The ZeroMQ Guide - for Python
Developers

Pieter Hintjens

The ZeroMQ Guide - for Python Developers
by Pieter Hintjens

Dedication

This book is dedicated to the @MQ community.

Table of Contents

L 1= = Lo =T SRS ix
1. OMQ N @ HUNArEA WOTGS.....ceiiieee ettt e e s s et s e et e e e e e e s stenreeaee e e e e s e ennnnneneeeeend iX
2 HOW IEBEOAN ...ttt ix
I I oL Id =T o o) =T o PRSP ix
4. HOW ThiS BOOK CAmME TO BE......coiiiiiiiieiiiiit ettt ettt a s X
L0 [0 1= o o SRR X,

I T= T a1 g To 7 11, PP PPR Xii
- T PSSR 1.

1.2, FiXiNG the WO, ...t et 1
1.2, Starting ASSUMPLIONS.eeeeiiiiiiee ettt ettt e ettt ee e satbee e e e bbb e e e anbbeeeeaneeas 2
1.3. Getting the EXAMPIES.....coo it 2.
1.4. Ask and Ye Shall RECEIVE..........uuuiiiiiiiai it 2.
1.5. A MINOT NOEE ON SEHNQS. . eeeeeiiiieieeiiititie ittt ee e ee e e e e e e e e s e sbabbeeeeeaaaaeaanna 1.
1.6. Version REPOMING.......cotiiiiitiiiiiie ettt ettt e e e ettt e e eeaae e e s annnbeeeeeanaane 9
1.7. Getting the MeSSAgE OlUL......cooiiiiiiii et e e e e 9..
1.8. DiVide QN CONQUEE......ceeiiiiiitiieiie e ettt ee st e e e e e e e s e e eeeaaeaeaaaenneeneees 13
1.9. Programming With @MOQ..........uuiiiiiiiiiie it es et 18
1.10. Why We Needed @MQ........coooiiiiiiiiiiiiie ettt 20.
1.11. SOCKEt SCAIADIIILY.eeiiieiiiiiiie et 24
1.12. Upgrading from @MQ v2.2 10 @MQ V3.2.......cooiiiiiiieiiiiieiiiee et 25
1.13. Warning: Unstable Paradigmsl.............ooiiiiiiiiiiiiieeee e 26
2. S0CKELS AN PAEINS. ...t e e e e e e e e s e e e e nen e 28
2.1. The SOCKEL ARttt ettt e e e e e rmneeee s 28
2.2. MESSAQING PAtteINS.euiiiiiiiiee ittt et e e e e e s ee e e e e e ennns 33
2.3. Handling Errors and ETERM...........cccoiiiiiiiee et eervee e enn e 52
2.4. Handling INterrupt SignalS..........uveveeiiiiiiiiiiiire e eeeees e e e 57
2.5. DeteCting MemMOIY LEAKScccceiiiiiiiieiii ettt s e eet e e e e e s nar e e e e e e e 58
2.6. Multithreading With @MQL.........couiiiiiieee e 59
2.7. Signaling Between Threads (PAIR SOCKELS).........ccvvviriiieiee i ereeiene e 65
2.8. NOJE COOTAINALION.ceiiviiiie ettt e e et e et e e e st e e e e s aneeeeenand 68
R A = (o Rl Ol o] o)V ST PP PRPP P PUUPPPPPPRRY 41
2.10. Pub-Sub Message ENVEIOPES..........ccooviiiieiiiiiieeiiiiiie e ceeeesseeeee s sieeee e niieee e d 2
2.10. HIgh-Water MArKS.........ccouiiiiiiiiiiiiie ittt 74
2.12. Missing Message Problem SOIVET...........cccvvveee i 16
3. Advanced Request-ReplY PatteriS.........cccoiiiiiiiiiiiie it eeeee e e e e e sannn e e e e e 79
3.1. The Request-Reply MEChANISIMIS.uiviiii e ecceeeees e e 79
3.2. Request-Reply CombINAtiQNS.........ccoiiiiiiiieiiee e ereeeeie e e e e s eeee e 84
3.3. EXPIOring ROUTER SOCKELS.......uuiiiiiiiieei ittt eee e e e e s sieeeeee st ee e e e e e e 87
3.4. The Load Balancing Pattern.............uuuuiiiiiiiiiieee e 89
3.5. A High-Level APIfOr @MQ........ccoiiiiiiiiiiiiie et 101
3.6. The Asynchronous Client/Server Pattern..............coiiiiiiiiiiiiiieeeeee e 111
3.7. Worked Example: Inter-Broker ROULINGoooiiiiiiiiiiiiieeeee e 116
4. Reliable Request-Reply PatterniS.ouii ettt et 140
4.1. What is "Relability" 2.t 140
4.2. Designing Reliability.........cooi i 141

4.3. Client-Side Reliability (Lazy Pirate Pattern).........ccccccoiiiiiiiiiiiiiiiniieeeeeee e 142

4.4. Basic Reliable Queuing (Simple Pirate Pattern)..........ccccccoviiiiiiiiieniienneiiceeenn. 146

4.5. Robust Reliable Queuing (Paranoid Pirate Pattern)............cccoooeiiiiiiieieeeeennnnene 149

4.6. HEArDEatING.........eeiiiiiiie et 155

4.7. Contracts and ProtOCOIS........cccoiiiiiiiiiiiie et 159

4.8. Service-Oriented Reliable Queuing (Majordomo PAJter.............ccccvveeeeeeeennnnnns 160

4.9. Asynchronous Majordomo Pattern............coeiiiiiiiiiiiiiieiee e 175
4.010. SEIVICE DISCOVEIY...cciiiiieiiiiiiiieie ittt ettt e e e e e e e sb e e e e e e e e e e annneeeeeas 181
o I I (o [T g o To (=T 0 AT =T A (o =TRSO 183
4.12. Disconnected Reliability (Titanic Pattern).............c..eeeeiiiiiiiiiiiiie e 184
4.13. High-Availability Pair (Binary Star Pattern).............ccccccoiiiiiiiiieiiee e eieeeee e, 193
4.14. Brokerless Reliability (Freelance Pattern)............c..uveeeeiieiiiiiiiiiiieeiiie e 209
o T o] s [od 013 o] o HE PP P PP PR 223

5. Advanced Pub-Sub PatterNs...........ccuviiiiiiiie et 225
5.1. Pros and Cons of PUD-SUD............oooiiiiii e 225

5.2. Pub-Sub Tracing (ESPresso Pattern)...........uuueeeeeeiiiiiiiiiiieeeee e s semeneeeeenssnnsneneens 227

5.3. Last Value CaChing..........ocuviiiiiiiiieiiiiiie et 229

5.4. Slow Subscriber Detection (Suicidal Snail Pattern)...........c...cccvvvveeveeeeeececennnen, 233

5.5. High-Speed Subscribers (Black Box Pattern)...........cccccveviiveeeiiiiieeeiiiieneeeeennn 237

5.6. Reliable Pub-Sub (Clone Pattern)...........cooviiieiiiiiie e 240

LA Y=Y o= T 721/ SO 290
6. The DMQ COMMUNITY ...ceeiiitiiieeiiiiie ettt et e e st e e st e e e st e e e s anbe e e e s aneeeeesameeenns 291
6.1. Architecture of the @MQ COMMUNILY.........ueiiiiiiiiiiiiiiee e 292

6.2. How to Make Really Large ArchiteCtures...........cocovveeeiiiiiee i 293

6.3. The @MQ ProCeSS: Cd...cccieiieiiiiiie ettt et e e e s e e e e e e e e s rneeees 302

6.4. A Real-Life EXAMPIB. ..ot 314

6.5. Git Branches Considered Harmful..........cccooiiiiiiiiiiiiie e 317

6.6. Designing for INNOVALIONcoiiiiiiii e 321

B.7. BUIMOUL. ..ottt e 328

6.8. PAtterns fOr SUCCESS.......iiiiiiiiiei ittt 330

7. Advanced Architecture USing @MQL.........oooiiiiiiiiiii e 335
7.1. Message-Oriented Pattern for Elastic DeSigh...........ccooiiiiiiiiiiiieiiiiiieeeeees 336

EAYZ ¥ o] o] o] (oo o] =P EUP T URURPR 339

7.3. SerializiNng YOUF DALA.ccuiiiiiiiiiiiie e e e e e 345

7.4, Transferring FlESo e 356

7.5. StAtE MACKHINES.iiiiiiiee et smee e 367

7.6. Authentication USING SASLuuiiiiiiiii ittt 374

7.7. Large-Scale File Publishing: FileMQ............oouiiiiiiiie e 376

7.8. Getting an Official Port NUMDEE ... 388

8. A Framework for Distributed COMPULING........uuiriiiiaaiiiiiiiiie e teee e 390
8.1. Design for The Real WOrId...........ccuviiiiiiiiic e 391

8.2. The Secret Life Of WIFi.......eviiiiiii e 392

8.3 DISCOVEIY.....ttiee ettt ettt ettt e et e e e et e e e e n e e e e et e e e e e neees 396

8.4. Spinning Off @ Library Project..........cueiiiiiiiiiiii ettt 415

8.5. POINt-t0-POINt MESSAGING.eeeiuviiiie ettt eees 417

8.6. GrOUP MESSAGING.eeeeiiiiiiiei ittt ee ettt eesaee e e st e e s st ee s ateeee e s sneaeeessnneeesd 421

8.7. Testing and SiMUIAtION..........c.c.vvvviiieiiic e A2

8.8. Distributed Logging and MONITOMING.eeriiiiiiiiiiiiiii et 433

8.9. Content DIStHDULION.coii i e e 439
8.10. Writing the UNpProtoCal. ..o 441
8.11. Example Zyre APPlICAtON.ooi e 442
8.12. CONCIUSIONS. ..cciiiieei ittt ettt e ettt e e e e e e e e e ettt eeeee e e e e s aannbneeeeaeaaannee 443
9. POSHIACE. ...ttt e e a e e e e e e e an 445
9.1. TaleS from OUL TREIE. ... 445
9.2. How This BOOK Happened.............ooeiiiiiiiiiiiiiie et 446
9.3. REMOVING FIICHON.ciiiiiiiiiiiie et 447
LS I I Tt g] o To RO U OO ORUPPTRRRORPRY” 7 L)

Vi

List of Figures

N (=] g o] (3Tt od o 1= o | ORI ix
I {0 U =TSy 2 =T o PRSPPI 3.
N 7 11V, =1 1T o R PR 8.
1-3. PUBIISN-SUDSCIIDE.cciiie et eees 11
1-4. Parallel PIPEIINE........cooo ittt 14
T = 11 @ 101U o o ORI 18
1-6. MESSAGING AS It SEAIISeutiiiieiiiii et e et e et e e s s e e e s sameeesnbeeaeaan 22
1-7. MeSSaQiNG @S it BECOMIES. .. .uuiiiiiiiie ettt e s e e ee e s r e e e e e e e s st eeee e e e e e s snnnneeeeeeas 22
2-1. TCP SOCKELS @re L 1.1 ... eeiiii ittt ettt e et e et e e e st e e e e s rmeeenntaeeeenan 31
2-2. HTTP 0N tNE WIIE. ..ttt ettt e ettt e e neee s e e e et 32
W2 T 7 1Y (@ I o T 1 1= MY/ = OSSR 32
2-4. Small-Scale PUD-SUD NEIWOIK........c.iiiiiiiiiiiie e 41
2-5. PUb-Sub Network With @ PrOXY........c.uueiiiiiiiii it 42
2-6. EXtENded PUD-SUD.... ..ottt 44
2-7. ReqQUESE DISIDULION ...ttt ettt e e e e e e e st eeee e e e e e s smmnneeaeaeannnnees a4
2-8. Extended REQUESE-REPIY.ccoi it e e er e 46
2-9. ReqQUESE-REPIY BIOKEL........ueiiiiiiieeiiiiiiiiiieee e reeee et e e e nenbeeeee e e e smnnneee e A8
2-10. PUD-SUD FOMWAIAEN PrOXY ittt ettt e e e e e e e e b ebe e e e e s ee e e 50
2-11. Parallel Pipeline with Kill SIGN@liNG........ccooiiiiiiiiiiiiee e 53
2-12. MURItNIEAAEA SEIVEL........eeieiieiie ettt e e e ettt e e e e e e e e s amnneee e e e e aanes 63
2-13. ThE REIAY RACE. ... ittt e e e e e e s neeeee s snnbeneeeeaees] 66
2-14. PUD-SUD SYNCRIONIZAION.cciiiiiiiieee ettt e e eeeeeereees 68
2-15. Pub-Sub Envelope with Separate K Y............cuu ittt 72
2-16. Pub-Sub Envelope with Sender AddreSS.........coocviiiiiiiieiiiiiiiiiiic e iiiieeeeeeee e A
2-17. Missing Message Problem SOIVEE.o ittt eiineeeeeae e D
3-1. Request with Minimal ENVEIOPE..........ooiuiiiiiii it 80
3-2. Extended Request-Reply Pattern.............uuiiiiiiii e 80
3-3. ReqQUESt With ONE AQUIrESS.....cccei ittt ee e et e e e e e e e s s et e e e e e e e e e snnrseeeeeenenrnnes 82
3-4. RePly With 0N€ AAUIESS......uuviiiiiiee et ee e e e e e s e e e e e e s e s enneeee s e enned 82
3-5. Reply With Minimal ENVEIOPE.uuviiiiiie st ee et e e e e e e e e snneeeeed 83
3-6. Routing ENvelope fOr REQ........coiiiiiiiiieieeeee e s ettt ee e st e e e e e e s s s snntaaeeeeeeaeeesnnnaeneeennnnrnnes 92
3-7. Load BalanCiNg BrOKEL...........uiii ittt e ettt et e st e e e e snne e e nneeees 94
3-8. Message that ClIENt SENAS.........viiii i ee e re e e e e s snaneee s s 99
3-9. Message Coming in 0N FIrONTENG..........uuiiiiiiiiiie ettt Q9
3-10. Message Sent to BACKENM...........ooiuiiiiiiiiiiie ettt smeeen 100
3-11. Message Delivered t0 WOTKEE...........uii ittt e et e s 100
3-12. ASYNCHIONOUS CHEN/SEIVET.....cciiiiiiiei ittt ettt sttt e e st ee e e e snbbe e e e snbeeeeaa 111
3-13. Detail Of ASYNCAIONOUS SEIVEL....ccoiiiiiiie ittt ettt et et 115
I I B O [N 1) (=T g ol 1 (=T ox (1] =T PSR 118
3-15. MURIPIE CIUSTEIS ...eeiiii ettt ettt ettt e et e e s st b eesenae e s sbneee e e 118
3-16. Idea 1: Cross-CoNNECtEd WOTIKEESoiiiiiiiiieiiee ettt 119
3-17. Idea 2: Brokers Talking to EACh Other..........oouiiiiiiieieee e 120
3-18. Cross-connected Brokers in Federation Madel.............ccoooiiiiiiiiiieeee e 121
3-19. Broker SOCKEt ArTaNGEMENT..........uiiiiiiiee ettt e ettt ettt eeee e e e e s s nnbbeeeeeeeesaaanas 123
3-20. THE STAE FIOWL. ...ciiiiiiiiee ettt ettt ee e e e e e e et e e e e e entbebeeeeaaeeaeanns 124
3-21. The FIOW OF TASKS. ...ciii ettt e e e nas e aee e e s 128

Vii

4-1. The Lazy Pirate Pattern........ccoi ittt ee e e e e et eeaaeeneeree s 144
4-2. The SImple Pirate Pattern. ..ot e e e e ee e eneaeees 146
4-3. The Paranoid Pirate Patt@ril...........c.uuiiiiiiiiee it e e e e e eeeeeaes 150
4-4. The MajordomO Patterml........coo ittt ee e e e e e e e e eenee e 160
4-5. The THANIC PAtEIN.ttt e e e e e e s rmnnee e e e e e e annnnes 185
4-6. High-Availability Pair, Normal Operation.............cccuuueiiiiiiiiiiiiiieie e 194
4-7. High-availability Pair DUFNNG FaIIOVEL............cooiiiiiiiiiiiaeee e 194
4-8. Binary Star Finite State Machine.............uuuiiiiiiiie e 203
4-9. The Fre€lancCe PatterN.........oooiiiiiiii ettt e e e e e et b e ee e sansaeeeeas 210
5-1. The Simple BIack BOX Pattern.........cooiuueiiiiiiiiii ittt 237
5-2. Mad Black BOX Patter............uiiiiiiiieeeee ittt ennea e e 239
5-3. PUbIishing State UPAates........ccooiiiiiiiiiiieiiee et e e ee e e ee e 243
S -1 (<3 =] o] [T 1 (o] o F PR 246
5-5. RepUDIISNING UPAALESottt e e s e e e e e 252
5-6. Clone Client Finite State Machine............ccooiiiiiiii e 268
5-7. High-availability CIONE SErvVer Pail..........c..cuiiiiiiiiiiiiiiiie ittt 270
5-8. MUIItNIEAAEA APL......ooiiiiie ettt b e senae e s sbeeee e e 281
N T N SIS 1= T] = L= PRSPPI 369
7-2. The AUTNENtICAEA StALE........ciiiiiiiiei ittt s e e e eneeeee s 369
7-3. The REAAY SEALE........eeiiiiitiiii ettt ettt e ettt e e e st e e e e raeee e st beeeeeanbbeeeeenn 370
8-1. ZRE diSCOVEIY MESSAGE ... ueeeeiiieeeeetiiieetesateeeesssteeeesaseessanteeeessantaeeesabeseeesasaseeessnreenansseees 418
A Y (I =11 1= S Lo To | PSRRI 426
8-3. Distributed LOG COIlECHION.cciiiiiiieiie e ee e et e e e e e s e r e ee e e e s e e nneenreeeeennns 434
8-4. ProtOCO] SIGNALIULEceiiiiiiiie ittt e e e e sttt e e sttt e e s st ee e s sbbeeesenaee s abaeeee e 437

viii

Preface

1. MQ in a Hundred Words

@MQ (also known as ZeroMQ, @MQ, or zmq) looks like an embedilabtworking library but acts like
a concurrency framework. It gives you sockets that carrgnaenessages across various transports like
in-process, inter-process, TCP, and multicast. You canecrsockets N-to-N with patterns like fan-out,
pub-sub, task distribution, and request-reply. It's fasilgh to be the fabric for clustered products. Its
asynchronous I/0 model gives you scalable multicore apfitins, built as asynchronous
message-processing tasks. It has a score of language AdPtaraion most operating systems. @MQ is
from iMatix (http://www.imatix.com) and is LGPLv3 open sue.

2. How It Began

We took a normal TCP socket, injected it with a mix of radidacitsotopes stolen from a secret Soviet
atomic research project, bombarded it with 1950-era cosayig, and put it into the hands of a
drug-addled comic book author with a badly-disguised ffigfiis bulging muscles clad in

spandekigure 1 Yes, @MQ sockets are the world-saving superheroes of ttreonidng world.

3. The Zen of Zero

Figure 1. A terrible accident...

~
TCP socket ZAP!
OMQ socket
POw!!
Spandex
Cosmic rays

Illegal radioisotopes from
secret Soviet atomic city

Preface

The @ in BMQ is all about tradeoffs. On the one hand this searagne lowers @MQ’s visibility on
Google and Twitter. On the other hand it annoys the heck ostwfe Danish folk who write us things
like "@OMG rgtfl", and "@ is not a funny looking zero!" an@Rdgrad med fladewhich is apparently an
insult that means "may your neighbours be the direct dessgadf Grendel!" Seems like a fair trade.

Originally the zero in @MQ was meant as "zero broker" and (@secto) "zero latency” (as possible).
Since then, it has come to encompass different goals: zenmélration, zero cost, zero waste. More
generally, "zero" refers to the culture of minimalism thatimpeates the project. We add power by
removing complexity rather than by exposing new functigpal

4. How This Book Came To Be

In the summer of 2010, MQ was still a little-known niche &by described by its rather terse reference
manual and a living but sparse wiki. Martin Sustrik and mfygelre sitting in the bar of the Hotel Kyjev
in Bratislava plotting how to make @MQ more widely populain had written most of the @MQ
code, and I'd put up the funding and organized the commu@itgr some Zlaty Bazants, we agreed that
@MQ needed a new, simpler web site and a basic guide for ness.use

Martin collected some ideas for topics to explain. I'd neweitten a line of AMQ code before this, so it
became a live learning documentary. As | worked through Erapamples to more complex ones, | tried
to answer many of the questions I'd seen on the mailing listaBise I'd been building large-scale
architectures for 30 years, there were a lot of problems &@wihwas keen to throw @MQ. Amazingly
the results were mostly simple and elegant, even when wgiki€. | felt a pure joy learning @MQ and
using it to solve real problems, which brought me back to pgogning after a few years’ pause. And
often, not knowing how it was "supposed" to be done, we impdd@¥MQ as we went along.

From the start, | wanted the @MQ guide to be a community ptpgecl put it onto GitHub and let others
contribute with pull requests. This was considered a rddés@n vulgar approach by some. We came to
a division of labor: I'd do the writing and make the originae€amples, and others would help fix the
text and translate the examples into other languages.

This worked better than | dared hope. You can now find all trevees in several languages and many
in a dozen languages. It's a kind of programming languagetstone and a valuable outcome in
itself. We set up a high score: reach 80% translation and kemgiluage got its own Guide. PHP, Python,
Lua, and Haxe reached this goal. People asked for PDFs, anteated those. People asked for ebooks,
and got those. About a hundred people contributed to the pbesto date.

The book, in its on-line version "The Guide", achieved itglgaf popularizing @MQ. The style pleases
most and annoys some, which is how it should be. In Decemid, 20y work on @MQ and this guide
stopped, as | found myself going through late-stage caheaxy surgery, and six months of
chemotherapy. When | picked up work again in mid-2011, it westart using @MQ in anger for one of
the largest use cases imaginable: on the mobile phoneslaletstaf the world’s biggest electronics
company.

Preface

But the goal of the @MQ book was, from the start, a printed w&dkit was exciting to get an email
from Bill Lubanovic in January 2012 introducing me to histediAndy Oram, at O'Reilly, suggesting a
@MQ book. Of course! Where do | sign? How much do | have to paly;?l @et moneyor this? All |

have to do is finish it?

Of course as soon as O'Reilly announced a @MQ book, otheighérk started sending out emails to
potential authors. You'll probably see a rash of GMQ booksicm out next year. That's good. Our
niche library has hit the mainstream and deserves its sheimof shelf space. My apologies to the other
@MQ authors. We've set the bar horribly high, and my advide imake your books complementary.
Perhaps focus on a specific language, platform, or pattern.

This is the magic and power of communities: be the first conityima space, stay healthy, and you
own that space for ever.

5. Audience

This book is written for professional programmers who warlearn how to make the massively
distributed software that will dominate the future of cortipg. We assume you can read C code,
because most of the examples here are in C even though @M@dsrumany languages. We assume
you care about scale, because @MQ solves that problem abotkeears. We assume you need the best
possible results with the least possible cost, becausevateeyou won't appreciate the trade-offs that
@MQ makes. Other than that basic background, we try to ptedighe concepts in networking and
distributed computing you will need to use IMQ.

Xi

|. Learning @MQ

In the first part of this book, you'll learn how to use @MQ. Webver the basics, the API, the different
socket types and how they work, reliability, and a host ofgras you can use in your applications.
You'll get the best results by working through the examples #xt from start to end.

Chapter 1. Basics

1.1. Fixing the World

How to explain @MQ? Some of us start by saying all the wondéinings it doeslt's sockets on

steroids. It's like mailboxes with routing. It's fasfithers try to share their moment of enlightenment, that
zap-pow-kaboom satori paradigm-shift moment when it adblmee obviousThings just become simpler.
Complexity goes away. It opens the mi@dhers try to explain by comparisolt's smaller, simpler, but

still looks familiar.Personally, | like to remember why we made @MQ at all, bec#uss most likely
where you, the reader, still are today.

Programming is science dressed up as art because most afitismiderstand the physics of software
and it's rarely, if ever, taught. The physics of softwareads algorithms, data structures, languages and
abstractions. These are just tools we make, use, throw alay.eal physics of software is the physics
of people--specifically, our limitations when it comes targaexity, and our desire to work together to
solve large problems in pieces. This is the science of progriag: make building blocks that people can
understand and usasily, and people will work together to solve the very largest feots.

We live in a connected world, and modern software has to madéwitpis world. So the building blocks for
tomorrow’s very largest solutions are connected and melysparallel. It's not enough for code to be
"strong and silent" any more. Code has to talk to code. Codédbe chatty, sociable, well-connected.
Code has to run like the human brain, trillions of individnalurons firing off messages to each other, a
massively parallel network with no central control, no $ingoint of failure, yet able to solve immensely
difficult problems. And it's no accident that the future ofdedooks like the human brain, because the
endpoints of every network are, at some level, human brains.

If you've done any work with threads, protocols, or netwoskau’ll realize this is pretty much
impossible. It's a dream. Even connecting a few programssaca few sockets is plain nasty when you
start to handle real life situations. Trillions? The cosiNgbbe unimaginable. Connecting computers is
so difficult that software and services to do this is a muiltidn dollar business.

So we live in a world where the wiring is years ahead of ourigitib use it. We had a software crisis in
the 1980s, when leading software engineers like Fred Brbelisved there was no "Silver Bullet"
(http://en.wikipedia.org/wiki/No_Silver_Bullet) to fpmise even one order of magnitude of
improvement in productivity, reliability, or simplicity"

Brooks missed free and open source software, which soh&attisis, enabling us to share knowledge
efficiently. Today we face another software crisis, butat®e we don’t talk about much. Only the largest,
richest firms can afford to create connected applicatiohserd’is a cloud, but it's proprietary. Our data
and our knowledge is disappearing from our personal computt clouds that we cannot access and
with which we cannot compete. Who owns our social networkis?ike the mainframe-PC revolution

in reverse.

Chapter 1. Basics

We can leave the political philosophy for another book (Wapsi.info). The point is that while the
Internet offers the potential of massively connected ctduereality is that this is out of reach for most of
us, and so large interesting problems (in health, educatimmnomics, transport, and so on) remain
unsolved because there is no way to connect the code, anddhway to connect the brains that could
work together to solve these problems.

There have been many attempts to solve the challenge of ctatheode. There are thousands of IETF
specifications, each solving part of the puzzle. For apfiinalevelopers, HTTP is perhaps the one
solution to have been simple enough to work, but it argualaies the problem worse by encouraging
developers and architects to think in terms of big servedstiin, stupid clients.

So today people are still connecting applications usingu®# and TCP, proprietary protocols, HTTP,
and Websockets. It remains painful, slow, hard to scale gasdntially centralized. Distributed P2P
architectures are mostly for play, not work. How many aggilans use Skype or Bittorrent to exchange
data?

Which brings us back to the science of programming. To fix tbddy we needed to do two things. One,
to solve the general problem of "how to connect any code tccadg, anywhere”. Two, to wrap that up
in the simplest possible building blocks that people couldarstand and ussasily.

It sounds ridiculously simple. And maybe it is. That's kinfltloe whole point.

1.2. Starting Assumptions

We assume you are using at least version 3.2 of @MQ. We assomarg using a Linux box or
something similar. We assume you can read C code, more gaketisat's the default language for the
examples. We assume that when we write constants like PUSIBECRIBE, you can imagine they
are really calleMQ_PUSHr ZMQ_SUBSCRIBH the programming language needs it.

1.3. Getting the Examples

The examples live in a public GitHub repository (httpsthigb.com/imatix/zguide). The simplest way to
get all the examples is to clone this repository:

git clone --depth=1 https://github.com/imatix/zguide.g it

Next, browse the examples subdirectory. You'll find exarajlg language. If there are examples missing
in a language you use, you're encouraged to submit a tréorslat
(http://zguide.zeromg.org/main:translate). This is hbig text became so useful, thanks to the work of
many people. All examples are licensed under MIT/X11.

Chapter 1. Basics

1.4. Ask and Ye Shall Receive

So let’s start with some code. We start of course with a HeltwltMexample. We'll make a client and a
server. The client sends "Hello" to the server, which rephgh "World"Figure 1-1 Here’s the server in
C, which opens a @MQ socket on port 5555, reads requestsamtiteplies with "World" to each
request:

Example 1-1. Hello World server (hwserver.c)

/I Hello World server

#include <zmg.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>

int main (void)

{
/I Socket to talk to clients
void =*context = zmgq_ctx_new ();
void =*responder = zmq_socket (context, ZMQ_REP);
int rc = zmq_bind (responder, "tcp:// *:5555");
assert (rc == 0);

while (1) {
char buffer [10];
zmg_recv (responder, buffer, 10, 0);
printf ("Received Hello\n");
sleep (1); /I Do some 'work’
zmg_send (responder, "World", 5, 0);

}

return 0;

Chapter 1. Basics

Figure 1-1. Request-Reply

Client

REQ

(REP

Server

The REQ-REP socket pair is in lockstep. The client issmas send() and theremg_recv() ,ina

loop (or once if that's all it needs). Doing any other seqeefecg., sending two messages in a row) will
result in a return code of -1 from tend orrecv call. Similarly, the service issuesng_recv() and
thenzmqg_send() in that order, as often as it needs to.

@MQ uses C as its reference language and this is the maindgegue’ll use for examples. If you're
reading this online, the link below the example takes youdndlations into other programming
languages. Let’'s compare the same server in C++;

Example 1-2. Hello World server (hwserver.cpp)

I

/I Hello World server in C++

/I Binds REP socket to tcp:// *:5555
/I Expects "Hello" from client, replies with "World"
1

#include <zmq.hpp>

#include <string>

#include <iostream>

#ifndef _WIN32

#include <unistd.h>

#else

#include <windows.h>

#endif

int main () {
/I Prepare our context and socket
zmg::context_t context (1);
zmg::socket_t socket (context, ZMQ_REP);

Chapter 1. Basics
socket.bind ("tcp:// *:5555");

while (true) {
zmg::message_t request;

/I Wait for next request from client
socket.recv (&request);
std::cout << "Received Hello" << std::endl;

/I Do some 'work’
#ifndef _WIN32

sleep(1);
#else
Sleep (1);
#endif
/I Send reply back to client
zmg::message_t reply (5);
memcpy ((void *) reply.data (), "World", 5);
socket.send (reply);
}
return O;
}

You can see that the @MQ APl is similar in C and C++. In a langUdg PHP or Java, we can hide even
more and the code becomes even easier to read:

Example 1-3. Hello World server (hwserver.php)

<?php

| *

* Hello World server

* Binds REP socket to tcp:// *:5555

* Expects "Hello" from client, replies with "World"

* @author lan Barber <ian(dot)barber(at)gmail(dot)com>
*/

$context = new ZMQContext(1);

/I Socket to talk to clients
$responder = new ZMQSocket($context, ZMQ::SOCKET_REP);
$responder->bind("tcp:// *:5555");

while (true) {
/I Wait for next request from client
$request = $responder->recv();
printf ("Received request: [%s]\n", $request);

/I Do some ’'work’
sleep (1);

/I Send reply back to client

Chapter 1. Basics

$responder->send("World");

Example 1-4. Hello World server (hwserver.java)

I

/I Hello World server in Java

/I Binds REP socket to tcp:// *:5555

/I Expects "Hello" from client, replies with "World"
I

import org.zeromq.ZMQ;
public class hwserver {

public static void main(String[] args) throws Exception {
ZMQ.Context context = ZMQ.context(1);

/I Socket to talk to clients
ZMQ.Socket responder = context.socket(ZMQ.REP);
responder.bind("tcp:// *:5555");

while ('Thread.currentThread().isInterrupted()) {
/I Wait for next request from the client
byte[] request = responder.recv(0);
System.out.printin("Received Hello");

/I Do some 'work’
Thread.sleep(1000);

/I Send reply back to client
String reply = "World";
responder.send(reply.getBytes(), 0);

}

responder.close();

context.term();

Here's the client code:

Example 1-5. Hello World client (hwclient.py)

#

Hello World client in Python

Connects REQ socket to tcp://localhost:5555
Sends "Hello" to server, expects "World" back
#

import zmq

context = zmgq.Context()

Chapter 1. Basics

Socket to talk to server
print("Connecting to hello world server...")
socket = context.socket(zmq.REQ)
socket.connect("tcp://localhost:5555")

Do 10 requests, waiting each time for a response
for request in range(10):
print("Sending request %s ..." % request)
socket.send(b"Hello")

Get the reply.
message = socket.recv()
print("Received reply %s [%s]" % (request, message))

Now this looks too simple to be realistic, but IMQ socketsehas we already learned, superpowers.
You could throw thousands of clients at this server, all asgm@and it would continue to work happily
and quickly. For fun, try starting the client atlienstarting the server, see how it all still works, then
think for a second what this means.

Let us explain briefly what these two programs are actualigglarhey create a @MQ context to work
with, and a socket. Don’t worry what the words mean. You'tkpit up. The server binds its REP (reply)
socket to port 5555. The server waits for a request in a looghy@sponds each time with a reply. The
client sends a request and reads the reply back from therserve

If you kill the server (Ctrl-C) and restart it, the client worecover properly. Recovering from crashing
processes isn’t quite that easy. Making a reliable requegsy flow is complex enough that we won'’t
cover it until Reliable Request-Reply Pattebiapter 4

There is a lot happening behind the scenes but what mattessgomgrammers is how short and sweet
the code is, and how often it doesn’t crash, even under a Heady This is the request-reply pattern,
probably the simplest way to use @MQ. It maps to RPC and ttesid&lient/server model.

1.5. A Minor Note on Strings

@MQ doesn’t know anything about the data you send excepiziésiis bytes. That means you are
responsible for formatting it safely so that applicatioas cead it back. Doing this for objects and
complex data types is a job for specialized libraries liket&col Buffers. But even for strings, you need
to take care.

In C and some other languages, strings are terminated witll Byte. We could send a string like
"HELLO" with that extra null byte:

zmg_send (requester, "Hello", 6, 0);

Chapter 1. Basics

However, if you send a string from another language, it ppbpaill not include that null byte. For
example, when we send that same string in Python, we do this:

socket.send ("Hello")

Then what goes onto the wire is a length (one byte for shottieigs) and the string contents as
individual charactefsigure 1-2

Figure 1-2. A @MQ string

| 5 I H e 1 1 o)

And if you read this from a C program, you will get somethingtttooks like a string, and might by
accident act like a string (if by luck the five bytes find theiass followed by an innocently lurking
null), but isn’'t a proper string. When your client and serden’t agree on the string format, you will get
weird results.

When you receive string data from @MQ in C, you simply cannadttthat it's safely terminated. Every
single time you read a string, you should allocate a new buffh space for an extra byte, copy the
string, and terminate it properly with a null.

So let’s establish the rule th@MQ strings are length-specified and are sent on the wiraithout a
trailing null . In the simplest case (and we’ll do this in our examples), a@#ting maps neatly to a
@MQ message frame, which looks like the above figure--a leagtt some bytes.

Here is what we need to do, in C, to receive a @MQ string andeleli to the application as a valid C
string:

/I Receive OMQ string from socket and convert into C string
/I Chops string at 255 chars, if it's longer
static char *
s_recv (void * socket) {
char buffer [256];
int size = zmq_recv (socket, buffer, 255, 0);
if (size == -1)
return NULL;
if (size > 255)
size = 255;
buffer [size] = 0;
return strdup (buffer);

Chapter 1. Basics

This makes a handy helper function and in the spirit of makiirggs we can reuse profitably, let's write
a similars_send function that sends strings in the correct @MQ format, arakpge this into a header
file we can reuse.

The resultizhelpers.h , which lets us write sweeter and shorter @MQ applicatiorG.ift is a fairly
long source, and only fun for C developers, so read it atiteisu
(https://github.com/imatix/zguide/blob/master/exdesfC/zhelpers.h).

1.6. Version Reporting

@MQ does come in several versions and quite often, if you pibhlem, it'll be something that's been
fixed in a later version. So it's a useful trick to kn@wactlywhat version of @MQ you're actually
linking with.

Here is a tiny program that does that:

Example 1-6. @MQ version reporting (version.py)
Report OMQ version

#

Author: Lev Givon <lev(at)columbia(dot)edu>

import zmqg

print("Current libzmqg version is %s" % zmq.zmq_version())
print("Current pyzmgq version is %s" % zmgq.__version__)

1.7. Getting the Message Out

The second classic pattern is one-way data distributiowhich a server pushes updates to a set of
clients. Let's see an example that pushes out weather updansisting of a zip code, temperature, and
relative humidity. We’'ll generate random values, just like real weather stations do.

Here’s the server. We'll use port 5556 for this application:

Example 1-7. Weather update server (wuserver.py)

Weather update server
Binds PUB socket to tcp:// *:5556
Publishes random weather updates

H*HOH H HH

Chapter 1. Basics

import zmq
from random import randrange

context = zmgq.Context()
socket = context.socket(zmq.PUB)
socket.bind("tcp:// *:5556")

while True:
zipcode = randrange(1, 100000)
temperature = randrange(-80, 135)
relhumidity = randrange(10, 60)

socket.send_string("%i %i %i" % (zipcode, temperature, re Ihumidity))

There’s no start and no end to this stream of updates, igsdikever ending broadchgure 1-3

Here is the client application, which listens to the stredmpmlates and grabs anything to do with a
specified zip code, by default New York City because that'seaplace to start any adventure:

Example 1-8. Weather update client (wuclient.py)
Weather update client

Connects SUB socket to tcp://localhost:5556
Collects weather updates and finds avg temp in zipcode

H*OH H KR

import sys
import zmqg

Socket to talk to server
context = zmgq.Context()
socket = context.socket(zmq.SUB)

print("Collecting updates from weather server...")
socket.connect("tcp://localhost:5556")

Subscribe to zipcode, default is NYC, 10001
zip_filter = sys.argv[1] if len(sys.argv) > 1 else "10001"

Python 2 - ascii bytes to unicode str
if isinstance(zip_filter, bytes):

zip_filter = zip_filter.decode('ascii’)
socket.setsockopt_string(zmq.SUBSCRIBE, zip_filter)

Process 5 updates

total_temp = 0

for update_nbr in range(5):
string = socket.recv_string()

10

Chapter 1. Basics

zipcode, temperature, relhumidity = string.split()
total_temp += int(temperature)

print("Average temperature for zipcode '%s’ was %dF" % (
zip_filter, total_temp / update_nbr)

)

Figure 1-3. Publish-Subscribe

Publisher

PUB

bind

updates

g l
updates updates updates

v v v

connect connect connect

(SUB (SUB

Subscriber Subscriber

SUB

Subscriber

Note that when you use a SUB socket youst set a subscription usingng_setsockopt() and
SUBSCRIBE, as in this code. If you don't set any subscriptiamu won’t get any messages. It's a
common mistake for beginners. The subscriber can set mdnsgsptions, which are added together.
That is, if an update matches ANY subscription, the subscriéceives it. The subscriber can also cancel
specific subscriptions. A subscription is often, but notassarily a printable string. See

zmg_setsockopt() for how this works.

The PUB-SUB socket pair is asynchronous. The client doeg recv() , in a loop (or once if that’s all
it needs). Trying to send a message to a SUB socket will causerar. Similarly, the service does
zmg_send() as often as it needs to, but must notasiay_recv() on a PUB socket.

In theory with @MQ sockets, it does not matter which end ceimand which end binds. However, in
practice there are undocumented differences that I'll ctomlater. For now, bind the PUB and connect

11

Chapter 1. Basics

the SUB, unless your network design makes that impossible.

There is one more important thing to know about PUB-SUB stsck@u do not know precisely when a
subscriber starts to get messages. Even if you start a $odsevait a while, and then start the publisher,
the subscriber will always miss the first messages that the flisher sends This is because as the
subscriber connects to the publisher (something that takesall but non-zero time), the publisher may
already be sending messages out.

This "slow joiner" symptom hits enough people often enoumgt tve're going to explain it in detail.
Remember that @MQ does asynchronous I/O, i.e., in the baadkgl Say you have two nodes doing
this, in this order:

« Subscriber connects to an endpoint and receives and coestages.

- Publisher binds to an endpoint and immediately sends 1,@33ages.

Then the subscriber will most likely not receive anythingu¥! blink, check that you set a correct filter
and try again, and the subscriber will still not receive aimg.

Making a TCP connection involves to and from handshakingttiles several milliseconds depending
on your network and the number of hops between peers. Inithef @MQ can send many messages.
For sake of argument assume it takes 5 msecs to establismaatam, and that same link can handle
1M messages per second. During the 5 msecs that the subissidoanecting to the publisher, it takes
the publisher only 1 msec to send out those 1K messages.

In Sockets and Patter@iapter 2ve’ll explain how to synchronize a publisher and subscslserthat

you don't start to publish data until the subscribers reatly connected and ready. There is a simple and
stupid way to delay the publisher, which is to sleep. Don'tlis in a real application, though, because it
is extremely fragile as well as inelegant and slow. Use sléeprove to yourself what's happening, and
then wait for Sockets and Patte@tsapter 2o see how to do this right.

The alternative to synchronization is to simply assumetti@published data stream is infinite and has
no start and no end. One also assumes that the subscribertad@es what transpired before it started
up. This is how we built our weather client example.

So the client subscribes to its chosen zip code and coll@&tsifpdates for that zip code. That means
about ten million updates from the server, if zip codes aneéloanly distributed. You can start the client,
and then the server, and the client will keep working. Youstap and restart the server as often as you
like, and the client will keep working. When the client hadiected its hundred updates, it calculates the
average, prints it, and exits.

Some points about the publish-subscribe (pub-sub) pattern

- A subscriber can connect to more than one publisher, usiagonnect call each time. Data will then
arrive and be interleaved ("fair-queued") so that no sipglielisher drowns out the others.

12

Chapter 1. Basics

- If a publisher has no connected subscribers, then it wilpgirdrop all messages.

- If you're using TCP and a subscriber is slow, messages widligwp on the publisher. We'll look at
how to protect publishers against this using the "high-watark" later.

« From @MQ v3.x, filtering happens at the publisher side whengia connected protocokp:/ or
ipc://). Using theepgm:// protocol, filtering happens at the subscriber side. In ZMQ &l
filtering happened at the subscriber side.

This is how long it takes to receive and filter L0M messages piaptop, which is an 2011-era Intel i5,
decent but nothing special:

$ time wuclient
Collecting updates from weather server...
Average temperature for zipcode '10001 ' was 28F

real 0m4.470s

user 0m0.000s
Sys 0m0.008s

13

1.8. Divide and Conquer

Figure 1-4. Parallel Pipeline

Ventilator

PUSH

'

PULL

v

PULL

~

Worker Worker

PUSH PUSH

resujlts

(PULL

Sink

Chapter 1. Basics

As a final example (you are surely getting tired of juicy codd aant to delve back into philological
discussions about comparative abstractive norms), lets lidtle supercomputing. Then coffee. Our
supercomputing application is a fairly typical parallebpessing mod€&igure 1-5 We have:

- A ventilator that produces tasks that can be done in parallel
- A set of workers that process tasks

- Asink that collects results back from the worker processes

In reality, workers run on superfast boxes, perhaps using€3Braphic processing units) to do the hard
math. Here is the ventilator. It generates 100 tasks, eadksaane telling the worker to sleep for some

number of milliseconds:

14

Chapter 1. Basics

Example 1-9. Parallel task ventilator (taskvent.py)

Task ventilator

Binds PUSH socket to tcp://localhost:5557

Sends batch of tasks to workers via that socket
#

Author: Lev Givon <lev(at)columbia(dot)edu>

import zmqg
import random
import time

try:
raw_input

except NamekError:
Python 3
raw_input = input

context = zmgq.Context()

Socket to send messages on
sender = context.socket(zmg.PUSH)
sender.bind("tcp:// *:5557")

Socket with direct access to the sink: used to syncronize st art of batch
sink = context.socket(zmqg.PUSH)
sink.connect("tcp://localhost:5558")

print("Press Enter when the workers are ready: ")
_ = raw_input()

print("Sending tasks to workers...")

The first message is "0" and signals start of batch
sink.send(b’0’)

Initialize random number generator
random.seed()

Send 100 tasks

total_msec = 0

for task_nbr in range(100):
Random workload from 1 to 100 msecs
workload = random.randint(1, 100)
total_msec += workload
sender.send_string(u'%i’ % workload)

print("Total expected cost: %s msec" % total_msec)

Give OMQ time to deliver
time.sleep(1)

15

Chapter 1. Basics

Here is the worker application. It receives a message, stieephat number of seconds, and then signals
that it’s finished:

Example 1-10. Parallel task worker (taskwork.py)

Task worker

Connects PULL socket to tcp://localhost:5557

Collects workloads from ventilator via that socket
Connects PUSH socket to tcp://localhost:5558

Sends results to sink via that socket

#

Author: Lev Givon <lev(at)columbia(dot)edu>
import sys

import time

import zmq

context = zmgq.Context()

Socket to receive messages on
receiver = context.socket(zmq.PULL)
receiver.connect("tcp://localhost:5557")

Socket to send messages to
sender = context.socket(zmg.PUSH)
sender.connect("tcp://localhost:5558")

Process tasks forever
while True:
s = receiver.recv()

Simple progress indicator for the viewer
sys.stdout.write(’.")
sys.stdout.flush()

Do the work
time.sleep(int(s) *0.001)

Send results to sink
sender.send(b”)

Here is the sink application. It collects the 100 tasks, ttednulates how long the overall processing
took, so we can confirm that the workers really were runninggrallel if there are more than one of
them:

Example 1-11. Parallel task sink (tasksink.py)

Task sink

Binds PULL socket to tcp://localhost:5558

Collects results from workers via that socket
#

16

Chapter 1. Basics
Author: Lev Givon <lev(at)columbia(dot)edu>

import sys
import time
import zmq

context = zmgq.Context()

Socket to receive messages on
receiver = context.socket(zmq.PULL)
receiver.bind("tcp:// *:5558")

Wait for start of batch
s = receiver.recv()

Start our clock now
tstart = time.time()

Process 100 confirmations
total_msec = 0
for task_nbr in range(100):
s = receiver.recv()
if task_nbr % 10 == O:
sys.stdout.write(’:’")
else:
sys.stdout.write(’.")
sys.stdout.flush()

Calculate and report duration of batch
tend = time.time()
print("Total elapsed time: %d msec" % ((tend-tstart) *1000))

The average cost of a batch is 5 seconds. When we start 1, 2yankérs we get results like this from
the sink:

- 1 worker: total elapsed time: 5034 msecs.
- 2 workers: total elapsed time: 2421 msecs.

- 4 workers: total elapsed time: 1018 msecs.

Let's look at some aspects of this code in more detail:

- The workers connect upstream to the ventilator, and doeastrto the sink. This means you can add
workers arbitrarily. If the workers bound to their endpsintou would need (a) more endpoints and
(b) to modify the ventilator and/or the sink each time youextld worker. We say that the ventilator
and sink arestableparts of our architecture and the workers dyaamicparts of it.

- We have to synchronize the start of the batch with all workeiag up and running. This is a fairly
common gotcha in @MQ and there is no easy solution.ziimg connect method takes a certain
time. So when a set of workers connect to the ventilator, tiedne to successfully connect will get a

17

Chapter 1. Basics

whole load of messages in that short time while the otheralaoeconnecting. If you don’t
synchronize the start of the batch somehow, the system wamin parallel at all. Try removing the
wait in the ventilator, and see what happens.

« The ventilator's PUSH socket distributes tasks to workass@ming they are all connecteeforethe
batch starts going out) evenly. This is calledd balancingand it's something we’'ll look at again in
more detail.

« The sink’s PULL socket collects results from workers evemhis is calledair-queuingd-igure 1-5

Figure 1-5. Fair Queuing

PUSH l PUSH l PUSH

R1, R2, R3 R4 R5,| R6

fair-queuing
R1, R4, R5, R2, R6, R3

v

| PULL l

The pipeline pattern also exhibits the "slow joiner" symdeg leading to accusations that PUSH sockets
don't load balance properly. If you are using PUSH and PUlrld ane of your workers gets way more
messages than the others, it's because that PULL socketihas faster than the others, and grabs a lot
of messages before the others manage to connect. If you wapeoad balancing, you probably want
to look at the load balancing pattern in Advanced RequeglyReattern€hapter 3

1.9. Programming with @MQ

Having seen some examples, you must be eager to start usilgyi@sbme apps. Before you start that,
take a deep breath, chillax, and reflect on some basic achateill save you much stress and confusion.

+ Learn @MQ step-by-step. It's just one simple API, but it li@eworld of possibilities. Take the
possibilities slowly and master each one.

- Write nice code. Ugly code hides problems and makes it hardtfeers to help you. You might get
used to meaningless variable names, but people readinggdarwon’t. Use names that are real
words, that say something other than "I'm too careless ty¢el what this variable is really for". Use
consistent indentation and clean layout. Write nice codeyauir world will be more comfortable.

18

Chapter 1. Basics

« Test what you make as you make it. When your program doesmk,wou should know what five
lines are to blame. This is especially true when you do @MQima¢hich justwon’t work the first
few times you try it.

« When you find that things don’t work as expected, break yodednto pieces, test each one, see
which one is not working. @MQ lets you make essentially madabde; use that to your advantage.

- Make abstractions (classes, methods, whatever) as youlme®d If you copy/paste a lot of code,
you're going to copy/paste errors, too.

1.9.1. Getting the Context Right

@MQ applications always start by creating@ntext and then using that for creating sockets. In C, it’s
thezmg_ctx_new() call. You should create and use exactly one context in yoargss. Technically, the
context is the container for all sockets in a single procasd,acts as the transport faproc sockets,
which are the fastest way to connect threads in one prodegsuntime a process has two contexts,
these are like separate IMQ instances. If that’s explieithat you want, OK, but otherwise remember:

Do oneznyg_ct x_new() at the start of your main line code, and onezny_ct x_destroy() atthe
end.

If you're using thefork() system call, each process needs its own context. If yaundp ctx_new()
in the main process before callifgk() , the child processes get their own contexts. In general, you
want to do the interesting stuff in the child processes astijanage these from the parent process.

1.9.2. Making a Clean Exit

Classy programmers share the same motto as classy hit meysatlean-up when you finish the job.
When you use IMQ in a language like Python, stuff gets auticalbt freed for you. But when using C,
you have to carefully free objects when you're finished whitbrh or else you get memory leaks, unstable
applications, and generally bad karma.

Memory leaks are one thing, but @MQ is quite finicky about haw gxit an application. The reasons
are technical and painful, but the upshot is that if you leawesockets open, theeng_ctx_destroy()
function will hang forever. And even if you close all socketsq_ctx_destroy() will by default wait
forever if there are pending connects or sends unless ydhesetNGER to zero on those sockets before
closing them.

The IMQ objects we need to worry about are messages, soaketspntexts. Luckily it's quite simple,
at least in simple programs:

- Usezmqg_send() andzmg_recv() when you can, as it avoids the need to work with zmqg_msg_t
objects.

19

Chapter 1. Basics

- If you do usezmqg_msg_recv() , always release the received message as soon as you're ithrig w
by callingzmg_msg_close()

- If you are opening and closing a lot of sockets, that’s prdpatsign that you need to redesign your
application. In some cases socket handles won'’t be freeldyontdestroy the context.

- When you exit the program, close your sockets and therzeajl ctx_destroy() . This destroys the
context.

This is at least the case for C development. In a languageawithmatic object destruction, sockets and
contexts will be destroyed as you leave the scope. If you xiseptions you'll have to do the clean-upin
something like a "final" block, the same as for any resource.

If you're doing multithreaded work, it gets rather more cdexithan this. We'll get to multithreading in
the next chapter, but because some of you will, despite wgsniry to run before you can safely walk,
below is the quick and dirty guide to making a clean exit maltithreadeddMQ application.

First, do not try to use the same socket from multiple threBtisase don’t explain why you think this
would be excellent fun, just please don’t do it. Next, youdeeshut down each socket that has ongoing
requests. The proper way is to set a low LINGER value (1 secamnd then close the socket. If your
language binding doesn’t do this for you automatically wiien destroy a context, I'd suggest sending a
patch.

Finally, destroy the context. This will cause any blockiegeives or polls or sends in attached threads
(i.e., which share the same context) to return with an e@atch that error, and then set linger on, and
close sockets ithatthread, and exit. Do not destroy the same context twice Zidtg ctx_destroy in
the main thread will block until all sockets it knows abouwg aafely closed.

Voila! It's complex and painful enough that any languagedirig author worth his or her salt will do this
automatically and make the socket closing dance unnegessar

1.10. Why We Needed OMQ

Now that you've seen @MQ in action, let's go back to the "why".

Many applications these days consist of components thetthtacross some kind of network, either a
LAN or the Internet. So many application developers end upglsome kind of messaging. Some
developers use message queuing products, but most of ta¢hén do it themselves, using TCP or UDP.
These protocols are not hard to use, but there is a greatetiffe between sending a few bytes from A to
B, and doing messaging in any kind of reliable way.

20

Chapter 1. Basics

Let’s look at the typical problems we face when we start tonemt pieces using raw TCP. Any reusable
messaging layer would need to solve all or most of these:

- How do we handle I/0? Does our application block, or do we ah® in the background? This is a
key design decision. Blocking 1/O creates architecturasdo not scale well. But background I/O can
be very hard to do right.

« How do we handle dynamic components, i.e., pieces that gy temaporarily? Do we formally split
components into "clients" and "servers" and mandate thmaésecannot disappear? What then if we
want to connect servers to servers? Do we try to reconnent & seconds?

- How do we represent a message on the wire? How do we framealdtaeasy to write and read, safe
from buffer overflows, efficient for small messages, yet adee for the very largest videos of dancing
cats wearing party hats?

- How do we handle messages that we can't deliver immediaRdytcularly, if we're waiting for a
component to come back online? Do we discard messages, gmtitho a database, or into a memory
queue?

- Where do we store message queues? What happens if the campeading from a queue is very
slow and causes our queues to build up? What'’s our strategy?th

- How do we handle lost messages? Do we wait for fresh dataestquesend, or do we build some
kind of reliability layer that ensures messages cannot &2 [/hat if that layer itself crashes?

- What if we need to use a different network transport. Saytioasgt instead of TCP unicast? Or IPv6?
Do we need to rewrite the applications, or is the transpastrabted in some layer?

« How do we route messages? Can we send the same message pterpekirs? Can we send replies
back to an original requester?

- How do we write an API for another language? Do we re-impletraenire-level protocol or do we
repackage a library? If the former, how can we guaranteaaifiand stable stacks? If the latter, how
can we guarantee interoperability?

- How do we represent data so that it can be read between diff@rehitectures? Do we enforce a
particular encoding for data types? How far is this the jothefmessaging system rather than a higher
layer?

- How do we handle network errors? Do we wait and retry, ignioeat silently, or abort?

Take a typical open source project like Hadoop Zookeep#y:(fitadoop.apache.org/zookeeper/) and
read the C API code iarc/c/src/zookeeper.c

(http://github.com/apache/zookeeper/blob/trunk/src/ c/src/zookeeper.c) .When |
read this code, in January 2013, it was 4,200 lines of mystedyin there is an undocumented,
client/server network communication protocol. | see ifficeent because it usgmll instead of

select . Butreally, Zookeeper should be using a generic messagyeg bnd an explicitly documented
wire level protocol. It is incredibly wasteful for teams te building this particular wheel over and over.

But how to make a reusable messaging layer? Why, when so nmajgcfs need this technology, are
people still doing it the hard way by driving TCP sockets iaitltode, and solving the problems in that
long list over and ovétigure 1-&

21

Chapter 1. Basics

It turns out that building reusable messaging systems Iy ifficult, which is why few FOSS projects
ever tried, and why commercial messaging products are amgkpensive, inflexible, and brittle. In
2006, iMatix designed AMQP (http://www.amqgp.org) whichrséd to give FOSS developers perhaps
the first reusable recipe for a messaging system. AMQP warttsithan many other designs, but
remains relatively complex, expensive, and brittle
(http://www.imatix.com/articles:whats-wrong-with-am). It takes weeks to learn to use, and months to
create stable architectures that don’t crash when thingisagey.

Figure 1-6. Messaging as it Starts

Piece A

TJP

Piece B

Most messaging projects, like AMQP, that try to solve thisgdist of problems in a reusable way do so
by inventing a new concept, the "broker", that does addngssbuting, and queuing. This results in a
client/server protocol or a set of APIs on top of some undcenied protocol that allows applications to
speak to this broker. Brokers are an excellent thing in redpuihie complexity of large networks. But
adding broker-based messaging to a product like Zookeepeldwnake it worse, not better. It would
mean adding an additional big box, and a new single pointikfréa A broker rapidly becomes a
bottleneck and a new risk to manage. If the software supgorte can add a second, third, and fourth
broker and make some failover scheme. People do this. lteg@ore moving pieces, more complexity,
and more things to break.

And a broker-centric setup needs its own operations teamlitdyally need to watch the brokers day
and night, and beat them with a stick when they start miskiabaYou need boxes, and you need
backup boxes, and you need people to manage those boxesnly iworth doing for large applications
with many moving pieces, built by several teams of people egeeral years.

22

Chapter 1. Basics

Figure 1-7. Messaging as it Becomes

A

So small to medium application developers are trappedeEittey avoid network programming and
make monolithic applications that do not scale. Or they jumi@ network programming and make
brittle, complex applications that are hard to maintainti@y bet on a messaging product, and end up
with scalable applications that depend on expensive yelagiken technology. There has been no really
good choice, which is maybe why messaging is largely stutkeriast century and stirs strong
emotions: negative ones for users, gleeful joy for thodingedupport and licens€ggure 2-1

What we need is something that does the job of messagingplestitin such a simple and cheap way
that it can work in any application, with close to zero cossHould be a library which you just link,
without any other dependencies. No additional moving @ese no additional risk. It should run on any
OS and work with any programming language.

And this is @MQ: an efficient, embeddable library that solvesst of the problems an application needs
to become nicely elastic across a network, without much cost

Specifically:

23

Chapter 1. Basics

« It handles I/0O asynchronously, in background threads. & kemmunicate with application threads
using lock-free data structures, so concurrent dMQ apipdica need no locks, semaphores, or other
wait states.

« Components can come and go dynamically and @MQ will autaralliyireconnect. This means you
can start components in any order. You can create "servieated architectures" (SOAs) where
services can join and leave the network at any time.

- It queues messages automatically when needed. It doesthligjently, pushing messages as close as
possible to the receiver before queuing them.

- It has ways of dealing with over-full queues (called "hightevamark"). When a queue is full, MQ
automatically blocks senders, or throws away messagesndeyy on the kind of messaging you are
doing (the so-called "pattern™).

- It lets your applications talk to each other over arbitraansports: TCP, multicast, in-process,
inter-process. You don’t need to change your code to usdexelift transport.

- It handles slow/blocked readers safely, using differenattsgies that depend on the messaging pattern.

- Itlets you route messages using a variety of patterns sudtagst-reply and pub-sub. These patterns
are how you create the topology, the structure of your ndtwor

- Itlets you create proxies to queue, forward, or capture agesswith a single call. Proxies can reduce
the interconnection complexity of a network.

- It delivers whole messages exactly as they were sent, usimgde framing on the wire. If you write
a 10k message, you will receive a 10k message.

- It does not impose any format on messages. They are blobszieomto gigabytes large. When you
want to represent data you choose some other product onuipas msgpack, Google’s protocol
buffers, and others.

- It handles network errors intelligently, by retrying autatically in cases where it makes sense.

- It reduces your carbon footprint. Doing more with less CPlanssyour boxes use less power, and you
can keep your old boxes in use for longer. Al Gore would love@M

Actually @MQ does rather more than this. It has a subverdfeeton how you develop
network-capable applications. Superficially, it's a sddkepired API on which you demq_recv()
andzmg_send() . But message processing rapidly becomes the central lodpj@ur application soon
breaks down into a set of message processing tasks. It arglagd natural. And it scales: each of these
tasks maps to a node, and the nodes talk to each other ado@sargitransports. Two nodes in one
process (node is a thread), two nodes on one box (node is agsjpor two nodes on one network (node
is a box)--it's all the same, with no application code change

1.11. Socket Scalability

Let’s see IMQ’s scalability in action. Here is a shell sctiyt starts the weather server and then a
bunch of clients in parallel:

wuserver &

24

Chapter 1. Basics

wuclient 12345 &
wuclient 23456 &
wuclient 34567 &
wuclient 45678 &
wuclient 56789 &

As the clients run, we take a look at the active processegtisgtop command’, and we see something
like (on a 4-core box):

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
7136 ph 20 1040m 959m 1156 R 157 12.0 16:25.47 wuserver

7966 ph 20 98608 1804 1372 S 33 0.0 0:03.94 wuclient

7963 ph 20 33116 1748 1372 S 14 0.0 0:00.76 wuclient

7965 ph 20 33116 1784 1372 S 6 0.0 0:00.47 wuclient

7964 ph 20 33116 1788 1372 S 5 0.0 0:00.25 wuclient

7967 ph 20 33072 1740 1372 S 5 0.0 0:00.35 wuclient

O OO OoOOoOo

Let’s think for a second about what is happening here. Theheeaerver has a single socket, and yet
here we have it sending data to five clients in parallel. Wddchave thousands of concurrent clients.
The server application doesn’t see them, doesn't talk tmttieectly. So the @MQ socket is acting like a
little server, silently accepting client requests and shgdata out to them as fast as the network can
handle it. And it's a multithreaded server, squeezing moieejout of your CPU.

1.12. Upgrading from @MQ v2.2 to dMQ v3.2

1.12.1. Compatible Changes

These changes don’t impact existing application code thirec

- Pub-sub filtering is now done at the publisher side insteaib§criber side. This improves
performance significantly in many pub-sub use cases. Youmtarn3.2 and v2.1/v2.2 publishers and
subscribers safely.

« @MQ v3.2 has many new APl methodsr(g_disconnect() ,zmq_unbind() ,zmg_monitor()
zmqg_ctx_set() ,etc.)

1.12.2. Incompatible Changes

These are the main areas of impact on applications and lgediadings:

- Changed send/recv methodsiq_send() andzmg_recv() have a different, simpler interface, and
the old functionality is now provided bymg_msg_send() andzmg_msg_recv() .Symptom:
compile errors. Solution: fix up your code.

25

Chapter 1. Basics

- These two methods return positive values on success, anmdefrar. In v2.x they always returned
zero on success. Symptom: apparent errors when thingdlgetwak fine. Solution: test strictly for
return code = -1, not non-zero.

« zmqg_poll() now waits for milliseconds, not microseconds. Symptomiiapfion stops responding
(in fact responds 1000 times slower). Solution: usezili®_POLL_MSEmacro defined below, in all
zmg_poll calls.

« ZMQ_NOBLOGCK now calledzMQ_DONTWAITSymptom: compile failures on tt#MQ_NOBLOCK
macro.

« ThezMQ_Hwsbcket option is now broken ineMQ_SNDHWAWAZMQ_RCVHWBymptom: compile
failures on themMQ_HwWRacro.

- Most but not allzmqg_getsockopt() options are now integer values. Symptom: runtime errornstu
onzmg_setsockopt andzmq_getsockopt

. ThezMQ_SWABption has been removed. Symptom: compile failureZaQ_SWAFRSolution:
redesign any code that uses this functionality.

1.12.3. Suggested Shim Macros

For applications that want to run on both v2.x and v3.2, sisclaaguage bindings, our advice is to
emulate ¢c3.2 as far as possible. Here are C macro definitianfi€lp your C/C++ code to work across
both versions (taken from CZMQ (http://czmq.zeromg.arg))

#ifndef ZMQ_DONTWAIT

define ZMQ_DONTWAIT ZMQ_NOBLOCK

#endif

#if ZMQ_VERSION_MAJOR ==

define zmqg_msg_send(msg,sock,opt) zmg_send (sock, msg, opt)
define zmg_msg_recv(msg,sock,opt) zmg_recv (sock, msg, opt)
define zmq_ctx_destroy(context) zmgq_term(context)

define ZMQ_POLL_MSEC 1000 /I zmqg_poll is usec

define ZMQ_SNDHWM ZMQ_HWM

define ZMQ_RCVHWM ZMQ_HWM

#elif ZMQ_VERSION_MAJOR ==

define ZMQ_POLL_MSEC 1 /I zmqg_poll is msec
#endif

1.13. Warning: Unstable Paradigms!

Traditional network programming is built on the generalasption that one socket talks to one
connection, one peer. There are multicast protocols, lesetlare exotic. When we assume "one socket =
one connection”, we scale our architectures in certain Wwafgscreate threads of logic where each thread
work with one socket, one peer. We place intelligence arte stehese threads.

26

Chapter 1. Basics

In the @MQ universe, sockets are doorways to fast little gemknd communications engines that
manage a whole set of connections automagically for you.cém't see, work with, open, close, or
attach state to these connections. Whether you use bloskimdjor receive, or poll, all you can talk to is
the socket, not the connections it manages for you. The @ions are private and invisible, and this is
the key to IMQ’s scalability.

This is because your code, talking to a socket, can then bamyl number of connections across
whatever network protocols are around, without change. Asaging pattern sitting in @MQ scales
more cheaply than a messaging pattern sitting in your agdic code.

So the general assumption no longer applies. As you readtteexamples, your brain will try to map
them to what you know. You will read "socket" and think "ahatthepresents a connection to another
node". That is wrong. You will read "thread" and your braitlagain think, "ah, a thread represents a
connection to another node", and again your brain will bengro

If you're reading this Guide for the first time, realize thatilyou actually write @MQ code for a day or
two (and maybe three or four days), you may feel confuseaaaly by how simple MQ makes
things for you, and you may try to impose that general assiampnh @MQ, and it won't work. And then
you will experience your moment of enlightenment and trilngtt zap-pow-kaboorsatori paradigm-shift
moment when it all becomes clear.

27

Chapter 2. Sockets and Patterns

In Basichapter we took @MQ for a drive, with some basic examples of the main@pétterns:
request-reply, pub-sub, and pipeline. In this chaptenengding to get our hands dirty and start to learn
how to use these tools in real programs.

We'll cover:

- How to create and work with @MQ sockets.

- How to send and receive messages on sockets.

+ How to build your apps around @MQ’s asynchronous I/O model.
- How to handle multiple sockets in one thread.

- How to handle fatal and nonfatal errors properly.

- How to handle interrupt signals like Ctrl-C.

« How to shut down a @MQ application cleanly.

« How to check a @MQ application for memory leaks.

- How to send and receive multipart messages.

- How to forward messages across networks.

- How to build a simple message queuing broker.

« How to write multithreaded applications with MQ.

+ How to use @MQ to signal between threads.

- How to use @MQ to coordinate a network of nodes.

- How to create and use message envelopes for pub-sub.

« Using the HWM (high-water mark) to protect against memorgréews.

2.1. The Socket API

To be perfectly honest, @MQ does a kind of switch-and-baigam, for which we don’t apologize. It's
for your own good and it hurts us more than it hurts you. @M@pres a familiar socket-based AP,

which requires great effort for us to hide a bunch of mesgageessing engines. However, the result
will slowly fix your world view about how to design and writestiibuted software.

Sockets are the de facto standard API for network programpamwell as being useful for stopping

your eyes from falling onto your cheeks. One thing that ma&®K) especially tasty to developers is

that it uses sockets and messages instead of some otheargrbét of concepts. Kudos to Martin Sustrik
for pulling this off. It turns "Message Oriented Middlew&ra phrase guaranteed to send the whole room
off to Catatonia, into "Extra Spicy Sockets!", which leausswith a strange craving for pizza and a
desire to know more.

28

Chapter 2. Sockets and Patterns

Like a favorite dish, @MQ sockets are easy to digest. Sodieats a life in four parts, just like BSD
sockets:

- Creating and destroying sockets, which go together to fokarmic circle of socket life (see
zmq_socket() ,zmq_close()).

- Configuring sockets by setting options on them and checkiamtif necessary (see
zmq_setsockopt() ,zmq_getsockopt()).

« Plugging sockets into the network topology by creating @M@Qrections to and from them (see
zmg_bind() , zmg_connect()).

- Using the sockets to carry data by writing and receiving mgss on them (sesng_msg_send() ,
zmg_msg_recv()).

Note that sockets are always void pointers, and messagésh(wk’ll come to very soon) are structures.
So in C you pass sockets as-such, but you pass addressessafyees all functions that work with
messages, likemg_msg_send() andzmqg_msg_recv() .As a mnemonic, realize that "in @MQ, all
your sockets are belong to us", but messages are things yailgown in your code.

Creating, destroying, and configuring sockets works asd/expect for any object. But remember that
@MQ is an asynchronous, elastic fabric. This has some ingrabbw we plug sockets into the network
topology and how we use the sockets after that.

2.1.1. Plugging Sockets into the Topology

To create a connection between two nodes, yowngg bind() in one node andmg_connect() in

the other. As a general rule of thumb, the node that doeg bind() is a "server", sitting on a
well-known network address, and the node which dmes connect() is a "client”, with unknown or
arbitrary network addresses. Thus we say that we "bind aesdéclan endpoint” and "connect a socket to
an endpoint”, the endpoint being that well-known networttrads.

@MQ connections are somewhat different from classic TCHReotions. The main notable differences
are:

- They go across an arbitrary transpanpfoc , ipc , tcp , pgm, or epgm). Seezmg_inproc()
zmg_ipc() ,zmg_tcp() ,zmg_pgm() , andzmq_epgm() .
- One socket may have many outgoing and many incoming coromescti

« There is namq_accept () method. When a socket is bound to an endpoint it autombtistarts
accepting connections.

- The network connection itself happens in the background @ Q will automatically reconnect if
the network connection is broken (e.qg., if the peer disappead then comes back).

« Your application code cannot work with these connectionsatly; they are encapsulated under the
socket.

29

Chapter 2. Sockets and Patterns

Many architectures follow some kind of client/server moaéiere the server is the component that is
most static, and the clients are the components that aredynatnic, i.e., they come and go the most.
There are sometimes issues of addressing: servers wilsii#esto clients, but not necessarily vice
versa. So mostly it's obvious which node should be daing_bind() (the server) and which should be
doingzmg_connect() (the client). It also depends on the kind of sockets you'iegjavith some
exceptions for unusual network architectures. We'll lobkacket types later.

Now, imagine we start the clieiveforewe start the server. In traditional networking, we get a leidj r
Fail flag. But @MQ lets us start and stop pieces arbitrarilysaon as the client node does
zmg_connect() , the connection exists and that node can start to write rgesda the socket. At some
stage (hopefully before messages queue up so much thati#tnetosyet discarded, or the client blocks),
the server comes alive, doegrag_bind() , and IMQ starts to deliver messages.

A server node can bind to many endpoints (that is, a comlpinati protocol and address) and it can do
this using a single socket. This means it will accept coriaestacross different transports:

zmq_bind (socket, "tcp:// *:5555");
zmq_bind (socket, "tcp:// *:9999");
zmq_bind (socket, "inproc://somename");

With most transports, you cannot bind to the same endpoinetwnlike for example in UDP. Thipc
transport does, however, let one process bind to an endglodatdy used by a first process. It's meant to
allow a process to recover after a crash.

Although @MQ tries to be neutral about which side binds anéttvkide connects, there are differences.
We'll see these in more detail later. The upshot is that yawkhusually think in terms of "servers" as
static parts of your topology that bind to more or less fixedpaints, and "clients" as dynamic parts that
come and go and connect to these endpoints. Then, desigmapplication around this model. The
chances that it will "just work" are much better like that.

Sockets have types. The socket type defines the semantius sbtket, its policies for routing messages
inwards and outwards, queuing, etc. You can connect cextp@s of socket together, e.g., a publisher
socket and a subscriber socket. Sockets work together issagéng patterns”. We'll look at this in more
detail later.

It's the ability to connect sockets in these different wayet gives @MQ its basic power as a message
gueuing system. There are layers on top of this, such asgeoxhich we’'ll get to later. But essentially,
with @MQ you define your network architecture by plugginggeie together like a child’s construction
toy.

2.1.2. Sending and Receiving Messages

To send and receive messages you useriite msg_send() andzmg_msg_recv() methods. The

30

Chapter 2. Sockets and Patterns

names are conventional, but @MQ's I1/0 model is differentegiofrom the classic TCP mod&gure 2-1
that you will need time to get your head around it.

Figure 2-1. TCP socketsare 1to 1

Node

Socket

(Socket

Node

Let’s look at the main differences between TCP sockets an@@btkets when it comes to working
with data:

« @MQ sockets carry messages, like UDP, rather than a strebytes as TCP does. A @MQ message
is length-specified binary data. We’ll come to messagedlghthreir design is optimized for
performance and so a little tricky.

+ @MQ sockets do their I/O in a background thread. This meaststiessages arrive in local input
gueues and are sent from local output queues, no matter whatpplication is busy doing.

+ @MQ sockets have one-to-N routing behavior built-in, adawg to the socket type.

Thezmg_send() method does not actually send the message to the socketatiom(s). It queues the
message so that the 1/0 thread can send it asynchronousbedtnot block except in some exception
cases. So the message is not necessarily sentaufiersend() returns to your application.

2.1.3. Unicast Transports

@MQ provides a set of unicast transpoitgfoc , ipc , andtcp) and multicast transports (epgm, pgm).
Multicast is an advanced technique that we’ll come to lden't even start using it unless you know
that your fan-out ratios will make 1-to-N unicast impossibl

For most common cases, usep, which is adisconnected TCRansport. It is elastic, portable, and fast
enough for most cases. We call this disconnected becausesabpQtransport doesn’t require that the

31

Chapter 2. Sockets and Patterns

endpoint exists before you connect to it. Clients and sere@n connect and bind at any time, can go and
come back, and it remains transparent to applications.

The inter-procestpc transport is disconnected, likep . It has one limitation: it does not yet work on
Windows. By convention we use endpoint names with an ".ipé8resion to avoid potential conflict with
other file names. On UNIX systems, if you uipe endpoints you need to create these with appropriate
permissions otherwise they may not be shareable betweergz®s running under different user IDs.
You must also make sure all processes can access the filegyerignning in the same working directory.

The inter-thread transpoitnpr oc, is a connected signaling transport. It is much faster tbynor ipc .
This transport has a specific limitation comparettto andipc : the server must issue a bind before
any client issues a conneciThis is something future versions of @MQ may fix, but at pnésleis
defines how you usieproc sockets. We create and bind one socket and start the chéddbywhich
create and connect the other sockets.

2.1.4. @MQ is Not a Neutral Carrier

A common question that newcomers to @MQ ask (it's one I'veedskyself) is, "how do | write an XYZ
server in @MQ?" For example, "how do | write an HTTP server M@?" The implication is that if we
use normal sockets to carry HTTP requests and responsebhpwiel e able to use AMQ sockets to do
the same, only much faster and better.

The answer used to be "this is not how it works". @MQ is not anracarrier: it imposes a framing on
the transport protocols it uses. This framing is not coniy@tivith existing protocols, which tend to use
their own framing. For example, compare an HTTP request al® request, both over TCP/IP.

Figure 2-2. HTTP on the Wire

GET /index.html 13 10 13 10

The HTTP request uses CR-LF as its simplest framing deliffig@re 2-3 whereas @MQ uses a
length-specified frantégure 2-3 So you could write an HTTP-like protocol using @MQ, using fo
example the request-reply socket pattern. But it would edtBTP.

Figure 2-3. ZMQ on the Wire

32

Chapter 2. Sockets and Patterns

Since v3.3, however, AMQ has a socket option callé) ROUTER_RAMAt lets you read and write
data without the @MQ framing. You could use this to read anitevproper HTTP requests and
responses. Hardeep Singh contributed this change so tleaullseconnect to Telnet servers from his
@MQ application. At time of writing this is still somewhatgsrimental, but it shows how @MQ keeps
evolving to solve new problems. Maybe the next patch will barg.

2.1.5. 1/0 Threads

We said that @MQ does I/O in a background thread. One I/O thffes all sockets) is sufficient for all
but the most extreme applications. When you create a nevexpittstarts with one 1/0 thread. The
general rule of thumb is to allow one I/O thread per gigabytada in or out per second. To raise the
number of 1/O threads, use thmmqg_ctx_set() call beforecreating any sockets:

int io_threads = 4;

void =*context = zmq_ctx_new ();

zmg_ctx_set (context, ZMQ_IO_THREADS, io_threads);

assert (zmg_ctx_get (context, ZMQ_IO_THREADS) == io_thre ads);

We've seen that one socket can handle dozens, even thousfasaimections at once. This has a
fundamental impact on how you write applications. A tradifil networked application has one process
or one thread per remote connection, and that process acthiandles one socket. IMQ lets you
collapse this entire structure into a single process andhiheak it up as necessary for scaling.

If you are using @MQ for inter-thread communications onlg.(ia multithreaded application that does
no external socket I/O) you can set the I/O threads to zésmdt a significant optimization though,
more of a curiosity.

2.2. Messaging Patterns

Underneath the brown paper wrapping of @MQ’s socket APIthesworld of messaging patterns. If you
have a background in enterprise messaging, or know UDP thieBe will be vaguely familiar. But to
most IMQ newcomers, they are a surprise. We're so used toG@Rephradigm where a socket maps
one-to-one to another node.

Let’s recap briefly what @MQ does for you. It delivers blobslata (messages) to nodes, quickly and
efficiently. You can map nodes to threads, processes, osn@idQ gives your applications a single
socket API to work with, no matter what the actual transpldee (n-process, inter-process, TCP, or
multicast). It automatically reconnects to peers as thayecand go. It queues messages at both sender
and receiver, as needed. It limits these queues to guarégses against running out of memory. It
handles socket errors. It does all I/O in background thrdadses lock-free techniques for talking
between nodes, so there are never locks, waits, semapbookesgdlocks.

33

Chapter 2. Sockets and Patterns

But cutting through that, it routes and queues messagesdicgdo precise recipes callgtterns It is
these patterns that provide @MQ’s intelligence. They esgkspe our hard-earned experience of the best
ways to distribute data and work. @MQ’s patterns are hakddut future versions may allow
user-definable patterns.

@MQ patterns are implemented by pairs of sockets with matrtyipes. In other words, to understand
@MQ patterns you need to understand socket types and howvtr&ytogether. Mostly, this just takes
study; there is little that is obvious at this level.

The built-in core @MQ patterns are:

- Request-reply, which connects a set of clients to a set of services. Thisésmte procedure call and
task distribution pattern.

« Pub-sub which connects a set of publishers to a set of subscribéis.ig a data distribution pattern.

- Pipeline, which connects nodes in a fan-out/fan-in pattern that eae Imultiple steps and loops. This
is a parallel task distribution and collection pattern.

+ Exclusive pair, which connects two sockets exclusively. This is a pattercdnnecting two threads
in a process, not to be confused with "normal” pairs of sacket

We looked at the first three of these in Bag§lbapter 1and we’'ll see the exclusive pair pattern later in
this chapter. Themq_socket() man page is fairly clear about the patterns -- it's worth hegdeveral
times until it starts to make sense. These are the socketinatiums that are valid for a connect-bind
pair (either side can bind):

. PUB and SUB

. REQ and REP

. REQ and ROUTER

. DEALER and REP

. DEALER and ROUTER
. DEALER and DEALER

. ROUTER and ROUTER
. PUSH and PULL

. PAIR and PAIR

You'll also see references to XPUB and XSUB sockets, whicti weme to later (they're like raw
versions of PUB and SUB). Any other combination will producelocumented and unreliable results,
and future versions of @MQ will probably return errors if yioy them. You can and will, of course,
bridge other socket types via code, i.e., read from one $aygje and write to another.

34

Chapter 2. Sockets and Patterns

2.2.1. High-Level Messaging Patterns

These four core patterns are cooked into @MQ. They are péaned@MQ API, implemented in the core
C++ library, and are guaranteed to be available in all finailrstores.

On top of those, we addigh-level messaging patternd/e build these high-level patterns on top of
@MQ and implement them in whatever language we're using tiorapplication. They are not part of the
core library, do not come with the @MQ package, and existéirtbwn space as part of the IMQ
community. For example the Majordomo pattern, which we @sgin Reliable Request-Reply
Pattern€hapter 4sits in the GitHub Majordomo project in the ZeroMQ orgartiaa.

One of the things we aim to provide you with in this book areteo§such high-level patterns, both
small (how to handle messages sanely) and large (how to malialale pub-sub architecture).

2.2.2. Working with Messages

Thelibzmg core library has in fact two APIs to send and receive messdgeszmg_send() and
zmq_recv() methods that we've already seen and used are simple ons:lilve will use these often,
butzmg_recv() is bad at dealing with arbitrary message sizes: it truncatssages to whatever buffer
size you provide. So there’s a second API that works with azmeg_t structures, with a richer but more
difficult API:

- Initialise a messagemq_msg_init() , zmqg_msg_init_size() , Zmq_msg_init_data()
- Sending and receiving a messag®@t_msg_send() , zmg_msg_recv()

- Release a messageng_msg_close()

« Access message contentiq_msg_data() ,zmq_msg_size() ,zmg_msg_more() .

- Work with message propertieang_msg_get() ,zmg_msg_set()

« Message manipulatiommqg_msg_copy() ,zmg_msg_move() .

On the wire, MQ messages are blobs of any size from zero ujsvtlaat fit in memory. You do your
own serialization using protocol buffers, msgpack, JSONylmatever else your applications need to
speak. It's wise to choose a data representation that ialgertbut you can make your own decisions
about trade-offs.

In memory, MQ messages an@qg_msg_t structures (or classes depending on your language). Here
are the basic ground rules for using @MQ messages in C:

« You create and pass aroundq_msg_t objects, not blocks of data.

- To read a message, you useq_msg_init() to create an empty message, and then you pass that to
zmg_msg_recv()

35

Chapter 2. Sockets and Patterns

- To write a message from new data, you use_msg_init_size() to create a message and at the
same time allocate a block of data of some size. You then &tldlata usingnemcpy, and pass the
message tamqg_msg_send() .

- To release (not destroy) a message, youztat|_msg_close() . This drops a reference, and
eventually @MQ will destroy the message.

- To access the message content, youzusg msg_data() . To know how much data the message
contains, usemaq_msg_size()

- Do not usezmqg_msg_move() , zmg_msg_copy() , Or zmg_msg_init_data() unless you read the
man pages and know precisely why you need these.

- After you pass a messageamqg_msg_send() , @MQ will clear the message, i.e., set the size to zero.
You cannot send the same message twice, and you cannot dueessssage data after sending it.

- These rules don't apply if you useng_send() andzmq_recv() ,to which you pass byte arrays, not
message structures.

If you want to send the same message more than once, andidttsesj create a second message, initialize
it usingzmag_msg_init() , and then usemq_msg_copy() to create a copy of the first message. This
does not copy the data but copies a reference. You can thdrnfsmessage twice (or more, if you

create more copies) and the message will only be finally dgstrwhen the last copy is sent or closed.

@MQ also supportmultipart messages, which let you send or receive a list of frames agkesi
on-the-wire message. This is widely used in real applioatand we'll look at that later in this chapter
and in Advanced Request-Reply Patt&€hapter 3

Frames (also called "message parts" in the MQ referenceahpages) are the basic wire format for
@MQ messages. A frame is a length-specified block of dataldrgth can be zero upwards. If you've
done any TCP programming you'll appreciate why frames arsefullanswer to the question "how
much data am | supposed to read of this network socket now?"

There is a wire-level protocol called ZMTP (http://rfc.aerg.org/spec:15) that defines how @MQ reads
and writes frames on a TCP connection. If you're interestetbiw this works, the spec is quite short.

Originally, a @MQ message was one frame, like UDP. We latégreded this with multipart messages,
which are quite simply series of frames with a "more" bit sebte, followed by one with that bit set to
zero. The @MQ API then lets you write messages with a "morg'dlad when you read messages, it lets
you check if there’s "more”.

In the low-level MQ API and the reference manual, therefthrere’s some fuzziness about messages
versus frames. So here’s a useful lexicon:

- A message can be one or more parts.
« These parts are also called "frames".

- Each partis amg_msg_t object.

36

Chapter 2. Sockets and Patterns

- You send and receive each part separately, in the low-leRél A

- Higher-level APIs provide wrappers to send entire multipagssages.

Some other things that are worth knowing about messages:

« You may send zero-length messages, e.g., for sending d &igmeone thread to another.
+ @MQ guarantees to deliver all the parts (one or more) for asags, or none of them.

+ @MQ does not send the message (single or multipart) righyawe at some indeterminate later time.
A multipart message must therefore fit in memory.

+ A message (single or multipart) must fit in memory. If you wemsend files of arbitrary sizes, you
should break them into pieces and send each piece as segiatiéepart messagedsing multipart
data will not reduce memory consumption.

« You must callzmg_msg_close() when finished with a received message, in languages that don’
automatically destroy objects when a scope closes. You dali'this method after sending a message.

And to be repetitive, do not useng_msg_init_data() yet. This is a zero-copy method and is
guaranteed to create trouble for you. There are far moreiiaptthings to learn about @MQ before you
start to worry about shaving off microseconds.

This rich API can be tiresome to work with. The methods arénoged for performance, not simplicity.
If you start using these you will almost definitely get thenong until you've read the man pages with
some care. So one of the main jobs of a good language bindiognisap this APl up in classes that are
easier to use.

2.2.3. Handling Multiple Sockets

In all the examples so far, the main loop of most examples bar:b

1. Wait for message on socket.
2. Process message.

3. Repeat.

What if we want to read from multiple endpoints at the samefifiihe simplest way is to connect one
socket to all the endpoints and get @MQ to do the fan-in foifss is legal if the remote endpoints are
in the same pattern, but it would be wrong to connect a PULKksbio a PUB endpoint.

To actually read from multiple sockets all at once, msg_poll() . An even better way might be to
wrapzmg_poll() in a framework that turns it into a nice event-driveactor, but it's significantly
more work than we want to cover here.

37

Chapter 2. Sockets and Patterns

Let’s start with a dirty hack, partly for the fun of not doingight, but mainly because it lets me show
you how to do nonblocking socket reads. Here is a simple el@aafpeading from two sockets using
nonblocking reads. This rather confused program acts m#hsaibscriber to weather updates, and a
worker for parallel tasks:

Example 2-1. Multiple socket reader (msreader.py)
encoding: utf-8

#
#
Reading from multiple sockets

This version uses a simple recv loop
#

#

#

Author: Jeremy Avnet (brainsik) <spork(dash)zmq(at)the ory(dot)org>

import zmqg
import time

Prepare our context and sockets
context = zmgq.Context()

Connect to task ventilator
receiver = context.socket(zmq.PULL)
receiver.connect("tcp://localhost:5557")

Connect to weather server

subscriber = context.socket(zmq.SUB)
subscriber.connect("tcp://localhost:5556")
subscriber.setsockopt(zmg.SUBSCRIBE, b"10001")

Process messages from both sockets
We prioritize traffic from the task ventilator
while True:

Process any waiting tasks
while True:
try:
msg = receiver.recv(zmg.DONTWAIT)
except zmg.Again:
break
process task

Process any waiting weather updates
while True:
try:
msg = subscriber.recv(zmg.DONTWAIT)
except zmg.Again:
break
process weather update

No activity, so sleep for 1 msec
time.sleep(0.001)

38

Chapter 2. Sockets and Patterns

The cost of this approach is some additional latency on therfiessage (the sleep at the end of the loop,
when there are no waiting messages to process). This wowgpbeblem in applications where
submillisecond latency was vital. Also, you need to cheekdbcumentation for nanosleep() or whatever
function you use to make sure it does not busy-loop.

You can treat the sockets fairly by reading first from onenttiee second rather than prioritizing them as
we did in this example.

Now let’s see the same senseless little application doihe, tigingzmg_poll()

Example 2-2. Multiple socket poller (mspoller.py)
encoding: utf-8

#

#

Reading from multiple sockets
This version uses zmagq.Poller()
#

#

#

Author: Jeremy Avnet (brainsik) <spork(dash)zmq(at)the ory(dot)org>

import zmqg

Prepare our context and sockets
context = zmgq.Context()

Connect to task ventilator
receiver = context.socket(zmq.PULL)
receiver.connect("tcp://localhost:5557")

Connect to weather server

subscriber = context.socket(zmqg.SUB)
subscriber.connect("tcp://localhost:5556")
subscriber.setsockopt(zmg.SUBSCRIBE, b"10001")

Initialize poll set

poller = zmq.Poller()
poller.register(receiver, zmqg.POLLIN)
poller.register(subscriber, zmqg.POLLIN)

Process messages from both sockets
while True:
try:
socks = dict(poller.poll())
except Keyboardinterrupt:
break

if receiver in socks:
message = receiver.recv()
process task

if subscriber in socks:

39

Chapter 2. Sockets and Patterns

message = subscriber.recv()
process weather update

The items structure has these four members:

typedef struct {

void *socket; /I OMQ socket to poll on

int fd; /I OR, native file handle to poll on
short events; /I Events to poll on

short revents; /I Events returned after poll

} zmq_pollitem_t;

2.2.4. Multipart Messages

@MQ lets us compose a message out of several frames, giviagmaltipart message". Realistic
applications use multipart messages heavily, both for pirgpmessages with address information and
for simple serialization. We'll look at reply envelopesdat

What we'll learn now is simply how to blindly and safely reatawnrite multipart messages in any
application (such as a proxy) that needs to forward messaigigsut inspecting them.

When you work with multipart messages, each partasi@ msgitem. E.g., if you are sending a
message with five parts, you must construct, send, and gidsteaemg_msgitems. You can do this in
advance (and store theng_msgitems in an array or other structure), or as you send thembgrane.

Here is how we send the frames in a multipart message (weveeeach frame into a message object):

zmg_msg_send (&message, socket, ZMQ_SNDMORE);
zmg_msg_send (&message, socket, ZMQ_SNDMORE);

zmg_msg_send (&message, socket, 0);

Here is how we receive and process all the parts in a messagesibgle part or multipart:

while (1) {
zmg_msg_t message;
zmq_msg_init (&message);
zmqg_msg_recv (&message, socket, 0);
/I Process the message frame

zmg_msg_close (&message);

if ('zmg_msg_more (&message))
break; /I Last message frame

40

Chapter 2. Sockets and Patterns

Some things to know about multipart messages:

- When you send a multipart message, the first part (and adiviiilig parts) are only actually sent on
the wire when you send the final part.

- If you are usinggmg_poll() , when you receive the first part of a message, all the restibasaived.
- You will receive all parts of a message, or none at all.

- Each part of a message is a separatg_msgitem.

- You will receive all parts of a message whether or not you kltlee more property.

« On sending, IMQ queues message frames in memory until this lzseived, then sends them all.

- There is no way to cancel a partially sent message, excepgobing the socket.

2.2.5. Intermediaries and Proxies

@MQ aims for decentralized intelligence, but that doesreamyour network is empty space in the
middle. It’s filled with message-aware infrastructure andejoften, we build that infrastructure with
@MQ. The IMQ plumbing can range from tiny pipes to full-blogarvice-oriented brokers. The
messaging industry calls thistermediation meaning that the stuff in the middle deals with either side.
In MQ, we call these proxies, queues, forwarders, devicbrakers, depending on the context.

This pattern is extremely common in the real world and is whysmcieties and economies are filled
with intermediaries who have no other real function tharetduce the complexity and scaling costs of
larger networks. Real-world intermediaries are typicalyled wholesalers, distributors, managers, and
so on.

2.2.6. The Dynamic Discovery Problem

One of the problems you will hit as you design larger distigloLarchitectures is discovery. That is, how
do pieces know about each other? It's especially difficyliéices come and go, so we call this the
"dynamic discovery problem".

There are several solutions to dynamic discovery. The @stjg to entirely avoid it by hard-coding (or
configuring) the network architecture so discovery is dophdnd. That is, when you add a new piece,
you reconfigure the network to know about it.

41

Chapter 2. Sockets and Patterns

Figure 2-4. Small-Scale Pub-Sub Network

Publisher

PUB

bind
tcp://192.168.55.210:5556

[

connect connect connect

SUB SUB SUB

Subscriber Subscriber

Subscriber

In practice, this leads to increasingly fragile and unwyeddchitectures. Let’s say you have one publisher
and a hundred subscribers. You connect each subscriber putilisher by configuring a publisher
endpoint in each subscriber. That's efigyure 2-5 Subscribers are dynamic; the publisher is static. Now
say you add more publishers. Suddenly, it's not so easy amg.rtfoyou continue to connect each
subscriber to each publisher, the cost of avoiding dynaisogery gets higher and higher.

42

Chapter 2. Sockets and Patterns

Figure 2-5. Pub-Sub Network with a Proxy

Publisher Publisher Publisher
PUB PUB PUB
connect connect connect
L I je

bind

bind

i ! I}
connect connect connect
(SUB (SUB (SUB

Subscriber Subscriber

Subscriber

There are quite a few answers to this, but the very simplestanis to add an intermediary; that is, a
static point in the network to which all other nodes connkctlassic messaging, this is the job of the
message broker. MQ doesn’t come with a message broker lasksudt lets us build intermediaries
quite easily.

You might wonder, if all networks eventually get large enbtig need intermediaries, why don’t we
simply have a message broker in place for all applicatiomsDEginners, it's a fair compromise. Just
always use a star topology, forget about performance, angghwill usually work. However, message
brokers are greedy things; in their role as central inteiarezs, they become too complex, too stateful,
and eventually a problem.

It's better to think of intermediaries as simple statelegssage switches. A good analogy is an HTTP
proxy; it's there, but doesn’t have any special role. Addarqgub-sub proxy solves the dynamic discovery
problem in our example. We set the proxy in the "middle" oftleéworkFigure 2-6 The proxy opens an
XSUB socket, an XPUB socket, and binds each to well-knowrdid@sses and ports. Then, all other

43

Chapter 2. Sockets and Patterns

processes connect to the proxy, instead of to each otherctirbes trivial to add more subscribers or
publishers.

Figure 2-6. Extended Pub-Sub

PUB l PUB l PUB

SUB | SUB I | SUB I

We need XPUB and XSUB sockets because @MQ does subscriptieaifding from subscribers to
publishers. XSUB and XPUB are exactly like SUB and PUB extlegy expose subscriptions as special
messages. The proxy has to forward these subscription gessgam subscriber side to publisher side,
by reading them from the XSUB socket and writing them to thé&JBRocket. This is the main use case
for XSUB and XPUB-igure 2-7

2.2.7. Shared Queue (DEALER and ROUTER sockets)

In the Hello World client/server application, we have orier that talks to one service. However, in real
cases we usually need to allow multiple services as well dpieuclients. This lets us scale up the
power of the service (many threads or processes or nodes thtn just one). The only constraint is that
services must be stateless, all state being in the requassome shared storage such as a database.

44

Chapter 2. Sockets and Patterns

Figure 2-7. Request Distribution

Client

REQ

R1, R2,'R3, R4

“

R1, R4 B2 3
((
REP REP REP
Service Service Service
A B C

There are two ways to connect multiple clients to multiplevees. The brute force way is to connect
each client socket to multiple service endpoints. One tlenket can connect to multiple service
sockets, and the REQ socket will then distribute requestgrthese services. Let's say you connect a
client socket to three service endpoints; A, B, and C. Ttentinakes requests R1, R2, R3, R4. R1 and
R4 go to service A, R2 goes to B, and R3 goes to servieig@e 2-8

This design lets you add more clients cheaply. You can aldaraate services. Each client will distribute
its requests to the services. But each client has to knowettvice topology. If you have 100 clients and
then you decide to add three more services, you need to rguoatnd restart 100 clients in order for
the clients to know about the three new services.

That's clearly not the kind of thing we want to be doing at 3 .arhen our supercomputing cluster has
run out of resources and we desperately need to add a couplendfed of new service nodes. Too many
static pieces are like liquid concrete: knowledge is disttieéd and the more static pieces you have, the
more effort it is to change the topology. What we want is sdrimet sitting in between clients and
services that centralizes all knowledge of the topologgally, we should be able to add and remove
services or clients at any time without touching any othet péthe topology.

So we'll write a little message queuing broker that giveshis flexibility. The broker binds to two
endpoints, a frontend for clients and a backend for servitdsen usegmg_poll() to monitor these
two sockets for activity and when it has some, it shuttlessageas between its two sockets. It doesn’t
actually manage any queues explicitly--@dMQ does that aatmally on each socket.

45

Chapter 2. Sockets and Patterns

When you use REQ to talk to REP, you get a strictly synchronegsest-reply dialog. The client sends
a request. The service reads the request and sends a replgliditit then reads the reply. If either the
client or the service try to do anything else (e.g., sendivigrequests in a row without waiting for a
response), they will get an error.

But our broker has to be nonblocking. Obviously, we canansg poll() to wait for activity on either
socket, but we can’t use REP and REQ.

Figure 2-8. Extended Request-Reply

REQ REQ REQ

ROUTER

code

DEALER

REP REP REP

Luckily, there are two sockets called DEALER and ROUTER teayou do nonblocking
request-response. You'll see in Advanced Request-RepigriragChapter how DEALER and ROUTER
sockets let you build all kinds of asynchronous requestyriépwys. For now, we're just going to see how
DEALER and ROUTER let us extend REQ-REP across an intermediet is, our little broker.

In this simple extended request-reply pattern, REQ tall B2 TER and DEALER talks to REP. In
between the DEALER and ROUTER, we have to have code (like k) that pulls messages off the
one socket and shoves them onto the dfigarre 2-9

The request-reply broker binds to two endpoints, one fents to connect to (the frontend socket) and
one for workers to connect to (the backend). To test thisdmaglou will want to change your workers so
they connect to the backend socket. Here is a client thatshdwat | mean:

46

Example 2-3. Request-reply client (rrclient.py)

#

Request-reply client in Python

Connects REQ socket to tcp://localhost:5559
Sends "Hello" to server, expects "World" back
#

import zmq

Prepare our context and sockets
context = zmgq.Context()

socket = context.socket(zmq.REQ)
socket.connect("tcp://localhost:5559")

Do 10 requests, waiting each time for a response
for request in range(1,11):
socket.send(b"Hello")
message = socket.recv()
print("Received reply %s [%s]" % (request, message))

Here is the worker:

Example 2-4. Request-reply worker (rrworker.py)

#

Request-reply service in Python

Connects REP socket to tcp://localhost:5560

Expects "Hello" from client, replies with "World"
#

import zmq

context = zmgq.Context()
socket = context.socket(zmq.REP)
socket.connect("tcp://localhost:5560")

while True:
message = socket.recv()
print("Received request: %s" % message)
socket.send(b"World™)

And here is the broker, which properly handles multipartsages:

Example 2-5. Request-reply broker (rrbroker.py)
Simple request-reply broker

#

Author: Lev Givon <lev(at)columbia(dot)edu>

import zmq

Prepare our context and sockets
context = zmgq.Context()

Chapter 2. Sockets and Patterns

a7

frontend = context.socket(zmq.ROUTER)
backend = context.socket(zmq.DEALER)
frontend.bind("tcp:// *:5559")
backend.bind("tcp:// *:5560")

Initialize poll set

poller = zmq.Poller()
poller.register(frontend, zmqg.POLLIN)
poller.register(backend, zmqg.POLLIN)

Switch messages between sockets
while True:
socks = dict(poller.poll())

if socks.get(frontend) == zmq.POLLIN:
message = frontend.recv_multipart()
backend.send_multipart(message)

if socks.get(backend) == zmq.POLLIN:
message = backend.recv_multipart()
frontend.send_multipart(message)

Chapter 2. Sockets and Patterns

48

Chapter 2. Sockets and Patterns

Figure 2-9. Request-Reply Broker

Client Client Client
REQ REQ REQ

ROUTER

Broker

DEALER

' v v
REP (REP (REP

Service Service Service
A B C

Using a request-reply broker makes your client/serveritactures easier to scale because clients don’t
see workers, and workers don'’t see clients. The only statieris the broker in the middiégure 2-10

2.2.8. @GMQ'’s Built-In Proxy Function

It turns out that the core loop in the previous sectiorBsoker is very useful, and reusable. It lets us
build pub-sub forwarders and shared queues and otherifitdemediaries with very little effort. GMQ
wraps this up in a single methagng_proxy()

zmgq_proxy (frontend, backend, capture);
The two (or three sockets, if we want to capture data) mustdeesly connected, bound, and
configured. When we call theng_proxy method, it's exactly like starting the main looprefroker

Let's rewrite the request-reply broker to cathg_proxy , and re-badge this as an expensive-sounding
"message queue" (people have charged houses for codedhessl:

49

Chapter 2. Sockets and Patterns

Example 2-6. Message queue broker (msgqueue.py)

Simple message queuing broker
Same as request-reply broker but using QUEUE device

Author: Guillaume Aubert (gaubert) <guillaume(dot)auber t(at)gmail(dot)com>

import zmq

def main():
""" main method "

context = zmg.Context()

Socket facing clients
frontend = context.socket(zmgq.ROUTER)
frontend.bind("tcp:// *:5559")

Socket facing services
backend = context.socket(zmq.DEALER)
backend.bind("tcp:// *:5560")

zmg.device(zmq.QUEUE, frontend, backend)
We never get here...
frontend.close()

backend.close()
context.term()

if _name__ == "_ main__"
main()

If you're like most @MQ users, at this stage your mind is starto think, "What kind of evil stuff can |
do if I plug random socket types into the proxy?" The shortraards: try it and work out what is
happening. In practice, you would usually stick to ROUTERADLER, XSUB/XPUB, or PULL/PUSH.

2.2.9. Transport Bridging

A frequent request from GMQ users is, "How do | connect my @M@uork with technology X?"
where X is some other networking or messaging technology.

50

Chapter 2. Sockets and Patterns

Figure 2-10. Pub-Sub Forwarder Proxy

Publisher

PUB

bind
tcp://192.168.55.210:5556

' v
(SUB (SUB

Subscriber Subscriber

Internal network

External network bind
tcp://10.1.1.0:8100

Subscriber Subscriber

The simple answer is to buildtzidge A bridge is a small application that speaks one protocohat o
socket, and converts to/from a second protocol at anottolesoA protocol interpreter, if you like. A
common bridging problem in @MQ is to bridge two transportsetworks.

As an example, we're going to write a little proxy that sitbtween a publisher and a set of
subscribers, bridging two networks. The frontend sockeffSfaces the internal network where the
weather server is sitting, and the backend (PUB) faces sibless on the external network. It subscribes
to the weather service on the frontend socket, and rep@slish data on the backend socket.

Example 2-7. Weather update proxy (wuproxy.py)

Weather proxy device
#

51

Chapter 2. Sockets and Patterns
Author: Lev Givon <lev(at)columbia(dot)edu>
import zmq
context = zmgq.Context()

This is where the weather server sits
frontend = context.socket(zmq.SUB)
frontend.connect("tcp://192.168.55.210:5556")

This is our public endpoint for subscribers
backend = context.socket(zmq.PUB)
backend.bind("tcp://10.1.1.0:8100")

Subscribe on everything
frontend.setsockopt(zmq.SUBSCRIBE, b”)

Shunt messages out to our own subscribers
while True:
Process all parts of the message
message = frontend.recv_multipart()
backend.send_multipart(message)

It looks very similar to the earlier proxy example, but thg kart is that the frontend and backend
sockets are on two different netwoFigure 2-11 We can use this model for example to connect a
multicast networkggmtransport) to acp publisher.

2.3. Handling Errors and ETERM

@MQ's error handling philosophy is a mix of fail-fast anditiesice. Processes, we believe, should be as
vulnerable as possible to internal errors, and as robusissilge against external attacks and errors. To
give an analogy, a living cell will self-destruct if it dets@ single internal error, yet it will resist attack
from the outside by all means possible.

Assertions, which pepper the @MQ code, are absolutely tdtedbust code; they just have to be on the
right side of the cellular wall. And there should be such await is unclear whether a fault is internal
or external, that is a design flaw to be fixed. In C/C++, asseststop the application immediately with
an error. In other languages, you may get exceptions or.halts

When @MQ detects an external fault it returns an error to #ikng code. In some rare cases, it drops
messages silently if there is no obvious strategy for recogdrom the error.

In most of the C examples we've seen so far there’s been noleralling.Real code should do error
handling on every single @MQ call If you're using a language binding other than C, the bindiray

52

Chapter 2. Sockets and Patterns

handle errors for you. In C, you do need to do this yourselérélare some simple rules, starting with
POSIX conventions:

- Methods that create objects return NULL if they fail.

« Methods that process data may return the number of bytegegsed, or -1 on an error or failure.
« Other methods return 0 on success and -1 on an error or failure

« The error code is provided grrno or zmg_errno()

« A descriptive error text for logging is provided lyng_strerror()

For example:

void =*context = zmq_ctx_new ();

assert (context);

void =*socket = zmg_socket (context, ZMQ_REP);
assert (socket);

int rc = zmqg_bind (socket, "tcp:// *:5555");
if (rc == -1) {
printf ("E: bind failed: %s\n", strerror (errno));
return -1;
}

There are two main exceptional conditions that you shouldileaas nonfatal:

- When your code receives a message withzki€ DONTWAIDption and there is no waiting data,
@MQ will return -1 and seérro to EAGAIN

- When one thread callang_ctx_destroy() , and other threads are still doing blocking work, the
zmg_ctx_destroy() call closes the context and all blocking calls exit with -Aidarrno set to
ETERM

In C/C++, asserts can be removed entirely in optimized csaléon’t make the mistake of wrapping the
whole @MQ call in aressert() . It looks neat; then the optimizer removes all the assedslamcalls
you want to make, and your application breaks in impressagsw

53

Chapter 2. Sockets and Patterns

Figure 2-11. Parallel Pipeline with Kill Signaling

Ventilator

PUSH

-
PULL

Worker

PUSH

results

PULL

Sink

PUB -=-=KILL signal *===~-

Let’s see how to shut down a process cleanly. We'll take thiellgh pipeline example from the previous
section. If we've started a whole lot of workers in the backgrd, we now want to kill them when the
batch is finished. Let’s do this by sending a kill messageaontbrkers. The best place to do this is the
sink because it really knows when the batch is done.

How do we connect the sink to the workers? The PUSH/PULL dscke one-way only. We could
switch to another socket type, or we could mix multiple saéksvs. Let’s try the latter: using a pub-sub
model to send kill messages to the worlkégsire 2-12

- The sink creates a PUB socket on a new endpoint.

54

Chapter 2. Sockets and Patterns

- Workers bind their input socket to this endpoint.
- When the sink detects the end of the batch, it sends a kilstBliiB socket.

- When a worker detects this kill message, it exits.

It doesn’t take much new code in the sink:

void =*controller = zmq_socket (context, ZMQ_PUB);
zmq_bind (controller, "tcp:// *:5559");

/I Send Kkill signal to workers
s_send (controller, "KILL");

Here is the worker process, which manages two sockets (a ROtket getting tasks, and a SUB socket
getting control commands), using theqg_poll() technique we saw earlier:

Example 2-8. Parallel task worker with kill signaling (taskwork2.py)
encoding: utf-8

#
#
Task worker - design 2

Adds pub-sub flow to receive and respond to kill signal
#

#

#

Author: Jeremy Avnet (brainsik) <spork(dash)zmq(at)the ory(dot)org>

import sys
import time
import zmq

context = zmgq.Context()

Socket to receive messages on
receiver = context.socket(zmq.PULL)
receiver.connect("tcp://localhost:5557")

Socket to send messages to
sender = context.socket(zmg.PUSH)
sender.connect("tcp://localhost:5558")

Socket for control input

controller = context.socket(zmg.SUB)
controller.connect("tcp://localhost:5559")
controller.setsockopt(zmq.SUBSCRIBE, b™)

Process messages from receiver and controller
poller = zmq.Poller()

poller.register(receiver, zmqg.POLLIN)
poller.register(controller, zmq.POLLIN)

Process messages from both sockets

while True:

55

Chapter 2. Sockets and Patterns
socks = dict(poller.poll())

if socks.get(receiver) == zmq.POLLIN:
message = receiver.recv_string()

Process task
workload = int(message) # Workload in msecs

Do the work
time.sleep(workload / 1000.0)

Send results to sink
sender.send_string(message)

Simple progress indicator for the viewer
sys.stdout.write(".")
sys.stdout.flush()

Any waiting controller command acts as ’'KILL’

if socks.get(controller) == zmq.POLLIN:
break

Here is the modified sink application. When it's finished eoling results, it broadcasts a kill message to
all workers:
Example 2-9. Parallel task sink with kill signaling (taskshk2.py)

encoding: utf-8

#
#
Task sink - design 2

Adds pub-sub flow to send kill signal to workers
#

#

#

Author: Jeremy Avnet (brainsik) <spork(dash)zmq(at)the ory(dot)org>
import sys
import time
import zmq
context = zmgq.Context()
Socket to receive messages on
receiver = context.socket(zmq.PULL)
receiver.bind("tcp:// *:5558")
Socket for worker control
controller = context.socket(zmg.PUB)

controller.bind("tcp:// *:5559")

Wait for start of batch
receiver.recv()

56

Chapter 2. Sockets and Patterns

Start our clock now
tstart = time.time()

Process 100 confirmiations
for task_nbr in range(100):
receiver.recv()
if task_nbr % 10 == O:
sys.stdout.write(":")
else:
sys.stdout.write(".")
sys.stdout.flush()

Calculate and report duration of batch

tend = time.time()

tdiff = tend - tstart

total_ msec = tdiff * 1000

print("Total elapsed time: %d msec" % total_msec)

Send Kkill signal to workers
controller.send(b"KILL")

Finished
time.sleep(1) # Give OMQ time to deliver

2.4. Handling Interrupt Signals

Realistic applications need to shut down cleanly wheniotged with Ctrl-C or another signal such as
SIGTERM By default, these simply kill the process, meaning messaga't be flushed, files won’t be
closed cleanly, and so on.

Here is how we handle a signal in various languages:

Example 2-10. Handling Ctrl-C cleanly (interrupt.py)

#

Shows how to handle Ctrl-C
#

import signal

import time

import zmqg

interrupted = False

def signal_handler(signum, frame):
print("W: custom interrupt handler called.")

context = zmgq.Context()
socket = context.socket(zmq.REP)

57

Chapter 2. Sockets and Patterns

socket.bind("tcp:// *:5558")
SIGINT will normally raise a KeyboardInterrupt, just like any other Python call
try:

socket.recv()
except KeyboardInterrupt:
print("W: interrupt received, proceeding...")

or you can use a custom handler,
in which case recv will fail with EINTR
signal.signal(signal.SIGINT, signal_handler)
try:

message = socket.recv()
except zmq.ZMQError as e:

print("W: recv failed with: %s" % e)

The program provides catch_signals() , which traps Ctrl-C $IGINT) andSIGTERM When either

of these signals arrive, the catch_signals() handler sets the global varialdeinterrupted

Thanks to your signal handler, your application will not digomatically. Instead, you have a chance to
clean up and exit gracefully. You have to now explicitly ckhéar an interrupt and handle it properly. Do
this by callings_catch_signals() (copy this frominterrupt.c) at the start of your main code.
This sets up the signal handling. The interrupt will affetd@ calls as follows:

- If your code is blocking in a blocking call (sending a messageeiving a message, or polling), then
when a signal arrives, the call will return wiEHINTR.

« Wrappers likes_recv() return NULL if they are interrupted.

So check for aiEINTR return code, a NULL return, and/erinterrupted

Here is a typical code fragment:

s_catch_signals ();
client = zmq_socket (...);
while (!s_interrupted) {
char *message = s_recv (client);
if (Imessage)
break; /I Ctrl-C used
}

zmg_close (client);

If you call s_catch_signals() and don't test for interrupts, then your application wilcbene
immune to Ctrl-C an&IGTERM which may be useful, but is usually not.

58

Chapter 2. Sockets and Patterns

2.5. Detecting Memory Leaks

Any long-running application has to manage memory cotyectleventually it'll use up all available
memory and crash. If you use a language that handles thimatitally for you, congratulations. If you
program in C or C++ or any other language where you're resptenfor memory management, here’s a
short tutorial on using valgrind, which among other thingls eport on any leaks your programs have.

To install valgrind, e.g., on Ubuntu or Debian, issue thisxatand:

sudo apt-get install valgrind

By default, MQ will cause valgrind to complain a lot. To remedhese warnings, create a file called
vg.supp that contains this:

<socketcall_sendto>
Memcheck:Param
socketcall.sendto(msg)
fun:send

<socketcall_sendto>
Memcheck:Param
socketcall.send(msg)
fun:send

Fix your applications to exit cleanly after Ctrl-C. For ampéication that exits by itself, that's not
needed, but for long-running applications, this is essgritherwise valgrind will complain about all
currently allocated memory.

Build your application with DDEBUGH it's not your default setting. That ensures valgrind calhyou
exactly where memory is being leaked.

Finally, run valgrind thus:

valgrind --tool=memcheck --leak-check=full --suppressi 0Nns=vg.supp someprog

And after fixing any errors it reported, you should get theapnt message:

==30536== ERROR SUMMARY: 0 errors from O contexts...

59

Chapter 2. Sockets and Patterns

2.6. Multithreading with @MQ

@MQ is perhaps the nicest way ever to write multithreaded Y &plications. Whereas @MQ sockets
require some readjustment if you are used to traditiondtetsc@MQ multithreading will take
everything you know about writing MT applications, throvirito a heap in the garden, pour gasoline
over it, and set it alight. It's a rare book that deserves imgrrbut most books on concurrent
programming do.

To make utterly perfect MT programs (and | mean that litgjalive don’t need mutexes, locks, or any
other form of inter-thread communication except messagessit across @MQ sockets.

By "perfect MT programs"”, | mean code that's easy to write anderstand, that works with the same
design approach in any programming language, and on angtipgsystem, and that scales across any
number of CPUs with zero wait states and no point of dimimighieturns.

If you've spent years learning tricks to make your MT codeknairall, let alone rapidly, with locks and
semaphores and critical sections, you will be disgustechwioe realize it was all for nothing. If there’s
one lesson we've learned from 30+ years of concurrent progriag, it is:just don't share statdt’s like
two drunkards trying to share a beer. It doesn’t matter iftlieegood buddies. Sooner or later, they’re
going to get into a fight. And the more drunkards you add toabéet the more they fight each other over
the beer. The tragic majority of MT applications look likaidken bar fights.

The list of weird problems that you need to fight as you writessic shared-state MT code would be
hilarious if it didn’t translate directly into stress andkj as code that seems to work suddenly fails under
pressure. A large firm with world-beating experience in bugode released its list of "11 Likely
Problems In Your Multithreaded Code", which covers forgotsynchronization, incorrect granularity,
read and write tearing, lock-free reordering, lock conytw®-step dance, and priority inversion.

Yeah, we counted seven problems, not eleven. That's notdim fhough. The pointis, do you really
want that code running the power grid or stock market to getting two-step lock convoys at 3 p.m. on
a busy Thursday? Who cares what the terms actually meansTias what turned us on to
programming, fighting ever more complex side effects witbreaore complex hacks.

Some widely used models, despite being the basis for entitestries, are fundamentally broken, and
shared state concurrency is one of them. Code that wantal®without limit does it like the Internet
does, by sending messages and sharing nothing except a cocomt@mpt for broken programming
models.

You should follow some rules to write happy multithreadedewith MQ:

« Isolate data privately within its thread and never shara gamultiple threads. The only exception to
this are @MQ contexts, which are threadsafe.

60

Chapter 2. Sockets and Patterns

- Stay away from the classic concurrency mechanisms like @aexas, critical sections, semaphores,
etc. These are an anti-pattern in @MQ applications.

- Create one @MQ context at the start of your process, and pas®tall threads that you want to
connect vidanproc sockets.

- Useattachedthreads to create structure within your application, antheat these to their parent
threads using PAIR sockets oveproc . The pattern is: bind parent socket, then create child threa
which connects its socket.

- Usedetachedhreads to simulate independent tasks, with their own stst€onnect these oveap .
Later you can move these to stand-alone processes withangity the code significantly.

« Allinteraction between threads happens as @MQ messagéesh wbu can define more or less
formally.

- Don’t share @MQ sockets between threads. IMQ sockets atbmeaidsafe. Technically it's possible
to migrate a socket from one thread to another but it demaiillis$e only place where it's remotely
sane to share sockets between threads are in languagedsitidat need to do magic like garbage
collection on sockets.

If you need to start more than one proxy in an applicationef@mple, you will want to run each in their
own thread. It is easy to make the error of creating the prooyténd and backend sockets in one thread,
and then passing the sockets to the proxy in another thrdasinfay appear to work at first but will fail
randomly in real use. Rememb®&o not use or close sockets except in the thread that crehtad.t

If you follow these rules, you can quite easily build eleganitithreaded applications, and later split off
threads into separate processes as you need to. Applitagiercan sit in threads, processes, or nodes:
whatever your scale needs.

@MQ uses native OS threads rather than virtual "green" tiw€ehe advantage is that you don’t need to
learn any new threading API, and that @MQ threads map clganfgur operating system. You can use
standard tools like Intel's ThreadChecker to see what ypplieation is doing. The disadvantages are
that native threading APIs are not always portable, anditlyau have a huge number of threads (in the
thousands), some operating systems will get stressed.

Let's see how this works in practice. We'll turn our old HeWbrld server into something more capable.
The original server ran in a single thread. If the work peuesy is low, that’s fine: one IMQ thread can
run at full speed on a CPU core, with no waits, doing an awfubfavork. But realistic servers have to

do nontrivial work per request. A single core may not be emougen 10,000 clients hit the server all at
once. So a realistic server will start multiple worker tidgdt then accepts requests as fast as it can and
distributes these to its worker threads. The worker thrgaidsl through the work and eventually send
their replies back.

You can, of course, do all this using a proxy broker and extlemorker processes, but often it’s easier to
start one process that gobbles up sixteen cores than spiteeesses, each gobbling up one core.
Further, running workers as threads will cut out a networ, tatency, and network traffic.

61

Chapter 2. Sockets and Patterns

The MT version of the Hello World service basically collapsiee broker and workers into a single
process:

Example 2-11. Multithreaded service (mtserver.py)

Multithreaded Hello World server

Author: Guillaume Aubert (gaubert) <guillaume(dot)auber t(at)gmail(dot)com>

import time
import threading
import zmq

def worker_routine(worker_url, context=None):
"""Worker routine""
context = context or zmgq.Context.instance()
Socket to talk to dispatcher
socket = context.socket(zmq.REP)

socket.connect(worker_url)
while True:
string = socket.recv()
print("Received request: [%s]" % (string))

do some 'work’
time.sleep(1)

#send reply back to client
socket.send(b"World")

def main():

""Server routine""
url_worker = "inproc://workers"
url_client = "tcp:// * :5555"

Prepare our context and sockets
context = zmg.Context.instance()

Socket to talk to clients
clients = context.socket(zmq.ROUTER)
clients.bind(url_client)

Socket to talk to workers

workers = context.socket(zmqg.DEALER)
workers.bind(url_worker)

62

Chapter 2. Sockets and Patterns

Launch pool of worker threads

for i in range(5):
thread = threading.Thread(target=worker_routine, args= (url_worker,))
thread.start()

zmg.device(zmq.QUEUE, clients, workers)
We never get here but clean up anyhow
clients.close()

workers.close()
context.term()

if _name__ =="_main__"
main()

63

Chapter 2. Sockets and Patterns

Figure 2-12. Multithreaded Server

Client

ROUTER

Server

Queue
proxy

.

(REP (> REP (REP
Worker Worker Worker

N o R R R R R R R M A M ’

All the code should be recognizable to you by now. How it works

- The server starts a set of worker threads. Each worker tloreaties a REP socket and then processes
requests on this socket. Worker threads are just like sithgisaded servers. The only differences are
the transportifiproc instead oficp), and the bind-connect direction.

- The server creates a ROUTER socket to talk to clients andshiivis to its external interface (over
tcp).

- The server creates a DEALER socket to talk to the workers ardthhis to its internal interface (over
inproc).

- The server starts a proxy that connects the two sockets. roxg pulls incoming requests fairly from
all clients, and distributes those out to workers. It alages replies back to their origin.

64

Chapter 2. Sockets and Patterns

Note that creating threads is not portable in most programgtainguages. The POSIX library is
pthreads, but on Windows you have to use a different API. negample, thethread_create call
starts up a new thread running therker_routine function we defined. We'll see in Advanced
Request-Reply Patter@hapter Show to wrap this in a portable API.

Here the "work" is just a one-second pause. We could do amythithe workers, including talking to
other nodes. This is what the MT server looks like in terms M@sockets and nodes. Note how the
request-reply chain REQ-ROUTER-queue-DEALER-REFFigure 2-13

2.7. Signaling Between Threads (PAIR Sockets)

When you start making multithreaded applications with @MQU’'ll encounter the question of how to
coordinate your threads. Though you might be tempted tatifsieep” statements, or use
multithreading techniques such as semaphores or mutiweesnly mechanism that you should use
are IMQ messagesRemember the story of The Drunkards and The Beer Bottle.

Let's make three threads that signal each other when thagadsFigure 2-13In this example, we use

PAIR sockets over thimproc transport:

Example 2-12. Multithreaded relay (mtrelay.py)

Multithreaded relay
Author: Guillaume Aubert (gaubert) <guillaume(dot)auber t(at)gmail(dot)com>

import threading
import zmq

def stepl(context=None):
context = context or zmgq.Context.instance()
Signal downstream to step 2
sender = context.socket(zmq.PAIR)

sender.connect("inproc://step2")

sender.send(b™)

def step2(context=None):

context = context or zmgq.Context.instance()

Bind to inproc: endpoint, then start upstream thread
receiver = context.socket(zmq.PAIR)
receiver.bind("inproc://step2")

65

Chapter 2. Sockets and Patterns

thread = threading.Thread(target=stepl)
thread.start()

Wait for signal
msg = receiver.recv()

Signal downstream to step 3
sender = context.socket(zmq.PAIR)
sender.connect("inproc://step3")
sender.send(b™)

def main():
""" server routine
Prepare our context and sockets
context = zmg.Context.instance()

Bind to inproc: endpoint, then start upstream thread
receiver = context.socket(zmq.PAIR)
receiver.bind("inproc://step3")

thread = threading.Thread(target=step2)
thread.start()

Wait for signal
string = receiver.recv()

print("Test successful!")
receiver.close()

context.term()

if _name__ == "_ main__"
main()

66

Chapter 2. Sockets and Patterns

Figure 2-13. The Relay Race

(PAIR

Step 3

This is a classic pattern for multithreading with @MQ:

1. Two threads communicate oveproc , using a shared context.

2. The parent thread creates one socket, binds it topaoc:// endpoint, andhenstarts the child
thread, passing the context to it.

3. The child thread creates the second socket, connectthdtioproc:/ endpoint, andhensignals
to the parent thread that it's ready.

Note that multithreading code using this pattern is notadealout to processes. If you useroc and
socket pairs, you are building a tightly-bound applicatiog, one where your threads are structurally
interdependent. Do this when low latency is really vitaleTiher design pattern is a loosely bound
application, where threads have their own context and comicate oveipc ortcp . You can easily
break loosely bound threads into separate processes.

This is the first time we've shown an example using PAIR sacRéthy use PAIR? Other socket
combinations might seem to work, but they all have side &fat could interfere with signaling:

67

Chapter 2. Sockets and Patterns

« You can use PUSH for the sender and PULL for the receiver.®biss simple and will work, but
remember that PUSH will distribute messages to all avaladteivers. If you by accident start two
receivers (e.g., you already have one running and you ssat@nd), you'll "lose" half of your
signals. PAIR has the advantage of refusing more than ongeation; the pair i€xclusive

+ You can use DEALER for the sender and ROUTER for the recéR@UTER, however, wraps your
message in an "envelope”, meaning your zero-size signa toto a multipart message. If you don't
care about the data and treat anything as a valid signalfaod don’t read more than once from the
socket, that won’t matter. If, however, you decide to serd data, you will suddenly find ROUTER
providing you with "wrong" messages. DEALER also distrégmibutgoing messages, giving the same
risk as PUSH.

- You can use PUB for the sender and SUB for the receiver. THigarirectly deliver your messages
exactly as you sent them and PUB does not distribute as PUBHEALER do. However, you need to
configure the subscriber with an empty subscription, whicininoying.

For these reasons, PAIR makes the best choice for coormlinagitween pairs of threads.

2.8. Node Coordination

When you want to coordinate a set of nodes on a network, PAtRets won’t work well any more. This
is one of the few areas where the strategies for threads atesrave different. Principally, nodes come
and go whereas threads are usually static. PAIR socketstdutammatically reconnect if the remote
node goes away and comes back.

Figure 2-14. Pub-Sub Synchronization

Publisher

Subscriber

The second significant difference between threads and nettest you typically have a fixed number of
threads but a more variable number of nodes. Let’s take onarafarlier scenarios (the weather server

68

Chapter 2. Sockets and Patterns

and clients) and use node coordination to ensure that sShbssdon’t lose data when starting up.

This is how the application will work:

- The publisher knows in advance how many subscribers it égp€his is just a magic number it gets
from somewhere.

« The publisher starts up and waits for all subscribers to eotiThis is the node coordination part.
Each subscriber subscribes and then tells the publiskee#dy via another socket.

- When the publisher has all subscribers connected, it $tapsblish data.

In this case, we'll use a REQ-REP socket flow to synchronibsatbers and publishigure 2-15
Here is the publisher:

Example 2-13. Synchronized publisher (syncpub.py)

#

Synchronized publisher
#

import zmq

We wait for 10 subscribers
SUBSCRIBERS EXPECTED = 10

def main():
context = zmgq.Context()

Socket to talk to clients

publisher = context.socket(zmqg.PUB)

set SNDHWM, so we don’t drop messages for slow subscribers
publisher.sndhwm = 1100000

publisher.bind('tcp:// *:5561")

Socket to receive signals
syncservice = context.socket(zmq.REP)
syncservice.bind('tcp:// *:5562)

Get synchronization from subscribers
subscribers = 0
while subscribers < SUBSCRIBERS_EXPECTED:
wait for synchronization request
msg = syncservice.recv()
send synchronization reply
syncservice.send(b”)
subscribers += 1
print("+1 subscriber (%i/%i)" % (subscribers, SUBSCRIBER S_EXPECTED))

Now broadcast exactly 1M updates followed by END

for i in range(1000000):
publisher.send(b’Rhubarb’)

69

publisher.send(b’END’)

if _name__ =="'__main__"
main()

And here is the subscriber:

Example 2-14. Synchronized subscriber (syncsub.py)

#

Synchronized subscriber
#

import time

import zmq

def main():
context = zmg.Context()

First, connect our subscriber socket
subscriber = context.socket(zmg.SUB)
subscriber.connect('tcp://localhost:5561")
subscriber.setsockopt(zmg.SUBSCRIBE, b”)

time.sleep(1)

Second, synchronize with publisher
syncclient = context.socket(zmqg.REQ)
syncclient.connect('tcp://localhost:5562)

send a synchronization request
syncclient.send(b”)

wait for synchronization reply
syncclient.recv()

Third, get our updates and report how many we got
nbr = 0
while True:
msg = subscriber.recv()
if msg == b’END’
break
nbr += 1

print (Received %d updates’ % nbr)

if _name__ =="'_main__"
main()

This Bash shell script will start ten subscribers and therptiblisher:

echo "Starting subscribers..."

Chapter 2. Sockets and Patterns

70

Chapter 2. Sockets and Patterns

for ((@=0; a<10; a++)); do
syncsub &

done

echo "Starting publisher..."

syncpub

Which gives us this satisfying output:

Starting subscribers...
Starting publisher...
Received 1000000 updates
Received 1000000 updates

Received 1000000 updates
Received 1000000 updates

We can’t assume that the SUB connect will be finished by the time REQ/REP dialog is complete.
There are no guarantees that outbound connects will finiahyrorder whatsoever, if you're using any
transport excephproc . So, the example does a brute force sleep of one second lmeswbscribing,
and sending the REQ/REP synchronization.

A more robust model could be:

+ Publisher opens PUB socket and starts sending "Hello" rgesqaot data).

« Subscribers connect SUB socket and when they receive a Melsage they tell the publisher via a
REQ/REP socket pair.

- When the publisher has had all the necessary confirmatiostayis to send real data.

2.9. Zero-Copy

@MQ’s message APl lets you send and receive messages yliirecti and to application buffers without
copying data. We call thigero-copyand it can improve performance in some applications.

You should think about using zero-copy in the specific casere/fjou are sending large blocks of
memory (thousands of bytes), at a high frequency. For shessages, or for lower message rates, using
zero-copy will make your code messier and more complex watimeasurable benefit. Like all
optimizations, use this when you know it helps, anelasureéoefore and after.

To do zero-copy, you usang_msg_init_data() to create a message that refers to a block of data
already allocated witimalloc() or some other allocator, and then you pass thattg msg_send() .
When you create the message, you also pass a function that@ll to free the block of data,
when it has finished sending the message. This is the sing{asiple, assuminguffer is a block of
1,000 bytes allocated on the heap:

71

Chapter 2. Sockets and Patterns

void my_free (void * data, void *hint) {
free (data);
}
/I Send message from buffer, which we allocate and OMQ will fr ee for us
zmqg_msg_t message;
zmq_msg_init_data (&message, buffer, 1000, my_free, NULL);

zmg_msg_send (&message, socket, 0);

Note that you don’t caltmg_msg_close() after sending a messagiézmqg will do this automatically
when it's actually done sending the message.

There is no way to do zero-copy on receive: @MQ delivers youfebthat you can store as long as you
wish, but it will not write data directly into application ffars.

On writing, @MQ’s multipart messages work nicely togethé@hvwero-copy. In traditional messaging,
you need to marshal different buffers together into onedsuffat you can send. That means copying
data. With @MQ, you can send multiple buffers coming fronfiedé#nt sources as individual message
frames. Send each field as a length-delimited frame. To thkcagion, it looks like a series of send and
receive calls. But internally, the multiple parts get vanittto the network and read back with single
system calls, so it's very efficient.

2.10. Pub-Sub Message Envelopes

In the pub-sub pattern, we can split the key into a separassage frame that we call an
envelop€&igure 2-151f you want to use pub-sub envelopes, make them yoursslbtional, and in
previous pub-sub examples we didn’t do this. Using a pubeswelope is a little more work for simple
cases, but it's cleaner especially for real cases, wherkethand the data are naturally separate things.

Figure 2-15. Pub-Sub Envelope with Separate Key

Frame 1 Key Message envelope

Frame 2 Data Actual message body

Recall that subscriptions do a prefix match. That is, thel foo "all messages starting with XYZ". The
obvious question is: how to delimit keys from data so thatpiedix match doesn’t accidentally match
data. The best answer is to use an envelope because the nuatticnoss a frame boundary. Here is a
minimalist example of how pub-sub envelopes look in codés Phablisher sends messages of two types,
A and B.

72

Chapter 2. Sockets and Patterns

The envelope holds the message type:

Example 2-15. Pub-Sub envelope publisher (psenvpub.py)

Pubsub envelope publisher

Author: Guillaume Aubert (gaubert) <guillaume(dot)auber t(at)gmail(dot)com>

import time
import zmq

def main():

Prepare our context and publisher

context = zmq.Context()

publisher = context.socket(zmq.PUB)

publisher.bind("tcp:// *:5563")

while True:
Write two messages, each with an envelope and content
publisher.send_multipart([b"A", b"We don’'t want to see th is"])
publisher.send_multipart([b"B", b"We would like to see th is"])

time.sleep(1)
We never get here but clean up anyhow

publisher.close()
context.term()

if _name__ == "_ main__"
main()

The subscriber wants only messages of type B:

Example 2-16. Pub-Sub envelope subscriber (psenvsub.py)

Pubsub envelope subscriber

Author: Guillaume Aubert (gaubert) <guillaume(dot)auber t(at)gmail(dot)com>

import zmq

def main():
""" main method ™"

73

Chapter 2. Sockets and Patterns

Prepare our context and publisher
context = zmg.Context()

subscriber = context.socket(zmg.SUB)
subscriber.connect("tcp://localhost:5563")
subscriber.setsockopt(zmg.SUBSCRIBE, b"B")

while True:
Read envelope with address
[address, contents] = subscriber.recv_multipart()
print("[%s] %s" % (address, contents))

We never get here but clean up anyhow
subscriber.close()
context.term()

if _name__ == "_ main__"
main()

When you run the two programs, the subscriber should showvthisu

[B] We would like to see this
[B] We would like to see this
[B] We would like to see this

This example shows that the subscription filter rejects oepts the entire multipart message (key plus
data). You won't get part of a multipart message, ever. If gobiscribe to multiple publishers and you
want to know their address so that you can send them data ethersocket (and this is a typical use
case), create a three-part mesgagere 2-16

Figure 2-16. Pub-Sub Envelope with Sender Address

Frame 1 Key Subscription key
Frame 2 Address Address of publisher
Frame 3 Data Actual message body

74

Chapter 2. Sockets and Patterns

2.11. High-Water Marks

When you can send messages rapidly from process to processpgn discover that memory is a
precious resource, and one that can be trivially filled upev $econds of delay somewhere in a process
can turn into a backlog that blows up a server unless you statet the problem and take precautions.

The problem is this: imagine you have process A sending rgessat high frequency to process B,
which is processing them. Suddenly B gets very busy (garbaligction, CPU overload, whatever), and
can’t process the messages for a short period. It could b& adeonds for some heavy garbage
collection, or it could be much longer, if there’s a more sesi problem. What happens to the messages
that process A is still trying to send frantically? Some witlin B's network buffers. Some will sit on the
Ethernet wire itself. Some will sit in A's network buffersnd the rest will accumulate in As memory, as
rapidly as the application behind A sends them. If you daketsome precaution, A can easily run out
of memory and crash.

It is a consistent, classic problem with message brokerat\Wiakes it hurt more is that it's B’s fault,
superficially, and B is typically a user-written applicatiwhich A has no control over.

What are the answers? One is to pass the problem upstreanyeftirsg the messages from somewhere
else. So tell that process, "Stop!" And so on. This is cdlled control It sounds plausible, but what if
you're sending out a Twitter feed? Do you tell the whole waddtop tweeting while B gets its act
together?

Flow control works in some cases, but not in others. The rartsayer can't tell the application layer to
"stop" any more than a subway system can tell a large busitease keep your staff at work for
another half an hour. I'm too busy". The answer for messaging set limits on the size of buffers, and
then when we reach those limits, to take some sensible attiaome cases (not for a subway system,
though), the answer is to throw away messages. In otherbgtestrategy is to wait.

@MQ uses the concept of HWM (high-water mark) to define thecay of its internal pipes. Each
connection out of a socket or into a socket has its own pipg HWM for sending, and/or receiving,
depending on the socket type. Some sockets (PUB, PUSH) amby$end buffers. Some (SUB, PULL,
REQ, REP) only have receive buffers. Some (DEALER, ROUTERRPhave both send and receive
buffers.

In IMQ v2.x, the HWM was infinite by default. This was easy bisbaypically fatal for high-volume
publishers. In IMQ v3.x, it's set to 1,000 by default, whistmore sensible. If you're still using MQ
v2.Xx, you should always set a HWM on your sockets, be it 1,0004dtch IMQ v3.x or another figure
that takes into account your message sizes and expectettibebperformance.

When your socket reaches its HWM, it will either block or dagda depending on the socket type. PUB
and ROUTER sockets will drop data if they reach their HWM, lvloither socket types will block. Over
theinproc transport, the sender and receiver share the same buffafe seal HWM is the sum of the

75

Chapter 2. Sockets and Patterns

HWM set by both sides.

Lastly, the HWMSs are not exact; while you may getto 1,000 messages by default, the real buffer size
may be much lower (as little as half), due to the wibymqg implements its queues.

2.12. Missing Message Problem Solver

As you build applications with @MQ, you will come across thi®blem more than once: losing
messages that you expect to receive. We have put togethegradi-igure 2-17hat walks through the
most common causes for this.

76

Chapter 2. Sockets and Patterns

Figure 2-17. Missing Message Problem Solver

So you're not
getting every
message?

Do you set a
subscription
for messages?

Are you losing
messages in a
SUB socket?

Do you start
the SUB socket

Yes after the PUB?

Are you using
REQ and REP?

See explanation
of slow joiners

in the text

First PULL can
grab many msgs
while others

are still busy
connecting

Are you using
PUSH sockets?

Do you check No
return codes on

all methods?

Check each OMQ
method call

Are you using a
socket in more
than 1 thread?

Do you call
zmqg_ctx_new
twice or more?

Are you using
the inproc://
transport?

Check that you
bind before you
connect

Are you using Yes

ROUTER sockets?

r{"'lnnp‘lr +had+ +1 A~]

On SUB sockets
you have to
subscribe to
get messages

Start all SUB
sockets first
then the PUB

Send and recv in
a loop and check
return codes.
With REP, recv
and send

-
Use the load

balancing
pattern and
ROUTER/DEALER
sockets
—_—

~

Use sockets only
in their owning
threads unless
you know about
memory barriers

To use inproc
your sockets
must be in
the same

OMQ context

77

Chapter 2. Sockets and Patterns

Here’s a summary of what the graphic says:

On SUB sockets, set a subscription using)_setsockopt() with ZMQ_SUBSCRIBEOr you won't
get messages. Because you subscribe to messages by prafixsifibscribe to ™ (an empty
subscription), you will get everything.

If you start the SUB socket (i.e., establish a connectionR&8 socketpfter the PUB socket has
started sending out data, you will lose whatever it publidhefore the connection was made. If this is
a problem, set up your architecture so the SUB socket steststfien the PUB socket starts
publishing.

Even if you synchronize a SUB and PUB socket, you may sti# lmessages. It's due to the fact that
internal queues aren’t created until a connection is agtaedated. If you can switch the bind/connect
direction so the SUB socket binds, and the PUB socket cosngati may find it works more as you'd
expect.

If you're using REP and REQ sockets, and you're not stickinthe synchronous send/recv/send/recv
order, @MQ will report errors, which you might ignore. Thénwould look like you're losing
messages. If you use REQ or REP, stick to the send/recv @migglways, in real code, check for
errors on MQ calls.

If you're using PUSH sockets, you'll find that the first PULLcket to connect will grab an unfair
share of messages. The accurate rotation of messages pplgrisawhen all PULL sockets are
successfully connected, which can take some millisecokslan alternative to PUSH/PULL, for
lower data rates, consider using ROUTER/DEALER and the leddncing pattern.

If you're sharing sockets across threads, don't. It wildéa random weirdness, and crashes.

If you're usinginproc , make sure both sockets are in the same context. Othervesmtinecting
side will in fact fail. Also, bind first, then connedtproc is not a disconnected transport likep .

If you're using ROUTER sockets, it's remarkably easy to logessages by accident, by sending
malformed identity frames (or forgetting to send an idgrftiame). In general setting the
ZMQ_ROUTER_MANDATGmtion on ROUTER sockets is a good idea, but do also checlether
code on every send call.

Lastly, if you really can’t figure out what's going wrong, neé&minimaltest case that reproduces the
problem, and ask for help from the @MQ community.

78

Chapter 3. Advanced Request-Reply Patterns

In Sockets and Patter@hapter 2ve worked through the basics of using @MQ by developing a&seri
small applications, each time exploring new aspects of W8Il continue this approach in this
chapter as we explore advanced patterns built on top of @M@ request-reply pattern.

We'll cover:

- How the request-reply mechanisms work

- How to combine REQ, REP, DEALER, and ROUTER sockets
« How ROUTER sockets work, in detail

- The load balancing pattern

- Building a simple load balancing message broker

+ Designing a high-level API for @MQ

- Building an asynchronous request-reply server

- A detailed inter-broker routing example

3.1. The Request-Reply Mechanisms

We already looked briefly at multipart messages. Let's navk lat a major use case, whichreply
message envelopesn envelope is a way of safely packaging up data with an addreithout touching
the data itself. By separating reply addresses into an epgelie make it possible to write general
purpose intermediaries such as APIs and proxies that ¢creai®, and remove addresses no matter what
the message payload or structure is.

In the request-reply pattern, the envelope holds the retddness for replies. It is how a @MQ network
with no state can create round-trip request-reply dialogs.

When you use REQ and REP sockets you don’t even see envelbpss;sockets deal with them
automatically. But for most of the interesting requestiygatterns, you'll want to understand envelopes
and particularly ROUTER sockets. We’ll work through thigsty-step.

3.1.1. The Simple Reply Envelope

A request-reply exchange consists aeguestmessage, and an eventughly message. In the simple
request-reply pattern, there’s one reply for each requrestore advanced patterns, requests and replies
can flow asynchronously. However, the reply envelope alwayks the same way.

79

Chapter 3. Advanced Request-Reply Patterns

The @MQ reply envelope formally consists of zero or moreyepuldresses, followed by an empty frame
(the envelope delimiter), followed by the message bodyo(eemore frames). The envelope is created
by multiple sockets working together in a chain. We'll brelais down.

We'll start by sending "Hello" through a REQ socket. The REQk®t creates the simplest possible
reply envelope, which has no addresses, just an empty delifrime and the message frame containing
the "Hello" string. This is a two-frame mess&agure 3-1

Figure 3-1. Request with Minimal Envelope

Frame 1 0 Empty delimiter frame

Frame 2 5 Hello Data frame

The REP socket does the matching work: it strips off the epelup to and including the delimiter
frame, saves the whole envelope, and passes the "Hellog stp the application. Thus our original
Hello World example used request-reply envelopes intgriait the application never saw them.

If you spy on the network data flowing betwelenclient andhwserver , this is what you'll see: every
request and every reply is in fact two frames, an empty framdetlaen the body. It doesn’t seem to make
much sense for a simple REQ-REP dialog. However you'll see¢ason when we explore how
ROUTER and DEALER handle envelopes.

3.1.2. The Extended Reply Envelope

Now let's extend the REQ-REP pair with a ROUTER-DEALER praxyhe middle and see how this
affects the reply envelope. This is tegtended request-reply pattene already saw in Sockets and
Pattern€hapter 2We can, in fact, insert any number of proxy steigsire 3-2 The mechanics are the
same.

80

Chapter 3. Advanced Request-Reply Patterns

Figure 3-2. Extended Request-Reply Pattern

REQ REP
REQ ROUTER DEALER REP
REQ ROUTER DEALER ROUTER DEALER

The proxy does this, in pseudo-code:

prepare context, frontend and backend sockets
while true:
poll on both sockets
if frontend had input:
read all frames from frontend
send to backend
if backend had input:
read all frames from backend
send to frontend

The ROUTER socket, unlike other sockets, tracks every odtioreit has, and tells the caller about
these. The way it tells the caller is to stick the connecitit@mtityin front of each message received. An
identity, sometimes called addressis just a binary string with no meaning except "this is a ueiq

handle to the connection”. Then, when you send a messageROAJTER socket, you first send an
identity frame.

Thezmq_socket() man page describes it thus:

When receiving messages a ZMQ_ROUTER socket shall preperesaage part containing the identity of the
originating peer to the message before passing it to thecapiph. Messages received are fair-queued from
among all connected peers. When sending messages a ZMQ_E®&bcket shall remove the first part of the
message and use it to determine the identity of the peer tesage shall be routed to.

As a historical note, @MQ v2.2 and earlier use UUIDs as idiexstiand IMQ v3.0 and later use short
integers. There's some impact on network performance, fiyitvohen you use multiple proxy hops,

which is rare. Mostly the change was to simplify buildiilgmg by removing the dependency on a
UUID library.

81

REP

Chapter 3. Advanced Request-Reply Patterns

Identities are a difficult concept to understand, but it'seesial if you want to become a @MQ expert.
The ROUTER socketventsa random identity for each connection with which it workshiére are
three REQ sockets connected to a ROUTER socket, it will intheee random identities, one for each
REQ socket.

So if we continue our worked example, let's say the REQ sdcéieta 3-byte identitgBC Internally,
this means the ROUTER socket keeps a hash table where itaarhgerABCand find the TCP
connection for the REQ socket.

When we receive the message off the ROUTER socket, we get ftaime&igure 3-3

Figure 3-3. Request with One Address

Frame 1 3 ABC Identity of connection

Frame 2 0 Empty delimiter frame

Frame 3 5 Hello I Data frame

The core of the proxy loop is "read from one socket, write ®dther"”, so we literally send these three
frames out on the DEALER socket. If you now sniffed the netntoaffic, you would see these three
frames flying from the DEALER socket to the REP socket. The Ra&tket does as before, strips off the
whole envelope including the new reply address, and onde agtvers the "Hello" to the caller.

Incidentally the REP socket can only deal with one requeglyrexchange at a time, which is why if you
try to read multiple requests or send multiple replies wittrgticking to a strict recv-send cycle, it gives
an error.

You should now be able to visualize the return path. Wineserver sends "World" back, the REP
socket wraps that with the envelope it saved, and sendse-ttame reply message across the wire to
the DEALER sockefigure 3-4

Figure 3-4. Reply with one Address

Frame 1 3 ABC Identity of connection

Frame 2 0 Empty delimiter frame

Frame 3 5 World I Data frame

82

Chapter 3. Advanced Request-Reply Patterns

Now the DEALER reads these three frames, and sends all ttagaothe ROUTER socket. The
ROUTER takes the first frame for the message, which ig8@identity, and looks up the connection
for this. If it finds that, it then pumps the next two frames onto the wird-igure 3-5

Figure 3-5. Reply with Minimal Envelope

Frame 1 0 Empty delimiter frame

Frame 2 5 World Data frame

The REQ socket picks this message up, and checks that thigdirs is the empty delimiter, which it is.
The REQ socket discards that frame and passes "World" tcefliegcapplication, which prints it out to
the amazement of the younger us looking at @MQ for the firsttim

3.1.3. What's This Good For?

To be honest, the use cases for strict request-reply or @stbrequest-reply are somewhat limited. For
one thing, there’s no easy way to recover from common fasllike the server crashing due to buggy
application code. We'll see more about this in Reliable RestiiReply Pattert@hapter 4However once
you grasp the way these four sockets deal with enveloped)@amdhey talk to each other, you can do
very useful things. We saw how ROUTER uses the reply envatwpecide which client REQ socket to
route a reply back to. Now let’s express this another way:

- Each time ROUTER gives you a message, it tells you what paectime from, as an identity.
- You can use this with a hash table (with the identity as keyjaok new peers as they arrive.

- ROUTER will route messages asynchronously to any peer adaaéo it, if you prefix the identity as
the first frame of the message.

ROUTER sockets don’t care about the whole envelope. Theit Boow anything about the empty
delimiter. All they care about is that one identity framettlegs them figure out which connection to send
a message to.

3.1.4. Recap of Request-Reply Sockets

Let's recap this:

- The REQ socket sends, to the network, an empty delimiterdrianfront of the message data. REQ
sockets are synchronous. REQ sockets always send onetraqdeken wait for one reply. REQ
sockets talk to one peer at a time. If you connect a REQ sockatittiple peers, requests are
distributed to and replies expected from each peer one tuatime.

83

Chapter 3. Advanced Request-Reply Patterns

The REP socket reads and saves all identity frames up to ahaling the empty delimiter, then
passes the following frame or frames to the caller. REP gs@ke synchronous and talk to one peer at
a time. If you connect a REP socket to multiple peers, regugstread from peers in fair fashion, and
replies are always sent to the same peer that made the lasisteq

The DEALER socket is oblivious to the reply envelope and iesthis like any multipart message.
DEALER sockets are asynchronous and like PUSH and PULL coedbiThey distribute sent
messages among all connections, and fair-queue receiveshges from all connections.

The ROUTER socket is oblivious to the reply envelope, likeADER. It creates identities for its
connections, and passes these identities to the caller s fidime in any received message.
Conversely, when the caller sends a message, it uses thedissage frame as an identity to look up
the connection to send to. ROUTERS are asynchronous.

3.2. Request-Reply Combinations

We have four request-reply sockets, each with a certainvi@h&\e've seen how they connect in simple
and extended request-reply patterns. But these sockdtsiddling blocks that you can use to solve many
problems.

These are the legal combinations:

REQ to REP
DEALER to REP
REQ to ROUTER
DEALER to ROUTER
DEALER to DEALER
ROUTER to ROUTER

And these combinations are invalid (and I'll explain why):

REQ to REQ
REQ to DEALER
REP to REP

REP to ROUTER

Here are some tips for remembering the semantics. DEALER&sh asynchronous REQ socket, and
ROUTER is like an asynchronous REP socket. Where we use a BEl@tswe can use a DEALER; we
just have to read and write the envelope ourselves. Whereseva REP socket, we can stick a
ROUTER; we just need to manage the identities ourselves.

84

Chapter 3. Advanced Request-Reply Patterns

Think of REQ and DEALER sockets as "clients" and REP and ROR§&ckets as "servers". Mostly,
you'll want to bind REP and ROUTER sockets, and connect REQBALER sockets to them. It's not
always going to be this simple, but it is a clean and memongalblee to start.

3.2.1. The REQ to REP Combination

We've already covered a REQ client talking to a REP serveldtigttake one aspect: the REQ client
mustinitiate the message flow. A REP server cannot talk to a REghtthat hasn't first sent it a request.
Technically, it's not even possible, and the API also restanEFSMerror if you try it.

3.2.2. The DEALER to REP Combination

Now, let's replace the REQ client with a DEALER. This givesamsasynchronous client that can talk to
multiple REP servers. If we rewrote the "Hello World" cliargting DEALER, we’'d be able to send off
any number of "Hello" requests without waiting for replies.

When we use a DEALER to talk to a REP socket,wastaccurately emulate the envelope that the REQ
socket would have sent, or the REP socket will discard thesaggsas invalid. So, to send a message, we:

- Send an empty message frame with the MORE flag set; then

- Send the message body.

And when we receive a message, we:

- Receive the first frame and if it's not empty, discard the whokssage;

- Receive the next frame and pass that to the application.

3.2.3. The REQ to ROUTER Combination

In the same way that we can replace REQ with DEALER, we caracepgREP with ROUTER. This
gives us an asynchronous server that can talk to multiple BEQts at the same time. If we rewrote the
"Hello World" server using ROUTER, we’d be able to procesgmmmber of "Hello" requests in
parallel. We saw this in the Sockets and Patt€hepter 2ntserver example.

We can use ROUTER in two distinct ways:

- As a proxy that switches messages between frontend andrizhskekets.

- As an application that reads the message and acts on it.

85

Chapter 3. Advanced Request-Reply Patterns

In the first case, the ROUTER simply reads all frames, inclgdie artificial identity frame, and passes
them on blindly. In the second case the ROUTiERstknow the format of the reply envelope it’s being

sent. As the other peer is a REQ socket, the ROUTER gets thétidgame, an empty frame, and then

the data frame.

3.2.4. The DEALER to ROUTER Combination

Now we can switch out both REQ and REP with DEALER and ROUTEReitthe most powerful
socket combination, which is DEALER talking to ROUTER. lvg$ us asynchronous clients talking to
asynchronous servers, where both sides have full conteslthe message formats.

Because both DEALER and ROUTER can work with arbitrary mgsgarmats, if you hope to use these
safely, you have to become a little bit of a protocol desighethe very least you must decide whether
you wish to emulate the REQ/REP reply envelope. It dependghmther you actually need to send
replies or not.

3.2.5. The DEALER to DEALER Combination

You can swap a REP with a ROUTER, but you can also swap a RERAVDBALER, if the DEALER is
talking to one and only one peer.

When you replace a REP with a DEALER, your worker can suddgaolfull asynchronous, sending any
number of replies back. The cost is that you have to managehgenvelopes yourself, and get them
right, or nothing at all will work. We’'ll see a worked examjiéder. Let’s just say for now that DEALER
to DEALER is one of the trickier patterns to get right, and igpit's rare that we need it.

3.2.6. The ROUTER to ROUTER Combination

This sounds perfect for N-to-N connections, but it's the taificult combination to use. You should
avoid it until you are well advanced with @MQ. We'll see onample it in the Freelance pattern in
Reliable Request-Reply Patte@tsapter 4and an alternative DEALER to ROUTER design for
peer-to-peer work in A Framework for Distributed Computigpter 8

3.2.7. Invalid Combinations

Mostly, trying to connect clients to clients, or servers¢ovgrs is a bad idea and won’t work. However,
rather than give general vague warnings, I'll explain iredlet

86

Chapter 3. Advanced Request-Reply Patterns

+ REQ to REQ: both sides want to start by sending messageshéaer, and this could only work if
you timed things so that both peers exchanged messagessaintigetime. It hurts my brain to even
think about it.

+ REQ to DEALER: you could in theory do this, but it would bredkou added a second REQ because
DEALER has no way of sending a reply to the original peer. TthesREQ socket would get
confused, and/or return messages meant for another client.

- REP to REP: both sides would wait for the other to send therfiestsage.

- REP to ROUTER: the ROUTER socket can in theory initiate ttadodj and send a properly-formatted
request, if it knows the REP socket has conneatadiit knows the identity of that connection. It's
messy and adds nothing over DEALER to ROUTER.

The common thread in this valid versus invalid breakdowhat & @MQ socket connection is always
biased towards one peer that binds to an endpoint, and arib&#teonnects to that. Further, that which
side binds and which side connects is not arbitrary, bubfadlnatural patterns. The side which we
expect to "be there" binds: it'll be a server, a broker, a fsigr, a collector. The side that "comes and
goes" connects: it'll be clients and workers. Remembetiimgwill help you design better ZMQ
architectures.

3.3. Exploring ROUTER Sockets

Let’s look at ROUTER sockets a little closer. We've alreadgrs how they work by routing individual
messages to specific connections. I'll explain in more tbtaiv we identify those connections, and what
a ROUTER socket does when it can’t send a message.

3.3.1. Identities and Addresses

Theidentityconcept in @MQ refers specifically to ROUTER sockets and Hwy tdentify the
connections they have to other sockets. More broadly, itilehtre used as addresses in the reply
envelope. In most cases, the identity is arbitrary and lactle ROUTER socket: it's a lookup key in a
hash table. Independently, a peer can have an address pingsisal (a network endpoint like
"tcp://192.168.55.117:5670") or logical (a UUID or emalldress or other unique key).

An application that uses a ROUTER socket to talk to specifezpean convert a logical address to an
identity if it has built the necessary hash table. Becaus& RER sockets only announce the identity of a
connection (to a specific peer) when that peer sends a megsagean only really reply to a message,
not spontaneously talk to a peer.

This is true even if you flip the rules and make the ROUTER conhttethe peer rather than wait for the
peer to connect to the ROUTER. However you can force the RQR3@cket to use a logical address in

87

Chapter 3. Advanced Request-Reply Patterns

place of its identity. Themq_setsockopt reference page calls thigtting the socket identitit works
as follows:

- The peer application sets tA#MQ_IDENTITY option of its peer socket (DEALER or RE@¥gfore
binding or connecting.

+ Usually the peer then connects to the already-bound ROUDERes. But the ROUTER can also
connect to the peer.

- At connection time, the peer socket tells the router so¢kétase use this identity for this
connection".

- If the peer socket doesn’t say that, the router generatasital arbitrary random identity for the
connection.

- The ROUTER socket now provides this logical address to tipigdion as a prefix identity frame for
any messages coming in from that peer.

- The ROUTER also expects the logical address as the prefititigfniame for any outgoing messages.

Here is a simple example of two peers that connect to a ROUTERes, one that imposes a logical
address "PEER2":

Example 3-1. Identity check (identity.py)
encoding: utf-8

#

#

Demonstrate identities as used by the request-reply patte rm. Run this
program by itself.
#

#

#

Author: Jeremy Avnet (brainsik) <spork(dash)zmq(at)the ory(dot)org>

import zmq
import zhelpers

context = zmgq.Context()

sink = context.socket(zmq.ROUTER)
sink.bind("inproc://example™)

First allow OMQ to set the identity

anonymous = context.socket(zmq.DEALER)
anonymous.connect("inproc://example™)
anonymous.send(b"ROUTER uses a generated UUID")
zhelpers.dump(sink)

Then set the identity ourselves

identified = context.socket(zmq.DEALER)
identified.setsockopt(zmq.IDENTITY, b"PEER2")
identified.connect("inproc://example™)

identified.send(b"ROUTER socket uses REQ’s socket identi ty")
zhelpers.dump(sink)

88

Chapter 3. Advanced Request-Reply Patterns

Here is what the program prints:

[005] 006B8B4567
[000]
[026] ROUTER uses a generated UUID

[005] PEER2
[000]
[038] ROUTER uses REQ’s socket identity

3.3.2. ROUTER Error Handling

ROUTER sockets do have a somewhat brutal way of dealing wétbsages they can’t send anywhere:
they drop them silently. It's an attitude that makes senseorking code, but it makes debugging hard.
The "send identity as first frame" approach is tricky enoungtt tve often get this wrong when we're
learning, and the ROUTER’s stony silence when we mess upvsry constructive.

Since @MQ v3.2 there’s a socket option you can set to catstetinor:zMQ_ROUTER_MANDATORB®t
that on the ROUTER socket and then when you provide an urstaigentity on a send call, the socket
will signal anEHOSTUNREAGgfror.

3.4. The Load Balancing Pattern

Now let’s look at some code. We'll see how to connect a ROUT&¢Ekst to a REQ socket, and then to a
DEALER socket. These two examples follow the same logicchviig aload balancingpattern. This
pattern is our first exposure to using the ROUTER socket fibelate routing, rather than simply acting
as a reply channel.

The load balancing pattern is very common and we'll see igshtimes in this book. It solves the main
problem with simple round robin routing (as PUSH and DEALHE®R©Q which is that round robin
becomes inefficient if tasks do not all roughly take the same.t

It's the post office analogy. If you have one queue per couatat you have some people buying stamps
(a fast, simple transaction), and some people opening nesuats (a very slow transaction), then you
will find stamp buyers getting unfairly stuck in queues. Assin a post office, if your messaging
architecture is unfair, people will get annoyed.

The solution in the post office is to create a single queueatoetien if one or two counters get stuck
with slow work, other counters will continue to serve cligoh a first-come, first-serve basis.

89

Chapter 3. Advanced Request-Reply Patterns

One reason PUSH and DEALER use the simplistic approach & glegformance. If you arrive in any
major US airport, you'll find long queues of people waitingramigration. The border patrol officials

will send people in advance to queue up at each counteritdie using a single queue. Having people
walk fifty yards in advance saves a minute or two per passeAgdrbecause every passport check takes
roughly the same time, it's more or less fair. This is thetsgg for PUSH and DEALER: send work
loads ahead of time so that there is less travel distance.

This is a recurring theme with @MQ: the world’s problems akese and you can benefit from solving
different problems each in the right way. The airport ish& post office and one size fits no one, really
well.

Let’s return to the scenario of a worker (DEALER or REQ) caetad to a broker (ROUTER). The
broker has to know when the worker is ready, and keep a lisiookers so that it can take theast
recently usedvorker each time.

The solution is really simple, in fact: workers send a "réadgssage when they start, and after they
finish each task. The broker reads these messages one-biyamhetime it reads a message, it is from
the last used worker. And because we're using a ROUTER sogkeaiet an identity that we can then use
to send a task back to the worker.

It's a twist on request-reply because the task is sent wiheply, and any response for the task is sent as
a new request. The following code examples should makeatete

3.4.1. ROUTER Broker and REQ Workers

Here is an example of the load balancing pattern using a R@Udreker talking to a set of REQ
workers:

Example 3-2. ROUTER-t0o-REQ (rtreq.py)

encoding: utf-8

#

Custom routing Router to Mama (ROUTER to REQ)

#

Author: Jeremy Avnet (brainsik) <spork(dash)zmq(at)the ory(dot)org>
#

import time

import random
from threading import Thread

import zmqg
import zhelpers

NBR_WORKERS = 10

90

Chapter 3. Advanced Request-Reply Patterns

def worker_thread(context=None):

context = context or zmgq.Context.instance()
worker = context.socket(zmq.REQ)

We use a string identity for ease here
zhelpers.set_id(worker)
worker.connect("ipc://routing.ipc”)

total = 0

while True:
Tell the router we're ready for work
worker.send(b"ready")

Get workload from router, until finished
workload = worker.recv()
finished = workload == b"END"
if finished:
print("Processed: %d tasks" % total)
break
total += 1

Do some random work
time.sleep(0.1 * random.random())

context = zmgq.Context.instance()
client = context.socket(zmq.ROUTER)
client.bind("ipc://routing.ipc")

for

for _

_in range(NBR_WORKERS):

Thread(target=worker_thread).start()

in range(NBR_WORKERS * 10):
LRU worker is next waiting in the queue
address, empty, ready = client.recv_multipart()

client.send_multipart([
address,
b",
b'This is the workload’,
D

Now ask mama to shut down and report their results

for _

in range(NBR_WORKERS):
address, empty, ready = client.recv_multipart()
client.send_multipart([

address,

b”,

b’END’,

91

Chapter 3. Advanced Request-Reply Patterns

The example runs for five seconds and then each worker pomisiany tasks they handled. If the
routing worked, we'd expect a fair distribution of work:

Completed: 20 tasks
Completed: 18 tasks
Completed: 21 tasks
Completed: 23 tasks
Completed: 19 tasks
Completed: 21 tasks
Completed: 17 tasks
Completed: 17 tasks
Completed: 25 tasks
Completed: 19 tasks

To talk to the workers in this example, we have to create a RieQédly envelope consisting of an
identity plus an empty envelope delimiter fraRigure 3-6

Figure 3-6. Routing Envelope for REQ

Frame 1 n Identity of connection
Frame 2 0 Empty delimiter frame
Frame 3 n ce Data frame

3.4.2. ROUTER Broker and DEALER Workers

Anywhere you can use REQ, you can use DEALER. There are twaifgpaifferences:

- The REQ socket always sends an empty delimiter frame befgrdata frames; the DEALER does
not.

- The REQ socket will send only one message before it receivesly; the DEALER is fully
asynchronous.

The synchronous versus asynchronous behavior has no effectr example because we're doing strict
request-reply. It is more relevant when we address reaoyémm failures, which we’ll come to in
Reliable Request-Reply Patte@isapter 4

Now let’s look at exactly the same example but with the REQksbreplaced by a DEALER socket:

92

Chapter 3. Advanced Request-Reply Patterns

Example 3-3. ROUTER-to-DEALER (rtdealer.py)
encoding: utf-8

#

Custom routing Router to Dealer

#

Author: Jeremy Avnet (brainsik) <spork(dash)zmq(at)the
#

import time
import random
from threading import Thread

import zmqg

We have two workers, here we copy the code, normally these wo

run on different boxes...

#

def worker_a(context=None):
context = context or zmgq.Context.instance()
worker = context.socket(zmq.DEALER)
worker.setsockopt(zmq.IDENTITY, b'A")
worker.connect("ipc://routing.ipc”)

total = 0
while True:
We receive one part, with the workload
request = worker.recv()
finished = request == b"END"
if finished:
print("A received: %s" % total)
break
total += 1

def worker_b(context=None):
context = context or zmgq.Context.instance()
worker = context.socket(zmq.DEALER)
worker.setsockopt(zmq.IDENTITY, b'B’)
worker.connect("ipc://routing.ipc”)

total = 0
while True:
We receive one part, with the workload
request = worker.recv()
finished = request == b"END"
if finished:
print("B received: %s" % total)
break
total += 1

ory(dot)org>

uld

93

Chapter 3. Advanced Request-Reply Patterns

context = zmg.Context.instance()
client = context.socket(zmq.ROUTER)
client.bind("ipc://routing.ipc")

Thread(target=worker_a).start()
Thread(target=worker_b).start()

Wait for threads to stabilize
time.sleep(1)

Send 10 tasks scattered to A twice as often as B
for _ in range(10):
Send two message parts, first the address...
ident = random.choice([b’'A’, b'B")
And then the workload
work = b"This is the workload"
client.send_multipart([ident, work])

client.send_multipart([b’A’, b’END’])
client.send_multipart([b’B’, b’END’])

The code is almost identical except that the worker uses allERAsocket, and reads and writes that
empty frame before the data frame. This is the approach | hesmWwwant to keep compatibility with
REQ workers.

However, remember the reason for that empty delimiter fratseo allow multihop extended requests
that terminate in a REP socket, which uses that delimiteplibaif the reply envelope so it can hand the
data frames to its application.

If we never need to pass the message along to a REP sockethwargaly drop the empty delimiter
frame at both sides, which makes things simpler. This isliystiee design | use for pure DEALER to
ROUTER protocols.

3.4.3. A Load Balancing Message Broker

The previous example is half-complete. It can manage a sevders with dummy requests and replies,
but it has no way to talk to clients. If we add a secémothtendROUTER socket that accepts client
requests, and turn our example into a proxy that can switdsages from frontend to backend, we get a
useful and reusable tiny load balancing message bfduere 3-7

94

Chapter 3. Advanced Request-Reply Patterns

Figure 3-7. Load Balancing Broker

Client Client Client
REQ REQ REQ
—
ROUTER Frontend

Load balancer

ROUTER

[|
(REQ (REQ (REQ

Worker Worker Worker

Backend

This broker does the following:

« Accepts connections from a set of clients.

- Accepts connections from a set of workers.

- Accepts requests from clients and holds these in a singleeque
- Sends these requests to workers using the load balancitegrpat
- Receives replies back from workers.

- Sends these replies back to the original requesting client.

The broker code is fairly long, but worth understanding:

Example 3-4. Load balancing broker (Ibbroker.py)

Least-recently used (LRU) queue device
Clients and workers are shown here in-process

Author: Guillaume Aubert (gaubert) <guillaume(dot)auber t(at)gmail(dot)com>

95

Chapter 3. Advanced Request-Reply Patterns
from _ future__ import print_function
import threading
import time

import zmq

NBR_CLIENTS = 10
NBR_WORKERS = 3

def worker_thread(worker_url, context, i):
""" Worker using REQ socket to do LRU routing "™

socket = context.socket(zmg.REQ)

Set the worker identity
socket.identity = (u"Worker-%d" % (i)).encode('ascii’)

socket.connect(worker_url)

Tell the borker we are ready for work
socket.send(b"READY")

try:
while True:

address = socket.recv()
empty = socket.recv()
request = socket.recv()
print("%s: %s\n" % (socket.identity.decode('ascii’), re quest.decode('ascii’)), end=")
socket.send(address, zmq.SNDMORE)
socket.send(b™, zmq.SNDMORE)
socket.send(b"OK")
except zmg.ContextTerminated:

context terminated so quit silently
return

def client_thread(client_url, context, i):
" Basic request-reply client using REQ socket "™
socket = context.socket(zmg.REQ)
socket.identity = (u"Client-%d" % (i)).encode('ascii’)
socket.connect(client_url)

Send request, get reply
socket.send(b"HELLQO")

96

Chapter 3. Advanced Request-Reply Patterns

reply = socket.recv()

print("%s: %s\n" % (socket.identity.decode('ascii’), re ply.decode('ascii’)), end=")

def main():
""" main method "

url_worker = "inproc://workers"
url_client = "inproc://clients"
client_ nbr = NBR_CLIENTS

Prepare our context and sockets
context = zmgq.Context()

frontend = context.socket(zmq.ROUTER)
frontend.bind(url_client)

backend = context.socket(zmq.ROUTER)
backend.bind(url_worker)

create workers and clients threads

for i in range(NBR_WORKERS):
thread = threading.Thread(target=worker_thread, args=(url_worker, context, i,))
thread.start()

for i in range(NBR_CLIENTS):
thread_c = threading.Thread(target=client_thread, args =(url_client, context, i,))
thread_c.start()

Logic of LRU loop

- Poll backend always, frontend only if 1+ worker ready

- If worker replies, queue worker as ready and forward reply
to client if necessary

- If client requests, pop next worker and send request to it

Queue of available workers
available_workers = 0

workers_list =

init poller
poller = zmq.Poller()

Always poll for worker activity on backend
poller.register(backend, zmqg.POLLIN)

Poll front-end only if we have available workers
poller.register(frontend, zmq.POLLIN)

while True:

socks = dict(poller.poll())

97

Chapter 3. Advanced Request-Reply Patterns

Handle worker activity on backend
if (backend in socks and socks[backend] == zmq.POLLIN):

Queue worker address for LRU routing
worker_addr = backend.recv()

assert available_workers < NBR_WORKERS

add worker back to the list of workers
available_workers += 1
workers_list.append(worker_addr)

Second frame is empty
empty = backend.recv()
assert empty == b™

Third frame is READY or else a client reply address
client_addr = backend.recv()

If client reply, send rest back to frontend
if client_addr !'= b"READY":

Following frame is empty
empty = backend.recv()
assert empty == b™

reply = backend.recv()
frontend.send(client_addr, zmq.SNDMORE)
frontend.send(b™, zmqg.SNDMORE)
frontend.send(reply)

client_nbr -= 1

if client_nbr ==
break # Exit after N messages

poll on frontend only if workers are available
if available workers > 0:

if (frontend in socks and socks[frontend] == zmq.POLLIN):
Now get next client request, route to LRU worker
Client request is [address][empty][request]
client_addr = frontend.recv()

empty = frontend.recv()
assert empty == b™

request = frontend.recv()
Dequeue and drop the next worker address

available_workers -= 1
worker_id = workers_list.pop()

98

Chapter 3. Advanced Request-Reply Patterns

backend.send(worker_id, zmq.SNDMORE)
backend.send(b™', zmq.SNDMORE)
backend.send(client_addr, zmq.SNDMORE)
backend.send(b™, zmq.SNDMORE)
backend.send(request)

Out of infinite loop: do some housekeeping

frontend.close()
backend.close()
context.term()

if _name__ =="_main__"
main()

The difficult part of this program is (a) the envelopes thathesocket reads and writes, and (b) the load
balancing algorithm. We'll take these in turn, startinghatihe message envelope formats.

Let's walk through a full request-reply chain from clienttorker and back. In this code we set the
identity of client and worker sockets to make it easier todrtne message frames. In reality, we’'d allow
the ROUTER sockets to invent identities for connectiong'slassume the client’s identity is "CLIENT"
and the worker’s identity is "WORKER". The client applicatisends a single frame containing
"Hello"Figure 3-8

Figure 3-8. Message that Client Sends

Frame 1 | 5 | Hello I Data frame

Because the REQ socket adds its empty delimiter frame anf@ht£TER socket adds its connection
identity, the proxy reads off the frontend ROUTER socketdlent address, empty delimiter frame, and
the data paRigure 3-9

Figure 3-9. Message Coming in on Frontend

Frame 1 6 CLIENT Client address

Frame 2 0 Empty delimiter frame

Frame 3 5 Hello I Data frame

99

Chapter 3. Advanced Request-Reply Patterns

The broker sends this to the worker, prefixed by the addregseathosen worker, plus an additional
empty part to keep the REQ at the other end h&igpyre 3-10

Figure 3-10. Message Sent to Backend

Frame 1 6 WORKER Address of worker
Frame 2 0 Empty delimiter frame
Frame 3 6 CLIENT Identity of client
Frame 4 0 Empty delimiter frame
Frame 5 5 Hello I Data frame

This complex envelope stack gets chewed up first by the badRUTER socket, which removes the
first frame. Then the REQ socket in the worker removes the epaot, and provides the rest to the
worker applicatiofrigure 3-11

Figure 3-11. Message Delivered to Worker

Frame 1 6 CLIENT Identity of client

Frame 2 0 Empty delimiter frame

Frame 3 5 Hello I Data frame

The worker has to save the envelope (which is all the parte apd including the empty message frame)
and then it can do what’s needed with the data part. Note tR&Rsocket would do this automatically,
but we're using the REQ-ROUTER pattern so that we can getguiopd balancing.

On the return path, the messages are the same as when theincamethe backend socket gives the
broker a message in five parts, and the broker sends theffidbateket a message in three parts, and the
client gets a message in one part.

Now let’s look at the load balancing algorithm. It requirkattboth clients and workers use REQ
sockets, and that workers correctly store and replay thelepg on messages they get. The algorithm is:

+ Create a pollset that always polls the backend, and pollsanéend only if there are one or more
workers available.

- Poll for activity with infinite timeout.

100

Chapter 3. Advanced Request-Reply Patterns

. If there is activity on the backend, we either have a "readg$sage or a reply for a client. In either
case, we store the worker address (the first part) on our wqtkeue, and if the rest is a client reply,
we send it back to that client via the frontend.

- If there is activity on the frontend, we take the client resfupop the next worker (which is the last
used), and send the request to the backend. This meansgémelimorker address, empty part, and
then the three parts of the client request.

You should now see that you can reuse and extend the loadchaeadgorithm with variations based on
the information the worker provides in its initial "ready'essage. For example, workers might start up
and do a performance self test, then tell the broker how lfi@st are. The broker can then choose the
fastest available worker rather than the oldest.

3.5. A High-Level API for @MQ

We’re going to push request-reply onto the stack and opefiexalit area, which is the MQ API itself.
There’s a reason for this detour: as we write more complermgkes, the low-level MQ API starts to
look increasingly clumsy. Look at the core of the worker #ttédrom our load balancing broker:

while (true) {
/I Get one address frame and empty delimiter
char +address = s_recv (worker);
char *empty = s_recv (worker);
assert (*empty == 0);
free (empty);

/I Get request, send reply

char =*request = s_recv (worker);
printf ("Worker: %s\n", request);
free (request);

s_sendmore (worker, address);
s_sendmore (worker, ";
s_send (worker, "OK");
free (address);

That code isn’t even reusable because it can only handlesphgaddress in the envelope, and it already
does some wrapping around the @MQ API. If we useditlzeng simple message API this is what
we’d have to write:

while (true) {
/I Get one address frame and empty delimiter
char address [255];
int address_size = zmq_recv (worker, address, 255, 0);
if (address_size == -1)
break;

101

Chapter 3. Advanced Request-Reply Patterns

char empty [1];
int empty_size = zmq_recv (worker, empty, 1, 0);
zmg_recv (worker, &empty, 0);
assert (empty_size <= 0);
if (empty_size == -1)
break;

/I Get request, send reply
char request [256];
int request_size = zmq_recv (worker, request, 255, 0);
if (request_size == -1)
return NULL;
request [request_size] = O;
printf ("Worker: %s\n", request);

zmq_send (worker, address, address_size, ZMQ_SNDMORE);
zmg_send (worker, empty, 0, ZMQ_SNDMORE);
zmg_send (worker, "OK", 2, 0);

And when code is too long to write quickly, it's also too lomgunderstand. Up until now, I've stuck to
the native API because, as MQ users, we need to know thauztely. But when it gets in our way, we
have to treat it as a problem to solve.

We can't of course just change the @MQ API, which is a docuereptblic contract on which thousands
of people agree and depend. Instead, we construct a higirgrAPI on top based on our experience so
far, and most specifically, our experience from writing mooenplex request-reply patterns.

What we want is an API that lets us receive and send an entissage in one shot, including the reply
envelope with any number of reply addresses. One that lete udat we want with the absolute least
lines of code.

Making a good message API is fairly difficult. We have a problgf terminology: @MQ uses "message”
to describe both multipart messages, and individual messames. We have a problem of expectations:
sometimes it's natural to see message content as printainig data, sometimes as binary blobs. And
we have technical challenges, especially if we want to agoaying data around too much.

The challenge of making a good API affects all languagesighany specific use case is C. Whatever
language you use, think about how you could contribute ta jamguage binding to make it as good (or
better) than the C binding I'm going to describe.

102

Chapter 3. Advanced Request-Reply Patterns

3.5.1. Features of a Higher-Level API

My solution is to use three fairly natural and obvious corsegiring (already the basis for ousr send
ands_recv) helpersframe(a message frame), antessagéa list of one or more frames). Here is the
worker code, rewritten onto an API using these concepts:

while (true) {
zmsg_t *msg = zmsg_recv (worker);
zframe_reset (zmsg_last (msg), "OK", 2);
zmsg_send (&msg, worker);

Cutting the amount of code we need to read and write complessages is great: the results are easy to
read and understand. Let's continue this process for opaas of working with @MQ. Here’s a wish
list of things I'd like in a higher-level API, based on my exjgace with @MQ so far:

- Automatic handling of socketsfind it cumbersome to have to close sockets manually, andve to
explicitly define the linger timeout in some (but not all) easlt'd be great to have a way to close
sockets automatically when | close the context.

- Portable thread managemeritvery nontrivial dMQ application uses threads, but POSIb¢aals
aren't portable. So a decent high-level API should hideuihider a portable layer.

« Piping from parent to child thread#'s a recurrent problem: how to signal between parent afild ch
threads. Our API should provide a @MQ message pipe (using Ratkets anéhproc
automatically.

- Portable clocksEven getting the time to a millisecond resolution, or slaggor some milliseconds,
is not portable. Realistic @MQ applications need portaldeks, so our API should provide them.

- Areactor to replacenqg_pol | (). The poll loop is simple, but clumsy. Writing a lot of these, ared
up doing the same work over and over: calculating timers,cafithg code when sockets are ready. A
simple reactor with socket readers and timers would saved tepeated work.

- Proper handling of Ctrl-CWe already saw how to catch an interrupt. It would be usefillig
happened in all applications.

3.5.2. The CZMQ High-Level API

Turning this wish list into reality for the C language gives@ZMQ (http://zero.mg/c), a OMQ language
binding for C. This high-level binding, in fact, developeut @f earlier versions of the examples. It
combines nicer semantics for working with @MQ with some abitity layers, and (importantly for C,
but less for other languages) containers like hashes asd@gZMQ also uses an elegant object model
that leads to frankly lovely code.

Here is the load balancing broker rewritten to use a higeegHAPI (CZMQ for the C case):

103

Chapter 3. Advanced Request-Reply Patterns

Example 3-5. Load balancing broker using high-level API (Itbbroker2.py)

Least-recently used (LRU) queue device
Clients and workers are shown here in-process

Author: Guillaume Aubert (gaubert) <guillaume(dot)auber t(at)gmail(dot)com>

import threading
import time
import zmq

NBR_CLIENTS = 10
NBR_WORKERS = 3

def worker_thread(worker_url, context, i):
""" Worker using REQ socket to do LRU routing "™

socket = context.socket(zmg.REQ)

set worker identity
socket.identity = (u"Worker-%d" % (i)).encode('ascii’)

socket.connect(worker_url)

Tell the borker we are ready for work
socket.send(b"READY")

try:
while True:

address, empty, request = socket.recv_multipart()
print("%s: %s\n" % (socket.identity.decode('ascii’), re quest.decode('ascii’)), end=")
socket.send_multipart([address, b”, b’OK])

except zmg.ContextTerminated:

context terminated so quit silently
return

def client_thread(client_url, context, i):
" Basic request-reply client using REQ socket "™
socket = context.socket(zmq.REQ)

Set client identity. Makes tracing easier
socket.identity = (u"Client-%d" % (i)).encode('ascii’)

104

Chapter 3. Advanced Request-Reply Patterns
socket.connect(client_url)

Send request, get reply
socket.send(b"HELLQO")
reply = socket.recv()

print("%s: %s\n" % (socket.identity.decode('ascii’), re ply.decode('ascii’)), end=")

def main():

""" main method "™
url_worker = "inproc://workers"
url_client = "inproc://clients"
client_ nbr = NBR_CLIENTS

Prepare our context and sockets
context = zmg.Context()

frontend = context.socket(zmg.ROUTER)
frontend.bind(url_client)

backend = context.socket(zmgq.ROUTER)
backend.bind(url_worker)

create workers and clients threads

for i in range(NBR_WORKERS):
thread = threading.Thread(target=worker_thread, args=(url_worker, context, i,))
thread.start()

for i in range(NBR_CLIENTS):
thread_c = threading.Thread(target=client_thread, args =(url_client, context, i,))
thread_c.start()

Logic of LRU loop

- Poll backend always, frontend only if 1+ worker ready

- If worker replies, queue worker as ready and forward reply
to client if necessary

- If client requests, pop next worker and send request to it

Queue of available workers
available_workers = 0

workers_list =

init poller
poller = zmq.Poller()

Always poll for worker activity on backend
poller.register(backend, zmqg.POLLIN)

Poll front-end only if we have available workers
poller.register(frontend, zmq.POLLIN)

105

Chapter 3. Advanced Request-Reply Patterns
while True:
socks = dict(poller.poll())

Handle worker activity on backend
if (backend in socks and socks[backend] == zmq.POLLIN):

Queue worker address for LRU routing
message = backend.recv_multipart()

assert available_workers < NBR_WORKERS
worker_addr = message|[0]

add worker back to the list of workers
available_workers += 1
workers_list.append(worker_addr)

Second frame is empty

empty = message[l]

assert empty == "

Third frame is READY or else a client reply address
client_addr = message[2]

If client reply, send rest back to frontend
if client_addr != "READY":

Following frame is empty

empty = message[3]

assert empty == "

reply = message[4]
frontend.send_multipart([client_addr, ", reply])

client_nbr -= 1

if client_nbr == 0:
break # Exit after N messages

poll on frontend only if workers are available
if available workers > 0:

if (frontend in socks and socks[frontend] == zmq.POLLIN):
Now get next client request, route to LRU worker
Client request is [address][empty][request]
[client_addr, empty, request] = frontend.recv_multipart 0

assert empty ==

Dequeue and drop the next worker address

106

Chapter 3. Advanced Request-Reply Patterns

available_workers -= 1
worker_id = workers_list.pop()

backend.send_multipart([worker_id, "™, client_addr, " , request])

#out of infinite loop: do some housekeeping
time.sleep (1)

frontend.close()
backend.close()
context.term()

if _name__ =="_main__"
main()

One thing CZMQ provides is clean interrupt handling. Thisamethat Ctrl-C will cause any blocking
@MQ call to exit with a return code -1 and errno seEtTR. The high-level recv methods will return
NULL in such cases. So, you can cleanly exit a loop like this:

while (true) {
zstr_send (client, "Hello");
char =*reply = zstr_recv (client);
if (reply)
break; /I Interrupted
printf ("Client: %s\n", reply);
free (reply);
sleep (1);

Or, if you're callingzmg_poll() , test on the return code:

if (zmg_poll (items, 2, 1000 * 1000) == -1)
break; /I Interrupted

The previous example still usesig_poll() . So how about reactors? The CZMf®op reactor is
simple but functional. It lets you:

« Set areader on any socket, i.e., code that is called whetievsocket has input.
« Cancel areader on a socket.
- Set a timer that goes off once or multiple times at specifieriréls.

. Cancel atimer.

zloop of course usesmqg_poll() internally. It rebuilds its poll set each time you add or rexmo
readers, and it calculates the poll timeout to match the tiretr. Then, it calls the reader and timer
handlers for each socket and timer that need attention.

107

Chapter 3. Advanced Request-Reply Patterns

When we use a reactor pattern, our code turns inside out. Blirelogic looks like this:

zloop_t *reactor = zloop_new ();

zloop_reader (reactor, self->backend, s_handle_backend , self);
zloop_start (reactor);

zloop_destroy (&reactor);

The actual handling of messages sits inside dedicatedifunsabr methods. You may not like the
style--it's a matter of taste. What it does help with is mgimers and socket activity. In the rest of this
text, we'll usezmg_poll() in simpler cases, ardoop in more complex examples.

Here is the load balancing broker rewritten once again tilmie to usezloop :

Example 3-6. Load balancing broker using zloop (Ibbroker3py)

Least-recently used (LRU) queue device
Demonstrates use of pyzmq IOLoop reactor

While this example runs in a single process, that is just to ma ke
it easier to start and stop the example. Each thread has its ow n

context and conceptually acts as a separate process.

Author: Min RK <benjaminrk(at)gmail(dot)com>
Adapted from Iruqueue.py by Guillaume Aubert (gaubert) <gu illaume(dot)aubert(at)gmail(dot)c

import threading
import time
import zmq

from zmgq.eventloop.ioloop import 10Loop
from zmg.eventloop.zmgstream import ZMQStream

NBR_CLIENTS = 10
NBR_WORKERS = 3

def worker_thread(worker_url, i):
""" Worker using REQ socket to do LRU routing "
context = zmg.Context.instance()

socket = context.socket(zmq.REQ)

set worker identity
socket.identity = (u"Worker-%d" % (i)).encode('ascii’)

socket.connect(worker_url)

Tell the borker we are ready for work

108

Chapter 3. Advanced Request-Reply Patterns
socket.send(b"READY")

try:
while True:

address, empty, request = socket.recv_multipart()
print("%s: %s\n" % (socket.identity.decode('ascii’), re quest.decode('ascii’)), end=")
socket.send_multipart([address, b”, b’OK’])

except zmg.ContextTerminated:

context terminated so quit silently
return

def client_thread(client_url, i):
""" Basic request-reply client using REQ socket
context = zmg.Context.instance()

socket = context.socket(zmq.REQ)

Set client identity. Makes tracing easier
socket.identity = (u"Client-%d" % (i)).encode('ascii’)

socket.connect(client_url)

Send request, get reply
socket.send(b"HELLQO")
reply = socket.recv()

print("%s: %s\n" % (socket.identity.decode('ascii’), re ply.decode('ascii’)), end=")

class LRUQueue(object):

""LRUQueue class using ZMQStream/IOLoop for event dispat ching™"
def __init_ (self, backend_socket, frontend_socket):

self.available_workers = 0

self.workers = []

self.client_nbr = NBR_CLIENTS

self.backend = ZMQStream(backend_socket)
self.frontend = ZMQStream(frontend_socket)
self.backend.on_recv(self.handle_backend)
self.loop = IOLoop.instance()

def handle_backend(self, msg):
Queue worker address for LRU routing

worker_addr, empty, client_addr = msg[:3]

assert self.available_workers < NBR_WORKERS

109

Chapter 3. Advanced Request-Reply Patterns

add worker back to the list of workers
self.available_workers += 1
self.workers.append(worker_addr)

Second frame is empty
assert empty == b™

Third frame is READY or else a client reply address
If client reply, send rest back to frontend
if client_addr !'= b"READY":

empty, reply = msg[3:]

Following frame is empty
assert empty == b™

self.frontend.send_multipart([client_addr, b”, reply])
self.client_nbr -= 1

if self.client_nbr ==
Exit after N messages
self.loop.add_timeout(time.time()+1, self.loop.stop)

if self.available_workers ==
on first recv, start accepting frontend messages
self.frontend.on_recv(self.handle_frontend)

def handle_frontend(self, msg):
Now get next client request, route to LRU worker
Client request is [address][empty][request]
client_addr, empty, request = msg

assert empty == b™

Dequeue and drop the next worker address
self.available_workers -= 1
worker_id = self.workers.pop()

self.backend.send_multipart(Jworker_id, b”, client_ad dr, b", request])
if self.available_workers ==
stop receiving until workers become available again
self.frontend.stop_on_recv()

def main():
"""main method™"

url_worker = "ipc://backend.ipc"
url_client = "ipc://frontend.ipc”

Prepare our context and sockets

context = zmg.Context()
frontend = context.socket(zmg.ROUTER)

110

Chapter 3. Advanced Request-Reply Patterns

frontend.bind(url_client)
backend = context.socket(zmgq.ROUTER)
backend.bind(url_worker)

create workers and clients threads

for i in range(NBR_WORKERS):
thread = threading.Thread(target=worker_thread, args=(url_worker, i,))
thread.daemon = True
thread.start()

for i in range(NBR_CLIENTS):
thread_c = threading.Thread(target=client_thread, args =(url_client, i,))
thread_c.daemon = True
thread_c.start()

create queue with the sockets
queue = LRUQueue(backend, frontend)

start reactor
IOLoop.instance().start()

if _name__ =="_main__"
main()

Getting applications to properly shut down when you senthtfiérl-C can be tricky. If you use theetx
class it'll automatically set up signal handling, but yoode still has to cooperate. You must break any
loop if zmg_poll returns -1 or if any of thestr_recv , zframe_recv , orzmsg_recv methods return
NULL. If you have nested loops, it can be useful to make thewoohes conditional on

1zctx_interrupted

If you're using child threads, they won't receive the intgt. To tell them to shutdown, you can either:

- Destroy the context, if they are sharing the same contexthich case any blocking calls they are
waiting on will end with ETERM.

- Send them shutdown messages, if they are using their owextsnEor this you'll need some socket
plumbing.

3.6. The Asynchronous Client/Server Pattern

In the ROUTER to DEALER example, we saw a 1-to-N use case wiraeserver talks asynchronously
to multiple workers. We can turn this upside down to get a wesgful N-to-1 architecture where various
clients talk to a single server, and do this asynchrondtgiyre 3-12

111

Chapter 3. Advanced Request-Reply Patterns

Figure 3-12. Asynchronous Client/Server

Client Client

DEALER DEALER

! f
v

(ROUTER

Here's how it works:

- Clients connect to the server and send requests.
- For each request, the server sends 0 or more replies.
- Clients can send multiple requests without waiting for dyrep

« Servers can send multiple replies without waiting for neguiests.

Here’s code that shows how this works:

Example 3-7. Asynchronous client/server (asyncsrv.py)

import zmq

import sys

import threading

import time

from random import randint, random

__author__ = "Felipe Cruz <felipecruz@loogica.net>"
__license__ = "MIT/X11"

def tprint(msg):
""like print, but won't get newlines confused with multipl e threads
sys.stdout.write(msg + '\n’)
sys.stdout.flush()

class ClientTask(threading.Thread):
""" ClientTask™"
def __init_ (self, id):

112

Chapter 3. Advanced Request-Reply Patterns

self.id = id
threading.Thread.__init__ (self)

def run(self):
context = zmgq.Context()
socket = context.socket(zmg.DEALER)
identity = u’'worker-%d’ % self.id
socket.identity = identity.encode('ascii’)
socket.connect('tcp://localhost:5570")
print('Client %s started’ % (identity))
poll = zmgq.Poller()
poll.register(socket, zmq.POLLIN)
reqgs = 0
while True:
reqs = reqs + 1
print(Req #%d sent..” % (reqgs))
socket.send_string(u'request #%d’ % (reqgs))
for i in range(5):
sockets = dict(poll.poll(1000))
if socket in sockets:
msg = socket.recv()
tprint(Client %s received: %s’ % (identity, msg))

socket.close()
context.term()

class ServerTask(threading.Thread):

def _ init_ (self):
threading.Thread.__init__ (self)

def run(self):
context = zmgq.Context()
frontend = context.socket(zmq.ROUTER)
frontend.bind(’tcp:// *:5570)

backend = context.socket(zmq.DEALER)
backend.bind(’inproc://backend’)

workers =]

for i in range(5):
worker = ServerWorker(context)
worker.start()
workers.append(worker)

poll = zmgq.Poller()
poll.register(frontend, zmq.POLLIN)
poll.register(backend, zmq.POLLIN)

while True:
sockets = dict(poll.poll())
if frontend in sockets:
ident, msg = frontend.recv_multipart()

113

Chapter 3. Advanced Request-Reply Patterns

tprint('Server received %s id %s’ % (msg, ident))
backend.send_multipart([ident, msg])

if backend in sockets:
ident, msg = backend.recv_multipart()
tprint('Sending to frontend %s id %s’ % (msg, ident))
frontend.send_multipart([ident, msg])

frontend.close()
backend.close()
context.term()

class ServerWorker(threading.Thread):
""" ServerWorker™"
def __init_ (self, context):
threading.Thread.__init__ (self)
self.context = context

def run(self):
worker = self.context.socket(zmq.DEALER)
worker.connect('inproc://backend’)
tprint(Worker started’)
while True:
ident, msg = worker.recv_multipart()
tprint(Worker received %s from %s’ % (msg, ident))
replies = randint(0,4)
for i in range(replies):
time.sleep(1. / (randint(1,10)))
worker.send_multipart([ident, msg])

worker.close()

def main():
""" main function"™
server = ServerTask()
server.start()
for i in range(3):
client = ClientTask(i)
client.start()

server.join()

if _name__ == "_ main__"
main()

The example runs in one process, with multiple threads sitimgl a real multiprocess architecture.
When you run the example, you'll see three clients (each avitindom ID), printing out the replies they
get from the server. Look carefully and you'll see each ¢ltask gets O or more replies per request.

Some comments on this code:

114

Chapter 3. Advanced Request-Reply Patterns

- The clients send a request once per second, and get zero erepties back. To make this work using
zmg_poll() , we can’t simply poll with a 1-second timeout, or we'd end epding a new request
only one secondfter we received the last repl$o we poll at a high frequency (100 times at 1/100th
of a second per poll), which is approximately accurate.

« The server uses a pool of worker threads, each processingguest synchronously. It connects these
to its frontend socket using an internal quEigeire 3-131t connects the frontend and backend sockets
using azmg_proxy() call.

Figure 3-13. Detail of Asynchronous Server

Client Client Client

DEALER DEALER DEALER

connect connect conngect
L I T

bind

ROUTER

Server

DEALER

/ v y

connect connect connect

DEALER DEALER DEALER

Worker Worker Worker

_-------------------------------.
Vo m e mmEEEE e EEEEEEEEEEEEEEEEEE===-

Note that we're doing DEALER to ROUTER dialog between cliantl server, but internally between
the server main thread and workers, we're doing DEALER to DER. If the workers were strictly
synchronous, we'd use REP. However, because we want to saltidlmreplies, we need an async
socket. We dmotwant to route replies, they always go to the single servesththat sent us the request.

115

Chapter 3. Advanced Request-Reply Patterns

Let’s think about the routing envelope. The client sends asage consisting of a single frame. The

server thread receives a two-frame message (original megsafixed by client identity). We send these
two frames on to the worker, which treats it as a normal reple®ope, returns that to us as a two frame
message. We then use the first frame as an identity to rousetuand frame back to the client as a reply.

It looks something like this:

client server frontend worker
[DEALER]<---->[ROUTER <----> DEALER <----> DEALER]
1 part 2 parts 2 parts

Now for the sockets: we could use the load balancing ROUTHPEALER pattern to talk to workers,
but it's extra work. In this case, a DEALER to DEALER pattesmprobably fine: the trade-off is lower
latency for each request, but higher risk of unbalanced wtkibution. Simplicity wins in this case.

When you build servers that maintain stateful conversatwith clients, you will run into a classic
problem. If the server keeps some state per client, andtsliesep coming and going, eventually it will
run out of resources. Even if the same clients keep conrgétipou’re using default identities, each
connection will look like a new one.

We cheat in the above example by keeping state only for a Ve §me (the time it takes a worker to
process a request) and then throwing away the state. Bid tiwdtpractical for many cases. To properly
manage client state in a stateful asynchronous server, gitb:

- Do heartbeating from client to server. In our example, walserequest once per second, which can
reliably be used as a heartbeat.

- Store state using the client identity (whether generategkplicit) as key.

- Detect a stopped heartbeat. If there’s no request from atalighin, say, two seconds, the server can
detect this and destroy any state it's holding for that tlien

3.7. Worked Example: Inter-Broker Routing

Let’s take everything we've seen so far, and scale things @preal application. We'll build this
step-by-step over several iterations. Our best cliens eallurgently and asks for a design of a large
cloud computing facility. He has this vision of a cloud thpass many data centers, each a cluster of
clients and workers, and that works together as a whole.uBecae’re smart enough to know that
practice always beats theory, we propose to make a workmnglation using @MQ. Our client, eager to
lock down the budget before his own boss changes his minchawidg read great things about @MQ on
Twitter, agrees.

116

Chapter 3. Advanced Request-Reply Patterns

3.7.1. Establishing the Details

Several espressos later, we want to jump into writing codealiittle voice tells us to get more details
before making a sensational solution to entirely the wramdpfem. "What kind of work is the cloud
doing?", we ask.

The client explains:

- Workers run on various kinds of hardware, but they are a# &lbhandle any task. There are several
hundred workers per cluster, and as many as a dozen clustetsi.

- Clients create tasks for workers. Each task is an indepénaérof work and all the client wants is to
find an available worker, and send it the task, as soon ashpesshere will be a lot of clients and
they’ll come and go arbitrarily.

- The real difficulty is to be able to add and remove clustersatiane. A cluster can leave or join the
cloud instantly, bringing all its workers and clients with i

- Ifthere are no workers in their own cluster, clients’ taskt go off to other available workers in the
cloud.

- Clients send out one task at a time, waiting for a reply. If/tlen’t get an answer within X seconds,
they'll just send out the task again. This isn’'t our concéhne;client API does it already.

- Workers process one task at a time; they are very simplesdbstey crash, they get restarted by
whatever script started them.

So we double-check to make sure that we understood thisatiytre

- "There will be some kind of super-duper network intercorifietween clusters, right?", we ask. The
client says, "Yes, of course, we're not idiots."

- "What kind of volumes are we talking about?", we ask. Thentlieplies, "Up to a thousand clients
per cluster, each doing at most ten requests per seconde&saue small, and replies are also small,
no more than 1K bytes each."

So we do a little calculation and see that this will work njceler plain TCP. 2,500 clients x 10/second
x 1,000 bytes x 2 directions = 50MB/sec or 400Mb/sec, not &lera for a 1Gb network.

It's a straightforward problem that requires no exotic learck or protocols, just some clever routing
algorithms and careful design. We start by designing ongtetone data center) and then we figure out
how to connect clusters together.

3.7.2. Architecture of a Single Cluster

Workers and clients are synchronous. We want to use the l@ladding pattern to route tasks to workers.
Workers are all identical; our facility has no notion of @ifént services. Workers are anonymous; clients
never address them directly. We make no attempt here togeauiaranteed delivery, retry, and so on.

117

Chapter 3. Advanced Request-Reply Patterns

For reasons we already examined, clients and workers wpeélsto each other directly. It makes it
impossible to add or remove nodes dynamically. So our basitehtonsists of the request-reply
message broker we saw earfiggure 3-14

Figure 3-14. Cluster Architecture

Client Client Client
REQ REQ REQ
ROUTER
Load
balancer Broker
ROUTER

(REQ (REQ (REQ
Worker Worker Worker

3.7.3. Scaling to Multiple Clusters

Now we scale this out to more than one cluster. Each clustealsat of clients and workers, and a
broker that joins these togetirégure 3-15

118

Chapter 3. Advanced Request-Reply Patterns
Figure 3-15. Multiple Clusters

Cluster 1 Cluster 2

PPP | 227

The question is: how do we get the clients of each clusteingifo the workers of the other cluster?
There are a few possibilities, each with pros and cons:

« Clients could connect directly to both brokers. The advgmia that we don’t need to modify brokers
or workers. But clients get more complex and become awalrgeobvterall topology. If we want to add
a third or forth cluster, for example, all the clients aresaféd. In effect we have to move routing and
failover logic into the clients and that’s not nice.

- Workers might connect directly to both brokers. But REQ vewskcan't do that, they can only reply to
one broker. We might use REPs but REPs don't give us custtmibaoker-to-worker routing like
load balancing does, only the built-in load balancing. Bfail; if we want to distribute work to idle
workers, we precisely need load balancing. One solutioricvoe to use ROUTER sockets for the
worker nodes. Let’s label this "Idea #1".

- Brokers could connect to each other. This looks neatestisedticreates the fewest additional
connections. We can't add clusters on the fly, but that is gibbbout of scope. Now clients and
workers remain ignorant of the real network topology, anukbrs tell each other when they have
spare capacity. Let's label this "Idea #2".

Let's explore Idea #1. In this model, we have workers coringdb both brokers and accepting jobs
from either on€igure 3-16

119

Chapter 3. Advanced Request-Reply Patterns

Figure 3-16. Idea 1: Cross-connected Workers

Worker

Cluster 1 1 Cluster 2
:
1
1
1
1
ROUTER : ROUTER
:
1
1
p
1
1
1
1
1
1
1
(ROUTER (ROUTER (ROUTER :
:
1
1
1

It looks feasible. However, it doesn’t provide what we wahtehich was that clients get local workers if
possible and remote workers only if it's better than waitiatso workers will signal "ready" to both
brokers and can get two jobs at once, while other workersireidie. It seems this design fails because
again we're putting routing logic at the edges.

So, idea #2 then. We interconnect the brokers and don't tthechlients or workers, which are REQs
like we're used t&igure 3-17

Figure 3-17. Idea 2: Brokers Talking to Each Other

Cluster 1 Cluster 2

Broker Broker

120

Chapter 3. Advanced Request-Reply Patterns

This design is appealing because the problem is solved iplaee, invisible to the rest of the world.
Basically, brokers open secret channels to each other arsp&rhlike camel traders, "Hey, I've got
some spare capacity. If you have too many clients, give meatstnd we’ll deal”.

In effect it is just a more sophisticated routing algoritthrokers become subcontractors for each other.
There are other things to like about this design, even beferplay with real code:

- It treats the common case (clients and workers on the sarseecjas default and does extra work for
the exceptional case (shuffling jobs between clusters).

- ltlets us use different message flows for the different tygfegork. That means we can handle them
differently, e.g., using different types of network contiec.

. It feels like it would scale smoothly. Interconnecting i@ more brokers doesn’t get overly
complex. If we find this to be a problem, it's easy to solve bgliad a super-broker.

We'll now make a worked example. We'll pack an entire clugtén one process. That is obviously not
realistic, but it makes it simple to simulate, and the sirtiatacan accurately scale to real processes.
This is the beauty of @MQ--you can design at the micro-lewel scale that up to the macro-level.
Threads become processes, and then become boxes and ¢nesparid logic remain the same. Each of
our "cluster" processes contains client threads, workeatts, and a broker thread.

We know the basic model well by now:
- The REQ client (REQ) threads create workloads and pass ihéme broker (ROUTER).
- The REQ worker (REQ) threads process workloads and reterresults to the broker (ROUTER).

« The broker queues and distributes workloads using the lakhbing pattern.

3.7.4. Federation Versus Peering

There are several possible ways to interconnect brokerat Wi want is to be able to tell other brokers,
"we have capacity”, and then receive multiple tasks. We adsal to be able to tell other brokers, "stop,
we’'re full". It doesn't need to be perfect; sometimes we megeat jobs we can’t process immediately,
then we’'ll do them as soon as possible.

The simplest interconnectfederation in which brokers simulate clients and workers for each otive
would do this by connecting our frontend to the other brakbeckend sockBtgure 3-18 Note that it is
legal to both bind a socket to an endpoint and connect it terathdpoints.

121

Chapter 3. Advanced Request-Reply Patterns

Figure 3-18. Cross-connected Brokers in Federation Model

Cluster 1 1 Cluster 2
:
1
1
1

' C ' ' C ' : l C ' l C '

1
1
1
1
1
1

Broker : Broker
:
1
1
1

This would give us simple logic in both brokers and a reastyngdiod mechanism: when there are no
workers, tell the other broker "ready", and accept one jobfit. The problem is also that it is too simple
for this problem. A federated broker would be able to handlyg one task at a time. If the broker
emulates a lock-step client and worker, it is by definiticsoajoing to be lock-step, and if it has lots of
available workers they won't be used. Our brokers need tmbhaected in a fully asynchronous fashion.

The federation model is perfect for other kinds of routirepexcially service-oriented architectures
(SOAs), which route by service name and proximity rathentlead balancing or round robin. So don't
dismiss it as useless, it's just not right for all use cases.

Instead of federation, let’s look atmeeringapproach in which brokers are explicitly aware of each other
and talk over privileged channels. Let’s break this dowsuasing we want to interconnect N brokers.
Each broker has (N - 1) peers, and all brokers are using gxaetlsame code and logic. There are two
distinct flows of information between brokers:

- Each broker needs to tell its peers how many workers it hatablaat any time. This can be fairly
simple information--just a quantity that is updated regyla he obvious (and correct) socket pattern
for this is pub-sub. So every broker opens a PUB socket anlispel state information on that, and
every broker also opens a SUB socket and connects that tdtBes&cket of every other broker to get
state information from its peers.

- Each broker needs a way to delegate tasks to a peer and gestegtk, asynchronously. We'll do this
using ROUTER sockets; no other combination works. Eachdarblas two such sockets: one for tasks
it receives and one for tasks it delegates. If we didn’t usegackets, it would be more work to know
whether we were reading a request or a reply each time. Thatmeean adding more information to
the message envelope.

122

Chapter 3. Advanced Request-Reply Patterns

And there is also the flow of information between a broker astbical clients and workers.

3.7.5. The Naming Ceremony

Three flows x two sockets for each flow = six sockets that we taweanage in the broker. Choosing
good names is vital to keeping a multisocket juggling acsoeably coherent in our minds. Sockdts
something and what they do should form the basis for theirasaiis about being able to read the code
several weeks later on a cold Monday morning before coffieg nat feel any pain.

Let's do a shamanistic naming ceremony for the sockets. fitee flows are:

- A local request-reply flow between the broker and its clients andersr
- A cloudrequest-reply flow between the broker and its peer brokers.

« A stateflow between the broker and its peer brokers.

Finding meaningful names that are all the same length maansoale will align nicely. It's not a big
thing, but attention to details helps. For each flow the brblas two sockets that we can orthogonally
call thefrontendandbackendWe've used these names quite often. A frontend receivesrirdtion or
tasks. A backend sends those out to other peers. The coat#ptuis from front to back (with replies
going in the opposite direction from back to front).

So in all the code we write for this tutorial, we will use thesseket names:

- localfeandlocalbefor the local flow.
« cloudfeandcloudbefor the cloud flow.

. statefeandstatebédor the state flow.

For our transport and because we're simulating the whohgtbn one box, we’ll usgc for everything.
This has the advantage of working lit in terms of connectivity (i.e., it's a disconnected transpo
unlikeinproc), yet we don't need IP addresses or DNS names, which wouldoa@ehere. Instead, we
will useipc endpoints calledomethingocal , somethingcloud , andsomethingstate , where
somethings the name of our simulated cluster.

You might be thinking that this is a lot of work for some namé#y not call them s1, s2, s3, s4, etc.?
The answer is that if your brain is not a perfect machine, yeedma lot of help when reading code, and
we'll see that these names do help. It's easier to remembeée'flows, two directions" than "six
different socketsigure 3-19

123

Figure 3-19. Broker Socket Arrangement

Chapter 3. Advanced Request-Reply Patterns

Client Broker Broker
cloudbe statebe
connect connect bind
request request sta
2
bind bind connect
localfe cloudfe statefe Frontends
ROUTER ROUTER SUB (incoming)
Broker
ROUTER ROUTER PUB Backends
localbe cloudbe statebe (outgoing)
bind connect bind
requyest request state
[connect (bind (connect

Broker
statefe

Broker
cloudfe

Worker

Note that we connect the cloudbe in each broker to the clandfeery other broker, and likewise we
connect the statebe in each broker to the statefe in eveey btbker.

3.7.6. Prototyping the State Flow

Because each socket flow has its own little traps for the uyywag will test them in real code
one-by-one, rather than try to throw the whole lot into cadene go. When we're happy with each flow,
we can put them together into a full program. We'll start witie state flowrigure 3-20

124

Chapter 3. Advanced Request-Reply Patterns

Figure 3-20. The State Flow

Broker
statebe

bind

sta

connect

statefe
SUB

Broker

PUB
statebe

bind

state

connect

statefe
Broker

Here is how this works in code:

Example 3-8. Prototype state flow (peeringl.py)

Broker peering simulation (part 1) in Python
Prototypes the state flow

Author : Piero Cornice
Contact: root(at)pieroland(dot)net

HOH K H H HH

125

Chapter 3. Advanced Request-Reply Patterns

import sys
import time
import random

import zmq

def main(myself, others):
print("Hello, I am %s" % myself)

context = zmg.Context()

State Back-End
statebe = context.socket(zmq.PUB)

State Front-End
statefe = context.socket(zmq.SUB)
statefe.setsockopt(zmg.SUBSCRIBE, b”)

bind_address = u'ipc://%s-state.ipc" % myself
statebe.bind(bind_address)

for other in others:
statefe.connect(u"ipc://%s-state.ipc" % other)
time.sleep(1.0)

poller = zmgq.Poller()
poller.register(statefe, zmqg.POLLIN)

while True:

#HHHHHHAA Solution with poll() ###HEHHHHE
socks = dict(poller.poll(1000))

Handle incoming status message
if socks.get(statefe) == zmq.POLLIN:
msg = statefe.recv_multipart()
print('%s Received: %s’ % (myself, msg))

else:
Send our address and a random value
for worker availability
msg = [bind_address, (U%i’ % random.randrange(1, 10))]
msg = [m.encode('ascii’) for m in msg]
statebe.send_multipart(msg)
BT T

#HHHHHA Solution with select() ###H#HHHHH#
pollin, pollout, pollerr = zmgq.select([statefe], [], [, 1)

if pollin and pollin[0] == statefe:
Handle incoming status message
msg = statefe.recv_multipart()

HOH H K R

126

Chapter 3. Advanced Request-Reply Patterns
print 'Received:’, msg

else:
Send our address and a random value
for worker availability
msg = [bind_address, str(random.randrange(1, 10))]
statebe.send_multipart(msg)
B

HOHH K H H R

if _name__ =="'_ _main__"
if len(sys.argv) >= 2:
main(myself=sys.argv[1], others=sys.argv[2:])
else:
print("Usage: peering.py <myself> <peer_1> ... <peer_N>")
sys.exit(1)

Notes about this code:

- Each broker has an identity that we use to consipectendpoint names. A real broker would need to
work with TCP and a more sophisticated configuration sch&¥edl look at such schemes later in
this book, but for now, using generatied names lets us ignore the problem of where to get TCP/IP
addresses or names.

« We use a&mg_poll() loop as the core of the program. This processes incomingagessand sends
out state messages. We send a state messdgi we did not get any incoming messagasdwe
waited for a second. If we send out a state message each tigetwae in, we'll get message storms.

« We use a two-part pub-sub message consisting of sendersadure data. Note that we will need to
know the address of the publisher in order to send it taskdstraonly way is to send this explicitly as
a part of the message.

- We don't set identities on subscribers because if we did ted get outdated state information when
connecting to running brokers.

« We don't set a HWM on the publisher, but if we were using @MQutRat would be a wise idea.

We can build this little program and run it three times to daeithree clusters. Let’s call them DC1,
DC2, and DC3 (the names are arbitrary). We run these threenamuls, each in a separate window:

peeringl DC1 DC2 DC3 # Start DC1 and connect to DC2 and DC3
peeringl DC2 DC1 DC3 # Start DC2 and connect to DC1 and DC3
peeringl DC3 DC1 DC2 # Start DC3 and connect to DC1 and DC2

You'll see each cluster report the state of its peers, aratt affew seconds they will all happily be
printing random numbers once per second. Try this and gatisfrself that the three brokers all match
up and synchronize to per-second state updates.

127

Chapter 3. Advanced Request-Reply Patterns

In real life, we'd not send out state messages at regulawvilte but rather whenever we had a state
change, i.e., whenever a worker becomes available or UablaiThat may seem like a lot of traffic, but
state messages are small and we've established that thelmsger connections are super fast.

If we wanted to send state messages at precise interval$ cnesite a child thread and open the
statebe socket in that thread. We’'d then send irregular state ugdatthat child thread from our main
thread and allow the child thread to conflate them into reguliégoing messages. This is more work
than we need here.

3.7.7. Prototyping the Local and Cloud Flows

Let's now prototype the flow of tasks via the local and cloudkstg-igure 3-21 This code pulls requests
from clients and then distributes them to local workers dodd peers on a random basis.

128

Figure 3-21. The Flow of Tasks

Client Broker
cloudbe
connect connect
request request
{
bind bind
localfe cloudfe
ROUTER ROUTER
Broker
ROUTER ROUTER
localbe cloudbe
bind connect
reqyest request
[connect (bind

Worker

cloudfe
Broker

Chapter 3. Advanced Request-Reply Patterns

Before we jump into the code, which is getting a little conxplet’s sketch the core routing logic and
break it down into a simple yet robust design.

We need two queues, one for requests from local clients aeadasmequests from cloud clients. One
option would be to pull messages off the local and cloud &ods, and pump these onto their respective
gueues. But this is kind of pointless because @IMQ socketqueues already. So let's use the IMQ
socket buffers as queues.

This was the technique we used in the load balancing brokdritavorked nicely. We only read from the

129

Chapter 3. Advanced Request-Reply Patterns

two frontends when there is somewhere to send the requestsalValways read from the backends, as
they give us replies to route back. As long as the backenad& gaéking to us, there’s no point in even
looking at the frontends.

So our main loop becomes:

- Poll the backends for activity. When we get a message, it nedydady" from a worker or it may be a
reply. If it's a reply, route back via the local or cloud frent.

. If a worker replied, it became available, so we queue it anahti.

- While there are workers available, take a request, if anynfeither frontend and route to a local
worker, or randomly, to a cloud peer.

Randomly sending tasks to a peer broker rather than a warkefates work distribution across the
cluster. It's dumb, but that is fine for this stage.

We use broker identities to route messages between brdarh.broker has a name that we provide on
the command line in this simple prototype. As long as theseasadon’t overlap with the
@MQ-generated UUIDs used for client nodes, we can figure dwther to route a reply back to a client
or to a broker.

Here is how this works in code. The interesting part stadsiad the comment "Interesting part".

Example 3-9. Prototype local and cloud flow (peering2.py)

#
Broker peering simulation (part 2) in Python
Prototypes the request-reply flow
#
While this example runs in a single process, that is just to m ake
it easier to start and stop the example. Each thread has its o wn
context and conceptually acts as a separate process.
#
Author : Min RK
Contact: benjaminrk(at)gmail(dot)com
#
import random
import sys
import threading
import time
import zmq
try:
raw_input
except NameError:
Python 3

raw_input = input

130

Chapter 3. Advanced Request-Reply Patterns

NBR_CLIENTS = 10
NBR_WORKERS = 3

def tprint(msg):

sys.stdout.write(msg + '\n’)
sys.stdout.flush()

def client_task(name, i):

""Request-reply client using REQ socket
ctx = zmg.Context()
client = ctx.socket(zmg.REQ)
client.identity = (u"Client-%s-%s" % (name, i)).encode(’
client.connect("ipc://%s-localfe.ipc" % name)
while True:
client.send(b"HELLQO")
try:
reply = client.recv()
except zmq.ZMQError:
interrupted
return
tprint("Client-%s: %s" % (i, reply))
time.sleep(1)

def worker_task(name, i):

""Worker using REQ socket to do LRU routing"™

ctx = zmg.Context()

worker = ctx.socket(zmq.REQ)

worker.identity = (u"Worker-%s-%s" % (name, i)).encode(
worker.connect("ipc://%s-localbe.ipc” % name)

Tell broker we're ready for work
worker.send(b"READY")

Process messages as they arrive
while True:
try:
msg = worker.recv_multipart()
except zmq.ZMQError:
interrupted
return
tprint("Worker-%s: %s\n" % (i, msg))
msg[-1] = b"OK"
worker.send_multipart(msg)

def main(myself, peers):

print("l: preparing broker at %s..." % myself)

Prepare our context and sockets
ctx = zmq.Context()

Bind cloud frontend to endpoint
cloudfe = ctx.socket(zmgq.ROUTER)

ascii’)

ascii’)

131

Chapter 3. Advanced Request-Reply Patterns

if not isinstance(myself, bytes):
ident = myself.encode('ascii’)
else:
ident = myself
cloudfe.identity = ident
cloudfe.bind("ipc://%s-cloud.ipc" % myself)

Connect cloud backend to all peers

cloudbe = ctx.socket(zmg.ROUTER)

cloudbe.identity = ident

for peer in peers:
tprint("l: connecting to cloud frontend at %s" % peer)
cloudbe.connect("ipc://%s-cloud.ipc" % peer)

if not isinstance(peers[0], bytes):
peers = [peer.encode('ascii’) for peer in peers]

Prepare local frontend and backend
localfe = ctx.socket(zmq.ROUTER)
localfe.bind("ipc://%s-localfe.ipc" % myself)
localbe = ctx.socket(zmq.ROUTER)
localbe.bind("ipc://%s-localbe.ipc" % myself)

Get user to tell us when we can start...
raw_input("Press Enter when all brokers are started: ")

create workers and clients threads

for i in range(NBR_WORKERS):
thread = threading.Thread(target=worker_task, args=(my self, i))
thread.daemon = True
thread.start()

for i in range(NBR_CLIENTS):
thread_c = threading.Thread(target=client_task, args=(myself, i))
thread_c.daemon = True
thread_c.start()

Interesting part

=
Request-reply flow

- Poll backends and process local/cloud replies

- While worker available, route localfe to local or cloud

workers = []

setup pollers

pollerbe = zmq.Poller()
pollerbe.register(localbe, zmqg.POLLIN)
pollerbe.register(cloudbe, zmq.POLLIN)

pollerfe = zmq.Poller()
pollerfe.register(localfe, zmq.POLLIN)

132

Chapter 3. Advanced Request-Reply Patterns

pollerfe.register(cloudfe, zmg.POLLIN)

while True:
If we have no workers anyhow, wait indefinitely
try:
events = dict(pollerbe.poll(1000 if workers else None))
except zmq.ZMQError:
break # interrupted

Handle reply from local worker

msg = None

if localbe in events:
msg = localbe.recv_multipart()
(address, empty), msg = msg[:2], msg[2:]
workers.append(address)

If it's READY, don't route the message any further
if msg[-1] == b'READY":
msg = None
elif cloudbe in events:
msg = cloudbe.recv_multipart()
(address, empty), msg = msg[:2], msg[2:]

We don't use peer broker address for anything

if msg is not None:

address = msg[0]

if address in peers:
Route reply to cloud if it's addressed to a broker
cloudfe.send_multipart(msg)

else:
Route reply to client if we still need to
localfe.send_multipart(msg)

Now route as many clients requests as we can handle
while workers:
events = dict(pollerfe.poll(0))
reroutable = False
We'll do peer brokers first, to prevent starvation
if cloudfe in events:
msg = cloudfe.recv_multipart()
reroutable = False
elif localfe in events:
msg = localfe.recv_multipart()
reroutable = True
else:
break # No work, go back to backends

If reroutable, send to cloud 20% of the time
Here we’'d normally use cloud status information
if reroutable and peers and random.randint(0, 4) ==
Route to random broker peer
msg = [random.choice(peers), b”] + msg

133

Chapter 3. Advanced Request-Reply Patterns

cloudbe.send_multipart(msg)

else:
msg = [workers.pop(0), b"] + msg
localbe.send_multipart(msg)
if _name__ =="'_ _main__"

if len(sys.argv) >= 2:
main(myself=sys.argv[1], peers=sys.argv[2:])

else:
print("Usage: peering2.py <me> [<peer_1> [... <peer_N>]]| ")
sys.exit(1)

Run this by, for instance, starting two instances of the braktwo windows:

peering2 me you
peering2 you me

Some comments on this code:

- Inthe C code at least, using the zmsg class makes life mu@rgeasd our code much shorter. It's
obviously an abstraction that works. If you build @MQ apgtions in C, you should use CZMQ.

- Because we're not getting any state information from peeesjaively assume they are running. The
code prompts you to confirm when you've started all the brakerthe real case, we'd not send
anything to brokers who had not told us they exist.

You can satisfy yourself that the code works by watchingiitfarever. If there were any misrouted
messages, clients would end up blocking, and the brokerkivetop printing trace information. You can
prove that by killing either of the brokers. The other brokess to send requests to the cloud, and
one-by-one its clients block, waiting for an answer.

3.7.8. Putting it All Together

Let’s put this together into a single package. As before|lwan an entire cluster as one process. We're
going to take the two previous examples and merge them irdgooperly working design that lets you
simulate any number of clusters.

This code is the size of both previous prototypes togeth@7@LoC. That's pretty good for a simulation
of a cluster that includes clients and workers and cloud leaikdistribution. Here is the code:

Example 3-10. Full cluster simulation (peering3.py)

Broker peering simulation (part 3) in Python
Prototypes the full flow of status and tasks

HOH H K

While this example runs in a single process, that is just to m ake

134

Chapter 3. Advanced Request-Reply Patterns

it easier to start and stop the example. Each thread has its o
context and conceptually acts as a separate process.

Author : Min RK
Contact: benjaminrk(at)gmail(dot)com

HOHH K H

import random
import sys
import threading
import time

import zmqg

NBR_CLIENTS = 10
NBR_WORKERS = 5

def asbytes(obj):
s = str(ohj)
if str is not bytes:
Python 3
s = s.encode('ascii’)
return s

def client_task(name, i):
""Request-reply client using REQ socket™"
ctx = zmg.Context()
client = ctx.socket(zmqg.REQ)
client.identity = (u"Client-%s-%s" % (name, i)).encode(’
client.connect("ipc://%s-localfe.ipc" % name)
monitor = ctx.socket(zmq.PUSH)
monitor.connect("ipc://%s-monitor.ipc" % name)

poller = zmgq.Poller()
poller.register(client, zmg.POLLIN)
while True:
time.sleep(random.randint(0, 5))
for _ in range(random.randint(0, 15)):
send request with random hex ID
task_id = u"%04X" % random.randint(0, 10000)
client.send_string(task_id)

wait max 10 seconds for a reply, then complain
try:

events = dict(poller.poll(10000))
except zmqg.ZMQError:

return # interrupted

if events:
reply = client.recv_string()

wn

ascii’)

assert reply == task_id, "expected %s, got %s" % (task_id, re ply)

monitor.send_string(reply)
else:

135

Chapter 3. Advanced Request-Reply Patterns

monitor.send_string(u"E: CLIENT EXIT - lost task %s" % task _id)
return

def worker_task(name, i):
""Worker using REQ socket to do LRU routing"™
ctx = zmq.Context()
worker = ctx.socket(zmq.REQ)
worker.identity = ("Worker-%s-%s" % (name, i)).encode('a scii’)
worker.connect("ipc://%s-localbe.ipc” % name)

Tell broker we’re ready for work
worker.send(b"READY")

Process messages as they arrive
while True:
try:
msg = worker.recv_multipart()
except zmq.ZMQError:
interrupted
return
Workers are busy for 0/1 seconds
time.sleep(random.randint(0, 1))
worker.send_multipart(msg)

def main(myself, peers):
print("l: preparing broker at %s..." % myself)

Prepare our context and sockets
ctx = zmg.Context()

Bind cloud frontend to endpoint
cloudfe = ctx.socket(zmg.ROUTER)
cloudfe.setsockopt(zmg.IDENTITY, myself)
cloudfe.bind("ipc://%s-cloud.ipc" % myself)

Bind state backend / publisher to endpoint
statebe = ctx.socket(zmqg.PUB)
statebe.bind("ipc://%s-state.ipc" % myself)

Connect cloud and state backends to all peers
cloudbe = ctx.socket(zmg.ROUTER)

statefe = ctx.socket(zmg.SUB)
statefe.setsockopt(zmg.SUBSCRIBE, b™)
cloudbe.setsockopt(zmq.IDENTITY, myself)

for peer in peers:
print("l: connecting to cloud frontend at %s" % peer)
cloudbe.connect("ipc://%s-cloud.ipc" % peer)
print("l: connecting to state backend at %s" % peer)
statefe.connect("ipc://%s-state.ipc" % peer)

Prepare local frontend and backend
localfe = ctx.socket(zmq.ROUTER)

136

Chapter 3. Advanced Request-Reply Patterns

localfe.bind("ipc://%s-localfe.ipc" % myself)
localbe = ctx.socket(zmq.ROUTER)
localbe.bind("ipc://%s-localbe.ipc" % myself)

Prepare monitor socket
monitor = ctx.socket(zmg.PULL)
monitor.bind("ipc://%s-monitor.ipc" % myself)

Get user to tell us when we can start...
raw_input("Press Enter when all brokers are started: ")

create workers and clients threads

for i in range(NBR_WORKERS):
thread = threading.Thread(target=worker_task, args=(my
thread.daemon = True
thread.start()

for i in range(NBR_CLIENTS):
thread_c = threading.Thread(target=client_task, args=(
thread_c.daemon = True
thread_c.start()

Interesting part

#
#
Publish-subscribe flow

- Poll statefe and process capacity updates

- Each time capacity changes, broadcast new value

Request-reply flow

- Poll primary and process local/cloud replies

- While worker available, route localfe to local or cloud
local_capacity = 0

cloud_capacity = 0

workers = []

setup backend poller
pollerbe = zmq.Poller()
pollerbe.register(localbe, zmg.POLLIN)
pollerbe.register(cloudbe, zmq.POLLIN)
pollerbe.register(statefe, zmq.POLLIN)
pollerbe.register(monitor, zmqg.POLLIN)

while True:
If we have no workers anyhow, wait indefinitely
try:
events = dict(pollerbe.poll(1000 if local_capacity else N
except zmq.ZMQError:
break # interrupted

previous = local_capacity

Handle reply from local worker
msg = None

if localbe in events:

self, i))

myself, i))

one))

137

Chapter 3. Advanced Request-Reply Patterns

msg = localbe.recv_multipart()

(address, empty), msg = msg[:2], msg[2:]
workers.append(address)

local_capacity += 1

If it's READY, don't route the message any further
if msg[-1] == b’READY":
msg = None
elif cloudbe in events:
msg = cloudbe.recv_multipart()
(address, empty), msg = msg[:2], msg[2:]

We don't use peer broker address for anything

if msg is not None:

address = msg[0]

if address in peers:
Route reply to cloud if it's addressed to a broker
cloudfe.send_multipart(msg)

else:
Route reply to client if we still need to
localfe.send_multipart(msg)

Handle capacity updates

f statefe in events:
peer, s = statefe.recv_multipart()
cloud_capacity = int(s)

handle monitor message
f monitor in events:
print(monitor.recv_string())

Now route as many clients requests as we can handle
- If we have local capacity we poll both localfe and cloudfe
- If we have cloud capacity only, we poll just localfe
- Route any request locally if we can, else to cloud
while local_capacity + cloud_capacity:
secondary = zmgq.Poller()
secondary.register(localfe, zmqg.POLLIN)
if local_capacity:
secondary.register(cloudfe, zmg.POLLIN)
events = dict(secondary.poll(0))

#
#
#
#

We'll do peer brokers first, to prevent starvation
if cloudfe in events:
msg = cloudfe.recv_multipart()
elif localfe in events:
msg = localfe.recv_multipart()
else:
break # No work, go back to backends

if local_capacity:

138

if _name__ =="'_ _main__"

Chapter 3. Advanced Request-Reply Patterns

msg = [workers.pop(0), b"] + msg
localbe.send_multipart(msg)
local_capacity -= 1

else:
Route to random broker peer
msg = [random.choice(peers), b”] + msg
cloudbe.send_multipart(msg)

if local_capacity != previous:
statebe.send_multipart([myself, asbytes(local_capaci ty)])

if len(sys.argv) >= 2:
myself = asbytes(sys.argv[1])
main(myself, peers=[asbytes(a) for a in sys.argv[2:]])
else:
print("Usage: peering3.py <me> [<peer_1> [... <peer_N>]] ")
sys.exit(1)

It's a nontrivial program and took about a day to get workifilgese are the highlights:

The client threads detect and report a failed request. Thekig by polling for a response and if none
arrives after a while (10 seconds), printing an error messag

Client threads don’t print directly, but instead send a ragego a monitor socket (PUSH) that the
main loop collects (PULL) and prints off. This is the first ease’ve seen of using @MQ sockets for
monitoring and logging; this is a big use case that we’ll cdraek to later.

Clients simulate varying loads to get the cluster 100% ad@ammoments, so that tasks are shifted
over to the cloud. The number of clients and workers, andydetathe client and worker threads
control this. Feel free to play with them to see if you can makeore realistic simulation.

The main loop uses two pollsets. It could in fact use threrimation, backends, and frontends. As in
the earlier prototype, there is no point in taking a fronterekssage if there is no backend capacity.

These are some of the problems that arose during develomhiig program:

Clients would freeze, due to requests or replies gettingslmsmewhere. Recall that the ROUTER
socket drops messages it can't route. The first tactic hesdavaodify the client thread to detect and
report such problems. Secondly, | putsg_dump() calls after every receive and before every send in
the main loop, until the origin of the problems was clear.

The main loop was mistakenly reading from more than one rsadket. This caused the first message
to be lost. | fixed that by reading only from the first ready ssick

Thezmsg class was not properly encoding UUIDs as C strings. ThiserUJIDs that contain 0
bytes to be corrupted. | fixed that by modifyingsg to encode UUIDs as printable hex strings.

This simulation does not detect disappearance of a cloudIpgeu start several peers and stop one, and
it was broadcasting capacity to the others, they will cargito send it work even if it's gone. You can try
this, and you will get clients that complain of lost requeStse solution is twofold: first, only keep the
capacity information for a short time so that if a peer dosaplpear, its capacity is quickly set to zero.
Second, add reliability to the request-reply chain. WetlK at reliability in the next chapter.

139

Chapter 4. Reliable Request-Reply Patterns

Advanced Request-Reply Patte@iepter overed advanced uses of @MQ’s request-reply pattern with
working examples. This chapter looks at the general quesficeliability and builds a set of reliable
messaging patterns on top of @MQ’s core request-replypatte

In this chapter, we focus heavily on user-space requesi-paterns reusable models that help you
design your own @MQ architectures:

- Thelazy Piratepattern: reliable request-reply from the client side

- TheSimple Piratepattern: reliable request-reply using load balancing
- TheParanoid Piratepattern: reliable request-reply with heartbeating
- TheMajordomopattern: service-oriented reliable queuing

- TheTitanic pattern: disk-based/disconnected reliable queuing

- TheBinary Starpattern: primary-backup server failover

- TheFreelancepattern: brokerless reliable request-reply

4.1. What is "Reliability"?

Most people who speak of "reliability" don’t really know witthey mean. We can only define reliability
in terms of failure. That s, if we can handle a certain set eflxdefined and understood failures, then we
are reliable with respect to those failures. No more, na I8edet’s look at the possible causes of failure
in a distributed @MQ application, in roughly descendingesrdf probability:

- Application code is the worst offender. It can crash and, éséeze and stop responding to input, run
too slowly for its input, exhaust all memory, and so on.

« System code--such as brokers we write using @MQ--can dighéosame reasons as application code.
System codshouldbe more reliable than application code, but it can still lerasd burn, and
especially run out of memory if it tries to queue messageslfiw clients.

- Message queues can overflow, typically in system code tisdelaaned to deal brutally with slow
clients. When a queue overflows, it starts to discard mess&gewe get "lost" messages.

« Networks can fail (e.g., WiFi gets switched off or goes outafge). MQ will automatically
reconnect in such cases, but in the meantime, messages irlagtge

« Hardware can fail and take with it all the processes runnimthat box.

- Networks can fail in exotic ways, e.g., some ports on a switely die and those parts of the network
become inaccessible.

- Entire data centers can be struck by lightning, earthqydikesor more mundane power or cooling
failures.

140

Chapter 4. Reliable Request-Reply Patterns

To make a software system fully reliable agaialtof these possible failures is an enormously difficult
and expensive job and goes beyond the scope of this book.

Because the first five cases in the above list cover 99.9% biugaéd requirements outside large
companies (according to a highly scientific study | just sahich also told me that 78% of statistics are
made up on the spot, and moreover never to trust a statistievéh didn’t falsify ourselves), that's what
we’'ll examine. If you're a large company with money to spendfee last two cases, contact my
company immediately! There’s a large hole behind my beaciséovaiting to be converted into an
executive swimming pool.

4.2. Designing Reliability

So to make things brutally simple, reliability is "keepirrigs working properly when code freezes or
crashes", a situation we'll shorten to "dies". However,ttlirgs we want to keep working properly are
more complex than just messages. We need to take each corergdsaging pattern and see how to

make it work (if we can) even when code dies.

Let's take them one-by-one:

- Request-reply: if the server dies (while processing a refjuihe client can figure that out because it
won't get an answer back. Then it can give up in a huff, wait pégain later, find another server,
and so on. As for the client dying, we can brush that off as '=ome else’s problem" for now.

- Pub-sub: if the client dies (having gotten some data), theeseloesn’t know about it. Pub-sub doesn’t
send any information back from client to server. But thertlean contact the server out-of-band, e.qg.,
via request-reply, and ask, "please resend everythingdedfs As for the server dying, that’s out of
scope for here. Subscribers can also self-verify that teaydt running too slowly, and take action
(e.g., warn the operator and die) if they are.

- Pipeline: if a worker dies (while working), the ventilatasesn’t know about it. Pipelines, like the
grinding gears of time, only work in one direction. But thensistream collector can detect that one
task didn’t get done, and send a message back to the vensifating, "hey, resend task 324!" If the
ventilator or collector dies, whatever upstream cliengioially sent the work batch can get tired of
waiting and resend the whole lot. It's not elegant, but systede should really not die often enough
to matter.

In this chapter we'll focus just on request-reply, whichhe tow-hanging fruit of reliable messaging.

The basic request-reply pattern (a REQ client socket doligeking send/receive to a REP server
socket) scores low on handling the most common types ofréailfithe server crashes while processing
the request, the client just hangs forever. If the netwosks$athe request or the reply, the client hangs
forever.

Request-reply is still much better than TCP, thanks to @Mty to reconnect peers silently, to load
balance messages, and so on. But it’s still not good enougkd&bwork. The only case where you can

141

Chapter 4. Reliable Request-Reply Patterns

really trust the basic request-reply pattern is betweentineads in the same process where there’s no
network or separate server process to die.

However, with a little extra work, this humble pattern be@sma good basis for real work across a
distributed network, and we get a set of reliable requgsif@&RRR) patterns that | like to call tHeirate
patterns (you'll eventually get the joke, | hope).

There are, in my experience, roughly three ways to conngttslto servers. Each needs a specific
approach to reliability:

« Multiple clients talking directly to a single server. Useseaa single well-known server to which
clients need to talk. Types of failure we aim to handle: secvashes and restarts, and network
disconnects.

+ Multiple clients talking to a broker proxy that distributesrk to multiple workers. Use case:
service-oriented transaction processing. Types of faiue aim to handle: worker crashes and restarts,
worker busy looping, worker overload, queue crashes ardrtsesand network disconnects.

- Multiple clients talking to multiple servers with no inteeaiiary proxies. Use case: distributed services
such as name resolution. Types of failure we aim to handteicgecrashes and restarts, service busy
looping, service overload, and network disconnects.

Each of these approaches has its trade-offs and often yoixithem. We’'ll look at all three in detail.

4.3. Client-Side Reliability (Lazy Pirate Pattern)

We can get very simple reliable request-reply with some ghkaro the client. We call this the Lazy
Pirate patterRigure 4-1 Rather than doing a blocking receive, we:

- Poll the REQ socket and receive from it only when it's surepyréas arrived.
+ Resend a request, if no reply has arrived within a timeoubger

- Abandon the transaction if there is still no reply after sal/eequests.

If you try to use a REQ socket in anything other than a strintiéeceive fashion, you'll get an error
(technically, the REQ socket implements a small finiteestachine to enforce the send/receive
ping-pong, and so the error code is called "EFSM"). Thisighdlly annoying when we want to use REQ
in a pirate pattern, because we may send several requests letting a reply.

The pretty good brute force solution is to close and reoperRiBQ socket after an error:

Example 4-1. Lazy Pirate client (Ipclient.py)

#
Lazy Pirate client
Use zmqg_poll to do a safe request-reply

142

Chapter 4. Reliable Request-Reply Patterns

To run, start Ipserver and then randomly Kkill/restart it
#

Author: Daniel Lundin <din(at)eintr(dot)org>

#

import sys

import zmqg

REQUEST_TIMEOUT = 2500

REQUEST_RETRIES = 3

SERVER_ENDPOINT = "tcp://localhost:5555"
context = zmg.Context(1)

print "I: Connecting to server..."
client = context.socket(zmq.REQ)
client.connect(SERVER_ENDPOINT)

poll = zmgq.Poller()
poll.register(client, zmqg.POLLIN)

sequence = 0
retries_left = REQUEST_RETRIES
while retries_|left:
sequence += 1
request = str(sequence)
print "lI: Sending (%s)" % request
client.send(request)

expect_reply = True
while expect_reply:
socks = dict(poll.poll(REQUEST_TIMEOUT))
if socks.get(client) == zmq.POLLIN:
reply = client.recv()
if not reply:
break
if int(reply) == sequence:
print "l: Server replied OK (%s)" % reply
retries_left = REQUEST_RETRIES
expect_reply = False
else:
print "E: Malformed reply from server. %s" % reply

else:

print "W: No response from server, retrying..."

Socket is confused. Close and remove it.

client.setsockopt(zmq.LINGER, 0)

client.close()

poll.unregister(client)

retries_left -= 1

if retries_left ==
print "E: Server seems to be offline, abandoning"
break

143

Chapter 4. Reliable Request-Reply Patterns

print "lI: Reconnecting and resending (%s)" % request
Create new connection

client = context.socket(zmq.REQ)
client.connect(SERVER_ENDPOINT)

poll.register(client, zmqg.POLLIN)

client.send(request)

context.term()

Run this together with the matching server:

Example 4-2. Lazy Pirate server (Ipserver.py)

Lazy Pirate server

Binds REQ socket to tcp:// *:5555

Like hwserver except:

- echoes request as-is

- randomly runs slowly, or exits to simulate a crash.

Author: Daniel Lundin <dIn(at)eintr(dot)org>

HOHOH K K H HHH

from random import randint
import time
import zmq

context = zmg.Context(1)
server = context.socket(zmg.REP)

server.bind("tcp:// *:5555")
cycles = 0
while True:
request = server.recv()
cycles += 1

Simulate various problems, after a few cycles
if cycles > 3 and randint(0, 3) == 0:
print "l: Simulating a crash"
break
elif cycles > 3 and randint(0, 3) == 0:
print "lI: Simulating CPU overload"
time.sleep(2)

print "lI: Normal request (%s)" % request
time.sleep(1) # Do some heavy work

server.send(request)

server.close()
context.term()

144

Chapter 4. Reliable Request-Reply Patterns

Figure 4-1. The Lazy Pirate Pattern

Client Client Client
Retry Retry Retry
REQ REQ REQ

T
v

REP

Server

To run this test case, start the client and the server in twsae windows. The server will randomly
misbehave after a few messages. You can check the clieggismee. Here is typical output from the
server:

I: normal request (1)
I: normal request (2)
I: normal request (3)
I: simulating CPU overload
I: normal request (4)
I: simulating a crash

And here is the client’s response:

I: connecting to server...

I: server replied OK (1)

I: server replied OK (2)

I: server replied OK (3)

W: no response from server, retrying...

I: connecting to server...

W: no response from server, retrying...

I: connecting to server...

E: server seems to be offline, abandoning

145

Chapter 4. Reliable Request-Reply Patterns

The client sequences each message and checks that repiedack exactly in order: that no requests
or replies are lost, and no replies come back more than onceit@f order. Run the test a few times
until you're convinced that this mechanism actually wotau don’t need sequence numbers in a
production application; they just help us trust our design.

The client uses a REQ socket, and does the brute force dopefn because REQ sockets impose that
strict send/receive cycle. You might be tempted to use a DHRInstead, but it would not be a good
decision. First, it would mean emulating the secret saugeREQ does with envelopes (if you've
forgotten what that is, it's a good sign you don’t want to haweo it). Second, it would mean potentially
getting back replies that you didn’t expect.

Handling failures only at the client works when we have a $etients talking to a single server. It can
handle a server crash, but only if recovery means restdtiamigsame server. If there’s a permanent error,
such as a dead power supply on the server hardware, thisagpnmn’t work. Because the application
code in servers is usually the biggest source of failuresyraachitecture, depending on a single server
is not a great idea.

So, pros and cons:

« Pro: simple to understand and implement.
- Pro: works easily with existing client and server applicattode.
« Pro: @MQ automatically retries the actual reconnectioril trworks.

- Con: doesn't failover to backup or alternate servers.

4.4. Basic Reliable Queuing (Simple Pirate Pattern)

Our second approach extends the Lazy Pirate pattern witleaegproxy that lets us talk, transparently,
to multiple servers, which we can more accurately call "veosk. We'll develop this in stages, starting
with a minimal working model, the Simple Pirate pattern.

In all these Pirate patterns, workers are stateless. Iffipbcation requires some shared state, such as a
shared database, we don’t know about it as we design our giegfeamework. Having a queue proxy
means workers can come and go without clients knowing amgthbout it. If one worker dies, another
takes over. This is a nice, simple topology with only one re@hkness, namely the central queue itself,
which can become a problem to manage, and a single pointiofdai

146

Figure 4-2. The Simple Pirate Pattern

Client

Chapter 4. Reliable Request-Reply Patterns

Retry

REQ

Client Client
Retry Retry
REQ REQ

v

ROUTER

Load
balancer

ROUTER

A

(> REQ

Worker

(REQ (REQ
Worker Worker

The basis for the queue proxy is the load balancing broken #odvanced Request-Reply
Pattern€hapter 3What is the veryminimumwe need to do to handle dead or blocked workers? Turns
out, it's surprisingly little. We already have a retry mentsan in the client. So using the load balancing
pattern will work pretty well. This fits with @MQ’s philosoptthat we can extend a peer-to-peer pattern
like request-reply by plugging naive proxies in the middtgire 4-3

We don'’t need a special client; we're still using the LazyaRirclient. Here is the queue, which is

identical to the main task of the load balancing broker:

Example 4-3. Simple Pirate queue (spqueue.py)

#

Simple Pirate queue

This is identical to the LRU pattern, with no reliability me chanisms

147

Chapter 4. Reliable Request-Reply Patterns

at all. It depends on the client for recovery. Runs forever.
#

Author: Daniel Lundin <din(at)eintr(dot)org>

#

import zmq

LRU_READY = "\x01"
context = zmgq.Context(1)

frontend = context.socket(zmg.ROUTER) # ROUTER
backend = context.socket(zmq.ROUTER) # ROUTER
frontend.bind("tcp:// *:5555") # For clients
backend.bind("tcp:// *:5556") # For workers

poll_workers = zmgq.Poller()
poll_workers.register(backend, zmg.POLLIN)

poll_both = zmq.Poller()
poll_both.register(frontend, zmq.POLLIN)
poll_both.register(backend, zmqg.POLLIN)

workers =]
while True:
if workers:
socks = dict(poll_both.poll())
else:
socks = dict(poll_workers.poll())

Handle worker activity on backend
if socks.get(backend) == zmq.POLLIN:
Use worker address for LRU routing
msg = backend.recv_multipart()
if not msg:
break
address = msg[0]
workers.append(address)

Everything after the second (delimiter) frame is reply
reply = msg[2:]

Forward message to client if it's not a READY
if reply[0] '= LRU_READY:
frontend.send_multipart(reply)

if socks.get(frontend) == zmq.POLLIN:
Get client request, route to first available worker
msg = frontend.recv_multipart()
request = [workers.pop(0), "] + msg
backend.send_multipart(request)

148

Chapter 4. Reliable Request-Reply Patterns

Here is the worker, which takes the Lazy Pirate server angtadifor the load balancing pattern (using
the REQ "ready" signaling):

Example 4-4. Simple Pirate worker (spworker.py)

Simple Pirate worker
Connects REQ socket to tcp:// *:5556
Implements worker part of LRU queueing

Author: Daniel Lundin <dIn(at)eintr(dot)org>

HOHOHHH H R

from random import randint
import time
import zmqg

LRU_READY = "\x01"

context = zmg.Context(1)
worker = context.socket(zmqg.REQ)

identity = "%04X-%04X" % (randint(0, 0x10000), randint(0, 0x10000))
worker.setsockopt(zmq.IDENTITY, identity)
worker.connect("tcp://localhost:5556")

print "I: (%s) worker ready" % identity
worker.send(LRU_READY)

cycles = 0
while True:
msg = worker.recv_multipart()
if not msg:
break

cycles += 1

if cycles > 3 and randint(0, 5) == 0:
print "l: (%s) simulating a crash" % identity
break

elif cycles > 3 and randint(0, 5) == 0:
print "l: (%s) simulating CPU overload" % identity
time.sleep(3)

print "l: (%s) normal reply" % identity

time.sleep(1) # Do some heavy work

worker.send_multipart(msg)

To test this, start a handful of workers, a Lazy Pirate cliant the queue, in any order. You'll see that
the workers eventually all crash and burn, and the clienieeind then gives up. The queue never stops,
and you can restart workers and clients ad nauseam. Thislmvodes with any number of clients and
workers.

149

Chapter 4. Reliable Request-Reply Patterns

4.5. Robust Reliable Queuing (Paranoid Pirate Pattern)

Figure 4-3. The Paranoid Pirate Pattern

Client

Retry

REQ

v

ROUTER

Queue

Heartbeat

ROUTER

DEALER DEALER DEALER
Heartbeat Heartbeat Heartbeat
Worker Worker Worker

The Simple Pirate Queue pattern works pretty well, espgdigicause it's just a combination of two
existing patterns. Still, it does have some weaknesses:

- It's not robust in the face of a queue crash and restart. Tietakill recover, but the workers won't.
While @MQ will reconnect workers’ sockets automatically,far as the newly started queue is
concerned, the workers haven't signaled ready, so dorst.ekb fix this, we have to do heartbeating
from queue to worker so that the worker can detect when theejbas gone away.

- The queue does not detect worker failure, so if a worker digtevidle, the queue can’t remove it
from its worker queue until the queue sends it a request. Tigiet evaits and retries for nothing. It's

150

Chapter 4. Reliable Request-Reply Patterns

not a critical problem, but it's not nice. To make this worloperly, we do heartbeating from worker to
queue, so that the queue can detect a lost worker at any stage.

We'll fix these in a properly pedantic Paranoid Pirate Patter

We previously used a REQ socket for the worker. For the Paddricate worker, we'll switch to a
DEALER sockefFigure 4-4 This has the advantage of letting us send and receive nessaagny time,
rather than the lock-step send/receive that REQ imposesddWwnside of DEALER is that we have to
do our own envelope management (re-read Advanced Reqeesi-Rattern€hapter JFor background
on this concept).

We're still using the Lazy Pirate client. Here is the Pardrf@irate queue proxy:

Example 4-5. Paranoid Pirate queue (ppgqueue.py)

#

Paranoid Pirate queue

#

Author: Daniel Lundin <din(at)eintr(dot)org>
#

from collections import OrderedDict
import time

import zmq

HEARTBEAT_LIVENESS
HEARTBEAT_INTERVAL

3 # 3..5 is reasonable
1.0 # Seconds

Paranoid Pirate Protocol constants
PPP_READY = "\x01" # Signals worker is ready
PPP_HEARTBEAT = "\x02" # Signals worker heartbeat

class Worker(object):
def _ init_ (self, address):
self.address = address
self.expiry = time.time() + HEARTBEAT_INTERVAL * HEARTBEAT_LIVENESS

class WorkerQueue(object):
def __init_ (self):
self.queue = OrderedDict()

def ready(self, worker):
self.queue.pop(worker.address, None)
self.queue[worker.address] = worker

def purge(self):

""Look for & Kkill expired workers."™
t = time.time()

151

Chapter 4. Reliable Request-Reply Patterns

expired = []
for address,worker in self.queue.iteritems():
if t > worker.expiry: # Worker expired
expired.append(address)
for address in expired:
print "W: Idle worker expired: %s" % address
self.queue.pop(address, None)

def next(self):
address, worker = self.queue.popitem(False)
return address

context = zmg.Context(1)

frontend = context.socket(zmg.ROUTER) # ROUTER
backend = context.socket(zmq.ROUTER) # ROUTER
frontend.bind("tcp:// *:5555") # For clients
backend.bind("tcp:// *:5556") # For workers

poll_workers = zmq.Poller()
poll_workers.register(backend, zmg.POLLIN)

poll_both = zmq.Poller()
poll_both.register(frontend, zmq.POLLIN)
poll_both.register(backend, zmqg.POLLIN)

workers = WorkerQueue()
heartbeat_at = time.time() + HEARTBEAT_INTERVAL

while True:
if len(workers.queue) > O:
poller = poll_both
else:
poller = poll_workers
socks = dict(poller.poll(HEARTBEAT_INTERVAL * 1000))

Handle worker activity on backend
if socks.get(backend) == zmq.POLLIN:
Use worker address for LRU routing
frames = backend.recv_multipart()
if not frames:
break

address = frames|[0]
workers.ready(Worker(address))

Validate control message, or return reply to client
msg = frames[1:]
if len(msg) ==
if msg[0] not in (PPP_READY, PPP_HEARTBEAT):
print "E: Invalid message from worker: %s" % msg
else:

152

Chapter 4. Reliable Request-Reply Patterns
frontend.send_multipart(msg)

Send heartbeats to idle workers if it's time
if time.time() >= heartbeat_at:
for worker in workers.queue:
msg = [worker, PPP_HEARTBEAT]
backend.send_multipart(msg)
heartbeat_at = time.time() + HEARTBEAT_INTERVAL
if socks.get(frontend) == zmq.POLLIN:
frames = frontend.recv_multipart()
if not frames:
break

frames.insert(0, workers.next())
backend.send_multipart(frames)

workers.purge()

The queue extends the load balancing pattern with heaitigezftworkers. Heartbeating is one of those
"simple” things that can be difficult to get right. I'll exptemore about that in a second.

Here is the Paranoid Pirate worker:

Example 4-6. Paranoid Pirate worker (ppworker.py)

#

Paranoid Pirate worker

#

Author: Daniel Lundin <din(at)eintr(dot)org>
#

from random import randint

import time
import zmq
HEARTBEAT_LIVENESS = 3
HEARTBEAT_INTERVAL = 1

INTERVAL_INIT = 1
INTERVAL_MAX = 32

Paranoid Pirate Protocol constants
PPP_READY = "\x01" # Signals worker is ready
PPP_HEARTBEAT = "\x02" # Signals worker heartbeat

def worker_socket(context, poller):
""Helper function that returns a new configured socket
connected to the Paranoid Pirate queue™"
worker = context.socket(zmq.DEALER) # DEALER
identity = "%04X-%04X" % (randint(0, 0x10000), randint(0, 0x10000))

153

Chapter 4. Reliable Request-Reply Patterns

worker.setsockopt(zmq.IDENTITY, identity)
poller.register(worker, zmqg.POLLIN)
worker.connect("tcp://localhost:5556")
worker.send(PPP_READY)

return worker

context = zmg.Context(1)
poller = zmq.Poller()

liveness = HEARTBEAT_LIVENESS
interval = INTERVAL_INIT

heartbeat_at = time.time() + HEARTBEAT_INTERVAL

worker = worker_socket(context, poller)
cycles = 0
while True:
socks = dict(poller.poll(HEARTBEAT_INTERVAL * 1000))

Handle worker activity on backend
if socks.get(worker) == zmq.POLLIN:
Get message
- 3-part envelope + content -> request
- l-part HEARTBEAT -> heartbeat
frames = worker.recv_multipart()
if not frames:
break # Interrupted

if len(frames) ==
Simulate various problems, after a few cycles
cycles += 1
if cycles > 3 and randint(0, 5) == 0:
print "l: Simulating a crash"
break
if cycles > 3 and randint(0, 5) == 0:
print "I: Simulating CPU overload"
time.sleep(3)
print "lI: Normal reply"
worker.send_multipart(frames)
liveness = HEARTBEAT_LIVENESS
time.sleep(l) # Do some heavy work
elif len(frames) == 1 and frames[0] == PPP_HEARTBEAT:
print "l: Queue heartbeat"
liveness = HEARTBEAT_LIVENESS
else:
print "E: Invalid message: %s" % frames
interval = INTERVAL_INIT
else:
liveness -= 1
if liveness == 0:
print "W: Heartbeat failure, can’t reach queue"
print "W: Reconnecting in %0.2fs..." % interval

154

Chapter 4. Reliable Request-Reply Patterns

time.sleep(interval)

if interval < INTERVAL_MAX:
interval *= 2
poller.unregister(worker)
worker.setsockopt(zmq.LINGER, 0)
worker.close()
worker = worker_socket(context, poller)
liveness = HEARTBEAT_LIVENESS
if time.time() > heartbeat_at:
heartbeat_at = time.time() + HEARTBEAT_INTERVAL
print "l: Worker heartbeat"
worker.send(PPP_HEARTBEAT)

Some comments about this example:

- The code includes simulation of failures, as before. Thikenat (a) very hard to debug, and (b)
dangerous to reuse. When you want to debug this, disablailbesf simulation.

- The worker uses a reconnect strategy similar to the one wgrdesfor the Lazy Pirate client, with
two major differences: (a) it does an exponential backaoft] (b) it retries indefinitely (whereas the
client retries a few times before reporting a failure).

Try the client, queue, and workers, such as by using a sdt@this:

ppgueue &

for iin 1 2 3 4; do
ppworker &
sleep 1

done

Ipclient &

You should see the workers die one-by-one as they simulatesa,cand the client eventually give up.
You can stop and restart the queue and both client and wonkiéreconnect and carry on. And no
matter what you do to queues and workers, the client will nge¢an out-of-order reply: the whole
chain either works, or the client abandons.

4.6. Heartbeating

Heartbeating solves the problem of knowing whether a peadivie or dead. This is not an issue specific
to IMQ. TCP has a long timeout (30 minutes or so), that meaatsttban be impossible to know
whether a peer has died, been disconnected, or gone on anadeliérague with a case of vodka, a
redhead, and a large expense account.

It's is not easy to get heartbeating right. When writing tlaeghoid Pirate examples, it took about five
hours to get the heartbeating working properly. The reshefequest-reply chain took perhaps ten

155

Chapter 4. Reliable Request-Reply Patterns

minutes. It is especially easy to create "false failuresg", ivhen peers decide that they are disconnected
because the heartbeats aren’t sent properly.

We'll look at the three main answers people use for hearithgatith GMQ.

4.6.1. Shrugging It Off

The most common approach is to do no heartbeating at all gpel foo the best. Many if not most @MQ
applications do this. @MQ encourages this by hiding peensany cases. What problems does this
approach cause?

- When we use a ROUTER socket in an application that trackspasipeers disconnect and reconnect,
the application will leak memory (resources that the agpidn holds for each peer) and get slower
and slower.

« When we use SUB- or DEALER-based data recipients, we cdhtheedifference between good
silence (there’s no data) and bad silence (the other end.dédten a recipient knows the other side
died, it can for example switch over to a backup route.

- If we use a TCP connection that stays silent for a long whileijll, in some networks, just die.
Sending something (technically, a "keep-alive" more thaerartbeat), will keep the network alive.

4.6.2. One-Way Heartbeats

A second option is to send a heartbeat message from eachamitslpeéers every second or so. When one
node hears nothing from another within some timeout (sé¢gernds, typically), it will treat that peer
as dead. Sounds good, right? Sadly, no. This works in sones tas has nasty edge cases in others.

For pub-sub, this does work, and it's the only model you can 88B sockets cannot talk back to PUB
sockets, but PUB sockets can happily send "I'm alive" mességtheir subscribers.

As an optimization, you can send heartbeats only when tlsare real data to send. Furthermore, you
can send heartbeats progressively slower and slower yvifomktactivity is an issue (e.g., on mobile
networks where activity drains the battery). As long as #w#aient can detect a failure (sharp stop in
activity), that's fine.

Here are the typical problems with this design:

. It can be inaccurate when we send large amounts of data, ebéais will be delayed behind that
data. If heartbeats are delayed, you can get false timendtdiaconnections due to network
congestion. Thus, always tremtyincoming data as a heartbeat, whether or not the senderiapim
out heartbeats.

156

Chapter 4. Reliable Request-Reply Patterns

« While the pub-sub pattern will drop messages for disappe@apients, PUSH and DEALER sockets
will queue them. So if you send heartbeats to a dead peer anthigs back, it will get all the
heartbeats you sent, which can be thousands. Whoa, whoa!

« This design assumes that heartbeat timeouts are the saoss #oe whole network. But that won't be
accurate. Some peers will want very aggressive heartloggiatiorder to detect faults rapidly. And
some will want very relaxed heartbeating, in order to le¢giag networks lie and save power.

4.6.3. Ping-Pong Heartbeats

The third option is to use a ping-pong dialog. One peer semilsgacommand to the other, which replies
with a pong command. Neither command has any payload. Pimyp@ngs are not correlated. Because
the roles of "client" and "server" are arbitrary in some ratg, we usually specify that either peer can
in fact send a ping and expect a pong in response. Howeverybethe timeouts depend on network
topologies known best to dynamic clients, it is usually thent that pings the server.

This works for all ROUTER-based brokers. The same optirionatwe used in the second model make
this work even better: treat any incoming data as a pong, alydsend a ping when not otherwise
sending data.

4.6.4. Heartbeating for Paranoid Pirate

For Paranoid Pirate, we chose the second approach. It mighire been the simplest option: if
designing this today, I'd probably try a ping-pong approextead. However the principles are similar.
The heartbeat messages flow asynchronously in both dinscémd either peer can decide the other is
"dead" and stop talking to it.

In the worker, this is how we handle heartbeats from the queue

- We calculate divenesswhich is how many heartbeats we can still miss before degitlie queue is
dead. It starts at three and we decrement it each time we rhisartbeat.

- We wait, in thezmg_poll loop, for one second each time, which is our heartbeat iaterv
- If there’'s any message from the queue during that time, wet s liveness to three.

- Ifthere’s no message during that time, we count down ounkgs.

. Ifthe liveness reaches zero, we consider the queue dead.

« If the queue is dead, we destroy our socket, create a new ndecaonnect.

- To avoid opening and closing too many sockets, we wait forgireinterval before reconnecting, and
we double the interval each time until it reaches 32 seconds.

And this is how we handle heartbe&ghe queue:

157

Chapter 4. Reliable Request-Reply Patterns

- We calculate when to send the next heartbeat; this is a siagieble because we're talking to one
peer, the queue.

+ Inthezmg_poll loop, whenever we pass this time, we send a heartbeat to éwequ

Here’s the essential heartbeating code for the worker:

#define HEARTBEAT _LIVENESS 3 /I 3-5 is reasonable
#define HEARTBEAT_INTERVAL 1000 /I msecs

#define INTERVAL_INIT 1000 /I Initial reconnect

#define INTERVAL_MAX 32000 /Il After exponential backoff

/I 1If liveness hits zero, queue is considered disconnected
size_t liveness = HEARTBEAT_LIVENESS;
size_t interval = INTERVAL_INIT;

/I Send out heartbeats at regular intervals
uinté4_t heartbeat_at = zclock_time () + HEARTBEAT_INTERV AL;

while (true) {
zmgq_pollitem_t items [] = { { worker, 0, ZMQ_POLLIN, 0 } }
int rc = zmq_poll (items, 1, HEARTBEAT_INTERVAL * ZMQ_POLL_MSEC);

if (items [0].revents & ZMQ_POLLIN) {
/I Receive any message from queue
liveness = HEARTBEAT_ LIVENESS;
interval = INTERVAL_INIT;

}
else
if (-liveness == 0) {
zclock_sleep (interval);
if (interval < INTERVAL_MAX)
interval x= 2:
zsocket_destroy (ctx, worker);
liveness = HEARTBEAT_LIVENESS;
}

/I Send heartbeat to queue if it's time

if (zclock_time () > heartbeat_at) {
heartbeat_at = zclock _time () + HEARTBEAT_INTERVAL;
/I Send heartbeat message to queue

The queue does the same, but manages an expiration timecfoneaker.

Here are some tips for your own heartbeating implementation

- Usezmqg_poll or a reactor as the core of your application’s main task.

158

Chapter 4. Reliable Request-Reply Patterns

- Start by building the heartbeating between peers, testsirhylating failures, anthenbuild the rest
of the message flow. Adding heartbeating afterwards is nmikier.

- Use simple tracing, i.e., print to console, to get this wogkiTo help you trace the flow of messages
between peers, use a dump method such as zmsg offers, anémyoubmessages incrementally so
you can see if there are gaps.

- In areal application, heartbeating must be configurableuasndlly negotiated with the peer. Some
peers will want aggressive heartbeating, as low as 10 m&g¢iasr peers will be far away and want
heartbeating as high as 30 seconds.

- If you have different heartbeat intervals for different gegour poll timeout should be the lowest
(shortest time) of these. Do not use an infinite timeout.

- Do heartbeating on the same socket you use for messagesjisbeartbeats also act akeep-alive
to stop the network connection from going stale (some firsxan be unkind to silent connections).

4.7. Contracts and Protocols

If you're paying attention, you'll realize that Paranoida&e is not interoperable with Simple Pirate,
because of the heartbeats. But how do we define "interogfalbb guarantee interoperability, we need
a kind of contract, an agreement that lets different teandiffierent times and places write code that is
guaranteed to work together. We call this a "protocol".

It's fun to experiment without specifications, but that's asensible basis for real applications. What
happens if we want to write a worker in another language? Dbave to read code to see how things
work? What if we want to change the protocol for some reasame? & simple protocol will, if it's
successful, evolve and become more complex.

Lack of contracts is a sure sign of a disposable applicaSoriet’s write a contract for this protocol.
How do we do that?

There’s a wiki at rfc.zeromq.org (http://rfc.zeromq.otigat we made especially as a home for public
@MQ contracts.

To create a new specification, register on the wiki if needad,follow the instructions. It's fairly
straightforward, though writing technical texts is notgame’s cup of tea.

It took me about fifteen minutes to draft the new Pirate Pat®otocol (http://rfc.zeromq.org/spec:6).
It's not a big specification, but it does capture enough tmadhe basis for arguments ("your queue isn'’t
PPP compatible; please fix it!").

Turning PPP into a real protocol would take more work:

159

Chapter 4. Reliable Request-Reply Patterns

« There should be a protocol version number in the READY conthsarthat it's possible to distinguish
between different versions of PPP.

- Right now, READY and HEARTBEAT are not entirely distinct frorequests and replies. To make
them distinct, we would need a message structure that iasladmessage type" part.

4.8. Service-Oriented Reliable Queuing (Majordomo
Pattern)

Figure 4-4. The Majordomo Pattern

Client Client Client

"Give me coffee" ¢ "Give me tea"

|

("Coffee"

llTeall

Worker Worker

The nice thing about progress is how fast it happens whendeswgnd committees aren’t involved. The
one-page MDP specification (http://rfc.zeromq.org/spettirns PPP into something more

solidFigure 4-5 This is how we should design complex architectures: stawititing down the
contracts, and onlthenwrite software to implement them.

The Majordomo Protocol (MDP) extends and improves on PPRéniteresting way: it adds a "service
name" to requests that the client sends, and asks workeggigiar for specific services. Adding service
names turns our Paranoid Pirate queue into a service-edd&mbker. The nice thing about MDP is that it
came out of working code, a simpler ancestor protocol (P&R) a precise set of improvements that
each solved a clear problem. This made it easy to draft.

To implement Majordomo, we need to write a framework forrmigeand workers. It’s really not sane to

160

Chapter 4. Reliable Request-Reply Patterns

ask every application developer to read the spec and malalit, when they could be using a simpler
API that does the work for them.

So while our first contract (MDP itself) defines how the piecksur distributed architecture talk to each
other, our second contract defines how user applicatioksadhe technical framework we're going to
design.

Majordomo has two halves, a client side and a worker sidea&sewe’ll write both client and worker
applications, we will need two APIs. Here is a sketch for thent API, using a simple object-oriented
approach:

mdcli_t *mdcli_new (char * broker);
void mdcli_destroy (mdcli_t +* self_p);
zmsg_t *mdcli_send (mdcli_t *self, char * service, zmsg_t ** request_p);

That's it. We open a session to the broker, send a requesagmsset a reply message back, and
eventually close the connection. Here’s a sketch for thekerohPI:

mdwrk_t *mdwrk_new (char = broker,char * service);
void mdwrk_destroy (mdwrk_t ** self_p);
zmsg_t *mdwrk_recv (mdwrk_t *self, zmsg_t *reply);

It's more or less symmetrical, but the worker dialog is dditifferent. The first time a worker does a
recv(), it passes a null reply. Thereafter, it passes theentireply, and gets a new request.

The client and worker APls were fairly simple to construatdngse they're heavily based on the Paranoid
Pirate code we already developed. Here is the client API:

Example 4-7. Majordomo client API (mdcliapi.py)

Majordomo Protocol Client API, Python version.
Implements the MDP/Worker spec at http:#rfc.zeromq.org/s pec:7.

Author: Min RK <benjaminrk@gmail.com>
Based on Java example by Arkadiusz Orzechowski

import logging
import zmqg

import MDP
from zhelpers import dump

class MajorDomoClient(object):
""" Majordomo Protocol Client API, Python version.

161

Implements the MDP/Worker spec at http:#rfc.zeromq.org/s

broker = None
ctx = None
client = None
poller = None
timeout = 2500

Chapter 4. Reliable Request-Reply Patterns

pec:7.

retries = 3
verbose = False

def __init_ (self, broker, verbose=False):

self.broker = broker

self.verbose = verbose

self.ctx = zmg.Context()

self.poller = zmq.Poller()

logging.basicConfig(format="%(asctime)s %(message)s"” , datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO)

self.reconnect_to_broker()

def reconnect_to_broker(self):

"""Connect or reconnect to broker
if self.client:
self.poller.unregister(self.client)
self.client.close()
self.client = self.ctx.socket(zmq.REQ)
self.client.linger = 0
self.client.connect(self.broker)
self.poller.register(self.client, zmq.POLLIN)
if self.verbose:
logging.info("l: connecting to broker at %s...", self.bro ker)

def send(self, service, request):

""Send request to broker and get reply by hook or crook.

Takes ownership of request message and destroys it when sent
Returns the reply message or None if there was no reply.
if not isinstance(request, list):
request = [request]
request = [MDP.C_CLIENT, service] + request
if self.verbose:
logging.warn("l: send request to '%s’ service:
dump(request)
reply = None

, service)

retries = self.retries
while retries > 0:
self.client.send_multipart(request)
try:
items = self.poller.poll(self.timeout)
except KeyboardInterrupt:
break # interrupted

162

Chapter 4. Reliable Request-Reply Patterns

if items:
msg = self.client.recv_multipart()
if self.verbose:
logging.info("l: received reply:")
dump(msg)

Don't try to handle errors, just assert noisily
assert len(msg) >= 3

header = msg.pop(0)
assert MDP.C_CLIENT == header

reply_service = msg.pop(0)
assert service == reply_service

reply = msg
break
else:

if retries:
logging.warn("W: no reply, reconnecting...")
self.reconnect_to_broker()

else:
logging.warn("W: permanent error, abandoning")
break

retries -= 1

return reply
def destroy(self):

self.context.destroy()

Let's see how the client API looks in action, with an exampl& program that does 100K request-reply
cycles:

Example 4-8. Majordomo client application (mdclient.py)

Majordomo Protocol client example. Uses the mdcli API to hid e all MDP aspects
Author : Min RK <benjaminrk@gmail.com>

import sys
from mdcliapi import MajorDomoClient

def main():
verbose = -V’ in sys.argv
client = MajorDomoClient("tcp://localhost:5555", verbo se)
count = 0

while count < 100000:

163

Chapter 4. Reliable Request-Reply Patterns

request = "Hello world"
try:
reply = client.send("echo”, request)
except KeyboardInterrupt:
break
else:
also break on failure to reply:
if reply is None:
break
count += 1
print "%i requests/replies processed" % count
if _name__ =="'_ _main__"
main()

And here is the worker API:

Example 4-9. Majordomo worker API (mdwrkapi.py)

"""Majordomo Protocol Worker API, Python version
Implements the MDP/Worker spec at http:#rfc.zeromq.org/s

Author: Min RK <benjaminrk@gmail.com>
Based on Java example by Arkadiusz Orzechowski

import logging
import time
import zmq

from zhelpers import dump
MajorDomo protocol constants:
import MDP

class MajorDomoWorker(object):
"""Majordomo Protocol Worker API, Python version

Implements the MDP/Worker spec at http:#rfc.zeromq.org/s

HEARTBEAT LIVENESS = 3 # 3-5 is reasonable
broker = None

ctx = None

service = None

worker = None # Socket to broker

pec:7.

pec:7.

heartbeat_at = 0 # When to send HEARTBEAT (relative to time.t

liveness = 0 # How many attempts left
heartbeat = 2500 # Heartbeat delay, msecs
reconnect = 2500 # Reconnect delay, msecs

ime(), so in seconds)

164

Chapter 4. Reliable Request-Reply Patterns

Internal state
expect_reply = False # False only at start

timeout = 2500 # poller timeout
verbose = False # Print activity to stdout

Return address, if any
reply_to = None

def __init_ (self, broker, service, verbose=False):
self.broker = broker
self.service = service
self.verbose = verbose
self.ctx = zmg.Context()
self.poller = zmgq.Poller()
logging.basicConfig(format="%(asctime)s %(message)s"”

level=logging.INFO)

self.reconnect_to_broker()

def reconnect_to_broker(self):
"""Connect or reconnect to broker
if self.worker:
self.poller.unregister(self.worker)
self.worker.close()
self.worker = self.ctx.socket(zmq.DEALER)
self.worker.linger = 0
self.worker.connect(self.broker)
self.poller.register(self.worker, zmq.POLLIN)
if self.verbose:
logging.info("l: connecting to broker at %s...", self.bro

Register service with broker
self.send_to_broker(MDP.W_READY, self.service, [])

If liveness hits zero, queue is considered disconnected
self.liveness = self. HEARTBEAT_LIVENESS
self.heartbeat_at = time.time() + 1e-3 * self.heartbeat

def send_to_broker(self, command, option=None, msg=None):

""Send message to broker.

If no msg is provided, creates one internally
if msg is None:

msg = []
elif not isinstance(msg, list):

msg = [msg]

if option:
msg = [option] + msg

, datefmt="%Y-%m-%d %H:%M:%S",

ker)

165

Chapter 4. Reliable Request-Reply Patterns

msg = [, MDP.W_WORKER, command] + msg

if self.verbose:
logging.info("l: sending %s to broker", command)
dump(msg)

self.worker.send_multipart(msg)

def recv(self, reply=None):
""Send reply, if any, to broker and wait for next request."" "
Format and send the reply if we were provided one
assert reply is not None or not self.expect_reply

if reply is not None:
assert self.reply_to is not None
reply = [self.reply_to, "] + reply
self.send_to_broker(MDP.W_REPLY, msg=reply)

self.expect_reply = True

while True:
Poll socket for a reply, with timeout
try:
items = self.poller.poll(self.timeout)
except KeyboardInterrupt:
break # Interrupted

if items:
msg = self.worker.recv_multipart()
if self.verbose:
logging.info("l: received message from broker: ")
dump(msg)

self.liveness = self HEARTBEAT_LIVENESS
Don't try to handle errors, just assert noisily
assert len(msg) >= 3

empty = msg.pop(0)
assert empty == "

header = msg.pop(0)
assert header == MDP.W_WORKER

command = msg.pop(0)

if command == MDP.W_REQUEST:
We should pop and save as many addresses as there are
up to a null part, but for now, just save one...
self.reply_to = msg.pop(0)
pop empty
assert msg.pop(0) == "

return msg # We have a request to process

elif command == MDP.W_HEARTBEAT:
Do nothing for heartbeats

166

Chapter 4. Reliable Request-Reply Patterns

pass

elif command == MDP.W_DISCONNECT:
self.reconnect_to_broker()

else :
logging.error("E: invalid input message: ")
dump(msg)

else:
self.liveness -= 1
if self.liveness ==
if self.verbose:
logging.warn("W: disconnected from broker - retrying...")
try:
time.sleep(le-3 * self.reconnect)
except KeyboardInterrupt:
break
self.reconnect_to_broker()

Send HEARTBEAT if it's time

if time.time() > self.heartbeat_at:
self.send_to_broker(MDP.W_HEARTBEAT)
self.heartbeat_at = time.time() + 1e-3 * self.heartbeat

logging.warn("W: interrupt received, killing worker...")
return None

def destroy(self):
context.destroy depends on pyzmq >= 2.1.10
self.ctx.destroy(0)

Let's see how the worker API looks in action, with an exampkt program that implements an echo
service:

Example 4-10. Majordomo worker application (mdworker.py)
"""Majordomo Protocol worker example.
Uses the mdwrk API to hide all MDP aspects

Author: Min RK <benjaminrk@gmail.com>

import sys
from mdwrkapi import MajorDomoWorker

def main():
verbose = '-v' in sys.argv
worker = MajorDomoWorker("tcp://localhost:5555", "echo
reply = None
while True:
request = worker.recv(reply)

, verbose)

167

Chapter 4. Reliable Request-Reply Patterns

if request is None:
break # Worker was interrupted
reply = request # Echo is complex... :-)

if _name__ =="'_ _main__"
main()

Here are some things to note about the worker API code:

- The APIs are single-threaded. This means, for examplethikatorker won't send heartbeats in the
background. Happily, this is exactly what we want: if the l@rapplication gets stuck, heartbeats will
stop and the broker will stop sending requests to the worker.

- The worker API doesn’t do an exponential back-off; it's nairth the extra complexity.

- The APIs don't do any error reporting. If something isn’t apected, they raise an assertion (or
exception depending on the language). This is ideal forereete implementation, so any protocol
errors show immediately. For real applications, the APludtibe robust against invalid messages.

You might wonder why the worker API is manually closing it€ket and opening a new one, when
@MQ will automatically reconnect a socket if the peer dissgus and comes back. Look back at the
Simple Pirate and Paranoid Pirate workers to understartidodgh @MQ will automatically reconnect
workers if the broker dies and comes back up, this isn't gefiito re-register the workers with the
broker. | know of at least two solutions. The simplest, whighuse here, is for the worker to monitor the
connection using heartbeats, and if it decides the broldeasl, to close its socket and start afresh with a
new socket. The alternative is for the broker to challendenown workers when it gets a heartbeat from
the worker and ask them to re-register. That would requiogogol support.

Now let’s design the Majordomo broker. Its core structura $&t of queues, one per service. We will
create these queues as workers appear (we could delete sheomlkaers disappear, but forget that for
now because it gets complex). Additionally, we keep a quéuedkers per service.

And here is the broker:

Example 4-11. Majordomo broker (mdbroker.py)

Majordomo Protocol broker
A minimal implementation of http:#rfc.zeromq.org/spec:7 and spec:8

Author: Min RK <benjaminrk@gmail.com>
Based on Java example by Arkadiusz Orzechowski

import logging

import sys

import time

from binascii import hexlify

168

Chapter 4. Reliable Request-Reply Patterns

import zmq

local
import MDP
from zhelpers import dump

class Service(object):
""a single Service
name = None # Service name
requests = None # List of client requests
waiting = None # List of waiting workers

def __init_ (self, name):
self.name = name
self.requests = []
self.waiting = []

class Worker(object):
""a Worker, idle or active
identity = None # hex lIdentity of worker
address = None # Address to route to
service = None # Owning service, if known
expiry = None # expires at this point, unless heartbeat

def __init_ (self, identity, address, lifetime):
self.identity = identity
self.address = address
self.expiry = time.time() + 1le-3 * lifetime

class MajorDomoBroker(object):
Majordomo Protocol broker
A minimal implementation of http:#rfc.zeromq.org/spec:7 and spec:8

We'd normally pull these from config data
INTERNAL_SERVICE_PREFIX = "mmi."

HEARTBEAT LIVENESS = 3 # 3-5 is reasonable
HEARTBEAT_INTERVAL = 2500 # msecs

HEARTBEAT_EXPIRY = HEARTBEAT_INTERVAL HEARTBEAT_LIVENESS

B e mmmmmmmmmmmmeeee e

ctx = None # Our context
socket = None # Socket for clients & workers
poller = None # our Poller

heartbeat_at = None# When to send HEARTBEAT
services = None # known services

workers = None # known workers

waiting = None # idle workers

169

Chapter 4. Reliable Request-Reply Patterns
verbose = False # Print activity to stdout

B e

def _ init_ (self, verbose=False):
""" Initialize broker state."™
self.verbose = verbose
self.services = {}
self.workers = {}
self.waiting = []
self.heartbeat_at = time.time() + 1le-3 * self HEARTBEAT_INTERVAL
self.ctx = zmg.Context()
self.socket = self.ctx.socket(zmgq.ROUTER)
self.socket.linger = 0
self.poller = zmgq.Poller()
self.poller.register(self.socket, zmg.POLLIN)
logging.basicConfig(format="%(asctime)s %(message)s"” , datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO)

B e

def mediate(self):

while True:
try:
items = self.poller.poll(self. HEARTBEAT_INTERVAL)
except KeyboardInterrupt:
break # Interrupted
if items:
msg = self.socket.recv_multipart()
if self.verbose:
logging.info("l: received message:")
dump(msg)

sender = msg.pop(0)
empty = msg.pop(0)
assert empty == "

header = msg.pop(0)

if (MDP.C_CLIENT == header):
self.process_client(sender, msg)
elif (MDP.W_WORKER == header):
self.process_worker(sender, msg)
else:
logging.error("E: invalid message:")
dump(msg)

self.purge_workers()
self.send_heartbeats()

170

Chapter 4. Reliable Request-Reply Patterns

def destroy(self):
"""Disconnect all workers, destroy context.""
while self.workers:
self.delete_worker(self.workers[0], True)
self.ctx.destroy(0)

def process_client(self, sender, msg):

""Process a request coming from a client.""

assert len(msg) >= 2 # Service name + body

service = msg.pop(0)

Set reply return address to client sender

msg = [sender,”] + msg

if service.startswith(self.INTERNAL_SERVICE_PREFIX):
self.service_internal(service, msg)

else:
self.dispatch(self.require_service(service), msg)

def process_worker(self, sender, msg):
""Process message sent to us by a worker.""
assert len(msg) >= 1 # At least, command

command = msg.pop(0)
worker_ready = hexlify(sender) in self.workers
worker = self.require_worker(sender)

if (MDP.W_READY == command):

assert len(msg) >= 1 # At least, a service name

service = msg.pop(0)

Not first command in session or Reserved service name

if (worker_ready or service.startswith(self.INTERNAL_S ERVICE_PREFIX)):
self.delete_worker(worker, True)

else:
Attach worker to service and mark as idle
worker.service = self.require_service(service)
self.worker_waiting(worker)

elif (MDP.W_REPLY == command):

if (worker_ready):
Remove & save client return envelope and insert the
protocol header and service name, then rewrap envelope.
client = msg.pop(0)
empty = msg.pop(0) # ?
msg = [client, ", MDP.C_CLIENT, worker.service.name] + msg
self.socket.send_multipart(msg)
self.worker_waiting(worker)

else:
self.delete_worker(worker, True)

elif (MDP.W_HEARTBEAT == command):

171

Chapter 4. Reliable Request-Reply Patterns

if (worker_ready):

worker.expiry = time.time() + le-3 * self HEARTBEAT_EXPIRY
else:

self.delete_worker(worker, True)

elif (MDP.W_DISCONNECT == command):
self.delete_worker(worker, False)
else:
logging.error("E: invalid message:")
dump(msg)

def delete_worker(self, worker, disconnect):
""Deletes worker from all data structures, and deletes wor ker.""
assert worker is not None
if disconnect:
self.send_to_worker(worker, MDP.W_DISCONNECT, None, No ne)

if worker.service is not None:
worker.service.waiting.remove(worker)
self.workers.pop(worker.identity)

def require_worker(self, address):
""Finds the worker (creates if necessary).""
assert (address is not None)
identity = hexlify(address)
worker = self.workers.get(identity)
if (worker is None):
worker = Worker(identity, address, self HEARTBEAT_EXPIR Y)
self.workers[identity] = worker
if self.verbose:
logging.info("l: registering new worker: %s", identity)

return worker

def require_service(self, name):
""Locates the service (creates if necessary).""
assert (name is not None)
service = self.services.get(name)
if (service is None):
service = Service(name)
self.services[name] = service

return service

def bind(self, endpoint):
""Bind broker to endpoint, can call this multiple times.

We use a single socket for both clients and workers.

self.socket.bind(endpoint)
logging.info("l: MDP broker/0.1.1 is active at %s", endpoi nt)

def service_internal(self, service, msg):

172

Chapter 4. Reliable Request-Reply Patterns

"""Handle internal service according to 8/MMI specificati on""
returncode = "501"
if "mmi.service" == service:

name = msg[-1]
returncode = "200" if name in self.services else "404"
msg[-1] = returncode

insert the protocol header and service name after the routi ng envelope ([client, "])
msg = msg[:2] + [MDP.C_CLIENT, service] + msg[2:]
self.socket.send_multipart(msg)

def send_heartbeats(self):
""Send heartbeats to idle workers if it's time
if (time.time() > self.heartbeat_at):
for worker in self.waiting:
self.send_to_worker(worker, MDP.W_HEARTBEAT, None, Non e)

self.heartbeat_at = time.time() + 1le-3 * self, HEARTBEAT_INTERVAL

def purge_workers(self):
""Look for & Kkill expired workers.

Workers are oldest to most recent, so we stop at the first aliv e worker.
while self.waiting:
w = self.waiting[0]
if w.expiry < time.time():
logging.info("l: deleting expired worker: %s", w.identit y)
self.delete_worker(w,False)
self.waiting.pop(0)
else:
break

def worker_waiting(self, worker):
"""This worker is now waiting for work."™"
Queue to broker and service waiting lists
self.waiting.append(worker)
worker.service.waiting.append(worker)
worker.expiry = time.time() + le-3 *self HEARTBEAT_EXPIRY
self.dispatch(worker.service, None)

def dispatch(self, service, msg):

"""Dispatch requests to waiting workers as possible

assert (service is not None)

if msg is not None:# Queue message if any
service.requests.append(msg)

self.purge_workers()

while service.waiting and service.requests:
msg = service.requests.pop(0)
worker = service.waiting.pop(0)
self.waiting.remove(worker)
self.send_to_worker(worker, MDP.W_REQUEST, None, msg)

173

Chapter 4. Reliable Request-Reply Patterns

def send_to_worker(self, worker, command, option, msg=No
"""Send message to worker.

If message is provided, sends that message.

if msg is None:
msg =]

elif not isinstance(msg, list):
msg = [msg]

Stack routing and protocol envelopes to start of message

and routing envelope
if option is not None:
msg = [option] + msg

msg = [worker.address, ", MDP.W_WORKER, command] + msg

if self.verbose:
logging.info("l: sending %r to worker", command)
dump(msg)

self.socket.send_multipart(msg)

def main():
""" create and start new broker™"
verbose = -V’ in sys.argv
broker = MajorDomoBroker(verbose)
broker.bind("tcp:// * :5555")
broker.mediate()

if _name__ =="'_ _main__"
main()

ne):

This is by far the most complex example we've seen. It's atrB08 lines of code. To write this and
make it somewhat robust took two days. However, this isathort piece of code for a full

service-oriented broker.

Here are some things to note about the broker code:

- The Majordomo Protocol lets us handle both clients and wsr&a a single socket. This is nicer for
those deploying and managing the broker: it just sits on oM&@ndpoint rather than the two that

most proxies need.

« The broker implements all of MDP/0.1 properly (as far as Iwhancluding disconnection if the

broker sends invalid commands, heartbeating, and the rest.

- It can be extended to run multiple threads, each managingaxciest and one set of clients and
workers. This could be interesting for segmenting largéigectures. The C code is already organized

around a broker class to make this trivial.

174

Chapter 4. Reliable Request-Reply Patterns

- A primary/failover or live/live broker reliability modekieasy, as the broker essentially has no state
except service presence. It's up to clients and workersdosé another broker if their first choice
isn’t up and running.

« The examples use five-second heartbeats, mainly to rede@ertbunt of output when you enable
tracing. Realistic values would be lower for most LAN apations. However, any retry has to be slow
enough to allow for a service to restart, say 10 seconds st lea

We later improved and extended the protocol and the Majoadiomplementation, which now sits in its
own Github project. If you want a properly usable Majordortexk, use the GitHub project.

4.9. Asynchronous Majordomo Pattern

The Majordomo implementation in the previous section isogégmand stupid. The client is just the
original Simple Pirate, wrapped up in a sexy API. When | fireaugient, broker, and worker on a test
box, it can process 100,000 requests in about 14 secondsisTgetially due to the code, which
cheerfully copies message frames around as if CPU cyclesfnaa. But the real problem is that we're
doing network round-trips. @MQ disables Nagle’s algorithm
(http://en.wikipedia.org/wiki/Nagles_algorithm), batund-tripping is still slow.

Theory is great in theory, but in practice, practice is brettet's measure the actual cost of
round-tripping with a simple test program. This sends a hwfanessages, first waiting for a reply to
each message, and second as a batch, reading all the regalieasda batch. Both approaches do the
same work, but they give very different results. We mock upent; broker, and worker:

Example 4-12. Round-trip demonstrator (tripping.py)

Round-trip demonstrator

While this example runs in a single process, that is just to ma ke
it easier to start and stop the example. Client thread signal s to
main when it's ready.

import sys

import threading

import time

import zmq

from zhelpers import zpipe

def client_task (ctx, pipe):
client = ctx.socket(zmq.DEALER)
client.identity = 'C’

client.connect("tcp://localhost:5555")

print "Setting up test...\n",

175

Chapter 4. Reliable Request-Reply Patterns
time.sleep(0.1)

print "Synchronous round-trip test...\n",
start = time.time()
requests = 10000
for r in xrange(requests):
client.send("hello")
client.recv()
print " %d calls/second\n” % (requests / (time.time()-star 1)),

print "Asynchronous round-trip test...\n",
start = time.time()
for r in xrange(requests):
client.send("hello")
for r in xrange(requests):
client.recv()
print " %d calls/second\n" % (requests / (time.time()-star 1)),

signal done:
pipe.send("done")

def worker_task():
ctx = zmg.Context()
worker = ctx.socket(zmq.DEALER)
worker.identity = "W’
worker.connect("tcp://localhost:5556")

while True:
msg = worker.recv_multipart()
worker.send_multipart(msg)
ctx.destroy(0)

def broker_task():
Prepare our context and sockets
ctx = zmqg.Context()
frontend = ctx.socket(zmq.ROUTER)
backend = ctx.socket(zmq.ROUTER)
frontend.bind("tcp:// *:5555")
backend.bind("tcp:// *:5556")

Initialize poll set

poller = zmgq.Poller()
poller.register(backend, zmqg.POLLIN)
poller.register(frontend, zmqg.POLLIN)

while True:
try:
items = dict(poller.poll())
except:
break # Interrupted

if frontend in items:
msg = frontend.recv_multipart()

176

Chapter 4. Reliable Request-Reply Patterns

msg[0] = 'W’
backend.send_multipart(msg)

if backend in items:
msg = backend.recv_multipart()
msg[0] = 'C’
frontend.send_multipart(msg)

def main():
Create threads
ctx = zmg.Context()
client,pipe = zpipe(ctx)

client_thread = threading.Thread(target=client_task, a rgs=(ctx, pipe))
worker_thread = threading.Thread(target=worker_task)

worker_thread.daemon=True

broker_thread = threading.Thread(target=broker_task)

broker_thread.daemon=True

worker_thread.start()
broker_thread.start()
client_thread.start()

Wait for signal on client pipe
client.recv()

if _name__ =="'__main__"
main()

On my development box, this program says:

Setting up test...
Synchronous round-trip test...
9057 calls/second
Asynchronous round-trip test...
173010 calls/second

Note that the client thread does a small pause before gjaifthis is to get around one of the "features"
of the router socket: if you send a message with the addrespeér that's not yet connected, the
message gets discarded. In this example we don’t use théd&adcing mechanism, so without the
sleep, if the worker thread is too slow to connect, it willdaressages, making a mess of our test.

As we see, round-tripping in the simplest case is 20 timeseslthan the asynchronous, "shove it down
the pipe as fast as it'll go" approach. Let’s see if we canyapipb to Majordomo to make it faster.

First, we modify the client API to send and receive in two safamethods:

mdcli_t *mdcli_new (char * broker);

void mdcli_destroy (mdcli_t * self_p);

int mdcli_send (mdcli_t +self, char *service, zmsg_t ** request_p);
zmsg_t *mdcli_recv (mdcli_t * self);

177

Chapter 4. Reliable Request-Reply Patterns
It's literally a few minutes’ work to refactor the synchramoclient API to become asynchronous:

Example 4-13. Majordomo asynchronous client APl (mdcliap2.py)

"""Majordomo Protocol Client API, Python version.
Implements the MDP/Worker spec at http:#rfc.zeromq.org/s pec:7.

Author: Min RK <benjaminrk@gmail.com>
Based on Java example by Arkadiusz Orzechowski

import logging
import zmqg

import MDP
from zhelpers import dump

class MajorDomoClient(object):
"""Majordomo Protocol Client API, Python version.

Implements the MDP/Worker spec at http:#rfc.zeromq.org/s pec:7.
broker = None
ctx = None
client = None
poller = None
timeout = 2500
verbose = False

def __init_ (self, broker, verbose=False):
self.broker = broker
self.verbose = verbose
self.ctx = zmg.Context()
self.poller = zmq.Poller()
logging.basicConfig(format="%(asctime)s %(message)s"” , datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO)
self.reconnect_to_broker()

def reconnect_to_broker(self):
""Connect or reconnect to broker™"
if self.client:
self.poller.unregister(self.client)
self.client.close()
self.client = self.ctx.socket(zmq.DEALER)
self.client.linger = 0
self.client.connect(self.broker)
self.poller.register(self.client, zmq.POLLIN)
if self.verbose:
logging.info("l: connecting to broker at %s...", self.bro ker)

178

Chapter 4. Reliable Request-Reply Patterns

def send(self, service, request):
""Send request to broker
if not isinstance(request, list):
request = [request]

Prefix request with protocol frames

Frame 0: empty (REQ emulation)

Frame 1: "MDPCxy" (six bytes, MDP/Client x.y)
Frame 2: Service name (printable string)

request = [", MDP.C_CLIENT, service] + request

if self.verbose:
logging.warn("l: send request to '%s’ service: ", service)
dump(request)

self.client.send_multipart(request)

def recv(self):
""" Returns the reply message or None if there was no reply."™
try:
items = self.poller.poll(self.timeout)
except KeyboardInterrupt:
return # interrupted

if items:
if we got a reply, process it
msg = self.client.recv_multipart()
if self.verbose:
logging.info("l: received reply:")
dump(msg)

Don't try to handle errors, just assert noisily
assert len(msg) >= 4

empty = msg.pop(0)
header = msg.pop(0)
assert MDP.C_CLIENT == header

service = msg.pop(0)
return msg
else:
logging.warn("W: permanent error, abandoning request")

The differences are:

- We use a DEALER socket instead of REQ, so we emulate REQ widmgoty delimiter frame before
each request and each response.

- We don't retry requests; if the application needs to retrgan do this itself.
« We break the synchronossnd method into separatend andrecv methods.

- Thesend method is asynchronous and returns immediately after sgnidihe caller can thus send a
number of messages before getting a response.

179

Chapter 4. Reliable Request-Reply Patterns

« Therecv method waits for (with a timeout) one response and retutaistththe caller.

And here’s the corresponding client test program, whiclusér)0,000 messages and then receives
100,000 back:

Example 4-14. Majordomo client application (mdclient2.py

Majordomo Protocol client example. Uses the mdcli API to hid e all MDP aspects
Author : Min RK <benjaminrk@gmail.com>

import sys
from mdcliapi2 import MajorDomoClient

def main():
verbose = -V’ in sys.argv
client = MajorDomoClient("tcp://localhost:5555", verbo se)

requests = 100000
for i in xrange(requests):
request = "Hello world"
try:
client.send("echo", request)
except KeyboardInterrupt:
print "send interrupted, aborting"
return

count = 0
while count < requests:
try:
reply = client.recv()
except KeyboardInterrupt:
break
else:
also break on failure to reply:
if reply is None:
break
count += 1
print "%i requests/replies processed" % count
if _name__ =="'_ _main__"
main()

The broker and worker are unchanged because we've not nibtliieprotocol at all. We see an
immediate improvement in performance. Here’s the synabuertlient chugging through 100K
request-reply cycles:

$ time mdclient
100000 requests/replies processed

180

Chapter 4. Reliable Request-Reply Patterns

real 0m14.088s
user 0m1.310s
Sys 0m2.670s

And here’s the asynchronous client, with a single worker:

$ time mdclient2
100000 replies received

real 0m8.730s
user 0m0.920s
Sys 0m1.550s

Twice as fast. Not bad, but let’s fire up 10 workers and see hbaridles the traffic

$ time mdclient2
100000 replies received

real 0m3.863s
user 0m0.730s
Sys 0m0.470s

It isn’t fully asynchronous because workers get their mgssan a strict last-used basis. But it will scale
better with more workers. On my PC, after eight or so workitdgesn't get any faster. Four cores only
stretches so far. But we got a 4x improvement in throughptit just a few minutes’ work. The broker is
still unoptimized. It spends most of its time copying messtigmes around, instead of doing zero-copy,
which it could. But we're getting 25K reliable request/ngpéhlls a second, with pretty low effort.

However, the asynchronous Majordomo pattern isn’t all sokéhas a fundamental weakness, namely
that it cannot survive a broker crash without more work. Ifiyook at themdcliapi2 code you'll see it
does not attempt to reconnect after a failure. A proper neectwould require the following:

- A number on every request and a matching number on every, igpigh would ideally require a
change to the protocol to enforce.

- Tracking and holding onto all outstanding requests in tientlAPI, i.e., those for which no reply has
yet been received.

- In case of failover, for the client API teesendall outstanding requests to the broker.

It's not a deal breaker, but it does show that performana@nafieans complexity. Is this worth doing for
Majordomo? It depends on your use case. For a name lookuigsgu call once per session, no. For a
web frontend serving thousands of clients, probably yes.

181

Chapter 4. Reliable Request-Reply Patterns

4.10. Service Discovery

So, we have a nice service-oriented broker, but we have nmfayowing whether a particular service
is available or not. We know whether a request failed, but ar@tknow why. It is useful to be able to
ask the broker, "is the echo service running?" The most alsvwigay would be to modify our

MDP/Client protocol to add commands to ask this. But MDR#@lihas the great charm of being simple.
Adding service discovery to it would make it as complex ashtizP/Worker protocol.

Another option is to do what email does, and ask that undalble requests be returned. This can work
well in an asynchronous world, but it also adds complexitg.Mged ways to distinguish returned
requests from replies and to handle these properly.

Let’s try to use what we've already built, building on top o instead of modifying it. Service
discovery is, itself, a service. It might indeed be one oksabmanagement services, such as "disable
service X", "provide statistics”, and so on. What we wantggaeral, extensible solution that doesn't
affect the protocol or existing applications.

So here’s a small RFC that layers this on top of MDP: the Majord Management Interface (MMI)
(http://rfc.zeromq.org/spec:8). We already implemerit@tthe broker, though unless you read the
whole thing you probably missed that. I'll explain how it Wesrin the broker:

- When a client requests a service that starts withi. , instead of routing this to a worker, we handle it
internally.

- We handle just one service in this broker, whicmisi.service , the service discovery service.
- The payload for the request is the name of an external sef@izal one, provided by a worker).

« The broker returns "200" (OK) or "404" (Not found), deperglon whether there are workers
registered for that service or not.

Here’s how we use the service discovery in an application:

Example 4-15. Service discovery over Majordomo (mmiechoyp

MMI echo query example
Author : Min RK <benjaminrk@gmail.com>

import sys
from mdcliapi import MajorDomoClient

def main():
verbose = -V’ in sys.argv
client = MajorDomoClient("tcp://localhost:5555", verbo se)

request = "echo"

182

Chapter 4. Reliable Request-Reply Patterns
reply = client.send("mmi.service", request)
if reply:

replycode = reply[0O]
print "Lookup echo service:", replycode

else:
print "E: no response from broker, make sure it's running"
if __name__ =="'_ _main__"
main()

Try this with and without a worker running, and you should gezlittle program report "200" or "404"
accordingly. The implementation of MMI in our example brolgflimsy. For example, if a worker
disappears, services remain "present”. In practice, aglositould remove services that have no workers
after some configurable timeout.

4.11. Idempotent Services

Idempotency is not something you take a pill for. What it meeisrthat it's safe to repeat an operation.
Checking the clock is idempotent. Lending ones credit cauahies children is not. While many
client-to-server use cases are idempotent, some are renni&s of idempotent use cases include:

- Stateless task distribution, i.e., a pipeline where theegsrare stateless workers that compute a reply
based purely on the state provided by a request. In such aitaisafe (though inefficient) to execute
the same request many times.

- A name service that translates logical addresses into émsfio bind or connect to. In such a case,
it's safe to make the same lookup request many times.

And here are examples of a non-idempotent use cases:

- Alogging service. One does not want the same log informagonrded more than once.

- Any service that has impact on downstream nodes, e.g., end$ormation to other nodes. If that
service gets the same request more than once, downstrea® wikget duplicate information.

- Any service that modifies shared data in some non-idempotyite.g., a service that debits a bank
account is not idempotent without extra work.

When our server applications are not idempotent, we havdr& more carefully about when exactly

they might crash. If an application dies when it's idle, oril&lit’s processing a request, that’s usually
fine. We can use database transactions to make sure a dehitagdit are always done together, if at all.
If the server dies while sending its reply, that's a problestause as far as it's concerned, it has done its
work.

183

Chapter 4. Reliable Request-Reply Patterns

If the network dies just as the reply is making its way back®dlient, the same problem arises. The
client will think the server died and will resend the requasid the server will do the same work twice,
which is not what we want.

To handle non-idempotent operations, use the fairly stahstzlution of detecting and rejecting duplicate
requests. This means:

« The client must stamp every request with a unique clienttiienand a uniqgue message number.

- The server, before sending back a reply, stores it usinggh@mation of client ID and message
number as a key.

- The server, when getting a request from a given client, fitetks whether it has a reply for that client
ID and message number. If so, it does not process the retpuefiist resends the reply.

4.12. Disconnected Reliability (Titanic Pattern)

Once you realize that Majordomo is a "reliable” messagedmrglou might be tempted to add some
spinning rust (that is, ferrous-based hard disk plattéfgr all, this works for all the enterprise
messaging systems. It's such a tempting idea that it'sle §#d to have to be negative toward it. But
brutal cynicism is one of my specialties. So, some reasonglga’t want rust-based brokers sitting in
the center of your architecture are:

- Asyou've seen, the Lazy Pirate client performs surprisingell. It works across a whole range of
architectures, from direct client-to-server to distrémitjueue proxies. It does tend to assume that
workers are stateless and idempotent. But we can work artiandimitation without resorting to rust.

- Rust brings a whole set of problems, from slow performane@alttitional pieces that you have to
manage, repair, and handle 6 a.m. panics from, as they atdyivreak at the start of daily operations.
The beauty of the Pirate patterns in general is their sintpli€hey won’t crash. And if you're still
worried about the hardware, you can move to a peer-to-perpdhat has no broker at all. I'll
explain later in this chapter.

Having said this, however, there is one sane use case febagsd reliability, which is an asynchronous
disconnected network. It solves a major problem with Pjnagenely that a client has to wait for an
answer in real time. If clients and workers are only sporatliconnected (think of email as an analogy),
we can't use a stateless network between clients and wollerbave to put state in the middle.

So, here’s the Titanic pattdfigure 4-5 in which we write messages to disk to ensure they never ggt lo
no matter how sporadically clients and workers are condeéte we did for service discovery, we're
going to layer Titanic on top of MDP rather than extend is ionderfully lazy because it means we can
implement our fire-and-forget reliability in a specialiaedrker, rather than in the broker. This is
excellent for several reasons:

- Itis mucheasier because we divide and conquer: the broker handlesgeesouting and the worker
handles reliability.

184

Chapter 4. Reliable Request-Reply Patterns

. It lets us mix brokers written in one language with workergten in another.

- It lets us evolve the fire-and-forget technology indepetgien

The only downside is that there’s an extra network hop betvizeeker and hard disk. The benefits are
easily worth it.

There are many ways to make a persistent request-replyectinie. We'll aim for one that is simple and
painless. The simplest design | could come up with, afteyiptawith this for a few hours, is a "proxy
service". That is, Titanic doesn’t affect workers at allal€lient wants a reply immediately, it talks
directly to a service and hopes the service is availableclieat is happy to wait a while, it talks to
Titanic instead and asks, "hey, buddy, would you take catkisfor me while | go buy my groceries?"

Figure 4-5. The Titanic Pattern

‘ Client l ‘ Client \ Client

f

Titanic, "Titanic,
give me coffee" give me tea"

Broker

T

v v

Worker

("Coffee"

Worker

Titanic is thus both a worker and a client. The dialog betwaemt and Titanic goes along these lines:

- Client: Please accept this request for me. Titanic: OK, done

« Client: Do you have a reply for me? Titanic: Yes, here it is,. 1@r, not yet.

185

Chapter 4. Reliable Request-Reply Patterns

« Client: OK, you can wipe that request now, I'm happy. Titai@&, done.

Whereas the dialog between Titanic and broker and workes lijeethis:

- Titanic: Hey, Broker, is there an coffee service? Brokerni)l¥eah, seems like.
- Titanic: Hey, coffee service, please handle this for me.
- Coffee: Sure, here you are.

- Titanic: Sweeeeet!

You can work through this and the possible failure scenali@sworker crashes while processing a
request, Titanic retries indefinitely. If a reply gets lastreewhere, Titanic will retry. If the request gets
processed but the client doesn’t get the reply, it will askiaglf Titanic crashes while processing a
request or a reply, the client will try again. As long as rezjs@are fully committed to safe storage, work
can't get lost.

The handshaking is pedantic, but can be pipelined, i.entdican use the asynchronous Majordomo
pattern to do a lot of work and then get the responses later.

We need some way for a client to requigsteplies. We'll have many clients asking for the same
services, and clients disappear and reappear with diffetentities. Here is a simple, reasonably secure
solution:

- Every request generates a universally unique ID (UUID) chfiiitanic returns to the client after it has
queued the request.

« When a client asks for a reply, it must specify the UUID for grginal request.

In a realistic case, the client would want to store its requéHDs safely, e.g., in a local database.

Before we jump off and write yet another formal specificatffum, fun!), let's consider how the client
talks to Titanic. One way is to use a single service and sethddt different request types. Another way,
which seems simpler, is to use three services:

« titanic.request : store a request message, and return a UUID for the request.
- titanic.reply : fetch a reply, if available, for a given request UUID.
- titanic.close : confirm that a reply has been stored and processed.

We'll just make a multithreaded worker, which as we've seemfour multithreading experience with
@MQ, is trivial. However, let’s first sketch what Titanic widdook like in terms of @MQ messages and
frames. This gives us the Titanic Service Protocol (TSRp(Hifc.zeromq.org/spec:9).

Using TSP is clearly more work for client applications thaoessing a service directly via MDP. Here’s
the shortest robust "echo” client example:

186

Chapter 4. Reliable Request-Reply Patterns

Example 4-16. Titanic client example (ticlient.py)

Titanic client example
Implements client side of http:rfc.zeromq.org/spec:9

Author : Min RK <benjaminrk@gmail.com>

import sys
import time

from mdcliapi import MajorDomoClient

def service_call (session, service, request):
""Calls a TSP service

Returns reponse if successful (status code 200 OK), else Non e
reply = session.send(service, request)
if reply:
status = reply.pop(0)
if status == "200":
return reply
elif status == "400":
print "E: client fatal error, aborting"
sys.exit (1)
elif status == "500":
print "E: server fatal error, aborting"
sys.exit (1)
else:
sys.exit (0); # Interrupted or failed

def main():
verbose = -V’ in sys.argv
session = MajorDomoClient("tcp://localhost:5555", verb ose)

1. Send ’echo’ request to Titanic
request = ["echo”, "Hello world"]
reply = service_call(session, "titanic.request”, reques t)

uuid = None

if reply:
uuid = reply.pop(0)
print "l: request UUID ", uuid

2. Wait until we get a reply
while True:
time.sleep (.1)
request = [uuid]
reply = service_call (session, "titanic.reply”, request)

187

Chapter 4. Reliable Request-Reply Patterns

if reply:

reply_string = reply[-1]
print "Reply:", reply_string

3. Close request
request = [uuid]
reply = service_call (session, "titanic.close", request)

break
else:
print "l: no reply yet, trying again..."
time.sleep(5) # Try again in 5 seconds
return 0
if _name__ =="'_main__"
main()

Of course this can be, and should be, wrapped up in some kifndraework or API. It's not healthy to
ask average application developers to learn the full detdimessaging: it hurts their brains, costs time,
and offers too many ways to make buggy complexity. Additiyna makes it hard to add intelligence.

For example, this client blocks on each request whereasdalapplication, we'd want to be doing
useful work while tasks are executed. This requires soméini@h plumbing to build a background
thread and talk to that cleanly. It's the kind of thing you wamwrap in a nice simple API that the
average developer cannot misuse. It's the same approachehssed for Majordomo.

Here’s the Titanic implementation. This server handleglinee services using three threads, as
proposed. It does full persistence to disk using the mosabapproach possible: one file per message.
It's so simple, it's scary. The only complex part is that ieps a separate queue of all requests, to avoid
reading the directory over and over:

Example 4-17. Titanic broker example (titanic.py)

Titanic service
Implements server side of http:#rfc.zeromq.org/spec:9

Author: Min RK <benjaminrk@gmail.com>

import cPickle as pickle
import os

import sys

import threading

import time

from uuid import uuid4

import zmq

from mdwrkapi import MajorDomoWorker

188

Chapter 4. Reliable Request-Reply Patterns

from mdcliapi import MajorDomoClient
from zhelpers import zpipe
TITANIC_DIR = ".titanic"
def request_filename (uuid):

""Returns freshly allocated request filename for given UU D"

return os.path.join(TITANIC_DIR, "%s.req" % uuid)
#
def reply_filename (uuid):

""Returns freshly allocated reply filename for given UUID

return os.path.join(TITANIC_DIR, "%s.rep" % uuid)

B o mmcmmmmccmmmmmmmmmmmmmmeemee
Titanic request service

def titanic_request (pipe):
worker = MajorDomoWorker("tcp://localhost:5555", "tita nic.request")

reply = None

while True:
Send reply if it's not null
And then get next request from broker
request = worker.recv(reply)
if not request:
break # Interrupted, exit

Ensure message directory exists
if not os.path.exists(TITANIC_DIR):
0s.mkdir(TITANIC_DIR)

Generate UUID and save message to disk

uuid = uuid4().hex

filename = request_filename (uuid)

with open(filename, 'w’) as f:
pickle.dump(request, f)

Send UUID through to message queue
pipe.send(uuid)

Now send UUID back to client
Done by the worker.recv() at the top of the loop
reply = ['200", uuid]

B e
Titanic reply service

def titanic_reply ():

189

Chapter 4. Reliable Request-Reply Patterns

worker = MajorDomoWorker("tcp://localhost:5555", "tita nic.reply")

reply = None

while True:
request = worker.recv(reply)
if not request:
break # Interrupted, exit

uuid = request.pop(0)
reqg_filename = request_filename(uuid)
rep_filename = reply_filename(uuid)
if os.path.exists(rep_filename):
with open(rep_filename, 'r’) as f:
reply = pickle.load(f)
reply = ['200"] + reply
else:
if os.path.exists(req_filename):
reply = ['300"] # pending
else:
reply = ['400"] # unknown

#
Titanic close service

def titanic_close():

worker = MajorDomoWorker("tcp://localhost:5555", "tita nic.close")

reply = None

while True:
request = worker.recv(reply)
if not request:
break # Interrupted, exit

uuid = request.pop(0)
reqg_filename = request_filename(uuid)
rep_filename = reply_filename(uuid)

should these be protected? Does Zzfile_delete ignore files
that have already been removed? That's what we are doing her e.

if os.path.exists(req_filename):
os.remove(req_filename)
if os.path.exists(rep_filename):
os.remove(rep_filename)
reply = ["200"]

def service_success(client, uuid):

""Attempt to process a single request, return True if succe ssful

Load request message, service will be first frame

filename = request_filename (uuid)

If the client already closed request, treat as successful

if not os.path.exists(filename):

190

Chapter 4. Reliable Request-Reply Patterns
return True

with open(filename, 'r’) as f:

request = pickle.load(f)
service = request.pop(0)
Use MMI protocol to check if service is available
mmi_request = [service]
mmi_reply = client.send("mmi.service", mmi_request)
service_ok = mmi_reply and mmi_reply[0] == "200"

if service_ok:
reply = client.send(service, request)
if reply:
filename = reply_filename (uuid)
with open(filename, "w") as f:
pickle.dump(reply, f)
return True

return False

def main():
verbose = -V’ in sys.argv
ctx = zmg.Context()

Create MDP client session with short timeout

client = MajorDomoClient("tcp://localhost:5555", verbo se)
client.timeout = 1000 # 1 sec

client.retries = 1 # only 1 retry

request_pipe, peer = zpipe(ctx)

request_thread = threading.Thread(target=titanic_requ est, args=(peer,))
request_thread.daemon = True

request_thread.start()

reply_thread = threading.Thread(target=titanic_reply)

reply_thread.daemon = True

reply_thread.start()

close_thread = threading.Thread(target=titanic_close)

close_thread.daemon = True

close_thread.start()

poller = zmgq.Poller()
poller.register(request_pipe, zmqg.POLLIN)
Main dispatcher loop
while True:
Ensure message directory exists
if not os.path.exists(TITANIC_DIR):
0s.mkdir(TITANIC_DIR)
We'll dispatch once per second, if there’s no activity
try:
items = poller.poll(1000)
except KeyboardInterrupt:
break; # Interrupted

191

Chapter 4. Reliable Request-Reply Patterns

if items:

Append UUID to queue, prefixed with '-* for pending

uuid = request_pipe.recv()

with open(os.path.join(TITANIC_DIR, 'queue’), 'a’) as f:
f.write("-%s\n" % uuid)

Brute-force dispatcher

#
with open(os.path.join(TITANIC_DIR, ’'queue’), 'r+b’) as f:
for entry in f.readlines():
UUID is prefixed with =" if still waiting
if entry[0] == '-:
uuid = entry[1:].rstrip() # rstrip \n’ etc.
print "l: processing request %s" % uuid
if service_success(client, uuid):
mark queue entry as processed
here = f.tell()
f.seek(-1 *len(entry), 0s.SEEK_CUR)
f.write('+)
f.seek(here, 0s.SEEK_SET)
if _name__ =="'_ _main__"
main()
To test this, stanndbroker andtitanic , and then runiclient . Now startmdworker arbitrarily, and

you should see the client getting a response and exitingilyapp

Some notes about this code:

- Note that some loops start by sending, others by receivirgsages. This is because Titanic acts both
as a client and a worker in different roles.

« The Titanic broker uses the MMI service discovery protoodénd requests only to services that
appear to be running. Since the MMI implementation in otieliajordomo broker is quite poor, this
won’t work all the time.

« We use an inproc connection to send new request data frotitdtie.request service through to
the main dispatcher. This saves the dispatcher from hawisgén the disk directory, load all request
files, and sort them by date/time.

The important thing about this example is not performandeciy although | haven't tested it, is surely
terrible), but how well it implements the reliability coatt. To try it, start the mdbroker and titanic
programs. Then start the ticlient, and then start the mderagkho service. You can run all four of these
using the-v option to do verbose activity tracing. You can stop and réstay pieceexcept the client

and nothing will get lost.

If you want to use Titanic in real cases, you'll rapidly beiagk'how do we make this faster?"

192

Chapter 4. Reliable Request-Reply Patterns

Here’s what I'd do, starting with the example implementatio

- Use a single disk file for all data, rather than multiple fil®perating systems are usually better at
handling a few large files than many smaller ones.

+ Organize that disk file as a circular buffer so that new retpuesn be written contiguously (with very
occasional wraparound). One thread, writing full speedddsk file, can work rapidly.

- Keep the index in memory and rebuild the index at startup,tinoen the disk buffer. This saves the
extra disk head flutter needed to keep the index fully safegln dfou would want an fsync after every
message, or every N milliseconds if you were prepared totloséast M messages in case of a system
failure.

- Use a solid-state drive rather than spinning iron oxidet@iat

- Pre-allocate the entire file, or allocate it in large chunksich allows the circular buffer to grow and
shrink as needed. This avoids fragmentation and ensures\dsd reads and writes are contiguous.

And so on. What I'd not recommend is storing messages in ddsagq not even a "fast" key/value store,
unless you really like a specific database and don’'t havepagnce worries. You will pay a steep price
for the abstraction, ten to a thousand times over a raw disk fil

If you want to make Titanieven more reliableduplicate the requests to a second server, which you'd
place in a second location just far away enough to survivecéeauattack on your primary location, yet
not so far that you get too much latency.

If you want to make Titanienuch faster and less reliablstore requests and replies purely in memory.
This will give you the functionality of a disconnected netldout requests won't survive a crash of the
Titanic server itself.

193

Chapter 4. Reliable Request-Reply Patterns
4.13. High-Availability Pair (Binary Star Pattern)

Figure 4-6. High-Availability Pair, Normal Operation

Primary
"active"

Backup
"passive"

Client

The Binary Star pattern puts two servers in a primary-badlgp-availability paiFigure 4-7 At any

given time, one of these (the active) accepts connectioms élient applications. The other (the passive)
does nothing, but the two servers monitor each other. If thigeadisappears from the network, after a
certain time the passive takes over as active.

We developed the Binary Star pattern at iMatix for our Oper@berver (http://www.openamg.org). We
designed it:

- To provide a straightforward high-availability solution.
- To be simple enough to actually understand and use.

- To fail over reliably when needed, and only when needed.

Assuming we have a Binary Star pair running, here are thergifft scenarios that will result in a
failoverFigure 4-7

- The hardware running the primary server has a fatal probpewér supply explodes, machine
catches fire, or someone simply unplugs it by mistake), asalgliears. Applications see this, and
reconnect to the backup server.

- The network segment on which the primary server sits cragherhaps a router gets hit by a power
spike--and applications start to reconnect to the backwyese

- The primary server crashes or is killed by the operator ard dot restart automatically.

194

Chapter 4. Reliable Request-Reply Patterns

Figure 4-7. High-availability Pair During Failover

Primary
"passive"

Client

Recovery from failover works as follows:
- The operators restart the primary server and fix whatevdal@nos were causing it to disappear from
the network.

- The operators stop the backup server at a moment when itavilee minimal disruption to
applications.

- When applications have reconnected to the primary sehegperators restart the backup server.

Recovery (to using the primary server as active) is a mameation. Painful experience teaches us that
automatic recovery is undesirable. There are severalmeaso

- Failover creates an interruption of service to applicatjgossibly lasting 10-30 seconds. If there is a
real emergency, this is much better than total outage. Betibvery creates a further 10-30 second
outage, it is better that this happens off-peak, when users gone off the network.

- When there is an emergency, the absolute first priority gy for those trying to fix things.
Automatic recovery creates uncertainty for system adrnatisrs, who can no longer be sure which
server is in charge without double-checking.

- Automatic recovery can create situations where netwoike¥ar and then recover, placing operators
in the difficult position of analyzing what happened. Thegswan interruption of service, but the
cause isn't clear.

Having said this, the Binary Star pattern will fail back te gorimary server if this is running (again) and
the backup server fails. In fact, this is how we provoke recpv

The shutdown process for a Binary Star pair is to either:

195

Chapter 4. Reliable Request-Reply Patterns

1. Stop the passive server and then stop the active servey &tar time, or

2. Stop both servers in any order but within a few secondsdf ether.

Stopping the active and then the passive server with any dtahger than the failover timeout will cause
applications to disconnect, then reconnect, and then st again, which may disturb users.

4.13.1. Detailed Requirements

Binary Star is as simple as it can be, while still working aately. In fact, the current design is the third
complete redesign. Each of the previous designs we found todcomplex, trying to do too much, and
we stripped out functionality until we came to a design thaswnderstandable, easy to use, and reliable
enough to be worth using.

These are our requirements for a high-availability architee:

« The failover is meant to provide insurance against catpkteosystem failures, such as hardware
breakdown, fire, accident, and so on. There are simpler vearexbver from ordinary server crashes
and we already covered these.

- Failover time should be under 60 seconds and preferablyrdridgeconds.

- Failover has to happen automatically, whereas recovery hapgpen manually. We want applications
to switch over to the backup server automatically, but we @aonant them to switch back to the
primary server except when the operators have fixed whapeebtem there was and decided that it is
a good time to interrupt applications again.

- The semantics for client applications should be simple @sg éor developers to understand. Ideally,
they should be hidden in the client API.

- There should be clear instructions for network architeath@w to avoid designs that could lead to
split brain syndromgin which both servers in a Binary Star pair think they areabtive server.

- There should be no dependencies on the order in which thedwers are started.

It must be possible to make planned stops and restarts @i signver without stopping client
applications (though they may be forced to reconnect).

- Operators must be able to monitor both servers at all times.

- It must be possible to connect the two servers using a higkégdedicated network connection. That
is, failover synchronization must be able to use a specifiolfe.

We make the following assumptions:

- Asingle backup server provides enough insurance; we dee'dmultiple levels of backup.

- The primary and backup servers are equally capable of caytiie application load. We do not
attempt to balance load across the servers.

- There is sufficient budget to cover a fully redundant baclarges that does nothing almost all the
time.

196

Chapter 4. Reliable Request-Reply Patterns

We don’t attempt to cover the following:

The use of an active backup server or load balancing. In ariB&r pair, the backup server is
inactive and does no useful work until the primary serversguféline.

The handling of persistent messages or transactions in agyWle assume the existence of a network
of unreliable (and probably untrusted) servers or Binagy Bairs.

Any automatic exploration of the network. The Binary Stair gamanually and explicitly defined in
the network and is known to applications (at least in themfiguration data).

Replication of state or messages between servers. Allisside state must be recreated by
applications when they fail over.

Here is the key terminology that we use in Binary Star:

Primary: the server that is normally or initially active.

Backup the server that is normally passive. It will become actianid when the primary server
disappears from the network, and when client applicatiskglze backup server to connect.

Active the server that accepts client connections. There is at omesactive server.

Passivethe server that takes over if the active disappears. Naterthen a Binary Star pair is running
normally, the primary server is active, and the backup isipasWhen a failover has happened, the
roles are switched.

To configure a Binary Star pair, you need to:

1. Tell the primary server where the backup server is located
2. Tell the backup server where the primary server is located

3. Optionally, tune the failover response times, which niesthe same for both servers.

The main tuning concern is how frequently you want the sart@check their peering status, and how
quickly you want to activate failover. In our example, thiéd@er timeout value defaults to 2,000 msec.
If you reduce this, the backup server will take over as actieee rapidly but may take over in cases
where the primary server could recover. For example, youlmaag wrapped the primary server in a
shell script that restarts it if it crashes. In that casetitheout should be higher than the time needed to
restart the primary server.

For client applications to work properly with a Binary Staifpthey must:

1. Know both server addresses.
2. Try to connect to the primary server, and if that fails,ite backup server.
3. Detect a failed connection, typically using heartbestin

4. Try to reconnect to the primary, and then backup (in thaeor with a delay between retries that is
at least as high as the server failover timeout.

5. Recreate all of the state they require on a server.

197

Chapter 4. Reliable Request-Reply Patterns

6. Retransmit messages lost during a failover, if messaged to be reliable.
It's not trivial work, and we’d usually wrap this in an API thlaides it from real end-user applications.

These are the main limitations of the Binary Star pattern:

- A server process cannot be part of more than one Binary Star pa
- A primary server can have a single backup server, and no more.

- The passive server does no useful work, and is thus wasted.

- The backup server must be capable of handling full appticdbads.
- Failover configuration cannot be modified at runtime.

« Client applications must do some work to benefit from failove

4.13.2. Preventing Split-Brain Syndrome

Split-brain syndromeccurs when different parts of a cluster think they are aaivthe same time. It
causes applications to stop seeing each other. Binary &saarhalgorithm for detecting and eliminating
split brain, which is based on a three-way decision mechatasserver will not decide to become active
until it gets application connection requests and it calseetits peer server).

However, it is still possible to (mis)design a network tolftios algorithm. A typical scenario would be a
Binary Star pair, that is distributed between two buildingkere each building also had a set of
applications and where there was a single network link betvith buildings. Breaking this link would
create two sets of client applications, each with half ofBireary Star pair, and each failover server
would become active.

To prevent split-brain situations, we must connect a Bir&ey pair using a dedicated network link,
which can be as simple as plugging them both into the samelswit better, using a crossover cable
directly between two machines.

We must not split a Binary Star architecture into two islaredech with a set of applications. While this
may be a common type of network architecture, you shouldegerétion, not high-availability failover,
in such cases.

A suitably paranoid network configuration would use two gté/cluster interconnects, rather than a
single one. Further, the network cards used for the clusteitdwbe different from those used for
message traffic, and possibly even on different paths orgihveshardware. The goal is to separate
possible failures in the network from possible failureshia tluster. Network ports can have a relatively
high failure rate.

198

Chapter 4. Reliable Request-Reply Patterns

4.13.3. Binary Star Implementation

Without further ado, here is a proof-of-concept impleméateof the Binary Star server. The primary
and backup servers run the same code, you choose their ro&swou run the code:

Example 4-18. Binary Star server (bstarsrv.py)

Binary Star Server
#
Author: Dan Colish <dcolish@gmail.com>

from argparse import ArgumentParser
import time

from zhelpers import zmq

STATE_PRIMARY =1
STATE_BACKUP = 2
STATE_ACTIVE = 3

STATE_PASSIVE = 4

PEER_PRIMARY = 1
PEER_BACKUP = 2
PEER_ACTIVE = 3

PEER_PASSIVE = 4
CLIENT_REQUEST = 5

HEARTBEAT = 1000

class BStarState(object):
def __init_ (self, state, event, peer_expiry):
self.state = state
self.event = event
self.peer_expiry = peer_expiry

class BStarException(Exception):
pass

fsm_states = {
STATE_PRIMARY: {

PEER_BACKUP: ("I: connected to backup (slave), ready as mas ter",
STATE_ACTIVE),
PEER_ACTIVE: ("l: connected to backup (master), ready as sl ave",
STATE_PASSIVE)
h
STATE_BACKUP: {
PEER_ACTIVE: ("l: connected to primary (master), ready as s lave",

STATE_PASSIVE),
CLIENT_REQUEST: (™, False)

2

199

Chapter 4. Reliable Request-Reply Patterns

STATE_ACTIVE: {

PEER_ACTIVE: ("E: fatal error - dual masters, aborting", Fa Ise)
h
STATE_PASSIVE: {

PEER_PRIMARY: ("l: primary (slave) is restarting, ready as master",
STATE_ACTIVE),

PEER_BACKUP: ("l: backup (slave) is restarting, ready as ma ster",
STATE_ACTIVE),

PEER_PASSIVE: ("E: fatal error - dual slaves, aborting”, Fa Ise),

CLIENT_REQUEST: (CLIENT_REQUEST, True) # Say true, check p eer later

}

def run_fsm(fsm):
There are some transitional states we do not want to handle
state_dict = fsm_states.get(fsm.state, {})
res = state_dict.get(fsm.event)
if res:
msg, state = res
else:
return
if state is False:
raise BStarException(msg)
elif msg == CLIENT_REQUEST:
assert fsm.peer_expiry > 0
if int(time.time() * 1000) > fsm.peer_expiry:
fsm.state = STATE_ACTIVE

else:
raise BStarException()
else:
print(msg)
fsm.state = state
def main():

parser = ArgumentParser()

group = parser.add_mutually_exclusive_group()

group.add_argument("-p", "--primary”, action="store_t rue", default=False)
group.add_argument("-b", "--backup”, action="store_tr ue", default=False)
args = parser.parse_args()

ctx = zmg.Context()

statepub = ctx.socket(zmqg.PUB)

statesub = ctx.socket(zmg.SUB)
statesub.setsockopt_string(zmq.SUBSCRIBE, u™)
frontend = ctx.socket(zmq.ROUTER)

fsm = BStarState(0, 0, 0)
if args.primary:

print("l: Primary master, waiting for backup (slave)")
frontend.bind("tcp:// *:5001")

200

Chapter 4. Reliable Request-Reply Patterns

statepub.bind("tcp:// *:5003")
statesub.connect("tcp://localhost:5004")
fsm.state = STATE_PRIMARY

elif args.backup:
print("l: Backup slave, waiting for primary (master)")
frontend.bind("tcp:// *:5002")
statepub.bind("tcp:// *:5004")
statesub.connect("tcp://localhost:5003")
statesub.setsockopt_string(zmq.SUBSCRIBE, u™)
fsm.state = STATE_BACKUP

send_state_at = int(time.time() * 1000 + HEARTBEAT)
poller = zmgq.Poller()

poller.register(frontend, zmqg.POLLIN)

poller.register(statesub, zmqg.POLLIN)

while True:
time_left = send_state_at - int(time.time() * 1000)
if time_left < O:
time_left = 0

socks = dict(poller.poll(time_left))
if socks.get(frontend) == zmq.POLLIN:
msg = frontend.recv_multipart()
fsm.event = CLIENT_REQUEST
try:
run_fsm(fsm)
frontend.send_multipart(msg)
except BStarException:
del msg

if socks.get(statesub) == zmq.POLLIN:
msg = statesub.recv()
fsm.event = int(msg)

del msg
try:
run_fsm(fsm)
fsm.peer_expiry = int(time.time() * 1000) + (2 * HEARTBEAT)
except BStarException:
break
if int(time.time() * 1000) >= send_state_at:
statepub.send("%d" % fsm.state)
send_state_at = int(time.time() * 1000) + HEARTBEAT
if _name__ =="'__main__"

main()

And here is the client:

201

Chapter 4. Reliable Request-Reply Patterns

Example 4-19. Binary Star client (bstarcli.py)

from time import sleep
import zmq

REQUEST_TIMEOUT = 1000 # msecs
SETTLE_DELAY = 2000 # before failing over

def main():
server = ['tcp://localhost:5001’, 'tcp://localhost:500 2]
server_nbr = 0
ctx = zmqg.Context()
client = ctx.socket(zmg.REQ)
client.connect(server[server_nbr])
poller = zmq.Poller()
poller.register(client, zmg.POLLIN)

sequence = 0
while True:
client.send_string("%s" % sequence)

expect_reply = True
while expect_reply:
socks = dict(poller.poll(REQUEST_TIMEQUT))
if socks.get(client) == zmq.POLLIN:
reply = client.recv_string()
if int(reply) == sequence:
print("l: server replied OK (%s)" % reply)
expect_reply = False
sequence += 1
sleep(1)
else:
print("E: malformed reply from server: %s" % reply)
else:
print("W: no response from server, failing over")
sleep(SETTLE_DELAY / 1000)
poller.unregister(client)
client.close()
server_nbr = (server_nbr + 1) % 2
print("l: connecting to server at %s.." % server[server_nb r)
client = ctx.socket(zmg.REQ)
poller.register(client, zmg.POLLIN)
reconnect and resend request
client.connect(server[server_nbr])
client.send_string("%s" % sequence)
if _name__ =="'__main__"
main()

To test Binary Star, start the servers and client in any order

202

bstarsrv -p
bstarsrv -b
bstarcli

Start primary
Start backup

Chapter 4. Reliable Request-Reply Patterns

You can then provoke failover by killing the primary senamd recovery by restarting the primary and
killing the backup. Note how it’s the client vote that triggdailover, and recovery.

Binary star is driven by a finite state machiigure 4-8 Events are the peer state, so "Peer Active"
means the other server has told us it's active. "Client Retjueeans we've received a client request.
"Client Vote" means we've received a client request AND oegas inactive for two heartbeats.

Note that the servers use PUB-SUB sockets for state exchilloggther socket combination will work
here. PUSH and DEALER block if there is no peer ready to recaimnessage. PAIR does not reconnect
if the peer disappears and comes back. ROUTER needs thesaddithe peer before it can send it a

message.

Figure 4-8. Binary Star Finite State Machine

Start
I Client Request

Primary

Peer

\ctive

Peer Backup

Peer

Backup

>

} £ Client){equest

Error!

Peer Passive

Passive

Peer

Primary

Client)

fote

E

Back

Peer

203

Chapter 4. Reliable Request-Reply Patterns

4.13.4. Binary Star Reactor

Binary Star is useful and generic enough to package up asabskureactor class. The reactor then runs
and calls our code whenever it has a message to processsThigh nicer than copying/pasting the
Binary Star code into each server where we want that capabili

In C, we wrap the CZMQloop class that we saw befordoop lets you register handlers to react on
socket and timer events. In the Binary Star reactor, we gmkiandlers for voters and for state changes
(active to passive, and vice versa). Here istibtar API:

/I Create a new Binary Star instance, using local (bind) and
/I remote (connect) endpoints to set up the server peering.
bstar t *bstar_new (int primary, char *|ocal, char * remote);

/I Destroy a Binary Star instance
void bstar_destroy (bstar_t * self_p);

/I Return underlying zloop reactor, for timer and reader
/I registration and cancelation.
zloop_t *bstar_zloop (bstar_t * self);

/I Register voting reader
int bstar_voter (bstar_t *self, char *endpoint, int type,

zloop_fn handler, void *arg);

/I Register main state change handlers

void bstar_new_active (bstar_t *self, zloop_fn handler, void *arg);

void bstar_new_passive (bstar_t *self, zloop_fn handler, void *arg);
/I Start the reactor, which ends if a callback function retur ns -1,
/I or the process received SIGINT or SIGTERM.

int bstar_start (bstar_t * self);

And here is the class implementation:

Example 4-20. Binary Star core class (bstar.py)

Binary Star server

Author: Min RK <benjaminrk@gmail.com>

import time
import zmq
from zmgq.eventloop.ioloop import 10Loop, PeriodicCallba ck

from zmg.eventloop.zmgstream import ZMQStream

States we can be in at any point in time

204

STATE_PRIMARY =1
STATE_BACKUP = 2
STATE_ACTIVE = 3

STATE_PASSIVE = 4

Chapter 4. Reliable Request-Reply Patterns

Primary, waiting for peer to connect
Backup, waiting for peer to connect
Active - accepting connections

Passive - not accepting connections

Events, which start with the states our peer can be in

PEER_PRIMARY = 1
PEER_BACKUP = 2
PEER_ACTIVE = 3

PEER_PASSIVE = 4

CLIENT_REQUES 5

HA peer is pending primary
HA peer is pending backup
HA peer is active

HA peer is passive

Client makes request

We send state information every this often
If peer doesn't respond in two heartbeats, it is 'dead’

HEARTBEAT = 1000

class FSMError(Exception):

In msecs

""Exception class for invalid state"™

pass

class BinaryStar(object):

def __init_ (self, primary, local, remote):
initialize the Binary Star
self.ctx = zmq.Context() # Our private context
self.loop = IOLoop.instance() # Reactor loop
self.state = STATE_PRIMARY if primary else STATE_BACKUP

self.event = None # Current event

self.peer_expiry = 0 # When peer is considered 'dead’
self.voter_callback = None # Voting socket handler
self.master_callback = None # Call when become master
self.slave _callback = None # Call when become slave

Create publisher for state going to peer
self.statepub = self.ctx.socket(zmg.PUB)

self.statepub.bind(local)

Create subscriber for state coming from peer
self.statesub = self.ctx.socket(zmq.SUB)
self.statesub.setsockopt_string(zmg.SUBSCRIBE, u”)
self.statesub.connect(remote)

wrap statesub in ZMQStream for event triggers
self.statesub = ZMQStream(self.statesub, self.loop)

setup basic reactor events
self.heartbeat = PeriodicCallback(self.send_state,

HEARTBEAT, self.loop)

self.statesub.on_recv(self.recv_state)

def update_peer_expiry(self):

205

Chapter 4. Reliable Request-Reply Patterns

"""Update peer expiry time to be 2 heartbeats from now.
self.peer_expiry = time.time() + 2e-3 * HEARTBEAT

def start(self):
self.update_peer_expiry()
self.heartbeat.start()
return self.loop.start()

def execute_fsm(self):
""Binary Star finite state machine (applies event to state)

returns True if connections should be accepted, False other wise.
accept = True
if self.state == STATE_PRIMARY:
Primary server is waiting for peer to connect
Accepts CLIENT_REQUEST events in this state
if self.event == PEER_BACKUP:
print("l: connected to backup (slave), ready as master")
self.state = STATE_ACTIVE
if self.master_callback:
self.loop.add_callback(self.master_callback)
elif self.event == PEER_ACTIVE:
print("l: connected to backup (master), ready as slave")
self.state = STATE_PASSIVE
if self.slave_callback:
self.loop.add_callback(self.slave_callback)
elif self.event == CLIENT_REQUEST:
if time.time() >= self.peer_expiry:
print("l: request from client, ready as master")
self.state = STATE_ACTIVE
if self.master_callback:
self.loop.add_callback(self.master_callback)
else:
don't respond to clients yet - we don’'t know if
the backup is currently Active as a result of
a successful failover
accept = False
elif self.state == STATE_BACKUP:
Backup server is waiting for peer to connect
Rejects CLIENT_REQUEST events in this state
if self.event == PEER_ACTIVE:
print("l: connected to primary (master), ready as slave")
self.state = STATE_PASSIVE
if self.slave_callback:
self.loop.add_callback(self.slave_callback)
elif self.event == CLIENT_REQUEST:
accept = False
elif self.state == STATE_ACTIVE:
Server is active
Accepts CLIENT_REQUEST events in this state
The only way out of ACTIVE is death
if self.event == PEER_ACTIVE:

206

Chapter 4. Reliable Request-Reply Patterns

Two masters would mean split-brain
print("E: fatal error - dual masters, aborting")
raise FSMError("Dual Masters")
elif self.state == STATE_PASSIVE:
Server is passive
CLIENT_REQUEST events can trigger failover if peer looks d ead
if self.event == PEER_PRIMARY:
Peer is restarting - become active, peer will go passive
print("l: primary (slave) is restarting, ready as master")
self.state = STATE_ACTIVE
elif self.event == PEER_BACKUP:
Peer is restarting - become active, peer will go passive
print("l: backup (slave) is restarting, ready as master")
self.state = STATE_ACTIVE
elif self.event == PEER_PASSIVE:
Two passives would mean cluster would be non-responsive
print("E: fatal error - dual slaves, aborting")
raise FSMError("Dual slaves")
elif self.event == CLIENT_REQUEST:
Peer becomes master if timeout has passed
It's the client request that triggers the failover
assert self.peer_expiry > 0
if time.time() >= self.peer_expiry:
If peer is dead, switch to the active state
print("l: failover successful, ready as master")
self.state = STATE_ACTIVE
else:
If peer is alive, reject connections
accept = False
Call state change handler if necessary
if self.state == STATE_ACTIVE and self.master_callback:
self.loop.add_callback(self.master_callback)
return accept

Reactor event handlers...

def send_state(self):

"""Publish our state to peer™"
self.statepub.send_string("%d" % self.state)

def recv_state(self, msg):

"""Receive state from peer, execute finite state machine™ "
state = msg[0]
if state:
self.event = int(state)
self.update_peer_expiry()
self.execute_fsm()

def voter_ready(self, msg):

""Application wants to speak to us, see if it's possible"™
If server can accept input now, call appl handler
self.event = CLIENT _REQUEST

207

Chapter 4. Reliable Request-Reply Patterns

if self.execute_fsm():
print("CLIENT REQUEST")
self.voter_callback(self.voter_socket, msg)
else:
Message will be ignored
pass

H e

#

def register_voter(self, endpoint, type, handler):
""Create socket, bind to local endpoint, and register as re
voting. The socket will only be available if the Binary Star s
machine allows it. Input on the socket will act as a "vote" in t
Binary Star scheme. We require exactly one voter per bstar in

handler will always be called with two arguments: (socket,m
where socket is the one we are creating here, and msg is the mes
that triggered the POLLIN event.

assert self.voter_callback is None
socket = self.ctx.socket(type)
socket.bind(endpoint)
self.voter_socket = socket
self.voter_callback = handler

stream = ZMQStream(socket, self.loop)
stream.on_recv(self.voter_ready)

This gives us the following short main program for the server

Example 4-21. Binary Star server, using core class (bstarg2.py)

Binary Star server, using bstar reactor

Author: Min RK <benjaminrk@gmail.com>

import sys

import zmq

from bstar import BinaryStar
def echo(socket, msg):

""Echo service"™
socket.send_multipart(msg)

ader for
tate
he
stance.

sg)
sage

208

Chapter 4. Reliable Request-Reply Patterns

def main():

Arguments can be either of:

-p primary server, at tcp://localhost:5001

-b backup server, at tcp://localhost:5002

if '-p’ in sys.argv:
star = BinaryStar(True, "tcp:// *:5003", "tcp://localhost:5004")
star.register_voter("tcp:// *:5001", zmg.ROUTER, echo)

elif -b’ in sys.argv:
star = BinaryStar(False, "tcp:// *:5004", "tcp://localhost:5003")
star.register_voter("tcp:// *:5002", zmq.ROUTER, echo)

else:

print("Usage: bstarsrv2.py { -p | -b }\n")
return

star.start()

if _name__ =="'__main__"
main()

4.14. Brokerless Reliability (Freelance Pattern)

It might seem ironic to focus so much on broker-based rdifgbivhen we often explain MQ as
"brokerless messaging". However, in messaging, as inifeathe middleman is both a burden and a
benefit. In practice, most messaging architectures benefit & mix of distributed and brokered
messaging. You get the best results when you can decidg fubelt trade-offs you want to make. This is
why | can drive twenty minutes to a wholesaler to buy five cagegine for a party, but | can also walk
ten minutes to a corner store to buy one bottle for a dinnerh@ihly context-sensitive relative
valuations of time, energy, and cost are essential to tHewaé economy. And they are essential to an
optimal message-based architecture.

This is why @MQ does ndmposea broker-centric architecture, though it does give you tioéstto
build brokers, akgroxies and we've built a dozen or so different ones so far, just facpice.

So we’ll end this chapter by deconstructing the broker-8askability we've built so far, and turning it
back into a distributed peer-to-peer architecture | calfheelance pattern. Our use case will be a name
resolution service. This is a common problem with @MQ akettitres: how do we know the endpoint to
connect to? Hard-coding TCP/IP addresses in code is insfagile. Using configuration files creates
an administration nightmare. Imagine if you had to handfigome your web browser, on every PC or
mobile phone you used, to realize that "google.com" wasl'Z%3.230.82".

A BMQ name service (and we’ll make a simple implementatiooynuo the following:

- Resolve a logical name into at least a bind endpoint, and aemirendpoint. A realistic name service
would provide multiple bind endpoints, and possibly muéiponnect endpoints as well.

209

Chapter 4. Reliable Request-Reply Patterns

- Allow us to manage multiple parallel environments, e.gstt versus "production”, without
modifying code.

- Bereliable, because if it is unavailable, applications e able to connect to the network.

Putting a name service behind a service-oriented Majordomoker is clever from some points of view.
However, it's simpler and much less surprising to just expbg name service as a server to which
clients can connect directly. If we do this right, the nameise becomes thenly global network
endpoint we need to hard-code in our code or configuration file

Figure 4-9. The Freelance Pattern

l Client ' l Client ' l Client '

connect connect nnect

| Server I I Server I I Server I

The types of failure we aim to handle are server crashes atartg server busy looping, server
overload, and network issues. To get reliability, we’'llatea pool of name servers so if one crashes or
goes away, clients can connect to another, and so on. Inggato would be enough. But for the
example, we’'ll assume the pool can be anyBigare 5-1

In this architecture, a large set of clients connect to alssealbf servers directly. The servers bind to
their respective addresses. It's fundamentally diffefiearh a broker-based approach like Majordomo,
where workers connect to the broker. Clients have a coupbptidns:

- Use REQ sockets and the Lazy Pirate pattern. Easy, but weeld some additional intelligence so
clients don't stupidly try to reconnect to dead servers avet over.

« Use DEALER sockets and blast out requests (which will be lmaldnced to all connected servers)
until they get a reply. Effective, but not elegant.

« Use ROUTER sockets so clients can address specific serudreo® does the client know the
identity of the server sockets? Either the server has tothieglient first (complex), or the server has
to use a hard-coded, fixed identity known to the client (Nasty

We'll develop each of these in the following subsections.

210

Chapter 4. Reliable Request-Reply Patterns

4.14.1. Model One: Simple Retry and Failover

So our menu appears to offer: simple, brutal, complex, otynkst's start with simple and then work out
the kinks. We take Lazy Pirate and rewrite it to work with nmpl#é server endpoints.

Start one or several servers first, specifying a bind endpsithe argument:

Example 4-22. Freelance server, Model One (flserverl.py)

#

Freelance server - Model 1

Trivial echo service

#

Author: Daniel Lundin <dIn(at)eintr(dot)org>
#

import sys
import zmqg

if len(sys.argv) < 2:
print "l: Syntax: %s <endpoint>" % sys.argv[0]
sys.exit(0)

endpoint = sys.argv[1]

context = zmgq.Context()

server = context.socket(zmg.REP)
server.bind(endpoint)

print "I: Echo service is ready at %s" % endpoint
while True:
msg = server.recv_multipart()
if not msg:
break # Interrupted
server.send_multipart(msg)

server.setsockopt(zmq.LINGER, 0) # Terminate immediatel y

Then start the client, specifying one or more connect endp@is arguments:

Example 4-23. Freelance client, Model One (flclient1.py)

Freelance Client - Model 1
Uses REQ socket to query one or more services

Author: Daniel Lundin <dIn(at)eintr(dot)org>

HOH OH H K H

import sys
import time

211

Chapter 4. Reliable Request-Reply Patterns
import zmq

REQUEST_TIMEOUT = 1000 # ms
MAX_RETRIES = 3 # Before we abandon

def try_request(ctx, endpoint, request):
print "l: Trying echo service at %s..." % endpoint
client = ctx.socket(zmg.REQ)
client.setsockopt(zmq.LINGER, 0) # Terminate early
client.connect(endpoint)
client.send(request)
poll = zmgq.Poller()
poll.register(client, zmq.POLLIN)
socks = dict(poll.poll(REQUEST_TIMEOUT))
if socks.get(client) == zmq.POLLIN:
reply = client.recv_multipart()
else:
reply ="
poll.unregister(client)
client.close()
return reply

context = zmgq.Context()
request = "Hello world"
reply = None

endpoints = len(sys.argv) - 1
if endpoints ==
print "l: syntax: %s <endpoint> ..." % sys.argv[0]
elif endpoints ==
For one endpoint, we retry N times
endpoint = sys.argv[1]
for retries in xrange(MAX_RETRIES):
reply = try_request(context, endpoint, request)
if reply:
break # Success
print "W: No response from %s, retrying" % endpoint
else:
For multiple endpoints, try each at most once
for endpoint in sys.argv[1l:]:
reply = try_request(context, endpoint, request)
if reply:
break # Success
print "W: No response from %s" % endpoint

if reply:

print "Service is running OK"

A sample runis:

flserverl tcp:// *:5555 &
flserverl tcp:// *:5556 &

212

Chapter 4. Reliable Request-Reply Patterns

flclientl tcp://localhost:5555 tcp://localhost:5556

Although the basic approach is Lazy Pirate, the client aoragt get one successful reply. It has two
techniques, depending on whether you are running a singlerser multiple servers:

- With a single server, the client will retry several timesaetty as for Lazy Pirate.

- With multiple servers, the client will try each server at haisce until it's received a reply or has tried
all servers.

This solves the main weakness of Lazy Pirate, namely thatildcnot fail over to backup or alternate
servers.

However, this design won't work well in a real applicatiohwie’re connecting many sockets and our
primary name server is down, we're going to experience thisfpl timeout each time.

4.14.2. Model Two: Brutal Shotgun Massacre

Let's switch our client to using a DEALER socket. Our goaléderto make sure we get a reply back
within the shortest possible time, no matter whether a @agr server is up or down. Our client takes
this approach:

- We set things up, connecting to all servers.
- When we have a request, we blast it out as many times as we blaxEs
- We wait for the first reply, and take that.

- We ignore any other replies.

What will happen in practice is that when all servers are ngIZMQ will distribute the requests so

that each server gets one request and sends one reply. Whearaer is offline and disconnected, ZMQ
will distribute the requests to the remaining servers. Serees may in some cases get the same request
more than once.

What's more annoying for the client is that we’ll get mulgpkplies back, but there’s no guarantee we’ll
get a precise number of replies. Requests and replies cdosyée.g., if the server crashes while
processing a request).

So we have to number requests and ignore any replies thatrdatch the request number. Our Model
One server will work because it's an echo server, but coargie is not a great basis for understanding.
So we’ll make a Model Two server that chews up the messageetnichs a correctly numbered reply
with the content "OK". We'll use messages consisting of t@aq a sequence number and a body.

Start one or more servers, specifying a bind endpoint eawsdt ti

213

Chapter 4. Reliable Request-Reply Patterns

Example 4-24. Freelance server, Model Two (flserver2.py)

#

Freelance server - Model 2

Does some work, replies OK, with message sequencing
#

Author: Daniel Lundin <dIn(at)eintr(dot)org>

#

import sys

import zmq

if len(sys.argv) < 2:
print "l: Syntax: %s <endpoint>" % sys.argv[0]
sys.exit(0)

endpoint = sys.argv[1]

context = zmgq.Context()

server = context.socket(zmg.REP)
server.bind(endpoint)

print "l: Service is ready at %s" % endpoint
while True:
request = server.recv_multipart()
if not request:
break # Interrupted
Fail nastily if run against wrong client
assert len(request) ==

address = request[0]
reply = [address, "OK"]

server.send_multipart(reply)

server.setsockopt(zmq.LINGER, 0) # Terminate early

Then start the client, specifying the connect endpoints@smaents:

Example 4-25. Freelance client, Model Two (flclient2.py)

#

Freelance Client - Model 2

Uses DEALER socket to blast one or more services
#

Author: Daniel Lundin <dIn(at)eintr(dot)org>

#

import sys

import time

import zmqg

GLOBAL_TIMEOUT = 2500 # ms

214

Chapter 4. Reliable Request-Reply Patterns

class FLClient(object):
def __init_ (self):
self.servers = 0
self.sequence = 0
self.context = zmg.Context()
self.socket = self.context.socket(zmq.DEALER) # DEALER

def destroy(self):
self.socket.setsockopt(zmg.LINGER, 0) # Terminate early
self.socket.close()
self.context.term()

def connect(self, endpoint):
self.socket.connect(endpoint)
self.servers += 1
print "l: Connected to %s" % endpoint

def request(self, * request):
Prefix request with sequence number and empty envelope
self.sequence += 1
msg = [", str(self.sequence)] + list(request)

Blast the request to all connected servers
for server in xrange(self.servers):
self.socket.send_multipart(msg)

Wait for a matching reply to arrive from anywhere
Since we can poll several times, calculate each one
poll = zmgq.Poller()

poll.register(self.socket, zmq.POLLIN)

reply = None
endtime = time.time() + GLOBAL_TIMEOUT / 1000
while time.time() < endtime:
socks = dict(poll.poll((endtime - time.time()) +* 1000))
if socks.get(self.socket) == zmq.POLLIN:
reply = self.socket.recv_multipart()
assert len(reply) ==
sequence = int(reply[1])
if sequence == self.sequence:
break
return reply

if len(sys.argv) ==
print "l: Usage: %s <endpoint> ..." % sys.argv[0]
sys.exit(0)

Create new freelance client object
client = FLClient()

for endpoint in sys.argv[l:]:

215

Chapter 4. Reliable Request-Reply Patterns
client.connect(endpoint)

start = time.time()

for requests in xrange(10000):
request = "random name"
reply = client.request(request)

if not reply:
print "E: Name service not available, aborting"
break
print "Average round trip cost: %i usec" % ((time.time() - st art) / 100)

client.destroy()

Here are some things to note about the client implementation

« The clientis structured as a nice little class-based ARlhftes the dirty work of creating @MQ
contexts and sockets and talking to the server. That is,lib&gsin blast to the midriff can be called
"talking".

- The client will abandon the chase if it can’t fimthy responsive server within a few seconds.

- The client has to create a valid REP envelope, i.e., add atyemgssage frame to the front of the
message.

The client performs 10,000 name resolution requests (faks,@s our server does essentially nothing)
and measures the average cost. On my test box, talking tceower sthis requires about 60
microseconds. Talking to three servers, it takes about 80oséconds.

The pros and cons of our shotgun approach are:

- Pro: itis simple, easy to make and easy to understand.

- Pro: it does the job of failover, and works rapidly, so londtese is at least one server running.
« Con: it creates redundant network traffic.

- Con: we can't prioritize our servers, i.e., Primary, thec@alary.

- Con: the server can do at most one request at a time, period.

4.14.3. Model Three: Complex and Nasty

The shotgun approach seems too good to be true. Let’s bdificiand work through all the alternatives.
We're going to explore the complex/nasty option, even # dthly to finally realize that we preferred
brutal. Ah, the story of my life.

We can solve the main problems of the client by switching t@JRER socket. That lets us send
requests to specific servers, avoid servers we know are deddy general be as smart as we want to be.
We can also solve the main problem of the server (singleattedness) by switching to a ROUTER
socket.

216

Chapter 4. Reliable Request-Reply Patterns

But doing ROUTER to ROUTER between two anonymous socketgcfwiaven't set an identity) is not
possible. Both sides generate an identity (for the other) megy when they receive a first message, and
thus neither can talk to the other until it has first receivegessage. The only way out of this conundrum
is to cheat, and use hard-coded identities in one directiba.proper way to cheat, in a client/server
case, is to let the client "know" the identity of the servewirly it the other way around would be insane,
on top of complex and nasty, because any number of clientddhe able to arise independently.
Insane, complex, and nasty are great attributes for a géalatictator, but terrible ones for software.

Rather than invent yet another concept to manage, we’'llhesednnection endpoint as identity. This is a
unique string on which both sides can agree without more griowledge than they already have for the
shotgun model. It's a sneaky and effective way to connectR@QTER sockets.

Remember how @MQ identities work. The server ROUTER sodakistan identity before it binds its
socket. When a client connects, they do a little handsha&grdbange identities, before either side sends
a real message. The client ROUTER socket, having not seteantitiyl sends a null identity to the server.
The server generates a random UUID to designate the cliefisfown use. The server sends its identity
(which we've agreed is going to be an endpoint string) to tleat

This means that our client can route a message to the seresénd on its ROUTER socket, specifying
the server endpoint as identity) as soon as the connectastablished. That's nainmediatelafter

doing azmq_connect() , but some random time thereafter. Herein lies one problesrden’t know

when the server will actually be available and completedtsnection handshake. If the server is online,
it could be after a few milliseconds. If the server is down #melsysadmin is out to lunch, it could be an
hour from now.

There’s a small paradox here. We need to know when serveosrteeconnected and available for work.
In the Freelance pattern, unlike the broker-based patteersaw earlier in this chapter, servers are silent
until spoken to. Thus we can't talk to a server until it's tolslit's online, which it can’t do until we've
asked it.

My solution is to mix in a little of the shotgun approach fronodel 2, meaning we’'ll fire (harmless)
shots at anything we can, and if anything moves, we knowlit/'® alWe're not going to fire real requests,
but rather a kind of ping-pong heartbeat.

This brings us to the realm of protocols again, so here’s @ spec that defines how a Freelance client
and server exchange ping-pong commands and request-mpipands (http://rfc.zeromq.org/spec:10).

It is short and sweet to implement as a server. Here’s our seher, Model Three, now speaking FLP:

Example 4-26. Freelance server, Model Three (flserver3.py)

""" Freelance server - Model 3

Uses an ROUTER/ROUTER socket but just one thread

217

Author: Min RK <benjaminrk@gmail.com>

import sys
import zmq
from zhelpers import dump

def main():
verbose = -V’ in sys.argv

ctx = zmq.Context()

Prepare server socket with predictable identity
bind_endpoint = "tcp:// *:5555"
connect_endpoint = "tcp://localhost:5555"

server = ctx.socket(zmq.ROUTER)

server.identity = connect_endpoint
server.bind(bind_endpoint)

print "I: service is ready at", bind_endpoint

while True:
try:
request = server.recv_multipart()
except:
break # Interrupted
Frame 0: identity of client
Frame 1: PING, or client control frame
Frame 2: request body
address, control = request[:2]
reply = [address, control]
if control == "PING":
reply[1] = "PONG"
else:
reply.append("OK")
if verbose:
dump(reply)
server.send_multipart(reply)
print "W: interrupted"
if __name__ =="'_ _main__"
main()

Chapter 4. Reliable Request-Reply Patterns

The Freelance client, however, has gotten large. For gléf# split into an example application and a
class that does the hard work. Here’s the top-level apjiicat

218

Chapter 4. Reliable Request-Reply Patterns

Example 4-27. Freelance client, Model Three (flclient3.py)

Freelance client - Model 3
Uses flcliapi class to encapsulate Freelance pattern

Author : Min RK <benjaminrk@gmail.com>

import time
from flcliapi import FreelanceClient

def main():
Create new freelance client object
client = FreelanceClient()

Connect to several endpoints

client.connect ("tcp://localhost:5555")
client.connect (“tcp://localhost:5556")
client.connect ("tcp://localhost:5557")

Send a bunch of name resolution 'requests’, measure time
requests = 10000
start = time.time()
for i in range(requests):
request = ['random name"]
reply = client.request(request)
if not reply:
print "E: name service not available, aborting"
return

print "Average round trip cost: %d usec" % (1e6 * (time.time() - start) / requests)

if _name__ =="'_ _main__"

main()

And here, almost as complex and large as the Majordomo hyriskide client API class:

Example 4-28. Freelance client API (flcliapi.py)

flcliapi - Freelance Pattern agent class
Model 3: uses ROUTER socket to address specific services

Author: Min RK <benjaminrk@gmail.com>

import threading
import time

219

Chapter 4. Reliable Request-Reply Patterns
import zmq
from zhelpers import zpipe

If no server replies within this time, abandon request
GLOBAL_TIMEOUT = 3000 # msecs

PING interval for servers we think are alivecp
PING_INTERVAL = 2000 # msecs

Server considered dead if silent for this long
SERVER_TTL = 6000 # msecs

def flciapi_agent(peer):
""This is the thread that handles our real flcliapi class

pass

#
Synchronous part, works in our application thread

class FreelanceClient(object):

ctx = None # Our Context
pipe = None # Pipe through to flciapi agent
agent = None # agent in a thread

def __init_ (self):
self.ctx = zmg.Context()
self.pipe, peer = zpipe(self.ctx)
self.agent = threading.Thread(target=agent_task, args= (self.ctx,peer))
self.agent.daemon = True
self.agent.start()

def connect(self, endpoint):
""Connect to new server endpoint
Sends [CONNECT][endpoint] to the agent
self.pipe.send_multipart(["CONNECT", endpoint])
time.sleep(0.1) # Allow connection to come up

def request(self, msg):
"Send request, get reply"
request = ["REQUEST"] + msg
self.pipe.send_multipart(request)
reply = self.pipe.recv_multipart()
status = reply.pop(0)
if status != "FAILED™

return reply

#
Asynchronous part, works in the background

220

Chapter 4. Reliable Request-Reply Patterns

#
Simple class for one server we talk to

class FreelanceServer(object):
endpoint = None
alive = True
ping_at = 0
expires = 0

Server identity/endpoint
1 if known to be alive
Next ping at this time
Expires at this time

def __init_ (self, endpoint):
self.endpoint = endpoint
self.alive = True
self.ping_at = time.time() + le-3
self.expires = time.time() + 1le-3

def ping(self, socket):
if time.time() > self.ping_at:
socket.send_multipart([self.endpoint, 'PING’])
self.ping_at = time.time() + le-3

def tickless(self, tickless):
if tickless > self.ping_at:
tickless = self.ping_at
return tickless

#
Simple class for one background agent

class FreelanceAgent(object):
ctx = None
pipe = None
router = None
servers = None
actives = None

Own context

* PING_INTERVAL
*SERVER_TTL

* PING_INTERVAL

Socket to talk back to application
Socket to talk to servers

Servers we've connected to

Servers we know are alive

sequence = 0
request = None
reply = None
expires = 0

Number of requests ever sent
Current request if any

Current reply if any

Timeout for request/reply

def __init_ (self, ctx, pipe):
self.ctx = ctx
self.pipe = pipe
self.router = ctx.socket(zmg.ROUTER)
self.servers = {}
self.actives = []

def control_message (self):
msg = self.pipe.recv_multipart()
command = msg.pop(0)

if command == "CONNECT":
endpoint = msg.pop(0)
print "l: connecting to %s..\n" % endpoint,

221

Chapter 4. Reliable Request-Reply Patterns

self.router.connect(endpoint)

server = FreelanceServer(endpoint)
self.servers[endpoint] = server
self.actives.append(server)

these are in the C case, but seem redundant:

server.ping_at = time.time() + le-3 * PING_INTERVAL

server.expires = time.time() + 1le-3 * SERVER_TTL
elif command == "REQUEST":

assert not self.request # Strict request-reply cycle

Prefix request with sequence number and empty envelope
self.request = [str(self.sequence), "] + msg

Request expires after global timeout
self.expires = time.time() + le-3 * GLOBAL_TIMEOUT

def router_message (self):

reply = self.router.recv_multipart()

Frame 0 is server that replied

endpoint = reply.pop(0)

server = self.servers[endpoint]

if not server.alive:
self.actives.append(server)
server.alive = 1

server.ping_at = time.time() + le-3 * PING_INTERVAL
server.expires = time.time() + le-3 * SERVER_TTL;

Frame 1 may be sequence number for reply
sequence = reply.pop(0)
if int(sequence) == self.sequence:
self.sequence += 1
reply = ['OK"] + reply
self.pipe.send_multipart(reply)
self.request = None

O,
Asynchronous agent manages server pool and handles reques t/reply
dialog when the application asks for it.

def agent_task(ctx, pipe):
agent = FreelanceAgent(ctx, pipe)
poller = zmgq.Poller()
poller.register(agent.pipe, zmq.POLLIN)
poller.register(agent.router, zmq.POLLIN)

while True:
Calculate tickless timer, up to 1 hour
tickless = time.time() + 3600
if (agent.request and tickless > agent.expires):
tickless = agent.expires
for server in agent.servers.values():
tickless = server.tickless(tickless)

222

Chapter 4. Reliable Request-Reply Patterns

try:

items = dict(poller.poll(1000 * (tickless - time.time())))
except:

break # Context has been shut down

if agent.pipe in items:
agent.control_message()

if agent.router in items:
agent.router_message()

If we're processing a request, dispatch to next server
if (agent.request):
if (time.time() >= agent.expires):
Request expired, Kill it
agent.pipe.send("FAILED")
agent.request = None
else:
Find server to talk to, remove any expired ones
while agent.actives:
server = agent.actives|[0]
if time.time() >= server.expires:
server.alive = 0
agent.actives.pop(0)
else:
request = [server.endpoint] + agent.request
agent.router.send_multipart(request)
break

Disconnect and delete any expired servers

Send heartbeats to idle servers if needed

for server in agent.servers.values():
server.ping(agent.router)

This APl implementation is fairly sophisticated and usesuapte of techniques that we've not seen
before.

- Multithreaded API : the client API consists of two parts, a synchronécl&pi class that runsin
the application thread, and an asynchronagentclass that runs as a background thread. Remember
how @MQ makes it easy to create multithreaded apps. Theffldiad agent classes talk to each other
with messages over amproc socket. All @MQ aspects (such as creating and destroyinggext
are hidden in the API. The agent in effect acts like a minikerotalking to servers in the background,
so that when we make a request, it can make a best effort th eeserver it believes is available.

- Tickless poll timer: in previous poll loops we always used a fixed tick intervad, €l second, which
is simple enough but not excellent on power-sensitive tdiésuch as notebooks or mobile phones),
where waking the CPU costs power. For fun, and to help savplémet, the agent usegiekless
timer, which calculates the poll delay based on the next timeouevexpecting. A proper
implementation would keep an ordered list of timeouts. Vé gneck all timeouts and calculate the
poll delay until the next one.

223

Chapter 4. Reliable Request-Reply Patterns

4.15. Conclusion

In this chapter, we've seen a variety of reliable requeglyrmechanisms, each with certain costs and
benefits. The example code is largely ready for real usegthdus not optimized. Of all the different
patterns, the two that stand out for production use are therslamo pattern, for broker-based
reliability, and the Freelance pattern, for brokerlesmwlity.

224

Chapter 5. Advanced Pub-Sub Patterns

In Advanced Request-Reply Patte@apter 3and Reliable Request-Reply PatteChspter 4ve looked
at advanced use of @MQ’s request-reply pattern. If you medag digest all that, congratulations. In
this chapter we’ll focus on publish-subscribe and extend@8tore pub-sub pattern with higher-level
patterns for performance, reliability, state distribatiand monitoring.

We'll cover:

- When to use publish-subscribe

« How to handle too-slow subscribers (t8aicidal Snaipattern)
- How to design high-speed subscribers @lack Boxpattern)

- How to monitor a pub-sub network (tliEspressgattern)

- How to build a shared key-value store ({nepattern)

- How to use reactors to simplify complex servers

- How to use the Binary Star pattern to add failover to a server

5.1. Pros and Cons of Pub-Sub

@MQ’s low-level patterns have their different charact@sb-sub addresses an old messaging problem,
which ismulticastor group messagingdt has that unique mix of meticulous simplicity and brutal
indifference that characterizes @MQ. It's worth underdtag the trade-offs that pub-sub makes, how
these benefit us, and how we can work around them if needed.

First, PUB sends each message to "all of many", whereas PUSIBBALER rotate messages to "one
of many". You cannot simply replace PUSH with PUB or vice eesad hope that things will work. This
bears repeating because people seem to quite often sugyestlis.

More profoundly, pub-sub is aimed at scalability. This nekange volumes of data, sent rapidly to many
recipients. If you need millions of messages per secondteehbusands of points, you'll appreciate
pub-sub a lot more than if you need a few messages a secono selnandful of recipients.

To get scalability, pub-sub uses the same trick as pushyplith is to get rid of back-chatter. This
means that recipients don't talk back to senders. Thereoane &xceptions, e.g., SUB sockets will send
subscriptions to PUB sockets, but it's anonymous and infeat

Killing back-chatter is essential to real scalability. Wigub-sub, it's how the pattern can map cleanly to
the PGM multicast protocol, which is handled by the netwavkeh. In other words, subscribers don’t
connect to the publisher at all, they connect to a multigestipon the switch, to which the publisher
sends its messages.

225

Chapter 5. Advanced Pub-Sub Patterns

When we remove back-chatter, our overall message flow bezaomehsimpler, which lets us make
simpler APls, simpler protocols, and in general reach maaserpeople. But we also remove any
possibility to coordinate senders and receivers. Whatti@ans is:

- Publishers can't tell when subscribers are successfulipected, both on initial connections, and on
reconnections after network failures.

« Subscribers can't tell publishers anything that wouldwlfublishers to control the rate of messages
they send. Publishers only have one setting, whidhlisspeed and subscribers must either keep up or
lose messages.

- Publishers can't tell when subscribers have disappearedodorocesses crashing, networks breaking,
and so on.

The downside is that we actually need all of these if we wanioteeliable multicast. The @MQ pub-sub
pattern will lose messages arbitrarily when a subscribeomnecting, when a network failure occurs, or
just if the subscriber or network can’t keep up with the psitodir.

The upside is that there are many use cases wdiarastreliable multicast is just fine. When we need

this back-chatter, we can either switch to using ROUTER-DRER (which | tend to do for most normal
volume cases), or we can add a separate channel for synzationi(we’ll see an example of this later
in this chapter).

Pub-sub is like a radio broadcast; you miss everything leefou join, and then how much information
you get depends on the quality of your reception. Surprigjrigis model is useful and widespread
because it maps perfectly to real world distribution of imfi@tion. Think of Facebook and Twitter, the
BBC World Service, and the sports results.

As we did for request-reply, let's defimeliability in terms of what can go wrong. Here are the classic
failure cases for pub-sub:

- Subscribers join late, so they miss messages the servadglsent.

« Subscribers can fetch messages too slowly, so queues Ipudlddithen overflow.
- Subscribers can drop off and lose messages while they age awa

- Subscribers can crash and restart, and lose whatever @gtaltbady received.

- Networks can become overloaded and drop data (specifitalIpGM).

- Networks can become too slow, so publisher-side queuefl@veand publishers crash.

A lot more can go wrong but these are the typical failures vesiisa realistic system. Since v3.x, @MQ
forces default limits on its internal buffers (the so-cdllégh-water mark or HWM), so publisher crashes
are rarer unless you deliberately set the HWM to infinite.

All of these failure cases have answers, though not alwayglsiones. Reliability requires complexity
that most of us don't need, most of the time, which is why @M@sitt attempt to provide it out of the
box (even if there was one global design for reliability, eihthere isn't).

226

Chapter 5. Advanced Pub-Sub Patterns

5.2. Pub-Sub Tracing (Espresso Pattern)

Let’s start this chapter by looking at a way to trace pub-setiworks. In Sockets and Patte@isapter 2
we saw a simple proxy that used these to do transport brid@imezmqg_proxy() method has three
arguments: drontendandbackendsocket that it bridges together, andapturesocket to which it will
send all messages.

The code is deceptively simple:

Example 5-1. Espresso Pattern (espresso.py)

Espresso Pattern
This shows how to capture data using a pub-sub proxy
#

import time

from random import randint
from string import uppercase
from threading import Thread

import zmq
from zmgq.devices import monitored_queue

from zhelpers import zpipe

The subscriber thread requests messages starting with
A and B, then reads and counts incoming messages.

def subscriber_thread():
ctx = zmg.Context.instance()

Subscribe to "A" and "B"

subscriber = ctx.socket(zmq.SUB)
subscriber.connect("tcp://localhost:6001")
subscriber.setsockopt(zmg.SUBSCRIBE, b"A")
subscriber.setsockopt(zmg.SUBSCRIBE, b"B")

count = 0
while True:
try:
msg = subscriber.recv_multipart()
except zmg.ZMQError as e:
if e.errno == zmg.ETERM:

break # Interrupted
else:
raise
count += 1

print ("Subscriber received %d messages" % count)

227

Chapter 5. Advanced Pub-Sub Patterns
.split publisher thread
The publisher sends random messages starting with A-J:

def publisher_thread():
ctx = zmg.Context.instance()

publisher = ctx.socket(zmqg.PUB)

publisher.bind("tcp:// *:6000")

while True:
string = "%s-%05d" % (uppercase[randint(0,10)], randint(0,100000))
try:

publisher.send(string)
except zmqg.ZMQError as e:
if e.errno == zmg.ETERM:

break # Interrupted
else:
raise
time.sleep(0.1) # Wait for 1/10th second

.split listener thread

The listener receives all messages flowing through the pro Xy, on its
pipe. Here, the pipe is a pair of ZMQ_PAIR sockets that conne cts
attached child threads via inproc. In other languages your mileage may vary:

def listener_thread (pipe):

Print everything that arrives on pipe
while True:
try:
print (pipe.recv_multipart())
except zmqg.ZMQError as e:
if e.errno == zmq.ETERM:
break # Interrupted

.split main thread

The main task starts the subscriber and publisher, and then sets
itself up as a listening proxy. The listener runs as a child t hread:
def main ():

Start child threads

ctx = zmg.Context.instance()

p_thread = Thread(target=publisher_thread)
s_thread = Thread(target=subscriber_thread)
p_thread.start()

s_thread.start()

pipe = zpipe(ctx)

228

Chapter 5. Advanced Pub-Sub Patterns

subscriber = ctx.socket(zmg.XSUB)
subscriber.connect("tcp://localhost:6000")

publisher = ctx.socket(zmg.XPUB)
publisher.bind("tcp:// *:6001")

|_thread = Thread(target=listener_thread, args=(pipe[l 1)
|_thread.start()

try:

monitored_queue(subscriber, publisher, pipe[0], 'pub’, 'sub’)
except Keyboardinterrupt:

print ("Interrupted"”)

del subscriber, publisher, pipe
ctx.term()

if _name__ =="'_ _main__"

main()

Espresso works by creating a listener thread that readsR §#dket and prints anything it gets. That
PAIR socket is one end of a pipe; the other end (another PAIR)a socket we pass teng_proxy()

In practice, you'd filter interesting messages to get theress of what you want to track (hence the
name of the pattern).

The subscriber thread subscribes to "A" and "B", receivesrfiessages, and then destroys its socket.
When you run the example, the listener prints two subsoriptiessages, five data messages, two
unsubscribe messages, and then silence:

[002] 0141
[002] 0142
[007] B-91164
[007] B-12979
[007] A-52599
[007] A-06417
[007] A-45770
[002] 0041
[002] 0042

This shows neatly how the publisher socket stops sendiregvaagn there are no subscribers for it. The
publisher thread is still sending messages. The sockedijaps them silently.

5.3. Last Value Caching

If you've used commercial pub-sub systems, you may be ussdn features that are missing in the
fast and cheerful MQ pub-sub model. One of thedagsvalue cachingLVC). This solves the
problem of how a new subscriber catches up when it joins th&ark. The theory is that publishers get

229

Chapter 5. Advanced Pub-Sub Patterns

notified when a new subscriber joins and subscribes to sogwfiEptopics. The publisher can then
rebroadcast the last message for those topics.

I've already explained why publishers don't get notified whieere are new subscribers, because in large
pub-sub systems, the volumes of data make it pretty muchggiple. To make really large-scale

pub-sub networks, you need a protocol like PGM that exphoitsipscale Ethernet switch’s ability to
multicast data to thousands of subscribers. Trying to do R tidicast from the publisher to each of
thousands of subscribers just doesn’t scale. You get wpikes, unfair distribution (some subscribers
getting the message before others), network congestiorg@meral unhappiness.

PGM is a one-way protocol: the publisher sends a message titi@ast address at the switch, which
then rebroadcasts that to all interested subscribers. tiblesher never sees when subscribers join or
leave: this all happens in the switch, which we don’t realpmivto start reprogramming.

However, in a lower-volume network with a few dozen subsnstand a limited number of topics, we
can use TCP and then the XSUB and XPUB socHettalk to each other as we just saw in the Espresso
pattern.

Can we make an LVC using @MQ? The answer is yes, if we make ainax sits between the publisher
and subscribers; an analog for the PGM switch, but one we iagrgam ourselves.

I'll start by making a publisher and subscriber that hightithe worst case scenario. This publisher is
pathological. It starts by immediately sending messagesacth of a thousand topics, and then it sends
one update a second to a random topic. A subscriber conaectsubscribes to a topic. Without LVC, a
subscriber would have to wait an average of 500 seconds @ngetata. To add some drama, let's
pretend there’s an escaped convict called Gregor thregfénirip the head off Roger the toy bunny if
we can't fix that 8.3 minutes’ delay.

Here’s the publisher code. Note that it has the command [aiemto connect to some address, but
otherwise binds to an endpoint. We'll use this later to cante@our last value cache:

Example 5-2. Pathologic Publisher (pathopub.py)

#

Pathological publisher

Sends out 1,000 topics and then one random update per second
#

import sys

import time

from random import randint
import zmq

def main(url=None):

230

Chapter 5. Advanced Pub-Sub Patterns

ctx = zmg.Context.instance()
publisher = ctx.socket(zmqg.PUB)
if url:
publisher.connect(url)
else:
publisher.bind("tcp:// *:5556")
Ensure subscriber connection has time to complete
time.sleep(1)

Send out all 1,000 topic messages
for topic_nbr in range(1000):
publisher.send_multipart([
b"%03d" % topic_nbr,
b"Save Roger",

)

while True:
Send one random update per second
try:
time.sleep(1)
publisher.send_multipart([
b"%03d" % randint(0,999),
b"Off with his head!”,
)
except KeyboardInterrupt:
print "interrupted"”
break
if _name__ =="'_ _main__"
main(sys.argv[1] if len(sys.argv) > 1 else None)

And here’s the subscriber:

Example 5-3. Pathologic Subscriber (pathosub.py)

Pathological subscriber
Subscribes to one random topic and prints received message s

H H O H

import sys
import time

from random import randint

import zmq

def main(url=None):
ctx = zmg.Context.instance()
subscriber = ctx.socket(zmq.SUB)

if url is None:
url = "tcp://localhost:5556"

231

Chapter 5. Advanced Pub-Sub Patterns
subscriber.connect(url)

subscription = b"%03d" % randint(0,999)
subscriber.setsockopt(zmg.SUBSCRIBE, subscription)

while True:
topic, data = subscriber.recv_multipart()
assert topic == subscription
print data
if _name__ =="'_ _main__"

main(sys.argv[1] if len(sys.argv) > 1 else None)
Try building and running these: first the subscriber, thenghblisher. You'll see the subscriber reports
getting "Save Roger" as you'd expect:
pathosub &

.Ipathopub

It's when you run a second subscriber that you understanéogredicament. You have to leave it an
awful long time before it reports getting any data. So, teeoer last value cache. As | promised, it's a
proxy that binds to two sockets and then handles messagestion b

Example 5-4. Last Value Caching Proxy (lvcache.py)

Last value cache
Uses XPUB subscription messages to re-send data

H* OH HH

import zmqg

def main():
ctx = zmg.Context.instance()
frontend = ctx.socket(zmq.SUB)

frontend.bind("tcp:// *:5557")
backend = ctx.socket(zmg.XPUB)
backend.bind("tcp:// *:5558")

Subscribe to every single topic from publisher
frontend.setsockopt(zmq.SUBSCRIBE, b™)

Store last instance of each topic in a cache
cache = {}

.split main poll loop

We route topic updates from frontend to backend, and
we handle subscriptions by sending whatever we cached,
if anything:

poller = zmq.Poller()

poller.register(frontend, zmqg.POLLIN)

232

Chapter 5. Advanced Pub-Sub Patterns

poller.register(backend, zmqg.POLLIN)
while True:

try:
events = dict(poller.poll(1000))
except KeyboardInterrupt:
print("interrupted")
break

Any new topic data we cache and then forward
if frontend in events:
msg = frontend.recv_multipart()
topic, current = msg
cacheltopic] = current
backend.send_multipart(msg)

.split handle subscriptions
When we get a new subscription we pull data from the cache:
if backend in events:
event = backend.recv()
Event is one byte O=unsub or 1=sub, followed by topic
if event[0] == b'\x01":
topic = event[1:]
if topic in cache:
print ("Sending cached topic %s" % topic)
backend.send_multipart([topic, cache[topic]])

if _name__ =="'__main__"
main()
Now, run the proxy, and then the publisher:

Jlvcache &
pathopub tcp://localhost:5557

And now run as many instances of the subscriber as you want, teeich time connecting to the proxy
on port 5558:

Ipathosub tcp://localhost:5558

Each subscriber happily reports "Save Roger", and Gregdefitaped Convict slinks back to his seat for
dinner and a nice cup of hot milk, which is all he really wanirethe first place.

One note: by default, the XPUB socket does not report dujglisabscriptions, which is what you want
when you're naively connecting an XPUB to an XSUB. Our exangpleakily gets around this by using
random topics so the chance of it not working is one in a nmillio a real LVC proxy, you'll want to use
theZzMQ_XPUB_VERBOSption that we implement in The ZMQ Commur@igapter 6as an exercise.

233

Chapter 5. Advanced Pub-Sub Patterns

5.4. Slow Subscriber Detection (Suicidal Snail Pattern)

A common problem you will hit when using the pub-sub patterreal life is the slow subscriber. In an
ideal world, we stream data at full speed from publishersitissribers. In reality, subscriber
applications are often written in interpreted languageg)st do a lot of work, or are just badly written,
to the extent that they can’t keep up with publishers.

How do we handle a slow subscriber? The ideal fix is to makeubscaiber faster, but that might take
work and time. Some of the classic strategies for handlingwa subscriber are:

« Queue messages on the publisherhis is what Gmail does when | don’t read my email for a couple
of hours. But in high-volume messaging, pushing queuesegst has the thrilling but unprofitable
result of making publishers run out of memory and crasheeigly if there are lots of subscribers
and it's not possible to flush to disk for performance reasons

« Queue messages on the subscrib€rhis is much better, and it's what @MQ does by default if the
network can keep up with things. If anyone’s going to run duhemory and crash, it'll be the
subscriber rather than the publisher, which is fair. Thizadect for "peaky" streams where a
subscriber can’t keep up for a while, but can catch up whestiieam slows down. However, it's no
answer to a subscriber that’s simply too slow in general.

- Stop queuing new messages after a whil@his is what Gmail does when my mailbox overflows its
precious gigabytes of space. New messages just get rejactiedpped. This is a great strategy from
the perspective of the publisher, and it's what @MQ does wherpublisher sets a HWM. However, it
still doesn’t help us fix the slow subscriber. Now we just ggbg)in our message stream.

« Punish slow subscribers with disconnectThis is what Hotmail (remember that?) did when | didn’t
log in for two weeks, which is why | was on my fifteenth Hotmascaunt when it hit me that there
was perhaps a better way. It's a nice brutal strategy thaesubscribers to sit up and pay attention
and would be ideal, but @MQ doesn’t do this, and there’s no tedstyer it on top because subscribers
are invisible to publisher applications.

None of these classic strategies fit, so we need to get cee&ather than disconnect the publisher, let's
convince the subscriber to kill itself. This is the Suici&alail pattern. When a subscriber detects that it’s
running too slowly (where "too slowly" is presumably a configd option that really means "so slowly

that if you ever get here, shout really loudly because | nedahow, so | can fix this!"), it croaks and dies.

How can a subscriber detect this? One way would be to sequeessages (number them in order) and
use a HWM at the publisher. Now, if the subscriber detectg&(ige., the numbering isn’t consecutive),
it knows something is wrong. We then tune the HWM to the "craaé die if you hit this" level.

There are two problems with this solution. One, if we have yraublishers, how do we sequence
messages? The solution is to give each publisher a uniqued@@d that to the sequencing. Second, if
subscribers useMQ_SUBSCRIBfilters, they will get gaps by definition. Our precious seqtieg will

be for nothing.

234

Chapter 5. Advanced Pub-Sub Patterns

Some use cases won't use filters, and sequencing will worth&n. But a more general solution is that

the publisher timestamps each message. When a subscriber message, it checks the time, and if the
difference is more than, say, one second, it does the "cnodkiiz" thing, possibly firing off a squawk to

some operator console first.

The Suicide Snail pattern works especially when subscibave their own clients and service-level
agreements and need to guarantee certain maximum lateAbieging a subscriber may not seem like a
constructive way to guarantee a maximum latency, but iesatbsertion model. Abort today, and the
problem will be fixed. Allow late data to flow downstream, ahd problem may cause wider damage
and take longer to appear on the radar.

Here is a minimal example of a Suicidal Snail:

Example 5-5. Suicidal Snail (suisnail.py)

Suicidal Snail

Author: Min RK <benjaminrk@gmail.com>

import sys
import threading
import time
import random

import zmq

from zhelpers import zpipe

=
This is our subscriber

It connects to the publisher and subscribes to everything. It
sleeps for a short time between messages to simulate doing t 00
much work. If a message is more than 1 second late, it croaks.

MAX_ALLOWED_DELAY = 1.0 # secs

def subscriber(pipe):
Subscribe to everything
ctx = zmg.Context.instance()
sub = ctx.socket(zmqg.SUB)
sub.setsockopt(zmq.SUBSCRIBE, ")
sub.connect("tcp://localhost:5556")

Get and process messages
while True:
clock = float(sub.recv())
Suicide snail logic
if (time.time() - clock > MAX_ALLOWED_DELAY):
print >> sys.stderr, "E: subscriber cannot keep up, abortin g\n",

235

Chapter 5. Advanced Pub-Sub Patterns

break

Work for 1 msec plus some random additional time
time.sleep(le-3 * (1+2 *random.random()))
pipe.send("gone and died")

This is our server task
It publishes a time-stamped message to its pub socket every

def publisher(pipe):

Prepare publisher

ctx = zmg.Context.instance()
pub = ctx.socket(zmg.PUB)
pub.bind("tcp:// *:5556")

while True:

Send current clock (secs) to subscribers
pub.send(str(time.time()))
try:

signal = pipe.recv(zmg.DONTWAIT)
except zmg.ZMQError as e:

if e.errno == zmqg.EAGAIN:

nothing to recv

pass
else:
raise
else:
received break message
break
time.sleep(le-3) # 1lmsec wait

This main thread simply starts a client, and a server, and th
waits for the client to signal it's died.

def main():

ctx = zmg.Context.instance()
pub_pipe, pub_peer = zpipe(ctx)
sub_pipe, sub_peer = zpipe(ctx)

pub_thread = threading.Thread(target=publisher, args=(
pub_thread.daemon=True

pub_thread.start()

sub_thread = threading.Thread(target=subscriber, args=
sub_thread.daemon=True

sub_thread.start()

wait for sub to finish

sub_pipe.recv()

tell pub to halt

pub_pipe.send("break")

time.sleep(0.1)

en

pub_peer,))

(sub_peer,))

236

Chapter 5. Advanced Pub-Sub Patterns

if _name__ =="'_ _main__"
main()

Here are some things to note about the Suicidal Snail example

- The message here consists simply of the current system atoaknumber of milliseconds. In a
realistic application, you'd have at least a message hemitlethe timestamp and a message body
with data.

« The example has subscriber and publisher in a single presds® threads. In reality, they would be
separate processes. Using threads is just conveniengfoetmonstration.

5.5. High-Speed Subscribers (Black Box Pattern)

Now lets look at one way to make our subscribers faster. A comuase case for pub-sub is distributing
large data streams like market data coming from stock exgdwr typical setup would have a publisher
connected to a stock exchange, taking price quotes, anéhggth@m out to a number of subscribers. If
there are a handful of subscribers, we could use TCP. If we hdarger number of subscribers, we'd
probably use reliable multicast, i.e., PGM.

237

Chapter 5. Advanced Pub-Sub Patterns

Figure 5-1. The Simple Black Box Pattern

Publisher

PUB

’ \
: Fast box :
1 1
1 1
1 (1
! SUB 1
1 1
1 1
: Subscriber :
1 1
: PUSH :
1 1
1 1
1 1
1 1
I £ ¢ } I
1 1
1 1
1 1
1 1
' (PULL (PULL (PULL X
1 1
: Worker Worker Worker :
1 1
1 1

Let's imagine our feed has an average of 100,000 100-byteages a second. That’s a typical rate, after
filtering market data we don’'t need to send on to subscrilhe. we decide to record a day’s data
(maybe 250 GB in 8 hours), and then replay it to a simulatidwaek, i.e., a small group of subscribers.
While 100K messages a second is easy for a @MQ applicatiomaméto replay itmuch faster

So we set up our architecture with a bunch of boxes--one ®ptiblisher and one for each subscriber.
These are well-specified boxes--eight cores, twelve fopttidisher.

And as we pump data into our subscribers, we notice two things

1. When we do even the slightest amount of work with a messgjeyvs down our subscriber to the
point where it can’t catch up with the publisher again.

2. We're hitting a ceiling, at both publisher and subscrib@around 6M messages a second, even after
careful optimization and TCP tuning.

The first thing we have to do is break our subscriber into aithu#taded design so that we can do work

238

Chapter 5. Advanced Pub-Sub Patterns

with messages in one set of threads, while reading messagesiher. Typically, we don’t want to
process every message the same way. Rather, the subsdtiliittewsome messages, perhaps by prefix
key. When a message matches some criteria, the subscribealha worker to deal with it. In GMQ
terms, this means sending the message to a worker thread.

So the subscriber looks something like a queue device. Wel cse various sockets to connect the
subscriber and workers. If we assume one-way traffic and everthat are all identical, we can use
PUSH and PULL and delegate all the routing work to @M@ure 5-2 This is the simplest and fastest
approach.

The subscriber talks to the publisher over TCP or PGM. Theailter talks to its workers, which are all
in the same process, ovieproc:/

Figure 5-2. Mad Black Box Pattern

Publisher

 Em o o Em Em o B B o B B B BN BN A B N BN AR BN B M A M o

i - -

Now to break that ceiling. The subscriber thread hits 100%Rf) and because it is one thread, it cannot
use more than one core. A single thread will always hit amgjlbe it at 2M, 6M, or more messages per
second. We want to split the work across multiple threadsdéuarun in parallel.

239

Chapter 5. Advanced Pub-Sub Patterns

The approach used by many high-performance products, wiocks here, isharding Using sharding,
we split the work into parallel and independent streamd sischalf of the topic keys in one stream, and
half in another. We could use many streams, but performanoé acale unless we have free cores. So
let's see how to shard into two stredaigure 5-3

With two streams, working at full speed, we would configure @& follows:

« Two I/O threads, rather than one.

- Two network interfaces (NIC), one per subscriber.
- Each /O thread bound to a specific NIC.

- Two subscriber threads, bound to specific cores.
- Two SUB sockets, one per subscriber thread.

- The remaining cores assigned to worker threads.

- Worker threads connected to both subscriber PUSH sockets.

Ideally, we want to match the number of fully-loaded threadsur architecture with the number of
cores. When threads start to fight for cores and CPU cyclesdkt of adding more threads outweighs
the benefits. There would be no benefit, for example, in argatiore I/O threads.

5.6. Reliable Pub-Sub (Clone Pattern)

As a larger worked example, we’ll take the problem of makimgleble pub-sub architecture. We'll
develop this in stages. The goal is to allow a set of appboatio share some common state. Here are
our technical challenges:

« We have a large set of client applications, say thousandssrdf thousands.
- They will join and leave the network arbitrarily.
- These applications must share a single eventually-cemssthte

- Any application can update the state at any pointin time.

Let's say that updates are reasonably low-volume. We davé heal time goals. The whole state can fit
into memory. Some plausible use cases are:

- A configuration that is shared by a group of cloud servers.
« Some game state shared by a group of players.

« Exchange rate data that is updated in real time and avati@lalpplications.

240

Chapter 5. Advanced Pub-Sub Patterns

5.6.1. Centralized Versus Decentralized

A first decision we have to make is whether we work with a césgaver or not. It makes a big
difference in the resulting design. The trade-offs areghes

- Conceptually, a central server is simpler to understandimenetworks are not naturally
symmetrical. With a central server, we avoid all questididiscovery, bind versus connect, and so on.

- Generally, a fully-distributed architecture is technigahore challenging but ends up with simpler
protocols. That is, each node must act as server and cliéim iright way, which is delicate. When
done right, the results are simpler than using a centrakseWWe saw this in the Freelance pattern in
Reliable Request-Reply Patte@tsapter 4

- A central server will become a bottleneck in high-volume eases. If handling scale in the order of
millions of messages a second is required, we should aimefogmtralization right away.

- Ironically, a centralized architecture will scale to momeles more easily than a decentralized one.
That is, it's easier to connect 10,000 nodes to one servarttheach other.

So, for the Clone pattern we’ll work with gerverthat publishes state updates and a seliehtsthat
represent applications.

5.6.2. Representing State as Key-Value Pairs

We'll develop Clone in stages, solving one problem at a tiRiest, let’s look at how to update a shared
state across a set of clients. We need to decide how to reprasestate, as well as the updates. The
simplest plausible format is a key-value store, where ogevadue pair represents an atomic unit of
change in the shared state.

We have a simple pub-sub example in BaSitapter 1the weather server and client. Let's change the
server to send key-value pairs, and the client to store tiness@ash table. This lets us send updates from
one server to a set of clients using the classic pub-sub Rk 5-3

An update is either a new key-value pair, a modified value fiogxsting key, or a deleted key. We can
assume for now that the whole store fits in memory and thaiadjns access it by key, such as by
using a hash table or dictionary. For larger stores and samnakedf persistence we’d probably store the
state in a database, but that’s not relevant here.

This is the server:

Example 5-6. Clone server, Model One (clonesrv1.py)

241

Chapter 5. Advanced Pub-Sub Patterns

import random
import time

import zmq
from kvsimple import KVMsg

def main():
Prepare our context and publisher socket
ctx = zmg.Context()
publisher = ctx.socket(zmqg.PUB)

publisher.bind("tcp:// *:5556")
time.sleep(0.2)

sequence = 0
random.seed(time.time())
kvmap = {}

try:
while True:
Distribute as key-value message
sequence += 1
kvmsg = KVMsg(sequence)
kvmsg.key = "%d" % random.randint(1,10000)
kvmsg.body = "%d" % random.randint(1,1000000)
kvmsg.send(publisher)
kvmsg.store(kvmap)
except Keyboardinterrupt:
print " Interrupted\n%d messages out" % sequence

if _name__ =="'__main__"
main()
And here is the client:

Example 5-7. Clone client, Model One (cloneclil.py)

Clone Client Model One
Author: Min RK <benjaminrk@gmail.com>

import random
import time

import zmq

from kvsimple import KVMsg

242

Chapter 5. Advanced Pub-Sub Patterns

def main():
Prepare our context and publisher socket
ctx = zmq.Context()
updates = ctx.socket(zmq.SUB)
updates.linger = 0
updates.setsockopt(zmq.SUBSCRIBE, ")
updates.connect("tcp://localhost:5556")

kvmap = {}
sequence = 0

while True:
try:
kvmsg = KVMsg.recv(updates)
except:
break # Interrupted
kvmsg.store(kvmap)
sequence += 1
print "Interrupted\n%d messages in" % sequence

if _name__ =="'__main__"
main()

Figure 5-3. Publishing State Updates

Server

PUB

updates

I
by
(SUB (SUB (SUB

Client Client Client

Here are some things to note about this first model:

243

Chapter 5. Advanced Pub-Sub Patterns

« All the hard work is done in &vmsg class. This class works with key-value message objectghwhi
are multipart @MQ messages structured as three frames: @K8W1Q string), a sequence number
(64-bit value, in network byte order), and a binary body @sa@verything else).

« The server generates messages with a randomized 4-digivkéh lets us simulate a large but not
enormous hash table (10K entries).

- We don'timplement deletions in this version: all messagesreserts or updates.

- The server does a 200 millisecond pause after binding itseto€his is to preverglow joiner
syndromewhere the subscriber loses messages as it connects tavbessocket. We'll remove that
in later versions of the Clone code.

« We'll use the termgublisherandsubscribetrin the code to refer to sockets. This will help later when
we have multiple sockets doing different things.

Here is thekvmsg class, in the simplest form that works for now:

Example 5-8. Key-value message class (kvsimple.py)

kvsimple - simple key-value message class for example appli cations

Author: Min RK <benjaminrk@gmail.com>

import struct # for packing integers
import sys

import zmq

class KVMsg(object):

Message is formatted on wire as 3 frames:
frame 0: key (OMQ string)

frame 1: sequence (8 bytes, network order)
frame 2: body (blob)

key = None # key (string)

sequence = 0 # int

body = None # blob

def __init_ (self, sequence, key=None, body=None):
assert isinstance(sequence, int)
self.sequence = sequence
self.key = key
self.body = body

def store(self, dikt):

"""Store me in a dict if | have anything to store™
this seems weird to check, but it's what the C example does

244

Chapter 5. Advanced Pub-Sub Patterns

if self.key is not None and self.body is not None:
dikt[self.key] = self

def send(self, socket):
""" Send key-value message to socket; any empty frames are se nt as such."™
key = " if self.key is None else self.key
seq_s = struct.pack(’!l', self.sequence)
body = " if self.body is None else self.body
socket.send_multipart([key, seq_s, body])

@classmethod
def recv(cls, socket):
"""Reads key-value message from socket, returns new kvmsg i nstance.
key, seq_s, body = socket.recv_multipart()
key = key if key else None
seq = struct.unpack('!l',seq_s)[0]
body = body if body else None
return cls(seq, key=key, body=body)

def dump(self):

if self.body is None:
size = 0
data="NULL’

else:
size = len(self.body)
data=repr(self.body)

print >> sys.stderr, "[seq:{seq}][key:{key}][size:{siz e}] {data}".format(
seq=self.sequence,
key=self.key,
size=size,
data=data,

B e
Runs self test of class

def test_kvmsg (verbose):
print " * kvmsg: ",

Prepare our context and sockets
ctx = zmg.Context()

output = ctx.socket(zmq.DEALER)
output.bind("ipc://kvmsg_selftest.ipc")
input = ctx.socket(zmq.DEALER)
input.connect("ipc://kvmsg_selftest.ipc")

kvmap = {}
Test send and receive of simple message
kvmsg = KVMsg(1)
kvmsg.key = "key"
kvmsg.body = "body"
if verbose:
kvmsg.dump()

245

Chapter 5. Advanced Pub-Sub Patterns

kvmsg.send(output)
kvmsg.store(kvmap)

kvmsg2 = KVMsg.recv(input)
if verbose:

kvmsg2.dump()
assert kvmsg2.key == "key"
kvmsg?2.store(kvmap)

assert len(kvmap) == 1 # shouldn’t be different
print "OK"
if _name__ =="'__main__"

test_kvmsg(’-v' in sys.argv)
Later, we'll make a more sophisticatkemsg class that will work in real applications.

Both the server and client maintain hash tables, but thisrficglel only works properly if we start all
clients before the server and the clients never crash. §hety artificial.

5.6.3. Getting an Out-of-Band Snapshot

So now we have our second problem: how to deal with late+jgiaiients or clients that crash and then
restart.

In order to allow a late (or recovering) client to catch uphaatserver, it has to get a snapshot of the
server’s state. Just as we've reduced "message" to meaqguarssed key-value pair”, we can reduce
"state" to mean "a hash table". To get the server state, fat cpens a DEALER socket and asks for it
explicitlyFigure 5-4

To make this work, we have to solve a problem of timing. Gettrstate snapshot will take a certain
time, possibly fairly long if the snapshot is large. We needdrrectly apply updates to the snapshot. But
the server won't know when to start sending us updates. Oyawwald be to start subscribing, get a

first update, and then ask for "state for update N". This woedlire the server storing one snapshot for
each update, which isn’t practical.

246

Chapter 5. Advanced Pub-Sub Patterns

Figure 5-4. State Replication

ROUTER

t state request
updates ~

a r 4
SUB DEALER SUB DEALER SUB DEALER

Client Client Client

So we will do the synchronization in the client, as follows:

+ The client first subscribes to updates and then makes a stpiest. This guarantees that the state is
going to be newer than the oldest update it has.

- The client waits for the server to reply with state, and meaferqueues all updates. It does this
simply by not reading them: @MQ keeps them queued on the sqciezie.

- When the client receives its state update, it begins onde &geead updates. However, it discards any
updates that are older than the state update. So if the gtd#gaiincludes updates up to 200, the client
will discard updates up to 201.

« The client then applies updates to its own state snapshot.

It's a simple model that exploits @MQ’s own internal queudsre’s the server:

Example 5-9. Clone server, Model Two (clonesrv2.py)

Clone server Model Two

Author: Min RK <benjaminrk@gmail.com>

import random
import threading
import time

import zmq

247

Chapter 5. Advanced Pub-Sub Patterns

from kvsimple import KVMsg
from zhelpers import zpipe

def main():
Prepare our context and publisher socket
ctx = zmg.Context()
publisher = ctx.socket(zmq.PUB)
publisher.bind("tcp:// *:5557")

updates, peer = zpipe(ctx)

manager_thread = threading.Thread(target=state_manage r, args=(ctx,peer))
manager_thread.daemon=True
manager_thread.start()

sequence = 0
random.seed(time.time())

try:
while True:
Distribute as key-value message
sequence += 1
kvmsg = KVMsg(sequence)
kvmsg.key = "%d" % random.randint(1,10000)
kvmsg.body = "%d" % random.randint(1,1000000)
kvmsg.send(publisher)
kvmsg.send(updates)
except Keyboardinterrupt:
print " Interrupted\n%d messages out" % sequence

simple struct for routing information for a key-value snap shot
class Route:
def __init_ (self, socket, identity):
self.socket = socket # ROUTER socket to send to
self.identity = identity # Identity of peer who requested st ate

def send_single(key, kvmsg, route):
""Send one state snapshot key-value pair to a socket

Hash item data is our kvmsg object, ready to send
Send identity of recipient first
route.socket.send(route.identity, zmq.SNDMORE)
kvmsg.send(route.socket)

def state_manager(ctx, pipe):
""This thread maintains the state and handles requests fro m clients for snapshots.

kvmap = {}
pipe.send("READY")

248

Chapter 5. Advanced Pub-Sub Patterns

shapshot = ctx.socket(zmgq.ROUTER)
snapshot.bind("tcp:// *:5556")

poller = zmgq.Poller()
poller.register(pipe, zmq.POLLIN)
poller.register(snapshot, zmg.POLLIN)

sequence = 0 # Current snapshot version number
while True:
try:
items = dict(poller.poll())
except (zmq.ZMQError, Keyboardinterrupt):
break # interrupt/context shutdown

Apply state update from main thread
if pipe in items:
kvmsg = KVMsg.recv(pipe)
sequence = kvmsg.sequence
kvmsg.store(kvmap)
Execute state shapshot request
if snapshot in items:
msg = snapshot.recv_multipart()
identity = msg[0]
request = msg[1]
if request == "ICANHAZ?":
pass
else:
print "E: bad request, aborting\n“,
break

Send state snapshot to client
route = Route(snapshot, identity)

For each entry in kvmap, send kvmsg to client
for k,v in kvmap.items():
send_single(k,v,route)

Now send END message with sequence number
print "Sending state shapshot=%d\n" % sequence,
snapshot.send(identity, zmq.SNDMORE)
kvmsg = KVMsg(sequence)
kvmsg.key = "KTHXBAI"
kvmsg.body = "™
kvmsg.send(snapshot)
if __name__ =="'_ _main__"
main()

And here is the client:

249

Chapter 5. Advanced Pub-Sub Patterns

Example 5-10. Clone client, Model Two (clonecli2.py)

Clone client Model Two

Author: Min RK <benjaminrk@gmail.com>

import time
import zmq
from kvsimple import KVMsg
def main():

Prepare our context and subscriber
ctx = zmg.Context()

shapshot = ctx.socket(zmq.DEALER)
snapshot.linger = 0
shapshot.connect("tcp://localhost:5556")
subscriber = ctx.socket(zmq.SUB)
subscriber.linger = 0
subscriber.setsockopt(zmg.SUBSCRIBE, ")
subscriber.connect("tcp://localhost:5557")

kvmap = {}
Get state snapshot

sequence = 0
snapshot.send("ICANHAZ?")

while True:
try:
kvmsg = KVMsg.recv(snapshot)
except:
break; # Interrupted

if kvmsg.key == "KTHXBAI":
sequence = kvmsg.sequence
print "Received snapshot=%d" % sequence
break # Done
kvmsg.store(kvmap)

Now apply pending updates, discard out-of-sequence messa ges
while True:
try:
kvmsg = KVMsg.recv(subscriber)
except:
break # Interrupted

if kvmsg.sequence > sequence:
sequence = kvmsg.sequence
kvmsg.store(kvmap)

250

Chapter 5. Advanced Pub-Sub Patterns

if _name__ =="'_ _main__"
main()

Here are some things to note about these two programs:

- The server uses two tasks. One thread produces the updatdsifnly) and sends these to the main
PUB socket, while the other thread handles state requested®OUTER socket. The two
communicate across PAIR sockets oveirgumoc:// connection.

- The client is really simple. In C, it consists of about fiftgeis of code. A lot of the heavy lifting is
done in thekvmsg class. Even so, the basic Clone pattern is easier to impletimemit seemed at first.

- We don't use anything fancy for serializing the state. Thehhtable holds a set &fmsg objects, and
the server sends these, as a batch of messages, to theatjeasting state. If multiple clients request
state at once, each will get a different snapshot.

- We assume that the client has exactly one server to talk ®s&hser must be running; we do not try
to solve the question of what happens if the server crashes.

Right now, these two programs don’t do anything real, buy ttarectly synchronize state. It's a neat
example of how to mix different patterns: PAIR-PAIR, PUBBland ROUTER-DEALER.

5.6.4. Republishing Updates from Clients

In our second model, changes to the key-value store cametfr®server itself. This is a centralized
model that is useful, for example if we have a central conégan file we want to distribute, with local
caching on each node. A more interesting model takes upftataslients, not the server. The server
thus becomes a stateless broker. This gives us some benefits:

- We're less worried about the reliability of the server. Ifiashes, we can start a new instance and feed
it new values.

- We can use the key-value store to share knowledge betwega peers.

To send updates from clients back to the server, we could uagety of socket patterns. The simplest
plausible solution is a PUSH-PULL combinatkigure 5-5

Why don’t we allow clients to publish updates directly to leather? While this would reduce latency, it
would remove the guarantee of consistency. You can’t gedistent shared state if you allow the order
of updates to change depending on who receives them. Sayweewvha clients, changing different keys.
This will work fine. But if the two clients try to change the sarkey at roughly the same time, they’ll
end up with different notions of its value.

There are a few strategies for obtaining consistency whangds happen in multiple places at once.
We'll use the approach of centralizing all change. No madtterprecise timing of the changes that clients

251

Chapter 5. Advanced Pub-Sub Patterns

make, they are all pushed through the server, which enfersggyle sequence according to the order in
which it gets updates.

Figure 5-5. Republishing Updates

Server

ROUTER

t state update

~
state request
updates ~
i I
(SUB DEALER PUSH (SUB DEALER PUSH

Client Client

By mediating all changes, the server can also add a uniqueseq number to all updates. With unique
sequencing, clients can detect the nastier failures, diretunetwork congestion and queue overflow. If a
client discovers that its incoming message stream has aihoén take action. It seems sensible that the
client contact the server and ask for the missing messages practice that isn’t useful. If there are
holes, they're caused by network stress, and adding massstio the network will make things worse.
All the client can do is warn its users that it is "unable totiaune", stop, and not restart until someone
has manually checked the cause of the problem.

We’'ll now generate state updates in the client. Here’s tineese

Example 5-11. Clone server, Model Three (clonesrv3.py)

Clone server Model Three

Author: Min RK <benjaminrk@gmail.com

import zmq

from kvsimple import KVMsg

252

Chapter 5. Advanced Pub-Sub Patterns

simple struct for routing information for a key-value snap shot
class Route:
def _ init_ (self, socket, identity):
self.socket = socket # ROUTER socket to send to
self.identity = identity # lIdentity of peer who requested st ate

def send_single(key, kvmsg, route):
""Send one state shapshot key-value pair to a socket™
Send identity of recipient first
route.socket.send(route.identity, zmq.SNDMORE)
kvmsg.send(route.socket)

def main():
context and sockets
ctx = zmg.Context()
snapshot = ctx.socket(zmgq.ROUTER)
shapshot.bind("tcp:// *:5556")
publisher = ctx.socket(zmqg.PUB)
publisher.bind("tcp:// *:5557")
collector = ctx.socket(zmq.PULL)
collector.bind("tcp:// *:5558")

sequence = 0
kvmap = {}

poller = zmgq.Poller()
poller.register(collector, zmq.POLLIN)
poller.register(snapshot, zmg.POLLIN)

while True:
try:
items = dict(poller.poll(1000))
except:
break # Interrupted

Apply state update sent from client
if collector in items:
kvmsg = KVMsg.recv(collector)
sequence += 1
kvmsg.sequence = sequence
kvmsg.send(publisher)
kvmsg.store(kvmap)
print "l: publishing update %5d" % sequence

Execute state snhapshot request
if snapshot in items:
msg = snapshot.recv_multipart()
identity = msg[0]
request = msg[1]
if request == "ICANHAZ?":
pass
else:
print "E: bad request, aborting\n”,

253

Chapter 5. Advanced Pub-Sub Patterns
break

Send state snapshot to client
route = Route(snapshot, identity)

For each entry in kvmap, send kvmsg to client
for k,v in kvmap.items():
send_single(k,v,route)

Now send END message with sequence number
print "Sending state shapshot=%d\n" % sequence,
snapshot.send(identity, zmq.SNDMORE)

kvmsg = KVMsg(sequence)

kvmsg.key = "KTHXBAI"

kvmsg.body = "™

kvmsg.send(shapshot)

print " Interrupted\n%d messages handled" % sequence

if _name__ =="'__main__"
main()

And here is the client:

Example 5-12. Clone client, Model Three (clonecli3.py)

Clone client Model Three

Author: Min RK <benjaminrk@gmail.com

import random
import time

import zmq
from kvsimple import KVMsg
def main():

Prepare our context and subscriber
ctx = zmg.Context()

snapshot = ctx.socket(zmq.DEALER)
shapshot.linger = 0
snapshot.connect("tcp://localhost:5556")
subscriber = ctx.socket(zmq.SUB)
subscriber.linger = 0
subscriber.setsockopt(zmg.SUBSCRIBE, ")
subscriber.connect("tcp://localhost:5557")
publisher = ctx.socket(zmqg.PUSH)

254

Chapter 5. Advanced Pub-Sub Patterns

publisher.linger = 0
publisher.connect("tcp://localhost:5558")

random.seed(time.time())
kvmap = {}

Get state snapshot
sequence = 0
snapshot.send("ICANHAZ?")

while True:
try:
kvmsg = KVMsg.recv(snapshot)
except:
return # Interrupted

if kvmsg.key == "KTHXBAI"
sequence = kvmsg.sequence
print "lI: Received snapshot=%d" % sequence
break # Done

kvmsg.store(kvmap)

poller = zmgq.Poller()
poller.register(subscriber, zmq.POLLIN)

alarm = time.time()+1.

while True:
tickless = 1000 *max(0, alarm - time.time())
try:
items = dict(poller.poll(tickless))
except:
break # Interrupted

if subscriber in items:
kvmsg = KVMsg.recv(subscriber)

Discard out-of-sequence kvmsgs, incl. heartbeats
if kvmsg.sequence > sequence:
sequence = kvmsg.sequence
kvmsg.store(kvmap)
print "l: received update=%d" % sequence

If we timed-out, generate a random kvmsg

if time.time() >= alarm:
kvmsg = KVMsg(0)
kvmsg.key = "%d" % random.randint(1,10000)
kvmsg.body = "%d" % random.randint(1,1000000)
kvmsg.send(publisher)
kvmsg.store(kvmap)
alarm = time.time() + 1.

print " Interrupted\n%d messages in" % sequence

if _name__ =="'_ _main__"

255

Chapter 5. Advanced Pub-Sub Patterns

main()

Here are some things to note about this third design:

- The server has collapsed to a single task. It manages a PUlkesfor incoming updates, a ROUTER
socket for state requests, and a PUB socket for outgoingtepda

« The client uses a simple tickless timer to send a random egiddhe server once a second. In a real
implementation, we would drive updates from applicatiodezo

5.6.5. Working with Subtrees

As we grow the number of clients, the size of our shared stdt@lso grow. It stops being reasonable to
send everything to every client. This is the classic stotp\wub-sub: when you have a very small
number of clients, you can send every message to all clidstgou grow the architecture, this becomes
inefficient. Clients specialize in different areas.

So even when working with a shared store, some clients wititw@work only with a part of that store,
which we call asubtree The client has to request the subtree when it makes a stptese and it must
specify the same subtree when it subscribes to updates.

There are a couple of common syntaxes for trees. One jgatiehierarchy and another is thepic tree
These look like this:

- Path hierarchy/somellist/of/paths

- Topic tree:some.list.of .topics

We'll use the path hierarchy, and extend our client and seswé¢hat a client can work with a single
subtree. Once you see how to work with a single subtree ybe'tible to extend this yourself to handle
multiple subtrees, if your use case demands it.

Here’s the server implementing subtrees, a small variatioklodel Three:

Example 5-13. Clone server, Model Four (clonesrv4.py)

Clone server Model Four

Author: Min RK <benjaminrk@gmail.com

import zmqg
from kvsimple import KVMsg

simple struct for routing information for a key-value snap shot

256

Chapter 5. Advanced Pub-Sub Patterns

class Route:
def __init_ (self, socket, identity, subtree):
self.socket = socket # ROUTER socket to send to
self.identity = identity # ldentity of peer who requested st ate
self.subtree = subtree # Client subtree specification

def send_single(key, kvmsg, route):
""Send one state shapshot key-value pair to a socket
check front of key against subscription subtree:
if kvmsg.key.startswith(route.subtree):
Send identity of recipient first
route.socket.send(route.identity, zmq.SNDMORE)
kvmsg.send(route.socket)

def main():
context and sockets
ctx = zmg.Context()
snapshot = ctx.socket(zmq.ROUTER)
shapshot.bind("tcp:// *:5556")
publisher = ctx.socket(zmqg.PUB)
publisher.bind("tcp:// *:5557")
collector = ctx.socket(zmq.PULL)
collector.bind("tcp:// *:5558")

sequence = 0
kvmap = {}

poller = zmgq.Poller()
poller.register(collector, zmq.POLLIN)
poller.register(snapshot, zmg.POLLIN)

while True:
try:
items = dict(poller.poll(1000))
except:
break # Interrupted

Apply state update sent from client
if collector in items:
kvmsg = KVMsg.recv(collector)
sequence += 1
kvmsg.sequence = sequence
kvmsg.send(publisher)
kvmsg.store(kvmap)
print "l: publishing update %5d" % sequence

Execute state snapshot request
if snapshot in items:
msg = snapshot.recv_multipart()
identity, request, subtree = msg
if request == "ICANHAZ?":
pass
else:

257

Chapter 5. Advanced Pub-Sub Patterns

print "E: bad request, aborting\n”,
break

Send state snapshot to client
route = Route(snapshot, identity, subtree)

For each entry in kvmap, send kvmsg to client
for k,v in kvmap.items():
send_single(k,v,route)

Now send END message with sequence number
print "Sending state shapshot=%d\n" % sequence,
snapshot.send(identity, zmq.SNDMORE)

kvmsg = KVMsg(sequence)

kvmsg.key = "KTHXBAI"

kvmsg.body = subtree

kvmsg.send(snapshot)

print " Interrupted\n%d messages handled" % sequence

if __name__ =="'_ _main__"
main()

And here is the corresponding client:

Example 5-14. Clone client, Model Four (clonecli4.py)

Clone client Model Four

Author: Min RK <benjaminrk@gmail.com

import random
import time

import zmqg

from kvsimple import KVMsg

SUBTREE = "/client/"

def main():
Prepare our context and subscriber
ctx = zmg.Context()
snapshot = ctx.socket(zmq.DEALER)
shapshot.linger = 0
snapshot.connect("tcp://localhost:5556")

subscriber = ctx.socket(zmq.SUB)
subscriber.linger = 0

258

Chapter 5. Advanced Pub-Sub Patterns

subscriber.setsockopt(zmg.SUBSCRIBE, SUBTREE)
subscriber.connect("tcp://localhost:5557")

publisher = ctx.socket(zmqg.PUSH)

publisher.linger = 0
publisher.connect(“tcp://localhost:5558")

random.seed(time.time())
kvmap = {}

Get state snapshot
sequence = 0
snapshot.send_multipart(["ICANHAZ?", SUBTREE])

while True:
try:
kvmsg = KVMsg.recv(snapshot)
except:
raise
return # Interrupted

if kvmsg.key == "KTHXBAI":
sequence = kvmsg.sequence
print "lI: Received snapshot=%d" % sequence
break # Done

kvmsg.store(kvmap)

poller = zmgq.Poller()
poller.register(subscriber, zmq.POLLIN)

alarm = time.time()+1.

while True:
tickless = 1000 *max(0, alarm - time.time())
try:
items = dict(poller.poll(tickless))
except:
break # Interrupted

if subscriber in items:
kvmsg = KVMsg.recv(subscriber)

Discard out-of-sequence kvmsgs, incl. heartbeats
if kvmsg.sequence > sequence:
sequence = kvmsg.sequence
kvmsg.store(kvmap)
print "l: received update=%d" % sequence

If we timed-out, generate a random kvmsg

if time.time() >= alarm:
kvmsg = KVMsg(0)
kvmsg.key = SUBTREE + "%d" % random.randint(1,10000)
kvmsg.body = "%d" % random.randint(1,1000000)
kvmsg.send(publisher)
kvmsg.store(kvmap)
alarm = time.time() + 1.

259

Chapter 5. Advanced Pub-Sub Patterns

print " Interrupted\n%d messages in" % sequence

if _name__ =="'_ _main__"
main()

5.6.6. Ephemeral Values

An ephemeral value is one that expires automatically umksgpglarly refreshed. If you think of Clone
being used for a registration service, then ephemeral saloeld let you do dynamic values. A node
joins the network, publishes its address, and refreshesagularly. If the node dies, its address
eventually gets removed.

The usual abstraction for ephemeral values is to attach thereessionand delete them when the
session ends. In Clone, sessions would be defined by cleerdsyould end if the client died. A simpler
alternative is to attachtéme to live(TTL) to ephemeral values, which the server uses to expireega
that haven't been refreshed in time.

A good design principle that | use whenever possible isabinvent concepts that are not absolutely
essentiallf we have very large numbers of ephemeral values, sesgitinsfer better performance. If
we use a handful of ephemeral values, it's fine to set a TTL ¢h eae. If we use masses of ephemeral
values, it's more efficient to attach them to sessions angdegpem in bulk. This isn't a problem we face
at this stage, and may never face, so sessions go out thewindo

Now we will implement ephemeral values. First, we need a wagnicode the TTL in the key-value
message. We could add a frame. The problem with using @MQefsdor properties is that each time we
want to add a new property, we have to change the messagausérutbreaks compatibility. So let's

add a properties frame to the message, and write the codeu® ¢et and put property values.

Next, we need a way to say, "delete this value". Up until n@wears and clients have always blindly
inserted or updated new values into their hash table. Waylitkat if the value is empty, that means
"delete this key".

Here’s a more complete version of tkensg class, which implements the properties frame (and adds a
UUID frame, which we’ll need later on). It also handles emydjues by deleting the key from the hash,
if necessary:

Example 5-15. Key-value message class: full (kvmsg.py)

kvmsg - key-value message class for example applications

Author: Min RK <benjaminrk@gmail.com>

260

Chapter 5. Advanced Pub-Sub Patterns

import struct # for packing integers
import sys
from uuid import uuid4

import zmq
zmq.jsonapi ensures bytes, instead of unicode:

def encode_properties(properties_dict):
prop_s = ™
for key, value in properties_dict.items():
prop_s += "%s=%s\n" % (key, value)
return prop_s

def decode_properties(prop_s):

prop = {}
line_array = prop_s.split("\n")

for line in line_array:
try:
key, value = line.split("=")
proplkey] = value
except ValueError as e:
#Catch empty line
pass

return prop

class KVMsg(object):
Message is formatted on wire as 5 frames:
frame 0: key (OMQ string)
frame sequence (8 bytes, network order)
frame uuid (blob, 16 bytes)
frame properties (OMQ string)
frame body (blob)

key = None
sequence = 0
uuid=None
properties = None
body = None

def __init_ (self, sequence, uuid=None, key=None, proper ties=None, body=None):
assert isinstance(sequence, int)
self.sequence = sequence
if uuid is None:
uuid = uuid4().bytes
self.uuid = uuid
self.key = key

261

Chapter 5. Advanced Pub-Sub Patterns

self.properties = {} if properties is None else properties
self.body = body

dictionary access maps to properties:
def _ getitem__(self, k):
return self.properties[k]

def _ setitem__(self, k, v):
self.properties[k] = v

def get(self, k, default=None):
return self.properties.get(k, default)

def store(self, dikt):
"""Store me in a dict if | have anything to store
else delete me from the dict.""
if self.key is not None and self.body is not None:
dikt[self.key] = self
elif self.key in dikt:
del dikt[self.key]

def send(self, socket):

""" Send key-value message to socket; any empty frames are se nt as such."™
key = " if self.key is None else self.key

seq_s = struct.pack(’!q’, self.sequence)

body = " if self.body is None else self.body

prop_s = encode_properties(self.properties)

socket.send_multipart([key, seq_s, self.uuid, prop_s, b ody])

@classmethod

def recv(cls, socket):
"""Reads key-value message from socket, returns new kvmsg i nstance."™
return cls.from_msg(socket.recv_multipart())

@classmethod
def from_msg(cls, msg):
""" Construct key-value message from a multipart message™
key, seq_s, uuid, prop_s, body = msg
key = key if key else None
seq = struct.unpack(’!q’,seq_s)[0]
body = body if body else None
prop = decode_properties(prop_s)
return cls(seq, uuid=uuid, key=key, properties=prop, bod y=body)

def _ repr__(self):
if self.body is None:
size = 0
data="NULL’
else:
size = len(self.body)
data = repr(self.body)

mstr = "[seq:{seq}][key:{key}][size:{size}][props:{pr ops}][data:{data}]".format(

262

Chapter 5. Advanced Pub-Sub Patterns

seqg=self.sequence,

uuid=hexlify(self.uuid),

key=self.key,

size=size,
props=encode_properties(self.properties),
data=data,

)

return mstr

def dump(self):
print >> sys.stderr, "<<", str(self), ">>"
H e e
Runs self test of class

def test_kvmsg (verbose):
print " * kvmsg: ",

Prepare our context and sockets
ctx = zmg.Context()

output = ctx.socket(zmq.DEALER)
output.bind("ipc://kvmsg_selftest.ipc")
input = ctx.socket(zmq.DEALER)
input.connect("ipc://kvmsg_selftest.ipc")

kvmap = {}
Test send and receive of simple message
kvmsg = KVMsg(1)
kvmsg.key = "key"
kvmsg.body = "body"
if verbose:
kvmsg.dump()
kvmsg.send(output)
kvmsg.store(kvmap)

kvmsg2 = KVMsg.recv(input)
if verbose:

kvmsg2.dump()
assert kvmsg2.key == "key"
kvmsg?2.store(kvmap)

assert len(kvmap) == 1 # shouldn’t be different

test send/recv with properties:
kvmsg = KVMsg(2, key="key", body="body")
kvmsg['propl”] = "valuel"
kvmsg['prop2"] = "value2"
kvmsg['prop3"] = "value3"
assert kvmsg["propl"] == "valuel"
if verbose:
kvmsg.dump()
kvmsg.send(output)
kvmsg2 = KVMsg.recv(input)

263

Chapter 5. Advanced Pub-Sub Patterns

if verbose:
kvmsg2.dump()
ensure properties were preserved

assert kvmsg2.key == kvmsg.key
assert kvmsg2.body == kvmsg.body
assert kvmsg2.properties == kvmsg.properties

assert kvmsg2['prop2"] == kvmsg["prop2"]
print "OK"

if _name__ =="'_ _main__"
test_kvmsg(’-v' in sys.argv)

The Model Five client is almost identical to Model Four. lesghe fullkvmsg class now, and sets a
randomizedtl property (measured in seconds) on each message:

kvmsg_set_prop (kvmsg, "ttl", "%d", randof (30));

5.6.7. Using a Reactor

Until now, we have used a poll loop in the server. In this negtlel of the server, we switch to using a
reactor. In C, we use CZMQH#oop class. Using a reactor makes the code more verbose, but gasie
understand and build out because each piece of the senemnddetdl by a separate reactor handler.

We use a single thread and pass a server object around tatterbandlers. We could have organized
the server as multiple threads, each handling one sockianer, tut that works better when threads don't
have to share data. In this case all work is centered arownskttver's hashmap, so one thread is simpler.

There are three reactor handlers:

- One to handle snapshot requests coming on the ROUTER socket;
- One to handle incoming updates from clients, coming on thelPddcket;

- One to expire ephemeral values that have passed their TTL.

Example 5-16. Clone server, Model Five (clonesrvs.py)

Clone server Model Five

Author: Min RK <benjaminrk@gmail.com

import logging
import time

import zmq

264

Chapter 5. Advanced Pub-Sub Patterns

from zmgq.eventloop.ioloop import 10Loop, PeriodicCallba ck
from zmgq.eventloop.zmqgstream import ZMQStream

from kvmsg import KVMsg
from zhelpers import dump

simple struct for routing information for a key-value snap shot
class Route:
def __init_ (self, socket, identity, subtree):
self.socket = socket # ROUTER socket to send to
self.identity = identity # ldentity of peer who requested st ate
self.subtree = subtree # Client subtree specification

def send_single(key, kvmsg, route):
""Send one state shapshot key-value pair to a socket
check front of key against subscription subtree:
if kvmsg.key.startswith(route.subtree):
Send identity of recipient first
route.socket.send(route.identity, zmq.SNDMORE)
kvmsg.send(route.socket)

class CloneServer(object):

Our server is defined by these properties

ctx = None # Context wrapper

kvmap = None # Key-value store

loop = None # lOLoop reactor

port = None # Main port we're working on
sequence = 0 # How many updates we'’re at
snapshot = None # Handle snapshot requests
publisher = None # Publish updates to clients
collector = None # Collect updates from clients

def __init_ (self, port=5556):
self.port = port
self.ctx = zmg.Context()
self.kvmap = {}
self.loop = IOLoop.instance()

Set up our clone server sockets
self.snapshot = self.ctx.socket(zmq.ROUTER)
self.publisher = self.ctx.socket(zmqg.PUB)
self.collector = self.ctx.socket(zmq.PULL)

self.snapshot.bind("tcp:// *:%d" % self.port)
self.publisher.bind("tcp:// *:%d" % (self.port + 1))
self.collector.bind("tcp:// *:%d" % (self.port + 2))

Wrap sockets in ZMQStreams for IOLoop handlers
self.snapshot = ZMQStream(self.snapshot)
self.publisher = ZMQStream(self.publisher)
self.collector = ZMQStream(self.collector)

265

Chapter 5. Advanced Pub-Sub Patterns

Register our handlers with reactor
self.snapshot.on_recv(self.handle_snapshot)
self.collector.on_recv(self.handle_collect)

self.flush_callback = PeriodicCallback(self.flush_ttl , 1000)

basic log formatting:
logging.basicConfig(format="%(asctime)s %(message)s" , datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO)

def start(self):
Run reactor until process interrupted
self.flush_callback.start()
try:
self.loop.start()
except KeyboardInterrupt:
pass

def handle_snapshot(self, msg):

""snapshot requests™"

if len(msg) !'= 3 or msg[l] != "ICANHAZ?":
print "E: bad request, aborting"
dump(msg)
self.loop.stop()
return

identity, request, subtree = msg

if subtree:
Send state snapshot to client
route = Route(self.snapshot, identity, subtree)

For each entry in kvmap, send kvmsg to client
for k,v in self.kvmap.items():
send_single(k,v,route)

Now send END message with sequence number

logging.info("l: Sending state shapshot=%d" % self.seque nce)
self.snapshot.send(identity, zmq.SNDMORE)

kvmsg = KVMsg(self.sequence)

kvmsg.key = "KTHXBAI"

kvmsg.body = subtree

kvmsg.send(self.snapshot)

def handle_collect(self, msg):
kvmsg = KVMsg.from_msg(msg)
self.sequence += 1
kvmsg.sequence = self.sequence
kvmsg.send(self.publisher)
ttl = kvmsg.get(ttl’)
if ttl is not None:
kvmsg['ttl'] = time.time() + ttl
kvmsg.store(self.kvmap)
logging.info("l: publishing update=%d", self.sequence)

266

Chapter 5. Advanced Pub-Sub Patterns

def flush_ttl(self):
""Purge ephemeral values that have expired
for key,kvmsg in self.kvmap.items():
self.flush_single(kvmsg)

def flush_single(self, kvmsg):
""If key-value pair has expired, delete it and publish the f act
to listening clients.""
if kvmsg.get(ttl’, 0) <= time.time():
kvmsg.body = "™
self.sequence += 1
kvmsg.sequence = self.sequence
kvmsg.send(self.publisher)
del self.kvmap[kvmsg.key]
logging.info("l: publishing delete=%d", self.sequence)

def main():
clone = CloneServer()
clone.start()

if _name__ =="'_ _main__"
main()

5.6.8. Adding the Binary Star Pattern for Reliability

The Clone models we've explored up to now have been relgtsigiple. Now we're going to get into
unpleasantly complex territory, which has me getting upafoother espresso. You should appreciate that
making "reliable" messaging is complex enough that you ydweeed to ask, "Do we actually need

this?" before jumping into it. If you can get away with unadlie or with "good enough" reliability, you
can make a huge win in terms of cost and complexity. Sure, yayllose some data now and then. Itis
often a good trade-off. Having said, that, and... sipscabse the espresso is really good, let’s jump in.

As you play with the last model, you'll stop and restart thevee It might look like it recovers, but of
course it's applying updates to an empty state instead girthyger current state. Any new client joining
the network will only get the latest updates instead of tHihistorical record.

What we want is a way for the server to recover from being #jlte crashing. We also need to provide
backup in case the server is out of commission for any lenfyime. When someone asks for
“reliability”, ask them to list the failures they want to lthe. In our case, these are:

« The server process crashes and is automatically or mamaatyrted. The process loses its state and
has to get it back from somewhere.

- The server machine dies and is offline for a significant timen@s have to switch to an alternate
server somewhere.

267

Chapter 5. Advanced Pub-Sub Patterns

- The server process or machine gets disconnected from therete.g., a switch dies or a datacenter
gets knocked out. It may come back at some point, but in theatimea clients need an alternate server.

Ouir first step is to add a second server. We can use the Binarp&tern from Reliable Request-Reply
Pattern€hapter 40 organize these into primary and backup. Binary Star isetoe, so it's useful that
we already refactored the last server model into a reactts. st

We need to ensure that updates are not lost if the primargserashes. The simplest technique is to
send them to both servers. The backup server can then actiastaand keep its state synchronized by
receiving updates as all clients do. It'll also get new upddtom clients. It can’t yet store these in its
hash table, but it can hold onto them for a while.

So, Model Six introduces the following changes over Mode&Fi

+ We use a pub-sub flow instead of a push-pull flow for client u@slaent to the servers. This takes care
of fanning out the updates to both servers. Otherwise we/é lmuse two DEALER sockets.

« We add heartbeats to server updates (to clients), so thizre chn detect when the primary server has
died. It can then switch over to the backup server.

- We connect the two servers using the Binary $taasr reactor class. Binary Star relies on the clients
to vote by making an explicit request to the server they amrsactive. We'll use snapshot requests as
the voting mechanism.

- We make all update messages uniquely identifiable by addindI® field. The client generates this,
and the server propagates it back on republished updates.

« The passive server keeps a "pending list" of updates thasitéceived from clients, but not yet from
the active server; or updates it’s received from the actvees, but not yet from the clients. The list is
ordered from oldest to newest, so that it is easy to removategaff the head.

268

Chapter 5. Advanced Pub-Sub Patterns

Figure 5-6. Clone Client Finite State Machine

~
Initial ~
Request gnapshot
NPUT
Syncing Store snapshot
ILENCE o
Failover to next
KTHXBAI
NPUT
Active Store update
ILENCE o

Failover to next

It's useful to design the client logic as a finite state maehirhe client cycles through three states:

- The client opens and connects its sockets, and then requssgpshot from the first server. To avoid
request storms, it will ask any given server only twice. Ceguest might get lost, which would be bad
luck. Two getting lost would be carelessness.

- The client waits for a reply (snapshot data) from the cursenter, and if it gets it, it stores it. If there
is no reply within some timeout, it fails over to the next sarv

« When the client has gotten its snapshot, it waits for andgsees updates. Again, if it doesn’t hear
anything from the server within some timeout, it fails owethie next server.

The client loops forever. It's quite likely during startupfailover that some clients may be trying to talk
to the primary server while others are trying to talk to thekug server. The Binary Star state machine
handles thiBigure 5-7 hopefully accurately. It's hard to prove software corratétead we hammer it
until we can’t prove it wrong.

Failover happens as follows:

- The client detects that primary server is no longer sendazagtbeats, and concludes that it has died.
The client connects to the backup server and requests a aensstapshot.

269

Chapter 5. Advanced Pub-Sub Patterns
- The backup server starts to receive snapshot requests fiemtscand detects that primary server has
gone, so it takes over as primary.

« The backup server applies its pending list to its own hasle talmd then starts to process state
snapshot requests.

When the primary server comes back online, it will:

 Start up as passive server, and connect to the backup seraetlane client.

. Start to receive updates from clients, via its SUB socket.

We make a few assumptions:

- At least one server will keep running. If both servers cragh|ose all server state and there’s no way
to recover it.

- Multiple clients do not update the same hash keys at the same€lient updates will arrive at the
two servers in a different order. Therefore, the backupesanay apply updates from its pending list
in a different order than the primary server would or did. &g from one client will always arrive in
the same order on both servers, so that is safe.

Thus the architecture for our high-availability serverpeing the Binary Star pattern has two servers
and a set of clients that talk to both senkgure 5-7

Figure 5-7. High-availability Clone Server Pair

Binary

Primary Backup

Star

ROUTER ROUTER

(SUB DEALER PUB

Client

270

Chapter 5. Advanced Pub-Sub Patterns
Here is the sixth and last model of the Clone server:

Example 5-17. Clone server, Model Six (clonesrv6.py)

Clone server Model Six

Author: Min RK <benjaminrk@gmail.com

import logging
import time

import zmq
from zmgq.eventloop.ioloop import PeriodicCallback
from zmgq.eventloop.zmqgstream import ZMQStream

from bstar import BinaryStar
from kvmsg import KVMsg
from zhelpers import dump

simple struct for routing information for a key-value snap shot
class Route:
def __init_ (self, socket, identity, subtree):
self.socket = socket # ROUTER socket to send to
self.identity = identity # ldentity of peer who requested st ate
self.subtree = subtree # Client subtree specification

def send_single(key, kvmsg, route):
""Send one state snapshot key-value pair to a socket™
check front of key against subscription subtree:
if kvmsg.key.startswith(route.subtree):
Send identity of recipient first
route.socket.send(route.identity, zmq.SNDMORE)
kvmsg.send(route.socket)

class CloneServer(object):

Our server is defined by these properties

ctx = None # Context wrapper

kvmap = None # Key-value store

bstar = None # Binary Star

sequence = 0 # How many updates so far
port = None # Main port we're working on
peer = None # Main port of our peer
publisher = None # Publish updates and hugz
collector = None # Collect updates from clients
subscriber = None # Get updates from peer
pending = None # Pending updates from client
primary = False # True if we're primary

master = False # True if we're master

slave = False # True if we're slave

271

Chapter 5. Advanced Pub-Sub Patterns

def __init_ (self, primary=True, ports=(5556,5566)):
self.primary = primary

if primary:
self.port, self.peer = ports
frontend = "tcp:// *:5003"
backend = "tcp://localhost:5004"

self.kvmap = {}

else:
self.peer, self.port = ports
frontend = "tcp:// *:5004"
backend = "tcp://localhost:5003"

self.ctx = zmg.Context.instance()
self.pending = []
self.bstar = BinaryStar(primary, frontend, backend)

self.bstar.register_voter("tcp:// *:%i" % self.port, zmg.ROUTER, self.handle_snapshot)

Set up our clone server sockets

self.publisher = self.ctx.socket(zmq.PUB)

self.collector = self.ctx.socket(zmq.SUB)
self.collector.setsockopt(zmg.SUBSCRIBE, b")
self.publisher.bind("tcp:// *:%d" % (self.port + 1))
self.collector.bind("tcp:// *:%d" % (self.port + 2))

Set up our own clone client interface to peer

self.subscriber = self.ctx.socket(zmg.SUB)
self.subscriber.setsockopt(zmg.SUBSCRIBE, b”")
self.subscriber.connect("tcp://localhost:%d" % (self. peer + 1))

Register state change handlers
self.bstar.master_callback = self.become_master
self.bstar.slave_callback = self.become_slave

Wrap sockets in ZMQStreams for IOLoop handlers
self.publisher = ZMQStream(self.publisher)
self.subscriber = ZMQStream(self.subscriber)
self.collector = ZMQStream(self.collector)

Register our handlers with reactor
self.collector.on_recv(self.handle_collect)

self.flush_callback = PeriodicCallback(self.flush_ttl , 1000)
self.hugz_callback = PeriodicCallback(self.send_hugz, 1000)

basic log formatting:
logging.basicConfig(format="%(asctime)s %(message)s" , datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO)

def start(self):
start periodic callbacks
self.flush_callback.start()
self.hugz_callback.start()

272

Chapter 5. Advanced Pub-Sub Patterns

Run bstar reactor until process interrupted
try:

self.bstar.start()
except KeyboardInterrupt:

pass

def handle_snapshot(self, socket, msg):
""snapshot requests™"

if msg[l] !'= "ICANHAZ?" or len(msg) != 3:
logging.error("E: bad request, aborting")
dump(msg)
self.bstar.loop.stop()
return

identity, request = msg[:2]
if len(msg) >= 3:
subtree = msg[2]
Send state snapshot to client
route = Route(socket, identity, subtree)

For each entry in kvmap, send kvmsg to client
for k,v in self.kvmap.items():
send_single(k,v,route)

Now send END message with sequence number

logging.info("l: Sending state shapshot=%d" % self.seque nce)
socket.send(identity, zmq.SNDMORE)

kvmsg = KVMsg(self.sequence)

kvmsg.key = "KTHXBAI"

kvmsg.body = subtree

kvmsg.send(socket)

def handle_collect(self, msg):
""" Collect updates from clients

If we're master, we apply these to the kvmap
If we're slave, or unsure, we queue them on our pending list
kvmsg = KVMsg.from_msg(msg)
if self.master:
self.sequence += 1
kvmsg.sequence = self.sequence
kvmsg.send(self.publisher)
ttl = int(kvmsg.get(’ttl’))
if ttl:
kvmsg['ttl'] = time.time() + ttl
kvmsg.store(self.kvmap)
logging.info("l: publishing update=%d", self.sequence)
else:
If we already got message from master, drop it, else
hold on pending list
if not self.was_pending(kvmsg):
self.pending.append(kvmsg)

273

Chapter 5. Advanced Pub-Sub Patterns

def was_pending(self, kvmsg):
""If message was already on pending list, remove and return True.

Else return False.

found = False
for idx, held in enumerate(self.pending):
if held.uuid == kvmsg.uuid:
found = True
break
if found:
self.pending.pop(idx)
return found

def flush_ttl(self):
"""Purge ephemeral values that have expired
if self.kvmap:
for key,kvmsg in self.kvmap.items():
self.flush_single(kvmsg)

def flush_single(self, kvmsg):
""" If key-value pair has expired, delete it and publish the f act
to listening clients.""
ttl = int(kvmsg.get(’ttl))
if ttl and ttl <= time.time():
kvmsg.body = "
self.sequence += 1
kvmsg.sequence = self.sequence
kvmsg.send(self.publisher)
del self.kvmap[kvmsg.key]
logging.info("l: publishing delete=%d", self.sequence)

def send_hugz(self):
""" Send hugz to anyone listening on the publisher socket™"
kvmsg = KVMsg(self.sequence)
kvmsg.key = "HUGZ"
kvmsg.body = "
kvmsg.send(self.publisher)

B e
State change handlers

def become_master(self):
"""\We're becoming master

The backup server applies its pending list to its own hash tab le,
and then starts to process state snapshot requests.

self.master = True

self.slave = False

stop receiving subscriber updates while we are master

self.subscriber.stop_on_recv()

Apply pending list to own kvmap

274

Chapter 5. Advanced Pub-Sub Patterns

while self.pending:
kvmsg = self.pending.pop(0)
self.sequence += 1
kvmsg.sequence = self.sequence
kvmsg.store(self.kvmap)
logging.info ("l: publishing pending=%d", self.sequence)

def become_slave(self):
""" We're becoming slave™"
clear kvmap
self.kvmap = None
self.master = False
self.slave = True
self.subscriber.on_recv(self.handle_subscriber)

def handle_subscriber(self, msg):
""Collect updates from peer (master)
We're always slave when we get these updates

if self.master:
logging.warn("received subscriber message, but we are mas ter %s", msg)
return

Get state snapshot if necessary

if self.kvmap is None:
self.kvmap = {}
snapshot = self.ctx.socket(zmq.DEALER)
shapshot.linger = 0
snapshot.connect("tcp://localhost:%i" % self.peer)

logging.info ("l: asking for snapshot from: tcp://localho st:%d",
self.peer)
snapshot.send_multipart(["ICANHAZ?",)
while True:
try:

kvmsg = KVMsg.recv(snapshot)
except Keyboardinterrupt:

Interrupted

self.bstar.loop.stop()

return

if kvmsg.key == "KTHXBAI"
self.sequence = kvmsg.sequence
break # Done

kvmsg.store(self.kvmap)
logging.info ("l: received snapshot=%d", self.sequence)

Find and remove update off pending list
kvmsg = KVMsg.from_msg(msg)

update integer ttl -> timestamp

ttl = int(kvmsg.get(’ttl))

if ttl is not None:

275

Chapter 5. Advanced Pub-Sub Patterns
kvmsg['ttl'] = time.time() + ttl

if kvmsg.key '= "HUGZ":
if not self.was_pending(kvmsg):
If master update came before client update, flip it
around, store master update (with sequence) on pending
list and use to clear client update when it comes later
self.pending.append(kvmsg)

If update is more recent than our kvmap, apply it

if (kvmsg.sequence > self.sequence):
self.sequence = kvmsg.sequence
kvmsg.store(self.kvmap)
logging.info ("I: received update=%d", self.sequence)

def main():
import sys
if '-p’ in sys.argv:
primary = True
elif *-b’ in sys.argv:
primary = False
else:
print "Usage: clonesrvé.py { -p | -b }"
sys.exit(1)
clone = CloneServer(primary)
clone.start()

if _name__ =="'_ _main__"
main()

This model is only a few hundred lines of code, but it took gaitwhile to get working. To be accurate,
building Model Six took about a full week of "Sweet god, ttegust too complex for an example”
hacking. We've assembled pretty much everything and tlodéit sink into this small application. We
have failover, ephemeral values, subtrees, and so on. Whaised me was that the up-front design was
pretty accurate. Still the details of writing and debuggingnany socket flows is quite challenging.

The reactor-based design removes a lot of the grunt work fhencode, and what remains is simpler and
easier to understand. We reuse the bstar reactor from ReRaguest-Reply Pattei@bapter 4 The

whole server runs as one thread, so there’s no inter-threadmess going on--just a structure pointer
(self) passed around to all handlers, which can do their thing iha@ne nice side effect of using
reactors is that the code, being less tightly integratemlaroll loop, is much easier to reuse. Large
chunks of Model Six are taken from Model Five.

| built it piece by piece, and got each piece workprgperlybefore going onto the next one. Because
there are four or five main socket flows, that meant quite afldebugging and testing. | debugged just
by dumping messages to the console. Don't use classic detsiggstep through @MQ applications;
you need to see the message flows to make any sense of whatgsogoi

276

Chapter 5. Advanced Pub-Sub Patterns

For testing, | always try to use Valgrind, which catches mgnheaks and invalid memory accesses. In
C, this is a major concern, as you can't delegate to a garbatpetor. Using proper and consistent
abstractions like kvmsg and CZMQ helps enormously.

5.6.9. The Clustered Hashmap Protocol

While the server is pretty much a mashup of the previous maldsithe Binary Star pattern, the client is
quite a lot more complex. But before we get to that, let’s labkhe final protocol. I've written this up as
a specification on the ZeroMQ RFC website as the Clusteretfags Protocol
(http://rfc.zeromq.org/spec:12).

Roughly, there are two ways to design a complex protocol agdhis one. One way is to separate each
flow into its own set of sockets. This is the approach we useel. fide advantage is that each flow is
simple and clean. The disadvantage is that managing mauggatket flows at once can be quite complex.
Using a reactor makes it simpler, but still, it makes a lot @ing pieces that have to fit together
correctly.

The second way to make such a protocol is to use a single spakdor everything. In this case, I'd
have used ROUTER for the server and DEALER for the clientd,than done everything over that
connection. It makes for a more complex protocol but at [#estomplexity is all in one place. In
Advanced Architecture using @MChapter Ave’ll look at an example of a protocol done over a
ROUTER-DEALER combination.

Let's take a look at the CHP specification. Note that "SHOULDIUST" and "MAY" are key words
we use in protocol specifications to indicate requiremerglte

Goals

CHP is meant to provide a basis for reliable pub-sub acrolsstec of clients connected over a IMQ
network. It defines a "hashmap" abstraction consisting pfia@ue pairs. Any client can modify any
key-value pair at any time, and changes are propagatedd¢beadts. A client can join the network at any
time.

Architecture

CHP connects a set of client applications and a set of sei@éesnts connect to the server. Clients do
not see each other. Clients can come and go arbitrarily.

Ports and Connections

The server MUST open three ports as follows:

277

Chapter 5. Advanced Pub-Sub Patterns

+ A SNAPSHOT port (dMQ ROUTER socket) at port number P.
+ A PUBLISHER port (MQ PUB socket) at port number P + 1.
+ A COLLECTOR port (dMQ SUB socket) at port number P + 2.

The client SHOULD open at least two connections:

« A SNAPSHOT connection (3MQ DEALER socket) to port number P.
+ A SUBSCRIBER connection (dMQ SUB socket) to port number P + 1.

The client MAY open a third connection, if it wants to upddte hashmap:

« A PUBLISHER connection (dMQ PUB socket) to port number P + 2.

This extra frame is not shown in the commands explained below

State Synchronization

The client MUST start by sending a ICANHAZ command to its stay connection. This command
consists of two frames as follows:

ICANHAZ command

Frame 0: "ICANHAZ?"
Frame 1: subtree specification

Both frames are @MQ strings. The subtree specification MA¥i@ty. If not empty, it consists of a
slash followed by one or more path segments, ending in a.slash

The server MUST respond to a ICANHAZ command by sending zernare KVSYNC commands to
its snapshot port, followed with a KTHXBAI command. The sarMUST prefix each command with
the identity of the client, as provided by @MQ with the ICANEHAommand. The KVSYNC command
specifies a single key-value pair as follows:

KVSYNC command

Frame 0: key, as OMQ string

Frame 1: sequence number, 8 bytes in network order
Frame 2: <empty>

Frame 3: <empty>

Frame 4: value, as blob

The sequence number has no significance and may be zero.

The KTHXBAI command takes this form:

278

Chapter 5. Advanced Pub-Sub Patterns

KTHXBAI command

Frame 0: "KTHXBAI"

Frame 1: sequence number, 8 bytes in network order
Frame 2: <empty>

Frame 3: <empty>

Frame 4: subtree specification

The sequence number MUST be the highest sequence numberk¥®YNC commands previously
sent.

When the client has received a KTHXBAI command, it SHOULDristia receive messages from its
subscriber connection and apply them.

Server-to-Client Updates

When the server has an update for its hashmap it MUST brotithéasn its publisher socket as a
KVPUB command. The KVPUB command has this form:

KVPUB command

Frame 0: key, as OMQ string

Frame 1: sequence number, 8 bytes in network order
Frame 2: UUID, 16 bytes

Frame 3: properties, as OMQ string

Frame 4: value, as blob

The sequence number MUST be strictly incremental. The tohBST discard any KVPUB commands
whose sequence numbers are not strictly greater than th€TasXBAI or KVPUB command received.

The UUID is optional and frame 2 MAY be empty (size zero). Thegerties field is formatted as zero or
more instances of "name=value" followed by a newline charalf the key-value pair has no properties,
the properties field is empty.

If the value is empty, the client SHOULD delete its key-vadumry with the specified key.

In the absence of other updates the server SHOULD send a Ho@end at regular intervals, e.g.,
once per second. The HUGZ command has this format:

HUGZ command

Frame 0: "HUGZ"

Frame 1: 00000000
Frame 2: <empty>
Frame 3: <empty>
Frame 4: <empty>

279

Chapter 5. Advanced Pub-Sub Patterns

The client MAY treat the absence of HUGZ as an indicator thatserver has crashed (see Reliability
below).

Client-to-Server Updates

When the client has an update for its hashmap, it MAY senddahilse server via its publisher
connection as a KVSET command. The KVSET command has this: for

KVSET command

Frame 0: key, as OMQ string

Frame 1: sequence number, 8 bytes in network order
Frame 2: UUID, 16 bytes

Frame 3: properties, as OMQ string

Frame 4: value, as blob

The sequence number has no significance and may be zero. TIReSHOULD be a universally unique
identifier, if a reliable server architecture is used.

If the value is empty, the server MUST delete its key-valugyenith the specified key.

The server SHOULD accept the following properties:

- ttl : specifies a time-to-live in seconds. If the KVSET commansidigd property, the server
SHOULD delete the key-value pair and broadcast a KVPUB witkempty value in order to delete
this from all clients when the TTL has expired.

Reliability

CHP may be used in a dual-server configuration where a bagkuprsakes over if the primary server
fails. CHP does not specify the mechanisms used for thisvailbut the Binary Star pattern may be
helpful.

To assist server reliability, the client MAY:

. Seta UUID in every KVSET command.

- Detect the lack of HUGZ over a time period and use this as ainaitalr that the current server has
failed.

« Connect to a backup server and re-request a state syncitioniz

Scalability and Performance

280

Chapter 5. Advanced Pub-Sub Patterns

CHP is designed to be scalable to large numbers (thousahd®rmas, limited only by system resources
on the broker. Because all updates pass through a singlerstire overall throughput will be limited to
some millions of updates per second at peak, and probalsly les

Security

CHP does not implement any authentication, access contrehcryption mechanisms and should not
be used in any deployment where these are required.

5.6.10. Building a Multithreaded Stack and API

The client stack we've used so far isn’t smart enough to heatid$ protocol properly. As soon as we
start doing heartbeats, we need a client stack that can rmbatkground thread. In the Freelance
pattern at the end of Reliable Request-Reply Patt&napter 4ve used a multithreaded API but didn’t
explain it in detail. It turns out that multithreaded APIg @uite useful when you start to make more
complex @MQ protocols like CHP.

Figure 5-8. Multithreaded API

Calling
Application

Frontend
Object

PAIR

PAIR

Backend
Agent

DEALER

S T M Em o o Em E E o M M M R A AN N M M M M o
M mm Em Em Em o B Em B B A BN BN B R B B R N B A B Em o

Clone class

281

Chapter 5. Advanced Pub-Sub Patterns

If you make a nontrivial protocol and you expect applicasibomimplement it properly, most developers
will get it wrong most of the time. You're going to be left withlot of unhappy people complaining that
your protocol is too complex, too fragile, and too hard to. W§bereas if you give them a simple API to
call, you have some chance of them buying in.

Our multithreaded API consists of a frontend object and &danuind agent, connected by two PAIR
socket§&igure 7-1 Connecting two PAIR sockets like this is so useful that yiagh-level binding should
probably do what CZMQ does, which is package a "create nexathwith a pipe that | can use to send
messages to it" method.

The multithreaded APIs that we see in this book all take timeestrm:

- The constructor for the objeatipne_new) creates a context and starts a background thread
connected with a pipe. It holds onto one end of the pipe saisemd commands to the background
thread.

- The background thread starts agentthat is essentially ang_poll loop reading from the pipe
socket and any other sockets (here, the DEALER and SUB ss)cket

« The main application thread and the background thread nowramicate only via @MQ messages.
By convention, the frontend sends string commands so tleatmathod on the class turns into a
message sent to the backend agent, like this:

void
clone_connect (clone_t *self, char *=address, char * service)
{
assert (self);
zmsg_t *msg = zmsg_new ();
zmsg_addstr (msg, "CONNECT");
zmsg_addstr (msg, address);
zmsg_addstr (msg, service);
zmsg_send (&msg, self->pipe);
}

- If the method needs a return code, it can wait for a reply ngesam the agent.

- If the agent needs to send asynchronous events back to titerith we add &ecv method to the
class, which waits for messages on the frontend pipe.

- We may want to expose the frontend pipe socket handle to allewlass to be integrated into further
poll loops. Otherwise ansecv method would block the application.

The clone class has the same structure a#diepi class from Reliable Request-Reply
Pattern€hapter 4and adds the logic from the last model of the Clone clienthddit @MQ, this kind of
multithreaded API design would be weeks of really hard wavkth @MQ, it was a day or two of work.

The actual APl methods for the clone class are quite simple:

/I Create a new clone class instance

282

clone t «
clone_new (void);

/I Destroy a clone class instance
void

clone_destroy (clone_t ** self_p);
/I Define the subtree, if any, for this clone class
void

clone_subtree (clone_t +self, char * subtree);
/I Connect the clone class to one server
void

clone_connect (clone_t +self, char

/I Set a value in the shared hashmap

void

clone_set (clone_t *self, char *key, char
/I Get a value from the shared hashmap
char =

clone_get (clone_t *self, char * key);

x address, char

Chapter 5. Advanced Pub-Sub Patterns

* service);

*value, int ttl);

So here is Model Six of the clone client, which has now becaragg thin shell using the clone class:

Example 5-18. Clone client, Model Six (clonecli6.py)

Clone server Model Six

import random
import time

import zmqg
from clone import Clone

SUBTREE = "/client/"

def main():
Create and connect clone
clone = Clone()

clone.subtree = SUBTREE
clone.connect("tcp://localhost"”, 5556)
clone.connect("tcp://localhost"”, 5566)

try:
while True:
Distribute as key-value message
key = "%d" % random.randint(1,10000)

283

Chapter 5. Advanced Pub-Sub Patterns

value = "%d" % random.randint(1,1000000)
clone.set(key, value, random.randint(0,30))
time.sleep(1)
except Keyboardinterrupt:
pass

if _name__ =="'__main__"
main()

Note the connect method, which specifies one server endpiider the hood, we're in fact talking to
three ports. However, as the CHP protocol says, the thrds @ on consecutive port numbers:

- The server state router (ROUTER) is at port P.
« The server updates publisher (PUB) is at port P + 1.

- The server updates subscriber (SUB) is at port P + 2.

So we can fold the three connections into one logical opmrgtivhich we implement as three separate
@MQ connect calls).

Let's end with the source code for the clone stack. This ismaptex piece of code, but easier to
understand when you break it into the frontend object cladslae backend agent. The frontend sends
string commands ("SUBTREE", "CONNECT", "SET", "GET") tcetagent, which handles these
commands as well as talking to the server(s). Here is thetadegic:

. Start up by getting a snapshot from the first server
. When we get a snapshot switch to reading from the subsailoget.
. If we don't get a snapshot then fail over to the second serve

. Poll on the pipe and the subscriber socket.

. If we got input on the subscriber, store or apply the update

1
2
3
4
5. If we got input on the pipe, handle the control message ftawirontend object.
6
7. If we didn’t get anything from the server within a certaime, fail over.

8

. Repeat until the process is interrupted by Ctrl-C.

And here is the actual clone class implementation:

Example 5-19. Clone class (clone.py)

clone - client-side Clone Pattern class

Author: Min RK <benjaminrk@gmail.com>

import logging
import threading

284

import time
import zmq

from zhelpers import zpipe
from kvmsg import KVMsg

If no server replies within this time, abandon request
GLOBAL_TIMEOUT = 4000 # msecs

Server considered dead if silent for this long
SERVER_TTL = 50 # secs

Number of servers we will talk to

SERVER_MAX = 2

basic log formatting:
logging.basicConfig(format="%(asctime)s %(message)s"
level=logging.INFO)

Chapter 5. Advanced Pub-Sub Patterns

, datefmt="%Y-%m-%d %H:%M:%S",

#

Synchronous part, works in our application thread

class Clone(object):
ctx = None # Our Context

pipe = None # Pipe through to clone agent

agent = None # agent in a thread

_subtree = None # cache of our subtree value

def __init_ (self):
self.ctx = zmg.Context()
self.pipe, peer = zpipe(self.ctx)

self.agent = threading.Thread(target=clone_agent, args

self.agent.daemon = True
self.agent.start()

#

Clone.subtree is a property, which sets the subtree for sna

and updates

@property
def subtree(self):
return self._subtree

@subtree.setter

def subtree(self, subtree):
"""Sends [SUBTREE][subtree] to the agent™"
self._subtree = subtree
self.pipe.send_multipart(["SUBTREE", subtree])

def connect(self, address, port):
""Connect to new server endpoint
Sends [CONNECT][address][port] to the agent

=(self.ctx,peer))

self.pipe.send_multipart(["CONNECT", address, str(por 9])]

285

Chapter 5. Advanced Pub-Sub Patterns

def set(self, key, value, ttl=0):
""Set new value in distributed hash table
Sends [SET][key][value][ttl] to the agent

self.pipe.send_multipart(["SET", key, value, str(ttl)])

def get(self, key):
"""Lookup value in distributed hash table
Sends [GET][key] to the agent and waits for a value response
If there is no clone available, will eventually return None.

self.pipe.send_multipart(["GET", key])
try:

reply = self.pipe.recv_multipart()
except KeyboardInterrupt:

return
else:

return reply[0]

#
Asynchronous part, works in the background

B o mmmmmcmmmmmmmmmmmmmmmmmmmmmeeme
Simple class for one server we talk to

class CloneServer(object):

address = None # Server address

port = None # Server port

shapshot = None # Snapshot socket

subscriber = None # Incoming updates

expiry = 0 # Expires at this time

requests = 0 # How many snapshot requests made?

def __init_ (self, ctx, address, port, subtree):
self.address = address
self.port = port
self.snapshot = ctx.socket(zmq.DEALER)
self.snapshot.linger = 0
self.snapshot.connect("%s:%i" % (address,port))
self.subscriber = ctx.socket(zmg.SUB)
self.subscriber.setsockopt(zmg.SUBSCRIBE, subtree)
self.subscriber.connect("%s:%i" % (address,port+1))
self.subscriber.linger = 0

B e
Simple class for one background agent

States we can be in
STATE_INITIAL = 0 # Before asking server for state

286

STATE_SYNCING
STATE_ACTIVE

Chapter 5. Advanced Pub-Sub Patterns

Getting state from server
Getting new updates from server

class CloneAgent(object):

None
None

ctx =
pipe =

kvmap = None

Own context
Socket to talk back to application
Actual key/value dict

subtree =" # Subtree specification, if any
servers = None # list of connected Servers
state = 0 # Current state

cur_server = 0

sequence = 0
publisher =

None

If active, index of server in list
last kvmsg procesed
Outgoing updates

def __init_ (self, ctx, pipe):

self.ctx =
self.pipe

ctx
= pipe

self.kvmap = {}
self.subtree = "

self.state

= STATE_INITIAL

self.publisher = ctx.socket(zmq.PUB)
self.router = ctx.socket(zmg.ROUTER)
self.servers = []

def control_message (self):
msg = self.pipe.recv_multipart()
command = msg.pop(0)

if command == "CONNECT":

address = msg.pop(0)

port

= int(msg.pop(0))

if len(self.servers) < SERVER_MAX:

else

self.servers.append(CloneServer(self.ctx, address, po
self.publisher.connect("%s:%i" % (address,port+2))

logging.error("E: too many servers (max. %i)", SERVER_MAX

elif command == "SET":
key,value,sttl = msg
ttl = int(sttl)

S
kvm
kvm

end key-value pair on to server
sg = KVMsg(0, key=key, body=value)
sg.store(self.kvmap)

if ttl:

kvm

kvmsg["ttl"] = ttl
sg.send(self.publisher)

elif command == "GET":

key
valu
self.

= msg[0]
e = self.kvmap.get(key)
pipe.send(value.body if value else ")

rt, self.subtree))

287

Chapter 5. Advanced Pub-Sub Patterns

Asynchronous agent manages server pool and handles reques t/reply
dialog when the application asks for it.

def clone_agent(ctx, pipe):
agent = CloneAgent(ctx, pipe)
server = None

while True:
poller = zmgq.Poller()
poller.register(agent.pipe, zmqg.POLLIN)
poll_timer = None
server_socket = None

if agent.state == STATE_INITIAL:
In this state we ask the server for a snapshot,
if we have a server to talk to...
if agent.servers:
server = agent.servers[agent.cur_server]
logging.info ("l: waiting for server at %s:%d...",
server.address, server.port)
if (server.requests < 2):
server.snapshot.send_multipart(["ICANHAZ?", agent.su btree])
server.requests += 1
server.expiry = time.time() + SERVER_TTL
agent.state = STATE_SYNCING
server_socket = server.snapshot
elif agent.state == STATE_SYNCING:
In this state we read from snapshot and we expect
the server to respond, else we fail over.
server_socket = server.snapshot
elif agent.state == STATE_ACTIVE:
In this state we read from subscriber and we expect
the server to give hugz, else we fail over.
server_socket = server.subscriber

if server_socket:
we have a second socket to poll:

poller.register(server_socket, zmq.POLLIN)

if server is not None:

poll_timer = 1e3 * max(0,server.expiry - time.time())
B e e
Poll loop
try:

items = dict(poller.poll(poll_timer))
except:

raise # DEBUG

break # Context has been shut down

if agent.pipe in items:

agent.control_message()
elif server_socket in items:

288

Chapter 5. Advanced Pub-Sub Patterns
kvmsg = KVMsg.recv(server_socket)

Anything from server resets its expiry time
server.expiry = time.time() + SERVER_TTL
if (agent.state == STATE_SYNCING):
Store in snapshot until we’re finished
server.requests = 0
if kvmsg.key == "KTHXBAI":
agent.sequence = kvmsg.sequence
agent.state = STATE_ACTIVE
logging.info ("I: received from %s:%d shapshot=%d",
server.address, server.port, agent.sequence)
else:
kvmsg.store(agent.kvmap)
elif (agent.state == STATE_ACTIVE):
Discard out-of-sequence updates, incl. hugz
if (kvmsg.sequence > agent.sequence):
agent.sequence = kvmsg.sequence
kvmsg.store(agent.kvmap)
action = "update" if kvmsg.body else "delete"

logging.info ("I: received from %s:%d %s=%d",
server.address, server.port, action, agent.sequence)
else:

Server has died, failover to next
logging.info ("l: server at %s:%d didn't give hugz",

server.address, server.port)
agent.cur_server = (agent.cur_server + 1) % len(agent.ser vers)
agent.state = STATE_INITIAL

289

Il. Advanced GMQ

The second part of this book is about software engineerimg@MQ. I'll introduce a set of techniques
of software development, and demonstrate them with workacheles, starting with @MQ itself and
ending with a general purpose framework for distributediappons. These techniques are independent
of license, though open source amplifies them.

Chapter 6. The GMQ Community

People sometimes ask me what's so special about @MQ. My atdraghswer is that @MQ is arguably
the best answer we have to the vexing question of "How do weertfekdistributed software that the
21st century demands?" But more than that, AMQ is speciausecof its community. This is ultimately
what separates the wolves from the sheep.

There are three main open source patterns. The first is the fimm dumping code to break the market
for others. This is the Apache Foundation model. The sec®tidyi teams or small firms building their
dream. This is the most common open source model, which caargesuccessful commercially. The
last is aggressive and diverse communities that swarm opetdem landscape. This is the Linux
model, and the one to which we aspire with GMQ.

It's hard to overemphasize the power and persistence of kimgpopen source community. There really
does not seem to be a better way of making software for thetknng Not only does the community
choose the best problems to solve, it solves them mininahgfully, and it then looks after these
answers for years, decades, until they're no longer reteaaud then it quietly puts them away.

To really benefit from @MQ, you need to understand the comtyui some point down the road you'll
want to submit a patch, an issue, or an add-on. You might weeaxsk someone for help. You will
probably want to bet a part of your business on @MQ, and whelhydu that the community is much,
much more important than the company that backs the proewem, though I'm CEO of that company,
this should be significant.

In this chapter I'm going to look at our community from severagles and conclude by explaining in
detail our contract for collaboration, which we call "C4ttfh//rfc.zeromq.org/spec:22). You should find
the discussion useful for your own work. We've also adapteddMQ C4 process for closed source
projects with good success.

We'll cover:

« The rough structure of AMQ as a set of projects

- What "software architecture” is really about

« Why we use the LGPL and not the BSD license

« How we designed and grew the @MQ community
« The business that backs ZMQ

« Who owns the @MQ source code

« How to make and submit a patch to GMQ

« Who controls what patches actually go into @MQ
- How we guarantee compatibility with old code

- Why we don’t use public git branches

291

Chapter 6. The gMQ Community

+ Who decides on the @MQ road map

- A worked example of a change fibzmq

6.1. Architecture of the @MQ Community

You know that MQ is an LGPL-licensed project. In fact it's@lection of projects, built around the
core libraryJibzmq . I'll visualize these projects as an expanding galaxy:

- Atthe corelibzmg is the @MQ core library. It's written in C++, with a low-lev€l API. The code is
nasty, mainly because it's highly optimized but also beeatswritten in C++, a language that lends
itself to subtle and deep nastiness. Martin Sustrik wragebtlik of this code. Today it has dozens of
people who maintain different parts of it.

- Aroundlibzmq , there are about S0indings These are individual projects that create higher-level
APIs for @MQ, or at least map the low-level API into other laages. The bindings vary in quality
from experimental to utterly awesome. Probably the mosté@sgive binding is PyZMQ
(https://github.com/zeromag/pyzmq), which was one of thet ilommunity projects on top of @MQ. If
you are a binding author, you should really study PyZMQ amirago making your code and
community as great.

- Alot of languages have multiple bindings (Erlang, Ruby, @#gast) written by different people over
time, or taking varying approaches. We don’t regulate tles@y way. There are no "official"
bindings. You vote by using one or the other, contributing,tor ignoring it.

- There are a series of reimplementationstdng , starting with JeroMQ, a full Java translation of the
library, which is now the basis for NetMQ, a C# stack. Thed@vaatacks offer similar or identical
APIs, and speak the same protocol (ZMTP)ilasng .

« On top of the bindings are a lot of projects that use @MQ ordoail it. See the "Labs" page on the
wiki for a long list of projects and proto-projects that usl@ in some way. There are frameworks,
web servers like Mongrel2, brokers like Majordomo, and grise open source tools like Storm.

Libzmqg , most of the bindings, and some of the outer projects siterldMQ community "organization"
(https://github.com/organizations/zeromq) on GitHubislorganization is "run" by a group consisting of
the most senior binding authors. There’s very little to raiita almost all self-managing and there’s zero
conflict these days.

iMatix, my firm, plays a specific role in the community. We ovne ttrademarks and enforce them
discretely in order to make sure that if you download a paelading itself "ZeroMQ", you can trust
what you are getting. People have on rare occasion triegaokhthe name, maybe believing that "free
software" means there is no property at stake and no onagvilti defend it. One thing you'll
understand from this chapter is how seriously we take thega®behind our software (and | mean "us"
as a community, not a company). iMatix backs the communitgifprcing that process on anything
calling itself "ZeroMQ" or "@MQ". We also put money and timea the software and packaging for
reasons I'll explain later.

292

Chapter 6. The gMQ Community

Itis not a charity exercise. @MQ is a for-profit project, angeay profitable one. The profits are widely
distributed among all those who invest in it. It's really tisample: take the time to become an expertin
@MQ, or build something useful on top of AMQ, and you'll findwovalue as an individual, or team, or
company increasing. iMatix enjoys the same benefits as exerglse in the community. It's win-win to
everyone except our competitors, who find themselves feihgeat they can’t beat and can’t really
escape. IMQ dominates the future world of massively disteith software.

My firm doesn’t just have the community’s back--we also bihi## community. This was deliberate
work; in the original @MQ white paper from 2007, there wer® fvojects. One was technical, how to
make a better messaging system. The second was how to buildrawnity that could take the software
to dominant success. Software dies, but community survives

6.2. How to Make Really Large Architectures

There are, it has been said (at least by people reading thisrsz out loud), two ways to make really
large-scale software. Option One is to throw massive ansafimhoney and problems at empires of
smart people, and hope that what emerges is not yet anotferdaller. If you're very lucky and are
building on lots of experience, have kept your teams sofid,are not aiming for technical brilliance,
and are furthermore incredibly lucky, it works.

But gambling with hundreds of millions of others’ money isfor everyone. For the rest of us who want
to build large-scale software, there’s Option Two, whicbp&n source, and more specificafige
software If you're asking how the choice of software license is ral@o the scale of the software you
build, that’s the right question.

The brilliant and visionary Eben Moglen once said, rougttigit a free software license is the contract on
which a community builds. When | heard this, about ten yeges the idea came to mé&an we
deliberately grow free software communittes

Ten years later, the answer is "yes", and there is almosea®eito it. | say "almost" because we don’t
yet have enough evidence of people doing this deliberatiélyasxdocumented, reproducible process. It
is what I'm trying to do with Social Architecture (http:/tureandempire.com/cande.html#/4/6). ZMQ
came after Wikidot, after the Digital Standards Organ@athttp://www.digistan.org) (Digistan) and
after the Foundation for a Free Information Infrastruc{imép://www.ffii.org) (aka the FFII, an NGO
that fights against software patents). This all came aftet aflless successful community projects like
Xitami and Libero. My main takeaway from a long career of pot§ of every conceivable format is: if
you want to build truly large-scale and long-lasting softyaim to build a free software community.

6.2.1. Psychology of Software Architecture

Dirkjan Ochtman pointed me to Wikipedia'’s definition of Seéire Architecture
(http://en.wikipedia.org/wiki/Software_architectles "the set of structures needed to reason about the

293

Chapter 6. The gMQ Community

system, which comprise software elements, relations arttwrg, and properties of both". For me this
vapid and circular jargon is a good example of how miserdtilg Wwe understand what actually makes a
successful large scale software architecture.

Architecture is the art and science of making large artifitiaictures for human use. If there is one thing
I've learned and applied successfully in 30 years of makémgdr and larger software systems, it is this:

software is about peopléarge structures in themselves are meaningless. It's hewfunction for

human use¢hat matters. And in software, human use starts with therprogners who make the software

itself.

The core problems in software architecture are driven bydrupsychology, not technology. There are
many ways our psychology affects our work. | could point te Way teams seem to get stupider as they
get larger or when they have to work across larger distafix@ss that mean the smaller the team, the
more effective? How then does a large global community liké@manage to work successfully?

The MQ community wasn’t accidental. It was a deliberategigsny contribution to the early days
when the code came out of a cellar in Bratislava. The designbaaed on my pet science of "Social
Architecture", which Wikipedia defines (http://en.wikiia.org/wiki/Social_architecture) as "the
conscious design of an environment that encourages a deainge of social behaviors leading towards
some goal or set of goals." | define this as more specificalfyhesprocess, and the product, of planning,
designing, and growing an online community."

One of the tenets of Social Architecture is thatv we organizés more significant thawho we are The
same group, organized differently, can produce whollyedéht results. We are like peers in a @MQ
network, and our communication patterns have a dramatieé@ngn our performance. Ordinary people,
well connected, can far outperform a team of experts usitg patterns. If you're the architect of a
larger @MQ application, you're going to have to help othand the right patterns for working together.
Do this right, and your project can succeed. Do it wrong, amat yproject will fail.

The two most important psychological elements are thatene’ally bad at understanding complexity
and that we are so good at working together to divide and cargrge problems. We're highly social
apes, and kind of smart, but only in the right kind of crowd.

So here is my short list of the Psychological Elements ofv@afe Architecture:

- Stupidity : our mental bandwidth is limited, so we're all stupid at sgmeént. The architecture has to
be simple to understand. This is the number one rule: siibpbeats functionality, every single time.
If you can’t understand an architecture on a cold gray Monmdayning before coffee, it is too
complex.

- Selfishnesswe act only out of self-interest, so the architecture musate space and opportunity for
selfish acts that benefit the whole. Selfishness is oftendatdénd subtle. For example, I'll spend
hours helping someone else understand something becatisetid be worth days to me later.

- Laziness we make lots of assumptions, many of which are wrong. We appiest when we can
spend the least effort to get a result or to test an assumgtiimkly, so the architecture has to make

294

Chapter 6. The gMQ Community

this possible. Specifically, that means it must be simple.

- Jealousy we're jealous of others, which means we’ll overcome oupigtity and laziness to prove
others wrong and beat them in competition. The archite¢huwrg has to create space for public
competition based on fair rules that anyone can understand.

- Fear: we're unwilling to take risks, especially if it makes us kostupid. Fear of failure is a major
reason people conform and follow the group in mass stupitiitg architecture should make silent
experimentation easy and cheap, giving people opportémityuccess without punishing failure.

- Reciprocity: we’'ll pay extra in terms of hard work, even money, to punisbats and enforce fair
rules. The architecture should be heavily rule-basedntefieople how to work together, but not what
to work on.

- Conformity : we're happiest to conform, out of fear and laziness, whieans if the patterns are
good, clearly explained and documented, and fairly enfhree’ll naturally choose the right path
every time.

- Pride: we're intensely aware of our social status, and we’ll woakchto avoid looking stupid or
incompetent in public. The architecture has to make surgyg@iece we make has our name on it, so
we’'ll have sleepless nights stressing about what othetsayl about our work.

- Greed we're ultimately economic animals (see selfishness), s@atbhitecture has to give us
economic incentive to invest in making it happen. Maybegtidishing our reputation as experts,
maybe it's literally making money from some skill or compahét doesn’t matter what it is, but there
must be economic incentive. Think of architecture as a nigalleee, not an engineering design.

These strategies work on a large scale but also on a smad| sg#hin an organization or team.

6.2.2. The Importance of Contracts

Let me discuss a contentious but important area, which ig lidemse to choose. I'll say "BSD" to cover
MIT, X11, BSD, Apache, and similar licenses, and "GPL" to@o@&PLv3, LGPLv3, and AGPLv3. The
significant difference is the obligation to share back amiéd versions, which prevents any entity from
capturing the software, and thus keeps it "free".

A software license isn’t technically a contract since yoa'tlsign anything. But broadly, calling it a
contract is useful since it takes the obligations of eactypand makes them legally enforceable in
court, under copyright law.

You might ask, why do we need contracts at all to make operce@UBurely it's all about decency,
goodwill, people working together for selfless motives.eébuthe principle of "less is more" applies here
of all places? Don’t more rules mean less freedom? Do weyraakd lawyers to tell us how to work
together? It seems cynical and even counter-productivertefa restrictive set of rules on the happy
communes of free and open source software.

But the truth about human nature is not that pretty. We'rereally angels, nor devils, just self-interested
winners descended from a billion-year unbroken line of wisnIn business, marriage, and collective

295

Chapter 6. The gMQ Community

works, sooner or later, we either stop caring, or we fight aacggue.

Put this another way: a collective work has two extreme aues Either it's a failure, irrelevant, and
worthless, in which case every sane person walks away, utithfight. Or, it's a success, relevant, and
valuable, in which case we start jockeying for power, cdnand often, money.

What a well-written contract does is to protect those vdkiadlationships from conflict. A marriage
where the terms of divorce are clearly agreed up-front isimess likely to end in divorce. A business
deal where both parties agree how to resolve various classiticts--such as one party stealing the
others’ clients or staff--is much less likely to end in coetfli

Similarly, a software project that has a well-written cactrthat defines the terms of breakup clearly is
much less likely to end in breakup. The alternative seems to immerse the project into a larger
organization that can assert pressure on teams to workiege@tr lose the backing and branding of the
organization). This is for example how the Apache Foundatiorks. In my experience organization
building has its own costs, and ends up favoring wealthigigipants (who can afford those sometimes
huge costs).

In an open source or free software project, breakup usiekbstthe form of a fork, where the
community splits into two or more groups, each with diffargsions of the future. During the
honeymoon period of a project, which can last years, thaeeguestion of a breakup. It is as a project
begins to be worth money, or as the main authors start to hutribat the goodwill and generosity tends
to dry up.

So when discussing software licenses, for the code you warritiee code you use, a little cynicism helps.
Ask yourself, not "which license will attract more contribts?" because the answer to that lies in the
mission statement and contribution process. Ask your§ethis project had a big fight, and split three
ways, which license would save us?" Or, "if the whole team B@sgyht by a hostile firm that wanted to
turn this code into a proprietary product, which license ld@ave us?"

Long-term survival means enduring the bad times, as welhpg/ig the good ones.

When BSD projects fork, they cannot easily merge again.dddene-way forking of BSD projects is
quite systematic: every time BSD code ends up in a commeigct, this is what's happened. When
GPL projects fork, however, re-merging is trivial.

The GPL's story is relevant here. Though communities of pgogners sharing their code openly were
already significant by the 1980’s, they tended to use minliva@hses that worked as long as no real
money got involved. There was an important language stdtdddamacs, originally built in Lisp by
Richard Stallman. Another programmer, James Gosling (‘atey bave us Java), rewrote Emacs in C
with the help of many contributors, on the assumption thabitild be open. Stallman got that code and
used it as the basis for his own C version. Gosling then s@ddtlule to a firm which turned around and
blocked anyone distributing a competing product. Stallfieamd this sale of the common work hugely

296

Chapter 6. The gMQ Community

unethical, and began developing a reusable license thdtlywootect communities from this.

What eventually emerged was the GNU General Public Licemisieh used traditional copyright to
force remixability. It was a neat hack that spread to othenaias, for instance the Creative Commons
for photography and music. In 2007, we saw version 3 of trenbe, which was a response to belated
attacks from Microsoft and others on the concept. It hasimecalong and complex document but
corporate copyright lawyers have become familiar with @l anmy experience, few companies mind
using GPL software and libraries, so long as the boundaréslearly defined.

Thus, a good contract--and | consider the modern GPL to bedbkefor software--lets programmers
work together without upfront agreements, organizationgassumptions of decency and goodwill. It
makes it cheaper to collaborate, and turns conflict intothgalbompetition. GPL doesn’t just define what
happens with a fork, it actively encourages forks as a taob¥perimentation and learning. Whereas a
fork can kill a project with a "more liberal" license, GPL feots thrive on forks since successful
experiments can, by contract, be remixed back into the nram®.

Yes, there are many thriving BSD projects and many dead GRk.dts always wrong to generalize. A
project will thrive or die for many reasons. However, in a qatitive sport, one needs every advantage.

The other important part of the BSD vs. GPL story is what | dathkage", which is the effect of pouring
water into a pot with a small but real hole in the bottom.

6.2.3. Eat Me

Here is a story. It happened to the eldest brother-in-lava@itbusin of a friend of mine’s colleague at
work. His name was, and still is, Patrick.

Patrick was a computer scientist with a PhD in advanced ré&ttepologies. He spent two years and his
savings building a new product, and choose the BSD licensause he believed that would get him
more adoption. He worked in his attic, at great personal ewst proudly published his work. People
applauded, for it was truly fantastic, and his mailing lisere soon abuzz with activity and patches and
happy chatter. Many companies told him how they were saviilgons using his work. Some of them
even paid him for consultancy and training. He was invitesjeak at conferences and started collecting
badges with his name on them. He started a small businesd,diriend to work with him, and dreamed
of making it big.

Then one day, someone pointed him to a new project, GPL kaknshich had forked his work and was
improving on it. He was irritated and upset, and asked hovpleedellow open sourcers, no less!--would
so shamelessly steal his code. There were long argumertie disttabout whether it was even legal to
relicense their BSD code as GPL code. Turned out, it was. ielé tio ignore the new project, but then he
soon realized that new patches coming from that prajeatdn’t even be merged bagkto his work!

297

Chapter 6. The gMQ Community

Worse, the GPL project got popular and some of his core darttits made first small, and then larger
patches to it. Again, he couldn’t use those changes, andtebiEndoned. Patrick went into a
depression, his girlfriend left him for an internationati@ncy dealer called, weirdly, Patrice, and he
stopped all work on the project. He felt betrayed, and wtteriserable. He fired his friend, who took it
rather badly and told everyone that Patrick was a closebhaajer. Finally, Patrick took a job as a
project manager for a cloud company, and by the age of foethdd stopped programming even for fun.

Poor Patrick. | almost felt sorry for him. Then | asked him,i\\idn’t you choose the GPL?" "Because
it's a restrictive viral license", he replied. | told him, 84 may have a PhD, and you may be the eldest
brother-in-law of the cousin of a friend of my colleague, ot are an idiot and Monique was smart to
leave you. You published your work inviting people to pleatssal your code as long as they kept this
'please steal my code’ statement in the resulting work",\ahdn people did exactly that, you got upset.
Worse, you were a hypocrite because when they did it in seavatwere happy, but when they did it
openly, you felt betrayed."

Seeing your hard work captured by a smarter team and theragséualst you is enormously painful, so
why even make that possible? Every proprietary projectubas BSD code is capturing it. A public
GPL fork is perhaps more humiliating, but it's fully selffiicted.

BSD is like food. It literally (and | mean that metaphorigalvhispers "eat me" in the little voice one
imagines a cube of cheese might use when it's sitting next &napty bottle of the best beer in the
world, which is of course Orval, brewed by an ancient and almegtinct order of silent Belgian monks
calledLes Gars Labas Qui Fabrique I'Orvalhe BSD license, like its near clone MIT/X11, was
designed specifically by a university (Berkeley) with noffinmotive to leak work and effort. It is a way
to push subsidized technology at below its cost price, a diognpf under-priced code in the hope that it
will break the market for others. BSD is amcellentstrategic tool, but only if you're a large well-funded
institution that can afford to use Option One. The Apacherige is BSD in a suit.

For us small businesses who aim our investments like prediallets, leaking work and effort is
unacceptable. Breaking the market is great, but we canfatlab subsidize our competitors. The BSD
networking stack ended up putting Windows on the Internet.cahnot afford battles with those we
should naturally be allies with. We cannot afford to makedfmmental business errors because in the
end, that means we have to fire people.

It comes down to behavioral economics and game thddry.license we choose modifies the economics
of those who use our workn the software industry, there are friends, foes, and f8&D makes most
people see us as lunch. Closed source makes most peopleaseenemies (do ydike paying people

for software?) GPL, however, makes most people, with thegtian of the Patricks of the world, our
allies. Any fork of @MQ is license compatible with @MQ, to theint where weencouragdorks as a
valuable tool for experimentation. Yes, it can be weird @ semeone try to run off with the ball but
here’s the secret,can get it back any time | want.

298

Chapter 6. The gMQ Community

6.2.4. The Process

If you've accepted my thesis up to now, great! Now, I'll expl¢éhe rough process by which we actually
build an open source community. This was how we built or gregemtly steered the dMQ community
into existence.

Your goal as leader of a community is to motivate people tagéthere and explore; to ensure they can
do so safely and without disturbing others; to reward theramtiney make successful discoveries; and
to ensure they share their knowledge with everyone elserfandecause we ask them, not because they
feel generous, but because it's The Law).

Itis an iterative process. You make a small product, at yeur cost, but in public view. You then build a
small community around that product. If you have a small bat hit, the community then helps design
and build the next version, and grows larger. And then thatroanity builds the next version, and so on.
It's evident that you remain part of the community, maybenesar@najority contributor, but the more
control you try to assert over the material results, the pesgple will want to participate. Plan your own
retirement well before someone decides you are their nexiem.

6.2.5. Crazy, Beautiful, and Easy

You need a goal that’s crazy and simple enough to get peoplef ted in the morning. Your community
has to attract the very best people and that demands sometteaial. With IMQ, we said we were
going to make "the Fastest. Messaging. Ever.", which qealdis a good motivator. If we'd said, we're
going to make "a smart transport layer that'll connect yooring pieces cheaply and flexibly across
your enterprise", we'd have failed.

Then your work must be beautiful, immediately useful, arichative. Your contributors are users who
want to explore just a little beyond where they are now. Mak@iple, elegant, and brutally clean. The
experience when people run or use your work should be an enadtbne. They shoulféelsomething,
and if you accurately solved even just one big problem thét then they didn’t quite realize they faced,
you'll have a small part of their soul.

It must be easy to understand, use, and join. Too many psdjeek barriers to access: put yourself in

the other person’s mind and see all the reasons they comeitsige, thinking "Um, interesting project,
but..." and then leave. You want them to stay and try it, justeo Use GitHub and put the issue tracker
right there.

If you do these things well, your community will be smart butnaimportantly, it will be intellectually
and geographically diverse. This is really important. Aupof like-minded experts cannot explore the
problem landscape well. They tend to make big mistakes.rBityebeats education any time.

299

Chapter 6. The gMQ Community

6.2.6. Stranger, Meet Stranger

How much up-front agreement do two people need to work tageth something? In most
organizations, a lot. But you can bring this cost down to +m#o, and then people can collaborate
without having ever met, done a phone conference, meetirgysiness trip to discuss Roles and
Responsibilities over way too many bottles of cheap Korégamwine.

You need well-written rules that are designed by cynicappetke me to force strangers into mutually
beneficial collaboration instead of conflict. The GPL is adjetart. GitHub and its fork/merge strategy
is a good follow-up. And then you want something like our Citlbook (http://rfc.zeromq.org/spec:22)
to control how work actually happens.

C4 (which I now use for every new open source project) haslddtand tested answers to a lot of
common mistakes people make, such as the sin of working@fflia corner with others "because it's
faster". Transparency is essential to get trust, whichgsrm#al to get scale. By forcing every single
change through a single transparent process, you buildresalin the results.

Another cardinal sin that many open source developers nsakeplace themselves above others. "l
founded this project thus my intellect is superior to thaptbfers”. It's not just immodest and rude, and
usually inaccurate, it's also poor business. The rules @ty equally to everyone, without distinction.
You are part of the community. Your job, as founder of a prpjsmot to impose your vision of the
product over others, but to make sure the rules are goodsharelenforced

6.2.7. Infinite Property

One of the saddest myths of the knowledge business is thed mle a sensible form of property. It's
medieval nonsense that should have been junked along aitlrg] but sadly it’s still making too many
powerful people too much money.

Ideas are cheap. What does work sensibly as property is tdenwek we do in building a market. "You
eat what you kill" is the right model for encouraging peogevork hard. Whether it's moral authority
over a project, money from consulting, or the sale of a traat&to some large, rich firm: if you make it,
you own it. But what you really own is "footfall", particip#sin your project, which ultimately defines
your power.

To do this requires infinite free space. Thankfully, GitHob/sd this problem for us, for which | will die
a grateful person (there are many reasons to be gratefééjmwlhich | won't list here because we only
have a hundred or so pages left, but this is one of them).

You cannot scale a single project with many owners like youszale a collection of many small
projects, each with fewer owners. When we embrace forksysopean become an "owner" with a
single click. Now they just have to convince others to joindeynonstrating their unique value.

300

Chapter 6. The gMQ Community

So in IMQ, we aimed to make it easy to write bindings on top efdbre library, and we stopped trying
to make those bindings ourselves. This created space fersotith make those, become their owners, and
get that credit.

6.2.8. Care and Feeding

I wish a community could be 100% self-steering, and perhapsday this will work, but today it's not
the case. We're very close with @MQ, but from my experiencerarounity needs four types of care and
feeding:

« First, simply because most people are too nice, we need sm@ksymbolic leadership or owners
who provide ultimate authority in case of conflict. Usuatly the founders of the community. I've
seen it work with self-elected groups of "elders", but oldnike to talk a lot. I've seen communities
split over the question "who is in charge?", and setting gpllentities with boards and such seems to
make arguments over control worse, not better. Maybe bedhese seems to be more to fight over.
One of the real benefits of free software is that it's alwaysix@ble, so instead of fighting over a pie,
one simply forks the pie.

- Second, communities need living rules, and thus they neadyer able to formulate and write these
down. Rules are critical; when done right, they removeifsittWhen done wrong, or neglected, we
see real friction and argument that can drive away the nigenita leaving the argumentative core in
charge of the burning house. One thing I've tried to do with@MQ and previous communities is
create reusable rules, which perhaps means we don’t negdisas much.

- Thirdly, communities need some kind of financial backingisTi the jagged rock that breaks most
ships. If you starve a community, it becomes more creativéHmicore contributors burn out. If you
pour too much money into it, you attract the professionalsy wever say "no", and the community
loses its diversity and creativity. If you create a fund feople to share, they will fight (bitterly) over
it. With @MQ, we (iMatix) spend our time and money on markgtand packaging (like this book),
and the basic care, like bug fixes, releases, and websites.

- Lastly, sales and commercial mediation are important. & leea natural market between expert
contributors and customers, but both are somewhat incanpat talking to each other. Customers
assume that support is free or very cheap because the seftswfaee. Contributors are shy at asking a
fair rate for their work. It makes for a difficult market. A gwing part of my work and my firm’s
profits is simply connecting @MQ users who want help with eigpiEom the community able to
provide it, and ensuring both sides are happy with the result

I've seen communities of brilliant people with noble goay$nd) because the founders got some or all of
these four things wrong. The core problem is that you carpeekconsistently great leadership from any
one company, person, or group. What works today often woorkwomorrow, yet structures become
more solid, not more flexible, over time.

The best answer | can find is a mix of two things. One, the GPLitarglarantee of remixability. No
matter how bad the authority, no matter how much they try igagize and capture the community’s
work, if it's GPL licensed, that work can walk away and find dteeauthority. Before you say, "all open
source offers this," think it through. | can kill a BSD-licgad project by hiring the core contributors and

301

Chapter 6. The gMQ Community

not releasing any new patches. But even with a billion ofatsl|lIcannotkill a GPL-licensed project.
Two, the philosophical anarchist model of authority, whigkhat we choose it, it does not own us.

6.3. The @MQ Process: C4

When we say IMQ we sometimes mdibamg , the core library. In early 2012, we synthesized the
libzmg process into a formal protocol for collaboration that wdezhthe Collective Code Construction
Contract (http://rfc.zeromq.org/spec:22), or C4. You saa this as a layer above the GPL. These are our
rules, and I'll explain the reasoning behind each one.

C4 is an evolution of the GitHub Fork + Pull Model (http://pajithub.com/send-pull-requests/). You
may get the feeling I'm a fan of git and GitHub. This would beate: these two tools have made such
a positive impact on our work over the last years, espeaiettign it comes to building community.

6.3.1. Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHAL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this documetnare to be interpreted as described in
RFC 21109.

By starting with the RFC 2119 language, the C4 text makeselear its intention to act as a protocol
rather than a randomly written set of recommendations. Ageal is a contract between parties that
defines the rights and obligations of each party. These cgedes in a network or they can be strangers
working in the same project.

I think C4 is the first time anyone has attempted to codify amamity’s rulebook as a formal and
reusable protocol spec. Previously, our rules were spretdver several wiki pages, and were quite
specific tolibzmg in many ways. But experience teaches us that the more foav@lrate, and reusable
the rules, the easier it is for strangers to collaborateraptf And less friction means a more scalable
community. At the time of C4, we also had some disagreemehgilibzmg project over precisely
what process we were using. Not everyone felt bound by the sales. Let’s just say some people felt
they had a special status, which created friction with tis¢ @&the community. So codification made
things clear.

It's easy to use C4: just host your project on GitHub, get aheioperson to join, and open the floor to
pull requests. In your README, put a link to C4 and that’s ite W done this in quite a few projects
and it does seem to work. I've been pleasantly surprised dife@s just applying these rules to my own
work, like CZMQ. None of us are so amazing that we can work exitiothers.

302

Chapter 6. The gMQ Community

6.3.2. Goals

C4 is meant to provide a reusable optimal collaboration himd@pen source software projects.

The short term reason for writing C4 was to end argumentstbedibzmg contribution process. The
dissenters went off elsewhere. The ZMQ community blossomed
(https://github.com/zeromg/libzmg/graphs/contriejemoothly and easily, as I'd predicted. Most
people were surprised, but gratified. There’s been no réaisms of C4 except its branching policy,
which I'll come to later as it deserves its own discussion.

There’s a reason I'm reviewing history here: as founder ammunity, you are asking people to invest
in your property, trademark, and branding. In return, anslitwhat we do with @MQ, you can use that
branding to set a bar for quality. When you download a prothitled "@MQ", you know that it's been
produced to certain standards. It's a basic rule of quakitite down your process; otherwise you cannot
improve it. Our processes aren’t perfect, nor can they eeeBbt any flaw in them can be fixed, and
tested.

Making C4 reusable is therefore really important. To leanrerabout the best possible process, we need
to get results from the widest range of projects.

It has these specific goals:

To maximize the scale of the community around a project, dycing the friction for new Contributors and
creating a scaled participation model with strong posifiaedbacks;

The number one goal is size and health of the community-eubirtical quality, not profits, not
performance, not market share. The goal is simply the nuifiqgzople who contribute to the project.
The science here is simple: the larger the community, theemocurate the results.

To relieve dependencies on key individuals by separatifigrdit skill sets so that there is a larger pool of
competence in any required domain;

Perhaps the worst problem we facediizmg was dependence on people who could understand the
code, manage GitHub branches, and make clean releasastralsame time. It's like looking for
athletes who can run marathons and sprint, swim, and atsedifjhts. We humans are really good at
specialization. Asking us to be really good at two contramticthings reduces the number of candidates
sharply, which is a Bad Thing for any project. We had this peobseverely ifibzmqg in 2009 or so,

and fixed it by splitting the role of maintainer into two: onerpon makes patches and another makes
releases.

To allow the project to develop faster and more accuratglynbreasing the diversity of the decision making

process;

This is theory--not fully proven, but not falsified. The disity of the community and the number of
people who can weigh in on discussions, without fear of beiitizized or dismissed, the faster and
more accurately the software develops. Speed is quiteciygdere. Going very fast in the wrong

303

Chapter 6. The gMQ Community

direction is not just useless, it's actively damaging (amdswffered a lot of that ifibzmg before we
switched to C4).

To support the natural life cycle of project versions fronpesimental through to stable, by allowing safe
experimentation, rapid failure, and isolation of stabldeso

To be honest, this goal seems to be fading into irrelevatisejdite an interesting effect of the process:
the git master is almost always perfectly stafilais has to do with the size of changes and tta&ncy
i.e., the time between someone writing the code and somextnally using it fully. However, people
still expect "stable" releases, so we’'ll keep this goaldtfer a while.

To reduce the internal complexity of project repositortesis making it easier for Contributors to participate
and reducing the scope for error;

Curious observation: people who thrive in complex situstibke to create complexity because it keeps
their value high. It's the Cobra Effect (Google it). Git maatanches easy and left us with the all too
common syndrome of "git is easy once you understand thattaayiich is just a folded five-dimensional
lepton space that has a detached history with no interveraole". Developers should not be made to
feel stupid by their tools. I've seen too many top-class tpers confused by repository structures to
accept conventional wisdom on git branches. We’ll come iackspose of git branches shortly, dear
reader.

To enforce collective ownership of the project, which irages economic incentive to Contributors and reduces
the risk of hijack by hostile entities.

Ultimately, we're economic creatures, and the sense thatdwn this, and our work can never be used
against us" makes it much easier for people to invest in an eperce project like MQ. And it can't be
just a feeling, it has to be real. There are a number of aspeatsking collective ownership work, we’ll
see these one-by-one as we go through C4.

6.3.3. Preliminaries

The project SHALL use the git distributed revision contrpdtem.

Git has its faults. Its command-line APl is horribly incosteint, and it has a complex, messy internal
model that it shoves in your face at the slightest provocaBut despite doing its best to make its users
feel stupid, git does its job really, really well. More pragtically, I've found that if you stay away from
certain areas (branches!), people learn git rapidly and dwake many mistakes. That works for me.

The project SHALL be hosted on github.com or equivalentetmecalled the "Platform".
I’'m sure one day some large firm will buy GitHub and break itj another platform will rise in its

place. Until then, Github serves up a near-perfect set ofmah fast, simple tools. I've thrown hundreds
of people at it, and they all stick like flies stuck in a dish ofley.

The project SHALL use the Platform issue tracker.

304

Chapter 6. The gMQ Community

We made the mistake libzmqg of switching to Jira because we hadn’t learned yet how to gngpse

the GitHub issue tracker. Jira is a great example of how to$omething useful into a complex mess
because the business depends on selling more "featurdsv8uwithout criticizing Jira, keeping the
issue tracker on the same platform means one less Ul to leaeriess login, and smooth integration

between issues and patches.

The project SHOULD have clearly documented guidelines éafecstyle.

This is a protocol plug-in: insert code style guidelinesshdiryou don’t document the code style you
use, you have no basis except prejudice to reject patches.

A "Contributor" is a person who wishes to provide a patchngei set of commits that solve some clearly
identified problem.

A "Maintainer" is a person who merge patches to the projeetinkdiners are not developers; their job is to
enforce process.

Now we move on to definitions of the parties, and the splitthgples that saved us from the sin of
structural dependency on rare individuals. This worked imdlbzmg , but as you will see it depends on
the rest of the process. C4 isn't a buffet; you will need theltprocess (or something very like it), or it
won't hold together.

Contributors SHALL NOT have commit access to the repositoriess they are also Maintainers.

Maintainers SHALL have commit access to the repository.

What we wanted to avoid was people pushing their changestljite master. This was the biggest
source of trouble itibzmq historically: large masses of raw code that took months aryto fully
stabilize. We eventually followed other @MQ projects likeZR1Q in using pull requests. We went
further, and stipulated thall changes had to follow the same path. No exceptions for "appebple".

Everyone, without distinction or discrimination, SHALLV&an equal right to become a Contributor under the
terms of this contract.

We had to state this explicitly. It used to be thatihemg maintainers would reject patches simply
because they didn’t like them. Now, that may sound reasertalihe author of a library (thoudibzmq
was not written by any one person), but let's remember ouk @foaeating a work that is owned by as
many people as possible. Saying "l don't like your patch sodbing to reject it" is equivalent to saying,
"l claim to own this and | think I’'m better than you, and | dotriist you". Those are toxic messages to
give to others who are thinking of becoming your co-investor

| think this fight between individual expertise and colleetintelligence plays out in other areas. It
defined Wikipedia, and still does, a decade after that worgassed anything built by small groups of
experts. For me, we make software by slowly synthesizingrtbst accurate knowledge, much as we
make Wikipedia articles.

305

Chapter 6. The gMQ Community

6.3.4. Licensing and Ownership

The project SHALL use the GPLv3 or a variant thereof (LGPL,RAG.

I've already explained how full remixability creates betteale and why the GPL and its variants seems
the optimal contract for remixable software. If you're agaibusiness aiming to dump code on the
market, you won’t want C4, but then you won't really care atmmmunity either.

All contributions to the project source code ("patches")A&H use the same license as the project.

This removes the need for any specific license or contribwtigreement for patches. You fork the GPL
code, you publish your remixed version on GitHub, and younyioae else can then submit that as a
patch to the original code. BSD doesn't allow this. Any wdrkttcontains BSD code may also contain
unlicensed proprietary code so you need explicit actiomftiee author of the code before you can remix
it.

All patches are owned by their authors. There SHALL NOT be @yright assignment process.

Here we come to the key reason people trust their investnme@MQ: it's logistically impossible to
buy the copyrights to create a closed source competitor t@Q@Matix can’t do this either. And the
more people that send patches, the harder it becomes. dMQuisriree and open today--this specific
rule means it will remain so forever. Note that it's not thee# all GPL projects, many of which still
ask for copyright transfer back to the maintainers.

The project SHALL be owned collectively by all its Contribus.
This is perhaps redundant, but worth saying: if everyonesotvair patches, then the resulting whole is

also owned by every contributor. There’s no legal concepinafing lines of code: the "work" is at least
a source file.

Each Contributor SHALL be responsible for identifying theetves in the project Contributor list.

In other words, the maintainers are not karma accountamigore who wants credit has to claim it
themselves.

6.3.5. Patch Requirements

In this section, we define the obligations of the contribuspecifically, what constitutes a "valid" patch,
so that maintainers have rules they can use to accept ot pgjhes.

Maintainers and Contributors MUST have a Platform accondt®HOULD use their real names or a
well-known alias.
In the worst case scenario, where someone has submittedctoé (patented, or owned by someone

else), we need to be able to trace who and when, so we can réheeede. Asking for real names or a

306

Chapter 6. The gMQ Community

well-known alias is a theoretical strategy for reducingrilk of bogus patches. We don’t know if this
actually works because we haven't had the problem yet.

A patch SHOULD be a minimal and accurate answer to exactlyidemwified and agreed problem.

This implements the Simplicity Oriented Design process fH@ome to later in this chapter. One clear
problem, one minimal solution, apply, test, repeat.

A patch MUST adhere to the code style guidelines of the ptdfé¢icese are defined.

This is just sanity. I've spent time cleaning up other pespgbatches because they insisted on putting the
else beside théf instead of just below as Nature intended. Consistent coldeakhier.

A patch MUST adhere to the "Evolution of Public Contractsldglines defined below.

Ah, the pain, the pain. I'm not speaking of the time at age teighen | stepped on a plank with a 4-inch
nail protruding from it. That was relatively OK. I'm speakjinf 2010-2011 when we had multiple
parallel releases of IMQ, each with differémtompatibleAPls or wire protocols. It was an exercise in
bad rules, pointlessly enforced, that still hurts us todé#e rule was, "If you change the API or protocol,
you SHALL create a new major version”. Give me the nail thitotlge foot; that hurt less.

One of the big changes we made with C4 was simply to ban, duiftigis kind of sanctioned sabotage.
Amazingly, it's not even hard. We just don't allow the braakif existing public contracts, period,
unless everyone agrees, in which case no period. As Linualtts famously put it on 23 December
2012, "WE DO NOT BREAK USERSPACE!"

A patch SHALL NOT include nontrivial code from other projsetnless the Contributor is the original author
of that code.

This rule has two effects. The first is that it forces peoplmtke minimal solutions because they cannot
simply import swathes of existing code. In the cases wheeedéen this happen to projects, it's always
bad unless the imported code is very cleanly separated.&dumd is that it avoids license arguments.
You write the patch, you are allowed to publish it as LGPL, amdcan merge it back in. But you find a
200-line code fragment on the web, and try to paste that) vediise.

A patch MUST compile cleanly and pass project self-teststd@east the principle target platform.
For cross-platform projects, it is fair to ask that the patcinks on the development box used by the
contributor.

A patch commit message SHOULD consist of a single short {lews 50 character) line summarizing the

change, optionally followed by a blank line and then a mooedhgh description.

This is a good format for commit messages that fits into erttadl {irst line becomes the subject, and the
rest becomes the email body).

307

Chapter 6. The gMQ Community

A "Correct Patch" is one that satisfies the above requiresnent

Just in case it wasn'’t clear, we're back to legalese and diefisi

6.3.6. Development Process

In this section, we aim to describe the actual developmertgss, step-by-step.

Change on the project SHALL be governed by the pattern ofrately identifying problems and applying
minimal, accurate solutions to these problems.

This is a unapologetic ramming through of thirty years’ a@iite design experience. It's a profoundly
simple approach to design: make minimal, accurate solsitioneal problems, nothing more or less. In
@MQ, we don't have feature requests. Treating new featliesdame as bugs confuses some
newcomers. But this process works, and not just in open sorunciating the problem we're trying to
solve, with every single change, is key to deciding whetherchange is worth making or not.

To initiate changes, a user SHALL log an issue on the projtfd®m issue tracker.

This is meant to stop us from going offline and working in a thedither by ourselves or with others.
Although we tend to accept pull requests that have cleamaegtation, this rule lets us say "stop" to
confused or too-large patches.

The user SHOULD write the issue by describing the problem thee or observe.

"Problem: we need feature X. Solution: make it" is not a g@sdié. "Problem: user cannot do common
tasks A or B except by using a complex workaround. Solutioakerfeature X" is a decent explanation.

Because everyone I've ever worked with has needed to le;rittkeems worth restating: document the
real problem first, solution second.

The user SHOULD seek consensus on the accuracy of theinalbiser, and the value of solving the problem.

And because many apparent problems are illusionary, bipgttdte problem explicitly we give others a
chance to correct our logic. "You're only using A and B a lot@ese function C is unreliable. Solution:
make function C work properly."

Users SHALL NOT log feature requests, ideas, suggestiaremysolutions to problems that are not explicitly

documented and provable.

There are several reasons for not logging ideas, suggestiofeature requests. In our experience, these
just accumulate in the issue tracker until someone delb&s.tBut more profoundly, when we treat all
change as problem solutions, we can prioritize trivialigh&r the problem is real and someone wants to
solve it now, or it's not on the table. Thus, wish lists aretb# table.

Thus, the release history of the project SHALL be a list of niegful issues logged and solved.

308

Chapter 6. The gMQ Community

I'd love the GitHub issue tracker to simply list all the issuge solved in each release. Today we still
have to write that by hand. If one puts the issue number in easimit, and if one uses the GitHub issue
tracker, which we sadly don’t yet do for @MQ, this releasedrigis easier to produce mechanically.

To work on an issue, a Contributor SHALL fork the project rejpary and then work on their forked repository.

Here we explain the GitHub fork + pull request model so thatemmers only have to learn one process
(C4) in order to contribute.

To submit a patch, a Contributor SHALL create a Platform pedjuest back to the project.

GitHub has made this so simple that we don’t need to learrogitraands to do it, for which I'm deeply
grateful. Sometimes, I'll tell people who | don't particdlalike that command-line git is awesome and
all they need to do is learn git's internal model in detaildreftrying to use it on real work. When | see
them several months later they look... changed.

A Contributor SHALL NOT commit changes directly to the proje

Anyone who submits a patch is a contributor, and all contatzsifollow the same rules. No special
privileges to the original authors, because otherwiseevsit building a community, only boosting our
€gos.

To discuss a patch, people MAY comment on the Platform pgllest, on the commit, or elsewhere.

Randomly distributed discussions may be confusing if yowalking up for the first time, but GitHub
solves this for all current participants by sending emailibse who need to follow what’s going on. We
had the same experience and the same solution in Wikidoif amatks. There’s no evidence that
discussing in different places has any negative effect.

To accept or reject a patch, a Maintainer SHALL use the Riatiaterface.

Working via the GitHub web user interface means pull reqgiast logged as issues, with workflow and
discussion. I'm sure there are more complex ways to work. @exity is easy; it's simplicity that's
incredibly hard.

Maintainers SHALL NOT accept their own patches.

There was a rule we defined in the FFIl years ago to stop peaoptérty out: no less than two people on
any project. One-person projects tend to end in tears, eaat bitter silence. We have quite a lot of data
on burnout, why it happens, and how to prevent it (even clrélitexplore this later in the chapter,
because if you work with or on open source you need to be awahe cisks. The "no merging your own
patch” rule has two goals. First, if you want your project éo@4-certified, you have to get at least one
other person to help. If no one wants to help you, perhaps ged to rethink your project. Second,
having a control for every patch makes it much more satigfyleeps us more focused, and stops us
breaking the rules because we're in a hurry, or just feekag.!

Maintainers SHALL NOT make value judgments on correct pasch

309

Chapter 6. The gMQ Community

We already said this but it's worth repeating: the role of Mainer is not to judge a patch’s substance,
only its technical quality. The substantive worth of a pataly emerges over time: people use it, and
like it, or they do not. And if no one is using a patch, everliuiéll annoy someone else who will
remove it, and no one will complain.

Maintainers SHALL merge correct patches rapidly.

There is a criteria | calthange latencywhich is the round-trip time from identifying a problem to
testing a solution. The faster the better. If maintainersicarespond to pull requests as rapidly as
people expect, they’re not doing their job (or they need nhaireds).

The Contributor MAY tag an issue as "Ready" after making & r@guest for the issue.

By default, GitHub offers the usual variety of issues, butwv@4 we don’t use them. Instead, we need
just two labels, "Urgent" and "Ready". A contributor who wganother user to test an issue can then
label it as "Ready".

The user who created an issue SHOULD close the issue aftekiogeghe patch is successful.

When one person opens an issue, and another works on ie#fgdallow the original person to close
the issue. That acts as a double-check that the issue wasrlyrogsolved.

Maintainers SHOULD ask for improvements to incorrect patcind SHOULD reject incorrect patches if the
Contributor does not respond constructively.

Initially, | felt it was worth merging all patches, no mattesw poor. There’s an element of trolling
involved. Accepting even obviously bogus patches couldlt] pull in more contributors. But people
were uncomfortable with this so we defined the "correct pgatales, and the Maintainer’s role in
checking for quality. On the negative side, | think we didake some interesting risks, which could
have paid off with more participants. On the positive sities has led tdibzmg master (and in all
projects that use C4) being practically production quafitactically all the time.

Any Contributor who has value judgments on a correct patc®SED express these via their own patches.

In essence, the goal here is to allow users to try patchesrrithn to spend time arguing pros and cons.
As easy as itis to make a patch, it's as easy to revert it witliher patch. You might think this would
lead to "patch wars", but that hasn't happened. We've haddfhbof cases inibzmg where patches

by one contributor were killed by another person who feltedRperimentation wasn’t going in the right
direction. It is easier than seeking up-front consensus.

Maintainers MAY commit changes to non-source documentadicectly to the project.
This exit allows maintainers who are making release notesish those without having to create an
issue which would then affect the release notes, leadingdssson the space time fabric and possibly

involuntary rerouting backwards in the fourth dimensiobédore the invention of cold beer. Shudder. It
is simpler to agree that release notes aren’t technicattyace.

310

Chapter 6. The gMQ Community

6.3.7. Creating Stable Releases

We want some guarantee of stability for a production systartne past, this meant taking unstable code
and then over months hammering out the bugs and faults timils safe to trust. iMatix’s job, for years,
has been to do this fihzmqg , turning raw code into packages by allowing only bug fixes madew

code into a "stabilization branch". It's surprisingly natthankless as it sounds.

Now, since we went full speed with C4, we've found that git teasflibzmq is mostly perfect, most of
the time. This frees our time to do more interesting thingshsas building new open source layers on
top oflibzmg . However, people still want that guarantee: many userssimiply not install except from

an "official" release. So a stable release today means twgghFirst, a snapshot of the master taken at a
time when there were no new changes for a while, and no dreimagin bugs. Second, a way to fine tune
that snapshot to fix the critical issues remaining in it.

This is the process we explain in this section.

The project SHALL have one branch ("master") that alwayslfithhe latest in-progress version and SHOULD
always build.

This is redundant because every patch always builds bwtdt'sh restating. If the master doesn't build
(and pass its tests), someone needs waking up.

The project SHALL NOT use topic branches for any reason.d®aisorks MAY use topic branches.

I'll come to branches soon. In short (or "tl;dr", as they saytloe webs), branches make the repository
too complex and fragile, and require up-front agreemehofathich are expensive and avoidable.

To make a stable release someone SHALL fork the repositogppying it and thus become maintainer of this
repository.

Forking a project for stabilization MAY be done unilateyadind without agreement of project maintainers.

It's free software. No one has a monopoly on it. If you thin& thaintainers aren’t producing stable
releases right, fork the repository and do it yourself. laghksn't a failure, it's an essential tool for
competition. You can't do this with branches, which meansambh-based release policy gives the
project maintainers a monopoly. And that’s bad becausélthegome lazier and more arrogant than if
real competition is chasing their heels.

A stabilization project SHOULD be maintained by the samecpss as the main project.

Stabilization projects have maintainers and contributkesany project. In practice we usually cherry
pick patches from the main project to the stabilization @cgjbut that's just a convenience.

A patch to a repository declared "stable” SHALL be accomgduhly a reproducible test case.

311

Chapter 6. The gMQ Community

Beware of a one-size-fits-all process. New code does nottheeshme paranoia as code that people are
trusting for production use. In the normal development psscwe did not mention test cases. There’s a
reason for this. While | love testable patches, many chaagest easily or at all testable. However, to
stabilize a code base you want to fix only serious bugs, andwamt to be 100% sure every change is
accurate. This means before and after tests for every change

6.3.8. Evolution of Public Contracts

By "public contracts"”, | mean APIs and protocols. Up unté #nd of 2011ljbzmq ’s naturally happy
state was marred by broken promises and broken contractstdfped making promises (aka "road
maps") forlibzmg completely, and our dominant theory of change is now thahimges carefully and
accurately over time. At a 2012 Chicago meetup, Garrettisaritt Chuck Remes called this the
"drunken stumble to greatness"”, which is how I think of it now

We stopped breaking public contracts simply by banning thaetice. Before then it had been "OK" (as
in we did it and everyone complained bitterly, and we igndhesm) to break the API or protocol so long
as we changed the major version number. Sounds fine, untlygo@MQ v2.0, v3.0, and v4.0 all in
development at the same time, and not speaking to each other.

All Public Contracts (APIs or protocols) SHOULD be docurnesht

You'd think this was a given for professional software emgirs but no, it's not. So, it's a rule. You want
C4 certification for your project, you make sure your pubbatracts are documented. No "It's specified
in the code" excuses. Code is not a contract. (Yes, | intesdrae point to create a C4 certification
process to act as a quality indicator for open source pmject

All Public Contracts SHALL use Semantic Versioning.

This rule is mainly here because people asked for it. I'veaad love for it, as Semantic Versioning is
what led to the so-called "Why does @MQ not speak to itseliéljacle. I've never seen the problem that
this solved. Something about runtime validation of libraeysions, or some-such.

All Public Contracts SHOULD have space for extensibilitglaxperimentation.

Now, the real thing is that public contraas changelt’'s not about not changing them. It's about
changing them safely. This means educating (especiallppot) designers to create that space up-front.

A patch that modifies a stable Public Contract SHOULD not besasting applications unless there is
overriding consensus on the value of doing this.

Sometimes the patch is fixing a bad API that no one is usirgjalfreedom we need, but it should be
based on consensus, not one person’s dogma. However, miakithgm changes "just because" is not
good. In MQ v3.x, did we benefit from renamigylQ_NOBLOCH ZMQ_DONTWARSure, it's closer
to the POSIX sockekcv() call, butis that worth breaking thousands of applicatioie®ne ever

312

Chapter 6. The gMQ Community

reported it as an issue. To misquote Stallman: "your freetdocneate an ideal world stops one inch from
my application.”

A patch that introduces new features to a Public Contract SHDdo so using new names.

We had the experience in @MQ once or twice of new featuregudthnames (or worse, using names
that werestill in useelsewhere). @MQ v3.0 had a newly introduced "ROUTER" sottk&tt was totally
different from the existing ROUTER socket in 2.x. Dear loydu should be face-palming, why? The
reason: apparently, even smart people sometimes neeatiegub stop them doing silly things.

Old names SHOULD be deprecated in a systematic fashion biinganew names as "experimental” until
they are stable, then marking the old names as "deprecated".

This life cycle notation has the great benefit of actualllinglusers what is going on with a consistent
direction. "Experimental” means "we have introduced thid mtend to make it stable if it works". It
does not mean, "we have introduced this and will remove ihgtime if we feel like it". One assumes
that code that survives more than one patch cycle is meat tiodoe. "Deprecated” means "we have
replaced this and intend to remove it".

When sufficient time has passed, old deprecated names SH®¥Inarked "legacy" and eventually removed.

In theory this gives applications time to move onto stable oentracts without risk. You can upgrade
first, make sure things work, and then, over time, fix thingsoaugmove dependencies on deprecated
and legacy APIs and protocaols.

Old names SHALL NOT be reused by new features.

Ah, yes, the joy when @MQ v3.x renamed the top-used API femstizmg_send() andzmq_recv())
and then recycled the old names for new methods that wemiyitieompatible (and which | suspect
few people actually use). You should be slapping yoursetbimfusion again, but really, this is what
happened and | was as guilty as anyone. After all, we did aa#tmeyversion number! The only benefit of
that experience was to get this rule.

When old names are removed, their implementations MUSTgkean exception (assertion) if used by
applications.

I've not tested this rule to be certain it makes sense. Perwapt it means is "if you can't provoke a
compile error because the API is dynamic, provoke an aesérti

6.3.9. Project Administration

The project founders SHALL act as Administrators to manageset of project Maintainers.

Someone needs to administer the project, and it makes deatdbé original founders start this ball
rolling.

313

Chapter 6. The gMQ Community

The Administrators SHALL ensure their own succession owvee by promoting the most effective
Maintainers.

At the same time, as founder of a project you really want tamgeof the way before you become
over-attached to it. Promoting the most active and congist@intainers is good for everyone.

A new Contributor who makes a correct patch SHALL be invitetdécome a Maintainer.

| met Felix GeisendAfrfer in Lyons in 2012 at the Mix-IT cordace (http://www.mix-it.fr) where |
presented Social Architecture and one thing that came ahi®fvas Felix’s now famous Pull Request
Hack (http://felixge.de/2013/03/11/the-pull-requiatk.html). It fits elegantly into C4 and solves the
problem of maintainers dropping out over time.

Administrators MAY remove Maintainers who are inactive &rextended period of time, or who repeatedly
fail to apply this process accurately.

This was lan Barber’s suggestion: we need a way to crop weuotaintainers. Originally maintainers
were self-elected but that makes it hard to drop troublemsafeeho are rare, but not unknown).

C4 is not perfect. Few things are. The process for changif@jgistan’s COSS) is a little outdated now:
it relies on a single-editor workflow with the ability to farkut not merge. This seems to work but it
could be better to use C4 for protocols like C4.

6.4. A Real-Life Example

In this email thread (http://lists.zeromq.org/pipern@atomg-dev/2012-October/018838.html), Dan
Goes asks how to make a publisher that knows when a new clibatsbes, and sends out previous
matching messages. It's a standard pub-sub techniquel ¢kl value caching”. Now over a 1-way
transport like pgm (where subscribers literally send ndptcback to publishers), this can’t be done.
But over TCP, it can, if we use an XPUB socket and if that sodian’t cleverly filter out duplicate
subscriptions to reduce upstream traffic.

Though I'm not an expert contributor tibzmg , this seems like a fun problem to solve. How hard could
it be? | start by forking thébzmq repository to my own GitHub account and then clone it to mydap
where | build it:

git clone git@github.com:hintjens/libzmq.git
cd libzmq

JJautogen.sh

Jconfigure

make

314

Chapter 6. The gMQ Community

Because thébzmqg code is neat and well-organized, it was quite easy to find thie files to change
(xpub.cpp andxpub.hpp). Each socket type has its own source file and class. Theyiirileen
socket_base.cpp , which has this hook for socket-specific options:

/I First, check whether specific socket type overloads the o ption.
int rc = xsetsockopt (option_, optval_, optvallen_);
if (rc == 0 || errno = EINVAL)

return rc;

/I If the socket type doesn’t support the option, pass it to
/I the generic option parser.
return options.setsockopt (option_, optval_, optvallen_);

Then | check where the XPUB socket filters out duplicate stijpsons, in itsxread_activated
method:

bool unique;
if (»data == 0)

unique = subscriptions.rm (data + 1, size - 1, pipe_);
else

unique = subscriptions.add (data + 1, size - 1, pipe);

/I If the subscription is not a duplicate store it so that it ca n be
/I passed to used on next recv call.
if (uniqgue && options.type !'= ZMQ_PUB)

pending.push_back (blob_t (data, size));

At this stage, I'm not too concerned with the details of hemwscriptions.rm and

subscriptions.add work. The code seems obvious except that "subscription'iatdudes
unsubscription, which confused me for a few seconds. leteemything else weird in the rm and add
methods, that's a separate issue to fix later. Time to makesa ifor this change. | head over to the
zeromg_.jira.com site, log in, and create a new entry.

Jira kindly offers me the traditional choice between "bugd &hew feature"” and | spend thirty seconds
wondering where this counterproductive historical digiion came from. Presumably, the "we’ll fix
bugs for free, but you pay for new features" commercial psapavhich stems from the "you tell us
what you want and we’ll make it for $X" model of software dey@nent, and which generally leads to
"we spent three times $X and we got what?!" email Fists of Fury

Putting such thoughts aside, | create an issue #443 (ltg@smg.jira.com/browse/LIBZMQ-443) and
described the problem and plausible solution:

Problem: XPUB socket filters out duplicate subscriptiordiferate design). However this makes it
impossible to do subscription-based intelligence. See
http://lists.zeromq.org/pipermail/zeromg-dev/201&tdber/018838.html for a use case.

Solution: make this behavior configurable with a socketapti

315

Chapter 6. The gMQ Community

It's naming time. The API sits iinclude/zmg.h , so this is where | added the option name. When you
invent a concept in an APl or anywhemeasetake a moment to choose a name that is explicit and short
and obvious. Don't fall back on generic names that need iatdit context to understand. You have one
chance to tell the reader what your concept is and does. A tikene
ZMQ_SUBSCRIPTION_FORWARDING_FLisGerrible. It technically kind of aims in the right direati,

but is miserably long and obscure. | ch@¢Q_XPUB_VERBOSghort and explicit and clearly an on/off
switch with "off" being the default setting.

So, it's time to add a private property to thgub class definition irkpub.hpp :

/I 1If true, send all subscription messages upstream, not jus t
/I unique ones
bool verbose;

And then lift some code fromouter.cpp to implement thexssetsockopt ~ method. Finally, change the
xread_activated method to use this new option, and while at it, make that testoeket type more
explicit too:

/I If the subscription is not a duplicate store it so that it ca n be
/I passed to used on next recv call.
if (options.type == ZMQ_XPUB && (unique || verbose))

pending.push_back (blob_t (data, size));

The thing builds nicely the first time. This makes me a littssicious, but being lazy and jet-lagged |
don’timmediately make a test case to actually try out thengeaThe process doesn’t demand that, even
if usually I'd do it just to catch that inevitable 10% of mik&s we all make. | do however document this
new option on theloc/zmg_setsockopt.txt man page. In the worst case, | added a patch that wasn’t
really useful. But | certainly didn’t break anything.

| don’timplement a matchingmg_getsockopt because "minimal” means what it says. There’s no
obvious use case for getting the value of an option that yesymably just set, in code. Symmetry isn'’t
a valid reason to double the size of a patch. | did have to dectithe new option because the process
says, "All Public Contracts SHOULD be documented.”

Committing the code, | push the patch to my forked reposifthrg "origin™):

git commit -a -m "Fixed issue #443"
git push origin master

Switching to the GitHub web interface, | go to rilyzmq fork, and press the big "Pull Request" button
at the top. GitHub asks me for a title, so | enter "Added ZMQU®P VERBOSE option". I'm not sure
why it asks this as | made a neat commit message but hey, tetistg the flow here.

This makes a nice little pull request with two commits; the ¥d made a month ago on the release notes
to prepare for the v3.2.1 release (a month passes so quitldyg wou spend most of it in airports), and
my fix for issue #443 (37 new lines of code). GitHub lets youteare to make commits after you've

316

Chapter 6. The gMQ Community

kicked off a pull request. They get queued up and merged irgon&hat is easy, but the maintainer may
refuse the whole bundle based on one patch that doesn’t lak v

Because Dan is waiting (at least in my highly optimistic inmadion) for this fix, | go back to the
zeromg-dev list and tell him I've made the patch, with a linkhe commit. The faster | get feedback, the
better. It's 1 a.m. in South Korea as | make this patch, sgy@aning in Europe, and morning in the
States. You learn to count timezones when you work with peapltoss the world. lan is in a conference,
Mikko is getting on a plane, and Chuck is probably in the offilmg three hours later, lan merges the pull
request.

After lan merges the pull request, | resynchronize my forthwle upstreartibzmq repository. First, |
add aremotethat tells git where this repository sits (I do this just ontéhe directory where I'm
working):

git remote add upstream git://github.com/zeromg/libzmgq. git

And then | pull changes back from the upstream master andkeheait log to double-check:

git pull --rebase upstream master
git log

And that is pretty much it, in terms of how much git one needs#on and use to contribute patches to
libzmg . Six git commands and some clicking on web pages. Most inaptstto me as a naturally lazy,
stupid, and easily confused developer, | don’t have to lgéiminternal models, and never have to do
anything involving those infernal engines of structuraiexity we call "git branches". Next up, the
attempted assassination of git branches. Let'’s live damcpdy!

6.5. Git Branches Considered Harmful

One of git's most popular features is its branches. Almdgirajects that use git use branches, and the
selection of the "best" branching strategy is like a rite @aégage for an open source project. Vincent
Driessen'’s git-flow (http://nvie.com/posts/a-succekgftibranching-model/) may be the best known. It
hasbasebranches (master, develofgaturebranchesieleasebrancheshotfixbranches, andupport
branches. Many teams have adopted git-flow, which even hagtginsions to supportit. I'm a great
believer in popular wisdom, but sometimes you have to reizegnass delusion for what it is.

Here is a section of C4 that might have shocked you when ydudiasl it:

The project SHALL NOT use topic branches for any reason.d®aisorks MAY use topic branches.

To be clear, it'public branches in shared repositoridsat I'm talking about. Using branches for private
work, e.g., to work on different issues, appears to work wefugh, though it's more complexity than |

317

Chapter 6. The gMQ Community

personally enjoy. To channel Stallman again: "your freedmereate complexity ends one inch from our
shared workspace."

Like the rest of C4, the rules on branches are not acciderftialy came from our experience making
@MQ, starting when Martin Sustrik and | rethought how to mstable releases. We both love and
appreciate simplicity (some people seem to have a remarkaleirance for complexity). We chatted for
a while... | asked him, "I'm going to start making a stablesesde. Would it be OK for me to make a
branch in the git you're working in?" Martin didn’t like thdéa. "OK, if | fork the repository, | can move
patches from your repo to that one". That felt much betteioth bf us.

The response from many in the @MQ community was shock an@hdteople felt we were being lazy
and making contributors work harder to find the "right" repary. Still, this seemed simple, and indeed
it worked smoothly. The best part was that we each worked asamed to. Whereas before, the IMQ
repository had felt horribly complex (and it wasn'’t even #iriyg like git-flow), this felt simple. And it
worked. The only downside was that we lost a single unifietbhisNow, perhaps historians will feel
robbed, but | honestly can’t see that the historical mireutibwho changed what, when, including every
branch and experiment, are worth any significant pain otidric

People have gotten used to the "multiple repositories"@gagr in ZeroMQ and we've started using that
in other projects quite successfully. My own opinion is thatory will judge git branches and patterns
like git-flow as a complex solution to imaginary problemseénked from the days of Subversion and
monolithic repositories.

More profoundly, and perhaps this is why the majority seemtset"wrong": | think the branches versus
forks argument is really a deeper design versus evolve aggtiabout how to make software optimally.
I'll address that deeper argument in the next section. Far Hibtry to be scientific about my irrational
hatred of branches, by looking at a number of criteria, amdgaring branches and forks in each one.

6.5.1. Simplicity Versus Complexity
The simpler, the better.

There is no inherent reason why branches are more complexdhes. However, git-flow usefive types
of branch, whereas C4 uses two types of fork (developmedtstable) and one branch (master).
Circumstantial evidence is thus that branches lead to nmmplexity than forks. For new users, it is
definitely, and we've measured this in practice, easierdamléo work with many repositories and no
branches except master.

6.5.2. Change Latency

The smaller and more rapid the delivery, the better.

318

Chapter 6. The gMQ Community
Development branches seem to correlate strongly with Jatge, risky deliveries. "Sorry, | have to
merge this branch before we can test the new version" sigrnaisakdown in process. It's certainly not
how C4 works, which is by focusing tightly on individual ptelns and their minimal solutions.

Allowing branches in development raises change latenaksHuave a different outcome: it's up to the
forker to ensure that his changes merge cleanly, and to keap $simple so they won't be rejected.

6.5.3. Learning Curve
The smoother the learning curve, the better.

Evidence definitely shows that learning to use git branchesinplex. For some people, this is OK. For
most developers, every cycle spent learning git is a cysedn more productive things. I've been told
several times, by different people that | do not like brasdbecause | "never properly learned git". That
is fair, but it is a criticism of the tool, not the human.

6.5.4. Cost of Failure

The lower the cost of failure, the better.

Branches demand more perfection from developers becassekes potentially affect others. This
raises the cost of failure. Forks make failure extremelhagheecause literally nothing that happens in a
fork can affect others not using that fork.

6.5.5. Up-front Coordination
The less need for up-front coordination, the better.

You can do a hostile fork. You cannot do a hostile branch. Bnas depend on up-front coordination,
which is expensive and fragile. One person can veto theatesfra whole group. For example in the
@MQ community we were unable to agree on a git branching miodel year. We solved that by using
forking instead. The problem went away.

6.5.6. Scalability

The more you can scale a project, the better.

The strong assumption in all branch strategies is that thesitoryis the project. But there is a limit to
how many people you can get to agree to work together in orasitepy. As | explained, the cost of
up-front coordination can become fatal. A more realistmj@ct scales by allowing anyone to start their

319

Chapter 6. The gMQ Community

own repositories, and ensuring these can work togetherofeqirlike @MQ has dozens of repositories.
Forking looks more scalable than branching.

6.5.7. Surprise and Expectations
The less surprising, the better.

People expect branches and find forks to be uncommon andahnfissing. This is the one aspect where
branches win. If you use branches, a single patch will hawestime commit hash tag, whereas across
forks the patch will have different hash tags. That makeaiitiar to track patches as they cross forks,
true. But serioushjhaving to track hexadecimal hash tags is not a featlii®a bug. Sometimes better
ways of working are surprising at first.

6.5.8. Economics of Participation
The more tangible the rewards, the better.

People like to own their work and get credit for it. This is rhueasier with forks than with branches.
Forks create more competition in a healthy way, while brascduppress competition and force people
to collaborate and share credit. This sounds positive buyiexperience it demotivates people. A
branch isn’t a product you can "own", whereas a fork can be.

6.5.9. Robustness in Conflict

The more a model can survive conflict, the better.

Like it or not, people fight over ego, status, beliefs, anathes of the world. Challenge is a necessary
part of science. If your organizational model depends op@ment, you won't survive the first real fight.
Branches do not survive real arguments and fights, whereles dan be hostile, and still benefit all
parties. And this is indeed how free software works.

6.5.10. Guarantees of Isolation
The stronger the isolation between production code andraxget, the better.

People make mistakes. I've seen experimental code pushaditdine production by error. I've seen
people make bad panic changes under stress. But the redbfauallowing two entirely separate
generations of product to exist in the same protected sjfag@mu can push to random-branch-x, you can
push to master. Branches do not guarantee isolation of ptioacritical code. Forks do.

320

Chapter 6. The gMQ Community

6.5.11. Visibility

The more visible our work, the better.

Forks have watchers, issues, a README, and a wiki. Branches hone of these. People try forks,
build them, break them, patch them. Branches sit there smtileone remembers to work on them. Forks
have downloads and tarballs. Branches do not. When we ladeforganization, the more visible and
declarative the problems, the faster and more accuratetyawevork.

6.5.12. Conclusions

In this section, I've listed a series of arguments, most attvisame from fellow team members. Here’s
how it seems to break down: git veterans insist that branafethe way to work, whereas newcomers
tend to feel intimidated when asked to navigate git brandBéss not an easy tool to master. What
we've discovered, accidentally, is that when you stop ubirgchest all, git becomes trivial to use. It
literally comes down to six commandsdne , remote , commit , log , push, andpull). Furthermore, a
branch-free process actually works, we've used it for a tmapyears now, and no visible downside
except surprise to the veterans and growth of "single" ptsjever multiple repositories.

If you can't use forks, perhaps because your firm doesn’t Gitslub’s private repositories, then you
can perhaps use topic branches, one per issue. You'llsti#rsthe costs of getting up-front consensus,
low competitiveness, and risk of human error.

6.6. Designing for Innovation

Let’s look at innovation, which Wikipedia defines as, "theelepment of new values through solutions
that meet new requirements, inarticulate needs, or olbmestand market needs in value adding new
ways." This really just means solving problems more chedipdpunds straight-forward, but the history
of collapsed tech giants proves that it's not. I'll try to éadp how teams so often get it wrong, and
suggest a way for doing innovation right.

6.6.1. The Tale of Two Bridges

Two old engineers were talking of their lives and boastinthefr greatest projects. One of the engineers
explained how he had designed one of the greatest bridgesewk.

"We built it across a river gorge," he told his friend. "It wagle and deep. We spent two years studying
the land, and choosing designs and materials. We hired steehgineers and designed the bridge, which
took another five years. We contracted the largest engimgérims to build the structures, the towers,

321

Chapter 6. The gMQ Community

the tollbooths, and the roads that would connect the bridgies main highways. Dozens died during the
construction. Under the road level we had trains, and a appath for cyclists. That bridge represented
years of my life."

The second man reflected for a while, then spoke. "One eveméngnd a friend got drunk on vodka, and
we threw a rope across a gorge," he said. "Just a rope, tibttrées. There were two villages, one at
each side. At first, people pulled packages across that radpevpulley and string. Then someone threw
a second rope, and built a foot walk. It was dangerous, bukitteeloved it. A group of men then rebuilt
that, made it solid, and women started to cross, everyddly,tiveir produce. A market grew up on one
side of the bridge, and slowly that became a large town, ls=cthere was a lot of space for houses. The
rope bridge got replaced with a wooden bridge, to allow roesel carts to cross. Then the town built a
real stone bridge, with metal beams. Later, they replacedtitne part with steel, and today there’s a
suspension bridge standing in that same spot."”

The first engineer was silent. "Funny thing," he said, "myge was demolished about ten years after
we built it. Turns out it was built in the wrong place and no evented to use it. Some guys had thrown a
rope across the gorge, a few miles further downstream, aid thhere everyone went."

6.6.2. How GMQ Lost Its Road Map

Presenting @MQ at the Mix-IT conference in Lyon in early 20l\®as asked several times for the "road
map". My answer was: there is no road map any longer. We hatimags, and we deleted them. Instead
of a few experts trying to lay out the next steps, we were atigwthis to happen organically. The
audience didn’t really like my answer. So un-French.

However, the history of @MQ makes it quite clear why road mapee problematic. In the beginning,
we had a small team making the library, with few contributarsd no documented road map. As IMQ
grew more popular and we switched to more contributors sussied for road maps. So we collected
our plans together and tried to organize them into reledtm®, we wrote, is what will come in the next
release.

As we rolled out releases, we hit the problem that it's vergyea promise stuff, and rather harder to
make it as planned. For one thing, much of the work was votyngéad it's not clear how you force
volunteers to commit to a road map. But also, priorities daft dramatically over time. So we were
making promises we could not keep, and the real deliver@stdinatch the road maps.

The second problem was that by defining the road map, we inteff@imed territory, making it harder
for others to participate. People do prefer to contributehtanges they believe were their idea. Writing
down a list of things to do turns contribution into a choréneatthan an opportunity.

Finally, we saw changes in @MQ that were quite traumatic,thrdoad maps didn’t help with this,
despite a lot of discussion and effort to "do it right". Exdespof this were incompatible changes in APIs
and protocols. It was quite clear that we needed a diffengmtaach for defining the change process.

322

Chapter 6. The gMQ Community

Software engineers don'’t like the notion that powerfuleefive solutions can come into existence
without an intelligent designer actively thinking thinggdugh. And yet no one in that room in Lyon
would have questioned evolution. A strange irony, and onarited to explore further as it underpins the
direction the @MQ community has taken since the start of 2012

In the dominant theory of innovation, brilliant individsaleflect on large problem sets and then carefully
and precisely create a solution. Sometimes they will hauegla" moments where they "get" brilliantly
simple answers to whole large problem sets. The inventdritaprocess of invention are rare, precious,
and can command a monopoly. History is full of such heroidviddals. We owe them our modern

world.

Looking more closely, however, and you will see that thedaltin’t match. History doesn’t show lone
inventors. It shows lucky people who steal or claim ownerstiideas that are being worked on by
many. It shows brilliant people striking lucky once, andritlspending decades on fruitless and pointless
quests. The best known large-scale inventors like Thom&®Rdvere in fact just very good at
systematic broad research done by large teams. It’s likentlg that Steve Jobs invented every device
made by Apple. It is a nice myth, good for marketing, but Wyteseless as practical science.

Recent history, much better documented and less easy tguoiatd, shows this well. The Internet is
surely one of the most innovative and fast-moving areasatirtelogy, and one of the best documented.
It has no inventor. Instead, it has a massive economy of paglpbd have carefully and progressively
solved a long series of immediate problems, documentedahsivers, and made those available to all.
The innovative nature of the Internet comes not from a srealéct band of Einsteins. It comes from
RFCs anyone can use and improve, made by hundreds and thsugamart, but not uniquely smatrt,
individuals. It comes from open source software anyone sarand improve. It comes from sharing,
scale of community, and the continuous accretion of goadtisols and disposal of bad ones.

Here thus is an alternative theory of innovation:

1. There is an infinite problem/solution terrain.

. This terrain changes over time according to external itiond.

. We can only accurately perceive problems to which we argecl

. We can rank the cost/benefit economics of problems usingrketnfor solutions.
. There is an optimal solution to any solvable problem.

. We can approach this optimal solution heuristically, argthanically.

~N O 0o b~ oW N

. Our intelligence can make this process faster, but doeeptace it.

There are a few corollaries to this:

- Individual creativity matters less than proceSsnarter people may work faster, but they may also
work in the wrong direction. It's the collective vision ofaldy that keeps us honest and relevant.

- We don’'t need road maps if we have a good prodesactionality will emerge and evolve over time as
solutions compete for market share.

323

Chapter 6. The gMQ Community

- We don'tinvent solutions so much as discover th&lirsympathies to the creative soul. It's just an
information processing machine that likes to polish its @go and collect karma.

- Intelligence is a social effect, though it feels persodaherson cut off from others eventually stops
thinking. We can neither collect problems nor measure smigtwithout other people.

- The size and diversity of the community is a key fatfmger, more diverse communities collect more
relevant problems, and solve them more accurately, andislfatster, than a small expert group.

So, when we trust the solitary experts, they make classitak@s. They focus on ideas, not problems.
They focus on the wrong problems. They make misjudgmentstdhbe value of solving problems. They
don't use their own work.

Can we turn the above theory into a reusable process? In0atk Bstarted documenting C4 and similar
contracts, and using them both in @MQ and in closed sourdegis The underlying process is
something | call "Simplicity Oriented Design", or SOD. Thésa reproducible way of developing simple
and elegant products. It organizes people into flexible lsugmins that are able to navigate a problem
landscape rapidly and cheaply. They do this by buildingingsand keeping or discarding minimal
plausible solutions, called "patches". Living productasist of long series of patches, applied one atop
the other.

SOD is relevant first because it's how we evolve @MQ. It’s dlsdbasis for the design process we will
use in Advanced Architecture using @NDQapter 7o develop larger-scale AMQ applications. Of
course, you can use any software architecture methodolagy@Q.

To best understand how we ended up with SOD, let’s look atlteenatives.

6.6.3. Trash-Oriented Design

The most popular design process in large businesses sedm$rash-Oriented Desigror TOD. TOD
feeds off the belief that all we need to make money are greasidt’s tenacious nonsense, but a
powerful crutch for people who lack imagination. The thegogs that ideas are rare, so the trick is to
capture them. It’s like non-musicians being awed by a gypiayer, not realizing that great talent is so
cheap it literally plays on the streets for coins.

The main output of TODs is expensive "ideation": concepgsjgh documents, and products that go
straight into the trash can. It works as follows:

- The Creative People come up with long lists of "we could do ¥ #h. I've seen endlessly detailed
lists of everything amazing a product could do. We've allrbgailty of this. Once the creative work of
idea generation has happened, it’s just a matter of exetufacourse.

- So the managers and their consultants pass their brilli@atsi to designers who create acres of
preciously refined design documents. The designers takeitiseof ideas the managers came up with,
and turn them into hundreds of world-changing designs.

324

Chapter 6. The gMQ Community

These designs get given to engineers who scratch their la@adsonder who the heck came up with
such nonsense. They start to argue back, but the designsfoammep high, and really, it's not up to
engineers to argue with creative people and expensive ttantsi

So the engineers creep back to their cubicles, humiliatddiaeatened into building the gigantic but
oh-so-elegant junk heap. It is bone-breaking work becawsdésigns take no account of practical
costs. Minor whims might take weeks of work to build. As thejpct gets delayed, the managers
bully the engineers into giving up their evenings and wedken

Eventually, something resembling a working product makest of the door. It's creaky and fragile,
complex and ugly. The designers curse the engineers farittteimpetence and pay more consultants
to put lipstick onto the pig, and slowly the product start$otok a little nicer.

By this time, the managers have started to try to sell theyrbaind they find, shockingly, that no one
wants it. Undaunted, they courageously build million-doileb sites and ad campaigns to explain to
the public why they absolutely need this product. They ddsdeih other businesses to force the
product on the lazy, stupid, and ungrateful market.

After twelve months of intense marketing, the product &iilt making profits. Worse, it suffers
dramatic failures and gets branded in the press as a distlstecompany quietly shelves it, fires the
consultants, buys a competing product from a small stamdpebrands that as its own Version 2.
Hundreds of millions of dollars end up in the trash.

Meanwhile, another visionary manager somewhere in thenimgtion drinks a little too much tequila
with some marketing people and has a Brilliant Idea.

Trash-Oriented Design would be a caricature if it wasn't@mmon. Something like 19 out of 20
market-ready products built by large firms are failures ($&%6 of statistics are made up on the spot).
The remaining 1 in 20 probably only succeeds because theetitong are so bad and the marketing is
SO aggressive.

The main lessons of TOD are quite straightforward but hagiallow. They are:

Ideas are cheap. No exceptions. There are no brilliant idegagne who tries to start a discussion
with "oooh, we can do this too!" should be beaten down wittirelpassion one reserves for traveling
evangelists. It is like sitting in a cafe at the foot of a maint drinking a hot chocolate and telling
others, "Hey, | have a great idea, we can climb that moungsmal build a chalet on top! With two
saunas! And a garden! Hey, and we can make it solar powerettt Dinat’'s awesome! What color
should we paint it? Green! No, blue! OK, go and make it, 'iyshere and make spreadsheets and
graphics!"

The starting point for a good design process is to colledtmedlems that confront real people. The
second step is to evaluate these problems with the basitiqué$iow much is it worth to solve this
problem?" Having done that, we can collect that set of probléhat are worth solving.

Good solutions to real problems will succeed as productsirBuccess will depend on how good and
cheap the solution is, and how important the problem is (andtishow big the marketing budgets
are). But their success will also depend on how much they ddrmeeffort to use--in other words,
how simple they are.

Now, after slaying the dragon of utter irrelevance, we &tthe demon of complexity.

325

Chapter 6. The gMQ Community

6.6.4. Complexity-Oriented Design

Really good engineering teams and small firms can usuallg Heicent products. But the vast majority
of products still end up being too complex and less succkssin they might be. This is because
specialist teams, even the best, often stubbornly applpeess | calComplexity-Oriented Desigior
COD, which works as follows:

- Management correctly identifies some interesting and diffigroblem with economic value. In doing
so, they already leapfrog over any TOD team.

« The team with enthusiasm starts to build prototypes andlegers. These work as designed and thus
encouraged, the team go off into intense design and artinigediscussions, coming up with elegant
schemas that look beautiful and solid.

- Management comes back and challenges the team with yet nfiiceltiproblems. We tend to equate
cost with value, so the harder and more expensive to solgentire the solution should be worth, in
their minds.

- The team, being engineers and thus loving to build stuftdatuff. They build and build and build
and end up with massive, perfectly-designed complexity.

- The products go to market, and the market scratches its mebalsks, "Seriously, is this the best you
can do?" People do use the products, especially if theytegpahding their own money in climbing
the learning curve.

- Management gets positive feedback from its larger custsymdro share the same idea that high cost
(in training and use) means high value, and so continuesgb e process.

- Meanwhile somewhere across the world, a small team is gpthie same problem using a better
process, and a year later smashes the market to little pieces

COD is characterized by a team obsessively solving the wpoolglems in a form of collective delusion.
COD products tend to be large, ambitious, complex, and umpegMuch open source software is the
output of COD processes. It is insanely hard for engineestojpextending a design to cover more
potential problems. They argue, "What if someone wants t§?ldout never ask themselves, "What is
the real value of solving X?"

A good example of COD in practice is Bluetooth, a complexralesigned set of protocols that users
hate. It continues to exist only because in a massivelyrpatdandustry there are no real alternatives.
Bluetooth is perfectly secure, which is close to pointlessafproximity protocol. At the same time, it
lacks a standard API for developers, meaning it's reallylgas use Bluetooth in applications.

On the #zeromq IRC channel, Wintre once wrote of how enrageglds many years ago when he "found
that XMMS 2 had a working plugin system, but could not actuplhy music."

COD is a form of large-scale "rabbit-holing", in which deséys and engineers cannot distance
themselves from the technical details of their work. Theg awbre and more features, utterly misreading
the economics of their work.

326

Chapter 6. The gMQ Community

The main lessons of COD are also simple, but hard for expeawallow. They are:

Making stuff that you don’timmediately have a need for isntlgiss. Doesn’t matter how talented or
brilliant you are, if you just sit down and make stuff people aot actually asking for, you are most
likely wasting your time.

Problems are not equal. Some are simple, and some are carplggally, solving the simpler
problems often has more value to more people than solvingetilly hard ones. So if you allow
engineers to just work on random things, they’ll mostly fecm the most interesting but least
worthwhile things.

Engineers and designers love to make stuff and decoratioithés inevitably leads to complexity. It
is crucial to have a "stop mechanism", a way to set short, theadlines that force people to make
smaller, simpler answers to just the most crucial problems.

6.6.5. Simplicity Oriented Design

Finally, we come to the rare but precio8@snplicity Oriented Desigror SOD. This process starts with a
realization: we do not know what we have to make until afteistegt making it. Coming up with ideas

or large-scale designs isn’t just wasteful, it's a direcidnance to designing the truly accurate solutions.
The really juicy problems are hidden like far valleys, ang activity except active scouting creates a fog
that hides those distant valleys. You need to keep mobitk fight, and move fast.

SOD works as follows:

We collect a set of interesting problems (by looking at howpde use technology or other products)
and we line these up from simple to complex, looking for aremhtifying patterns of use.

We take the simplest, most dramatic problem and we solveniitiisa minimal plausible solution, or
"patch". Each patch solves exactly a genuine and agreedqupblem in a brutally minimal fashion.

We apply one measure of quality to patches, namely "Can thdolne any simpler while still solving
the stated problem?" We can measure complexity in termsrafequts and models that the user has to
learn or guess in order to use the patch. The fewer, the bAtfErfect patch solves a problem with
zero learning required by the user.

Our product development consists of a patch that solvesrtitgdgm "we need a proof of concept" and
then evolves in an unbroken line to a mature series of predtiobugh hundreds or thousands of
patches piled on top of each other.

We do not daanythingthat is not a patch. We enforce this rule with formal proceslsat demand that
every activity or task is tied to a genuine and agreed-upohlpm, explicitly enunciated and
documented.

We build our projects into a supply chain where each projactgrovide problems to its "suppliers”
and receive patches in return. The supply chain createstbp fhechanism" because when people are
impatiently waiting for an answer, we necessarily cut ourknshort.

Individuals are free to work on any projects, and providepas at any place they feel it's worthwhile.
No individuals "own" any project, except to enforce the fafiprocesses. A single project can have
many variations, each a collection of different, compepatrhes.

327

Chapter 6. The gMQ Community

- Projects export formal and documented interfaces so ttsitegm (client) projects are unaware of
change happening in supplier projects. Thus multiple sappfojects can compete for client projects,
in effect creating a free and competitive market.

« We tie our supply chain to real users and external clientsiandrive the whole process by rapid
cycles so that a problem received from outside users canddgzaa, evaluated, and solved with a
patch in a few hours.

- At every moment from the very first patch, our product is shigp. This is essential, because a large
proportion of patches will be wrong (10-30%) and only by giythe product to users can we know
which patches have become problems that need solving.

SOD is ahill-climbing algorithm a reliable way of finding optimal solutions to the most sfigaint
problems in an unknown landscape. You don’t need to be a gémiuse SOD successfully, you just need
to be able to see the difference between the fog of activiththe progress towards new real problems.

People have pointed out that hill-climbing algorithms hemewn limitations. One gets stuck on local
peaks, mainly. But this is nonetheless how life itself woddlecting tiny incremental improvements
over long periods of time. There is no intelligent desighi¢g.reduce the risk of local peaks by spreading
out widely across the landscape, but it is somewhat mootlififi@tions aren’t optional, they are
physical laws. The theory sayhjs is how innovation really works, so better embrace it amak with it
than try to work on the basis of magical thinking

And in fact once you see all innovation as more or less sufiddsfi-climbing, you realize why some
teams and companies and products get stuck in a never-aexkof diminishing prospects. They simply
don’t have the diversity and collective intelligence to flwetter hills to climb. When Nokia killed their
open source projects, they cut their own throat.

A really good designer with a good team can use SOD to builddadass products, rapidly and
accurately. To get the most out of SOD the designer has tdhegerbduct continuously, from day one,
and develop his or her ability to smell out problems such esrisistency, surprising behavior, and other
forms of friction. We naturally overlook many annoyances,&®good designer picks these up and thinks
about how to patch them. Design is about removing frictiothanuse of a product.

In an open source setting, we do this work in public. Theredlet’s open the code" moment. Projects
that do this are in my view missing the point of open sourcdchvis to engage your users in your
exploration, and to build community around the seed of tichitecture.

6.7. Burnout

The MQ community has been and still is heavily dependentrotbpno individual efforts. I'd like to
think that everyone was compensated in some way for theiribations, and | believe that with @MQ),

328

Chapter 6. The gMQ Community

contributing means gaining expertise in an extraordipadluable technology, which leads to improved
professional options.

However, not all projects will be so lucky and if you work wibhin open source, you should understand
the risk of burnout that volunteers face. This applies t@ailbono communities. In this section, I'll
explain what causes burnout, how to recognize it, how togarei, and (if it happens) how to try to treat
it. Disclaimer: I'm not a psychiatrist and this article isdeal on my own experiences of working in pro
bono contexts for the last 20 years, including free softypaogects, and NGOs such as the FFII
(http://www.ffii.org).

In a pro bono context, we're expected to work without direablovious economic incentive. That is, we
sacrifice family life, professional advancement, free tiared health in order to accomplish some goal
we have decided to accomplish. In any project, we need sonaedfireward to make it worth continuing
each day. In most pro bono projects the rewards are veryeictisuperficially not economical at all.
Mostly, we do things because people say, "Hey, great!" Kasnagpowerful motivator.

However, we are economic beings, and sooner or later, if jg@roosts us a great deal and does not
bring economic rewards of some kind (money, fame, a new jgb)start to suffer. At a certain stage, it
seems our subconscious simply gets disgusted and saysigEimenough!" and refuses to go any
further. If we try to force ourselves, we can literally gatisi

This is what | call "burnout”, though the term is also useddtbrer kinds of exhaustion. Too much
investment on a project with too little economic reward,tfmy long. We are great at manipulating
ourselves and others, and this is often part of the processeifids to burnout. We tell ourselves that it's
for a good cause and that the other guy is doing OK, so we shausdle to as well.

When | got burned out on open source projects like Xitamimiember clearly how | felt. | simply
stopped working on it, refused to answer any more emailst@ddgeople to forget about it. You can tell
when someone’s burned out. They go offline, and everyones staying, "He’s acting strange...
depressed, or tired..."

Diagnosis is simple. Has someone worked a lot on a projetiths not paying back in any way? Did
she make exceptional sacrifices? Did he lose or abandonth@ tudies to do the project? If you're
answering "yes", it's burnout.

There are three simple techniques I've developed over thesyte reduce the risk of burnout in the teams
| work with:

- No one is irreplaceabléNorking solo on a critical or popular project--the concatitn of
responsibility on one person who cannot set their own limigprobably the main factor. It's a
management truism: if someone in your organization is laegable, get rid of him or her.

« We need day jobs to pay the billghis can be hard, but seems necessary. Getting money from
somewhere else makes it much easier to sustain a sacrifiojatp

329

Chapter 6. The gMQ Community

- Teach people about burnotthis should be a basic course in colleges and universitgs;abono
work becomes a more common way for young people to experiprefgssionally.

When someone is working alone on a critical project, gnawthey are going blow their fuses sooner or
later. It's actually fairly predictable: something like-B& months depending on the individual and how
much economic stress they face in their private lives. I'eeseen anyone burn-out after half a year, nor
last five years in a unrewarding project.

There is a simple cure for burnout that works in at least somses: get paid decently for your work.
However, this pretty much destroys the freedom of movenaarbEs that infinite problem landscape)
that the volunteer enjoys.

6.8. Patterns for Success

I'll end this code-free chapter with a series of patternssfarcess in software engineering. They aim to
capture the essence of what divides glorious success fagittfailure. They were described as
"religious maniacal dogma" by a manager, and "anythingwtsdd be effing insane" by a colleague, in

a single day. For me, they are science. But treat the Lazy&@hist and others as tools to use, sharpen,
and throw away if something better comes along.

6.8.1. The Lazy Perfectionist

Never design anything that's not a precise minimal answex pooblem we can identify and have to
solve.

The Lazy Perfectionist spends his idle time observing athad identifying problems that are worth
solving. He looks for agreement on those problems, alwakisgs'What is thereal problem". Then he
moves, precisely and minimally, to build, or get others tddya usable answer to one problem. He uses,
or gets others to use those solutions. And he repeats thishere are no problems left to solve, or time
or money runs out.

6.8.2. The Benevolent Tyrant

The control of a large force is the same principle as the aadrif a few men: it is merely a question of
dividing up their numbers- Sun Tzu

The Benevolent Tyrant divides large problems into smallersoand throws them at groups to focus on.
He brokers contracts between these groups, in the form of ARd the "unprotocols” we’ll read about in
the next chapter. The Benevolent Tyrant constructs a sughalin that starts with problems, and results

330

Chapter 6. The gMQ Community

in usable solutions. He is ruthless about how the supplynclvarks, but does not tell people what to
work on, nor how to do their work.

6.8.3. The Earth and Sky

The ideal team consists of two sides: one writing code, ardoooviding feedback.

The Earth and Sky work together as a whole, in close proxjmitythey communicate formally through
issue tracking. Sky seeks out problems from others and fr@in éwn use of the product and feeds these
to Earth. Earth rapidly answers with testable solutionsttEand Sky can work through dozens of issues
in a day. Sky talks to other users, and Earth talks to othegldpers. Earth and Sky may be two people,
or two small groups.

6.8.4. The Open Door

The accuracy of knowledge comes from diversity.

The Open Door accepts contributions from almost anyone.dés dot argue quality or direction,
instead allowing others to argue that and get more engagedaldulates that even a troll will bring
more diverse opinion to the group. He lets the group formpigion about what goes into stable code,
and he enforces this opinion with help of a Benevolent Tyrant

6.8.5. The Laughing Clown

Perfection precludes participation.

The Laughing Clown, often acting as the Happy Failure, makeslaim to high competence. Instead his
antics and bumbling attempts provoke others into rescuimgtom his own tragedy. Somehow
however, he always identifies the right problems to solvepReare so busy proving him wrong they
don’t realize they're doing valuable work.

6.8.6. The Mindful General

Make no plans. Set goals, develop strategies and tactics.

The Mindful General operates in unknown territory, solvprgblems that are hidden until they are
nearby. Thus he makes no plans, but seeks opportunitieseipdoits them rapidly and accurately. He
develops tactics and strategies in the field, and teachss thénis men so they can move independently,
and together.

331

Chapter 6. The gMQ Community

6.8.7. The Social Engineer
If you know the enemy and know yourself, you need not feaethdtof a hundred battles: Sun Tzu

The Social Engineer reads the hearts and minds of those he with and for. He asks, of everyone,
"What makes this person angry, insecure, argumentatilra, tappy?" He studies their moods and
dispositions. With this knowledge he can encourage thoseast useful, and discourage those who are
not. The Social Engineer never acts on his own emotions.

6.8.8. The Constant Gardener

He will win whose army is animated by the same spirit througladl its ranks.-- Sun Tzu

The Constant Gardener grows a process from a small seeeh\stapp as more people come into the
project. He makes every change for a precise reason, wideaggnt from everyone. He never imposes a
process from above but lets others come to consensus, antléfenforces that consensus. In this way,
everyone owns the process together and by owning it, thegterehed to it.

6.8.9. The Rolling Stone

After crossing a river, you should get far away from-tSun Tzu

The Rolling Stone accepts his own mortality and transieHeehas no attachment to his past work. He
accepts that all that we make is destined for the trash cenjuist a matter of time. With precise,
minimal investments, he can move rapidly away from the padtséay focused on the present and near
future. Above all, he has no ego and no pride to be hurt by thierecof others.

6.8.10. The Pirate Gang

Code, like all knowledge, works best as collective--notgig--property.

The Pirate Gang organizes freely around problems. It as@phority insofar as authority provides
goals and resources. The Pirate Gang owns and shares alasmevery work is fully remixable by
others in the Pirate Gang. The gang moves rapidly as newgrsémerge, and is quick to abandon old
solutions if those stop being relevant. No persons or greapsnonopolize any part of the supply chain.

332

Chapter 6. The gMQ Community

6.8.11. The Flash Mob

Water shapes its course according to the nature of the grawed which it flows:- Sun Tzu

The Flash Mob comes together in space and time as neededliipenses as soon as they can. Physical
closeness is essential for high-bandwidth communicati®uasover time it creates technical ghettos,
where Earth gets separated from Sky. The Flash Mob tenddlezta lot of frequent flier miles.

6.8.12. The Canary Watcher

Pain is not, generally, a Good Sign.

The Canary Watcher measures the quality of an organizayidimeir own pain level, and the observed
pain levels of those with whom he works. He brings new pagréints into existing organizations so they
can express the raw pain of the innocent. He may use alcolgettothers to verbalize their pain points.
He asks others, and himself, "Are you happy in this processjfanot, why not?" When an organization
causes pain in himself or others, he treats that as a probléeafixed. People should feel joy in their
work.

6.8.13. The Hangman

Never interrupt others when they are making mistakes.

The Hangman knows that we learn only by making mistakes, argives others copious rope with

which to learn. He only pulls the rope gently, when it's timdittle tug to remind the other of their
precarious position. Allowing others to learn by failurgeg the good reason to stay, and the bad excuse
to leave. The Hangman is endlessly patient, because theoesisortcut to the learning process.

6.8.14. The Historian

Keeping the public record may be tedious, but it's the only weprevent collusion.

The Historian forces discussion into the public view, tover& collusion to own areas of work. The
Pirate Gang depends on full and equal communications thabtldepend on momentary presence. No
one really reads the archives, but the simply possibiliypstmost abuses. The Historian encourages the
right tool for the job: email for transient discussions, IR chatter, wikis for knowledge, issue tracking
for recording opportunities.

333

Chapter 6. The gMQ Community

6.8.15. The Provocateur

When a man knows he is to be hanged in a fortnight, it conctsttais mind wonderfully- Samuel
Johnson

The Provocateur creates deadlines, enemies, and the aeakisnpossibility. Teams work best when
they don’t have time for the crap. Deadlines bring peopletiogr and focus the collective mind. An
external enemy can move a passive team into action. The €ateur never takes the deadline too
seriously. The product ialwaysready to ship. But he gently reminds the team of the stakésafal we
all look for other jobs.

6.8.16. The Mystic
When people argue or complain, just write them a Sun Tzu tjoata Mikko Koppanen

The Mystic never argues directly. He knows that to argue waitlemotional person only creates more
emotion. Instead he side-steps the discussion. It's haod Bngry at a Chinese general, especially when
he has been dead for 2,400 years. The Mystic plays Hangmam péuple insist on the right to get it
wrong.

334

Chapter 7. Advanced Architecture using @MQ

One of the effects of using IMQ at large scale is that becaeseaw build distributed architectures so
much faster than before, the limitations of our softwareieegring processes become more visible.
Mistakes in slow motion are often harder to see (or rathasige#o rationalize away).

My experience when teaching @MQ to groups of engineers tstthaarely sufficient to just explain
how @MQ works and then just expect them to start building sasful products. Like any technology
that removes friction, @MQ opens the door to big blundergMQ is the ACME rocket-propelled shoe
of distributed software development, a lot of us are liked/l Coyote, slamming full speed into the
proverbial desert cliff.

We saw in The MQ Communi@hapter @hat IMQ itself uses a formal process for changes. One
reason we built this process, over some years, was to stopjpleated cliff-slamming that happened in
the library itself.

Partly, it's about slowing down and partially, it's aboutseming that when you move fast, you go--and
this is essential Dear Reader--in ttight direction It's my standard interview riddle: what'’s the rarest
property of any software system, the absolute hardest thiggt right, the lack of which causes the slow
or fast death of the vast majority of projects? The answeoizade quality, funding, performance, or
even (though it’s a close answer), popularity. The answacésiracy

Accuracy is half the challenge, and applies to any engingeviork. The other half is distributed
computing itself, which sets up a whole range of problemsweaneed to solve if we are going to create
architectures. We need to encode and decode data; we neefilte protocols to connect clients and
servers; we need to secure these protocols against aiaaekerwe need to make stacks that are robust.
Asynchronous messaging is hard to get right.

This chapter will tackle these challenges, starting witlasidreappraisal of how to design and build
software and ending with a fully formed example of a distréaliapplication for large-scale file
distribution.

We'll cover the following juicy topics:

- How to go from idea to working prototype safely (the MOPEDtpat)
- Different ways to serialize your data as @MQ messages

- How to code-generate binary serialization codecs

« How to build custom code generators using the GSL tool

- How to write and license a protocol specification

- How to build fast restartable file transfer over @dMQ

- How to use credit-based flow control for nonblocking transfe

335

Chapter 7. Advanced Architecture using @MQ

- How to build protocol servers and clients as state machines
+ How to make a secure protocol over @MQ

- A large-scale file publishing system (FileMQ)

7.1. Message-Oriented Pattern for Elastic Design

I'll introduce Message-Oriented Pattern for Elastic DagiglOPED), a software engineering pattern for
@MQ architectures. It was either "MOPED" or "BIKE", the Baokym-Induced Kinetic Effect. That's
short for "BICICLE", the Backronym-Inflated See if | Care kdsffect. In life, one learns to go with the
least embarrassing choice.

If you've read this book carefully, you'll have seen MOPEDaiction already. The development of
Majordomo in Reliable Request-Reply Patt€Chapter 4s a near-perfect case. But cute names are
worth a thousand words.

The goal of MOPED is to define a process by which we can takegtrase case for a new distributed
application, and go from "Hello World" to fully-working ptotype in any language in under a week.

Using MOPED, you grow, more than build, a working @MQ arctiitee from the ground-up with
minimal risk of failure. By focusing on the contracts ratltean the implementations, you avoid the risk
of premature optimization. By driving the design processuigh ultra-short test-based cycles, you can
be more certain that what you have works before you add more.

We can turn this into five real steps:

« Step 1: internalize the @MQ semantics.

- Step 2: draw a rough architecture.

- Step 3: decide on the contracts.

« Step 4: make a minimal end-to-end solution.

- Step 5: solve one problem and repeat.

7.1.1. Step 1: Internalize the Semantics

You must learn and digest @MQ's "language”, that is, the sbpktterns and how they work. The only
way to learn a language is to use it. There’s no way to avoglitiviestment, no tapes you can play while
you sleep, no chips you can plug in to magically become sm&&ad this book from the start, work
through the code examples in whatever language you preféergtand what's going on, and (most
importantly) write some examples yourself and then throsnitaway.

336

Chapter 7. Advanced Architecture using @MQ

At a certain point, you'll feel a clicking noise in your braidaybe you'll have a weird chili-induced
dream where little IMQ tasks run around trying to eat youealMaybe you'll just think "aaahh, so
that'swhat it means!" If we did our work right, it should take two to¢e days. However long it takes,
until you start thinking in terms of @MQ sockets and patteyaai’re not ready for step 2.

7.1.2. Step 2: Draw a Rough Architecture

From my experience, it's essential to be able to draw the abyeur architecture. It helps others
understand what you are thinking, and it also helps you ttiinbkugh your ideas. There is really no better
way to design a good architecture than to explain your idegetrr colleagues, using a whiteboard.

You don't need to get it right, and you don’t need to make it ptete. What you do need to do is break
your architecture into pieces that make sense. The nicg #bout software architecture (as compared to
constructing bridges) is that your really can replace endéyers cheaply if you've isolated them.

Start by choosing the core problem that you are going to stdwere anything that’s not essential to that
problem: you will add it in later. The problem should be an-¢oxénd problem: the rope across the

gorge.

For example, a client asked us to make a supercomputingchvgh @MQ. Clients create bundles of
work, which are sent to a broker that distributes them to wgKrunning on fast graphics processors),
collects the results back, and returns them to the client.

The rope across the gorge is one client talking to a brokkinizito one worker. We draw three boxes:
client, broker, worker. We draw arrows from box to box shayine request flowing one way and the
response flowing back. It’s just like the many diagrams we isa@arlier chapters.

Be minimalistic. Your goal is not to defineraal architecture, but to throw a rope across the gorge to
bootstrap your process. We make the architecture suctlgssiore complete and realistic over time:
e.g., adding multiple workers, adding client and worker #Plandling failures, and so on.

7.1.3. Step 3: Decide on the Contracts

A good software architecture depends on contracts, and tihe explicit they are, the better things scale.
You don't carehowthings happen; you only care about the results. If | send ailehdon’t care how it
arrives at its destination, as long as the contract is résgecthe email contract is: it arrives within a few
minutes, no-one modifies it, and it doesn’t get lost.

And to build a large system that works well, you must focustendontracts before the implementations.
It may sound obvious but all too often, people forget or ignihiis, or are just too shy to impose

337

Chapter 7. Advanced Architecture using @MQ

themselves. | wish | could say @MQ had done this properlyfdaugears our public contracts were
second-rate afterthoughts instead of primary in-youefaieces of work.

So what is a contract in a distributed system? There are, iexpgrience, two types of contract:

- The APIs to client applications. Remember the Psycholdileanents. The APIs need to be as
absolutelysimple consistentandfamiliar as possible. Yes, you can generate APl documentation from
code, but you must first design it, and designing an API isffird.

« The protocols that connect the pieces. It sounds like ragiience, but it's really just a simple trick,
and one that MQ makes particularly easy. In fact they'rasple to write, and need so little
bureaucracy that | call theomprotocols

You write minimal contracts that are mostly just place mask&lost messages and most APl methods
will be missing or empty. You also want to write down any knawohnical requirements in terms of
throughput, latency, reliability, and so on. These are titeréa on which you will accept or reject any
particular piece of work.

7.1.4. Step 4: Write a Minimal End-to-End Solution

The goal is to test out the overall architecture as rapidiyassible. Make skeleton applications that call
the APIs, and skeleton stacks that implement both sidesasf/garotocol. You want to get a working
end-to-end "Hello World" as soon as you can. You want to be abtest code as you write it, so that you
can weed out the broken assumptions and inevitable errorewade. Do not go off and spend six months
writing a test suite! Instead, make a minimal bare-bone$iegin that uses our still-hypothetical API.

If you design an APl wearing the hat of the person who impleisgnyou’ll start to think of

performance, features, options, and so on. You'll make itenoomplex, more irregular, and more
surprising than it should be. But, and here’s the trick @tisheap one, was big in Japan): if you design an
API while wearing the hat of the person who has to actuallyenapps that use it, you use all that
laziness and fear to your advantage.

Write down the protocols on a wiki or shared document in sualayathat you can explain every
command clearly without too much detail. Strip off any raaidtionality, because it will only create
inertia that makes it harder to move stuff around. You caragéradd weight. Don’t spend effort defining
formal message structures: pass the minimum around inri@esst possible fashion using @MQ’s
multipart framing.

Our goal is to get the simplest test case working, withoutaunjdable functionality. Everything you can
chop off the list of things to do, you chop. Ignore the groansgtcolleagues and bosses. I'll repeat this
once again: you caalwaysadd functionality, that’s relatively easy. But aim to kebp bverall weight to
a minimum.

338

Chapter 7. Advanced Architecture using @MQ

7.1.5. Step 5: Solve One Problem and Repeat

You're now in the happy cycle of issue-driven developmengérehyou can start to solve tangible
problems instead of adding features. Write issues that staté a clear problem, and propose a solution.
As you design the API, keep in mind your standards for nan@ssistency, and behavior. Writing these
down in prose often helps keep them sane.

From here, every single change you make to the architectutre@de can be proven by running the test
case, watching it not work, making the change, and then wagdhwork.

Now you go through the whole cycle (extending the test casagfithe API, updating the protocol, and
extending the code, as needed), taking problems one at atichgesting the solutions individually. It
should take about 10-30 minutes for each cycle, with thegional spike due to random confusion.

7.2. Unprotocols

7.2.1. Protocols Without The Goats

When this man thinks of protocols, this man thinks of masdiveuments written by committees, over
years. This man thinks of the IETF, W3C, ISO, Oasis, regwjatapture, FRAND patent license
disputes, and soon after, this man thinks of retirement tealiitle farm in northern Bolivia up in the
mountains where the only other needlessly stubborn beirgtha goats chewing up the coffee plants.

Now, I've nothing personal against committees. The usdt@ksieed a place to sit out their lives with
minimal risk of reproducing; after all, that only seems.f&ut most committee protocols tend towards
complexity (the ones that work), or trash (the ones we daiktéabout). There’s a few reasons for this.
One is the amount of money at stake. More money means moréepghp want their particular
prejudices and assumptions expressed in prose. But twe la¢k of good abstractions on which to
build. People have tried to build reusable protocol abstvas, like BEEP. Most did not stick, and those
that did, like SOAP and XMPP, are on the complex side of things

It used to be, decades ago, when the Internet was a young titbithes that protocols were short and
sweet. They weren’t even "standards”, but "requests fomeents", which is as modest as you can get.
It's been one of my goals since we started iMatix in 1995 to &éivday for ordinary people like me to
write small, accurate protocols without the overhead otithamittees.

Now, @MQ does appear to provide a living, successful prdtabstraction layer with its "we’ll carry
multipart messages over random transports” way of worlegause @MQ deals silently with framing,
connections, and routing, it's surprisingly easy to wrii# protocol specs on top of AMQ, and in
Reliable Request-Reply Patte@tsapter 4and Advanced Pub-Sub Patte@iapter 9 showed how to do
this.

339

Chapter 7. Advanced Architecture using @MQ

Somewhere around mid-2007, | kicked off the Digital Standadrganization to define new simpler
ways of producing little standards, protocols, and spettificis. In my defense, it was a quiet summer.
At the time, | wrote that a new specification should take "nsito explain, hours to design, days to
write, weeks to prove, months to become mature, and yeaeptaae." (http://www.digistan.org/spec:1)

In 2010, we started calling such little specificatiamprotocols which some people might mistake for a
dastardly plan for world domination by a shadowy intermagicorganization, but which really just
means "protocols without the goats".

7.2.2. Contracts Are Hard

Writing contracts is perhaps the most difficult part of laspale architecture. With unprotocols, we
remove as much of the unnecessary friction as possible. Yehwdins is still a hard set of problems to
solve. A good contract (be it an API, a protocol, or a rentaéagent) has to be simple, unambiguous,
technically sound, and easy to enforce.

Like any technical skill, it's something you have to learmdgmactice. There are a series of specifications
on the

@MQ RFC site (http://rfc.zeromg.org), which are worth rieadand using them as a basis for your own
specifications when you find yourself in need.

I'll try to summarize my experience as a protocol writer:

- Start simple, and develop your specifications step-by-8lep’t solve problems you don't have in
front of you.

+ Use very clear and consistent language. A protocol may diteak down into commands and fields;
use clear short names for these entities.

- Try to avoid inventing concepts. Reuse anything you can feaisting specifications. Use
terminology that is obvious and clear to your audience.

« Makenothingfor which you cannot demonstrate an immediate need. Youwifépegion solves
problems; it does not provide features. Make the simpleatgble solution for each problem that you
identify.

- Implement your protocas you build it so that you are aware of the technical consequences of each
choice. Use a language that makes it hard (like C) and notratertakes it easy (like Python).

- Test your specificatioas you build iton other people. Your best feedback on a specification is when
someone else tries to implement it without the assumptindskaowledge that you have in your head.

« Cross-test rapidly and consistently, throwing othergmi§ against your servers and vice versa.

« Be prepared to throw it out and start again as often as ne@tmdfor this, by layering your
architecture so that e.g., you can keep an API but changentierlying protocols.

- Only use constructs that are independent of programmirgikege and operating system.

340

Chapter 7. Advanced Architecture using @MQ

- Solve a large problem in layers, making each layer an indé#grerspecification. Beware of creating
monolithic protocols. Think about how reusable each lagefhink about how different teams could
build competing specifications at each layer.

And above allwrite it down Code is not a specification. The point about a written sppetitin is that
no matter how weak it is, it can be systematically improvegdwBiting down a specification, you will
also spot inconsistencies and gray areas that are impessibée in code.

If this sounds hard, don’t worry too much. One of the less obsibenefits of using @MQ is that it cuts
the effort necessary to write a protocol spec by perhaps 90%oce because it already handles framing,
routing, queuing, and so on. This means that you can expetirapidly, make mistakes cheaply, and
thus learn rapidly.

7.2.3. How to Write Unprotocols

When you start to write an unprotocol specification docunitk to a consistent structure so that your
readers know what to expect. Here is the structure | use:

- Cover section: with a 1-line summary, URL to the spec, fornahe, version, who to blame.
- License for the text: absolutely needed for public spedifica.

- The change process: i.e., how can | as a reader fix problerns specification?

- Use of language: MUST, MAY, SHOULD, and so on, with a refeetcRFC 2119.

- Maturity indicator: is this an experimental, draft, staldégacy, or retired?

« Goals of the protocol: what problems is it trying to solve?

- Formal grammar: prevents arguments due to different inéésions of the text.

- Technical explanation: semantics of each message, emdtihg, and so on.

« Security discussion: explicitly, how secure the protosol i

- References: to other documents, protocols, and so on.

Writing clear, expressive text is hard. Do avoid trying teckibe implementations of the protocol.
Remember that you're writing a contract. You describe imclanguage the obligations and expectations
of each party, the level of obligation, and the penaltiebfeaking the rules. You do not try to define
howeach party honors its part of the deal.

Here are some key points about unprotocols:

- As long as your process is open, then you don’t need a conamijttst make clean minimal designs
and make sure anyone is free to improve them.

- If use an existing license, then you don't have legal woraiésrwards. | use GPLv3 for my public
specifications and advise you to do the same. For in-houde standard copyright is perfect.

341

Chapter 7. Advanced Architecture using @MQ

- Formality is valuable. That is, learn to write a formal graarmauch as ABNF (Augmented
Backus-Naur Form) and use this to fully document your messag

- Use a market-driven life cycle process like Digistan’s CQB#p://www.digistan.org/spec:1) so that
people place the right weight on your specs as they matuco(ot).

7.2.4. Why use the GPLv3 for Public Specifications?

The license you choose is particularly crucial for publiesfications. Traditionally, protocols are
published under custom licenses, where the authors owexhard derived works are forbidden. This
sounds great (after all, who wants to see a protocol forkdu®)t’s in fact highly risky. A protocol
committee is vulnerable to capture, and if the protocol ipantant and valuable, the incentive for
capture grows.

Once captured, like some wild animals, an important prdtedboften die. The real problem is that
there’s no way tdreea captive protocol published under a conventional licembe.word "free" isn’'t
just an adjective to describe speech or air, it's also a & the right to fork a workgainst the wishes
of the ownelis essential to avoiding capture.

Let me explain this in shorter words. Imagine that iMatixtesia protocol today that's really amazing
and popular. We publish the spec and many people implemétdase implementations are fast and
awesome, and free as in beer. They start to threaten amexisisiness. Their expensive commercial
product is slower and can’t compete. So one day they comertiMatix office in Maetang-Dong, South
Korea, and offer to buy our firm. Because we're spending vastuants on sushi and beer, we accept
gratefully. With evil laughter, the new owners of the praibstop improving the public version, close the
specification, and add patented extensions. Their new ptedupport this new protocol version, but the
open source versions are legally blocked from doing so. Bngpany takes over the whole market, and
competition ends.

When you contribute to an open source project, you reallytwaknow your hard work won'’t be used
against you by a closed source competitor. This is why the Bdits the "more permissive”
BSD/MIT/X11 licenses for most contributors. These licengi&e permission to cheat. This applies just
as much to protocols as to source code.

When you implement a GPLv3 specification, your applicatarsof course yours, and licensed any
way you like. But you can be certain of two things. One, tha&icsfication willneverbe embraced and
extended into proprietary forms. Any derived forms of thedfication must also be GPLv3. Two, no
one who ever implements or uses the protocol will ever lawnphtent attack on anything it covers, nor
can they add their patented technology to it without grantire world a free license.

7.2.5. Using ABNF

My advice when writing protocol specs is to learn and use m&bgrammar. It's just less hassle than

342

Chapter 7. Advanced Architecture using @MQ

allowing others to interpret what you mean, and then recfyeen the inevitable false assumptions. The
target of your grammar is other people, engineers, not denspi

My favorite grammar is ABNF, as defined by RFC 2234 (http:/iwigtf.org/rfc/rfc2234.txt), because it
is probably the simplest and most widely used formal langudagdefining bidirectional
communications protocols. Most IETF (Internet Enginegfiask Force) specifications use ABNF,
which is good company to be in.

I'll give a 30-second crash course in writing ABNF. It may riechyou of regular expressions. You write
the grammar as rules. Each rule takes the form "name = elsthémt element can be another rule
(which you define below as another rule) or a pre-defteechinallike CRLF, OCTET or a number. The
RFC (http://www.ietf.org/rfc/rfc2234.txt) lists all thierminals. To define alternative elements, separate
with a slash. To define repetition, use an asterisk. To gr&aments, use parentheses. Read the RFC
because it's not intuitive.

I’'m not sure if this extension is proper, but | then prefix e@ts with "C:" and "S:" to indicate whether
they come from the client or server.

Here’s a piece of ABNF for an unprotocol called NOM that wetime back to later in this chapter:

nom-protocol = open-peering * Use-peering
open-peering = C:OHAI (S:OHAI-OK / SIWTF)
use-peering = C:ICANHAZ

| S:CHEEZBURGER
/ C:HUGZ S:HUGZ-OK
/ SIHUGZ C:HUGZ-OK

I've actually used these keyword3HKAI, WTH in commercial projects. They make developers giggly and
happy. They confuse management. They're good in first difaditsyou want to throw away later.

7.2.6. The Cheap or Nasty Pattern

There is a general lesson I've learned over a couple of deaafderiting protocols small and large. | call
this theCheap or Nastypattern: you can often split your work into two aspects oelayand solve these
separately--one using a "cheap" approach, the other usimassy" approach.

The key insight to making Cheap or Nasty work is to realizé thany protocols mix a low-volume
chatty part for control, and a high-volume asynchronousfoadata. For instance, HTTP has a chatty
dialog to authenticate and get pages, and an asynchroradog tih stream data. FTP actually splits this
over two ports; one port for control and one port for data.

343

Chapter 7. Advanced Architecture using @MQ

Protocol designers who don’t separate control from datd termake horrid protocols, because the
trade-offs in the two cases are almost totally opposed. \igharfect for control is bad for data, and
what'’s ideal for data just doesn’t work for control. It's esjally true when we want high performance at
the same time as extensibility and good error checking.

Let’s break this down using a classic client/server use.cdse client connects to the server and
authenticates. It then asks for some resource. The sera&s lohck, then starts to send data back to the
client. Eventually, the client disconnects or the servasliies, and the conversation is over.

Now, before starting to design these messages, stop ark &mid let’'s compare the control dialog and
the data flow:

- The control dialog lasts a short time and involves very fevesages. The data flow could last for
hours or days, and involve billions of messages.

- The control dialog is where all the "normal” errors happeg., ot authenticated, not found, payment
required, censored, and so on. In contrast, any errors #pgtem during the data flow are exceptional
(disk full, server crashed).

- The control dialog is where things will change over time asagdd more options, parameters, and so
on. The data flow should barely change over time because thandies of a resource are fairly
constant over time.

- The control dialog is essentially a synchronous requedy/icialog. The data flow is essentially a
one-way asynchronous flow.

These differences are critical. When we talk about perfoceait applie®nly to data flows. It's
pathological to design a one-time control dialog to be falstis when we talk about the cost of
serialization, this only applies to the data flow. The costrudoding/decoding the control flow could be
huge, and for many cases it would not change a thing. So wedersmmtrol using Cheap, and we encode
data flows using Nasty.

Cheap is essentially synchronous, verbose, descriptisfl@xible. A Cheap message is full of rich
information that can change for each application. Your ggadesigner is to make this information easy
to encode and parse, trivial to extend for experimentatiayrawth, and highly robust against change
both forwards and backwards. The Cheap part of a protoc&slbke this:

« It uses a simple self-describing structured encoding fta,dze it XML, JSON, HTTP-style headers,
or some other. Any encoding is fine as long as there are stsdaple parsers for it in your target
languages.

- It uses a straight request-reply model where each requsst diaccess/failure reply. This makes it
trivial to write correct clients and servers for a Cheapatial

- It doesn'ttry, even marginally, to be fast. Performancestitenatter when you do something only
once or a few times per session.

A Cheap parser is something you take off the shelf and thraevatalt shouldn’t crash, shouldn’t leak
memory, should be highly tolerant, and should be relatigatyple to work with. That's it.

344

Chapter 7. Advanced Architecture using @MQ

Nasty however is essentially asynchronous, terse, saentjnflexible. A Nasty message carries minimal
information that practically never changes. Your goal asgteer is to make this information ultrafast to
parse, and possibly even impossible to extend and expetrinitm The ideal Nasty pattern looks like
this:

- It uses a hand-optimized binary layout for data, where el@rng precisely crafted.

« It uses a pure asynchronous model where one or both peerslaenaithout acknowledgments (or if
they do, they use sneaky asynchronous techniques liket-trasiéd flow control).

- It doesn'ttry, even marginally, to be friendly. Performaris all that matters when you are doing
something several million times per second.

A Nasty parser is something you write by hand, which writeseads bits, bytes, words, and integers
individually and precisely. It rejects anything it doedike, does no memory allocations at all, and never
crashes.

Cheap or Nasty isn’'t a universal pattern; not all protocalsathis dichotomy. Also, how you use Cheap
or Nasty will depend on the situation. In some cases, it cambearts of a single protocol. In other
cases, it can be two protocols, one layered on top of the.other

7.2.7. Error Handling

Using Cheap or Nasty makes error handling rather simplar.héve two kinds of commands and two
ways to signal errors:

- Synchronous control commands: errors are normal: evepesdias a response that is either OK or
an error response.

- Asynchronous data commands: errors are exceptional: bacheods are either discarded silently, or
cause the whole connection to be closed.

It's usually good to distinguish a few kinds of errors, buthgays keep it minimal and add only what
you need.

7.3. Serializing Your Data

When we start to design a protocol, one of the first questianfage is how we encode data on the wire.
There is no universal answer. There are a half-dozen diffevays to serialize data, each with pros and
cons. We'll explore some of these.

345

Chapter 7. Advanced Architecture using @MQ

7.3.1. Abstraction Level

Before looking at how to put data onto the wire, it's worth iagkwhat data we actually want to
exchange between applications. If we don’t use any abgirgate literally serialize and deserialize our
internal state. That is, the objects and structures we usegi@ment our functionality.

Putting internal state onto the wire is however a really loksai It's like exposing internal state in an
API. When you do this, you are hard-coding your implementatiecisions into your protocols. You are
also going to produce protocols that are significantly moraglex than they need to be.

It's perhaps the main reason so many older protocols and &lso complex: their designers did not
think about how to abstract them into simpler concepts. &lgeof course no guarantee than an
abstraction will besimpler, that's where the hard work comes in.

A good protocol or API abstraction encapsulates naturaépas of use, and gives them name and
properties that are predictable and regular. It chooseslderdefaults so that the main use cases can be
specified minimally. It aims to be simple for the simple casesl expressive for the rarer complex cases.
It does not make any statements or assumptions about tmeahieplementation unless that is
absolutely needed for interoperability.

7.3.2. @MQ Framing

The simplest and most widely used serialization format fsft@applications is @MQ’s own multipart
framing. For example, here is how the Majordomo Protocap(titfc.zeromq.org/spec:7) defines a
request:

Frame 0: Empty frame

Frame 1: "MDPWO1" (six bytes, representing MDP/Worker v0.1)
Frame 2: 0x02 (one byte, representing REQUEST)

Frame 3: Client address (envelope stack)

Frame 4: Empty (zero bytes, envelope delimiter)

Frames 5+: Request body (opaque binary)

To read and write this in code is easy, but this is a classimgi@of a control flow (the whole of MDP is
really, as it's a chatty request-reply protocol). When weedo improve MDP for the second version,
we had to change this framing. Excellent, we broke all exisimplementations!

Backwards compatibility is hard, but using @MQ framing fontrol flowsdoes not helpHere’s how |
should have designed this protocol if I'd followed my own @av(and I'll fix this in the next version).
It's split into a Cheap part and a Nasty part, and uses the @#difg to separate these:

Frame 0: "MDP/2.0" for protocol name and version
Frame 1: command header
Frame 2: command body

346

Chapter 7. Advanced Architecture using @MQ

Where we'd expect to parse the command header in the varitersriediaries (client API, broker, and
worker API), and pass the command body untouched from agifditto application.

7.3.3. Serialization Languages

Serialization languages have their fashions. XML used tbipeas in popular, then it got big as in
over-engineered, and then it fell into the hands of "Enfseainformation Architects" and it's not been
seen alive since. Today’s XML is the epitome of "somewhettbat mess is small, elegant language
trying to escape".

Still XML was way, way better than its predecessors, whiahuded such monsters as the Standard
Generalized Markup Language (SGML), which in turn was a tweéze compared to mind-torturing
beasts like EDIFACT. So the history of serialization langesiseems to be of gradually emerging sanity,
hidden by waves of revolting EIAs doing their best to holdwmtteir jobs.

JSON popped out of the JavaScript world as a quick-and-didyather resign than use XML here"
way to throw data onto the wire and get it back again. JSONsisminimal XML expressed, sneakily, as
JavaScript source code.

Here’s a simple example of using JSON in a Cheap protocol:

"protocol": {
"name": "MTL",
"version™: 1

}

"virtual-host": "test-env"

The same data in XML would be (XML forces us to invent a single-kevel entity):

<command>
<protocol name = "MTL" version = "1" />
<virtual-host>test-env</virtual-host>
</command>

And here it is using plain-old HTTP-style headers:

Protocol: MTL/1.0
Virtual-host: test-env

These are all pretty equivalent as long as you don’t go ovsrbwith validating parsers, schemas, and
other "trust us, this is all for your own good" nonsense. A &hserialization language gives you space
for experimentation for free ("ignore any elements/atiréis/headers that you don’t recognize"), and it's
simple to write generic parsers that, for example, thunkraroand into a hash table, or vice versa.

347

Chapter 7. Advanced Architecture using @MQ

However, it's not all roses. While modern scripting langesigupport JSON and XML easily enough,
older languages do not. If you use XML or JSON, you createnoatdependencies. It's also somewhat
of a pain to work with tree-structured data in a language@ke

So you can drive your choice according to the languages faestwou're aiming. If your universe is a
scripting language, then go for JSON. If you are aiming tédopiiotocols for wider system use, keep
things simple for C developers and stick to HTTP-style heade

7.3.4. Serialization Libraries

Themsgpack.org site says:

>|t’s like JSON, but fast and small. MessagePack is an effiddeary serialization format. It lets you
exchange data among multiple languages like JSON, buaitf and smaller. For example, small
integers (like flags or error code) are encoded into a singile, land typical short strings only require an
extra byte in addition to the strings themselves.

I’'m going to make the perhaps unpopular claim that "fast andll are features that solve
non-problems. The only real problem that serializatiordlites solve is, as far as | can tell, the need to
document the message contracts and actually serializecdatel from the wire.

Let'’s start by debunking "fast and small". It's based on a-paot argument. First, that making your
messages smaller and reducing CPU cost for encoding andidgawill make a significant difference to
your application’s performance. Second, that this equallid across-the-board to all messages.

But most real applications tend to fall into one of two catéegm Either the speed of serialization and
size of encoding is marginal compared to other costs, sudatabase access or application code
performance. Or, network performance really is critical] ghen all significant costs occur in a few
specific message types.

Thus, aiming for "fast and small" across the board is a faigamization. You neither get the easy
flexibility of Cheap for your infrequent control flows, nor gou get the brutal efficiency of Nasty for

your high-volume data flows. Worse, the assumption that elisages are equal in some way can corrupt
your protocol design. Cheap or Nasty isn’'t only about seadibn strategies, it's also about synchronous
versus asynchronous, error handling and the cost of change.

My experience is that most performance problems in mesbaged applications can be solved by (a)
improving the application itself and (b) hand-optimizitgthigh-volume data flows. And to
hand-optimize your most critical data flows, you need to thedearn exploit facts about your data,
something general purpose serializers cannot do.

348

Chapter 7. Advanced Architecture using @MQ

Now let's address documentation and the need to write ouracts explicitly and formally, rather than
only in code. This is a valid problem to solve, indeed one efrtfain ones if we're to build a
long-lasting, large-scale message-based architecture.

Here is how we describe a typical message using the Messelgefeerface definition language (IDL):

message Person {
1: string surname
2: string firstname
3: optional string email

}

Now, the same message using the Google protocol buffers IDL:

message Person {
required string surname = 1;
required string firstname = 2;
optional string email = 3;

}

It works, but in most practical cases wins you little over aadzation language backed by decent
specifications written by hand or produced mechanicallyl(@eme to this). The price you'll pay is an
extra dependency and quite probably, worse overall pedooathan if you used Cheap or Nasty.

7.3.5. Handwritten Binary Serialization

As you'll gather from this book, my preferred language fosteyns programming is C (upgraded to C99,
with a constructor/destructor APl model and generic comtias). There are two reasons | like this
modernized C language. First, I'm too weak-minded to learigdanguage like C++. Life just seems
filled with more interesting things to understand. Secorfithd that this specific level of manual control
lets me produce better results, faster.

The point here isn’t C versus C++, but the value of manualrobfdr high-end professional users. It's no
accident that the best cars, cameras, and espresso machinesvorld have manual controls. That level
of on-the-spot fine tuning often makes the difference betwearld class success, and being second best.

When you are really, truly concerned about the speed oflgati@n and/or the size of the result (often
these contradict each other), you need handwritten biraiglization. In other words, let’s hear it for
Mr. Nasty!

Your basic process for writing an efficient Nasty encoderddier (codec) is:

- Build representative data sets and test applications #mastress test your codec.

- Write a first dumb version of the codec.

349

Chapter 7. Advanced Architecture using @MQ

- Test, measure, improve, and repeat until you run out of tintéaa money.

Here are some of the techniques we use to make our codecs bette

- Use a profilerThere’s simply no way to know what your code is doing until yewprofiled it for
function counts and for CPU cost per function. When you findnjmt spots, fix them.

- Eliminate memory allocation3he heap is very fast on a modern Linux kernel, but it's dtid t
bottleneck in most naive codecs. On older kernels, the haajbe tragically slow. Use local variables
(the stack) instead of the heap where you can.

- Test on different platforms and with different compilersl @ompiler optionsApart from the heap,
there are many other differences. You need to learn the nmas, @nd allow for them.

- Use state to compress bettdiyou are concerned about codec performance, you are abhefisitely
sending the same kinds of data many times. There will be @ahury between instances of data. You
can detect these and use that to compress (e.g., a shortlvatueeans "same as last time").

+ Know your dataThe best compression techniques (in terms of CPU cost fopaotness) require
knowing about the data. For example, the techniques usezhtpress a word list, a video, and a
stream of stock market data are all different.

- Be ready to break the ruleBo you really need to encode integers in big-endian netwgté brder?
x86 and ARM account for almost all modern CPUs, yet use {étidian (ARM is actually bi-endian
but Android, like Windows and iOS, is little-endian).

7.3.6. Code Generation

Reading the previous two sections, you might have wondé&ced)d | write my own IDL generator that
was better than a general purpose one?" If this thought waddieto your mind, it probably left pretty
soon after, chased by dark calculations about how much viatketctually involved.

What if | told you of a way to build custom IDL generators chiyaand quickly? You can have a way to
get perfectly documented contracts, code that is as evitlanthin-specific as you need it to be, and all
you need to do is sign away your soull{o ever really used that, am | rightfust here...

At iMatix, until a few years ago, we used code generation itdkaver larger and more ambitious
systems until we decided the technology (GSL) was too dangdor common use, and we sealed the
archive and locked it with heavy chains in a deep dungeon.a¥eally posted it on GitHub. If you want
to try the examples that are coming up, grab the repositdatggit/github.com/imatix/gsl) and build
yourself agsl command. Typing "make" in the src subdirectory should darnit(if you're that guy who
loves Windows, I'm sure you'll send a patch with project fjles

This section isn’t really about GSL at all, but about a usafud little-known trick that’s useful for
ambitious architects who want to scale themselves, as wéliedr work. Once you learn the trick, you
can whip up your own code generators in a short time. The cedergtors most software engineers
know about come with a single hard-coded model. For instaRagel "compiles executable finite state

350

Chapter 7. Advanced Architecture using @MQ

machines from regular languages", i.e., Ragel's model égalar language. This certainly works for a
good set of problems, but it’s far from universal. How do y@sctibe an APl in Ragel? Or a project
makefile? Or even a finite-state machine like the one we usdddign the Binary Star pattern in
Reliable Request-Reply Patte@isapter 2

All these would benefit from code generation, but there’s mgersal model. So the trick is to design
your own models as you need them, and then make code gerseaiatoheap compilers for that model.
You need some experience in how to make good models, and yaliantechnology that makes it cheap
to build custom code generators. A scripting language Riéd and Python, is a good option. However,
we actually built GSL specifically for this, and that’s whatrkefer.

Let's take a simple example that ties into what we alreadykige’ll see more extensive examples
later, because | really do believe that code generatioruisarknowledge for large-scale work. In
Reliable Request-Reply Patte@tsapter 4we developed the Majordomo Protocol (MDP)
(http://rfc.zeromq.org/spec:7), and wrote clients, lemskand workers for that. Now could we generate
those pieces mechanically, by building our own interfacgdption language and code generators?

When we write a GSL model, we can usey semantics we like, in other words we can invent
domain-specific languages on the spot. I'll invent a coupke if you can guess what they represent:

slideshow
name = Cookery level 3
page
titte = French Cuisine
item = Overview
item = The historical cuisine
item = The nouvelle cuisine
item = Why the French live longer
page

titte = Overview

item = Soups and salads

item = Le plat principal

item BA©chamel and other sauces
item Pastries, cakes, and quiches
item = SoufflA®: cheese to strawberry

How about this one:

table
name = person
column
name = firsthame
type = string
column
name = lastname
type = string
column

name = rating
type = integer

351

Chapter 7. Advanced Architecture using @MQ

We could compile the first into a presentation. The second;auéd compile into SQL to create and
work with a database table. So for this exercise, our donasiguage, oumode| consists of “classes"
that contain "messages" that contain "fields" of variougsy|it's deliberately familiar. Here is the MDP

client protocol:

<class name = "mdp_client">
MDP/Client
<header>
<field name = "empty" type = "string" value =
>Empty frame</field>
<field name = "protocol" type = "string" value = "MDPCO01"
>Protocol identifier</field>
</header>
<message name = '"request">
Client request to broker

<field name = "service" type = "string">Service name</fiel d>
<field name = "body" type = "frame">Request body</field>
</message>

<message name = "reply">
Response back to client

<field name = "service" type = "string">Service name</fiel d>
<field name = "body" type = "frame">Response body</field>
</message>

</class>

And here is the MDP worker protocol:

<class name = "mdp_worker">
MDP/Worker
<header>
<field name = "empty" type = "string" value = "
>Empty frame</field>
<field name = "protocol" type = "string" value = "MDPWO01"
>Protocol identifier</field>
<field name = "id" type = "octet">Message identifier</fiel d>
</header>
<message name = "ready" id = "1">
Worker tells broker it is ready
<field name = "service" type = "string">Service name</fiel d>
</message>
<message nhame = "request" id = "2">
Client request to broker

<field name = "client" type = "frame">Client address</fiel d>
<field name = "body" type = "frame">Request body</field>
</message>

<message name = "reply" id = "3">
Worker returns reply to broker

<field name = "client" type = "frame">Client address</fiel d>
<field name = "body" type = "frame">Request body</field>
</message>

<message name = "hearbeat" id = "4">
Either peer tells the other it's still alive

352

Chapter 7. Advanced Architecture using @MQ

</message>
<message name = "disconnect" id = "5">
Either peer tells other the party is over
</message>
</class>

GSL uses XML as its modeling language. XML has a poor reputatiaving been dragged through too
many enterprise sewers to smell sweet, but it has some ghasitives, as long as you keep it simple.
Any way to write a self-describing hierarchy of items andibtites would work.

Now here is a short IDL generator written in GSL that turnspuatocol models into documentation:

Trivial IDL generator (specs.gsl)
H
.output "$(class.name).md"
The $(string.trim (class.?”):left) Protocol
for message
frames = count (class->header.field) + count (field)

A $(message.NAME) command consists of a multipart message o f $(frames)
frames:

for class->header.field

. if name = "id"
* Frame $(item ()): Ox$(message.id:%02x) (1 byte, $(message .NAME))
. else
* Frame $(item ()): "$(value:)" ($(string.length ("$(value ™)\
bytes, $(field.:))
endif

endfor

index = count (class->header.field) + 1

for field

* Frame $(index): $(field.?”) \
if type = "string"
(printable string)
elsif type = "frame"
(opaque binary)

index += 1
else
echo "E: unknown field type: $(type)"
endif
index += 1
endfor

.endfor
The XML models and this script are in the subdirectory exasfphodels. To do the code generation, |
give this command:

gsl -script:specs mdp_client.xml mdp_worker.xml

353

Which gives usndp_client

Chapter 7. Advanced Architecture using @MQ

Here is the Markdown text we get for the worker protocol:

The MDP/Worker Protocol

A READY command consists of a multipart message of 4 frames:

Frame 1. "™ (0 bytes, Empty frame)

Frame 2: "MDPWO01" (6 bytes, Protocol identifier)
Frame 3: 0x01 (1 byte, READY)

Frame 4: Service name (printable string)

REQUEST command consists of a multipart message of 5 frames

Frame 1. "™ (0 bytes, Empty frame)

Frame 2: "MDPWO01" (6 bytes, Protocol identifier)
Frame 3: 0x02 (1 byte, REQUEST)

Frame 4: Client address (opaque binary)

Frame 6: Request body (opaque binary)

REPLY command consists of a multipart message of 5 frames:

Frame 1: "™ (0 bytes, Empty frame)

Frame 2: "MDPWO01" (6 bytes, Protocol identifier)
Frame 3: 0x03 (1 byte, REPLY)

Frame 4: Client address (opaque binary)

Frame 6: Request body (opaque binary)

HEARBEAT command consists of a multipart message of 3 frame
Frame 1. "™ (0 bytes, Empty frame)

Frame 2: "MDPWO01" (6 bytes, Protocol identifier)

Frame 3: 0x04 (1 byte, HEARBEAT)

DISCONNECT command consists of a multipart message of 3 fra
Frame 1: "™ (0 bytes, Empty frame)

Frame 2: "MDPWO01" (6 bytes, Protocol identifier)
Frame 3: 0x05 (1 byte, DISCONNECT)

gsl -script:codec_c mdp_client.xml mdp_worker.xml

mes:

This, as you can see, is close to what | wrote by hand in thénaligpec. Now, if you have cloned the
zguide repository and you are looking at the codekamples/models
client and worker codecs. We pass the same two models toeaeatiffcode generator:

, You can generate the MDP

andmdp_worker classes. Actually MDP is so simple that it's barely worth
the effort of writing the code generator. The profit comesmwve want to change the protocol (which

we did for the standalone Majordomo project). You modify pinetocol, run the command, and out pops
more perfect code.

354

Chapter 7. Advanced Architecture using @MQ

Thecodec_c.gsl code generator is not short, but the resulting codecs aré etter than the
handwritten code | originally put together for Majordomaor knstance, the handwritten code had no
error checking and would die if you passed it bogus messages.

I’'m now going to explain the pros and cons of GSL-powered nmiodiented code generation. Power
does not come for free and one of the greatest traps in oundmssis the ability to invent concepts out of
thin air. GSL makes this particularly easy, so it can be aralgjdangerous tool.

Do not invent conceptd he job of a designer is to remove problems, not add features

Firstly, | will lay out the advantages of model-oriented eggeneration:

+ You can create near-perfect abstractions that map to yauweld. So, our protocol model maps
100% to the "real world" of Majordomo. This would be impodsitvithout the freedom to tune and
change the model in any way.

« You can develop these perfect models quickly and cheaply.

- You can generatanytext output. From a single model, you can create documentatode in any
language, test tools--literally any output you can think of

« You can generate (and | mean this literalpgrfectoutput because it's cheap to improve your code
generators to any level you want.

« You get a single source that combines specifications andreersa

- You can leverage a small team to a massive size. At iMatix, mdyced the million-line OpenAMQ
messaging product out of perhaps 85K lines of input modetd,iding the code generation scripts
themselves.

Now let’s look at the disadvantages:

- You add tool dependencies to your project.
- You may get carried away and create models for the pure joyeaiting them.
« You may alienate newcomers, who will see "strange stufiyfiyour work.

« You may give people a strong excuse not to invest in your ptoje

Cynically, model-oriented abuse works great in environts@rmere you want to produce huge amounts
of perfect code that you can maintain with little effort ankigh no one can ever take away from you.
Personally, | like to cross my rivers and move on. But if Idegm job security is your thing, this is
almost perfect.

So if you do use GSL and want to create open communities arpoundwork, here is my advice:

- Use it only where you would otherwise be writing tiresomeebgl hand.
- Design natural models that are what people would expectto se

- Write the code by hand first so you know what to generate.

355

Chapter 7. Advanced Architecture using @MQ

- Do not overuse. Keep it simpl&o not get too meta!!
- Introduce gradually into a project.

- Put the generated code into your repositories.

We're already using GSL in some projects around @MQ. For gtanthe high-level C binding, CZMQ,
uses GSL to generate the socket options classkopt). A 300-line code generator turns 78 lines of
XML model into 1,500 lines of perfect, but really boring codéat’s a good win.

7.4. Transferring Files

Let’s take a break from the lecturing and get back to our firg¢ land the reason for doing all of this:
code.

"How do | send a file?" is a common question on the @MQ mailiatsliThis should not be surprising,
because file transfer is perhaps the oldest and most obyipe®f messaging. Sending files around
networks has lots of use cases apart from annoying the ggpyartels. AMQ is very good out of the
box at sending events and tasks, but less good at sending files

I've promised, for a year or two, to write a proper explanatidere’s a gratuitous piece of information
to brighten your morning: the word "proper" comes from thehaiic Frenclpropre, which means

"clean". The dark age English common folk, not being familiéh hot water and soap, changed the
word to mean "foreign" or "upper-class”, as in "that’s profm®d!", but later the word came to mean just
"real", as in "that’s a proper mess you've gotten us into!"

So, file transfer. There are several reasons you can't jaktyp a random file, blindfold it, and shove it
whole into a message. The most obvious reason being thateldspades of determined growth in
RAM sizes (and who among us old-timers doesn’t fondly rememnshving up for that 1024-byte
memory extension card?!), disk sizes obstinately remaiamtarger. Even if we could send a file with
one instruction (say, using a system call like sendfile) dvint the reality that networks are not infinitely
fast nor perfectly reliable. After trying to upload a large fieveral times on a slow flaky network (WiFi,
anyone?), you'll realize that a proper file transfer proto@®ds a way to recover from failures. That is,
it needs a way to send only the part of a file that wasn’t yetivecde

Finally, after all this, if you build a proper file server, ybbmotice that simply sending massive amounts
of data to lots of clients creates that situation we like th @athe technical parlance, "server went
belly-up due to all available heap memory being eaten by alydesigned application”. A proper file
transfer protocol needs to pay attention to memory use.

We'll solve these problems properly, one-by-one, whichustidopefully get us to a good and proper file
transfer protocol running over @MQ. First, let's generalgaB test file with random data (real

356

Chapter 7. Advanced Architecture using @MQ

power-of-two-giga-like-Von-Neumman-intended, not thkd silicon ones the memory industry likes to
sell):

dd if=/dev/urandom of=testdata bs=1M count=1024

This is large enough to be troublesome when we have lotsaritsliasking for the same file at once, and
on many machines, 1GB is going to be too large to allocate imamg anyhow. As a base reference, let's
measure how long it takes to copy this file from disk back té.dihis will tell us how much our file
transfer protocol adds on top (including network costs):

$ time cp testdata testdata2
real 0m7.143s

user 0m0.012s
Sys 0m1.188s

The 4-figure precision is misleading; expect variations®fekither way. This is just an "order of
magnitude" measurement.

Here’s our first cut at the code, where the client asks forekedata and the server just sends it, without
stopping for breath, as a series of messages, where eachgadssds onehunk

Example 7-1. File transfer test, model 1 (fileio1.py)

File Transfer model #1

In which the server sends the entire file to the client in
large chunks with no attempt at flow control.

#
#
#
#
from threading import Thread
import zmq
from zhelpers import socket_set_hwm, zpipe
CHUNK_SIZE = 250000
def client_thread(ctx, pipe):

dealer = ctx.socket(zmq.DEALER)

dealer.connect("tcp://127.0.0.1:6000")
dealer.send(b"fetch")

total = 0 # Total bytes received
chunks = 0 # Total chunks received
while True:

try:

chunk = dealer.recv()
except zmq.ZMQError as e:
if e.errno == zmq.ETERM:

357

Chapter 7. Advanced Architecture using @MQ

return # shutting down, quit
else:
raise

chunks += 1
size = len(chunk)
total += size
if size ==
break # whole file received

print ("%i chunks received, %i bytes" % (chunks, total))
pipe.send(b"OK")

.split File server thread

The server thread reads the file from disk in chunks, and sen ds
each chunk to the client as a separate message. We only have o ne
test file, so open that once and then serve it out as needed:

def server_thread(ctx):
file = open("testdata”, "r")

router = ctx.socket(zmq.ROUTER)

Default HWM is 1000, which will drop messages here
since we send more than 1,000 chunks of test data,
so set an infinite HWM as a simple, stupid solution:

socket_set_hwm(router, 0)

router.bind("tcp:// *:6000")

while True:
First frame in each message is the sender identity
Second frame is "fetch" command
try:
identity, command = router.recv_multipart()
except zmq.ZMQError as e:
if e.errno == zmq.ETERM:
return # shutting down, quit
else:
raise

assert command == b"fetch"

while True:
data = file.read(CHUNK_SIZE)
router.send_multipart([identity, data])
if not data:
break

.split File main thread
The main task starts the client and server threads; it's eas ier

to test this as a single process with threads, than as multip le
processes:

358

Chapter 7. Advanced Architecture using @MQ

def main():

Start child threads
ctx = zmqg.Context()
a,b = zpipe(ctx)

client = Thread(target=client_thread, args=(ctx, b))
server = Thread(target=server_thread, args=(ctx,))
client.start()
server.start()

loop until client tells us it's done
try:
print a.recv()
except Keyboardinterrupt:
pass
del a,b
ctx.term()

if _name__ =="'__main__"
main()

It's pretty simple, but we already run into a problem: if waide¢oo much data to the ROUTER socket,
we can easily overflow it. The simple but stupid solution iptib an infinite high-water mark on the
socket. It's stupid because we now have no protection agakhgausting the server's memory. Yet
without an infinite HWM, we risk losing chunks of large files.

Try this: set the HWM to 1,000 (in @MQ v3.x this is the defaat)d then reduce the chunk size to 100K
so we send 10K chunks in one go. Run the test, and you'll sesvénfinishes. As themg_socket()
man page says with cheerful brutality, for the ROUTER sacl@&Q_HWM option action: Drop".

We have to control the amount of data the server sends up-frbare’s no point in it sending more than
the network can handle. Let’s try sending one chunk at a timihis version of the protocol, the client
will explicitly say, "Give me chunk N", and the server willtld that specific chunk from disk and send it.

Here’s the improved second model, where the client asksrfercbunk at a time, and the server only
sends one chunk for each request it gets from the client:

Example 7-2. File transfer test, model 2 (fileio2.py)

File Transfer model #2

#

In which the client requests each chunk individually, thus
eliminating server queue overflows, but at a cost in speed.

import os
from threading import Thread

359

Chapter 7. Advanced Architecture using @MQ
import zmq
from zhelpers import socket_set_hwm, zpipe

CHUNK_SIZE = 250000
PIPELINE = 10

def client_thread(ctx, pipe):
dealer = ctx.socket(zmq.DEALER)
socket_set_hwm(dealer, PIPELINE)
dealer.connect("tcp://127.0.0.1:6000")

credit = PIPELINE # Up to PIPELINE chunks in transit

total = 0 # Total bytes received
chunks = 0 # Total chunks received
offset = 0 # Offset of next chunk request
while True:

while credit:

ask for next chunk
dealer.send_multipart([
b"fetch”,
b"%i" % total,
b"%i" % CHUNK_SIZE,

D

offset += CHUNK_SIZE
credit -= 1

try:
chunk = dealer.recv()
except zmq.ZMQError as e:
if e.errno == zmg.ETERM:
return # shutting down, quit
else:
raise

chunks += 1
credit += 1
size = len(chunk)
total += size
if size < CHUNK_SIZE:
break # Last chunk received; exit

print ("%i chunks received, %i bytes" % (chunks, total))
pipe.send(b"OK")

The rest of the code is exactly the same as in model 2, except

that we set the HWM on the server's ROUTER socket to PIPELINE
to act as a sanity check.

.skip

360

Chapter 7. Advanced Architecture using @MQ

def server_thread(ctx):
file = open("testdata”, "r")

router = ctx.socket(zmq.ROUTER)
socket_set_hwm(router, PIPELINE)
router.bind("tcp:// *:6000")

while True:
First frame in each message is the sender identity
Second frame is "fetch" command
try:
msg = router.recv_multipart()
except zmqg.ZMQError as e:
if e.errno == zmq.ETERM:
return # shutting down, quit
else:
raise

identity, command, offset_str, chunksz_str = msg
assert command == b"fetch"

offset = int(offset_str)
chunksz = int(chunksz_str)

Read chunk of data from file
file.seek(offset, 0s.SEEK_SET)
data = file.read(chunksz)

Send resulting chunk to client
router.send_multipart([identity, data])

The main task is just the same as in the first model.
.skip

def main():

Start child threads
ctx = zmg.Context()
a,b = zpipe(ctx)

client = Thread(target=client_thread, args=(ctx, b))
server = Thread(target=server_thread, args=(ctx,))
client.start()
server.start()

loop until client tells us it's done
try:
print a.recv()
except Keyboardinterrupt:
pass
del a,b
ctx.term()

361

Chapter 7. Advanced Architecture using @MQ

if __name__ =="'_ _main__"
main()

It is much slower now, because of the to-and-fro chattingvben client and server. We pay about 300
microseconds for each request-reply round-trip, on a llecgd connection (client and server on the same
box). It doesn’t sound like much but it adds up quickly:

$ time .ffileiol
4296 chunks received, 1073741824 bytes

real 0m0.669s
user 0m0.056s
Sys 0m1.048s

$ time .ffileio2
4295 chunks received, 1073741824 bytes

real 0m2.389s
user 0m0.312s
Sys 0m2.136s

There are two valuable lessons here. First, while requegsy-is easy, it's also too slow for high-volume
data flows. Paying that 300 microseconds once would be firygndPa for every single chunk isn’t
acceptable, particularly on real networks with latencigseshaps 1,000 times higher.

The second point is something I've said before but will répia incredibly easy to experiment,
measure, and improve a protocol over @MQ. And when the casbrmething comes way down, you can
afford a lot more of it. Do learn to develop and prove your poals in isolation: I've seen teams waste
time trying to improve poorly designed protocols that aiedeeply embedded in applications to be
easily testable or fixable.

Our model two file transfer protocol isn’t so bad, apart froenfprmance:

- It completely eliminates any risk of memory exhaustion. Tove that, we set the high-water mark to
1 in both sender and receiver.

- It lets the client choose the chunk size, which is useful bsedf there’s any tuning of the chunk size
to be done, for network conditions, for file types, or to reelaemory consumption further, it's the
client that should be doing this.

. It gives us fully restartable file transfers.

- It allows the client to cancel the file transfer at any pointimne.

If we just didn’t have to do a request for each chunk, it'd besahle protocol. What we need is a way for
the server to send multiple chunks without waiting for tHerd to request or acknowledge each one.
What are our choices?

362

Chapter 7. Advanced Architecture using @MQ

The server could send 10 chunks at once, then wait for a sanfdeowledgment. That's exactly like
multiplying the chunk size by 10, so it’s pointless. And yigs,just as pointless for all values of 10.

The server could send chunks without any chatter from tlemtbhut with a slight delay between each
send, so that it would send chunks only as fast as the netweaild iandle them. This would require
the server to know what's happening at the network layerciveounds like hard work. It also breaks
layering horribly. And what happens if the network is reddigt, but the client itself is slow? Where
are chunks queued then?

The server could try to spy on the sending queue, i.e., seduibivis, and send only when the queue
isn’t full. Well, @MQ doesn’t allow that because it doesn'oik, for the same reason as throttling
doesn’'t work. The server and network may be more than fastgindut the client may be a slow
little device.

We could modifylibzmq to take some other action on reaching HWM. Perhaps it cowldd? That
would mean that a single slow client would block the wholessgrso no thank you. Maybe it could
return an error to the caller? Then the server could do sdngeimart like... well, there isn't really

anything it could do that's any better than dropping the ragss

Apart from being complex and variously unpleasant, nonée$eé options would even work. What we
need is a way for the client to tell the server, asynchronpoast! in the background, that it’s ready for
more. We need some kind of asynchronous flow control. If wehgortght, data should flow without
interruption from the server to the client, but only as losdlze client is reading it. Let’s review our three
protocols. This was the first one:

C: fetch
S:
S
S

chunk 1

: chunk 2
: chunk 3

And the second introduced a request for each chunk:

fetch chunk 1
send chunk 1
fetch chunk 2
send chunk 2
fetch chunk 3
send chunk 3
fetch chunk 4

Now--waves hands mysteriously--here’s a changed protbesdfixes the performance problem:

fetch chunk 1
fetch chunk 2
fetch chunk 3
send chunk 1
fetch chunk 4
send chunk 2
send chunk 3

363

Chapter 7. Advanced Architecture using @MQ

It looks suspiciously similar. In fact, it's identical exmethat we send multiple requests without waiting
for areply for each one. This is a technique called "pipalifiiand it works because our DEALER and
ROUTER sockets are fully asynchronous.

Here’s the third model of our file transfer test-bench, withefining. The client sends a number of
requests ahead (the "credit") and then each time it pros@ssgmcoming chunk, it sends one more
credit. The server will never send more chunks than the tdfies asked for:

Example 7-3. File transfer test, model 3 (fileio3.py)

File Transfer model #3

#

In which the client requests each chunk individually, usin g
command pipelining to give us a credit-based flow control.

import os
from threading import Thread

import zmq
from zhelpers import socket_set_hwm, zpipe
CHUNK_SIZE = 250000
def client_thread(ctx, pipe):
dealer = ctx.socket(zmq.DEALER)

socket_set_hwm(dealer, 1)
dealer.connect("tcp://127.0.0.1:6000")

total = 0 # Total bytes received
chunks = 0 # Total chunks received
while True:

ask for next chunk
dealer.send_multipart([
b"fetch",
b"%i" % total,
b"%i" % CHUNK_SIZE

)

try:
chunk = dealer.recv()
except zmq.ZMQError as e:
if e.errno == zmq.ETERM:
return # shutting down, quit
else:
raise

chunks += 1

364

Chapter 7. Advanced Architecture using @MQ

size = len(chunk)
total += size
if size < CHUNK_SIZE:
break # Last chunk received; exit

print ("%i chunks received, %i bytes" % (chunks, total))
pipe.send(b"OK")

.split File server thread
The server thread waits for a chunk request from a client,
reads that chunk and sends it back to the client:

def server_thread(ctx):
file = open("testdata”, "r")

router = ctx.socket(zmq.ROUTER)
router.bind("tcp:// *:6000")

while True:
First frame in each message is the sender identity
Second frame is "fetch" command
try:
msg = router.recv_multipart()
except zmq.ZMQError as e:
if e.errno == zmq.ETERM:
return # shutting down, quit
else:
raise

identity, command, offset_str, chunksz_str = msg
assert command == b"fetch"

offset = int(offset_str)
chunksz = int(chunksz_str)

Read chunk of data from file
file.seek(offset, 0s.SEEK_SET)
data = file.read(chunksz)

Send resulting chunk to client
router.send_multipart([identity, data])

The main task is just the same as in the first model.
.skip

def main():
Start child threads

ctx = zmqg.Context()
a,b = zpipe(ctx)

365

Chapter 7. Advanced Architecture using @MQ

client = Thread(target=client_thread, args=(ctx, b))
server = Thread(target=server_thread, args=(ctx,))
client.start()
server.start()

loop until client tells us it's done
try:
print a.recv()
except Keyboardinterrupt:
pass
del a,b
ctx.term()

if _name__ =="'__main__"
main()

That tweak gives us full control over the end-to-end pipelimcluding all network buffers and MQ
gueues at sender and receiver. We ensure the pipeline igsafiled with data while never growing
beyond a predefined limit. More than that, the client decaestly when to send "credit" to the sender.
It could be when it receives a chunk, or when it has fully pesesl a chunk. And this happens
asynchronously, with no significant performance cost.

In the third model, | chose a pipeline size of 10 message$ (@@ssage is a chunk). This will cost a
maximum of 2.5MB memory per client. So with 1GB of memory wa tandle at least 400 clients. We
can try to calculate the ideal pipeline size. It takes abouis@conds to send the 1GB file, which is about
160 microseconds for a chunk. A round trip is 300 microsespsd the pipeline needs to be at least 3-5
chunks to keep the server busy. In practice, | still got penénce spikes with a pipeline of 5 chunks,
probably because the credit messages sometimes get delagetjoing data. So at 10 chunks, it works
consistently.

$ time .ffileio3
4291 chunks received, 1072741824 bytes

real 0mO0.777s
user 0m0.096s
Sys 0m1.120s

Do measure rigorously. Your calculations may be good, téfal world tends to have its own opinions.

What we've made is clearly not yet a real file transfer protdmat it proves the pattern and | think it is
the simplest plausible design. For a real working protogelmight want to add some or all of:

- Authentication and access controls, even without enasypthe point isn't to protect sensitive data,
but to catch errors like sending test data to productionessrv

- A Cheap-style request including file path, optional comgitas and other stuff we've learned is
useful from HTTP (such as If-Modified-Since).

366

Chapter 7. Advanced Architecture using @MQ

« A Cheap-style response, at least for the first chunk, thatigees meta data such as file size (so the
client can pre-allocate, and avoid unpleasant disk-ftllgions).

« The ability to fetch a set of files in one go, otherwise the gcot becomes inefficient for large sets of
small files.

- Confirmation from the client when it's fully received a file,tecover from chunks that might be lost if
the client disconnects unexpectedly.

So far, our semantic has been "fetch"; that is, the recifgdratvs (somehow) that they need a specific
file, so they ask for it. The knowledge of which files exist arttene they are is then passed out-of-band
(e.g., in HTTP, by links in the HTML page).

How about a "push" semantic? There are two plausible usa ¢asthis. First, if we adopt a centralized
architecture with files on a main "server" (not something &#dvocating, but people do sometimes like
this), then it's very useful to allow clients to upload filesthe server. Second, it lets us do a kind of
pub-sub for files, where the client asks for all new files of edype; as the server gets these, it forwards
them to the client.

A fetch semantic is synchronous, while a push semantic isdmsgnous. Asynchronous is less chatty, so
faster. Also, you can do cute things like "subscribe to thithpthus creating a pub-sub file transfer
architecture. That is so obviously awesome that | shouliged to explain what problem it solves.

Still, here is the problem with the fetch semantic: that ofaband route to tell clients what files exist. No
matter how you do this, it ends up being complex. Either téidrave to poll, or you need a separate
pub-sub channel to keep clients up-to-date, or you neednisgaction.

Thinking this through a little more, though, we can see th#tlf is just a special case of pub-sub. So we
can get the best of both worlds. Here is the general design:

« Fetch this path

- Here is credit (repeat)

To make this work (and we will, my dear readers), we need tolliteamore explicit about how we send
credit to the server. The cute trick of treating a pipelinfdch chunk” request as credit won't fly
because the client doesn’t know any longer what files agteaikt, how large they are, anything. If the
client says, "I'm good for 250,000 bytes of data", this sldoubrk equally for 1 file of 250K bytes, or
100 files of 2,500 bytes.

And this gives us "credit-based flow control", which effeety removes the need for high-water marks,
and any risk of memory overflow.

367

Chapter 7. Advanced Architecture using @MQ

7.5. State Machines

Software engineers tend to think of (finite) state machises kind of intermediary interpreter. That is,
you take a regular language and compile that into a stateimadhen execute the state machine. The
state machine itself is rarely visible to the developes:ath internal representation--optimized,
compressed, and bizarre.

However, it turns out that state machines are also valuagefiast-class modeling languages for
protocol handlers, e.g., @MQ clients and servers. ZMQ makather easy to design protocols, but
we've never defined a good pattern for writing those clients servers properly.

A protocol has at least two levels:

- How we represent individual messages on the wire.

- How messages flow between peers, and the significance of ezsdage.

We've seen in this chapter how to produce codecs that haadiization. That's a good start. But if we
leave the second job to developers, that gives them a lotooifi ito interpret. As we make more
ambitious protocols (file transfer + heartbeating + creditithentication), it becomes less and less sane
to try to implement clients and servers by hand.

Yes, people do this almost systematically. But the costbigite and they're avoidable. I'll explain how
to model protocols using state machines, and how to geneeateand solid code from those models.

My experience with using state machines as a software aatitn tool dates to 1985 and my first real
job making tools for application developers. In 1991, | garthat knowledge into a free software tool
called Libero, which spat out executable state machines &simple text model.

The thing about Libero’s model was that it was readable. igobu described your program logic as
named states, each accepting a set of events, each doingealm®rk. The resulting state machine
hooked into your application code, driving it like a boss.

Libero was charmingly good at its job, fluent in many langsagad modestly popular given the
enigmatic nature of state machines. We used Libero in angiozens of large distributed applications,
one of which was finally switched off in 2011 after 20 years péation. State-machine driven code
construction worked so well that it's somewhat impresdhag this approach never hit the mainstream of
software engineering.

So in this section I'm going to explain Libero’s model, andrdmstrate how to use it to generate dMQ
clients and servers. We'll use GSL again, but like | said ghieciples are general and you can put
together code generators using any scripting language.

368

Chapter 7. Advanced Architecture using @MQ

As a worked example, let’'s see how to carry-on a statefubdialith a peer on a ROUTER socket. We'll
develop the server using a state machine (and the clientriy) hd/e have a simple protocol that I'll call
"NOM". I'm using the oh-so-very-serious keywords for unfmeols (http://unprotocols.org/blog:2)
proposal:

nom-protocol = open-peering * Use-peering

open-peering C:OHAI (S:OHAI-OK / S:WTF)

C:ICANHAZ

/| S:CHEEZBURGER

/ C:HUGZ S:HUGZ-OK
/ SIHUGZ C:HUGZ-OK

use-peering

I've not found a quick way to explain the true nature of statechine programming. In my experience, it
invariably takes a few days of practice. After three or foaysl exposure to the idea, there is a
near-audible “click!" as something in the brain connedtthal pieces together. We’ll make it concrete by
looking at the state machine for our NOM server.

A useful thing about state machines is that you can read thee Iy state. Each state has a unique
descriptive name and one or maeentswhich we list in any order. For each event, we perform zero or
moreactionsand we then move to@ext statgor stay in the same state).

In a @MQ protocol server, we have a state machine instpacelient That sounds complex but it isn't,
as we'll see. We describe our first staeart , as having one valid ever@HAI. We check the user’s
credentials and then arrive in the Authenticated Stigigre 7-1

Figure 7-1. The Start State

Start

| OHAI I P‘ Authenticated '

Check Credentials

TheCheck Credentials action produces either arfk or anerror event. It's in the Authenticated
state that we handle these two possible events by sendirgpaogaiate reply back to the
clientFigure 7-2 If authentication failed, we return to ttgart state where the client can try again.

369

Chapter 7. Advanced Architecture using @MQ

Figure 7-2. The Authenticated State

‘ Authenticated '
ok I »‘ Ready '

Send OHAI-OK

error I »‘ Start '

Send WTF

When authentication has succeeded, we arrive in the Reatty btere we have three possible events: an
ICANHAZ or HUGZ message from the client, or a heartbeat tieanFigure 7-3

Figure 7-3. The Ready State

‘ Ready '
ICANHAZ I P‘ Ready '

Send CHEEZBURGER

HUGZ I P‘ Ready '

Send HUGZ-0K

heartbeat I P‘ Ready '

Send HUGZ

There are a few more things about this state machine modeditdavorth knowing:

« Events in upper case (like "HUGZ") aexternal eventthat come from the client as messages.
- Events in lower case (like "heartbeat") améernal eventsproduced by code in the server.

. The "Send SOMETHING" actions are shorthand for sending aipeeply back to the client.

370

Chapter 7. Advanced Architecture using @MQ

- Events that aren’t defined in a particular state are silégtipred.

Now, the original source for these pretty pictures is an XMadal:

<class name = "nom_server" script = "server_c">

<state name = "start">
<event name = "OHAI" next = "authenticated">
<action name = "check credentials" />
</event>
</state>

<state name = "authenticated">
<event name = "ok" next = "ready">
<action name = "send" message ="OHAI-OK" />
</event>
<event name = "error" next = "start">
<action name = "send" message
</event>
</state>

"WTF" />

<state name = "ready">

<event name = "ICANHAZ">

<action name = "send" message = "CHEEZBURGER" />
</event>
<event name = "HUGZ">

<action name = "send" message = "HUGZ-OK" />
</event>

<event name = "heartbeat">
<action name = "send" message = "HUGZ" />
</event>
</state>
</class>

The code generator is #xamples/models/server_c.gsl . Itis a fairly complete tool that I'll use
and expand for more serious work later. It generates:

« Aserver class in Cnom_server.c ,nom_server.h) thatimplements the whole protocol flow.
- A selftest method that runs the selftest steps listed in k& Xle.

- Documentation in the form of graphics (the pretty pictures)

Here’s a simple main program that starts the generated NQWtise

#include "czmg.h"
#include "nom_server.h"

int main (int argc, char xargv [])

{
printf ("Starting NOM protocol server on port 5670..\n");

nom_server_t xserver = nom_server_new ();

371

Chapter 7. Advanced Architecture using @MQ

nom_server_bind (server, "tcp:// *:5670");
nom_server_wait (server);

nom_server_destroy (&server);

return O;

The generated nom_server class is a fairly classic modsickpts client messages on a ROUTER
socket, so the first frame on every request is the client'aeoction identity. The server manages a set of
clients, each with state. As messages arrive, it feeds tmsentdo the state machine. Here’s the core
of the state machine, as a mix of GSL commands and the C codet@ralito generate:

client_execute (client_t +self, int event)
{
self->next_event = event;
while (self->next_event) {
self->event = self->next_event;
self->next_event = 0;
switch (self->state) {
for class.state
case $(name:c)_state:
for event
if index () > 1
else
endif
if (self->event == $(name:c)_event) {
for action
if name = "send"
zmsg_addstr (self->reply, "$(message:)");
else
$(name:c)_action (self);
endif
endfor
if defined (event.next)
self->state = $(next:c)_state;

endif
}
endfor
break;
.endfor
}
if (zmsg_size (self->reply) > 1) {
zmsg_send (&self->reply, self->router);
self->reply = zmsg_new ();
zmsg_add (self->reply, zframe_dup (self->address));
}
}
}

Each client is held as an object with various propertieduthiag the variables we need to represent a
state machine instance:

372

Chapter 7. Advanced Architecture using @MQ

event_t next_event; /I Next event
state_t state; /I Current state
event_t event; /I Current event

You will see by now that we are generating technically-peré@de that has the precise design and shape
we want. The only clue that them_server class isn’t handwritten is that the code@® good People

who complain that code generators produce poor code arstacced to poor code generators. Itis

trivial to extend our model as we need it. For example, hdves we generate the selftest code.

First, we add a "selftest" item to the state machine and writdests. We're not using any XML
grammar or validation so it really is just a matter of opertimgeditor and adding half-a-dozen lines of
text:

<selftest>
<step send = "OHAI" body = "Sleepy" recv = "WTF" />
<step send = "OHAI" body = "Joe" recv = "OHAI-OK" />
<step send "ICANHAZ" recv = "CHEEZBURGER" />
<step send = "HUGZ" recv = "HUGZ-OK" />
<step recv = "HUGZ" />

</selftest>

Designing on the fly, | decided that "send" and "recv" wereca mvay to express "send this request, then
expect this reply". Here’s the GSL code that turns this motelreal code:

for class->selftest.step

if defined (send)

msg = zmsg_new ();

zmsg_addstr (msg, "$(send:)");
if defined (body)

zmsg_addstr (msg, "$(body:)");
endif

zmsg_send (&msg, dealer);

endif

if defined (recv)

msg = zmsg_recv (dealer);

assert (msg);

command = zmsg_popstr (msg);
assert (streq (command, "$(recv:)"));
free (command);

zmsg_destroy (&msg);

endif

.endfor

Finally, one of the more tricky but absolutely essentiatpaf any state machine generatoh@wv do |
plug this into my own code®&s a minimal example for this exercise | wanted to implembattheck
credentials" action by accepting all OHAIs from my frien& Jéli Joe!) and reject everyone else’s

373

Chapter 7. Advanced Architecture using @MQ

OHAls. After some thought, | decided to grab code directbnirthe state machine model, i.e., embed
action bodies in the XML file. So inom_server.xml , you'll see this:

<action name = "check credentials">
char *body = zmsg_popstr (self->request);
if (body && streq (body, "Joe"))
self->next_event = ok _event;
else
self->next_event = error_event;
free (body);
</action>

And the code generator grabs that C code and inserts it intgeheratedom_server.c file:

for class.action

static void

$(name:c)_action (client_t *self) {
$(string.trim (.):)

}

.endfor

And now we have something quite elegant: a single sourcéhfiedescribes my server state machine
and also contains the native implementations for my actidmsce mix of high-level and low-level that
is about 90% smaller than the C code.

Beware, as your head spins with notions of all the amazingythyou could produce with such leverage.
While this approach gives you real power, it also moves yoayafnom your peers, and if you go too far,
you'll find yourself working alone.

By the way, this simple little state machine design exposststhree variables to our custom code:

« self->next_event
- self->request

« self->reply

In the Libero state machine model, there are a few more casitiegt we've not used here, but which we
will need when we write larger state machines:

- Exceptions, which lets us write terser state machines. Vheaction raises an exception, further
processing on the event stops. The state machine can thae Hefi to handle exception events.

. TheDefaults state, where we can define default handling for events (edpeaseful for exception
events).

374

Chapter 7. Advanced Architecture using @MQ

7.6. Authentication Using SASL

When we designed AMQP in 2007, we chose the Simple Authdiditand Security Layer
(http://en.wikipedia.org/wiki/Simple_Authenticatioand_Security Layer) (SASL) for the
authentication layer, one of the ideas we took from the BEERopol framework
(http://lwww.rfc-editor.org/rfc/rfc3080.txt). SASL Ids complex at first, but it's actually simple and fits
neatly into a @MQ-based protocol. What | especially like@f®ASL is that it's scalable. You can start
with anonymous access or plain text authentication and curg, and grow to more secure
mechanisms over time without changing your protocol.

I’m not going to give a deep explanation now because we’'llS&8L in action somewhat later. But I'll
explain the principle so you're already somewhat prepared.

In the NOM protocol, the client started with an OHAI commawtijch the server either accepted ("Hi
Joe!") or rejected. This is simple but not scalable becaesgsand client have to agree up-front on the
type of authentication they’re going to do.

What SASL introduced, which is genius, is a fully abstracad negotiable security layer that’s still
easy to implement at the protocol level. It works as follows:

« The client connects.
- The server challenges the client, passing a list of sectmgchanisms" that it knows about.

+ The client chooses a security mechanism that it knows abadtanswers the server’s challenge with
a blob of opaque data that (and here’s the neat trick) somerigesecurity library calculates and gives
to the client.

« The server takes the security mechanism the client chodehanblob of data, and passes it to its own
security library.

- The library either accepts the client's answer, or the seriallenges again.

There are a number of free SASL libraries. When we come toca, we'll implement just two
mechanisms, ANONYMOUS and PLAIN, which don’t need any saddiraries.

To support SASL, we have to add an optional challenge/respstep to our "open-peering” flow. Here is
what the resulting protocol grammar looks like (I'm modifgiNOM to do this):

secure-nom = open-peering * use-peering

open-peering = C:OHAI *(S:ORLY C:YARLY) (S:OHAI-OK / S:WTF)
ORLY = X mechanism challenge

mechanism = string

challenge = *OCTET

YARLY = mechanism response

375

Chapter 7. Advanced Architecture using @MQ

response = *OCTET

Where ORLY and YARLY contain a string (a list of mechanism©®IRLY, one mechanism in YARLY)
and a blob of opaque data. Depending on the mechanism, tta afiallenge from the server may be
empty. We don’t care: we just pass this to the security liptardeal with.

The SASL RFC (http://tools.ietf.org/html/rfc4422) goesa detail about other features (that we don’t
need), the kinds of ways SASL could be attacked, and so on.

7.7. Large-Scale File Publishing: FileMQ

Let’s put all these techniques together into a file distidiusystem that I'll call FileMQ. This is going to
be a real product, living on GitHub (https://github.conmfraqg/filemq). What we’ll make here is a first
version of FileMQ, as a training tool. If the concept workes teal thing may eventually get its own
book.

7.7.1. Why make FileMQ?

Why make a file distribution system? | already explained hmaend large files over dMQ, and it's
really quite simple. But if you want to make messaging adbésto a million times more people than
can use IMQ, you need another kind of API. An API that my fivery@d son can understand. An API
that is universal, requires no programming, and works wigh about every single application.

Yes, I'm talking about the file system. It's the DropBox pattechuck your files somewhere and they get
magically copied somewhere else when the network conngats.a

However, what I'm aiming for is a fully decentralized areuture that looks more like git, that doesn’t
need any cloud services (though we could put FileMQ in thad)pand that does multicast, i.e., can
send files to many places at once.

FileMQ must be secure(able), easily hooked into randonpsieg languages, and as fast as possible
across our domestic and office networks.

| want to use it to back up photos from my mobile phone to mydpmiver WiFi. To share presentation
slides in real time across 50 laptops in a conference. Teg@ruments with colleagues in a meeting.
To send earthquake data from sensors to central clustebmcloup video from my phone as | take it,
during protests or riots. To synchronize configuration fdesoss a cloud of Linux servers.

A visionary idea, isn't it? Well, ideas are cheap. The hanmd iganaking this, and making it simple.

376

Chapter 7. Advanced Architecture using @MQ

7.7.2. Initial Design Cut: the API

Here’s the way | see the first design. FileMQ has to be digiithuvhich means that every node can be a
server and a client at the same time. But | don’t want the patm be symmetrical, because that seems
forced. We have a natural flow of files from point A to point B,avl A is the "server" and B is the
“client". If files flow back the other way, then we have two flo¥deMQ is not yet directory
synchronization protocol, but we'll bring it quite close.

Thus, I'm going to build FileMQ as two pieces: a client and evee Then, I'll put these together in a
main application (thélemq tool) that can act both as client and server. The two piecksook quite
similar to thenom_server , with the same kind of API:

fmq_server_t xserver = fmq_server_new ();

fmq_server_bind (server, "tcp:// *:5670");

fmq_server_publish (server, "/home/ph/filemg/share”, " /public");
fmq_server_publish (server, "/home/ph/photos/stream", "/photostream");
fmq_client_t *client = fmq_client_new ();

fmq_client_connect (client, "tcp://pieter.filemq.org: 5670");
fmq_client_subscribe (server, "/public/", "/home/ph/fi lemqg/share");
fmq_client_subscribe (server, "/photostream/", "/home/ ph/photos/stream™);

while (!zctx_interrupted)
sleep (1);

fmq_server_destroy (&server);
fmq_client_destroy (&client);

If we wrap this C API in other languages, we can easily scrilg\fQ, embed it applications, port it to
smartphones, and so on.

7.7.3. Initial Design Cut: the Protocol

The full name for the protocol is the "File Message Queuingduol”, or FILEMQ in uppercase to
distinguish it from the software. To start with, we write dothe protocol as an ABNF grammar. Our
grammar starts with the flow of commands between the clieshsanver. You should recognize these as
a combination of the various techniques we've seen already:

filemqg-protocol = open-peering *use-peering [close-peering]
open-peering = C:OHAI *(S:ORLY C:YARLY) (S:OHAI-OK / error)
use-peering = C:ICANHAZ (S:ICANHAZ-OK / error)

/ C:NOM

| S:CHEEZBURGER

/ C:HUGZ S:HUGZ-OK
/ SIHUGZ C:HUGZ-OK

377

Chapter 7. Advanced Architecture using @MQ

close-peering = C:KTHXBAI / S:KTHXBAI

error = S:SRSLY / S:RTFM

Here are the commands to and from the server:

; The client opens peering to the server

OHAI = signature %x01 protocol version
signature = %XAA %xA3

protocol = string ; Must be "FILEMQ"
string = size *VCHAR

size = OCTET

version = %x01

; The server challenges the client using the SASL model

ORLY = signature %x02 mechanisms challenge
mechanisms = size 1 *mechanism

mechanism = string

challenge = *OCTET ; OMQ frame

; The client responds with SASL authentication information
YARLY = %signature x03 mechanism response
response = *OCTET ; OMQ frame

; The server grants the client access
OHAI-OK = signature %x04

; The client subscribes to a virtual path

ICANHAZ = signature %x05 path options cache
path = string ; Full path or path prefix
options = dictionary

dictionary = size * key-value

key-value = string ; Formatted as name=value
cache = dictionary ; File SHA-1 signatures

; The server confirms the subscription
ICANHAZ-OK = signature %x06

; The client sends credit to the server

NOM = signature %x07 credit
credit = 80CTET ; 64-bit integer, network order
sequence = 80OCTET ; 64-bit integer, network order

; The server sends a chunk of file data

CHEEZBURGER = signature %x08 sequence operation filename
offset headers chunk

sequence = 80OCTET ; 64-bit integer, network order

operation = OCTET

filename = string

offset = 80CTET ; 64-bit integer, network order

headers = dictionary

378

Chapter 7. Advanced Architecture using @MQ
chunk = FRAME

Client or server sends a heartbeat
HUGZ = signature %x09

; Client or server responds to a heartbeat
HUGZ-OK = signature %x0A

; Client closes the peering
KTHXBAI = signature %x0B

And here are the different ways the server can tell the ctl@ngs went wrong:

Server error reply - refused due to access rights
S:SRSLY = signature %x80 reason

; Server error reply - client sent an invalid command
S:RTFM = signature %x81 reason

FILEMQ lives on the @MQ unprotocols website (http://rfaamq.org/spec:19) and has a registered
TCP port with IANA (the Internet Assigned Numbers Authojjtyhich is port 5670.

7.7.4. Building and Trying FileMQ

The FileMQ stack is on GitHub (https://github.com/zerofiteyhq). It works like a classic C/C++
project:

git clone git://github.com/zeromg/filemq.git
cd filemq

Jautogen.sh

Iconfigure

make check

You want to be using the latest CZMQ master for this. Now tnying thetrack command, which is a
simple tool that uses FileMQ to track changes in one dirgdtoanother:

cd src
Jtrack ./fmgroot/send ./fmqgroot/recv

And open two file navigator windows, one irg/fmgroot/send and one intarc/fmgroot/recv
Drop files into the send folder and you'll see them arrive i tacv folder. The server checks once per
second for new files. Delete files in the send folder, and teajeleted in the recv folder similarly.

| use track for things like updating my MP3 player mounted &kS® drive. As | add or remove files in
my laptop’s Music folder, the same changes happen on the NéB@p FILEMQ isn’t a full replication
protocol yet, but we'll fix that later.

379

Chapter 7. Advanced Architecture using @MQ

7.7.5. Internal Architecture

To build FileMQ | used a lot of code generation, possibly taecimfor a tutorial. However the code
generators are all reusable in other stacks and will be itapbfor our final projectin A Framework for
Distributed ComputinGhapter 8 They are an evolution of the set we saw earlier:

- codec_c.gsl :generates a message codec for a given protocol.
- server_c.gsl :generates a server class for a protocol and state machine.

« client_c.gsl : generates a client class for a protocol and state machine.

The best way to learn to use GSL code generation is to translase into a language of your choice and
make your own demo protocols and stacks. You'll find it faghsy. FileMQ itself doesn’t try to support
multiple languages. It could, but it'd make things neediessmplex.

The FileMQ architecture actually slices into two layersefigis a generic set of classes to handle chunks,
directories, files, patches, SASL security, and configardiles. Then, there’s the generated stack:
messages, client, and server. If | was creating a new pridjfork the whole FileMQ project, and go

and modify the three models:

- fmg_msg.xml : defines the message formats
- fmqg_client.xml : defines the client state machine, API, and implementation.

- fmq_server.xml :does the same for the server.

You’'d want to rename things to avoid confusion. Why didn’tdke the reusable classes into a separate
library? The answer is two-fold. First, no one actually reetids (yet). Second, it'd make things more
complex for you as you build and play with FileMQ. It's neveorth adding complexity to solve a
theoretical problem.

Although | wrote FileMQ in C, it's easy to map to other langaaglt is quite amazing how nice C
becomes when you add CZMQ'’s generic zlist and zhash comsaamel class style. Let me go through
the classes quickly:

- fmg_sasl :encodes and decodes a SASL challenge. | only implemengg@ltAIN mechanism,
which is enough to prove the concept.

- fmqg_chunk : works with variable sized blobs. Not as efficient as AMQ’'seages but they do less
weirdness and so are easier to understand. The chunk ckssatfaods to read and write chunks from
disk.

- fmq_file :works with files, which may or may not exist on disk. Gives yoformation about a file
(like size), lets you read and write to files, remove files,abhiea file exists, and check if a file is
"stable" (more on that later).

- fmq_dir :works with directories, reading them from disk and compativo directories to see what
changed. When there are changes, returns a list of "patches"

380

Chapter 7. Advanced Architecture using @MQ

- fmqg_patch :works with one patch, which really just says "create th&'fdr "delete this file"
(referring to a fmq_file item each time).

- fmqg_config : works with configuration data. I'll come back to client arethger configuration later.

Every class has a test method, and the main developmentisyeldit, test". These are mostly simple
self tests, but they make the difference between code | cahand code | know will still break. It's a
safe bet that any code that isn’t covered by a test case widl hadiscovered errors. I'm not a fan of
external test harnesses. But internal test code that yde asiyou write your functionality... that's like
the handle on a knife.

You should, really, be able to read the source code and sapidierstand what these classes are doing. If
you can't read the code happily, tell me. If you want to poet HileMQ implementation into other
languages, start by forking the whole repository and lakt wee if it's possible to do this in one

overall repo.

7.7.6. Public API

The public API consists of two classes (as we sketched €earlie

- fmq_client : provides the client API, with methods to connect to a sem@nfigure the client, and
subscribe to paths.

- fmqg_server : provides the server API, with methods to bind to a port, cant the server, and
publish a path.

These classes provide anultithreaded APJa model we've used a few times now. When you create an
API instance (i.efmq_server_new() orfmg_client_new()), this method kicks off a background
thread that does the real work, i.e., runs the server or thetclThe other API methods then talk to this
thread over @MQ sockets fape consisting of two PAIR sockets over inproc://).

If I was a keen young developer eager to use FileMQ in ano#tmgyuage, I'd probably spend a happy
weekend writing a binding for this public API, then stickrita subdirectory of the filemq project called,
say,bindings/ , and make a pull request.

The actual APl methods come from the state machine desumipiike this (for the server):

<method name = "publish">

<argument name = "location" type = "string" />
<argument name = "alias" type = "string" />
mount_t *mount = mount_new (location, alias);
zlist_append (self->mounts, mount);

</method>

Which gets turned into this code:

381

Chapter 7. Advanced Architecture using @MQ

void
fmq_server_publish (fmg_server_t *self, char *|ocation, char * alias)
{
assert (self);
assert (location);
assert (alias);
zstr_sendm (self->pipe, "PUBLISH");
zstr_sendfm (self->pipe, "%s", location);
zstr_sendf (self->pipe, "%s", alias);
}

7.7.7. Design Notes

The hardest part of making FileMQ wasn’t implementing thetpcol, but maintaining accurate state
internally. An FTP or HTTP server is essentially statel&sg.a publish/subscribe servieasto maintain
subscriptions, at least.

So I'll go through some of the design aspects:

« The client detects if the server has died by the lack of heatthdUGZ coming from the server. It
then restarts its dialog by sending@HAI. There’s no timeout on theHAI because the IMQ
DEALER socket will queue an outgoing message indefinitely.

- If a client stops replying withUGZ-OK to the heartbeats that the server sends, the server casclud
that the client has died and deletes all state for the clieitiding its subscriptions.

- The client API holds subscriptions in memory and replaysthénen it has connected successfully.
This means the caller can subscribe at any time (and does®’'tithen connections and authentication
actually happen).

- The server and client use virtual paths, much like an HTTPTd&* Server. You publish one or more
mount pointseach corresponding to a directory on the server. Each séthmaps to some virtual path,
for instance "/" if you have only one mount point. Clientsrifeibscribe to virtual paths, and files
arrive in an inbox directory. We don’t send physical file nameross the network.

- There are some timing issues: if the server is creating itsnnpoints while clients are connected and
subscribing, the subscriptions won't attach to the rightimtgoints. So, we bind the server port as
last thing.

- Clients can reconnect at any point; if the client se@#\l, that signals the end of any previous
conversation and the start of a new one. | might one day mdsscsptions durable on the server, so
they survive a disconnection. The client stack, after reesting, replays any subscriptions the caller
application already made.

382

Chapter 7. Advanced Architecture using @MQ

7.7.8. Configuration

I've built several large server products, like the Xitamibnserver that was popular in the late 90’s, and
the OpenAMQ messaging server (http://www.openamg.oreitid configuration easy and obvious was
a large part of making these servers fun to use.

We typically aim to solve a number of problems:

- Ship default configuration files with the product.
« Allow users to add custom configuration files that are neverwritten.

« Allow users to configure from the command-line.

And then layer these one on the other, so command-line gettiverride custom settings, which override
default settings. It can be a lot of work to do this right. FdeMQ, I've taken a somewhat simpler
approach: all configuration is done from the API.

This is how we start and configure the server, for example:

server = fmq_server_new ();

fmq_server_configure (server, "server_test.cfg");
fmq_server_publish (server, "./fmgroot/send”, "/*);
fmq_server_publish (server, "./fmgroot/logs”, "/logs")
fmq_server_bind (server, "tcp:// *:5670");

We do use a specific format for the config files, which is ZPLpitfc.zeromq.org/spec:4), a minimalist
syntax that we started using for @MQ "devices" a few years bgowhich works well for any server:

Configure server for plain access

#
server
monitor = 1 # Check mount points
heartbeat = 1 # Heartbeat to clients
publish
location = ./fmgroot/logs
virtual = /logs
security

echo = |: use guest/guest to login to server
These are SASL mechanisms we accept
anonymous = 0
plain = 1
account
login = guest
password = guest
group = guest
account
login = super

383

Chapter 7. Advanced Architecture using @MQ

password = secret
group = admin

One cute thing (which seems useful) the generated serverdmesk is to parse this config file (when you
use themq_server_configure() method) and execute any section that matches an API method.
Thus thepublish section works as ting_server_publish() method.

7.7.9. File Stability

It is quite common to poll a directory for changes and thenatoething "interesting” with new files.
But as one process is writing to a file, other processes haideaaovhen the file has been fully written.
One solution is to add a second "indicator" file that we cradter creating the first file. This is intrusive,
however.

There is a neater way, which is to detect when a file is "stabk’| no one is writing to it any longer.
FileMQ does this by checking the modification time of the fifét’s more than a second old, then the
file is considered stable, at least stable enough to be ghigipeo clients. If a process comes along after
five minutes and appends to the file, it'll be shipped off again

For this to work, and this is a requirement for any applicgatioping to use FileMQ successfully, do not
buffer more than a second’s worth of data in memory beforéngiIf you use very large block sizes,
the file may look stable when it's not.

7.7.10. Delivery Notifications

One of the nice things about the multithreaded APl modeleveding is that it's essentially message
based. This makes it ideal for returning events back to thercA more conventional API approach
would be to use callbacks. But callbacks that cross threadderies are somewhat delicate. Here's how
the client sends a message back when it has received a cerfilget

zstr_sendm (self->pipe, "DELIVER");
zstr_sendm (self->pipe, filename);
zstr_sendf (self->pipe, "%s/%s", inbox, filename);

We can now add a _recv() method to the API that waits for eveatk from the client. It makes a clean
style for the caller: create the client object, configurauiitgl then receive and process any events it returns.

7.7.11. Symbolic Links

While using a staging area is a nice, simple API, it also e®absts for senders. If | already have a 2GB
video file on a camera, and want to send it via FileMQ, the euriraplementation asks that | copy it to a

384

Chapter 7. Advanced Architecture using @MQ

staging area before it will be sent to subscribers.

One option is to mount the whole content directory (etgame/me/Movies), but this is fragile because
it means the application can’t decide to send individuasfilés everything or nothing.

A simple answer is to implement portable symbolic links. Aikiedia explains: "A symbolic link
contains a text string that is automatically interpreted flowed by the operating system as a path to
another file or directory. This other file or directory is eallthetarget The symbolic link is a second file
that exists independently of its target. If a symbolic lisldeleted, its target remains unaffected.”

This doesn'’t affect the protocol in any way; it's an optintina in the server implementation. Let's make
a simple portable implementation:

« A symbolic link consists of a file with the extensidn .
- The filename withoutn is the published file name.

- The link file contains one line, which is the real path to the. fil

Because we've collected all operations on files in a singlexcfmqg_file), it's a clean change. When
we create a new file object, we check if it's a symbolic link @inein all read-only actions (get file size,
read file) operate on the target file, not the link.

7.7.12. Recovery and Late Joiners

As it stands now, FileMQ has one major remaining problemratvwes no way for clients to recover

from failures. The scenario is that a client, connected teraes, starts to receive files and then
disconnects for some reason. The network may be too sloweakb. The client may be on a laptop
which is shut down, then resumed. The WiFi may be discondeét&we move to a more mobile world
(see A Framework for Distributed Computi@bapter 8 this use case becomes more and more frequent.
In some ways it's becoming a dominant use case.

In the classic @MQ pub-sub pattern, there are two strongnlyidg assumptions, both of which are
usually wrong in FileMQ’s real world. First, that data exgsvery rapidly so that there’s no interest in
asking from old data. Second, that networks are stable arlyareak (so it's better to invest more in
improving the infrastructure and less in addressing reggve

Take any FileMQ use case and you'll see that if the clientatisects and reconnects, then it should get
anything it missed. A further improvement would be to reedvem partial failures, like HTTP and FTP
do. But one thing at a time.

One answer to recovery is "durable subscriptions"”, and thedrafts of the FILEMQ protocol aimed to
support this, with client identifiers that the server coubdthonto and store. So if a client reappears after
a failure, the server would know what files it had not received

385

Chapter 7. Advanced Architecture using @MQ

Stateful servers are, however, nasty to make and difficsitéde. How do we, for example, do failover to
a secondary server? Where does it get its subscriptiongfttsifar nicer if each client connection
works independently and carries all necessary state with it

Another nail in the coffin of durable subscriptions is thaeifuires up-front coordination. Up-front
coordination is always a red flag, whether it's in a team ofgbeavorking together, or a bunch of
processes talking to each other. What about late joiners$flreal world, clients do not neatly line up
and then all say "Ready!" at the same time. In the real wdnkely tome and go arbitrarily, and it's
valuable if we can treat a brand new client in the same way #srat that went away and came back.

To address this | will add two concepts to the protocaegynchronizatiomption and acache field (a
dictionary). If the client wants recovery, it sets the regdymonization option, and tells the server what
files it already has via theache field. We need both, because there’s no way in the protocol to
distinguish between an empty field and a null field. The FILERIEC describes these fields as follows:

Theoptions field provides additional information to the server. TheveelSHOULD implement these
options:RESYNC=1Z- if the client sets this, the server SHALL send the full conseof the virtual path to the
client, except files the client already has, as identifiechieyrtSHA-1 digest in theache field.

And:

When the client specifies tlRESYNQption, thecache dictionary field tells the server which files the client
already has. Each entry in thache dictionary is a "filename=digest" key/value pair where tigedt SHALL
be a SHA-1 digest in printable hexadecimal format. If thenfilme starts with "/" then it SHOULD start with
the path, otherwise the server MUST ignore it. If the filenatoes not start with "/" then the server SHALL
treat it as relative to the path.

Clients that know they are in the classic pub-sub use casdud provide any cache data, and clients
that want recovery provide their cache data. It requiregaie $n the server, no up-front coordination,
and works equally well for brand new clients (which may haseeived files via some out-of-band
means), and clients that received some files and were theorgtiscted for a while.

| decided to use SHA-1 digests for several reasons. Fissfagt enough: 150msec to digest a 25MB
core dump on my laptop. Second, it's reliable: the chancetifrgy the same hash for different versions
of one file is close enough to zero. Third, it's the widest srpgd digest algorithm. A cyclic-redundancy
check (e.g., CRC-32) is faster but not reliable. More re& versions (SHA-256, SHA-512) are
more secure but take 50% more CPU cycles, and are overkiifoneeds.

Here is what a typical ICANHAZ message looks like when we usth lsaching and resyncing (this is
output from thedump method of the generated codec class):

ICANHAZ:
path="/photos’
options={

RESYNC=1
}

cache={

386

Chapter 7. Advanced Architecture using @MQ

DSCF0001.jpg=1FABCD4259140ACA99E991E7ADD2034AC57D34 1D
DSCF0006.jpg=01267C7641C5A22F2F4B0174FFB0C94DC59866 F6
DSCF0005.jpg=698E88C05B5C280E75C055444227FEAGFB60ES 64
DSCF0004.jpg=F0149101DD6FEC13238E6FDI9CA2F2AC62829CB DO
DSCF0003.jpg=4A49F25E2030B60134F109ABD0AD9642C85774 41
DSCF0002.jpg=F84E4D69D854D4BF94B5873132F9892C8B5FA9 4E

Although we don’t do this in FileMQ, the server can use theheaaformation to help the client catch up
with deletions that it missed. To do this, it would have to ttedetions, and then compare this log with
the client cache when a client subscribes.

7.7.13. Test Use Case: The Track Tool

To properly test something like FileMQ we need a test casepigs with live data. One of my
sysadmin tasks is to manage the MP3 tracks on my music plagarh is, by the way, a Sansa Clip
reflashed with Rock Box, which | highly recommend. As | dovaddracks into my Music folder, | want
to copy these to my player, and as | find tracks that annoy meletelthem in the Music folder and want
those gone from my player too.

This is kind of overkill for a powerful file distribution protol. | could write this using a bash or Perl
script, but to be honest the hardest work in FileMQ was theatiiry comparison code and | want to
benefit from that. So | put together a simple tool caliedk , which calls the FileMQ API. From the
command line this runs with two arguments; the sending aedebeiving directories:

Jtrack /home/ph/Music /media/3230-6364/MUSIC

The code is a neat example of how to use the FileMQ API to dd fdealistribution. Here is the full
program, minus the license text (it's MIT/X11 licensed):

#include "czmg.h"
#include "../include/fmg.h"

int main (int argc, char *argv [])

{
fmq_server_t *server = fmq_server_new ();
fmq_server_configure (server, "anonymous.cfg");
fmq_server_publish (server, argv [1], "/");
fmq_server_set_anonymous (server, true);
fmq_server_bind (server, "tcp:// *:5670");

fmq_client_t *client = fmq_client_new ();
fmq_client_connect (client, "tcp://localhost:5670");
fmg_client_set_inbox (client, argv [2]);
fmq_client_set_resync (client, true);
fmg_client_subscribe (client, "/);

387

Chapter 7. Advanced Architecture using @MQ

while (true) {
/I Get message from fmq_client API
zmsg_t *msg = fmq_client_recv (client);
if (!msg)
break; /I Interrupted
char *command = zmsg_popstr (msg);
if (streq (command, "DELIVER")) {
char =+filename = zmsg_popstr (msg);
char =*fullname = zmsg_popstr (msg);
printf ("I: received %s (%s)\n", filename, fullname);
free (filename);
free (fullname);

}

free (command);
zmsg_destroy (&msg);

}

fmq_server_destroy (&server);
fmq_client_destroy (&client);
return O;

Note how we work with physical paths in this tool. The serveblgshes the physical path
/home/ph/Music and maps this to the virtual path The client subscribes toand receives all files in
/media/3230-6364/MUSIC .| could use any structure within the server directory, debiuld be
copied faithfully to the client’s inbox. Note the APl methfmlg_client_set_resync() , which
causes a server-to-client synchronization.

7.8. Getting an Official Port Number

We've been using port 5670 in the examples for FILEMQ. UnlKehe previous examples in this book,
this port isn’t arbitrary but was assigned
(http://www.iana.org/assignments/service-names-pombers/service-names-port-numbers.txt) by the
Internet Assigned Numbers Authority (IANA) (http://wwana.org), which "is responsible for the
global coordination of the DNS Root, IP addressing, andrdtiternet protocol resources".

I'll explain very briefly when and how to request registeredtmumbers for your application protocols.
The main reason is to ensure that your applications can rtiveiwild without conflict with other
protocols. Technically, if you ship any software that used pumbers between 1024 and 49151, you
should be using only IANA registered port numbers. Many pis don’t bother with this, however, and
tend instead to use the IANA list as "ports to avoid".

If you aim to make a public protocol of any importance, suckagEMQ, you're going to want an
IANA-registered port. I'll explain briefly how to do this:

388

Chapter 7. Advanced Architecture using @MQ

« Document your protocol clearly, as IANA will want a specifioa of how you intend to use the port.
It does not have to be a fully-formed protocol specificatlout,must be solid enough to pass expert
review.

- Decide what transport protocols you want: UDP, TCP, SCT&,sanon. With @MQ you will usually
only want TCP.

- Fill in the application on iana.org, providing all the nesay information.

- IANA will then continue the process by email until your amaifion is accepted or rejected.

Note that you don’t request a specific port number; IANA wisayn you one. It's therefore wise to start
this process before you ship software, not afterwards.

389

Chapter 8. A Framework for Distributed
Computing

We've gone though a journey of understanding @MQ in its mapeats. By now you may have started
to build your own products using the techniques | explaimsdyell as others you've figured out
yourself. You will start to face questions about how to mdiese products work in the real world.

But what is that "real world"? I'll argue that it is becomingvarld of ever increasing numbers of moving

pieces. Some people use the phrase the "Internet of Thisggdesting that we’ll see a new category of

devices that are more numerous but also more stupid tharuowent smart phones, tablets, laptops, and
servers. However, | don’t think the data points this way ktYas, there are more and more devices, but
they’re not stupid at all. They're smart and powerful andiggtmore so all the time.

The mechanism at work is something | call "Cost Gravity" arfthis the effect of reducing the cost of
technology by half every 18-24 months. Put another way, talyal computing capacity doubles every
two years, over and over and over. The future is filled witlidris of devices that are fully powerful
multi-core computers: they don’t run a cut-down "operasggtem for things" but full operating systems
and full applications.

And this is the world we're targeting with @MQ. When we talk'stale"”, we don't mean hundreds of
computers, or even thousands. Think of clouds of tiny snratterhaps self-replicating machines
surrounding every person, filling every space, coveringyewall, filling the cracks and eventually,
becoming so much a part of us that we get them before birthradfollow us to death.

These clouds of tiny machines talk to each other, all the,tower short-range wireless links using the
Internet Protocol. They create mesh networks, pass infimmand tasks around like nervous signals.
They augment our memory, vision, every aspect of our comaatioins, and physical functions. And it's
@MQ that powers their conversations and events and excbarigeork and information.

Now, to make even a thin imitation of this come true today, wedto solve a set of technical problems.
These include: How do peers discover each other? How do #ifleyat existing networks like the Web?
How do they protect the information they carry? How do wekracd monitor them, to get some idea of
what they’re doing? Then we need to do what most engineegefabout: package this solution into a
framework that is dead easy for ordinary developers to use.

This is what we’ll attempt in this chapter: to build a frameWwéor distributed applications as an API,
protocols, and implementations. It's not a small challelngiel've claimed often that @MQ makes such
problems simple, so let’s see if that's still true.

We'll cover:

- Requirements for distributed computing

390

Chapter 8. A Framework for Distributed Computing

The pros and cons of WiFi for proximity networking
Discovery using UDP and TCP

A message-based API

Creating a new open source project

Peer-to-peer connectivity (the Harmony pattern)
Tracking peer presence and disappearance

Group messaging without central coordination
Large-scale testing and simulation

Dealing with high-water marks and blocked peers

Distributed logging and monitoring

8.1. Design for The Real World

Whether we're connecting a roomful of mobile devices oveFMdr a cluster of virtual boxes over
simulated Ethernet, we will hit the same kinds of problentede are:

Discovery how do we learn about other nodes on the network? Do we usEawvdiry service,
centralized mediation, or some kind of broadcast beacon?

Presencehow do we track when other nodes come and go? Do we use sochefldentral
registration service, or heartbeating or beacons?

Connectivity how do we actually connect one node to another? Do we uskrlet&orking,
wide-area networking, or do we use a central message brokierthe forwarding?

Point-to-point messagindnow do we send a message from one node to another? Do we $etal th
the node’s network address, or do we use some indirect aldgesa a centralized message broker?

Group messagindiow do we send a message from one node to a group of others® ok via a
centralized message broker, or do we use a pub-sub mod€&l@?

Testing and simulatiarhow do we simulate large numbers of nodes so we can testrpafce
properly? Do we have to buy two dozen Android tablets, or camuse pure software simulation?

Distributed Logginghow do we track what this cloud of nodes is doing so we canctipgrformance
problems and failures? Do we create a main logging servicdo eve allow every device to log the
world around it?

Content distributionhow do we send content from one node to another? Do we userssewmtric
protocols like FTP or HTTP, or do we use decentralized patiike FileMQ?

If we can solve these problems reasonably well, and thedugtoblems that will emerge (like security
and wide-area bridging), we get something like a frameworkshat | might call "Really Cool
Distributed Applications", or as my grandkids call it, "teeftware our world runs on".

391

Chapter 8. A Framework for Distributed Computing

You should have guessed from my rhetorical questions tleaéthre two broad directions in which we
can go. One is to centralize everything. The other is toibiste everything. I'm going to bet on
decentralization. If you want centralization, you dondlig need @MQ); there are other options you can
use.

So very roughly, here’s the story. One, the number of movieggs increases exponentially over time
(doubles every 24 months). Two, these pieces stop using We&eause dragging cables everywhere gets
really boring. Three, future applications run across clusterb@de pieces using the Benevolent Tyrant
pattern from The @MQ CommuniGhapter 6 Four, today it's really difficult, nay still rather imposde,

to build such applications. Five, let's make it cheap ang eag all the techniques and tools we've
built up. Six, partay!

8.2. The Secret Life of WiFi

The future is clearly wireless, and while many big businsése by concentrating data in their clouds,
the future doesn't look quite so centralized. The devicebaedges of our networks get smarter every
year, not dumber. They're hungry for work and informatiomligest and from which to profit. And they
don’t drag cables around, except once a night for powerltwireless and more and more, it's
802.11-branded WiFi of different alphabetical flavors.

8.2.1. Why Mesh Isn't Here Yet

As such a vital part of our future, WiFi has a big problem thabt often discussed, but that anyone
betting on it needs to be aware of. The phone companies of dhlel Wave built themselves nice
profitable mobile phone cartels in nearly every country wiflunctioning government, based on
convincing governments that without monopoly rights tevaives and ideas, the world would fall apart.
Technically, we call this "regulatory capture” and "pag&nbut in fact it's just a form of blackmail and
corruption. If you, the state, give me, a business, the tigbvercharge, tax the market, and ban all real
competitors, I'll give you 5%. Not enough? How about 10%? QB% plus snacks. If you refuse, we
pull service.

But WiFi snuck past this, borrowing unlicensed airspaceratidg on the back of the open and
unpatented and remarkably innovative Internet ProtoeakstSo today, we have the curious situation
where it costs me several Euro a minute to call from Seoul ts&#ls if | use the state-backed
infrastructure that we've subsidized over decades, bitingtat all if | can find an unregulated WiFi
access point. Oh, and | can do video, send files and photosiamiload entire home movies all for the
same amazing price point of precisely zero point zero zerarfy currency you like). God help me if |
try to send just one photo home using the service for whichualy pay. That would cost me more than
the camera | took it on.

It is the price we pay for having tolerated the "trust us, wéfre experts" patent system for so long. But
more than that, it's a massive economic incentive to chufkiseotechnology sector--and especially

392

Chapter 8. A Framework for Distributed Computing

chipset makers who own patents on the anti-Internet GSM,%5BR, and LTE stacks, and who treat the
telcos as prime clients--to actively throttle WiFi devetognt. And of course it’s these firms that bulk out
the IEEE committees that define WiFi.

The reason for this rant against lawyer-driven "innovaltisrio steer your thinking towards "what if

WiFi were really free?" This will happen one day, not too féfr and it's worth betting on. We’'ll see
several things happen. First, much more aggressive usespbae especially for near-distance
communications where there is no risk of interference. 8écbig capacity improvements as we learn to
use more airspace in parallel. Third, acceleration of theddrdization process. Last, broader support in
devices for really interesting connectivity.

Right now, streaming a movie from your phone to your TV is ¢desed "leading edge”. This is
ridiculous. Let’s get truly ambitious. How about a stadiuhpeople watching a game, sharing photos
and HD video with each other in real time, creating an ad-iveagthat literally saturates the airspace
with a digital frenzy. | should be able to collect terabytégwagery from those around me, in an hour.
Why does this have to go through Twitter or Facebook and imaeixpensive mobile data connection?
How about a home with hundreds of devices all talking to edhbriover mesh, so when someone rings
the doorbell, the porch lights stream video through to ydwomne or TV? How about a car that can talk to
your phone and play your dubstep playlisthout you plugging in wires

To get more serious, why is our digital society in the handsenitral points that are monitored,
censored, logged, used to track who we talk to, collect eddeagainst us, and then shut down when the
authorities decide we have too much free speech? The lossraEpwe're living through is only a
problem when it's one-sided, but then the problem is calausitA truly wireless world would bypass all
central censorship. It's how the Internet was designedjtanguite feasible, technically (which is the
best kind of feasible).

8.2.2. Some Physics

Naive developers of distributed software treat the netvesrlofinitely fast and perfectly reliable. While
this is approximately true for simple applications overdttiet, WiFi rapidly proves the difference
between magical thinking and science. That is, WiFi breaksasily and dramatically under stress that |
sometimes wonder how anyone would dare use it for real wdrk.ceiling moves up as WiFi gets
better, but never fast enough to stop us hitting it.

To understand how WiFi performs technically, you need toaust@nd a basic law of physics: the power
required to connect two points increases according to tharsopf the distance. People who grow up in
larger houses have exponentially louder voices, as | leemPallas. For a WiFi network, this means
that as two radios get further apart, they have to either ume power or lower their signal rate.

There’s only so much power you can pull out of a battery befisers treat the device as hopelessly
broken. Thus even though a WiFi network may be rated at ainespeed, the real bit rate between the
access point (AP) and a client depends on how far apart thaitetdAs you move your WiFi-enabled

393

Chapter 8. A Framework for Distributed Computing

phone away from the AP, the two radios trying to talk to eadteotvill first increase their power and
then reduce their bit rate.

This effect has some consequences of which we should be #wagavant to build robust distributed
applications that don’t dangle wires behind them like pugpe

- If you have a group of devices talking to an AP, when the APIligrg to the slowest device, the
whole network has to waitt’s like having to repeat a joke at a party to the designdt@cer who has
no sense of humor, is still fully and tragically sober, and dgoor grasp of the language.

- If you use unicast TCP and send a message to multiple detieeAP must send the packets to each
device separately, Yes, and you knew this, it's also how iBgtenvorks. But now understand that one
distant (or low-powered) device means everything waitdtat slowest device to catch up.

- If you use multicast or broadcast (which work the same, introases), the AP will send single
packets to the whole network at once, which is awesome, huill itlo it at the slowest possible bit
rate (usually 1Mbps). You can adjust this rate manually me@Ps. That just reduces the reach of
your AP. You can also buy more expensive APs that have afitdes intelligence and will figure out
the highest bit rate they can safely use. You can also usepeiste APs with IGMP (Internet Group
Management Protocol) support and @MQ’s PGM transport td seify to subscribed clients. I'd not,
however, bet on such APs being widely available, ever.

As you try to put more devices onto an AP, performance rapjédlg worse to the point where adding
one more device can break the whole network for everyoneyMa&s solve this by randomly
disconnecting clients when they reach some limit, such astibeight devices for a mobile hotspot,
30-50 devices for a consumer AP, perhaps 100 devices fortarpeise AP.

8.2.3. What's the Current Status?

Despite its uncomfortable role as enterprise technologlysbmehow escaped into the wild, WiFi is
already useful for more than getting a free Skype call. lbsideal, but it works well enough to let us
solve some interesting problems. Let me give you a rapidstatport.

First, point-to-point versus access point-to-client.ditianal WiFi is all AP-client. Every packet has to
go from client A to AP, then to client B. You cut your bandwiditi 50%, but that’s only half the
problem. | explained about the inverse power law. If A and 8\ary close together, but both are far
from the AP, they’ll both be using a low bit rate. Imagine y@R is in the garage, and you're in the
living room trying to stream video from your phone to your T&bod luck!

There is an old "ad-hoc" mode that lets A and B talk to eachrpthg it's way too slow for anything fun,
and of course, it's disabled on all mobile chipsets. Aciyéfs disabled in the top secret drivers that the
chipset makers kindly provide to hardware makers. Therensmarunneled Direct Link Setu@DLS)
protocol that lets two devices create a direct link, using\Brfor discovery but not for traffic. And
there’s a "5G" WiFi standard (it's a marketing term, so it ggequotes) that boosts link speeds to a
gigabit. TDLS and 5G together make HD movie streaming fromryshone to your TV a plausible
reality. | assume TDLS will be restricted in various ways sd@placate the telcos.

394

Chapter 8. A Framework for Distributed Computing

Lastly, we saw standardization of the 802.11s mesh proto@d12, after a remarkably speedy ten years
or so of work. Mesh removes the access point completelyaat la the imaginary future where it exists
and is widely used. Devices talk to each other directly, aathtain little routing tables of neighbors that
let them forward packets. Imagine the AP software embeduedevery device, but smart enough (it's
not as impressive as it sounds) to do multiple hops.

No one who is making money from the mobile data extortion eagkants to see 802.11s available
because city-wide mesh is such a nightmare for the bottoan dio it's happening as slowly as possible.
The only large organization with the power (and, | assumestiteace-to-surface missiles) to get mesh
technology into wide use is the US Army. But mesh will emenge Ed bet on 802.11s being widely
available in consumer electronics by 2020 or so.

Second, if we don't have point-to-point, how far can we tiuBs today? Well, if you go to a Starbucks
in the US and try the @MQ "Hello World" example using two lgmaonnected via the free WiFi, you'll
find they cannot connect. Why? Well, the answer is in the ndatewvifi". AT&T is a good old incumbent
telco that hates WiFi and presumably provides the servieajgly to Starbucks and others so that
independents can't get into the market. But any access poinbuy will support client-to-AP-to-client
access, and outside the US I've never found a public AP lockeeh the AT&T way.

Third, performance. The AP is clearly a bottleneck; you camyet better than half of its advertised
speed even if you put A and B literally beside the AP. Worsthéfe are other APs in the same airspace,
they’ll shout each other out. In my home, WiFi barely worksihbecause the neighbors two houses
down have an AP which they've amplified. Even on a differerrstel, it interferes with our home WiFi.
In the cafe where I'm sitting now there are over a dozen nekaidRealistically, as long as we're
dependent on AP-based WiFi, we're subject to random intenfee and unpredictable performance.

Fourth, battery life. There’s no inherent reason that WiFien idle, is hungrier than Bluetooth, for
example. They use the same radios and low-level framingnTdia difference is tuning and in the
protocols. For wireless power-saving to work well, devibase to mostly sleep and beacon out to other
devices only once every so often. For this to work, they neesyhchronize their clocks. This happens
properly for the mobile phone part, which is why my old flip pleacan run five days on a charge. When
WiFi is working, it will use more power. Current power amiftechnology is also inefficient, meaning
you draw a lot more energy from your battery than you pumpinéoair (the waste turns into a hot
phone). Power amplifiers are improving as people focus moraabile WiFi.

Lastly, mobile access points. If we can't trust centrali2éts, and if our devices are smart enough to run
full operating systems, can’t we make them work as APs?skingladyou asked that question. Yes, we
can, and it works quite nicely. Especially because you cattkuhis on and off in software, on a

modern OS like Android. Again, the villains of the peace &eWS telcos, who mostly detest this
feature and kill it or cripple it on the phones they controha&ter telcos realize that it's a way to amplify
their "last mile" and bring higher-value products to morergsbut crooks don't compete on smarts.

395

Chapter 8. A Framework for Distributed Computing

8.2.4. Conclusions

WiFi is not Ethernet and although | believe future @MQ apgiicns will have a very important
decentralized wireless presence, it's not going to be anreasl. Much of the basic reliability and
capacity that you expect from Ethernet is missing. When ymer distributed application over WiFi,

you must allow for frequent timeouts, random latenciesitiaty disconnections, whole interfaces going
down and coming up, and so on.

The technological evolution of wireless networking is lskstcribed as "slow and joyless". Applications
and frameworks that try to exploit decentralized wirelagsmaostly absent or poor. The only existing
open source framework for proximity networking is AllJoyritps://www.alljoyn.org) from Qualcomm.
But with IMQ, we proved that the inertia and decrepit incotepee of existing players was no reason
for us to sit still. When we accurately understand problemgscan solve them. What we imagine, we
can make real.

8.3. Discovery

Discovery is an essential part of network programming andst&dlass problem for @MQ developers.
Everyzmg_connect () call provides an endpoint string, and that has to come frames¢dhere. The
examples we've seen so far don’t do discovery: the endptiietsconnect to are hard-coded as strings in
the code. While this is fine for example code, it's not idealr&al applications. Networks don’t behave
that nicely. Things change, and it's how well we handle clegthgt defines our long-term success.

8.3.1. Service Discovery

Let’s start with definitions. Network discovery is findingtauhat other peers are on the network.
Service discovery is learning what those peers can do falildpedia defines a "network service" as "a
service that is hosted on a computer network”, and "seréséa set of related software functionalities
that can be reused for different purposes, together witipdiieies that should control its usage”. It's not
very helpful. Is Facebook a network service?

In fact the concept of "network service" has changed oveg tiflne number of moving pieces keeps
doubling every 18-24 months, breaking old conceptual modet! pushing for ever simpler, more
scalable ones. A service is, for me, a system-level apmicdihat other programs can talk to. A network
service is one accessible remotely (as compared to, eed'gtep" command, which is a command-line
service).

In the classic BSD socket model, a service maps 1-to-1 toveankiport. A computer system offers a
number of services like "FTP", and "HTTP", each with assiyperts. The BSD API has functions like
getservbyname to map a service name to a port number. So a classic service tmametwork
endpoint: if you know a server’s IP address and then you cantBr=TP service, if that is running.

396

Chapter 8. A Framework for Distributed Computing

In modern messaging, however, services don’t map 1-to-hdp@nts. One endpoint can lead to many
services, and services can move around over time, betwets) poeven between systems. Where is my
cloud storage today? In a realistic large distributed @pgithn, therefore, we need some kind of service
discovery mechanism.

There are many ways to do this and | won't try to provide an eghige list. However there are a few
classic patterns:

« We can force the old 1-to-1 mapping from endpoint to senaoel, simply state up-front that a certain
TCP port number represents a certain service. Our protbealshould let us check this ("Are the first
4 bytes of the request 'HTTP’?").

« We can bootstrap one service off another; connecting to bkmelvn endpoint and service, asking for
the "real" service, and getting an endpoint back in retuhis gives us a service lookup service. If the
lookup service allows it, services can then move aroundras s they update their location.

- We can proxy one service through another, so that a well-krevdpoint and service will provide
other services indirectly (i.e. by forwarding messagesawrt). This is for instance how our
Majordomo service-oriented broker works.

- We can exchange lists of known services and endpoints, faaitge over time, using a gossip
approach or a centralized approach (like the Clone patftsorthat each node in a distributed network
can build-up an eventually consistent map of the whole ngtwo

- We can create further abstract layers in between netwonga@nts and services, e.g. assigning each
node a unique identifier, so we get a "network of nodes" whack @ode may offer some services,
and may appear on random network endpoints.

- We can discover services opportunistically, e.g. by cotingto endpoints and then asking them what
services they offer. "Hi, do you offer a shared printer? Ifsbat’s the maker and model?"

There’s no "right answer". The range of options is huge, drahges over time as the scale of our
networks grows. In some networks the knowledge of what sesviun where can literally become
political power. MQ imposes no specific model but makessyeda design and build the ones that suit
us best. However, to build service discovery, we must stasaiving network discovery.

8.3.2. Network Discovery

Here is a list of the solutions | know for network discovery:

- Use hard-coded endpoint stringse., fixed IP addresses and agreed ports. This workedemiak
networks a decade ago when there were a few "big servershagdvere so important they got static
IP addresses. These days however it's no use except in easmplor in-process work (threads are
the new Big Iron). You can make it hurt a little less by using®blt this is still painful for anyone
who’s not also doing system administration as a side-job.

« Get endpoint strings from configuration fil&his shoves name resolution into user space, which hurts
less than DNS but that’s like saying a punch in the face hass than a kick in the groin. You now get
a non-trivial management problem. Who updates the configurfiles, and when? Where do they
live? Do we install a distributed management tool like S#dick?

397

Chapter 8. A Framework for Distributed Computing

« Use a message brokeYou still need a hard-coded or configured endpoint stringptanect to the
broker, but this approach reduces the number of differedipeimts in the network to one. That makes
a real impact, and broker-based networks do scale nicelyeMer, brokers are single points of failure,
and they bring their own set of worries about management arfdfmance.

- Use an addressing brokeln other words use a central service to mediate addressniatmon (like a
dynamic DNS setup) but allow nodes to send each other mesdagetly. It's a good model but still
creates a point of failure and management costs.

- Use helper libraries, like ZeroConthat provide DNS services without any centralized infiasture.
It's a good answer for certain applications but your mileagevary. Helper libraries aren’t zero cost:
they make it more complex to build the software, they have then restrictions, and they aren’t
necessarily portable.

- Build system-level discoveby sending out ARP or ICMP ECHO packets and then queryingyever
node that responds. You can query through a TCP connectipexémple, or by sending UDP
messages. Some products do this, like the Eye-Fi wireleds ca

- Do user-level brute-force discoveby trying to connect to every single address in the network
segment. You can do this trivially in @MQ since it handlesmections in the background. You don't
even need multiple threads. It's brutal but fun, and worky veell in demos and workshops. However
it doesn’t scale, and annoys decent-thinking engineers.

- Roll your own UDP-based discovery protochbts of people do this (I counted about 80 questions on
this topic on StackOverflow). UDP works well for this and téxhnically clear. But it's technically
tricky to get right, to the point where any developer doinig the first few times will get it
dramatically wrong.

- Gossip discovery protocals fully-interconnected network is quite effective for siieanumbers of
nodes (say, up to 100 or 200). For large numbers of nodes, agswame kind of gossip protocol. That
is, where the nodes we can reasonable discover (say, onrtfeessggment as us), tell us about nodes
that are further away. Gossip protocols go beyond what wd tiesse days with @MQ, but will likely
be more common in the future. One example of a wide-areaossilel is mesh networking.

8.3.3. The Use Case

Let's define our use case more explicitly. After all, all taelfferent approaches have worked and still
work to some extent. What interests me as architect is thedpand finding designs that can continue to
work for more than a few years. This means identifying lomrgiterends. Our use case isn't here and
now, it’s ten or twenty years from today.

Here are the long term trends | see in distributed applinatio

- The overall number of moving pieces keeps increadihgestimate is that it doubles every 24 months,
but how fast it increases matters less than the fact that eje &dding more and more nodes to our
networks. They're not just boxes but also processes anddbrdhe driver here is cost, which keeps
falling (http://cultureandempire.com/). In a decade,dkierage teenager will carry 30-50 devices, all
the time.

398

Chapter 8. A Framework for Distributed Computing

- Control shifts away from the centdPossibly data too, though we're still far from understagdiow
to build simple decentralized information stores. In angecdhe star topology is slowly dying and
being replaced by clouds of clouds. In the future there’agod be much more traffic within a local
environment (home, office, school, bar) than between remades and the center. The maths here are
simple: remote communications cost more, run more slowtiyaae less natural than close-range
communications. It's more accurate both technically aruiledly to share a holiday video with your
friend over local WiFi than via Facebook.

- Networks are increasingly collaborative, less controll&tiis means people bringing their own
devices and expecting them to work seamlessly. The Web shomeway to make this work but we're
reaching the limits of what the Web can do, as we start to ekttemaverage of one device per person.

- The cost of connecting a new node to a network must fall ptapwlly, if the network is to scale.
This means reducing the amount of configuration a node néexispre-shared state, less context.
Again, the Web solved this problem but at the cost of cemaéibn. We want the same plug and play
experience but without a central agency.

In a world of trillions of nodes, the ones you talk to most dre énes closest to you. This is how it works
in the real world and it's the sanest way of scaling largdesaechitectures. Groups of nodes, logically or
physically close, connected by bridges to other groups dérsoA local group will be anything from
half-a-dozen nodes to a few thousand nodes.

So we have two basic use cases:

- Discovery for proximity networks, that is, a set of nodes that find themselves close to each dike
can define "close to each other" as being "on the same netegrkent”. It's not going to be true in
all cases but it’s true enough to be a useful place to start.

- Discovery across wide area networkghat is, bridging of proximity networks together. We
sometimes call this "federation”. There are many ways teedeifation but it's complex and something
to cover elsewhere. For now, let's assume we do federatiog ascentralized broker or service.

So we are left with the problem of proximity networking. | waa just plug things into the network and
have them talking to each other. Whether they're tabletssichaol or a bunch of servers in a cloud, the
less upfront agreement and coordination, the cheapertdsdle. So configuration files and brokers and
any kind of centralized service are all out.

| also want to allow any number of applications on a box, batause that's how the real world works
(people download apps), and so that | can simulate largeankévon my laptop. Upfront simulation is
the only way | know to be sure a system will work when it's loddle real-life. You'd be surprised how
engineers just hope things will work. "Oh, I'm sure that lgedwill stay up when we open it to traffic". If
you haven'’t simulated and fixed the three most likely faiftaey’ll still be there on opening day.

Running multiple instances of a service on the same machiideut upfront coordination - means we
have to use ephemeral ports, i.e., ports assigned randonggifvices. Ephemeral ports rule out
brute-force TCP discovery and any DNS solution includingazonf.

399

Chapter 8. A Framework for Distributed Computing

Finally, discovery has to happen in user space because fisersgire building will be running on
random boxes that we do not necessarily own and control.>@&mple, other people’s mobile devices.
So any discovery that needs root permissions is excludad rliles out ARP and ICMP and once again
ZeroConf since that also needs root permissions for thecgeparts.

8.3.4. Technical Requirements

Let's recap the requirements:

The simplest possible solution that wark&ere are so many edge cases in ad-hoc networks that every
extra feature or functionality becomes a risk.

Supports ephemeral portso that we can run realistic simulations. If the only wayest is to use real
devices, it becomes impossibly expensive and slow to rus.tes

No root access needeil must run 100% in user space. We want to ship fully-paclaggplications
onto devices like mobile phones that we don’t own and wheoéaocess isn’t available.

Invisible to system administratqrso we do not need their help to run our applications. Whateve
technique we use should be friendly to the network and availay default.

Zero configuratiorapart from installing the applications themselves. Askimgusers to do any
configuration is giving them an excuse to not use the apdicst

Fully portableto all modern operating systems. We can’t assume we’ll beingon any specific OS.
We can’'t assume any support from the operating system estapdard user-space networking. We
can assume FMQ and CZMQ are available.

Friendly to WiFi networksvith up to 100-150 participants. This means keeping messaigall and
being aware of how WiFi networks scale and how they break upiessure.

Protocol-neutrali.e., our beaconing should not impose any specific disggwetocol. I'll explain
what this means a little later.

Easy to re-implement in any given languagere, we have a nice C implementation, but if it takes too
long to re-implement in another language, that excludeglahunks of the @MQ community. So,
again, simple.

Fast response timdy this, | mean a new node should be visible to its peers imasieort time, a
second or two at most. Networks change shape rapidly. It's@tske longer, even 30 seconds, to
realize a peer has disappeared.

From the list of possible solutions | collected, the onlyiopthat isn't disqualified for one or more
reasons is to build our own UDP-based discovery stack. litt@disappointing that after so many
decades of research into network discovery, this is wherengleup. But the history of computing does
seem to go from complex to simple, so maybe it's normal.

400

Chapter 8. A Framework for Distributed Computing

8.3.5. A Self-Healing P2P Network in 30 Seconds

I mentioned brute-force discovery. Let’s see how that woEkse nice thing about software is to
brute-force your way through the learning experience. Aglas we're happy to throw away work, we
can learn rapidly simply by trying things that may seem irsttom the safety of the armchair.

I'll explain a brute-force discovery approach for @MQ thaterged from a workshop in 2012. It is
remarkably simple and stupid: connect to every IP addrefginoom. If your network segment is
192.168.55.x, for instance, you do this:

connect to tcp://192.168.55.1:9000
connect to tcp://192.168.55.2:9000
connect to tcp://192.168.55.3:9000

connect to tcp://192.168.55.254:9000

Which in @MQ-speak looks like this:

int address;
for (address = 1; address < 255; address++)
zsocket_connect (listener, "tcp://192.168.55.%d:9000" , address);

The stupid part is where we assume that connecting to owse&l\fine, where we assume that all peers
are on the same network segment, where we waste file handfdbegwere free. Luckily these
assumptions are often totally accurate. At least, ofteughdo let us do fun things.

The loop works because @MQ connect callsasgnchronous and opportunistithey lie in the
shadows like hungry cats, waiting patiently to pounce oniangcent mouse that dared start up a service
on port 9000. It's simple, effective, and worked first time.

It gets better: as peers leave and join the network, theytbmatically reconnect. We've designed a
self-healing peer to peer network, in 30 seconds and thmes bf code.

It won't work for real cases though. Poorer operating systéand to run out of file handles, and
networks tend to be more complex than one segment. And if ode squats a couple of hundred file
handles, large-scale simulations (with many nodes on or@bim one process) are out of the question.

Still, let's see how far we can go with this approach beforehwvew it out. Here’s a tiny decentralized
chat program that lets you talk to anyone else on the samenesggment. The code has two threads: a
listener and a broadcaster. The listener creates a SUBtsmutteloes the brute-force connection to all
peers in the network. The broadcaster accepts input frorodhsole and sends it on a PUB socket:

Example 8-1. Decentralized Chat (dechat.py)

Decentralized chat example™™

401

Chapter 8. A Framework for Distributed Computing

import argparse
import os
from threading import Thread

from netifaces import interfaces, ifaddresses, AF_INET # d
import zmq

def listen(masked):
""listen for messages

masked is the first three parts of an IP address:
192.168.1

The socket will connect to all of X.Y.Z.{1-254}.

ctx = zmg.Context.instance()

listener = ctx.socket(zmqg.SUB)

for last in range(1, 255):
listener.connect("tcp://{0}.{1}:9000".format(masked

listener.setsockopt(zmq.SUBSCRIBE, b”)
while True:
try:
print(listener.recv_string())

except (Keyboardinterrupt, zmg.ContextTerminated):

break

def main():

parser = argparse.ArgumentParser()

parser.add_argument(“interface”, type=str, help="the n
choices=interfaces(),

)

parser.add_argument("user”, type=str, default=o0s.envi
nargs='?",
help="Your username",

)

args = parser.parse_args()

inet = ifaddresses(args.interface)[AF_INET]

addr = inet[O]['addr]

masked = addr.rsplit(’.’, 1)[0]

ctx = zmg.Context.instance()

listen_thread = Thread(target=listen, args=(masked,))
listen_thread.start()

bcast = ctx.socket(zmq.PUB)
bcast.bind("tcp://%s:9000" % args.interface)

ependency, not in stdlib

, last))

etwork interface",

ron[USER’],

print("starting chat on %s:9000 (%s. *)" % (args.interface, masked))

while True:

402

Chapter 8. A Framework for Distributed Computing

try:
msg = raw_input()
bcast.send_string("%s: %s" % (args.user, msg))
except KeyboardInterrupt:
break
bcast.close(linger=0)
ctx.term()

if __name__ =="'_ _main__"
main()

Thedechat program needs to know the current IP address, the intedackan alias. We could get
these in code from the operating system, but that's grunkypartable code. So we provide this
information on the command line:

dechat 192.168.55.122 ethO Joe

8.3.6. Preemptive Discovery over Raw Sockets

One of the great things about short-range wireless is tharmity. WiFi maps closely to the physical
space, which maps closely to how we naturally organize.dt) fae Internet is quite abstract and this
confuses a lot of people who kind of "get it" but in fact dor@afly. With WiFi, we have technical
connectivity that is potentially super-tangible. You sdetwou get and you get what you see. Tangible
means easy to understand and that should mean love frominsiead of the typical frustration and
seething hatred.

Proximity is the key. We have a bunch of WiFi radios in a rooappily beaconing to each other. For lots
of applications, it makes sense that they can find each otfiestart chatting without any user input.
After all, most real world data isn't private, it’s just hiyHocalized.

I'm in a hotel room in Gangnam, Seoul, with a 4G wireless hotsp Linux laptop, and an couple of
Android phones. The phones and laptop are talking to thebtt$heifconfiy command says my IP
address is 192.168.1.2. Let me try sopiegy commands. DHCP servers tend to dish out addresses in
sequence, so my phones are probably close by, numericalhksmm:

$ ping 192.168.1.1

PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.

64 bytes from 192.168.1.1: icmp_req=1 ttl=64 time=376 ms

64 bytes from 192.168.1.1: icmp_req=2 ttl=64 time=358 ms

64 bytes from 192.168.1.1: icmp_req=4 ttl=64 time=167 ms

"C

--- 192.168.1.1 ping statistics ---

3 packets transmitted, 2 received, 33% packet loss, time 200 ims
rtt min/avg/max/mdev = 358.077/367.522/376.967/9.445 ms

403

Chapter 8. A Framework for Distributed Computing

Found one! 150-300 msec round-trip latency... that’s arsingly high figure, something to keep in
mind for later. Now | ping myself, just to try to double-chetings:

$ ping 192.168.1.2

PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data.

64 bytes from 192.168.1.2: icmp_req=1 ttl=64 time=0.054 ms

64 bytes from 192.168.1.2: icmp_req=2 ttl=64 time=0.055 ms

64 bytes from 192.168.1.2: icmp_req=3 ttl=64 time=0.061 ms

~C

--- 192.168.1.2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 1998 ms
rtt min/avg/max/mdev = 0.054/0.056/0.061/0.009 ms

The response time is a bit faster now, which is what we'd eipet’s try the next couple of addresses:

$ ping 192.168.1.3

PING 192.168.1.3 (192.168.1.3) 56(84) bytes of data.

64 bytes from 192.168.1.3: icmp_req=1 ttI=64 time=291 ms

64 bytes from 192.168.1.3: icmp_req=2 ttl=64 time=271 ms

64 bytes from 192.168.1.3: icmp_req=3 ttI=64 time=132 ms

"C

--- 192.168.1.3 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2001 ms
rtt min/avg/max/mdev = 132.781/231.914/291.851/70.609 m S

That's the second phone, with the same kind of latency asrgteofie. Let’s continue and see if there are
any other devices connected to the hotspot:

$ ping 192.168.1.4

PING 192.168.1.4 (192.168.1.4) 56(84) bytes of data.

"C

--- 192.168.1.4 ping statistics ---

3 packets transmitted, 0 received, 100% packet loss, time 20 16ms

And that is it. Now,ping uses raw IP sockets to sef@MP_ECHQOmessages. The useful thing about
ICMP_ECHQs that it gets a response from any IP stack that has not datiddg had echo switched off.
That's still a common practice on corporate websites whotfeaold "ping of death” exploit where
malformed messages could crash the machine.

| call this preemptive discoveryecause it doesn’t take any cooperation from the device.ah& ckly on
any cooperation from the phones to see them sitting thetengsas they’re not actively ignoring us, we
can see them.

You might ask why this is useful. We don’t know that the peesponding taCMP_ECHQun @MQ,

that they are interested in talking to us, that they have anyices we can use, or even what kind of
device they are. However, knowing that themnethingn address 192.168.1.3 is already useful. We
also know how far away the device is, relatively, we know homnypndevices are on the network, and we
know the rough state of the network (as in, good, poor, oittie):.

404

Chapter 8. A Framework for Distributed Computing

It isn’t even hard to create€MP_ECHQOmMessages and send them. A few dozen lines of code, and we
could use IMQ multithreading to do this in parallel for adses stretching out above and below our
own IP address. Could be kind of fun.

However, sadly, there’s a fatal flaw in my idea of usiatylP_ECHQo discover devices. To open a raw IP
socket requires root privileges on a POSIX box. It stops eqgograms getting data meant for others.
We can get the power to open raw sockets on Linux by giving guddeges to our command (ping has
the so-calledsticky bitset). On a mobile OS like Android, it requires root access, iooting the phone
or tablet. That's out of the question for most people antCstP_ECHAQs out of reach for most devices.

Expletive deletedLet’s try something in user space. The next step most peakéeis UDP multicast or
broadcast. Let’s follow that trail.

8.3.7. Cooperative Discovery Using UDP Broadcasts

Multicast tends to be seen as more modern and "better" tfmdbast. In IPv6, broadcast doesn’t work
at all: you must always use multicast. Nonetheless, all IBedl network discovery protocols end up
using UDP broadcast anyhow. The reasons: broadcast andastignd up working much the same,
except broadcast is simpler and less risky. Multicast ia $genetwork admins as kind of dangerous, as
it can leak over network segments.

If you've never used UDP, you'll discover it's quite a niceopcol. In some ways, it reminds us of

@MQ, sending whole messages to peers using a two differéierps: one-to-one, and one-to-many. The
main problems with UDP are that (a) the POSIX socket API wasgieed for universal flexibility, not
simplicity, (b) UDP messages are limited for practical ppggs to about 1,500 bytes on LANs and 512
bytes on the Internet, and (c) when you start to use UDP fodiega, you find that messages get
dropped, especially as infrastructure tends to favor TG#? bDP.

Here is a minimal ping program that uses UDP instealbfP_ECHO

Example 8-2. UDP discovery, model 1 (udppingl.py)

UDP ping command
Model 1

H* B H H

import os
import socket
import sys
import time

import zmq

#include <czmg.h>
PING_PORT_NUMBER = 9999

405

Chapter 8. A Framework for Distributed Computing

PING_MSG_SIZE =1
PING_INTERVAL = 1 # Once per second

def main():

Create UDP socket
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM , socket.IPPROTO_UDP)

Ask operating system to let us do broadcasts from socket
sock.setsockopt(socket. SOL_SOCKET, socket.SO_BROADCA ST, 1)

Bind UDP socket to local port so we can receive pings
sock.bind((’, PING_PORT_NUMBER))

.split main ping loop

We use zmq_poll to wait for activity on the UDP socket, since

this function works on non-OMQ file handles. We send a beaco n
once a second, and we collect and report beacons that come in

from other nodes:

poller = zmgq.Poller()
poller.register(sock, zmg.POLLIN)

Send first ping right away
ping_at = time.time()

while True:
timeout = ping_at - time.time()
if timeout < O:
timeout = 0
try:
events = dict(poller.poll(1000 * timeout))
except KeyboardInterrupt:
print("interrupted")
break

Someone answered our ping

if sock.fileno() in events:
msg, addrinfo = sock.recvfrom(PING_MSG_SIZE)
print "Found peer %s:%d" % addrinfo

if time.time() >= ping_at:
Broadcast our beacon
print ("Pinging peers...")
sock.sendto(b’’’, 0, ("255.255.255.255", PING_PORT_NUM BER))
ping_at = time.time() + PING_INTERVAL
if __name__ =="'_ _main__"
main()

This code uses a single socket to broadcast 1-byte messadjescaive anything that other nodes are
broadcasting. When | run it, it shows just one node, whiclsilf:

406

Chapter 8. A Framework for Distributed Computing

Pinging peers...
Found peer 192.168.1.2:9999
Pinging peers...
Found peer 192.168.1.2:9999

If I switch off all networking and try again, sending a messé#ajls, as I'd expect:

Pinging peers...
sendto: Network is unreachable

Working on the basis cfolve the problems currently aiming at your throlet’s fix the most urgent
issues in this first model. These issues are:

- Using the 255.255.255.255 broadcast address is a bit daiiiuthe one hand, this broadcast address
means precisely "send to all nodes on the local network, and tbrward". However, if you have
several interfaces (wired Ethernet, WiFi) then broadoastgo out on your default route only, and
via just one interface. What we want to do is either send ooadbcast on each interface’s broadcast
address, or find the WiFi interface and its broadcast address

- Like many aspects of socket programming, getting inforaratin network interfaces is not portable.
Do we want to write nonportable code in our applications?tNig,is better hidden in a library.

- There’s no handling for errors except "abort", which is tootal for transient problems like "your
WiFi is switched off". The code should distinguish betweeft srrors (ignore and retry) and hard
errors (assert).

- The code needs to know its own IP address and ignore beaarisghnt out. Like finding the
broadcast address, this requires inspecting the availatieléaces.

The simplest answer to these issues is to push the UDP cada s¶te library that provides a clean
API, like this:

/I Constructor
static udp_t *
udp_new (int port_nbr);

/I Destructor
static void
udp_destroy (udp_t ** self_p);

/I Returns UDP socket handle
static int
udp_handle (udp_t * self);

/I Send message using UDP broadcast
static void
udp_send (udp_t =*self, byte * puffer, size_t length);

/I Receive message from UDP broadcast

static ssize t
udp_recv (udp_t +self, byte * puffer, size_t length);

407

Chapter 8. A Framework for Distributed Computing
Here is the refactored UDP ping program that calls this tijgrahich is much cleaner and nicer:

Example 8-3. UDP discovery, model 2 (udpping2.py)

UDP ping command
Model 2

H* H H R

import os
import sys
import time

import zmq
from udplib import UDP

#include <czmg.h>
PING_PORT_NUMBER = 9999

PING_MSG_SIZE =1
PING_INTERVAL = 1 # Once per second
def main():

udp = UDP(PING_PORT NUMBER)

poller = zmgq.Poller()
poller.register(udp.handle, zmg.POLLIN)

Send first ping right away
ping_at = time.time()

while True:
timeout = ping_at - time.time()
if timeout < O:
timeout = 0
try:
events = dict(poller.poll(1000 * timeout))
except KeyboardInterrupt:
print("interrupted")
break

Someone answered our ping
if udp.handle.fileno() in events:
udp.recv(PING_MSG_SIZE)

if time.time() >= ping_at:
Broadcast our beacon
print ("Pinging peers...")
udp.send(’!")
ping_at = time.time() + PING_INTERVAL

if _name__ =="'_main__"
main()

408

Chapter 8. A Framework for Distributed Computing

The library,udplib , hides a lot of the unpleasant code (which will become uglgawe make this work
on more systems). I'm not going to print that code here. Yauread it in the repository
(https://github.com/imatix/zguide/blob/master/exdesfC/udplib.c).

Now, there are more problems sizing us up and wonderingyf¢h@ make lunch out of us. First, IPv4
versus IPv6 and multicast versus broadcast. In IPv6, bestdioesn’t exist at all; one uses multicast.
From my experience with WiFi, IPv4 multicast and broadcastiwidentically except that multicast
breaks in some situations where broadcast works fine. Socesspoints do not forward multicast
packets. When you have a device (e.g., a tablet) that actmabide AP, then it's possible it won't get
multicast packets. Meaning, it won't see other peers on éteark.

The simplest plausible solution is simply to ignore IPv6iiorv, and use broadcast. A perhaps smarter
solution would be to use multicast and deal with asymmeacons if they happen.

We'll stick with stupid and simple for now. There’s alwaymg to make it more complex.

8.3.8. Multiple Nodes on One Device

So we can discover nodes on the WiFi network, as long as #heginding out beacons as we expect. So |
try to test with two processes. But when | run udpping?2 twibe,second instance complains ""Address
already in use’ on bind" and exits. Oh, right. UDP and TCP lvethirn an error if you try to bind two
different sockets to the same port. This is right. The seiogaof two readers on one socket would be
weird to say the least. Odd/even bytes? You get all the 14,dlf#he 0's?

However, a quick check of stackoverflow.com and some memfaaysocket option called
SO_REUSEADDRrns up gold. If | use that, | can bind several processesgsdéme UDP port, and they
will all receive any message arriving on that port. It's anas if the guys who designed this were
reading my mind! (That's way more plausible than the chahaeltmay be reinventing the wheel.)

A quick test shows the80_REUSEADDROrks as promised. This is great because the next thing | twant
do is design an API and then start dozens of nodes to see tiseovdring each other. It would be really
cumbersome to have to test each node on a separate devicesh®ndve get to testing how real traffic
behaves on a large, flaky network, the two alternatives amalation or temporary insanity.

And | speak from experience: we were, this summer, testingozens of devices at once. It takes about
an hour to set up a full test run, and you need a space shialol@d¥iFi interference if you want any
kind of reproducibility (unless your test case is "provetingerference kills WiFi networks faster than
Orval can kill a thirst".

If I were a whiz Android developer with a free weekend, I'd imdiately (as in, it would take me two
days) port this code to my phone and get it sending beacong ®GnBut sometimes lazy is more
profitable. llike my Linux laptop. | like being able to start a dozen threadsifane process, and have

409

Chapter 8. A Framework for Distributed Computing

each thread acting like an independent node. | like not lgaidinvork in a real Faraday cage when | can
simulate one on my laptop.

8.3.9. Designing the API

I’'m going to run N nodes on a device, and they are going to hadéscover each other, as well as a
bunch of other nodes out there on the local network. | can e fdr local discovery as well as remote
discovery. It's arguably not as efficient as using, e.g.@WQ inproc:// transport, but it has the great
advantage that the exact same code will work in simulati@hiameal deployment.

If I have multiple nodes on one device, we clearly can’t ugelthaddress and port number as node
address. | need some logical node identifier. Arguably, triendentifier only has to be unique within
the context of the device. My mind fills with complex stuff Ildd make, like supernodes that sit on real
UDP ports and forward messages to internal nodes. | hit mgt badhe table until the idea afventing
new conceptkeaves it.

Experience tells us that WiFi does things like disappearaagdpear while applications are running.
Users click on things, which does interesting things likarae the IP address halfway through a
session. We cannot depend on IP addresses, nor on estdhd@ieections (in the TCP fashion). We
need some long-lasting addressing mechanism that suimiegtaces and connections being torn down
and then recreated.

Here’s the simplest solution | can see: we give every node BDJahd specify that nodes, represented
by their UUIDs, can appear or reappear at certain IP adgr@s®ndpoints, and then disappear again.
We'll deal with recovery from lost messages later. A UUID &Hytes. So if | have 100 nodes on a WiFi
network, that's (double it for other random stuff) 3,200dw/a second of beacon data that the air has to
carry just for discovery and presence. Seems acceptable.

Back to concepts. We do need some names for our API. At theveaseed a way to distinguish
between the node object that is "us", and node objects thatwarpeers. We'll be doing things like
creating an "us" and then asking it how many peers it knowsitedred who they are. The term "peer” is
clear enough.

From the developer point of view, a node (the applicatio®dsea way to talk to the outside world. Let’s
borrow a term from networking and call this an "interfacetielinterface represents us to the rest of the
world and presents the rest of the world to us, as a set of ptmrs. It automatically does whatever
discovery it must. When we want to talk to a peer, we get theriate to do that for us. And when a peer
talks to us, it's the interface that delivers us the message.

This seems like a clean API design. How about the internals?

- The interface must be multithreaded so that one thread c#®dn the background, while the
foreground API talks to the application. We used this desighe Clone and Freelance client APIs.

410

Chapter 8. A Framework for Distributed Computing

- The interface background thread does the discovery bissibe=l to the UDP port, send out UDP
beacons, and receive beacons.

+ We need to at least send UUIDs in the beacon message so thatwvadéstinguish our own beacons
from those of our peers.

- We need to track peers that appear, and that disappear.igdiithise a hash table that stores all
known peers and expire peers after some timeout.

- We need a way to report peers and events to the caller. Heretwetg a juicy question. How does a
background 1/O thread tell a foreground API thread thatf ssuiappening? Callbacks maybid@ck
no.We’'ll use MQ messages, of course.

The third iteration of the UDP ping program is even simpled arore beautiful than the second. The
main body, in C, is just ten lines of code.

Example 8-4. UDP discovery, model 3 (udpping3.py)

UDP ping command
Model 3, uses abstract network interface

from interface import Interface

def main():
interface = Interface()
while True:
try:
print(interface.recv())
except KeyboardInterrupt:
print("interrupted")
break
interface.stop()
if _name__ =="'_ _main__"
main(

The interface code should be familiar if you've studied hoesmwake multithreaded API classes:

Example 8-5. UDP ping interface (interface.py)

Interface class for Chapter on Distributed Computing

This implements an “interface" to our network of nodes

import time
import uuid
from threading import Thread

import zmq
from zmgq.eventloop.ioloop import 10Loop, PeriodicCallba ck

411

Chapter 8. A Framework for Distributed Computing
from zmgq.eventloop.zmqgstream import ZMQStream
import udplib

#
Synchronous part, works in our application thread

def pipe(ctx):
""create an inproc PAIR pipe""
a = ctx.socket(zmq.PAIR)
b = ctx.socket(zmqg.PAIR)
url = "inproc://%s" % uuid.uuid1()
a.bind(url)
b.connect(url)
return a, b

class Interface(object):
""Interface class.

Just starts a UDP ping agent in a background thread.™"
ctx = None # Our context
pipe = None # Pipe through to agent

def __init_ (self):
self.ctx = zmg.Context()
p0, pl = pipe(self.ctx)
self.agent = InterfaceAgent(self.ctx, pl)
self.agent_thread = Thread(target=self.agent.start)
self.pipe = pO

def stop(self):
self.pipe.close()
self.agent.stop()
self.ctx.term()

def recv(self):

""receive a message from our interface™"
return self.pipe.recv_multipart()

#
Asynchronous part, works in the background

PING_PORT_NUMBER = 9999

PING_INTERVAL = 1.0 # Once per second
PEER_EXPIRY = 5.0 # Five seconds and it's gone
UUID_BYTES = 32

class Peer(object):

uuid = None
expires_at = None

412

Chapter 8. A Framework for Distributed Computing

def __init_ (self, uuid):
self.uuid = uuid
self.is_alive()

def is_alive(self):
"""Reset the peers expiry time

Call this method whenever we get any activity from a peer.
self.expires_at = time.time() + PEER_EXPIRY
class InterfaceAgent(object):

""" This structure holds the context for our agent so we can
pass that around cleanly to methods that need it

ctx = None # ZMQ context

pipe = None # Pipe back to application

udp = None # UDP object

uuid = None # Our UUID as binary blob

peers = None # Hash of known peers, fast lookup

def __init_ (self, ctx, pipe, loop=None):
self.ctx = ctx
self.pipe = pipe
if loop is None:
loop = IOLoop.instance()
self.loop = loop
self.udp = udplib.UDP(PING_PORT_NUMBER)
self.uuid = uuid.uuid4().hex.encode('utf8’)
self.peers = {}

def stop(self):
self.pipe.close()

self.loop.stop()

def _ del_ (self):

try:

self.stop()
except:

pass

def start(self):
loop = self.loop
loop.add_handler(self.udp.handle.fileno(), self.hand le_beacon, loop.READ)
stream = ZMQStream(self.pipe, loop)
stream.on_recv(self.control_message)

pc = PeriodicCallback(self.send_ping, PING_INTERVAL * 1000, loop)
pc.start()
pc = PeriodicCallback(self.reap_peers, PING_INTERVAL * 1000, loop)
pc.start()

413

Chapter 8. A Framework for Distributed Computing
loop.start()

def send_ping(self, *a, ** kw):
try:
self.udp.send(self.uuid)
except Exception as e:
self.loop.stop()

def control_message(self, event):
""" Here we handle the different control messages from the fr ontend."™
print("control message: %s", msg)

def handle_beacon(self, fd, event):
uuid = self.udp.recv(UUID_BYTES)
if uuid in self.peers:
self.peers[uuid].is_alive()
else:
self.peers[uuid] = Peer(uuid)
self.pipe.send_multipart([b’JOINED’, uuid])

def reap_peers(self):
now = time.time()
for peer in list(self.peers.values()):
if peer.expires_at < now:
print("reaping %s" % peer.uuid, peer.expires_at, now)
self.peers.pop(peer.uuid)

When | run this in two windows, it reports one peer joining tiegwork. | kill that peer and a few
seconds later, it tells me the peer left:

[006] JOINED
[032] 418E98D4B7184844B7D5EOEE5691084C

[004] LEFT
[032] 418E98D4B7184844B7D5EOEE5691084C

What's nice about a @MQ-message based API is that | can wisipitly way | like. For instance, | can
turn it into callbacks if | really want those. | can also tradkactivity on the API very easily.

Some notes about tuning. On Ethernet, five seconds (theyekpe | used in this code) seems like a lot.
On a badly stressed WiFi network, you can get ping latendi8® seconds or more. If you use a
too-aggressive value for the expiry, you'll disconnectemthat are still there. On the other side, end
user applications expect a certain liveliness. If it takés&conds to report that a node has gone, users
will get annoyed.

A decent strategy is to detect and report disappeared nagilly, but only delete them after a longer
interval. Visually, a node would be green when it's alivegritgray for a while as it went out of reach,

414

Chapter 8. A Framework for Distributed Computing

then finally disappear. We're not doing this now, but will daithe real implementation of the
as-yet-unnamed framework we're making.

As we will also see later, we have to treat any input from a nadejust UDP beacons, as a sign of life.
UDP may get squashed when there’s a lot of TCP traffic. Thigiibggps the main reason we’re not using
an existing UDP discovery library: it's necessary to ingggrthis tightly with our @MQ messaging for it
to work.

8.3.10. More About UDP

So we have discovery and presence working over UDP IPv4 bessl It's not ideal, but it works for
the local networks we have today. However we can't use UDIefarwork, not without additional work
to make it reliable. There’s a joke about UDP but sometimeslyget it, and sometimes you won't.

We'll stick to TCP for all one-to-one messaging. There is or@e use case for UDP after discovery,
which is multicast file distribution. I'll explain why and g then shelve that for another day. The why is
simple: what we call "social networks" is just augmentedurel. We create culture by sharing, and this
means more and more sharing works that we make or remix. adouments, contracts, tweets. The
clouds of devices we're aiming towards do more of this, nsgle

Now, there are two principal patterns for sharing contemie @ the pub-sub pattern where one node
sends out content to a set of other nodes simultaneouslyn8es the "late joiner" pattern, where a node
arrives somewhat later and wants to catch up to the coni@nssle can deal with the late joiner using
TCP unicast. But doing TCP unicast to a group of clients asdme time has some disadvantages. First,
it can be slower than multicast. Second, it's unfair becaosee will get the content before others.

Before you jump off to design a UDP multicast protocol, realihat it's not a simple calculation. When
you send a multicast packet, the WiFi access point uses aitoaté to ensure that even the furthest
devices will get it safely. Most normal APs don’t do the ohywémptimization, which is to measure the
distance of the furthest device and use that bit rate. |dstbay just use a fixed value. So if you have a
few devices close to the AP, multicast will be insanely sIBut if you have a roomful of devices which
all want to get the next chapter of the textbook, multicastlzainsanely effective.

The curves cross at about 6-12 devices depending on the metwaheory, you could measure the
curves in real time and create an adaptive protocol. Thatdumeicool but probably too hard for even
the smartest of us.

If you do sit down and sketch out a UDP multicast protocollizeghat you need a channel for recovery,
to get lost packets. You'd probably want to do this over T&Ghg @MQ. For now, however, we'll forget
about multicast UDP and assume all traffic goes over TCP.

415

Chapter 8. A Framework for Distributed Computing

8.4. Spinning Off a Library Project

At this stage, however, the code is growing larger than amgkashould be, so it's time to create a
proper GitHub project. It's a rule: build your projects inkpig view, and tell people about them as you
go so your marketing and community building starts on Daylllwalk through what this involves. |
explained in The MQ CommuniGhapter Gabout growing communities around projects. We need a
few things:

+ Aname

- Aslogan

- A public github repository

« A README that links to the C4 process
« License files

+ Anissue tracker

« Two maintainers

« Afirst bootstrap version

The name and slogan first. The trademarks of the 21st cemteigoanain names. So the first thing | do
when spinning off a project is to look for a domain name thajhmivork. Quite randomly, one of our
old messaging projects was called "Zyre" and | have the domane for it. The full name is a
backronym: the ZeroMQ Realtime Exchange framework.

I’'m somewhat shy about pushing new projects into the @MQ camity too aggressively, and normally
would start a project in either my personal account or thetidarganization. But we've learned that
moving projects after they become popular is counterpridaidMy predictions of a future filled with
moving pieces are either valid or wrong. If this chapter ikdvave might as well launch this as a @MQ
project from the start. If it's wrong, we can delete the refuog later or let it sink to the bottom of a long
list of forgotten starts.

Start with the basics. The protocol (UDP and @MQ/TCP) wilARE (ZeroMQ Realtime Exchange
protocol) and the project will be Zyre. | need a second maietaso | invite my friend Dong Min (the
Korean hacker behind JeroMQ, a pure-Java @MQ stack) tolit@is been working on very similar ideas
so is enthusiastic. We discuss this and we get the idea aibgiZyre on top of JeroMQ, as well as on
top of CZMQ andibzmg . This would make it a lot easier to run Zyre on Android. It wibalso give us
two fully separate implementations from the start, whicalgays a good thing for a protocol.

So we take the FileMQ project | built in Advanced Archite@wsing M@hapter 7as a template for a
new GitHub project. The GNU autoconf tools are quite dedaunthave a painful syntax. It's easiest to

copy existing project files and modify them. The FileMQ potjeuilds a library, has test tools, license

files, man pages, and so on. It's not too large so it's a goatrsgepoint.

416

Chapter 8. A Framework for Distributed Computing

| put together a README to summarize the goals of the projadtoint to C4. The issue tracker is
enabled by default on new GitHub projects, so once we've @adisihe UDP ping code as a first version,
we're ready to go. However, it's always good to recruit moi@mtainers, so | create an issue "Call for
maintainers" that says:

If you'd like to help click that lovely green "Merge Pull Reggt" button and get eternal good karma, add a
comment confirming that you've read and understand the Ceepgoat http://rfc.zeromq.org/spec:22.

Finally, I change the issue tracker labels. By default, Glikdffers the usual variety of issue types, but
with C4 we don't use them. Instead, we need just two labelsgéat”, in red, and "Ready", in black).

8.5. Point-to-Point Messaging

I’'m going to take the last UDP ping program and build a poo¥pbint messaging layer on top of that.
Our goal is that we can detect peers as they join and leaveeth@rk, that we can send messages to
them, and that we can get replies. It is a nontrivial problemalve and takes Min and me two days to
get a "Hello World" version working.

We had to solve a number of issues:

- What information to send in the UDP beacon, and how to forinat i

+ What @MQ socket types to use to interconnect nodes.

« What @MQ messages to send, and how to format them.

- How to send a message to a specific node.

- How to know the sender of any message so we could send a reply.
- How to recover from lost UDP beacons.

- How to avoid overloading the network with beacons.

I'll explain these in enough detail so that you understangt we made each choice we did, with some
code fragments to illustrate. We tagged this code as vesin
(https://github.com/zeromq/zyre/zipball/v0.1.0) sayaan look at the code: most of the hard work is
done inzre_interface.c

8.5.1. UDP Beacon Framing

Sending UUIDs across the network is the bare minimum for &dd@ddressing scheme. However, we
have a few more aspects to get working before this will wortei use:

- We need some protocol identification so that we can checkfdreject invalid packets.
- We need some version information so that we can change thisqui over time.

« We need to tell other nodes how to reach us via TCP, i.e., a @MQipey can talk to us on.

417

Chapter 8. A Framework for Distributed Computing

Let’s start with the beacon message format. We probably wéired protocol header that will never
change in future versions and a body that depends on th@rEigure 8-1

Figure 8-1. ZRE discovery message

Y/ R E %x01 |UUID | port I

Header Body

The version can be a 1-byte counter starting at 1. The UUIB isytes and the portis a 2-byte port
number because UDP nicely tells us the sender’s IP addresgdoy message we receive. This gives us
a 22-byte frame.

The C language (and a few others like Erlang) make it simpiead and write binary structures. We
define the beacon frame structure:

#define BEACON_PROTOCOL "ZRE"
#define BEACON_VERSION 0x01

typedef struct {
byte protocol [3];
byte version;
uuid_t uuid;
uintl6_t port;

} beacon_t;

This makes sending and receiving beacons quite simple.islamv we send a beacon, using the
zre_udp class to do the nonportable network calls:

/I Beacon object
beacon_t beacon;

/I Format beacon fields
beacon.protocol [0] = 'Z’;
beacon.protocol [1]
beacon.protocol [2] 'E’;

beacon.version = BEACON_VERSION;

memcpy (beacon.uuid, self->uuid, sizeof (uuid_t));
beacon.port = htons (self->port);

1
X

/I Broadcast the beacon to anyone who is listening
zre_udp_send (self->udp, (byte *) &beacon, sizeof (beacon_t));

When we receive a beacon, we need to guard against bogus\é&ta.not going to be paranoid against,
for example, denial-of-service attacks. We just want to englkre that we're not going to crash when a
bad ZRE implementation sends us erroneous frames.

418

Chapter 8. A Framework for Distributed Computing

To validate a frame, we check its size and header. If thos®HKrave assume the body is usable. When
we get a UUID that isn't ourselves (recall, we’ll get our owdB broadcasts back), we can treat this as a
peer:

/I Get beacon frame from network

beacon_t beacon;

ssize_t size = zre_udp_recv (self->udp,
(byte *) &beacon, sizeof (beacon_t));

/I Basic validation on the frame
if (size '= sizeof (beacon_t)

|| beacon.protocol [0] != 'Z
|| beacon.protocol [1] != 'R’
|| beacon.protocol [2] != 'E’
|| beacon.version '= BEACON_VERSION)
return O; /I Ignore invalid beacons

/I If we got a UUID and it's not our own beacon, we have a peer
if (memcmp (beacon.uuid, self->uuid, sizeof (uuid_t))) {
char =+identity = s_uuid_str (beacon.uuid);
s_require_peer (self, identity,
zre_udp_from (self->udp), ntohs (beacon.port));
free (identity);

8.5.2. True Peer Connectivity (Harmony Pattern)

Because IMQ is designed to make distributed messagingpesyle often ask how to interconnect a
set of true peers (as compared to obvious clients and sgritdssa thorny question and GMQ doesn't
really provide a single clear answer.

TCP, which is the most commonly-used transport in @MQ, issyatmetric; one side must bind and one
must connect and though @MQ tries to be neutral about thes)dt. When you connect, you create an
outgoing message pipe. When you bind, you do not. When tkere pipe, you cannot write messages
(BMQ will return EAGAIN).

Developers who study @MQ and then try to create N-to-N cotioes between sets of equal peers often
try a ROUTER-t0o-ROUTER flow. It's obvious why: each peer nretmaddress a set of peers, which
requires ROUTER. It usually ends with a plaintive email te list.

Experience teaches us that ROUTER-to-ROUTER is partityudtifficult to use successfully. At a
minimum, one peer must bind and one must connect, meaniraythéecture is not symmetrical. But
also because you simply can't tell when you are allowed telgaend a message to a peer. It's a
Catch-22: you can talk to a peer after it’s talked to you, hetpieer can't talk to you until you've talked

to it. One side or the other will be losing messages and thsisdhetry, which means the peers cannot be
equal.

419

Chapter 8. A Framework for Distributed Computing

I’'m going to explain the Harmony pattern, which solves thislgem, and which we use in Zyre.

We want a guarantee that when a peer "appears” on our netwertan talk to it safely without dMQ
dropping messages. For this, we have to use a DEALER or PUBkésthatconnects out to the pesp
that even if that connection takes some non-zero time, ikénemediately a pipe and @MQ will accept
outgoing messages.

A DEALER socket cannot address multiple peers individudiyt if we have one DEALER per peer,
and we connect that DEALER to the peer, we can safely sendagesso a peer as soon as we've
connected to it.

Now, the next problem is to know who sent us a particular ngessé/e need a reply address that is the
UUID of the node who sent any given message. DEALER can’t gouhless we prefix every single
message with that 16-byte UUID, which would be wasteful. RBB does do it if we set the identity
properly before connecting to the router.

And so the Harmony pattern comes down to these components:

- One ROUTER socket that we bind to a ephemeral port, which wadwast in our beacons.
- One DEALER sockeper peerthat we connect to the peer's ROUTER socket.

- Reading from our ROUTER socket.

« Writing to the peer's DEALER socket.

The next problem is that discovery isn’t neatly synchrodi2&e can get the first beacon from a peer
after we start to receive messages from it. A message comes in ®0QhE ER socket and has a nice
UUID attached to it, but no physical IP address and port. We i@ force discovery over TCP. To do
this, our first command to any new peer to which we connect 3tawl command with our IP address
and port. This ensure that the receiver connects back tofassteying to send us any command.

Here it is, broken down into steps:

- If we receive a UDP beacon from a new peer, we connect to thetipexeigh a DEALER socket.

- We read messages from our ROUTER socket, and each messaggs witmthe UUID of the sender.
- Ifit's an OHAI message, we connect back to that peer if not already corthiecie

- Ifit's any other message, waustalready be connected to the peer (a good place for an asgertio
- We send messages to each peer using the per-peer DEALER,sshleh mustbe connected.

- When we connect to a peer, we also tell our application trepter exists.

- Every time we get a message from a peer, we treat that as déeg(it's alive).

If we were not using UDP but some other discovery mechanishstill use the Harmony pattern for a
true peer network: one ROUTER for input from all peers, anel DEALER per peer for output. Bind

420

Chapter 8. A Framework for Distributed Computing

the ROUTER, connect the DEALER, and start each conversafithran OHAI equivalent that provides
the return IP address and port. You would need some extertiamism to bootstrap each connection.

8.5.3. Detecting Disappearances

Heartbeating sounds simple but it's not. UDP packets ggiged when there’s a lot of TCP traffic, so if
we depend on UDP beacons, we'll get false disconnectionB.{f&fic can be delayed for 5, 10, even 30
seconds if the network is really busy. So if we kill peers whiey go quiet, we’ll have false
disconnections.

Because UDP beacons aren’t reliable, it's tempting to adddR beacons. After all, TCP will deliver
them reliably. However, there’s one little problem. Imagthat you have 100 nodes on a network, and
each node sends a TCP beacon once a second. Each beacontis22diycounting TCP’s framing
overhead. Thatis 100 * 99 * 22 bytes per second, or 217,008sfsécond just for heartbeating. That's
about 1-2% of a typical WiFi network’s ideal capacity, whedunds OK. But when a network is stressed
or fighting other networks for airspace, that extra 200K ardavill break what's left. UDP broadcasts
are at least low cost.

So what we do is switch to TCP heartbeats only when a spec#ichmesn’t sent us any UDP beacons in
a while. And then we send TCP heartbeats only to that one fi¢lee. peer continues to be silent, we
conclude it's gone away. If the peer comes back with a diffelfé address and/or port, we have to
disconnect our DEALER socket and reconnect to the new port.

This gives us a set of states for each peer, though at thie tagcode doesn’t use a formal state
machine:

+ Peer visible thanks to UDP beacon (we connect using IP asldresport from beacon)

- Peer visible thanks toHAI command (we connect using IP address and port from command)
- Peer seems alive (we got a UDP beacon or command over TCRly@cen

« Peer seems quiet (no activity in some time, so we setid@Zcommand)

- Peer has disappeared (no reply to BUGZcommands, so we destroy peer)

There’s one remaining scenario we didn’t address in the abtigs stage. It's possible for a peer to
change IP addresses and ports without actually triggerdigeppearance event. For example, if the user
switches off WiFi and then switches it back on, the accesstpain assign the peer a new IP address.
We’'ll need to handle a disappeared WiFi interface on our rixydenbinding the ROUTER socket and
rebinding it when we can. Because this is not central to tisggdenow, | decide to log an issue on the
GitHub tracker and leave it for a rainy day.

421

Chapter 8. A Framework for Distributed Computing

8.6. Group Messaging

Group messaging is a common and very useful pattern. Theepbigcsimple: instead of talking to a
single node, you talk to a "group" of nodes. The group is jusime, a string that you agree on in the
application. It's precisely like using the pub-sub prefikeRUB and SUB sockets. In fact, the only
reason | say "group messaging" and not "pub-sub" is to ptegriusion, because we're not going to
use PUB-SUB sockets for this.

PUB-SUB sockets would almost work. But we've just done suldt af work to solve the late joiner
problem. Applications are inevitably going to wait for pge#o arrive before sending messages to groups,
so we have to build on the Harmony pattern rather than starhdgeside it.

Let’s look at the operations we want to do on groups:

- We want to join and leave groups.
- We want to know what other nodes are in any given group.

- We want to send a message to (all nodes in) a group.

These look familiar to anyone whao'’s used Internet Relay Giatept that we have no server. Every node
will need to keep track of what each group represents. Tiasrmation will not always be fully
consistent across the network, but it will be close enough.

Our interface will track a set of groups (each an object).sErere all the known groups with one or more
member node, excluding ourselves. We'll track nodes asldaie and join groups. Because nodes can
join the network at any time, we have to tell new peers whatigsave’re in. When a peer disappears,
we’ll remove it from all groups we know about.

This gives us some new protocol commands:

« JOIN - we send this to all peers when we join a group.

« LEAVE- we send this to all peers when we leave a group.

Plus, we add groups field to the first command we send (renamed frorml to HELLOat this point
because | need a larger lexicon of command verbs).

Lastly, let's add a way for peers to double-check the acguotheir group data. The risk is that we
miss one of the above messages. Though we are using Harmawgitbthe typical message loss at
startup, it's worth being paranoid. For now, all we need issg o detect such a failure. We'll deal with
recovery later, if the problem actually happens.

I'll use the UDP beacon for this. What we want is a rolling ctarrthat simply tells how many join and
leave operations ("transitions") there have been for a nbdtarts at 0 and increments for each group

422

Chapter 8. A Framework for Distributed Computing

we join or leave. We can use a minimal 1-byte value becausevih@atch all failures except the
astronomically rare "we lost precisely 256 messages in & faiure (this is the one that hits during the
first demo). We will also put the transitions counter into JéN , LEAVE, andHELLOcommands. And to
try to provoke the problem, we’ll test by joining/leavingsseal hundred groups with a high-water mark
set to 10 or so.

It's time to choose verbs for the group messaging. We needanamd that means "talk to one peer" and
one that means "talk to many peers". After some attempts,esi/dhoices are'yHISPERandSHOUT and
this is what the code uses. TBelOUTcommand needs to tell the user the group name, as well as the
sender peer.

Because groups are like pub-sub, you might be tempted tdissetbroadcast th&OIN andLEAVE
commands as well, perhaps by creating a "global" group thabdes join. My advice is to keep groups
purely as user-space concepts for two reasons. First, hgqwuin the global group if you need the
global group to send outBIN command? Second, it creates special cases (reserved nahiespre
messy.

It's simpler just to sendOIN's andLEAVEs explicitly to all connected peers, period.

I’'m not going to work through the implementation of group s&ging in detail because it's fairly
pedantic and not too exciting. The data structures for gemgpeer management aren’t optimal, but
they’re workable. We use the following:

« Alist of groups for our interface, which we can send to newp@eaHELLOcommand,;

- A hash of groups for other peers, which we update with infaiomefrom HELLQ JOIN,, andLEAVE
commands;

« A hash of peers for each group, which we update with the saree tommands.

At this stage, I'm starting to get pretty happy with the binaerialization (our codec generator from
Advanced Architecture using @MChapter §, which handles lists and dictionaries as well as strings an
integers.

This version is tagged in the repository as v0.2.0 and youwloamload the tarball
(https://github.com/zeromq/zyre/tags) if you want todhehat the code looked like at this stage.

8.7. Testing and Simulation

When you build a product out of pieces, and this includes @iliiged framework like Zyre, the only
way to know that it will work properly in real life is to simui@real activity on each piece.

423

Chapter 8. A Framework for Distributed Computing

8.7.1. On Assertions
The proper use of assertions is one of the hallmarks of a gsifeal programmer.

Our confirmation bias as creators makes it hard to test ouk pr@perly. We tend to write tests to prove
the code works, rather than trying to prove it doesn’t. Tlageemany reasons for this. We pretend to
ourselves and others that we can be (could be) perfect, wifactiwe consistently make mistakes. Bugs
in code are seen as "bad", rather than "inevitable", so dggically we want to see fewer of them, not
uncover more of them. "He writes perfect code" is a complimather than a euphemism for "he never
takes risks so his code is as boring and heavily used as cafphsfti".

Some cultures teach us to aspire to perfection and punidhkeisin education and work, which makes
this attitude worse. To accept that we're fallible, and tteelearn how to turn that into profit rather than
shame is one of the hardest intellectual exercises in arfggsion. We leverage our fallibilities by
working with others and by challenging our own work soonet,later.

One trick that makes it easier is to use assertions. Asssréite not a form of error handling. They are
executable theories of fact. The code asserts, "At thistpsirch and such must be true™ and if the
assertion fails, the code Kkills itself.

The faster you can prove code incorrect, the faster and nooreately you can fix it. Believing that code
works and proving that it behaves as expected is less sgigmmre magical thinking. It's far better to be
able to say, ltbzmg has five hundred assertions and despite all my efforts, rebbthem fails".

So the Zyre code base is scattered with assertions, andyarly a couple on the code that deals with

the state of peers. This is the hardest aspect to get righits peed to track each other and exchange state
accurately or things stop working. The algorithms dependsymchronous messages flying around and
I’'m pretty sure the initial design has flaws. It always does.

And as | test the original Zyre code by starting and stoppirstginces ofre_ping by hand, every so
often | get an assertion failure. Running by hand doesntto@ypce these often enough, so let's make a
proper tester tool.

8.7.2. On Up-Front Testing

Being able to fully test the real behavior of individual coomgnts in the laboratory can make a 10x or
100x difference to the cost of your project. That confirmatiias engineers have to their own work
makes up-front testing incredibly profitable, and lategsteesting incredibly expensive.

I'll tell you a short story about a project we worked on in thél 1990’s. We provided the software and
other teams provided the hardware for a factory automatiojegt. Three or four teams brought their

424

Chapter 8. A Framework for Distributed Computing

experts on-site, which was a remote factory (funny how tHkipiog factories are always in remote
border country).

One of these teams, a firm specializing in industrial aut@nabuilt ticket machines: kiosks, and
software to run on them. Nothing unusual: swipe a badge,s#an option, receive a ticket. They
assembled two of these kiosks on-site, each week bringimg snore bits and pieces. Ticket printers,
monitor screens, special keypads from Israel. The stuftb&e resistant against dust because the kiosks
sat outside. Nothing worked. The screens were unreadabiie isun. The ticket printers continually
jammed and misprinted. The internals of the kiosk just satoaden shelving. The kiosk software
crashed regularly. It was comedic except that the projedlyreeally had to work and so we spent weeks
and then months on-site helping the other teams debug titeaud pieces until it worked.

A year later, there was a second factory, and the same stpithi8time the client, was getting
impatient. So when they came to the third and largest factoygar later, we jumped up and said,
"please let us make the kiosks and the software and evegythin

We made a detailed design for the software and hardware and fuppliers for all the pieces. It took
us three months to search the Internet for each componethio@e days, the Internet was a lot slower),
and another two months to get them assembled into staistessbricks each weighing about twenty
kilos. These bricks were two feet square and eight incheg, deth a large flat-screen panel behind
unbreakable glass, and two connectors: one for power, arigtfiernet. You loaded up the paper bin
with enough for six months, then screwed the brick into a mgysnd it automatically booted, found its
DNS server, loaded its Linux OS and then application softwHiconnected to the real server, and
showed the main menu. You got access to the configuratioerset®y swiping a special badge and then
entering a code.

The software was portable so we could test that as we wra@adtas we collected the pieces from our
suppliers we kept one of each so we had a disassembled kipskytavith. When we got our finished
kiosks, they all worked immediately. We shipped them to tieng who plugged them into their
housing, switched them on, and went to business. We spenglaaveso on-site, and in ten years, one
kiosk broke (the screen died, and was replaced).

Lesson is, test upfront so that when you plug the thing in,kmmaw precisely how it's going to behave.
If you haven't tested it upfront, you're going to be spendivegks and months in the field ironing out
problems that should never have been there.

8.7.3. The Zyre Tester

During manual testing, | did hit an assertion rarely. It thiisappeared. Because | don'’t believe in magic,
| know that meant the code was still wrong somewhere. So,¢ékestep was heavy-duty testing of the
Zyre v0.2.0 code to try to break its assertions, and get a gisadof how it will behave in the field.

We packaged the discovery and messaging functionality ageraceobject that the main program

425

Chapter 8. A Framework for Distributed Computing

creates, works with, and then destroys. We don’t use anyagl@iables. This makes it easy to start
large numbers of interfaces and simulate real activityéhin one process. And if there’s one thing
we've learned from writing lots of examples, it's that @MQ@Bility to orchestrate multiple threads in a
single process imucheasier to work with than multiple processes.

The first version of the tester consists of a main thread thaissand stops a set of child threads, each
running one interface, each with a ROUTER, DEALER, and UDékeb(R, D, and U in the
diagramJigure 8-2

Figure 8-2. Zyre Tester Tool

Main
thread
Child Child Child Child
thread thread thread thread
Interface Interface Interface Interface
R D U R D U R D U R D U

The nice thing is that when | am connected to a WiFi accesg malirzyre traffic (even between two
interfaces in the same process) goes across the AP. Thisrhean fully stress test any WiFi
infrastructure with just a couple of PCs running in a roors.hard to emphasize how valuable this is: if
we had built Zyre as, say, a dedicated service for Android Viterally need dozens of Android tablets
or phones to do any large-scale testing. Kiosks, and all that

The focus is now on breaking the current code, trying to proweong. There'sno pointat this stage in
testing how well it runs, how fast it is, how much memory it siser anything else. We’'ll work up to
trying (and failing) to break each individual functionglibut first, we try to break some of the core
assertions I've put into the code.

These are:

426

Chapter 8. A Framework for Distributed Computing

« The first command that any node receives from a peer MUSTEMQ In other words, messages
cannotbe lost during the peer-to-peer connection process.

+ The state each node calculates for its peers matches theeatt peer calculates for itself. In other
words, again, no messages are lost in the network.

- When my application sends a message to a peer, we have a tionriethat peer. In other words, the
application only "sees" a peer after we have established @@bdhnection to it.

With @MQ, there are several cases where we may lose meséagess the "late joiner" syndrome. Two
is when we close sockets without sending everything. Tre@gen we overflow the high-water mark on
a ROUTER or PUB socket. Four is when we use an unknown addigssa ROUTER socket.

Now, | think Harmony gets around all these potential cases. But we'ceaalding UDP to the mix. So
the first version of the tester simulates an unstable andrdinaetwork, where nodes come and go
randomly. It's here that things will break.

Here is the main thread of the tester, which manages a podl®ttiteads, starting and stopping each
one randomly. Every ~750 msecs it either starts or stopsamaom thread. We randomize the timing so
that threads aren’t all synchronized. After a few minutes have an average of 50 threads happily
chatting to each other like Korean teenagers in the Gangobmay station:

int main (int argc, char *argv [])

{
/I Initialize context for talking to tasks
zetx t +ctx = zetx_new ();
zctx_set_linger (ctx, 100);

/I Get number of interfaces to simulate, default 100
int max_interface = 100;
int nbr_interfaces = 0;
if (argc > 1)
max_interface = atoi (argv [1]);

/I We address interfaces as an array of pipes
void ** pipes = zmalloc (sizeof (void *) * max_interface);

/I We will randomly start and stop interface threads
while (!zctx_interrupted) {
uint index = randof (max_interface);
/I Toggle interface thread
if (pipes [index]) {
zstr_send (pipes [index], "STOP");
zsocket_destroy (ctx, pipes [index]);
pipes [index] = NULL;
zclock_log ("I: Stopped interface (%d running)",
--nbr_interfaces);
}
else {
pipes [index] = zthread_fork (ctx, interface_task, NULL);

427

Chapter 8. A Framework for Distributed Computing

zclock_log ("I: Started interface (%d running)",
++nbr_interfaces);
}
/I Sleep ~750 msecs randomly so we smooth out activity
zclock_sleep (randof (500) + 500);
}
zctx_destroy (&ctx);
return O;

Note that we maintain pipeto each child thread (CZMQ creates the pipe automaticallgrwiie use the
zthread_fork method). It's via this pipe that we tell child threads to stadpen it's time for them to
leave. The child threads do the following (I'm switching ®epido-code for clarity):

create an interface
while true:
poll on pipe to parent, and on interface
if parent sent us a message:
break
if interface sent us a message:
if message is ENTER:
send a WHISPER to the new peer
if message is EXIT:
send a WHISPER to the departed peer
if message is WHISPER:
send back a WHISPER 1/2 of the time
if message is SHOUT:
send back a WHISPER 1/3 of the time
send back a SHOUT 1/3 of the time
once per second:
join or leave one of 10 random groups
destroy interface

8.7.4. Test Results

Yes, we broke the code. Several times, in fact. This wasfgiais I'll work through the different things
we found.

Getting nodes to agree on consistent group status was thelifficsilt. Every node needs to track the
group membership of the whole network, as | already expthin¢he section "Group Messaging".
Group messaging is a pub-sub patta@IN s andLEAVES are analogous to subscribe and unsubscribe
messages. It's essential that none of these ever get lagg'lbfind nodes dropping randomly off groups.

So each node counts the total numbes©fN s andLEAVES it's ever done, and broadcasts this status (as
1-byte rolling counter) in its UDP beacon. Other nodes piglthe status, compare it to their own
calculations, and if there’s a difference, the code asserts

428

Chapter 8. A Framework for Distributed Computing

The first problem was that UDP beacons get delayed randomtiiey’re useless for carrying the status.
When a beacons arrives late, the status is inaccurate andtvadadse negativeTo fix this, we moved

the status information into thEDIN andLEAVEcommands. We also added it to tHELLOcommand.

The logic then becomes:

- Getinitial status for a peer from it$ELLOcommand.
« When getting @OIN or LEAVEfrom a peer, increment the status counter.
+ Check that the new status counter matches the value irctine or LEAVEcommand

. If it doesn’t, assert.

Next problem we got was that messages were arriving uneaglyain new connections. The Harmony
pattern connects, then serdiSLLOas the first command. This means the receiving peer shoulalw
getHELLOas the first command from a new peer. We were seRiNg, JOIN, and other commands
arriving.

This turned out to be due to CZMQ’s ephemeral port logic. Ahegperal port is just a dynamically
assigned port that a service can get rather than asking fee@ fiort number. A POSIX system usually
assigns ephemeral ports in the range 0xC000 to OxFFFF. CZM@ic is to look for a free port in this
range, bind to that, and return the port number to the caller.

This sounds fine, until you get one node stopping and anotigs starting close together, and the new
node getting the port number of the old node. Remember tha@@hés to re-establish a broken
connection. So when the first node stopped, its peers wotridtoeconnect. When the new node appears
on that same port, suddenly all the peers connect to it andcéiatting like they're old buddies.

It's a general problem that affects any larger-scale dyn#@hilQ application. There are a number of
plausible answers. One is to not reuse ephemeral portshuwhéeasier said than done when you have
multiple processes on one system. Another solution would Iselect a random port each time, which at
least reduces the risk of hitting a just-freed port. Thisgsithe risk of a garbage connection down to
perhaps 1/1000 but it’s still there. Perhaps the best swligi to accept that this can happen, understand
the causes, and deal with it on the application level.

We have a stateful protocol that always starts withEaLOcommand. We know that it's possible for
peers to connect to us, thinking we’re an existing node tteit\vaway and came back, and send us other
commands. Step one is when we discover a new peer, to desly@xsting peer connected to the same
endpoint. It's not a full answer but at least it's polite. [Stevo is to ignore anything coming in from a

new peer until that peer sapELLQ

This doesn’t require any change to the protocol, but it mestfecified in the protocol when we come to
it: due to the way @MQ connections work, it's possible to reeeinexpected commands from a
well-behavingpeer and there is no way to return an error code or otherwligbae peer to reset its
connection. Thus, a peer must discard any command from aupékit receivesHELLQ

429

Chapter 8. A Framework for Distributed Computing

In fact, if you draw this on a piece of paper and think it thrbugou’ll see that you never get#£LLO
from such a connection. The peer will sePitiGs andJOIN s andLEAVES and then eventually time out
and close, as it fails to get any heartbeats back from us.

You'll also see that there’s no risk of confusion, no way fonanands from two peers to get mixed into
a single stream on our DEALER socket.

When you are satisfied that this works, we're ready to mové& bis version is tagged in the repository
as v0.3.0 and you can download the tarball (https://gitwi/zeromg/zyre/tags) if you want to check
what the code looked like at this stage.

Note that doing heavy simulation of lots of nodes will prolyatause your process to run out of file
handles, giving an assertion failurelisemq . | raised the per-process limit to 30,000 by running (on my
Linux box):

ulimit -n 30000

8.7.5. Tracing Activity

To debug the kinds of problems we saw here, we need extenggilg. There’s a lot happening in
parallel, but every problem can be traced down to a specifibaxge between two nodes, consisting of a
set of events that happen in strict sequence. We know how ke rexry sophisticated logging, but as
usual it's wiser to make just what we need and no more. We lwawayiture:

- Time and date for each event.

+ In which node the event occurred.

« The peer node, if any.

- What the event was (e.g., which command arrived).

- Eventdata, if any.

The very simplest technique is to print the necessary inédion to the console, with a timestamp. That's
the approach | used. Then it's simple to find the nodes affidayea failure, filter the log file for only
messages referring to them, and see exactly what happened.

8.7.6. Dealing with Blocked Peers

In any performance-sensitive @MQ architecture, you neexblbee the problem of flow control. You
cannot simply send unlimited messages to a socket and hofleefbest. At the one extreme, you can
exhaust memory. This is a classic failure pattern for a nygsbeaoker: one slow client stops receiving
messages; the broker starts to queue them, and eventuladlysts memory and the whole process dies.
At the other extreme, the socket drops messages, or blaksuehit the high-water mark.

430

Chapter 8. A Framework for Distributed Computing

With Zyre we want to distribute messages to a set of peerswandant to do this fairly. Using a single
ROUTER socket for output would be problematic because arybtocked peer would block outgoing
traffic to all peers. TCP does have good algorithms for spnegitie network capacity across a set of
connections. And we're using a separate DEALER socket kattedach peer, so in theory each
DEALER socket will send its queued messages in the backgroeasonably fairly.

The normal behavior of a DEALER socket that hits its highavabark is to block. This is usually ideal,
but it's a problem for us here. Our current interface desiggslone thread that distributes messages to all
peers. If one of those send calls were to block, all outputldvblock.

There are a few options to avoid blocking. One is tozmg_poll() on the whole set of DEALER
sockets, and only write to sockets that are ready. | doréttlilis for a couple of reasons. First, the
DEALER socket is hidden inside the peer class, and it is @etmallow each class to handle this
opaquely. Second, what do we do with messages we can't yieedtd a DEALER socket? Where do
we queue them? Third, it seems to be side-stepping the issupeer is really so busy it can’t read its
messages, something is wrong. Most likely, it's dead.

So no polling for output. The second option is to use one thpea peer. | quite like the idea of this
because it fits into the AMQ design pattern of "do one thingia thread". But this is going to creade
lot of threads (square of the number of nodes we start) in thelation, and we're already running out
of file handles.

A third option is to use a nonblocking send. This is nicer disdle solution | choose. We can then
provide each peer with a reasonable outgoing queue (the Havil)f that gets full, treat it as a fatal
error on that peer. This will work for smaller messages. Ifaeending large chunks--e.g., for content
distribution--we’ll need a credit-based flow control on top

Therefore the first step is to prove to ourselves that we aartiie normal blocking DEALER socket

into a nonblocking socket. This example creates a normal llEAsocket, connects it to some endpoint
(so that there’s an outgoing pipe and the socket will accegstsages), sets the high-water mark to four,
and then sets the send timeout to zero:

Example 8-6. Checking EAGAIN on DEALER socket (eagain.py)

import zmq

def main():
ctx = zmg.Context.instance()
mailbox = ctx.socket(zmq.DEALER)
mailbox.sndhwm = 4
mailbox.sndtimeo = 0
mailbox.connect("tcp://localhost:9876")

for count in range(10):
print("Sending message %i" % count)

431

Chapter 8. A Framework for Distributed Computing

try:

mailbox.send(b"message %i" % count)
except zmg.Again as e:

print(e)

break

ctx.destroy(linger=0)
if _name__ =="'_ _main__"
main()

When we run this, we send four messages successfully (thep\gbere, the socket just queues them),
and then we get a nid@AGAINerror:

Sending message
Sending message
Sending message
Sending message
Sending message 4

Resource temporarily unavailable

W N - O

The next step is to decide what a reasonable high-water mauldvbe for a peer. Zyre is meant for
human interactions; that is, applications that chat at affeguency, such as two games or a shared
drawing program. I'd expect a hundred messages per secdrgddoite a lot. Our "peer is really dead"
timeout is 10 seconds. So a high-water mark of 1,000 seems fai

Rather than set a fixed HWM or use the default (which rando#sly bappens to be 1,000), we calculate
it as 100 * the timeout. Here’s how we configure a new DEALERksoéor a peer:

/I Create new outgoing socket (drop any messages in transit)
self->mailbox = zsocket_new (self->ctx, ZMQ_DEALER);

/I Set our caller "From" identity so that receiving node know s
/I 'who each message came from.
zsocket_set_identity (self->mailbox, reply_to);

/I Set a high-water mark that allows for reasonable activity
zsocket_set_sndhwm (self->mailbox, PEER_EXPIRED * 100);

/I Send messages immediately or return EAGAIN
zsocket_set_sndtimeo (self->mailbox, 0);

/I Connect through to peer node
zsocket_connect (self->mailbox, "tcp://%s", endpoint);

And finally, what do we do when we get & GAINon a peer? We don’t need to go through all the work
of destroying the peer because the interface will do thisraatically if it doesn’t get any message from
the peer within the expiration timeout. Just dropping tlst taessage seems very weak; it will give the
receiving peer gaps.

432

Chapter 8. A Framework for Distributed Computing

I'd prefer a more brutal response. Brutal is good becausedet the design to a "good" or "bad"
decision rather than a fuzzy "should work but to be honesethee a lot of edge cases so let's worry
about it later". Destroy the socket, disconnect the peerstéop sending anything to it. The peer will
eventually have to reconnect and re-initialize any statekind of an assertion that 100 messages a
second is enough for anyone. So, in the peer_send method:

int
zre_peer_send (zre_peer_t *self, zre_msg_t ** MSQ_P)
{
assert (self);
if (self->connected) {
if (zre_msg_send (msg_p, self->mailbox) && errno == EAGAIN) {
zre_peer_disconnect (self);
return -1;
}
}
return O;
}

Where the disconnect method looks like this:

void
zre_peer_disconnect (zre_peer_t * self)
{
/I If connected, destroy socket and drop all pending message S
assert (self);
if (self->connected) {
zsocket_destroy (self->ctx, self->mailbox);
free (self->endpoint);
self->endpoint = NULL;
self->connected = false;
}
}

8.8. Distributed Logging and Monitoring

Let’s look at logging and monitoring. If you've ever manageckal server (like a web server), you know
how vital it is to have a capture of what is going on. There dang list of reasons, not least:

- To measure the performance of the system over time.

- To see what kinds of work are done the most, to optimize peréoice.
- To track errors and how often they occur.

- To do postmortems of failures.

- To provide an audit trail in case of dispute.

433

Chapter 8. A Framework for Distributed Computing

Let’s scope this in terms of the problems we think we’'ll hawvasdlve:

- We want to track key events (such as nodes leaving and regpthe network).

- For each event, we want to track a consistent set of dataaiedtithe, node that observed the event,
peer that created the event, type of event itself, and otlesttelata.

- We want to be able to switch logging on and off at any time.

- We want to be able to process log data mechanically becawdébie sizable.

- We want to be able to monitor a running system; that is, coltggs and analyze in real time.
- We want log traffic to have minimal effect on the network.

- We want to be able to collect log data at a single point on theoré.

As in any design, some of these requirements are hostilectoaher. For example, collecting log data
in real time means sending it over the network, which wileaffnetwork traffic to some extent.
However, as in any design, these requirements are alsolmstpzz! until we have running code so we
can't take them too seriously. We'll aim fptausibly good enougand improve over time.

8.8.1. A Plausible Minimal Implementation

Arguably, just dumping log data to disk is one solution, afsWwhat most mobile applications do (using
"debug logs"). But most failures require correlation of @ggrom two nodes. This means searching lots
of debug logs by hand to find the ones that matter. It's not g elewver approach.

We want to send log data somewhere central, either immdyiateopportunistically (i.e., store and
forward). For now, let’s focus on immediate logging. My fiidéa when it comes to sending data is to
use Zyre for this. Just send log data to a group called "LO@d,leope someone collects it.

But using Zyre to log Zyre itself is a Catch-22. Who logs thgder? What if we want a verbose log of
every message sent? Do we include logging messages in thatdit quickly gets messy. We want a
logging protocol that's independent of Zyre’s main ZRE prmtl. The simplest approach is a pub-sub
protocol, where all nodes publish log data on a PUB sockebaraldlector picks that up via a SUB
sockeFigure 8-3

434

Chapter 8. A Framework for Distributed Computing

Figure 8-3. Distributed Log Collection

Node Node Node

PUB PUB PUB

Collector

The collector can, of course, run on any node. This gives usearange of use cases:

- A passive log collector that stores log data on disk for evalrgtatistical analysis; this would be a PC
with sufficient hard disk space for weeks or months of log data

- A collector that stores log data into a database where it earsbd in real time by other applications.
This might be overkill for a small workgroup, but would be smgafor tracking the performance of
larger groups. The collector could collect log data over \ifd then forward it over Ethernetto a
database somewhere.

+ A live meter application that joined the Zyre network andtleellected log data from nodes, showing
events and statistics in real time.

The next question is how to interconnect the nodes and toilé&hich side binds, and which connects?
Both ways will work here, but it's marginally better if the Blsockets connect to the SUB socket. If you
recall, MQ’s internal buffers only pop into existence wttleare are connections. It means as soon as a
node connects to the collector, it can start sending logwi#keut loss.

How do we tell nodes what endpoint to connect to? We may hay@amber of collectors on the
network, and they’ll be using arbitrary network addressesorts. We need some kind of service
announcement mechanism, and here we can use Zyre to do tkéavas. We could use group
messaging, but it seems neater to build service discovaytie ZRE protocol itself. It's nothing
complex: if a node provides a service X, it can tell other reoaleout that when it sends thertiBLLO
command.

We'll extend theHELLOcommand with deaderdield that holds a set of name=value pairs. Let's define
that the headex-ZRELOGspecifies the collector endpoint (the SUB socket). A nodedbts as a
collector can add a header like this (for example):

435

Chapter 8. A Framework for Distributed Computing

X-ZRELOG=tcp://192.168.1.122:9992

When another node sees this header, it simply connects BssBtket to that endpoint. Log data now
gets distributed to all collectors (zero or more) on the oekw

Making this first version was fairly simple and took half a degre are the pieces we had to make or
change:

+ We made a new clagse_log that accepts log data and manages the connection to thetoo]lié
any.

- We added some basic management for peer headers, takerhféiLt Ocommand.

- When a peer has theZRELOGheader, we connect to the endpoint it specifies.

- Where we were logging to stdout, we switched to logging veszte_log class.

- We extended the interface API with a method that lets theiegin set headers.

- We wrote a simple logger application that manages the SUBet@and sets thg-ZRELOGheader.

« We send our own headers when we semtEaLOcommand.

This version is tagged in the Zyre repository as v0.4.0 andogm download the tarball
(https://github.com/zeromq/zyre/tags) if you want to adsat the code looked like at this stage.

At this stage, the log message is just a string. We’'ll makeenpoofessionally structured log data in a
little while.

First, a note on dynamic ports. In thee_tester app that we use for testing, we create and destroy
interfaces aggressively. One consequence is that a nevaitgecan easily reuse a port that was just
freed by another application. If there’s a @MQ socket sonereltrying to connect this port, the results
can be hilarious.

Here’s the scenario | had, which caused a few minutes’ caoriu¥ he logger was running on a dynamic
port:

- Start logger application
- Start tester application
- Stop logger

- Tester receives invalid message (and asserts as designed)

As the tester created a new interface, that reused the dgrortifreed by the (just stopped) logger, and
suddenly the interface began to receive log data from nodés mailbox. We saw a similar situation
before, where a new interface could reuse the port freed lnycaimterface and start getting old data.

436

Chapter 8. A Framework for Distributed Computing

The lesson is, if you use dynamic ports, be prepared to recaivdom data from ill-informed
applications that are reconnecting to you. Switching ta#icsport stopped the misbehaving connection.
That's not a full solution though. There are two more weakass

- As | write this,libzmg doesn’t check socket types when connecting. The ZMTP/2tbpol
(http://rfc.zeromq.org/spec:15) does announce eachspa®riket type, so this check is doable.

- The ZRE protocol has no fail-fast (assertion) mechanismmees to read and parse a whole message
before realizing that it's invalid.

Let’s address the second one. Socket pair validation wdiiddive this fully anyway.

8.8.2. Protocol Assertions

As Wikipedia puts it, "Fail-fast systems are usually desmjto stop normal operation rather than attempt
to continue a possibly flawed process." A protocol like HTER h fail-fast mechanism in that the first
four bytes that a client sends to an HTTP server must be "HTIFBiey’re not, the server can close the
connection without reading anything more.

Our ROUTER socket is not connection-oriented so there’s ap tw "close the connection” when we get
bad incoming messages. However, we can throw out the enéissawge if it's not valid. The problem is
going to be worse when we use ephemeral ports, but it appieesily to all protocols.

So let’s define grotocol assertioras being a unique signature that we place at the start of easbage
and which identities the intended protocol. When we read ssage, we check the signature and if it's
not what we expect, we discard the message silently. A ggpdsire should be hard to confuse with
regular data and give us enough space for a number of prstocol

I’'m going to use a 16-bit signature consisting of a 12-bitgrat and a 4-bit protocol IBigure 8-4 The
pattern %xAAA is meant to stay away from values we might oth&e expect to see at the start of a
message: %x00, %xFF, and printable characters.

Figure 8-4. Protocol Signature

1 0 1 0 1 0 1 0 1 0 1 0 Signature

Byte O Byte 1
As our protocol codec is generated, it's relatively easydd this assertion. The logic is:

« Get first frame of message.

« Check if first two bytes are %xAAA with expected 4-bit signatu

437

Chapter 8. A Framework for Distributed Computing

. If so, continue to parse rest of message.

- If not, skip all "more" frames, get first frame, and repeat.

To test this, | switched the logger back to using an ephenperdl The interface now properly detects
and discards any messages that don’t have a valid signéttire. message has a valid signature and is
still wrong, that's a proper bug.

8.8.3. Binary Logging Protocol

Now that we have the logging framework working properlysléok at the protocol itself. Sending
strings around the network is simple, but when it comes toiWd-really cannot afford to waste
bandwidth. We have the tools to work with efficient binarytpmls, so let's design one for logging.

This is going to be a pub-sub protocol and in @MQ v3.x we do ishbr-side filtering. This means we
can do multi-level logging (errors, warnings, informafidiwe put the logging level at the start of the
message. So our message starts with a protocol signatwéytes), a logging level (one byte), and an
event type (one byte).

In the first version, we send UUID strings to identify each @ofis text, these are 32 characters each. We
can send binary UUIDs, but it’s still verbose and wastefud. fdn’t care about the node identifiers in the
log files. All we need is some way to correlate events. So \stih€ shortest identifier we can use that's
going to be unique enough for logging? | say "unique enouglcabse while we really want zero chance
of duplicate UUIDs in the live code, log files are not so cktic

The simplest plausible answer is to hash the IP address ahihfmoa 2-byte value. We'll get some
collisions, but they’ll be rare. How rare? As a quick sanityeck, | write a small program that generates
a bunch of addresses and hashes them into 16-bit value&mdpiok collisions. To be sure, | generate
10,000 addresses across a small number of IP addressesifrgasimulation setup), and then across a
large number of addresses (matching a real-life setup) h@ikking algorithm is enodified Bernstein

uintl6é_t hash = 0;
while (*endpoint)
hash = 33 * hash * xendpoint++;

| don't get any collisions over several runs, so this will Was identifier for the log data. This adds four
bytes (two for the node recording the event, and two for it jie events that come from a peer).

Next, we want to store the date and time of the event. The PQ&EXt type was previously 32 bits,
but because this overflows in 2038, it's a 64-bit value. Wesk this; there’s no need for millisecond
resolution in a log file: events are sequential, clocks afikely to be that tightly synchronized, and
network latencies mean that precise times aren't that mgéui

438

Chapter 8. A Framework for Distributed Computing

We're up to 16 bytes, which is decent. Finally, we want towlgmme additional data, formatted as text
and depending on the type of event. Putting this all togejhes the following message specification:

<class
name = "zre_log_msg"
script = "codec_c.gsl"
signature = "2"

>
This is the ZRE logging protocol - raw version.
<include filename = "license.xml" />

<!-- Protocol constants -->
<define name = "VERSION" value = "1" />

<define name = "LEVEL_ERROR" value = "1" />
<define name "LEVEL_WARNING" value = "2" />
<define name = "LEVEL_INFO" value = "3" />

<define name "EVENT_JOIN" value = "1" />
<define name = "EVENT_LEAVE" value = "2" />
<define name "EVENT_ENTER" value = "3" />

<define name = "EVENT_EXIT" value = "4" />

<message name = "LOG" id = "1">
<field name = "level" type = "number" size = "1" />
<field name = "event" type = "number" size = "1" />
<field name = "node" type = "number" size = "2" />
<field name = "peer" type = "number" size = "2" />
<field name = "time" type = "number" size = "8" />
<field name = "data" type = "string" />

Log an event

</message>

</class>

This generates 800 lines of perfect binary codec £thelog_msg class). The codec does protocol
assertions just like the main ZRE protocol does. Code géinaraas a fairly steep starting curve, but it
makes it so much easier to push your designs past "amatéoi'professional”.

8.9. Content Distribution

We now have a robust framework for creating groups of no@¢tsng them chat to each other, and
monitoring the resulting network. Next step is to allow thendlistribute content as files.

As usual, we'll aim for the very simplest plausible solutamd then improve that step-by-step. At the
very least we want the following:

439

Chapter 8. A Framework for Distributed Computing

- An application can tell the Zyre API, "Publish this file", aprbvide the path to a file that exists
somewhere in the file system.

- Zyre will distribute that file to all peers, both those that an the network at that time, and those that
arrive later.

- Each time an interface receives afile it tells its appliagatidiere is this file".

We might eventually want more discrimination, e.g., puiilig to specific groups. We can add that later
if it's needed. In Advanced Architecture using @M@Qapter Ave developed a file distribution system
(FileMQ) designed to be plugged into MQ applications. 38 lese that.

Each node is going to be a file publisher and a file subscribebM4 the publisher to an ephemeral port
(if we use the standard FileMQ port 5670, we can’t run mudtipkerfaces on one box), and we
broadcast the publisher’s endpoint in IELLOmMessage, as we did for the log collector. This lets us
interconnect all nodes so that all subscribers talk to dliphers.

We need to ensure that each node has its own directory foirggadd receiving files (the outbox and
the inbox). Again, it's so we can run multiple nodes on one.lBecause we already have a unique ID
per node, we just use that in the directory name.

Here’s how we set up the FileMQ APl when we create a new interfa

sprintf (self->fmqg_outbox, ".outbox/%s", self->identit y);
mkdir (self->fmq_outbox, 0775);

sprintf (self->fmq_inbox, ".inbox/%s", self->identity) ;
mkdir (self->fmqg_inbox, 0775);

self->fmq_server = fmq_server_new ();

self->fmq_service = fmq_server_bind (self->fmq_server, "tepl o x "),
fmq_server_publish (self->fmq_server, self->fmqg_outbo X, "I");
fmq_server_set_anonymous (self->fmq_server, true);

char publisher [32];

sprintf (publisher, "tcp://%s:%d", self->host, self->fm g_service);
zhash_update (self->headers, "X-FILEMQ", strdup (publis her));

/I Client will connect as it discovers new nodes

self->fmq_client = fmq_client_new ();

fmg_client_set_inbox (self->fmq_client, self->fmg_inb 0X);
fmq_client_set_resync (self->fmq_client, true);

fmqg_client_subscribe (self->fmq_client, "/");

And when we processiBELLOcommand, we check for theé FILEMQ header field:
/I If peer is a FileMQ publisher, connect to it
char =*publisher = zre_msg_headers_string (msg, "X-FILEMQ", NUL L);

if (publisher)
fmq_client_connect (self->fmq_client, publisher);

440

Chapter 8. A Framework for Distributed Computing

The last thing is to expose content distribution in the ZyRd AVe need two things:

- A way for the application to say, "Publish this file"

- A way for the interface to tell the application, "We receivai file".

In theory, the application can publish a file just by creatrgymbolic link in the outbox directory, but as
we’re using a hidden outbox, this is a little difficult. So wedean APl methogbublish

/I Publish file into virtual space

void
zre_interface_publish (zre_interface_t * self,
char =filename, char * external)

{

zstr_sendm (self->pipe, "PUBLISH");

zstr_sendm (self->pipe, filename); // Real file name

zstr_send (self->pipe, external); // Location in virtual s pace
}

The API passes this to the interface thread, which creagefiléhin the outbox directory so that the
FileMQ server will pick it up and broadcast it. We could la#ly copy file data into this directory, but
because FileMQ supports symbolic links, we use that instEla€l file has a ".In" extension and contains
one line, which contains the actual pathname.

Finally, how do we notify the recipient that a file has arrivelthe FileMQfmg_client APl has a
message, "DELIVER", for this, so all we have to daie_interface is grab this message from the
fmg_client APl and pass it on to our own API:

zmsg_t *msg = fmq_client_recv (fmg_client_handle (self->fmq_cli ent));
zmsg_send (&msg, self->pipe);

This is complex code that does a lot at once. But we're onlyairad 10K lines of code for FileMQ and
Zyre together. The most complex Zyre clage, interface , 15 800 lines of code. This is compact.
Message-based applications do keep their shape if you'efut@o organize them properly.

8.10. Writing the Unprotocol

We have all the pieces for a formal protocol specificationidiadime to put the protocol on paper. There
are two reasons for this. First, to make sure that any otheleimentations talk to each other properly.
Second, because | want to get an official port for the UDP dsigoprotocol and that means doing the
paperwork.

Like all the other unprotocols we developed in this book,gheocol lives on the IMQ RFC site
(http://rfc.zeromq.org/spec:20). The core of the protspecification is the ABNF grammar for the
commands and fields:

441

Chapter 8. A Framework for Distributed Computing

zre-protocol = greeting * traffic
greeting = S:HELLO
traffic = S:WHISPER

/ S:SHOUT

/ S:JOIN

| S:LEAVE

/ S:PING R:PING-OK

; Greet a peer so it can connect back to us

S:HELLO = header %x01 ipaddress mailbox groups status heade
header = signature sequence

signature = %xAA %xAl

sequence = 20CTET ; Incremental sequence number
ipaddress = string ; Sender IP address

string = size *VCHAR

size = OCTET

mailbox = 20CTET ; Sender mailbox port number
groups = strings ; List of groups sender is in
strings = size * string

status = OCTET ; Sender group status sequence
headers = dictionary ; Sender header properties
dictionary = size * key-value

key-value = string ; Formatted as name=value

; Send a message to a peer
S:WHISPER = header %x02 content
content = FRAME ; Message content as OMQ frame

; Send a message to a group

S:SHOUT = header %x03 group content
group = string ; Name of group
content = FRAME ; Message content as OMQ frame

; Join a group
S:JOIN = header %x04 group status
status = OCTET ; Sender group status sequence

; Leave a group
S:LEAVE = header %x05 group status

; Ping a peer that has gone silent
S:PING = header %06

; Reply to a peer's ping
R:PING-OK = header %07

I's

442

8.11. Example Zyre Application

Chapter 8. A Framework for Distributed Computing

Let’'s now make a minimal example that uses Zyre to broaddastdround a distributed network. This

example consists of two programs:

« A listenerthat joins the Zyre network and reports whenever it receivile.

- A sendetthat joins a Zyre network and broadcasts exactly one file.

The listener is quite short:

#include <zre.h>

int main (int argc, char xargv [])

{

zre_interface_t xinterface = zre_interface_new ();
while (true) {

zmsg_t =*incoming = zre_interface_recv (interface);

if (lincoming)
break;
zmsg_dump (incoming);
zmsg_destroy (&incoming);
}
zre_interface_destroy (&interface);
return O;

And the sender isn’t much longer:

#include <zre.h>

int main (int argc, char xargv [])

{

if (argc < 2) {
puts ("Syntax: sender filename virtualname");

return O;
}
printf ("Publishing %s as %s\n", argv [1], argv [2]);
zre_interface_t *interface = zre_interface_new ();

zre_interface_publish (interface, argv [1], argv [2]);
while (true) {

zmsg_t =*incoming = zre_interface_recv (interface);

if (lincoming)
break;
zmsg_dump (incoming);
zmsg_destroy (&incoming);
}
zre_interface_destroy (&interface);
return O;

443

Chapter 8. A Framework for Distributed Computing

8.12. Conclusions

Building applications for unstable decentralized netvgagkone of the end games for AMQ. As the cost
of computing falls every year, such networks become morenamm@ common, be it consumer electronics
or virtual boxes in the cloud. In this chapter, we've pulledéther many of the techniques from the book
to build Zyre, a framework for proximity computing over a &édaetwork. Zyre isn’t unique; there are

and have been many attempts to open this area for applisadenoConf, SLP, SSDP, UPnP, DDS. But
these all seem to end up too complex or otherwise too difffouthpplication developers to build on.

Zyre isn't finished. Like many of the projects in this books #@n ice breaker for others. There are some
major unfinished areas, which we may address in later editibthis book or versions of the software.

- High-level APIs: the message-based API that Zyre offers isawgable but still rather more complex
than I'd like for average developers. If there’s one targetalisolutely cannot miss, it's rasimplicity.
This means we should build high-level APIs, in lots of langes, which hide all the messaging, and
which come down to simple methods like start, join/leaveugt@et message, publish file, stop.

- Security: how do we build a fully decentralized securitytsys? We might be able to leverage public
key infrastructure for some work, but that requires thatesodiave their own Internet access, which
isn't guaranteed. The answer is, as far as we can tell, tonysexasting secure peer-to-peer link (TLS,
BlueTooth, perhaps NFC) to exchange a session key and usenaesyic cipher. Symmetric ciphers
have their advantages and disadvantages.

« Nomadic content: how do |, as a user, manage my content atnaléiple devices? The Zyre +
FileMQ combination might help, for local network use, but like to be able to do this across the
Internet as well. Are there cloud services | could use? Isstkemething | could make using MQ?

- Federation: how do we scale a local-area distributed agijdic across the globe? One plausible
answer is federation, which means creating clusters ofasisif 100 nodes can join together to create
a local cluster, then perhaps 100 clusters can join tog&thereate a wide-area cluster. The challenges
are then quite similar: discovery, presence, and group agass.

444

Chapter 9. Postface

9.1. Tales from Out There

| asked some of the contributors to this book to tell us whey tlvere doing with @MQ. Here are their
stories.

9.1.1. Rob Gagnon’s Story

"We use @MQ to assist in aggregating thousands of eventsringewvery minute across our global
network of telecommunications servers so that we can atdyn@port and monitor for situations that
require our attention. IMQ made the development of the sysiat only easier, but faster to develop
and more robust and fault-tolerant than we had originaiypked in our original design.

"We're able to easily add and remove clients from the netwdgtkout the loss of any message. If we
need to enhance the server portion of our system, we can stbyeatart it as well without having to
worry about stopping all of the clients first. The built-inflaring of @MQ makes this all possible."

9.1.2. Tom van Leeuwen’s Story

"l was looking at creating some kind of service bus connectihkinds of services together. There were
already some products that implemented a broker, but tllegatihave the functionality | needed. By
accident, | stumbled upon @MQ, which is awesome. It's vagiatliveight, lean, simple and easy to
follow because the guide is very complete and reads very ladlactually implemented the Titanic
pattern and the Majordomo broker with some additions (thesrker authentication and workers
sending a catalog explaining what they provide and how theylsl be addressed).

"The beautiful thing about @MQ is the fact that it is a libramyd not an application. You can mold it
however you like and it simply puts boring things like quayireconnecting, TCP sockets and such to
the background, making sure you can concentrate on whapisriamt to you. I've implemented all
kinds of workers/clients and the broker in Ruby, becauskisitae main language we use for
development, but also some PHP clients to connect to therbosexisting PHP webapps. We use this
service bus for cloud services, connecting all kinds offptat devices to a service bus exposing
functionality for automation.

"@MQ is very easy to understand and if you spend a day with tigeg you'll have good knowledge of
how it works. I'm a network engineer, not a software devetppet managed to create a very nice
solution for our automation needs! @MQ: Thank you very much!

445

Chapter 9. Postface

9.1.3. Michael Jakl’s Story

"We use @MQ for distributing millions of documents per dayin distributed processing pipeline. We
started out with big message queuing brokers that had theirespective issues and problems. In the
quest of simplifying our architecture, we chose @MQ to dowlireng. So far it had a huge impact in
how our architecture scales and how easy it is to change and the components. The plethora of
language bindings lets us choose the right tool for the jabauit sacrificing interoperability in our
system. We don’t use a lot of sockets (less than 10 in our wdygbdication), but that's all we needed to
split a huge monolithic application into small independgsatts.

"All'in all, IMQ lets me keep my sanity and helps my customéay svithin budget."

9.1.4. Vadim Shalts’s Story

"l am team leader in the company ActForex, which developsaoé for financial markets. Due to the
nature of our domain, we need to process large volumes adpguaickly. In addition, it's extremely
critical to minimize latency in processing orders and idkchieving a high throughput is not enough.
Everything must be handled in a soft real time with a predietaltra low latency per price. The system
consists of multiple components exchanging messages.#mehcan take a lot of processing stages,
each of which increases total latency. As a consequencegnovpredictable latency of messaging
between components becomes a key factor of our architecture

"We investigated different solutions to find somethinga&ili¢ for our needs. We tried different message
brokers (RabbitMQ, ActiveMQ Apollo, Kafka), but failed teaich a low and predictable latency with
any of them. In the end, we chose ZeroMQ used in conjunctitim A@oKeeper for service discovery.
Complex coordination with ZeroMQ requires a relativelygkaeffort and a good understanding, as a
result of the natural complexity of multithreading. We falthat an external agent like ZooKeeper is
better choice for service discovery and coordination whAgeoMQ can be used primarily for simple
messaging. ZeroMQ fit perfectly into our architecture. lowakd us to achieve the desired latency using
minimal efforts. It saved us from a bottleneck in the prooessf messages and made processing time
very stable and predictable.

"l can decidedly recommend ZeroMQ for solutions where lognay is important.”

9.2. How This Book Happened

When | set out to write a @MQ book, we were still debating thespand cons of forks and pull requests
in the AMQ community. Today, for what it's worth, this argumeeems settled: the "liberal" policy that
we adopted folibzmg in early 2012 broke our dependency on a single prime authdrpaened the
floor to dozens of new contributors. More profoundly, it aled us to move to a gently organic
evolutionary model that was very different from the oldercd-march model.

446

Chapter 9. Postface

The reason | was confident this would work was that our workhenGuide had, for a year or more,
shown the way. True, the text is my own work, which is perhagpis should be. Writing is not
programming. When we write, we tell a story and one doesnritwiéferent voices telling one tale; it
feels strange.

For me the real long-term value of the book is the repositbsxamples: about 65,000 lines of code in
24 different languages. It’s partly about making @MQ acit#sdo more people. People already refer to
the Python and PHP example repositories--two of the mospéeter-when they want to tell others how
to learn @MQ. But it's also about learning programming laages.

Here’s a loop of code in Tcl:

while {1} {
Process all parts of the message
zmg message message
frontend recv_msg message
set more [frontend getsockopt RCVMORE]
backend send_msg message [expr {$more?"SNDMORE":""}]
message close
if {I$more} {
break ; # Last message part

}

And here’s the same loop in Lua:

while true do
-- Process all parts of the message
local msg = frontend:recv()
if (frontend:getopt(zmg.RCVMORE) == 1) then
backend:send(msg, zmg.SNDMORE)
else
backend:send(msg, 0)
break; -- Last message part
end
end

And this particular examplerproker) exists in C#, C++, CL, Clojure, Erlang, F#, Go, Haskell, dax
Java, Lua, Node.js, Perl, PHP, Python, Ruby, Scala, TclpAndurse C. This code base, all provided as
open source under the MIT/X11 license, may form the basisttoer books or projects.

But what this collection of translations says most profduiiglthis: the language you choose is a detail,
even a distraction. The power of @MQ lies in the patternsviégiyou and lets you build, and these
transcend the comings and goings of languages. My goal &snase and social architect is to build
structures that can last generations. There seems no pd@iimhing for mere decades.

447

Chapter 9. Postface

9.3. Removing Friction

I'll explain the technical tool chain we used in terms of thietfon we removed. In this book we’re
telling a story and the goal is to reach as many people aslpesas cheaply and smoothly as we can.

The core idea was to host the text and examples on GitHub ake itn@asy for anyone to contribute. It
turned out to be more complex than that, however.

Let’s start with the division of labor. I'm a good writer andrcproduce endless amounts of decent text
quickly. But what was impossible for me was to provide therepkes in other languages. Because the
core IMQ APl is in C, it seemed logical to write the originabexples in C. Also, C is a neutral choice;
it's perhaps the only language that doesn’t create strorgierns.

How to encourage people to make translations of the exampliestried a few approaches and finally
what worked best was to offer a "choose your language" linkwary single example in the text, which
took people either to the translation or to a page explaihinwg they could contribute. The way it usually
works is that as people learn @MQ in their preferred langutgsy contribute a handful of translations
or fixes to the existing ones.

At the same time, | noticed a few people quite determinediggtatingevery singleexample. This was
mainly binding authors who realized that the examples weyeat way to encourage people to use their
bindings. For their efforts, | extended the scripts to pEllanguage-specific versions of the book.
Instead of including the C code, we'd include the Python,ldPRode. Lua and Haxe also got their
dedicated versions.

Once we have an idea of who works on what, we know how to stre¢he work itself. It's clear that to
write and test an example, what you want to work osaarce codeSo we import this source code when
we build the book, and that's how we make language-specifsives.

I like to write in a plain text format. It's fast and works welith source control systems like git. Because
the main platform for our websites is Wikidot, | write usingkidot’s very readable markup format.

At least in the first chapters, it was important to draw pietuto explain the flow of messages between
peers. Making diagrams by hand is a lot of work, and when we weget final output in different
formats, image conversion becomes a chore. | started wtdaDivhich turns text diagrams into PNGs,
then later switched to asciitosvg, which produces SVG fildsch are rather better. Since the figures are
text diagrams, embedded in the prose, it's remarkably eagptk with them.

By now you'll realize that the toolchain we use is highly @amtzed, though it uses a lot of external
tools. All are available on Ubuntu, which is a mercy, and thlg custom toolchain is in the zguide
repository in the bin subdirectory.

448

Chapter 9. Postface

Let's walk through the editing and publishing process. Hetteow we produce the online version:

bin/buildguide

Which works as follows:

- The original text sits in a series of text files (one per chgpte
- The examples sit in the examples subdirectory, classifiethpguage.

- We take the text and process this using a custom Perl scrigtjkitot, into a set of Wikidot-ready
files.

- We do this for each of the languages that get their own version

+ We extract the graphics and call asciitosvg and rasterizzach one to produce image files, which we
store in the images subdirectory.

- We extract inline listings (which are not translated) arues these in the listings subdirectory.
- We use pygmentize on each example and listing to create aedhankpage in Wikidot format.

- We upload all changed files to the online wiki using the Wikide!l.

Doing this from scratch takes a while. So we store the SHAAagres of every image, listing, example,
and text file, and only process and upload changes, and thasiteeasy to publish a new version of the
text when people make new contributions.

To produce the PDF and Epub formats, we do the following:

bin/buildpdfs

Which works as follows:

- We use the custom mkdochook Perl program on the input filesoyze a DocBook output.

+ We push the DocBook format through docbook2ps and ps2pdttte clean PDFs in each language.
« We push the DocBook format through db2epub to create Epuksbmad in each language.

- We upload the PDFs to the public wiki using the Wikidot API.

When creating a community project, it's important to lowse tchange latency"”, which is the time it
takes for people to see their work live or, at least, to segythalve accepted their pull request. If that is
more than a day or two, you've often lost your contributant®rest.

9.4. Licensing

| want people to reuse this text in their own work: in presgore, articles, and even other books.
However, the deal is that if they remix my work, others caniretimeirs. 1'd like credit, and have no
argument against others making money from their remixegsTthe text is licensed under cc-by-sa.

449

Chapter 9. Postface

For the examples, we started with GPL, but it rapidly becal®earc¢his wasn’t workable. The point of
examples is to give people reusable code fragments so thiaysei@MQ more widely, and if these are
GPL, that won't happen. We switched to MIT/X11, even for tagger and more complex examples that
conceivably would work as LGPL.

However, when we started turning the examples into stanégdoojects (as with Majordomo), we used
the LGPL. Again, remixability trumps dissemination. Lises are tools; use them with intent, not
ideology.

450

	The ZeroMQ Guide for Python Developers
	Dedication
	Table of Contents
	List of Figures
	Preface
	1. ØMQ in a Hundred Words
	2. How It Began
	3. The Zen of Zero
	4. How This Book Came To Be
	5. Audience

	I. Learning ØMQ
	Chapter 1. Basics
	1.1. Fixing the World
	1.2. Starting Assumptions
	1.3. Getting the Examples
	1.4. Ask and Ye Shall Receive
	1.5. A Minor Note on Strings
	1.6. Version Reporting
	1.7. Getting the Message Out
	1.8. Divide and Conquer
	1.9. Programming with ØMQ
	1.9.1. Getting the Context Right
	1.9.2. Making a Clean Exit

	1.10. Why We Needed ØMQ
	1.11. Socket Scalability
	1.12. Upgrading from ØMQ v2.2 to ØMQ v3.2
	1.12.1. Compatible Changes
	1.12.2. Incompatible Changes
	1.12.3. Suggested Shim Macros

	1.13. Warning: Unstable Paradigms!

	Chapter 2. Sockets and Patterns
	2.1. The Socket API
	2.1.1. Plugging Sockets into the Topology
	2.1.2. Sending and Receiving Messages
	2.1.3. Unicast Transports
	2.1.4. ØMQ is Not a Neutral Carrier
	2.1.5. I/O Threads

	2.2. Messaging Patterns
	2.2.1. HighLevel Messaging Patterns
	2.2.2. Working with Messages
	2.2.3. Handling Multiple Sockets
	2.2.4. Multipart Messages
	2.2.5. Intermediaries and Proxies
	2.2.6. The Dynamic Discovery Problem
	2.2.7. Shared Queue (DEALER and ROUTER sockets)
	2.2.8. ØMQ's BuiltIn Proxy Function
	2.2.9. Transport Bridging

	2.3. Handling Errors and ETERM
	2.4. Handling Interrupt Signals
	2.5. Detecting Memory Leaks
	2.6. Multithreading with ØMQ
	2.7. Signaling Between Threads (PAIR Sockets)
	2.8. Node Coordination
	2.9. ZeroCopy
	2.10. PubSub Message Envelopes
	2.11. HighWater Marks
	2.12. Missing Message Problem Solver

	Chapter 3. Advanced RequestReply Patterns
	3.1. The RequestReply Mechanisms
	3.1.1. The Simple Reply Envelope
	3.1.2. The Extended Reply Envelope
	3.1.3. What's This Good For?
	3.1.4. Recap of RequestReply Sockets

	3.2. RequestReply Combinations
	3.2.1. The REQ to REP Combination
	3.2.2. The DEALER to REP Combination
	3.2.3. The REQ to ROUTER Combination
	3.2.4. The DEALER to ROUTER Combination
	3.2.5. The DEALER to DEALER Combination
	3.2.6. The ROUTER to ROUTER Combination
	3.2.7. Invalid Combinations

	3.3. Exploring ROUTER Sockets
	3.3.1. Identities and Addresses
	3.3.2. ROUTER Error Handling

	3.4. The Load Balancing Pattern
	3.4.1. ROUTER Broker and REQ Workers
	3.4.2. ROUTER Broker and DEALER Workers
	3.4.3. A Load Balancing Message Broker

	3.5. A HighLevel API for ØMQ
	3.5.1. Features of a HigherLevel API
	3.5.2. The CZMQ HighLevel API

	3.6. The Asynchronous Client/Server Pattern
	3.7. Worked Example: InterBroker Routing
	3.7.1. Establishing the Details
	3.7.2. Architecture of a Single Cluster
	3.7.3. Scaling to Multiple Clusters
	3.7.4. Federation Versus Peering
	3.7.5. The Naming Ceremony
	3.7.6. Prototyping the State Flow
	3.7.7. Prototyping the Local and Cloud Flows
	3.7.8. Putting it All Together

	Chapter 4. Reliable RequestReply Patterns
	4.1. What is "Reliability"?
	4.2. Designing Reliability
	4.3. ClientSide Reliability (Lazy Pirate Pattern)
	4.4. Basic Reliable Queuing (Simple Pirate Pattern)
	4.5. Robust Reliable Queuing (Paranoid Pirate Pattern)
	4.6. Heartbeating
	4.6.1. Shrugging It Off
	4.6.2. OneWay Heartbeats
	4.6.3. PingPong Heartbeats
	4.6.4. Heartbeating for Paranoid Pirate

	4.7. Contracts and Protocols
	4.8. ServiceOriented Reliable Queuing (Majordomo Pattern)
	4.9. Asynchronous Majordomo Pattern
	4.10. Service Discovery
	4.11. Idempotent Services
	4.12. Disconnected Reliability (Titanic Pattern)
	4.13. HighAvailability Pair (Binary Star Pattern)
	4.13.1. Detailed Requirements
	4.13.2. Preventing SplitBrain Syndrome
	4.13.3. Binary Star Implementation
	4.13.4. Binary Star Reactor

	4.14. Brokerless Reliability (Freelance Pattern)
	4.14.1. Model One: Simple Retry and Failover
	4.14.2. Model Two: Brutal Shotgun Massacre
	4.14.3. Model Three: Complex and Nasty

	4.15. Conclusion

	Chapter 5. Advanced PubSub Patterns
	5.1. Pros and Cons of PubSub
	5.2. PubSub Tracing (Espresso Pattern)
	5.3. Last Value Caching
	5.4. Slow Subscriber Detection (Suicidal Snail Pattern)
	5.5. HighSpeed Subscribers (Black Box Pattern)
	5.6. Reliable PubSub (Clone Pattern)
	5.6.1. Centralized Versus Decentralized
	5.6.2. Representing State as KeyValue Pairs
	5.6.3. Getting an OutofBand Snapshot
	5.6.4. Republishing Updates from Clients
	5.6.5. Working with Subtrees
	5.6.6. Ephemeral Values
	5.6.7. Using a Reactor
	5.6.8. Adding the Binary Star Pattern for Reliability
	5.6.9. The Clustered Hashmap Protocol
	5.6.10. Building a Multithreaded Stack and API

	II. Advanced ØMQ
	Chapter 6. The ØMQ Community
	6.1. Architecture of the ØMQ Community
	6.2. How to Make Really Large Architectures
	6.2.1. Psychology of Software Architecture
	6.2.2. The Importance of Contracts
	6.2.3. Eat Me
	6.2.4. The Process
	6.2.5. Crazy, Beautiful, and Easy
	6.2.6. Stranger, Meet Stranger
	6.2.7. Infinite Property
	6.2.8. Care and Feeding

	6.3. The ØMQ Process: C4
	6.3.1. Language
	6.3.2. Goals
	6.3.3. Preliminaries
	6.3.4. Licensing and Ownership
	6.3.5. Patch Requirements
	6.3.6. Development Process
	6.3.7. Creating Stable Releases
	6.3.8. Evolution of Public Contracts
	6.3.9. Project Administration

	6.4. A RealLife Example
	6.5. Git Branches Considered Harmful
	6.5.1. Simplicity Versus Complexity
	6.5.2. Change Latency
	6.5.3. Learning Curve
	6.5.4. Cost of Failure
	6.5.5. Upfront Coordination
	6.5.6. Scalability
	6.5.7. Surprise and Expectations
	6.5.8. Economics of Participation
	6.5.9. Robustness in Conflict
	6.5.10. Guarantees of Isolation
	6.5.11. Visibility
	6.5.12. Conclusions

	6.6. Designing for Innovation
	6.6.1. The Tale of Two Bridges
	6.6.2. How ØMQ Lost Its Road Map
	6.6.3. TrashOriented Design
	6.6.4. ComplexityOriented Design
	6.6.5. Simplicity Oriented Design

	6.7. Burnout
	6.8. Patterns for Success
	6.8.1. The Lazy Perfectionist
	6.8.2. The Benevolent Tyrant
	6.8.3. The Earth and Sky
	6.8.4. The Open Door
	6.8.5. The Laughing Clown
	6.8.6. The Mindful General
	6.8.7. The Social Engineer
	6.8.8. The Constant Gardener
	6.8.9. The Rolling Stone
	6.8.10. The Pirate Gang
	6.8.11. The Flash Mob
	6.8.12. The Canary Watcher
	6.8.13. The Hangman
	6.8.14. The Historian
	6.8.15. The Provocateur
	6.8.16. The Mystic

	Chapter 7. Advanced Architecture using ØMQ
	7.1. MessageOriented Pattern for Elastic Design
	7.1.1. Step 1: Internalize the Semantics
	7.1.2. Step 2: Draw a Rough Architecture
	7.1.3. Step 3: Decide on the Contracts
	7.1.4. Step 4: Write a Minimal EndtoEnd Solution
	7.1.5. Step 5: Solve One Problem and Repeat

	7.2. Unprotocols
	7.2.1. Protocols Without The Goats
	7.2.2. Contracts Are Hard
	7.2.3. How to Write Unprotocols
	7.2.4. Why use the GPLv3 for Public Specifications?
	7.2.5. Using ABNF
	7.2.6. The Cheap or Nasty Pattern
	7.2.7. Error Handling

	7.3. Serializing Your Data
	7.3.1. Abstraction Level
	7.3.2. ØMQ Framing
	7.3.3. Serialization Languages
	7.3.4. Serialization Libraries
	7.3.5. Handwritten Binary Serialization
	7.3.6. Code Generation

	7.4. Transferring Files
	7.5. State Machines
	7.6. Authentication Using SASL
	7.7. LargeScale File Publishing: FileMQ
	7.7.1. Why make FileMQ?
	7.7.2. Initial Design Cut: the API
	7.7.3. Initial Design Cut: the Protocol
	7.7.4. Building and Trying FileMQ
	7.7.5. Internal Architecture
	7.7.6. Public API
	7.7.7. Design Notes
	7.7.8. Configuration
	7.7.9. File Stability
	7.7.10. Delivery Notifications
	7.7.11. Symbolic Links
	7.7.12. Recovery and Late Joiners
	7.7.13. Test Use Case: The Track Tool

	7.8. Getting an Official Port Number

	Chapter 8. A Framework for Distributed Computing
	8.1. Design for The Real World
	8.2. The Secret Life of WiFi
	8.2.1. Why Mesh Isn't Here Yet
	8.2.2. Some Physics
	8.2.3. What's the Current Status?
	8.2.4. Conclusions

	8.3. Discovery
	8.3.1. Service Discovery
	8.3.2. Network Discovery
	8.3.3. The Use Case
	8.3.4. Technical Requirements
	8.3.5. A SelfHealing P2P Network in 30 Seconds
	8.3.6. Preemptive Discovery over Raw Sockets
	8.3.7. Cooperative Discovery Using UDP Broadcasts
	8.3.8. Multiple Nodes on One Device
	8.3.9. Designing the API
	8.3.10. More About UDP

	8.4. Spinning Off a Library Project
	8.5. PointtoPoint Messaging
	8.5.1. UDP Beacon Framing
	8.5.2. True Peer Connectivity (Harmony Pattern)
	8.5.3. Detecting Disappearances

	8.6. Group Messaging
	8.7. Testing and Simulation
	8.7.1. On Assertions
	8.7.2. On UpFront Testing
	8.7.3. The Zyre Tester
	8.7.4. Test Results
	8.7.5. Tracing Activity
	8.7.6. Dealing with Blocked Peers

	8.8. Distributed Logging and Monitoring
	8.8.1. A Plausible Minimal Implementation
	8.8.2. Protocol Assertions
	8.8.3. Binary Logging Protocol

	8.9. Content Distribution
	8.10. Writing the Unprotocol
	8.11. Example Zyre Application
	8.12. Conclusions

	Chapter 9. Postface
	9.1. Tales from Out There
	9.1.1. Rob Gagnon's Story
	9.1.2. Tom van Leeuwen's Story
	9.1.3. Michael Jakl's Story
	9.1.4. Vadim Shalts's Story

	9.2. How This Book Happened
	9.3. Removing Friction
	9.4. Licensing

