorations. We've given our cluster a name, 
configured it to use the EMR system image version (3.6.0), which supports the 2.4.0 
version of Hadoop, and supplied the SSH key name that we will use to log into the 
master server.

The key name that you provide should only be a name and should 
not contain the .pem file extension.
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The create-cluster command returned a single value—the ID for the cluster 
that we just created. We're going to need this cluster ID. So, let's export it as a shell 
variable. We're also going to use the full path to the .pem file. Hence, we'll set one for 
that too, as follows:

$ export CLUSTER_ID=j-63JNVV2BYHC

$ export AWS_PEM=/path/to/YourKeyName.pem

You can check the state of the cluster with the help of the following code:

$ aws emr describe-cluster --cluster-id $CLUSTER_ID |grep STATUS

STATUS  RUNNING

STATUS  RUNNING

STATUS  WAITING

The first STATUS output is for the master node. Once it returns the state of the node 
as RUNNING, we can start copying files to it. The following command will copy just a 
few files to the cluster:

$ for FILE in data/{0,1,2}.csv

  do

    aws emr put \

      --src $FILE \

      --cluster-id $CLUSTER_ID \

      --key-pair-file $AWS_PEM

  done

We'll start with just a few files (remember, they're about 73 MB each) to make 
sure that everything's working, but we'd like to demonstrate a fuller experience of 
MapReduce. Therefore, we'll copy all the files. If you'd prefer to avoid the incurrence 
of data costs for the same, you can still run the demo with just a few files. To make 
sure that we don't run out of space, we'll switch to a remote file system that has 
plenty of room, as follows:

$ for FILE in data/*.csv

  do

    aws emr put \

      --src $FILE \

      --dest /mnt1 \

      --cluster-id $CLUSTER_ID \

      --key-pair-file $AWS_PEM

  done
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Now that the .csv files have been copied to the Hadoop master node, we can login 
to the server and copy the data to HDFS, as follows:

$ aws emr ssh --cluster-id $CLUSTER_ID --key-pair-file $AWS_PEM

Now, you are on the master node where you uploaded your data. Let's copy this 
data into the Hadoop cluster's filesystem, as follows:

[hadoop@ip-10-255-7-47 ~]$ hdfs dfs -mkdir /weather

[hadoop@ip-10-255-7-47 ~]$ hdfs dfs -put /mnt1/*.csv /weather

With the two preceding commands, we created an HDFS directory for our data and 
then started the process by which the 14 gigabytes of .csv files will be pushed out to 
the worker nodes. This process may take some time, possibly as much as 30 minutes, 
depending on Amazon.

Once the last command has been executed, we can check whether the files exist on 
HDFS with the following command:

[hadoop@ip-10-255-7-47 ~]$ $ hdfs dfs -ls /weather|head -10

Found 200 items

-rw-r--r--   1 hadoop g   75460820 2015-03-29 18:46 /weather/0.csv

-rw-r--r--   1 hadoop g   75456830 2015-03-29 18:47 /weather/1.csv

-rw-r--r--   1 hadoop g   76896036 2015-03-30 00:16 /weather/10.csv

-rw-r--r--   1 hadoop g   78337868 2015-03-30 00:16 /weather/100.csv

-rw-r--r--   1 hadoop g   78341694 2015-03-30 00:16 /weather/101.csv

-rw-r--r--   1 hadoop g   78341015 2015-03-30 00:16 /weather/102.csv

-rw-r--r--   1 hadoop g   78337662 2015-03-30 00:16 /weather/103.csv

-rw-r--r--   1 hadoop g   78336193 2015-03-30 00:16 /weather/104.csv

-rw-r--r--   1 hadoop g   78336537 2015-03-30 00:16 /weather/105.csv

With our data in place, we're now ready to write some Python code for the 
MapReduce task. Before we do so, let's remind ourselves what the data looks like by 
using the following code:

[hadoop@ip-10-255-7-47 ~]$ head /mnt1/0.csv

country,town,year,month,precip,temp

0,0,1894,1,0.8449506929198441,0.7897647433139449

0,0,1894,2,0.4746140099538822,0.42335801512344756

0,0,1894,3,-0.7088399152900952,0.776535509023379

0,0,1894,4,-1.1731692311337918,0.8168558530942849

0,0,1894,5,1.9332497442673315,-0.6066233105016293
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0,0,1894,6,0.003582147937914687,0.2720125869889254

0,0,1894,7,-0.5612131527063922,2.9628153460517272

0,0,1894,8,0.3733525007455101,-1.3297078910961062

0,0,1894,9,1.9148724762388318,0.6364284082486487

The Python code that we will write will consist of two files, one for each part of the 
MapReduce job. Just like what we saw when reviewing the history of MapReduce, 
we will need a mapper function and a reducer function.

In our case, we want to perform the same task that we performed dealing with the 
HDF5 file when we used PyTables—the calculation of the mean value for all the 
simulated temperatures across all the simulated countries and towns over a period  
of 120 years. The mapper function will extract the temperature value from each line 
of every .csv files in HDFS. The reducer function will add these and then calculate 
the mean.

Keeping in mind that you are still ssh'ed into the Hadoop master node on EMR, save 
the following code in a file named mapper.py:

#!/usr/bin/env python
import sys

def parse_line(line):
    return line.strip().split(",")

def is_header(line):
    return line.startswith("country")

def main():
    for line in sys.stdin:
        if not is_header(line):
            print(parse_line(line)[-1])

if __name__ == "__main__":
    main()

The MapReduce code interacts with the Hadoop nodes via stdin and stdout. The 
code will receive input via stdin and send results to Hadoop via stdout, one line 
at a time. We will check to make sure that the line that we receive is not the CSV 
header, and then, we will use a simple line parser to extract the last value, which is 
the temperature field.
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Save the following code in the file reducer.py:

#!/usr/bin/env python
import sys

def to_float(data):
    try:
        return float(data.strip())
    except:
        return None

def main():
    accum = 0
    count = 0
    for line in sys.stdin:
        temp = to_float(line)
        if temp == None:
            continue
        accum += temp
        count += 1
    print(accum / count)

if __name__ == "__main__":
    main()

Now, we will make them executable:

[hadoop@ip-10-255-7-47 ~]$ chmod 755 *.py

Before we execute the preceding code against the cluster, let's perform a quick check 
on one of the .csv files that we uploaded, as follows:

[hadoop@ip-10-255-7-47 ~]$ head /mnt1/0.csv | ./mapper.py

0.7897647433139449

0.42335801512344756

0.776535509023379

0.8168558530942849

-0.6066233105016293

0.2720125869889254

2.9628153460517272

-1.3297078910961062

0.6364284082486487
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Looks good! Now, let's add the reducer to the mix, as follows:

[hadoop@ip-10-255-7-47 ~]$ head 0.csv | ./mapper.py | ./reducer.py

0.526826584472

A quick manual check confirms that the generated average is correct for the values 
parsed by the mapper. This combination of tasks via the command-line pipes 
highlights the flexible and inherently composable nature of the MapReduce flows.

With our Python code tested and working, we're almost ready to run it on Hadoop. 
First, we're going to switch to a local terminal session and create some more nodes 
in our cluster. This is more of an exercise to gain familiarity with the process than 
anything else since, in our case, the extra nodes won't have too much of an impact:

$ aws emr add-instance-groups \

    --cluster-id $CLUSTER_ID \

    --instance-groups \

      InstanceCount=6,InstanceGroupType=task,InstanceType=m1.large \

      InstanceCount=10,InstanceGroupType=task,InstanceType=m3.xlarge

j-63JNVV2BYHC

INSTANCEGROUPIDS   ig-ZCJCUQU6RU21

INSTANCEGROUPIDS   ig-3RXZ98RUGS7OI

We obtained not only the cluster ID like we did before, but also the IDs for the two 
new instance groups that we asked for. We can check the creation and setup progress 
of the nodes by querying the cluster, as follows:

$ aws emr describe-cluster --cluster-id $CLUSTER_ID

CLUSTER False j-63JNVV2BYHC ec2-54-70-11-85.us-west-2.compute.
amazonaws.com Weather 189 3.6.0 3.6.0 EMR_DefaultRole False 
True

APPLICATIONS hadoop 2.4.0

APPLICATIONS Hue

BOOTSTRAPACTIONS Install Hue s3://us-west-2.elasticmapreduce/libs/
hue/install-hue

BOOTSTRAPACTIONS Install HBase s3://us-west-2.elasticmapreduce/
bootstrap-actions/setup-hbase

EC2INSTANCEATTRIBUTES us-west-2b OubiwannAWSKeyPair sg-fea0e9cd 
sg-fca0e9cf EMR_EC2_DefaultRole

INSTANCEGROUPS ig-3M0BXLF58BAO1 MASTER c1.xlarge ON_DEMAND 
MASTER 1 1

STATUS RUNNING
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STATECHANGEREASON

TIMELINE 1427653325.578 1427653634.541

INSTANCEGROUPS ig-1YYKNHQQ27GRM CORE c1.xlarge ON_DEMAND 
CORE 2 2

STATUS RUNNING

STATECHANGEREASON

TIMELINE 1427653325.579 1427653692.548

INSTANCEGROUPS ig-3RXZ98RUGS7OI TASK m3.xlarge ON_DEMAND 
task 10 0

STATUS RESIZING

STATECHANGEREASON Expanding instance group

TIMELINE 1427676271.495

INSTANCEGROUPS ig-ZCJCUQU6RU21 TASK m1.large ON_DEMAND 
task 6 0

STATUS RESIZING

STATECHANGEREASON Expanding instance group

TIMELINE 1427676243.42

STATUS WAITING

STATECHANGEREASON Waiting after step completed

TIMELINE 1427653325.578 1427653692.516

That's a lot of information to parse, but if you scan the bottom of the code, you 
will see the two groups that we just added have a status of RESIZING. Keep an eye 
on these until they've finished. Once it's done, we can move back to the terminal 
window where we've SSH'ed into the Hadoop master.

Getting back to the Hadoop cluster, let's execute the map-reduce task against the 
data that we've updated to the cluster and saved to HDFS, as follows:

[hadoop@ip-10-255-7-47 ~]$ hadoop \

  jar contrib/streaming/hadoop-*streaming*.jar \

  -D mapred.reduce.tasks=1 \

  -files mapper.py,reducer.py \

  -mapper mapper.py \

  -reducer reducer.py \

  -combiner reducer.py \

  -input /weather/*.csv \

  -output /weather/total-mean-temp
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That will only take about a minute and a half to run. To see the results, we just need 
to take a look at the file that was dumped to the output directory that we indicated 
previously. This can be accomplished with the help of the following code:

[hadoop@ip-10-255-7-47 ~]$ hdfs dfs -ls /weather/total-mean-temp

Found 2 items

-rw-r--r-- 1 hadoop g  0 2015-03-29 20:20 /weather/total-mean-temp/_
SUCCESS

-rw-r--r-- 1 hadoop g 18 2015-03-29 20:20 /weather/total-mean-temp/part-
00000

[hadoop@ip-10-255-7-47 ~]$ hdfs dfs \

    -cat /weather/total-mean-temp/part-00000

-5.30517804131e-05

The output is within an order of magnitude of the result that was obtained by 
manually slicing the HDF5 file:

In [44]: sum(means)/len(means)

Out[44]: -5.3051780413782918e-05

Without an in-depth analysis, one might venture to guess that the difference between 
these two values may be due to the floating point calculations on different platforms 
that use different versions of Python (the Python version on the Hadoop cluster was 
2.6; we're using 3.4.2). At any rate, the calculated mean meets our expectations, that 
is, close to zero for a normal distribution that is centered around zero.

So, we've come out on the other side of Hadoop with our result, but what does 
this mean to us as matplotlib users? The standard use case for matplotlib is on a 
workstation, often at an interactive Python or IPython prompt. In such scenarios, we 
are used to crunching our data by calculating the means, standard deviations, and so 
on – and then plotting them. All of this is achieved with the help of a few commands 
(and seconds), and then execution is completed in a span of few seconds.

In the world of big data, that experience changes drastically. What was an implicit 
understanding that one's data is in-process and it is easy to copy and perform 
analytical operations on the same is now an involved process comprising of cluster 
deployments, configuration management, distributed data, communication latencies, 
and the like. The only thing that remains the same is that it's our data and we need to 
plot it.

When the data was too large for the memory but we were still able to fit the same in 
a single hard drive, HDF5 and PyTables gave us the means by which we could use 
our old approaches with very little change in our analytical workflows. 
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Once our data becomes too large for a hard drive or a file server, the workflows 
have to change. We can't even pretend it's the same data world that we lived in 
previously. We have to think in terms of the partitioned data and our tasks running 
against the partitions.

We still get to use NumPy, but the work is not being done on our machine in the 
IPython shell. It's being done remotely on a cluster comprising of distributed nodes. 
Our work in the interactive shells is transformed to a testbed, where we operate 
on a small sample set to prepare for the task of pushing out a job to the cluster. 
Additionally, every new big data project has the potential to be legitimately different 
from any other big data project. For every organization that needs to work with big 
data, for each set of data, the particulars of the day-to-day analytics workflows are 
likely to change.

In the end though, our jobs will run and we will have distilled a few tens of millions of 
data points that are needed in the final analysis from the octillions of data points, and  
it is this data that will be provided to matplotlib for the task of plotting. Though big 
data requires that the preparation of data for the operation of plotting move outside 
the familiarity of an interactive Python prompt, the essence remains the same. We need 
to know what we have and ways to distill what we have. Furthermore, we should be 
able to visualize it.

Visualizing large data
The majority of this notebook has been dedicated to processing large datasets and 
plotting histograms. This was done intentionally because by using such an approach, 
the number of artists on the matplotlib canvas is limited to something in the order of 
hundreds, which is better than attempting to plot millions of artists. In this section, 
we will address the problem of displaying the actual elements of large datasets.  
We will then return to the last HDF5 table in the remainder of the chapter.

As a refresher on the volume that we're looking at, the number of data points in our 
dataset can be calculated in the following way:

In [45]: data_len = len(tab)

         data_len

Out[45]: 288000000

Again, our dataset has nearly one third of a billion points. That is almost certainly 
more than matplotlib can handle. In fact, one often sees comments online that  
warn users not to attempt plotting more than ten thousand or one hundred  
thousand points. 
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However, is this a good advice? It might be better to advise users to switch to 
PyTables or numpy.memmap and then, based on that, make a recommendation about 
the upper limits for the plotting of the data points. Let's use our data to establish a 
baseline for matplotlib's comfort zone.

Finding the limits of matplotlib
We're going to attempt plotting an increasing number of points from our dataset. 
We'll use the HDF5 table and start modestly with 1000 points, as follows:

In [46]: limit = 1000

         (figure, axes) = plt.subplots()

         axes.plot(tab[:limit]["temp"], ".")

         plt.show()

The following plot is the result of the preceding code:

The output was rendered very quickly—most likely under a second. Let's bump up 
our dataset size by an order of magnitude, as follows:

In [47]: limit = 10000

         (figure, axes) = plt.subplots()

         axes.plot(tab[:limit]["temp"], ".")

         plt.show()



Chapter 8

[ 227 ]

The following plot is the result of the preceding code:

Again, that was very fast. There was no noticeable difference between this render 
and the previous one. Let's keep going by again increasing the order of magnitude, 
as follows:

In [48]: limit = 100000

         (figure, axes) = plt.subplots()

         axes.plot(tab[:limit]["temp"], ".")

         plt.show()

The following plot is the result of the preceding code:
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At 100,000 points, you will start seeing a tiny delay. The previous code took about a 
second to render. This looks better than what we had been led to believe. Let's try a 
million and then ten million points, as follows:

In [49]: limit = 1000000

         (figure, axes) = plt.subplots()

         axes.plot(tab[:limit]["temp"], ".")

         plt.show()

The following plot is the result of the preceding code:

In [50]: limit = 10000000

         (figure, axes) = plt.subplots()

         axes.plot(tab[:limit]["temp"], ".")

         plt.show()
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The following plot is the result of the preceding code:

One million points were rendered in about 2 to 3 seconds, which is pretty good 
considering the fact that we were expecting a limit of around 10,000! However, if we 
had to plot hundreds or thousands of datasets like these for a project, the delay for 
the same would be prohibitive. 10 million points took about 15 seconds. Therefore, 
that wouldn't be an option for even a moderate number of plots that needed to be 
rendered in a timely manner.

Agg rendering with matplotlibrc 
If we use lines instead of points in our plot, we will hit another limit—the inability of 
the Agg backend to handle a large number of artists. We can see this when we switch 
from the preceding point plots to the matplotlib default of line plots, as follows:

In [51]: (figure, axes) = plt.subplots()

         axes.plot(tab[:10000000]["temp"])

         plt.show()

...

FormatterWarning: Exception in image/png formatter:

Allocated too many blocks

...

<matplotlib.figure.Figure at 0x160587240>
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If you run into an error like this, it may be worth tweaking an advanced configuration 
value in the matplotlibrc file—chunksize. Normally, the Agg path chunksize is 
configured and has a value of 0, but a recommended value to start off with is 20,000. 
Let's give this a try and then attempt to render again, as follows:

In [52]: mpl.rcParams["agg.path.chunksize"] = 20000

In [53]: (figure, axes) = plt.subplots()

         axes.plot(tab[:10000000]["temp"])

         plt.show()

The following plot is the result of the preceding code:

This feature was marked as an experimental in 2008, and it has remained so even 
in 2015. A warning to the user—enabling the Agg backend to plot in chunks instead 
of doing so all at once may introduce visual artifacts into the plots. In the case 
of quickly checking one's data in IPython, this might not be a concern for you. 
However, sharing experimental results in publications will make the plots worthless.
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More practically though, we lucked out.  It just so happened that the presence of 10 
million lines in our data was something that our backend could handle when using 
the chunked approach. Another order of magnitude or so, and we'd likely be back in 
the same situation. As the dataset sizes grow beyond the capabilities of matplotlib, 
we must turn to some other approaches.

Decimation
One way of preparing large datasets to render carries the unfortunate name of the 
brutal practice employed by the Roman army against large groups that were guilty 
of capital offenses—"the removal of a tenth", which is more commonly known by its 
Latin name, decimation. We will use this term in the book more generally. It indicates 
the removal of a fraction, which is sufficient to give us our desired performance that, 
as it turns out, will be much more than a tenth.

As you may have noticed in our preceding exploration, we couldn't spot any 
appreciable visual difference in the nature of the plots after 100,000 points. There  
are certainly some additional outliers that we can point to, but the structure is 
hidden by the sheer numbers after the threshold is passed.

If we want to limit our plot to 100,000 points but cover the entire spectrum of our 
dataset, we just need to divide the size of the dataset by the desired point number  
to calculate the decimation value, as follows:

In [54]: frac = math.floor(data_len / 100000)

         frac

Out[54]: 2880

Because PyTables uses the NumPy arrays, we can take advantage of an array-slicing 
feature that lets us extract every nth value—data[::n]. Let's use this to plot a 
representation of the dataset across its entire spectrum, as follows:

In [55]: xvals = range(0, data_len, frac)

         (figure, axes) = plt.subplots()

         axes.plot(xvals, tab[::frac]["temp"], ".", alpha=0.2)

         plt.show()
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The following plot is the result of the preceding code:

We also provided x values that matched the skipping that we did when selecting every 
y value. Had we not done this, the x axis would have ranged from 0 to 100,000. As you 
can see, it ranges instead to 300 million, showing our data's end at 288 million.

When taking an approach like this, we need to keep in mind that we're essentially 
dumping data from our plot. Potentially important data points (such as significant 
outliers) might be removed in this process. Furthermore, depending on the 
distribution, statistical values may be altered. However, the most significant issue 
with this approach is that it has the potential to exaggerate the outliers that remain 
in the dataset. This form of distortion is known as aliasing, and there are filtering 
techniques that one can employ to minimize it.

If you are working with digital signals or periodic data, you may find the scipy.
signal.decimate and scipy.signal.resmple functions useful.

Additional techniques
Even with an approach as simple as decimation, we need to consider applying filters. 
Depending on one's data, there are a number of additional techniques that one may 
utilize to make large datasets more digestible. Data can be quantized or binned.  
In particular, we took advantage of binning data by using the histogram plots early 
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in this chapter and thus sidestepping the need to worry about rendering plots with 
massive dataset sizes. Similarly, matplotlib, Seaborn, and several other libraries offer 
heat maps and hexbin plots. When applied intelligently, these features can provide 
invaluable insights without the need to display every single point from a dataset.

Other visualization tools
The matplotlib module was originally designed for use on workstations and 
desktops, not servers. Its design did not arise from use cases for high-volume or large 
datasets. However, as you saw in this chapter, by using the right tools and taking the 
appropriate measures, matplotlib can perform admirably with hundreds of millions of 
data points.

Should you ever hit insurmountable barriers for matplotlib (such as real-time 
visualization and user interaction with billions of data points), you can make use of 
the following open source projects that were originally designed by keeping large 
datasets in mind:

• ParaView (http://www.paraview.org/): This is an open source, 
multiplatform data analysis and visualization application. ParaView was 
developed to analyze extremely large datasets by using distributed memory 
computing resources. It can be run on supercomputers to analyze datasets of 
petascale size as well as on laptops for smaller data. Paraview also offers the 
Python Scripting Interface.

• VisIt (https://wci.llnl.gov/simulation/computer-codes/visit): This 
is an open source, interactive, scalable tool for visualization, animation, and 
analysis. VisIt has a parallel and distributed architecture that allows users 
to interactively visualize and analyze data, which ranges in scale from small 
(fewer than 102 cores) desktop-sized projects to large (more than 105 cores) 
computing facility simulation campaigns. VisIt is capable of visualizing data 
from over 120 different scientific data formats. It offers a Python interface.

• Bokeh (http://bokeh.pydata.org/en/latest/): As mentioned previously, 
Bokeh is a Python interactive visualization library that targets modern web 
browsers for presentation. Its goal is to not only provide elegant, concise 
construction of novel graphics in the style of D3.js, but also deliver this 
capability with high-performance interactivity over very large or  
streaming datasets.

• Vispy (http://vispy.org/): This is a new 2D and 3D high-performance 
visualization library that can handle very large datasets. Vispy uses the 
OpenGL library and GPUs for increased performance. With Vispy, users can 
interactively explore plots that have hundreds of millions of points. A basic 
knowledge of OpenGL is very helpful when using Vispy.

http://www.paraview.org/
https://wci.llnl.gov/simulation/computer-codes/visit
http://bokeh.pydata.org/en/latest/
http://vispy.org/
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That being said, matplotlib is a powerful, well-known tool in the scientific computing 
community. Organizations and teams have uncountable years of cumulative 
experience building, installing, augmenting, and using matplotlib and the libraries 
of related projects, such as NumPy and SciPy. If there is a new way to put old tools 
to use without having to suffer the losses in productivity and the re-engineering of 
infrastructure associated with platform changes, it is often in everyone's best interest 
to do so.

Summary
The most important thing to keep in mind when working with large datasets and 
matplotlib is to use data wisely and take advantage of NumPy and tools such 
as PyTables. When moving to distributed data, a large burden with regard to 
infrastructure is taken on compared to working with data on a single machine.  
As datasets approach terabytes and petabytes, the greatest work involved really  
has less to do with plotting and visualization and has more to do with deciding  
what to visualize and how to actually get there. An increasingly common aspect  
of big data is real-time analysis, where matplotlib might be used to generate 
hundreds or thousands of plots of a fairly small set of data points. Not all  
problems in big data visualization are about visualizing big data!

Finally, it cannot be overstated that knowing your data is the most crucial 
component when tackling large datasets. It is very rare that an entire raw dataset 
is what you want to present to your colleagues or end users. Gaining an intuition 
with the help of your data through an initial process of exploration will enable you 
to select the appropriate presentation approaches, which may involve the process 
of binning your data in a simple histogram, decimating data, or simply providing 
statistical summaries. The biggest problem of big data that users face is how not to 
get lost in either the sheer size of it or the complex ecosystem of tools and fads that 
have grown up around the buzz of big data. Careful thinking and an eye towards 
simplicity will make all the difference in having a successful experience with large 
datasets in matplotlib.
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Clustering for matplotlib
In the final chapter of this book, we will address a topic that has been alluded to 
several times—clustering and parallel programming for matplotlib. Our motivation 
to discuss this is nearly identical to that which drove our investigation into working 
with large datasets. Although matplotlib lib itself isn't a library that makes direct  
use of large datasets or provides an API that can be used with clusters, advanced 
users of the library will very likely encounter situations where they may want to 
utilize matplotlib.

Not to put too fine a point on this, we live in a new world of computing. This was 
presented exceptionally well in the oft-quoted article, The Free Lunch Is Over, by Herb 
Sutter. With the drastic limitations faced by the semiconductor industry, yearly  
gains in computing power are no longer a result of faster chips. Instead, we get this 
benefit through the addition of cores in a single machine. Unfortunately, common 
practices in programming that have persisted over the past half century leave us 
ill-prepared to take advantage of this increasingly common form of additional 
computing power. Programmers need to learn new skills.

One of the most effective means of utilizing multiple cores is parallelization, which 
is achieved by either converting some old code to execute in parallel, or adopting 
infrastructure and code paradigms that allow us to easily start with parallelization 
from the start. The programmer who wants to make full use of multiple cores will 
benefit greatly from learning parallel programming. Fortunately, matplotlib coders 
can also take advantage of this.

To provide an entry point to learn more about this topic in the context of matplotlib 
and scientific computing, we will cover the following topics in this chapter:

• Clustering and parallel programming
• Creating a custom worker cluster by using ZeroMQ
• Using IPython to create clusters
• Further clustering options
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To follow along with this chapter's code, clone the notebook's repository and start up 
IPython, as follows:

$ git clone https://github.com/masteringmatplotlib/clustering.git

$ cd clustering

To compile all the dependencies in this chapter's notebook, you may 
need to set the CC environment variable, for example export CC=gcc. 
If you are using Mac OS X, you can use export CC=clang.

Now, you can finish the chapter start-up, as follows:

$ make

Clustering and parallel programming
The term clustering may have a number of operational definitions depending on 
the situation that one is facing or the organization that one is working with. In 
this chapter, we will use the term in a very general sense to indicate a system of 
computing nodes across which a task may be split and whose parts may be executed 
in parallel with all the system nodes. We won't specify what nodes are, as they may 
be anything from a collection of processes on the same machine or a computer 
network to virtual machines or physical computers on a network.

The word "cluster" alludes to a logical collection, but in our definition there is a more 
important word—parallel. For our purposes, clusters exist to make running code in 
parallel more efficient or convenient. The topic of parallel computing is a vast one 
and has an interesting history. However, it rose to greater prominence in 2003 due 
to the physical limitations that were encountered by the chip-making industry—
increased CPU heat, power consumption, and current leakage problems in circuits. 
As such, CPU performance gains started coming from the addition of more cores to 
a system. This was discussed in detail by Herb Sutter in his article, The Free Lunch 
Is Over, which was published in 2005. Ever since, a greater number of mainstream 
programmers have become interested in taking advantage of the increased number 
of system cores through the application of parallel programming techniques.

In essence, parallel programming describes scenarios where computationally 
intensive code may be broken down into smaller code, which can then be run 
concurrently by taking advantage of a larger number of processing resources and 
solving problems in a shorter span of time. There are several ways in which one may 
write parallel code, but our focus will be on the following:

• Data parallelization: In this, the same calculation is performed on different 
datasets (and sometimes on the same datasets)
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• Task parallelization: In this, a task is broken down into subtasks, and the 
subtasks are executed in parallel

The sort of problems that are amenable to parallelization include the following:

• N-body problems (for example, simulating physics to understand the 
structure of physical reality such as the work done on Millennium Run)

• Structured grid problems (for example, computational fluid dynamics)
• The Monte Carlo simulation (for example, computational biology, artificial 

intelligence, and investment evaluations in finance)
• Combinational logic (for example, the brute-force cryptographic techniques)
• Graph traversal (for example, calculating the least expense and least time for 

shipping companies)
• Dynamic programming (for example, mathematical and computational 

optimizations, RNS structure prediction, and optimal consumption and 
saving in economic modeling)

• Bayesian networks (for example, risk analysis, decision systems, document 
classification, and biological belief modeling)

However, the reader will be relieved to know that we will focus on a simple example 
in order to more clearly apply the basic principles of parallel programming. In 
particular, the examples in this chapter will utilize a parallelizable means to estimate 
the value of π.

The custom ZeroMQ cluster
In this section, we will create a task pipeline, which is a messaging pattern that we 
mentioned briefly when discussing the Disco project's answer to MapReduce. Task 
pipelines can be viewed as a generalization of MapReduce in that they support data 
flows through a sequence of steps, where each step provides the results from its 
processing to the next step in the flow. We will accomplish this by using ZeroMQ to 
create a messaging topology that is suitable for the execution of embarrassingly parallel 
code in a number of worker processes.

The descriptive term embarrassingly parallel was adopted in online 
parallelization discussions after its use in an article named Matrix 
Computation on Distributed Memory Multiprocessors that was written by 
Cleve Moler. The parallelizing of serially biased code is notoriously 
difficult, and problems that were obviously or easily parallelizable 
were described by using this phrase.
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ZeroMQ is an asynchronous messaging framework, which evolved from the 
experience and lessons learned from the work on the Advanced Message Queuing 
Protocol (AMQP). Its primary purpose is to allow programmers to quickly and 
easily interconnect various software components from a system written in any 
networking-capable programming language.

We will adapt some Python examples from the ZeroMQ Guide (from the Divide and 
Conquer and Handling Errors and ETERM sections) to create a task pipeline cluster. 
We will then use it to estimate the value of π.

Estimating the value of π
Blaise Barney from Lawrence Livermore National Laboratory created a series of 
pages and tutorials on the topic of parallel computing that offers as an example a 
means to estimate the value of π by using a parallel approach. The method used is  
as follows:

1. Inscribe a circle in a square.
2. Randomly generate points in the square.
3. Determine the number of points in the square that fall within the  

inscribed circle.
4. Let π be represented by the ratio of the areas.

This can be clearly and unambiguously expressed by using the equations for the area 
of the square and the circle. We will start with the following equations:
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Knowing that each value of r2 is equal to the other, we may now solve for π,  
as follows:
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Letting the random placement of points in the respective areas uniformly represent 
the areas themselves, we can use this to estimate the value of π.

A graphic representation of this may be helpful. The following code assumes that 
you have opened and run the notebook for this chapter and executed the first few 
cells, which import all the necessary libraries:

In [4]: xs = np.random.uniform(-1, 1, 10000)

        ys = np.random.uniform(-1, 1, 10000)

        points_inside = []

        points_outside = []

        for point in zip(xs, ys):

            (x, y) = point

            if (x ** 2 + y ** 2) <= 1:

                points_inside.append(point)

            else:

                points_outside.append(point)

The preceding code generates random numbers for the x and y values between 
-1 and 1. Using the equation of a unit circle, it then calculates whether the points 
constructed from these x and y values fall within the area of the circle or not.

Let's plot these two sets of points by using the following code:

In [5]: (figure, axes) = plt.subplots(figsize=(10,10))

        axes.scatter(*zip(*points_inside), color=colors[1], 

                     alpha=0.5)

        axes.scatter(*zip(*points_outside), color=colors[0],

                     alpha=0.5)

        circle = plt.Circle((0, 0), 1, fill=False)

        axes.set_xlim((-1.1, 1.1))
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        axes.set_ylim((-1.1, 1.1))

        axes.add_artist(circle)

        axes.set_title("Visualization of estimating $\pi$", 

                       fontsize=28)

        nbutil.hide_axes(axes)

        plt.show()

The following plot (Visualization of estimating π) is the result of the preceding code:

The C and Fortran π estimation code provided in the example given in the Lawrence 
Livermore National Laboratory (LLNL) parallel programming tutorial can be easily 
converted to Python, as follows:

In [6]: def estimate_pi(points):

            in_circle = 0

            for _ in range(int(points)):

                (x, y) = (random.random(), random.random())

                if (x ** 2 + y ** 2) <= 1:

                    in_circle += 1

            return 4 * in_circle / points
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When we run the preceding code with 100 million points and track the execution 
time on a moderate workstation, it takes over a minute, which is depicted in the 
following code:

In [7]: %%time

        print(estimate_pi(1e8))

3.14157116

CPU times: user 1min 10s, sys: 151 ms, total: 1min 10s

Wall time: 1min 11s

The preceding code offers a baseline against which we will soon be able to compare 
our parallel results.

Creating the ZeroMQ components
In order to use the ZeroMQ pipeline pattern (dispatching tasks to workers and 
having the workers forward the results to a collector), we'll need to create each of the 
following components:

• A distributor
• Multiple instances of a worker
• A collector (for the results)

As stated before, the code for the components were adapted from the code from the 
ZeroMQ guide, which was originally contributed by Lev Givon and Jeremy Avnet. 
We've made several changes, one of which is to utilize the Python multiprocessing 
module, which lets us run the example in a single terminal window rather than 
three. Naturally, this also lets us easily run the example in an IPython Notebook.

We've decided to implement the cluster in several small modules in order to keep 
things as clear and organized as possible. This should make it fairly obvious which 
code is responsible for which functionality. All the modules are available in the lib 
directory of the repository for this chapter's notebook. We'll start where everything 
begins—the demo module:

import multiprocessing, random, time

import zmq

import collector, democfg, distributor, worker

def main(tasks):

    # Initialize random number generator

    random.seed()
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    print("Starting task workers ...")

    for worker_id in range(democfg.worker_pool_size):

        worker_proc = multiprocessing.Process(

            target=worker.work, args=[worker_id])

        worker_proc.start()

    print("Starting task collector ...")

    collector_proc = multiprocessing.Process(

           target=collector.collect)

    collector_proc.start()

    time.sleep(democfg.pause_time)

    print("Starting task distributor ...")

    distributor.distribute(tasks)

if __name__ == "__main__":

    tasks = [1e8 / democfg.task_count] * democfg.task_count

    main(tasks)

The main function performs the following tasks:

• It creates a worker pool with a worker count, as configured in the  
democfg module

• It starts the collector process, which will be responsible for the processing of 
results from the workers

• It starts the distributor process, passing it the tasks that are defined at the end 
of the module before the main function is called

Though you can't tell right now, the distributor.distribute function is the one 
that starts the process of passing messages across the cluster. Now, let's take a look at 
this code in the distributor module:

import time

import zmq

import democfg

def distribute(tasks):

    context = zmq.Context()

    # Socket to send messages on

    sender = context.socket(zmq.PUSH)

    sender.bind(democfg.routing_table["receiver"])
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    # Socket with direct access to the sink used to 

    synchronize 

    # start of batch

    syncher = context.socket(zmq.PUSH)

    syncher.connect(democfg.routing_table["sender"])

    # Give 0MQ time to start up

    time.sleep(democfg.pause_time)

    syncher.send(democfg.start_flag)

    for task in tasks:

        sender.send_pyobj(task)

    # Give 0MQ time to deliver message

    time.sleep(democfg.pause_time)

The distribute function takes as an argument a list of tasks that it will be passing 
to the workers. Before it gives out any jobs though, it sets up the ZeroMQ sockets to 
communicate with the other components:

• The sender ZeroMQ socket to pass jobs
• The syncher ZeroMQ socket to kick off the batch

If you're not familiar with ZeroMQ, don't be alarmed that the worker.work function 
isn't called. Instead, what happens is this—a message gets passed to the ZeroMQ 
queue that the worker is listening. As we'll shortly see, the work function will pull 
task data off the queue to which the distribute function sent it.

Next up, the worker:

import random

import zmq

import democfg, tasker

def is_done(socks, controller):

    if (socks.get(controller) == zmq.POLLIN and

        controller.recv() == democfg.done_msg):

        return True

    return False

def work(worker_id):

    context = zmq.Context()

    # Socket to receive messages on
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    receiver = context.socket(zmq.PULL)

    receiver.connect(democfg.routing_table["receiver"])

    # Socket to send messages to

    sender = context.socket(zmq.PUSH)

    sender.connect(democfg.routing_table["sender"])

    # Socket for control input

    controller = context.socket(zmq.SUB)

    controller.connect(democfg.routing_table ["controller"])

    controller.setsockopt(zmq.SUBSCRIBE, b"")

    # Process messages from receiver and controller

    poller = zmq.Poller()

    poller.register(receiver, zmq.POLLIN)

    poller.register(controller, zmq.POLLIN)

    # Process messages from both sockets

    run_loop = True

    while run_loop:

        socks = dict(poller.poll())

        if socks.get(receiver) == zmq.POLLIN:

            task_data = receiver.recv_pyobj()

            # Process task data

            result = tasker.task(task_data)

            sender.send_pyobj(result)

        if is_done(socks, controller):

            run_loop = False

The worker.work function creates a worker that listens on a ZeroMQ PULL 
connection, where it will take the task data that the distributor PUSH-ed. The worker 
then calls another function that will do the actual computation for the task. Once  
this is done, the worker will send the result to the collector.

The code for the worker is a little more complex than the distributor, primarily 
because the worker polls the following two separate queues:

• A queue from which it will pull the task data
• A queue on which it is listening for the control messages—in particular,  

a stop message
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The result that gets sent to the collector is created in a separate tasker module,  
as follows:

import random

import zmq

import democfg

def task(task_data):

    in_circle = 0

    for _ in range(int(task_data)):

        (x, y) = (random.random(), random.random())

        if (x ** 2 + y ** 2) <= 1:

            in_circle += 1

    return 4 * in_circle / task_data

This code might look familiar. It's very close to the code that we used to create a area 
plot to demonstrate the method for estimating the value of π. In the tasker module, 
we will see what the task data, which was originally passed to the main function,  
is actually used for—it is the number of points that will be created to estimate the 
value of π.

The worker function executes the task function, and when the function gets the 
results, it sends a message to the queue upon which the collector is listening. Here's 
the collector module:

import time

import zmq

import democfg, processor

def collect():

    context = zmq.Context()

    # Socket to receive messages on (collect results from worker)

    receiver = context.socket(zmq.PULL)

    receiver.bind(democfg.routing_table["sender"])

    # Socket for worker control

    controller = context.socket(zmq.PUB)

    controller.bind(democfg.routing_table["controller"])

    # Wait for start signal
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    assert receiver.recv() == democfg.start_flag

    processor.process(receiver)

    # Let workers know that all results have been processed

    controller.send(democfg.done_msg)

    # Finished, but give 0MQ time to deliver

    time.sleep(5 * democfg.pause_time)

This code is almost as simple as that for the distributor. The collector.collect 
function does a few things, which includes the following tasks:

• It PULL-s the data that was PUSH-ed by the workers
• It calls processor.process on the data that it PULL-ed
• It sends a control message to stop the function as soon as it finishes 

processing the results

Using time.sleep repeatedly to ensure that the different 
parts of the system have completed their tasks is a fragile and 
slow process. As with the official ZeroMQ examples upon 
which this code is based, it is used here only for pedagogical 
clarity. A more robust solution will be to use Pub-Sub 
synchronization. For more information, see the ZeroMQ 
Guide sections, Node-Coordination and Getting the Message Out.

In the same way that we separated the ZeroMQ code and task code in the worker, 
we will separate the collector code and the code that processes the results. Here is  
the processor module:

import time

import zmq

import democfg

def process(receiver):

    return get_results(receiver)

def get_results(receiver):

    data = []

    # Process results from the workers

    for _ in range(democfg.task_count):

        result = receiver.recv_pyobj()
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        print("Processing result: {}".format(result))

        data.append(result)

    # Calculate final result

    print("Final result: {}".format(sum(data)/len(data)))

    return data

The get_results function's primary purpose is to print out the mean value for 
π based on the values obtained from all the workers. The fact that we split this 
into distinct functions may seem useless right now, but this will provide some 
convenience when we update the code to plot our data.

We will take a moment here to review what we've seen:

• The source code that initializes the cluster components (the demo module)
• The source code for each of the components of the ZeroMQ pipeline cluster—

the distributor, worker, and collector
• The source code that does the actual calculation (in the tasker module)
• The source code that renders the final result (in the processor module)

We could have easily left the tasker code in the worker module and the processor 
code in the collector module. So why did we split these out? This separation 
highlights the very different concepts of each. The worker.work function doesn't 
care what it does. The work that it represents is abstract in nature—tell me what to do, 
and I'll do it. The same goes for collector.collect—tell me what to collect, and I will 
do that. The distributor, worker, and collector are not concerned with the execution 
of the Python code and the returning of the results. Instead, they are concerned with 
the sending and receiving of messages in various special-purpose queues that we set 
up. These three components are the message-passing architecture, which is the core 
of the pipeline cluster.

On the other hand, the tasker.task and processor.process functions are the 
ones that care about executing the Python code and gathering results. What they 
do is completely unrelated to what the pipeline architecture code does, so much so 
that we can rip them out and insert the new task and process functions that solve 
completely different problems. All of this can be accomplished without touching the 
pipeline modules. In fact, we will do a bit of this at the end of the next section.

We discussed the message-passing pipeline architecture and the conceptually 
orthogonal computational work done by the other modules, but we need to make 
sure that we don't lose sight of another key element—the parallelization. Where  
does it live?
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When we start the program by calling main, we don't give any indication of what 
gets parallelized. Also, we don't explicitly state where the parallelization occurs in 
any of the modules. In fact, it is spread across a couple of features, some of which are 
as follows:

• Before we call main, we divide the original value—the total number of points 
that we want to process—by the number of workers that we will be creating

• These split point counts are then sent to the distributor component, which 
iterates over these and sends them (via a queue) to the workers

• Finally, the results are then assembled at the end in the collector component

It is important to note that it is these three conceptual elements that work together 
that carry out the hard work of finding the solution to a parallelizable problem. 
However, the last bit of hidden implicitness is the most difficult of all—identifying 
the problems that may be parallelized and then figuring out how to do so. We 
brushed over this in the introduction to this section, but it is without doubt where all 
the hard work lies.

Before we try implementing the cluster, there's one more module that we should 
look at so that there's no mystery and the source is shared—the democfg module that 
is referenced by the others:

worker_pool_size = 8

task_count = 8

delay_range = (1, 100) # milliseconds

pause_time = 1 # seconds

start_flag = b"0"

done_msg = b"DONE"

routing_table = {

    "receiver": "tcp://127.0.0.1:7557",

    "sender": "tcp://127.0.0.1:7558",

    "controller": "tcp://127.0.0.1:7559"}

With this bit of code, we have reviewed all the components of our system and are 
ready to run it!
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Working with the results
If you review the code in the demo module, you may recall that when the module is 
called from the command line, it performs the following tasks:

• It gets a total task count
• It partitions this total task count into equal segments that represent the task
• It calls the main function and passes this partitioned data

Let's try calling the demo module now:

In [15]: %%time

         %%bash

         python ../lib/demo.py

Starting task workers ...

Starting task collector ...

Starting task distributor ...

Processing result: 3.14210336

Processing result: 3.1415472

Processing result: 3.14151648

Processing result: 3.14219872

Processing result: 3.14187168

Processing result: 3.14149984

Processing result: 3.14178592

Processing result: 3.14194304

Final result: 3.14180828

CPU times: user 3.05 ms, sys: 8.41 ms, total: 11.5 ms

Wall time: 25.4 s

As you might have expected, the parallel version runs faster than—more than twice 
as fast as—the single-process version. However, we don't even get close to eight 
times as fast. From this, you can infer that there is overhead above and beyond the 
simple computation that we parallelized. It is likely that this is due to our extensive 
use of time.sleep. Generally though, to understand exactly what impacts the 
performance of any given code, we need to profile the code and analyze the results. 
This is left as an exercise for curious readers, as a great deal of literature was 
produced in the past half century of computing research on parallel computing  
and its performance characteristics.
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We will set this aside though and connect our example to matplotlib. The next thing 
that we'd like to be able to do is plot our results. However, our data is handled in 
separate processes. We can use any number of approaches to solve this problem (for 
examples, anything from databases to creating an on-notebook ZeroMQ socket to 
receive data), but let's do something simple instead. Make the following changes to 
./lib/processor.py:

import numpy as np

def process(receiver):
    results = get_results(receiver)
    np.save("../data/results.npy", np.array(results))
    return results

We haven't muddied the logic coded in the get_results function, and because 
we're still using the process function, no code in the other modules needs to be 
updated. We do need to reload some modules though, as follows:

In [16]: import imp

         imp.reload(collector)

         imp.reload(processor)

         imp.reload(demo)

Out[16]: <module 'demo' from '../lib/demo.py'> 

Let's run the demo.main function in the following way, passing it some tasks, the 
results of which will be saved to our NumPy file:

In [17]: tasks = [1e8 / democfg.task_count] * democfg.task_count

         demo.main(tasks)

Starting task workers ...

Starting task collector ...

Starting task distributor ...

If you didn't see the expected output and you've checked the system process table to 
find out that eight Python processes are not running at high CPU specs, then the job 
is finished and you might need to flush stdout, as follows:

In [18]: sys.stdout.flush()

Processing result: 3.14124992

Processing result: 3.14037024

Processing result: 3.1411328

Processing result: 3.14301344

Processing result: 3.1412272
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Processing result: 3.14260256

Processing result: 3.14093152

Processing result: 3.1416672

Final result: 3.14152436

With the data saved, we can load it and plot it, as follows:

In [19]: results = np.load("../data/results.npy")

         (figure, axes) = plt.subplots(figsize=(16, 8))

         axes.scatter([x + 1 for x in range(len(results))],

                      results,

                      color=colors[0])

         axes.set_title("Estimated values of $\pi$", fontsize=28)

         axes.set_ylabel("~$\pi$", fontsize=24)

         axes.set_xlabel("Worker Number", fontsize=20)

         plt.show()

The following plot is the result of the preceding code:

This brings us to the end of our ZeroMQ cluster exploration, but it serves as an 
excellent introduction because IPython also uses ZeroMQ for its clustering features, 
and this is what we shall discuss next.
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Clustering with IPython
As explained in the IPython documentation for parallel computing, IPython has 
built-in support for parallelism. This came as a result of the architectural overhaul 
that IPython received when the project finished migrating to ZeroMQ in 2011. The 
architecture that resulted can be summarized with the following components, all of 
which are present in the IPython.parallel package:

• The IPython engine: This is a Python interpreter that accepts Python 
commands over a network connection. Multiple engines form the basis of 
IPython's parallel computing capabilities.

• The IPython hub: This is the process that keeps track of engine connections, 
schedulers, clients, task requests, and results. Its primary purpose is to 
facilitate queries that are made from the cluster state.

• The IPython schedulers: The actions that can be performed on an engine go 
through a scheduler. They also provide a fully asynchronous interface to a 
set of engines.

• The controller client: This is the user interface for developers who wish to 
access a set of engines. It is what we will be using subsequently in the code 
examples (in particular, the different views).

The following figure shows us the IPython architecture:

Thanks to the aforementioned architecture, IPython supports the following different 
styles of parallelism:

• Single program, multiple data
• Multiple programs, multiple data
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• Passing messages by using Message Passing Interface (MPI)
• Task farming
• Parallel data
• Combinations of the aforementioned approaches
• Custom user-defined approaches

Practically speaking, this allows the IPython users to tackle the following use cases:

• Quickly parallelize algorithms that are embarrassingly parallel by using 
a number of simple approaches. Many simple things can be parallelized 
interactively in one or two lines of code.

• Steer the traditional MPI applications on a supercomputer from an IPython 
session on your laptop.

• Analyze and visualize large datasets (that may be remote and/or distributed) 
interactively by using IPython and tools such as matplotlib or TVTK.

• Develop, test, and debug new parallel algorithms (that may use MPI) 
interactively.

• Tie together the multiple MPI jobs that run on different systems into a giant 
distributed and parallel system.

• Start a parallel job on your cluster and then have a remote collaborator 
connect to it and pull back data into their local IPython session for plotting 
and analysis.

• Run a set of tasks on a set of CPUs by using dynamic load balancing.

Getting started
To use IPython for parallel computing, you need to initialize an instance of the 
controller and one or more instances of the engine. Initially, it is best to simply start a 
controller and engines on a single host by using the ipcluster command. To initialize 
a controller and 4 engines on your localhost, switch to a terminal window with this 
notebook's virtual environment activated and execute the following command:

$ ipcluster start -n 4

This will run the ipcluster app in the foreground and show the following output:

2015-04-28 09:50:29.584 [IPClusterStart] Using existing profile dir: '/
Users/oubiwann/.ipython/profile_default'

2015-04-28 09:50:29.587 [IPClusterStart] Starting ipcluster with 
[daemon=False]
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2015-04-28 09:50:29.589 [IPClusterStart] Creating pid file: /Users/
oubiwann/.ipython/profile_default/pid/ipcluster.pid

2015-04-28 09:50:29.589 [IPClusterStart] Starting Controller with 
LocalControllerLauncher

2015-04-28 09:50:30.593 [IPClusterStart] Starting 4 Engines with 
LocalEngineSetLauncher

With an IPython cluster running, we're ready to start using it. There are several ways 
via which one can interact with an IPython cluster. The connection is made with a 
client object. However, the client object offers views for an actual interaction with the 
cluster. The following views are available:

• The direct view
• The load-balanced view
• The IPython parallel magic functions

Though not a view per se, the IPython cluster provides magic functions to interact 
with clusters, thus acting very much like a view. In an IPython Notebook, the  
parallel magic functions will often be what you want to use. For both the direct  
and load-balanced views, you will need to create a cluster client, as follows:

In [20]: from IPython.parallel import Client

         client = Client() 

         client.ids 

The client.ids attribute holds the IDs for each IPython cluster engine that was 
started by the call to the preceding ipcluster.

The direct view
The direct view is called so because the DirectView object offers an interface to 
the cluster that doesn't go through the schedulers. Instead, it offers direct, manual 
execution control.

Here's how you create a direct view from the client object:

In [21]: view = client.direct_view()

         view

Out[21]: <DirectView all>

Direct views are also available on the client via indices. The all part in the view 
object representation is an oblique reference to the fact that you have not selected 
some of the direct view instances on the object (such as the view index number or 
slicing), but have rather asked for all of them.
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By default, when executing functions in parallel, an asynchronous result object is 
returned, which is demonstrated in the following code:

In [22]: async_result = view.apply(np.random.rand, 2, 2)

         async_result

Out[22]: <AsyncResult: finished>

When the results are ready to be obtained, the result object representation will 
provide a clue to this fact by displaying finished. To get the result values, simply 
call the get method, as follows:

In [23]: values = async_result.get()

         values

Out[23]: [array([[ 0.07792881,  0.21319405],

                 [ 0.20925777,  0.74999169]]),

          array([[ 0.07792881, 0.21319405],

                 [ 0.20925777,  0.74999169]]),

          array([[ 0.07792881,  0.21319405],

                 [ 0.20925777,  0.74999169]]),

          array([[ 0.07792881,  0.21319405],

                 [ 0.20925777,  0.74999169]])]

As you might expect, we can also use the results in further parallel calls, as follows:

In [24]: async_result = view.apply(np.linalg.eigvals, values)

         async_result

Out[24]: <AsyncResult: eigvals>

In [25]: async_result.get()

Out[25]: [array([[ 0.01706021,  0.81086029],

                 [ 0.01706021,  0.81086029],

                 [ 0.01706021,  0.81086029],

                 [ 0.01706021,  0.81086029]]),

          array([[ 0.01706021,  0.81086029],

                 [ 0.01706021,  0.81086029],

                 [ 0.01706021,  0.81086029],

                 [ 0.01706021,  0.81086029]]),

          array([[ 0.01706021,  0.81086029],

                 [ 0.01706021,  0.81086029],

                 [ 0.01706021,  0.81086029],
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                 [ 0.01706021,  0.81086029]]),

          array([[ 0.01706021,  0.81086029],

                 [ 0.01706021,  0.81086029],

                 [ 0.01706021,  0.81086029],

                 [ 0.01706021,  0.81086029]])]

The load-balanced view
In contrast to the direct view, IPython offers a view that does not bypass the 
schedulers. Instead, this view executes based on the configured load-balancing scheme.

There are a variety of valid ways to determine where the jobs should be assigned  
in a load-balancing situation. IPython supports several standard schemes and  
even provides the means by which developers can easily add their own. The  
scheme can be selected either via the scheme argument to ipcontroller, or in  
the TaskScheduler.schemename attribute of a controller config object.

The following built-in routing schemes are provided by IPython: 

• lru: Least recently used
• plainrandom: Plain random
• twobin: Two-bin random
• leastload: Least load (default)
• weighted: Weighted two-bin random

To select one of the aforementioned schemes, simply use the ipcontroller 
command-line tool, as follows:

$ ipcontroller –scheme=twobin

Call the client with the appropriate method to get the load-balanced view, as follows:

In [26]: lb_view = client.load_balanced_view()

         lb_view

Out[26]: <LoadBalancedView None>

The basic usage is the same as the direct view:

In [27]: serial_result = map(lambda x:x**10, range(32))

         parallel_result = lb_view.map(lambda x:x**10, range(32))

In [28]: list(serial_result) == parallel_result.get()

Out[28]: True
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The load-balanced view provides a convenient decorator to create parallel functions. 
In form, the parallel functions look just like their serially executed cousins. However, 
with @parallel, the function obtains a map method, which will distribute the 
execution of the function across the cluster, as follows:

In [29]: @lb_view.parallel()

         def f(x):

             return 10.0*x**4

         f.map(range(32)).get()

Out[29]: [0.0,

          10.0,

          160.0,

          810.0,

          2560.0,

          6250.0,

          12960.0,

          24010.0,

          40960.0,

          65610.0,

          100000.0,

          146410.0,

          207360.0,

          285610.0,

          384160.0,

          506250.0,

          655360.0,

          835210.0,

          1049760.0,

          1303210.0,

          1600000.0,

          1944810.0,

          2342560.0,

          2798410.0,

          3317760.0,

          3906250.0,

          4569760.0,
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          5314410.0,

          6146560.0,

          7072810.0,

          8100000.0,

          9235210.0]

The parallel magic functions
If you are unfamiliar with IPython, then you may not know that IPython has a set of 
predefined functions that are referred to as the magic functions or simply magics. Some 
apply these functions only to a single line (the ones with the % prefix). However, 
some apply them to the entire cell (these have the %% prefix).

IPython comes with magics, which ease the user experience of executing code in 
parallel. If your parallel code requires libraries, you can use the following code to 
import them to all the engines:

In [30]: with view.sync_imports():

             import numpy

importing numpy on engine(s)

Now, let's execute the code that we used in the section on the direct view, as follows:

In [31]: %px async_result = numpy.random.rand(2, 2)

In [32]: %px numpy.linalg.eigvals(async_result)

         Out[0:2]: array([ 1.69123631,  0.0052597 ])

         Out[1:2]: array([ 1.4345667 ,  0.15208336])

         Out[2:2]: array([ 1.24709664, -0.06577105])

         Out[3:2]: array([ 0.39707627,  1.01065811])

An example – estimating the value of π
Let's use the clustering features of IPython to execute the same job that we did 
during the implementation of the ZeroMQ pipeline pattern. Go ahead and stop the 
cluster with four nodes and restart it with eight nodes, as follows:

$ ipcluster start -n 8

Let's get a fresh connection that is aware of the new nodes, as follows:

In [33]: client = Client() 

         client.ids

Out[33]: [0, 1, 2, 3, 4, 5, 6, 7]
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Next, we're going to do something different—we'll demonstrate working with 
blocking, synchronous results by explicitly setting a flag. Also, since the estimate_
pi function uses an imported module, we're going to have each engine import it,  
as follows:

In [34]: view = client.direct_view()

         view.block = True

         with view.sync_imports():

             import random

         importing random on engine(s)

Now, let's execute the π-estimating function in the new IPython cluster, timing it 
with the %%time magic function, as follows:

In [35]: %%time

         node_count = 8

         results = view.apply(estimate_pi, 1e8 / node_count)

         pi_est = sum(results)/len(client.ids)

         print("Result: {}".format(pi_est))

         Result: 3.1414122399999997

         CPU times: user 6.76 s, sys: 624 ms, total: 7.38 s

         Wall time: 19.1 s

The preceding code runs faster than our custom multiprocessing ZeroMQ example. 
It is almost four times faster than the original serial example that we gave, but all 
things being equal, its biggest advantage is that it's much easier to set up. However, 
thanks to the work we did in the previous section, we have an idea of what's going 
on behind the scenes due to the fact that IPython uses ZeroMQ to create and manage 
its clusters.

In addition to it being easy to set up, it's easier to plot the results. This is 
demonstrated in the following code:

In [36]: (figure, axes) = plt.subplots(figsize=(16, 8))

         axes.scatter([x + 1 for x in range(len(results))],

                      results, color=colors[0])

         axes.set_title("Estimated values of $\pi$", fontsize=28)

         axes.set_ylabel("~$\pi$", fontsize=24)

         axes.set_xlabel("Worker Number", fontsize=20)

         plt.show()
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The following plot is the result of the preceding code:

More clustering
There are other interesting options if you wish to parallelize the Python code and run 
it on clusters on problems that require you to visualize computationally intensive 
problems. Of particular interest is MIT's StarCluster project, which runs on Amazon 
AWS (EC2) and supports the Open Grid Engine (formerly known as the Sun Grid 
Engine). Furthermore, StarCluster has an IPython cluster plugin, which lets you 
easily run the IPython.parallel code on EC2. For more information on this, be sure 
to refer to this chapter's IPython Notebook, the StarCluster documentation, and the 
IPython documentation for parallel computations.

Summary
With this chapter, we reached the culmination of our adventure through the 
advanced topics in the world of matplotlib. Many of the topics covered in the latter 
half of this book crossed into other domains, as is often the case with the advanced 
usage of any software. These topics explored systems that did not have a direct and 
obvious connection with the narrow scope of matplotlib as a library. Rather, they 
reflected the usage patterns that are requested of software engineers working on 
real-world problems.
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This bears further reflection. Often, computing problems in both research settings 
and start-ups are initially tackled quickly to get the results and examine the data as 
soon as possible. The next round of usage might require the addition of a bit more 
functionality or some other code tweaks. After a few months, you may be in any of 
the following situations:

• You may end up with one or two functions of enormous size with no obvious 
or clear path towards something that would be more maintainable

• You may discover that you are doing far more computation than what was 
initially expected and/or working with or generating far more data than 
what was anticipated

• You may come to the realization that your problem has aspects that lend 
themselves quite nicely to parallelization and distributed processing

In particular, you may find out that in order to plot data, you have to execute vast, 
monolithic functions, whose final operations produce results that get plotted by 
matplotlib. In many cases, you may find out that properly refactoring your code  
and parallelizing it will allow you to perform the expensive computations 
concurrently, ultimately allowing your plot rendering to happen much more quickly.

In other words, even though matplotlib doesn't directly enter the realm of 
parallelization, at one time or another, our matplotlib workflows may require  
tight coordination with computations running in clustered environments, utilizing 
parallel execution patterns.. Ultimately, the developer or user experience that is 
perceived to be matplotlib can be improved with the techniques outlined in this 
chapter and in fact, the techniques that were covered in the entire book.
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