
www.it-ebooks.info

http://www.it-ebooks.info/

Java Persistence
with MyBatis 3

A practical guide to MyBatis, a simple yet powerful
Java Persistence Framework!

K. Siva Prasad Reddy

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Java Persistence with MyBatis 3

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1130613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-78216-680-1

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
K. Siva Prasad Reddy

Reviewers
Muhammad Edwin

Eduardo Macarrón

Acquisition Editor
Usha Iyer

Commissioning Editor
Ameya Sawant

Technical Editors
Jeeten Handu

Akshata Patil

Zafeer Rais

Copy Editor
Alfida Paiva

Insiya Morbiwala

Laxmi Subramanian

Project Coordinator
Suraj Bist

Proofreader
Lesley Harrison

Indexer
Monica Ajmera Mehta

Graphics
Abhinash Sahu

Production Coordinator
Melwyn D’sa

Cover Work
Melwyn D’sa

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

K. Siva Prasad Reddy is a Senior Software Engineer living in Hyderabad, India
and has more than six years’ experience in developing enterprise applications with
Java and JavaEE technologies. Siva is a Sun Certified Java Programmer and has a lot
of experience in server-side technologies such as Java, JavaEE, Spring, Hibernate,
MyBatis, JSF (PrimeFaces), and WebServices (SOAP/REST).

Siva normally shares the knowledge he has acquired on his blog www.sivalabs.in.
If you want to find out more information about his work, you can follow him
on Twitter (@sivalabs) and GitHub (https://github.com/sivaprasadreddy).

I would like to thank my wife Neha, as she supported me in every
step of the process and without her, this wouldn’t have been
possible. I thank my parents and my sister for their moral support in
helping me complete this dream.

www.it-ebooks.info

http://www.sivalabs.in
https://github.com/sivaprasadreddy
http://www.it-ebooks.info/

About the Reviewers

Muhammad Edwin is the founder and Chief Technology Officer for Baculsoft
Technology, an Indonesian leading system integrator company, which provides
consultancy, support, and services around open source technologies. His primary
responsibility is designing and implementing solutions that use cutting-edge
enterprise Java technologies to fit his customer’s needs. He has held a number of
positions including Software Engineer, Development Team Lead, and also as a
Java Trainer. Edwin earned his Bachelor’s and Master’s degree from Budi Luhur
University, majoring in Information Technology.

While not working or answering questions on various forums and mailing lists,
he can be found traveling around beautiful beaches, scuba diving, and clicking
underwater pictures.

I would like to thank my parents and my wife, Nunung Astuti, for
their unwavering support while I used my personal time to review
this book. I would also like to thank my colleagues at Budi Luhur
University, my friends at Kaskus Programmer Community, and also
people from Java User Group Indonesia. May the Source be with you.

Eduardo Macarrón has worked as an enterprise integrator and solution
architect for 15 years in the electric utility industry, which focused on large
projects (with more than 100 developers).

He is an open source enthusiast and has been a member of the MyBatis
project since 2010.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com
Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Getting Started with MyBatis 7

What is MyBatis? 7
Why MyBatis? 8

Eliminates a lot of JDBC boilerplate code 8
Low learning curve 12
Works well with legacy databases 12
Embraces SQL 12
Supports integration with Spring and Guice frameworks 13
Supports integration with third-party cache libraries 13
Better performance 13

Installing and configuring MyBatis 14
Creating a STUDENTS table and inserting sample data 15
Creating a Java project and adding mybatis-3.2.2.jar to the classpath 15
Creating the mybatis-config.xml and StudentMapper.xml
configuration files 17
Creating the MyBatisSqlSessionFactory singleton class 19
Creating the StudentMapper interface and the StudentService classes 20
Creating a JUnit test for testing StudentService 22

How it works 23
Sample domain model 24
Summary 25

Chapter 2: Bootstrapping MyBatis 27
Configuring MyBatis using XML 27

Environment 29
DataSource 30
TransactionManager 30
Properties 31

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

typeAliases 32
typeHandlers 34
Settings 38
Mappers 38

Configuring MyBatis Using Java API 39
Environment 40
DataSource 40
TransactionFactory 41
typeAliases 42
typeHandlers 42
Settings 43
Mappers 43

Customizing MyBatis logging 44
Summary 45

Chapter 3: SQL Mappers Using XML 47
Mapper XMLs and Mapper interfaces 48
Mapped statements 50

The INSERT statement 50
Autogenerated keys 51

The UPDATE statement 52
The DELETE statement 53
The SELECT statement 54

ResultMaps 56
Simple ResultMaps 56
Extending ResultMaps 58
One-to-one mapping 59
One-to-one mapping using nested ResultMap 61
One-to-one mapping using nested Select 62
One-to-many mapping 63
One-to-many mapping with nested ResultMap 64
One-to-many mapping with nested select 65

Dynamic SQL 66
The If condition 67
The choose, when, and otherwise conditions 68
The where condition 69
The trim condition 70
The foreach loop 71
The set condition 72

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

MyBatis recipes 72
Handling enumeration types 73
Handling the CLOB/BLOB types 74
Passing multiple input parameters 76
Multiple results as a map 77
Paginated ResultSets using RowBounds 77
Custom ResultSet processing using ResultSetHandler 78
Cache 79

Summary 81
Chapter 4: SQL Mappers using Annotations 83

Mapper interfaces using annotations 84
Mapped statements 84

@Insert 84
Autogenerated keys 84

@Update 85
@Delete 86
@Select 86

Result maps 86
One-to-one mapping 88
One-to-many mapping 90

Dynamic SQL 92
@InsertProvider 96
@UpdateProvider 97
@DeleteProvider 97

Summary 98
Chapter 5: Integration with Spring 99

Configuring MyBatis in a Spring application 99
Installation 100
Configuring MyBatis beans 101

Working with SqlSession 103
Working with mappers 105

<mybatis:scan/> 106
@MapperScan 107

Transaction management using Spring 108
Summary 112

Index 113

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
For many software systems, saving and retrieving data from a database is a
crucial part of the process. In Java land there are many tools and frameworks
for implementing the data persistence layer and each of them follow a different
approach. MyBatis, a simple yet powerful Java persistence framework, took the
approach of eliminating the boilerplate code and leveraging the power of SQL
and Java while still providing powerful features.

This MyBatis book will take you through the process of installing, configuring,
and using MyBatis. Concepts in every chapter are explained through simple and
practical examples with step-by-step instructions.

By the end of the book, you will not only gain theoretical knowledge but also gain
hands-on practical understanding and experience on how to use MyBatis in your
real projects.

This book can also be used as a reference or to relearn the concepts that have been
discussed in each chapter. It has illustrative examples, wherever necessary, to make
sure it is easy to follow.

What this book covers
Chapter 1, Getting Started with MyBatis, introduces MyBatis persistence framework
and explains the advantages of using MyBatis instead of plain JDBC. We will also
look at how to create a project, install MyBatis framework dependencies with and
without the Maven build tool, configure, and use MyBatis.

Chapter 2, Bootstrapping MyBatis, covers how to bootstrap MyBatis using XML and
Java API-based configuration. We will also learn various MyBatis configuration
options such as type aliases, type handlers, global settings, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 3, SQL Mappers Using XML, goes in-depth into writing SQL mapped
statements using the Mapper XML files. We will learn how to configure simple
statements, statements with one-to-one, one-to-many relationships and mapping
results using ResultMaps. We will also learn how to build dynamic queries,
paginated results, and custom ResultSet handling.

Chapter 4, SQL Mappers Using Annotations, covers writing SQL mapped statements
using annotations. We will learn how to configure simple statements, statements
with one-to-one and one-to-many relationships. We will also look into building
dynamic queries using SqlProvider annotations.

Chapter 5, Integration with Spring, covers how to integrate MyBatis with Spring
framework. We will learn how to install Spring libraries, register MyBatis beans in
Spring ApplicationContext, inject SqlSession and Mapper beans, and use Spring's
annotation-based transaction handling mechanism with MyBatis.

What you need for this book
You will need the following software to follow the examples:

• Java JDK 1.5+
• MyBatis latest version (https://code.google.com/p/mybatis/)
• MySQL (http://www.mysql.com/) or any other relational database,

which has JDBC driver
• Eclipse (http://www.eclipse.org) or any of your favorite Java IDE
• Apache Maven build tool (http://maven.apache.org/)

Who this book is for
This book is for Java developers who have at least some basic experience with
databases and using JDBC. You will need to have a basic familiarity with SQL.
We do not assume that you have prior experience with MyBatis.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

A block of code is set as follows:

package com.mybatis3.domain;
import java.util.Date;
public class Student
{
 private Integer studId;
 private String name;
 private String email;
 private Date dob;
 // setters and getters
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

package com.mybatis3.domain;
import java.util.Date;
public class Student
{
 private Integer studId;
 private String name;
 private String email;
 private Date dob;
 // setters and getters
}

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.it-ebooks.info/

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with MyBatis
In this chapter, we will cover the following topics:

• What is MyBatis?
• Why MyBatis?
• Installing and configuring MyBatis
• Sample domain model

What is MyBatis?
MyBatis is an open source persistence framework that simplifies the implementation
of the persistence layer by abstracting a lot of JDBC boilerplate code and provides
a simple and easy-to-use API to interact with the database.

MyBatis was formerly known as iBATIS and was started by Clinton Begin in 2002.
MyBatis 3 is a complete redesign of iBATIS, with annotations and Mapper support.

The main reason for the popularity of MyBatis is its simplicity and ease of use. In
Java applications, the persistence layer involves populating Java objects with data
loaded from the database using SQL queries, and persisting the data in Java objects
into the database using SQL.

MyBatis makes using SQL easy by abstracting low-level JDBC code, automating the
process of populating the SQL result set into Java objects, and persisting data into
tables by extracting the data from Java objects.

If you are currently using iBATIS and want to migrate to MyBatis, you can find the
step-by-step instructions on the official MyBatis website at https://code.google.
com/p/mybatis/wiki/DocUpgrade3.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with MyBatis

[8]

Why MyBatis?
There are many Java-based persistence frameworks, however MyBatis became
popular because of the following reasons:

• It Eliminates a lot of JDBC boilerplate code
• It has a low learning curve
• It works well with legacy databases
• It embraces SQL
• It provides support for integration with Spring and Guice frameworks
• It provides support for integration with third-party cache libraries
• It induces better performance

Eliminates a lot of JDBC boilerplate code
Java has a Java DataBase Connectivity (JDBC) API to work with relational
databases. But JDBC is a very low-level API, and we need to write a lot of code
to perform database operations.

Let us examine how we can implement simple insert and select operations
on a STUDENTS table using plain JDBC.

Assume that the STUDENTS table has STUD_ID, NAME, EMAIL, and DOB columns.

The corresponding Student JavaBean is as follows:

package com.mybatis3.domain;
import java.util.Date;
public class Student
{
 private Integer studId;
 private String name;
 private String email;
 private Date dob;
 // setters and getters
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files
e-mailed directly to you.

The following StudentService.java program implements the SELECT and INSERT
operations on the STUDENTS table using JDBC.

public Student findStudentById(int studId)
{
 Student student = null;
 Connection conn = null;
 try{
//obtain connection
 conn = getDatabaseConnection();
 String sql = "SELECT * FROM STUDENTS WHERE STUD_ID=?";
//create PreparedStatement
 PreparedStatement pstmt = conn.prepareStatement(sql);
//set input parameters
 pstmt.setInt(1, studId);
 ResultSet rs = pstmt.executeQuery();
//fetch results from database and populate into Java objects
 if(rs.next()) {
 student = new Student();
 student.setStudId(rs.getInt("stud_id"));
 student.setName(rs.getString("name"));
 student.setEmail(rs.getString("email"));
 student.setDob(rs.getDate("dob"));
 }
 } catch (SQLException e){
 throw new RuntimeException(e);
 }finally{
//close connection
 if(conn!= null){
 try {
 conn.close();
 } catch (SQLException e){ }
 }
 }
 return student;
}

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support
http://www.it-ebooks.info/

Getting Started with MyBatis

[10]

public void createStudent(Student student)
{
 Connection conn = null;
 try{
//obtain connection
 conn = getDatabaseConnection();
 String sql = "INSERT INTO STUDENTS(STUD_ID,NAME,EMAIL,DOB)
 VALUES(?,?,?,?)";
//create a PreparedStatement
 PreparedStatement pstmt = conn.prepareStatement(sql);
//set input parameters
 pstmt.setInt(1, student.getStudId());
 pstmt.setString(2, student.getName());
 pstmt.setString(3, student.getEmail());
 pstmt.setDate(4, new
 java.sql.Date(student.getDob().getTime()));
 pstmt.executeUpdate();

 } catch (SQLException e){
 throw new RuntimeException(e);
 }finally{
//close connection
 if(conn!= null){
 try {
 conn.close();
 } catch (SQLException e){ }
 }
 }
}

protected Connection getDatabaseConnection() throws SQLException
{
 try{
 Class.forName("com.mysql.jdbc.Driver");
 return DriverManager.getConnection
 ("jdbc:mysql://localhost:3306/test", "root", "admin");
 } catch (SQLException e){
 throw e;
 } catch (Exception e){
 throw new RuntimeException(e);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

There is a lot of duplicate code in each of the preceding methods, for creating
a connection, creating a statement, setting input parameters, and closing the
resources, such as the connection, statement, and result set.

MyBatis abstracts all these common tasks so that the developer can focus on the
really important aspects, such as preparing the SQL statement that needs to be
executed and passing the input data as Java objects.

In addition to this, MyBatis automates the process of setting the query parameters
from the input Java object properties and populates the Java objects with the SQL
query results as well.

Now let us see how we can implement the preceding methods using MyBatis:

1. Configure the queries in a SQL Mapper config file, say StudentMapper.xml.
<select id="findStudentById" parameterType="int"
resultType=" Student">
 SELECT STUD_ID AS studId, NAME, EMAIL, DOB
 FROM STUDENTS WHERE STUD_ID=#{Id}
</select>

<insert id="insertStudent" parameterType="Student">
 INSERT INTO STUDENTS(STUD_ID,NAME,EMAIL,DOB)
 VALUES(#{studId},#{name},#{email},#{dob})
</insert>

2. Create a StudentMapper interface.
public interface StudentMapper
{
 Student findStudentById(Integer id);
 void insertStudent(Student student);
}

3. In Java code, you can invoke these statements as follows:
SqlSession session = getSqlSessionFactory().openSession();
StudentMapper mapper =
session.getMapper(StudentMapper.class);
// Select Student by Id
Student student = mapper.selectStudentById(1);
//To insert a Student record
mapper.insertStudent(student);

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with MyBatis

[12]

That's it! You don't need to create the Connection, PrepareStatement, extract,
and set parameters and close the connection by yourself for every database
operation. Just configure the database connection properties and SQL statements,
and MyBatis will take care of all the ground work.

Don't worry about what SqlSessionFactory, SqlSession, and Mapper XML files
are. These concepts will be explained in detail in the coming chapters.

Along with these, MyBatis provides many other features that simplify the
implementation of persistence logic.

• It supports the mapping of complex SQL result set data to nested object
graph structures

• It supports the mapping of one-to-one and one-to-many results
to Java objects

• It supports building dynamic SQL queries based on the input data

Low learning curve
One of the primary reasons for MyBatis' popularity is that it is very simple to learn
and use because it depends on your knowledge of Java and SQL. If developers are
familiar with Java and SQL, they will find it fairly easy to get started with MyBatis.

Works well with legacy databases
Sometimes we may need to work with legacy databases that are not in a normalized
form. It is possible, but difficult, to work with these kinds of legacy databases with
fully-fledged ORM frameworks such as Hibernate because they attempt to statically
map Java objects to database tables.

MyBatis works by mapping query results to Java objects; this makes it easy for
MyBatis to work with legacy databases. You can create Java domain objects
following the object-oriented model, execute queries against the legacy database,
and map the query results to the Java objects.

Embraces SQL
Full-fledged ORM frameworks such as Hibernate encourage working with entity
objects and generate SQL queries under the hood. Because of this SQL generation,
we may not be able to take advantage of database-specific features. Hibernate allows
to execute native SQLs, but that might defeat the promise of a database-independent
persistence.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

The MyBatis framework embraces SQL instead of hiding it from developers.
As MyBatis won't generate any SQLs and developers are responsible for preparing
the queries, you can take advantage of database-specific features and prepare
optimized SQL queries. Also, working with stored procedures is supported
by MyBatis.

Supports integration with Spring and Guice
frameworks
MyBatis provides out-of-the-box integration support for the popular dependency
injection frameworks Spring and Guice; this further simplifies working with
MyBatis.

Supports integration with third-party cache
libraries
MyBatis has inbuilt support for caching SELECT query results within the scope
of SqlSession level ResultSets. In addition to this, MyBatis also provides integration
support for various third-party cache libraries, such as EHCache, OSCache,
and Hazelcast.

Better performance
Performance is one of the key factors for the success of any software application.
There are lots of things to consider for better performance, but for many applications,
the persistence layer is a key for overall system performance.

• MyBatis supports database connection pooling that eliminates the cost of
creating a database connection on demand for every request.

• MyBatis has an in-built cache mechanism which caches the results of SQL
queries at the SqlSession level. That is, if you invoke the same mapped
select query, then MyBatis returns the cached result instead of querying the
database again.

• MyBatis doesn't use proxying heavily and hence yields better performance
compared to other ORM frameworks that use proxies extensively.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with MyBatis

[14]

There are no one-size-fits-all solutions in software development. Each
application has a different set of requirements, and we should choose
our tools and frameworks based on application needs. In the previous
section, we have seen various advantages of using MyBatis. But there
will be cases where MyBatis may not be the ideal or best solution.
If your application is driven by an object model and wants to generate
SQL dynamically, MyBatis may not be a good fit for you. Also, if
you want to have a transitive persistence mechanism (saving the
parent object should persist associated child objects as well) for your
application, Hibernate will be better suited for it.

Installing and configuring MyBatis
We are assuming that the JDK 1.6+ and MySQL 5 database servers have been
installed on your system. The installation process of JDK and MySQL is outside
the scope of this book.

At the time of writing this book, the latest version of MyBatis is MyBatis 3.2.2.
Throughout this book, we will use the MyBatis 3.2.2 version.

Even though it is not mandatory to use IDEs, such as Eclipse, NetBeans IDE, or
IntelliJ IDEA for coding, they greatly simplify development with features such as
handy autocompletion, refactoring, and debugging. You can use any of your favorite
IDEs for this purpose.

This section explains how to develop a simple Java project using MyBatis:

• By creating a STUDENTS table and inserting sample data
• By creating a Java project and adding mybatis-3.2.2.jar to the classpath
• By creating the mybatis-config.xml and StudentMapper.xml

configuration files
• By creating the MyBatisSqlSessionFactory singleton class
• By creating the StudentMapper interface and the StudentService classes
• By creating a JUnit test for testing StudentService

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Creating a STUDENTS table and inserting
sample data
Create a STUDENTS table and insert sample records in the MySQL database using the
following SQL script:.

CREATE TABLE STUDENTS
(
stud_id int(11) NOT NULL AUTO_INCREMENT,
 name varchar(50) NOT NULL,
 email varchar(50) NOT NULL,
 dob date DEFAULT NULL,
 PRIMARY KEY (stud_id)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=latin1;

/*Sample Data for the students table */
insert into students(stud_id,name,email,dob)
values (1,'Student1','student1@gmail.com','1983-06-25');

insert into students(stud_id,name,email,dob)
values (2,'Student2','student2@gmail.com','1983-06-25');

Creating a Java project and adding
mybatis-3.2.2.jar to the classpath
Let us create a Java project and configure MyBatis JAR dependencies.

1. Create a Java project named mybatis-demo.
2. If you are not using a build tool, such as Maven or Gradle, with dependency

management capabilities, you need to download the JAR files and add them
to the classpath manually.

3. You can download the MyBatis distribution mybatis-3.2.2.zip from
http://code.google.com/p/mybatis/. This bundle contains the mybatis-
3.2.2.jar file and its optional dependent jars such as the slf4j/log4j
logging jars.

4. We will use the SLF4J logging framework along with the log4j binding for
logging. The mybatis-3.2.2.zip file contains the slf4j dependency jars
as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with MyBatis

[16]

5. Extract the ZIP file and add the mybatis-3.2.2.jar, lib/slf4j-api-
1.7.5.jar, lib/slf4j-log4j12-1.7.5.jar, and lib/log4j-1.2.17.jar
JARS to the classpath.

6. You can download the JUnit JAR file from http://junit.org/ and
the driver from http://www.mysql.com/downloads/connector/j/.

7. Add junit-4.11.jar and mysql-connector-java-5.1.22.jar to
the classpath.

8. If you are using Maven, configuring these jar dependencies is much simpler.
In your pom.xml file add the following dependencies:
<dependencies>
 <dependency>
 <groupId>org.mybatis</groupId>
 <artifactId>mybatis</artifactId>
 <version>3.2.2</version>
 </dependency>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.22</version>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.7.5</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.7.5</version>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

 <scope>test</scope>
 </dependency>
</dependencies>

9. Create the log4j.properties file and put it in the classpath.
log4j.rootLogger=DEBUG, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d [%-5p] %c
- %m%n

Creating the mybatis-config.xml and
StudentMapper.xml configuration files
Let us create MyBatis' main configuration file mybatis-config.xml with database
connection properties, type aliases, and so on, and create the StudentMapper.xml
file containing mapped SQL statements.

1. Create the mybatis-config.xml file to configure database connection
properties, SQL Mapper files, type aliases, and so on, and put it in the
classpath.
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE configuration
 PUBLIC "-//mybatis.org//DTD Config 3.0//EN"
 "http://mybatis.org/dtd/mybatis-3-config.dtd">
<configuration>
<typeAliases>
 <typeAlias alias="Student"
 type="com.mybatis3.domain.Student"/>
</typeAliases>
<environments default="development">
<environment id="development">
<transactionManager type="JDBC"/>
<dataSource type="POOLED">
<property name="driver" value="com.mysql.jdbc.Driver"/>
<property name="url"
value="jdbc:mysql://localhost:3306/test"/>
<property name="username" value="root"/>
<property name="password" value="admin"/>
</dataSource>
</environment>
</environments>
<mappers>

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with MyBatis

[18]

<mapper resource="com/mybatis3/mappers/StudentMapper.xml"/>
</mappers>
</configuration>

2. Create the SQL Mapper XML file StudentMapper.xml and put it in
the classpath under the com.mybatis3.mappers package.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper
 PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
 "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
 <mapper namespace="com.mybatis3.mappers.StudentMapper">
 <resultMap type="Student" id="StudentResult">
 <id property="studId" column="stud_id"/>
 <result property="name" column="name"/>
 <result property="email" column="email"/>
 <result property="dob" column="dob"/>
 </resultMap>

 <select id="findAllStudents" resultMap="StudentResult">
 SELECT * FROM STUDENTS
</select>

<select id="findStudentById" parameterType="int"
resultType="Student">
 SELECT STUD_ID AS STUDID, NAME, EMAIL, DOB
 FROM STUDENTS WHERE STUD_ID=#{Id}
</select>

<insert id="insertStudent" parameterType="Student">
 INSERT INTO STUDENTS(STUD_ID,NAME,EMAIL,DOB)
 VALUES(#{studId },#{name},#{email},#{dob})
</insert>
</mapper>

The preceding StudentMapper.xml file contains the mapped statements that can be
invoked using the statement ID along with the namespace.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Creating the MyBatisSqlSessionFactory
singleton class
Create the MyBatisSqlSessionFactory.java class to instantiate and hold the
SqlSessionFactory singleton object.

package com.mybatis3.util;
import java.io.*;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.*;
public class MyBatisSqlSessionFactory
{
 private static SqlSessionFactory sqlSessionFactory;

 public static SqlSessionFactory getSqlSessionFactory() {
 if(sqlSessionFactory==null) {
 InputStream inputStream;
 try {
 inputStream = Resources.
 getResourceAsStream("mybatis-config.xml");
 sqlSessionFactory = new
 SqlSessionFactoryBuilder().build(inputStream);
 } catch (IOException e) {
 throw new RuntimeException(e.getCause());
 }
 }
 return sqlSessionFactory;
 }

 public static SqlSession openSession() {
 return getSqlSessionFactory().openSession();
 }

}

In the preceding code snippet, we have created the SqlSessionFactory object
that will be used to get SqlSession and execute mapped statements.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with MyBatis

[20]

Creating the StudentMapper interface and the
StudentService classes
Let us create a StudentMapper interface with method signatures similar to mapped
SQL statements and a StudentService.java class that contains the implementation
of business operations.

1. First, create the JavaBean Student.java.
package com.mybatis3.domain;
import java.util.Date;
public class Student
{
 private Integer studId;
 private String name;
 private String email;
 private Date dob;
 // setters and getters
}

2. Create a Mapper interface StudentMapper.java with the same method
signatures as the mapped statements in StudentMapper.xml.
package com.mybatis3.mappers;
import java.util.List;
import com.mybatis3.domain.Student;
public interface StudentMapper
{
 List<Student> findAllStudents();
 Student findStudentById(Integer id);
 void insertStudent(Student student);
}

3. Now create StudentService.java to implement database operations
on the STUDENTS table.
package com.mybatis3.services;
import java.util.List;
import org.apache.ibatis.session.SqlSession;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.mybatis3.domain.Student;
import com.mybatis3.mappers.StudentMapper;
import com.mybatis3.util.MyBatisSqlSessionFactory;
public class StudentService
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

 private Logger logger =
 LoggerFactory.getLogger(getClass());

 public List<Student> findAllStudents()
 {
 SqlSession sqlSession =
 MyBatisSqlSessionFactory.openSession();
 try {
 StudentMapper studentMapper =
 sqlSession.getMapper(StudentMapper.class);
 return studentMapper.findAllStudents();
 } finally {
//If sqlSession is not closed
//then database Connection associated this sqlSession will not be
returned to pool
//and application may run out of connections.
 sqlSession.close();
 }
 }

 public Student findStudentById(Integer studId)
 {
 logger.debug("Select Student By ID :{}", studId);
 SqlSession sqlSession =
 MyBatisSqlSessionFactory.openSession();
 try {
 StudentMapper studentMapper =
 sqlSession.getMapper(StudentMapper.class);
 return studentMapper.findStudentById(studId);
 } finally {
 sqlSession.close();
 }
 }

 public void createStudent(Student student)
 {
 SqlSession sqlSession =
 MyBatisSqlSessionFactory.openSession();
 try {
 StudentMapper studentMapper =
 sqlSession.getMapper(StudentMapper.class);
 studentMapper.insertStudent(student);
 sqlSession.commit();
 } finally {
 sqlSession.close();

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with MyBatis

[22]

 }
 }
}

You can also execute mapped SQL statements without using Mapper interfaces.
An example is as follows:

Student student = (Student)sqlSession.
selectOne("com.mybatis3.mappers.StudentMapper.findStudentById",
studId);

However, it is best practice to use Mapper interfaces so that we invoke mapped
statements in a type-safe manner.

Creating a JUnit test for testing
StudentService
Create a JUnit test class StudentServiceTest.java to test the
StudentService methods.

package com.mybatis3.services;
import java.util.*;
import org.junit.*;
import com.mybatis3.domain.Student;
public class StudentServiceTest
{
 private static StudentService studentService;

 @BeforeClass
 public static void setup(){
 studentService = new StudentService();
 }
 @AfterClass
 public static void teardown(){
 studentService = null;
 }

 @Test
 public void testFindAllStudents() {
 List<Student> students = studentService.findAllStudents();
 Assert.assertNotNull(students);
 for (Student student : students) {
 System.out.println(student);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

 }

 @Test
 public void testFindStudentById() {
 Student student = studentService.findStudentById(1);
 Assert.assertNotNull(student);
 System.out.println(student);
 }

 @Test
 public void testCreateStudent() {
 Student student = new Student();
 int id = 3;
 student.setStudId(id);
 student.setName("student_"+id);
 student.setEmail("student_"+id+"gmail.com");
 student.setDob(new Date());
 studentService.createStudent(student);
 Student newStudent = studentService.findStudentById(id);
 Assert.assertNotNull(newStudent);
 }
}

How it works
First, we have configured the main MyBatis configuration file, mybatis-config.
xml, with the JDBC connection parameters and configured the Mapper XML files
that contain the SQL statement's mappings.

We have created the SqlSessionFactory object using the mybatis-config.
xml file. There should be only one instance of SqlSessionFactory per database
environment, so we have used a singleton pattern to have only one instance of
SqlSessionFactory.

We have created a Mapper interface, StudentMapper, with method signatures
that are the same as those of the mapped statements in StudentMapper.xml. Note
that the StudentMapper.xml namespace value is set to com.mybatis3.mappers.
StudentMapper, which is a fully qualified name of the StudentMapper interface.
This enables us to invoke mapped statements using the Mapper interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with MyBatis

[24]

In StudentService.java, we have created a new SqlSession in each method and
closed it after the method completes. Each thread should have its own instance
of SqlSession. Instances of SqlSession objects are not thread safe and should
not be shared. So the best scope for SqlSession is the method scope. From a web
application perspective, SqlSession should have a request scope.

Sample domain model
In this section, we will discuss the sample domain model that represents
an e-learning application that will be used throughout the book.

An e-learning system enables students to enroll for courses and take lessons
through web-based mediums, such as virtual classes or desktop-sharing systems.

The tutors who are interested in teaching courses through an e-learning system can
register with the system and announce the course details that they are going to teach.

The course details include course name, description, and duration. Students from
across the globe can register and enroll for the courses that they want to learn.

The e-learning system provides a course search functionality where you can search
for the available courses by course name, tutor, start date, or end date.

The following diagram represents the database schema for our e-learning application:

Indexes

COURSE_ID INT(11)

STUD_ID INT(11)

course_enrollment courses

COURSE_ID INT(11)

NAME VARCHAR(100)

DESCRIPTION VARCHAR(512)

START_DATE DATE

END_DATE DATE

TUTOR_ID INT(11)

Indexes

Indexes

STUD_ID INT(11)

NAME VARCHAR(50)

EMAIL VARCHAR(50)

PHONE VARCHAR(15)

DOB DATE

BIO LONGTEXT

PIC BLOB

ADDR_ID INT(11)

students

ADDR_ID INT(11)

STREET VARCHAR(50)

CITY VARCHAR(50)

STATE VARCHAR(50)

ZIP VARCHAR(10)

COUNTRY VARCHAR(50)

Indexes

addresses
tutors

TUTOR_ID INT(11)

NAME VARCHAR(50)

EMAIL VARCHAR(50)

PHONE VARCHAR(15)

DOB DATE

BIO LONGTEXT

PIC BLOB

AADR_ID INT(11)

Indexes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

Summary
In this chapter, we discussed about MyBatis and the advantages of using
MyBatis instead of plain JDBC for database access. We learned how to create
a project, install MyBatis jar dependencies, create a MyBatis configuration file,
and configure SQL mapped statements in Mapper XML files. We created a Service
class to insert and get data from the database using MyBatis. We created a JUnit test
case for testing Service.

In the next chapter, we will discuss bootstrapping MyBatis using XML
and Java-API-based approaches in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrapping MyBatis
The key component of MyBatis is SqlSessionFactory from which we get
SqlSession and execute the mapped SQL statements. The SqlSessionFactory
object can be created using XML-based configuration or Java API.

We will explore various MyBatis configuration elements, such as dataSource,
environments, global settings, typeAliases, typeHandlers, and SQL mappers,
and instantiate SqlSessionFactory.

In this chapter, we will cover:

• Configuring MyBatis using XML
• Configuring MyBatis using Java API
• Customizing MyBatis logging

Configuring MyBatis using XML
The most commonly used approach for building SqlSessionFactory is XML-based
configuration. The following mybatis-config.xml file shows how a typical MyBatis
configuration file looks:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE configuration
 PUBLIC "-//mybatis.org//DTD Config 3.0//EN"
 "http://mybatis.org/dtd/mybatis-3-config.dtd">
<configuration>

 <properties resource="application.properties">
 <property name="username" value="db_user"/>
 <property name="password" value="verysecurepwd"/>
 </properties>
 <settings>

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrapping MyBatis

[28]

 <setting name="cacheEnabled" value="true"/>
</settings>
 <typeAliases>
 <typeAlias alias="Tutor" type="com.mybatis3.domain.Tutor"/>
 <package name="com.mybatis3.domain"/>
 </typeAliases>

 <typeHandlers>
 <typeHandler handler="com.mybatis3.typehandlers.
PhoneTypeHandler"/>
 <package name="com.mybatis3.typehandlers"/>
 </typeHandlers>

 <environments default="development">
 <environment id="development">
 <transactionManager type="JDBC"/>
 <dataSource type="POOLED">
 <property name="driver" value="${jdbc.driverClassName}"/>
 <property name="url" value="${jdbc.url}"/>
 <property name="username" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}"/>
 </dataSource>
 </environment>

 <environment id="production">
 <transactionManager type="MANAGED"/>
 <dataSource type="JNDI">
 <property name="data_source" value="java:comp/jdbc/MyBatisDemoDS"/>
 </dataSource>
 </environment>
 </environments>

 <mappers>
 <mapper resource="com/mybatis3/mappers/StudentMapper.xml"/>
 <mapper url="file:///D:/mybatisdemo/mappers/TutorMapper.xml"/>
 <mapper class="com.mybatis3.mappers.TutorMapper"/>
 </mappers>

</configuration>

Let us discuss each part of the preceding configuration file, starting with the most
important part, that is, environments.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

Environment
MyBatis supports configuring multiple dataSource environments so that deploying
the application in various environments, such as DEV, TEST, QA, UAT, and
PRODUCTION, can be easily achieved by changing the default environment value
to the desired environment id value. In the preceding configuration, the default
environment has been set to development. When deploying the application on to
production servers, you don't need to change the configuration much; just set the
default environment to the production environment id attribute.

Sometimes, we may need to work with multiple databases within the same
application. For example, we may have the SHOPPINGCART database to store all
the order details and the REPORTS database to store the aggregates of the order
details for reporting purposes.

If your application needs to connect to multiple databases, you'll need to configure
each database as a separate environment and create a separate SqlSessionFactory
object for each database.

<environments default="shoppingcart">
 <environment id="shoppingcart">
 <transactionManager type="MANAGED"/>
 <dataSource type="JNDI">
 <property name="data_source" value="java:comp/jdbc/
ShoppingcartDS"/>
 </dataSource>
 </environment>

 <environment id="reports">
 <transactionManager type="MANAGED"/>
 <dataSource type="JNDI">
 <property name="data_source" value="java:comp/jdbc/ReportsDS"/>
 </dataSource>
 </environment>
</environments>

We can create SqlSessionFactory for a given environment as follows:

inputStream = Resources.getResourceAsStream("mybatis-config.xml");
defaultSqlSessionFactory = new SqlSessionFactoryBuilder().
build(inputStream);
cartSqlSessionFactory = new SqlSessionFactoryBuilder().build(inputStre
am,"shoppingcart");
reportSqlSessionFactory = new SqlSessionFactoryBuilder().
build(inputStream,"reports");

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrapping MyBatis

[30]

When we create SqlSessionFactory without explicitly defining environment
id, SqlSessionFactory will be created using the default environment. In the
preceding code, defaultSqlSessionFactory was created using the shoppingcart
environment settings.

For each environment, we need to configure the dataSource and
transactionManager elements.

DataSource
The dataSource element is used to configure the database connection properties.

<dataSource type="POOLED">
 <property name="driver" value="${jdbc.driverClassName}"/>
 <property name="url" value="${jdbc.url}"/>
 <property name="username" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}"/>
</dataSource>

The dataSource type can be one of the built-in types such as UNPOOLED, POOLED,
or JNDI.

• If you set the type to UNPOOLED, MyBatis will open a new connection and
close that connection for every database operation. This method can be used
for simple applications that have a small number of concurrent users.

• If you set the type to POOLED, MyBatis will create a pool of database
connections, and one of these connections will be used for the database
operation. Once this is complete, MyBatis will return the connection to the
pool. This is a commonly used method for developing/testing environments.

• If you set the type to JNDI, MyBatis will get the connection from the JNDI
dataSource that has typically been configured in the application server.
This is a preferred method in production environments.

TransactionManager
MyBatis supports two types of transaction managers: JDBC and MANAGED.

• The JDBC transaction manager is used where the application is responsible
for managing the connection life cycle, that is, commit, rollback, and
so on. When you set the TransactionManager property to JDBC, behind
the scenes MyBatis uses the JdbcTransactionFactory class to create
TransactionManager. For example, an application deployed on Apache
Tomcat should manage the transactions by itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

• The MANAGED transaction manager is used where the application server
is responsible for managing the connection life cycle. When you set the
TransactionManager property to MANAGED, behind the scenes MyBatis uses
the ManagedTransactionFactory class to create TransactionManager.
For example, a JavaEE application deployed on an application server,
such as JBoss, WebLogic, or GlassFish, can leverage the application
server's transaction management capabilities using EJB. In these managed
environments, you can use the MANAGED transaction manager.

Properties
The properties configuration element can be used to externalize the configuration
values into a properties file and use the properties' key names as placeholders. In the
preceding configuration, we have externalized the database connection properties
into the application.properties file and used placeholders for the driver, URL,
and so on.

1. Configure the database connection parameters in application.properties
as follows:
jdbc.driverClassName=com.mysql.jdbc.Driver
jdbc.url=jdbc:mysql://localhost:3306/mybatisdemo
jdbc.username=root
jdbc.password=admin

2. In mybatis-config.xml, use the placeholders for the properties defined
in application.properties.

<properties resource="application.properties">
 <property name="jdbc.username" value="db_user"/>
 <property name="jdbc.password" value="verysecurepwd"/>
</properties>

<dataSource type="POOLED">
 <property name="driver" value="${jdbc.driverClassName}"/>
 <property name="url" value="${jdbc.url}"/>
 <property name="username" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}"/>
</dataSource>

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrapping MyBatis

[32]

Also, you can configure the default parameter values inside the <properties>
element; they will be overridden by the values in the properties file if there are
properties with the same key name.

<properties resource="application.properties">
 <property name="jdbc.username" value="db_user"/>
 <property name="jdbc.password" value="verysecurepwd"/>
</properties>

Here, the username and password values db_user and verysecurepwd will be
overridden by the values in application.properties if the application.
peroperties file contains the key names jdbc.username and jdbc.password.

typeAliases
In the SQL Mapper configuration file, we need to give the fully qualified name
of the JavaBeans for the resultType and parameterType attributes.

An example is as follows:

<select id="findStudentById" parameterType="int"
 resultType="com.mybatis3.domain.Student">
 SELECT STUD_ID AS ID, NAME, EMAIL, DOB
 FROM STUDENTS WHERE STUD_ID=#{Id}
</select>

<update id="updateStudent" parameterType="com.mybatis3.domain.
Student">
 UPDATE STUDENTS SET NAME=#{name}, EMAIL=#{email}, DOB=#{dob}
 WHERE STUD_ID=#{id}
</update>

Here we are giving the fully qualified name of the Student type com.mybatis3.
domain.Student for the resultType and parameterType attributes.

Instead of typing the fully qualified names everywhere, we can give the alias names
and use these alias names in all the other places where we need to give the fully
qualified names.

An example is as follows:

<typeAliases>
 <typeAlias alias="Student" type="com.mybatis3.domain.Student"/>
 <typeAlias alias="Tutor" type="com.mybatis3.domain.Tutor"/>
 <package name="com.mybatis3.domain"/>
</typeAliases>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Now in the SQL Mapper file, we can use the alias name Student as follows:

<select id="findStudentById" parameterType="int" resultType="Student">
 SELECT STUD_ID AS ID, NAME, EMAIL, DOB
 FROM STUDENTS WHERE STUD_ID=#{id}
</select>

<update id="updateStudent" parameterType="Student">
 UPDATE STUDENTS SET NAME=#{name}, EMAIL=#{email}, DOB=#{dob}
 WHERE STUD_ID=#{id}
</update>

Instead of giving an alias name for each JavaBeans separately, you can give the
package name where MyBatis can scan and register aliases using uncapitalized,
nonqualified class names of the Bean.

An example is as follows:

<typeAliases>
<package name="com.mybatis3.domain"/>
</typeAliases>

If there are Student.java and Tutor.java Beans in the com.mybatis3.domain
package, com.mybatis3.domain.Student will be registered as student and com.
mybatis3.domain.Tutor will be registered as tutor.

An example is as follows:

<typeAliases>
 <typeAlias alias="Student" type="com.mybatis3.domain.Student"/>
 <typeAlias alias="Tutor" type="com.mybatis3.domain.Tutor"/>
 <package name="com.mybatis3.domain"/>
 <package name="com.mybatis3.webservices.domain"/>
</typeAliases>

There is another way of aliasing JavaBeans, using the @Alias annotation.

@Alias("StudentAlias")
public class Student
{
}

The @Alias annotation overrides the <typeAliases> configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrapping MyBatis

[34]

typeHandlers
As discussed in the previous chapter, MyBatis simplifies the persistent logic
implementation by abstracting JDBC. MyBatis uses JDBC under the hood and
provides simpler ways to implement database operations.

When MyBatis executes an INSERT statement by taking a Java object as an input
parameter, it will create PreparedStatement and set the parameter values for the
placeholders using the setXXX() methods.

Here XXX can be any one of Int, String, Date, and so on, based on the type
of Java property.

An example is as follows:

<insert id="insertStudent" parameterType="Student">
 INSERT INTO STUDENTS(STUD_ID,NAME,EMAIL,DOB)
VALUES(#{studId},#{name},#{email},#{dob})
</insert>

To execute this statement, MyBatis will perform the following sequence of actions.

1. Create a PreparedStatement interface with placeholders as follows:
PreparedStatement pstmt = connection.prepareStatement
("INSERT INTO STUDENTS(STUD_ID,NAME,EMAIL,DOB) VALUES(?,?,?,?)");

2. Check the property type of studId in the Student object and use the
appropriate setXXX method to set the value. Here studId is of the type
integer, so it will use the setInt() method.
pstmt.setInt(1,student.getStudId());

3. Similarly, for the name and email attributes MyBatis will use the
setString() methods because they are of the type String.
pstmt.setString(2, student.getName());
pstmt.setString(3, student.getEmail());

4. And for the dob property, MyBatis will use the setDate() method for setting
the dob place holder value.

5. MyBatis first converts java.util.Date into java.sql.Timestamp and sets
the value.
pstmt.setTimestamp(4, new Timestamp((student.getDob()).
getTime()));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

Cool. But how does MyBatis know to use setInt() for the Integer and
setString for the String type properties? MyBatis determines all these
things using type handlers.

MyBatis comes with built-in type handlers for all primitive types, primitive
wrapper types, byte[], java.util.Date, java.sql.Date, java.sql.Time, java.
sql.Timestamp, java enums, and so on. So when MyBatis finds one of these
types of properties, it uses the corresponding type handler to set the value on
PreparedStatement, while at the same time populating the JavaBeans from the
SQL Result Set.

What if we give a custom object type value to store into the database?

An example is as follows:

Assume that the STUDENTS table has a PHONE column that is of the type VARCHAR(15).
The JavaBeans Student has the phoneNumber property of the PhoneNumber class.

public class PhoneNumber
{
 private String countryCode;
 private String stateCode;
 private String number;

 public PhoneNumber() {
 }

 public PhoneNumber(String countryCode, String stateCode, String
number) {
 this.countryCode = countryCode;
 this.stateCode = stateCode;
 this.number = number;
 }

 public PhoneNumber(String string) {
 if(string != null){
 String[] parts = string.split("-");
 if(parts.length>0) this.countryCode=parts[0];
 if(parts.length>1) this.stateCode=parts[1];
 if(parts.length>2) this.number=parts[2];
 }
 }

 public String getAsString() {
 return countryCode+"-"+stateCode+"-"+number;

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrapping MyBatis

[36]

 }
 // Setters and getters
}

public class Student
{
 private Integer id;
 private String name;
 private String email;
 private PhoneNumber phone;
 // Setters and getters
}

<insert id="insertStudent" parameterType="Student">
 insert into students(name,email,phone)
 values(#{name},#{email},#{phone})
</insert>

Here, for the phone parameter we have given the value #{phone}; this gives the
phone object that is of the type PhoneNumber. However, MyBatis doesn't know how
to handle this type of object.

To let MyBatis understand how to handle custom Java object types, such as
PhoneNumber, we can create a custom type handler as follows:

1. MyBatis provides an abstract class BaseTypeHandler<T> that we can extend
to create custom type handlers.
packagecom.mybatis3.typehandlers;

importjava.sql.CallableStatement;
importjava.sql.PreparedStatement;
importjava.sql.ResultSet;
importjava.sql.SQLException;
importorg.apache.ibatis.type.BaseTypeHandler;
importorg.apache.ibatis.type.JdbcType;
importcom.mybatis3.domain.PhoneNumber;

public class PhoneTypeHandler extends BaseTypeHandler<PhoneNumber>
{

 @Override
 public void setNonNullParameter(PreparedStatement ps, int i,
 PhoneNumber parameter, JdbcType jdbcType) throws
SQLException {
 ps.setString(i, parameter.getAsString());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

 }

 @Override
 public PhoneNumber getNullableResult(ResultSet rs, String
columnName)
 throws SQLException {
 return new PhoneNumber(rs.getString(columnName));
 }

 @Override
 public PhoneNumber getNullableResult(ResultSet rs, int
columnIndex)
 throws SQLException {
 return new PhoneNumber(rs.getString(columnIndex));
 }

 @Override
 public PhoneNumber getNullableResult(CallableStatement cs, int
columnIndex)
 throws SQLException {
 return new PhoneNumber(cs.getString(columnIndex));
 }
}

2. We are using the ps.setString() and rs.getString() methods because
the phone number is being stored in a VARCHAR type column.

3. Once the custom type handler is implemented, we need to register it in
mybatis-config.xml.
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE configuration
 PUBLIC "-//mybatis.org//DTD Config 3.0//EN"
 "http://mybatis.org/dtd/mybatis-3-config.dtd">
<configuration>
 <properties resource="application.properties"/>

 <typeHandlers>
 <typeHandler handler="com.mybatis3.typehandlers.
PhoneTypeHandler"/>
 </typeHandlers>

</configuration>

After registering PhoneTypeHandler, MyBatis will be able to store the Phone type
object value into any VARCHAR type column.

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrapping MyBatis

[38]

Settings
The default MyBatis global settings, which can be overridden to better suit
application-specific needs, are as follows:

<settings>
<setting name="cacheEnabled" value="true"/>
 <setting name="lazyLoadingEnabled" value="true"/>
 <setting name="multipleResultSetsEnabled" value="true"/>
 <setting name="useColumnLabel" value="true"/>
 <setting name="useGeneratedKeys" value="false"/>
 <setting name="autoMappingBehavior" value="PARTIAL"/>
 <setting name="defaultExecutorType" value="SIMPLE"/>
 <setting name="defaultStatementTimeout" value="25000"/>
 <setting name="safeRowBoundsEnabled" value="false"/>
 <setting name="mapUnderscoreToCamelCase" value="false"/>
 <setting name="localCacheScope" value="SESSION"/>
 <setting name="jdbcTypeForNull" value="OTHER"/>
 <setting name="lazyLoadTriggerMethods" value="equals,clone,hashCode
,toString"/>
</settings>

Mappers
Mapper XML files contain the mapped SQL statements that will be executed by
the application using statement id. We need to configure the locations of the SQL
Mapper files in mybatis-config.xml.

<mappers>
 <mapper resource="com/mybatis3/mappers/StudentMapper.xml"/>
 <mapper url="file:///D:/mybatisdemo/app/mappers/TutorMapper.xml"/>
 <mapper class="com.mybatis3.mappers.TutorMapper"/>
 <package name="com.mybatis3.mappers"/>
 </mappers>

Each of the <mapper> tag attributes facilitates to load mappers from different kinds
of sources:

• The attribute resource can be used to point to a mapper file that is
in the classpath

• The attribute url can be used to point to a mapper file by its fully qualified
filesystem path or web URL

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

• The attribute class can be used to point to a Mapper interface
• The package element can be used to point to a package name where Mapper

interfaces can be found

Configuring MyBatis using Java API
In the previous section, we have discussed various MyBatis configuration elements,
such as environments, typeAliases, and typeHandlers, and how to configure them
using XML. Even though you want to use the Java-API-based MyBatis configuration,
it would be good to go through the previous section to have a better idea about these
configuration elements. In this section, we will be referring to some of the classes
described in the previous section.

MyBatis' SqlSessionFactory interface can be created programmatically using the
Java API instead of using the XML-based configuration. Each configuration element
used in an XML-based configuration can be created programmatically.

We can create the SqlSessionFactory object using the Java API as follows:

public static SqlSessionFactory getSqlSessionFactory()
{
 SqlSessionFactory sqlSessionFactory = null;
 try{
 DataSource dataSource = DataSourceFactory.getDataSource();
 TransactionFactory transactionFactory = new
JdbcTransactionFactory();
 Environment environment = new Environment("development",
transactionFactory, dataSource);
 Configuration configuration = new Configuration(environment);
 configuration.getTypeAliasRegistry().registerAlias("student",
Student.class);
 configuration.getTypeHandlerRegistry().register(PhoneNumber.
class,PhoneTypeHandler.class);
 configuration.addMapper(StudentMapper.class);
 sqlSessionFactory = new SqlSessionFactoryBuilder().
build(configuration);

 }catch (Exception e){
 throw new RuntimeException(e);
 }
 return sqlSessionFactory;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrapping MyBatis

[40]

Environment
We need to create an Environment object for each database that we want to
connect to using MyBatis. To work with multiple databases, we'll need to create
a SqlSessionFactory object for each environment. To create an instance of
Environment, we'll need the javax.sql.DataSource and TransactionFactory
instances. Let us see how to create the DataSource and TransactionFactory objects.

DataSource
MyBatis supports three built-in DataSource types: UNPOOLED, POOLED, and JNDI.

• The UNPOOLED dataSource creates a new database connection every time for
each user request and is not advisable for concurrent multiuser applications.

• The POOLED dataSource creates a pool of Connection objects, and for every
user request, it will use one of the Connection objects readily available in
the pool, thereby increasing performance. MyBatis provides org.apache.
ibatis.datasource.pooled.PooledDataSource that implements javax.
sql.DataSource to create a Connection pool.

• The JNDI dataSource uses the Connection pool configured in the application
server and obtains a connection using a JNDI lookup.

Let us see how we can get a DataSource object using MyBatis' PooledDataSource
interface:

public class DataSourceFactory
{
 public static DataSource getDataSource()
 {
 String driver = "com.mysql.jdbc.Driver";
 String url = "jdbc:mysql://localhost:3306/mybatisdemo";
 String username = "root";
 String password = "admin";
 PooledDataSource dataSource = new PooledDataSource(driver, url,
username, password);
 return dataSource;
 }
}

Generally in production environments, DataSource will be configured in
the application server and get the DataSource object using JNDI as follows:

public class DataSourceFactory
{
 public static DataSource getDataSource()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

 {
 String jndiName = "java:comp/env/jdbc/MyBatisDemoDS";
 try {
 InitialContext ctx = new InitialContext();
 DataSource dataSource = (DataSource) ctx.lookup(jndiName);
 return dataSource;
 }
 catch (NamingException e) {
 throw new RuntimeException(e);
 }
 }
}

There are many popular third-party libraries, such as commons-dbcp and c3p0,
implementing javax.sql.DataSource, and you can use any of these libraries
to create a dataSource.

TransactionFactory
MyBatis supports the following two types of TransactionFactory implementations:

• JdbcTransactionFactory

• ManagedTransactionFactory

If the application is running in a non-managed environment, you should use
JdbcTransactionFactory.

DataSource dataSource = DataSourceFactory.getDataSource();
TransactionFactory txnFactory = new JdbcTransactionFactory();
Environment environment = new Environment("development", txnFactory,
dataSource);

If the application is running in a managed environment and uses
container-supported transaction management services, you should use
ManagedTransactionFactory.

DataSource dataSource = DataSourceFactory.getDataSource();
TransactionFactory txnFactory = new ManagedTransactionFactory();
Environment environment = new Environment("development", txnFactory,
dataSource);

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrapping MyBatis

[42]

typeAliases
MyBatis provides several ways of registering Type Aliases with the
Configuration object.

• To register an alias for a single class with an uncapitalized, nonqualified class
name according to the default alias rule, use the following code:
configuration.getTypeAliasRegistry().registerAlias(Student.class);

• To register a single class alias with a given alias name, use the following
code:
configuration.getTypeAliasRegistry().registerAlias("Student",
Student.class);

• To register a single class alias name for the given fully qualified class name,
use the following code:
configuration.getTypeAliasRegistry().registerAlias("Student",
"com.mybatis3.domain.Student");

• To register aliases for all the classes in the com.mybatis3.domain package,
use the following code:
configuration.getTypeAliasRegistry().registerAliases("com.
mybatis3.domain");

• To register aliases for the classes that extend the Identifiable type in the
com.mybatis3.domain package, use the following code

configuration.getTypeAliasRegistry().registerAliases("com.
mybatis3.domain", Identifiable.class);

typeHandlers
MyBatis provides several ways of registering type handlers with the Configuration
object. We can register custom type handlers using the Configuration object
as follows:

• To register a type handler for a specific Java class:
configuration.getTypeHandlerRegistry().register(PhoneNumber.
class,PhoneTypeHandler.class);

• To register a type handler:
configuration.getTypeHandlerRegistry().register(PhoneTypeHandler.
class);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

• To register all the type handlers in the com.mybatis3.typehandlers
package:
configuration.getTypeHandlerRegistry().register("com.mybatis3.
typehandlers");

Settings
MyBatis comes with a set of default global settings that suit well for most
applications. However, you can tweak these settings to better suit your application
needs. You can use the following methods to set the values of the global settings to
the desired values.

 configuration.setCacheEnabled(true);
 configuration.setLazyLoadingEnabled(false);
 configuration.setMultipleResultSetsEnabled(true);
 configuration.setUseColumnLabel(true);
 configuration.setUseGeneratedKeys(false);
 configuration.setAutoMappingBehavior(AutoMappingBehavior.PARTIAL);
 configuration.setDefaultExecutorType(ExecutorType.SIMPLE);
 configuration.setDefaultStatementTimeout(25);
 configuration.setSafeRowBoundsEnabled(false);
 configuration.setMapUnderscoreToCamelCase(false);
 configuration.setLocalCacheScope(LocalCacheScope.SESSION);
 configuration.setAggressiveLazyLoading(true);
 configuration.setJdbcTypeForNull(JdbcType.OTHER);
 Set<String> lazyLoadTriggerMethods = new HashSet<String>();
 lazyLoadTriggerMethods.add("equals");
 lazyLoadTriggerMethods.add("clone");
 lazyLoadTriggerMethods.add("hashCode");
 lazyLoadTriggerMethods.add("toString");
 configuration.setLazyLoadTriggerMethods(lazyLoadTriggerMethods);

Mappers
MyBatis provides several ways of registering Mapper XML files and Mapper
interfaces with the Configuration object.

• To add a single Mapper interface, use the following code:
configuration.addMapper(StudentMapper.class);

• To add all the Mapper XML files or interfaces in the com.mybatis3.mappers
package, use the following code:
configuration.addMappers("com.mybatis3.mappers");

www.it-ebooks.info

http://www.it-ebooks.info/

Bootstrapping MyBatis

[44]

• To add all the Mapper interfaces that extend an interface, say BaseMapper,
in the com.mybatis3.mappers package, use the following code:
configuration.addMappers("com.mybatis3.mappers", BaseMapper.
class);

Mappers should be added to the configuration only after registering
typeAliases and typeHandlers if they have been used.

Customizing MyBatis logging
MyBatis uses its internal LoggerFactory as a facade to actual logging libraries.
The internal LoggerFactory will delegate the logging task to one of the following
actual logger implementations, with the priority decreasing from top to bottom in
the given order:

• SLF4J
• Apache Commons Logging
• Log4j 2
• Log4j
• JDK logging

If MyBatis finds none of the previous implementations, logging will be disabled.

If your application is running in an environment where multiple logging libraries
are available in its classpath and you want MyBatis to use a specific logging
implementation, you can do this by calling one of the following methods:

• org.apache.ibatis.logging.LogFactory.useSlf4jLogging();

• org.apache.ibatis.logging.LogFactory.useLog4JLogging();

• org.apache.ibatis.logging.LogFactory.useLog4J2Logging();

• org.apache.ibatis.logging.LogFactory.useJdkLogging();

• org.apache.ibatis.logging.LogFactory.useCommonsLogging();

• org.apache.ibatis.logging.LogFactory.useStdOutLogging();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

If you want to customize MyBatis logging, you should call one of
these methods before calling any other MyBatis methods. If the
logging library that you want to switch is not available at runtime,
MyBatis will ignore the request.

Summary
In this chapter, we learned how to bootstrap MyBatis using XML and Java-API-based
configuration. We also learned about various configuration options, such as type
aliases, type handlers, and global settings. In the next chapter, we will discuss SQL
Mappers; they are the key elements of MyBatis.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using XML
Relational databases and SQL are time-tested and proven data storage mechanisms.
Unlike other ORM frameworks such as Hibernate, MyBatis encourages the use of
SQL instead of hiding it from developers, thereby utilizing the full power of SQL
provided by the database server. At the same time, MyBatis eliminates the pain of
writing boilerplate code and makes using SQL easy.

Embedding SQL queries directly inside the code is a bad practice and hard to maintain.
MyBatis configures SQL statements using Mapper XML files or annotations. In this
chapter, we will see how to configure mapped statements in Mapper XML files in
detail; we will cover the following topics:

• Mapper XMLs and Mapper interfaces
• Mapped statements

 ° Configuring INSERT, UPDATE, DELETE, and SELECT statements

• ResultMaps
 ° Simple ResultMaps
 ° One-to-one mapping using a nested Select query
 ° One-to-one mapping using nested results mapping
 ° One-to-many mapping using a nested Select query
 ° One-to-many mapping using nested results mapping

• Dynamic SQL
 ° The If condition
 ° The choose (when, otherwise) condition
 ° The trim (where, set) condition
 ° The foreach loop

• MyBatis recipes

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using XML

[48]

Mapper XMLs and Mapper interfaces
In the previous chapters, we have seen some basic examples of how to configure
mapped statements in Mapper XML files and how to invoke them using the
SqlSession object.

Let us now see how the findStudentById mapped statement can be configured in
StudentMapper.xml, which is in the com.mybatis3.mappers package, using the
following code:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper
 PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
 "http://mybatis.org/dtd/mybatis-3-mapper.dtd">

 <mapper namespace="com.mybatis3.mappers.StudentMapper">
 <select id="findStudentById" parameterType="int"
 resultType="Student">
 select stud_id as studId, name, email, dob from Students where
stud_id=#{studId}
 </select>
</mapper>

We can invoke the mapped statement as follows:

public Student findStudentById(Integer studId)
{
 SqlSession sqlSession = MyBatisUtil.getSqlSession();
 try
 {
 Student student =
sqlSession.selectOne("com.mybatis3.mappers.StudentMapper.
findStudentById", studId);
 return student;
 } finally {
 sqlSession.close();
 }
}

We can invoke mapped statements such as the previous one using string literals
(namespace and statement id), but this exercise is error prone. You need to make
sure to pass the valid input type parameter and assign the result to a valid return
type variable by checking it in the Mapper XML file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

MyBatis provides a better way of invoking mapped statements by using Mapper
interfaces. Once we have configured the mapped statements in the Mapper XML
file, we can create a Mapper interface with a fully qualified name that is the same as
the namespace and add the method signatures with matching statement IDs, input
parameters, and return types.

For the preceding StudentMapper.xml file, we can create a Mapper interface
StudentMapper.java as follows:

package com.mybatis3.mappers;
public interface StudentMapper
{
 Student findStudentById(Integer id);
}

In the StudentMapper.xml file, the namespace should be the same as the fully
qualified name of the StudentMapper interface that is com.mybatis3.mappers.
StudentMapper. Also, the statement id, parameterType, and returnType values in
StudentMapper.xml should be the same as the method name, argument type, and
return type in the StudentMapper interface respectively.

Using Mapper interfaces, you can invoke mapped statements in a type safe manner
as follows:

public Student findStudentById(Integer studId)
{
 SqlSession sqlSession = MyBatisUtil.getSqlSession();
 try {
 StudentMapper studentMapper =
sqlSession.getMapper(StudentMapper.class);
 return studentMapper.findStudentById(studId);
 } finally {
 sqlSession.close();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using XML

[50]

Even though Mapper interfaces are enabled to invoke mapped statements
in a type safe manner, it is our responsibility to write Mapper interfaces
with correct, matching method names, argument types, and return types.
If the Mapper interface methods do not match the mapped statements
in XML, you will get exceptions at runtime. Actually, specifying
parameterType is optional; MyBatis can determine parameterType by
using Reflection API. But from a readability perspective, it would be
better to specify the parameterType attribute. If the parameterType
attribute has not been mentioned, the developer will have to switch
between Mapper XML and Java code to know what type of input
parameter is being passed to that statement.

Mapped statements
MyBatis provides various elements to configure different types of statements,
such as SELECT, INSERT, UPDATE, and DELETE. Let us see how to configure mapped
statements in detail.

The INSERT statement
An INSERT query can be configured in a Mapper XML file using the <insert>
element as follows:

<insert id="insertStudent" parameterType="Student">
 INSERT INTO STUDENTS(STUD_ID,NAME,EMAIL, PHONE)
 VALUES(#{studId},#{name},#{email},#{phone})
</insert>

Here, we are giving an ID insertStudent that can be uniquely identified along
with the namespace com.mybatis3.mappers.StudentMapper.insertStudent.
The parameterType attribute value should be a fully qualified class name or type
alias name.

We can invoke this statement as follows:

int count =
sqlSession.insert("com.mybatis3.mappers.StudentMapper.insertStuden
t", student);

The sqlSession.insert() method returns the number of rows affected by the
INSERT statement.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

Instead of invoking the mapped statement using namespace and the statement
id, you can create a Mapper interface and invoke the method in a type safe manner
as follows:

package com.mybatis3.mappers;
public interface StudentMapper
{
 int insertStudent(Student student);
}

You can invoke the insertStudent mapped statement as follows:

StudentMapper mapper = sqlSession.getMapper(StudentMapper.class);
int count = mapper.insertStudent(student);

Autogenerated keys
In the preceding INSERT statement, we are inserting the value for the
STUD_ID column that is an auto_generated primary key column. We can use
the useGeneratedKeys and keyProperty attributes to let the database generate
the auto_increment column value and set that generated value into one of the
input object properties as follows:

<insert id="insertStudent" parameterType="Student"
useGeneratedKeys="true" keyProperty="studId">
 INSERT INTO STUDENTS(NAME, EMAIL, PHONE)
 VALUES(#{name},#{email},#{phone})
</insert>

Here the STUD_ID column value will be autogenerated by MySQL database,
and the generated value will be set to the studId property of the student object.

StudentMapper mapper = sqlSession.getMapper(StudentMapper.class);
mapper.insertStudent(student);

Now you can obtain the STUD_ID value of the inserted STUDENT record as follows:

int studentId = student.getStudId();

Some databases such as Oracle don't support AUTO_INCREMENT columns and use
SEQUENCE to generate the primary key values.

Assume we have a SEQUENCE called STUD_ID_SEQ to generate the STUD_ID primary
key values. Use the following code to generate the primary key:

<insert id="insertStudent" parameterType="Student">
 <selectKey keyProperty="studId" resultType="int" order="BEFORE">
 SELECT ELEARNING.STUD_ID_SEQ.NEXTVAL FROM DUAL

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using XML

[52]

 </selectKey>
 INSERT INTO STUDENTS(STUD_ID,NAME,EMAIL, PHONE)
 VALUES(#{studId},#{name},#{email},#{phone})
</insert>

Here we used the <selectKey> subelement to generate the primary key value
and stored it in the studId property of the Student object. The attribute
order="BEFORE" indicates that MyBatis will get the primary key value, that is, the
next value from the sequence and store it in the studId property before executing
the INSERT query.

We can also set the primary key value using a trigger where we will obtain the next
value from the sequence and set it as the primary key column value before executing
the INSERT query.

If you are using this approach, the INSERT mapped statement will be as follows:

<insert id="insertStudent" parameterType="Student">
 INSERT INTO STUDENTS(NAME,EMAIL, PHONE)
 VALUES(#{name},#{email},#{phone})
 <selectKey keyProperty="studId" resultType="int" order="AFTER">
 SELECT ELEARNING.STUD_ID_SEQ.CURRVAL FROM DUAL
 </selectKey>
</insert>

The UPDATE statement
An UPDATE statement can be configured in the Mapper XML file using the <update>
element as follows:

<update id="updateStudent" parameterType="Student">
 UPDATE STUDENTS SET NAME=#{name}, EMAIL=#{email}, PHONE=#{phone}
 WHERE STUD_ID=#{studId}
</update>

We can invoke this statement as follows:

int noOfRowsUpdated =
sqlSession.update("com.mybatis3.mappers.StudentMapper.updateStudent",
student);

The sqlSession.update() method returns the number of rows affected by this
UPDATE statement.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

Instead of invoking the mapped statement using namespace and the statement id, you
can create a Mapper interface and invoke the method in a type safe way as follows:

package com.mybatis3.mappers;
public interface StudentMapper
{
 int updateStudent(Student student);
}

You can invoke the updateStudent statement using the Mapper interface as follows:

StudentMapper mapper = sqlSession.getMapper(StudentMapper.class);
int noOfRowsUpdated = mapper.updateStudent(student);

The DELETE statement
A DELETE statement can be configured in the Mapper XML file using the <delete>
element as follows:

<delete id="deleteStudent" parameterType="int">
 DELETE FROM STUDENTS WHERE STUD_ID=#{studId}
</delete>

We can invoke this statement as follows:

int studId =1;
int noOfRowsDeleted =
sqlSession.delete("com.mybatis3.mappers.StudentMapper.deleteStuden
t", studId);

The sqlSession.delete() method returns the number of rows affected by this
delete statement.

Instead of invoking the mapped statement using namespace and the
statement id, you can create a Mapper interface and invoke the method
in a type safe way as follows:

package com.mybatis3.mappers;
public interface StudentMapper
{
 int deleteStudent(int studId);
}

You can invoke the deleteStudent statement using the Mapper interface as follows:

StudentMapper mapper = sqlSession.getMapper(StudentMapper.class);
int noOfRowsDeleted = mapper.deleteStudent(studId);

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using XML

[54]

The SELECT statement
The true power of MyBatis will be known only by finding out how flexible MyBatis
is for mapping SELECT query results to JavaBeans.

Let us see how a simple select query can be configured, using the following code:

<select id="findStudentById" parameterType="int"
resultType="Student">
 SELECT STUD_ID, NAME, EMAIL, PHONE
 FROM STUDENTS
 WHERE STUD_ID=#{studId}
</select>

We can invoke this statement as follows:

int studId =1;
Student student = sqlSession.selectOne("com.mybatis3.mappers.
StudentMapper.findStudentById", studId);

The sqlSession.selectOne() method returns the object of the type configured for
the resultType attribute. If the query returns multiple rows for the sqlSession.
selectOne() method, TooManyResultsException will be thrown.

Instead of invoking the mapped statement using namespace and the statement id, you
can create a Mapper interface and invoke the method in a type safe manner as follows:

package com.mybatis3.mappers;
public interface StudentMapper
{
 Student findStudentById(Integer studId);
}

You can invoke the findStudentById statement using the Mapper interface
as follows:

StudentMapper mapper = sqlSession.getMapper(StudentMapper.class);
Student student = mapper.findStudentById(studId);

If you check the property values of the Student object, you will observe that the
studId property value is not populated with the stud_id column value. This is
because MyBatis automatically populates the JavaBeans properties with the column
values that have a matching column name. That is why, the properties name, email,
and phone get populated but the studId property does not get populated.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

To resolve this, we can give alias names for the columns to match with the Java
Beans property names as follows:

<select id="findStudentById" parameterType="int"
resultType="Student">
 SELECT STUD_ID AS studId, NAME,EMAIL, PHONE
 FROM STUDENTS
 WHERE STUD_ID=#{studId}
</select>

Now the Student bean will get populated with all the stud_id, name, email,
and phone columns properly.

Now let us see how to execute a SELECT query that returns multiple rows as shown
in the following code:

<select id="findAllStudents" resultType="Student">
 SELECT STUD_ID AS studId, NAME,EMAIL, PHONE
 FROM STUDENTS
</select>

List<Student> students =
sqlSession.selectList("com.mybatis3.mappers.StudentMapper.findAllS
tudents");

The Mapper interface StudentMapper can also be used as follows:

package com.mybatis3.mappers;
public interface StudentMapper
{
 List<Student> findAllStudents();
}

Using the previous code, you can invoke the findAllStudents statement with the
Mapper interface as follows:

StudentMapper mapper = sqlSession.getMapper(StudentMapper.class);
List<Student> students = mapper.findAllStudents();

If you observe the preceding SELECT query mappings, we are giving the alias name
for stud_id in all the mapped statements.

Instead of repeating the alias names everywhere, we can use ResultMaps, which we
are going to discuss in a moment.

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using XML

[56]

Instead of java.util.List, you can also use other types of collections, such as
Set, Map, and SortedSet. Based on the type of the collection, MyBatis will use an
appropriate collection implementation as follows:

• For the List, Collection, or Iterable types, java.util.ArrayList
will be returned

• For the Map type, java.util.HashMap will be returned
• For the Set type, java.util.HashSet will be returned
• For the SortedSet type, java.util.TreeSet will be returned

ResultMaps
ResultMaps are used to map the SQL SELECT statement's results to JavaBeans
properties. We can define ResultMaps and reference this resultMap query from
several SELECT statements. The MyBatis ResultMaps feature is so powerful that you
can use it for mapping simple SELECT statements to complex SELECT statements with
one-to-one and one-to-many associations.

Simple ResultMaps
A simple resultMap query that maps query results to the Student JavaBeans
is as follows:

<resultMap id="StudentResult" type="com.mybatis3.domain.Student">
 <id property="studId" column="stud_id"/>
 <result property="name" column="name"/>
 <result property="email" column="email"/>
 <result property="phone" column="phone"/>
</resultMap>

<select id="findAllStudents" resultMap="StudentResult" >
 SELECT * FROM STUDENTS
</select>

<select id="findStudentById" parameterType="int"
resultMap="StudentResult">
 SELECT * FROM STUDENTS WHERE STUD_ID=#{studId}
</select>

The id attribute of resultMap StudentResult should be unique within the
namespace, and the type should be a fully qualified name or alias name of the
return type.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

The <result> sub-elements are used to map a resultset column to
a JavaBeans property.

The <id> element is similar to <result> but is used to map the identifier property
that is used for comparing objects.

In the <select> statement, we have used the resultMap attribute instead of
resultType to refer the StudentResult mapping. When a resultMap attribute
is configured for a <select> statement, MyBatis uses the column for property
mappings in order to populate the JavaBeans properties.

We can use either resultType or resultMap for a
SELECT mapped statement, but not both.

Let us see another example of a <select> mapped statement showing how to
populate query results into HashMap as follows:

<select id="findStudentById" parameterType="int" resultType="map">
 SELECT * FROM STUDENTS WHERE STUD_ID=#{studId}
</select>

In the preceding <select> statement, we configured resultType to be map, that is,
the alias name for java.util.HashMap. In this case, the column names will be the
key and the column value will be the value.

HashMap<String,Object> studentMap = sqlSession.selectOne("com.
mybatis3.mappers.StudentMapper.findStudentById", studId);
System.out.println("stud_id :"+studentMap.get("stud_id"));
System.out.println("name :"+studentMap.get("name"));
System.out.println("email :"+studentMap.get("email"));
System.out.println("phone :"+studentMap.get("phone"));

Let us see another example using resultType="map" that returns multiple rows.

<select id="findAllStudents" resultType="map">
 SELECT STUD_ID, NAME, EMAIL, PHONE FROM STUDENTS
</select>

As resultType="map" and the statement return multiple rows, the final return type
would be List<HashMap<String,Object>> as shown in the following code:

List<HashMap<String,Object>> studentMapList =
sqlSession.selectList("com.mybatis3.mappers.StudentMapper.findAllS
tudents");

for(HashMap<String,Object> studentMap : studentMapList)

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using XML

[58]

{
 System.out.println("studId :"+studentMap.get("stud_id"));
 System.out.println("name :"+studentMap.get("name"));
 System.out.println("email :"+studentMap.get("email"));
 System.out.println("phone :"+studentMap.get("phone"));
}

Extending ResultMaps
We can extend one <resultMap> query from another <resultMap> query, thereby
inheriting the column to do property mappings from the one that is being extended.

<resultMap type="Student" id="StudentResult">
 <id property="studId" column="stud_id"/>
 <result property="name" column="name"/>
 <result property="email" column="email"/>
 <result property="phone" column="phone"/>
</resultMap>

<resultMap type="Student" id="StudentWithAddressResult"
extends="StudentResult">
 <result property="address.addrId" column="addr_id"/>
 <result property="address.street" column="street"/>
 <result property="address.city" column="city"/>
 <result property="address.state" column="state"/>
 <result property="address.zip" column="zip"/>
 <result property="address.country" column="country"/>
</resultMap>

The resultMap query with the ID StudentWithAddressResult extends the
resultMap with the ID StudentResult.

Now you can use StudentResult resultMap if you want to map only the Student
data as shown in the following code:

<select id="findStudentById" parameterType="int"
resultMap="StudentResult">
 SELECT * FROM STUDENTS WHERE STUD_ID=#{studId}
</select>

If you want to map the query results with Student along with the Address data, you
can use resultMap with the ID StudentWithAddressResult as follows:

<select id="selectStudentWithAddress" parameterType="int"
resultMap="StudentWithAddressResult">
 SELECT STUD_ID, NAME, EMAIL, PHONE, A.ADDR_ID, STREET, CITY,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

 STATE, ZIP, COUNTRY
 FROM STUDENTS S LEFT OUTER JOIN ADDRESSES A ON
 S.ADDR_ID=A.ADDR_ID
 WHERE STUD_ID=#{studId}
</select>

One-to-one mapping
In our sample domain model, each student has an associated address. The STUDENTS
table has an ADDR_ID column that is a foreign key to the ADDRESSES table.

The STUDENTS table's sample data is as follows:

STUD_ID NAME E-MAIL PHONE ADDR_ID
1 John john@gmail.

com
123-456-7890 1

2 Paul paul@gmail.
com

111-222-3333 2

The ADDRESSES table's sample data is as follows:

ADDR_ID STREET CITY STATE ZIP COUNTRY
1 Naperville CHICAGO IL 60515 USA
2 Elgin CHICAGO IL 60515 USA

Let us see how to fetch Student details along with Address details.

The Student and Address JavaBeans are created as follows:

public class Address
{
 private Integer addrId;
 private String street;
 private String city;
 private String state;
 private String zip;
 private String country;
 // setters & getters
}
public class Student
{
 private Integer studId;
 private String name;

www.it-ebooks.info

mailto:john@gmail.com
mailto:john@gmail.com
mailto:paul@gmail.com
mailto:paul@gmail.com
http://www.it-ebooks.info/

SQL Mappers Using XML

[60]

 private String email;
 private PhoneNumber phone;
 private Address address;
 //setters & getters
}

<resultMap type="Student" id="StudentWithAddressResult">
 <id property="studId" column="stud_id"/>
 <result property="name" column="name"/>
 <result property="email" column="email"/>
 <result property="phone" column="phone"/>
 <result property="address.addrId" column="addr_id"/>
 <result property="address.street" column="street"/>
 <result property="address.city" column="city"/>
 <result property="address.state" column="state"/>
 <result property="address.zip" column="zip"/>
 <result property="address.country" column="country"/>
</resultMap>

<select id="selectStudentWithAddress" parameterType="int"
 resultMap="StudentWithAddressResult">
 SELECT STUD_ID, NAME, EMAIL, A.ADDR_ID, STREET, CITY, STATE,
 ZIP, COUNTRY
 FROM STUDENTS S LEFT OUTER JOIN ADDRESSES A ON
 S.ADDR_ID=A.ADDR_ID
 WHERE STUD_ID=#{studId}
</select>

We can set the properties of a nested object using the dot notation. In the preceding
resultMap, Student's address property values are set by address column values
using dot notation. Likewise, we can refer the properties of nested objects to any
depth. We can access the nested object properties as follows:

public interface StudentMapper
{
 Student selectStudentWithAddress(int studId);
}

int studId = 1;
StudentMapper studentMapper =
sqlSession.getMapper(StudentMapper.class);
Student student = studentMapper.selectStudentWithAddress(studId);
System.out.println("Student :"+student);
System.out.println("Address :"+student.getAddress());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

The preceding example shows one way of mapping a one-to-one association.
However with this approach, if the address results need to be mapped to the
Address object values in other Select mapped statements, we'll need to repeat the
mappings for each statement.

MyBatis provides better approaches for mapping one-to-one associations using the
Nested ResultMap and Nested Select statements, which is what we are going to
discuss next.

One-to-one mapping using nested ResultMap
We can get Student along with the Address details using a nested ResultMap
as follows:

<resultMap type="Address" id="AddressResult">
 <id property="addrId" column="addr_id"/>
 <result property="street" column="street"/>
 <result property="city" column="city"/>
 <result property="state" column="state"/>
 <result property="zip" column="zip"/>
 <result property="country" column="country"/>
</resultMap>

<resultMap type="Student" id="StudentWithAddressResult">
 <id property="studId" column="stud_id"/>
 <result property="name" column="name"/>
 <result property="email" column="email"/>
 <association property="address" resultMap="AddressResult"/>
</resultMap>

<select id="findStudentWithAddress" parameterType="int"
resultMap="StudentWithAddressResult">
 SELECT STUD_ID, NAME, EMAIL, A.ADDR_ID, STREET, CITY, STATE,
ZIP, COUNTRY
 FROM STUDENTS S LEFT OUTER JOIN ADDRESSES A ON
S.ADDR_ID=A.ADDR_ID
 WHERE STUD_ID=#{studId}
</select>

The <association> element can be used to load the has-one type of associations.
In the preceding example, we used the <association> element, referencing another
<resultMap> that is declared in the same XML file.

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using XML

[62]

We can also use <association> with an inline resultMap query as follows:

<resultMap type="Student" id="StudentWithAddressResult">
 <id property="studId" column="stud_id"/>
 <result property="name" column="name"/>
 <result property="email" column="email"/>
 <association property="address" javaType="Address">
 <id property="addrId" column="addr_id"/>
 <result property="street" column="street"/>
 <result property="city" column="city"/>
 <result property="state" column="state"/>
 <result property="zip" column="zip"/>
 <result property="country" column="country"/>
 </association>
</resultMap>

Using the nested ResultMap approach, the association data will be loaded using
a single query (along with joins if required).

One-to-one mapping using nested Select
We can get Student along with the Address details using a nested Select query
as follows:

<resultMap type="Address" id="AddressResult">
 <id property="addrId" column="addr_id"/>
 <result property="street" column="street"/>
 <result property="city" column="city"/>
 <result property="state" column="state"/>
 <result property="zip" column="zip"/>
 <result property="country" column="country"/>
</resultMap>

<select id="findAddressById" parameterType="int"
resultMap="AddressResult">
 SELECT * FROM ADDRESSES WHERE ADDR_ID=#{id}
</select>

<resultMap type="Student" id="StudentWithAddressResult">
 <id property="studId" column="stud_id"/>
 <result property="name" column="name"/>
 <result property="email" column="email"/>
 <association property="address" column="addr_id"
select="findAddressById"/>
</resultMap>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

<select id="findStudentWithAddress" parameterType="int"
resultMap="StudentWithAddressResult">
 SELECT * FROM STUDENTS WHERE STUD_ID=#{Id}
</select>

In this approach, the <association> element's select attribute is set to the
statement id findAddressById. Here, two separate SQL statements will be executed
against the database, the first one called findStudentById to load student details
and the second one called findAddressById to load its address details.

The addr_id column value will be passed as input to the
selectAddressById statement.

We can invoke the findStudentWithAddress mapped statement as follows:

StudentMapper mapper = sqlSession.getMapper(StudentMapper.class);
Student student = mapper.selectStudentWithAddress(studId);
System.out.println(student);
System.out.println(student.getAddress());

One-to-many mapping
In our sample domain model, a tutor can teach one or more courses. This means that
there is a one-to-many relationship between the tutor and course.

We can map one-to-many types of results to a collection of objects using the
<collection> element.

The TUTORS table's sample data is as follows:

TUTOR_ID NAME EMAIL PHONE ADDR_ID
1 John john@gmail.

com
123-456-7890 1

2 Ying ying@gmail.
com

111-222-3333 2

The COURSES table's sample data is as follows:

COURSE_ID NAME DESCRIPTION START_DATE END_DATE TUTOR_
ID

1 JavaSE Java SE 2013-01-10 2013-02-10 1
2 JavaEE JavaEE6 2013-01-10 2013-03-10 2
3 MyBatis MyBatis 2013-01-10 2013-02-20 2

www.it-ebooks.info

mailto:john@gmail.com
mailto:john@gmail.com
mailto:ying@gmail.com
mailto:ying@gmail.com
http://www.it-ebooks.info/

SQL Mappers Using XML

[64]

In the preceding table data, the tutor John teaches one course whereas the tutor Ying
teaches two courses.

The JavaBeans for Course and Tutor are as follows:

public class Course
{
 private Integer courseId;
 private String name;
 private String description;
 private Date startDate;
 private Date endDate;
 private Integer tutorId;

 //setters & getters
}

public class Tutor
{
 private Integer tutorId;
 private String name;
 private String email;
 private Address address;
 private List<Course> courses;
 /setters & getters
}

Now let us see how we can get the tutor's details along with the list of courses
he/she teaches.

The <collection> element can be used to map multiple course rows to a list
of course objects. Similar to one-to-one mapping, we can map one-to-many
relationships using a nested ResultMap and nested Select approaches.

One-to-many mapping with nested ResultMap
We can get the tutor along with the courses' details using a nested ResultMap
as follows:

<resultMap type="Course" id="CourseResult">
 <id column="course_id" property="courseId"/>
 <result column="name" property="name"/>
 <result column="description" property="description"/>
 <result column="start_date" property="startDate"/>
 <result column="end_date" property="endDate"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

</resultMap>

<resultMap type="Tutor" id="TutorResult">
 <id column="tutor_id" property="tutorId"/>
 <result column="tutor_name" property="name"/>
 <result column="email" property="email"/>
 <collection property="courses" resultMap="CourseResult"/>
</resultMap>

<select id="findTutorById" parameterType="int"
resultMap="TutorResult">
 SELECT T.TUTOR_ID, T.NAME AS TUTOR_NAME, EMAIL, C.COURSE_ID,
 C.NAME, DESCRIPTION, START_DATE, END_DATE
 FROM TUTORS T LEFT OUTER JOIN ADDRESSES A ON T.ADDR_ID=A.ADDR_ID
 LEFT OUTER JOIN COURSES C ON T.TUTOR_ID=C.TUTOR_ID
 WHERE T.TUTOR_ID=#{tutorId}
</select>

Here we are fetching the tutor along with the courses' details using a single Select
query with JOINS. The <collection> element's resultMap is set to the resultMap
ID CourseResult that contains the mapping for the Course object's properties.

One-to-many mapping with nested select
We can get the tutor along with the courses' details using a nested select query
as follows:

<resultMap type="Course" id="CourseResult">
 <id column="course_id" property="courseId"/>
 <result column="name" property="name"/>
 <result column="description" property="description"/>
 <result column="start_date" property="startDate"/>
 <result column="end_date" property="endDate"/>
</resultMap>

<resultMap type="Tutor" id="TutorResult">
 <id column="tutor_id" property="tutorId"/>
 <result column="tutor_name" property="name"/>
 <result column="email" property="email"/>
 <association property="address" resultMap="AddressResult"/>
 <collection property="courses" column="tutor_id"
select="findCoursesByTutor"/>
 </resultMap>

<select id="findTutorById" parameterType="int"

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using XML

[66]

resultMap="TutorResult">
 SELECT T.TUTOR_ID, T.NAME AS TUTOR_NAME, EMAIL
 FROM TUTORS T WHERE T.TUTOR_ID=#{tutorId}
 </select>

<select id="findCoursesByTutor" parameterType="int"
resultMap="CourseResult">
 SELECT * FROM COURSES WHERE TUTOR_ID=#{tutorId}
</select>

In this approach, the <association> element's select attribute is set to the
statement ID findCoursesByTutor that triggers a separate SQL query to load
the courses' details. The tutor_id column value will be passed as input to the
findCoursesByTutor statement.

public interface TutorMapper
{
 Tutor findTutorById(int tutorId);
}
TutorMapper mapper = sqlSession.getMapper(TutorMapper.class);
Tutor tutor = mapper.findTutorById(tutorId);
System.out.println(tutor);
List<Course> courses = tutor.getCourses();
for (Course course : courses)
{
 System.out.println(course);
}

A nested select approach may result in N+1 select problems. First, the
main query will be executed (1), and for every row returned by the first
query, another select query will be executed (N queries for N rows). For
large datasets, this could result in poor performance.

Dynamic SQL
Sometimes, static SQL queries may not be sufficient for application requirements.
We may have to build queries dynamically, based on some criteria.

For example, in web applications there could be search screens that provide one
or more input options and perform searches based on the chosen criteria. While
implementing this kind of search functionality, we may need to build a dynamic
query based on the selected options. If the user provides any value for input criteria,
we'll need to add that field in the WHERE clause of the query.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

MyBatis provides first-class support for building dynamic SQL queries using
elements such as <if>, <choose>, <where>, <foreach>, and <trim>.

The If condition
The <if> element can be used to conditionally embed SQL snippets. If the test
condition is evaluated to true, then only the SQL snippet will be appended to
the query.

Assume we have a Search Courses Screen that has a Tutor dropdown, the CourseName
text field, and the StartDate and End Date input fields as the search criteria.

Assume that Tutor is a mandatory field and that the rest of the fields are optional.

When the user clicks on the search button, we need to display a list of courses that
meet the following criteria:

• Courses by the selected Tutor
• Courses whose name contain the entered course name; if nothing has been

provided, fetch all the courses
• Courses whose start date and end date are in between the provided

StartDate and EndDate input fields

We can create the mapped statement for searching the courses as follows:

<resultMap type="Course" id="CourseResult">
 <id column="course_id" property="courseId"/>
 <result column="name" property="name"/>
 <result column="description" property="description"/>
 <result column="start_date" property="startDate"/>
 <result column="end_date" property="endDate"/>
</resultMap>

<select id="searchCourses" parameterType="hashmap"
resultMap="CourseResult">
<![CDATA[
 SELECT * FROM COURSES
 WHERE TUTOR_ID= #{tutorId}
 <if test="courseName != null">
 AND NAME LIKE #{courseName}
 </if>
 <if test="startDate != null">
 AND START_DATE >= #{startDate}
 </if>

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using XML

[68]

 <if test="endDate != null">
 AND END_DATE <= #{endDate}
 </if>
]]>
</select>

public interface CourseMapper
{
 List<Course> searchCourses(Map<String, Object> map);
}

public void searchCourses()
{
 Map<String, Object> map = new HashMap<String, Object>();
 map.put("tutorId", 1);
 map.put("courseName", "%java%");
 map.put("startDate", new Date());
 CourseMapper mapper = sqlSession.getMapper(CourseMapper.class);
 List<Course> courses = mapper.searchCourses(map);
 for (Course course : courses) {
 System.out.println(course);

}

This will generate the query SELECT * FROM COURSES WHERE TUTOR_ID= ? AND
NAME like ? AND START_DATE >= ?. This will come in handy while preparing a
dynamic SQL query based on the given criteria.

MyBatis uses OGNL (Object Graph Navigation
Language) expressions for building dynamic queries.

The choose, when, and otherwise conditions
Sometimes, search functionality could be based on the search type. First, the user
needs to choose whether he wants to search by Tutor or Course Name or Start
Dates and End Dates, and then based on the selected search type, the input field
will appear. In such scenarios, we should apply only one of the conditions.

MyBatis provides the <choose> element to support this kind of dynamic
SQL preparation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

Now let us write a SQL mapped statement to get the courses by applying the search
criteria. If no search criteria is selected, the courses starting from today onwards
should be fetched as follows:

<select id="searchCourses" parameterType="hashmap"
resultMap="CourseResult">
 SELECT * FROM COURSES
 <choose>
 <when test="searchBy == 'Tutor'">
 WHERE TUTOR_ID= #{tutorId}
 </when>
 <when test="searchBy == 'CourseName'">
 WHERE name like #{courseName}
 </when>
 <otherwise>
 WHERE TUTOR start_date >= now()
 </otherwise>
 </choose>
</select>

MyBatis evaluates the <choose> test conditions and uses the clause with the first
condition that evaluates to TRUE. If none of the conditions are true, the <otherwise>
clause will be used.

The where condition
At times, all the search criteria might be optional. In cases where at least one of
the search conditions needs to be applied, then only the WHERE clause should be
appended. Also, we need to append AND or OR to the conditions only if there are
multiple conditions. MyBatis provides the <where> element to support building
these kinds of dynamic SQL statements.

In our example Search Courses screen, we assume that all the search criteria is
optional. So, the WHERE clause should be there only if any of the search criteria has
been provided.

<select id="searchCourses" parameterType="hashmap"
resultMap="CourseResult">
 SELECT * FROM COURSES
 <where>
 <if test=" tutorId != null ">
 TUTOR_ID= #{tutorId}
 </if>
 <if test="courseName != null">
 AND name like #{courseName}

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using XML

[70]

 </if>
 <if test="startDate != null">
 AND start_date >= #{startDate}
 </if>
 <if test="endDate != null">
 AND end_date <= #{endDate}
 </if>
 </where>
</select>

The <where> element inserts WHERE only if any content is returned by the inner
conditional tags. Also, it removes the AND or OR prefixes if the WHERE clause begins
with AND or OR.

In the preceding example, if none of the <if> conditions are True, <where> won't
insert the WHERE clause. If at least one of the <if> conditions is True, <where> will
insert the WHERE clause followed by the content returned by the <if> tags.

If the tutor_id parameter is null and the courseName parameter is not null,
<where> will take care of stripping out the AND prefix and adding NAME like
#{courseName}.

The trim condition
The <trim> element works similar to <where> but provides additional flexibility on
what prefix/suffix needs to be prefixed/suffixed and what prefix/suffix needs to be
stripped off.

<select id="searchCourses" parameterType="hashmap"
resultMap="CourseResult">
 SELECT * FROM COURSES
 <trim prefix="WHERE" prefixOverrides="AND | OR">
 <if test=" tutorId != null ">
 TUTOR_ID= #{tutorId}
 </if>
 <if test="courseName != null">
 AND name like #{courseName}
 </if>
 </trim>
</select>

Here <trim> will insert WHERE if any of the <if> conditions are true and remove
the AND or OR prefixes just after WHERE.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

The foreach loop
Another powerful dynamic SQL builder tag is <foreach>. It is a very common
requirement for iterating through an array or list and for building AND/OR conditions
or an IN clause.

Suppose we want to find out all the courses taught by the tutors whose tutor_id
IDs are 1, 3, and 6. We can pass a list of tutor_id IDs to the mapped statement and
build a dynamic query by iterating through the list using <foreach>.

<select id="searchCoursesByTutors" parameterType="map"
resultMap="CourseResult">
 SELECT * FROM COURSES
 <if test="tutorIds != null">
 <where>
 <foreach item="tutorId" collection="tutorIds">
 OR tutor_id=#{tutorId}
 </foreach>
 </where>
 </if>
</select>

public interface CourseMapper
{
 List<Course> searchCoursesByTutors(Map<String, Object> map);
}

public void searchCoursesByTutors()
{
 Map<String, Object> map = new HashMap<String, Object>();
 List<Integer> tutorIds = new ArrayList<Integer>();
 tutorIds.add(1);
 tutorIds.add(3);
 tutorIds.add(6);
 map.put("tutorIds", tutorIds);
 CourseMapper mapper =
 sqlSession.getMapper(CourseMapper.class);
 List<Course> courses = mapper.searchCoursesByTutors(map);
 for (Course course : courses)
 {
 System.out.println(course);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using XML

[72]

Let us see how to use <foreach> to generate the IN clause:

<select id="searchCoursesByTutors" parameterType="map"
resultMap="CourseResult">
 SELECT * FROM COURSES
 <if test="tutorIds != null">
 <where>
 tutor_id IN
 <foreach item="tutorId" collection="tutorIds"
 open="(" separator="," close=")">
 #{tutorId}
 </foreach>
 </where>
 </if>
</select>

The set condition
The <set> element is similar to the <where> element and will insert SET if
any content is returned by the inner conditions.

<update id="updateStudent" parameterType="Student">
 update students
 <set>
 <if test="name != null">name=#{name},</if>
 <if test="email != null">email=#{email},</if>
 <if test="phone != null">phone=#{phone},</if>
 </set>
 where stud_id=#{id}
</update>

Here, <set> inserts the SET keyword if any of the <if> conditions return text
and also strips out the tailing commas at the end.

In the preceding example, if phone != null, <set> will take care of removing
the comma after phone=#{phone}.

MyBatis recipes
In addition to simplifying the database programming, MyBatis provides various
features that are very useful for implementing some common tasks, such as loading
the table rows page by page, storing and retrieving CLOB/BLOB type data, and handling
enumerated type values, among others. Let us have a look at a few of these features.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

Handling enumeration types
MyBatis supports persisting enum type properties out of the box. Assume that the
STUDENTS table has a column gender of the type varchar to store either MALE or
FEMALE as the value. And, the Student object has a gender property that is of the
type enum as shown in the following code:

public enum Gender
{
 FEMALE,
 MALE
}

By default, MyBatis uses EnumTypeHandler to handle enum type Java properties and
stores the name of the enum value. You don't need any extra configuration to do this.
You can use enum type properties just like primitive type properties as shown in the
following code:

public class Student
{
 private Integer id;
 private String name;
 private String email;
 private PhoneNumber phone;
 private Address address;
 private Gender gender;
 //setters and getters
}

<insert id="insertStudent" parameterType="Student"
useGeneratedKeys="true" keyProperty="id">
 insert into students(name,email,addr_id, phone,gender)
 values(#{name},#{email},#{address.addrId},#{phone},#{gender})
</insert>

When you execute the insertStudent statement, MyBatis takes the name of the
Gender enum (FEMALE/MALE) and stores it in the GENDER column.

If you want to store the ordinal position of the enum instead of the enum name,
you will need to explicitly configure it.

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using XML

[74]

So if you want to store 0 for FEMALE and 1 for MALE in the gender column, you'll need
to register EnumOrdinalTypeHandler in the mybatis-config.xml file.

<typeHandler
handler="org.apache.ibatis.type.EnumOrdinalTypeHandler"
javaType="com.mybatis3.domain.Gender"/>

Be careful to use ordinal values to store in the DB. Ordinal values
are assigned to enum values based on their order of declaration. If
you change the declaration order in Gender enum, the data in the
database and ordinal values will be mismatched.

Handling the CLOB/BLOB types
MyBatis provides built-in support for mapping CLOB/BLOB type columns.

Assume we have the following table to store the Students and Tutors photographs
and their biodata:

CREATE TABLE USER_PICS
(
 ID INT(11) NOT NULL AUTO_INCREMENT,
 NAME VARCHAR(50) DEFAULT NULL,
 PIC BLOB,
 BIO LONGTEXT,
 PRIMARY KEY (ID)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=LATIN1;

Here, the photograph can be an image of type PNG, JPG, and so on, and the biodata
can be a lengthy history about the student/tutor.

By default, MyBatis maps CLOB type columns to the java.lang.String type
and BLOB type columns to the byte[] type.

public class UserPic
{
 private int id;
 private String name;
 private byte[] pic;
 private String bio;
 //setters & getters
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

Create the UserPicMapper.xml file and configure the mapped statements as follows:

<insert id="insertUserPic" parameterType="UserPic">
 INSERT INTO USER_PICS(NAME, PIC,BIO)
 VALUES(#{name},#{pic},#{bio})
</insert>

<select id="getUserPic" parameterType="int" resultType="UserPic">
 SELECT * FROM USER_PICS WHERE ID=#{id}
</select>

The following method insertUserPic() shows how to insert data into CLOB/BLOB
type columns:

public void insertUserPic()
{
 byte[] pic = null;
 try {
 File file = new File("C:\\Images\\UserImg.jpg");
 InputStream is = new FileInputStream(file);
 pic = new byte[is.available()];
 is.read(pic);
 is.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 String name = "UserName";
 String bio = "put some lenghty bio here";
 UserPic userPic = new UserPic(0, name, pic , bio);

 SqlSession sqlSession = MyBatisUtil.openSession();
 try {
 UserPicMapper mapper =
 sqlSession.getMapper(UserPicMapper.class);
 mapper.insertUserPic(userPic);
 sqlSession.commit();
 }
 finally {
 sqlSession.close();
 }

}

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using XML

[76]

The following method getUserPic() shows how to read CLOB type data into String
and BLOB type data into byte[] properties:

public void getUserPic()
{
 UserPic userPic = null;
 SqlSession sqlSession = MyBatisUtil.openSession();
 try {
 UserPicMapper mapper =
sqlSession.getMapper(UserPicMapper.class);
 userPic = mapper.getUserPic(1);
 }
 finally {
 sqlSession.close();
 }
 byte[] pic = userPic.getPic();
 try {
 OutputStream os = new FileOutputStream(new
File("C:\\Images\\UserImage_FromDB.jpg"));
 os.write(pic);
 os.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
}

Passing multiple input parameters
MyBatis's mapped statements have the parameterType attribute to specify the
type of input parameter. If we want to pass multiple input parameters to a mapped
statement, we can put all the input parameters in a HashMap and pass it to that
mapped statement.

MyBatis provides another way of passing multiple input parameters to a mapped
statement. Suppose we want to find students with the given name and email.

Public interface StudentMapper
{
 List<Student> findAllStudentsByNameEmail(String name, String
email);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

MyBatis supports passing multiple input parameters to a mapped statement
and referencing them using the #{param} syntax.

<select id="findAllStudentsByNameEmail" resultMap="StudentResult"
>
 select stud_id, name,email, phone from Students
 where name=#{param1} and email=#{param2}
 </select>

Here #{param1} refers to the first parameter name and #{param2} refers to the
second parameter email.

StudentMapper studentMapper = sqlSession.getMapper(StudentMapper.
class);
studentMapper.findAllStudentsByNameEmail(name, email);

Multiple results as a map
If we have a mapped statement that returns multiple rows and we want the results in
a HashMap with some property value as the key and the resulting object as the value,
we can use sqlSession.selectMap() as follows:

<select id=" findAllStudents" resultMap="StudentResult">
 select * from Students
</select>

Map<Integer, Student> studentMap =
sqlSession.selectMap("com.mybatis3.mappers.StudentMapper.
findAllStudents", "studId");

Here studentMap will contain studId values as keys and Student objects as values.

Paginated ResultSets using RowBounds
Sometimes, we may need to work with huge volumes of data, such as with tables with
millions of records. Loading all these records may not be possible due to memory
constraints, or we may need only a fragment of data. Typically in web applications,
pagination is used to display large volumes of data in a page-by-page style.

MyBatis can load table data page by page using RowBounds. The RowBounds object
can be constructed using the offset and limit parameters. The parameter offset
refers to the starting position and limit refers to the number of records.

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using XML

[78]

Suppose if you want to load and display 25 student records per page, you can use
the following query:

<select id="findAllStudents" resultMap="StudentResult">
 select * from Students
</select>

Then, you can load the first page (first 25 records) as follows:

int offset =0 , limit =25;
RowBounds rowBounds = new RowBounds(offset, limit);
List<Student> = studentMapper.getStudents(rowBounds);

To display the second page, use offset=25 and limit=25; for the third page,
use offset=50 and limit=25.

Custom ResultSet processing using
ResultSetHandler
MyBatis provides great support with plenty of options for mapping the query results
to JavaBeans. But sometimes, we may come across scenarios where we need to
process the SQL query results by ourselves for special purposes. MyBatis provides
ResultHandler plugin that enables the processing of the ResultSet in whatever way
we like.

Suppose that we want to get the student details in a HashMap where stud_id is used
as a key and name is used as a value.

As of mybatis-3.2.2, MyBatis doesn't have support for getting
the result as HashMap, with one property value as the key and
another property value as the value, using the resultMap element.
sqlSession.selectMap() returns a map with the given
property value as the key and the result object as the value. We can't
configure it to use one property as the key and another property as
the value.

For sqlSession.select() methods, we can pass an implementation of
ResultHandler that will be invoked for each record in the ResultSet.

public interface ResultHandler
{
 void handleResult(ResultContext context);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[79]

Now let us see how we can use ResultHandler to process the ResultSet and return
customized results.

public Map<Integer, String> getStudentIdNameMap()
{
 final Map<Integer, String> map = new HashMap<Integer, String>();
 SqlSession sqlSession = MyBatisUtil.openSession();
 try {

sqlSession.select("com.mybatis3.mappers.StudentMapper.findAllStude
 nts",
 new ResultHandler() {
 @Override
 public void handleResult(ResultContext context) {
 Student student = (Student) context.getResultObject();
 map.put(student.getStudId(), student.getName());
 }
 }
);
} finally {
 sqlSession.close();
}
return map;
}

In the preceding code, we are providing an inline implementation of
ResultHandler. Inside the handleResult() method, we are getting the current
result object using context.getResultObject() that is a Student object because
we configured resultMap="StudentResult" for the findAllStudents mapped
statement. As the handleResult() method will be called for every row returned by
the query, we are extracting the studId and name values from the Student object
and populating the map.

Cache
Caching data that is loaded from the database is a common requirement for many
applications to improve their performance. MyBatis provides in-built support for
caching the query results loaded by mapped SELECT statements. By default, the
first-level cache is enabled; this means that if you'll invoke the same SELECT
statement within the same SqlSession interface, results will be fetched from
the cache instead of the database.

We can add global second-level caches by adding the <cache/> element in SQL
Mapper XML files.

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using XML

[80]

When you'll add the <cache/> element the following will occur:

• All results from the <select> statements in the mapped statement file will
be cached

• All the <insert>, <update>, and <delete> statements in the mapped
statement file will flush the cache

• The cache will use a Least Recently Used (LRU) algorithm for eviction
• The cache will not flush on any sort of time-based schedule

(no Flush Interval)
• The cache will store 1024 references to lists or objects (whatever the query

method returns)
• The cache will be treated as a read/write cache; this means that the objects

retrieved will not be shared and can safely be modified by the caller without
it interfering with other potential modifications by other callers or threads

You can also customize this behavior by overriding the default attribute values
as follows:

<cache eviction="FIFO" flushInterval="60000" size="512"
readOnly="true"/>

A description for each of the attributes is as follows:

• eviction: This is the cache eviction policy to be used. The default value is
LRU. The possible values are LRU (least recently used), FIFO(first in first out),
SOFT(soft reference), WEAK(weak reference).

• flushInterval: This is the cache flush interval in milliseconds. The default
is not set. So, no flush interval is used and the cache is only flushed by calls to
the statements.

• size: This represents the maximum number of elements that can be held in
the cache. The default is 1024, and you can set it to any positive integer.

• readOnly: A read-only cache will return the same instance of the cached
object to all the callers. A read-write cache will return a copy (via
serialization) of the cached object. The default is false and the possible
values are true and false.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[81]

A cache configuration and cache instance are bound to the namespace of the SQL
Mapper file, so all the statements in the same namespace table as the cache are bound
by it.

The default cache configuration for a mapped statement is:

<select ... flushCache="false" useCache="true"/>
<insert ... flushCache="true"/>
<update ... flushCache="true"/>
<delete ... flushCache="true"/>

You can override this default behavior for any specific mapped statements;
for example, by not using a cache for a select statement by setting the
useCache="false" attribute.

In addition to in-built Cache support, MyBatis provides support for integration
with popular third-party Cache libraries, such as Ehcache, OSCache, and Hazelcast.
You can find more information on integrating third-party Cache libraries on the
official MyBatis website https://code.google.com/p/mybatis/wiki/Caches.

Summary
In this chapter, we learned how to write SQL mapped statements using the
Mapper XML files. We discussed how to configure simple statements, statements
with one-to-one and one-to-many relationships, and how to map the results using
ResultMap. We also looked into building dynamic queries, paginated results, and
custom ResultSet handling. In the next chapter, we will discuss how to write mapped
statements using annotations.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using
Annotations

In the previous chapter, we had seen how we can configure mapped statements
in XML Mapper files. MyBatis supports configuring mapped statements using
annotations also. When using annotation-based Mapper interfaces you don't
need to configure SQL queries in XML files. If you want, you can use XML
and annotation-based mapped statements together.

In this chapter we will cover the following topics:

• Mapper interfaces using annotations
• Mapped statements

 ° @Insert, @Update, @Delete, and @SelectStatements

• Resultmaps
 ° Simple resultmaps
 ° One-to-one mapping
 ° One-to-many mapping

• Dynamic SQL

 ° @SelectProvider

 ° @InsertProvider

 ° @UpdateProvider

 ° @DeleteProvider

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using Annotations

[84]

Mapper interfaces using annotations
MyBatis provides annotation-based configuration options for most of the XML-based
mapper elements, including <select> and<update>. However, there are few cases
where there are no annotation-based equivalents for some of the XML-based elements.

Mapped statements
MyBatis provides various annotations to configure different types of statements
such as SELECT, INSERT, UPDATE, and DELETE. Let us see how to configure mapped
statements in detail.

@Insert
We can define an INSERT mapped statement using the @Insert annotation.

package com.mybatis3.mappers;
public interface StudentMapper
{
@Insert("INSERT INTO STUDENTS(STUD_ID,NAME,EMAIL,ADDR_ID, PHONE)
VALUES(#{studId},#{name},#{email},#{address.addrId},#{phone})")
int insertStudent(Student student);
}

The insertStudent() method with the @Insert annotation returns the number
of rows affected by this insert statement.

Autogenerated keys
As discussed in the previous chapter, there can be autogenerated primary key
columns. We can use the useGeneratedKeys and keyProperty attributes of the
@Options annotation to let the database server generate the auto_increment
column value and set that generated value as one of the input object properties.

@Insert("INSERT INTO STUDENTS(NAME,EMAIL,ADDR_ID, PHONE)
VALUES(#{name},#{email},#{address.addrId},#{phone})")
@Options(useGeneratedKeys=true, keyProperty="studId")
int insertStudent(Student student);

Here the STUD_ID column value will be autogenerated by MySQL database and
the generated value will be set to the studId property of the student object.

StudentMapper mapper = sqlSession.getMapper(StudentMapper.class);
mapper.insertStudent(student);
int studentId = student.getStudId();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[85]

Some of the databases, such as Oracle, don't support the AUTO_INCREMENT columns
and generally we use SEQUENCE to generate the primary key values.

We can use the @SelectKey annotation to specify any SQL statement that will give
the primary key value, which can be used as the primary key column value.

Assume we have a sequence called STUD_ID_SEQ to generate the STUD_ID primary
key values.

@Insert("INSERT INTO STUDENTS(STUD_ID,NAME,EMAIL,ADDR_ID, PHONE)
VALUES(#{studId},#{name},#{email},#{address.addrId},#{phone})")
@SelectKey(statement="SELECT STUD_ID_SEQ.NEXTVAL FROM DUAL",
keyProperty="studId", resultType=int.class, before=true)
int insertStudent(Student student);

Here we have used @SelectKey to generate the primary key value and stored it in
the studId property of the Student object using the keyProperty attribute. This
gets executed before executing the INSERT statement, because we specified it via the
before=true attribute.

If you are setting the primary key value through triggers using SEQUENCE, we can
obtain the database-generated primary key value from sequence_name.currval
after the INSERT statement is executed.

@Insert("INSERT INTO STUDENTS(NAME,EMAIL,ADDR_ID, PHONE)
VALUES(#{name},#{email},#{address.addrId},#{phone})")
@SelectKey(statement="SELECT STUD_ID_SEQ.CURRVAL FROM DUAL",
keyProperty="studId", resultType=int.class, before=false)
int insertStudent(Student student);

@Update
We can define an UPDATE mapped statement using the @Update annotation
as follows:

@Update("UPDATE STUDENTS SET NAME=#{name}, EMAIL=#{email},
PHONE=#{phone} WHERE STUD_ID=#{studId}")
int updateStudent(Student student);

The updateStudent() method with @Update returns the number of rows affected
by this update statement.

StudentMapper mapper = sqlSession.getMapper(StudentMapper.class);
int noOfRowsUpdated = mapper.updateStudent(student);

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using Annotations

[86]

@Delete
We can define a DELETE mapped statement using the @Delete annotation as follows:

@Delete("DELETE FROM STUDENTS WHERE STUD_ID=#{studId}")
int deleteStudent(int studId);

The deleteStudent() method with @Delete returns the number of rows affected by
this delete statement.

@Select
We can define the SELECT mapped statements using the @Select annotation.

Let us see how a simple select query can be configured.

package com.mybatis3.mappers;
public interface StudentMapper
{
@Select("SELECT STUD_ID AS STUDID, NAME, EMAIL, PHONE FROM
STUDENTS WHERE STUD_ID=#{studId}")
Student findStudentById(Integer studId);
}

To match the column names with the Student bean property names, we gave
an alias name for stud_id as studId. If the query returns multiple rows,
TooManyResultsException will be thrown.

Result maps
We can map query results to JavaBean properties using inline aliases or using
an explicit @Results annotation.

Now let us see how to execute a SELECT query with explicit column to property
mappings using the @Results annotation.

package com.mybatis3.mappers;
public interface StudentMapper
{
@Select("SELECT * FROM STUDENTS")
@Results({
@Result(id=true, column="stud_id", property="studId"),
@Result(column="name", property="name"),
@Result(column="email", property="email"),
@Result(column="addr_id", property="address.addrId")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

})
List<Student> findAllStudents();
}

The @Results annotation is a counterpart of the Mapper XML
element <resultMap>. However, as of MyBatis 3.2.2 we can't give
an ID for the @Results annotation. So unlike the <resultMap>XML
element, we can't reuse the @Results declaration across different
mapped statements. What this means is that you need to duplicate
the @Results configuration even though it is the same.

For example, see the following findStudentBy() and findAllStudents() methods:

@Select("SELECT * FROM STUDENTS WHERE STUD_ID=#{studId}")
@Results({
@Result(id=true, column="stud_id", property="studId"),
@Result(column="name", property="name"),
@Result(column="email", property="email"),
@Result(column="addr_id", property="address.addrId")
})
Student findStudentById(int studId);

@Select("SELECT * FROM STUDENTS")
@Results({
@Result(id=true, column="stud_id", property="studId"),
@Result(column="name", property="name"),
@Result(column="email", property="email"),
@Result(column="addr_id", property="address.addrId")
})
List<Student> findAllStudents();

Here the @Results configuration is same for both the statements, but we need to
duplicate it. There is also a work around for this problem. We can create a Mapper
XML file and configure the <resultMap> element and reference that resultMap
using the @ResultMap annotation.

Define <resultMap> with ID StudentResult in StudentMapper.xml.

<mapper namespace="com.mybatis3.mappers.StudentMapper">
<resultMap type="Student" id="StudentResult">
<id property="studId" column="stud_id"/>
<result property="name" column="name"/>
<result property="email" column="email"/>
<result property="phone" column="phone"/>
</resultMap>

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using Annotations

[88]

</mapper>

In StudentMapper.java, reference the resultMap attribute StudentResult
using @ResultMap.

public interface StudentMapper
{
@Select("SELECT * FROM STUDENTS WHERE STUD_ID=#{studId}")
@ResultMap("com.mybatis3.mappers.StudentMapper.StudentResult")
Student findStudentById(int studId);

@Select("SELECT * FROM STUDENTS")
@ResultMap("com.mybatis3.mappers.StudentMapper.StudentResult")
List<Student> findAllStudents();
}

One-to-one mapping
MyBatis provides the @One annotation to load a one-to-one association using
a Nested-Select statement.

Let us see how we can get student details along with their address details using
the @One annotation.

public interface StudentMapper
{
@Select("SELECT ADDR_ID AS ADDRID, STREET, CITY, STATE, ZIP, COUNTRY
FROM ADDRESSES WHERE ADDR_ID=#{id}")
Address findAddressById(int id);

@Select("SELECT * FROM STUDENTS WHERE STUD_ID=#{studId} ")
@Results({
@Result(id=true, column="stud_id", property="studId"),
@Result(column="name", property="name"),
@Result(column="email", property="email"),
@Result(property="address", column="addr_id",
one=@One(select="com.mybatis3.mappers.StudentMapper.
findAddressById"))
})
Student selectStudentWithAddress(int studId);
}

Here we have used the @One annotation's select attribute to point to fully
qualified method names, which return an Address object. With the attribute
column="addr_id", the column value addr_id from the table row STUDENTS
will be passed as an input to the findAddressById() method. If the query
@One SELECT returns multiple rows, TooManyResultsException will be thrown.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

int studId = 1;
StudentMapper studentMapper =
sqlSession.getMapper(StudentMapper.class);
Student student = studentMapper.selectStudentWithAddress(studId);
System.out.println("Student :"+student);
System.out.println("Address :"+student.getAddress());

As discussed in Chapter 3, SQL Mappers using XML, we can load a one-to-one
association using nested ResultMap using XML-based Mapper configuration. But as
of MyBatis-3.2.2, there is no annotation-based counterpart for this kind of mapping.
However, we can define <resultMap> in Mapper XML file and reference it using the
@ResultMap annotation.

Configure <resultMap> in StudentMapper.xml as follows:

<mapper namespace="com.mybatis3.mappers.StudentMapper">
<resultMap type="Address" id="AddressResult">
<id property="addrId" column="addr_id"/>
<result property="street" column="street"/>
<result property="city" column="city"/>
<result property="state" column="state"/>
<result property="zip" column="zip"/>
<result property="country" column="country"/>
</resultMap>

<resultMap type="Student" id="StudentWithAddressResult">
<id property="studId" column="stud_id"/>
<result property="name" column="name"/>
<result property="email" column="email"/>
<association property="address" resultMap="AddressResult"/>
</resultMap>
</mapper>

public interface StudentMapper
{
@Select("select stud_id, name, email, a.addr_id, street, city,
state, zip, country"+" FROM students s left outer join addresses a
on s.addr_id=a.addr_id"+" where stud_id=#{studId} ")
@ResultMap("com.mybatis3.mappers.StudentMapper.
StudentWithAddressResult")
Student selectStudentWithAddress(int id);
}

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using Annotations

[90]

One-to-many mapping
MyBatis provides the @Many annotation to load a one-to-many association using
a Nested-Select statement.

Now let us see how we can get a Tutor with a list of courses he/she teaches using
the @Many annotation.

public interface TutorMapper
{
@Select("select addr_id as addrId, street, city, state, zip,
country from addresses where addr_id=#{id}")
Address findAddressById(int id);

@Select("select * from courses where tutor_id=#{tutorId}")
@Results({
@Result(id=true, column="course_id", property="courseId"),
@Result(column="name", property="name"),
@Result(column="description", property="description"),
@Result(column="start_date" property="startDate"),
@Result(column="end_date" property="endDate")

})
List<Course> findCoursesByTutorId(int tutorId);

@Select("SELECT tutor_id, name as tutor_name, email, addr_id
FROM tutors where tutor_id=#{tutorId}")
@Results({
@Result(id=true, column="tutor_id", property="tutorId"),
@Result(column="tutor_name", property="name"),
@Result(column="email", property="email"),
@Result(property="address", column="addr_id",
one=@One(select=" com.mybatis3.
mappers.TutorMapper.findAddressById")),
@Result(property="courses", column="tutor_id",
many=@Many(select="com.mybatis3.mappers.TutorMapper.
findCoursesByTutorId"))
})
Tutor findTutorById(int tutorId);
}

Here we have used the @Many annotation's select attribute to point to a fully
qualified method name, which returns the List<Course> objects. With the attribute
column="tutor_id", the tutor_id column value from the TUTORS table row will be
passed as an input to the findCoursesByTutorId() method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

Using an XML-based Mapper configuration, we can load a one-to-many association
using a nested ResultMap as discussed in Chapter3, SQL Mappers Using XML. As of
MyBatis 3.2.2, there is no annotation-based counterpart for this kind of mapping.
But we can define the <resultMap> in the Mapper XML file and reference it using
the @ResultMap annotation.

Configure <resultMap> in TutorMapper.xml as follows:

<mapper namespace="com.mybatis3.mappers.TutorMapper">
<resultMap type="Address" id="AddressResult">
<id property="addrId" column="addr_id"/>
<result property="street" column="street"/>
<result property="city" column="city"/>
<result property="state" column="state"/>
<result property="zip" column="zip"/>
<result property="country" column="country"/>
</resultMap>

<resultMap type="Course" id="CourseResult">
<id column="course_id" property="courseId"/>
<result column="name" property="name"/>
<result column="description" property="description"/>
<result column="start_date" property="startDate"/>
<result column="end_date" property="endDate"/>
</resultMap>

<resultMap type="Tutor" id="TutorResult">
<id column="tutor_id" property="tutorId"/>
<result column="tutor_name" property="name"/>
<result column="email" property="email"/>
<association property="address" resultMap="AddressResult"/>
<collection property="courses" resultMap="CourseResult"/>
</resultMap>
</mapper>

public interface TutorMapper
{
@Select("SELECT T.TUTOR_ID, T.NAME AS TUTOR_NAME, EMAIL,
A.ADDR_ID, STREET, CITY, STATE, ZIP, COUNTRY, COURSE_ID, C.NAME,
DESCRIPTION, START_DATE, END_DATE FROM TUTORS T LEFT OUTER
JOIN ADDRESSES A ON T.ADDR_ID=A.ADDR_ID LEFT OUTER JOIN COURSES
C ON T.TUTOR_ID=C.TUTOR_ID WHERE T.TUTOR_ID=#{tutorId}")
@ResultMap("com.mybatis3.mappers.TutorMapper.TutorResult")
Tutor selectTutorById(int tutorId);
}

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using Annotations

[92]

Dynamic SQL
Sometimes we may need to build queries dynamically based on input criteria.
MyBatis provides various annotations such as @InsertProvider, @UpdateProvider,
@DeleteProvider, and @SelectProvider, which facilitates building dynamic
queries and lets MyBatis execute those queries.

Now let us look at an example of how to create a simple SELECT mapped statement
using @SelectProvider.

Create the TutorDynaSqlProvider.java class with the findTutorByIdSql()
method as follows:

package com.mybatis3.sqlproviders;
import org.apache.ibatis.jdbc.SQL;

public class TutorDynaSqlProvider
{
public String findTutorByIdSql(int tutorId)
{
return "SELECT TUTOR_ID AS tutorId, NAME, EMAIL FROM TUTORS
WHERE TUTOR_ID="+tutorId;
}
}

Create a mapped statement in the TutorMapper.java interface as follows:

@SelectProvider(type=TutorDynaSqlProvider.class,
method="findTutorByIdSql")
Tutor findTutorById(int tutorId);

Here we have used @SelectProviderto specify the class and method name,
which provide the SQL statement to be executed.

But constructing SQL queries using string concatenation is difficult and error-prone.
So MyBatis provides an SQL utility which simplifies building dynamic SQL queries
without the need of string concatenations.

Now let us see how we can prepare the same query using the org.apache.ibatis.
jdbc.SQL utility.

package com.mybatis3.sqlproviders;
import org.apache.ibatis.jdbc.SQL;

public class TutorDynaSqlProvider
{
public String findTutorByIdSql(final int tutorId)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

{
return new SQL() {{
SELECT("tutor_id as tutorId, name, email");
FROM("tutors");
WHERE("tutor_id="+tutorId);
}}.toString();
}
}

The SQL utility will take care of constructing the query with proper space prefix
and suffixes if required.

The dynamic SQL provider methods can have one of the following parameters:

• No parameter
• A single parameter with same type of Mapper interface method
• java.util.Map

If the SQL query preparation doesn't depend on an input argument, you can use the
no-argument SQL provider method.

For example:

public String findTutorByIdSql()
{

return new SQL() {{
SELECT("tutor_id as tutorId, name, email");
FROM("tutors");
WHERE("tutor_id = #{tutorId}");
}}.toString();
}

Here we are not using any input parameter to construct the query, so it can be
a no-argument method.

If the Mapper interface method has only one parameter, we can use a method that
has only one parameter of the same type as the SQL provider method.

Tutor findTutorById(int tutorId);

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using Annotations

[94]

Here the findTutorById(int) method has only one input parameter of type
int. We can have the findTutorByIdSql(int) method as an SQL provider
method as follows:

public String findTutorByIdSql(final int tutorId)
{

return new SQL() {{
SELECT("tutor_id as tutorId, name, email");
FROM("tutors");
WHERE("tutor_id="+tutorId);
}}.toString();
}

If the Mapper interface has multiple input parameters, we can use a method with
the java.util.Map parameter type as the SQL provider method. Then all the input
argument values will be placed in map with param1, param2, and so on as keys, and
the input arguments as values. You can also get those input argument values using 0,
1, 2, and so on as keys.

@SelectProvider(type=TutorDynaSqlProvider.class,
method="findTutorByNameAndEmailSql")
Tutor findTutorByNameAndEmail(String name, String email);

public String findTutorByNameAndEmailSql(Map<String, Object> map)
{
String name = (String) map.get("param1");
String email = (String) map.get("param2");
//you can also get those values using 0,1 keys
//String name = (String) map.get("0");
//String email = (String) map.get("1");
return new SQL() {{
SELECT("tutor_id as tutorId, name, email");
FROM("tutors");
WHERE("name=#{name} AND email=#{email}");
}}.toString();
}

The SQL utility also provides various other methods to perform JOINS, ORDER_BY,
GROUP_BY, and so on.

Let us look at an example of using LEFT_OUTER_JOIN:

public class TutorDynaSqlProvider
{
public String selectTutorById()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

{

return new SQL() {{
SELECT("t.tutor_id, t.name as tutor_name, email");
SELECT("a.addr_id, street, city, state, zip, country");
SELECT("course_id, c.name as course_name, description,
start_date, end_date");
FROM("TUTORS t");
LEFT_OUTER_JOIN("addresses a on t.addr_id=a.addr_id");
LEFT_OUTER_JOIN("courses c on t.tutor_id=c.tutor_id");
WHERE("t.TUTOR_ID = #{id}");
}}.toString();
}
}

public interface TutorMapper
{
@SelectProvider(type=TutorDynaSqlProvider.class,
method="selectTutorById")
@ResultMap("com.mybatis3.mappers.TutorMapper.TutorResult")
Tutor selectTutorById(int tutorId);
}

As there is no annotation support for mapping one-to-many results using
nestedResultMap, we can use the XML-based <resultMap> configuration
and map with @ResultMap.

<mapper namespace="com.mybatis3.mappers.TutorMapper">

<resultMap type="Address" id="AddressResult">
<id property="id" column="addr_id"/>
<result property="street" column="street"/>
<result property="city" column="city"/>
<result property="state" column="state"/>
<result property="zip" column="zip"/>
<result property="country" column="country"/>
</resultMap>

<resultMap type="Course" id="CourseResult">
<id column="course_id" property="id"/>
<result column="course_name" property="name"/>
<result column="description" property="description"/>
<result column="start_date" property="startDate"/>
<result column="end_date" property="endDate"/>
</resultMap>

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using Annotations

[96]

<resultMap type="Tutor" id="TutorResult">
<id column="tutor_id" property="id"/>
<result column="tutor_name" property="name"/>
<result column="email" property="email"/>
<association property="address" resultMap="AddressResult"/>
<collection property="courses"
resultMap="CourseResult"></collection>
</resultMap>
</mapper>

With this dynamic SQL provider we can fetch Tutor details along with Address
and Courses details.

@InsertProvider
We can create dynamic INSERT queries using @InsertProvider as follows:

public class TutorDynaSqlProvider
{
public String insertTutor(final Tutor tutor)
{

return new SQL() {{
INSERT_INTO("TUTORS");

if (tutor.getName() != null) {
VALUES("NAME", "#{name}");
}

if (tutor.getEmail() != null) {
VALUES("EMAIL", "#{email}");
}
}}.toString();
}
}

public interface TutorMapper
{
@InsertProvider(type=TutorDynaSqlProvider.class,
method="insertTutor")
@Options(useGeneratedKeys=true, keyProperty="tutorId")
int insertTutor(Tutor tutor);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

@UpdateProvider
We can create dynamic UPDATE queries using @UpdateProvider as follows:

public class TutorDynaSqlProvider
{
public String updateTutor(final Tutor tutor)
{

return new SQL() {{
UPDATE("TUTORS");

if (tutor.getName() != null) {
SET("NAME = #{name}");
}

if (tutor.getEmail() != null) {
SET("EMAIL = #{email}");
}
WHERE("TUTOR_ID = #{tutorId}");
}}.toString();
}
}

public interface TutorMapper
{
@UpdateProvider(type=TutorDynaSqlProvider.class,
method="updateTutor")
int updateTutor(Tutor tutor);
}

@DeleteProvider
We can create dynamic DELETE queries using @DeleteProvider as follows:

public class TutorDynaSqlProvider
{
public String deleteTutor(int tutorId)
{

return new SQL() {{
DELETE_FROM("TUTORS");
WHERE("TUTOR_ID = #{tutorId}");
}}.toString();
}

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Mappers Using Annotations

[98]

}

public interface TutorMapper
{
@DeleteProvider(type=TutorDynaSqlProvider.class,
method="deleteTutor")
int deleteTutor(int tutorId);
}

Summary
In this chapter, we learned how to write SQL mapped statements using annotations.
We discussed how to configure simple statements, statements with one-to-one and
one-to-many relationships. We also looked into building dynamic queries using
SqlProvider annotations. In the next chapter, we will discuss how to integrate
MyBatis with the Spring framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with Spring
MyBatis-Spring is a submodule of the MyBatis framework, which provides
seamless integration with the popular dependency injection framework, Spring.

The Spring framework is a Dependency Injection and Aspect Oriented
Programming (AOP) based Java application framework which encourages
POJO-based programming model. Also, Spring provides declarative and
programmatic transaction management capabilities, which greatly simplify
the implementation of the data access layer of the application. In this chapter,
we will see how to use MyBatis in a Spring-based application and use Spring's
annotation-based transaction management strategy.

In this chapter we will cover the following topics:

• Configuring MyBatis in a Spring application
 ° Installation
 ° Configuring MyBatis beans

• Working with SqlSession
• Working with mappers
• Transaction management using Spring

Configuring MyBatis in a Spring
application
This section describes how to install and configure MyBatis in a Spring-based application.

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with Spring

[100]

Installation
If you are using the Maven build tool, you can configure Mybatis' spring dependency
as follows:

<dependency>
 <groupId>org.mybatis</groupId>
 <artifactId>mybatis-spring</artifactId>
<version>1.2.0</version>

</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context-support</artifactId>
 <version>3.1.3.RELEASE</version>
 <exclusions>
 <exclusion>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 </exclusion>
 </exclusions>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-jdbc</artifactId>
 <version>3.1.3.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <version>3.1.3.RELEASE</version>
 <scope>test</scope>
</dependency>

<dependency>
 <groupId>org.aspectj</groupId>
 <artifactId>aspectjrt</artifactId>
 <version>1.6.8</version>
</dependency>
<dependency>
 <groupId>org.aspectj</groupId>
 <artifactId>aspectjweaver</artifactId>
 <version>1.6.8</version>
</dependency>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[101]

<dependency>
 <groupId>cglib</groupId>
 <artifactId>cglib-nodep</artifactId>
 <version>2.2</version>
</dependency>

<dependency>
 <groupId>commons-dbcp</groupId>
 <artifactId>commons-dbcp</artifactId>
 <version>1.4</version>
</dependency>

If you are not using Maven, you can download mybatis-spring-1.2.0-bundle.
zip from http://code.google.com/p/mybatis/. Extract and add mybatis-
spring-1.2.0.jar to the classpath.

You can download the Spring framework bundle spring-framework-
3.1.3.RELEASE.zip from http://www.springsource.org/download/
community/ and add Spring and its dependent JAR files to the classpath.

If we are using MyBatis without Spring then we need to create the
SqlSessionFactory object by ourselves and need to create a SqlSession object
from SqlSessionFactory in every method. Also, we are responsible for committing
or rolling back the transaction and closing the SqlSession object.

By using the MyBatis-Spring module, we can configure the MyBatis beans in Spring
ApplicationContext, and Spring will take care of instantiating the SqlSessionFactory
object and create a SqlSession object and inject it into the DAO or Service classes.
Also, you can use Spring's annotation-based transaction management capabilities,
without writing transaction-handling code inside the data access logic.

Configuring MyBatis beans
To let Spring instantiate MyBatis components such as SqlSessionFactory,
SqlSession, and the Mapper objects, we need to configure them in the Spring
bean definition file, say applicationContext.xml, as follows:

<beans>
 <bean id="dataSource"
 class="org.springframework.jdbc.datasource.
 DriverManagerDataSource">
 <property name="driverClassName"
 value="com.mysql.jdbc.Driver"/>
 <property name="url"

www.it-ebooks.info

http://code.google.com/p/mybatis/
http://www.it-ebooks.info/

Integration with Spring

[102]

 value="jdbc:mysql://localhost:3306/elearning"/>
 <property name="username" value="root"/>
 <property name="password" value="admin"/>
 </bean>

 <bean id="sqlSessionFactory"
 class="org.mybatis.spring.SqlSessionFactoryBean">
 <property name="dataSource" ref="dataSource" />
 <property name="typeAliases"
 value="com.mybatis3.domain.Student,
 com.mybatis3.domain.Tutor"/>
 <property name="typeAliasesPackage"
 value="com.mybatis3.domain"/>
 <property name="typeHandlers"
 value="com.mybatis3.typehandlers.PhoneTypeHandler"/>
 <property name="typeHandlersPackage"
 value="com.mybatis3.typehandlers"/>
 <property name="mapperLocations"
 value="classpath*:com/mybatis3/**/*.xml" />
 <property name="configLocation" value="WEB-INF/mybatis-
 config.xml"/>
 </bean>
</beans>

With the preceding bean definitions, Spring will create a SqlSessionFactory object
using the configured properties as follows:

• dataSource: It refers to the dataSource bean
• typeAliases: It specifies the comma-separated list of fully qualified class

names for which aliases should be created using the default aliasing rule
• typeAliasesPackage: It specifies the comma-separated list of package

names that needs to be scanned and creates aliases for JavaBeans
• typeHandlers: It specifies the comma-separated list of fully qualified class

names of the type handler classes
• typeHandlersPackage: It specifies the comma-separated list of package

names, which needs to scanned for the type handler classes
• mapperLocations: It specifies the location of the SQL Mapper XML files
• configLocation: It specifies the location of the MyBatis SqlSessionFactory

config file

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[103]

Working with SqlSession
Once the SqlSessionFactory bean is configured, we need to configure the
SqlSessionTemplate bean, which is a thread-safe Spring bean from which we can
obtain the thread-safe SqlSession objects. Because SqlSessionTemplate provides
the thread-safe SqlSession objects, you can share the same SqlSessionTemplate
instance with multiple Spring beans. Conceptually SqlSessionTemplate is similar
to JdbcTemplate of the Spring DAO module.

<bean id="sqlSession" class="org.mybatis.spring.SqlSessionTemplate">
 <constructor-arg index="0" ref="sqlSessionFactory" />
</bean>

Now we can inject the SqlSession bean into any Spring bean and use the
SqlSession object to invoke the mapped SQL statements.

public class StudentDaoImpl implements StudentDao
{
 private SqlSession sqlSession;
 public void setSqlSession(SqlSession session)
 {
 this.sqlSession = session;
 }
 public void createStudent(Student student)
 {
 StudentMapper mapper =
 this.sqlSession.getMapper(StudentMapper.class);
 mapper.insertStudent(student);
 }
}

If you are using an XML-based configuration for configuring the Spring beans,
you can inject the SqlSession bean into the StudentDaoImpl beans as follows:

<bean id="studentDao" class="com.mybatis3.dao.StudentDaoImpl">
 <property name="sqlSession" ref="sqlSession" />
</bean>

If you are using the annotation-based configuration for wiring the Spring beans,
you can inject the SqlSession bean into the StudentDaoImpl beans as follows:

@Repository
public class StudentDaoImpl implements StudentDao
{
 private SqlSession sqlSession;
 @Autowired

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with Spring

[104]

 public void setSqlSession(SqlSession session)
 {
 this.sqlSession = session;
 }
 public void createStudent(Student student)
 {
 StudentMapper mapper =
 this.sqlSession.getMapper(StudentMapper.class);
 mapper.insertStudent(student);
 }
}

There is another way to inject the SqlSession object, that is, by extending
SqlSessionDaoSupport. This approach enables us to perform any custom
logic in addition to executing the mapped statements.

public class StudentMapperImpl extends SqlSessionDaoSupport implements
StudentMapper
{
 public void createStudent(Student student)
 {
 StudentMapper mapper =
 getSqlSession().getMapper(StudentMapper.class);
 mapper.insertAddress(student.getAddress());
 //Custom logic
 mapper.insertStudent(student);
 }
}

<bean id="studentMapper" class="com.mybatis3.dao.StudentMapperImpl">
 <property name="sqlSessionFactory" ref="sqlSessionFactory" />
</bean>

In these approaches we are injecting the SqlSession object, getting the Mapper
instance, and executing the mapped statements. Here, Spring will take care of
providing a thread-safe SqlSession object and close SqlSession once the method
is complete.

However, the MyBatis-Spring module provides a better approach, which we will
discuss in the next section, where you can inject the Sql Mapper beans directly
instead of getting the mappers from SqlSession.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[105]

Working with mappers
We can configure the Mapper interface as a Spring bean using MapperFactoryBean
as follows:

public interface StudentMapper
{
 @Select("select stud_id as studId, name, email, phone from
 students where stud_id=#{id}")
 Student findStudentById(Integer id);
}

<bean id="studentMapper" class="org.mybatis.spring.mapper.
MapperFactoryBean">
<property name="mapperInterface" value="com.mybatis3.mappers.
StudentMapper" />
<property name="sqlSessionFactory" ref="sqlSessionFactory" />
</bean>

Now the StudentMapper bean can be injected into any Spring bean and can invoke
the mapped statement methods as follows:

public class StudentService
{
 private StudentMapper studentMapper;
 public void setStudentMapper (StudentMapperstudentMapper)
 {
 this. studentMapper = studentMapper;
 }
 public void createStudent(Student student)
 {
 this.studentMapper.insertStudent(student);
 }
}

<bean id="studentService" class="com.mybatis3.services.
StudentService">
 <property name="studentMapper" ref="studentMapper" />
</bean>

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with Spring

[106]

Configuring each Mapper interface individually is a tedious process. Instead of
configuring each mapper separately, we can use MapperScannerConfigurer to
scan packages for the Mapper interfaces and register them automatically.

<bean class="org.mybatis.spring.mapper.MapperScannerConfigurer">
 <property name="basePackage" value="com.mybatis3.mappers" />
</bean>

If the Mapper interfaces are in different packages, you can specify a comma-separated
list of package names for the basePackage attribute.

MyBatis-Spring-1.2.0 introduced two new ways for scanning the Mapper interfaces:

• Using the <mybatis:scan/> element
• Using the @MapperScan annotation (requires Spring 3.1+)

<mybatis:scan/>
The <mybatis:scan> element will search for Mapper interfaces in the specified
comma-separated list of package names. To use this new MyBatis-Spring namespace
you need to add the following schema declarations:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:mybatis="http://mybatis.org/schema/mybatis-spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://mybatis.org/schema/mybatis-spring
 http://mybatis.org/schema/mybatis-spring.xsd">
 <mybatis:scan base-package="com.mybatis3.mappers" />
</beans>

The <mybatis:scan> element provides the following attributes, which can be used
to customize the scanning process:

• annotation: The scanner will register all the interfaces in the base package
that also have the specified interface class as a parent.

• factory-ref: Specifies which SqlSessionFactory to use in case there is
more than one in the spring context. Usually this is only needed when you
have more than one datasource.

• marker-interface: The scanner will register all the interfaces in the base
package that also have the specified annotation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[107]

• template-ref: Specifies which SqlSessionTemplate to use in case there is
more than one in the spring context. Usually this is only needed when you
have more than one datasource.

• name-generator: It is the fully-qualified class name of BeanNameGenerator
to be used for naming the detected components.

@MapperScan
The Spring framework 3.x+ provides Java-based configurations using
the @Configuration and @Bean annotations. If you prefer a Java-based
configuration then you can use the @MapperScan annotation to scan for
Mapper interfaces. @MapperScan works in the same way as <mybatis:scan/>
and also provides all of its customization options as annotation attributes.

@Configuration
@MapperScan("com.mybatis3.mappers")
public class AppConfig
{

 @Bean
 public DataSource dataSource() {
 return new PooledDataSource("com.mysql.jdbc.Driver",
 "jdbc:mysql://localhost:3306/elearning", "root", "admin");
 }

 @Bean
 public SqlSessionFactory sqlSessionFactory() throws Exception {
 SqlSessionFactoryBeansessionFactory = new
 SqlSessionFactoryBean();
 sessionFactory.setDataSource(dataSource());
 return sessionFactory.getObject();
 }
}

The @MapperScan annotation has the following attributes for customizing
the scanning process:

• annotationClass: The scanner will register all the interfaces in the base
package that also have the specified annotation.

• markerInterface: The scanner will register all the interfaces in the base
package that also have the specified interface class as a parent.

• sqlSessionFactoryRef: Specifies which SqlSessionFactory to use in case
there is more than one in the spring context.

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with Spring

[108]

• sqlSessionTemplateRef: Specifies which SqlSessionTemplate to use in
case there is more than one in the spring context.

• nameGenerator: The BeanNameGenerator class is to be used for naming the
detected components within the Spring container.

• basePackageClasses: A type-safe alternative to basePackages() for
specifying the packages to scan for annotated components. The package
of each class specified will be scanned.

• basePackages: Base packages to scan for MyBatis interfaces. Note that
only interfaces with at least one method will be registered; concrete classes
will be ignored.

Injecting mappers is a preferred approach for injecting SqlSession
beans because it removes the dependency on MyBatis API from the
Java code.

Transaction management using Spring
Using plain MyBatis, you need to write the code for transaction handling,
such as committing or rolling back the database operations.

public Student createStudent(Student student)
{
 SqlSession sqlSession = MyBatisUtil.getSqlSessionFactory().
openSession();
 try {
 StudentMapper mapper =
 sqlSession.getMapper(StudentMapper.class);
 mapper.insertAddress(student.getAddress());
 mapper.insertStudent(student);
 sqlSession.commit();
 return student;
 }
 catch (Exception e) {
 sqlSession.rollback();
 throw new RuntimeException(e);
 }
 finally {
 sqlSession.close();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[109]

Instead of writing this boiler plate for each method, we can use the Spring's
annotation-based transaction-handling mechanism.

To be able to utilize the Spring's transaction management capabilities, we should
configure the TransactionManager bean in Spring application context.

<bean id="transactionManager" class="org.springframework.jdbc.
datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource" />
</bean>

The dataSource reference for the transaction manager should be the same
dataSource, which is used for the SqlSessionFactory bean.

Enable the annotation-based transaction management feature in Spring as follows:

<tx:annotation-driven transaction-manager="transactionManager"/>

Now you can annotate the Spring service beans with the @Transactional
annotation, indicating that each method in this service should run within a
transaction. Spring will commit the operation if the method is completed successfully
and will rollback if any runtime exception occurs. Also, Spring will take care of
converting MyBatis Exceptions into appropriate DataAccessExceptions, thereby
providing additional details on specific error conditions.

@Service
@Transactional
public class StudentService
{
 @Autowired
 private StudentMapper studentMapper;

 public Student createStudent(Student student)
 {
 studentMapper.insertAddress(student.getAddress());
 if(student.getName().equalsIgnoreCase("")){
 throw new RuntimeException("Student name should not be
 empty.");
 }
 studentMapper.insertStudent(student);

 return student;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with Spring

[110]

The following is the complete configuration of Spring's applicationContext.xml:

<beans>

 <context:annotation-config />

 <context:component-scan base-package="com.mybatis3" />

 <context:property-placeholder
 location="classpath:application.properties" />

<tx:annotation-driven transaction-manager="transactionManager"/>

 <bean id="transactionManager"
 class="org.springframework.jdbc.datasource.
 DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource" />
 </bean>

 <bean class="org.mybatis.spring.mapper.MapperScannerConfigurer">
 <property name="basePackage" value="com.mybatis3.mappers" />
 </bean>

 <bean id="sqlSession"
 class="org.mybatis.spring.SqlSessionTemplate">
 <constructor-arg index="0" ref="sqlSessionFactory" />
 </bean>

 <bean id="sqlSessionFactory"
 class="org.mybatis.spring.SqlSessionFactoryBean">
 <property name="dataSource" ref="dataSource" />
 <property name="typeAliases"
 value="com.mybatis3.domain.Student,
 com.mybatis3.domain.Tutor"/>
 <property name="typeAliasesPackage"
 value="com.mybatis3.domain"/>
 <property name="typeHandlers"
 value="com.mybatis3.typehandlers.PhoneTypeHandler"/>
 <property name="typeHandlersPackage"
 value="com.mybatis3.typehandlers"/>
 <property name="mapperLocations"
 value="classpath*:com/mybatis3/**/*.xml" />
 </bean>

<bean id="dataSource"
class="org.springframework.jdbc.datasource.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[111]

DriverManagerDataSource">
 <property name="driverClassName"
 value="${jdbc.driverClassName}"></property>
 <property name="url" value="${jdbc.url}"></property>
 <property name="username" value="${jdbc.username}"></property>
 <property name="password" value="${jdbc.password}"></property>
 </bean>

</beans>

Now let us write a standalone test client for testing StudentService as follows:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations="classpath:applicationContext.xml"
)
public class StudentServiceTest
{
 @Autowired
 private StudentService studentService;

 @Test
 public void testCreateStudent() {
 Address address = new Address(0,"Quaker Ridge
 Rd.","Bethel","Brooklyn","06801","USA");

 Student stud = new Student();
 long ts = System.currentTimeMillis();
 stud.setName("stud_"+ts);
 stud.setEmail("stud_"+ts+"@gmail.com");
 stud.setAddress(address);
 Student student = studentService.createStudent(stud);
 assertNotNull(student);
 assertEquals("stud_"+ts, student.getName());
 assertEquals("stud_"+ts+"@gmail.com", student.getEmail());
 System.err.println("CreatedStudent: "+student);
 }

 @Test(expected=DataAccessException.class)
 public void testCreateStudentForException() {
 Address address = new Address(0,"Quaker Ridge
 Rd.","Bethel","Brooklyn","06801","USA");

 Student stud = new Student();
 long ts = System.currentTimeMillis();
 stud.setName("Timothy");

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with Spring

[112]

 stud.setEmail("stud_"+ts+"@gmail.com");
 stud.setAddress(address);
 studentService.createStudent(stud);
 fail("You should not reach here");
 }
}

Here in the testCreateStudent() method, we are giving proper data, so both
the Address and Student records should be inserted into the ADDRESSES and
STUDENTS tables. In the testCreateStudentForException() method we are
setting Name to Timothy, which is already in the database. So when you try to insert
this student record into the database, MySQL throws an exception as there is a
UNIQUE KEY constraint on the NAME column. Spring will convert that exception into
DataAccessException and the record inserted into the ADDRESSES table will also be
rolled back.

Summary
In this chapter we learned how to integrate MyBatis with the Spring framework.
We also learned how to install the Spring libraries and register the MyBatis beans in
Spring ApplicationContext. We saw how to configure and inject the SqlSession and
Mapper beans and invoke the mapped statements. We also learned how to utilize
Spring's annotation-based transaction-handling mechanism with MyBatis.

You have finished reading this book, congratulations! By now, you should know
how to use MyBatis effectively to work with databases. You learned how to be more
productive with MyBatis by leveraging your Java and SQL skills. You know how to
write database persistence code using MyBatis in a much cleaner way, leaving all the
low-level details to be handled by the MyBatis framework. In addition, you learned
how to use MyBatis with the most popular dependency injection framework, Spring.

The MyBatis framework is very easy to work with, yet it provides powerful features,
thereby making it a good database persistence solution for the Java-based projects.
MyBatis also provides tools such as MyBatis Generator (http://www.mybatis.
org/generator/), which can be used to generate the persistence code artifacts such
as database entities, Mapper interfaces, and Mapper XML files, from an existing
database schema, which comes in very handy to start with MyBatis. Also, MyBatis
has sister projects such as MyBatis.NET and MyBatis-Scala, providing the same
powerful features for the .NET and Scala programming languages.

MyBatis is getting better and better with each release, with lots of new features.
To learn more about these new features, you can visit the official MyBatis website
at https://code.google.com/p/mybatis/. It is a good idea to subscribe to the
MyBatis user mailing list. We wish you all the best, and happy coding!

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
@Alias annotation 33
<association> element 61
<collection> element 64
@Delete annotation 86
@DeleteProvider 97
<foreach> element 71
@Insert annotation 84
@Insert mapped statement 84
@InsertProvider 96
@Many annotation 90, 91
@MapperScan annotation

about 106, 107
annotationClass 108
basePackageClasses 108
basePackages 108
markerInterface 107
nameGenerator 108
sqlSessionFactoryRef 107
sqlSessionTemplateRef 108

<mapper> tag attribute
class attribute 39
package element 39
resource attribute 38
url attribute 38

<mybatis$scan> element
annotation 106
factory-ref 106
marker-interface 106
name-generator 107
template-ref 107

@Options annotation 84
<resultMap> element 87
@Results annotation 86, 87
<result> subelement 57

@Select annotation 86
@SelectKey annotation 85
<selectKey> subelement 52
@SelectProvider

used, for creating SELECT mapped
statement 92

<select> statement 57
<trim> element 70
@Update annotation 85
@UpdateProvider 97
<where> element 70

A
annotationClass 108
annotation 106
annotation-based configuration options 84
Aspect Oriented Programming (AOP) 99
autogenerated keys 51, 84, 85
auto_increment column value 84

B
basePackage attribute 106
basePackageClasses 108
before=true attribute 85
BLOB types

handling 74, 75

C
cache

eviction attribute 80
flushInterval attribute 80
global second-level caches, adding 79
readOnly attribute 80
size attribute 80

www.it-ebooks.info

http://www.it-ebooks.info/

[114]

choose condition 68
class attribute 39
CLOB types

handling 74, 75
configLocation 102

D
data

caching 79
data access layer 99
dataSource reference 102, 109
DataSource, types

JNDI DataSource 40
POOLED DataSource 30, 40
UNPOOLED DataSource 30, 40

DELETE mapped statement
about 53, 86
sqlSession.delete() method 53

DELETE queries
creating, @DeleteProvider used 97

delete statement 53
deleteStudent() method 86
dependency injection 99
Domain Model

sample 24
Dynamic SQL

about 92
choose condition 68
foreach loop 71, 72
If condition 67, 68
otherwise condition 68
parameters 93
set condition 72
trim condition 70
when condition 68
where condition 69

E
email attribute 34
enumeration types

handling 73
environment 29, 30
environment object 40
eviction attribute 80

example code
URL, downloading 9

F
factory-ref 106
findAllStudents() method 87
findCoursesByTutorId() method 90
findCoursesByTutor statement 66
findStudentById mapped statement 48
findStudentById statement

invoking 54
findStudentBy() method 87
findTutorById(int) method 94
findTutorByIdSql(int) method 94
findTutorByIdSql() method 92
flushInterval attribute 80
foreach loop 71, 72

H
handleResult() method 79

I
iBATIS

about 7
migrating, to MyBatis 7

If condition 67, 68
INSERT mapped statement

about 50
autogenerated keys 51
sqlSession.insert() method 50

INSERT queries
creating, @InsertProvider used 96

INSERT statement 85
insertStudent mapped statement 51
insertStudent() method 84

J
Java DataBase Connectivity (JDBC) 8
Java project

creating 15, 17
developing 15
mybatis-3.2.2. jar, adding to classpath 15,

17

www.it-ebooks.info

http://www.it-ebooks.info/

[115]

java.util.Map parameter type 94
JdbcTransactionFactory 41
JDBC transaction manager 30
JNDI DataSource 40
JUnit JAR file

URL, for downloading 16
JUnit test

creating, to test StudentService 22, 23

K
keyProperty attribute 84, 85

M
ManagedTransactionFactory 41
MANAGED transaction manager 31
mapped interfaces

annotations used 84
mapped statements

@Insert mapped statement 84
about 84
DELETE mapped statement 53, 86
INSERT mapped statement 50
SELECT mapped statement 54, 86
UPDATE mapped statement 52, 85

mapperLocations 102
mappers

@MapperScan annotation 107
<mybatis$scan> element 106
about 38, 39, 43, 44, 105
interface 48, 49
XML 48, 49

marker-interface 106
Maven

URL, for downloading 101
Maven build tool

used, for configuring MyBatis 100, 101
multiple input parameters

passing 77
multiple results

as map 77
MyBatis

about 7
beans, configuring 101, 102
BLOB types, handling 74, 75
CLOB types, handling 74, 75
configuring, in Spring application 99

configuring, Maven build tool used 100,
101

enumeration types, handling 73, 74
features 8-13
Guice frameworks supported 13
JAR dependencies, configuring 15-17
Java project, creating 15-17
JDBC boilerplate code, eliminations 8-11
JUnit test, creating to test StudentService

22, 23
learning curve, low 12
legacy databases 12
migration from, iBATIS 7
multiple input parameters, passing 76, 77
multiple results, as map 77
mybatis-config.xml configuration file,

creating 17, 18
MyBatisSqlSessionFactory singleton class,

creating 19
performance 13
ResultSet processing, ResultSetHandler

used 78, 79
ResultSets paginated, RowBounds used 77
sample data, inserting 15
Spring integration supported 13
SQL 12
StudentMapper interface, creating 20, 22
StudentMapper.xml configuration file,

creating 17, 18
StudentService classes, creating 20-22
STUDENTS table, creating 15
third-party cache libraries integration

supported 13
used, for developing Java project 14
used, for implementing preceding methods

11, 12
website, URL 81, 112

mybatis-3.2.2. jar
adding, to classpath 15

MyBatis configuration, Java API used
about 39
DataSource, types 40
environment object 40
mappers 43
settings 43
SqlSessionFactory object, creating 39
TransactionFactory, types 41

www.it-ebooks.info

http://www.it-ebooks.info/

[116]

typeAliases 42
typeHandlers 42

MyBatis configuration, XML used
about 27, 28
dataSource element 30
dataSource types 30
environment 29, 30
mappers 38
MyBatis global settings 38
properties configuration element 31, 32
transaction managers, types 30, 31
typeAliases 32, 33
typeHandlers 34

mybatis-config.xml configuration file
about 27
creating 17, 18

MyBatis distribution
URL, for downloading 15

MyBatis Generator
URL 112

MyBatis Logging
customizing 44

MyBatisSqlSessionFactory singleton class
creating 19

N
nameGenerator 107, 108
nested ResultMap

used, for one-to-many mapping 64, 65
nested select

used, for one-to-many mapping 65, 66
Nested-Select statement 90

O
OGNL (Object Graph Navigation

Language) expressions 68
one-to-many mapping 90, 91
one-to-many mapping, ResultMaps

about 63, 64
nested ResultMap used 64, 65
nested select used 65, 66

one-to-one mapping 88, 89

one-to-one mapping, ResultMaps
about 59, 61
nested ResultMap used 61, 62
nested select used 62, 63

otherwise condition 68

P
package element 39
parameterType attribute 32, 50
phoneNumber property 35
plain old Java object (POJO) 99
POOLED DataSource 30, 40
PreparedStatement interface 34
properties configuration element 31, 32
ps.setString() method 37

R
readOnly attribute 80
resource attribute 38
resultMap attribute 88
result maps

about 86, 87
one-to-many mapping 90, 91
one-to-one mapping 88, 89

ResultMaps
about 56
extending 58
one-to-many mapping 63, 64
one-to-many mapping, nested ResultMap

used 64, 65
one-to-many mapping, nested select used

65, 66
one-to-one mapping 59, 61
one-to-one mapping, nested ResultMap

used 61, 62
one-to-one mapping, nested Select used 62,

63
simple 56, 57

ResultSets
paginated, RowBounds used 77
processing, ResultSetHandler used 78

resultType attribute 32, 54
rs.getString() method 37

www.it-ebooks.info

http://www.it-ebooks.info/

[117]

S
SELECT mapped statement

about 54, 86
creating, @SelectProvider used 92
findAllStudents statement 55
findStudentById statement, invoking 54
resultType attribute 54
select query, configuring 54
sqlSession.selectOne() method 54
sqlSession.selectOne() method 54
studId property 54

set condition 72
setDate() method 34
setInt() method 35
setString() method 34
settings 38
size attribute 80
Spring application

MyBatis, configuring in 99
used, for managing transaction 108-112

SQL 12, 13
SqlSession 103, 104
sqlSession.delete() method 53
SqlSessionFactory interface 39
SqlSessionFactory object

about 23, 27, 102
configLocation 102
dataSource 102
mapperLocations 102
typeAliases 102
typeAliasesPackage 102
typeHandlers 102
typeHandlersPackage 102

sqlSessionFactoryRef 107
sqlSession.insert() method 50
sqlSession.select() method 78
sqlSession.selectOne() method 54
sqlSessionTemplateRef 108
sqlSession.update() method 52
SQL utility 93
StudentMapper bean 105

StudentMapper interface
about 49
creating 20, 22

StudentMapper.xml configuration file
creating 17, 18

Student object 85
StudentService classes

creating 20, 22
testing, by JUnit test creation 22, 23

studId property 54, 84

T
template-ref 107
testCreateStudentForException() method

112
testCreateStudent() method 112
transaction

managing, Spring used 108-112
TransactionFactory 41
TransactionManager 31
TransactionManager bean 109
trim condition 70
typeAliases 32, 33, 102
typeAliasesPackage 102
typeHandlers 34, 102
typeHandlersPackage 102

U
UNIQUE KEY constraint 112
UNPOOLED DataSource 30, 40
UPDATE mapped statement

about 52, 85
sqlSession.update() method 52

UPDATE queries
creating, @UpdateProvider used 97

updateStudent() method 85
url attribute 38

W
when condition 68
where condition 69

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Java Persistence with MyBatis 3

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Persistence with Hibernate
ISBN: 978-1-849510-56-1 Paperback: 460 pages

Build robust and reliable persistence solutions for
your enterprise Java application

1. Get to grips with Hibernate and its
configuration manager, mappings, types,
session APIs, queries, and much more

2. Integrate Hibernate and Spring as part of your
enterprise Java stack development

3. Work with Spring IoC (Inversion of Control),
Spring AOP, transaction management, web
development, and unit testing considerations
and features

OSWorkflow
ISBN: 978-1-84719-152-6 Paperback: 212 pages

A guide for Java developers and architects
to integrating open-source Business Process
Management

1. Basics of OSWorkflow

2. Integrating business rules with Drools

3. Task scheduling with Quartz

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Spring 2.5 Aspect Oriented
Programming
ISBN: 978-1-84719-402-2 Paperback: 332 pages

Create dynamic, feature-rich, and robust enterprise
applications using the Spring framework

1. Master Aspect-Oriented Programming and its
solutions to implementation issues in Object-
Oriented Programming

2. A practical, hands-on book for Java developers
rich with code, clear explanations, and
interesting examples

3. Includes Domain-Driven Design and Test-
Driven Development of an example online shop
using AOP in a three-tier Spring application

Spring Data
ISBN: 978-1-84951-904-5 Paperback: 160 pages

Implement JPA repositories and harness the
performance of Redis in your applications

1. Implement JPA repositories with lesser code

2. Includes functional sample projects that
demonstrate the described concepts in action
and help you start experimenting right away

3. Provides step-by-step instructions and a lot of
code examples that are easy to follow and help
you to get started from page one

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with MyBatis
	What is MyBatis?
	Why MyBatis?
	Eliminates a lot of JDBC boilerplate code
	Low learning curve
	Works well with legacy databases
	Embraces SQL
	Supports integration with Spring and Guice frameworks
	Supports integration with third-party cache libraries
	Better performance

	Installing and configuring MyBatis
	Creating a STUDENTS table and inserting sample data
	Creating a Java project and adding mybatis-3.2.2. jar to the classpath
	Creating the mybatis-config.xml and StudentMapper.xml configuration files
	Creating the MyBatisSqlSessionFactory singleton class
	Creating the StudentMapper interface and the StudentService classes
	Creating a JUnit test for testing StudentService
	How it works

	Sample domain model
	Summary

	Chapter 2: Bootstrapping MyBatis
	Configuring MyBatis using XML
	Environment
	DataSource
	TransactionManager
	Properties
	typeAliases
	typeHandlers
	Settings
	Mappers

	Configuring MyBatis using Java API
	Environment
	DataSource
	TransactionFactory
	typeAliases
	typeHandlers
	Settings
	Mappers

	Customizing MyBatis Logging
	Summary

	Chapter 3: SQL Mappers Using XML
	Mapper XMLs and Mapper interfaces
	Mapped statements
	The INSERT statement
	Autogenerated keys

	The UPDATE statement
	The DELETE statement
	The SELECT statement

	ResultMaps
	Simple ResultMaps
	Extending ResultMaps
	One-to-one mapping
	One-to-one mapping using nested ResultMap
	One-to-one mapping using nested Select
	One-to-many mapping
	One-to-many mapping with nested ResultMap
	One-to-many mapping with nested select

	Dynamic SQL
	The If condition
	The choose, when, and otherwise conditions
	The where condition
	The trim condition
	The foreach loop
	The set condition

	MyBatis recipes
	Handling enumeration types
	Handling the CLOB/BLOB types
	Passing multiple input parameters
	Multiple results as a map
	Paginated ResultSets using RowBounds
	Custom ResultSet processing using ResultSetHandler
	Cache

	Summary

	Chapter 4: SQL Mappers using Annotations
	Mapper interfaces using annotations
	Mapped statements
	@Insert
	Autogenerated keys

	@Update
	@Delete
	@Select

	Result maps
	One-to-one mapping
	One-to-many mapping

	Dynamic SQL
	@InsertProvider
	@UpdateProvider
	@DeleteProvider

	Summary

	Chapter 5: Integration with Spring
	Configuring MyBatis in a Spring application
	Installation
	Configuring MyBatis beans

	Working with SqlSession
	Working with mappers
	<mybatis:scan/>
	@MapperScan

	Transaction management using Spring
	Summary

	Index

