
www.allitebooks.com

http://www.allitebooks.org

Mastering pandas

Master the features and capabilities of pandas,
a data analysis toolkit for Python

Femi Anthony

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering pandas

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1150615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-196-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Femi Anthony

Reviewers
Opeyemi Akinjayeju

Louis Hénault

Carlos Marin

Commissioning Editor
Karthikey Pandey

Acquisition Editor
Kevin Colaco

Content Development Editor
Arun Nadar

Technical Editor
Mohita Vyas

Copy Editors
Tani Kothari

Jasmine Nadar

Vikrant Phadke

Project Coordinator
Neha Bhatnagar

Proofreader
Safis Editing

Indexer
Tejal Soni

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Femi Anthony is a seasoned and knowledgeable software programmer, with over
15 years experience in a vast array of languages, including Perl, C, C++, Java, and
Python. He has worked in both the Internet space and financial services space for
many years and is now working for a well-known financial data company. He holds
a bachelor's degree in mathematics with computer science from MIT and a master's
degree from the University of Pennsylvania. His pet interests include data science,
machine learning, and Python. Femi is working on a few side projects in these areas.
His hobbies include reading, soccer, and road cycling. You can follow him at
@dataphanatik, and for any queries, contact him at femibyte@gmail.com.

First and foremost, I would like to thank my wife, Ene, for her
support throughout my career and in writing this book. She has
been my inspiration and motivation for continuing to improve my
knowledge and helping me move ahead in my career. She is my
rock, and I dedicate this book to her. I also thank my wonderful
children, Femi, Lara, and our new addition, Temi, for always making
me smile and for understanding on those days when I was writing
this book instead of playing games with them.

I would also like to thank my book reviewers—Opeyemi Akinjayeju,
who is a dear friend of mine, as well as Louis Hénault and Carlos
Marin—for their invaluable feedback and input toward the
completion of this book. Lastly, I would like to thank my parents,
George and Katie Anthony, for instilling a strong work ethic in me
from an early age.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Opeyemi Akinjayeju is risk management professional. He holds graduate degrees
in statistics (Penn State University) and economics (Georgia Southern University),
and has built predictive models for insurance companies, banks, captive automotive
finance lenders, and consulting firms. He enjoys analyzing data and solving complex
business problems using SAS, R, EViews/Gretl, Minitab, SQL, and Python. Opeyemi is
also an adjunct at Northwood University where he designs and teaches undergraduate
courses in microeconomics and macroeconomics.

Louis Hénault is a data scientist at OgilvyOne Paris. He loves combining
mathematics and computer science to solve real-world problems in an innovative
way. After getting a master's degree in engineering with a major in data sciences
and another degree in applied mathematics in France, he entered into the French
start-up ecosystem, working on several projects. Louis has gained experience in
various industries, including geophysics, application performance management,
online music platforms, e-commerce, and digital advertising. He is now working
for a leading customer engagement agency, where he helps clients unlock the
complete value of customers using big data.

I've met many outstanding people in my life who have helped me
become what I am today. A great thank you goes to the professors,
authors, and colleagues who taught me many fantastic things. Of
course, I can't end this without a special thought for my friends
and family.

www.allitebooks.com

http://www.allitebooks.org

Carlos Marin is a software engineer at Rackspace, where he maintains and
develops a suite of applications that manage networking devices in Rackspace's data
centers. He has made contributions to OpenStack, and has worked with multiple
teams and on multiple projects within Rackspace, from the Identity API to big data
and analytics.

Carlos graduated with a degree in computer engineering from the National
Autonomous University of Mexico. Prior to joining Rackspace, he worked as a
consultant, developing software for multiple financial enterprises in programming
languages. In Austin, Texas, he regularly attends local technology events and user
groups. He also spends time volunteering and pursuing outdoor adventures.

I'm grateful to my parents and family, who have always believed
in me.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface ix
Chapter 1: Introduction to pandas and Data Analysis 1

Motivation for data analysis 1
We live in a big data world 1
4 V's of big data 2

Volume of big data 2
Velocity of big data 3
Variety of big data 3
Veracity of big data 4

So much data, so little time for analysis 4
The move towards real-time analytics 5

How Python and pandas fit into the data analytics mix 5
What is pandas? 6
Benefits of using pandas 7
Summary 10

Chapter 2: Installation of pandas and the Supporting Software 11
Selecting a version of Python to use 11
Python installation 12

Linux 12
Installing Python from compressed tarball 13

Windows 14
Core Python installation 14
Third-party Python software installation 15

Mac OS X 15
Installation using a package manager 16

Installation of Python and pandas from a third-party vendor 16
Continuum Analytics Anaconda 17

Installing Anaconda 17
Linux 17
Mac OS X 18

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Windows 18
Final step for all platforms 18

Other numeric or analytics-focused Python distributions 19
Downloading and installing pandas 19

Linux 20
Ubuntu/Debian 21
Red Hat 21
Ubuntu/Debian 21
Fedora 21
OpenSuse 21

Mac 21
Source installation 22
Binary installation 22

Windows 22
Binary Installation 22
Source installation 23
IPython 24
IPython Notebook 24

IPython installation 26
Linux 26
Windows 26
Mac OS X 26
Install via Anaconda (for Linux/Mac OS X) 27
Wakari by Continuum Analytics 27
Virtualenv 27

Virtualenv installation and usage 27
Summary 28

Chapter 3: The pandas Data Structures 29
NumPy ndarrays 29

NumPy array creation 30
NumPy arrays via numpy.array 30
NumPy array via numpy.arange 30
NumPy array via numpy.linspace 31
NumPy array via various other functions 31

NumPy datatypes 33
NumPy indexing and slicing 34

Array slicing 36
Array masking 38
Complex indexing 39

Copies and views 40
Operations 40

Basic operations 41
Reduction operations 44
Statistical operators 45
Logical operators 45

Table of Contents

[iii]

Broadcasting 46
Array shape manipulation 47

Flattening a multidimensional array 47
Reshaping 47
Resizing 48
Adding a dimension 49

Array sorting 49
Data structures in pandas 50

Series 50
Series creation 50
Operations on Series 53

DataFrame 56
DataFrame Creation 57
Operations 62

Panel 65
Using 3D NumPy array with axis labels 65
Using a Python dictionary of DataFrame objects 66
Using the DataFrame.to_panel method 67
Other operations 68

Summary 68
Chapter 4: Operations in pandas, Part I – Indexing and
Selecting 69

Basic indexing 69
Accessing attributes using dot operator 71
Range slicing 73

Label, integer, and mixed indexing 75
Label-oriented indexing 75

Selection using a Boolean array 78
Integer-oriented indexing 79
The .iat and .at operators 81
Mixed indexing with the .ix operator 81
MultiIndexing 85
Swapping and reordering levels 89
Cross sections 90

Boolean indexing 91
The is in and any all methods 92
Using the where() method 95
Operations on indexes 97

Summary 98

Table of Contents

[iv]

Chapter 5: Operations in pandas, Part II – Grouping, Merging,
and Reshaping of Data 99

Grouping of data 99
The groupby operation 99

Using groupby with a MultiIndex 108
Using the aggregate method 111
Applying multiple functions 111
The transform() method 112
Filtering 114

Merging and joining 114
The concat function 115
Using append 118
Appending a single row to a DataFrame 120
SQL-like merging/joining of DataFrame objects 120

The join function 124
Pivots and reshaping data 125

Stacking and unstacking 127
The stack() function 128

Other methods to reshape DataFrames 131
Using the melt function 131

Summary 133
Chapter 6: Missing Data, Time Series, and Plotting
Using Matplotlib 135

Handling missing data 135
Handling missing values 141

Handling time series 143
Reading in time series data 144

DateOffset and TimeDelta objects 145
Time series-related instance methods 146

Shifting/lagging 147
Frequency conversion 147
Resampling of data 149
Aliases for Time Series frequencies 154

Time series concepts and datatypes 155
Period and PeriodIndex 155
Conversions between Time Series datatypes 157

A summary of Time Series-related objects 158
Plotting using matplotlib 158

Summary 161
Chapter 7: A Tour of Statistics – The Classical Approach 163

Descriptive statistics versus inferential statistics 164
Measures of central tendency and variability 164

Table of Contents

[v]

Measures of central tendency 164
The mean 164
The median 165
The mode 165
Computing measures of central tendency of a dataset in Python 166

Measures of variability, dispersion, or spread 170
Range 171
Quartile 171
Deviation and variance 173

Hypothesis testing – the null and alternative hypotheses 174
The null and alternative hypotheses 175

The alpha and p-values 176
Type I and Type II errors 177

Statistical hypothesis tests 177
Background 177
The z-test 178
The t-test 182
A t-test example 185

Confidence intervals 188
An illustrative example 189

Correlation and linear regression 190
Correlation 190
Linear regression 191
An illustrative example 192

Summary 195
Chapter 8: A Brief Tour of Bayesian Statistics 197

Introduction to Bayesian statistics 197
Mathematical framework for Bayesian statistics 199

Bayes theory and odds 202
Applications of Bayesian statistics 202

Probability distributions 203
Fitting a distribution 203

Discrete probability distributions 204
Discrete uniform distributions 204
Continuous probability distributions 213

Bayesian statistics versus Frequentist statistics 221
What is probability? 221
How the model is defined 221
Confidence (Frequentist) versus Credible (Bayesian) intervals 222

Conducting Bayesian statistical analysis 222
Monte Carlo estimation of the likelihood function and PyMC 223

Bayesian analysis example – Switchpoint detection 224
References 237
Summary 238

Table of Contents

[vi]

Chapter 9: The pandas Library Architecture 239
Introduction to pandas' file hierarchy 239
Description of pandas' modules and files 240

pandas/core 240
pandas/io 243
pandas/tools 246
pandas/sparse 247
pandas/stats 247
pandas/util 248
pandas/rpy 249
pandas/tests 249
pandas/compat 250
pandas/computation 250
pandas/tseries 251
pandas/sandbox 253

Improving performance using Python extensions 253
Summary 256

Chapter 10: R and pandas Compared 257
R data types 257

R lists 258
R DataFrames 259

Slicing and selection 261
R-matrix and NumPy array compared 261
R lists and pandas series compared 262

Specifying column name in R 264
Specifying column name in pandas 264

R's DataFrames versus pandas' DataFrames 265
Multicolumn selection in R 265
Multicolumn selection in pandas 265

Arithmetic operations on columns 266
Aggregation and GroupBy 267

Aggregation in R 268
The pandas' GroupBy operator 270

Comparing matching operators in R and pandas 271
R %in% operator 271
The pandas isin() function 272

Logical subsetting 272
Logical subsetting in R 272
Logical subsetting in pandas 273

Split-apply-combine 273
Implementation in R 274

Table of Contents

[vii]

Implementation in pandas 275
Reshaping using melt 276

The R melt() function 277
The pandas melt() function 277

Factors/categorical data 278
An R example using cut() 278
The pandas solution 279

Summary 281
Chapter 11: Brief Tour of Machine Learning 283

Role of pandas in machine learning 284
Installation of scikit-learn 284

Installing via Anaconda 284
Installing on Unix (Linux/Mac OS X) 284
Installing on Windows 285

Introduction to machine learning 285
Supervised versus unsupervised learning 286
Illustration using document classification 286

Supervised learning 286
Unsupervised learning 286

How machine learning systems learn 287
Application of machine learning – Kaggle Titanic competition 287

The Titanic: machine learning from disaster problem 287
The problem of overfitting 288

Data analysis and preprocessing using pandas 289
Examining the data 289
Handling missing values 290

A naïve approach to Titanic problem 300
The scikit-learn ML/classifier interface 302
Supervised learning algorithms 305

Constructing a model using Patsy for scikit-learn 305
General boilerplate code explanation 306
Logistic regression 309
Support vector machine 311
Decision trees 313
Random forest 315

Unsupervised learning algorithms 316
Dimensionality reduction 316
K-means clustering 321

Summary 323
Index 325

[ix]

Preface
Welcome to Mastering pandas. This book will teach you how to effectively use
pandas, which is a one of the most popular Python packages today for performing
data analysis. The first half of this book starts off with the rationale for performing
data analysis. Then it introduces Python and pandas in particular, taking you
through the installation steps, what pandas is all about, what it can be used for,
data structures in pandas, and how to select, merge and group data in pandas. Then
it covers handling missing data and time series data, as well as plotting for data
visualization.

The second half of this book shows you how to use pandas to perform inferential
statistics using the classical and Bayesian approaches, followed by a chapter on
pandas architecture, before rounding off with a whirlwind tour of machine learning,
which introduces the scikit-learn library. The aim of this book is to immerse you into
pandas through the use of illustrative examples on real-world datasets.

What this book covers
Chapter 1, Introduction to pandas and Data Analysis, explains the motivation for doing
data analysis, introduces the Python language and the pandas library, and discusses
how they can be used for data analysis. It also describes the benefits of using pandas
for data analysis.

Chapter 2, Installation of pandas and the Supporting Software, gives a detailed description
on how to install pandas. It gives installation instructions across multiple operating
system platforms: Unix, MacOS X, and Windows. It also describes how to install
supporting software, such as NumPy and IPython.

Preface

[x]

Chapter 3, The pandas Data Structures, introduces the data structures that form the
bedrock of the pandas library. The numpy.ndarray data structure is first introduced
and discussed as it forms the basis for the pandas.Series and pandas.DataFrame data
structures, which are the foundation data structures used in pandas. This chapter
may be the most important on in the book, as knowledge of these data structures
is absolutely necessary to do data analysis using pandas.

Chapter 4, Operations in pandas, Part I – Indexing and Selecting, focuses on how to
access and select data from the pandas data structures. It discusses the various ways
of selecting data via Basic, Label, Integer, and Mixed Indexing. It explains more
advanced indexing concepts such as MultiIndex, Boolean indexing, and operations
on Index types.

Chapter 5, Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data,
tackles the problem of rearranging data in pandas' data structures. The various
functions in pandas that enable the user to rearrange data are examined by utilizing
them on real-world datasets. This chapter examines the different ways in which data
can be rearranged: by aggregation/grouping, merging, concatenating, and reshaping.

Chapter 6, Missing Data, Time Series, and Plotting using Matplotlib, discusses topics
that are necessary for the pre-processing of data that is to be used as input for
data analysis, prediction, and visualization. These topics include how to handle
missing values in the input data, how to handle time series data, and how to use
the matplotlib library to plot data for visualization purposes.

Chapter 7, A Tour of Statistics – The Classical Approach, takes you on a brief tour
of classical statistics and shows how pandas can be used together with Python's
statistical packages to conduct statistical analyses. Various statistical topics are
addressed, including statistical inference, measures of central tendency, hypothesis
testing, Z- and T-tests, analysis of variance, confidence intervals, and correlation
and regression.

Chapter 8, A Brief Tour of Bayesian Statistics, discusses an alternative approach to
performing statistical analysis, known as Bayesian analysis. This chapter introduces
Bayesian statistics and discusses the underlying mathematical framework. It
examines the various probability distributions used in Bayesian analysis and
shows how to generate and visualize them using matplotlib and scipy.stats. It also
introduces the PyMC library for performing Monte Carlo simulations, and provides
a real-world example of conducting a Bayesian inference using online data.

Chapter 9, The pandas Library Architecture, provides a fairly detailed description of
the code underlying pandas. It gives a breakdown of how the pandas library code
is organized and describes the various modules that make up pandas, with some
details. It also has a section that shows the user how to improve Python and pandas's
performance using extensions.

Preface

[xi]

Chapter 10, R and pandas Compared, focuses on comparing pandas with R, the stats
package on which much of pandas's functionality is based. This chapter compares
R data types and their pandas equivalents, and shows how the various operations
compare in both libraries. Operations such as slicing, selection, arithmetic operations,
aggregation, group-by, matching, split-apply-combine, and melting are compared.

Chapter 11, Brief Tour of Machine Learning, takes you on a whirlwind tour of machine
learning, with focus on using the pandas library as a tool to preprocess input data
into machine learning programs. It also introduces the scikit-learn library, which is
the most widely used machine learning toolkit in Python. Various machine learning
techniques and algorithms are introduced by applying them to a well-known machine
learning classification problem: which passengers survived the sinking of the Titanic?

What you need for this book
This software applies to all the chapters of the book:

• Windows/Mac OS/Linux
• Python 2.7.x
• pandas
• IPython
• R
• scikit-learn

For hardware, there are no specific requirements, since Python and pandas can run
on any PC that has Mac, Linux, or Windows.

Who this book is for
This book is intended for Python programmers, mathematicians, and analysts who
already have a basic understanding of Python and wish to learn about its data
analysis capabilities in depth. Maybe your appetite has been whetted after using
Python for a few months, or maybe you are an R user who wishes to investigate
what Python has to offer with regards to data analysis. In either case, this book will
help you master the core features and capabilities of pandas for data analysis. It
would be helpful for the user to have some experience using Python or experience
with a data analysis package such as R.

www.allitebooks.com

http://www.allitebooks.org

Preface

[xii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "
Upon installation, the following folders should be added to the PATH environment
variable: C:\Python27\ and C:\Python27\Tools\Scripts."

Any command-line input or output is written as follows:

brew install readline

brew install zeromq

pip install ipython pyzmq tornado pygments

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "The preceding
image of PYMC pandas Example is taken from http://healthyalgorithms.files.
wordpress.com/2012/01/pymc-pandas-example.png."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

http://healthyalgorithms.files.wordpress.com/2012/01/pymc-pandas-example.png
http://healthyalgorithms.files.wordpress.com/2012/01/pymc-pandas-example.png
www.packtpub.com/authors

Preface

[xiii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

You can also download the code from the GitHub repository at:
https://github.com/femibyte/mastering_pandas

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/femibyte/mastering_pandas
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xiv]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introduction to pandas
and Data Analysis

In this chapter, we address the following:

• Motivation for data analysis
• How Python and pandas can be used for data analysis
• Description of the pandas library
• Benefits of using pandas

Motivation for data analysis
In this section, we will discuss the trends that are making data analysis an increasingly
important field of endeavor in today's fast-moving technological landscape.

We live in a big data world
The term big data has become one of the hottest technology buzzwords in the past
two years. We now increasingly hear about big data in various media outlets, and
big data startup companies have increasingly been attracting venture capital. A
good example in the area of retail would be Target Corporation, which has invested
substantially in big data and is now able to identify potential customers by using
big data to analyze people's shopping habits online; refer to a related article at
http://nyti.ms/19LT8ic.

Loosely speaking, big data refers to the phenomenon wherein the amount of data
exceeds the capability of the recipients of the data to process it. Here is a Wikipedia
entry on big data that sums it up nicely: http://en.wikipedia.org/wiki/Big_data.

http://nyti.ms/19LT8ic
http://en.wikipedia.org/wiki/Big_data

Introduction to pandas and Data Analysis

[2]

4 V's of big data
A good way to start thinking about the complexities of big data is along what are
called the 4 dimensions, or 4 V's of big data. This model was first introduced as the
3V's by Gartner analyst Doug Laney in 2001. The 3V's stood for Volume, Velocity,
and Variety, and the 4th V, Veracity, was added later by IBM. Gartner's official
definition is as follows:

"Big data is high volume, high velocity, and/or high variety information assets
that require new forms of processing to enable enhanced decision making, insight
discovery and process optimization."

 Laney, Douglas. "The Importance of 'Big Data': A Definition", Gartner

Volume of big data
The volume of data in the big data age is simply mind-boggling. According to
IBM, by 2020, the total amount of data on the planet would have ballooned to 40
zettabytes. You heard that right-40 zettabytes is 43 trillion gigabytes, which is about
4 × 1021 bytes. For more information on this refer to the Wikipedia page on Zettabyte
- http://en.wikipedia.org/wiki/Zettabyte.

To get a handle of how much data this would be, let me refer to an EMC press
release published in 2010, which stated what 1 zettabyte was approximately equal to:

"The digital information created by every man, woman and child on Earth
'Tweeting' continuously for 100 years " or "75 billion fully-loaded 16 GB Apple
iPads, which would fill the entire area of Wembley Stadium to the brim 41 times,
the Mont Blanc Tunnel 84 times, CERN's Large Hadron Collider tunnel 151
times, Beijing National Stadium 15.5 times or the Taipei 101 Tower 23 times..."

 EMC study projects 45× data growth by 2020

The growth rate of data has been fuelled largely by a few factors, such as the
following:

• The rapid growth of the Internet.
• The conversion from analog to digital media coupled with an increased

capability to capture and store data, which in turn has been made possible
with cheaper and more capable storage technology. There has been a
proliferation of digital data input devices such as cameras and wearables,
and the cost of huge data storage has fallen rapidly. Amazon Web Services is
a prime example of the trend toward much cheaper storage.

http://en.wikipedia.org/wiki/Zettabyte

Chapter 1

[3]

The Internetification of devices, or rather Internet of Things, is the phenomenon
wherein common household devices, such as our refrigerators and cars, will be
connected to the Internet. This phenomenon will only accelerate the above trend.

Velocity of big data
From a purely technological point of view, velocity refers to the throughput of big
data, or how fast the data is coming in and is being processed. This has ramifications
on how fast the recipient of the data needs to process it to keep up. Real-time
analytics is one attempt to handle this characteristic. Tools that can help enable this
include Amazon Web Services Elastic Map Reduce.

At a more macro level, the velocity of data can also be regarded as the increased
speed at which data and information can now be transferred and processed faster
and at greater distances than ever before.

The proliferation of high-speed data and communication networks coupled with
the advent of cell phones, tablets, and other connected devices, are primary factors
driving information velocity. Some measures of velocity include the number of
tweets per second and the number of emails per minute.

Variety of big data
The variety of big data comes from having a multiplicity of data sources that
generate the data, and the different formats of the data that are produced.

This results in a technological challenge for the recipients of the data who have to
process it. Digital cameras, sensors, the web, cell phones, and so on are some of the
data generators that produce data in differing formats, and the challenge comes in
being able to handle all these formats and extract meaningful information from the
data. The ever-changing nature of the data formats with the dawn of the big data era
has led to a revolution in the database technology industry, with the rise of NoSQL
databases to handle what is known as unstructured data or rather data whose format
is fungible or constantly changing. For more information on Couchbase, refer to
"Why NoSQL- http://bit.ly/1c3iVEc.

http://bit.ly/1c3iVEc

Introduction to pandas and Data Analysis

[4]

Veracity of big data
The 4th characteristic of big data – veracity, which was added later, refers to the
need to validate or confirm the correctness of the data or the fact that the data
represents the truth. The sources of data must be verified and the errors kept to a
minimum. According to an estimate by IBM, poor data quality costs the US economy
about $3.1 trillion dollars a year. For example, medical errors cost the United States
$19.5 billion in 2008; for more information you can refer to a related article at
http://bit.ly/1CTah5r. Here is an info-graphic by IBM that summarizes the
4V's of big data:

IBM on the 4 V's of big data

So much data, so little time for analysis
Data analytics has been described by Eric Schmidt, the former CEO of Google, as the
Future of Everything. For reference, you can check out a YouTube video called Why
Data Analytics is the Future of Everything at http://bit.ly/1KmqGCP.

Chapter 1

[5]

The volume and velocity of data will continue to increase in the big data age.
Companies that can efficiently collect, filter, and analyze data results in information
that allows them to better meet the needs of their customers in a much quicker
timeframe will gain a significant competitive advantage over their competitors.
For example, data analytics (Culture of Metrics) plays a very key role in the business
strategy of http://www.amazon.com/. For more information refer to Amazon.com
Case Study, Smart Insights at http://bit.ly/1glnA1u.

The move towards real-time analytics
As technologies and tools have evolved, to meet the ever-increasing demands of
business, there has been a move towards what is known as real-time analytics. More
information on Insight Everywhere, Intel available at http://intel.ly/1899xqo.

In the big data Internet era, here are some examples:

• Online businesses demand instantaneous insights into how the new
products/features they have introduced in their online market are doing
and how they can adjust their online product mix accordingly. Amazon
is a prime example of this with their Customers Who Viewed This Item Also
Viewed feature.

• In finance, risk management and trading systems demand almost
instantaneous analysis in order to make effective decisions based
on data-driven insights.

How Python and pandas fit into the data
analytics mix
The Python programming language is one of the fastest growing languages today in
the emerging field of data science and analytics. Python was created by Guido von
Russom in 1991, and its key features include the following:

• Interpreted rather than compiled
• Dynamic type system
• Pass by value with object references
• Modular capability
• Comprehensive libraries
• Extensibility with respect to other languages

http://www.amazon.com/
http://bit.ly/1glnA1u
http://intel.ly/1899xqo

Introduction to pandas and Data Analysis

[6]

• Object orientation
• Most of the major programming paradigms-procedural, object-oriented, and

to a lesser extent, functional.

For more information, refer the Wikipedia page on
Python at http://en.wikipedia.org/wiki/
Python_%28programming_language%29.

Among the characteristics that make Python popular for data science are its very
user-friendly (human-readable) syntax, the fact that it is interpreted rather than
compiled (leading to faster development time), and its very comprehensive library
for parsing and analyzing data, as well as its capacity for doing numerical and
statistical computations. Python has libraries that provide a complete toolkit for
data science and analysis. The major ones are as follows:

• NumPy: The general-purpose array functionality with emphasis on numeric
computation

• SciPy: Numerical computing
• Matplotlib: Graphics
• pandas: Series and data frames (1D and 2D array-like types)
• Scikit-Learn: Machine learning
• NLTK: Natural language processing
• Statstool: Statistical analysis

For this book, we will be focusing on the 4th library listed in the preceding list, pandas.

What is pandas?
The pandas is a high-performance open source library for data analysis in Python
developed by Wes McKinney in 2008. Over the years, it has become the de-facto
standard library for data analysis using Python. There's been great adoption of
the tool, a large community behind it, (220+ contributors and 9000+ commits by
03/2014), rapid iteration, features, and enhancements continuously made.

Some key features of pandas include the following:

• It can process a variety of data sets in different formats: time series, tabular
heterogeneous, and matrix data.

• It facilitates loading/importing data from varied sources such as CSV and
DB/SQL.

http://en.wikipedia.org/wiki/Python_%28programming_language%29
http://en.wikipedia.org/wiki/Python_%28programming_language%29

Chapter 1

[7]

• It can handle a myriad of operations on data sets: subsetting, slicing, filtering,
merging, groupBy, re-ordering, and re-shaping.

• It can deal with missing data according to rules defined by the user/
developer: ignore, convert to 0, and so on.

• It can be used for parsing and munging (conversion) of data as well as
modeling and statistical analysis.

• It integrates well with other Python libraries such as statsmodels, SciPy,
and scikit-learn.

• It delivers fast performance and can be speeded up even more by making use
of Cython (C extensions to Python).

For more information go through the official pandas documentation available at
http://pandas.pydata.org/pandas-docs/stable/.

Benefits of using pandas
The pandas forms a core component of the Python data analysis corpus. The
distinguishing feature of pandas is the suite of data structures that it provides, which
is naturally suited to data analysis, primarily the DataFrame and to a lesser extent
Series (1-D vectors) and Panel (3D tables).

Simply put, pandas and statstools can be described as Python's answer to R, the
data analysis and statistical programming language that provides both the data
structures, such as R-data frames, and a rich statistical library for data analysis.

The benefits of pandas over using a language such as Java, C, or C++ for data
analysis are manifold:

• Data representation: It can easily represent data in a form naturally suited
for data analysis via its DataFrame and Series data structures in a concise
manner. Doing the equivalent in Java/C/C++ would require many lines of
custom code, as these languages were not built for data analysis but rather
networking and kernel development.

• Data subsetting and filtering: It provides for easy subsetting and filtering of
data, procedures that are a staple of doing data analysis.

www.allitebooks.com

http://pandas.pydata.org/pandas-docs/stable/
http://www.allitebooks.org

Introduction to pandas and Data Analysis

[8]

• Concise and clear code: Its concise and clear API allows the user to focus
more on the core goal at hand, rather than have to write a lot of scaffolding
code in order to perform routine tasks. For example, reading a CSV file into
a DataFrame data structure in memory takes two lines of code, while doing
the same task in Java/C/C++ would require many more lines of code or
calls to non-standard libraries, as illustrated in the following table. Here,
let's suppose that we had the following data:

Country Year CO2
Emissions

Power
Consumption

Fertility
Rate

Internet
Usage
Per
1000
People

Life
Expectancy

Population

Belarus 2000 5.91 2988.71 1.29 18.69 68.01 1.00E+07

Belarus 2001 5.87 2996.81 43.15 9970260

Belarus 2002 6.03 2982.77 1.25 89.8 68.21 9925000

Belarus 2003 6.33 3039.1 1.25 162.76 9873968

Belarus 2004 3143.58 1.24 250.51 68.39 9824469

Belarus 2005 1.24 347.23 68.48 9775591

In a CSV file, this data that we wish to read would look like the following:

Country,Year,CO2Emissions,PowerConsumption,FertilityRate,
InternetUsagePer1000, LifeExpectancy, Population
Belarus,2000,5.91,2988.71,1.29,18.69,68.01,1.00E+07
Belarus,2001,5.87,2996.81,,43.15,,9970260
Belarus,2002,6.03,2982.77,1.25,89.8,68.21,9925000
...
Philippines,2000,1.03,514.02,,20.33,69.53,7.58E+07
Philippines,2001,0.99,535.18,,25.89,,7.72E+07
Philippines,2002,0.99,539.74,3.5,44.47,70.19,7.87E+07
...
Morocco,2000,1.2,489.04,2.62,7.03,68.81,2.85E+07
Morocco,2001,1.32,508.1,2.5,13.87,,2.88E+07
Morocco,2002,1.32,526.4,2.5,23.99,69.48,2.92E+07
..

The data here is taken from World Bank Economic data available at:
http://data.worldbank.org.

In Java, we would have to write the following code:

public class CSVReader {
public static void main(String[] args) {

http://data.worldbank.org

Chapter 1

[9]

 String[] csvFile=args[1];
 CSVReader csvReader = new csvReader();
 List<Map>dataTable=csvReader.readCSV(csvFile);
 }
public void readCSV(String[] csvFile)
{
 BufferedReader bReader=null;
 String line="";
 String delim=",";
 //Initialize List of maps, each representing a line of the csv file
 List<Map> data=new ArrayList<Map>();
 try {
 bufferedReader = new BufferedReader(new
FileReader(csvFile));
 // Read the csv file, line by line
 while ((line = br.readLine()) != null){
 String[] row = line.split(delim);
 Map<String,String> csvRow=new HashMap<String,String>();
 csvRow.put('Country')=row[0];
 csvRow.put('Year')=row[1];
 csvRow.put('CO2Emissions')=row[2]; csvRow.
put('PowerConsumption')=row[3];
 csvRow.put('FertilityRate')=row[4];
 csvRow.put('InternetUsage')=row[1];
 csvRow.put('LifeExpectancy')=row[6];
 csvRow.put('Population')=row[7];
 data.add(csvRow);
 }
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return data;
}

But, using pandas, it would take just two lines of code:

import pandas as pd
worldBankDF=pd.read_csv('worldbank.csv')

In addition, pandas is built upon the NumPy libraries and hence, inherits many of
the performance benefits of this package, especially when it comes to numerical and
scientific computing. One oft-touted drawback of using Python is that as a scripting
language, its performance relative to languages like Java/C/C++ has been rather
slow. However, this is not really the case for pandas.

Introduction to pandas and Data Analysis

[10]

Summary
We live in a big data era characterized by the 4V's- volume, velocity, variety, and
veracity. The volume and velocity of data are ever increasing for the foreseeable
future. Companies that can harness and analyze big data to extract information
and take actionable decisions based on this information will be the winners in the
marketplace. Python is a fast-growing, user-friendly, extensible language that is
very popular for data analysis.

The pandas is a core library of the Python toolkit for data analysis. It provides
features and capabilities that make it much easier and faster for data analysis
than many other popular languages such as Java, C, C++, and Ruby.

Thus, given the strengths of Python listed in the preceding section as a choice for the
analysis of data, the data analysis practitioner utilizing Python should become quite
adept at pandas in order to become more effective. This book aims to assist the user
in achieving this goal.

[11]

Installation of pandas and
the Supporting Software

Before we can start work on pandas for doing data analysis, we need to make sure
that the software is installed and the environment is in proper working order. This
section deals with the installation of Python (if necessary), the pandas library, and
all necessary dependencies for the Windows, Mac OS X, and Linux platforms. The
topics we address include the following:

• Selecting a version of Python
• Installing Python
• Installing pandas (0.16.0)
• Installing IPython and Virtualenv

The steps outlined in the following section should work for the most part, but your
mileage may vary depending upon the setup. On different operating system versions,
the scripts may not always work perfectly, and the third-party software packages
already in the system may sometimes conflict with the provided instructions.

Selecting a version of Python to use
Before proceeding with the installation and download of Python and pandas, we
need to consider the version of Python we're going to use. Currently, there are two
versions flavors of Python in current use, namely Python 2.7.x and Python 3. If the
reader is new to Python as well as pandas, the question becomes which version of
the language he/she should adopt.

Installation of pandas and the Supporting Software

[12]

On the surface, Python 3.x would appear to be the better choice since Python 2.7.x is
supposed to be the legacy, and Python 3.x is supposed to be the future of the language.

For reference, you can go through the documentation on this with
the title Python2orPython3 at https://wiki.python.org/moin/
Python2orPython3.

The main differences between Python 2.x and 3 include better Unicode support in
Python 3, print and exec changed to functions, and integer division. For more details,
see What's New in Python 3.0 at http://docs.python.org/3/whatsnew/3.0.html.

However, for scientific, numeric, or data analysis work, Python 2.7 is recommended
over Python 3 for the following reason: Python 2.7 is the preferred version for most
current distributions and the support for Python 3.x was not as strong for some
libraries, although that is increasingly becoming less of an issue.

For reference, have a look at the documentation titled Will Scientists Ever
Move to Python 3? at http://bit.ly/1DOgNuX. Hence, this book will use
Python 2.7. It does not preclude the use of Python 3, and developers using
Python 3 can easily make the necessary code changes to the examples by
referring to the following documentation: Porting Python 2 Code to Python 3
at http://docs.python.org/2/howto/pyporting.html.

Python installation
Here, we detail the installation of Python on multiple platforms – Linux, Windows,
and Mac OS X.

Linux
If you're using Linux, Python most probably came pre-installed. If you're not sure,
type the following at the command prompt:

 which python

Python is likely to be found in one of the following folders on Linux depending upon
your distribution and particular installation:

• /usr/bin/python

• /bin/python

• /usr/local/bin/python

• /opt/local/bin/python

https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
http://docs.python.org/3/whatsnew/3.0.html
http://bit.ly/1DOgNuX
http://docs.python.org/2/howto/pyporting.html

Chapter 2

[13]

You can determine which particular version of Python is installed, by typing the
following in the command prompt:

python --version

In the rare event that Python isn't already installed, you need to figure out which
flavor of Linux you're using, then download and install it. Here are the install
commands as well as links to the various Linux Python distributions:

1. Debian/Ubuntu (14.04)
 sudo apt-get install python2.7

 sudo apt-get install python2.7-devel

Debian Python page at https://wiki.debian.org/Python.

2. Redhat Fedora/Centos/RHEL
 sudo yum install python

 sudo yum install python-devel

Fedora software installs at http://bit.ly/1B2RpCj.

3. Open Suse
 sudo zypper install python

 sudo zypper install python-devel

More information on installing software can be found at
http://en.opensuse.org/YaST_Software_Management.

4. Slackware: For this distribution of Linux, it may be best to download
a compressed tarball and install it from the source as described in the
following section.

Installing Python from compressed tarball
If none of the preceding methods work for you, you can also download a compressed
tarball (XZ or Gzip) and get it installed. Here is a brief synopsis on the steps:

#Install dependencies

sudo apt-get install build-essential

sudo apt-get install libreadline-gplv2-dev libncursesw5-dev libssl-dev
libsqlite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev

#Download the tarball

https://wiki.debian.org/Python
http://en.opensuse.org/YaST_Software_Management

Installation of pandas and the Supporting Software

[14]

mkdir /tmp/downloads

cd /tmp/downloads

wget http://python.org/ftp/python/2.7.5/Python-2.7.5.tgz

tar xvfz Python-2.7.5.tgz

cd Python-2.7.5

Configure, build and install

./configure --prefix=/opt/python2.7 --enable-shared

make

make test

sudo make install

echo "/opt/python2.7/lib" >> /etc/ld.so.conf.d/opt-python2.7.conf

ldconfig

cd ..

rm -rf /tmp/downloads

Information on this can be found at the Python download page at http://www.
python.org/download/.

Windows
Unlike Linux and Mac distributions, Python does not come pre-installed on Windows.

Core Python installation
The standard method is to use the Windows installers from CPython's team,
which are MSI packages. The MSI packages can be downloaded from here:
http://www.python.org/download/releases/2.7.6/.

Select the appropriate Windows package depending upon whether your Windows
version is 32-bit or 64-bit. Python by default gets installed to a folder containing the
version number, so in this case, it will be installed to the following location:
C:\Python27.

This enables you to have multiple versions of Python running without problems.
Upon installation, the following folders should be added to the PATH environment
variable: C:\Python27\ and C:\Python27\Tools\Scripts.

http://www.python.org/download/
http://www.python.org/download/
http://www.python.org/download/releases/2.7.6/

Chapter 2

[15]

Third-party Python software installation
There are a couple of Python tools that need to be installed in order to make the
installation of other packages such as pandas easier. Install Setuptools and pip.
Setuptools is very useful for installing other Python packages such as pandas. It adds
to the packaging and installation functionality that is provided by the distutils
tool in the standard Python distribution.

To install Setuptools, download the ez_setup.py script from the following link:
https://bitbucket.org/pypa/setuptools/raw/bootstrap.

Then, save it to C:\Python27\Tools\Scripts.

Then, run ez_setup.py: C:\Python27\Tools\Scripts\ez_setup.py.

The associated command pip provides the developer with an easy-to-use command
that enables a quick and easy installation of Python modules. Download the get-pip
script from the following link: http://www.pip-installer.org/en/latest/.

Then, run it from the following location: C:\Python27\Tools\Scripts\get-pip.py.

For reference, you can also go through the documentation titled Installing Python on
Windows at http://docs.python-guide.org/en/latest/starting/install/win/.

There are also third-party providers of Python on Windows that make the task of
installation even easier. They are listed as follows:

• Enthought: https://enthought.com/
• Continuum Analytics: http://www.continuum.io/
• Active State Python: http://www.activestate.com/activepython

Mac OS X
Python 2.7 comes pre-installed on the current and recent releases (past 5 years) of
Mac OS X. The pre-installed Apple-provided build can be found in the following
folders on the Mac:

• /System/Library/Frameworks/Python.framework

• /usr/bin/python

However, you can install your own version from http://www.python.org/
download/. The one caveat to this is that you will now have two installations of
Python, and you have to be careful to make sure the paths and environments are
cleanly separated.

https://bitbucket.org/pypa/setuptools/raw/bootstrap
http://www.pip-installer.org/en/latest/
http://docs.python-guide.org/en/latest/starting/install/win/
https://enthought.com/
http://www.continuum.io/
http://www.activestate.com/activepython
http://www.python.org/download/
http://www.python.org/download/

Installation of pandas and the Supporting Software

[16]

Installation using a package manager
Python can also be installed using a package manager on the Mac such as Macports
or Homebrew. I will discuss installation using Homebrew here as it seems to be
the most user-friendly. For reference, you can go through the documentation titled
Installing Python on Mac OS X at http://docs.python-guide.org/en/latest/
starting/install/osx/. Here are the steps:

1. Install Homebrew and run:
ruby -e "$(curl -fsSL https://raw.github.com/mxcl/homebrew/go)"

You then need to add the Homebrew folder at the top of your PATH
environment variable.

2. Install Python 2.7 at the Unix prompt:
brew install python

3. Install third-party software: Distribute and pip. Installation of Homebrew
automatically installs these packages. Distribute and pip enable one to easily
download and install/uninstall Python packages.

Installation of Python and pandas from a
third-party vendor
The most straightforward way to install Python, pandas, and their associated
dependencies would be to install a packaged distribution by using a third-party
vendor such as Enthought or Continuum Analytics.

I used to prefer Continuum Analytics Anaconda over Enthought because Anaconda
was given away free while Enthought used to charge a subscription for full access
to all its numerical modules. However, with the latest release of Enthought Canopy,
there is little to separate the two distributions. Nevertheless, my personal preference
is for Anaconda, so it is the distribution whose installation I will describe.

For reference, see Anaconda Python Distribution at http://bit.ly/1aBhmgH. I will
now give a brief description about the Anaconda package and how to install it.

http://docs.python-guide.org/en/latest/starting/install/osx/
http://docs.python-guide.org/en/latest/starting/install/osx/
http://bit.ly/1aBhmgH

Chapter 2

[17]

Continuum Analytics Anaconda
Anaconda is a free Python distribution focused on large-scale data processing,
analytics, and numeric computing. The following are the key features of Anaconda:

• It includes the most popular Python packages for scientific, engineering,
numerical, and data analysis.

• It is completely free and available on Linux, Windows, and Mac OS X
platforms.

• Installations do not require root or local admin privileges, and the entire
package installs in a single folder.

• Multiple installations can coexist, and the installation does not affect pre-
existing Python installations on the system.

• It includes modules such as Cython, NumPy, SciPy, pandas, IPython,
matplotlib, and homegrown Continuum packages such as Numba, Blaze,
and Bokeh.

For more information on this, refer to the link at
https://store.continuum.io/cshop/anaconda.

Installing Anaconda
The following instructions detail how to install Anaconda on all three platforms. The
download location is http://continuum.io/downloads. The version of Python is
Python 2.7 in Anaconda by default.

Linux
Perform the following steps for installation:

1. Download the Linux installer (32/64-bit) from the download location.
2. In a terminal, run the following command:

bash <Linux installer file>

For example, bash Anaconda-1.8.0-Linux-x86_64.sh.

3. Accept the license terms.
4. Specify the install location. I tend to use $HOME/local for my local third-

party software installations.

www.allitebooks.com

https://store.continuum.io/cshop/anaconda
http://continuum.io/downloads
http://www.allitebooks.org

Installation of pandas and the Supporting Software

[18]

Mac OS X
Perform the following steps for installation:

1. Download the Mac installer (.pkg file - 64-bit) from the download
location.

2. Double click on the .pkg file to install and follow the instructions on the
window that pops up. For example, package file name: Anaconda-1.8.0-
MacOSX-x86_64.pkg.

Windows
Perform the following steps for the Windows environment:

1. Download the Windows installer (.exe file - 32/64-bit) from the
download location.

2. Double click on the .pkg file to install and follow the instructions on the
window that pops up. For example, package file name: Anaconda-1.8.0-
MacOSX-x86_64.pkg.

Final step for all platforms
As a shortcut, you can define ANACONDA_HOME to be the folder into which Anaconda
was installed. For example, on my Linux and Mac OS X installations, I have the
following environment variable setting:

ANACONDA_HOME=$HOME/local/anaconda

On Windows, it would be as follows:

set ANACONDA_HOME=C:\Anaconda

Add the Anaconda bin folder to your PATH environment variable. If you wish to use
the Python Anaconda by default, you can do this by making sure that $ANACONDA_
HOME/bin is at the head of the PATH variable before the folder containing System
Python. If you don't want to use the Anaconda Python by default, you have the
following two options:

1. Activate the Anaconda environment each time as needed. This can be done
as follows:
source $HOME/local/anaconda/bin/activate $ANACONDA_HOME

2. Create a separate environment for Anaconda. This can be done
by using the built-in conda command as described here:
https://github.com/pydata/conda.

https://github.com/pydata/conda

Chapter 2

[19]

For more information, read the Conda documentation at http://docs.
continuum.io/conda/index.html. More detailed instructions on
installing Anaconda can be obtained from the Anaconda Installation page
at http://docs.continuum.io/anaconda/install.html.

Other numeric or analytics-focused
Python distributions
The following is a synopsis of various third-party data analysis-related Python
distributions. All of the following distributions include pandas:

• Continuum Analytics Anaconda: Free enterprise-ready Python distribution
focused on large-scale data processing, analytics, and numeric computing.
For details, refer to https://store.continuum.io/cshop/anaconda/.

• Enthought Canopy: Comprehensive Python data analysis environment.
For more information, refer to https://www.enthought.com/products/
canopy/.

• Python(x,y): Free scientific and engineering-oriented Python distribution for
numerical computing, data analysis, and visualization. It is based on the Qt
GUI package and Spyder interactive scientific development environment. For
more information, refer to https://code.google.com/p/pythonxy/.

• WinPython: Free open source distribution of Python for the Windows
platform focused on scientific computing. For more information, refer to
http://winpython.sourceforge.net/.

For more information on Python distributions, go to http://bit.ly/1yOzB7o.

Downloading and installing pandas
The pandas library is part of the Python language, so we can now proceed to install
pandas. At the time of writing this book, the latest stable version of pandas available
is version 0.12. The various dependencies along with the associated download
locations are as follows:

Package Required Description Download location
NumPy : 1.6.1
or higher

Required NumPy library for
numerical operations

http://www.numpy.
org/

python-
dateutil 1.5

Required Date manipulation
and utility library

http://labix.org/

http://docs.continuum.io/conda/index.html
http://docs.continuum.io/conda/index.html
http://docs.continuum.io/anaconda/install.html
https://store.continuum.io/cshop/anaconda/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://code.google.com/p/pythonxy/
http://winpython.sourceforge.net/
http://bit.ly/1yOzB7o
http://www.numpy.org/
http://www.numpy.org/
http://labix.org/

Installation of pandas and the Supporting Software

[20]

Package Required Description Download location
Pytz Required Time zone support http://sourceforge.

net/

numexpr Optional,
recommended

Speeding up of
numerical operations

https://code.
google.com/

bottleneck Optional,
recommended

Performance-related http://
berkeleyanalytics.
com/

Cython Optional,
recommended

C-extensions for
Python used for
optimization

http://cython.org/

SciPy Optional,
recommended

Scientific toolset for
Python

http://scipy.org/

PyTables Optional Library for HDF5-
based storage

http://pytables.
github.io/

matplotlib Optional,
recommended

Matlab-like Python
plotting library

http://sourceforge.
net/

statsmodels Optional Statistics module for
Python

http://sourceforge.
net/

openpyxl Optional Library to read/write
Excel files

https://www.python.
org/

xlrd/xlwt Optional Libraries to read/
write Excel files

http://python-
excel.org/

boto Optional Library to access
Amazon S3

https://www.python.
org/

BeautifulSoup
and one of
html5lib, lxml

Optional Libraries needed
for the read_html()
function to work

http://www.crummy.
com/

html5lib Optional Library for parsing
HTML

https://pypi.
python.org/pypi/
html5lib

lmxl Optional Python library for
processing XML and
HTML

http://lxml.de/

Linux
Installing pandas is fairly straightforward for popular flavors of Linux. First, make
sure that the Python .dev files are installed. If not, then install them as explained in
the following section.

http://sourceforge.net/
http://sourceforge.net/
https://code.google.com/
https://code.google.com/
http://berkeleyanalytics.com/
http://berkeleyanalytics.com/
http://berkeleyanalytics.com/
http://cython.org/
http://scipy.org/
http://pytables.github.io/
http://pytables.github.io/
http://sourceforge.net/
http://sourceforge.net/
http://sourceforge.net/
http://sourceforge.net/
https://www.python.org/
https://www.python.org/
http://python-excel.org/
http://python-excel.org/
https://www.python.org/
https://www.python.org/
http://www.crummy.com
http://www.crummy.com
https://pypi.python.org/pypi/html5lib
https://pypi.python.org/pypi/html5lib
https://pypi.python.org/pypi/html5lib
http://lxml.de/

Chapter 2

[21]

Ubuntu/Debian
For the Ubantu/Debian environment, run the following command:

sudo apt-get install python-dev

Red Hat
For the Red Hat environment, run the following command:

yum install python-dev

Now, I will show you how to install pandas.

Ubuntu/Debian
For installing pandas in the Ubuntu/Debian environment, run the following
command:

sudo apt-get install python-pandas

Fedora
For Fedora, run the following command:

sudo yum install python-pandas

OpenSuse
Install Python-pandas via YaST Software Management or use the following
command:

sudo zypper install python-pandas

Sometimes, additional dependencies may be needed for the preceding installation,
particularly in the case of Fedora. In this case, you can try installing additional
dependences:

sudo yum install gcc-gfortran gcc44-gfortran libgfortran lapack blas
python-devel

sudo python-pip install numpy

Mac
There are a variety of ways to install pandas on Mac OS X. They are explained in the
following sections.

Installation of pandas and the Supporting Software

[22]

Source installation
The pandas have a few dependencies for it to work properly, some are required
and the others are optional, although needed for certain desirable features to work
properly. This installs all the required dependencies:

1. Install the easy_install program:
wget http://python-distribute.org/distribute_setup.pysudo python
distribute_setup.py

2. Install Cython
sudo easy_install -U Cython

3. You can then install from the source code as follows:

 git clone git://github.com/pydata/pandas.git
 cd pandas
 sudo python setup.py install

Binary installation
If you have installed pip as described in the Python installation section, installing
pandas is as simple as the following:

pip install pandas

Windows
The following methods describe the installation in the Windows environment.

Binary Installation
Make sure that numpy, python-dateutil, and pytz are installed first. The following
commands need to be run for each of these modules:

• For python-dateutil:
C:\Python27\Scripts\pip install python-dateutil

• For pytz:

C:\Python27\Scripts\pip install pytz

Install from the binary download, and run the binary for your version of Windows
from https://pypi.python.org/pypi/pandas. For example, if your processor is an
AMD64, you can download and install pandas by using the following commands:

https://pypi.python.org/pypi/pandas

Chapter 2

[23]

1. Download the following file: (applies to pandas 0.16)
pandas-0.16.1-cp26-none-win_amd64.whl (md5)

2. Install the downloaded file via pip:
pip install
pandas-0.16.1-cp26-none-win_amd64.whl

To test the install, run Python and type the following on the command prompt:

import pandas

If it returns with no errors then the installation was successful.

Source installation
The steps here explain the installation completely:

1. Install the MinGW compiler by following the instructions in the documentation
titled Appendix: Installing MinGW on Windows at http://docs.cython.org/
src/tutorial/appendix.html.

2. Make sure that the MingW binary location is added to the PATH variable, that
has C:\MingW\bin appended to it.

3. Install Cython and Numpy.
Numpy can be downloaded and installed from http://www.lfd.uci.
edu/~gohlke/pythonlibs/#numpy.

Cython can be downloaded and installed from http://www.lfd.uci.
edu/~gohlke/pythonlibs/#cython

The steps to install Cython are as follows:

• Installation via Pip:
C:\Python27\Scripts\pip install Cython

• Direct Download:

1. Download and install the pandas source from GitHub:
http://github.com/pydata/pandas.

2. You can simply download and extract the zip file to a suitable folder.
3. Change to the folder containing the pandas download to

C:\python27\python and run setup.py install.

http://docs.cython.org/src/tutorial/appendix.html
http://docs.cython.org/src/tutorial/appendix.html
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy
http://www.lfd.uci.edu/~gohlke/pythonlibs/#cython
http://www.lfd.uci.edu/~gohlke/pythonlibs/#cython
http://github.com/pydata/pandas

Installation of pandas and the Supporting Software

[24]

4. Sometimes, you may obtain the following error when running
setup.py:
distutils.errors.DistutilsError: Setup script exited with
error:

Unable to find vcvarsall.bat

This may have to do with not properly specifying mingw as the compiler. Check that
you have followed all the steps again.

Installing pandas on Windows from the source is prone to many
bugs and errors and is not really recommended.

IPython
Interactive Python (IPython) is a tool that is very useful for using Python for data
analysis, and a brief description of the installation steps is provided here. IPython
provides an interactive environment that is much more useful than the standard
Python prompt. Its features include the following:

• Tab completion to help the user do data exploration.
• Comprehensive Help functionality using object_name? to print details

about objects.
• Magic functions that enable the user to run operating system commands

within IPython, and run a Python script and load its data into the IPython
environment by using the %run magic command.

• History functionality via the _, __, and __ variables, the %history and other
magic functions, and the up and down arrow keys.

For more information, see the documentation at
http://bit.ly/1Is4zIW.

IPython Notebook
IPython Notebook is the web-enabled version of IPython. It enables the user
to combine code, numerical computation, and display graphics and rich media
in a single document, the notebook. Notebooks can be shared with colleagues
and converted to the HTML/PDF formats. For more information, refer to the
documentation titled The IPython Notebook at http://ipython.org/notebook.html.
Here is an illustration:

http://ipython.org/notebook.html

Chapter 2

[25]

The preceding image of PYMC Pandas Example is taken from http://
healthyalgorithms.files.wordpress.com/2012/01/pymc-pandas-example.png.

http://healthyalgorithms.files.wordpress.com/2012/01/pymc-pandas-example.png
http://healthyalgorithms.files.wordpress.com/2012/01/pymc-pandas-example.png

Installation of pandas and the Supporting Software

[26]

IPython installation
The recommended method to install IPython would be to use a third-party package
such as Continuum's Anaconda or Enthought Canopy.

Linux
Assuming that pandas and other tools for scientific computing have been installed as
per the instructions, the following one-line commands should suffice:

For Ubuntu/Debian, use

sudo apt-get install ipython-notebook

For Fedora, use

sudo yum install python-ipython-notebook

If you have pip and setuptools installed, you can also install it via the following
command for Linux/Mac platforms:

sudo pip install ipython

Windows
IPython requires setuptools on Windows, and the PyReadline library. PyReadline
is a Python implementation of the GNU readline library. To install IPython on
Windows, perform the following steps:

1. Install setuptools as detailed in the preceding section.
2. Install pyreadline by downloading the MS Windows installer from PyPI

Readline package page at https://pypi.python.org/pypi/pyreadline.
3. Download and run the IPython Installer from the GitHub IPython download

location: https://github.com/ipython/ipython/downloads.

For more information, see the IPython installation page at http://bit.ly/1MkCZhC.

Mac OS X
IPython can be installed on Mac OS X by using pip or setuptools. It also needs
the readline and zeromq library, which are best installed by using Homebrew.
The steps are as follows:

https://pypi.python.org/pypi/pyreadline
https://github.com/ipython/ipython/downloads

Chapter 2

[27]

brew install readline

brew install zeromq

pip install ipython pyzmq tornado pygments

The pyzmq, tornado, and pygments modules are necessary to obtain the full graphical
functionality of IPython Notebook. For more information, see the documentation
titled Setup IPython Notebook and Pandas for OSX at http://bit.ly/1JG0wKA.

Install via Anaconda (for Linux/Mac OS X)
Assuming that Anaconda is already installed, simply run the following commands to
update IPython to the latest version:

conda update conda

conda update ipython

Wakari by Continuum Analytics
If the user is not quite ready to install IPython, an alternative would be to use
IPython in the cloud. Enter Wakari, a cloud-based analytics solution that provides
full support for IPython notebooks hosted on Continuum's servers. It allows the user
to create, edit, save, and share IPython notebooks all within a browser on the cloud.
More details can be found at http://continuum.io/wakari.

Virtualenv
Virtualenv is a tool that is used to create isolated Python environments. It can be
useful if you wish to work in an environment to test out the latest version of pandas
without affecting the standard Python build.

Virtualenv installation and usage
I would only recommend installing Virtualenv if you decide not to install and use
the Anaconda package, as this already provides the Virtualenv functionality. The
brief steps are as follows:

1. Install via pip:
pip install virtualenv

www.allitebooks.com

http://continuum.io/wakari
http://www.allitebooks.org

Installation of pandas and the Supporting Software

[28]

2. Use of Virtualenv
 ° Create a virtual environment by using the following command:

 virtualenv newEnv

 ° Activate the virtual environment by using the following command:
 source newEnv/bin/activate

 ° Deactivate the virtual environment and go back to the standard
Python environment by using the following command:

 deactivate

For more information on this, you can go through the documentation titled Virtual
Environments at http://docs.python-guide.org/en/latest/dev/virtualenvs/.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.
You can also download the code from the GitHub repository at:
https://github.com/femibyte/mastering_pandas

Summary
There are two main versions of Python available: Python 2.7.x and Python 3.x. At
the moment, Python 2.7.x is preferable for data analysis and numerical computing
as it is more mature. The pandas library requires a few dependencies in order to be
setup correctly – NumPy, SciPy, and matplotlib to name a few. There are a myriad
number of ways to install pandas – the recommended method is to install one of
the third-party distributions that include pandas. Distributions include Anaconda
by Continuum, Enthough Canopy, WinPython, and Python(x,y). Installation of the
IPython package is highly recommended as it provides a rich, highly interactive
environment for data analysis.

Thus, setting up our environment for learning pandas involves installing a suitable
version of Python, installing pandas and its dependent modules, and setting up
some useful tools such as IPython. To re-emphasize, I strongly advise readers to do
themselves a favor and make their task easier by installing a third-party distribution,
such as Anaconda or Enthought, so as to get their environment up and running
trouble-free in the shortest possible timeframe. In our next chapter, we will start
diving into pandas directly as we take a look at its key features.

http://docs.python-guide.org/en/latest/dev/virtualenvs/

[29]

The pandas Data Structures
This chapter is one of the most important ones in this book. We will now begin
to dive into the meat and bones of pandas. We start by taking a tour of NumPy
ndarrays, a data structure not in pandas but NumPy. Knowledge of NumPy
ndarrays is useful as it forms the foundation for the pandas data structures. Another
key benefit of NumPy arrays is that they execute what is known as vectorized
operations, which are operations that require traversing/looping on a Python array,
much faster.

The topics we will cover in this chapter include the following:

• Tour of numpy.ndarray data structure.
• The pandas.Series 1-dimensional (1D) pandas data structure
• The pandas.DatcaFrame 2-dimensional (2D) pandas tabular data structure
• The pandas.Panel 3-dimensional (3D) pandas data structure

In this chapter, I will present the material via numerous examples using IPython,
a browser-based interface that allows the user to type in commands interactively
to the Python interpreter. Instructions for installing IPython are provided in the
previous chapter.

NumPy ndarrays
The NumPy library is a very important package used for numerical computing with
Python. Its primary features include the following:

• The type numpy.ndarray, a homogenous multidimensional array
• Access to numerous mathematical functions – linear algebra, statistics,

and so on
• Ability to integrate C, C++, and Fortran code

The pandas Data Structures

[30]

For more information about NumPy, see http://www.numpy.org.

The primary data structure in NumPy is the array class ndarray. It is a homogeneous
multi-dimensional (n-dimensional) table of elements, which are indexed by integers
just as a normal array. However, numpy.ndarray (also known as numpy.array)
is different from the standard Python array.array class, which offers much
less functionality. More information on the various operations is provided at
http://scipy-lectures.github.io/intro/numpy/array_object.html.

NumPy array creation
NumPy arrays can be created in a number of ways via calls to various
NumPy methods.

NumPy arrays via numpy.array
NumPy arrays can be created via the numpy.array constructor directly:

In [1]: import numpy as np

In [2]: ar1=np.array([0,1,2,3])# 1 dimensional array

In [3]: ar2=np.array ([[0,3,5],[2,8,7]]) # 2D array

In [4]: ar1

Out[4]: array([0, 1, 2, 3])

In [5]: ar2

Out[5]: array([[0, 3, 5],

 [2, 8, 7]])

The shape of the array is given via ndarray.shape:

In [5]: ar2.shape

Out[5]: (2, 3)

The number of dimensions is obtained using ndarray.ndim:

In [7]: ar2.ndim

Out[7]: 2

NumPy array via numpy.arange
ndarray.arange is the NumPy version of Python's range function:
In [10]: # produces the integers from 0 to 11, not inclusive of 12

http://www.numpy.org
http://scipy-lectures.github.io/intro/numpy/array_object.html

Chapter 3

[31]

 ar3=np.arange(12); ar3

Out[10]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

In [11]: # start, end (exclusive), step size

 ar4=np.arange(3,10,3); ar4

Out[11]: array([3, 6, 9])

NumPy array via numpy.linspace
ndarray.linspace generates linear evenly spaced elements between the start and
the end:

In [13]:# args - start element,end element, number of elements

 ar5=np.linspace(0,2.0/3,4); ar5

Out[13]:array([0., 0.22222222, 0.44444444, 0.66666667])

NumPy array via various other functions
These functions include numpy.zeros, numpy.ones, numpy.eye, nrandom.rand,
numpy.random.randn, and numpy.empty.

The argument must be a tuple in each case. For the 1D array, you can just specify the
number of elements, no need for a tuple.

numpy.ones
The following command line explains the function:

In [14]:# Produces 2x3x2 array of 1's.

 ar7=np.ones((2,3,2)); ar7

Out[14]: array([[[1., 1.],

 [1., 1.],

 [1., 1.]],

 [[1., 1.],

 [1., 1.],

 [1., 1.]]])

numpy.zeros
The following command line explains the function:

In [15]:# Produce 4x2 array of zeros.

 ar8=np.zeros((4,2));ar8

The pandas Data Structures

[32]

Out[15]: array([[0., 0.],

 [0., 0.],

 [0., 0.],

 [0., 0.]])

numpy.eye
The following command line explains the function:

In [17]:# Produces identity matrix

 ar9 = np.eye(3);ar9

Out[17]: array([[1., 0., 0.],

 [0., 1., 0.],

 [0., 0., 1.]])

numpy.diag
The following command line explains the function:

In [18]: # Create diagonal array

 ar10=np.diag((2,1,4,6));ar10

Out[18]: array([[2, 0, 0, 0],

 [0, 1, 0, 0],

 [0, 0, 4, 0],

 [0, 0, 0, 6]])

numpy.random.rand
The following command line explains the function:

In [19]: # Using the rand, randn functions

 # rand(m) produces uniformly distributed random numbers with
range 0 to m

 np.random.seed(100) # Set seed

 ar11=np.random.rand(3); ar11

Out[19]: array([0.54340494, 0.27836939, 0.42451759])

In [20]: # randn(m) produces m normally distributed (Gaussian) random
numbers

 ar12=np.random.rand(5); ar12

Out[20]: array([0.35467445, -0.78606433, -0.2318722 , 0.20797568,
0.93580797])

Chapter 3

[33]

numpy.empty
Using np.empty to create an uninitialized array is a cheaper and faster way to
allocate an array, rather than using np.ones or np.zeros (malloc versus. cmalloc).
However, you should only use it if you're sure that all the elements will be
initialized later:

In [21]: ar13=np.empty((3,2)); ar13

Out[21]: array([[-2.68156159e+154, 1.28822983e-231],

 [4.22764845e-307, 2.78310358e-309],

 [2.68156175e+154, 4.17201483e-309]])

numpy.tile
The np.tile function allows one to construct an array from a smaller array by
repeating it several times on the basis of a parameter:

In [334]: np.array([[1,2],[6,7]])

Out[334]: array([[1, 2],

 [6, 7]])

In [335]: np.tile(np.array([[1,2],[6,7]]),3)

Out[335]: array([[1, 2, 1, 2, 1, 2],

 [6, 7, 6, 7, 6, 7]])

In [336]: np.tile(np.array([[1,2],[6,7]]),(2,2))

Out[336]: array([[1, 2, 1, 2],

 [6, 7, 6, 7],

 [1, 2, 1, 2],

 [6, 7, 6, 7]])

NumPy datatypes
We can specify the type of contents of a numeric array by using the dtype parameter:

In [50]: ar=np.array([2,-1,6,3],dtype='float'); ar

Out[50]: array([2., -1., 6., 3.])

In [51]: ar.dtype

Out[51]: dtype('float64')

In [52]: ar=np.array([2,4,6,8]); ar.dtype

Out[52]: dtype('int64')

In [53]: ar=np.array([2.,4,6,8]); ar.dtype

Out[53]: dtype('float64')

The pandas Data Structures

[34]

The default dtype in NumPy is float. In the case of strings, dtype is the length of
the longest string in the array:

In [56]: sar=np.array(['Goodbye','Welcome','Tata','Goodnight']); sar.
dtype

Out[56]: dtype('S9')

You cannot create variable-length strings in NumPy, since NumPy needs to know
how much space to allocate for the string. dtypes can also be Boolean values,
complex numbers, and so on:

In [57]: bar=np.array([True, False, True]); bar.dtype

Out[57]: dtype('bool')

The datatype of ndarray can be changed in much the same way as we cast in
other languages such as Java or C/C++. For example, float to int and so on. The
mechanism to do this is to use the numpy.ndarray.astype() function. Here is
an example:

In [3]: f_ar = np.array([3,-2,8.18])

 f_ar

Out[3]: array([3. , -2. , 8.18])

In [4]: f_ar.astype(int)

Out[4]: array([3, -2, 8])

More information on casting can be found in the official documentation at http://
docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html.

NumPy indexing and slicing
Array indices in NumPy start at 0, as in languages such as Python, Java, and C++
and unlike in Fortran, Matlab, and Octave, which start at 1. Arrays can be indexed
in the standard way as we would index into any other Python sequences:

print entire array, element 0, element 1, last element.

In [36]: ar = np.arange(5); print ar; ar[0], ar[1], ar[-1]

[0 1 2 3 4]

Out[36]: (0, 1, 4)

2nd, last and 1st elements

In [65]: ar=np.arange(5); ar[1], ar[-1], ar[0]

Out[65]: (1, 4, 0)

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html

Chapter 3

[35]

Arrays can be reversed using the ::-1 idiom as follows:

In [24]: ar=np.arange(5); ar[::-1]

Out[24]: array([4, 3, 2, 1, 0])

Multi-dimensional arrays are indexed using tuples of integers:

In [71]: ar = np.array([[2,3,4],[9,8,7],[11,12,13]]); ar

Out[71]: array([[2, 3, 4],

 [9, 8, 7],

 [11, 12, 13]])

In [72]: ar[1,1]

Out[72]: 8

Here, we set the entry at row1 and column1 to 5:

In [75]: ar[1,1]=5; ar

Out[75]: array([[2, 3, 4],

 [9, 5, 7],

 [11, 12, 13]])

Retrieve row 2:

In [76]: ar[2]

Out[76]: array([11, 12, 13])

In [77]: ar[2,:]

Out[77]: array([11, 12, 13])

Retrieve column 1:

In [78]: ar[:,1]

Out[78]: array([3, 5, 12])

If an index is specified that is out of bounds of the range of an array, IndexError
will be raised:

In [6]: ar = np.array([0,1,2])

In [7]: ar[5]

 --

 IndexError Traceback (most recent call last)

 <ipython-input-7-8ef7e0800b7a> in <module>()

 ----> 1 ar[5]

 IndexError: index 5 is out of bounds for axis 0 with size 3

The pandas Data Structures

[36]

Thus, for 2D arrays, the first dimension denotes rows and the second dimension, the
columns. The colon (:) denotes selection across all elements of the dimension.

Array slicing
Arrays can be sliced using the following syntax:
ar[startIndex: endIndex: stepValue].

In [82]: ar=2*np.arange(6); ar

Out[82]: array([0, 2, 4, 6, 8, 10])

In [85]: ar[1:5:2]

Out[85]: array([2, 6])

Note that if we wish to include the endIndex value, we need to go above it, as
follows:

In [86]: ar[1:6:2]

Out[86]: array([2, 6, 10])

Obtain the first n-elements using ar[:n]:

In [91]: ar[:4]

Out[91]: array([0, 2, 4, 6])

The implicit assumption here is that startIndex=0, step=1.

Start at element 4 until the end:

In [92]: ar[4:]

Out[92]: array([8, 10])

Slice array with stepValue=3:

In [94]: ar[::3]

Out[94]: array([0, 6])

To illustrate the scope of indexing in NumPy, let us refer to this illustration,
which is taken from a NumPy lecture given at SciPy 2013 and can be found at
http://bit.ly/1GxCDpC:

http://bit.ly/1GxCDpC

Chapter 3

[37]

Let us now examine the meanings of the expressions in the preceding image:

• The expression a[0,3:5] indicates the start at row 0, and columns 3-5,
where column 5 is not included.

• In the expression a[4:,4:], the first 4 indicates the start at row 4 and will
give all columns, that is, the array [[40, 41,42,43,44,45] [50,51,52,53,54,55]].
The second 4 shows the cutoff at the start of column 4 to produce the array
[[44, 45], [54, 55]].

• The expression a[:,2] gives all rows from column 2.
• Now, in the last expression a[2::2,::2], 2::2 indicates that the start is

at row 2 and the step value here is also 2. This would give us the array
[[20, 21, 22, 23, 24, 25], [40, 41, 42, 43, 44, 45]]. Further, ::2 specifies that we
retrieve columns in steps of 2, producing the end result array ([[20, 22, 24],
[40, 42, 44]]).

Assignment and slicing can be combined as shown in the following code snippet:

In [96]: ar

Out[96]: array([0, 2, 4, 6, 8, 10])

In [100]: ar[:3]=1; ar

Out[100]: array([1, 1, 1, 6, 8, 10])

In [110]: ar[2:]=np.ones(4);ar

Out[110]: array([1, 1, 1, 1, 1, 1])

www.allitebooks.com

http://www.allitebooks.org

The pandas Data Structures

[38]

Array masking
Here, NumPy arrays can be used as masks to select or filter out elements of the
original array. For example, see the following snippet:

In [146]: np.random.seed(10)

 ar=np.random.random_integers(0,25,10); ar

Out[146]: array([9, 4, 15, 0, 17, 25, 16, 17, 8, 9])

In [147]: evenMask=(ar % 2==0); evenMask

Out[147]: array([False, True, False, True, False, False, True, False,
True, False], dtype=bool)

In [148]: evenNums=ar[evenMask]; evenNums

Out[148]: array([4, 0, 16, 8])

In the following example, we randomly generate an array of 10 integers between
0 and 25. Then, we create a Boolean mask array that is used to filter out only the
even numbers. This masking feature can be very useful, say for example, if we
wished to eliminate missing values, by replacing them with a default value. Here,
the missing value '' is replaced by 'USA' as the default country. Note that '' is
also an empty string:

In [149]: ar=np.array(['Hungary','Nigeria',

 'Guatemala','','Poland',

 '','Japan']); ar

Out[149]: array(['Hungary', 'Nigeria', 'Guatemala',

 '', 'Poland', '', 'Japan'],

 dtype='|S9')

In [150]: ar[ar=='']='USA'; ar

Out[150]: array(['Hungary', 'Nigeria', 'Guatemala',

 'USA', 'Poland', 'USA', 'Japan'], dtype='|S9')

Arrays of integers can also be used to index an array to produce another array.
Note that this produces multiple values; hence, the output must be an array of
type ndarray. This is illustrated in the following snippet:

In [173]: ar=11*np.arange(0,10); ar

Out[173]: array([0, 11, 22, 33, 44, 55, 66, 77, 88, 99])

In [174]: ar[[1,3,4,2,7]]

Out[174]: array([11, 33, 44, 22, 77])

Chapter 3

[39]

In the preceding code, the selection object is a list and elements at indices 1, 3, 4, 2,
and 7 are selected. Now, assume that we change it to the following:

In [175]: ar[1,3,4,2,7]

We get an IndexError error since the array is 1D and we're specifying too many
indices to access it.

IndexError Traceback (most recent call last)

<ipython-input-175-adbcbe3b3cdc> in <module>()

----> 1 ar[1,3,4,2,7]

IndexError: too many indices

This assignment is also possible with array indexing, as follows:

In [176]: ar[[1,3]]=50; ar

Out[176]: array([0, 50, 22, 50, 44, 55, 66, 77, 88, 99])

When a new array is created from another array by using a list of array indices, the
new array has the same shape.

Complex indexing
Here, we illustrate the use of complex indexing to assign values from a smaller array
into a larger one:

In [188]: ar=np.arange(15); ar

Out[188]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14])

In [193]: ar2=np.arange(0,-10,-1)[::-1]; ar2

Out[193]: array([-9, -8, -7, -6, -5, -4, -3, -2, -1, 0])

Slice out the first 10 elements of ar, and replace them with elements from ar2, as
follows:

In [194]: ar[:10]=ar2; ar

Out[194]: array([-9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 10, 11, 12, 13,
14])

The pandas Data Structures

[40]

Copies and views
A view on a NumPy array is just a particular way of portraying the data it contains.
Creating a view does not result in a new copy of the array, rather the data it contains
may be arranged in a specific order, or only certain data rows may be shown. Thus,
if data is replaced on the underlying array's data, this will be reflected in the view
whenever the data is accessed via indexing.

The initial array is not copied into the memory during slicing and is thus more
efficient. The np.may_share_memory method can be used to see if two arrays share
the same memory block. However, it should be used with caution as it may produce
false positives. Modifying a view modifies the original array:

In [118]:ar1=np.arange(12); ar1

Out[118]:array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

In [119]:ar2=ar1[::2]; ar2

Out[119]: array([0, 2, 4, 6, 8, 10])

In [120]: ar2[1]=-1; ar1

Out[120]: array([0, 1, -1, 3, 4, 5, 6, 7, 8, 9, 10, 11])

To force NumPy to copy an array, we use the np.copy function. As we can see in
the following array, the original array remains unaffected when the copied array is
modified:

In [124]: ar=np.arange(8);ar

Out[124]: array([0, 1, 2, 3, 4, 5, 6, 7])

In [126]: arc=ar[:3].copy(); arc

Out[126]: array([0, 1, 2])

In [127]: arc[0]=-1; arc

Out[127]: array([-1, 1, 2])

In [128]: ar

Out[128]: array([0, 1, 2, 3, 4, 5, 6, 7])

Operations
Here, we present various operations in NumPy.

Chapter 3

[41]

Basic operations
Basic arithmetic operations work element-wise with scalar operands. They are - +, -,
*, /, and **.

In [196]: ar=np.arange(0,7)*5; ar

Out[196]: array([0, 5, 10, 15, 20, 25, 30])

In [198]: ar=np.arange(5) ** 4 ; ar

Out[198]: array([0, 1, 16, 81, 256])

In [199]: ar ** 0.5

Out[199]: array([0., 1., 4., 9., 16.])

Operations also work element-wise when another array is the second operand as
follows:

In [209]: ar=3+np.arange(0, 30,3); ar

Out[209]: array([3, 6, 9, 12, 15, 18, 21, 24, 27, 30])

In [210]: ar2=np.arange(1,11); ar2

Out[210]: array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

Here, in the following snippet, we see element-wise subtraction, division, and
multiplication:

In [211]: ar-ar2

Out[211]: array([2, 4, 6, 8, 10, 12, 14, 16, 18, 20])

In [212]: ar/ar2

Out[212]: array([3, 3, 3, 3, 3, 3, 3, 3, 3, 3])

In [213]: ar*ar2

Out[213]: array([3, 12, 27, 48, 75, 108, 147, 192, 243, 300])

It is much faster to do this using NumPy rather than pure Python. The %timeit
function in IPython is known as a magic function and uses the Python timeit
module to time the execution of a Python statement or expression, explained
as follows:

In [214]: ar=np.arange(1000)

 %timeit ar**3

The pandas Data Structures

[42]

 100000 loops, best of 3: 5.4 µs per loop

In [215]:ar=range(1000)

 %timeit [ar[i]**3 for i in ar]

 1000 loops, best of 3: 199 µs per loop

Array multiplication is not the same as matrix multiplication; it is element-wise,
meaning that the corresponding elements are multiplied together. For
matrix multiplication, use the dot operator. For more information refer to
http://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html.

In [228]: ar=np.array([[1,1],[1,1]]); ar

Out[228]: array([[1, 1],

 [1, 1]])

In [230]: ar2=np.array([[2,2],[2,2]]); ar2

Out[230]: array([[2, 2],

 [2, 2]])

In [232]: ar.dot(ar2)

Out[232]: array([[4, 4],

 [4, 4]])

Comparisons and logical operations are also element-wise:

In [235]: ar=np.arange(1,5); ar

Out[235]: array([1, 2, 3, 4])

In [238]: ar2=np.arange(5,1,-1);ar2

Out[238]: array([5, 4, 3, 2])

In [241]: ar < ar2

Out[241]: array([True, True, False, False], dtype=bool)

In [242]: l1 = np.array([True,False,True,False])

 l2 = np.array([False,False,True, False])

 np.logical_and(l1,l2)

Out[242]: array([False, False, True, False], dtype=bool)

http://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html

Chapter 3

[43]

Other NumPy operations such as log, sin, cos, and exp are also element-wise:

In [244]: ar=np.array([np.pi, np.pi/2]); np.sin(ar)

Out[244]: array([1.22464680e-16, 1.00000000e+00])

Note that for element-wise operations on two NumPy arrays, the two arrays must
have the same shape, else an error will result since the arguments of the operation
must be the corresponding elements in the two arrays:

In [245]: ar=np.arange(0,6); ar

Out[245]: array([0, 1, 2, 3, 4, 5])

In [246]: ar2=np.arange(0,8); ar2

Out[246]: array([0, 1, 2, 3, 4, 5, 6, 7])

In [247]: ar*ar2

 ValueError Traceback (most
recent call last)

 <ipython-input-247-2c3240f67b63> in <module>()

 ----> 1 ar*ar2

 ValueError: operands could not be broadcast together with
shapes (6) (8)

Further, NumPy arrays can be transposed as follows:

In [249]: ar=np.array([[1,2,3],[4,5,6]]); ar

Out[249]: array([[1, 2, 3],

 [4, 5, 6]])

In [250]:ar.T

Out[250]:array([[1, 4],

 [2, 5],

 [3, 6]])

In [251]: np.transpose(ar)

Out[251]: array([[1, 4],

 [2, 5],

 [3, 6]])

The pandas Data Structures

[44]

Suppose we wish to compare arrays not element-wise, but array-wise. We could
achieve this as follows by using the np.array_equal operator:

In [254]: ar=np.arange(0,6)

 ar2=np.array([0,1,2,3,4,5])

 np.array_equal(ar, ar2)

Out[254]: True

Here, we see that a single Boolean value is returned instead of a Boolean array. The
value is True only if all the corresponding elements in the two arrays match. The
preceding expression is equivalent to the following:

In [24]: np.all(ar==ar2)

Out[24]: True

Reduction operations
Operators such as np.sum and np.prod perform reduces on arrays; that is, they
combine several elements into a single value:

In [257]: ar=np.arange(1,5)

 ar.prod()

Out[257]: 24

In the case of multi-dimensional arrays, we can specify whether we want the
reduction operator to be applied row-wise or column-wise by using the axis
parameter:

In [259]: ar=np.array([np.arange(1,6),np.arange(1,6)]);ar

Out[259]: array([[1, 2, 3, 4, 5],

 [1, 2, 3, 4, 5]])

Columns

In [261]: np.prod(ar,axis=0)

Out[261]: array([1, 4, 9, 16, 25])

Rows

In [262]: np.prod(ar,axis=1)

Out[262]: array([120, 120])

In the case of multi-dimensional arrays, not specifying an axis results in the operation
being applied to all elements of the array as explained in the following example:

In [268]: ar=np.array([[2,3,4],[5,6,7],[8,9,10]]); ar.sum()

Chapter 3

[45]

Out[268]: 54

In [269]: ar.mean()

Out[269]: 6.0

In [271]: np.median(ar)

Out[271]: 6.0

Statistical operators
These operators are used to apply standard statistical operations to a NumPy
array. The names are self-explanatory: np.std(), np.mean(), np.median(),
and np.cumsum().

In [309]: np.random.seed(10)

 ar=np.random.randint(0,10, size=(4,5));ar

Out[309]: array([[9, 4, 0, 1, 9],

 [0, 1, 8, 9, 0],

 [8, 6, 4, 3, 0],

 [4, 6, 8, 1, 8]])

In [310]: ar.mean()

Out[310]: 4.4500000000000002

In [311]: ar.std()

Out[311]: 3.4274626183227732

In [312]: ar.var(axis=0) # across rows

Out[312]: array([12.6875, 4.1875, 11. , 10.75 , 18.1875])

In [313]: ar.cumsum()

Out[313]: array([9, 13, 13, 14, 23, 23, 24, 32, 41, 41, 49, 55,

 59, 62, 62, 66, 72, 80, 81, 89])

Logical operators
Logical operators can be used for array comparison/checking. They are as follows:

• np.all(): This is used for element-wise and all of the elements
• np.any(): This is used for element-wise or all of the elements

The pandas Data Structures

[46]

Generate a random 4 × 4 array of ints and check if any element is divisible by 7 and
if all elements are less than 11:

In [320]: np.random.seed(100)

 ar=np.random.randint(1,10, size=(4,4));ar

Out[320]: array([[9, 9, 4, 8],

 [8, 1, 5, 3],

 [6, 3, 3, 3],

 [2, 1, 9, 5]])

In [318]: np.any((ar%7)==0)

Out[318]: False

In [319]: np.all(ar<11)

Out[319]: True

Broadcasting
In broadcasting, we make use of NumPy's ability to combine arrays that don't have
the same exact shape. Here is an example:

In [357]: ar=np.ones([3,2]); ar

Out[357]: array([[1., 1.],

 [1., 1.],

 [1., 1.]])

In [358]: ar2=np.array([2,3]); ar2

Out[358]: array([2, 3])

In [359]: ar+ar2

Out[359]: array([[3., 4.],

 [3., 4.],

 [3., 4.]])

Thus, we can see that ar2 is broadcasted across the rows of ar by adding it to each
row of ar producing the preceding result. Here is another example, showing that
broadcasting works across dimensions:

In [369]: ar=np.array([[23,24,25]]); ar

Out[369]: array([[23, 24, 25]])

Chapter 3

[47]

In [368]: ar.T

Out[368]: array([[23],

 [24],

 [25]])

In [370]: ar.T+ar

Out[370]: array([[46, 47, 48],

 [47, 48, 49],

 [48, 49, 50]])

Here, both row and column arrays were broadcasted and we ended up with a
3 × 3 array.

Array shape manipulation
There are a number of steps for the shape manipulation of arrays.

Flattening a multi-dimensional array
The np.ravel() function allows you to flatten a multi-dimensional array as follows:

In [385]: ar=np.array([np.arange(1,6), np.arange(10,15)]); ar

Out[385]: array([[1, 2, 3, 4, 5],

 [10, 11, 12, 13, 14]])

In [386]: ar.ravel()

Out[386]: array([1, 2, 3, 4, 5, 10, 11, 12, 13, 14])

In [387]: ar.T.ravel()

Out[387]: array([1, 10, 2, 11, 3, 12, 4, 13, 5, 14])

You can also use np.flatten, which does the same thing, except that it returns a
copy while np.ravel returns a view.

Reshaping
The reshape function can be used to change the shape of or unflatten an array:

In [389]: ar=np.arange(1,16);ar

Out[389]: array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15])

In [390]: ar.reshape(3,5)

www.allitebooks.com

http://www.allitebooks.org

The pandas Data Structures

[48]

Out[390]: array([[1, 2, 3, 4, 5],

 [6, 7, 8, 9, 10],

 [11, 12, 13, 14, 15]])

The np.reshape function returns a view of the data, meaning that the underlying
array remains unchanged. In special cases, however, the shape cannot be changed
without the data being copied. For more details on this, see the documentation at
http://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html.

Resizing
There are two resize operators, numpy.ndarray.resize, which is an ndarray
operator that resizes in place, and numpy.resize, which returns a new array with
the specified shape. Here, we illustrate the numpy.ndarray.resize function:

In [408]: ar=np.arange(5); ar.resize((8,));ar

Out[408]: array([0, 1, 2, 3, 4, 0, 0, 0])

Note that this function only works if there are no other references to this array; else,
ValueError results:

In [34]: ar=np.arange(5);

 ar

Out[34]: array([0, 1, 2, 3, 4])

In [35]: ar2=ar

In [36]: ar.resize((8,));

--

ValueError Traceback (most recent call
last)

<ipython-input-36-394f7795e2d1> in <module>()

----> 1 ar.resize((8,));

ValueError: cannot resize an array that references or is referenced by
another array in this way. Use the resize function

The way around this is to use the numpy.resize function instead:

In [38]: np.resize(ar,(8,))

Out[38]: array([0, 1, 2, 3, 4, 0, 1, 2])

http://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html

Chapter 3

[49]

Adding a dimension
The np.newaxis function adds an additional dimension to an array:

In [377]: ar=np.array([14,15,16]); ar.shape

Out[377]: (3,)

In [378]: ar

Out[378]: array([14, 15, 16])

In [379]: ar=ar[:, np.newaxis]; ar.shape

Out[379]: (3, 1)

In [380]: ar

Out[380]: array([[14],

 [15],

 [16]])

Array sorting
Arrays can be sorted in various ways.

1. Sort the array along an axis; first, let's discuss this along the y-axis:
In [43]: ar=np.array([[3,2],[10,-1]])

 ar

Out[43]: array([[3, 2],

 [10, -1]])

In [44]: ar.sort(axis=1)

 ar

Out[44]: array([[2, 3],

 [-1, 10]])

2. Here, we will explain the sorting along the x-axis:
In [45]: ar=np.array([[3,2],[10,-1]])

 ar

Out[45]: array([[3, 2],

 [10, -1]])

In [46]: ar.sort(axis=0)

 ar

Out[46]: array([[3, -1],

 [10, 2]])

The pandas Data Structures

[50]

3. Sorting by in-place (np.array.sort) and out-of-place (np.sort) functions.
4. Other operations that are available for array sorting include the following:

 ° np.min(): It returns the minimum element in the array
 ° np.max(): It returns the maximum element in the array
 ° np.std(): It returns the standard deviation of the elements in the array
 ° np.var(): It returns the variance of elements in the array
 ° np.argmin(): It indices of minimum
 ° np.argmax(): It indices of maximum
 ° np.all(): It returns element-wise and all of the elements
 ° np.any(): It returns element-wise or all of the elements

Data structures in pandas
The pandas was created by Wed McKinney in 2008 as a result of frustrations he
encountered while working on time series data in R. It is built on top of NumPy
and provides features not available in it. It provides fast, easy-to-understand data
structures and helps fill the gap between Python and a language such as R.

A key reference for the various operations I demonstrate here is the official pandas
data structure documentation: http://pandas.pydata.org/pandas-docs/dev/
dsintro.html.

There are three main data structures in pandas:

• Series
• DataFrame
• Panel

Series
Series is really a 1D NumPy array under the hood. It consists of a NumPy array
coupled with an array of labels.

Series creation
The general construct for creating a Series data structure is as follows:

import pandas as pd

ser=pd.Series(data, index=idx)

http://pandas.pydata.org/pandas-docs/dev/dsintro.html
http://pandas.pydata.org/pandas-docs/dev/dsintro.html

Chapter 3

[51]

where data can be one of the following:

• An ndarray
• A Python dictionary
• A scalar value

Using numpy.ndarray
In this case, the index must be the same length as the data. If an index is not
specified, the following default index [0,... n-1] will be created, where n is the
length of the data. The following example creates a Series structure of seven random
numbers between 0 and 1; the index is not specified:

In [466]: import numpy as np

 np.random.seed(100)

 ser=pd.Series(np.random.rand(7)); ser

Out[466]:0 0.543405

 1 0.278369

 2 0.424518

 3 0.844776

 4 0.004719

 5 0.121569

 6 0.670749

 dtype: float64

The following example creates a Series structure of the first 5 months of the year with
a specified index of month names:

In [481]: import calendar as cal

 monthNames=[cal.month_name[i] for i in np.arange(1,6)]

 months=pd.Series(np.arrange(1,6),index=monthNames);months

Out[481]: January 1

 February 2

 March 3

 April 4

 May 5

 dtype: int64

The pandas Data Structures

[52]

In [482]: months.index

Out[482]: Index([u'January', u'February', u'March', u'April', u'May'],
dtype=object)

Using Python dictionary
If the data is a dictionary and an index is provided, the labels will be constructed
from it; else, the keys of the dictionary will be used for the labels. The values of the
dictionary are used to populate the Series structure.

In [486]: currDict={'US' : 'dollar', 'UK' : 'pound',

 'Germany': 'euro', 'Mexico':'peso',

 'Nigeria':'naira',

 'China':'yuan', 'Japan':'yen'}

 currSeries=pd.Series(currDict); currSeries

Out[486]: China yuan

 Germany euro

 Japan yen

 Mexico peso

 Nigeria naira

 UK pound

 US dollar

 dtype: object

The index of a pandas Series structure is of type pandas.core.index.Index and can
be viewed as an ordered multiset.

In the following case, we specify an index, but the index contains one entry that isn't
a key in the corresponding dict. The result is that the value for the key is assigned as
NaN, indicating that it is missing. We will deal with handling missing values in a later
section.

In [488]: stockPrices = {'GOOG':1180.97,'FB':62.57,

 'TWTR': 64.50, 'AMZN':358.69,

 'AAPL':500.6}

 stockPriceSeries=pd.Series(stockPrices,

 index=['GOOG','FB','YHOO',

 'TWTR','AMZN','AAPL'],

 name='stockPrices')

 stockPriceSeries

Chapter 3

[53]

Out[488]: GOOG 1180.97

 FB 62.57

 YHOO NaN

 TWTR 64.50

 AMZN 358.69

 AAPL 500.60

 Name: stockPrices, dtype: float64

Note that Series also has a name attribute that can be set as shown in the preceding
snippet. The name attribute is useful in tasks such as combining Series objects into
a DataFrame structure.

Using scalar values
For scalar data, an index must be provided. The value will be repeated for as many
index values as possible. One possible use of this method is to provide a quick and
dirty method of initialization, with the Series structure to be filled in later. Let us see
how to create a Series using scalar values:

In [491]: dogSeries=pd.Series('chihuahua',

 index=['breed','countryOfOrigin',

 'name', 'gender'])

 dogSeries

Out[491]: breed chihuahua

 countryOfOrigin chihuahua

 name chihuahua

 gender chihuahua

 dtype: object

Failure to provide an index just results in a scalar value being returned as follows:

In [494]: dogSeries=pd.Series('pekingese'); dogSeries

Out[494]: 'pekingese'

In [495]: type(dogSeries)

Out[495]: str

Operations on Series
The behavior of Series is very similar to that of numpy arrays discussed in a previous
section, with one caveat being that an operation such as slicing also slices the index.

The pandas Data Structures

[54]

Assignment
Values can be set and accessed using the index label in a dictionary-like manner:

In [503]: currDict['China']

Out[503]: 'yuan'

In [505]: stockPriceSeries['GOOG']=1200.0

 stockPriceSeries

Out[505]: GOOG 1200.00

 FB 62.57

 YHOO NaN

 TWTR 64.50

 AMZN 358.69

 AAPL 500.60

 dtype: float64

Just as in the case of dict, KeyError is raised if you try to retrieve a missing label:

In [506]: stockPriceSeries['MSFT']

KeyError: 'MSFT'

This error can be avoided by explicitly using get as follows:

In [507]: stockPriceSeries.get('MSFT',np.NaN)

Out[507]: nan

In this case, the default value of np.NaN is specified as the value to return when the
key does not exist in the Series structure.

Slicing
The slice operation behaves the same way as a NumPy array:

In [498]: stockPriceSeries[:4]

Out[498]: GOOG 1180.97

 FB 62.57

 YHOO NaN

 TWTR 64.50

 dtype: float64

Chapter 3

[55]

Logical slicing also works as follows:

In [500]: stockPriceSeries[stockPriceSeries > 100]

Out[500]: GOOG 1180.97

 AMZN 358.69

 AAPL 500.60

 dtype: float64

Other operations
Arithmetic and statistical operations can be applied, just as with a NumPy array:

In [501]: np.mean(stockPriceSeries)

Out[501]: 433.46600000000001

In [502]: np.std(stockPriceSeries)

Out[502]: 410.50223047384287

Element-wise operations can also be performed on series:

In [506]: ser

Out[506]: 0 0.543405

 1 0.278369

 2 0.424518

 3 0.844776

 4 0.004719

 5 0.121569

 6 0.670749

 dtype: float64

In [508]: ser*ser

Out[508]: 0 0.295289

 1 0.077490

 2 0.180215

 3 0.713647

 4 0.000022

 5 0.014779

 6 0.449904

 dtype: float64

In [510]: np.sqrt(ser)

Out[510]: 0 0.737160

The pandas Data Structures

[56]

 1 0.527607

 2 0.651550

 3 0.919117

 4 0.068694

 5 0.348668

 6 0.818993

 dtype: float64

An important feature of Series is that the data is automatically aligned on the basis of
the label:

In [514]: ser[1:]

Out[514]: 1 0.278369

 2 0.424518

 3 0.844776

 4 0.004719

 5 0.121569

 6 0.670749

 dtype: float64

In [516]:ser[1:] + ser[:-2]

Out[516]: 0 NaN

 1 0.556739

 2 0.849035

 3 1.689552

 4 0.009438

 5 NaN

 6 NaN

 dtype: float64

Thus, we can see that for non-matching labels, NaN is inserted. The default behavior
is that the union of the indexes is produced for unaligned Series structures. This
is preferable as information is preserved rather than lost. We will handle missing
values in pandas in a later chapter of the book.

DataFrame
DataFrame is an 2-dimensional labeled array. Its column types can be heterogeneous:
that is, of varying types. It is similar to structured arrays in NumPy with mutability
added. It has the following properties:

Chapter 3

[57]

• Conceptually analogous to a table or spreadsheet of data.
• Similar to a NumPy ndarray but not a subclass of np.ndarray.
• Columns can be of heterogeneous types: float64, int, bool, and so on.
• A DataFrame column is a Series structure.
• It can be thought of as a dictionary of Series structures where both the

columns and the rows are indexed, denoted as 'index' in the case of rows
and 'columns' in the case of columns.

• It is size mutable: columns can be inserted and deleted.

Every axis in a Series/DataFrame has an index, whether default or not. Indexes are
needed for fast lookups as well as proper aligning and joining of data in pandas. The
axes can also be named-for example in the form of month for the array of columns
Jan Feb Mar... Dec. Here is a representation of an indexed DataFrame, with named
columns across and an index column of characters V, W, X, Y, Z:

 columns nums strs bools decs

 index

 V 11 cat True 1.4

 W -6 hat False 6.9

 X 25 bat False -0.6

 Y 8 mat True 3.7

 Z -17 sat False 18.

DataFrame Creation
DataFrame is the most commonly used data structure in pandas. The constructor
accepts many different types of arguments:

• Dictionary of 1D ndarrays, lists, dictionaries, or Series structures
• 2D NumPy array
• Structured or record ndarray
• Series structures
• Another DataFrame structure

Row label indexes and column labels can be specified along with the data. If they're
not specified, they will be generated from the input data in an intuitive fashion, for
example, from the keys of dict. (in case of column labels) or by using np.range(n)
in the case of row labels, where n corresponds to the number of rows.

The pandas Data Structures

[58]

Using dictionaries of Series
Here, we create a DataFrame structure by using a dictionary of Series objects.

In [97]:stockSummaries={

'AMZN': pd.Series([346.15,0.59,459,0.52,589.8,158.88],

 index=['Closing price','EPS',

 'Shares Outstanding(M)',

 'Beta', 'P/E','Market Cap(B)']),

'GOOG': pd.Series([1133.43,36.05,335.83,0.87,31.44,380.64],

 index=['Closing price','EPS','Shares Outstanding(M)',

 'Beta','P/E','Market Cap(B)']),

'FB': pd.Series([61.48,0.59,2450,104.93,150.92],

 index=['Closing price','EPS','Shares Outstanding(M)',

 'P/E', 'Market Cap(B)']),

'YHOO': pd.Series([34.90,1.27,1010,27.48,0.66,35.36],

 index=['Closing price','EPS','Shares Outstanding(M)',

 'P/E','Beta', 'Market Cap(B)']),

'TWTR':pd.Series([65.25,-0.3,555.2,36.23],

 index=['Closing price','EPS','Shares Outstanding(M)',

 'Market Cap(B)']),

'AAPL':pd.Series([501.53,40.32,892.45,12.44,447.59,0.84],

 index=['Closing price','EPS','Shares Outstanding(M)','P/E',

 'Market Cap(B)','Beta'])}

In [99]: stockDF=pd.DataFrame(stockSummaries); stockDF

Out[99]:

AAPL AMZN FB GOOG TWTR YHOO

Beta 0.84 0.52 NaN 0.87 NaN 0.66

Closing price 501.53 346.15 61.48 1133.43 65.25 34.9

EPS 40.32 0.59 0.59 36.05 -0.3 1.27

Market Cap(B) 447.59 158.88 150.92 380.64 36.23 35.36

P/E 12.44 589.8 104.93 31.44 NaN 27.48

Shares
Outstanding(M)

892.45 459 2450 335.83 555.2 1010

Chapter 3

[59]

In [100]:stockDF=pd.DataFrame(stockSummaries,

 index=['Closing price','EPS',

 'Shares Outstanding(M)',

 'P/E', 'Market Cap(B)','Beta']);stockDF

Out [100]:

AAPL AMZN FB GOOG TWTR YHOO

Closing price 501.53 346.15 61.48 1133.43 65.25 34.9

EPS 40.32 0.59 0.59 36.05 -0.3 1.27

Shares
Outstanding(M)

892.45 459 2450 NaN 555.2 1010

P/E 12.44 589.8 104.93 31.44 NaN 27.48

Market Cap(B) 447.59 158.88 150.92 380.64 36.23 35.36

Beta 0.84 0.52 NaN 0.87 NaN 0.66

In [102]:stockDF=pd.DataFrame(stockSummaries,

 index=['Closing price','EPS',
 'Shares Outstanding(M)',

 'P/E', 'Market Cap(B)','Beta'],

 columns=['FB','TWTR','SCNW'])

 stockDF

Out [102]:

 FB TWTR SCNW

Closing price 61.48 65.25 NaN

EPS 0.59 -0.3 NaN

Shares Outstanding(M) 2450 555.2 NaN

P/E 104.93 NaN NaN

Market Cap(B) 150.92 36.23 NaN

Beta NaN NaN NaN

The row index labels and column labels can be accessed via the index and column
attributes:

In [527]: stockDF.index

Out[527]: Index([u'Closing price', u'EPS',

The pandas Data Structures

[60]

 u'Shares Outstanding(M)',

 u'P/E', u'Market Cap(B)', u'Beta'], dtype=object)

In [528]: stockDF.columns

Out[528]: Index([u'AAPL', u'AMZN', u'FB', u'GOOG', u'TWTR',

 u'YHOO'], dtype=object)

The source for the preceding data is Google Finance, accessed on 2/3/2014:
http://finance.google.com.

Using a dictionary of ndarrays/lists
Here, we create a DataFrame structure from a dictionary of lists. The keys become
the column labels in the DataFrame structure and the data in the list becomes the
column values. Note how the row label indexes are generated using np.range(n).

In [529]:algos={'search':['DFS','BFS','Binary Search',

 'Linear','ShortestPath (Djikstra)'],

 'sorting': ['Quicksort','Mergesort', 'Heapsort',

 'Bubble Sort', 'Insertion Sort'],

 'machine learning':['RandomForest',

 'K Nearest Neighbor',

 'Logistic Regression',

 'K-Means Clustering',

 'Linear Regression']}

algoDF=pd.DataFrame(algos); algoDF

Out[529]:

 machine learning search sorting

0 RandomForest DFS Quicksort

1 K Nearest Neighbor BFS Mergesort

2 Logistic Regression Binary Search Heapsort

3 K-Means Clustering Linear Bubble Sort

4 Linear Regression ShortestPath (Djikstra) Insertion Sort

In [530]: pd.DataFrame(algos,index=['algo_1','algo_2','algo_3','algo_4',

'algo_5'])

Out[530]:

 machine learning search sorting

algo_1 RandomForest DFS Quicksort

http://finance.google.com

Chapter 3

[61]

algo_2 K Nearest Neighbor BFS Mergesort

algo_3 Logistic Regression Binary Search Heapsort

algo_4 K-Means Clustering Linear Bubble Sort

algo_5 Linear Regression ShortestPath (Djikstra) Insertion Sort

Using a structured array
In this case, we use a structured array, which is an array of records or
structs. For more information on structured arrays, refer to the following:
http://docs.scipy.org/doc/numpy/user/basics.rec.html.

In [533]: memberData = np.zeros((4,),

 dtype=[('Name','a15'),

 ('Age','i4'),

 ('Weight','f4')])

 memberData[:] = [('Sanjeev',37,162.4),

 ('Yingluck',45,137.8),

 ('Emeka',28,153.2),

 ('Amy',67,101.3)]

 memberDF=pd.DataFrame(memberData);memberDF

Out[533]: Name Age Weight

 0 Sanjeev 37 162.4

 1 Yingluck 45 137.8

 2 Emeka 28 153.2

 3 Amy 67 101.3

In [534]: pd.DataFrame(memberData, index=['a','b','c','d'])

Out[534]: Name Age Weight

 a Sanjeev 37 162.4

 b Yingluck 45 137.8

 c Emeka 28 153.2

 d Amy 67 101.3

Using a Series structure
Here, we show how to construct a DataFrame structure from a Series structure:

In [540]: currSeries.name='currency'

 pd.DataFrame(currSeries)

Out[540]: currency

http://docs.scipy.org/doc/numpy/user/basics.rec.html

The pandas Data Structures

[62]

 China yuan

 Germany euro

 Japan yen

 Mexico peso

 Nigeria naira

 UK pound

 US dollar

There are also alternative constructors for DataFrame; they can be summarized
as follows:

• DataFrame.from_dict: It takes a dictionary of dictionaries or sequences and
returns DataFrame.

• DataFrame.from_records: It takes a list of tuples or structured ndarray.
• DataFrame.from_items: It takes a sequence of (key, value) pairs. The keys

are the column or index names, and the values are the column or row values.
If you wish the keys to be row index names, you must specify orient='index'
as a parameter and specify the column names.

• pandas.io.parsers.read_csv: This is a helper function that reads a CSV
file into a pandas DataFrame structure.

• pandas.io.parsers.read_table: This is a helper function that reads a
delimited file into a pandas DataFrame structure.

• pandas.io.parsers.read_fwf: This is a helper function that reads a table
of fixed-width lines into a pandas DataFrame structure.

Operations
Here, I will briefly describe the various DataFrame operations.

Selection
A specific column can be obtained as a Series structure:

In [543]: memberDF['Name']

Out[543]: 0 Sanjeev

 1 Yingluck

 2 Emeka

 3 Amy

 Name: Name, dtype: object

Chapter 3

[63]

Assignment
A new column can be added via assignment, as follows:

In [545]: memberDF['Height']=60;memberDF

Out[545]: Name Age Weight Height

 0 Sanjeev 37 162.4 60

 1 Yingluck 45 137.8 60

 2 Emeka 28 153.2 60

 3 Amy 67 101.3 60

Deletion
A column can be deleted, as you would in the case of dict:

In [546]: del memberDF['Height']; memberDF

Out[546]: Name Age Weight

 0 Sanjeev 37 162.4

 1 Yingluck 45 137.8

 2 Emeka 28 153.2

 3 Amy 67 101.3

It can also be popped, as with a dictionary:

In [547]: memberDF['BloodType']='O'

 bloodType=memberDF.pop('BloodType'); bloodType

Out[547]: 0 O

 1 O

 2 O

 3 O

 Name: BloodType, dtype: object

Basically, a DataFrame structure can be treated as if it were a dictionary of Series
objects. Columns get inserted at the end; to insert a column at a specific location,
you can use the insert function:

In [552]: memberDF.insert(2,'isSenior',memberDF['Age']>60);

 memberDF

Out[552]: Name Age isSenior Weight

 0 Sanjeev 37 False 162.4

 1 Yingluck 45 False 137.8

 2 Emeka 28 False 153.2

 3 Amy 67 True 101.3

The pandas Data Structures

[64]

Alignment
DataFrame objects align in a manner similar to Series objects, except that they align
on both column and index labels. The resulting object is the union of the column and
row labels:

In [559]: ore1DF=pd.DataFrame(np.array([[20,35,25,20],

 [11,28,32,29]]),

 columns=['iron','magnesium',

 'copper','silver'])

 ore2DF=pd.DataFrame(np.array([[14,34,26,26],

 [33,19,25,23]]),

 columns=['iron','magnesium',

 'gold','silver'])

 ore1DF+ore2DF

Out[559]: copper gold iron magnesium silver

 0 NaN NaN 34 69 46

 1 NaN NaN 44 47 52

In the case where there are no row labels or column labels in common, the value is
filled with NaN, for example, copper and gold. If you combine a DataFrame object and
a Series object, the default behavior is to broadcast the Series object across the rows:

In [562]: ore1DF + pd.Series([25,25,25,25],

 index=['iron','magnesium',

 'copper','silver'])

Out[562]: iron magnesium copper silver

 0 45 60 50 45

 1 36 53 57 54

Other mathematical operations
Mathematical operators can be applied element wise on DataFrame structures:

In [565]: np.sqrt(ore1DF)

Out[565]: iron magnesium copper silver

 0 4.472136 5.916080 5.000000 4.472136

 1 3.316625 5.291503 5.656854 5.385165

Chapter 3

[65]

Panel
Panel is a 3D array. It is not as widely used as Series or DataFrame. It is not as easily
displayed on screen or visualized as the other two because of its 3D nature. The
Panel data structure is the final piece of the data structure jigsaw puzzle in pandas.
It is less widely used, and is used for 3D data. The three axis names are as follows:

• items: This is axis 0. Each each item corresponds to a DataFrame structure.
• major_axis: This is axis 1. Each item corresponds to the rows of the

DataFrame structure.
• minor_axis: This is axis 2. Each item corresponds to the columns of each

DataFrame structure.

As for Series and DataFrame, there are different ways to create Panel objects. They
are explained in the upcoming sections.

Using 3D NumPy array with axis labels
Here, we show how to construct a Panel object from a 3D NumPy array.

In 586[]: stockData=np.array([[[63.03,61.48,75],

 [62.05,62.75,46],

 [62.74,62.19,53]],

 [[411.90, 404.38, 2.9],

 [405.45, 405.91, 2.6],

 [403.15, 404.42, 2.4]]])

 stockData

Out[586]: array([[[63.03, 61.48, 75.],

 [62.05, 62.75, 46.],

 [62.74, 62.19, 53.]],

 [[411.9 , 404.38, 2.9],

 [405.45, 405.91, 2.6],

 [403.15, 404.42, 2.4]]])

In [587]: stockHistoricalPrices = pd.Panel(stockData,

 items=['FB', 'NFLX'],

 major_axis=pd.date_range('2/3/2014',
periods=3),

minor_axis=['open price', 'closing price', 'volume'])

 stockHistoricalPrices

The pandas Data Structures

[66]

Out[587]: <class 'pandas.core.panel.Panel'>

 Dimensions: 2 (items) x 3 (major_axis) x 3 (minor_axis)

 Items axis: FB to NFLX

 Major_axis axis: 2014-02-03 00:00:00 to 2014-02-05 00:00:00

 Minor_axis axis: open price to volume

Using a Python dictionary of DataFrame objects
We construct a Panel structure by using a Python dictionary of DataFrame
structures.

In [591]: USData=pd.DataFrame(np.array([[249.62 , 8900],

 [282.16,12680],

 [309.35,14940]]),

 columns=['Population(M)','GDP($B)'],

 index=[1990,2000,2010])

 USData

Out[591]: Population(M) GDP($B)

 1990 249.62 8900

 2000 282.16 12680

 2010 309.35 14940

In [590]: ChinaData=pd.DataFrame(np.array([[1133.68, 390.28],

 [1266.83,1198.48],

 [1339.72, 6988.47]]),

 columns=['Population(M)','GDP($B)'],

 index=[1990,2000,2010])

 ChinaData

Out[590]: Population(M) GDP($B)

 1990 1133.68 390.28

 2000 1266.83 1198.48

 2010 1339.72 6988.47

In [592]:US_ChinaData={'US' : USData,

 'China': ChinaData}

 pd.Panel(US_ChinaData)

Out[592]: <class 'pandas.core.panel.Panel'>

Chapter 3

[67]

 Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis)

 Items axis: China to US

 Major_axis axis: 1990 to 2010

Using the DataFrame.to_panel method
This method converts a DataFrame structure having a MultiIndex to a Panel
structure:

In [617]: mIdx = pd.MultiIndex(levels=[['US', 'China'],

 [1990,2000, 2010]],

 labels=[[1,1,1,0,0,0],[0,1,2,0,1,2]])

mIdx

Out[617]: MultiIndex

 [(u'China', 1990), (u'China', 2000), (u'China', 2010),

 (u'US', 1990), (u'US', 2000), (u'US', 2010)]

ChinaUSDF = pd.DataFrame({'Population(M)' : [1133.68, 1266.83,

 1339.72, 249.62,

 282.16,309.35],

 'GDB($B)': [390.28, 1198.48, 6988.47,

 8900,12680, 14940]}, index=mIdx)

ChinaUSDF

In [618]: ChinaUSDF = pd.DataFrame({'Population(M)' : [1133.68,

 1266.83,

 1339.72,

 249.62,

 282.16,

 309.35],

 'GDB($B)': [390.28, 1198.48,

 6988.47, 8900,

 12680,14940]},

 index=mIdx)

 ChinaUSDF

Out[618]: GDB($B) Population(M)

The pandas Data Structures

[68]

 China 1990 390.28 1133.68

 2000 1198.48 1266.83

 2010 6988.47 1339.72

 US 1990 8900.00 249.62

 2000 12680.00 282.16

 2010 14940.00 309.35

In [622]: ChinaUSDF.to_panel()

Out[622]: <class 'pandas.core.panel.Panel'>

 Dimensions: 2 (items) x 2 (major_axis) x 3 (minor_axis)

 Items axis: GDB($B) to Population(M)

 Major_axis axis: US to China

 Minor_axis axis: 1990 to 2010

The sources of US/China Economic data are the following sites:

• http://www.multpl.com/us-gdp-inflation-adjusted/table

• http://www.multpl.com/united-states-population/table

• http://en.wikipedia.org/wiki/Demographics_of_China

• http://www.theguardian.com/news/datablog/2012/mar/23/china-gdp-
since-1980

Other operations
Insertion, deletion, and item-wise operations behave the same as in the case of
DataFrame. Panel structures can be re-arranged via transpose. The feature set of the
operations of Panel is relatively underdeveloped and not as rich as for Series and
DataFrame.

Summary
To summarize this chapter, numpy.ndarray is the bedrock data structure on which
the pandas data structures are based. The pandas data structures at their heart
consist of NumPy ndarray of data and an array or arrays of labels.

There are three main data structures in pandas: Series, DataFrame, and Panel. The
pandas data structures are much easier to use and more user-friendly than Numpy
ndarrays, since they provide row indexes and column indexes in the case of
DataFrame and Panel. The DataFrame object is the most popular and widely used
object in pandas. In the next chapter, we will cover the topic of indexing in pandas.

http://www.multpl.com/us-gdp-inflation-adjusted/table
http://www.multpl.com/united-states-population/table
http://en.wikipedia.org/wiki/Demographics_of_China
http://www.theguardian.com/news/datablog/2012/mar/23/china-gdp-since-1980
http://www.theguardian.com/news/datablog/2012/mar/23/china-gdp-since-1980

[69]

Operations in pandas, Part I
– Indexing and Selecting

In this chapter, we will focus on the indexing and selection of data from pandas
objects. This is important since effective use of pandas requires a good knowledge
of the indexing and selection of data. The topics that we will address in this chapter
include the following:

• Basic indexing
• Label, integer, and mixed indexing
• MultiIndexing
• Boolean indexing
• Operations on indexes

Basic indexing
We have already discussed basic indexing on Series and DataFrames in the previous
chapter, but here we will include some examples for the sake of completeness. Here,
we list a time series of crude oil spot prices for the 4 quarters of 2013, taken from IMF
data: http://www.imf.org/external/np/res/commod/pdf/monthly/011014.pdf.

In [642]:SpotCrudePrices_2013_Data={

 'U.K. Brent' : {'2013-Q1':112.9, '2013-Q2':103.0, '2013-
Q3':110.1, '2013-Q4':109.4},

 'Dubai':{'2013-Q1':108.1, '2013-Q2':100.8,
'2013-Q3':106.1,'2013-Q4':106.7},

 'West Texas Intermediate':{'2013-Q1':94.4, '2013-
Q2':94.2, '2013-Q3':105.8,'2013-Q4':97.4}}

http://www.imf.org/external/np/res/commod/pdf/monthly/011014.pdf

Operations in pandas, Part I – Indexing and Selecting

[70]

 SpotCrudePrices_2013=pd.DataFrame.from_
dict(SpotCrudePrices_2013_Data)

 SpotCrudePrices_2013

Out[642]: Dubai U.K. Brent West Texas Intermediate

 2013-Q1 108.1 112.9 94.4

 2013-Q2 100.8 103.0 94.2

 2013-Q3 106.1 110.1 105.8

 2013-Q4 106.7 109.4 97.4

We can select the prices for the available time periods of Dubai crude oil by using the
[] operator:

In [644]: dubaiPrices=SpotCrudePrices_2013['Dubai']; dubaiPrices

Out[644]: 2013-Q1 108.1

 2013-Q2 100.8

 2013-Q3 106.1

 2013-Q4 106.7

 Name: Dubai, dtype: float64

We can pass a list of columns to the [] operator in order to select the columns in a
particular order:

In [647]: SpotCrudePrices_2013[['West Texas Intermediate','U.K. Brent']]

Out[647]: West Texas Intermediate U.K. Brent

 2013-Q1 94.4 112.9

 2013-Q2 94.2 103.0

 2013-Q3 105.8 110.1

 2013-Q4 97.4 109.4

If we specify a column that is not listed in the DataFrame, we will get a KeyError
exception:

In [649]: SpotCrudePrices_2013['Brent Blend']

 --

 KeyError Traceback (most
recent call last)

 <ipython-input-649-cd2d76b24875> in <module>()

 ...

 KeyError: u'no item named Brent Blend'

Chapter 4

[71]

We can avoid this error by using the get operator and specifying a default value in
the case when the column is not present, as follows:

In [650]: SpotCrudePrices_2013.get('Brent Blend','N/A')

Out[650]: 'N/A'

Note that rows cannot be selected with the bracket operator []
in a DataFrame.

Hence, we get an error in the following case:

In [755]:SpotCrudePrices_2013['2013-Q1']

 --

 KeyError Traceback (most recent call last)

 ...

 KeyError: u'no item named 2013-Q1'

This was a design decision made by the creators in order to avoid ambiguity. In the
case of a Series, where there is no ambiguity, selecting rows by using the [] operator
works:

In [756]: dubaiPrices['2013-Q1']

Out[756]: 108.1

We shall see how we can perform row selection by using one of the newer indexing
operators later in this chapter.

Accessing attributes using dot operator
One can retrieve values from a Series, DataFrame, or Panel directly as an attribute
as follows:

In [650]: SpotCrudePrices_2013.Dubai

Out[650]: 2013-Q1 108.1

 2013-Q2 100.8

 2013-Q3 106.1

 2013-Q4 106.7

 Name: Dubai, dtype: float64

However, this only works if the index element is a valid Python identifier as follows:

In [653]: SpotCrudePrices_2013."West Texas Intermediate"

 File "<ipython-input-653-2a782563c15a>", line 1

Operations in pandas, Part I – Indexing and Selecting

[72]

 SpotCrudePrices_2013."West Texas Intermediate"

 ^

 SyntaxError: invalid syntax

Otherwise, we get SyntaxError as in the preceding case because of the space
in the column name. A valid Python identifier must follow the following lexical
convention:

identifier::= (letter|"_") (letter | digit | "_")*

Thus, a valid Python identifier cannot contain a space. See the Python Lexical
Analysis documents for more details at http://docs.python.org/2.7/reference/
lexical_analysis.html#identifiers.

We can resolve this by renaming the column index names so that they are all valid
identifiers:

In [654]: SpotCrudePrices_2013

Out[654]: Dubai U.K. Brent West Texas Intermediate

 2013-Q1 108.1 112.9 94.4

 2013-Q2 100.8 103.0 94.2

 2013-Q3 106.1 110.1 105.8

 2013-Q4 106.7 109.4 97.4

In [655]:SpotCrudePrices_2013.columns=['Dubai','UK_Brent',

 'West_Texas_Intermediate']

SpotCrudePrices_2013

Out[655]: Dubai UK_Brent West_Texas_Intermediate

 2013-Q1 108.1 112.9 94.4

 2013-Q2 100.8 103.0 94.2

 2013-Q3 106.1 110.1 105.8

 2013-Q4 106.7 109.4 97.4

We can then select the prices for West Texas Intermediate as desired:

In [656]:SpotCrudePrices_2013.West_Texas_Intermediate

Out[656]:2013-Q1 94.4

 2013-Q2 94.2

 2013-Q3 105.8

 2013-Q4 97.4

 Name: West_Texas_Intermediate, dtype: float64

http://docs.python.org/2.7/reference/lexical_analysis.html#identifiers
http://docs.python.org/2.7/reference/lexical_analysis.html#identifiers

Chapter 4

[73]

We can also select prices by specifying a column index number to select column 1
(U.K. Brent) as follows:

In [18]: SpotCrudePrices_2013[[1]]

Out[18]: U.K. Brent

 2013-Q1 112.9

 2013-Q2 103.0

 2013-Q3 110.1

 2013-Q4 109.4

Range slicing
As we saw in the section on NumPy ndarrays in Chapter 3, The pandas Data structures,
we can slice a range by using the [] operator. The syntax of the slicing operator
exactly matches that of NumPy:

ar[startIndex: endIndex: stepValue]

where the default values if not specified are as follows:

• 0 for startIndex
• arraysize -1 for endIndex
• 1 for stepValue

For a DataFrame, [] slices across rows as follows:

Obtain the first 2 rows:

In [675]: SpotCrudePrices_2013[:2]

Out[675]: Dubai UK_Brent West_Texas_Intermediate

 2013-Q1 108.1 112.9 94.4

 2013-Q2 100.8 103.0 94.2

Obtain all rows starting from index 2:

In [662]: SpotCrudePrices_2013[2:]

Out[662]: Dubai UK_Brent West_Texas_Intermediate

 2013-Q3 106.1 110.1 105.8

 2013-Q4 106.7 109.4 97.4

Operations in pandas, Part I – Indexing and Selecting

[74]

Obtain rows at intervals of two, starting from row 0:

In [664]: SpotCrudePrices_2013[::2]

Out[664]: Dubai UK_Brent West_Texas_Intermediate

 2013-Q1 108.1 112.9 94.4

 2013-Q3 106.1 110.1 105.8

Reverse the order of rows in DataFrame:

In [677]: SpotCrudePrices_2013[::-1]

Out[677]: Dubai UK_Brent West_Texas_Intermediate

 2013-Q4 106.7 109.4 97.4

 2013-Q3 106.1 110.1 105.8

 2013-Q2 100.8 103.0 94.2

 2013-Q1 108.1 112.9 94.4

For a Series, the behavior is just as intuitive:
In [666]: dubaiPrices=SpotCrudePrices_2013['Dubai']

Obtain the last 3 rows or all rows but the first:
In [681]: dubaiPrices[1:]

Out[681]: 2013-Q2 100.8

 2013-Q3 106.1

 2013-Q4 106.7

 Name: Dubai, dtype: float64

Obtain all rows but the last:
In [682]: dubaiPrices[:-1]

Out[682]: 2013-Q1 108.1

 2013-Q2 100.8

 2013-Q3 106.1

 Name: Dubai, dtype: float64

Reverse the rows:
In [683]: dubaiPrices[::-1]

Out[683]: 2013-Q4 106.7

 2013-Q3 106.1

 2013-Q2 100.8

 2013-Q1 108.1

 Name: Dubai, dtype: float64

Chapter 4

[75]

Label, integer, and mixed indexing
In addition to the standard indexing operator [] and attribute operator, there
are operators provided in pandas to make the job of indexing easier and more
convenient. By label indexing, we generally mean indexing by a header name,
which tends to be a string value in most cases. These operators are as follows:

• The .loc operator: It allows label-oriented indexing
• The .iloc operator: It allows integer-based indexing
• The .ix operator: It allows mixed label and integer-based indexing

We will now turn our attention to these operators.

Label-oriented indexing
The .loc operator supports pure label-based indexing. It accepts the following as
valid inputs:

• A single label such as ['March'], [88] or ['Dubai']. Note that in the case where
the label is an integer, it doesn't refer to the integer position of the index, but
to the integer itself as a label.

• List or array of labels, for example, ['Dubai','UK Brent'].
• A slice object with labels, for example, 'May':'Aug'.
• A Boolean array.

For our illustrative dataset, we use the average snowy weather temperature data for
New York city from the following:

• http://www.currentresults.com/Weather/New-York/Places/new-york-
city-snowfall-totals-snow-accumulation-averages.php

• http://www.currentresults.com/Weather/New-York/Places/new-york-
city-temperatures-by-month-average.php

Create DataFrame

In [723]: NYC_SnowAvgsData={'Months' :

['January','February','March',

'April', 'November', 'December'],

'Avg SnowDays' : [4.0,2.7,1.7,0.2,0.2,2.3],

'Avg Precip. (cm)' : [17.8,22.4,9.1,1.5,0.8,12.2],

'Avg Low Temp. (F)' : [27,29,35,45,42,32] }

http://www.currentresults.com/Weather/New-York/Places/new-york-city-snowfall-totals-snow-accumulation-averages.php
http://www.currentresults.com/Weather/New-York/Places/new-york-city-snowfall-totals-snow-accumulation-averages.php
http://www.currentresults.com/Weather/New-York/Places/new-york-city-temperatures-by-month-average.php
http://www.currentresults.com/Weather/New-York/Places/new-york-city-temperatures-by-month-average.php

Operations in pandas, Part I – Indexing and Selecting

[76]

In [724]: NYC_SnowAvgsData

Out[724]:{'Avg Low Temp. (F)': [27, 29, 35, 45, 42, 32],

 'Avg Precip. (cm)': [17.8, 22.4, 9.1, 1.5, 0.8, 12.2],

 'Avg SnowDays': [4.0, 2.7, 1.7, 0.2, 0.2, 2.3],

 'Months': ['January', 'February', 'March', 'April',

 'November', 'December']}

In [726]:NYC_SnowAvgs=pd.DataFrame(NYC_SnowAvgsData,

 index=NYC_SnowAvgsData['Months'],

 columns=['Avg SnowDays','Avg Precip. (cm)',

 'Avg Low Temp. (F)'])

 NYC_SnowAvgs

Out[726]: Avg SnowDays Avg Precip. (cm) Avg Low Temp. (F)

 January 4.0 17.8 27

 February 2.7 22.4 29

 March 1.7 9.1 35

 April 0.2 1.5 45

 November 0.2 0.8 42

 December 2.3 12.2 32

Using a single label:

In [728]: NYC_SnowAvgs.loc['January']

Out[728]: Avg SnowDays 4.0

 Avg Precip. (cm) 17.8

 Avg Low Temp. (F) 27.0

 Name: January, dtype: float64

Using a list of labels:

In [730]: NYC_SnowAvgs.loc[['January','April']]

Out[730]: Avg SnowDays Avg Precip. (cm) Avg Low Temp. (F)

 January 4.0 17.8 27

 April 0.2 1.5 45

Chapter 4

[77]

Using a label range:

In [731]: NYC_SnowAvgs.loc['January':'March']

Out[731]: Avg SnowDays Avg Precip. (cm) Avg Low Temp. (F)

 January 4.0 17.8 27

 February 2.7 22.4 29

 March 1.7 9.1 35

Note that while using the .loc, .iloc, and .ix operators on a DataFrame, the row
index must always be specified first. This is the opposite of the [] operator, where
only columns can be selected directly. Hence, we get an error if we do the following:

In [771]: NYC_SnowAvgs.loc['Avg SnowDays']

KeyError: 'Avg SnowDays'

The correct way to do this is to specifically select all rows by using the colon (:)
operator as follows:

In [772]: NYC_SnowAvgs.loc[:,'Avg SnowDays']

Out[772]: January 4.0

 February 2.7

 March 1.7

 April 0.2

 November 0.2

 December 2.3

 Name: Avg SnowDays, dtype: float64

Here, we see how to select a specific coordinate value, namely the average number of
snow days in March:

In [732]: NYC_SnowAvgs.loc['March','Avg SnowDays']

Out[732]: 1.7

This alternative style is also supported:

In [733]: NYC_SnowAvgs.loc['March']['Avg SnowDays']

Out[733]: 1.7

The following is the equivalent of the preceding case using the square bracket
operator []:

In [750]: NYC_SnowAvgs['Avg SnowDays']['March']

Out[750]: 1.7

Operations in pandas, Part I – Indexing and Selecting

[78]

Note again, however, that specifying the row index value first as is done with the
.loc operator will result in Keyerror. This is a consequence of the fact discussed
previously, that the [] operator cannot be used to select rows directly. The columns
must be selected first to obtain a Series, which can then be selected by rows.
Thus, you will get KeyError: u'no item named March' if you use either of
the following:

In [757]: NYC_SnowAvgs['March']['Avg SnowDays']

Or

In [758]: NYC_SnowAvgs['March']

We can use the .loc operator to select the rows instead:

In [759]: NYC_SnowAvgs.loc['March']

Out[759]: Avg SnowDays 1.7

 Avg Precip. (cm) 9.1

 Avg Low Temp. (F) 35.0

 Name: March, dtype: float64

Selection using a Boolean array
Now, we will show how to select which months have less than one snow day on
average by using a Boolean array:

In [763]: NYC_SnowAvgs.loc[NYC_SnowAvgs['Avg SnowDays']<1,:]

Out[763]: Avg SnowDays Avg Precip. (cm) Avg Low Temp. (F)

 April 0.2 1.5 45

 November 0.2 0.8 42

Or, in the case of the spot crude prices mentioned earlier, select the column
corresponding to the brand of crude that was priced above 110 a barrel for
row 2013-Q1:

In [768]: SpotCrudePrices_2013.loc[:,SpotCrudePrices_2013.
loc['2013-Q1']>110]

Out[768]: UK_Brent

 2013-Q1 112.9

 2013-Q2 103.0

 2013-Q3 110.1

 2013-Q4 109.4

Chapter 4

[79]

Note that the preceding arguments involve the Boolean operators < and > that
actually evaluate the Boolean arrays, for example:

In [769]: SpotCrudePrices_2013.loc['2013-Q1']>110

Out[769]: Dubai False

 UK_Brent True

 West_Texas_Intermediate False

 Name: 2013-Q1, dtype: bool

Integer-oriented indexing
The .iloc operator supports integer-based positional indexing. It accepts the
following as inputs:

• A single integer, for example, 7
• A list or array of integers, for example, [2,3]
• A slice object with integers, for example, 1:4

Let us create the following:

In [777]: import scipy.constants as phys

 import math

In [782]: sci_values=pd.DataFrame([[math.pi, math.sin(math.pi),

 math.cos(math.pi)],

 [math.e,math.log(math.e),

 phys.golden],

 [phys.c,phys.g,phys.e],

 [phys.m_e,phys.m_p,phys.m_n]],

 index=list(range(0,20,5)))

Out[782]: 0 1 2

 0 3.141593e+00 1.224647e-16 -1.000000e+00

 5 2.718282e+00 1.000000e+00 1.618034e+00

 10 2.997925e+08 9.806650e+00 1.602177e-19

 15 9.109383e-31 1.672622e-27 1.674927e-27

Operations in pandas, Part I – Indexing and Selecting

[80]

We can select the non-physical constants in the first two rows by using integer slicing:

In [789]: sci_values.iloc[:2]

Out[789]: 0 1 2

 0 3.141593 1.224647e-16 -1.000000

 5 2.718282 1.000000e+00 1.618034

Alternatively, we can use the speed of light and the acceleration of gravity in the
third row:

In [795]: sci_values.iloc[2,0:2]

Out[795]: 0 2.997925e+08

 1 9.806650e+00

 dtype: float64

Note that the arguments to .iloc are strictly positional and have nothing to do with
the index values. Hence, consider a case where we mistakenly think that we can
obtain the third row by using the following:

In [796]: sci_values.iloc[10]

 --

 IndexError Traceback (most
recent call last)

 ...

 IndexError: index 10 is out of bounds for axis 0 with size 4

Here, we get IndexError in the preceding result; so, now, we should use the label-
indexing operator .loc instead, as follows:

In [797]: sci_values.loc[10]

Out[797]: 0 2.997925e+08

 1 9.806650e+00

 2 1.602177e-19

 Name: 10, dtype: float64

To slice out a specific row, we can use the following:

In [802]: sci_values.iloc[2:3,:]

Out[802]: 0 1 2

 10 299792458 9.80665 1.602177e-19

Chapter 4

[81]

To obtain a cross-section using an integer position, use the following:

In [803]: sci_values.iloc[3]

Out[803]: 0 9.109383e-31

 1 1.672622e-27

 2 1.674927e-27

 Name: 15, dtype: float64

If we attempt to slice past the end of the array, we obtain IndexError as follows:

In [805]: sci_values.iloc[6,:]

 --

 IndexError Traceback (most
recent call last)

 IndexError: index 6 is out of bounds for axis 0 with size 4

The .iat and .at operators
The .iat and .at operators can be used for a quick selection of scalar values. This is
best illustrated as follows:

In [806]: sci_values.iloc[3,0]

Out[806]: 9.1093829099999999e-31

In [807]: sci_values.iat[3,0]

Out[807]: 9.1093829099999999e-31

In [808]: %timeit sci_values.iloc[3,0]

 10000 loops, best of 3: 122 μs per loop

In [809]: %timeit sci_values.iat[3,0]

 10000 loops, best of 3: 28.4 μs per loop

Thus, we can see that .iat is much faster than the .iloc/.ix operators. The same
applies to .at versus .loc.

Mixed indexing with the .ix operator
The .ix operator behaves like a mixture of the .loc and .iloc operators, with the
.loc behavior taking precedence. It takes the following as possible inputs:

• A single label or integer
• A list of integers or labels

Operations in pandas, Part I – Indexing and Selecting

[82]

• An integer slice or label slice
• A Boolean array

Let us re-create the following DataFrame by saving the stock index closing price data
to a file (stock_index_closing.csv) and reading it in:

TradingDate,Nasdaq,S&P 500,Russell 2000

2014/01/30,4123.13,1794.19,1139.36

2014/01/31,4103.88,1782.59,1130.88

2014/02/03,3996.96,1741.89,1094.58

2014/02/04,4031.52,1755.2,1102.84

2014/02/05,4011.55,1751.64,1093.59

2014/02/06,4057.12,1773.43,1103.93

The source for this data is http://www.economagic.com/sp.htm#Daily. Here's
how we read the CSV data into a DataFrame:

In [939]: stockIndexDataDF=pd.read_csv('./stock_index_data.csv')

In [940]: stockIndexDataDF

Out[940]: TradingDate Nasdaq S&P 500 Russell 2000

 0 2014/01/30 4123.13 1794.19 1139.36

 1 2014/01/31 4103.88 1782.59 1130.88

 2 2014/02/03 3996.96 1741.89 1094.58

 3 2014/02/04 4031.52 1755.20 1102.84

 4 2014/02/05 4011.55 1751.64 1093.59

 5 2014/02/06 4057.12 1773.43 1103.93

What we see from the preceding example is that the DataFrame created has an
integer-based row index. We promptly set the index to be the trading date to index
it based on the trading date so that we can use the .ix operator:

In [941]: stockIndexDF=stockIndexDataDF.set_index('TradingDate')

In [942]:stockIndexDF

Out[942]: Nasdaq S&P 500 Russell 2000

 TradingDate

 2014/01/30 4123.13 1794.19 1139.36

 2014/01/31 4103.88 1782.59 1130.88

 2014/02/03 3996.96 1741.89 1094.58

 2014/02/04 4031.52 1755.20 1102.84

 2014/02/05 4011.55 1751.64 1093.59

 2014/02/06 4057.12 1773.43 1103.93

http://www.economagic.com/sp.htm#Daily

Chapter 4

[83]

We now show examples of using the .ix operator:

Using a single label:

In [927]: stockIndexDF.ix['2014/01/30']

Out[927]: Nasdaq 4123.13

 S&P 500 1794.19

 Russell 2000 1139.36

 Name: 2014/01/30, dtype: float64

Using a list of labels:

In [928]: stockIndexDF.ix[['2014/01/30']]

Out[928]: Nasdaq S&P 500 Russell 2000

 2014/01/30 4123.13 1794.19 1139.36

In [930]: stockIndexDF.ix[['2014/01/30','2014/01/31']]

Out[930]: Nasdaq S&P 500 Russell 2000

 2014/01/30 4123.13 1794.19 1139.36

 2014/01/31 4103.88 1782.59 1130.88

Note the difference in the output between using a single label versus using a
list containing just a single label. The former results in a series and the latter,
a DataFrame:

In [943]: type(stockIndexDF.ix['2014/01/30'])

Out[943]: pandas.core.series.Series

In [944]: type(stockIndexDF.ix[['2014/01/30']])

Out[944]: pandas.core.frame.DataFrame

For the former, the indexer is a scalar; for the latter, the indexer is a list. A list indexer
is used to select multiple columns. A multi-column slice of a DataFrame can only
result in another DataFrame since it is 2D; hence, what is returned in the latter case
is a DataFrame.

Using a label-based slice:

In [932]: tradingDates=stockIndexDataDF.TradingDate

In [934]: stockIndexDF.ix[tradingDates[:3]]

Out[934]: Nasdaq S&P 500 Russell 2000

 2014/01/30 4123.13 1794.19 1139.36

Operations in pandas, Part I – Indexing and Selecting

[84]

 2014/01/31 4103.88 1782.59 1130.88

 2014/02/03 3996.96 1741.89 1094.58

Using a single integer:

In [936]: stockIndexDF.ix[0]

Out[936]: Nasdaq 4123.13

 S&P 500 1794.19

 Russell 2000 1139.36

 Name: 2014/01/30, dtype: float64

Using a list of integers:

In [938]: stockIndexDF.ix[[0,2]]

Out[938]: Nasdaq S&P 500 Russell 2000

 TradingDate

 2014/01/30 4123.13 1794.19 1139.36

 2014/02/03 3996.96 1741.89 1094.58

Using an integer slice:

In [947]: stockIndexDF.ix[1:3]

Out[947]: Nasdaq S&P 500 Russell 2000

 TradingDate

 2014/01/31 4103.88 1782.59 1130.88

 2014/02/03 3996.96 1741.89 1094.58

Using a Boolean array:

In [949]: stockIndexDF.ix[stockIndexDF['Russell 2000']>1100]

Out[949]: Nasdaq S&P 500 Russell 2000

 TradingDate

 2014/01/30 4123.13 1794.19 1139.36

 2014/01/31 4103.88 1782.59 1130.88

 2014/02/04 4031.52 1755.20 1102.84

 2014/02/06 4057.12 1773.43 1103.93

As in the case of .loc, the row index must be specified first for the .ix operator.

Chapter 4

[85]

MultiIndexing
We now turn to the topic of MultiIndexing. Multi-level or hierarchical indexing is
useful because it enables the pandas user to select and massage data in multiple
dimensions by using data structures such as Series and DataFrame. In order to start,
let us save the following data to a file: stock_index_prices.csv and read it in:

TradingDate,PriceType,Nasdaq,S&P 500,Russell 2000

2014/02/21,open,4282.17,1841.07,1166.25

2014/02/21,close,4263.41,1836.25,1164.63

2014/02/21,high,4284.85,1846.13,1168.43

2014/02/24,open,4273.32,1836.78,1166.74

2014/02/24,close,4292.97,1847.61,1174.55

2014/02/24,high,4311.13,1858.71,1180.29

2014/02/25,open,4298.48,1847.66,1176

2014/02/25,close,4287.59,1845.12,1173.95

2014/02/25,high,4307.51,1852.91,1179.43

2014/02/26,open,4300.45,1845.79,1176.11

2014/02/26,close,4292.06,1845.16,1181.72

2014/02/26,high,4316.82,1852.65,1188.06

2014/02/27,open,4291.47,1844.9,1179.28

2014/02/27,close,4318.93,1854.29,1187.94

2014/02/27,high,4322.46,1854.53,1187.94

2014/02/28,open,4323.52,1855.12,1189.19

2014/02/28,close,4308.12,1859.45,1183.03

2014/02/28,high,4342.59,1867.92,1193.5

In [950]:sharesIndexDataDF=pd.read_csv('./stock_index_prices.csv')

In [951]: sharesIndexDataDF

Out[951]:

 TradingDate PriceType Nasdaq S&P 500 Russell 2000

0 2014/02/21 open 4282.17 1841.07 1166.25

1 2014/02/21 close 4263.41 1836.25 1164.63

2 2014/02/21 high 4284.85 1846.13 1168.43

3 2014/02/24 open 4273.32 1836.78 1166.74

4 2014/02/24 close 4292.97 1847.61 1174.55

5 2014/02/24 high 4311.13 1858.71 1180.29

Operations in pandas, Part I – Indexing and Selecting

[86]

6 2014/02/25 open 4298.48 1847.66 1176.00

7 2014/02/25 close 4287.59 1845.12 1173.95

8 2014/02/25 high 4307.51 1852.91 1179.43

9 2014/02/26 open 4300.45 1845.79 1176.11

10 2014/02/26 close 4292.06 1845.16 1181.72

11 2014/02/26 high 4316.82 1852.65 1188.06

12 2014/02/27 open 4291.47 1844.90 1179.28

13 2014/02/27 close 4318.93 1854.29 1187.94

14 2014/02/27 high 4322.46 1854.53 1187.94

15 2014/02/28 open 4323.52 1855.12 1189.19

16 2014/02/28 close 4308.12 1859.45 1183.03

17 2014/02/28 high 4342.59 1867.92 1193.50

Here, we create a MultiIndex from the trading date and priceType columns:

In [958]: sharesIndexDF=sharesIndexDataDF.set_index(['TradingDate','Price
Type'])

In [959]: mIndex=sharesIndexDF.index; mIndex

Out[959]: MultiIndex

 [(u'2014/02/21', u'open'), (u'2014/02/21', u'close'), (u'2014/02/21',
u'high'), (u'2014/02/24', u'open'), (u'2014/02/24', u'close'),
(u'2014/02/24', u'high'), (u'2014/02/25', u'open'), (u'2014/02/25',
u'close'), (u'2014/02/25', u'high'), (u'2014/02/26', u'open'),
(u'2014/02/26', u'close'), (u'2014/02/26', u'high'), (u'2014/02/27',
u'open'), (u'2014/02/27', u'close'), (u'2014/02/27', u'high'),
(u'2014/02/28', u'open'), (u'2014/02/28', u'close'), (u'2014/02/28',
u'high')]

In [960]: sharesIndexDF

Out[960]: Nasdaq S&P 500 Russell 2000

TradingDate PriceType

2014/02/21 open 4282.17 1841.07 1166.25

 close 4263.41 1836.25 1164.63

 high 4284.85 1846.13 1168.43

2014/02/24 open 4273.32 1836.78 1166.74

 close 4292.97 1847.61 1174.55

 high 4311.13 1858.71 1180.29

2014/02/25 open 4298.48 1847.66 1176.00

 close 4287.59 1845.12 1173.95

Chapter 4

[87]

 high 4307.51 1852.91 1179.43

2014/02/26 open 4300.45 1845.79 1176.11

 close 4292.06 1845.16 1181.72

 high 4316.82 1852.65 1188.06

2014/02/27 open 4291.47 1844.90 1179.28

 close 4318.93 1854.29 1187.94

 high 4322.46 1854.53 1187.94

2014/02/28 open 4323.52 1855.12 1189.19

 close 4308.12 1859.45 1183.03

 high 4342.59 1867.92 1193.50

Upon inspection, we see that the MultiIndex consists of a list of tuples. Applying the
get_level_values function with the appropriate argument produces a list of the
labels for each level of the index:

In [962]: mIndex.get_level_values(0)

Out[962]: Index([u'2014/02/21', u'2014/02/21', u'2014/02/21',
u'2014/02/24', u'2014/02/24', u'2014/02/24', u'2014/02/25',
u'2014/02/25', u'2014/02/25', u'2014/02/26', u'2014/02/26',
u'2014/02/26', u'2014/02/27', u'2014/02/27', u'2014/02/27',
u'2014/02/28', u'2014/02/28', u'2014/02/28'], dtype=object)

In [963]: mIndex.get_level_values(1)

Out[963]: Index([u'open', u'close', u'high', u'open', u'close', u'high',
u'open', u'close', u'high', u'open', u'close', u'high', u'open',
u'close', u'high', u'open', u'close', u'high'], dtype=object)

However, IndexError will be thrown if the value passed to get_level_values() is
invalid or out of range:

In [88]: mIndex.get_level_values(2)

IndexError Traceback (most recent call last)

...

You can achieve hierarchical indexing with a MultiIndexed DataFrame:

In [971]: sharesIndexDF.ix['2014/02/21']

Out[971]: Nasdaq S&P 500 Russell 2000

 PriceType

 open 4282.17 1841.07 1166.25

 close 4263.41 1836.25 1164.63

Operations in pandas, Part I – Indexing and Selecting

[88]

 high 4284.85 1846.13 1168.43

In [976]: sharesIndexDF.ix['2014/02/21','open']

Out[976]: Nasdaq 4282.17

 S&P 500 1841.07

 Russell 2000 1166.25

 Name: (2014/02/21, open), dtype: float64

We can slice using a MultiIndex:

In [980]: sharesIndexDF.ix['2014/02/21':'2014/02/24']

Out[980]: Nasdaq S&P 500 Russell 2000

 TradingDate PriceType

 2014/02/21 open 4282.17 1841.07 1166.25

 close 4263.41 1836.25 1164.63

 high 4284.85 1846.13 1168.43

 2014/02/24 open 4273.32 1836.78 1166.74

 close 4292.97 1847.61 1174.55

 high 4311.13 1858.71 1180.29

We can try slicing at a lower level:

In [272]:

sharesIndexDF.ix[('2014/02/21','open'):('2014/02/24','open')]

--

KeyError Traceback (most recent call
last)

<ipython-input-272-65bb3364d980> in <module>()

----> 1 sharesIndexDF.ix[('2014/02/21','open'):('2014/02/24','open')]

...

KeyError: 'Key length (2) was greater than MultiIndex lexsort depth (1)'

However, this results in KeyError with a rather strange error message. The key
lesson to be learned here is that the current incarnation of MultiIndex requires the
labels to be sorted for the lower-level slicing routines to work correctly.

In order to do this, you can utilize the sortlevel() method, which sorts the labels
of an axis within a MultiIndex. To be on the safe side, sort first before slicing with a
MultiIndex. Thus, we can do the following:

Chapter 4

[89]

In [984]: sharesIndexDF.sortlevel(0).ix[('2014/02/21','open'):('2014/02/2
4','open')]

Out[984]: Nasdaq S&P 500 Russell 2000

 TradingDate PriceType

 2014/02/21 open 4282.17 1841.07 1166.25

 2014/02/24 close 4292.97 1847.61 1174.55

 high 4311.13 1858.71 1180.29

 open 4273.32 1836.78 1166.74

We can also pass a list of tuples:

In [985]: sharesIndexDF.ix[[('2014/02/21','close'),('2014/02/24','op
en')]]

Out[985]: Nasdaq S&P 500 Russell 2000

 TradingDate PriceType

 2014/02/21 close 4263.41 1836.25 1164.63

 2014/02/24 open 4273.32 1836.78 1166.74

 2 rows × 3 columns

Note that by specifying a list of tuples, instead of a range as in
the previous example, we display only the values of the open
PriceType rather than all three for the TradingDate 2014/02/24.

Swapping and reordering levels
The swaplevel function enables levels within the MultiIndex to be swapped:

In [281]: swappedDF=sharesIndexDF[:7].swaplevel(0, 1, axis=0)

 swappedDF

Out[281]: Nasdaq S&P 500 Russell 2000

 PriceType TradingDate

 open 2014/02/21 4282.17 1841.07 1166.25

 close 2014/02/21 4263.41 1836.25 1164.63

 high 2014/02/21 4284.85 1846.13 1168.43

 open 2014/02/24 4273.32 1836.78 1166.74

 close 2014/02/24 4292.97 1847.61 1174.55

 high 2014/02/24 4311.13 1858.71 1180.29

 open 2014/02/25 4298.48 1847.66 1176.00

 7 rows × 3 columns

Operations in pandas, Part I – Indexing and Selecting

[90]

The reorder_levels function is more general, allowing you to specify the order of
the levels:

In [285]: reorderedDF=sharesIndexDF[:7].reorder_levels(['PriceType',

 'TradingDate'],

 axis=0)

 reorderedDF

Out[285]: Nasdaq S&P 500 Russell 2000

 PriceType TradingDate

 open 2014/02/21 4282.17 1841.07 1166.25

 close 2014/02/21 4263.41 1836.25 1164.63

 high 2014/02/21 4284.85 1846.13 1168.43

 open 2014/02/24 4273.32 1836.78 1166.74

 close 2014/02/24 4292.97 1847.61 1174.55

 high 2014/02/24 4311.13 1858.71 1180.29

 open 2014/02/25 4298.48 1847.66 1176.00

 7 rows × 3 columns

Cross sections
The xs method provides a shortcut means of selecting data based on a particular
index level value:

In [287]: sharesIndexDF.xs('open',level='PriceType')

Out[287]:

 Nasdaq S&P 500 Russell 2000

 TradingDate

 2014/02/21 4282.17 1841.07 1166.25

 2014/02/24 4273.32 1836.78 1166.74

 2014/02/25 4298.48 1847.66 1176.00

 2014/02/26 4300.45 1845.79 1176.11

 2014/02/27 4291.47 1844.90 1179.28

 2014/02/28 4323.52 1855.12 1189.19

 6 rows × 3 columns

The more long-winded alternative to the preceding command would be to use
swaplevel to switch between the TradingDate and PriceType levels and then,
perform the selection as follows:

Chapter 4

[91]

In [305]: sharesIndexDF.swaplevel(0, 1, axis=0).ix['open']

Out[305]: Nasdaq S&P 500 Russell 2000

 TradingDate

 2014/02/21 4282.17 1841.07 1166.25

 2014/02/24 4273.32 1836.78 1166.74

 2014/02/25 4298.48 1847.66 1176.00

 2014/02/26 4300.45 1845.79 1176.11

 2014/02/27 4291.47 1844.90 1179.28

 2014/02/28 4323.52 1855.12 1189.19

 6 rows × 3 columns

Using .xs achieves the same effect as obtaining a cross-section in the previous
section on integer-oriented indexing.

Boolean indexing
We use Boolean indexing to filter or select parts of the data. The operators are as
follows:

Operators Symbol
OR |
AND &
NOT ~

These operators must be grouped using parentheses when used together. Using the
earlier DataFrame from the previous section, here, we display the trading dates for
which the NASDAQ closed above 4300:

In [311]: sharesIndexDataDF.ix[(sharesIndexDataDF['PriceType']=='close')
& \

 (sharesIndexDataDF['Nasdaq']>4300)]

Out[311]: PriceType Nasdaq S&P 500 Russell 2000

 TradingDate

 2014/02/27 close 4318.93 1854.29 1187.94

 2014/02/28 close 4308.12 1859.45 1183.03

 2 rows × 4 columns

Operations in pandas, Part I – Indexing and Selecting

[92]

You can also create Boolean conditions in which you use arrays to filter out parts of
the data:

In [316]: highSelection=sharesIndexDataDF['PriceType']=='high'

 NasdaqHigh=sharesIndexDataDF['Nasdaq']<4300

 sharesIndexDataDF.ix[highSelection & NasdaqHigh]

Out[316]: TradingDate PriceType Nasdaq S&P 500 Russell 2000

 2014/02/21 high 4284.85 1846.13 1168.43

Thus, the preceding code snippet displays the only date in the dataset for which the
Nasdaq Composite index stayed below the 4300 level for the entire trading session.

The is in and any all methods
These methods enable the user to achieve more with Boolean indexing than the
standard operators used in the preceding sections. The isin method takes a list of
values and returns a Boolean array with True at the positions within the Series or
DataFrame that match the values in the list. This enables the user to check for the
presence of one or more elements within a Series. Here is an illustration using Series:

In [317]:stockSeries=pd.Series(['NFLX','AMZN','GOOG','FB','TWTR'])

 stockSeries.isin(['AMZN','FB'])

Out[317]:0 False

 1 True

 2 False

 3 True

 4 False

 dtype: bool

Here, we use the Boolean array to select a sub-Series containing the values that we're
interested in:

In [318]: stockSeries[stockSeries.isin(['AMZN','FB'])]

Out[318]: 1 AMZN

 3 FB

 dtype: object

For our DataFrame example, we switch to a more interesting dataset for those of us
who are of a biological anthropology bent, that of classifying Australian mammals (a
pet interest of mine):

Chapter 4

[93]

In [324]: australianMammals=

 {'kangaroo': {'Subclass':'marsupial',

 'Species Origin':'native'},

 'flying fox' : {'Subclass':'placental',

 'Species Origin':'native'},

 'black rat': {'Subclass':'placental',

 'Species Origin':'invasive'},

 'platypus' : {'Subclass':'monotreme',

 'Species Origin':'native'},

 'wallaby' : {'Subclass':'marsupial',

 'Species Origin':'native'},

 'palm squirrel' : {'Subclass':'placental',

 'Origin':'invasive'},

 'anteater': {'Subclass':'monotreme', 'Origin':'native'},

 'koala': {'Subclass':'marsupial', 'Origin':'native'}

}

Some more information on mammals: Marsupials are pouched
mammals, monotremes are egg-laying, and placentals give birth to
live young. The source of this information is the following: http://
en.wikipedia.org/wiki/List_of_mammals_of_Australia.

http://en.wikipedia.org/wiki/List_of_mammals_of_Australia
http://en.wikipedia.org/wiki/List_of_mammals_of_Australia

Operations in pandas, Part I – Indexing and Selecting

[94]

The source of the preceding image is Bennett's wallaby at http://bit.ly/NG4R7N.

In [328]: ozzieMammalsDF=pd.DataFrame(australianMammals)

In [346]: aussieMammalsDF=ozzieMammalsDF.T; aussieMammalsDF

Out[346]: Subclass Origin

 anteater monotreme native

 black rat placental invasive

 flying fox placental native

 kangaroo marsupial native

 koala marsupial native

 palm squirrel placental invasive

 platypus monotreme native

 wallaby marsupial native

 8 rows × 2 columns

Let us try to select mammals that are native to Australia:

In [348]: aussieMammalsDF.isin({'Subclass':['marsupial'],'Origin':['nati
ve']})

Out[348]: Subclass Origin

 anteater False True

 black rat False False

 flying fox False True

 kangaroo True True

 koala True True

 palm squirrel False False

 platypus False True

 wallaby True True

 8 rows × 2 columns

The set of values passed to isin can be an array or a dictionary. That works
somewhat, but we can achieve better results by creating a mask as a combination
of the isin and all() methods:

In [349]: nativeMarsupials={'Mammal Subclass':['marsupial'],

 'Species Origin':['native']}

 nativeMarsupialMask=aussieMammalsDF.isin(nativeMarsupials).
all(True)

 aussieMammalsDF[nativeMarsupialMask]

Out[349]: Subclass Origin

http://bit.ly/NG4R7N

Chapter 4

[95]

 kangaroo marsupial native

 koala marsupial native

 wallaby marsupial native

 3 rows × 2 columns

Thus, we see that kangaroo, koala, and wallaby are the native marsupials in our
dataset. The any() method returns whether any element is True in a Boolean
DataFrame. The all() method filters return whether all elements are True in a
Boolean DataFrame.

The source for this is http://pandas.pydata.org/pandas-docs/stable/
generated/pandas.DataFrame.any.html.

Using the where() method
The where() method is used to ensure that the result of Boolean filtering is the same
shape as the original data. First, we set the random number generator seed to 100 so
that the user can generate the same values as shown next:

In [379]: np.random.seed(100)

 normvals=pd.Series([np.random.normal() for i in np.arange(10)])

 normvals

Out[379]: 0 -1.749765

 1 0.342680

 2 1.153036

 3 -0.252436

 4 0.981321

 5 0.514219

 6 0.221180

 7 -1.070043

 8 -0.189496

 9 0.255001

 dtype: float64

In [381]: normvals[normvals>0]

Out[381]: 1 0.342680

 2 1.153036

 4 0.981321

 5 0.514219

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.any.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.any.html

Operations in pandas, Part I – Indexing and Selecting

[96]

 6 0.221180

 9 0.255001

 dtype: float64

In [382]: normvals.where(normvals>0)

Out[382]: 0 NaN

 1 0.342680

 2 1.153036

 3 NaN

 4 0.981321

 5 0.514219

 6 0.221180

 7 NaN

 8 NaN

 9 0.255001

 dtype: float64

This method appears to be useful only in the case of a Series, as we get this behavior
for free in the case of a DataFrame:

In [393]: np.random.seed(100)

 normDF=pd.DataFrame([[round(np.random.normal(),3) for i in
np.arange(5)] for j in range(3)],

 columns=['0','30','60','90','120'])

 normDF

Out[393]: 0 30 60 90 120

 0 -1.750 0.343 1.153 -0.252 0.981

 1 0.514 0.221 -1.070 -0.189 0.255

 2 -0.458 0.435 -0.584 0.817 0.673

 3 rows × 5 columns

In [394]: normDF[normDF>0]

Out[394]: 0 30 60 90 120

 0 NaN 0.343 1.153 NaN 0.981

 1 0.514 0.221 NaN NaN 0.255

 2 NaN 0.435 NaN 0.817 0.673

 3 rows × 5 columns

In [395]: normDF.where(normDF>0)

Chapter 4

[97]

Out[395]: 0 30 60 90 120

 0 NaN 0.343 1.153 NaN 0.981

 1 0.514 0.221 NaN NaN 0.255

 2 NaN 0.435 NaN 0.817 0.673

 3 rows × 5 columns

The inverse operation of the where method is mask:

In [396]: normDF.mask(normDF>0)

Out[396]: 0 30 60 90 120

 0 -1.750 NaN NaN -0.252 NaN

 1 NaN NaN -1.070 -0.189 NaN

 2 -0.458 NaN -0.584 NaN NaN

 3 rows × 5 columns

Operations on indexes
To complete this chapter, we will discuss operations on indexes. We sometimes need
to operate on indexes when we wish to re-align our data or select it in different ways.
There are various operations:

The set_index - allows for the creation of an index on an existing DataFrame and
returns an indexed DataFrame.

As we have seen before:

In [939]: stockIndexDataDF=pd.read_csv('./stock_index_data.csv')

In [940]: stockIndexDataDF

Out[940]: TradingDate Nasdaq S&P 500 Russell 2000

 0 2014/01/30 4123.13 1794.19 1139.36

 1 2014/01/31 4103.88 1782.59 1130.88

 2 2014/02/03 3996.96 1741.89 1094.58

 3 2014/02/04 4031.52 1755.20 1102.84

 4 2014/02/05 4011.55 1751.64 1093.59

 5 2014/02/06 4057.12 1773.43 1103.93

Now, we can set the index as follows:

In [941]: stockIndexDF=stockIndexDataDF.set_index('TradingDate')

In [942]: stockIndexDF

Out[942]: Nasdaq S&P 500 Russell 2000

 TradingDate

Operations in pandas, Part I – Indexing and Selecting

[98]

 2014/01/30 4123.13 1794.19 1139.36

 2014/01/31 4103.88 1782.59 1130.88

 2014/02/03 3996.96 1741.89 1094.58

 2014/02/04 4031.52 1755.20 1102.84

 2014/02/05 4011.55 1751.64 1093.59

 2014/02/06 4057.12 1773.43 1103.93

The reset_index reverses set_index:

In [409]: stockIndexDF.reset_index()

Out[409]:

 TradingDate Nasdaq S&P 500 Russell 2000

0 2014/01/30 4123.13 1794.19 1139.36

1 2014/01/31 4103.88 1782.59 1130.88

2 2014/02/03 3996.96 1741.89 1094.58

3 2014/02/04 4031.52 1755.20 1102.84

4 2014/02/05 4011.55 1751.64 1093.59

5 2014/02/06 4057.12 1773.43 1103.93

6 rows × 4 columns

Summary
To summarize, there are various ways of selecting data from pandas:

• We can use basic indexing, which is closest to our understanding of accessing
data in an array.

• We can use label- or integer-based indexing with the associated operators.
• We can use a MultiIndex, which is the pandas version of a composite key

comprising multiple fields.
• We can use a Boolean/logical index.

For further references about indexing in pandas, please take a look at the official
documentation at http://pandas.pydata.org/pandas-docs/stable/indexing.
html.

In the next chapter, we will examine the topic of grouping, reshaping, and merging
data using pandas.

http://pandas.pydata.org/pandas-docs/stable/indexing.html
http://pandas.pydata.org/pandas-docs/stable/indexing.html

[99]

Operations in pandas,
Part II – Grouping, Merging,

and Reshaping of Data
In this chapter, we tackle the question of rearranging data in our data structures. We
examine the various functions that enable us to rearrange data by utilizing them on
real-world datasets. Such functions include groupby, concat, aggregate, append,
and so on. The topics that we'll discuss are as follow:

• Aggregation/grouping of data
• Merging and concatenating data
• Reshaping data

Grouping of data
We often detail granular data that we wish to aggregate or combine based on a
grouping variable. We will illustrate some ways of doing this in the following sections.

The groupby operation
The groupby operation can be thought of as part of a process that involves the
following three steps:

• Splitting the dataset
• Analyzing the data
• Aggregating or combining the data

Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data

[100]

The groupby clause is an operation on DataFrames. A Series is a 1D object, so
performing a groupby operation on it is not very useful. However, it can be used
to obtain distinct rows of the Series. The result of a groupby operation is not a
DataFrame but dict of DataFrame objects. Let us start with a dataset involving
the world's most popular sport—soccer.

This dataset, obtained from Wikipedia, contains data for the finals of the European
club championship since its inception in 1955. For reference, you can go to
http://en.wikipedia.org/wiki/UEFA_Champions_League.

Convert the .csv file into a DataFrame by using the following command:

In [27]: uefaDF=pd.read_csv('./euro_winners.csv')

In [28]: uefaDF.head()

Out[28]:

Thus, the output shows the season, the nations to which the winning and runner-up
clubs belong, the score, the venue, and the attendance figures. Suppose we wanted
to rank the nations by the number of European club championships they had won.
We can do this by using groupby. First, we apply groupby to the DataFrame and see
what is the type of the result:

In [84]: nationsGrp =uefaDF.groupby('Nation');

 type(nationsGrp)

Out[84]: pandas.core.groupby.DataFrameGroupBy

Thus, we see that nationsGrp is of the pandas.core.groupby.DataFrameGroupBy
type. The column on which we use groupby is referred to as the key. We can
see what the groups look like by using the groups attribute on the resulting
DataFrameGroupBy object:

In [97]: nationsGrp.groups

Out[97]: {'England': [12, 21, 22, 23, 24, 25, 26, 28, 43, 49, 52,

 56],

http://en.wikipedia.org/wiki/UEFA_Champions_League

Chapter 5

[101]

 'France': [37],

 'Germany': [18, 19, 20, 27, 41, 45, 57],

 'Italy': [7, 8, 9, 13, 29, 33, 34, 38, 40, 47, 51, 54],

 'Netherlands': [14, 15, 16, 17, 32, 39],

 'Portugal': [5, 6, 31, 48],

 'Romania': [30],

 'Scotland': [11],

 'Spain': [0, 1, 2, 3, 4, 10, 36, 42, 44, 46, 50, 53, 55],

 'Yugoslavia': [35]}

This is basically a dictionary that just shows the unique groups and the axis labels
corresponding to each group—in this case the row number. The number of groups
is obtained by using the len() function:

In [109]: len(nationsGrp.groups)

Out[109]: 10

We can now display the number of wins of each nation in descending order by
applying the size() function to the group and subsequently the sort() function,
which sorts according to place:

In [99]: nationWins=nationsGrp.size()

In [100] nationWins.sort(ascending=False)

 nationWins

Out[100]: Nation

 Spain 13

 Italy 12

 England 12

 Germany 7

 Netherlands 6

 Portugal 4

 Yugoslavia 1

 Scotland 1

 Romania 1

 France 1

 dtype: int64

Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data

[102]

The size() function returns a Series with the group names as the index and the size
of each group. The size() function is also an aggregation function. We will examine
aggregation functions later in the chapter.

To do a further breakup of wins by country and club, we apply a multicolumn
groupby function before applying size() and sort():

In [106]: winnersGrp =uefaDF.groupby(['Nation','Winners'])

 clubWins=winnersGrp.size()

 clubWins.sort(ascending=False)

 clubWins

Out[106]: Nation Winners

 Spain Real Madrid 9

 Italy Milan 7

 Germany Bayern Munich 5

 England Liverpool 5

 Spain Barcelona 4

 Netherlands Ajax 4

 England Manchester United 3

 Italy Internazionale 3

 Juventus 2

 Portugal Porto 2

 Benfica 2

 England Nottingham Forest 2

 Chelsea 1

 France Marseille 1

 Yugoslavia Red Star Belgrade 1

 Germany Borussia Dortmund 1

 Hamburg 1

 Netherlands Feyenoord 1

 PSV Eindhoven 1

 Romania Steaua Bucuresti 1

 Scotland Celtic 1

 England Aston Villa 1

 dtype: int64

Chapter 5

[103]

A multicolumn groupby specifies more than one column to be used as the key by
specifying the key columns as a list. Thus, we can see that the most successful club
in this competition has been Real Madrid of Spain. We now examine a richer dataset
that will enable us to illustrate many more features of groupby. This dataset is also
soccer related and provides statistics for the top four European soccer leagues in the
2012-2013 season:

• English Premier League or EPL
• Spanish Primera Division or La Liga
• Italian First Division or Serie A
• German Premier League or Bundesliga

The source of this information is at http://soccerstats.com.

Let us now read the goal stats data into a DataFrame as usual. In this case, we create
a row index on the DataFrame using the month:

In [68]: goalStatsDF=pd.read_csv('./goal_stats_euro_leagues_2012-13.csv')

 goalStatsDF=goalStatsDF.set_index('Month')

We look at the snapshot of the head and tail ends of our dataset:

In [115]: goalStatsDF.head(3)

Out[115]: Stat EPL La Liga Serie A Bundesliga

 Month

 08/01/2012 MatchesPlayed 20 20 10 10

 09/01/2012 MatchesPlayed 38 39 50 44

 10/01/2012 MatchesPlayed 31 31 39 27

In [116]: goalStatsDF.tail(3)

Out[116]: Stat EPL La Liga Serie A Bundesliga

 Month

 04/01/2013 GoalsScored 105 127 102 104

 05/01/2013 GoalsScored 96 109 102 92

 06/01/2013 GoalsScored NaN 80 NaN NaN

http://soccerstats.com

Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data

[104]

There are two measures in this data frame—MatchesPlayed and GoalsScored—
and the data is ordered first by Stat and then by Month. Note that the last row in
the tail() output has the NaN values for all the columns except La Liga but we'll
discuss this in more detail later. We can use groupby to display the stats, but this
will be done by grouped year instead. Here is how this is done:

In [117]: goalStatsGroupedByYear = goalStatsDF.groupby(

lambda Month: Month.split('/')[2])

We can then iterate over the resulting groupby object and display the groups. In the
following command, we see the two sets of statistics grouped by year. Note the use
of the lambda function to obtain the year group from the first day of the month. For
more information about lambda functions, go to http://bit.ly/1apJNwS:

In [118]: for name, group in goalStatsGroupedByYear:

 print name

 print group

 2012

 Stat EPL La Liga Serie A Bundesliga

 Month

 08/01/2012 MatchesPlayed 20 20 10 10

 09/01/2012 MatchesPlayed 38 39 50 44

 10/01/2012 MatchesPlayed 31 31 39 27

 11/01/2012 MatchesPlayed 50 41 42 46

 12/01/2012 MatchesPlayed 59 39 39 26

 08/01/2012 GoalsScored 57 60 21 23

 09/01/2012 GoalsScored 111 112 133 135

 10/01/2012 GoalsScored 95 88 97 77

 11/01/2012 GoalsScored 121 116 120 137

 12/01/2012 GoalsScored 183 109 125 72

 2013

 Stat EPL La Liga Serie A Bundesliga

 Month

 01/01/2013 MatchesPlayed 42 40 40 18

 02/01/2013 MatchesPlayed 30 40 40 36

 03/01/2013 MatchesPlayed 35 38 39 36

 04/01/2013 MatchesPlayed 42 42 41 36

 05/01/2013 MatchesPlayed 33 40 40 27

http://bit.ly/1apJNwS

Chapter 5

[105]

 06/02/2013 MatchesPlayed NaN 10 NaN NaN

 01/01/2013 GoalsScored 117 121 104 51

 02/01/2013 GoalsScored 87 110 100 101

 03/01/2013 GoalsScored 91 101 99 106

 04/01/2013 GoalsScored 105 127 102 104

 05/01/2013 GoalsScored 96 109 102 92

 06/01/2013 GoalsScored NaN 80 NaN NaN

If we wished to group by individual month instead, we would need to apply
groupby with a level argument, as follows:

In [77]: goalStatsGroupedByMonth = goalStatsDF.groupby(level=0)

In [81]: for name, group in goalStatsGroupedByMonth:

 print name

 print group

 print "\n"

01/01/2013

 Stat EPL La Liga Serie A Bundesliga

Month

01/01/2013 MatchesPlayed 42 40 40 18

01/01/2013 GoalsScored 117 121 104 51

02/01/2013

 Stat EPL La Liga Serie A Bundesliga

Month

02/01/2013 MatchesPlayed 30 40 40 36

02/01/2013 GoalsScored 87 110 100 101

03/01/2013

 Stat EPL La Liga Serie A Bundesliga

Month

03/01/2013 MatchesPlayed 35 38 39 36

03/01/2013 GoalsScored 91 101 99 106

Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data

[106]

04/01/2013

 Stat EPL La Liga Serie A Bundesliga

Month

04/01/2013 MatchesPlayed 42 42 41 36

04/01/2013 GoalsScored 105 127 102 104

05/01/2013

 Stat EPL La Liga Serie A Bundesliga

Month

05/01/2013 MatchesPlayed 33 40 40 27

05/01/2013 GoalsScored 96 109 102 92

06/01/2013

 Stat EPL La Liga Serie A Bundesliga

Month

06/01/2013 GoalsScored NaN 80 NaN NaN

06/02/2013

 Stat EPL La Liga Serie A Bundesliga

Month

06/02/2013 MatchesPlayed NaN 10 NaN NaN

08/01/2012

 Stat EPL La Liga Serie A Bundesliga

Month

08/01/2012 MatchesPlayed 20 20 10 10

08/01/2012 GoalsScored 57 60 21 23

09/01/2012

 Stat EPL La Liga Serie A Bundesliga

Month

09/01/2012 MatchesPlayed 38 39 50 44

09/01/2012 GoalsScored 111 112 133 135

Chapter 5

[107]

10/01/2012

 Stat EPL La Liga Serie A Bundesliga

Month

10/01/2012 MatchesPlayed 31 31 39 27

10/01/2012 GoalsScored 95 88 97 77

11/01/2012

 Stat EPL La Liga Serie A Bundesliga

Month

11/01/2012 MatchesPlayed 50 41 42 46

11/01/2012 GoalsScored 121 116 120 137

12/01/2012

 Stat EPL La Liga Serie A Bundesliga

Month

12/01/2012 MatchesPlayed 59 39 39 26

12/01/2012 GoalsScored 183 109 125 72

Note that since in the preceding commands we're grouping on an index, we need to
specify the level argument as opposed to just using a column name. When we group
by multiple keys, the resulting group name is a tuple, as shown in the upcoming
commands. First, we reset the index to obtain the original DataFrame and define a
MultiIndex in order to be able to group by multiple keys. If this is not done, it will
result in a ValueError:

In [246]: goalStatsDF=goalStatsDF.reset_index()

 goalStatsDF=goalStatsDF.set_index(['Month','Stat'])

In [247]: monthStatGroup=goalStatsDF.groupby(level=['Month','Stat'])

In [248]: for name, group in monthStatGroup:

 print name

 print group

('01/01/2013', 'GoalsScored')

 EPL La Liga Serie A Bundesliga

Month Stat

01/01/2013 GoalsScored 117 121 104 51

Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data

[108]

('01/01/2013', 'MatchesPlayed')

 EPL La Liga Serie A Bundesliga

Month Stat

01/01/2013 MatchesPlayed 42 40 40 18

('02/01/2013', 'GoalsScored')

 EPL La Liga Serie A Bundesliga

Month Stat

02/01/2013 GoalsScored 87 110 100 101

Using groupby with a MultiIndex
If our DataFrame has a MultiIndex, we can use groupby to group by different levels
of the hierarchy and compute some interesting statistics. Here is the goal stats data
using a MultiIndex consisting of Month and then Stat:

In [134]:goalStatsDF2=pd.read_csv('./goal_stats_euro_leagues_2012-13.
csv')

 goalStatsDF2=goalStatsDF2.set_index(['Month','Stat'])

In [141]: print goalStatsDF2.head(3)

 print goalStatsDF2.tail(3)

 EPL La Liga Serie A Bundesliga

Month Stat

08/01/2012 MatchesPlayed 20 20 10 10

09/01/2012 MatchesPlayed 38 39 50 44

10/01/2012 MatchesPlayed 31 31 39 27

 EPL La Liga Serie A Bundesliga

Month Stat

04/01/2013 GoalsScored 105 127 102 104

05/01/2013 GoalsScored 96 109 102 92

06/01/2013 GoalsScored NaN 80 NaN NaN

Suppose we wish to compute the total number of goals scored and the total matches
played for the entire season for each league, we could do this as follows:

In [137]: grouped2=goalStatsDF2.groupby(level='Stat')

In [139]: grouped2.sum()

Out[139]: EPL La Liga Serie A Bundesliga Stat

 GoalsScored 1063 1133 1003 898

 MatchesPlayed 380 380 380 306

Chapter 5

[109]

Incidentally, the same result as the preceding one can be obtained by using sum
directly and passing the level as a parameter:

In [142]: goalStatsDF2.sum(level='Stat')

Out[142]: EPL La Liga Serie A Bundesliga Stat

 GoalsScored 1063 1133 1003 898

 MatchesPlayed 380 380 380 306

Now, let us obtain a key statistic to determine how exciting the season was in each
of the leagues—the goals per game ratio:

In [174]: totalsDF=grouped2.sum()

In [175]: totalsDF.ix['GoalsScored']/totalsDF.ix['MatchesPlayed']

Out[175]: EPL 2.797368

 La Liga 2.981579

 Serie A 2.639474

 Bundesliga 2.934641

 dtype: float64

This is returned as a Series, as shown in the preceding command. We can now
display the goals per game ratio along with the goals scored and matches played
to give a summary of how exciting the league was, as follows:

1. Obtain goals per game data as a DataFrame. Note that we have to transpose
it since gpg is returned as a Series:
In [234]: gpg=totalsDF.ix['GoalsScored']/totalsDF.
ix['MatchesPlayed']

 goalsPerGameDF=pd.DataFrame(gpg).T

In [235]: goalsPerGameDF

Out[235]: EPL La Liga Serie A Bundesliga

 0 2.797368 2.981579 2.639474 2.934641

2. Reindex the goalsPerGameDF DataFrame so that the 0 index is replaced by
GoalsPerGame:
In [207]: goalsPerGameDF=goalsPerGameDF.rename(index={0:'GoalsPerG
ame'})

In [208]: goalsPerGameDF

Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data

[110]

Out[208]: EPL La Liga Serie A Bundesliga

 GoalsPerGame 2.797368 2.981579 2.639474 2.934641

3. Append the goalsPerGameDF DataFrame to the original one:

In [211]: pd.options.display.float_format='{:.2f}'.format

 totalsDF.append(goalsPerGameDF)

Out[211]: EPL La Liga Serie A Bundesliga

 GoalsScored 1063.00 1133.00 1003.00 898.00

 MatchesPlayed 380.00 380.00 380.00 306.00

 GoalsPerGame 2.80 2.98 2.64 2.93

The following is a graph that shows the goals per match of the European
leagues, that we discussed, from 1955-2012. The source for this can be found
at http://mattstil.es/images/europe-football.png.

 http://mattstil.es/images/europe-football.png

Chapter 5

[111]

Using the aggregate method
Another way to generate summary statistics is by using the aggregate method
explicitly:

In [254]: pd.options.display.float_format=None

In [256]: grouped2.aggregate(np.sum)

Out[256]: EPL La Liga Serie A Bundesliga Stat

 GoalsScored 1063 1133 1003 898

 MatchesPlayed 380 380 380 306

This generates a grouped DataFrame object that is shown in the preceding command.
We also reset the float format to None, so the integer-valued data would not be
shown as floats due to the formatting from the previous section.

Applying multiple functions
For a grouped DataFrame object, we can specify a list of functions to be applied to
each column:

In [274]: grouped2.agg([np.sum, np.mean,np.size])

Out[274]: EPL La Liga Serie A Bundesliga

 sum mean size sum mean size sum mean size sum mean size Stat

 GoalsScored 1063 106.3 11 1133 103.0 11 1003 100.3 11 898 89.8 11

 MatchesPlayed 380 38.0 11 380 34.6 11 380 38.0 11 306 30.6 11

Note the preceding output that shows NA values are excluded from aggregate
calculations. The agg is an abbreviation form for aggregate. Thus, the calculations for
the mean for EPL, Serie A, and Bundesliga are based on a size of 10 months and not
11. This is because no matches were played in the last month of June in these three
leagues as opposed to La Liga, which had matches in June.

In the case of a grouped Series, we return to the nationsGrp example and compute
some statistics on the attendance figures for the country of the tournament winners:

In [297]: nationsGrp['Attendance'].agg({'Total':np.sum, 'Average':np.
mean, 'Deviation':np.std})

Out[297]: Deviation Average Total

 Nation

 England 17091.31 66534.25 798411

 France NaN 64400 64400

Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data

[112]

 Germany 13783.83 67583.29 473083

 Italy 17443.52 65761.25 789135

 Netherlands 16048.58 67489.0 404934

 Portugal 15632.86 49635.5 198542

 Romania NaN 70000 70000

 Scotland NaN 45000 45000

 Spain 27457.53 73477.15 955203

 Yugoslavia NaN 56000 56000

For a grouped Series, we can pass a list or dict of functions. In the preceding case,
a dict was specified and the key values were used for the names of the columns in
the resulting DataFrame. Note that in the case of groups of a single sample size, the
standard deviation is undefined and NaN is the result—for example, Romania.

The transform() method
The groupby-transform function is used to perform transformation operations on
a groupby object. For example, we could replace NaN values in the groupby object
using the fillna method. The resulting object after using transform has the same
size as the original groupby object. Let us consider a DataFrame showing the goals
scored for each month in the four soccer leagues:

In[344]: goalStatsDF3=pd.read_csv('./goal_stats_euro_leagues_2012-13.
csv')

goalStatsDF3=goalStatsDF3.set_index(['Month'])

goalsScoredDF=goalStatsDF3.ix[goalStatsDF3['Stat']=='GoalsScored']

goalsScoredDF.iloc[:,1:]

Out[344]: EPL La Liga Serie A Bundesliga

Month

08/01/2012 57 60 21 23

09/01/2012 111 112 133 135

10/01/2012 95 88 97 77

11/01/2012 121 116 120 137

12/01/2012 183 109 125 72

01/01/2013 117 121 104 51

02/01/2013 87 110 100 101

03/01/2013 91 101 99 106

04/01/2013 105 127 102 104

Chapter 5

[113]

05/01/2013 96 109 102 92

06/01/2013 NaN 80 NaN NaN

We can see that for June 2013, the only league for which matches were played was
La Liga, resulting in the NaN values for the other three leagues. Let us group the
data by year:

In [336]: goalsScoredPerYearGrp=goalsScoredDF.groupby(lambda Month:
Month.split('/')[2])

 goalsScoredPerYearGrp.mean()

Out[336]: EPL La Liga Serie A Bundesliga

 2012 113.4 97 99.2 88.8

 2013 99.2 108 101.4 90.8

The preceding function makes use of a lambda function to obtain the year by
splitting the Month variable on the / character and taking the third element of
the resulting list.

If we do a count of the number of months per year during which matches were held
in the various leagues, we have:

In [331]: goalsScoredPerYearGrp.count()

Out[331]: EPL La Liga Serie A Bundesliga

 2012 5 5 5 5

 2013 5 6 5 5

It is often undesirable to display data with missing values and one common method
to resolve this situation would be to replace the missing values with the group mean.
This can be achieved using the transform-groupby function. First, we must define the
transformation using a lambda function and then apply this transformation using the
transform method:

In [338]: fill_fcn = lambda x: x.fillna(x.mean())

 trans = goalsScoredPerYearGrp.transform(fill_fcn)

 tGroupedStats = trans.groupby(lambda Month: Month.split('/')
[2])

 tGroupedStats.mean()

Out[338]: EPL La Liga Serie A Bundesliga

 2012 113.4 97 99.2 88.8

 2013 99.2 108 101.4 90.8

Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data

[114]

One thing to note from the preceding results is that replacing the NaN values with
the group mean in the original group, keeps the group means unchanged in the
transformed data.

However, when we do a count on the transformed group, we see that the number
of matches has changed from five to six for the EPL, Serie A, and Bundesliga:

In [339]: tGroupedStats.count()

Out[339]: EPL La Liga Serie A Bundesliga

 2012 5 5 5 5

 2013 6 6 6 6

Filtering
The filter method enables us to apply filtering on a groupby object that results in
a subset of the initial object. Here, we illustrate how to display the months of the
season in which more than 100 goals were scored in each of the four leagues:

In [391]: goalsScoredDF.groupby(level='Month').filter(lambda x:

 np.all([x[col] > 100

 for col in goalsScoredDF.columns]))

Out[391]: EPL La Liga Serie A Bundesliga

 Month

 09/01/2012 111 112 133 135

 11/01/2012 121 116 120 137

 04/01/2013 105 127 102 104

Note the use of the np.all operator to ensure that the constraint is enforced for all
the columns.

Merging and joining
There are various functions that can be used to merge and join pandas' data
structures, which include the following functions:

• concat

• append

Chapter 5

[115]

The concat function
The concat function is used to join multiple pandas' data structures along a specified
axis and possibly perform union or intersection operations along other axes. The
following command explains the concat function:

concat(objs, axis=0, , join='outer', join_axes=None, ignore_index=False,

 keys=None, levels=None, names=None, verify_integrity=False)

The synopsis of the elements of concat function are as follows:

• The objs function: A list or dictionary of Series, DataFrame, or Panel objects
to be concatenated.

• The axis function: The axis along which the concatenation should be
performed. 0 is the default value.

• The join function: The type of join to perform when handling indexes on
other axes. The 'outer' function is the default.

• The join_axes function: This is used to specify exact indexes for the
remaining indexes instead of doing outer/inner join.

• The keys function: This specifies a list of keys to be used to construct
a MultiIndex.

For an explanation of the remaining options, please refer to the documentation at
http://pandas.pydata.org/pandas-docs/stable/merging.html.

Here is an illustration of the workings of concat using our stock price examples
from earlier chapters:

In [53]: stockDataDF=pd.read_csv('./tech_stockprices.csv').set_index(
['Symbol']);stockDataDF

Out[53]:

 Closing price EPS Shares Outstanding(M) P/E Market Cap(B) Beta

Symbol

 AAPL 501.53 40.32 892.45 12.44 447.59 0.84

 AMZN 346.15 0.59 459.00 589.80 158.88 0.52

 FB 61.48 0.59 2450.00 104.93 150.92 NaN

 GOOG 1133.43 36.05 335.83 31.44 380.64 0.87

 TWTR 65.25 -0.30 555.20 NaN 36.23 NaN

 YHOO 34.90 1.27 1010.00 27.48 35.36 0.66

http://pandas.pydata.org/pandas-docs/stable/merging.html

Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data

[116]

We now take various slices of the data:

In [83]: A=stockDataDF.ix[:4, ['Closing price', 'EPS']]; A

Out[83]: Closing price EPS

 Symbol

 AAPL 501.53 40.32

 AMZN 346.15 0.59

 FB 61.48 0.59

 GOOG 1133.43 36.05

In [84]: B=stockDataDF.ix[2:-2, ['P/E']];B

Out[84]: P/E

 Symbol

 FB 104.93

 GOOG 31.44

In [85]: C=stockDataDF.ix[1:5, ['Market Cap(B)']];C

Out[85]: Market Cap(B)

 Symbol

 AMZN 158.88

 FB 150.92

 GOOG 380.64

 TWTR 36.23

Here, we perform a concatenation by specifying an outer join, which concatenates
and performs a union on all the three data frames, and includes entries that do not
have values for all the columns by inserting NaN for such columns:

In [86]: pd.concat([A,B,C],axis=1) # outer join

Out[86]: Closing price EPS P/E Market Cap(B)

 AAPL 501.53 40.32 NaN NaN

 AMZN 346.15 0.59 NaN 158.88

 FB 61.48 0.59 104.93 150.92

 GOOG 1133.43 36.05 31.44 380.64

 TWTR NaN NaN NaN 36.23

Chapter 5

[117]

We can also specify an inner join that does the concatenation, but only includes rows
that contain values for all the columns in the final data frame by throwing out rows
with missing columns, that is, it takes the intersection:

In [87]: pd.concat([A,B,C],axis=1, join='inner') # Inner join

Out[87]: Closing price EPS P/E Market Cap(B)

 Symbol

 FB 61.48 0.59 104.93 150.92

 GOOG 1133.43 36.05 31.44 380.64

The third case enables us to use the specific index from the original DataFrame
to join on:

In [102]: pd.concat([A,B,C], axis=1, join_axes=[stockDataDF.index])

Out[102]: Closing price EPS P/E Market Cap(B)

 Symbol

 AAPL 501.53 40.32 NaN NaN

 AMZN 346.15 0.59 NaN 158.88

 FB 61.48 0.59 104.93 150.92

 GOOG 1133.43 36.05 31.44 380.64

 TWTR NaN NaN NaN 36.23

 YHOO NaN NaN NaN NaN

In this last case, we see that the row for YHOO was included even though it wasn't
contained in any of the slices that were concatenated. In this case, however, the
values for all the columns are NaN. Here is another illustration of concat, but this
time, it is on random statistical distributions. Note that in the absence of an axis
argument, the default axis of concatenation is 0:

In[135]: np.random.seed(100)

 normDF=pd.DataFrame(np.random.randn(3,4));normDF

Out[135]: 0 1 2 3

 0 -1.749765 0.342680 1.153036 -0.252436

 1 0.981321 0.514219 0.221180 -1.070043

 2 -0.189496 0.255001 -0.458027 0.435163

In [136]: binomDF=pd.DataFrame(np.random.binomial(100,0.5,(3,4)));binomDF

Out[136]: 0 1 2 3

 0 57 50 57 50

 1 48 56 49 43

 2 40 47 49 55

Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data

[118]

In [137]: poissonDF=pd.DataFrame(np.random.poisson(100,(3,4)));poissonDF

Out[137]: 0 1 2 3

 0 93 96 96 89

 1 76 96 104 103

 2 96 93 107 84

In [138]: rand_distribs=[normDF,binomDF,poissonDF]

In [140]: rand_distribsDF=pd.concat(rand_distribs,keys=['Normal',
'Binomial', 'Poisson']);rand_distribsDF

Out[140]: 0 1 2 3

 Normal 0 -1.749765 0.342680 1.153036 -0.252436

 1 0.981321 0.514219 0.221180 -1.070043

 2 -0.189496 0.255001 -0.458027 0.435163

 Binomial 0 57.00 50.00 57.00 50.00

 1 48.00 56.00 49.00 43.00

 2 40.00 47.00 49.00 55.00

 Poisson 0 93.00 96.00 96.00 89.00

 1 76.00 96.00 104.00 103.00

 2 96.00 93.00 107.00 84.00

Using append
The append function is a simpler version of concat that concatenates along axis=0.
Here is an illustration of its use where we slice out the first two rows and first three
columns of the stockData DataFrame:

In [145]: stockDataA=stockDataDF.ix[:2,:3]

 stockDataA

Out[145]: Closing price EPS Shares Outstanding(M)

 Symbol

 AAPL 501.53 40.32 892.45

 AMZN 346.15 0.59 459.00

And the remaining rows:

In [147]: stockDataB=stockDataDF[2:]

 stockDataB

Out[147]:

 Closing price EPS Shares Outstanding(M) P/E Market Cap(B) Beta

Chapter 5

[119]

Symbol

FB 61.48 0.59 2450.00 104.93 150.92 NaN

GOOG 1133.43 36.05 335.83 31.44 380.64 0.87

TWTR 65.25 -0.30 555.20 NaN 36.23 NaN

YHOO 34.90 1.27 1010.00 27.48 35.36 0.66

Now, we use append to combine the two data frames from the preceding commands:

In [161]:stockDataA.append(stockDataB)

Out[161]:

 Beta Closing price EPS MarketCap(B) P/E Shares Outstanding(M)

 Symbol

 AMZN NaN 346.15 0.59 NaN NaN 459.00

 GOOG NaN 1133.43 36.05 NaN NaN 335.83

 FB NaN 61.48 0.59 150.92 104.93 2450.00

 YHOO 27.48 34.90 1.27 35.36 0.66 1010.00

 TWTR NaN 65.25 -0.30 36.23 NaN 555.20

 AAPL 12.44 501.53 40.32 0.84 447.59 892.45

In order to maintain the order of columns similar to the original DataFrame, we can
apply the reindex_axis function:

In [151]: stockDataA.append(stockDataB).reindex_axis(stockDataDF.columns,
axis=1)

Out[151]:

 Closing price EPS Shares Outstanding(M) P/E Market Cap(B) Beta

 Symbol

 AAPL 501.53 40.32 892.45 NaN NaN NaN

 AMZN 346.15 0.59 459.00 NaN NaN NaN

 FB 61.48 0.59 2450.00 104.93 150.92 NaN

 GOOG 1133.43 36.05 335.83 31.44 380.64 0.87

 TWTR 65.25 -0.30 555.20 NaN 36.23 NaN

 YHOO 34.90 1.27 1010.00 27.48 35.36 0.66

Note that for the first two rows, the value of the last two columns is NaN, since the
first DataFrame only contained the first three columns. The append function does
not work in places, but it returns a new DataFrame with the second DataFrame
appended to the first.

Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data

[120]

Appending a single row to a DataFrame
We can append a single row to a DataFrame by passing a series or dictionary to the
append method:

In [152]:

algos={'search':['DFS','BFS','Binary Search','Linear'],

 'sorting': ['Quicksort','Mergesort','Heapsort','Bubble Sort'],

 'machine learning':['RandomForest','K Nearest Neighbor','Logistic
Regression','K-Means Clustering']}

algoDF=pd.DataFrame(algos);algoDF

Out[152]: machine learning search sorting

 0 RandomForest DFS Quicksort

 1 K Nearest Neighbor BFS Mergesort

 2 Logistic Regression Binary Search Heapsort

 3 K-Means Clustering Linear Bubble Sort

In [154]:

moreAlgos={'search': 'ShortestPath' , 'sorting': 'Insertion Sort',

 'machine learning': 'Linear Regression'}

 algoDF.append(moreAlgos,ignore_index=True)

Out[154]: machine learning search sorting

 0 RandomForest DFS Quicksort

 1 K Nearest Neighbor BFS Mergesort

 2 Logistic Regression Binary Search Heapsort

 3 K-Means Clustering Linear Bubble Sort

 4 Linear Regression ShortestPath Insertion Sort

In order for this to work, you must pass the ignore_index=True argument so that
the index [0,1,2,3] in algoDF is ignored.

SQL-like merging/joining of DataFrame
objects
The merge function is used to obtain joins of two DataFrame objects similar to those
used in SQL database queries. The DataFrame objects are analogous to SQL tables.
The following command explains this:

merge(left, right, how='inner', on=None, left_on=None,

 right_on=None, left_index=False, right_index=False,

 sort=True, suffixes=('_x', '_y'), copy=True)

Chapter 5

[121]

Following is the synopsis of merge function:

• The left argument: This is the first DataFrame object
• The right argument: This is the second DataFrame object
• The how argument: This is the type of join and can be inner, outer, left, or

right. The default is inner.
• The on argument: This shows the names of columns to join on as join keys.
• The left_on and right_on arguments : This shows the left and right

DataFrame column names to join on.
• The left_index and right_index arguments: This has a Boolean value. If

this is True, use the left or right DataFrame index/row labels to join on.
• The sort argument: This has a Boolean value. The default True setting

results in a lexicographical sorting. Setting the default value to False may
improve performance.

• The suffixes argument: The tuple of string suffixes to be applied to
overlapping columns. The defaults are '_x' and '_y'.

• The copy argument: The default True value causes data to be copied from
the passed DataFrame objects.

The source of the preceding information can be found at
http://pandas.pydata.org/pandas-docs/stable/merging.html.

Let us start to examine the use of merge by reading the U.S. stock index data into
a DataFrame:

In [254]: USIndexDataDF=pd.read_csv('./us_index_data.csv')

 USIndexDataDF

Out[254]: TradingDate Nasdaq S&P 500 Russell 2000 DJIA

 0 2014/01/30 4123.13 1794.19 1139.36 15848.61

 1 2014/01/31 4103.88 1782.59 1130.88 15698.85

 2 2014/02/03 3996.96 1741.89 1094.58 15372.80

 3 2014/02/04 4031.52 1755.20 1102.84 15445.24

 4 2014/02/05 4011.55 1751.64 1093.59 15440.23

 5 2014/02/06 4057.12 1773.43 1103.93 15628.53

The source of this information can be found at http://finance.yahoo.com.

http://pandas.pydata.org/pandas-docs/stable/merging.html
http://finance.yahoo.com

Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data

[122]

We can obtain slice1 of the data for rows 0 and 1 and the Nasdaq and S&P 500
columns by using the following command:

In [255]: slice1=USIndexDataDF.ix[:1,:3]

 slice1

Out[255]: TradingDate Nasdaq S&P 500

 0 2014/01/30 4123.13 1794.19

 1 2014/01/31 4103.88 1782.59

We can obtain slice2 of the data for rows 0 and 1 and the Russell 2000 and DJIA
columns by using the following command:

In [256]: slice2=USIndexDataDF.ix[:1,[0,3,4]]

 slice2

Out[256]: TradingDate Russell 2000 DJIA

 0 2014/01/30 1139.36 15848.61

 1 2014/01/31 1130.88 15698.85

We can obtain slice3 of the data for rows 1 and 2 and the Nasdaq and S&P 500
columns by using the following command:

In [248]: slice3=USIndexDataDF.ix[[1,2],:3]

 slice3

Out[248]: TradingDate Nasdaq S&P 500

 1 2014/01/31 4103.88 1782.59

 2 2014/02/03 3996.96 1741.89

We can now merge slice1 and slice2 as follows:

In [257]: pd.merge(slice1,slice2)

Out[257]: TradingDate Nasdaq S&P 500 Russell 2000 DJIA

 0 2014/01/30 4123.13 1794.19 1139.36 15848.61

 1 2014/01/31 4103.88 1782.59 1130.88 15698.85

As you can see, this results in a combination of the columns in slice1 and slice2.
Since the on argument was not specified, the intersection of the columns in slice1
and slice2 was used which is TradingDate as the join column, and the rest of the
columns from slice1 and slice2 were used to produce the output.

Note that in this case, passing a value for how has no effect on the result since the
values of the TradingDate join key match for slice1 and slice2.

Chapter 5

[123]

We now merge slice3 and slice2 specifying inner as the value of the how argument:

In [258]: pd.merge(slice3,slice2,how='inner')

Out[258]: TradingDate Nasdaq S&P 500 Russell 2000 DJIA

 0 2014/01/31 4103.88 1782.59 1130.88 15698.85

The slice3 argument has values 2014/01/31 and 2014/02/03 unique values for
TradingDate, and slice2 has values 2014/01/30 and 2014/01/31 unique values
for TradingDate.

The merge function uses the intersection of these values, which is 2014/01/31.
This results in the single row result. Here, we specify outer as the value of the
how argument:

In [269]: pd.merge(slice3,slice2,how='outer')

Out[269]: TradingDate Nasdaq S&P 500 Russell 2000 DJIA

 0 2014/01/31 4103.88 1782.59 1130.88 15698.85

 1 2014/02/03 3996.96 1741.89 NaN NaN

 2 2014/01/30 NaN NaN 1139.36 15848.61

Specifying outer uses all the keys (union) from both DataFrames, which gives the
three rows specified in the preceding output. Since not all the columns are present in
the two DataFrames, the columns from the other DataFrame are NaN for each row in
a DataFrame that is not part of the intersection.

Now, we specify how='left' as shown in the following command:

In [271]: pd.merge(slice3,slice2,how='left')

Out[271]: TradingDate Nasdaq S&P 500 Russell 2000 DJIA

 0 2014/01/31 4103.88 1782.59 1130.88 15698.85

 1 2014/02/03 3996.96 1741.89 NaN NaN

Here, we see that the keys from the left DataFrame slice3 are used for the output.
For columns that are not available in slice3, that is Russell 2000 and DJIA, NaN
are used for the row with TradingDate as 2014/02/03. This is equivalent to a SQL
left outer join.

We specify how='right' in the following command:

In [270]: pd.merge(slice3,slice2,how='right')

Out[270]: TradingDate Nasdaq S&P 500 Russell 2000 DJIA

 0 2014/01/31 4103.88 1782.59 1130.88 15698.85

 1 2014/01/30 NaN NaN 1139.36 15848.61

Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data

[124]

This is the corollary to the how='left' keys from the right DataFrame slice2 that
are used. Therefore, rows with TradingDate as 2014/01/31 and 2014/01/30 are in
the result. For columns that are not in slice2—Nasdaq and S&P 500—NaN are used.

This is equivalent to a SQL right outer join. For a simple explanation of how SQL
joins work, please refer to http://bit.ly/1yqR9vw.

The join function
The DataFrame.join function is used to combine two DataFrames that have
different columns with nothing in common. Essentially, this does a longitudinal
join of two DataFrames. Here is an example:

In [274]: slice_NASD_SP=USIndexDataDF.ix[:3,:3]

 slice_NASD_SP

Out[274]: TradingDate Nasdaq S&P 500

 0 2014/01/30 4123.13 1794.19

 1 2014/01/31 4103.88 1782.59

 2 2014/02/03 3996.96 1741.89

 3 2014/02/04 4031.52 1755.20

In [275]: slice_Russ_DJIA=USIndexDataDF.ix[:3,3:]

 slice_Russ_DJIA

Out[275]: Russell 2000 DJIA

 0 1139.36 15848.61

 1 1130.88 15698.85

 2 1094.58 15372.80

 3 1102.84 15445.24

Here, we call the join operator, as follows:

In [276]: slice_NASD_SP.join(slice_Russ_DJIA)

Out[276]: TradingDate Nasdaq S&P 500 Russell 2000 DJIA

 0 2014/01/30 4123.13 1794.19 1139.36 15848.61

 1 2014/01/31 4103.88 1782.59 1130.88 15698.85

 2 2014/02/03 3996.96 1741.89 1094.58 15372.80

 3 2014/02/04 4031.52 1755.20 1102.84 15445.24

http://bit.ly/1yqR9vw

Chapter 5

[125]

In this case, we see that the result is a combination of the columns from the two
Dataframes. Let us see what happens when we try to use join with two DataFrames
that have a column in common:

In [272]: slice1.join(slice2)

--

Exception Traceback (most recent call last)

...

Exception: columns overlap: Index([u'TradingDate'], dtype=object)

This results in an exception due to overlapping columns. You can find more
information on using merge, concat, and join operations in the official documentation
page at http://pandas.pydata.org/pandas-docs/stable/merging.html.

Pivots and reshaping data
This section deals with how you can reshape data. Sometimes, data is stored in
what is known as the stacked format. Here is an example of a stacked data using
the PlantGrowth dataset:

In [344]: plantGrowthRawDF=pd.read_csv('./PlantGrowth.csv')

 plantGrowthRawDF

Out[344]: observation weight group

 0 1 4.17 ctrl

 1 2 5.58 ctrl

 2 3 5.18 ctrl

 ...

 10 1 4.81 trt1

 11 2 4.17 trt1

 12 3 4.41 trt1

 ...

 20 1 6.31 trt2

 21 2 5.12 trt2

 22 3 5.54 trt2

http://pandas.pydata.org/pandas-docs/stable/merging.html

Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data

[126]

This data consists of results from an experiment to compare dried weight yields
of plants that were obtained under a control (ctrl) and two different treatment
conditions (trt1, trt2). Suppose we wanted to do some analysis of this data by their
group value. One way to do this would be to use a logical filter on the data frame:

In [346]: plantGrowthRawDF[plantGrowthRawDF['group']=='ctrl']

Out[346]: observation weight group

 0 1 4.17 ctrl

 1 2 5.58 ctrl

 2 3 5.18 ctrl

 3 4 6.11 ctrl

 ...

This can be tedious, so we would instead like to pivot/unstack this data and
display it in a form that is more conducive to analysis. We can do this using the
DataFrame.pivot function as follows:

In [345]: plantGrowthRawDF.pivot(index='observation',columns='group',valu
es='weight')

Out[345]: weight

 group ctrl trt1 trt2

 observation

 1 4.17 4.81 6.31

 2 5.58 4.17 5.12

 3 5.18 4.41 5.54

 4 6.11 3.59 5.50

 5 4.50 5.87 5.37

 6 4.61 3.83 5.29

 7 5.17 6.03 4.92

 8 4.53 4.89 6.15

 9 5.33 4.32 5.80

 10 5.14 4.69 5.26

Here, a DataFrame is created with columns corresponding to different values of a
group, or in statistical parlance, levels of the factor. The same result can be achieved
via the pandas pivot_table function, as follows:

In [427]: pd.pivot_table(plantGrowthRawDF,values='weight',

 rows='observation', cols=['group'])

Chapter 5

[127]

Out[427]: group ctrl trt1 trt2

 observation

 1 4.17 4.81 6.31

 2 5.58 4.17 5.12

 3 5.18 4.41 5.54

 4 6.11 3.59 5.50

 5 4.50 5.87 5.37

 6 4.61 3.83 5.29

 7 5.17 6.03 4.92

 8 4.53 4.89 6.15

 9 5.33 4.32 5.80

 10 5.14 4.69 5.26

The key difference between the pivot and the pivot_table functions is that
pivot_table allows the user to specify an aggregate function over which the values
can be aggregated. So, for example, if we wish to obtain the mean for each group
over the 10 observations, we would do the following, which would result in a Series:

In [430]: pd.pivot_table(plantGrowthRawDF,values='weight',cols=['group'],
aggfunc=np.mean)

Out[430]: group

 ctrl 5.032

 trt1 4.661

 trt2 5.526

 Name: weight, dtype: float64

The full synopsis of pivot_table is available at http://bit.ly/1QomJ5A. You can
find more information and examples on its usage at: http://bit.ly/1BYGsNn and
https://www.youtube.com/watch?v=mCLuwCql5t4.

Stacking and unstacking
In addition to the pivot functions, the stack and unstack functions are also available
on Series and DataFrames, that work on objects containing MultiIndexes.

http://bit.ly/1QomJ5A
http://bit.ly/1BYGsNn
https://www.youtube.com/watch?v=mCLuwCql5t4

Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data

[128]

The stack() function
First, we set the group and observation column values to be the components of the
row index respectively, which results in a MultiIndex:

In [349]: plantGrowthRawDF.set_index(['group','observation'])

Out[349]: weight

 group observation

 ctrl 1 4.17

 2 5.58

 3 5.18

 ...

 trt1 1 4.81

 2 4.17

 3 4.41

 ...

 trt2 1 6.31

 2 5.12

 3 5.54

 ...

Here, we see that the row index consists of a MultiIndex on the group and
observation with the weight column as the data value. Now, let us see what
happens if we apply unstack to the group level:

In [351]: plantGrowthStackedDF.unstack(level='group')

Out[351]: weight

 group ctrl trt1 trt2

 observation

 1 4.17 4.81 6.31

 2 5.58 4.17 5.12

 3 5.18 4.41 5.54

 4 6.11 3.59 5.50

 5 4.50 5.87 5.37

 6 4.61 3.83 5.29

 7 5.17 6.03 4.92

 8 4.53 4.89 6.15

 9 5.33 4.32 5.80

 10 5.14 4.69 5.26

Chapter 5

[129]

The following call is equivalent to the preceding one:
plantGrowthStackedDF.unstack(level=0).

Here, we can see that the DataFrame is pivoted and the group has now changed
from a row index (headers) to a column index (headers), resulting in a more compact
looking DataFrame. To understand what's going on in more detail, we have a
MultiIndex as a row index initially on group, observation:

In [356]: plantGrowthStackedDF.index

Out[356]: MultiIndex

 [(u'ctrl', 1), (u'ctrl', 2), (u'ctrl', 3), (u'ctrl', 4),
(u'ctrl', 5),

 (u'ctrl', 6), (u'ctrl', 7), (u'ctrl', 8), (u'ctrl', 9),
(u'ctrl', 10),

 (u'trt1', 1), (u'trt1', 2), (u'trt1', 3), (u'trt1', 4),
(u'trt1', 5),

 (u'trt1', 6), (u'trt1', 7), (u'trt1', 8), (u'trt1', 9),
(u'trt1', 10),

 (u'trt2', 1), (u'trt2', 2), (u'trt2', 3), (u'trt2', 4),
(u'trt2', 5),

 (u'trt2', 6), (u'trt2', 7), (u'trt2', 8), (u'trt2', 9),
(u'trt2', 10)]

In [355]: plantGrowthStackedDF.columns

Out[355]: Index([u'weight'], dtype=object)

The unstacking operation removes the group from the row index, changing it into a
single-level index:

In [357]: plantGrowthStackedDF.unstack(level='group').index

Out[357]: Int64Index([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=int64)

The MultiIndex is now on the columns:

In [352]: plantGrowthStackedDF.unstack(level='group').columns

Out[352]: MultiIndex

 [(u'weight', u'ctrl'), (u'weight', u'trt1'), (u'weight',
u'trt2')]

Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data

[130]

Let us see what happens when we call the reverse operation, stack:

In [366]: plantGrowthStackedDF.unstack(level=0).stack('group')

Out[366]: weight

 observation group

 1 ctrl 4.17

 trt1 4.81

 trt2 6.31

 2 ctrl 5.58

 trt1 4.17

 trt2 5.12

 3 ctrl 5.18

 trt1 4.41

 trt2 5.54

 4 ctrl 6.11

 trt1 3.59

 trt2 5.50

 ...

 10 ctrl 5.14

 trt1 4.69

 trt2 5.26

Here, we see that what we get isn't the original stacked DataFrame since the
stacked level—that is, 'group'—becomes the new lowest level in a MultiIndex on
the columns. In the original stacked DataFrame, group was the highest level. Here
are the sequence of calls to stack and unstack that are exactly reversible. The
unstack() function by default unstacks the last level, which is observation,
which is shown as follows:

In [370]: plantGrowthStackedDF.unstack()

Out[370]: weight

 observation 1 2 3 4 5 6 7 8 9 10

 group

 ctrl 4.17 5.58 5.18 6.11 4.50 4.61 5.17 4.53 5.33 5.14

 trt1 4.81 4.17 4.41 3.59 5.87 3.83 6.03 4.89 4.32 4.69

 trt2 6.31 5.12 5.54 5.50 5.37 5.29 4.92 6.15 5.80 5.26

Chapter 5

[131]

The stack() function by default sets the stacked level as the lowest level in the
resulting MultiIndex on the rows:

In [369]: plantGrowthStackedDF.unstack().stack()

Out[369]: weight

 group observation

 ctrl 1 4.17

 2 5.58

 3 5.18

 ...

 10 5.14

 trt1 1 4.81

 2 4.17

 3 4.41

 ...

 10 4.69

 trt2 1 6.31

 2 5.12

 3 5.54

 ...

 10 5.26

Other methods to reshape DataFrames
There are various other methods that are related to reshaping DataFrames; we'll
discuss them here.

Using the melt function
The melt function enables us to transform a DataFrame by designating some of
its columns as ID columns. This ensures that they will always stay as columns after
any pivoting transformations. The remaining non-ID columns can be treated as
variable and can be pivoted and become part of a name-value two column scheme.
ID columns uniquely identify a row in the DataFrame.

Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data

[132]

The names of those non-ID columns can be customized by supplying the var_name
and value_name parameters. The use of melt is perhaps best illustrated by an
example, as follows:

In [385]: from pandas.core.reshape import melt

In [401]: USIndexDataDF[:2]

Out[401]: TradingDate Nasdaq S&P 500 Russell 2000 DJIA

 0 2014/01/30 4123.13 1794.19 1139.36 15848.61

 1 2014/01/31 4103.88 1782.59 1130.88 15698.85

In [402]: melt(USIndexDataDF[:2], id_vars=['TradingDate'], var_
name='Index Name', value_name='Index Value')

Out[402]:

 TradingDate Index Name Index value

 0 2014/01/30 Nasdaq 4123.13

 1 2014/01/31 Nasdaq 4103.88

 2 2014/01/30 S&P 500 1794.19

 3 2014/01/31 S&P 500 1782.59

 4 2014/01/30 Russell 2000 1139.36

 5 2014/01/31 Russell 2000 1130.88

 6 2014/01/30 DJIA 15848.61

 7 2014/01/31 DJIA 15698.85

The pandas.get_dummies() function
This function is used to convert a categorical variable into an indicator DataFrame,
which is essentially a truth table of possible values of the categorical variable. An
example of this is the following command:

In [408]: melted=melt(USIndexDataDF[:2], id_vars=['TradingDate'], var_
name='Index Name', value_name='Index Value')

 melted

Out[408]: TradingDate Index Name Index Value

 0 2014/01/30 Nasdaq 4123.13

 1 2014/01/31 Nasdaq 4103.88

 2 2014/01/30 S&P 500 1794.19

 3 2014/01/31 S&P 500 1782.59

 4 2014/01/30 Russell 2000 1139.36

Chapter 5

[133]

5 2014/01/31 Russell 2000 1130.88

6 2014/01/30 DJIA 15848.61

7 2014/01/31 DJIA 15698.85

In [413]: pd.get_dummies(melted['Index Name'])

Out[413]: DJIA Nasdaq Russell 2000 S&P 500

 0 0 1 0 0

 1 0 1 0 0

 2 0 0 0 1

 3 0 0 0 1

 4 0 0 1 0

 5 0 0 1 0

 6 1 0 0 0

 7 1 0 0 0

The source of the preceding data can be found at http://vincentarelbundock.
github.io/Rdatasets/csv/datasets/PlantGrowth.csv.

Summary
In this chapter, we saw that there are various ways to rearrange data in pandas. We
can group data using the pandas.groupby operator and the associated methods on
groupby objects. We can merge and join Series and DataFrame objects using the
concat, append, merge, and join functions. Lastly, we can reshape and create pivot
tables using the stack/unstack and pivot/pivot_table functions. This is very
useful functionality to present data for visualization or prepare data for input into
other programs or algorithms.

In the next chapter, we will examine some useful tasks in data analysis for which we
can apply pandas, such as processing time series data and how to handle missing
values in our data.

To have more information on these topics on pandas, please take a look at the official
documentation at http://pandas.pydata.org/pandas-docs/stable/.

http://vincentarelbundock.github.io/Rdatasets/csv/datasets/PlantGrowth.csv
http://vincentarelbundock.github.io/Rdatasets/csv/datasets/PlantGrowth.csv
http://pandas.pydata.org/pandas-docs/stable/

[135]

Missing Data, Time Series,
and Plotting Using Matplotlib

In this chapter, we take a tour of some topics that are necessary to develop expertise
in using pandas. Knowledge of these topics is very useful for the preparation of
data as input for programs or code that process data for analysis, prediction, or
visualization. The topics that we'll discuss are as follows:

• Handling missing data
• Handling time series and dates
• Plotting using matplotlib

By the end of this chapter the user should be proficient in these critical areas.

Handling missing data
Missing data refers to data points that show up as NULL or N/A in our datasets for
some reason; for example, we may have a time series that spans all calendar days
of the month that shows the closing price of a stock for each day, and the closing
price for nonbusiness days would show up as missing. An example of corrupted
data would be a financial dataset that shows the activity date of a transaction in the
wrong format; for example, YYYY-MM-DD instead of YYYYMMDD due to an error
on the part of the data provider.

In the case of pandas, missing values are generally represented by the NaN value.

Missing Data, Time Series, and Plotting Using Matplotlib

[136]

Other than appearing natively in the source dataset, missing values can be added to
a dataset by an operation such as reindexing, or changing frequencies in the case of
a time series:

In [84]: import numpy as np

 import pandas as pd

 import matplotlib.pyplot as plt

 %matplotlib inline

In [85]: date_stngs = ['2014-05-01','2014-05-02',

 '2014-05-05','2014-05-06','2014-05-07']

 tradeDates = pd.to_datetime(pd.Series(date_stngs))

In [86]: closingPrices=[531.35,527.93,527.81,515.14,509.96]

In [87]: googClosingPrices=pd.DataFrame(data=closingPrices,

 columns=['closingPrice'],

 index=tradeDates)

 googClosingPrices

Out[87]: closingPrice

 tradeDates

 2014-05-01 531.35

 2014-05-02 527.93

 2014-05-05 527.81

 2014-05-06 515.14

 2014-05-07 509.96

 5 rows 1 columns

The source of the preceding data can be found at http://yhoo.it/1dmJqW6.

The pandas also provides an API to read stock data from various data providers,
such as Yahoo:

In [29]: import pandas.io.data as web

In [32]: import datetime

 googPrices = web.get_data_yahoo("GOOG",

 start=datetime.datetime(2014, 5, 1),

 end=datetime.datetime(2014, 5, 7))

In [38]: googFinalPrices=pd.DataFrame(googPrices['Close'],

 index=tradeDates)

In [39]: googFinalPrices

Out[39]: Close

http://yhoo.it/1dmJqW6

Chapter 6

[137]

 2014-05-01 531.34998

 2014-05-02 527.92999

 2014-05-05 527.81000

 2014-05-06 515.14001

 2014-05-07 509.95999

For more details, refer to http://pandas.pydata.org/pandas-docs/stable/
remote_data.html.

We now have a time series that depicts the closing price of Google's stock from May
1, 2014 to May 7, 2014 with gaps in the date range since the trading only occur on
business days. If we want to change the date range so that it shows calendar days
(that is, along with the weekend), we can change the frequency of the time series
index from business days to calendar days as follows:

In [90]: googClosingPricesCDays=googClosingPrices.asfreq('D')

 googClosingPricesCDays

Out[90]: closingPrice

 2014-05-01 531.35

 2014-05-02 527.93

 2014-05-03 NaN

 2014-05-04 NaN

 2014-05-05 527.81

 2014-05-06 515.14

 2014-05-07 509.96

 7 rows 1 columns

Note that we have now introduced NaN values for the closingPrice for the
weekend dates of May 3, 2014 and May 4, 2014.

We can check which values are missing by using the isnull and notnull functions
as follows:

In [17]: googClosingPricesCDays.isnull()

Out[17]: closingPrice

 2014-05-01 False

 2014-05-02 False

 2014-05-03 True

 2014-05-04 True

 2014-05-05 False

http://pandas.pydata.org/pandas-docs/stable/remote_data.html
http://pandas.pydata.org/pandas-docs/stable/remote_data.html

Missing Data, Time Series, and Plotting Using Matplotlib

[138]

 2014-05-06 False

 2014-05-07 False

 7 rows 1 columns

In [18]: googClosingPricesCDays.notnull()

Out[18]: closingPrice

 2014-05-01 True

 2014-05-02 True

 2014-05-03 False

 2014-05-04 False

 2014-05-05 True

 2014-05-06 True

 2014-05-07 True

 7 rows 1 columns

A Boolean DataFrame is returned in each case. In datetime and pandas Timestamps,
missing values are represented by the NaT value. This is the equivalent of NaN in
pandas for time-based types.

In [27]: tDates=tradeDates.copy()

 tDates[1]=np.NaN

 tDates[4]=np.NaN

In [28]: tDates

Out[28]: 0 2014-05-01

 1 NaT

 2 2014-05-05

 3 2014-05-06

 4 NaT

 Name: tradeDates, dtype: datetime64[ns]

In [4]: FBVolume=[82.34,54.11,45.99,55.86,78.5]

 TWTRVolume=[15.74,12.71,10.39,134.62,68.84]

In [5]: socialTradingVolume=pd.concat([pd.Series(FBVolume),

 pd.Series(TWTRVolume),

 tradeDates], axis=1,

Chapter 6

[139]

 keys=['FB','TWTR','TradeDate'])

 socialTradingVolume

Out[5]: FB TWTR TradeDate

 0 82.34 15.74 2014-05-01

 1 54.11 12.71 2014-05-02

 2 45.99 10.39 2014-05-05

 3 55.86 134.62 2014-05-06

 4 78.50 68.84 2014-05-07

 5 rows × 3 columns

In [6]: socialTradingVolTS=socialTradingVolume.set_index('TradeDate')

socialTradingVolTS

Out[6]:

 TradeDate FB TWTR

 2014-05-01 82.34 15.74

 2014-05-02 54.11 12.71

 2014-05-05 45.99 10.39

 2014-05-06 55.86 134.62

 2014-05-07 78.50 68.84

 5 rows × 2 columns

In [7]: socialTradingVolTSCal=socialTradingVolTS.asfreq('D')

 socialTradingVolTSCal

Out[7]:

 FB TWTR

 2014-05-01 82.34 15.74

 2014-05-02 54.11 12.71

 2014-05-03 NaN NaN

 2014-05-04 NaN NaN

 2014-05-05 45.99 10.39

 2014-05-06 55.86 134.62

 2014-05-07 78.50 68.84

 7 rows × 2 columns

Missing Data, Time Series, and Plotting Using Matplotlib

[140]

We can perform arithmetic operations on data containing missing values. For
example, we can calculate the total trading volume (in millions of shares) across
the two stocks for Facebook and Twitter as follows:

In [8]: socialTradingVolTSCal['FB']+socialTradingVolTSCal['TWTR']

Out[8]: 2014-05-01 98.08

 2014-05-02 66.82

 2014-05-03 NaN

 2014-05-04 NaN

 2014-05-05 56.38

 2014-05-06 190.48

 2014-05-07 147.34

 Freq: D, dtype: float64

By default, any operation performed on an object that contains missing values will
return a missing value at that position as shown in the following command:

In [12]: pd.Series([1.0,np.NaN,5.9,6])+pd.Series([3,5,2,5.6])

Out[12]: 0 4.0

 1 NaN

 2 7.9

 3 11.6

 dtype: float64

In [13]: pd.Series([1.0,25.0,5.5,6])/pd.Series([3,np.NaN,2,5.6])

Out[13]: 0 0.333333

 1 NaN

 2 2.750000

 3 1.071429

 dtype: float64

There is a difference, however, in the way NumPy treats aggregate calculations
versus what pandas does.

In pandas, the default is to treat the missing value as 0 and do the aggregate
calculation, whereas for NumPy, NaN is returned if any of the values are missing.
Here is an illustration:

In [15]: np.mean([1.0,np.NaN,5.9,6])

Out[15]: nan

Chapter 6

[141]

In [16]: np.sum([1.0,np.NaN,5.9,6])

Out[16]: nan

However, if this data is in a pandas Series, we will get the following output:

In [17]: pd.Series([1.0,np.NaN,5.9,6]).sum()

Out[17]: 12.9

In [18]: pd.Series([1.0,np.NaN,5.9,6]).mean()

Out[18]: 4.2999999999999998

It is important to be aware of this difference in behavior between pandas and
NumPy. However, if we wish to get NumPy to behave the same way as pandas, we
can use the np.nanmean and np.nansum functions, which are illustrated as follows:

In [41]: np.nanmean([1.0,np.NaN,5.9,6])

Out[41]: 4.2999999999999998

In [43]: np.nansum([1.0,np.NaN,5.9,6])

Out[43]: 12.9

For more information on NumPy np.nan* aggregation functions, refer to
http://docs.scipy.org/doc/numpy-dev/reference/routines.statistics.html.

Handling missing values
There are various ways to handle missing values, which are as follows:

1. By using the fillna() function to fill in the NA values. This is an example:
In [19]: socialTradingVolTSCal

Out[19]: FB TWTR

 2014-05-01 82.34 15.74

 2014-05-02 54.11 12.71

 2014-05-03 NaN NaN

 2014-05-04 NaN NaN

 2014-05-05 45.99 10.39

 2014-05-06 55.86 134.62

 2014-05-07 78.50 68.84

 7 rows × 2 columns

http://docs.scipy.org/doc/numpy-dev/reference/routines.statistics.html

Missing Data, Time Series, and Plotting Using Matplotlib

[142]

In [20]: socialTradingVolTSCal.fillna(100)

Out[20]: FB TWTR

 2014-05-01 82.34 15.74

 2014-05-02 54.11 12.71

 2014-05-03 100.00 100.00

 2014-05-04 100.00 100.00

 2014-05-05 45.99 10.39

 2014-05-06 55.86 134.62

 2014-05-07 78.50 68.84

 7 rows × 2 columns

We can also fill forward or backward values using the ffill or bfill
arguments:
In [23]: socialTradingVolTSCal.fillna(method='ffill')

Out[23]: FB TWTR

 2014-05-01 82.34 15.74

 2014-05-02 54.11 12.71

 2014-05-03 54.11 12.71

 2014-05-04 54.11 12.71

 2014-05-05 45.99 10.39

 2014-05-06 55.86 134.62

 2014-05-07 78.50 68.84

 7 rows × 2 columns

In [24]: socialTradingVolTSCal.fillna(method='bfill')

Out[24]: FB TWTR

 2014-05-01 82.34 15.74

 2014-05-02 54.11 12.71

 2014-05-03 45.99 10.39

 2014-05-04 45.99 10.39

 2014-05-05 45.99 10.39

 2014-05-06 55.86 134.62

 2014-05-07 78.50 68.84

 7 rows × 2 columns

The pad method is an alternative name for ffill. For more details, you can
go to http://bit.ly/1f4jvDq.

http://bit.ly/1f4jvDq

Chapter 6

[143]

2. By using the dropna() function to drop/delete rows and columns with
missing values. The following is an example of this:
In [21]: socialTradingVolTSCal.dropna()

Out[21]: FB TWTR

 2014-05-01 82.34 15.74

 2014-05-02 54.11 12.71

 2014-05-05 45.99 10.39

 2014-05-06 55.86 134.62

 2014-05-07 78.50 68.84

 5 rows × 2 columns

3. We can also interpolate and fill in the missing values by using the
interpolate() function, as explained in the following commands:

In [27]: pd.set_option('display.precision',4)

 socialTradingVolTSCal.interpolate()

Out[27]: FB TWTR

 2014-05-01 82.340 15.740

 2014-05-02 54.110 12.710

 2014-05-03 51.403 11.937

 2014-05-04 48.697 11.163

 2014-05-05 45.990 10.390

 2014-05-06 55.860 134.620

 2014-05-07 78.500 68.840

 7 rows × 2 columns

The interpolate() function also takes an argument—method that denotes
the method. These methods include linear, quadratic, cubic spline, and
so on. You can obtain more information from the official documentation
at http://pandas.pydata.org/pandas-docs/stable/missing_data.
html#interpolation.

Handling time series
In this section, we show you how to handle time series data. We will start by
showing how to create time series data using the data read in from a csv file.

http://pandas.pydata.org/pandas-docs/stable/missing_data.html#interpolation
http://pandas.pydata.org/pandas-docs/stable/missing_data.html#interpolation

Missing Data, Time Series, and Plotting Using Matplotlib

[144]

Reading in time series data
Here, we demonstrate the various ways to read in time series data:

In [7]: ibmData=pd.read_csv('ibm-common-stock-closing-prices-1959_1960.
csv')

 ibmData.head()

Out[7]: TradeDate closingPrice

 0 1959-06-29 445

 1 1959-06-30 448

 2 1959-07-01 450

 3 1959-07-02 447

 4 1959-07-06 451

 5 rows 2 columns

The source of this information can be found at http://datamarket.com.

We would like the TradeDate column to be a series of datetime values so that
we can index it and create a time series. Let us first check the type of values in the
TradeDate series:

In [16]: type(ibmData['TradeDate'])

Out[16]: pandas.core.series.Series

In [12]: type(ibmData['TradeDate'][0])

Out[12]: str

Next, we convert it to a Timestamp type:

In [17]: ibmData['TradeDate']=pd.to_datetime(ibmData['TradeDate'])

 type(ibmData['TradeDate'][0])

Out[17]: pandas.tslib.Timestamp

We can now use the TradeDate column as an index:

In [113]: #Convert DataFrame to TimeSeries

 #Resampling creates NaN rows for weekend dates, hence use
dropna

 ibmTS=ibmData.set_index('TradeDate').resample('D')['closingPrice'].
dropna()

 ibmTS

Out[113]: TradeDate

 1959-06-29 445

 1959-06-30 448

http://datamarket.com

Chapter 6

[145]

 1959-07-01 450

 1959-07-02 447

 1959-07-06 451

 ...

 Name: closingPrice, Length: 255

DateOffset and TimeDelta objects
A DateOffset object represents a change or offset in time. The key features of a
DateOffset object are as follows:

• This can be added/subtracted to/from a datetime object to obtain
a shifted date

• This can be multiplied by an integer (positive or negative) so that the
increment can be applied multiple times

• This has the rollforward and rollback methods to move a date forward
to the next offset date or backward to the previous offset date

We illustrate how we use a DateOffset object as follows:

In [371]: xmasDay=pd.datetime(2014,12,25)

 xmasDay

Out[371]: datetime.datetime(2014, 12, 25, 0, 0)

In [373]: boxingDay=xmasDay+pd.DateOffset(days=1)

 boxingDay

Out[373]: Timestamp('2014-12-26 00:00:00', tz=None)

In [390}: today=pd.datetime.now()

 today

Out[390]: datetime.datetime(2014, 5, 31, 13, 7, 36, 440060)

Note that datetime.datetime is different from pd.Timestamp. The former is a
Python class and is inefficient, while the latter is based on the numpy.datetime64
datatype. The pd.DateOffset object works with pd.Timestamp and adding it to a
datetime.datetime function casts that object into a pd.Timestamp object.

The following illustrates the command for one week from today:

In [392]: today+pd.DateOffset(weeks=1)

Out[392]: Timestamp('2014-06-07 13:07:36.440060', tz=None)

Missing Data, Time Series, and Plotting Using Matplotlib

[146]

The following illustrates the command for five years from today:

In [394]: today+2*pd.DateOffset(years=2, months=6)

Out[394]: Timestamp('2019-05-30 13:07:36.440060', tz=None)

Here is an example of using the rollforward functionality. QuarterBegin is a
DateOffset object that is used to increment a given datetime object to the start of
the next calendar quarter:

In [18]: lastDay=pd.datetime(2013,12,31)

In [24]: from pandas.tseries.offsets import QuarterBegin

 dtoffset=QuarterBegin()

 lastDay+dtoffset

Out[24]: Timestamp('2014-03-01 00:00:00', tz=None)

In [25]: dtoffset.rollforward(lastDay)

Out[25]: Timestamp('2014-03-01 00:00:00', tz=None)

Thus, we can see that the next quarter after December 31, 2013 starts on March 1,
2014. Timedeltas are similar to DateOffsets but work with datetime.datetime
objects. The use of these has been explained by the following command:

In [40]: weekDelta=datetime.timedelta(weeks=1)

 weekDelta

Out[40]: datetime.timedelta(7)

In [39]: today=pd.datetime.now()

 today

Out[39]: datetime.datetime (2014, 6, 2, 3, 56, 0, 600309)

In [41]: today+weekDelta

Out[41]: datetime.datetime (2014, 6, 9, 3, 56,0, 600309)

Time series-related instance methods
In this section, we explore various methods for Time Series objects such as shifting,
frequency conversion, and resampling.

Chapter 6

[147]

Shifting/lagging
Sometimes, we may wish to shift the values in a Time Series backward or forward
in time. One possible scenario is when a dataset contains the list of start dates for
last year's new employees in a firm, and the company's human resource program
wishes to shift these dates forward by one year so that the employees' benefits
can be activated. We can do this by using the shift() function as follows:

In [117]: ibmTS.shift(3)

Out[117]: TradeDate

 1959-06-29 NaN

 1959-06-30 NaN

 1959-07-01 NaN

 1959-07-02 445

 1959-07-06 448

 1959-07-07 450

 1959-07-08 447

 ...

This shifts all the calendar days. However, if we wish to shift only business days, we
must use the following command:

In [119]: ibmTS.shift(3, freq=pd.datetools.bday)

Out[119]: TradeDate

 1959-07-02 445

 1959-07-03 448

 1959-07-06 450

 1959-07-07 447

 1959-07-09 451

In the preceding snippet, we have specified the freq argument to shift; this tells the
function to shift only the business days. The shift function has a freq argument
whose value can be a DateOffset class, timedelta-like object, or an offset alias.
Thus, using ibmTS.shift(3, freq='B') would also produce the same result.

Frequency conversion
We can use the asfreq function to change frequencies, as explained:

In [131]: # Frequency conversion using asfreq

 ibmTS.asfreq('BM')

Out[131]: 1959-06-30 448

Missing Data, Time Series, and Plotting Using Matplotlib

[148]

 1959-07-31 428

 1959-08-31 425

 1959-09-30 411

 1959-10-30 411

 1959-11-30 428

 1959-12-31 439

 1960-01-29 418

 1960-02-29 419

 1960-03-31 445

 1960-04-29 453

 1960-05-31 504

 1960-06-30 522

 Freq: BM, Name: closingPrice, dtype: float64

In this case, we just obtain the values corresponding to the last day of the month
from the ibmTS time series. Here, bm stands for business month end frequency.
For a list of all possible frequency aliases, go to http://bit.ly/1cMI3iA.

If we specify a frequency that is smaller than the granularity of the data, the gaps
will be filled in with NaN values:

In [132]: ibmTS.asfreq('H')

Out[132]: 1959-06-29 00:00:00 445

 1959-06-29 01:00:00 NaN

 1959-06-29 02:00:00 NaN

 1959-06-29 03:00:00 NaN

 ...

 1960-06-29 23:00:00 NaN

 1960-06-30 00:00:00 522

 Freq: H, Name: closingPrice, Length: 8809

We can also apply the asfreq method to the Period and PeriodIndex objects
similar to how we do for the datetime and Timestamp objects. Period and
PeriodIndex are introduced later and are used to represent time intervals.

The asfreq method accepts a method argument that allows you to forward fill
(ffill) or back fill the gaps, similar to fillna:

In [140]: ibmTS.asfreq('H', method='ffill')

Out[140]: 1959-06-29 00:00:00 445

 1959-06-29 01:00:00 445

http://bit.ly/1cMI3iA

Chapter 6

[149]

 1959-06-29 02:00:00 445

 1959-06-29 03:00:00 445

 ...

 1960-06-29 23:00:00 522

 1960-06-30 00:00:00 522

 Freq: H, Name: closingPrice, Length: 8809

Resampling of data
The TimeSeries.resample function enables us to summarize/aggregate more
granular data based on a sampling interval and a sampling function.

Downsampling is a term that originates from digital signal processing and refers to
the process of reducing the sampling rate of a signal. In the case of data, we use it to
reduce the amount of data that we wish to process.

The opposite process is upsampling, which is used to increase the amount of data to
be processed and requires interpolation to obtain the intermediate data points. For
more information on downsampling and upsampling, refer to Practical Applications of
Upsampling and Downsampling at http://bit.ly/1JC95HD and Downsampling Time
Series for Visual Representation at http://bit.ly/1zrExVP.

Here, we examine some tick data for use in resampling. Before we examine the data,
we need to prepare it. In doing so, we will learn some useful techniques for time
series data, which are as follows:

• Epoch Timestamps
• Timezone handling

Here is an example that uses tick data for stock prices of Google for Tuesday,
May 27, 2014:

In [150]: googTickData=pd.read_csv('./GOOG_tickdata_20140527.csv')

In [151]: googTickData.head()

Out[151]: Timestamp close high low open volume

 0 1401197402 555.008 556.41 554.35 556.38 81100

 1 1401197460 556.250 556.30 555.25 555.25 18500

 2 1401197526 556.730 556.75 556.05 556.39 9900

 3 1401197582 557.480 557.67 556.73 556.73 14700

 4 1401197642 558.155 558.66 557.48 557.59 15700

 5 rows 6 columns

http://bit.ly/1JC95HD
http://bit.ly/1zrExVP

Missing Data, Time Series, and Plotting Using Matplotlib

[150]

The source for the preceding data can be found at http://bit.ly/1MKBwlB.

As you can see from the preceding section, we have a Timestamp column along with
the columns for the close, high, low, and opening prices and the volume of trades of
the Google stock.

So, why does the Timestamp column seem a bit strange? Well, tick data Timestamps
are generally expressed in epoch time (for more information, refer to http://
en.wikipedia.org/wiki/Unix_epoch) as a more compact means of storage. We'll
need to convert this into a more human-readable time, and we can do this as follows:

In [201]: googTickData['tstamp']=pd.to_datetime(googTickData['Timestamp']
,unit='s',utc=True)

In [209]: googTickData.head()

Out[209]:

 Timestamp close high low open volume tstamp

 0 14011974020 555.008 556.41 554.35 556.38 81100 2014-05-27 13:30:02

 1 1401197460 556.250 556.30 555.25 555.25 18500 2014-05-27 13:31:00

 2 1401197526 556.730 556.75 556.05 556.39 9900 2014-05-27 13:32:06

 3 1401197582 557.480 557.67 556.73 556.73 14700 2014-05-27 13:33:02

 4 1401197642 558.155 558.66 557.48 557.59 15700 2014-05-27 13:34:02

 5 rows 7 columns

We would now like to make the tstamp column, as the index and eliminate the
epoch Timestamp column:

In [210]: googTickTS=googTickData.set_index('tstamp')

 googTickTS=googTickTS.drop('Timestamp',axis=1)

 googTickTS.head()

Out[210]:

 tstamp close high low open volume

 2014-05-27 13:30:02 555.008 556.41 554.35 556.38 811000

 2014-05-27 13:31:00 556.250 556.30 555.25 555.25 18500

 2014-05-27 13:32:06 556.730 556.75 556.05 556.39 9900

 2014-05-27 13:33:02 557.480 557.67 556.73 556.73 14700

 2014-05-27 13:34:02 558.155 558.66 557.48 557.59 15700

 5 rows 5 columns

http://bit.ly/1MKBwlB
http://en.wikipedia.org/wiki/Unix_epoch
http://en.wikipedia.org/wiki/Unix_epoch

Chapter 6

[151]

Note that the tstamp index column has the times in UTC, and we can convert it to
US/Eastern time using two operators—tz_localize and tz_convert:

In [211]: googTickTS.index=googTickTS.index.tz_localize('UTC').tz_
convert('US/Eastern')

In [212]: googTickTS.head()

Out[212]:

 tstamp close high low open volume

 2014-05-27 09:30:02-04:00 555.008 556.41 554.35 556.38 81100

 2014-05-27 09:31:00-04:00 556.250 556.30 555.25 555.25 18500

 2014-05-27 09:32:06-04:00 556.730 556.75 556.05 556.39 9900

 2014-05-27 09:33:02-04:00 557.480 557.67 556.73 556.73 14700

 2014-05-27 09:34:02-04:00 558.155 558.66 557.48 557.59 15700

 5 rows 5 columns

In [213]: googTickTS.tail()

Out[213]:

 tstamp close high low open volume

 2014-05-27 15:56:00-04:00 565.4300 565.48 565.30 565.385 14300

 2014-05-27 15:57:00-04:00 565.3050 565.46 565.20 565.400 14700

 2014-05-27 15:58:00-04:00 565.1101 565.31 565.10 565.310 23200

 2014-05-27 15:59:00-04:00 565.9400 566.00 565.08 565.230 55600

 2014-05-27 16:00:00-04:00 565.9500 565.95 565.95 565.950 126000

 5 rows 5 columns

In [214]: len(googTickTS)

Out[214]: 390

From the preceding output, we can see ticks for every minute of the trading
day—from 9:30 a.m., when the stock market opens, until 4:00 p.m., when it closes.
This results in 390 rows in the dataset since there are 390 minutes between 9:30 a.m.
and 4:00 p.m.

Missing Data, Time Series, and Plotting Using Matplotlib

[152]

Suppose we want to obtain a snapshot every 5 minutes instead of every minute?
We can achieve this by using downsampling as follows:

In [216]: googTickTS.resample('5Min').head(6)

Out[216]: close high low open volume tstamp

2014-05-27 09:30:00-04:00 556.72460 557.15800 555.97200 556.46800 27980

2014-05-27 09:35:00-04:00 556.93648 557.64800 556.85100 557.34200 24620

2014-05-27 09:40:00-04:00 556.48600 556.79994 556.27700 556.60678 8620

2014-05-27 09:45:00-04:00 557.05300 557.27600 556.73800 556.96600 9720

2014-05-27 09:50:00-04:00 556.66200 556.93596 556.46400 556.80326
14560

2014-05-27 09:55:00-04:00 555.96580 556.35400 555.85800 556.23600
12400

6 rows 5 columns

The default function used for resampling is the mean. However, we can also specify
other functions, such as the minimum, and we can do this via the how parameter to
resample:

In [245]: googTickTS.resample('10Min', how=np.min).head(4)

Out[245]: close high low open volume

tstamp

2014-05-27 09:30:00-04:00 555.008 556.3000 554.35 555.25 9900

2014-05-27 09:40:00-04:00 556.190 556.5600 556.13 556.35 3500

2014-05-27 09:50:00-04:00 554.770 555.5500 554.77 555.55 3400

2014-05-27 10:00:00-04:00 554.580 554.9847 554.45 554.58 1800

Various function names can be passed to the how parameter, such as sum, ohlc, max,
min, std, mean, median, first, and last.

The ohlc function that returns open-high-low-close values on time series data that is;
the first, maximum, minimum, and last values. To specify whether the left or right
interval is closed, we can pass the closed parameter as follows:

In [254]: pd.set_option('display.precision',5)

 googTickTS.resample('5Min', closed='right').tail(3)

Out[254]: close high low open volume

tstamp

2014-05-27 15:45:00-04:00 564.3167 564.3733 564.1075 564.1700
12816.6667

Chapter 6

[153]

2014-05-27 15:50:00-04:00 565.1128 565.1725 565.0090 565.0650
13325.0000

2014-05-27 15:55:00-04:00 565.5158 565.6033 565.3083 565.4158
40933.3333

3 rows 5 columns

Thus, in the preceding command, we can see that the last row shows the tick at 15:55
instead of 16:00.

For upsampling, we need to specify a fill method to determine how the gaps should
be filled via the fill_method parameter:

In [263]: googTickTS[:3].resample('30s', fill_method='ffill')

Out[263]: close high low open volume tstamp

 2014-05-27 09:30:00-04:00 555.008 556.41 554.35 556.38 81100

 2014-05-27 09:30:30-04:00 555.008 556.41 554.35 556.38 81100

 2014-05-27 09:31:00-04:00 556.250 556.30 555.25 555.25 18500

 2014-05-27 09:31:30-04:00 556.250 556.30 555.25 555.25 18500

 2014-05-27 09:32:00-04:00 556.730 556.75 556.05 556.39 9900

 5 rows 5 columns

In [264]: googTickTS[:3].resample('30s', fill_method='bfill')

Out[264]:

 close high low open volume tstamp

 2014-05-27 09:30:00-04:00 555.008 556.41 554.35 556.38 81100

 2014-05-27 09:30:30-04:00 556.250 556.30 555.25 555.25 18500

 2014-05-27 09:31:00-04:00 556.250 556.30 555.25 555.25 18500

 2014-05-27 09:31:30-04:00 556.730 556.75 556.05 556.39 9900

 2014-05-27 09:32:00-04:00 556.730 556.75 556.05 556.39 9900

 5 rows 5 columns

Unfortunately, the fill_method parameter currently supports only two
methods—forward fill and back fill. An interpolation method would be valuable.

Missing Data, Time Series, and Plotting Using Matplotlib

[154]

Aliases for Time Series frequencies
To specify offsets, a number of aliases are available; some of the most commonly
used ones are as follows:

• B, BM: This stands for business day, business month. These are the working
days of the month, that is, any day that is not a holiday or a weekend.

• D, W, M, Q, A: It stands for calendar day, week, month, quarter, year-end.
• H, T, S, L, U: It stands for hour, minute, second, millisecond, and

microsecond.

These aliases can also be combined. In the following case, we resample every 7
minutes and 30 seconds:

In [267]: googTickTS.resample('7T30S').head(5)

Out[267]:

 close high low open volume

tstamp

2014-05-27 09:30:00-04:00 556.8266 557.4362 556.3144 556.8800 28075.0

2014-05-27 09:37:30-04:00 556.5889 556.9342 556.4264 556.7206 11642.9

2014-05-27 09:45:00-04:00 556.9921 557.2185 556.7171 556.9871 9800.0

2014-05-27 09:52:30-04:00 556.1824 556.5375 556.0350 556.3896 14350.0

2014-05-27 10:00:00-04:00 555.2111 555.4368 554.8288 554.9675 12512.5

5 rows x 5 columns

Suffixes can be applied to the frequency aliases to specify when in a frequency period
to start. These are known as anchoring offsets:

• W - SUN, MON, ... for example, W-TUE indicates a weekly frequency
starting on a Tuesday.

• Q - JAN, FEB, ... DEC for example, Q-MAY indicates a quarterly frequency
with the year-end in May.

• A - JAN, FEB, ... DEC for example, A-MAY indicates an annual frequency
with the year-end in May.

These offsets can be used as arguments to the date_range and bdate_range functions
as well as constructors for index types such as PeriodIndex and DatetimeIndex.
A comprehensive discussion on this can be found in the pandas documentation at
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#.

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#

Chapter 6

[155]

Time series concepts and datatypes
When dealing with time series, there are two main concepts that you have to
consider: points in time and ranges, or time spans. In pandas, the former is
represented by the Timestamp datatype, which is equivalent to Python's datatime.
datetime (datetime) datatype and is interchangeable with it. The latter (time span)
is represented by the Period datatype, which is specific to pandas.

Each of these datatypes has index datatypes associated with them: DatetimeIndex
for Timestamp/Datetime and PeriodIndex for Period. These index datatypes are
basically subtypes of numpy.ndarray that contain the corresponding Timestamp and
Period datatypes and can be used as indexes for Series and DataFrame objects.

Period and PeriodIndex
The Period datatype is used to represent a range or span of time. Here are
a few examples:

Period representing May 2014

In [287]: pd.Period('2014', freq='A-MAY')

Out[287]: Period('2014', 'A-MAY')

Period representing specific day – June 11, 2014

In [292]: pd.Period('06/11/2014')

Out[292]: Period('2014-06-11', 'D')

Period representing 11AM, Nov 11, 1918

In [298]: pd.Period('11/11/1918 11:00',freq='H')

Out[298]: Period('1918-11-11 11:00', 'H')

We can add integers to Periods which advances the period by the requisite number
of unit of the frequency:

In [299]: pd.Period('06/30/2014')+4

Out[299]: Period('2014-07-04', 'D')

In [303]: pd.Period('11/11/1918 11:00',freq='H') - 48

Out[303]: Period('1918-11-09 11:00', 'H')

We can also calculate the difference between two Periods and return the number of
units of frequency between them:

In [304]: pd.Period('2014-04', freq='M')-pd.Period('2013-02', freq='M')

Out[304]: 14

Missing Data, Time Series, and Plotting Using Matplotlib

[156]

PeriodIndex
A PeriodIndex object, which is an index type for a Period object, can be created in
two ways:

1. From a series of Period objects using the period_range function an
analogue of date_range:
In [305]: perRng=pd.period_range('02/01/2014','02/06/2014',freq=
'D')

 perRng

Out[305]: <class 'pandas.tseries.period.PeriodIndex'>

 freq: D

 [2014-02-01, ..., 2014-02-06]

 length: 6

In [306]: type(perRng[:2])

Out[306]: pandas.tseries.period.PeriodIndex

In [307]: perRng[:2]

Out[307]: <class 'pandas.tseries.period.PeriodIndex'>

 freq: D

 [2014-02-01, 2014-02-02]

As we can confirm from the preceding command, when you pull the covers,
a PeriodIndex function is really an ndarray of Period objects underneath.

2. It can also be done via a direct call to the Period constructor:
In [312]: JulyPeriod=pd.PeriodIndex(['07/01/2014','07/31/2014'],
freq='D')

 JulyPeriod

Out[312]: <class 'pandas.tseries.period.PeriodIndex'>

 freq: D

 [2014-07-01, 2014-07-31]

The difference between the two approaches, as can be seen from the preceding
output, is that period_range fills in the resulting ndarray, but the Period
constructor does not and you have to specify all the values that should be
in the index.

Chapter 6

[157]

Conversions between Time Series datatypes
We can convert the Period and PeriodIndex datatypes to Datetime/Timestamp
and DatetimeIndex datatypes via the to_period and to_timestamp functions,
as follows:

In [339]: worldCupFinal=pd.to_datetime('07/13/2014',

 errors='raise')

 worldCupFinal

 Out[339]: Timestamp('2014-07-13 00:00:00')

In [340]: worldCupFinal.to_period('D')

 Out[340]: Period('2014-07-13', 'D')

In [342]: worldCupKickoff=pd.Period('06/12/2014','D')

 worldCupKickoff

Out[342]: Period('2014-06-12', 'D')

In [345]: worldCupKickoff.to_timestamp()

Out[345]: Timestamp('2014-06-12 00:00:00', tz=None)

In [346]: worldCupDays=pd.date_range('06/12/2014',periods=32,

 freq='D')

 worldCupDays

Out[346]: <class 'pandas.tseries.index.DatetimeIndex'>

 [2014-06-12, ..., 2014-07-13]

 Length: 32, Freq: D, Timezone: None

In [347]: worldCupDays.to_period()

Out[347]: <class 'pandas.tseries.period.PeriodIndex'>

 freq: D

 [2014-06-12, ..., 2014-07-13]

 length: 32

Missing Data, Time Series, and Plotting Using Matplotlib

[158]

A summary of Time Series-related
objects
The following table gives a summary of Time Series-related objects:

Object Summary
datetime.datetime This is a Standard Python datetime class
Timestamp This is a pandas class derived from datetime.datetime
DatetimeIndex This is a pandas class and is implemented as an immutable

numpy.ndarray of the Timestamp/datetime objects
Period This is a pandas class representing a time period
PeriodIndex This is a pandas class and is implemented as an immutable

numpy.ndarray of Period objects
timedelta This is a Python class expressing the difference between

two datetime.datetime instances. It is implemented
as datetime.timedelta

relativedelta Implemented as dateutil.relativedelta. dateutil
is an extension to the standard Python datetime module.
It provides extra functionality such as timedeltas that are
expressed in units larger than 1 day.

DateOffset This is a pandas class representing a regular
frequency increment. It has similar functionalty
to dateutil.relativedelta.

Plotting using matplotlib
This section provides a brief introduction to plotting in pandas using matplotlib.
The matplotlib api is imported using the standard convention, as shown in the
following command:

In [1]: import matplotlib.pyplot as plt

Series and DataFrame have a plot method, which is simply a wrapper around
plt.plot. Here, we will examine how we can do a simple plot of a sine and cosine
function. Suppose we wished to plot the following functions over the interval pi
to pi:

• f(x) = cos(x) + sin (x)
• g(x) = cos (x) - sin (x)

Chapter 6

[159]

This gives the following interval:

In [51]: import numpy as np

In [52]: X = np.linspace(-np.pi, np.pi, 256,endpoint=True)

In [54]: f,g = np.cos(X)+np.sin(X), np.sin(X)-np.cos(X)

In [61]: f_ser=pd.Series(f)

 g_ser=pd.Series(g)

In [31]: plotDF=pd.concat([f_ser,g_ser],axis=1)

 plotDF.index=X

 plotDF.columns=['sin(x)+cos(x)','sin(x)-cos(x)']

 plotDF.head()

Out[31]: sin(x)+cos(x) sin(x)-cos(x)

-3.141593 -1.000000 1.000000

-3.116953 -1.024334 0.975059

-3.092313 -1.048046 0.949526

-3.067673 -1.071122 0.923417

-3.043033 -1.093547 0.896747

5 rows × 2 columns

We can now plot the DataFrame using the plot() command and the plt.show()
command to display it:

In [94]: plotDF.plot()

 plt.show()

We can apply a title to the plot as follows:

In [95]: plotDF.columns=['f(x)','g(x)']

 plotDF.plot(title='Plot of f(x)=sin(x)+cos(x), \n
g(x)=sinx(x)-cos(x)')

 plt.show()

Missing Data, Time Series, and Plotting Using Matplotlib

[160]

The following is the output of the preceding command:

We can also plot the two series (functions) separately in different subplots using the
following command:

In [96]: plotDF.plot(subplots=True, figsize=(6,6))

 plt.show()

The following is the output of the preceding command:

Chapter 6

[161]

There is a lot more to using the plotting functionality of matplotlib within pandas.
For more information, take a look at the documentation at http://pandas.pydata.
org/pandas-docs/dev/visualization.html.

Summary
To summarize, we have discussed how to handle missing data values and
manipulate dates and time series in pandas. We also took a brief detour to
investigate the plotting functionality in pandas using matplotlib. Handling missing
data plays a very important part in the preparation of clean data for analysis and
prediction, and the ability to plot and visualize data is an indispensable part of
every good data analyst's toolbox.

In the next chapter, we will do some elementary data analysis on a real-world
dataset where we will analyze and answer basic questions about the data. For
further references about these topics in pandas, please take a look at the official
documentation at http://pandas.pydata.org/pandas-docs/stable/index.html.

http://pandas.pydata.org/pandas-docs/dev/visualization.html
http://pandas.pydata.org/pandas-docs/dev/visualization.html
http://pandas.pydata.org/pandas-docs/stable/index.html

[163]

A Tour of Statistics – The
Classical Approach

In this chapter, we take a brief tour of classical statistics (also called the frequentist
approach) and show how we can use pandas together with stats packages, such as
scipy.stats and statsmodels, to conduct statistical analyses. This chapter and the
following ones are not intended to be a primer on statistics, but they just serve as an
illustration of using pandas along with the stats packages. In the next chapter, we
will examine an alternative approach to the classical view—Bayesian statistics. The
various topics that are discussed in this chapter are as follows:

• Descriptive statistics and inferential statistics
• Measures of central tendency and variability
• Statistical hypothesis testing
• Z-test
• T-test
• Analysis of variance
• Confidence intervals
• Correlation and linear regression

A Tour of Statistics – The Classical Approach

[164]

Descriptive statistics versus inferential
statistics
In descriptive or summary statistics, we attempt to describe the features of a
collection of data in a quantitative way. This is different from inferential or inductive
statistics because its aim is to summarize a sample rather than use the data to infer or
draw conclusions about the population from which the sample is drawn.

Measures of central tendency and
variability
Some of the measures used in descriptive statistics include the measures of central
tendency and measures of variability.

A measure of central tendency is a single value that attempts to describe a dataset by
specifying a central position within the data. The three most common measures of
central tendency are the mean, median, and mode.

A measure of variability is used to describe the variability in a dataset. Measures of
variability include variance and standard deviation.

Measures of central tendency
Let's take a look at the measures of central tendency and an illustration in the
following sections.

The mean
The mean or sample is the most popular measure of central tendency. It is equal to
the sum of all values in the dataset divided by the number of values in the dataset.
Thus, in a dataset of n values, the mean is calculated as follows:

1 2 3

1

1 n
n

i
i

x x x xx x
n n =

+ + + +
= = ∑K

Chapter 7

[165]

We use x if the data values are from a sample and μ if the data values are
from a population.

The sample mean and population mean are different. The sample mean is what is
known as an unbiased estimator of the true population mean. By repeated random
sampling of the population to calculate the sample mean, we can obtain a mean of
sample means. We can then invoke the law of large numbers and the central limit
theorem (CLT) and denote the mean of sample means as an estimate of the true
population mean.

The population mean is also referred to as the expected value of the population.

The mean, as a calculated value, is often not one of the values observed in the dataset.
The main drawback of using the mean is that it is very susceptible to outlier values, or
if the dataset is very skewed. For additional information, please refer to these links at
http://en.wikipedia.org/wiki/Sample_mean_and_sample_covariance, http://
en.wikipedia.org/wiki/Law_of_large_numbers, and http://bit.ly/1bv7l4s.

The median
The median is the data value that divides the set of sorted data values into two
halves. It has exactly half of the population to its left and the other half to its right.
In the case when the number of values in the dataset is even, the median is the
average of the two middle values. It is less affected by outliers and skewed data.

The mode
The mode is the most frequently occurring value in the dataset. It is more commonly
used for categorical data in order to know which category is most common. One
downside to using the mode is that it is not unique. A distribution with two modes is
described as bimodal, and one with many modes is denoted as multimodal. Here is
an illustration of a bimodal distribution with modes at two and seven since they both
occur four times in the dataset:

In [4]: import matplotlib.pyplot as plt

 %matplotlib inline

In [5]: plt.hist([7,0,1,2,3,7,1,2,3,4,2,7,6,5,2,1,6,8,9,7])

 plt.xlabel('x')

 plt.ylabel('Count')

http://en.wikipedia.org/wiki/Sample_mean_and_sample_covariance
http://en.wikipedia.org/wiki/Law_of_large_numbers
http://en.wikipedia.org/wiki/Law_of_large_numbers
http://bit.ly/1bv7l4s

A Tour of Statistics – The Classical Approach

[166]

 plt.title('Bimodal distribution')

 plt.show()

Computing measures of central tendency of a
dataset in Python
To illustrate, let us consider the following dataset consisting of marks obtained
by 15 pupils for a test scored out of 20:

In [18]: grades = [10, 10, 14, 18, 18, 5, 10, 8, 1, 12, 14, 12, 13, 1,
18]

The mean, median, and mode can be obtained as follows:

In [29]: %precision 3 # Set output precision to 3 decimal places

Out[29]:u'%.3f'

In [30]: import numpy as np

 np.mean(grades)

Out[30]: 10.933

In [35]: %precision

 np.median(grades)

Chapter 7

[167]

Out[35]: 12.0

In [24]: from scipy import stats

 stats.mode(grades)

Out[24]: (array([10.]), array([3.]))

In [39]: import matplotlib.pyplot as plt

In [40]: plt.hist(grades)

 plt.title('Histogram of grades')

 plt.xlabel('Grade')

 plt.ylabel('Frequency')

 plt.show()

To illustrate how the skewness of data or an outlier value can drastically affect the
usefulness of the mean as a measure of central tendency, consider the following
dataset that shows the wages (in thousands of dollars) of the staff at a factory:

In [45]: %precision 2

 salaries = [17, 23, 14, 16, 19, 22, 15, 18, 18, 93, 95]

In [46]: np.mean(salaries)

Out[46]: 31.82

A Tour of Statistics – The Classical Approach

[168]

Based on the mean value, we may make the assumption that the data is centered
around the mean value of 31.82. However, we would be wrong. To see this, let's
display an empirical distribution of the data using a bar plot:

In [59]: fig = plt.figure()

 ax = fig.add_subplot(111)

 ind = np.arange(len(salaries))

 width = 0.2

 plt.hist(salaries, bins=xrange(min(salaries),

 max(salaries)).__len__())

 ax.set_xlabel('Salary')

 ax.set_ylabel('# of employees')

 ax.set_title('Bar chart of salaries')

 plt.show()

From the preceding bar plot, we can see that most of the salaries are far below 30K
and no one is close to the mean of 32K. Now, if we take a look at the median, we see
that it is better measure of central tendency in this case:

In [47]: np.median(salaries)

Out[47]: 18.00

Chapter 7

[169]

We can also take a look at a histogram of the data:

In [56]: plt.hist(salaries, bins=len(salaries))

 plt.title('Histogram of salaries')

 plt.xlabel('Salary')

 plt.ylabel('Frequency')

 plt.show()

The histogram is actually a better representation of the data as bar plots
are generally used to represent categorical data while histograms are
preferred for quantitative data, which is the case for the salaries' data.
For more information on when to use histograms versus bar plots, refer
to http://onforb.es/1Dru2gv.

http://onforb.es/1Dru2gv

A Tour of Statistics – The Classical Approach

[170]

If the distribution is symmetrical and unimodal (that is, has only one mode), the
three measures—mean, median, and mode—will be equal. This is not the case if the
distribution is skewed. In that case, the mean and median will differ from each other.
With a negatively skewed distribution, the mean will be lower than the median and
vice versa for a positively skewed distribution:

The preceding figure is sourced from http://www.southalabama.edu/coe/bset/
johnson/lectures/lec15_files/image014.jpg.

Measures of variability, dispersion, or spread
Another characteristic of distribution that we measure in descriptive statistics
is variability.

Variability specifies how much the data points are different from each other, or
dispersed. Measures of variability are important because they provide an insight
into the nature of the data that is not provided by the measures of central tendency.

As an example, suppose we conduct a study to examine how effective a pre-K
education program is in lifting test scores of economically disadvantaged children.
We can measure the effectiveness not only in terms of the average value of the test
scores of the entire sample but also with the dispersion of the scores. Is it useful for
some students and not so much for others? The variability of the data may help us
identify some steps to be taken to improve the usefulness of the program.

http://www.southalabama.edu/coe/bset/johnson/lectures/lec15_files/image014.jpg
http://www.southalabama.edu/coe/bset/johnson/lectures/lec15_files/image014.jpg

Chapter 7

[171]

Range
The simplest measure of dispersion is the range. The range is the difference between
the lowest and highest scores in a dataset. This is the simplest measure of spread.

Range = highest value - lowest value

Quartile
A more significant measure of dispersion is the quartile and related interquartile
ranges. It also stands for quarterly percentile, which means that it is the value on the
measurement scale below which 25, 50, 75, and 100 percent of the scores in the sorted
dataset fall. The quartiles are three points that split the dataset into four groups, with
each one containing one-fourth of the data. To illustrate, suppose we have a dataset
of 20 test scores where we rank them as follows:

In [27]: import random

 random.seed(100)

 testScores = [random.randint(0,100) for p in

 xrange(0,20)]

 testScores

Out[27]: [14, 45, 77, 71, 73, 43, 80, 53, 8, 46, 4, 94, 95, 33, 31, 77,
20, 18, 19, 35]

In [28]: #data needs to be sorted for quartiles
 sortedScores = np.sort(testScores)

In [30]: rankedScores = {i+1: sortedScores[i] for i in

 xrange(len(sortedScores))}

In [31]: rankedScores

Out[31]:

{1: 4,

 2: 8,

 3: 14,

 4: 18,

 5: 19,

 6: 20,

 7: 31,

A Tour of Statistics – The Classical Approach

[172]

8: 33,

 9: 35,

 10: 43,

 11: 45,

 12: 46,

 13: 53,

 14: 71,

 15: 73,

 16: 77,

 17: 77,

 18: 80,

 19: 94,

 20: 95}

The first quartile (Q1) lies between the fifth and sixth score, the second quartile (Q2)
between the tenth and eleventh score, and the third quartile between the fifteenth
and sixteenth score. Thus, we have (by using linear interpolation and calculating
the midpoint):

Q1 = (19+20)/2 = 19.5

Q2 = (43 + 45)/2 = 44

Q3 = (73 + 77)/2 = 75

To see this in IPython, we can use the scipy.stats or numpy.percentile packages:

In [38]: from scipy.stats.mstats import mquantiles

 mquantiles(sortedScores)

Out[38]: array([19.45, 44. , 75.2])

In [40]: [np.percentile(sortedScores, perc) for perc in [25,50,75]]

Out[40]: [19.75, 44.0, 74.0]

The reason why the values don't match exactly with our previous calculations is
due to the different interpolation methods. More information on the various types
of methods to obtain quartile values can be found at http://en.wikipedia.org/
wiki/Quartile. The interquartile range is the first quartile subtracted from the third
quartile (Q3 - Q1), It represents the middle 50 in a dataset.

For more information, refer to http://bit.ly/1cMMycN.

http://en.wikipedia.org/wiki/Quartile
http://en.wikipedia.org/wiki/Quartile
http://bit.ly/1cMMycN

Chapter 7

[173]

For more details on the scipy.stats and numpy.percentile functions, see the
documents at http://docs.scipy.org/doc/scipy/reference/generated/scipy.
stats.mstats.mquantiles.html and http://docs.scipy.org/doc/numpy-dev/
reference/generated/numpy.percentile.html.

Deviation and variance
A fundamental idea in the discussion of variability is the concept of deviation.
Simply put, a deviation measure tells us how far away a given value is from the
mean of the distribution, that is, X X ′− .

To find the deviation of a set of values, we define the variance as the sum of squared
deviations and normalize it by dividing it by the size of the dataset. This is referred
to as the variance. We need to use the sum of squared deviations as taking the sum
of deviations around the mean results in 0 since the negative and positive deviations
cancel each other out. The sum of squared deviations is defined as follows:

2

1
()

N

i
SS X X

=

= −∑

It can be shown that the preceding expression is equivalent to:

()212
1

N

N I

I

X
SS X

N
=

=
= −

∑
∑

Formally, the variance is defined as follows:

• For sample variance, use the following formula:

()22

1

1
1 1

N

i

SSs X X
N N =

= = −
− − ∑

• For population variance, use the following formula:

()22

1

1 N

i

SS X
N N

σ µ
=

= = −∑

http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mquantiles.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mquantiles.html
http://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.percentile.html
http://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.percentile.html

A Tour of Statistics – The Classical Approach

[174]

The reason why the denominator is 1N − for the sample variance instead of N is that
for sample variance, we wish to use an unbiased estimator. For more details on this,
take a look at http://en.wikipedia.org/wiki/Bias_of_an_estimator.

The values of this measure are in squared units. This emphasizes the fact that what
we have calculated as the variance is the squared deviation. Therefore, to obtain
the deviation in the same units as the original points of the dataset, we must take
the square root, and this gives us what we call the standard deviation. Thus, the
standard deviation of a sample is given by using the following formula:

()2
1 1

X XSSs
N N

−
= =

− −
∑

However, for a population, the standard deviation is given by the following formula:

()2XSS
N N

µ
σ

−
= = ∑

Hypothesis testing – the null and
alternative hypotheses
In the preceding section, we had a brief discussion of what is referred to as
descriptive statistics. In this section, we will discuss what is known as inferential
statistics whereby we try to use characteristics of the sample dataset to draw
conclusions about the wider population as a whole.

One of the most important methods in inferential statistics is hypothesis testing.
In hypothesis testing, we try to determine whether a certain hypothesis or research
question is true to a certain degree. One example of a hypothesis would be this:
Eating spinach improves long-term memory.

In order to investigate this question by using hypothesis testing, we can select
a group of people as subjects for our study and divide them into two groups or
samples. The first group will be the experimental group, and it will eat spinach over
a predefined period of time. The second group, which does not receive spinach, will
be the control group. Over selected periods of times, the memory of individuals in
the two groups will be measured and tallied.

http://en.wikipedia.org/wiki/Bias_of_an_estimator

Chapter 7

[175]

Our goal at the end of our experiment would be to be able to make a statement such
as "Eating spinach results in improvement in long-term memory, which is not due to
chance". This is also known as significance.

In the preceding scenario, the collection of subjects in the study is referred to as
the sample, and the general set of people about whom we would like to draw
conclusions is the population.

The ultimate goal of our study would be to determine whether any effects that we
observed in the sample can be generalized to the population as a whole. In order to
carry out hypothesis testing, we will need to come up with what are known as the
null and alternative hypotheses.

The null and alternative hypotheses
By referring to the preceding spinach example, the null hypothesis would be: Eating
spinach has no effect on long-term memory performance.

The null hypothesis is just that—it nullifies what we're trying to prove by running our
experiment. It does so by asserting that some statistical metric (to be explained later)
is zero.

The alternative hypothesis is what we hope to support. It is the opposite of the null
hypothesis and we assume it to be true until the data provides sufficient evidence
that indicates otherwise. Thus, our alternative hypothesis in this case is: Eating
spinach results in an improvement in long-term memory.

Symbolically, the null hypothesis is referred to as H0 and the alternative hypothesis
as H1. You may wish to restate the preceding null and alternative hypotheses as
something more concrete and measurable for our study. For example, we could
recast H0 as follows:

The mean memory score for a sample of 1,000 subjects who ate 40 grams of spinach
daily for a period of 90 days would not differ from the control group of 1,000 subjects
who consumed no spinach within the same time period.

In conducting our experiment/study, we focus on trying to prove or disprove the
null hypothesis. This is because we can calculate the probability that our results
are due to chance. However, there is no easy way to calculate the probability of the
alternative hypothesis since any improvement in long-term memory could be due to
factors other than just eating spinach.

A Tour of Statistics – The Classical Approach

[176]

We test out the null hypothesis by assuming that it is true and calculate the
probability getting of the results we do by chance alone. We set a threshold level—
alpha α—for which we can reject the null hypothesis if the calculated probability
is smaller or accept it if it is greater. Rejecting the null hypothesis is tantamount to
accepting the alternative hypothesis and vice versa.

The alpha and p-values
In order to conduct an experiment to decide for or against our null hypothesis, we
need to come up with an approach that will enable us to make the decision in a
concrete and measurable way. To do this test of significance, we have to consider
two numbers—the p-value of the test statistic and the threshold level of significance,
which is also known as alpha.

The p-value is the probability if the result we observe by assuming that the null
hypothesis is true or it occurred by occurred by chance alone.

The p-value can also be thought of as the probability of obtaining a test statistic as
extreme as or more extreme than the actual obtained test statistic, given that the null
hypothesis is true.

The alpha value is the threshold value against which we compare p-values. This
gives us a cut-off point in order to accept or reject the null hypothesis. It is a measure
of how extreme the results we observe must be in order to reject the null hypothesis
of our experiment. The most commonly used values of alpha are 0.05 or 0.01.

In general, the rule is as follows:

If the p-value is less than or equal to alpha (p< .05), then we reject the null hypothesis
and state that the result is statistically significant.

If the p-value is greater than alpha (p > .05), then we have failed to reject the null
hypothesis, and we say that the result is not statistically significant.

The seemingly arbitrary values of alpha in usage are one of the shortcomings of the
frequentist methodology, and there are many questions concerning this approach.
The following article in the Nature journal highlights some of the problems: http://
www.nature.com/news/scientific-method-statistical-errors-1.14700.

http://www.nature.com/news/scientific-method-statistical-errors-1.14700
http://www.nature.com/news/scientific-method-statistical-errors-1.14700

Chapter 7

[177]

For more details on this topic, refer to:

• http://statistics.about.com/od/Inferential-Statistics/a/What-
Is-The-Difference-Between-Alpha-And-P-Values.htm

• http://bit.ly/1GzYX1P

• http://en.wikipedia.org/wiki/P-value

Type I and Type II errors
There are two type of errors, as explained here:

• Type I Error: In this type of error, we reject H0 when in fact H0 is true.
An example of this would be a jury convicting an innocent person for a
crime that the person did not commit.

• Type II Error: In this type of error, we fail to reject H0 when in fact H1
is true. This is equivalent to a guilty person escaping conviction.

Statistical hypothesis tests
A statistical hypothesis test is a method to make a decision using data from a
statistical study or experiment. In statistics, a result is termed statistically significant
if it is unlikely to have occurred only by chance, based on a predetermined threshold
probability or significance level. There are two classes of statistical tests: 1-tailed and
2-tailed tests.

In a 2-tailed test, we allot half of our alpha to test the statistical significance in one
direction and the other half to test statistical significance in the other direction.

In a 1-tailed test, the test is performed in one direction only.

For more details on this topic, refer to http://www.ats.ucla.edu/stat/mult_pkg/
faq/general/tail_tests.htm.

Background
To apply statistical inference, it is important to understand the concept of what is
known as a sampling distribution. A sampling distribution is the set of all possible
values of a statistic along with their probabilities, assuming we sample at random
from a population where the null hypothesis holds true.

http://statistics.about.com/od/Inferential-Statistics/a/What-Is-The-Difference-Between-Alpha-And-P-Values.htm
http://statistics.about.com/od/Inferential-Statistics/a/What-Is-The-Difference-Between-Alpha-And-P-Values.htm
http://bit.ly/1GzYX1P
http://en.wikipedia.org/wiki/P-value
http://www.ats.ucla.edu/stat/mult_pkg/faq/general/tail_tests.htm
http://www.ats.ucla.edu/stat/mult_pkg/faq/general/tail_tests.htm

A Tour of Statistics – The Classical Approach

[178]

A more simplistic definition is this—a sampling distribution is the set of values the
statistic can assume (distribution) if we were to repeatedly draw samples from the
population along with their associated probabilities.

The value of a statistic is a random sample from the statistic's sampling distribution.
The sampling distribution of the mean is calculated by obtaining many samples of
various sizes and taking their mean. It has a mean, Xµ ′ , equal to µ and a standard

deviation, Xσ ′ Xσ , equal to N
σ

N
σ

.

The CLT states that the sampling distribution is normally distributed if the original
or raw-score population is normally distributed, or if the sample size is large enough.
Conventionally, statisticians denote large-enough sample sizes as 30N ≥ , that is, a
sample size of 30 or more. This is still a topic of debate though.

For more details on this topic, refer to http://stattrek.com/sampling/sampling-
distribution.aspx and http://en.wikipedia.org/wiki/Central_limit_
theorem.

The standard deviation of the sampling distribution is often referred to as the
standard error of the mean or just standard error.

The z-test
The z-test is appropriate under the following conditions:

• The study involves a single sample mean and the parameters—µ and σ —
of the null hypothesis population are known

• The sampling distribution of the mean is normally distributed
• The size of the sample is 30N ≥

We use the z-test when the mean of the population is known. In the z-test, we ask the
question whether the population mean,µ , is different from a hypothesized value.
The null hypothesis in the case of the z-test is as follows:

0 0:H µ µ=

where, µ = population mean

0µ = hypothesized value

http://stattrek.com/sampling/sampling-distribution.aspx
http://stattrek.com/sampling/sampling-distribution.aspx
http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Central_limit_theorem

Chapter 7

[179]

The alternative hypothesis, aH , can be one of the following:

0:aH µ µ<

0:aH µ µ>

0:aH µ µ≠

The first two are 1-tailed tests while the last one is a 2-tailed test. In concrete terms,
to test 0H , we calculate the test statistic:

0

X

Xz µ
σ
−

=

Here, Xσ is the true standard deviation of the sampling distribution of X .
If 0H is true, the z-test statistics will have the standard normal distribution.

Here, we present a quick illustration of the z-test.

Suppose we have a fictional company Intelligenza, that claims that they have come
up with a radical new method for improved memory retention and study. They
claim that their technique can improve grades over traditional study techniques.
Suppose the improvement in grades is 40 percent with a standard deviation of
10 percent by using traditional study techniques.

A random test was run on 100 students using the Intelligenza method, and this
resulted in a mean improvement of 44 percent. Does Intelligenza's claim hold true?

The null hypothesis for this study states that there is no improvement in grades
using Intelligenza's method over traditional study techniques. The alternative
hypothesis is that there is an improvement by using Intelligenza's method over
traditional study techniques.

A Tour of Statistics – The Classical Approach

[180]

The null hypothesis is given by the following:

0 0:H µ µ=

The alternative hypothesis is given by the following:

0:aH µ µ>

std error = 10/sqrt(100) = 1

z = (43.75-40)/(10/10) = 3.75 std errors

Recall that if the null hypothesis is true, the test statistic z will have a standard
normal distribution that would look like this:

For reference, go to http://mathisfun.com/data/images/normal-distrubution-
large.gif.

http://mathisfun.com/data/images/normal-distrubution-large.gif
http://mathisfun.com/data/images/normal-distrubution-large.gif

Chapter 7

[181]

This value of z would be a random sample from the standard normal distribution,
which is the distribution of z if the null hypothesis is true.

The observed value of z=43.75 corresponds to an extreme outlier p-value on the
standard normal distribution curve, much less than 0.1 percent.

The p-value is the area under the curve, to the right of the value of 3.75 on the
preceding normal distribution curve.

This suggests that it would be highly unlikely for us to obtain the observed value of
the test statistic if we were sampling from a standard normal distribution.

We can look up the actual p-value using Python by using the scipy.stats package
as follows:

In [104]: 1 - stats.norm.cdf(3.75)

Out[104]: 8.841728520081471e-05

Therefore, ()3.75 8.8 05P z e≥ = − , that is, if the test statistic was normally distributed,
then the probability to obtain the observed value is 8.8e-05, which is close to zero.
So, it would be almost impossible to obtain the value that we observe if the null
hypothesis was actually true.

In more formal terms, we would normally define a threshold or alpha value and
reject the null hypothesis if the p-value ≤ α or fail to reject otherwise.

The typical values for α are 0.05 or 0.01. Following list explains the different values
of alpha:

• p-value <0.01: There is VERY strong evidence against H0
• 0.01 < p-value < 0.05: There is strong evidence against H0
• 0.05 < p-value < 0.1: There is weak evidence against H0
• p-value > 0.1: There is little or no evidence against H0

A Tour of Statistics – The Classical Approach

[182]

Therefore, in this case, we would reject the null hypothesis and give credence to
Intelligenza's claim and state that their claim is highly significant. The evidence
against the null hypothesis in this case is significant. There are two methods that
we use to determine whether to reject the null hypothesis:

• The p-value approach
• The rejection region approach

The approach that we used in the preceding example was the latter one.

The smaller the p-value, the less likely it is that the null hypothesis is true. In the
rejection region approach, we have the following rule:

If X
ss
N

= , reject the null hypothesis, else retain it.

The t-test
The z-test is most useful when the standard deviation of the population is known.
However, in most real-world cases, this is an unknown quantity. For these cases,
we turn to the t-test of significance.

For the t-test, given that the standard deviation of the population is unknown,
we replace it by the standard deviation, s, of the sample. The standard error of
the mean now becomes as follows:

X
ss
N

=

The standard deviation of the sample s is calculated as follows:

()2

1
X X

s
N

′−
=

−
∑

The denominator is N-1 and not N. This value is known as the number of degrees
of freedom. I will now state without explanation that by the CLT the t-distribution
approximates the normal, Guassian, or z-distribution as N and hence N-1 increases,
that is, with increasing degrees of freedom (df). When df = ∞, the t-distribution
is identical to the normal or z-distribution. This is intuitive since as df increases,
the sample size increases and s approaches σ , the true standard deviation of the
population. There are an infinite number of t-distributions, each corresponding to a
different value of df.

Chapter 7

[183]

This can be seen in the following figure:

The reference of this image is from: http://zoonek2.free.fr/UNIX/48_R/g593.
png.

A more detailed technical explanation on the relationship between t-distribution,
z-distribution, and the degrees of freedom can be found at http://en.wikipedia.
org/wiki/Student's_t-distribution.

http://zoonek2.free.fr/UNIX/48_R/g593.png
http://zoonek2.free.fr/UNIX/48_R/g593.png
http://en.wikipedia.org/wiki/Student's_t-distribution
http://en.wikipedia.org/wiki/Student's_t-distribution

A Tour of Statistics – The Classical Approach

[184]

Types of t-tests
There are various types of t-tests. Following are the most common ones;
they typically formulate a null hypothesis that makes a claim about the mean
of a distribution:

• One sample independent t-test: This is used to compare the mean of a
sample with that of a known population mean or known value. Let's assume
that we're health researchers in Australia who are concerned about the health
of the aboriginal population and wish to ascertain whether babies born to
low-income aboriginal mothers have lower birth weight than is normal.
An example of a null hypothesis test for a one-sample t-test would
be this: the mean birth weight for our sample of 150 deliveries of full-term,
live baby deliveries from low-income aboriginal mothers is no different from
the mean birth weight of babies in the general Australian population, that is,
3,367 grams.
The reference of this information is: http://bit.ly/1KY9T7f.

• Independent samples t-tests: This is used to compare means from
independent samples with each other. An example of an independent
sample t-test would be a comparison of fuel economy of automatic
transmission versus manual transmission vehicles. This is what our
real-world example will focus on.
The null hypothesis for the t-test would be this: there is no difference
between the average fuel efficiency of cars with manual and automatic
transmissions in terms of their average combined city/highway mileage.

• Paired samples t-test: In a paired/dependent samples t-test, we take each
data point in one sample and pair it with a data point in the other sample in
a meaningful way. One way to do this would be to measure against the same
sample at different points in time. An example of this would be to examine
the efficacy of a slimming diet by comparing the weight of a sample of
participants before and after the diet.

The null hypothesis in this case would be this: there is no difference between
the mean weights of participants before and after going on the slimming diet,
or, more succinctly, the mean difference between paired observations is zero.

The reference for this information can be found at http://en.wikiversity.
org/wiki/T-test.

http://bit.ly/1KY9T7f
http://en.wikiversity.org/wiki/T-test
http://en.wikiversity.org/wiki/T-test

Chapter 7

[185]

A t-test example
In simplified terms, to do Null Signifcance Hypothesis Testing (NHST), we need to
do the following:

1. Formulate our null hypothesis. The null hypothesis is our model of the system,
assuming that the effect we wish to verify was actually due to chance.

2. Calculate our p-value.
3. Compare the calculated p-value with that of our alpha, or threshold value,

and decide whether to reject or accept the null hypothesis. If the p-value is
low enough (lower than alpha), we will draw the conclusion that the null
hypothesis is likely to be untrue.

For our real-world illustration, we wish to investigate whether manual transmission
vehicles are more fuel efficient than automatic transmission vehicles. In order to do
this, we will make use of the Fuel Economy data published by the US government
for 2014 at http://www.fueleconomy.gov.

In [53]: import pandas as pd

 import numpy as np

 feRawData = pd.read_csv('2014_FEGuide.csv')

In [54]: feRawData.columns[:20]

Out[54]: Index([u'Model Year', u'Mfr Name', u'Division', u'Carline',
u'Verify Mfr Cd', u'Index (Model Type Index)', u'Eng Displ', u'# Cyl',
u'Trans as listed in FE Guide (derived from col AA thru AF)', u'City FE
(Guide) - Conventional Fuel', u'Hwy FE (Guide) - Conventional Fuel',
u'Comb FE (Guide) - Conventional Fuel', u'City Unadj FE - Conventional
Fuel', u'Hwy Unadj FE - Conventional Fuel', u'Comb Unadj FE -
Conventional Fuel', u'City Unrd Adj FE - Conventional Fuel', u'Hwy Unrd
Adj FE - Conventional Fuel', u'Comb Unrd Adj FE - Conventional Fuel',
u'Guzzler? ', u'Air Aspir Method'], dtype='object')

In [51]: feRawData = feRawData.rename(columns={'Trans as listed in FE
Guide (derived from col AA thru AF)' :'TransmissionType',

 'Comb FE (Guide) -
Conventional Fuel' : 'CombinedFuelEcon'})

In [57]: transType=feRawData['TransmissionType']

 transType.head()

http://www.fueleconomy.gov

A Tour of Statistics – The Classical Approach

[186]

Out[57]: 0 Auto(AM7)

 1 Manual(M6)

 2 Auto(AM7)

 3 Manual(M6)

 4 Auto(AM-S7)

 Name: TransmissionType, dtype: object

Now, we wish to modify the preceding series so that the values just contain the
Auto and Manual strings . We can do this as follows:

In [58]: transTypeSeries = transType.str.split('(').str.get(0)

 transTypeSeries.head()

Out[58]: 0 Auto

 1 Manual

 2 Auto

 3 Manual

 4 Auto

 Name: TransmissionType, dtype: object

We now create a final modified DataFrame from a Series that consists of the
transmission type and the combined fuel economy figures:

In [61]: feData=pd.DataFrame([transTypeSeries,feRawData['CombinedFuelEcon
']]).T

 feData.head()

Out[61]: TransmissionType CombinedFuelEcon

 0 Auto 16

 1 Manual 15

 2 Auto 16

 3 Manual 15

 4 Auto 17

 5 rows × 2 columns

We can now separate the data for vehicles with automatic transmission from those
with manual transmission as follows:

In [62]: feData_auto=feData[feData['TransmissionType']=='Auto']

 feData_manual=feData[feData['TransmissionType']=='Manual']

Chapter 7

[187]

In [63]: feData_auto.head()

Out[63]: TransmissionType CombinedFuelEcon

 0 Auto 16

 2 Auto 16

 4 Auto 17

 6 Auto 16

 8 Auto 17

 5 rows × 2 columns

This shows that there were 987 vehicles with automatic transmission versus 211 with
manual transmission:

In [64]: len(feData_auto)

Out[64]: 987

In [65]: len(feData_manual)

Out[65]: 211

In [87]: np.mean(feData_auto['CombinedFuelEcon'])

Out[87]: 22.173252279635257

In [88]: np.mean(feData_manual['CombinedFuelEcon'])

Out[88]: 25.061611374407583

In [84]: import scipy.stats as stats

 stats.ttest_ind(feData_auto['CombinedFuelEcon'].tolist(),

 feData_manual['CombinedFuelEcon'].tolist())

Out[84]: (array(-6.5520663209014325), 8.4124843426100211e-11)

In [86]: stats.ttest_ind(feData_auto['CombinedFuelEcon'].tolist(),

 feData_manual['CombinedFuelEcon'].tolist(),

 equal_var=False)

Out[86]: (array(-6.949372262516113), 1.9954143680382091e-11)

A Tour of Statistics – The Classical Approach

[188]

Confidence intervals
In this section, we will address the issue of confidence intervals. A confidence
interval enables us to make a probabilistic estimate of the value of the mean of
a population's given sample data.

This estimate, called an interval estimate, consists of a range of values (intervals) that
act as good estimates of the unknown population parameter.

The confidence interval is bounded by confidence limits. A 95 percent confidence
interval is defined as an interval in which the interval contains the population mean
with 95 percent probability. So, how do we construct a confidence interval?

Suppose we have a 2-tailed t-test and we wish to construct a 95 percent confidence
interval. In this case, we want the sample t-value, sampt , corresponding to the mean
to satisfy the following inequality:

0.025 0.025sampt t t− ≤ ≤

Given that
samp

samp
X

X
t

s
µ−

=
, which we can substitute in the preceding inequality

relation to obtain this:

0.025 0.025samp X samp XX s t X s tµ− ≤ ≤ +

The 0.025 0.025samp X samp XX s t X s tµ − ≤ ≤ + interval is our 95 percent confidence
interval.

Generalizing, any confidence interval for any percentage y can be expressed as

samp X cri samp X criX s t X s tµ − ≤ ≤ + , where crit is the t-tailed value of t , that is,
2
yt

corresponding to the desired confidence interval for y.

We will now take the opportunity to illustrate how we can calculate the confidence
interval using a dataset from the popular statistical environment R. The stats
models' module provides access to the datasets that are available in the core datasets
package of R via the get_rdataset function.

Chapter 7

[189]

An illustrative example
We will consider the dataset known as faithful that consists of data obtained by
observing the eruptions of the Old Faithful geyser in the Yellowstone National Park
in the U.S. The two variables in the dataset are eruptions, which are the length of
time the geyser erupts and waiting which is the time interval until the next eruption.
There were 272 observations.

In [46]: import statsmodels.api as sma

 faithful=sma.datasets.get_rdataset("faithful")

 faithful

Out[46]: <class 'statsmodels.datasets.utils.Dataset'>

In [48]: faithfulDf=faithful.data

 faithfulDf.head()

Out[48]: eruptions waiting

 0 3.600 79

 1 1.800 54

 2 3.333 74

 3 2.283 62

 4 4.533 85

5 rows × 2 columns

In [50]: len(faithfulDf)

Out[50]: 272

Let us calculate a 95 percent confidence interval for the mean waiting time of
the geyser. To do this, we first obtain the sample mean and standard deviation
of the data:

In [80]: mean,std=(np.mean(faithfulDf['waiting']),

 np.std(faithfulDf['waiting']))

A Tour of Statistics – The Classical Approach

[190]

We now make use of the scipy.stats package to calculate the confidence interval:

In [81]: from scipy import stats
 N=len(faithfulDf['waiting'])

 ci=stats.norm.interval(0.95,loc=mean,scale=std/np.sqrt(N))

In [82]: ci

Out[82]: (69.28440107709261, 72.509716569966201)

Thus, we can state that with 95 percent confidence that the [69.28, 72.51] interval
contains the actual mean waiting time of the geyser.

Reference for this information: http://statsmodels.sourceforge.net/devel/
datasets/index.html and http://docs.scipy.org/doc/scipy-0.14.0/
reference/generated/scipy.stats.norm.html.

Correlation and linear regression
One of the most common tasks in statistics in determining the relationship
between two variables is whether there is dependence between them. Correlation
is the general term we use in statistics for variables that express dependence with
each other.

We can then use this relationship to try and predict the value of one set of variables
from the other; this is termed as regression.

Correlation
The statistical dependence expressed in a correlation relationship does not imply a
causal relationship between the two variables; the famous line on this is "Correlation
does not imply Causation". Thus, correlation between two variables or datasets
implies just a casual rather than a causal relationship or dependence. For example,
there is a correlation between the amount of ice cream purchased on a given day
and the weather.

For more information on correlation and dependency, refer to
http://en.wikipedia.org/wiki/Correlation_and_dependence.

The correlation measure, known as correlation coefficient, is a number that captures
the size and direction of the relationship between the two variables. It can vary
from -1 to +1 in direction and 0 to 1 in magnitude. The direction of the relationship
is expressed via the sign, with a + sign expressing positive correlation and a - sign
negative correlation. The higher the magnitude, the greater the correlation with a one
being termed as the perfect correlation.

http://statsmodels.sourceforge.net/devel/datasets/index.html
http://statsmodels.sourceforge.net/devel/datasets/index.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.norm.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.norm.html
http://en.wikipedia.org/wiki/Correlation_and_dependence

Chapter 7

[191]

The most popular and widely used correlation coefficient is the Pearson
product-moment correlation coefficient, known as r. It measures the linear
correlation or dependence between two x and y variables and takes values
between -1 and +1.

The sample correlation coefficient r is defined as follows:

()()
() ()
1

2 2

1 1

N
i ii

N N
i ii i

X X Y Y
r

X X Y Y
=

= =

− −
=

− −

∑
∑ ∑

This can also be written as follows:

() ()2 22 2

i i i i

i i i i

N X Y X Y
r

N X X N Y Y

−
=

− −

∑ ∑
∑ ∑ ∑ ∑

Here, we have omitted the summation limits.

Linear regression
As mentioned earlier, regression focuses on using the relationship between two
variables for prediction. In order to make predictions using linear regression, the
best-fitting straight line must be computed.

If all the points (values for the variables) lie on a straight line, then the relationship is
deemed perfect. This rarely happens in practice and the points do not all fit neatly on
a straight line. Then the relationship is imperfect. In some cases, a linear relationship
only occurs among log-transformed variables. This is a log-log model. An example of
such a relationship would be a power law distribution in physics where one variable
varies as a power of another.

Thus, an expression such as xY a= results in the () ()ln Y x ln a= ∗ linear relationship.

For more information see: http://en.wikipedia.org/wiki/Power_law

http://en.wikipedia.org/wiki/Power_law

A Tour of Statistics – The Classical Approach

[192]

To construct the best-fit line, the method of least squares is used. In this method,
the best-fit line is the optimal line that is constructed between the points for which
the sum of the squared distance from each point to the line is the minimum. This is
deemed to be the best linear approximation of the relationship between the variables
we are trying to model using the linear regression. The best-fit line in this case is
called the Least Squares Regression Line.

More formally, the least squares regression line is the line that has the minimum
possible value for the sum of squares of the vertical distance from the data points
to the line. These vertical distances are also known as residuals.

Thus, by constructing the least-squares regression line, we're trying to minimize the
following expression:

()2
1

N

i
i
Y Y

=

−∑

An illustrative example
We will now illustrate all the preceding points with an example. Suppose we're
doing a study in which we would like to illustrate the effect of temperature on how
often crickets chirp. Data for this example is obtained from a book The Song of Insects,
George W Pierce in 1948. George Pierce measured the frequency of chirps made by a
ground cricket at various temperatures.

We wish to investigate the frequency of cricket chirps and the temperature as we
suspect that there is a relationship. The data consists of 16 data points and we read
it into a data frame:

In [38]: import pandas as pd

 import numpy as np

 chirpDf= pd.read_csv('cricket_chirp_temperature.csv')

In [39]: chirpDf

Out[39]:chirpFrequency temperature

0 20.000000 88.599998

1 16.000000 71.599998

2 19.799999 93.300003

3 18.400000 84.300003

4 17.100000 80.599998

5 15.500000 75.199997

6 14.700000 69.699997

7 17.100000 82.000000

Chapter 7

[193]

8 15.400000 69.400002

9 16.200001 83.300003

10 15.000000 79.599998

11 17.200001 82.599998

12 16.000000 80.599998

13 17.000000 83.500000

14 14.400000 76.300003

15 rows × 2 columns

As a start, let us do a scatter plot of the data along with a regression line or line
of best fit:

In [29]: plt.scatter(chirpDf.temperature,chirpDf.chirpFrequency,

 marker='o',edgecolor='b',facecolor='none',alpha=0.5)

 plt.xlabel('Temperature')

 plt.ylabel('Chirp Frequency')

 slope, intercept = np.polyfit(chirpDf.temperature,chirpDf.
chirpFrequency,1)

 plt.plot(chirpDf.temperature,chirpDf.temperature*slope +
intercept,'r')

 plt.show()

A Tour of Statistics – The Classical Approach

[194]

From the plot, we can see that there seems to be a linear relationship between
temperature and the chirp frequency. We can now proceed to investigate further
by using the statsmodels.ols (ordinary least squares) method to:

[37]: chirpDf= pd.read_csv('cricket_chirp_temperature.csv')

 chirpDf=np.round(chirpDf,2)

 result=sm.ols('temperature ~ chirpFrequency',chirpDf).fit()

 result.summary()

Out[37]: OLS Regression Results

 Dep. Variable: temperature R-squared: 0.697

 Model: OLS Adj. R-squared: 0.674

 Method: Least Squares F-statistic: 29.97

 Date: Wed, 27 Aug 2014 Prob (F-statistic): 0.000107

 Time: 23:28:14 Log-Likelihood: -40.348

 No. Observations: 15 AIC: 84.70

 Df Residuals: 13 BIC: 86.11

 Df Model: 1

 coef std err t P>|t| [95.0% Conf. Int.]

 Intercept 25.2323 10.060 2.508 0.026 3.499 46.966

 chirpFrequency 3.2911 0.601 5.475 0.000 1.992 4.590

 Omnibus: 1.003 Durbin-Watson: 1.818

 Prob(Omnibus): 0.606 Jarque-Bera (JB): 0.874

 Skew: -0.391 Prob(JB): 0.646

 Kurtosis: 2.114 Cond. No. 171.

We will ignore most of the preceding results, except for the R-squared, Intercept,
and chirpFrequency values.

From the preceding result, we can conclude that the slope of the regression line is
3.29, and the intercept on the temperature axis is 25.23. Thus, the regression line
equation looks like this: temperature = 25.23 + 3.29 * chirpFrequency.

Chapter 7

[195]

This means that as the chirp frequency increases by one, the temperature increases
by about 3.29 degrees Fahrenheit. However, note that the intercept value is not really
meaningful as it is outside the bounds of the data. We can also only make predictions
for values within the bounds of the data. For example, we cannot predict what the
chirpFrequency is at 32 degrees Fahrenheit as it is outside the bounds of the data;
moreover, at 32 degrees Fahrenheit, the crickets would have frozen to death. The
value of R, the correlation coefficient, is given as follows:

In [38]: R=np.sqrt(result.rsquared)

 R

Out[38]: 0.83514378678237422

Thus, our correlation coefficient is R = 0.835. This would indicate that about 84
percent of the chirp frequency can be explained by the changes in temperature.

Reference of this information: The Song of Insects http://www.hup.harvard.edu/
catalog.php?isbn=9780674420663

The data is sourced from http://bit.ly/1MrlJqR.

For a more in-depth treatment of single and multi-variable regression, refer to the
following websites:

• Regression (Part I): http://bit.ly/1Eq5kSx
• Regression (Part II): http://bit.ly/1OmuFTV

Summary
In this chapter, we took a brief tour of the classical or frequentist approach
to statistics and showed you how to combine pandas along with the stats
packages—scipy.stats and statsmodels—to calculate, interpret, and make
inferences from statistical data.

In the next chapter, we will examine an alternative approach to statistics, which is
the Bayesian approach. For deeper look at the statistics topics that we touched on,
please take a look at Understanding Statistics in the Behavioral Sciences, which can be
found at http://www.amazon.com/Understanding-Statistics-Behavioral-
Sciences-Robert/dp/0495596523.

http://www.hup.harvard.edu/catalog.php?isbn=9780674420663
http://www.hup.harvard.edu/catalog.php?isbn=9780674420663
http://bit.ly/1MrlJqR
http://bit.ly/1Eq5kSx
http://bit.ly/1OmuFTV
http://www.amazon.com/Understanding-Statistics-Behavioral-Sciences-Robert/dp/0495596523
http://www.amazon.com/Understanding-Statistics-Behavioral-Sciences-Robert/dp/0495596523

[197]

A Brief Tour of
Bayesian Statistics

In this chapter, we will take a brief tour of an alternative approach to statistical
inference called Bayesian statistics. It is not intended to be a full primer but
just serve as an introduction to the Bayesian approach. We will also explore the
associated Python-related libraries, how to use pandas, and matplotlib to help
with the data analysis. The various topics that will be discussed are as follows:

• Introduction to Bayesian statistics
• Mathematical framework for Bayesian statistics
• Probability distributions
• Bayesian versus Frequentist statistics
• Introduction to PyMC and Monte Carlo simulation
• Illustration of Bayesian inference – Switchpoint detection

Introduction to Bayesian statistics
The field of Bayesian statistics is built on the work of Reverend Thomas Bayes, an
18th century statistician, philosopher, and Presbyterian minister. His famous Bayes'
theorem, which forms the theoretical underpinnings for Bayesian statistics, was
published posthumously in 1763 as a solution to the problem of inverse probability. For
more details on this topic, refer to http://en.wikipedia.org/wiki/Thomas_Bayes.

http://en.wikipedia.org/wiki/Thomas_Bayes

A Brief Tour of Bayesian Statistics

[198]

Inverse probability problems were all the rage in the early 18th century and were
often formulated as follows:

Suppose you play a game with a friend. There are 10 green balls and 7 red balls in
bag 1 and 4 green and 7 red balls in bag 2. Your friend turns away from your view,
tosses a coin and picks a ball from one of the bags at random, and shows it to you.
The ball is red. What is the probability that the ball was drawn from bag 1?

These problems are termed inverse probability problems because we are trying to
estimate the probability of an event that has already occurred (which bag the ball
was drawn from) in light of the subsequent event (that the ball is red).

Bayesian_balls_illustration

Let us quickly illustrate how one would go about solving the inverse probability
problem illustrated earlier. We wish to calculate the probability that the ball was
drawn from bag 1, given that it is red. This can be denoted as ()1|P Bag Red Ball .

Let us start by calculating the probability of selecting a red ball. This can be
calculated by following the two paths in red as shown in the preceding figure.
Hence, we have () 1 7 1 7 0.524

2 17 2 11
P Red Ball = × + × = .

Chapter 8

[199]

Now, the probability of choosing a red ball from bag 1 is via the upper path only and
is given as follows:

() 1 7 71 0.206
2 17 34

P Red Ball fromBag = × = =

And, the probability of choosing a red ball from bag 2 is given as follows:

() 1 7 72 0.318
2 17 22

P Red Ball fromBag = × = =

Note that this probability can be written as follows:

() () (), 1 | 1 1P Red Ball Bag P Red Ball Bag P Bag= ∗

By inspection we can see that ()1 1 2P Bag = , and the final branch of the tree is only
traversed if the ball is firstly in bag 1 and is a red ball. Hence, intuitively we'll get the
following outcome:

() ()
()

() ()
()

,

0.393

1
1|

| 1 1

0.206
0.524

P Red Ball Bag
P Bag Red Ball

P Red Ball

P Red Ball Bag P Bag
P Red Ball

=

∗
=

= =

Mathematical framework for Bayesian
statistics
With Bayesian methods we present an alternative method of making a statistical
inference. We first introduce the Bayes theorem, the fundamental equation from
which all Bayesian inference is derived.

A Brief Tour of Bayesian Statistics

[200]

A couple of definitions about probability are in order:

• ,A B : These are events that can occur with a certain probability.

• ()P A and ()P B : This is the probability of the occurrence of a particular
event.

• ()|P A B : This is the probability of A happening, given that B has occurred.
This is known as a conditional probability.

• () ()P AB P Aand B= : This is the probability of A and B occurring together.

We begin with the basic assumption, as follows:

() () ()|P AB P B P A B= ∗

The preceding equation relates the joint probability of P(AB) to the conditional
probability P(A|B) and what is also known as the marginal probability P(B). If we
rewrite the equation, we have the expression for conditional probability as follows:

() () ()|P A B P AB P B=

This is somewhat intuitive—that the probability of A given B is obtained by dividing
the probability of both A and B occurring by the probability that B occurred. The idea
is that B is given, so we divide by its probability. A more rigorous treatment of this
equation can be found at http://bit.ly/1bCYXRd, which is titled Probability: Joint,
Marginal and Conditional Probabilities.

Similarly, by symmetry we have () () () ()|P AB P BA P A P B A= = ∗ . Thus, we have
() () () ()| |P A P B A P B P A B∗ = ∗ . By dividing the expression by ()P B on both sides

and assuming P(B) !=0, we obtain this:

() () ()
()
|

|
P B A

P A B P A
P B

= ∗

The preceding equation is referred to as Bayes theorem, the bedrock for all of
Bayesian statistical inference. In order to link Bayes theorem to inferential statistics,
we will recast the equation into what is called the diachronic interpretation, as follows:

() () ()
()
D | H

H | D
P

P P H
P D

= ∗

where, H represents a hypothesis.

http://bit.ly/1bCYXRd

Chapter 8

[201]

D represents an event that has already occurred, which we use in our statistical
study, and is also referred to as data.

Then, ()H is the probability of our hypothesis before we observe the data. This
is known as the prior probability. The use of prior probability is often touted as
an advantage by Bayesian statisticians since prior knowledge or previous results
can be used as input for the current model, resulting in increased accuracy. For
more information on this, refer to http://www.bayesian-inference.com/
advantagesbayesian.

()P D is the probability of obtaining the data that we observe regardless of the
hypothesis. This is called the normalizing constant. The normalizing constant doesn't
always need to be calculated, especially in many popular algorithms such as MCMC,
which we will examine later in this chapter.

()|P H D is the probability that the hypothesis is true, given the data that we
observe. This is called the posterior.

()|P D H is the probability of obtaining the data, considering our hypothesis. This is
called the likelihood.

Thus, Bayesian statistics amounts to applying Bayes rule to solve problems in
inferential statistics with H representing our hypothesis and D the data.

A Bayesian statistical model is cast in terms of parameters, and the uncertainty
in these parameters is represented by probability distributions. This is different
from the Frequentist approach where the values are regarded as deterministic. An
alternative representation is as follows:

()|P xθ

where, θ is our unknown data and x is our observed data

In Bayesian statistics, we make assumptions about the prior data and use the
likelihood to update to the posterior probability using the Bayes rule. As an
illustration, let us consider the following problem. Here is a classic case of what
is commonly known as the urn problem:

• Two urns contain colored balls
• Urn one contains 50 red and 50 blue balls

http://www.bayesian-inference.com/advantagesbayesian
http://www.bayesian-inference.com/advantagesbayesian

A Brief Tour of Bayesian Statistics

[202]

• Urn two contains 30 red and 70 blue balls
• One of the two urns is randomly chosen (50 percent probability) and then a

ball is drawn at random from one of the two urns

If a red ball is drawn, what is the probability that it came from urn one? We want
()|P H D that is ()1|P ball came fromUrn Red ball is drawn .

Here, H denotes that the ball is drawn from Urn one, and D denotes that the drawn
ball is red:

() ()1 0.5P H P ball is drawn fromUrn= =

We know that () () () ()| |P H D P H P D H P D= ∗

, ()| 0.5P D H = , () () ()50 30 100 100 0.4P D = + + = , or
() () () () ()| | 0.5 0.5 0.5 0.3 0.25 0.15

0.4
P D P H P D H P H P D H= + = ∗ + ∗ = +

=

∼ ∼
.

Hence, we conclude that ()| 0.5 0.5 0.4 0.25 0.4 0.625P H D = ∗ = = .

Bayes theory and odds
Bayes theorem can sometimes be represented by a more natural and convenient form
by using an alternative formulation of probability called odds. Odds are generally
expressed in terms of ratios and are used heavily. A 3 to 1 odds (written often as 3:1)
of a horse winning a race represents the fact that the horse is expected to win with 75
percent probability.

Given a probability p, the odds can be computed as odds = (): 1p p− , which in the
case of p=0.75 becomes 0.75:0.25, which is 3:1.

We can rewrite the form of Bayes theorem by using odds as:

() () () ()| | |o A D o A P D A P D B=

Applications of Bayesian statistics
Bayesian statistics can be applied to many problems that we encounter in classical
statistics such as:

• Parameter estimation
• Prediction

Chapter 8

[203]

• Hypothesis Testing
• Linear regression

There are many compelling reasons for studying Bayesian statistics; some of them
being the use of prior information to better inform the current model. The Bayesian
approach works with probability distributions rather than point estimates, thus
producing more realistic predictions. Bayesian inference bases a hypothesis on the
available data—P(hypothesis|data). The Frequentist approach tries to fit the data
based on a hypothesis. It can be argued that the Bayesian approach is the more
logical and empirical one as it tries to base its belief on the facts rather than the
other way round. For more information on this, refer to http://www.bayesian-
inference.com/advantagesbayesian.

Probability distributions
In this section, we will briefly examine the properties of various probability
distributions. Many of these distributions are used for Bayesian analysis; thus, a
brief synopsis is needed. We will also illustrate how to generate and display these
distributions using matplotlib. In order to avoid repeating import statements
for every code snippet in each section, I will present the following standard set of
Python code imports that need to be run before any of the code snippets mentioned
in the following command. You only need to run these imports once per session.
The imports are as follows:

In [1]: import pandas as pd

 import numpy as np

 from matplotlib import pyplot as plt

 from matplotlib import colors

 import matplotlib.pyplot as plt

 import matplotlib

 %matplotlib inline

Fitting a distribution
One of the steps that we have to take in a Bayesian analysis is to fit our data to a
probability distribution. Selecting the correct distribution can be somewhat of an art
and often requires statistical knowledge and experience, but we can follow a few
guidelines to help us along the way; these are as follows:

• Determine whether the data is discrete or continuous
• Examine the skewness/symmetry of the data and if skewed, determine

the direction

http://www.bayesian-inference.com/advantagesbayesian
http://www.bayesian-inference.com/advantagesbayesian

A Brief Tour of Bayesian Statistics

[204]

• Determine the lower and upper limits, if any
• Determine the likelihood of observing extreme values in the distribution

A statistical trial is a repeatable experiment with a set of well-defined outcomes that
are known as the sample space. A Bernoulli trial is a Yes/No experiment where the
random X variable is assigned the value of 1 in the case of a Yes and 0 in the case of
a No. The event of tossing a coin and seeing whether it turns up heads is an example
of a Bernoulli trial.

There are two classes of probability distributions: discrete and continuous. In the
following sections, we will discuss the differences between these two classes of
distributions and take a tour of the main distributions.

Discrete probability distributions
In this scenario, the variable can take only certain distinct values such as integers.
An example of a discrete random variable is the number of heads obtained when we
flip a coin 5 times; the possible values are {0,1,2,3,4,5}. We cannot obtain 3.82 heads
for example. The range of values the random variable can take is specified by what is
known as a probability mass function (pmf).

Discrete uniform distributions
The discrete uniform distribution is a distribution that models an event with a finite
set of possible outcomes where each outcome is equally likely to be observed. For n
outcomes, each has a probability of occurrence of 1 n .

An example of this is throwing a fair die. The probability of any of the six outcomes
is 1 6 . The PMF is given by 1 n , and the expected value and variance are given by
()max min 2+ and ()2 1 12n − respectively.

In [13]: from matplotlib import pyplot as plt

 import matplotlib.pyplot as plt

 X=range(0,11)

 Y=[1/6.0 if x in range(1,7) else 0.0 for x in X]

 plt.plot(X,Y,'go-', linewidth=0, drawstyle='steps-pre',

 label="p(x)=1/6")

 plt.legend(loc="upper left")

 plt.vlines(range(1,7),0,max(Y), linestyle='-')

 plt.xlabel('x')

 plt.ylabel('p(x)')

Chapter 8

[205]

 plt.ylim(0,0.5)

 plt.xlim(0,10)

 plt.title('Discrete uniform probability distribution with

 p=1/6')

 plt.show()

discrete uniform distribution

The Bernoulli distribution
The Bernoulli distribution measures the probability of success in a trial; for example,
the probability that a coin toss turns up a head or a tail. This can be represented
by a random X variable that takes a value of 1 if the coin turns up as heads and 0
if it is tails. The probability of turning up heads or tails is denoted by p and q=1-p
respectively.

This can be represented by the following pmf:

()
1 , 0
, 1
p k

f k
p k
− =

= =

A Brief Tour of Bayesian Statistics

[206]

The expected value and variance are given by the following formula:

()
() ()1

E X p

Var X p p

=

= −

The reference for this information is at http://en.wikipedia.org/wiki/
Bernoulli_distribution.

We now plot the Bernoulli distribution using matplotlib and scipy.stats
as follows:

In [20]:import matplotlib

 from scipy.stats import bernoulli

 a = np.arange(2)

 colors = matplotlib.rcParams['axes.color_cycle']

 plt.figure(figsize=(12,8))

 for i, p in enumerate([0.0, 0.2, 0.5, 0.75, 1.0]):

 ax = plt.subplot(1, 5, i+1)

 plt.bar(a, bernoulli.pmf(a, p), label=p, color=colors[i],
alpha=0.5)

 ax.xaxis.set_ticks(a)

 plt.legend(loc=0)

 if i == 0:

 plt.ylabel("PDF at k")

 plt.suptitle("Bernoulli probability for various values of p")

Out[20]:

http://en.wikipedia.org/wiki/Bernoulli_distribution
http://en.wikipedia.org/wiki/Bernoulli_distribution

Chapter 8

[207]

The binomial distribution
The binomial distribution is used to represent the number of successes in n
independent Bernoulli trials that is, 1 2 nY X X X= + + +L .

Using the coin toss example, this distribution models the chance of getting X
heads over n trials. For 100 tosses, the binomial distribution models the likelihood
of getting 0 heads (extremely unlikely) to 50 heads (highest likelihood) to 100
heads (also extremely unlikely). This ends up making the binomial distribution
symmetrical when the odds are perfectly even and skewed when the odds are far
less even. The pmf is given by the following expression:

() ,0 k nk n kn
f k p q

k
−

= ≤ ≤

A Brief Tour of Bayesian Statistics

[208]

The expectation and variance are given respectively by the following expression:

()
() ()1

E X np

Var X np p

=

= −

In [5]: from scipy.stats import binom

 clrs = ['blue','green','red','cyan','magenta'] plt.
figure(figsize=(12,6))

 k = np.arange(0, 22)

 for p, color in zip([0.001, 0.1, 0.3, 0.6, 0.999], clrs):

 rv = binom(20, p)

 plt.plot(k, rv.pmf(k), lw=2, color=color, label="p=" +
str(round(p,1)))

 plt.legend()

 plt.title("Binomial distribution PMF")

 plt.tight_layout()

 plt.ylabel("PDF at k")

 plt.xlabel("k")

Out[5]:

binomial distribution

Chapter 8

[209]

The Poisson distribution
The Poisson distribution models the probability of a number of events within a
given time interval, assuming that these events occur with a known average rate and
successive events occur independent of the time since the previous event.

A concrete example of a process that can be modeled by a Poisson distribution would
be if an individual received an average of, say, 23 e-mails per day. If we assume that
the arrival times for the e-mails are independent of each other, the total number of
e-mails an individual receives each day can be modeled by a Poisson distribution.

Another example could be the number of trains that stop at a particular station each
hour. The pmf for a Poisson distribution is given by the following expression:

()
!

kef k
k

λλ −

=

Where λ is the rate parameter that represents the expected number of events/
arrivals that occur per unit time, and k is the random variable that represents
the number of events/arrivals.

The expectation and variance are given respectively by the following formula:

()E X λ=

()Var X λ=

For more information, refer to http://en.wikipedia.org/wiki/Poisson_process.

The pmf is plotted using matplotlib for various values as follows:

In [11]: %matplotlib inline

 import numpy as np

 import matplotlib

 import matplotlib.pyplot as plt

 from scipy.stats import poisson

 colors = matplotlib.rcParams['axes.color_cycle']

 k=np.arange(15)

 plt.figure(figsize=(12,8))

 for i, lambda_ in enumerate([1,2,4,6]):

http://en.wikipedia.org/wiki/Poisson_process

A Brief Tour of Bayesian Statistics

[210]

 plt.plot(k, poisson.pmf(k, lambda_), '-o',

 label="λ=" + str(lambda_), color=colors[i])

 plt.legend()

 plt.title("Possion distribution PMF for various λ")

 plt.ylabel("PMF at k")

 plt.xlabel("k")

 plt.show()

Out[11]:

Poisson distribution

The Geometric distribution
For independent Bernoulli trials, the Geometric distribution measures the number
of trials X needed to get one success. It can also represent the number of failures,

1Y X= − , before the first success.

The pmf is given by the following expression:

() () 11 kf k p p −= −

Chapter 8

[211]

The preceding expression makes sense since () ()f k P X k= = , and if it takes k trials
to get one success (p), this means that we must have had 1k − failures which are
equal to ()1 p− .

The expectation and variance are given as follows:

()
() () 2

1

1

E X p

Var X p p

=

= −

The following command explains the preceding formula clearly:

In [12]: from scipy.stats import geom

 p_vals=[0.01,0.2,0.5,0.8,0.9]

 x = np.arange(geom.ppf(0.01,p),geom.ppf(0.99,p))

 colors = matplotlib.rcParams['axes.color_cycle']

 for p,color in zip(p_vals,colors):

 x = np.arange(geom.ppf(0.01,p),geom.ppf(0.99,p))

 plt.plot(x,geom.pmf(x,p),'-o',ms=8,label='p=' + str(p))

 plt.legend(loc='best')

 plt.ylim(-0.5,1.5)

 plt.xlim(0,7.5)

 plt.ylabel("Pmf at k")

 plt.xlabel("k")

 plt.title("Geometric distribution PMF")

Out[12]:

Geometric distribution

A Brief Tour of Bayesian Statistics

[212]

The negative binomial distribution
Also for independent Bernoulli trials, the negative binomial distribution measures
the number of tries, X k= , before a specified number of successes, r, occur. An
example would be the number of coin tosses it would take to obtain 5 heads. The
pmf is given as follows:

() () ()
1

1
1

k rrk
P X k f k p p

r
−−

= = = − −

The expectation and variance are given respectively by the following expression:

()

()
()2

1

1

prE X
p
prVar X
p

=
−

=
−

We can see that the negative binomial is a generalization of the geometric
distribution, with the geometric distribution being a special case of the negative
binomial, where 1r = .

The code and plot are shown as follows:

In [189]: from scipy.stats import nbinom

 from matplotlib import colors

 clrs = matplotlib.rcParams['axes.color_cycle']

 x = np.arange(0,11)

 n_vals = [0.1,1,3,6]

 p=0.5

 for n, clr in zip(n_vals, clrs):

 rv = nbinom(n,p)

 plt.plot(x,rv.pmf(x), label="n=" + str(n), color=clr)

 plt.legend()

 plt.title("Negative Binomial Distribution PMF")

 plt.ylabel("PMF at x")

 plt.xlabel("x")

Chapter 8

[213]

Continuous probability distributions
In a continuous probability distribution, the variable can take on any real number. It
is not limited to a finite set of values as with the discrete probability distribution. For
example, the average weight of a healthy newborn baby can range approximately
between 6-9 lbs. Its weight can be 7.3 lbs for example. A continuous probability
distribution is characterized by a probability density function (PDF).

The sum of all probabilities that the random variable can assume is 1. Thus, the area
under the graph of the probability density function is 1.

The continuous uniform distribution
The uniform distribution models a random variable X that can take any value within
the range [],a b with equal probability.

The PDF is given by () 1f x
b a

=
−

, for ,a x b≤ ≤ and 0 otherwise.

A Brief Tour of Bayesian Statistics

[214]

The expectation and variance are given by the following expression:

() () 2E x a b= +

() ()2 12Var x b a= −

A continuous uniform probability distribution is generated and plotted for various
sample sizes in the following code and figure:

In [11]: np.random.seed(100) # seed the random number generator

 # so plots are reproducible

 subplots = [111,211,311]

 ctr = 0

 fig, ax = plt.subplots(len(subplots), figsize=(10,12))

 nsteps=10

 for i in range(0,3):

 cud = np.random.uniform(0,1,nsteps) # generate distrib

 count, bins, ignored = ax[ctr].hist(cud,15,normed=True)

 ax[ctr].plot(bins,np.ones_like(bins),linewidth=2, color='r')

 ax[ctr].set_title('sample size=%s' % nsteps)

 ctr += 1

 nsteps *= 100

 fig.subplots_adjust(hspace=0.4)

 plt.suptitle("Continuous Uniform probability distributions for
various sample sizes" , fontsize=14)

Chapter 8

[215]

A Brief Tour of Bayesian Statistics

[216]

The exponential distribution
The exponential distribution models the waiting time between two events in a
Poisson process. A Poisson process is a process that follows a Poisson distribution
in which events occur unpredictably with a known average rate. The exponential
distribution can be described as the continuous limit of the Geometric distribution
and is also Markovian (memoryless).

A memoryless random variable exhibits the property whereby its future state
depends only on relevant information about the current time and not the information
from further in the past. An example of modeling a Markovian/memoryless random
variable is modeling short-term stock price behavior and the idea that it follows a
random walk. This leads to what is called the Efficient Market hypothesis in Finance.
For more information, refer to http://en.wikipedia.org/wiki/Random_walk_
hypothesis.

The PDF of the exponential distribution is given by ()f x = xe λλ − . The expectation
and variance are given by the following expression:

()
() 2

1

1

E X

Var X

λ

λ

=

=

For a reference, refer to the link at http://en.wikipedia.org/wiki/Exponential_
distribution.

The plot of the distribution and code is given as follows:

In [15]: import scipy.stats

 clrs = colors.cnames

 x = np.linspace(0,4, 100)

 expo = scipy.stats.expon

 lambda_ = [0.5, 1, 2, 5]

 plt.figure(figsize=(12,4))

 for l,c in zip(lambda_,clrs):

 plt.plot(x, expo.pdf(x, scale=1./l), lw=2,

 color=c, label = "$\lambda = %.1f$"%l)

 plt.legend()

 plt.ylabel("PDF at x")

 plt.xlabel("x")

 plt.title("Pdf of an Exponential random variable for various $\
lambda$");

http://en.wikipedia.org/wiki/Random_walk_hypothesis
http://en.wikipedia.org/wiki/Random_walk_hypothesis
http://en.wikipedia.org/wiki/Exponential_distribution
http://en.wikipedia.org/wiki/Exponential_distribution

Chapter 8

[217]

The normal distribution
The most important distribution in statistics is arguably the normal/Gaussian
distribution. It models the probability distribution around a central value with no
left or right bias. There are many examples of phenomena that follow the normal
distribution, such as:

• The birth weights of babies
• Measurement errors
• Blood pressure
• Test scores

The normal distribution's importance is underlined by the central limit theorem,
which states that the mean of many random variables drawn independently from
the same distribution is approximately normal, regardless of the form of the original
distribution. Its expected value and variance are given as follows:

()
() 2

E X

Var X

µ

σ

=

=

The PDF of the normal distribution is given by the following expression:

() ()2
22

1 exp
22

x
f x

µ
σπσ

 − −
=

A Brief Tour of Bayesian Statistics

[218]

The following code and plot explains the formula:

In [54]: import matplotlib

 from scipy.stats import norm

 X = 2.5

 dx = 0.1

 R = np.arange(-X,X+dx,dx)

 L = list()

 sdL = (0.5,1,2,3)

 for sd in sdL:

 f = norm.pdf

 L.append([f(x,loc=0,scale=sd) for x in R])

 colors = matplotlib.rcParams['axes.color_cycle']

 for sd,c,P in zip(sdL,colors,L):

 plt.plot(R,P,zorder=1,lw=1.5,color=c,

 label="σ=" + str(sd))

 plt.legend()

 ax = plt.axes()

 ax.set_xlim(-2.1,2.1)

 ax.set_ylim(0,1.0)

 plt.title("Normal distribution Pdf")

 plt.ylabel("PDF at μ=0, σ")

Chapter 8

[219]

Reference for the Python code for the plotting of the distributions can be found at:
http://bit.ly/1E17nYx.

The normal distribution can also be regarded as the continuous limit of the binomial
distribution and other distributions as n→∞ . We can see this for the binomial
distribution in the command and plots as follows:

In [18]:from scipy.stats import binom

 from matplotlib import colors

 cols = colors.cnames

 n_values = [1, 5,10, 30, 100]

 subplots = [111+100*x for x in range(0,len(n_values))]

 ctr = 0

 fig, ax = plt.subplots(len(subplots), figsize=(6,12))

 k = np.arange(0, 200)

 p=0.5

 for n, color in zip(n_values, cols):

 k=np.arange(0,n+1)

 rv = binom(n, p)

 ax[ctr].plot(k, rv.pmf(k), lw=2, color=color)

 ax[ctr].set_title("n=" + str(n))

 ctr += 1

http://bit.ly/1E17nYx

A Brief Tour of Bayesian Statistics

[220]

 fig.subplots_adjust(hspace=0.5)

 plt.suptitle("Binomial distribution PMF (p=0.5) for various values of
n", fontsize=14)

As n increases, the binomial distribution approaches the normal distribution. In fact,
for n>=30, this is clearly seen in the preceding plots.

Chapter 8

[221]

Bayesian statistics versus Frequentist
statistics
In statistics today, there are two schools of thought as to how we interpret data and
make statistical inferences. The classic and more dominant approach to date has been
what is termed the Frequentist approach (refer to Chapter 7, A Tour of Statistics – The
Classical Approach), while we are looking at the Bayesian approach in this chapter.

What is probability?
At the heart of the debate between the Bayesian and Frequentist worldview is the
question—how do we define probability?

In the Frequentist worldview, probability is a notion that is derived from the
frequencies of repeated events. For example, when we define the probability of
getting heads when a fair coin is tossed as being equal to half. This is because when
we repeatedly toss a fair coin, the number of heads divided by the total number of
coin tosses approaches 0.5 when the number of coin tosses is sufficiently large.

The Bayesian worldview is different, and the notion of probability is that it is related
to one's degree of belief in the event happening. Thus, for a Bayesian statistician,
having a belief that the probability of a fair die turning up 5 is 1 6 relates to our
belief in the chances of that event occurring.

How the model is defined
From the model definition point of view Frequentists analyze how data and
calculated metrics vary by making use of repeated experiments while keeping the
model parameters fixed. Bayesians, on the other hand, utilize fixed experimental data
but vary their degrees of belief in the model parameters, this is explained as follows:

• Frequentists: If the models are fixed, data varies
• Bayesians: If the data is fixed, models vary

The Frequentist approach uses what is known as the maximum likelihood method
to estimate model parameters. It involves generating data from a set of independent
and identically distributed observations and fitting the observed data to the model.
The value of the model parameter that best fits the data is the maximum likelihood
estimator (MLE), which can sometimes be a function of the observed data.

A Brief Tour of Bayesian Statistics

[222]

Bayesianism approaches the problem differently from a probabilistic framework. A
probability distribution is used to describe the uncertainty in the values. Bayesian
practitioners estimate probabilities using observed data. In order to compute these
probabilities, they make use of a single estimator, which is the Bayes formula.
This produces as distribution rather than just a point estimate, as in the case of the
Frequentist approach.

Confidence (Frequentist) versus Credible
(Bayesian) intervals
Let us compare what is meant by a 95 percent confidence interval, a term used by
Frequentists with a 95 percent credible interval, used by Bayesian practitioners.

In a Frequentist framework, a 95 percent confidence interval means that if you repeat
your experiment an infinite number of times, generating intervals in the process,
95 percent of these intervals would contain the parameter we're trying to estimate,
which is often referred to as θ. In this case, the interval is the random variable and
not the parameter estimate θ, which is fixed in the Frequentist worldview.

In the case of the Bayesian credible interval, we have an interpretation that is
more in-line with the conventional interpretation ascribed to that of a Frequentist
confidence interval. Thus, we have that () ()()Pr | 0.95a Y b Yθ θ< < = . In this
case, we can properly conclude that there is a 95 percent chance that θ lies within
the interval.

For more information, refer to Frequentism and Bayesianism: What's the Big Deal? |
SciPy 2014 | Jake VanderPlas at https://www.youtube.com/watch?v=KhAUfqhLakw.

Conducting Bayesian statistical analysis
Conducting a Bayesian statistical analysis involves the following steps:

1. Specifying a probability model: In this step, we fully describe the model
using a probability distribution. Based on the distribution of a sample that
we have taken, we try to fit a model to it and attempt to assign probabilities
to unknown parameters.

2. Calculating a posterior distribution: The posterior distribution is a
distribution that we calculate in light of observed data. In this case, we
will directly apply Bayes formula. It will be specified as a function of the
probability model that we specified in the previous step.

https://www.youtube.com/watch?v=KhAUfqhLakw

Chapter 8

[223]

3. Checking our model: This is a necessary step where we review our model
and its outputs before we make inferences. Bayesian inference methods use
probability distributions to assign probabilities to possible outcomes.

Monte Carlo estimation of the likelihood
function and PyMC
Bayesian statistics isn't just another method. It is an entirely alternative paradigm
for practicing statistics. It uses probability models for making inferences, given the
data that we have collected. This can be expressed in a fundamental expression as
P(H|D).

Here, H is our hypothesis, that is, the thing we're trying to prove, and D is our data
or observations.

As a reminder from our previous discussion, the diachronic form of Bayes' theorem
is as follows:

() () ()
()
D | H

H | D
P

P P H
P D

= ∗

Here, P(H) is an unconditional prior probability that represents what we know
before we conduct our trial. P(D|H) is our likelihood function or probability of
obtaining the data we observe, given that our hypothesis is true.

P(D) is the probability of the data, also known as the normalizing constant. This can
be obtained by integrating the numerator over H.

The likelihood function is the most important piece in our Bayesian calculation and
encapsulates all of the information concerning the unknowns in the data. It has some
semblance to a reverse probability mass function.

One argument against adopting a Bayesian approach is that the calculation of the
prior can be subjective. There are many arguments in favor of this approach; among
them, one being that external prior information can be included as mentioned
previously.

The likelihood value represents an unknown integral, which in simple cases can be
obtained by analytic integration.

Monte Carlo (MC) integration is needed for more complicated use cases involving
higher-dimensional integrals and can be used to compute the likelihood function.

A Brief Tour of Bayesian Statistics

[224]

MC integration can be computed via a variety of sampling methods, such as uniform
sampling, stratified sampling, and importance sampling. In Monte Carlo Integration,
we can approximate the integral as follows:

Pg gdP= ∫

We can approximate the integral by the following finite sum:

()
1

1 n

n i
i

P g g X
n =

= ∑

where, x is a sample vector from g. The proof that this estimate is a good one can be
obtained from the law of large numbers and by making sure that the simulation error
is small.

In conducting Bayesian analysis in Python, we will need a module that will enable us
to calculate the likelihood function using the Monte Carlo method that was described
earlier. The PyMC library fulfills that need. It provides a Monte Carlo method known
commonly as Markov Chain Monte Carlo (MCMC). I will not delve further into the
technical details of MCMC, but the interested reader can find out more about MCMC
implementation in PyMC at the following references:

• Monte Carlo Integration in Bayesian Estimation at http://bit.ly/1bMALeu
• Markov Chain Monte Carlo Maximum Likelihood at http://bit.ly/1KBP8hH
• Bayesian Statistical Analysis Using Python-Part 1| SciPy 2014, Chris Fonnesbeck

at http://www.youtube.com/watch?v=vOBB_ycQ0RA

MCMC is not a universal panacea; there are some drawbacks to the approach, and
one of them is the slow convergence of the algorithm.

Bayesian analysis example – Switchpoint
detection
Here, we will try to use Bayesian inference and model an interesting dataset. The
dataset in question consists of the author's Facebook (FB) post history over time. We
have scrubbed the FB history data and saved the dates in the fb_post_dates.txt
file. Here is what the data in the file looks like:

head -2 ../fb_post_dates.txt

Tuesday, September 30, 2014 | 2:43am EDT

Tuesday, September 30, 2014 | 2:22am EDT

http://bit.ly/1bMALeu
http://bit.ly/1KBP8hH
http://www.youtube.com/watch?v=vOBB_ycQ0RA

Chapter 8

[225]

Thus, we see a datetime series, representing the date and time at which the author
posted on FB. First, we read the file into DataFrame, separating timestamp into Date
and Time columns:

In [91]: filePath="./data/fb_post_dates.txt"

 fbdata_df=pd.read_csv(filePath, sep='|', parse_dates=[0], heade
r=None,names=['Date','Time'])

Next, we inspect the data as follows:

In [92]: fbdata_df.head() #inspect the data

Out[92]: Date Time

0 2014-09-30 2:43am EDT

1 2014-09-30 2:22am EDT

2 2014-09-30 2:06am EDT

3 2014-09-30 1:07am EDT

4 2014-09-28 9:16pm EDT

Now, we index the data by Date, creating a DatetimeIndex so that we can run
resample on it to count by month as follows:

In [115]: fbdata_df_ind=fbdata_df.set_index('Date')

 fbdata_df_ind.head(5)

Out[115]: Time

 Date

 2014-09-30 2:43am EDT

 2014-09-30 2:22am EDT

 2014-09-30 2:06am EDT

 2014-09-30 1:07am EDT

 2014-09-28 9:16pm EDT

We display information about the index as follows:

In [116]: fbdata_df_ind.index

Out[116]: <class 'pandas.tseries.index.DatetimeIndex'>

 [2014-09-30, ..., 2007-04-16]

 Length: 7713, Freq: None, Timezone: None

A Brief Tour of Bayesian Statistics

[226]

We now obtain count of posts by month, using resample:

In [99]: fb_mth_count_=fbdata_df_ind.resample('M', how='count')

 fb_mth_count_.rename(columns={'Time':'Count'},

 inplace=True) # Rename

 fb_mth_count_.head()

Out[99]: Count

 Date

 2007-04-30 1

 2007-05-31 0

 2007-06-30 5

 2007-07-31 50

 2007-08-31 24

The Date format is shown as the last day of the month. Now, we create a scatter plot
of FB post counts from 2007-2015, and we make the size of the dots proportional to
the values in matplotlib:

In [108]: %matplotlib inline

 import datetime as dt

#Obtain the count data from the DataFrame as a dictionary

 year_month_count=fb_bymth_count.to_dict()['Count']

 size=len(year_month_count.keys())

#get dates as list of strings

 xdates=[dt.datetime.strptime(str(yyyymm),'%Y%m')

 for yyyymm in year_month_count.keys()]

 counts=year_month_count.values()

 plt.scatter(xdates,counts,s=counts)

 plt.xlabel('Year')

 plt.ylabel('Number of Facebook posts')

 plt.show()

Chapter 8

[227]

The question we would like to investigate is whether there was a change in behavior
at some point over the time period. Specifically, we wish to identify whether there
was a specific period at which the mean number of FB posts changed. This is often
referred to as the Switchpoint or changepoint in a time series.

We can make use of the Poisson distribution to model this. You might recall that
the Poisson distribution can be used to model time series count data. (Refer to
http://bit.ly/1JniIqy for more about this.)

If we represent our monthly FB post count by iC , we can represent our model
as follows:

() ()| , ,i iC s e l Poisson r∼

The ir parameter is the rate parameter of the Poisson distribution, but we don't know
what its value is. If we examine the scatter plot of the FB time series count data, we
can see that there was a jump in the number of posts sometime around mid to late
2010, perhaps coinciding with the start of the 2010 World Cup in South Africa, which
the author attended.

http://bit.ly/1JniIqy

A Brief Tour of Bayesian Statistics

[228]

The s parameter is the Switchpoint, which is when the rate parameter changes,
while e and l are the values of the ir parameter before and after the Switchpoint
respectively. This can be represented as follows:

e if i s
r

l if i s
<

= ≥

Note that the variables specified above , , , ,C s e r l are all Bayesian random variables.
For Bayesian random variables that represent one's beliefs about their values, we
need to model them using a probability distribution. We would like to infer the
values of e and l , which are unknown. In PyMC, we can represent random variables
using the Stochastic and Deterministic classes. We note that the exponential
distribution is the amount of time between Poisson events. Hence, in the case of e
and l , we choose the exponential distribution to model them since they can be any
positive number:

()e Exp r∼

()l Exp r∼

In the case of s , we will choose to model it using the uniform distribution, which
reflects our belief that it is equally likely that the Switchpoint can occur on any day
within the entire time period. Hence, we have this:

()0 fs DiscreteUniform t t∼

Here, 0t , ft corresponds to the lower and upper boundaries of the year i . Let us
now use PyMC to represent the model that we developed earlier. We will now use
PyMC to see whether we can detect a Switchpoint in the FB post data. In addition to
the scatter plot, we can also display the data in a bar chart. In order to do that first
of all we need to obtain a count of FB posts ordered by month in a list:

In [69]: fb_activity_data = [year_month_count[k] for k in

 sorted(year_month_count.keys())]

 fb_activity_data[:5]

Out[70]: [1, 0, 5, 50, 24]

In [71]: fb_post_count=len(fb_activity_data)

Chapter 8

[229]

We render the bar plot using matplotlib:

In [72]: from IPython.core.pylabtools import figsize

 import matplotlib.pyplot as plt

 figsize(8, 5)

 plt.bar(np.arange(fb_post_count),

 fb_activity_data, color="#49a178")

 plt.xlabel("Time (months)")

 plt.ylabel("Number of FB posts")

 plt.title("Monthly Facebook posts over time")

 plt.xlim(0,fb_post_count);

Looking at the preceding bar chart, can one conclude whether there was a change
in FB frequency posting behavior over time? We can use PyMC on the model that
we have developed to help us find out the change as follows:

In [88]: # Define data and stochastics

 import pymc as pm

 switchpoint = pm.DiscreteUniform('switchpoint',

 lower=0,

 upper=len(fb_activity_data)-1,

 doc='Switchpoint[month]')

 avg = np.mean(fb_activity_data)

 early_mean = pm.Exponential('early_mean', beta=1./avg)

A Brief Tour of Bayesian Statistics

[230]

 late_mean = pm.Exponential('late_mean', beta=1./avg)

 late_mean

Out[88]:<pymc.distributions.Exponential 'late_mean' at 0x10ee56d50>

Here, we define a method for the rate parameter, r, and we model the count data
using a Poisson distribution as discussed previously:

In [89]: @pm.deterministic(plot=False)

 def rate(s=switchpoint, e=early_mean, l=late_mean):

 ''' Concatenate Poisson means '''

 out = np.zeros(len(fb_activity_data))

 out[:s] = e

 out[s:] = l

 return out

 fb_activity = pm.Poisson('fb_activity', mu=rate,

 value=fb_activity_data, observed=True)

 fb_activity

Out[89]: <pymc.distributions.Poisson 'fb_activity' at 0x10ed1ee50>

In the preceding code snippet, @pm.deterministic is a decorator that denotes that
the rate function is deterministic, meaning that its values are entirely determined by
other variables—in this case, e, s, and l. The decorator is necessary in order to tell
PyMC to convert the rate function into a deterministic object. If we do not specify the
decorator, an error occurs. (For more information, refer to http://bit.ly/1zj8U0o
for information on Python decorators.)

For more information, refer to the following web pages:

• http://en.wikipedia.org/wiki/Poisson_process

• http://pymc-devs.github.io/pymc/tutorial.html

• https://github.com/CamDavidsonPilon/Probabilistic-Programming-
and-Bayesian-Methods-for-Hackers

We now create a model with the FB Count data (fb_activity) and the , ,e s l
(early_mean, late_mean, and rate respectively) parameters.

Next, using Pymc, we create an MCMC object that enables us to fit our data using
Markov Chain Monte Carlo methods. We then call the sample on the resulting
MCMC object to do the fitting:

In [94]: fb_activity_model=pm.Model([fb_activity,early_mean,

 late_mean,rate])

http://bit.ly/1zj8U0o
http://en.wikipedia.org/wiki/Poisson_process
http://pymc-devs.github.io/pymc/tutorial.html
https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers

Chapter 8

[231]

In [95]: from pymc import MCMC

 fbM=MCMC(fb_activity_model)

In [96]: fbM.sample(iter=40000,burn=1000, thin=20)

 [-----------------100%-----------------] 40000 of 40000

 complete in 11.0 sec

Fitting the model using MCMC involves using Markov-Chain Monte Carlo
methods to generate a probability distribution for the posterior, P(s,e,l | D). It uses
the Monte Carlo process to repeatedly simulate sampling of the data and does this
until the algorithm seems to converge to a steady state, based on multiple criteria.
This is a Markov process because successive samples are dependent only on the
previous sample. (For further reference on Markov chain convergence, refer to
http://bit.ly/1IETkhC.)

The generated samples are referred to as traces. We can view what the marginal
posterior distribution of the parameters looks like by viewing a histogram of its trace:

In [97]: from pylab import hist,show

 %matplotlib inline

 hist(fbM.trace('late_mean')[:])

Out[97]: (array([15., 61., 214., 421., 517., 426., 202.,

 70., 21., 3.]),

 array([102.29451192, 103.25158404, 104.20865616,

 105.16572829, 106.12280041, 107.07987253,

 108.03694465, 108.99401677, 109.95108889,

 110.90816101, 111.86523313]),

 <a list of 10 Patch objects>)

http://bit.ly/1IETkhC

A Brief Tour of Bayesian Statistics

[232]

In [98]:plt.hist(fbM.trace('early_mean')[:])

Out[98]: (array([20., 105., 330., 489., 470., 314., 147.,

 60., 3., 12.]),

 array([49.19781192, 50.07760882, 50.95740571,

 51.83720261, 52.71699951, 53.59679641,

 54.47659331, 55.35639021, 56.2361871 ,

 57.115984 , 57.9957809]),

 <a list of 10 Patch objects>)

Here, we see what the Switchpoint in terms of number of months looks like:

In [99]: fbM.trace('switchpoint')[:]

Out[99]: array([38, 38, 38, ..., 35, 35, 35])

In [150]: plt.hist(fbM.trace('switchpoint')[:])

Out[150]: (array([1899., 0., 0., 0., 0., 0.,

 0., 0., 0., 51.]),

 array([35. , 35.3, 35.6, 35.9, 36.2, 36.5, 36.8,

 37.1, 37.4, 37.7, 38.]),

 <a list of 10 Patch objects>)

Chapter 8

[233]

Hist Switchpoint

We can see that the Switchpoint is in the neighborhood of the months numbering
35-38. Here, we use matplotlib to display the marginal posterior distributions
of e, s, and l in a single figure:

In [141]: early_mean_samples=fbM.trace('early_mean')[:]

 late_mean_samples=fbM.trace('late_mean')[:]

 switchpoint_samples=fbM.trace('switchpoint')[:]

In [142]: from IPython.core.pylabtools import figsize

 figsize(12.5, 10)

 # histogram of the samples:

 fig = plt.figure()

 fig.subplots_adjust(bottom=-0.05)

 n_mths=len(fb_activity_data)

 ax = plt.subplot(311)

 ax.set_autoscaley_on(False)

 plt.hist(early_mean_samples, histtype='stepfilled',

 bins=30, alpha=0.85, label="posterior of e",

 color="turquoise", normed=True)

 plt.legend(loc="upper left")

A Brief Tour of Bayesian Statistics

[234]

 plt.title(r"""Posterior distributions of the variables

 e, l, s""",fontsize=16)

 plt.xlim([40, 120])

 plt.ylim([0, 0.6])

 plt.xlabel("e value",fontsize=14)

 ax = plt.subplot(312)

 ax.set_autoscaley_on(False)

 plt.hist(late_mean_samples, histtype='stepfilled',

 bins=30, alpha=0.85, label="posterior of l",

 color="purple", normed=True)

 plt.legend(loc="upper left")

 plt.xlim([40, 120])

 plt.ylim([0, 0.6])

 plt.xlabel("l value",fontsize=14)

 plt.subplot(313)

 w = 1.0 / switchpoint_samples.shape[0] *

 np.ones_like(switchpoint_samples)

 plt.hist(switchpoint_samples, bins=range(0,n_mths), alpha=1,

 label=r"posterior of s", color="green",

 weights=w, rwidth=2.)

 plt.xlim([20, n_mths - 20])

 plt.xlabel(r"s (in days)",fontsize=14)

 plt.ylabel("probability")

 plt.legend(loc="upper left")

 plt.show()

Chapter 8

[235]

marginal posterior distributions

PyMC also has plotting functionality. (It uses matplotlib.) In the following plots,
we display a time series plot, an autocorrelation plot (acorr), and a histogram of the
samples drawn for the early mean, late mean, and the Switchpoint. The histogram is
useful to visualize the posterior distribution. The autocorrelation plot shows whether
values in the previous period are strongly related to values in the current period.

In [100]: from pymc.Matplot import plot

 plot(fbM)

 Plotting late_mean

 Plotting switchpoint

 Plotting early_mean

A Brief Tour of Bayesian Statistics

[236]

The following is the late mean plot:

pymc_comprehensive_late_mean

Here, we display the Switchpoint plot:

Pymc comprehensive Switchpoint

Chapter 8

[237]

Here, we display the early mean plot:

Pymc comprehensive early mean

From the output of PyMC, we can conclude that the Switchpoint is around 35-38
months from the start of the time series. This corresponds to sometime around
March-July 2010. The author can testify that this was a banner year for him with
respect to the use of FB since it was the year of the football (soccer) World Cup
finals that were held in South Africa, which he attended.

References
For a more in-depth look at Bayesian statistics topics that we touched upon, please
take a look at the following references:

• Probabilistic Programming and Bayesian Methods for Hackers at https://
github.com/CamDavidsonPilon/Probabilistic-Programming-and-
Bayesian-Methods-for-Hackers

• Bayesian Data Analysis, Third Edition, Andrew Gelman at http://www.amazon.
com/Bayesian-Analysis-Chapman-Statistical-Science/dp/1439840954

• The Bayesian Choice, Christian P Robert (this is more theoretical) at
http://www.springer.com/us/book/9780387952314

• PyMC documentation at http://pymc-devs.github.io/pymc/index.html

https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
http://www.amazon.com/Bayesian-Analysis-Chapman-Statistical-Science/dp/1439840954
http://www.amazon.com/Bayesian-Analysis-Chapman-Statistical-Science/dp/1439840954
http://www.springer.com/us/book/9780387952314
http://pymc-devs.github.io/pymc/index.html

A Brief Tour of Bayesian Statistics

[238]

Summary
In this chapter, we undertook a whirlwind tour of one of the hottest trends in
statistics and data analysis in the past few years—the Bayesian approach to
statistical inference. We covered a lot of ground here.

We examined what the Bayesian approach to statistics entails and discussed the
various factors as to why the Bayesian view is a compelling one—facts over belief.
We explained the key statistical distributions and showed how we can use the
various statistical packages to generate and plot them in matplotlib.

We tackled a rather difficult topic without too much oversimplification and
demonstrated how we can use the PyMC package and Monte Carlo simulation
methods to showcase the power of Bayesian statistics to formulate models, do trend
analysis, and make inferences on a real-world dataset (Facebook user posts). In the
next chapter, we will discuss the pandas library architecture.

[239]

The pandas Library
Architecture

In this chapter, we examine the various libraries that are available to pandas' users.
This chapter is intended to be a short guide to help the user navigate and find
their way around the various modules and libraries that pandas provide. It gives a
breakup of how the library code is organized, and it also provides a brief description
on the various modules. It will be most valuable to users who are interested to
see the inner workings of pandas underneath, as well as to those who wish to
make contributions to the code base. We will also briefly demonstrate how you
can improve performance using Python extensions. The various topics that will be
discussed are as follows:

• Introduction to pandas' library hierarchy
• Description of pandas' modules and files
• Improving performance using Python extensions

Introduction to pandas' file hierarchy
Generally, upon installation, pandas gets installed as a Python module in a standard
location for third-party Python modules:

Platform Standard installation location Example
Unix/Mac OS prefix/lib/pythonX.Y/site-

packages
/usr/local/lib/python2.7/
site-packages

Windows prefix\Lib\site-packages C:\Python27\Lib\site-
packages

The pandas Library Architecture

[240]

The installed files follow a specific hierarchy:

• pandas/core: This contains files for fundamental data structures such as
Series/DataFrames and related functionality.

• pandas/src: This contains Cython and C code for implementing
fundamental algorithms.

• pandas/io: This contains input/output tools (such as flat files, Excel, HDF5,
SQL, and so on).

• pandas/tools: This contains auxiliary data algorithms merge and join
routines, concatenation, pivot tables, and more.

• pandas/sparse: This contains sparse versions of Series, DataFrame, Panel
and more.

• pandas/stats: This contains linear and Panel regression, and moving
window regression. This should be replaced by functionality in statsmodels.

• pandas/util: This contains utilities, development, and testing tools.
• pandas/rpy: This contains RPy2 interface for connecting to R.

For reference see: http://pandas.pydata.org/developers.html.

Description of pandas' modules and files
In this section, we provide brief descriptions of the various submodules and files that
make up pandas' library.

pandas/core
This module contains the core submodules of pandas. They are discussed as follows:

• api.py: This imports some key modules for later use.
• array.py: This isolates pandas' exposure to numPy, that is, all direct

numPy usage.
• base.py: This defines fundamental classes, such as StringMixin,

PandasObject which is the base class for various pandas objects such as
Period, PandasSQLTable, sparse.array.SparseArray/SparseList,
internals.Block, internals.BlockManager, generic.NDFrame, groupby.
GroupBy, base.FrozenList, base.FrozenNDArray, io.sql.PandasSQL,
io.sql.PandasSQLTable, tseries.period.Period, FrozenList,
FrozenNDArray: IndexOpsMixin, and DatetimeIndexOpsMixin.

http://pandas.pydata.org/developers.html

Chapter 9

[241]

• common.py: This defines common utility methods for handling data
structures. For example isnull object detects missing values.

• config.py: This is the module for handling package-wide configurable
objects. It defines the following classes: OptionError, DictWrapper,
CallableDynamicDoc, option_context, config_init.

• datetools.py: This is a collection of functions that deal with dates
in Python.

• frame.py: This defines pandas' DataFrame class and its various methods.
DataFrame inherits from NDFrame. (see below).

• generic.py: This defines the generic NDFrame base class, which is a base
class for pandas' DataFrame, Series, and Panel classes. NDFrame is derived
from PandasObject, which is defined in base.py. An NDFrame can be
regarded as an N-dimensional version of a pandas' DataFrame. For more
information on this, go to http://nullege.com/codes/search/pandas.
core.generic.NDFrame.

• categorical.py: This defines Categorical, which is a class that derives from
PandasObject and represents categorical variables a la R/S-plus. (we will
expand your knowledge on this a bit more later).

• format.py: This defines a whole host of Formatter classes such
as CategoricalFormatter, SeriesFormatter, TableFormatter,
DataFrameFormatter, HTMLFormatter, CSVFormatter, ExcelCell,
ExcelFormatter, GenericArrayFormatter, FloatArrayFormatter,
IntArrayFormatter, Datetime64Formatter, Timedelta64Formatter,
and EngFormatter.

• groupby.py: This defines various classes that enable the groupby
functionality. They are discussed as follows:

 ° Splitter classes: This includes DataSplitter, ArraySplitter,
SeriesSplitter, FrameSplitter, and NDFrameSplitter

 ° Grouper/Grouping classes: This includes Grouper, GroupBy,
BaseGrouper, BinGrouper, Grouping, SeriesGroupBy,
NDFrameGroupBy

• ops.py: This defines an internal API for arithmetic operations on
PandasObjects. It defines functions that add arithmetic methods to objects.
It defines a _create_methods meta method, which is used to create other
methods using arithmetic, comparison, and Boolean method constructors.
The add_methods method takes a list of new methods, adds them to the
existing list of methods, and binds them to their appropriate classes. The
add_special_arithmetic_methods and add_flex_arithmetic_methods
methods call _create_methods and add_methods to add arithmetic methods
to a class.

http://nullege.com/codes/search/pandas.core.generic.NDFrame
http://nullege.com/codes/search/pandas.core.generic.NDFrame

The pandas Library Architecture

[242]

It also defines the _TimeOp class, which is a wrapper for datetime-related
arithmetic operations. It contains Wrapper functions for arithmetic,
comparison, and Boolean operations on Series, DataFrame and Panel
functions—_arith_method_SERIES(..), _comp_method_SERIES(..),
_bool_method_SERIES(..), _flex_method_SERIES(..), _arith_method_
FRAME(..), _comp_method_FRAME(..), _flex_comp_method_FRAME(..),
_arith_method_PANEL(..), _comp_method_PANEL(..).

• index.py: This defines the Index class and its related functionality. Index
is used by all pandas' objects—Series, DataFrame, and Panel—to store axis
labels. Underneath it is an immutable array that provides an ordered set that
can be sliced.

• internals.py: This defines multiple object classes. These are listed
as follows:

 ° Block: This is a homogeneously typed N-dimensional numpy.
ndarray object with additional functionality for pandas. For example,
it uses __slots__ to restrict the attributes of the object to 'ndim',
'values', and '_mgr_locs'. It acts as the base class for other Block
subclasses.

 ° NumericBlock: This is the base class for Blocks with the
numeric type.

 ° FloatOrComplexBlock: This is base class for FloatBlock and
ComplexBlock that inherits from NumericBlock

 ° ComplexBlock: This is the class that handles the Block objects
with the complex type.

 ° FloatBlock: This is the class that handles the Block objects with
the float type.

 ° IntBlock: This is the class that handles the Block objects with the
integer type.

 ° TimeDeltaBlock, BoolBlock, and DatetimeBlock: These are the
Block classes for timedelta, Boolean, and datetime.

 ° ObjectBlock: This is the class that handles Block objects for user-
defined objects.

 ° SparseBlock: This is the class that handles sparse arrays of the
same type.

 ° BlockManager: This is the class that manages a set of Block objects. It
is not a public API class.

 ° SingleBlockManager: This is the class that manages a single Block.
 ° JoinUnit: This is the utility class for Block objects.

Chapter 9

[243]

• matrix.py: This imports DataFrame as DataMatrix.
• nanops.py: These are the classes and functionality for handling NaN values.
• ops.py: This defines arithmetic operations for pandas' objects. It is not a

public API.
• panel.py, panel4d.py, and panelnd.py: These provide the functionality for

the pandas' Panel object.
• series.py: This defines the pandas Series class and its various methods that

Series inherits from NDFrame and IndexOpsMixin.
• sparse.py: This defines import for handling sparse data structures. Sparse

data structures are compressed whereby data points matching NaN or missing
values are omitted. For more information on this, go to http://pandas.
pydata.org/pandas-docs/stable/sparse.html.

• strings.py: These have various functions for handling strings.

StringMixin

PandasObject

NDFrame

DataFrame IndexOpsMixin

Series

_constructor_sliced

pandas/io
This module contains various modules for data I/O. These are discussed as follows:

• api.py: This defines various imports for the data I/O API.
• auth.py: This defines various methods dealing with authentication.
• common.py: This defines the common functionality for I/O API.

http://pandas.pydata.org/pandas-docs/stable/sparse.html
http://pandas.pydata.org/pandas-docs/stable/sparse.html

The pandas Library Architecture

[244]

• data.py: This defines classes and methods for handling data. The
DataReader method reads data from various online sources such
as Yahoo and Google.

• date_converters.py: This defines date conversion functions.
• excel.py: This module parses and converts Excel data. This defines

ExcelFile and ExcelWriter classes.
• ga.py: This is the module for the Google Analytics functionality.
• gbq.py : This is the module for Google's BigQuery.
• html.py: This is the module for dealing with HTML I/O.
• json.py: This is the module for dealing with json I/O in pandas. This defines

the Writer, SeriesWriter, FrameWriter, Parser, SeriesParser, and
FrameParser classes.

• packer.py: This is a msgpack serializer support for reading and writing
pandas data structures to disk.

• parsers.py: This is the module that defines various functions and classes
that are used in parsing and processing files to create pandas' DataFrames.
All the three read_* functions discussed as follows have multiple
configurable options for reading. See this reference for more details:
http://bit.ly/1e4Xqo1.

 ° read_csv(..): This defines the pandas.read_csv() function that is
useful to read the contents of a CSV file into a DataFrame.

 ° read_table(..): This reads a tab-separated table file into a
DataFrame.

 ° read_fwf(..): This reads a fixed-width format file into a DataFrame.
 ° TextFileReader: This is the class that is used for reading text files.
 ° ParserBase: This is the base class for parser objects.
 ° CParserWrapper, PythonParser: These are the parser for C and

Python respectively. They both inherit from ParserBase.
 ° FixedWidthReader: This is the class for reading fixed-width data.

A fixed-width data file contains fields in specific positions within
the file.

 ° FixedWithFieldParser: This is the class for parsing fixed-width
fields that have been inherited from PythonParser.

http://bit.ly/1e4Xqo1

Chapter 9

[245]

• pickle.py: This provides methods for pickling (serializing) pandas objects.
These are discussed as follows:

 ° to_pickle(..): This serializes object to a file.
 ° read_pickle(..): This reads serialized object from file into pandas

object. It should only be used with trusted sources.

• pytables.py: This is an interface to PyTables module for reading and
writing pandas data structures to files on disk.

• sql.py: It is a collection of classes and functions used to enable the retrieval
of data from relational databases that attempts to be database agnostic. These
are discussed as follows:

 ° PandasSQL: This is the base class for interfacing pandas with SQL.
It provides dummy read_sql and to_sql methods that must be
implemented by subclasses.

 ° PandasSQLAlchemy: This is the subclass of PandasSQL that
enables conversions between DataFrame and SQL databases using
SQLAlchemy.

 ° PandasSQLTable class: This maps pandas tables (DataFrame)
to SQL tables.

 ° pandasSQL_builder(..): This returns the correct PandasSQL
subclass based on the provided parameters.

 ° PandasSQLTableLegacy class: This is the legacy support version
of PandasSQLTable.

 ° PandasSQLLegacy class: This is the legacy support version of
PandasSQLTable.

 ° get_schema(..): This gets the SQL database table schema for a
given frame.

 ° read_sql_table(..): This reads SQL db table into a DataFrame.
 ° read_sql_query(..): This reads SQL query into a DataFrame.
 ° read_sql(..): This reads SQL query/table into a DataFrame.

• to_sql(..): This write records that are stored in a DataFrame to
a SQL database.

• stata.py: This contains tools for processing Stata files into pandas
DataFrames.

• wb.py: This is the module for downloading data from World Bank's website.

The pandas Library Architecture

[246]

pandas/tools
• util.py: This has miscellaneous util functions defined such as match(..),

cartesian_product(..), and compose(..).
• tile.py: This has a set of functions that enable quantization of input data

and hence tile functionality. Most of the functions are internal, except for
cut(..) and qcut(..).

• rplot.py: This is the module that provides the functionality to generate
trellis plots in pandas.

• plotting.py: This provides a set of plotting functions that take a Series or
DataFrame as an argument.

 ° scatter_matrix(..): This draws a matrix of scatter plots
 ° andrews_curves(..): This plots multivariate data as curves that are

created using samples as coefficients for a Fourier series
 ° parallel_coordinates(..): This is a plotting technique that allows

you to see clusters in data and visually estimate statistics
 ° lag_plot(..): This is used to check whether a dataset or a time

series is random
 ° autocorrelation_plot(..): This is used for checking randomness

in a time series
 ° bootstrap_plot(..): This plot is used to determine the uncertainty

of a statistical measure such as mean or median in a visual manner
 ° radviz(..): This plot is used to visualize multivariate data

Reference for the preceding information is from:
http://pandas.pydata.org/pandas-docs/
stable/visualization.html

• pivot.py: This function is for handling pivot tables in pandas. It is the main
function pandas.tools.pivot_table(..) which creates a spreadsheet-like
pivot table as a DataFrame

Reference for the preceding information is from:
http://pandas.pydata.org/pandas-docs/
stable/reshaping.html

http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://pandas.pydata.org/pandas-docs/stable/reshaping.html
http://pandas.pydata.org/pandas-docs/stable/reshaping.html

Chapter 9

[247]

• merge.py: This provides functions for combining the Series, DataFrame, and
Panel objects such as merge(..) and concat(..)

• describe.py: This provides a single value_range(..) function that returns
the maximum and minimum of a DataFrame as a Series.

pandas/sparse
This is the module that provides sparse implementations of Series, DataFrame, and
Panel. By sparse, we mean arrays where values such as missing or NA are omitted
rather than kept as 0.

For more information on this, go to http://pandas.pydata.org/pandas-docs/
version/stable/sparse.html.

• api.py: It is a set of convenience imports
• array.py: It is an implementation of the SparseArray data structure
• frame.py: It is an implementation of the SparseDataFrame data structure
• list.py: It is an implementation of the SparseList data structure
• panel.py: It is an implementation of the SparsePanel data structure
• series.py: It is an implementation of the SparseSeries data structure

pandas/stats
• api.py: This is a set of convenience imports.
• common.py: This defines internal functions called by other functions

in a module.
• fama_macbeth.py: This contains class definitions and functions for the

Fama-Macbeth regression. For more information on FM regression, go to
http://en.wikipedia.org/wiki/Fama-MacBeth_regression.

• interface.py: It defines ols(..) which returns an Ordinary Least Squares
(OLS) regression object. It imports from pandas.stats.ols module.

• math.py: This has useful functions defined as follows:
 ° rank(..), solve(..), and inv(..): These are used for matrix rank,

solution, and inverse respectively
 ° is_psd(..): This checks positive-definiteness of matrix
 ° newey_west(..): This is for covariance matrix computation
 ° calc_F(..): This computes F-statistic

http://pandas.pydata.org/pandas-docs/version/stable/sparse.html
http://pandas.pydata.org/pandas-docs/version/stable/sparse.html
http://en.wikipedia.org/wiki/Fama-MacBeth_regression

The pandas Library Architecture

[248]

• misc.py: This is used for miscellaneous functions.
• moments.py: This provides rolling and expanding statistical measures

including moments that are implemented in Cython. These methods include:
rolling_count(..), rolling_cov(..), rolling_corr(..), rolling_
corr_pairwise(..), rolling_quantile(..), rolling_apply(..),
rolling_window(..), expanding_count(..), expanding_quantile(..),
expanding_cov(..), expanding_corr(..), expanding_corr_
pairwise(..), expanding_apply(..), ewma(..), ewmvar(..), ewmstd(..),
ewmcov(..), and ewmcorr(..).

• ols.py: This implements OLS and provides the OLS and MovingOLS
classes. OLS runs a full sample Ordinary Least-Squares Regression, whereas
MovingOLS generates a rolling or an expanding simple OLS.

• plm.py: This provides linear regression objects for Panel data. These classes
are discussed as follows:

 ° PanelOLS: This is the OLS for Panel object
 ° MovingPanelOLS: This is the rolling/expanded OLS for Panel object
 ° NonPooledPanelOLS:- This is the nonpooled OLS for Panel object

• var.py: This provides vector auto-regression classes discussed as follows:

 ° VAR: This is the vector auto-regression on multi-variate data in Series
and DataFrames

 ° PanelVAR: This is the vector auto-regression on multi-variate data in
Panel objects

For more information on vector autoregression, go to:
http://en.wikipedia.org/wiki/Vector_autoregression

pandas/util
• testing.py: This provides the assertion, debug, unit test, and other classes/

functions for use in testing. It contains many special assert functions that
make it easier to check whether Series, DataFrame, or Panel objects are
equivalent. Some of these functions include assert_equal(..), assert_
series_equal(..), assert_frame_equal(..), and assert_panelnd_
equal(..). The pandas.util.testing module is especially useful to the
contributors of the pandas code base. It defines a util.TestCase class. It
also provides utilities for handling locales, console debugging, file cleanup,
comparators, and so on for testing by potential code base contributors.

http://en.wikipedia.org/wiki/Vector_autoregression

Chapter 9

[249]

• terminal.py: This function is mostly internal and has to do with obtaining
certain specific details about the terminal. The single exposed function is
get_terminal_size().

• print_versions.py: This defines the get_sys_info() function that returns
a dictionary of systems information, and the show_versions(..) function
that displays the versions of available Python libraries.

• misc.py: This defines a couple of miscellaneous utilities.
• decorators.py: This defines some decorator functions and classes.

The Substitution and Appender classes are decorators
that perform substitution and appending on function
docstrings and for more information on Python
decorators, go to http://bit.ly/1zj8U0o.

• clipboard.py: This contains cross-platform clipboard methods to enable
the copy and paste functions from the keyboard. The pandas I/O API
include functions such as pandas.read_clipboard() and pandas.to_
clipboard(..).

pandas/rpy
This module attempts to provide an interface to the R statistical package if
it is installed in the machine. It is deprecated in Version 0.16.0 and later. It's
functionality is replaced by the rpy2 module that can be accessed from
http://rpy.sourceforge.net.

• base.py: This defines a class for the well-known lm function in R
• common.py: This provides many functions to enable the conversion

of pandas objects into their equivalent R versions
• mass.py: This is an unimplemented version of rlm—R's lm function
• var.py: This contains an unimplemented class VAR

pandas/tests
This is the module that provides many tests for various objects in pandas. The names
of the specific library files are fairly self-explanatory, and I will not go into further
details here, except inviting the reader to explore this.

http://bit.ly/1zj8U0o
http://rpy.sourceforge.net

The pandas Library Architecture

[250]

pandas/compat
The functionality related to compatibility are explained as follows:

• chainmap.py, chainmap_impl.py: This provides a ChainMap class that can
group multiple dicts or mappings, in order to produce a single view that
can be updated

• pickle_compat.py: This provides functionality for pickling pandas objects
in the versions that are earlier than 0.12

• openpyxl_compat.py: This checks the compatibility of openpyxl

pandas/computation
This is the module that provides functionality for computation and is discussed
as follows:

• api.py: This contains imports for eval and expr.
• align.py: This implements functions for data alignment.
• common.py: This contains a couple of internal functions.
• engines.py: This defines Abstract Engine, NumExprEngine, and

PythonEngine. PythonEngine evaluates an expression and is used
mainly for testing purposes.

• eval.py: This defines the all-important eval(..) function and also a few
other important functions.

• expressions.py: This provides fast expression evaluation through numexpr.
The numexpr function is used to accelerate certain numerical operations.
It uses multiple cores as well as smart chunking and caching speedups. It
defines the evaluate(..) and where(..) methods.

• ops.py: This defines the operator classes used by eval. These are Term,
Constant, Op, BinOp, Div, and UnaryOp.

• pytables.py: This provides a query interface for the PyTables query.
• scope.py: This is a module for scope operations. It defines a Scope class,

which is an object to hold scope.

For more information on numexpr, go to https://code.
google.com/p/numexpr/. For information of the usage of
this module, go to http://pandas.pydata.org/pandas-
docs/stable/computation.html.

https://code.google.com/p/numexpr/
https://code.google.com/p/numexpr/
http://pandas.pydata.org/pandas-docs/stable/computation.html
http://pandas.pydata.org/pandas-docs/stable/computation.html

Chapter 9

[251]

pandas/tseries
• api.py: This is a set of convenience imports
• converter.py: This defines a set of classes that are used to format and

convert datetime-related objects. Upon import, pandas registers a set
of unit converters with matplotlib.

 ° This is done via the register() function explained as follows:
In [1]: import matplotlib.units as munits

In [2]: munits.registry

Out[2]: {}

In [3]: import pandas

In [4]: munits.registry

Out[4]:

{pandas.tslib.Timestamp: <pandas.tseries.converter.
DatetimeConverter instance at 0x7fbbc4db17e8>,

 pandas.tseries.period.Period: <pandas.tseries.converter.
PeriodConverter instance at 0x7fbbc4dc25f0>,

 datetime.date: <pandas.tseries.converter.DatetimeConverter
instance at 0x7fbbc4dc2fc8>,

 datetime.datetime: <pandas.tseries.converter.
DatetimeConverter instance at 0x7fbbc4dc2a70>,

 datetime.time: <pandas.tseries.converter.TimeConverter
instance at 0x7fbbc4d61e18>}

 ° Converter: This class includes TimeConverter, PeriodConverter,
and DateTimeConverter

 ° Formatters: This class includes TimeFormatter,
PandasAutoDateFormatter, and TimeSeries_DateFormatter

 ° Locators: This class includes PandasAutoDateLocator,
MilliSecondLocator, and TimeSeries_DateLocator

The Formatter and Locator classes are used for handling
ticks in matplotlib plotting.

• frequencies.py: This defines the code for specifying frequencies—daily,
weekly, quarterly, monthly, annual, and so on—of time series objects.

The pandas Library Architecture

[252]

• holiday.py: This defines functions and classes for handling holidays—
Holiday, AbstractHolidayCalendar, and USFederalHolidayCalendar
are among the classes defined.

• index.py: This defines the DateTimeIndex class.
• interval.py: This defines the Interval, PeriodInterval, and

IntervalIndex classes.
• offsets.py: This defines various classes including Offsets that deal with

time-related periods. These are explained as follows:
 ° DateOffset: This is an interface for classes that provide the time

period functionality such as Week, WeekOfMonth, LastWeekOfMonth,
QuarterOffset, YearOffset, Easter, FY5253, and FY5253Quarter.

 ° BusinessMixin: This is the mixin class for business objects to
provide functionality with time-related classes. This will be inherited
by the BusinessDay class. The BusinessDay subclass is derived from
BusinessMixin and SingleConstructorOffset and provides an
offset in business days.

 ° MonthOffset: This is the interface for classes that provide the
functionality for month time periods such as MonthEnd, MonthBegin,
BusinessMonthEnd, and BusinessMonthBegin.

 ° MonthEnd and MonthBegin: This is the date offset of one month at the
end or the beginning of a month.

 ° BusinessMonthEnd and BusinessMonthBegin: This is the date offset
of one month at the end or the beginning of a business day calendar.

 ° YearOffset: This offset is subclassed by classes that provide year
period functionality—YearEnd, YearBegin, BYearEnd, BYearBegin

 ° YearEnd and YearBegin: This is the date offset of one year at the end
or the beginning of a year.

 ° BYearEnd and BYearBegin: This is the date offset of one year at the
end or the beginning of a business day calendar.

 ° Week: This provides the offset of 1 week.
 ° WeekDay: This provides mapping from weekday (Tue) to day of

week (=2).
 ° WeekOfMonth and LastWeekOfMonth: This describes dates in a week

of a month
 ° QuarterOffset: This is subclassed by classes that provide quarterly

period functionality—QuarterEnd, QuarterrBegin, BQuarterEnd,
and BQuarterBegin.

Chapter 9

[253]

 ° QuarterEnd, QuarterrBegin, BQuarterEnd, and BQuarterBegin:
This is same as for Year* classes except that the period is quarter
instead of year.

 ° FY5253, FY5253Quarter: These classes describe a 52-53 week fiscal
year. This is also known as a 4-4-5 calendar. You can get more
information on this at http://en.wikipedia.org/wiki/4–4–5_
calendar.

 ° Easter: This is the DateOffset for the Easter holiday.
 ° Tick: This is the base class for Time unit classes such as Day, Hour,

Minute, Second, Milli, Micro, and Nano.

• period.py: This defines the Period and PeriodIndex classes for pandas
TimeSeries.

• plotting.py: This defines various plotting functions such as tsplot(..),
which plots a Series.

• resample.py: This defines TimeGrouper, a custom groupby class for
time-interval grouping.

• timedeltas.py: This defines the to_timedelta(..) method, which
converts its argument into a timedelta object.

• tools.py: This defines utility functions such as to_datetime(..),
parse_time_string(..), dateutil_parse(..), and format(..).

• util.py: This defines more utility functions as follows:
 ° isleapyear(..): This checks whether the year is a leap year
 ° pivot_annual(..): This groups a series by years, accounting for

leap years

pandas/sandbox
This module handles the integration of pandas DataFrame into the PyQt framework.
For more information on PyQt, go to

Improving performance using Python
extensions
One of the gripes of Python and pandas users is that the ease of use and
expressiveness of the language and module comes with a significant downside—the
performance—especially when it comes to numeric computing.

http://en.wikipedia.org/wiki/4-4-5_calendar
http://en.wikipedia.org/wiki/4-4-5_calendar

The pandas Library Architecture

[254]

According to the programming benchmarks site, Python is often slower than
compiled languages, such as C/C++ for many algorithms or data structure
operations. An example of this would be binary tree operations. In the following
reference, Python3 ran 104x slower than the fastest C++ implementation of an
n-body simulation calculation: http://bit.ly/1dm4JqW.

So, how can we solve this legitimate yet vexing problem? We can mitigate this
slowness in Python while maintaining the things that we like about it—clarity and
productivity—by writing the parts of our code that are performance sensitive. For
example numeric processing, algorithms in C/C++ and having them called by our
Python code by writing a Python extension module: http://docs.python.org/2/
extending/extending.html

Python extension modules enable us to make calls out to user-defined C/C++ code
or library functions from Python, thus enabling us to boost our code performance
but still benefit from the ease of using Python.

To help us understand what a Python extension module is, consider what happens in
Python when we import a module. An import statement imports a module, but what
does this really mean? There are three possibilities, which are as follows:

• Some Python extension modules are linked to the interpreter when it is built.
• An import causes Python to load a .pyc file into memory. The .pyc files

contain Python bytecode.For example to the following command:
In [3]: import pandas

 pandas.__file__

Out[3]: '/usr/lib/python2.7/site-packages/pandas/__init__.pyc'

• The import statement causes a Python extension module to be loaded into
the memory. The .so (shared object) file is comprised of machine code. For
example refer to the following command:
In [4]: import math

 math.__file__

Out[4]: '/usr/lib/python2.7/lib-dynload/math.so'

We will focus on the third possibility. Even though we are dealing with a binary-
shared object compiled from C, we can import it as a Python module, and this shows
the power of Python extensions—applications can import modules from Python
machine code or machine code and the interface is the same. Cython and SWIG
are the two most popular methods of writing extensions in C and C++. In writing
an extension, we wrap up C/C++ machine code and turn it into Python extension
modules that behave like pure Python code. In this brief discussion, we will only
focus on Cython, as it was designed specifically for Python.

http://bit.ly/1dm4JqW
http://docs.python.org/2/extending/extending.html
http://docs.python.org/2/extending/extending.html

Chapter 9

[255]

Cython is a superset of Python that was designed to significantly improve Python's
performance by allowing us to call externally compiled code in C/C++ as well as
declare types on variables.

The Cython command generates an optimized C/C++ source file from a Cython
source file, and compiles this optimized C/C++ source into a Python extension
module. It offers built-in support for NumPy and combines C's performance with
Python's usability.

We will give a quick demonstration of how we can use Cython to significantly speed
up our code. Let's define a simple Fibonacci function:

In [17]: def fibonacci(n):

 a,b=1,1

 for i in range(n):

 a,b=a+b,a

 return a

In [18]: fibonacci(100)

Out[18]: 927372692193078999176L

In [19]: %timeit fibonacci(100)

 100000 loops, best of 3: 18.2 µs per loop

Using the timeit module, we see that it takes 18.2 µs per loop.

Let's now rewrite the function in Cython, specifying types for the variables by using
the following steps:

1. First, we import the Cython magic function to IPython as follows:
In [22]: %load_ext cythonmagic

2. Next, we rewrite our function in Cython, specifying types for our variables:
In [24]: %%cython

 def cfibonacci(int n):

 cdef int i, a,b

 for i in range(n):

 a,b=a+b,a

 return a

The pandas Library Architecture

[256]

3. Let's time our new Cython function:
In [25]: %timeit cfibonacci(100)

 1000000 loops, best of 3: 321 ns per loop

In [26]: 18.2/0.321

Out[26]: 56.69781931464174

4. Thus, we can see that the Cython version is 57x faster than the pure
Python version!

For more references on writing Python extensions using Cython/SWIG or other
options, please refer to the following references:

• The pandas documentation titled Enhancing Performance at http://pandas.
pydata.org/pandas-docs/stable/enhancingperf.html

• Scipy Lecture Notes titled Interfacing with C at https://scipy-lectures.
github.io/advanced/interfacing_with_c/interfacing_with_c.html

• Cython documentation at http://docs.cython.org/index.html
• SWIG Documentation at http://www.swig.org/Doc2.0/

SWIGDocumentation.html

Summary
To summarize this chapter, we took a tour of the library hierarchy of pandas in an
attempt to illustrate the internal workings of the library. We also touched on the
benefits of speeding up our code performance by using a Python extension module.

http://pandas.pydata.org/pandas-docs/stable/enhancingperf.html
http://pandas.pydata.org/pandas-docs/stable/enhancingperf.html
https://scipy-lectures.github.io/advanced/interfacing_with_c/interfacing_with_c.html
https://scipy-lectures.github.io/advanced/interfacing_with_c/interfacing_with_c.html
http://docs.cython.org/index.html
http://www.swig.org/Doc2.0/SWIGDocumentation.html
http://www.swig.org/Doc2.0/SWIGDocumentation.html

[257]

R and pandas Compared
This chapter focuses on comparing pandas with R, the statistical package on which
much of pandas' functionality is modeled. It is intended as a guide for R users who
wish to use pandas, and for users who wish to replicate functionality that they have
seen in the R code in pandas. It focuses on some key features available to R users
and shows how to achieve similar functionality in pandas by using some illustrative
examples. This chapter assumes that you have the R statistical package installed. If
not, it can be downloaded and installed from here: http://www.r-project.org/.

By the end of the chapter, data analysis users should have a good grasp of the data
analysis capabilities of R as compared to pandas, enabling them to transition to
or use pandas, should they need to. The various topics addressed in this chapter
include the following:

• R data types and their pandas equivalents
• Slicing and selection
• Arithmetic operations on datatype columns
• Aggregation and GroupBy
• Matching
• Split-apply-combine
• Melting and reshaping
• Factors and categorical data

R data types
R has five primitive or atomic types:

• Character
• Numeric

http://www.r-project.org/

R and pandas Compared

[258]

• Integer
• Complex
• Logical/Boolean

It also has the following, more complex, container types:

• Vector: This is similar to numpy.array. It can only contain objects of the
same type.

• List: It is a heterogeneous container. Its equivalent in pandas would be
a series.

• DataFrame: It is a heterogeneous 2D container, equivalent to a
pandas DataFrame

• Matrix:- It is a homogeneous 2D version of a vector. It is similar to
a numpy.matrix.

For this chapter, we will focus on list and DataFrame, which have pandas
equivalents as series and DataFrame.

For more information on R data types, refer to the following document
at: http://www.statmethods.net/input/datatypes.html.
For NumPy data types, refer to the following document at: http://
docs.scipy.org/doc/numpy/reference/generated/numpy.
array.html and http://docs.scipy.org/doc/numpy/
reference/generated/numpy.matrix.html.

R lists
R lists can be created explicitly as a list declaration as shown here:

>h_lst<- list(23,'donkey',5.6,1+4i,TRUE)

>h_lst

[[1]]

[1] 23

[[2]]

[1] "donkey"

[[3]]

[1] 5.6

 http://www.statmethods.net/input/datatypes.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html

Chapter 10

[259]

[[4]]

[1] 1+4i

[[5]]

[1] TRUE

>typeof(h_lst)

[1] "list"

Here is its series equivalent in pandas with the creation of a list and the creation of
a series from it:

In [8]: h_list=[23, 'donkey', 5.6,1+4j, True]

In [9]: import pandas as pd

 h_ser=pd.Series(h_list)

In [10]: h_ser

Out[10]: 0 23

 1 donkey

 2 5.6

 3 (1+4j)

 4 True

dtype: object

Array indexing starts from 0 in pandas as opposed to R, where it starts at 1.
Following is an example of this:

In [11]: type(h_ser)

Out[11]: pandas.core.series.Series

R DataFrames
We can construct an R DataFrame as follows by calling the data.frame()
constructor and then display it as follows:

>stocks_table<- data.frame(Symbol=c('GOOG','AMZN','FB','AAPL',

 'TWTR','NFLX','LINKD'),

 Price=c(518.7,307.82,74.9,109.7,37.1,

 334.48,219.9),

MarketCap=c(352.8,142.29,216.98,643.55,23.54,20.15,27.31))

R and pandas Compared

[260]

>stocks_table

Symbol PriceMarketCap

1 GOOG 518.70 352.80

2 AMZN 307.82 142.29

3 FB 74.90 216.98

4 AAPL 109.70 643.55

5 TWTR 37.10 23.54

6 NFLX 334.48 20.15

7 LINKD 219.90 27.31

Here, we construct a pandas DataFrame and display it:

In [29]: stocks_df=pd.DataFrame({'Symbol':['GOOG','AMZN','FB','AAPL',

 'TWTR','NFLX','LNKD'],

 'Price':[518.7,307.82,74.9,109.7,37.1,

 334.48,219.9],

'MarketCap($B)' : [352.8,142.29,216.98,643.55,

 23.54,20.15,27.31]

 })

stocks_df=stocks_df.reindex_axis(sorted(stocks_df.columns,reverse=True),a
xis=1)

stocks_df

Out[29]:

Symbol PriceMarketCap($B)

0 GOOG 518.70 352.80

1 AMZN 307.82 142.29

2 FB 74.90 216.98

3 AAPL 109.70 643.55

4 TWTR 37.10 23.54

5 NFLX 334.48 20.15

6 LNKD219.90 27.31

Chapter 10

[261]

Slicing and selection
In R, we slice objects in the following three ways:

• [: This always returns an object of the same type as the original and can be
used to select more than one element.

• [[: This is used to extract elements of list or DataFrame; and can only be
used to extract a single element,: the type of the returned element will not
necessarily be a list or DataFrame.

• $: This is used to extract elements of a list or DataFrame by name and is
similar to [[.

Here are some slicing examples in R and their equivalents in pandas:

R-matrix and NumPy array compared
Let's see matrix creation and selection in R:

>r_mat<- matrix(2:13,4,3)

>r_mat

 [,1] [,2] [,3]

[1,] 2 6 10

[2,] 3 7 11

[3,] 4 8 12

[4,] 5 9 13

To select first row, we write:

>r_mat[1,]

[1] 2 6 10

To select second column, we use the following command:

>r_mat[,2]

[1] 6 7 8 9

Let's now see NumPy array creation and selection:

In [60]: a=np.array(range(2,6))

 b=np.array(range(6,10))

 c=np.array(range(10,14))

In [66]: np_ar=np.column_stack([a,b,c])

np_ar

R and pandas Compared

[262]

Out[66]: array([[2, 6, 10],

[3, 7, 11],

[4, 8, 12],

[5, 9, 13]])

To select first row, write the following command:

In [79]: np_ar[0,]

Out[79]: array([2, 6, 10])

Indexing is different in R and pandas/NumPy.
In R, indexing starts at 1, while in pandas/NumPy, it starts at 0. Hence,
we have to subtract 1 from all indexes when making the translation from
R to pandas/NumPy.

To select second column, write the following command:

In [81]: np_ar[:,1]

Out[81]: array([6, 7, 8, 9])

Another option is to transpose the array first and then select the column, as follows:

In [80]: np_ar.T[1,]

Out[80]: array([6, 7, 8, 9])

R lists and pandas series compared
Here is an example of list creation and selection in R:

>cal_lst<- list(weekdays=1:8, mth='jan')

>cal_lst

$weekdays

[1] 1 2 3 4 5 6 7 8

$mth

[1] "jan"

>cal_lst[1]

$weekdays

[1] 1 2 3 4 5 6 7 8

Chapter 10

[263]

>cal_lst[[1]]

[1] 1 2 3 4 5 6 7 8

>cal_lst[2]

$mth

[1] "jan"

Series creation and selection in pandas is done as follows:

In [92]: cal_df= pd.Series({'weekdays':range(1,8), 'mth':'jan'})

In [93]: cal_df

Out[93]: mthjan

weekdays [1, 2, 3, 4, 5, 6, 7]

dtype: object

In [97]: cal_df[0]

Out[97]: 'jan'

In [95]: cal_df[1]

Out[95]: [1, 2, 3, 4, 5, 6, 7]

In [96]: cal_df[[1]]

Out[96]: weekdays [1, 2, 3, 4, 5, 6, 7]

dtype: object

Here, we see a difference between an R-list and a pandas series from the perspective
of the [] and [[]] operators. We can see the difference by considering the second
item, which is a character string.

In the case of R, the [] operator produces a container type, that is, a list containing
the string, while the [[]] produces an atomic type: in this case, a character
as follows:

>typeof(cal_lst[2])

[1] "list"

>typeof(cal_lst[[2]])

[1] "character"

R and pandas Compared

[264]

In the case of pandas, the opposite is true: [] produces the atomic type, while [[]]
results in a complex type, that is, a series as follows:

In [99]: type(cal_df[0])

Out[99]: str

In [101]: type(cal_df[[0]])

Out[101]: pandas.core.series.Series

In both R and pandas, the column name can be specified in order to obtain
an element.

Specifying column name in R
In R, this can be done with the column name preceded by the $ operator as follows:

>cal_lst$mth

[1] "jan"

> cal_lst$'mth'

[1] "jan"

Specifying column name in pandas
In pandas, we subset elements in the usual way with the column name in
square brackets:

In [111]: cal_df['mth']

Out[111]: 'jan'

One area where R and pandas differ is in the subsetting of nested elements. For
example, to obtain day 4 from weekdays, we have to use the [[]] operator in R:

>cal_lst[[1]][[4]]

[1] 4

>cal_lst[[c(1,4)]]

[1] 4

However, in the case of pandas, we can just use a double []:

In [132]: cal_df[1][3]

Out[132]: 4

Chapter 10

[265]

R's DataFrames versus pandas' DataFrames
Selecting data in R DataFrames and pandas DataFrames follows a similar script. The
following section explains on how we perform multi-column selects from both.

Multicolumn selection in R
In R, we specify the multiple columns to select by stating them in a vector within
square brackets:

>stocks_table[c('Symbol','Price')]

Symbol Price

1 GOOG 518.70

2 AMZN 307.82

3 FB 74.90

4 AAPL 109.70

5 TWTR 37.10

6 NFLX 334.48

7 LINKD 219.90

>stocks_table[,c('Symbol','Price')]

Symbol Price

1 GOOG 518.70

2 AMZN 307.82

3 FB 74.90

4 AAPL 109.70

5 TWTR 37.10

6 NFLX 334.48

7 LINKD 219.90

Multicolumn selection in pandas
In pandas, we subset elements in the usual way with the column names in
square brackets:

In [140]: stocks_df[['Symbol','Price']]

Out[140]:Symbol Price

0 GOOG 518.70

1 AMZN 307.82

2 FB 74.90

R and pandas Compared

[266]

3 AAPL 109.70

4 TWTR 37.10

5 NFLX 334.48

6 LNKD 219.90

In [145]: stocks_df.loc[:,['Symbol','Price']]

Out[145]: Symbol Price

0 GOOG 518.70

1 AMZN 307.82

2 FB 74.90

3 AAPL 109.70

4 TWTR 37.10

5 NFLX 334.48

6 LNKD 219.90

Arithmetic operations on columns
In R and pandas, we can apply arithmetic operations in data columns in a similar
manner. Hence, we can perform arithmetic operations such as addition or
subtraction on elements in corresponding positions in two or more DataFrames.

Here, we construct a DataFrame in R with columns labeled x and y, and subtract
column y from column x:

>norm_df<- data.frame(x=rnorm(7,0,1), y=rnorm(7,0,1))

>norm_df$x - norm_df$y

[1] -1.3870730 2.4681458 -4.6991395 0.2978311 -0.8492245 1.5851009
-1.4620324

The with operator in R also has the same effect as arithmetic operations:

>with(norm_df,x-y)

[1] -1.3870730 2.4681458 -4.6991395 0.2978311 -0.8492245 1.5851009
-1.4620324

In pandas, the same arithmetic operations on columns can be done and the
equivalent operator is eval:

In [10]: import pandas as pd

 import numpy as np

Chapter 10

[267]

df = pd.DataFrame({'x': np.random.normal(0,1,size=7), 'y': np.random.
normal(0,1,size=7)})

In [11]: df.x-df.y

Out[11]: 0 -0.107313

 1 0.617513

 2 -1.517827

 3 0.565804

 4 -1.630534

 5 0.101900

 6 0.775186

dtype: float64

In [12]: df.eval('x-y')

Out[12]: 0 -0.107313

 1 0.617513

 2 -1.517827

 3 0.565804

 4 -1.630534

 5 0.101900

 6 0.775186

dtype: float64

Aggregation and GroupBy
Sometimes, we may wish to split data into subsets and apply a function such as
the mean, max, or min to each subset. In R, we can do this via the aggregate or
tapply functions.

Here, we will use the example of a dataset of statistics on the top five strikers of the
four clubs that made it to the semi-final of the European Champions League Football
tournament in 2014. We will use it to illustrate aggregation in R and its equivalent
GroupBy functionality in pandas.

R and pandas Compared

[268]

Aggregation in R
In R aggregation is done using the following command:

> goal_stats=read.csv('champ_league_stats_semifinalists.csv')

>goal_stats

 Club Player Goals GamesPlayed

1 Atletico Madrid Diego Costa 8 9

2 Atletico Madrid ArdaTuran 4 9

3 Atletico Madrid RaúlGarcía 4 12

4 Atletico Madrid AdriánLópez 2 9

5 Atletico Madrid Diego Godín 2 10

6 Real Madrid Cristiano Ronaldo 17 11

7 Real Madrid Gareth Bale 6 12

8 Real Madrid Karim Benzema 5 11

9 Real Madrid Isco 3 12

10 Real Madrid Ángel Di María 3 11

11 Bayern Munich Thomas Müller 5 12

12 Bayern Munich ArjenRobben 4 10

13 Bayern Munich Mario Götze 3 11

14 Bayern Munich Bastian Schweinsteiger 3 8

15 Bayern Munich Mario Mandžukić 3 10

16 Chelsea Fernando Torres 4 9

17 Chelsea Demba Ba 3 6

18 Chelsea Samuel Eto'o 3 9

19 Chelsea Eden Hazard 2 9

20 Chelsea Ramires 2 10

We can now compute the goals per game ratio for each striker, to measure their
deadliness in front of a goal:

>goal_stats$GoalsPerGame<- goal_stats$Goals/goal_stats$GamesPlayed

>goal_stats

 Club Player Goals GamesPlayedGoalsPerGame

1 Atletico Madrid Diego Costa 8 9 0.8888889

2 Atletico Madrid ArdaTuran 4 9 0.4444444

3 Atletico Madrid RaúlGarcía 4 12 0.3333333

4 Atletico Madrid AdriánLópez 2 9 0.2222222

Chapter 10

[269]

5 Atletico Madrid Diego Godín 2 10 0.2000000

6 Real Madrid Cristiano Ronaldo 17 11 1.5454545

7 Real Madrid Gareth Bale 6 12 0.5000000

8 Real Madrid Karim Benzema 5 11 0.4545455

9 Real Madrid Isco 3 12 0.2500000

10 Real Madrid Ángel Di María 3 11 0.2727273

11 Bayern Munich Thomas Müller 5 12 0.4166667

12 Bayern Munich ArjenRobben 4 10 0.4000000

13 Bayern Munich MarioGötze 3 11 0.2727273

14 Bayern Munich Bastian Schweinsteiger 3 8 0.3750000

15 Bayern Munich MarioMandžukić 3 10 0.3000000

16 Chelsea Fernando Torres 4 9 0.4444444

17 Chelsea Demba Ba 3 6 0.5000000

18 Chelsea Samuel Eto'o 3 9 0.3333333

19 Chelsea Eden Hazard 2 9 0.2222222

20 Chelsea Ramires 2 10 0.2000000

Let's suppose that we wanted to know the highest goals per game ratio for each
team. We would calculate this as follows:

>aggregate(x=goal_stats[,c('GoalsPerGame')], by=list(goal_
stats$Club),FUN=max)

 Group.1 x

1 Atletico Madrid 0.8888889

2 Bayern Munich 0.4166667

3 Chelsea 0.5000000

4 Real Madrid 1.5454545

The tapply function is used to apply a function to a subset of an array or vector that
is defined by one or more columns. The tapply function can also be used as follows:

>tapply(goal_stats$GoalsPerGame,goal_stats$Club,max)

Atletico Madrid Bayern Munich Chelsea Real Madrid

 0.8888889 0.4166667 0.5000000 1.5454545

R and pandas Compared

[270]

The pandas' GroupBy operator
In pandas, we can achieve the same result by using the GroupBy function:

In [6]: import pandas as pd

importnumpy as np

In [7]: goal_stats_df=pd.read_csv('champ_league_stats_semifinalists.csv')

In [27]: goal_stats_df['GoalsPerGame']= goal_stats_df['Goals']/goal_
stats_df['GamesPlayed']

In [27]: goal_stats_df['GoalsPerGame']= goal_stats_df['Goals']/goal_
stats_df['GamesPlayed']

In [28]: goal_stats_df

Out[28]: Club Player Goals GamesPlayedGoalsPerGame

0 Atletico Madrid Diego Costa 8 9 0.888889

1 Atletico Madrid ArdaTuran 4 9 0.444444

2 Atletico Madrid RaúlGarcía 4 12 0.333333

3 Atletico Madrid AdriánLópez 2 9 0.222222

4 Atletico Madrid Diego Godín 2 10 0.200000

5 Real Madrid Cristiano Ronaldo 17 11 1.545455

6 Real Madrid Gareth Bale 6 12 0.500000

7 Real Madrid Karim Benzema 5 11 0.454545

8 Real Madrid Isco 3 12 0.250000

9 Real Madrid Ángel Di María 3 11 0.272727

10 Bayern Munich Thomas Müller 5 12 0.416667

11 Bayern Munich ArjenRobben 4 10 0.400000

12 Bayern Munich Mario Götze 3 11 0.272727

13 Bayern Munich BastianSchweinsteiger 3 8 0.375000

14 Bayern Munich MarioMandžukić 3 10 0.300000

15 Chelsea Fernando Torres 4 9 0.444444

16 Chelsea Demba Ba 3 6 0.500000

17 Chelsea Samuel Eto'o 3 9 0.333333

18 Chelsea Eden Hazard 2 9 0.222222

19 Chelsea Ramires 2 10 0.200000

Chapter 10

[271]

In [30]: grouped = goal_stats_df.groupby('Club')

In [17]: grouped['GoalsPerGame'].aggregate(np.max)

Out[17]: Club

 Atletico Madrid 0.888889

 Bayern Munich 0.416667

 Chelsea 0.500000

 Real Madrid 1.545455

 Name: GoalsPerGame, dtype: float64

In [22]: grouped['GoalsPerGame'].apply(np.max)

Out[22]: Club

 Atletico Madrid 0.888889

 Bayern Munich 0.416667

 Chelsea 0.500000

 Real Madrid 1.545455

 Name: GoalsPerGame, dtype: float64

Comparing matching operators in R and
pandas
Here, we will demonstrate the equivalence of matching operators between R (%in%)
and pandas (isin()). In both cases, a logical vector or series (pandas) is produced,
which indicates the position at which a match was found.

R %in% operator
Here, we will demonstrate the use of the %in% operator in R:

>stock_symbols=stocks_table$Symbol

>stock_symbols

[1] GOOG AMZN FB AAPL TWTR NFLX LINKD

Levels: AAPL AMZN FB GOOG LINKD NFLX TWTR

>stock_symbols %in% c('GOOG','NFLX')

[1] TRUE FALSE FALSE FALSE FALSE TRUE FALSE

R and pandas Compared

[272]

The pandas isin() function
Here is an example of using the pandas isin() function:

In [11]: stock_symbols=stocks_df.Symbol

stock_symbols

Out[11]: 0 GOOG

 1 AMZN

 2 FB

 3 AAPL

 4 TWTR

 5 NFLX

 6 LNKD

 Name: Symbol, dtype: object

In [10]: stock_symbols.isin(['GOOG','NFLX'])

Out[10]: 0 True

 1 False

 2 False

 3 False

 4 False

 5 True

 6 False

 Name: Symbol, dtype: bool

Logical subsetting
In R as well as in pandas, there is more than one way to perform logical subsetting.
Suppose that we wished to display all players with the average goals per game ratio
of greater than or equal to 0.5; that is, they average at least one goal every two games.

Logical subsetting in R
Here's how we can do this in R:

• Via a logical slice:
>goal_stats[goal_stats$GoalsPerGame>=0.5,]

 Club Player Goals GamesPlayedGoalsPerGame

1 Atletico Madrid Diego Costa 8 9 0.8888889

6 Real Madrid Cristiano Ronaldo 17 11 1.5454545

Chapter 10

[273]

7 Real Madrid Gareth Bale 6 12 0.5000000

17 Chelsea Demba Ba 3 6 0.5000000

• Via the subset() function:
>subset(goal_stats,GoalsPerGame>=0.5)

 Club Player Goals GamesPlayedGoalsPerGame

1 Atletico Madrid Diego Costa 8 9 0.8888889

6 Real Madrid Cristiano Ronaldo 17 11 1.5454545

7 Real Madrid Gareth Bale 6 12 0.5000000

17 Chelsea Demba Ba 3 6 0.5000000

Logical subsetting in pandas
In pandas, we also do something similar:

• Logical slicing:
In [33]: goal_stats_df[goal_stats_df['GoalsPerGame']>=0.5]

Out[33]: Club Player Goals
GamesPlayedGoalsPerGame

0 Atletico Madrid Diego Costa 8 9 0.888889

5 Real Madrid Cristiano Ronaldo 17 11 1.545455

6 Real Madrid Gareth Bale 6 12 0.500000

16 Chelsea Demba Ba 3 6 0.500000

• DataFrame.query() operator:
In [36]: goal_stats_df.query('GoalsPerGame>= 0.5')

Out[36]:

Club Player Goals GamesPlayedGoalsPerGame

0 Atletico Madrid Diego Costa 8 9 0.888889

5 Real Madrid Cristiano Ronaldo 17 11 1.545455

6 Real Madrid Gareth Bale 6 12 0.500000

16 Chelsea Demba Ba 3 6 0.500000

Split-apply-combine
R has a library called plyr for a split-apply-combine data analysis. The plyr library
has a function called ddply, which can be used to apply a function to a subset of a
DataFrame, and then, combine the results into another DataFrame.

R and pandas Compared

[274]

For more information on ddply, you can refer to the following:
http://www.inside-r.org/packages/cran/plyr/docs/ddply

To illustrate, let us consider a subset of a recently created dataset in R, which
contains data on flights departing NYC in 2013: http://cran.r-project.org/web/
packages/nycflights13/index.html.

Implementation in R
Here, we will install the package in R and instantiate the library:

>install.packages('nycflights13')

...

>library('nycflights13')

>dim(flights)

[1] 336776 16

>head(flights,3)

year month day dep_timedep_delayarr_timearr_delay carrier tailnum flight

1 2013 1 1 517 2 830 11 UA N14228
1545

2 2013 1 1 533 4 850 20 UA N24211
1714

3 2013 1 1 542 2 923 33 AA N619AA
1141

origindestair_time distance hour minute

1 EWR IAH 227 1400 5 17

2 LGA IAH 227 1416 5 33

3 JFK MIA 160 1089 5 42

> flights.data=na.omit(flights[,c('year','month','dep_delay','arr_
delay','distance')])

>flights.sample<- flights.data[sample(1:nrow(flights.
data),100,replace=FALSE),]

http://www.inside-r.org/packages/cran/plyr/docs/ddply
http://cran.r-project.org/web/packages/nycflights13/index.html
http://cran.r-project.org/web/packages/nycflights13/index.html

Chapter 10

[275]

>head(flights.sample,5)

year month dep_delayarr_delay distance

155501 2013 3 2 5 184

2410 2013 1 0 4 762

64158 2013 11 -7 -27 509

221447 2013 5 -5 -12 184

281887 2013 8 -1 -10 937

The ddply function enables us to summarize the departure delays (mean, standard
deviation) by year and month:

>ddply(flights.sample,.(year,month),summarize, mean_dep_
delay=round(mean(dep_delay),2), s_dep_delay=round(sd(dep_delay),2))

year month mean_dep_delaysd_dep_delay

1 2013 1 -0.20 2.28

2 2013 2 23.85 61.63

3 2013 3 10.00 34.72

4 2013 4 0.88 12.56

5 2013 5 8.56 32.42

6 2013 6 58.14 145.78

7 2013 7 25.29 58.88

8 2013 8 25.86 59.38

9 2013 9 -0.38 10.25

10 2013 10 9.31 15.27

11 2013 11 -1.09 7.73

12 2013 12 0.00 8.58

Let us save the flights.sample dataset to a CSV file so that we can use the data to
show us how to do the same thing in pandas:

>write.csv(flights.sample,file='nycflights13_sample.csv',
quote=FALSE,row.names=FALSE)

Implementation in pandas
In order to do the same thing in pandas, we read the CSV file saved in the
preceding section:

In [40]: flights_sample=pd.read_csv('nycflights13_sample.csv')

In [41]: flights_sample.head()

R and pandas Compared

[276]

Out[41]: year month dep_delayarr_delay distance

0 2013 3 2 5 184

1 2013 1 0 4 762

2 2013 11 -7 -27 509

3 2013 5 -5 -12 184

4 2013 8 -1 -10 937

We achieve the same effect as ddply by making use of the GroupBy() operator:

In [44]: pd.set_option('precision',3)

In [45]: grouped = flights_sample_df.groupby(['year','month'])

In [48]: grouped['dep_delay'].agg([np.mean, np.std])

Out[48]: mean std

year month

2013 1 -0.20 2.28

 2 23.85 61.63

 3 10.00 34.72

 4 0.88 12.56

 5 8.56 32.42

 6 58.14 145.78

 7 25.29 58.88

 8 25.86 59.38

 9 -0.38 10.25

 10 9.31 15.27

 11 -1.09 7.73

 12 0.00 8.58

Reshaping using melt
The melt function converts data into a wide format to a single column consisting of
unique ID-variable combinations.

Chapter 10

[277]

The R melt() function
Here, we demonstrate the use of the melt() function in R. It produces long-format
data in which the rows are unique variable-value combinations:

>sample4=head(flights.sample,4)[c('year','month','dep_delay','arr_
delay')]

> sample4

 year month dep_delay arr_delay

 155501 2013 3 2 5

 2410 2013 1 0 4

 64158 2013 11 -7 -27

 221447 2013 5 -5 -12

>melt(sample4,id=c('year','month'))

 year month variable value

 1 2013 3 dep_delay 2

 2 2013 1 dep_delay 0

 3 2013 11 dep_delay -7

 4 2013 5 dep_delay -5

 5 2013 3 arr_delay 5

 6 2013 1 arr_delay 4

 7 2013 11 arr_delay -27

 8 2013 5 arr_delay -12

>

For more information, you can refer to the following: http://www.statmethods.
net/management/reshape.html.

The pandas melt() function
In pandas, the melt function is similar:

In [55]: sample_4_df=flights_sample_df[['year','month','dep_delay', \

'arr_delay']].head(4)

In [56]: sample_4_df

Out[56]: year month dep_delay arr_delay

 0 2013 3 2 5

 1 2013 1 0 4

http://www.statmethods.net/management/reshape.html
http://www.statmethods.net/management/reshape.html

R and pandas Compared

[278]

 2 2013 11 -7 -27

 3 2013 5 -5 -12

In [59]: pd.melt(sample_4_df,id_vars=['year','month'])

Out[59]: year month variable value

 0 2013 3 dep_delay 2

 1 2013 1 dep_delay 0

 2 2013 11 dep_delay -7

 3 2013 5 dep_delay -5

 4 2013 3 arr_delay 5

 5 2013 1 arr_delay 4

 6 2013 11 arr_delay -27

 7 2013 5 arr_delay -12

The reference for this information is from: http://pandas.pydata.org/pandas-
docs/stable/reshaping.html#reshaping-by-melt.

Factors/categorical data
R refers to categorical variables as factors, and the cut() function enables us to
break a continuous numerical variable into ranges, and treat the ranges as factors or
categorical variables, or to classify a categorical variable into a larger bin.

An R example using cut()
Here is an example in R:

clinical.trial<- data.frame(patient = 1:1000,

age = rnorm(1000, mean = 50, sd = 5),

year.enroll = sample(paste("19", 80:99, sep = ""),

 1000, replace = TRUE))

>clinical.trial<- data.frame(patient = 1:1000,

+ age = rnorm(1000, mean = 50, sd = 5),

+ year.enroll = sample(paste("19", 80:99,
sep = ""),

+ 1000, replace = TRUE))

>summary(clinical.trial)

patient age year.enroll

http://pandas.pydata.org/pandas-docs/stable/reshaping.html#reshaping-by-melt
http://pandas.pydata.org/pandas-docs/stable/reshaping.html#reshaping-by-melt

Chapter 10

[279]

 Min. : 1.0 Min. :31.14 1995 : 61

 1st Qu.: 250.8 1st Qu.:46.77 1989 : 60

Median : 500.5 Median :50.14 1985 : 57

 Mean : 500.5 Mean :50.14 1988 : 57

 3rd Qu.: 750.2 3rd Qu.:53.50 1990 : 56

 Max. :1000.0 Max. :70.15 1991 : 55

 (Other):654

>ctcut<- cut(clinical.trial$age, breaks = 5)> table(ctcut)

ctcut

(31.1,38.9] (38.9,46.7] (46.7,54.6] (54.6,62.4] (62.4,70.2]

 15 232 558 186 9

The reference for the preceding data can be found at: http://www.r-bloggers.com/
r-function-of-the-day-cut/.

The pandas solution
Here is the equivalent of the earlier explained cut() function in pandas (only applies
to Version 0.15+):

In [79]: pd.set_option('precision',4)

clinical_trial=pd.DataFrame({'patient':range(1,1001),

 'age' : np.random.
normal(50,5,size=1000),

 'year_enroll': [str(x) for x in np.random.choice(range(1
980,2000),size=1000,replace=True)]})

In [80]: clinical_trial.describe()

Out[80]: age patient

count 1000.000 1000.000

mean 50.089 500.500

std 4.909 288.819

min 29.944 1.000

 25% 46.572 250.750

 50% 50.314 500.500

 75% 53.320 750.250

max 63.458 1000.000

http://www.r-bloggers.com/r-function-of-the-day-cut/
http://www.r-bloggers.com/r-function-of-the-day-cut/

R and pandas Compared

[280]

In [81]: clinical_trial.describe(include=['O'])

Out[81]: year_enroll

count 1000

unique 20

top 1992

freq 62

In [82]: clinical_trial.year_enroll.value_counts()[:6]

Out[82]: 1992 62

 1985 61

 1986 59

 1994 59

 1983 58

 1991 58

dtype: int64

In [83]: ctcut=pd.cut(clinical_trial['age'], 5)

In [84]: ctcut.head()

Out[84]: 0 (43.349, 50.052]

 1 (50.052, 56.755]

 2 (50.052, 56.755]

 3 (43.349, 50.052]

 4 (50.052, 56.755]

 Name: age, dtype: category

 Categories (5, object): [(29.91, 36.646] < (36.646, 43.349] <
(43.349, 50.052] < (50.052, 56.755] < (56.755, 63.458]]

In [85]: ctcut.value_counts().sort_index()

Out[85]: (29.91, 36.646] 3

 (36.646, 43.349] 82

 (43.349, 50.052] 396

 (50.052, 56.755] 434

 (56.755, 63.458] 85

dtype: int64

Chapter 10

[281]

Summary
In this chapter, we have attempted to compare key features in R with their pandas
equivalents in order to achieve the following objectives:

• To assist R users who may wish to replicate the same functionality in pandas
• To assist any users who upon reading some R code may wish to rewrite the

code in pandas

In the next chapter, we will conclude the book by giving a brief introduction to the
scikit-learn library for doing machine learning and show how pandas fits within
that framework. The reference documentation for this chapter can be found here:
http://pandas.pydata.org/pandas-docs/stable/comparison_with_r.html.

http://pandas.pydata.org/pandas-docs/stable/comparison_with_r.html

[283]

Brief Tour of Machine
Learning

This chapter takes the user on a whirlwind tour of machine learning, focusing
on using the pandas library as a tool that can be used to preprocess data used by
machine learning programs. It also introduces the user to the scikit-learn library,
which is the most popular machine learning toolkit in Python.

In this chapter, we illustrate machine learning techniques by applying them to
a well-known problem about classifying which passengers survived the Titanic
disaster at the turn of the last century. The various topics addressed in this chapter
include the following:

• Role of pandas in machine learning
• Installation of scikit-learn
• Introduction to machine learning concepts
• Application of machine learning – Kaggle Titanic competition
• Data analysis and preprocessing using pandas
• Naïve approach to Titanic problem
• scikit-learn ML classifier interface
• Supervised learning algorithms
• Unsupervised learning algorithms

Brief Tour of Machine Learning

[284]

Role of pandas in machine learning
The library we will be considering for machine learning is called scikit-learn.
The scikit-learn Python library provides an extensive library of machine learning
algorithms that can be used to create adaptive programs that learn from data inputs.

However, before this data can be used by scikit-learn, it must undergo some
preprocessing. This is where pandas comes in. The pandas can be used to preprocess
and filter data before passing it to the algorithm implemented in scikit-learn.

Installation of scikit-learn
As was mentioned in Chapter 2, Installation of pandas and the Supporting Software, the
easiest way to install pandas and its accompanying libraries is to use a third-party
distribution such as Anaconda and be done with it. Installing scikit-learn should
be no different. I will briefly highlight the steps for installation on various platforms
and third-party distributions starting with Anaconda. The scikit-learn library
requires the following libraries:

• Python 2.6.x or higher
• NumPy 1.6.1 or higher
• SciPy 0.9 or higher

Assuming that you have already installed pandas as described in Chapter 2, Installation
of pandas and the Supporting Software, these dependencies should already be in place.

Installing via Anaconda
You can install scikit-learn on Anaconda by running the conda Python
package manager:

conda install scikit-learn

Installing on Unix (Linux/Mac OS X)
For Unix, it is best to install from the source (C compiler is required). Assuming
that pandas and NumPy are already installed and the required dependent libraries
are already in place, you can install scikit-learn via Git by running the following
commands:

git clone https://github.com/scikit-learn/scikit-learn.git
cd scikitlearn
python setup.py install

Chapter 11

[285]

The pandas can also be installed on Unix by using pip from PyPi:

pip install pandas

Installing on Windows
To install on Windows, you can open a console and run the following:

pip install –U scikit-learn

For more in-depth information on installation, you can take a look at
the official scikit-learn docs at: http://scikit-learn.org/
stable/install.html.
You can also take a look at the README file for the scikit-learn
Git repository at: https://github.com/scikit-learn/scikit-
learn/blob/master/README.rst.

Introduction to machine learning
Machine learning is the art of creating software programs that learn from data.
More formally, it can be defined as the practice of building adaptive programs
that use tunable parameters to improve predictive performance. It is a sub-field
of artificial intelligence.

We can separate machine learning programs based on the type of problems they are
trying to solve. These problems are appropriately called learning problems.

The two categories of these problems, broadly speaking, are referred to as supervised
and unsupervised learning problems. Further, there are some hybrid problems that
have aspects that involve both categories.

The input to a learning problem consists of a dataset of n rows. Each row represents
a sample and may involve one or more fields referred to as attributes or features.

A dataset can be canonically described as consisting of n samples, each consisting
of m features. A more detailed introduction to machine learning is given in the
following paper:

A Few Useful Things to Know about Machine Learning at http://homes.
cs.washington.edu/~pedrod/papers/cacm12.pdf

http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
https://github.com/scikit-learn/scikit-learn/blob/master/README.rst
https://github.com/scikit-learn/scikit-learn/blob/master/README.rst
http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

Brief Tour of Machine Learning

[286]

Supervised versus unsupervised learning
For supervised learning problems, the input to a learning problem is a dataset
consisting of labeled data. By this we mean that we have outputs whose values are
known. The learning program is fed input samples and their corresponding outputs
and its goal is to decipher the relationship between them. Such input is known as
labeled data. Supervised learning problems include the following:

• Classification: The learned attribute is categorical (nominal) or discrete
• Regression: The learned attribute is numeric/continuous

In unsupervised learning or data mining, the learning program is fed inputs but no
corresponding outputs. This input data is referred to as unlabeled data. The learning
program's goal is to learn or decipher the hidden label. Such problems include
the following:

• Clustering
• Dimensionality reduction

Illustration using document classification
A common usage of machine learning techniques is in the area of document
classification. The two main categories of machine learning can be applied
to this problem - supervised and unsupervised learning.

Supervised learning
Each document in the input collection is assigned to a category, that is, a label. The
learning program/algorithm uses the input collection of documents to learn how to
make predictions for another set of documents with no labels. This method is known
as classification.

Unsupervised learning
The documents in the input collection are not assigned to categories; hence, they are
unlabeled. The learning program takes this as input and tries to cluster or discover
groups of related or similar documents. This method is known as clustering.

Chapter 11

[287]

How machine learning systems learn
Machine learning systems utilize what is known as a classifier in order to learn from
data. A classifier is an interface that takes a matrix of what is known as feature values
and produces an output vector, also known as the class. These feature values may be
discrete or continuously valued. There are three core components of classifiers:

• Representation: What type of classifier is it?
• Evaluation: How good is the classifier?
• Optimization: How to search among the alternatives?

Application of machine learning – Kaggle
Titanic competition
In order to illustrate how we can use pandas to assist us at the start of our machine
learning journey, we will apply it to a classic problem, which is hosted on the Kaggle
website (http://www.kaggle.com). Kaggle is a competition platform for machine
learning problems. The idea behind Kaggle is to enable companies that are interested
in solving predictive analytics problems with their data to post their data on Kaggle
and invite data scientists to come up with the proposed solutions to their problems.
The competition can be ongoing over a period of time, and the rankings of the
competitors are posted on a leader board. At the end of the competition, the
top-ranked competitors receive cash prizes.

The classic problem that we will study in order to illustrate the use of pandas for
machine learning with scikit-learn is the Titanic: machine learning from disaster
problem hosted on Kaggle as their classic introductory machine learning problem.
The dataset involved in the problem is a raw dataset. Hence, pandas is very useful
in the preprocessing and cleansing of the data before it is submitted as input to the
machine learning algorithm implemented in scikit-learn.

The titanic: machine learning from
disaster problem
The dataset for the Titanic consists of the passenger manifest for the doomed trip,
along with various features and an indicator variable telling whether the passenger
survived the sinking of the ship or not. The essence of the problem is to be able to
predict, given a passenger and his/her associated features, whether this passenger
survived the sinking of the Titanic or not. Please delete this sentence.

Brief Tour of Machine Learning

[288]

The data consists of two datasets: one training dataset and the other test dataset. The
training dataset consists of 891 passenger cases, and the test dataset consists of 491
passenger cases.

The training dataset also consists of 11 variables, of which 10 are features and 1
dependent/indicator variable Survived, which indicates whether the passenger
survived the disaster or not.

The feature variables are as follows:

• PassengerID
• Cabin
• Sex
• Pclass (passenger class)
• Fare
• Parch (number of parents and children)
• Age
• Sibsp (number of siblings)
• Embarked

We can make use of pandas to help us preprocess data in the following ways:

• Data cleaning and categorization of some variables
• Exclusion of unnecessary features, which obviously have no bearing on the

survivability of the passenger, for example, their name
• Handling missing data

There are various algorithms that we can use to tackle this problem. They are
as follows:

• Decision trees
• Neural networks
• Random forests
• Support vector machines

The problem of overfitting
Overfitting is a well-known problem in machine learning, whereby the program
memorizes the specific data that it is fed as input, leading to perfect results on the
training data and abysmal results on the test data.

Chapter 11

[289]

In order to prevent overfitting, the 10-fold cross-validation technique can be used to
introduce variability in the data during the training phase.

Data analysis and preprocessing using
pandas
In this section, we will utilize pandas to do some analysis and preprocessing of the
data before submitting it as input to scikit-learn.

Examining the data
In order to start our preprocessing of the data, let us read in the training dataset and
examine what it looks like.

Here, we read in the training dataset into a pandas DataFrame and display the
first rows:

In [2]: import pandas as pd

 import numpy as np

For .read_csv, always use header=0 when you know row 0 is the header
row

 train_df = pd.read_csv('csv/train.csv', header=0)

In [3]: train_df.head(3)

The output is as follows:

Brief Tour of Machine Learning

[290]

Thus, we can see the various features: PassengerId, PClass, Name, Sex, Age, Sibsp,
Parch, Ticket, Fare, Cabin, and Embarked. One question that springs to mind
immediately is this: which of the features are likely to influence whether a passenger
survived or not?

It should seem obvious that PassengerID, Ticket Code, and Name should not be
influencers on survivability since they're identifier variables. We will skip these
in our analysis.

Handling missing values
One issue that we have to deal with in datasets for machine learning is how to
handle missing values in the training set.

Let's visually identify where we have missing values in our feature set.

For that, we can make use of an equivalent of the missmap function in R, written by
Tom Augspurger. The next graphic shows how much data is missing for the various
features in an intuitively pleasing manner:

Chapter 11

[291]

For more information and the code used to generate this data, see the following:
http://bit.ly/1C0a24U.

We can also calculate how much data is missing for each of the features:

In [83]: missing_perc=train_df.apply(lambda x: 100*(1-x.count().sum()/
(1.0*len(x))))

In [85]: sorted_missing_perc=missing_perc.order(ascending=False)

 sorted_missing_perc

Out[85]: Cabin 77.104377

 Age 19.865320

 Embarked 0.224467

 Fare 0.000000

 Ticket 0.000000

 Parch 0.000000

 SibSp 0.000000

 Sex 0.000000

 Name 0.000000

 Pclass 0.000000

 Survived 0.000000

 PassengerId 0.000000

 dtype: float64

Thus, we can see that most of the Cabin data is missing (77%), while around 20% of
the Age data is missing. We then decide to drop the Cabin data from our learning
feature set as the data is too sparse to be of much use.

Let us do a further breakdown of the various features that we would like to examine.
In the case of categorical/discrete features, we use bar plots; for continuous valued
features, we use histograms:

In [137]: import random

 bar_width=0.1

 categories_map={'Pclass':{'First':1,'Second':2,
'Third':3},

 'Sex':{'Female':'female','Male':'male'},

 'Survived':{'Perished':0,'Survived':1},

 'Embarked':{'Cherbourg':'C','Queenstown':'Q','Southampton
':'S'},

 'SibSp': { str(x):x for x in [0,1,2,3,4,5,8]},

Brief Tour of Machine Learning

[292]

 'Parch': {str(x):x for x in range(7)}

 }

 colors=['red','green','blue','yellow','magenta','orange']

 subplots=[111,211,311,411,511,611,711,811]

 cIdx=0

 fig,ax=plt.subplots(len(subplots),figsize=(10,12))

 keyorder = ['Survived','Sex','Pclass','Embarked','SibSp',
'Parch']

for category_key,category_items in sorted(categories_map.iteritems(),

 key=lambda i:keyorder.
index(i[0])):

 num_bars=len(category_items)

 index=np.arange(num_bars)

 idx=0

 for cat_name,cat_val in sorted(category_items.iteritems()):

 ax[cIdx].bar(idx,len(train_df[train_df[category_key]==cat_val]),
label=cat_name,

 color=np.random.rand(3,1))

 idx+=1

 ax[cIdx].set_title('%s Breakdown' % category_key)

 xlabels=sorted(category_items.keys())

 ax[cIdx].set_xticks(index+bar_width)

 ax[cIdx].set_xticklabels(xlabels)

 ax[cIdx].set_ylabel('Count')

 cIdx +=1

fig.subplots_adjust(hspace=0.8)

for hcat in ['Age','Fare']:

 ax[cIdx].hist(train_df[hcat].dropna(),color=np.random.rand(3,1))

 ax[cIdx].set_title('%s Breakdown' % hcat)

 #ax[cIdx].set_xlabel(hcat)

 ax[cIdx].set_ylabel('Frequency')

 cIdx +=1

fig.subplots_adjust(hspace=0.8)

plt.show()

Chapter 11

[293]

From the data and illustration in the preceding figure, we can observe the following:

• About twice as many passengers perished than survived (62% vs. 38%).
• There were about twice as many male passengers as female passengers

(65% versus 35%).

Brief Tour of Machine Learning

[294]

• There were about 20% more passengers in the third class versus the first and
second together (55% versus 45%).

• Most passengers were solo, that is, had no children, parents, siblings, or
spouse on board.

These observations might lead us to dig deeper and investigate whether there is some
correlation between chances of survival and gender and also fare class, particularly if
we take into account the fact that the Titanic had a women-and-children-first policy
(http://en.wikipedia.org/wiki/Women_and_children_first) and the fact that
the Titanic was carrying fewer lifeboats (20) than it was designed to (32).

In light of this, let us further examine the relationships between survival and some of
these features. We start with gender:

In [85]: from collections import OrderedDict

 num_passengers=len(train_df)

 num_men=len(train_df[train_df['Sex']=='male'])

 men_survived=train_df[(train_df['Survived']==1) & (train_
df['Sex']=='male')]

 num_men_survived=len(men_survived)

 num_men_perished=num_men-num_men_survived

 num_women=num_passengers-num_men

 women_survived=train_df[(train_df['Survived']==1) & (train_
df['Sex']=='female')]

 num_women_survived=len(women_survived)

 num_women_perished=num_women-num_women_survived

 gender_survival_dict=OrderedDict()

 gender_survival_dict['Survived']={'Men':num_men_
survived,'Women':num_women_survived}

 gender_survival_dict['Perished']={'Men':num_men_
perished,'Women':num_women_perished}

 gender_survival_dict['Survival Rate']= {'Men' :
 round(100.0*num_men_survived/num_men,2),
 'Women':round(100.0*num_women_survived/num_women,2)}

pd.DataFrame(gender_survival_dict)

Out[85]:

Chapter 11

[295]

Gender Survived Perished Survival Rate
Men 109 468 18.89
Women 233 81 74.2

We now illustrate this data in a bar chart using the following command:

In [76]: #code to display survival by gender

 fig = plt.figure()

 ax = fig.add_subplot(111)

 perished_data=[num_men_perished, num_women_perished]

 survived_data=[num_men_survived, num_women_survived]

 N=2

 ind = np.arange(N) # the x locations for the groups

 width = 0.35

 survived_rects = ax.barh(ind, survived_data,
width,color='green')

 perished_rects = ax.barh(ind+width, perished_data,
width,color='red')

 ax.set_xlabel('Count')

 ax.set_title('Count of Survival by Gender')

 yTickMarks = ['Men','Women']

 ax.set_yticks(ind+width)

 ytickNames = ax.set_yticklabels(yTickMarks)

 plt.setp(ytickNames, rotation=45, fontsize=10)

 ## add a legend

 ax.legend((survived_rects[0], perished_rects[0]), ('Survived',
'Perished'))

 plt.show()

Brief Tour of Machine Learning

[296]

The preceding code produces the following bar graph:

From the preceding plot, we can see that a majority of the women survived (74%),
while most of the men perished (only 19% survived).

This leads us to the conclusion that the gender of the passenger may be a
contributing factor to whether a passenger survived or not.

Next, let us look at passenger class. First, we generate the survived and perished
data for each of the three passenger classes, as well as survival rates and show
them in a table:

In [86]:

from collections import OrderedDict

num_passengers=len(train_df)

num_class1=len(train_df[train_df['Pclass']==1])

class1_survived=train_df[(train_df['Survived']==1) & (train_
df['Pclass']==1)]

num_class1_survived=len(class1_survived)

num_class1_perished=num_class1-num_class1_survived

num_class2=len(train_df[train_df['Pclass']==2])

Chapter 11

[297]

class2_survived=train_df[(train_df['Survived']==1) & (train_
df['Pclass']==2)]

num_class2_survived=len(class2_survived)

num_class2_perished=num_class2-num_class2_survived

num_class3=num_passengers-num_class1-num_class2

class3_survived=train_df[(train_df['Survived']==1) & (train_
df['Pclass']==3)]

num_class3_survived=len(class3_survived)

num_class3_perished=num_class3-num_class3_survived

pclass_survival_dict=OrderedDict()

pclass_survival_dict['Survived']={'1st Class':num_class1_survived,

 '2nd Class':num_class2_survived,

 '3rd Class':num_class3_survived}

pclass_survival_dict['Perished']={'1st Class':num_class1_perished,

 '2nd Class':num_class2_perished,

 '3rd Class':num_class3_perished}

pclass_survival_dict['Survival Rate']= {'1st Class' : round(100.0*num_
class1_survived/num_class1,2),

 '2nd Class':round(100.0*num_class2_survived/num_class2,2),

 '3rd Class':round(100.0*num_class3_survived/num_
class3,2),}

pd.DataFrame(pclass_survival_dict)

Out[86]:

Passenger Class Survived Perished Survival Rate
First Class 136 80 62.96
Second Class 87 97 47.28
Third Class 119 372 24.24

We can then plot the data by using matplotlib in a similar manner to that for the
survivor count by gender as described earlier:

In [186]:

fig = plt.figure()

ax = fig.add_subplot(111)

perished_data=[num_class1_perished, num_class2_perished, num_class3_
perished]

Brief Tour of Machine Learning

[298]

survived_data=[num_class1_survived, num_class2_survived, num_class3_
survived]

N=3

ind = np.arange(N) # the x locations for the groups

width = 0.35

survived_rects = ax.barh(ind, survived_data, width,color='blue')

perished_rects = ax.barh(ind+width, perished_data, width,color='red')

ax.set_xlabel('Count')

ax.set_title('Survivor Count by Passenger class')

yTickMarks = ['1st Class','2nd Class', '3rd Class']

ax.set_yticks(ind+width)

ytickNames = ax.set_yticklabels(yTickMarks)

plt.setp(ytickNames, rotation=45, fontsize=10)

add a legend

ax.legend((survived_rects[0], perished_rects[0]), ('Survived',
'Perished'),

 loc=10)

plt.show()

This produces the following bar plot:

Chapter 11

[299]

It seems clear from the preceding data and illustration that the higher the passenger
fare class is, the greater are one's chances of survival.

Given that both gender and fare class seem to influence the chances of a passenger's
survival, let's see what happens when we combine these two features and plot a
combination of both. For this, we shall use the crosstab function in pandas.

In [173]: survival_counts=pd.crosstab([train_df.Pclass,train_
df.Sex],train_df.Survived.astype(bool))

 survival_counts

Out[173]: Survived False True

 Pclass Sex

 1 female 3 91

 male 77 45

 2 female 6 70

 male 91 17

 3 female 72 72

 male 300 47

Let us now display this data using matplotlib. First, let's do some re-labeling for
display purposes:

In [183]: survival_counts.index=survival_counts.index.set_levels([['1st',
'2nd', '3rd'], ['Women', 'Men']])

In [184]: survival_counts.columns=['Perished','Survived']

Now, we plot the data by using the plot function of a pandas DataFrame:

In [185]: fig = plt.figure()

 ax = fig.add_subplot(111)

 ax.set_xlabel('Count')

 ax.set_title('Survivor Count by Passenger class, Gender')

 survival_counts.plot(kind='barh',ax=ax,width=0.75,

 color=['red','black'], xlim=(0,400))

Out[185]: <matplotlib.axes._subplots.AxesSubplot at 0x7f714b187e90>

Brief Tour of Machine Learning

[300]

A naïve approach to Titanic problem
Our first attempt at classifying the Titanic data is to use a naïve, yet very intuitive,
approach. This approach involves the following steps:

1. Select a set of features S, which influence whether a person survives or not.
2. For each possible combination of features, use the training data to indicate

whether the majority of cases survived or not. This can be evaluated in what
is known as a survival matrix.

3. For each test example that we wish to predict survival, look up the
combination of features that corresponds to the values of its features and
assign its predicted value to the survival value in the survival table. This
approach is a naive K-nearest neighbor approach.

Based on what we have seen earlier in our analysis, there are three features that seem
to have the most influence on the survival rate:

• Passenger class
• Gender
• Passenger fare (bucketed)

Chapter 11

[301]

We include passenger fare as it is related to passenger class.

The survival table looks something similar to the following:

 NumberOfPeople Pclass PriceBucket Sex Survived

0 0 1 0 female 0

1 1 1 0 male 0

2 0 1 1 female 0

3 0 1 1 male 0

4 7 1 2 female 1

5 34 1 2 male 0

6 1 1 3 female 1

7 19 1 3 male 0

8 0 2 0 female 0

9 0 2 0 male 0

10 35 2 1 female 1

11 63 2 1 male 0

12 31 2 2 female 1

13 25 2 2 male 0

14 4 2 3 female 1

15 6 2 3 male 0

16 64 3 0 female 1

17 256 3 0 male 0

18 43 3 1 female 1

19 38 3 1 male 0

20 21 3 2 female 0

21 24 3 2 male 0

22 10 3 3 female 0

23 5 3 3 male 0

The code for generating this table can be found in the file survival_data.py
which is attached. To see how we use this table, let us take a look at a snippet
of our test data:

In [192]: test_df.head(3)[['PassengerId','Pclass','Sex','Fare']]

Out[192]: PassengerId Pclass Sex Fare

 0 892 3 male 7.8292

 1 893 3 female 7.0000

 2 894 2 male 9.6875

Brief Tour of Machine Learning

[302]

For passenger 892, we see that he is male, his ticket price was 7.8292, and he travelled
in the third class.

Hence, the key for survival table lookup for this passenger is {Sex='male', Pclass=3,
PriceBucket=0 (since 7.8292 falls in bucket 0)}.

If we look up the survival value corresponding to this key in our survival table
(row 17), we see that the value is 0 = Perished; this is the value that we will predict.

Similarly, for passenger 893, we have key={Sex='female', Pclass=3, PriceBucket=0}.

This corresponds to row 16, and hence, we will predict 1, that is, survived, and her
predicted survival is 1, that is, survived.

Thus, our results look like the following command:

> head -4 csv/surv_results.csv

PassengerId,Survived

892,0

893,1

894,0

The source of this information is at: http://bit.ly/1FU7mXj.

Using the survival table approach outlined earlier, one is able to achieve an accuracy
of 0.77990 on Kaggle (http://www.kaggle.com).

The survival table approach, while intuitive, is a very basic approach that represents
only the tip of the iceberg of possibilities in machine learning.

In the following sections, we will take a whirlwind tour of various machine learning
algorithms that will help you, the reader, to get a feel for what is available in the
machine learning universe.

The scikit-learn ML/classifier interface
We'll be diving into the basic principles of machine learning and demonstrate the use
of these principles via the scikit-learn basic API.

The scikit-learn library has an estimator interface. We illustrate it by using a
linear regression model. For example, consider the following:

In [3]: from sklearn.linear_model import LinearRegression

Chapter 11

[303]

The estimator interface is instantiated to create a model, which is a linear regression
model in this case:

In [4]: model = LinearRegression(normalize=True)

In [6]: print model

 LinearRegression(copy_X=True, fit_intercept=True, normalize=True)

Here, we specify normalize=True, indicating that the x-values will be normalized
before regression. Hyperparameters (estimator parameters) are passed on as
arguments in the model creation. This is an example of creating a model with
tunable parameters.

The estimated parameters are obtained from the data when the data is fitted with an
estimator. Let us first create some sample training data that is normally distributed
about y = x/2. We first generate our x and y values:

In [51]: sample_size=500

 x = []

 y = []

 for i in range(sample_size):

 newVal = random.normalvariate(100,10)

 x.append(newVal)

 y.append(newVal / 2.0 + random.normalvariate(50,5))

sklearn takes a 2D array of num_samples × num_features as input, so we convert
our x data into a 2D array:

In [67]: X = np.array(x)[:,np.newaxis]

 X.shape

Out[67]: (500, 1)

In this case, we have 500 samples and 1 feature, x. We now train/fit the model and
display the slope (coefficient) and the intercept of the regression line, which is
the prediction:

In [71]: model.fit(X,y)

 print "coeff=%s, intercept=%s" % (model.coef_,model.intercept_)

 coeff=[0.47071289], intercept=52.7456611783

Brief Tour of Machine Learning

[304]

This can be visualized as follows:

In [65]: plt.title("Plot of linear regression line and training data")

 plt.xlabel('x')

 plt.ylabel('y')

 plt.scatter(X,y,marker='o', color='green', label='training
data');

 plt.plot(X,model.predict(X), color='red', label='regression
line')

 plt.legend(loc=2)

Out[65]: [<matplotlib.lines.Line2D at 0x7f11b0752350]

To summarize the basic use of estimator interface, follow these steps:

1. Define your model - LinearRegression, SupportVectorMachine, DecisionTrees,
and so on. You can specify the needed hyperparameters in this step. For
example, normalize=True as specified earlier.

2. Once the model has been defined, you can train your model on your data by
calling the fit(..) method on the model defined in the previous step.

3. Once we have fit the model, we can call the predict(..) method on test
data in order to make predictions or estimations.

4. In the case of a supervised learning problem, the predict(X) method is
given unlabeled observations X and returns predicted labels y.

Chapter 11

[305]

For extra reference, please see the following: http://bit.ly/1FU7mXj
and http://bit.ly/1QqFN2V.

Supervised learning algorithms
We will take a brief tour of some well-known supervised learning algorithms and see
how we can apply them to the Titanic survival prediction problem described earlier.

Constructing a model using Patsy for
scikit-learn
Before we start our tour of the machine learning algorithms, we need to know a little
bit about the Patsy library. We will make use of Patsy to design features that will
be used in conjunction with scikit-learn. Patsy is a package for creating what
are known as design matrices. These design matrices are transformations of the
features in our input data. The transformations are specified by expressions known
as formulas, which correspond to a specification of what features we wish the
machine learning program to utilize in learning.

A simple example of this is as follows:

Suppose that we want a linear regression of y against some other variables of x, a,
and b and the interaction between a and b; then, we can specify the model as follows:

import patsy as pts

pts.dmatrices("y ~ x + a + b + a:b", data)

In the preceding line of code, the formula is specified by the following expression: y
~ x + a + b + a:b.

For further reference, look at: http://patsy.readthedocs.org/en/
latest/overview.html

http://bit.ly/1FU7mXj
http://bit.ly/1QqFN2V
http://patsy.readthedocs.org/en/latest/overview.html
http://patsy.readthedocs.org/en/latest/overview.html

Brief Tour of Machine Learning

[306]

General boilerplate code explanation
In this section, we will introduce boilerplate code for the implementation of the
various following algorithms by using Patsy and scikit-learn. The reason for
doing this is that most of the code for the following algorithms is repeatable.

In the following sections, the workings of the algorithms will be described and the
code specific to each algorithm will be provided as attachments to the chapter.

1. First, let's make sure that we're in the correct folder by using the following
command line. Assuming that the working directory is located at ~/devel/
Titanic, we have:
In [17]: %cd ~/devel/Titanic

 /home/youruser/devel/sandbox/Learning/Kaggle/Titanic

2. Here, we import the needed packages and read in our training and test
datasets:
In [18]: import matplotlib.pyplot as plt

 import pandas as pd

 import numpy as np

 import patsy as pt

In [19]: train_df = pd.read_csv('csv/train.csv', header=0)

 test_df = pd.read_csv('csv/test.csv', header=0)

3. Next, we specify the formulas we would like to submit to Patsy:
In [21]: formula1 = 'C(Pclass) + C(Sex) + Fare'

 formula2 = 'C(Pclass) + C(Sex)'

 formula3 = 'C(Sex)'

 formula4 = 'C(Pclass) + C(Sex) + Age + SibSp + Parch'

 formula5 = 'C(Pclass) + C(Sex) + Age + SibSp + Parch +
C(Embarked)'

 formula6 = 'C(Pclass) + C(Sex) + Age + SibSp +
C(Embarked)'

 formula7 = 'C(Pclass) + C(Sex) + SibSp + Parch +
C(Embarked)'

 formula8 = 'C(Pclass) + C(Sex) + SibSp + Parch +
C(Embarked)'

In [23]: formula_map = {'PClass_Sex_Fare' : formula1,

 'PClass_Sex' : formula2,

Chapter 11

[307]

 'Sex' : formula3,

 'PClass_Sex_Age_Sibsp_Parch' : formula4,

 'PClass_Sex_Age_Sibsp_Parch_Embarked' :
formula5,

 'PClass_Sex_Embarked' : formula6,

 'PClass_Sex_Age_Parch_Embarked' : formula7,

 'PClass_Sex_SibSp_Parch_Embarked' : formula8

 }

We will define a function that helps us handle missing values. The following
function finds the cells within the DataFrame that have null values, obtains the set of
similar passengers, and sets the null value to the mean value of that feature for the
set of similar passengers. Similar passengers are defined as those having the same
gender and passenger class as the passengers with the null feature value.

In [24]:

def fill_null_vals(df,col_name):

 null_passengers=df[df[col_name].isnull()]

 passenger_id_list = null_passengers['PassengerId'].tolist()

 df_filled=df.copy()

 for pass_id in passenger_id_list:

 idx=df[df['PassengerId']==pass_id].index[0]

 similar_passengers = df[(df['Sex']==

 null_passengers['Sex'][idx]) &

 (df['Pclass']==null_passengers['Pclass'][idx])]

 mean_val = np.mean(similar_passengers[col_name].dropna())

 df_filled.loc[idx,col_name]=mean_val

 return df_filled

Here, we create filled versions of our training and test DataFrames.

Our test DataFrame is what the fitted scikit-learn model will generate predictions
on to produce output that will be submitted to Kaggle for evaluation:

In [28]: train_df_filled=fill_null_vals(train_df,'Fare')

 train_df_filled=fill_null_vals(train_df_filled,'Age')

 assert len(train_df_filled)==len(train_df)

 test_df_filled=fill_null_vals(test_df,'Fare')

 test_df_filled=fill_null_vals(test_df_filled,'Age')

 assert len(test_df_filled)==len(test_df)

Brief Tour of Machine Learning

[308]

Here is the actual implementation of the call to scikit-learn to learn from the
training data by fitting a model and then generate predictions on the test dataset.
Note that even though this is boilerplate code, for the purpose of illustration, an
actual call is made to a specific algorithm, in this case, DecisionTreeClassifier.

The output data is written to files with descriptive names, for example, csv/dt_
PClass_Sex_Age_Sibsp_Parch_1.csv and csv/dt_PClass_Sex_Fare_1.csv.

In [29]:

from sklearn import metrics,svm, tree

for formula_name, formula in formula_map.iteritems():

 print "name=%s formula=%s" % (formula_name,formula)

 y_train,X_train = pt.dmatrices('Survived ~ ' + formula,

 train_df_filled,return_
type='dataframe')

 y_train = np.ravel(y_train)

 model = tree.DecisionTreeClassifier(criterion='entropy',

 max_depth=3,min_samples_leaf=5)

 print "About to fit..."

 dt_model = model.fit(X_train, y_train)

 print "Training score:%s" % dt_model.score(X_train,y_train)

 X_test=pt.dmatrix(formula,test_df_filled)

 predicted=dt_model.predict(X_test)

 print "predicted:%s" % predicted[:5]

 assert len(predicted)==len(test_df)

 pred_results = pd.Series(predicted,name='Survived')

 dt_results = pd.concat([test_df['PassengerId'],

 pred_results],axis=1)

 dt_results.Survived = dt_results.Survived.astype(int)

 results_file = 'csv/dt_%s_1.csv' % (formula_name)

 print "output file: %s\n" % results_file

 dt_results.to_csv(results_file,index=False)

The preceding code follows a standard recipe, and the synopsis is as follows:

1. Read in the training and test datasets
2. Fill in any missing values for the features we wish to consider in

both datasets

Chapter 11

[309]

3. Define formulas for the various feature combinations we wish to generate
machine learning models for in Patsy

4. For each formula, perform the following set of steps:
1. Call Patsy to create design matrices for our training feature set and

training label set (designated by X_train and y_train).
2. Instantiate the appropriate scikit-learn classifier. In this case, we

use DecisionTreeClassifier.
3. Fit the model by calling the fit(..) method.
4. Make a call to Patsy to create a design matrix (X_test) for our

predicted output via a call to patsy.dmatrix(..).
5. Predict on the X_test design matrix, and save the results in the

variable predicted.
6. Write our predictions to an output file, which will be submitted

to Kaggle.

We will consider the following supervised learning algorithms:

• Logistic regression
• Support vector machine
• Decision tree
• Random forest

Logistic regression
In logistic regression, we attempt to predict the outcome of a categorical, that is,
discrete-valued dependent, variable on the basis of one or more input predictor
variables.

Logistic regression can be thought of as the equivalent of applying linear regression
but on discrete or categorical variables. However, in the case of binary logistic
regression (which applies to the Titanic problem), the function to which we're trying
to fit is not a linear one as we're only trying to predict an outcome that can take
only two values – 0 and 1. Using a linear function for our regression doesn't make
sense as the output cannot take values between 0 and 1. Ideally, what we need to
model for the regression of a binary valued output is some sort of step function for
values 0 and 1. However, such a function is not well-defined and not differentiable,
so an approximation with nicer properties was defined: the logistic function. The
logistic function takes values between 0 and 1 but is skewed towards the extreme
values of 0 and 1 and can be used as a good approximation for the regression of
categorical variables.

Brief Tour of Machine Learning

[310]

The formal definition of the logistic regression function is as follows:

() ()
1

1 ax
f x

e−
=

+

The following graph is a good illustration as to why the logistic function is suitable
for binary logistic regression:

We can see that as we increase the value of our parameter a, we can get closer to
taking on the 0 to 1 values and to the step function we wish to model. A simple
application of the preceding function would be to set the output value to 0, if f(x)
<0.5, and 1 if not.

The code for plotting the function is included in plot_logistic.py.

A more detailed examination of the logistic regression may be
found here at: http://en.wikipedia.org/wiki/Logit and
http://logisticregressionanalysis.com/86-what-is-
logistic-regression.

In applying logistic regression to the Titanic problem, we wish to predict a binary
outcome, that is, whether a passenger survived or not.

We adapted the boilerplate code to use the sklearn.linear_model.
LogisticRegression class of scikit-learn.

http://en.wikipedia.org/wiki/Logit
http://logisticregressionanalysis.com/86-what-is-logistic-regression
http://logisticregressionanalysis.com/86-what-is-logistic-regression

Chapter 11

[311]

Upon submitting our data to Kaggle, the following results were obtained:

Formula Kaggle Score
C(Pclass) + C(Sex) + Fare 0.76077
C(Pclass) + C(Sex) 0.76555
C(Sex) 0.76555
C(Pclass) + C(Sex) + Age + SibSp + Parch 0.74641
C(Pclass) + C(Sex) + Age + Sibsp + Parch + C(Embarked) 0.75598

The code implementing logistic regression can be found in the run_logistic_
regression_titanic.py file.

Support vector machine
Support vector machine (SVM) is a powerful supervised learning algorithm used
for classification and regression. It is a discriminative classifier–it draws a boundary
between clusters or classifications of data, so new points can be classified on the basis
of the cluster that they fall into.

SVMs do not just find a boundary line; they also try to determine margins for the
boundary on either side. The SVM algorithm tries to find the boundary with the
largest possible margin around it.

Support vectors are points that define the largest margin around the boundary–remove
these points, and possibly, a larger margin can be found.

Hence the name, support, as they support the margin around the boundary line. The
support vectors matter. This is illustrated in the following diagram:

Brief Tour of Machine Learning

[312]

For more information on this, refer to http://winfwiki.wi-fom.
de/images/c/cf/Support_vector_2.png.

To use the SVM algorithm for classification, we specify one of the following three
kernels: linear, poly, and rbf (also known as radial basis functions).

Then, we import the support vector classifier (SVC):

from sklearn import svm

We then instantiate an SVM classifier, fit the model, and predict the following:

model = svm.SVC(kernel=kernel)

svm_model = model.fit(X_train, y_train)

X_test = pt.dmatrix(formula, test_df_filled)

. . .

Upon submitting our data to Kaggle, the following results were obtained:

Formula Kernel Type Kaggle
Score

C(Pclass) + C(Sex) + Fare poly 0.71292
C(Pclass) + C(Sex) poly 0.76555
C(Sex) poly 0.76555
C(Pclass) + C(Sex) + Age + SibSp + Parch poly 0.75598
C(Pclass) + C(Sex) + Age + Parch + C(Embarked) poly 0.77512
C(Pclass) + C(Sex) + Age + Sibsp + Parch + C(embarked) poly 0.79426
C(Pclass) + C(Sex) + Age + Sibsp + Parch + C(Embarked) rbf 0.7512

The code can be seen in its entirety in the following file: run_svm_titanic.py.

Here, we see that the SVM with a kernel type of poly (polynomial) and the
combination of Pclass, Sex, Age, Sibsp, and Parch features produces the best results
when submitted to Kaggle. Surprisingly, it seems as if the embarkation point
(Embarked) and whether the passenger travelled alone or with family members
(Sibsp + Parch) do have a material effect on a passenger's chances of survival.

The latter effect was probably due to the women-and-children-first policy on
the Titanic.

http://winfwiki.wi-fom.de/images/c/cf/Support_vector_2.png
http://winfwiki.wi-fom.de/images/c/cf/Support_vector_2.png

Chapter 11

[313]

Decision trees
The basic idea behind decision trees is to use the training dataset to create a tree of
decisions in order to make a prediction.

It recursively splits the training dataset into subsets on the basis of the value of a
single feature. Each split corresponds to a node in the decision tree. The splitting
process is continued until every subset is pure, that is, all elements belong to a single
class. This always works except in cases where there are duplicate training examples
that fall into different classes. In this case, the majority class wins.

The end result is a rule set for making predictions on the test dataset.

Decision trees encode a sequence of binary choices in a process that mimics how a
human might classify things, but decide which question is most useful at each step
by using the information criteria.

An example of this would be if you wished to determine whether an animal x is a
mammal, fish, or a reptile; in this case, we would ask the following questions:

- Does x have fur?

Yes: x is a mammal

No: Does x have feathers?

Yes: x is a bird

No: Does x have scales?

Yes: Does x have gills?

Yes: x is a fish

No: x is a reptile

No: x is an amphibian

Brief Tour of Machine Learning

[314]

This generates a decision tree that looks similar to the following:

Decision tree for classification of vertibrates

x is a mammal x has feathers?

Yes No

Yes No

Yes No

Yes No

x has fur?

x is a bird x has scales?

x has gills? x is amphibian

x is a fish x is a reptile

Refer to the following link for more information:
http://bit.ly/1C0cM2e.

The binary splitting of questions at each node is the essence of a decision tree
algorithm. A major drawback of decision trees is that they can overfit the data.

They are so flexible that given a large depth, they can memorize the inputs, and this
results in poor results when they are used to classify unseen data.

The way to fix this is to use multiple decision trees, and this is known as using an
ensemble estimator. An example of an ensemble estimator is the random forest
algorithm, which we will address next.

To use a decision tree in scikit-learn, we import the tree module:

from sklearn import tree

http://bit.ly/1C0cM2e

Chapter 11

[315]

We then instantiate an SVM classifier, fit the model, and predict the following:

model = tree.DecisionTreeClassifier(criterion='entropy',

 max_depth=3,min_samples_leaf=5)

dt_model = model.fit(X_train, y_train)
X_test = dt.dmatrix(formula, test_df_filled)

#. . .

Upon submitting our data to Kaggle, the following results are obtained:

Formula Kaggle Score
C(Pclass) + C(Sex) + Fare 0.77033
C(Pclass) + C(Sex) 0.76555
C(Sex) 0.76555
C(Pclass) + C(Sex) + Age + SibSp + Parch 0.76555
C(Pclass) + C(Sex) + Age + Parch +
C(Embarked)

0.78947

C(Pclass) + C(Sex) + Age + Sibsp + Parch + C(Embarked) 0.79426

Random forest
The random forest is an example of a non-parametric model as are decision trees.
Random forests are based on decision trees. The decision boundary is learned from
the data itself. It doesn't have to be a line or a polynomial or radial basis function.
The random forest model builds upon the decision tree concept by producing a large
number of or a forest of decision trees. It takes a random sample of the data and
identifies a set of features to grow each decision tree. The error rate of the model is
compared across sets of decision trees to find the set of features that produces the
strongest classification model.

To use a random forest in scikit-learn, we import the RandomForestClassifier
module:

from sklearn import RandomForestClassifier

Brief Tour of Machine Learning

[316]

We then instantiate a random forest classifier, fit the model, and predict
the following:

model = RandomForestClassifier(n_estimators=num_estimators,

 random_state=0)

rf_model = model.fit(X_train, y_train)

X_test = dt.dmatrix(formula, test_df_filled)

. . .

Upon submitting our data to Kaggle (Formula: C(Pclass) + C(Sex) + Age + Sibsp +
Parch + C(Embarked)), the following results are obtained:

Formula Kaggle Score
10 0.74163
100 0.76077
1000 0.76077
10000 0.77990
100000 0.77990

Unsupervised learning algorithms
There are two tasks that we are mostly concerned with in unsupervised learning:
dimensionality reduction and clustering.

Dimensionality reduction
Dimensionality reduction is used to help visualize higher-dimensional data in a
systematic way. This is useful because our human brains can visualize only three
spatial dimensions (and possibly, a temporal one), but most datasets involve much
higher dimensions.

The typical technique used in dimensionality reduction is Principal Component
Analysis (PCA). PCA involves using linear algebra techniques to project higher-
dimensional data onto a lower-dimensional space. This inevitably involves the
loss of information, but often by projecting along the correct set and number of
dimensions, the information loss can be minimized. A common dimensionality
reduction technique is to find the combination of variables that explain the most
variance (proxy for information) in our data and project along these dimensions.

Chapter 11

[317]

In the case of unsupervised learning problems, we do not have the set of labels
(Y), and so, we only call fit() on the input data X itself, and for PCA, we call
transform() instead of predict() as we're trying to transform the data into
a new representation.

One of the datasets that we will be using to demonstrate USL is the iris dataset,
possibly the most famous dataset in all of machine learning.

The scikit-learn library provides a set of pre-packaged datasets, which are
available via the sklearn.datasets modules. The iris dataset is one of them.

The iris dataset consists of 150 samples of data from three different species of iris
flowers - versicolor, setosa, and virginica with 50 samples of each type. The dataset
consists of four features/dimensions:

• petal length
• petal width
• sepal length
• sepal width

The length and width values are in centimeters. It can be loaded as follows:

from sklearn.datasets import load_iris

iris = load_iris()

In our examination of unsupervised learning, we will be focusing on how to
visualize and cluster this data.

Before discussing unsupervised learning, let us examine the iris data a bit. The
load_iris() command returns what is known as a bunch object, which is
essentially a dictionary with keys in addition to the key containing the data.
Hence, we have the following:

In [2]: iris_data.keys()

Out[2]: ['target_names', 'data', 'target', 'DESCR', 'feature_names']

Further, the data itself looks similar to the following:

In [3]: iris_data.data.shape

Out[3]: (150, 4)

Brief Tour of Machine Learning

[318]

This corresponds to 150 samples of four features. These four features are shown
as follows:

In [4]: print iris_data.feature_names

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal
width (cm)']

We can also take a peek at the actual data:

In [9]: print iris_data.data[:2]

[[5.1 3.5 1.4 0.2]

 [4.9 3. 1.4 0.2]]

Our target names (what we're trying to predict) look similar to the following:

In [10]: print iris_data.target_names

 ['setosa' 'versicolor' 'virginica']

As noted earlier, the iris feature set corresponds to five-dimensional data and we
cannot visualize this on a color plot. One thing that we can do is pick two features
and plot them against each other, while using color to differentiate between the
species feature. We do this next for all the possible combinations of features,
selecting two at a time for a set of six different possibilities. These combinations
are as follows:

• Sepal width versus sepal length
• Sepal width versus petal width
• Sepal width versus petal length
• Sepal length versus petal width
• Sepal length versus petal length
• Petal width versus petal length

Chapter 11

[319]

The code for this may be found in the following file: display_iris_dimensions.py.
From the preceding plots, we can observe that the setosa points tend to be clustered
by themselves, while there is a bit of overlap between the virginica and the versicolor
points. This may lead us to conclude that the latter two species are more closely
related to one another than to the setosa species.

These are, however, two-dimensional slices of data. What if we wanted a somewhat
more holistic view of the data, with some representation of all four sepal and
petal dimensions?

What if there were some hitherto undiscovered connection between the dimensions
that our two-dimensional plot wasn't showing? Is there a means of visualizing this?
Enter dimensionality reduction. We will use dimensionality reduction to extract two
combinations of sepal and petal dimensions to help visualize it.

Brief Tour of Machine Learning

[320]

We can apply dimensionality reduction to do this as follows:

In [118]: X, y = iris_data.data, iris_data.target

 from sklearn.decomposition import PCA

 pca = PCA(n_components=2)

 pca.fit(X)

 X_red=pca.transform(X)

 print "Shape of reduced dataset:%s" % str(X_red.shape)

 Shape of reduced dataset:(150, 2)

Thus, we see that the reduced dataset is now in two dimensions. Let us display the
data visually in two dimensions as follows:

In [136]: figsize(8,6)

 fig=plt.figure()

 fig.suptitle("Dimensionality reduction on iris data")

 ax=fig.add_subplot(1,1,1)

 colors=['red','yellow','magenta']

 cols=[colors[i] for i in iris_data.target]

 ax.scatter(X_red[:,0],X[:,1],c=cols)

Out[136]:

<matplotlib.collections.PathCollection at 0x7fde7fae07d0>

Chapter 11

[321]

We can examine the makeup of the PCA-reduced two dimensions as follows:

In [57]:

print "Dimension Composition:"

idx=1

for comp in pca.components_:

 print "Dim %s" % idx

 print " + ".join("%.2f x %s" % (value, name)

 for value, name in zip(comp, iris_data.feature_
names))

 idx += 1

Dimension Composition:

Dim 1

0.36 x sepal length (cm) + -0.08 x sepal width (cm) + 0.86 x petal length
(cm) + 0.36 x petal width (cm)

Dim 2

-0.66 x sepal length (cm) + -0.73 x sepal width (cm) + 0.18 x petal
length (cm) + 0.07 x petal width (cm)

Thus, we can see that the two reduced dimensions are a linear combination of all
four sepal and petal dimensions.

The source of this information is at: https://github.com/jakevdp/sklearn_
pycon2014.

K-means clustering
The idea behind clustering is to group together similar points in a dataset on the
basis of a given criterion, thus finding clusters in the data.

The K-means algorithm aims to partition a set of data points into K clusters such that
each data point belongs to the cluster with the nearest mean point or centroid.

To illustrate K-means clustering, we can apply it to the set of reduced iris data that
we obtained via PCA, but in this case, we do not pass the actual labels to the fit(..)
method as we do for supervised learning:

In [142]: from sklearn.cluster import KMeans

 k_means = KMeans(n_clusters=3, random_state=0)

 k_means.fit(X_red)

 y_pred = k_means.predict(X_red)

https://github.com/jakevdp/sklearn_pycon2014
https://github.com/jakevdp/sklearn_pycon2014

Brief Tour of Machine Learning

[322]

We now display the clustered data as follows:

In [145]: figsize(8,6)

 fig=plt.figure()

 fig.suptitle("K-Means clustering on PCA-reduced iris data,
K=3")

 ax=fig.add_subplot(1,1,1)

 ax.scatter(X_red[:, 0], X_red[:, 1], c=y_pred);

Note that our K-means algorithm clusters do not exactly correspond to the
dimensions obtained via PCA. The source code is available at https://github.com/
jakevdp/sklearn_pycon2014.

More information on K-means clustering in scikit-learn and, in
general, can be found here at:
http://scikit-learn.org/stable/auto_examples/cluster/
plot_cluster_iris.html and http://en.wikipedia.org/wiki/
K-means_clustering.

https://github.com/jakevdp/sklearn_pycon2014
https://github.com/jakevdp/sklearn_pycon2014
http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_iris.html
http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_iris.html
http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering

Chapter 11

[323]

Summary
In this chapter, we embarked on a whirlwind tour of machine learning, examining
the role of pandas in feature extraction, selection, and engineering as well as learning
about key concepts in machine learning such as supervised versus unsupervised
learning. We also had a brief introduction to a few key algorithms in both methods
of machine learning and used the scikit-learn package to utilize these algorithms
to learn and make predictions on data. This chapter was not intended to be a
comprehensive treatment of machine learning, but rather to illustrate how pandas
can be used to assist users in the machine learning space.

[325]

Index
Symbols
4-4-5 calendar

reference link 253
4V's, of big data

about 2-4
variety 3
velocity 3
veracity 4
volume 2

.at operator 81

.iat operator 81

.iloc operator 75
%in% operator 271
.ix operator

about 75
indexing, mixing with 81-84

.loc operator 75

A
Active State Python

URL 15
aggregate method

using 111
aggregation, in R 268, 269
aliases, for Time Series frequencies 154
alpha 176
alternative hypothesis 175
Anaconda

about 17
installing 17
installing, final steps 18
installing, on Linux 17
installing, on Mac OS X 18
installing, on Windows 18

IPython installation 27
numeric or analytics-focused Python

distributions 19
scikit-learn, installing via 284
URL 17
URL, for downloading 17

append function 118, 119
arithmetic operations

applying, on columns 266

B
Bayesian analysis example

switchpoint detection 224-237
Bayesian statistical analysis

conducting, steps 222
Bayesian statistics

about 197-199
applications 202, 203
mathematical framework 199-202
references 201, 203, 237
versus Frequentist statistics 221

Bayes theory 202
Bernoulli distribution

about 205
reference link 206

big data
4V's 2
about 2
examples 5
references 1

binomial distribution 207, 208
Boolean indexing

about 91
all method 92
any() method 92

[326]

indexes, operations 97
isin method 92
where() method, using 95

C
central limit theorem (CLT) 165
classes, converter.py

about 251
Converter 251
Formatters 251
Locators 251

classes, offsets.py
about 252
BQuarterBegin 253
BQuarterEnd 253
BusinessMixin 252
BusinessMonthBegin 252
BusinessMonthEnd 252
BYearBegin 252
BYearEnd 252
DateOffset 252
Easter 253
FY5253 253
FY5253Quarter 253
LastWeekOfMonth 252
MonthBegin 252
MonthEnd 252
MonthOffset 252
QuarterEnd 253
QuarterOffset 252
QuarterrBegin 253
Tick 253
Week 252
WeekDay 252
WeekOfMonth 252
YearBegin 252
YearEnd 252
YearOffset 252

classes, parsers.py
about 244
CParserWrapper 244
FixedWidthReader 244
FixedWithFieldParser 244
ParserBase 244
PythonParser 244
TextFileReader 244

classes, plm.py
about 248
MovingPanelOLS 248
NonPooledPanelOLS 248
PanelOLS 248

classes, sql.py
about 245
PandasSQL 245
PandasSQLAlchemy 245
PandasSQLLegacy 245
PandasSQLTable 245
PandasSQLTableLegacy 245

column name, specifying
about 264
in pandas 264
in R 264

columns
arithmetic operations, applying on 266
multiple functions, applying to 111, 112

concat function 115-117
concat function, elements

axis function 115
join_axes function 115
join function 115
keys function 115
objs function 115

Conda
URL, for documentation 19

conda command
URL 18

Confidence (Frequentist) interval
versus Credible (Bayesian) interval 222

confidence interval
about 188
example 189, 190

container types, R
DataFrame 258
List 258
Matrix 258
Vector 258

continuous probability distributions
about 213
continuous uniform distribution 213
exponential distribution 216
normal distribution 217-220

continuous uniform distribution 213

[327]

Continuum Analytics
URL 15

correlation 190
Credible (Bayesian) interval

versus Confidence (Frequentist)
 interval 222

cross sections 90
cut() function, pandas 279
cut() method, R

about 278
reference link 279

Cython
references 23, 256

D
data

grouping 99
resampling 149
reshaping 125, 126

data analysis
big data 1
motivation 1
real-time analytics 5
time limitation 4, 5
URL 5

DataFrame
about 57
constructors 62
creating 57
creating, with dictionaries of Series 58-60
creating, with dictionary of

ndarrays/lists 60
creating, with Series structure 61
creating, with structured array 61
operations 62
single row, appending to 120

DataFrame constructors
about 62
DataFrame.from_dict 62
DataFrame.from_items 62
DataFrame.from_records 62
pandas.io.parsers.read_csv 62
pandas.io.parsers.read_fwf 62
pandas.io.parsers.read_table 62

DataFrame.join function 124, 125

DataFrame objects
SQL-like merging/joining 120-123

DataFrame operations
alignment 64
assignment 63
deletion 63
mathematical operations 64
selection 62

dataset, Python
measures of central tendency,

computing of 166-170
data structure, pandas

DataFrame 56
panels 65
Series 50

data types, NumPy
reference link 258

data types, R
about 257, 258
reference link 258

DateOffset object
about 145
features 145

ddply
reference link 274

Debian Python page
URL 13

decision trees 313, 314
dependence

reference link 190
descriptive statistics

versus inferential statistics 164
deviation 173, 174
dimensionality reduction 316-321
discrete probability distributions 204
discrete uniform distributions

about 204
Bernoulli distribution 205
binomial distribution 207, 208
Geometric distribution 210, 211
negative binomial distribution 212
Poisson distribution 209

distribution
fitting 203, 204

downsampling 149

[328]

E
Enhancing Performance, documentation

reference link 256
Enthought Canopy

URL 19
exponential distribution

about 216
reference link 216

F
factors / categorical data 278
Fedora software installs

URL 13
file hierarchy, pandas

pandas/compat 250
pandas/computation 250
pandas/core 240
pandas/io 240, 243
pandas/rpy 240, 249
pandas/sandbox 253
pandas/sparse 240, 247
pandas/src 240
pandas/stats 240, 247
pandas/tests 249
pandas/tools 240, 246
pandas/tseries 251
pandas/util 240, 248

filtering
applying, on groupby object 114

FM regression
reference link 247

frequency aliases
reference link 148

frequency conversion 147, 148
Frequentist statistics

versus Bayesian statistics 221

G
Geometric distribution 210, 211
get-pip script

URL 15
GitHub

IPython download, URL 26

groupby object
filtering, applying on 114

groupby operation
about 99-107
using, with MultiIndex 108, 109

GroupBy operator
about 267
using 270

groupby.py submodule
Grouper/Grouping classes 241
Splitter classes 241

groupby-transform function 112, 113

H
histograms, versus bar plots

reference link 169
hyperparameters 303
hypothesis testing

about 174
alternative hypothesis 175
null hypothesis 175

I
illustration, with document classification

about 286
supervised learning 286
unsupervised learning 286

independent samples t-tests 184
indexing, pandas

about 69-71
attributes, accessing with dot

 operator 71, 72
mixing, with .ix operator 81-84
range slicing 73

inferential statistics
versus descriptive statistics 164

integer-oriented indexing 75, 79-81
Intel

URL 5
Interactive Python (IPython)

about 24
installing 26
installing, on Linux 26
installing, on Mac OS X 26

[329]

installing, on Windows 26
installing, URL 26
installing, via Anaconda 27
installing, Wakari 27
installing, with virtualenv 27
URL 24

interpolate() function
reference link 143

IPython
IPython Notebook

URL 24
isin() function, pandas 272

J
joining 114
join operation

reference link 125

K
Kaggle

URL 287
Kaggle Titanic competition application

about 287, 288
problem of overfitting 288, 289

K-means clustering 321, 322
K-means clustering, scikit-learn

reference link 322

L
label-oriented indexing

about 75, 77, 78
selection, Boolean array used 78, 79

lagging 147
lambda functions

reference link 104
law of large numbers (LLN)

reference link 165
levels

reordering 89
swapping 89

linear regression
about 190-192
example 192-195

Linux
Anaconda installation 17
IPython installation 26
panda installation 20
Python installation 12

logical operators, NumPy array
np.all() 45
np.any() 46

logical subsetting
about 272
in pandas 273
in R 272

logistic regression
about 309, 310
reference link 310

M
machine learning

about 285
reference link 285

machine learning application
Kaggle Titanic competition 287

machine learning systems
working 287

Mac OS X
Anaconda installation 18
IPython installation 26
panda installation 21
Python, installing 12-15
Python, installing from compressed

tarball 13, 14
Markov Chain Monte Carlo Maximum

Likelihood
reference link 224

Markov Chain Monte Carlo (MCMC) 224
matching operators

comparing, in R and pandas 271
mathematical framework, Bayesian

 statistics 199-202
matplotlib

reference link 161
using, for plotting 158-161

maximum likelihood estimator (MLE) 221
mean 164, 165

[330]

measure of central tendency
about 164
computing, for dataset in

Python 166-170
mean 164, 165
median 165
mode 165

measure of dispersion
about 170
quartile 171, 172
range 171

measure of spread 170
measure of variability 164, 170
median 164, 165
melt() function

used, for reshaping 276
using 131

melt() function, pandas 277
melt() function, R 277
merge function 120
merge function, arguments

copy 121
how 121
left 121
left_index 121
left_on 121
on 121
right 121
right_index 121
right_on 121
sort 121
suffixes 121

merging
about 114
reference link 115

methods, for reshaping DataFrames
about 131
melt() function 131
pandas.get_dummies() function 132

methods, math.py
calc_F(..) 247
inv(..) 247
is_psd(..) 247
newey_west(..) 247
rank(..) 247
solve(..) 247

methods, parsers.py
read_csv(..) 244
read_fwf(..) 244
read_table(..) 244

methods, pickle.py
read_pickle(..) 245
to_pickle(..) 245

methods, plotting.py
andrews_curves(..) 246
autocorrelation_plot(..) 246
bootstrap_plot(..) 246
lag_plot(..) 246
parallel_coordinates(..) 246
radviz(..) 246
scatter_matrix(..) 246

methods, sql.py
get_schema(..) 245
pandasSQL_builder(..) 245
read_sql(..) 245
read_sql_query(..) 245
read_sql_table(..) 245

methods, util.py
isleapyear(..) 253
pivot_annual(..) 253

MinGW installation, on Windows
URL 23

missing data
handling 135-140

missing values
handling 141-143

mode 164, 165
Monte Carlo estimation, likelihood

 function 223, 224
Monte Carlo estimation, PyMC 223, 224
Monte Carlo (MC) integration

about 223
reference link 224

MSI packages
URL, for download 14

MultiIndex
groupby operation, using with 108, 109

MultiIndexing 85-89
multiple columns

selecting, in pandas 265
selecting, in R 265

[331]

multiple functions
applying, to column 111, 112

multiple object classes, internals.py
Block 242
BlockManager 242
BoolBlock 242
ComplexBlock 242
DatetimeBlock 242
FloatBlock 242
FloatOrComplexBlock 242
IntBlock 242
JoinUnit 242
NumericBlock 242
ObjectBlock 242
SingleBlockManager 242
SparseBlock 242
TimeDeltaBlock 242

N
naïve approach, to Titanic

problem 300-302
N-dimensional version, DataFrame

reference link 241
negative binomial distribution 212
normal distribution 217-220
NoSQL

URL 3
np.newaxis function 49
np.reshape function

URL 48
null, and alternative hypotheses

alpha value 176
p-value 176

null hypothesis 175
Null Significance Hypothesis Testing

(NHST) 185
numexpr

reference link 250
NumPy

array, masking 38, 39
array, slicing 36, 37
complex indexing 39
datatypes 33, 34
datatypes, URL 34
indexing 34, 35
ndarrays 29

slicing 34
URL 30

NumPy array
broadcasting 46
copies 40
creating 30
creating, via numpy.arange 30
creating, via numpy.array 30
creating, via numpy.linspace 31
creating, via various other functions 31
indexing, URL 36
operations 40
shape manipulation 47
sorting 49, 50
URL 30
versus R-matrix 261, 262
views 40

NumPy array, creating via various function
about 31
numpy.diag 32
numpy.empty 33
numpy.eye 32
numpy.ones 31
numpy.random.rand 32
numpy.tile 33

numpy.dot
URL 42

NumPy ndarrays 29, 30
numpy.percentile function

reference link 173

O
objects

slicing 261
odds 202
one sample independent t-test 184
Open Suse

URL 13
operations, NumPy array

basic operations 41-44
logical operators 46
reduction operations 44
statistical operators 45

Ordinary Least Squares (OLS) 247
overfitting 288

[332]

P
pad method

reference link 142
paired samples t-test 184
pandas

about 5, 6
benefits 7-9
column name, specifying in 264
cut() function 279
data, examining 289, 290
data structures 50
data structures, URL 50
downloading 19, 20
features 6, 7
file hierarchy 239, 240
indexing 69
installing 19, 20
installing, from third-party vendor 16
installing, on Linux 20
installing, on Mac 21
installing, on Windows 22
isin() function 272
logical subsetting 273
melt() function 277
missing values, handling 290-299
multiple columns, selecting in 265
split-apply-combine,

implementing in 275
URL 7
used, for data analysis 289
used, for preprocessing 289

pandas/compat
about 250
submodules 250

pandas/computation
about 250
submodules 250

pandas/core
about 240
submodules 240-243

pandas.DataFrame.any
URL 95

pandas DataFrames
versus R DataFrames 265

pandas.get_dummies() function 132

pandas installation, on Linux
for Fedora 21
for OpenSuse 21
for Red Hat 21
for Ubuntu/Debian 21

pandas installation, on Mac
binary installation 22
source installation 22

pandas installation, on Windows
binary installation 22
binary installation, URL 22
Interactive Python (IPython) tool 24
IPython Notebook 24, 25
source installation 23

pandas/io
about 240
submodules 243, 245

pandas/rpy
about 240
reference link 249
submodules 249

pandas series
versus R lists 262, 263

pandas/sparse
about 240
reference link 247
submodules 247

pandas/src 240
pandas/stats

about 240
submodules 247, 248

pandas/tools
about 240
submodules 246, 247

pandas/tseries
submodules 251-253

pandas/util
about 240
submodules 248, 249

panel
3D NumPy array, using with axis labels 65
about 65
items 65
major_axis 65
minor_axis 65

[333]

Python dictionary of DataFrame
structures, using 66

parsers.py
reference link 244

Patsy
model, constructing for scikit-learn 305
reference link 305

performance
improving, Python extensions

used 253-256
pip 15
pivots 125, 126
plotting

performing, with matplotlib 158-161
Poisson distribution

about 209
reference link 209

power law
reference link 191

Principal Component Analysis
(PCA) 316

probability 221
probability density function (PDF) 213
probability distributions 203
probability mass function (pmf) 204
p-value

references 177
PYMC Pandas Example

URL 25
PyPI Readline package

URL 26
Python

about 5
Anaconda package, URL 16
features 5
installation, on Linux 12
installation, on Mac OS X 15
installation, on Windows 14
libraries 6
URL 6
version, selecting 11

Python 3.0
references 12
URL 12

Python decorators
reference link 249

Python dictionary, DataFrame objects
DataFrame.to_panel method,

references 68
DataFrame.to_panel method, using 67
other operations 68

Python extensions
used, for improving performance 253-256

Python installation, on Linux
about 12, 13
from compressed tarball 13, 14

Python installation, on Mac OS X
about 15
package manager, using 16
URL 15

Python installation, on Windows
about 14
core Python installation 14
third-party software installation 15
URL 15

Python Lexical Analysis
URL 72

Python(x,y)
URL 19

Q
quartile

about 171, 172
reference link 172

R
R

%in% operator 271
column name, specifying in 264
cut() method 278
data types 257, 258
logical subsetting 272
melt() function 277
multiple columns, selecting in 265
split-apply-combine,

implementing in 274, 275
random forest 315, 316
random walk hypothesis

reference link 216
R, and pandas

matching operators, comparing in 271

[334]

range 171
R DataFrames

about 259, 260
versus pandas DataFrames 265

README file, scikit-learn
reference link 285

R lists
about 258, 259
versus pandas series 262, 263

R-matrix
versus NumPy array 261, 262

role of pandas, in machine learning 284

S
sample covariance

reference link 165
sample mean

reference link 165
scikit-learn

about 284
installing 284
installing, on Unix (Linux/Mac OS X) 284
installing, on Windows 285
installing, via Anacondas 284
model. constructing for 305
reference link 285

scikit-learn ML/classifier interface
about 302-304
reference link 305

Scipy Lecture Notes, Interfacing with C
reference link 256

scipy.stats function
reference link 173

Series
creating 50
creating, with numpy.ndarray 51
creating, with Python dictionary 52
creating, with scalar values 53
operations 53

Series operations
arithmetic, and statistical

operations 55, 56
assignment 54
slicing 54

Setuptools
about 15
URL 15

shape manipulation, NumPy array
about 47
dimension, adding 49
multi dimensional array, flattening 47
reshaping 47
resizing 48

shifting 147
single row

appending, to DataFrame 120
sortlevel() method 88
sparse.py

reference link 243
split-apply-combine

about 273
implementing, in pandas 275
implementing, in R 274, 275

SQL joins
reference link 124

SQL-like merging/joining, of DataFrame
objects 120-123

stack() function 128-130
stacking 127
statistical hypothesis tests

about 177
background 177, 178
t-test 182, 183
z-test 178-182

structured array, DataFrame
URL 61

submodules, pandas/compat
chainmap_impl.py 250
chainmap.py 250
openpyxl_compat.py 250
pickle_compat.py 250

submodules, pandas/computation
align.py 250
api.py 250
common.py 250
engines.py 250
eval.py 250
expressions.py 250
ops.py 250
pytables.py 250
scope.py 250

submodules, pandas/core
api.py 240
array.py 240

[335]

base.py 240
categorical.py 241
common.py 241
config.py 241
datetools.py 241
format.py 241
frame.py 241
generic.py 241
groupby.py 241
index.py 242
internals.py 242
matrix.py 243
nanops.py 243
ops.py 241, 243
panel4d.py 243
panelnd.py 243
panel.py 243
series.py 243
sparse.py 243
strings.py 243

submodules, pandas/io
api.py 243
auth.py 243
common.py 243
data.py 244
date_converters.py 244
excel.py 244
ga.py 244
gbq.py 244
html.py 244
json.py 244
packer.py 244
parsers.py 244
pickle.py 245
pytables.py 245
sql.py 245
stata.py 245
to_sql(..) 245
wb.py 245

submodules, pandas/rpy
base.py 249
common.py 249
mass.py 249
var.py 249

submodules, pandas/sparse
api.py 247
array.py 247

frame.py 247
list.py 247
panel.py 247
series.py 247

submodules, pandas/stats
api.py 247
common.py 247
fama_macbeth.py 247
interface.py 247
math.py 247
misc.py 248
moments.py 248
ols.py 248
plm.py 248
var.py 248

submodules, pandas/tools
describe.py 247
merge.py 247
pivot.py 246
plotting.py 246
rplot.py 246
tile.py 246
util.py 246

submodules, pandas/tseries
api.py 251
converter.py 251
frequencies.py 251
holiday.py 252
index.py 252
interval.py 252
offsets.py 252
period.py 253
plotting.py 253
resample.py 253
timedeltas.py 253
tools.py 253
util.py 253

submodules, pandas/util
clipboard.py 249
decorators.py 249
misc.py 249
print_versions.py 249
terminal.py 249

supervised learning
about 286
versus unsupervised learning 286

[336]

supervised learning algorithms
about 305
decision trees 313-315
general boilerplate code

explanation 306-309
logistic regression 309, 310
model, constructing for scikit-learn

with Patsy 305
random forest 315, 316
support vector machine (SVM) 311, 312

supervised learning problems
classification 286
regression 286

support vector machine (SVM)
URL 312

swaplevel function 89
SWIG Documentation

reference link 256
switchpoint detection, Bayesian

analysis example 224-237

T
tailed test

reference link 177
t-distribution

reference link 183
TimeDelta object 145
time series

handling 143
time series data

DateOffset object 145, 146
reading in 144
TimeDelta object 145, 146

time series datatypes
about 155
conversion between 157
Period 155
PeriodIndex 156

time-series-related instance methods
about 146
aliases, for Time Series frequencies 154
data, resampling 149-153
frequency conversion 147, 148
shifting/lagging 147

Time-Series-related objects
DateOffset 158
datetime.datetime 158
DatetimeIndex 158
Period 158
PeriodIndex 158
timedelta 158
Timestamp 158

TimeSeries.resample function 149
Titanic problem

naïve approach 300-302
transform() method 112, 113
t-test

about 182, 183
example 185, 186
independent samples t-tests 184
one sample independent t-test 184
paired samples t-test 184
reference link 184

U
unbiased estimator

reference link 174
Unix (Linux/Mac OS X)

scikit-learn, installing on 284
unstacking 127
unsupervised learning

about 286
versus supervised learning 286

unsupervised learning algorithms
about 316
dimensionality reduction 316-321
K-means clustering 321, 322

upsampling 149

V
variance 173, 174
variety, big data 3
vector autoregression

reference link 248
vector auto-regression classes, var.py

PanelVAR 248
VAR 248

[337]

velocity, big data 3
veracity, big data 4
virtualenv tool

about 27
installing 27
URL 28
using 27

volume, big data 2, 3

W
Wakari

about 27
URL 27

where() method 95
Windows

Anaconda installation 18
IPython installation 26

panda installation 22
Python, installing 14
scikit-learn, installing on 285

WinPython
URL 19

World Bank Economic data
URL 8

X
xs method 90

Z
zettabytes

URL 2
z-test 178-182

Thank you for buying
Mastering pandas

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Data Manipulation with R
ISBN: 978-1-78328-109-1 Paperback: 102 pages

Perform group-wise data manipulation and deal with
large datasets using R efficiently and effectively

1. Perform factor manipulation and
string processing.

2. Learn group-wise data manipulation
using plyr.

3. Handle large datasets, interact with database
software, and manipulate data using sqldf.

Practical Data Analysis
ISBN: 978-1-78328-099-5 Paperback: 360 pages

Transform, model, and visualize your data through
hands-on projects, developed in open source tools

1. Explore how to analyze your data in various
innovative ways and turn them into insight.

2. Learn to use the D3.js visualization tool for
exploratory data analysis.

3. Understand how to work with graphs and
social data analysis.

4. Discover how to perform advanced query
techniques and run MapReduce on MongoDB.

Please check www.PacktPub.com for information on our titles

Clojure Data Analysis Cookbook
ISBN: 978-1-78216-264-3 Paperback: 342 pages

Over 110 recipes to help you dive into the world of
practical data analysis using Clojure

1. Get a handle on the torrent of data the modern
Internet has created.

2. Recipes for every stage from collection
to analysis.

3. A practical approach to analyzing data to help
you make informed decisions.

Getting Started with Greenplum
for Big Data Analytics
ISBN: 978-1-78217-704-3 Paperback: 172 pages

A hands-on guide on how to execute an analytics
project from conceptualization to operationalization
using Greenplum

1. Explore the software components and
appliance modules available in Greenplum.

2. Learn core Big Data architecture concepts and
master data loading and processing patterns.

3. Understand Big Data problems and the data
science lifecycle.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to pandas and Data Analysis
	Motivation for data analysis
	We live in a big data world
	4 V's of big data
	Volume of big data
	Velocity of big data
	Variety of big data
	Veracity of big data

	So much data, so little time for analysis
	The move towards real-time analytics

	How Python and pandas fit into the data analytics mix
	What is pandas
	Benefits of using pandas
	Summary

	Chapter 2: Installation of pandas and Supporting Software
	Selecting a version of Python to use
	Python installation
	Linux
	Installing Python from compressed tarball

	Windows
	Core Python installation
	Third-party Python software install

	Mac OS/X
	Installation using a package manager

	Installation of Python and pandas from a third-party vendor
	Continuum Analytics Anaconda
	Installing Anaconda
	Linux
	Mac OS/X
	Windows
	Final step for all platforms

	Other numeric or analytics-focused Python distributions
	Downloading and installing pandas
	Linux
	Ubuntu/Debian
	Red Hat
	Ubuntu/Debian
	Fedora
	OpenSuse

	Mac
	Source installation
	Binary installation

	Windows
	Binary Installation
	Source installation
	IPython
	IPython Notebook

	IPython installation
	Linux
	Windows
	Mac OS/X
	Install via Anaconda (for Linux/Mac OS/X)
	Wakari by Continuum Analytics
	Virtualenv
	Virtualenv installation and usage

	Summary

	Chapter 3: The pandas Data Structures
	NumPy ndarrays
	NumPy array creation
	NumPy arrays via numpy.array
	NumPy array via numpy.arange
	NumPy array via numpy.linspace
	NumPy array via various other functions

	NumPy datatypes
	NumPy indexing and slicing
	Array slicing
	Array masking
	Complex indexing

	Copies and views
	Operations
	Basic operations
	Reduction operations
	Statistical operators
	Logical operators

	Broadcasting
	Array shape manipulation
	Flattening a multi-dimensional array
	Reshaping
	Resizing
	Adding a dimension

	Array sorting

	Data structures in pandas
	Series
	Series creation
	Operations on Series

	DataFrame
	DataFrame Creation
	Operations

	Panel
	Using 3D NumPy array with axis labels
	Using a Python dictionary of DataFrame objects
	Using the DataFrame.to_panel method
	Other operations

	Summary

	Chapter 4: Operations in Pandas, Part I – Indexing and Selecting
	Basic indexing
	Accessing attributes using dot operator
	Range slicing

	Label, integer, and mixed indexing
	Label-oriented indexing
	Selection using a Boolean array

	Integer-oriented indexing
	The .iat and .at operators
	Mixed indexing with the .ix operator
	Multi-indexing
	Swapping and re-ordering levels
	Cross-sections

	Boolean indexing
	The is in and any all methods
	Using the where() method
	Operations on indexes

	Summary

	Chapter 5: Operations in pandas, Part II – Grouping, Merging, and Reshaping of Data
	Grouping of data
	The groupby operation
	Using groupby with a MultiIndex
	Using the aggregate method
	Applying multiple functions
	The transform() method
	Filtering

	Merging and joining
	The concat function
	Using append
	Appending a single row to a DataFrame
	SQL-like merging/joining of DataFrame objects
	The join function

	Pivots and reshaping data
	Stacking and unstacking
	The stack() function

	Other methods to reshape DataFrames
	Using the melt function

	Summary

	Chapter 6: Missing Data, Time Series, and Plotting Using Matplotlib
	Handling missing data
	Handling missing values

	Handling time series
	Reading in time series data
	DateOffset and TimeDelta objects

	Time series-related instance methods
	Shifting/lagging
	Frequency conversion
	Resampling of data
	Aliases for Time Series frequencies

	Time series concepts and datatypes
	Period and PeriodIndex
	Conversion between Time Series datatypes

	A summary of Time Series-related objects
	Plotting using matplotlib

	Summary

	Chapter 7: A Tour of Statistics – The Classical Approach
	Descriptive statistics versus inferential statistics
	Measures of central tendency and variability
	Measures of central tendency
	The mean
	The median
	The mode
	Computing measures of central tendency of a dataset in Python

	Measures of variability, dispersion, or spread
	Range
	Quartile
	Deviation and variance

	Hypothesis testing – the null and alternative hypotheses
	The null and alternative hypotheses
	The alpha and p-values
	Type I and Type II errors

	Statistical hypothesis tests
	Background
	The z-test
	The t-test
	A t-test example

	Confidence intervals
	An illustrative example

	Correlation and linear regression
	Correlation
	Linear regression
	An illustrative example

	Summary

	Chapter 8: A Brief Tour of Bayesian Statistics
	Introduction to Bayesian statistics
	Mathematical framework for Bayesian statistics
	Bayes theory and odds
	Applications of Bayesian statistics

	Probability distributions
	Fitting a distribution
	Discrete probability distributions
	Discrete uniform distribution
	Continuous probability distributions

	Bayesian statistics versus Frequentist statistics
	What is probability?
	How the model is defined
	Confidence (Frequentist) versus Credible (Bayesian) intervals

	Conducting Bayesian statistical analysis
	Monte Carlo estimation of the likelihood function and PyMC
	Bayesian analysis example – Switchpoint detection

	References
	Summary

	Chapter 9: The pandas Library Architecture
	Introduction to pandas' file hierarchy
	Description of pandas' modules and files
	pandas/core
	pandas/io
	pandas/tools
	pandas/sparse
	pandas/stats
	pandas/util
	pandas/rpy
	pandas/tests
	pandas/compat
	pandas/computation
	pandas/tseries
	pandas/sandbox

	Improving performance using Python extensions
	Summary

	Chapter 10: R and pandas Compared
	R data types
	R lists
	R DataFrames

	Slicing and selection
	R-matrix and Numpy array compared
	R lists and pandas series compared
	Specifying column name in R
	Specifying column name in pandas

	R DataFrames versus pandas DataFrames
	Multi-column selection in R
	Multi-column selection in pandas

	Arithmetic operations on columns
	Aggregation and GroupBy
	Aggregation in R
	The pandas' GroupBy operator

	Comparing matching operators in R and pandas
	R %in% operator
	The pandas isin() function

	Logical subsetting
	Logical subsetting in R
	Logical subsetting in pandas

	Split-apply-combine
	Implementation in R
	Implementation in pandas

	Reshaping using Melt
	The R melt() function
	The pandas melt() function

	Factors/categorical data
	An R example using cut()
	The pandas solution

	Summary

	Chapter 11: Brief Tour of Machine Learning
	Role of pandas in machine learning
	Installation of scikit-learn
	Installing via Anaconda
	Installing on Unix (Linux/Mac OSX)
	Installing on Windows

	Introduction to machine learning
	Supervised versus unsupervised learning
	Illustration using document classification
	Supervised learning
	Unsupervised learning

	How machine learning systems learn

	Application of machine learning – Kaggle Titanic competition
	The Titanic: Machine Learning from
Disaster problem
	The problem of overfitting

	Data analysis and preprocessing using pandas
	Examining the data
	Handling missing values

	A naïve approach to Titanic problem
	The scikit-learn ML/classifier interface
	Supervised learning algorithms
	Constructing a model using Patsy for
scikit-learn
	General boilerplate code explanation
	Logistic regression
	Support vector machine
	Decision trees
	Random forest

	Unsupervised learning algorithms
	Dimensionality reduction
	K-means clustering

	Summary

	Index

