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1. FEd&Epythonik & M H HEdE b BEA
2. MR RIPLAS T2
MR (FRNTEREAENAER, finally)

1. SE4%: python@EX & fh %4
2. SEAR2: B Hpython#H T @A A BE . BEEVE, BETTAAL, RREFREL, etc.
3. SEMSARBIE — R T IS I R =R (yay)
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S ELE YR I python 1Y AR £
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Anaconda ] %2 %%
ipython notebook
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L P2 1] python H &R k5

1. Python M&#ETY

str,float,bool,int,long
pythonJZEAIEL: 7030, TR, K%L
python IR 454 . tuple,list,dictionary,etc
python i) N & PR
python N[ [/ X 2R 4w 42

o w N

H2#hhlk:  https://learnxinyminutes.com/docs/python/
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T E R I numpy ) ATTR 5

1. A HnumpyiE AT SN I2 5.
1 BBEMEFE, M, etc
2. AGRERIEFFERG]

2. numpy % A\ AN H
3. numpyEl’J T R

Atk FBEE ORI A pythonZEATHRE /1) Y&



SELE IR M pandas B FTTHR A

1. pandas 5 ##fEio
2. pandas f]dataframe /) %P W B R (GEiTdEPR, KD
3. pandasit) % 5l
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Btk P58 ORI M pythonidt A7 Bidli 7 i) 5=




SRR ) sklearn Y ETHE A

1. HF]HsklearnfEmnistZ s o2
2. FFHsklearnfift 2% 4 o] ) #5177
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http://scikit-learn.org/stable/auto_examples/index.html
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CAPM Model

Portfolio % r=2H4

[a%, b%, c%]

abs (a%) +abs(b%)+ abs(c%) = 100%




Market Portfolio

SP500
PERZE
Etc




N BJCAPM model

r;(t) = beta; * 1,,,(t) + alpha;(t)

CAPM says
E(alpha(t))=0

Linear scaled return of the market, with some noise at mean 0.
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r;(t) = beta; * r,,,(t) + alpha;(t)

TR B
Alpha /& &ML A, alphaIHIEEE T NE.
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E (alpha) =0

EPEUT ) betalH
7. Kbeta
RETH: /Pbeta

IR A BRI RS, BATCIET T, IR A HIOR G E [ beta



MAEEFFHES (APT)

r;(t) = beta; * 1,,,(t) + alpha;(t)

Beta N2 W 4L, Mg A E.

Beta = w*r
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Stock A: +1% mkt , beta=1.0

Stock B: -1% mkt , beta_ b=2.0

Long A, short B.




BRI HT vs 2

%

N

N

il

P SR -
o 15 fabR (features)
o JARIER (&L, Hlasz>D)




FIRA3 M AT B works ?

LA TEPRRIARZMEH S (Bl 2D
i)

SR




=

en Y NINE Y AN WSE K B MR/ PN

Momentum &4 mom|t] = price[t] / (price[t-n]) — 1

SMA : Simple Moving Average. (smooth, laggged) ... B] LLEAE—Fl g 2%,

BB (bollinger bands) BOLL{E#r : #RFEILFE M RiEZE




Normalization

SMA —0.5 +0.5
Mom —0.5, +0.5

Norm = (value — mean)/values.std()




Sales
Sales
Sales

Radio

Shown are Sales vs TV, Radio and Newspaper, with a blue

linear-regression line fit separately to each.
Can we predict Sales using these three?
Perhaps we can do better using a model

Sales =~ f(TV,Radio,Newspaper)



Here Sales is a response or target that we wish to predict. We
generically refer to the response as Y.

TV is a feature, or input, or predictor; we name it Xj.

Likewise name Radio as X2, and so on.

We can refer to the input vector collectively as

X1
X =1 X,
X3
Now we write our model as
Y=f(X)+e

where € captures measurement errors and other discrepancies.



e With a good f we can make predictions of Y at new points
K. =

e We can understand which components of
X = (X1,X3,...,X,) are important in explaining Y, and
which are irrelevant. e.g. Seniority and Years of
Education have a big impact on Income, but Marital
Status typically does not.

e Depending on the complexity of f, we may be able to
understand how each component X, of X affects Y.



Is there an ideal f(X)? In particular, what is a good value for
f(X) at any selected value of X, say X = 47 There can be
many Y values at X = 4. A good value is

f(4) = E(Y|X =4)
E(Y|X = 4) means expected value (average) of Y given X = 4.

This ideal f(x) = E(Y|X = ) is called the regression function.



e Typically we have few if any data points with X =4
exactly.

e So we cannot compute E(Y|X = x)!

e Relax the definition and let

f(@) = Ave(Y|X € N(z))

where N () is some neighborhood of x.




The linear model is an important example of a parametric
model:

fL(X) = Bo+ BiX1+ B2 X2+ ... BpXp.

e A linear model is specified in terms of p + 1 parameters
/607/813 o« .o 1/817'

e We estimate the parameters by fitting the model to
training data.

e Although it is almost never correct, a linear model often
serves as a good and interpretable approximation to the
unknown true function f(X).



A linear model fL (X) = BO + BlX gives a reasonable fit here

-1

-2

A quadratic model fQ (X) = Bo + B1X + B2 X2 fits slightly
better.




Simulated example. Red points are simulated values for income
from the model

income = f(education, seniority) + €

f is the blue surface.
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Linear regression model fit to the simulated data.

fL(education, seniority) = Bﬁ—,@lxeducation—kngseniority



9\.\100“\

N

\N

)
B ANNNNANANNNA
MR

Even more flexible spline regression model

fs(education, seniority) fit to the simulated data. Here the
fitted model makes no errors on the training data! Also known
as overfitting.



S _|Subset Selection
X Lasso
Least Squares
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Black curve is truth. Red curve on right is MSE+e, grey curve is
MSET,. Orange, blue and green curves/squares correspond to fits of
different flexibility.




Suppose we have fit a model f (z) to some training data Tr, and
let (xo,y0) be a test observation drawn from the population. If
the true model is Y = f(X) + € (with f(z) = E(Y|X = x)),
then

B (yo — f(z0)) = Var(f(zo)) + [Bias(f(xo))]* + Var(e)

The expectation averages over the variability of yo as well as
the variability in Tr. Note that Bias(f(xg))] = E|[f(x0)] — f(z0).

Typically as the flexibility of f increases, its variance increases,
and its bias decreases. So choosing the flexibility based on
average test error amounts to a bias-variance trade-off.



Homework
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