
www.it-ebooks.info

http://www.it-ebooks.info/

Application Development
in iOS 7

Learn how to build an entire real-world application
using all of iOS 7's new features

Kyle Begeman

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Application Development in iOS 7

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either expressed or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2014

Production Reference: 1120514

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-031-9

www.packtpub.com

Cover Image by Pratyush Mohanta (tysoncinematography@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Kyle Begeman

Reviewers
Arnaud Coomans

Jayant C. Varma

Dmitry Volevodz

Commissioning Editor
James Jones

Acquisition Editor
James Jones

Content Development Editor
Rikshith Shetty

Technical Editors
Pramod Kumavat

Mukul Pawar

Copy Editors
Sarang Chari

Adithi Shetty

Project Coordinator
Harshal Ved

Proofreaders
Stephen Copestake

Maria Gould

Paul Hindle

Indexer
Mehreen Deshmukh

Graphics
Yuvraj Mannari

Production Coordinators
Kyle Albuquerque

Conidon Miranda

Cover Work
Conidon Miranda

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Kyle Begeman is a self-taught programmer, entrepreneur, and educator. With over
five years of experience in iOS development, he has produced multiple applications,
mostly with large businesses. He frequently produces educational videos and text for
others to learn how to program. A self-proclaimed nerd living in the Silicon Valley,
Kyle Begeman spends most of his free time listening to/playing music and thinking
up the next great project! You can visit his website at www.kylebegeman.com.

For my wife, Kelli. You inspire me every day on our journey
through life.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Arnaud Coomans is a senior iOS engineer. He has developed various applications,
both for iPhone and iPad, and regularly contributes to open source projects. He
enjoys reverse engineering, writing libraries, and writing Xcode plugins.

After working for different startups, including his own, Arnaud Coomans is now
working on mobile applications for one of the biggest companies in Silicon Valley.

I would like to thank my family and friends for their help
and support.

Jayant C. Varma is an Australian author, developer trainer, and consultant with a
special focus on mobile development and the use of mobile applications in business.
He is the author of the book Learn Lua for iOS Game Development, Apress, and is the
Principal Consultant at OZ Apps, a company he founded, specializing in mobile
business solutions.

He has been in the IT industry for quite a while and has seen things change from 8-bit
computers to 64-bit mobile devices. He has been drawn towards new technology and
Usable UI (user friendly and appealing). He has had several roles earlier that have seen
him in different countries as the IT Manager for BMW dealerships working on wireless
diagnostics and contactless key readers, among other things, to lecturing at the James
Cook University and being actively involved with training and workshops for the
Apple University Consortium (AUC) and Australian Computer Society (ACS). Among
the well-known apps that he, as a developer, has created is the text-based adventure,
Z-Day Survival Simulator application.

He has been a reviewer on a couple of Packt Publishing books based on iOS usage
and development. He runs a few blogs on development, such as http://howto.oz-
apps.com and http://LearnLua.oz-apps.com, among others.

www.it-ebooks.info

http://www.it-ebooks.info/

Dmitry Volevodz is an experienced iOS developer. He has been doing freelance
software development for a few years, but has now settled in a small company.
He does enterprise iOS development, and game development is his hobby. He has
written iOS 7 Game Development, Packt Publishing, a title about game development
with Sprite Kit.

I thank my wife Olesya for her patience and my son.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Xcode 5 – A Developer's Ultimate Tool 5

The new user experience 5
Top-level documentation 7
Debugger and debug gauges 8
Automatic configuration with accounts and capabilities 10
Source control 12
Asset catalogs 12
Quick build device selection 14
Storyboard previews 14
Summary 16

Chapter 2: Foundation Framework – Growing Up 17
Why Foundation matters 17
Modules 17

Precompiled headers – a partial solution 18
Modules – smart importing 19

NSProgress 20
NSArray 21
NSTimer 22
NSData 22
NSURLUtilities 23
Summary 24

Chapter 3: Auto Layout 2.0 25
Why you should use Auto Layout 25
Creating our project 26
Starting our storyboard 27
Setting up button actions 28
Using Auto Layout 29

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Applying constraints 30
Resolving Auto Layout issues 34
Finishing our menu view 35
Preparing for navigation 36
Summary 37

Chapter 4: Building Our Application for iOS 7 39
Designing for iOS 7 39

The navigation bar and status bar 40
The new UIKit 41
Updated app icons 42

Putting together the pieces 43
Project organization 43
Creating the files 45
Setting up the storyboard 45
AddNewViewController 46
FoodDetailViewController 46
MyFoodsViewController 47

Summary 47
Chapter 5: Creating and Saving User Data 49

Picking up where we left off 49
The navigation bar style 50
Adding our button action 52
Adding buttons to our navigation bar 53
Adjusting our storyboard view 54
Adding our delegates 56
Using a tap gesture 56
Getting the image from UIImagePickerController 59
Adding the text field delegate 60
Saving the data 60

Getting the date string 60
Adding validation 61
Saving the image 63
Creating versus loading the .plist file 63
Adding a new entry 65

Summary 65
Chapter 6: Displaying User Data 67

Custom cell 67
Building the cell 68
Connecting the cell 69
Creating properties 69

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Adding food 70
Preparing the table view 71

Loading data 73
Displaying data 74
Showing the detail view 75
Coding the detail view 76

Creating blurred images 76
Finishing our detail view 79
Pushing the detail view 80

Summary 80
Chapter 7: Manipulating Text with TextKit 81

What is TextKit? 81
Dynamic type 83

Handling updates 85
Exclusion paths 85
Adding letterpress 88
Text formatting 88

Making text bold and italicizing 89
Underlining text 90
Summary 91

Chapter 8: Adding Physics with UIKit Dynamics 93
Motion and physics in UIKit 93

UIKit Dynamics 94
Motion effects 94

Adding gravity 94
UIDynamicAnimator 95
UIGravityBehavior 95
Behavior properties 96
Creating boundaries 96
Collisions 98
Creating invisible boundaries 98
Dynamic items 100
Manipulating item properties 100
Collision notifications 101
Attaching items to other items 102
Snapping items 103
Using motion in our app 104
Summary 106

Index 107

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Welcome to Application Development in iOS 7. With the release of iOS 7, Apple has
completely changed the way we developers think about mobile application design
and development. In addition to a complete visual overhaul, iOS 7 offers hundreds
of new API and SDK improvements as well as a completely revamped development
environment, Xcode 5. This book will walk you through a step-by-step process of
building a fully functional application from scratch. By the end of this book, you will
have a complete understanding of many of the major changes to iOS 7 development
and will be ready to start making better applications for your users!

What this book covers
Chapter 1, Xcode 5 – A Developer's Ultimate Tool, explains everything you need to
know to get the most out of Apple's IDE. With the new Xcode, developing and
managing applications has never been easier.

Chapter 2, Foundation Framework – Growing Up, introduces the Foundation framework,
as it is one of the most important and core frameworks in all of iOS development.
When Apple makes changes to it, you want to pay attention!

Chapter 3, Auto Layout 2.0, explains the implementation of Auto Layout 2.0 in iOS 7.
When Auto Layout was first introduced, it contained multiple problems that caused
many developers to avoid using it. With iOS 7, Apple heeded these concerns and
made many of the required improvements.

Chapter 4, Building Our Application for iOS 7, guides us to build our own application
as we now know the ins and outs of Xcode 5, the Foundation framework, and
the new Auto Layout. We will start our first project and focus on the new iOS 7
design principles.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 5, Creating and Saving User Data, enables us to prepare an application to
support users in creating new items and saving the data for later use. For example, in
our custom application, users will be able to save the food they eat to view later on.

Chapter 6, Displaying User Data, explains the technique to display the data that we
have saved. This is the final step that completes our application before we move on
to two major iOS 7 APIs.

Chapter 7, Manipulating Text with TextKit, explains the use of TextKit, a new API in
iOS 7, which streamlines the process of working with text. From dynamic type to rich
text editor styles, TextKit is an excellent tool for any iOS developer to understand.

Chapter 8, Adding Physics with UIKit Dynamics, explains the use of UIKit Dynamics,
which is a fully featured physics engine built directly into UIKit. UIKit Dynamics
will allow you to create physics-based movement and animations in your application
for a real-world feel.

What you need for this book
You will need the following for this book:

• Apple computer running OS X 10.8 or higher
• Xcode 5 installed on your Mac

Who this book is for
This book is for iOS developers looking to learn the new features of iOS 7 and
Xcode 5. A basic understanding of Objective-C and the iOS SDK is required to
properly understand the content of this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as
follows: "iOS 7 introduces a completely new class to the Foundation framework,
NSProgress."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

A block of code is set as follows:

- (void)preferredContentSizeChanged:(NSNotification *)notification {
 self.textView.font = [UIFont preferredFontForTextStyle:UIFontTextS
tyleHeadline];
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

- (void)preferredContentSizeChanged:(NSNotification *)notification {
 self.textView.font = [UIFont preferredFontForTextStyle:UIFontTextS
tyleHeadline];
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus, or dialog boxes for example, appear in the text like this: "Select
Single View Application and then click on Next."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

Xcode 5 – A Developer's
Ultimate Tool

With the release of iOS 7, Apple has also provided developers with a completely
updated version of Xcode, that is, its Integrated Development Environment (IDE).
Xcode 5 is a major step forward, complete with more tools and features available
than ever before.

Understanding the powerful features of your IDE is the key to high productivity and
overall ease of development. In this chapter, we will explore all these new features
and learn how they will assist you in writing your apps for iOS 7.

The new user experience
Xcode 5 features many welcomed changes to its overall user experience in the
form of subtle design enhancements and under-the-hood optimization. Take a few
minutes to play with the new IDE, and you will see that although not much has
moved, the cleaner UI provides a much less distracting environment to work in.
Shorter toolbars and easy-to-see highlighted buttons help keep your content front
and center.

www.it-ebooks.info

http://www.it-ebooks.info/

Xcode 5 – A Developer's Ultimate Tool

[6]

The following screenshot shows how the window of the new IDE looks:

Features such as Open Quickly have been trimmed down in size, yet improved in
functionality. Navigating to File | Open Quickly or using the keyboard shortcut
command + shift + O will open a simplified single-line search bar in the middle of
your screen. As you type an option, search results are returned much more quickly
and prioritized based on relevance. Each result also features detailed data on your
query such as the file and line number. The following screenshot shows an example
of search results:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

For a more refined search, you may want to select the search navigator from the
navigator panel or use the keyboard shortcut command + 3. Typing a search query
and pressing enter will prompt Xcode 5 to perform a project-wide search by default.
The results will be displayed in the navigator below the search bar, and also includes
new options for refinement. Selecting the In Project button (here, Project is the
name of your project) will allow you to specify individual folders to perform the
search in. For even more flexibility, the new search navigator will allow you to
build custom search scopes that can be saved for future usage. The following
screenshot shows the difference between when we do and when we do not
select the In FoodAndMe button (in this case, FoodAndMe is the project name):

Top-level documentation
Apple provides some of the most in-depth SDK documentation of any development
platform. Access to this documentation is possibly one of the most important
aspects of iOS development. Previous versions of Xcode always had access to
documentation; however, Xcode 5 takes a more accessible approach with its top-level
documentation. It's important to note that an Internet connection is required unless
you predownload the documentation from Apple. This can be done by navigating to
Xcode | Preferences | Downloads.

Go to the menu bar and navigate to Help | Documentation and API Reference.
Xcode 5 will show a separate window that has been designed to streamline the
search and display of all of the documentation. Apple has built this documentation
to work for you. As you type, Xcode will display suggestions in the form of API
references, SDK guides, and even Sample Code related to your search.

www.it-ebooks.info

http://www.it-ebooks.info/

Xcode 5 – A Developer's Ultimate Tool

[8]

The new documentation view also provides support for tabs, allowing you to view
multiple pieces of documentation simultaneously. As you browse through the
results, you may see a dynamic table of contents by clicking on the table of contents
button immediately to the left-hand side of the search bar. The table of contents will
automatically update based on the document you are currently viewing.

Additionally, the new documentation has built-in bookmarking, which allows you to
save your most frequently viewed resources. To the right of the search bar, you will
see a share button. Clicking on this button will show a menu with options to share or
bookmark the current reference.

You may have also noticed a small bookmark icon on the left-hand side of each title
or heading while scrolling through the documentation. You can even save specific
sections of any API reference rather than saving the entire document. All of your
bookmarks can be viewed in the navigator by clicking on the navigator button
immediately on the left-hand side of the table of contents button. This view will also
allow you to browse the entire documentation library at a glance. Combine this with
the previous ability of pressing the alt key and clicking on any code to display an
inline summary and linking from the code to full documentation, and then you'll
have robust documentation integration!

Debugger and debug gauges
Debugging with Xcode 5 has been greatly improved thanks to many new features
added to the debugger. Apple has completely switched from the previous GDB
engine to the much more powerful LLDB engine. This allows breakpoint flexibility,
inline variable previews, and the finding of variable values more easily.

If you have ever debugged a project using breakpoints, you will notice some changes
in the way Xcode 5 manages its breakpoints. Breakpoints are still created by clicking
directly on the required line number. These breakpoints can then be enabled or
disabled by clicking on them directly or using the breakpoints button that has
been moved to the debug toolbar found at the bottom of the Xcode window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Each breakpoint may also be configured to respond conditionally. By default, code
will stop once it reaches a breakpoint. Once you set conditions, however, breakpoints
will be ignored unless these conditions are met. You can edit these conditions by
right-clicking on an individual breakpoint and selecting Edit Breakpoint. From
here, set your conditions and resultant actions. These actions can include logging
a message to the console, running an AppleScript or Shell Script, and even playing
a sound.

Another great feature of Xcode 5's debugger is the ability to preview variables and
objects during debugging using data tips. While debugging your application, hover
your mouse over a variable and its value will automatically appear below your
cursor. This works for standard data types, such as strings, numeric types, and
Boolean types.

Data tips are very powerful when it comes to objects as well. For instance, while in
debug mode, hover your mouse over an image, and a summary of information will
appear about this object. Selecting the eye-shaped icon will allow you to preview
the actual image right in code, as shown in the following screenshot:

Properly debugging any application also involves monitoring system resources to
ensure your code is as optimized as possible. Xcode 5 introduces debug gauges,
a lightweight and embedded version of some useful instruments' tools. Because
debug gauges are integrated into Xcode 5, they are able to run alongside the
application at all times while allowing you to observe CPU, Memory, iCloud,
Energy, and OpenGL ES resources.

www.it-ebooks.info

http://www.it-ebooks.info/

Xcode 5 – A Developer's Ultimate Tool

[10]

Debug gauges can be found through the debug navigator and will begin running
automatically once you run a project. The previously mentioned resources are
displayed in an easy-to-read visual graph so that you can monitor your application's
performance at a glance and in real time. Additionally, access to the complete
instruments software is just a single click away, which is achieved by clicking
on the Profile in Instruments button shown in the following screenshot:

Automatic configuration with accounts
and capabilities
Apple provides a wide variety of useful services that can be included in any
application. Enabling your application to support these services has always been a
hassle due to the number of tasks a developer is required to manually set up. These
include adding entitlements, such as the App ID, linking frameworks to the project,
and adding required fields to the projects .plist file. Additionally, each of these
services has its own requirements, which means that supporting multiple services
would require different steps to complete.

With the introduction of Xcode 5, Apple has made these struggles a thing of the past
using automatic configuration. With automatic configuration, all a developer needs
is an Apple ID linked to a developer account.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Navigate to Xcode | Preferences and select the Accounts section (new in Xcode 5).
From here, you can add all your Developer Program Apple IDs and view details
related to each account. Clicking on the + button located on the left-hand side panel
will give you the option to add a new Apple ID. Doing so will provide a direct
connection between Xcode 5 and the Apple Developer Portal. Once logged in,
click on the View Details... button at the bottom-right corner of the screen. A new
window will appear with details of all code-signing identities and provisioning
profiles attached to the selected account.

Under the General tab in the project editor, you will see a new option, Team, found
in the Identity section. Selecting this option will show you a list of identities related
to the account we previously added. By selecting your respective signing identity,
Xcode 5 will be able to verify whether you have all proper provision profiles and
even offer to create them for you if required.

Potentially, the biggest advancement provided by automatic configuration is the
Capabilities tab (new in Xcode 5) found in the project editor. This streamlined
approach will allow you to configure specific platform features, such as iCloud,
In-App Purchases, and Game Center, without having to visit the developer portal
as shown in the following screenshot. Xcode 5 will automatically configure the
provisioning profile, add App ID entitlements, and link all required frameworks for
you, automatically:

If you prefer to set up your features and capabilities the old way, you may still do so
in the Apple Developer Portal.

www.it-ebooks.info

http://www.it-ebooks.info/

Xcode 5 – A Developer's Ultimate Tool

[12]

Source control
Source control is widely used by large teams and individual developers alike. It
provides an extremely useful way to track changes to code and revert back to stable
builds of a project with version control. Teams of developers may work separately
on individual components by creating and managing a copy of the code (called a
branch) without overwriting another team member's code. The change will later be
merged while simultaneously tracking all the changes made to the code base.

Source control is not a new feature of Xcode 5; however, Apple has decided to
provide easier access to its functionality by creating a top-level menu item. Selecting
it will display a drop-down menu with one-click access to most of the source control
commands, such as commit, push, and pull. Hovering over Working Copies will
open a new submenu that allows you to switch between branches, create a new
branch, or merge branches. The following screenshot shows this submenu:

In addition to local source control on your computer, Xcode 5 also supports the
ability to connect directly to remote repositories hosted on popular sites, such as
GitHub. Open preferences and navigate to the Accounts tab once again. This time,
after clicking on the + button, select Add Repository. Once you have entered the
proper repository address, Xcode 5 will connect the repository, thus allowing you
to access it remotely.

Asset catalogs
Every project you create will contain at least a few image files in the form of launch
images and application icons as well as other UI elements. Asset catalogs serve two
major purposes in Xcode 5. These include automation of icon and launch image
naming conventions and grouping image files together in a single location.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Asset catalogs are represented as a separate group with a blue folder in the
project navigator. By default, each new project created will include the default
Images.xcassets item. You may also create your own asset catalogs for further
organization based on personal preference.

Xcode 5 requires each of the launch image files and icon image files to be named
appropriately based on the device and/or resolution the image will be used for.
When selecting the Images.xcassets item, you will see a number of empty slots
waiting for images to be added. Each slot has a description of what image it holds.
Dragging from your computer into Xcode 5 on the respective slot will add the
image to your project and automatically configure all the naming conventions.
The following screenshot shows the Asset Catalog window:

If you wish to add any additional images related to your project, you can simply
drag-and-drop them into the Asset Catalog window, and Xcode 5 will take care
of the rest. Both high-resolution (2x) and standard-resolution (1x) image files will
be grouped together in their own image set with a common name. You still must
provide both the low-resolution and high-resolution images yourself. Xcode 5 does
not automatically scale them for you: it simply groups them. The value for this name
can be changed to any value and will be used in code to access the associated images
regardless of the actual filename.

www.it-ebooks.info

http://www.it-ebooks.info/

Xcode 5 – A Developer's Ultimate Tool

[14]

Quick build device selection
Developing applications for multiple devices requires consistent device-specific
testing. The iOS simulator included in the iOS SDK provides simulation for all
Apple devices. With Xcode 5, selecting the proper device to build for has also
been streamlined into a single drop-down option found on the toolbar.

Clicking on the name of the current device on the left of the toolbar will provide a
drop-down menu. Any and all physical devices connected to your computer will
appear on the top of the list (you may have to scroll up to see them), and all standard
iOS simulator devices will appear below.

Simply select the device you wish to test for, and click on Run. The simulator will
launch and switch to the selected device. The following screenshot lists the devices
in the drop-down menu:

Storyboard previews
Up until now, writing applications that supported previous versions of iOS mostly
consisted of updating API calls and minor coding conventions. With iOS 7, Apple
has drastically changed the design of all standard UI objects. Knowing the size,
position, and layout of all objects for both iOS 7 and previous versions is very
important to maintaining a consistent user experience. This is where storyboard
previews come in.

In order to use storyboard previews, you must select the assistant editor and
navigate to the view you wish to preview (usually a .xib or .storyboard file).
Select the Related Files menu option, navigate to Preview, and select the .xib or
.storyboard file you wish to preview, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

You will see an identical preview of your view on the right-hand side of the
assistant editor. In the bottom-right corner of the view, you will see a button that
says iOS 7.0 and Later. Click on it, and then select iOS 6.1 and Earlier as shown
in the following screenshot:

Your view will now display all of its UI elements as they will appear in iOS 6 or
earlier. This is a very handy tool if you wish to make your app backwards compatible.

www.it-ebooks.info

http://www.it-ebooks.info/

Xcode 5 – A Developer's Ultimate Tool

[16]

Summary
Xcode 5 has more features for developers than ever before, and each tool is designed
to give you a more efficient experience while building the best quality apps possible.
In this chapter, we learned how to use all of these features, from new debugging
tools to automatic configuration. Although we covered a large portion of new
Xcode 5 features, you should visit the following link to view Apple's documentation
on what's new in Xcode 5: https://developer.apple.com/library/mac/
releasenotes/DeveloperTools/RN-Xcode/Introduction/Introduction.html

With each new iOS SDK release, Apple includes some minor and some major
updates to the Objective-C programming language. In the next chapter, we will
cover the changes made to the Foundation Framework, possibly the most important
framework in all of iOS development!

www.it-ebooks.info

http://www.it-ebooks.info/

Foundation Framework –
Growing Up

In this chapter, we will learn about modules and how they change the way we
import frameworks into our files. We will cover both, the new and the old classes
of the Foundation Framework, starting with the brand new NSProgress class. We
will see some of the major improvements to the existing classes including NSArray
and the firstObject method, NSTimer's new property for managing tolerance, the
additional encodings now supported by NSData, and lastly new ways to manage
URLs with NSURLUtilities. Let's get started!

Why Foundation matters
Foundation is the core framework of Objective-C. Without it, developing iOS
applications would not be possible. Foundation defines the base layer of all
classes, as well as functionality for basic data types, including strings, arrays,
and dictionaries.

Changes made to the Foundation Framework can range from minor enhancements
to the introduction of completely new classes. iOS 7 is no exception to this and Apple
has provided some great new features that we will explore in this chapter.

Modules
While developing applications using Xcode and the iOS SDK, you may have noticed
that it has never been a requirement to import commonly used header files, such as
UIViewController.h or UIView.h.

www.it-ebooks.info

http://www.it-ebooks.info/

Foundation Framework – Growing Up

[18]

Open any file in any project, and navigate to any view-controller based .h file in the
project. The very first line of code will read as follows:

#import <UIKit/UIKit.h>

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

As an iOS developer, you have probably written hundreds of #import statements in
any one project. When the compiler reaches an import statement, it literally inserts
every line of code found in the imported header file. In the previous example of the
first line of code, UIKit.h imports all header files available in the UIKit Framework;
so, you don't have to worry about which header file should be imported for
different instances.

If you have ever taken a look at all of the files included in UIKit, you will see that
they total over 11,000 lines of code. This means that each file importing UIKit.h will
grow by 11,000 lines of code. This is less than ideal; however, Apple provides one
solution with precompiled header (PCH) files.

Precompiled headers – a partial solution
Each project you create will automatically generate its own PCH file in the
supporting files group. During the preprocessing phase of compilation, the PCH file
will load and cache the specified headers to import. The following is an example of
a PCH file:

#import <Availability.h>

#ifndef __IPHONE_5_0
#warning "This project uses features only available
 in iOS SDK 5.0 and later."
#endif

#ifdef __OBJC__

 #import <UIKit/UIKit.h>
 #import <Foundation/Foundation.h>
 #import "UIImage+ImageEffects.h"

#endif

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[19]

Your application may require a specific framework or class in multiple files. Rather
than importing the file individually (and repeatedly), adding the import statement
to the PCH file will precompute and cache a majority of the work during the
preprocessing phase of compilation. This allows each file to be pulled from
the cache when available.

Although this method works well, when importing the Apple frameworks, you must
always remember to link the frameworks to your project. Failing to do so will result
in a number of errors thrown by the compiler.

Modules – smart importing
With the introduction of iOS 7, Apple has introduced a new way to handle
precompiling frameworks with modules. Instead of replacing an import statement
with every line of code, a module encapsulates a framework into a self-contained
block. Modules are precompiled in the same way import statements are precompiled
in the PCH file; however, using modules will automatically link the proper
framework and provide the exact same speed boost to compilation.

Modules are enabled by default in all new projects created using Xcode 5. For older
projects, you can enable modules in your project's build settings by searching for
modules and setting Enable Modules (C and Objective-C) to Yes.

Now that modules have been turned on, you can start using the new syntax to
import frameworks. At the top of the .h file you wish to import, simply type the
following code:

@import QuartzCore;

That's all that is required in your code. Xcode will automatically link the required
framework (in this case, QuartzCore) and provide you with all of the speed boosts
for compilation.

www.it-ebooks.info

http://www.it-ebooks.info/

Foundation Framework – Growing Up

[20]

Additionally, you can import specific header files based on need. You may,
for instance, only require the CoreAnimation headers provided by QuartzCore.
You can easily import these headers by typing the following:

@import QuartzCore.CoreAnimation;

Additionally, Xcode will automatically convert #import statements to @import for
you at runtime. Although convenient, it is still recommended you update to new
syntax whenever possible.

It is also important to note that modules currently only support Apple frameworks.
Custom classes and third-party frameworks still require the traditional method or
the PCH file.

NSProgress
iOS 7 introduces a completely new class to the Foundation framework, NSProgress.
Using NSProgress involves treating each task of an action as a milestone of
completion. By doing so, you, the developer, can track progress directly in code
and perform individual tasks for each milestone.

For instance, to perform a particular action, you may require four separate tasks to be
completed. Each task is capable of monitoring its own progress, and will report once
the task is complete. In our example, this would increase the percent of completion
to 25.

NSProgress uses Key Value Observing (KVO) to provide notifications related
to progress. These notifications can be used to update a UI component displaying
progress to the user, such as a progress bar or label. The following code is a very
simple implementation that demonstrates working with NSProgress to report
progress in a localized manner:

NSArray *data = @[@"Data 1", @"Data 2", @"Data 3", @"Data 4"];

 self.dataProgress = [NSProgress
 progressWithTotalUnitCount:data.count];

 int index = 0;

 for (NSString *string in data) {

 // Do something with string or other data

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

 index ++;
 self.dataProgress.completedUnitCount = index;

 NSLog(@"%@", [self.dataProgress localizedDescription]);

 }

NSArray
When using NSArray, you must ensure that all supplied indexes are within range
and not beyond the length of the array. When retrieving an element using an index,
the index must be between zero and a number (the number being the total items
in the array); otherwise, an exception will be thrown. A common use case of this
involves grabbing the first or last object from an array.

NSArray has always had the following method to obtain the last object:

- (id)lastObject;

Previously, grabbing the first object of an array required checks to ensure that the
index was within the bounds of the array, as shown in the following code snippet:

- (id)firstObjectInArray:(NSArray *)array {

 if (array.count > 0) {
 return array[0];
 }

}

Although the preceding example is rather small, you can see how more complex
implementations can be complicated and time consuming. Thankfully, with iOS 7,
Apple has finally made public a previously private method for NSArray to grab the
first object:

- (id)firstObject;

This handy method will allow you to quickly access the first object of any array
without the hassle. Additionally, if the array is empty, this method will return nil.

www.it-ebooks.info

http://www.it-ebooks.info/

Foundation Framework – Growing Up

[22]

NSTimer
It is a common practice to perform periodic tasks using NSTimer. The following is an
example use of NSTimer to perform a task in two-second intervals and repeats:

[NSTimer scheduledTimerWithTimeInterval:2.0
 target:self
 selector:@selector(targetMethod:)
 userInfo:nil
 repeats:YES];

The issue with this method is that the CPU is consistently active in order to perform
the desired task repeatedly. When using multiple timers at once, it is possible
(although unlikely) that it may reduce the performance of the CPU for the rest of
your application. It is always best practice to run tests on your applications to find
such possibilities and use safeguards wherever possible.

Apple has added a new tolerance property to NSTimer to reduce the strain on the
CPU when using NSTimers. This property will tell the application how late a timer
is allowed to fire when it has surpassed its scheduled interval. As a result, the
application will be able to group actions together to reduce CPU strain.

This new property can be accessed and set with the following methods:

- (NSTimeInterval)tolerance;
- (void)setTolerance:(NSTimeInterval)tolerance;

Setting this property will help create safeguards for your CPU usage related to timers.

NSData
Every application uses data in some way or another. In some instances, you may
require the ability to manipulate individual bytes of data. NSData encapsulates these
raw bytes to allow for easy manipulation using built-in methods.

With iOS 7, NSData now adds support for Base64 encoding and decoding; a group of
ACSII format binary-to-text encoding schemes. These schemes are most commonly
used to transfer data between media that only support text-based data transfer.
Encoding images from JSON-based responses from a web API is the most common
use for these schemes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

Prior to iOS 7, developers were required to use a third-party library or build their
own from scratch. Apple has made it exceptionally easy to use these encoding
methods with the following methods:

- (id)initWithBase64EncodedData:(NSData *)base64Data
 options:(NSDataBase64DecodingOptions)options;

- (NSData *)base64EncodedDataWithOptions:
 (NSDataBase64EncodingOptions)options;

- (id)initWithBase64EncodedString:(NSString *)base64String
 options:(NSDataBase64DecodingOptions)options;

- (NSString *)base64EncodedStringWithOptions:
 (NSDataBase64EncodingOptions)options;

The first two methods are focused on UTF-8 encoded data, while the remaining
two deal directly with string values. Both pairs of methods provide the same
functionality; however, each use case may provide better performance.

NSURLUtilities
The Foundation Framework includes many different methods related to handling
URLs; however, most API's related to manipulating these URLs are based on
NSString because NSURL is an immutable class.

In order to fix this issue, Apple has introduced NSURLComponents to allow for
manipulation of URL objects. With NSURLComponents, NSURL can be treated as a
mutable object that allows direct manipulation. The following code snippet is an
example use case:

NSURLComponents *components = [NSURLComponents
 componentsWithString:@"http://somewebsite.com"];

components.path = @"/somepath";
components.query = @"queryParameter=parameterValue";

NSLog(@"%@", [components URL]);

Running this code will output the following to the console:

http://somewebsite.com/somepath?queryParameter=parameterValue

Using NSURLComponents, you may now directly manipulate NSURL values without
the use of NSString.

www.it-ebooks.info

http://www.it-ebooks.info/

Foundation Framework – Growing Up

[24]

Summary
In this chapter, we covered some of the major updates to the Foundation Framework.
It is always recommended that you stay up to date with the advancements to
Objective-C and Apple's core frameworks. With this knowledge, you now have
the tools to build more efficient and better-performing applications!

Now that we have a better understanding of the new features found in Foundation,
it's time to start building our application. In the next chapter, we will begin building
our interface using the new Auto Layout features in iOS 7.

www.it-ebooks.info

http://www.it-ebooks.info/

Auto Layout 2.0
In this chapter, we will create our project and start building our application, Food
and Me, starting with the custom menu view. First, we will create the project itself in
Xcode 5. Next, we will create our storyboard. This consists of adding all the required
elements and using the new Auto Layout to add constraints to our views. This is
where we will dive directly into how Auto Layout works and how you will continue
using Auto Layout for your future projects. Lastly, we will hook everything up to
our code and set up our navigation. On completing this chapter, we will have a
functional menu view complete with a bare navigation controller.

Why you should use Auto Layout
Prior to Auto Layout, building applications to dynamically support multiple screen
sizes and orientations required large amounts of work. Auto-resizing masks, springs,
and struts are all examples of the tools that developers would commonly struggle
to use. These tools did not always produce the correct result, so the typical next best
action was to detect screen sizes in code and adjust the layout accordingly. When
working on an application with many views and layouts, this can become frustrating.

With iOS 6, Apple introduced a new feature called Auto Layout. The premise
was pretty straightforward: allow developers to define constraints on all visual
elements in a storyboard in order to control the layout and flow of an application.
Unfortunately, Auto Layout caused many headaches.

The main issue was related to the fact that Auto Layout required every object to have
proper constraints attached to it. If you failed to provide a single constraint, Xcode
would generate it automatically, sometimes overriding some of your currently set
constraints. This would commonly cause many layout issues at runtime, resulting in
a poor user experience.

www.it-ebooks.info

http://www.it-ebooks.info/

Auto Layout 2.0

[26]

With iOS 7, Apple has completely revamped Auto Layout, making it much easier
to provide layout constraints with simple tools and giving developers more control
over each constraint.

Properly using Auto Layout will drastically reduce the time spent on building
dynamic layouts. This is accomplished by replacing complex and cumbersome
code with easily defined constraints created in our storyboard. Auto Layout does
not provide a solution for everything, so it is important to decide when to use code
versus when to use Auto Layout.

You can download all of the assets, including the completed project, by visiting the
project's downloadable content and downloading the files to your computer. Let's
get started!

Creating our project
We are going to use Auto Layout to set up constraints for our main menu of the Food
and Me app. We will not be using Auto Layout for the entire application for the sake
of simplicity, but we will be covering all of the necessary elements to learn how to
use the new Auto Layout.

First, let's create a new project. Open Xcode and select Create a new Xcode project
on the welcome screen (or navigate to File | New | Project from the menu bar if
the welcome screen does not appear). Select Single View Application and then
click on Next.

Fill in the template options as follows:

• Product Name: Food and Me
• Organization Name: Enter the name of your organization or company
• Company Identifier: Input your desired identifier that will be used on

the developer portal, using reverse domain notation
• Class Prefix: Leave this option empty
• Devices: iPhone

Xcode creates a standard project for us, including the app delegate, a single view
controller, a storyboard file, and an asset catalog for our launch image and icon.
First, let's rename ViewController.h and ViewController.m to something more
descriptive. Select ViewController.h in the navigator to show this file in the editor.
Right-click on the ViewController text found immediately after @interface, and
then navigate to Refactor | Rename.... It is possible for this refactor to sometimes skip
renaming filenames in storyboards, so it is always a good practice to double-check this.
Using snapshots and/or source control is another great way to reduce risk.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[27]

We will be creating the menu view in this file, so let's rename it MenuViewController.
Type this in and make sure Rename related files is checked, and then click on
Preview. A new window will appear giving you a preview of what files will be
changed and where. You should see a header file and an implementation file in the
preview as well as the storyboard (Xcode is smart enough to update every related
project file). After clicking on the Save button, a prompt will appear asking if you
would like to enable snapshots. This is similar to the Source Control menu and is
completely optional.

Lastly, we need to add our image files to the provided Asset Catalog. Open the Food
and Me folder that we downloaded earlier. You will see another folder titled Final
Image Files. If you open this folder, you will see all the image files (both regular
size and 2x retina size) used for our project. Switch to your Xcode project and select
Images.xcassets. Drag-and-drop every single image in the Final Images Files
folder onto the box that contains the AppIcon and LaunchImage set. A new image set
will be created for each 2x and regular size image pair.

Starting our storyboard
Now that all of our files and images are added, we can start building our storyboard
and apply Auto Layout constraints. Open Main.storyboard and we should see an
empty view controller assigned to our MenuViewController class.

Our menu will be made up of four separate components. Let's start by adding the
first three to our storyboard file (the fourth will be created programmatically). Open
the Xcode Utilities pane (if it is not already open) and select the object library at the
bottom of the view.

First, drag one UIImageView class onto our MenuViewController making sure it is
sized to fit the entire view. Next, drag two UIButtons on top of the UIImageView
without worrying about their position. In our Utilities pane, select the Attributes
Inspector, and then select one of the two buttons. Erase the Default Title option so
that it is blank. Next, click on the drop-down menu for Image and select foodButton
as our image. Xcode will automatically resize UIButton to the dimensions of our
button image. Repeat this process for the remaining UIButton, except this time select
addButton for the image property in the Attributes Inspector.

www.it-ebooks.info

http://www.it-ebooks.info/

Auto Layout 2.0

[28]

Now reposition the buttons at the bottom of the screen, evenly spaced apart from
one another. The exact position is not important, so adjust the position based on
personal preference. The final view of the storyboard should now look similar to the
following screenshot:

Setting up button actions
Our final step before applying our Auto Layout constraints is to connect our buttons
to the class, using an IBAction for each button. While MenuViewController is
selected, open the assistant editor from the toolbar and make sure you select the
header file (MenuViewController.h).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[29]

While holding down the control key on your keyboard, click on and drag the My
Foods button into the header file. Position your mouse between @interface and
@end and release the mouse once you see a small popup that says Inset Outlet,
Action, or Outlet Collection. In the new view that pops up, select Action from the
Connection drop-down menu, and name this action myFoodsPressed. Lastly, select
the Type drop-down option, and select UIButton. Repeat this process for Add New
with an action name addNewPressed.

Your header file should now look like the following code snippet:

#import <UIKit/UIKit.h>

@interface MenuViewController : UIViewController

- (IBAction)myFoodsPressed:(UIButton *)sender;
- (IBAction)addNewPressed:(UIButton *)sender;

@end

Now that our view is populated and all actions have been created, we can get started
with Auto Layout.

Using Auto Layout
Simply put, Auto Layout is a set of instructions given to each view related to the
size and position in its superview or the nearest neighboring views. Two very
common uses for Auto Layout is to make sure your views know what to do when
an application runs on a 3.5-inch screen versus a 4-inch screen versus an iPad screen
or when the device changes orientation. We want our application to support both
screen sizes, so we will be focusing on this when adding our constraints.

Xcode provides multiple ways to apply your constraints, and each constraint also has
its own properties that can be individually manipulated. With all of these options, I
prefer to set up my Xcode environment to fully embrace all Auto Layout options.

www.it-ebooks.info

http://www.it-ebooks.info/

Auto Layout 2.0

[30]

Be sure that your Utilities pane is open. This will allow you to manually change
your constraints' properties while working on your layouts. In the bottom-left corner
of the storyboard view, you will see a button with an arrow pointing towards the
right. This button will open the document outline view. This pane allows you to have
a bird's-eye view of all view controllers and their subviews, including all constraints
applied to each view. Open this view and your Xcode view should now look similar
to the following screenshot:

Applying constraints
Our menu view features two buttons to navigate to separate areas of the application.
We want the buttons to always be in alignment with one another, so let's add some
constraints to our buttons to make that happen.

One way to add a constraint between two objects is the control drag from one object
to the other. Hold down the control key on your keyboard and then click-and-drag
from the Add New button to the My Foods button. A new pop up will show these
multiple options to add constraints. Each of these items can be selected and will
provide the respective constraints between the two objects. Holding down the shift
key will allow you to select more than one option at a time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[31]

From the menu, select Horizontal Spacing. You will notice an orange outline appear
around the Add New button, and a horizontal I-shaped line will appear between the
two buttons, as shown in the following screenshot:

In order for Auto Layout to properly calculate the position of our views, it must
have a complete set of constraints. All constraints will be highlighted in orange until
a complete set of constraints is provided. Currently, we have only one constraint
between the two buttons, which tells Xcode that these two views need to always
remain an equal distance apart.

Let's add some more constraints. Each button should also remain vertically aligned, so
let's add that constraint. This time, however, hold down the command key and select
both buttons. With both items selected, Xcode 5 knows that any constraints provided
will be applied to these two views. On the bottom-right corner of the storyboard view,
you will notice a group of buttons as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Auto Layout 2.0

[32]

These buttons provide quick access to all Auto Layout options. With both buttons
still selected, click on the second button in the group of four buttons as shown in
the previous screenshot. A new pop up will appear (see the following image) with a
complete list of options and properties to set/edit. You may have recognize some of
these properties and constraints from the previous menu displayed when we used
control dragging from one button to another.

We want to focus on alignment, which can be found at the bottom of the pop-up
view. Check the box next to Alignment, and from the drop-down menu select Top
Edges. Now click on Add Constraint to apply it to our button views. A new line
will appear above both the buttons to indicate that both will always be top aligned
to one another.

Our constraints will still appear orange, which means we still need to add more
constraints for Xcode to make proper calculations. Xcode has detected this as well
and provides a really great tool that provides suggestions based on what is required.
In the document outline view to the left, a small red circle with an arrow has
appeared next to Menu View Controller Scene. Clicking on this arrow will push a
new view that lists all of the missing constraints and warnings.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[33]

Our warnings are pointing to two very specific issues related to the X position and
the Y position. We need to add constraints that will tell Xcode how to lay out the
buttons' X and Y positions, so let's do that now.

Select just the Add New button. Our application has a pretty simple layout, and it
is safe to say that we would prefer our buttons to keep an equal distance from the
bottom of the screen regardless of size, so let's add a constraint that does just that.
While keeping the button selected, navigate your mouse to the Editor menu option at
the top of the screen, and select Pin | Leading Space To Superview. A new I-shaped
bar appears between the edge of the view and the Add New button. This will make
sure that an equal distance is kept between the button and the main view.

Now that we have taken care of the X position, let's do the same for the Y position.
Select Editor | Pin | Bottom Space To Superview. A new bar appears from the
bottom of the button to the bottom of the screen. This will make sure there is an
equal distance between the button and the bottom of the screen.

With this new constraint, all of our constraints have now turned blue, which means
Xcode has all the information it needs to calculate the positions of our views! You
may be wondering how this is the case, when we have not added these superview
constraints to the My Foods button.

The answer is that we don't need to. The first couple of constraints we added actually
take care of this for us. Both buttons will always stay top aligned, which will take
care of the Y position of the other button. Additionally, we set the horizontal spacing
between the buttons, which will automatically take care of the other button's X
position. The following image illustrates how this is possible:

www.it-ebooks.info

http://www.it-ebooks.info/

Auto Layout 2.0

[34]

Now that our constraints are set up, let's set the background image. Select the image
view we added earlier, and in the Attributes Inspector, set the image to Background.
Now go ahead and run the application first on the 4-inch iPhone and then on the
3.5-inch iPhone. The buttons at the bottom of our screen will automatically position
themselves based on our constraints, and we didn't have to write a single line of code
to do so!

Resolving Auto Layout issues
After seeing our application running on an iPhone, it may be in our best interest to
move the buttons down just a bit for a more balanced layout. Return to Xcode, and
select both buttons by holding down the command key and clicking on each. Move
them down a few pixels based on preference.

You will notice that suddenly there are two dashed red lines surrounding our
buttons. Xcode does not automatically update constraints when a view is manually
repositioned, so now the previous calculations are no longer valid. The dashed red
lines let you know there is an error with our constraints that requires correction.

Thankfully, Xcode has some handy features available to help correct these issues.
From the menu bar, navigate to Editor | Resolve Auto Layout Issues | Update
Constraints. This can also be accomplished using the fourth button to the bottom-
right corner of the storyboard. By selecting this, Xcode will recalculate the previous
constraints based on our view's current physical position. The whole of the error will
now disappear with no issues.

In addition to updating constraints, this menu option also gives you the ability to
add missing constraints, update current constraints, and even clear all constraints.
These automated options can be very helpful, but it is always recommended to set
your constraints manually for better accuracy. If you are not sure what to do next,
these options may also give you some guidance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[35]

Finishing our menu view
Our buttons tend to blend into the background slightly, so let's add a new view that
will help them stand out better. First, let's navigate to our storyboard and create a
new outlet for our background image. Select our MenuViewController class, and
open the assistant editor. Control drag from the background image in our storyboard
to the MenuViewController.h file (between @interface and @end). Name this
outlet mainBackground. Now switch to MenuViewController.m, and add the
following code to ViewDidLoad:

// Create a white transparent bar for the bottom of the screen
// Set the color to white with an alpha of 0.5
UIView *bottomBarBG = [
 [UIView alloc] initWithFrame:CGRectMake(0,
 self.view.bounds.size.height - 130,
 self.view.bounds.size.width, 130)];
bottomBarBG.backgroundColor = [
 UIColor colorWithWhite:1.0f alpha:0.5f];

// Add the view to the background
 [self.view insertSubview:bottomBarBG
 aboveSubview:self.mainBackground];

The first line creates a new UIView and sets its frame. We set its Y position based on
the screen height to guarantee that regardless of screen size, the UIview will be at the
very bottom of the view.

Next, we set the background color to be solid white and set the alpha to 0.5 (half) so
that the view appears slightly transparent.

Lastly, we add the button background view to our main view. We know that our
button background should be above the main background but below the buttons, so
we insert the view using aboveSubview so that it will always be directly above the
main background. Run the application and take a look at the final design of our menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Auto Layout 2.0

[36]

Preparing for navigation
The last thing we need to do is add a navigation controller for our view.
This will be required to display (or push) our My Foods view. We can
accomplish this in our storyboards with a single click of a menu item.

Switch to our Main.storyboard and then select MenuViewController.
From the top menu bar, navigate to Editor | Embed In | Navigation
Controller. Xcode will automatically add a navigation controller to the
storyboard, set our MenuViewController as the root view controller,
and then set our new navigation controller as the initial view to load.
Our storyboard will now look like the following screenshot:

We don't want our menu view to display the navigation bar, so let's switch
back to MenuViewController.m and add the following final line of code
to viewDidLoad:

[self.navigationController setNavigationBarHidden:YES];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[37]

Summary
In this chapter, we covered the new features of Auto Layout by building our menu
view and applying constraints. Now that you have a good understanding of the new
features of Auto Layout and how to use them, I highly recommend that you practice
all the different types of constraints available on multiple views. Auto Layout is very
powerful and, when used correctly, will eliminate a large portion of code normally
attributed to dynamic layouts!

In the next chapter, we will continue by building the next part of our application. We
will explore some of the new design principles of iOS 7 and apply them to our app,
Food and Me.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Building Our Application
for iOS 7

We'll start the chapter by covering some of the new design principles present in iOS 7.
This includes changes to the navigation and status bars, to the new UIKit, and changes
to the application icon. Next, we will create our required files and organize them for
easier navigation. Lastly, we will add some new view controllers to our storyboard
and point them to our newly created files. On completing this chapter, we will have a
complete skeleton of our application that is ready for functionality. Let's get started!

Designing for iOS 7
With the release of iOS 7, developers and designers will need to adjust their
approach to suit the new "flat" design. Although it is not a requirement to follow this
design pattern, almost all UI elements in the SDK have been completely revamped to
support it.

It is important to consider these changes when designing your iOS 7 application
in order to keep a balanced layout. Some factors include new typography and
updated UIKit dimensions. In this chapter, we will put together the skeleton of our
application, but first we will discuss two important changes to iOS 7 that will directly
affect how you build your future applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Our Application for iOS 7

[40]

The navigation bar and status bar
Probably, the most apparent change to iOS 7 is the new navigation bar and status
bar. Both of these items have been around since the launch of iOS. Prior to iOS 7, the
20-pixel status bar was simply a solid background view that would cover the top 20
pixels of the main application window.

Additionally, when using a navigation controller, the navigation bar itself would
also act in the same manner, covering the next 44 pixels (for a total of 64 pixels) of
the view. Because of this, an item positioned with a y=0 value would be positioned
directly below the navigation or status bar.

With the release of iOS 7, this has been removed entirely. The status bar itself now
contains a clear background allowing any UI elements or views to be positioned
behind it. Run our application and notice how our menu background image extends
to the top of the device's screen, directly behind the status bar as shown in the
following screenshot:

It is very common for most applications to have the status bar background match
the navigation bar background. In iOS 7, setting the navigation bar color will
automatically set the status bar background to match. The following screenshot is an
example from our completed application:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[41]

Another result of this change is that programmatically positioning your views on the
y axis requires you to consider the heights of the status bar and the navigation bar.
A view positioned at x=0 and y=0 will appear on the top-left corner of the screen,
behind the navigation and status bar.

It is important to understand that this change specifically applies to code that is
executed at runtime. When using storyboards, this new positioning does not apply.
Xcode will automatically adjust views in storyboards in relation to the navigation
and status bars. Each view will retain its initial y position regardless of any
adjustments made.

Lastly, Apple has added a new translucent property to the navigation bar. Open the
contacts application on any device running iOS 7 and scroll through your contacts.
You will notice that as each item passes behind the navigation bar, it can be seen
through the bar as it moves off the screen. This effect is used throughout iOS 7 and
its newly designed applications, and Apple has also made it available to be used by
developers. By default, this property will be set to YES, but can be disabled at any
time if you wish.

The new UIKit
iOS 7's new flat design has changed many of the dimensions of common UIKit
elements. Some of these include segmented controls, search display controllers, and
alert views. Most of these changes result in a smaller frame than found on previous
versions of iOS, but also include updated typography and user interaction. The
newly designed search bar is as shown in the following screenshot:

The segmented controls are as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building Our Application for iOS 7

[42]

The new alert view for a notification is as shown in the following screenshot:

The new alert view for deletion is as shown in the following screenshot:

Updated app icons
Apple has made a subtle change to the standard iOS application icon size with the
release of iOS 7. Previously, icons featured an even corner radius that was easy to
replicate on your own. Apple has provided a new shape known as a superellipse
with a more stretched corner radius. Additionally, the shine (gloss effect) has been
removed from application icons. As always, Xcode 5 will automatically clip your app
icon images to the proper shape; however, if you wish to add your own stroke or
shadows, you will need to use an unofficial template.

Additionally, Apple has introduced what they call a golden ratio grid system that
you will see in the following screenshot. Apple recommends using this grid when
designing your icons and laying out individual elements. This is considered more of
a guideline than a rule, so feel free to work outside of such a grid system if it better
suits your application icon.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[43]

Putting together the pieces
Now that we have covered some of the basic design aspects of iOS 7, it's time to start
building our application skeleton. Before we write any code, let's create the essential
project files, construct our views in our storyboard, and create/connect outlets for
each view controller. We will be able to navigate through our application; however,
it just won't do anything yet.

Project organization
One of the first steps in my development process is organizing my project in Xcode 5.
Doing so makes it easier to navigate your project and find the files you need. Let's go
ahead and organize our app.

Open our Food and Me project and take a look at the navigator on the left. We
have a couple of files in no particular order, and we will also be creating more
files shortly. We are going to divide our main project files into the following three
separate categories:

• App Delegate

• View Controllers

• Custom Classes

www.it-ebooks.info

http://www.it-ebooks.info/

Building Our Application for iOS 7

[44]

On the navigator pane, right-click on the top-level folder (Food and Me, our
application name) and click on New Group. A new group will appear in our main
Food and Me group; let's name it App Delegate. Repeat this process two more times,
naming the new groups View Controllers and Custom Classes, respectively.

Select both AppDelegate.h and AppDelegate.m (using the command key) and
drag these files into the App Delegate group we just created. Do the same for
MenuViewController.h and MenuViewController.m and drag these files into
the View Controllers group. These groups can also be rearranged, so feel free
to move them around based on preference.

The following screenshot gives a peek into the final results found in the Food and
Me project:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[45]

Creating the files
Now that our project is a little more organized, it's time to create our remaining
project files. Our application will require a view controller for our menu, the addition
of new foods, views of our current foods, and then a detailed view of each food item.
We have already set up our menu, so let's create the remaining files.

Right-click on our View Controllers group and click on New File (you can also
achieve this by navigating to File | New | File in the menu bar). Make sure that
Cocoa Touch is selected in the left-hand side menu bar, select Objective-C class
from the options, and then click on Next. Name this file AddNewViewController and
make sure it is a subclass of UIViewController. Click on Next and then on Create.
Our new file will be created and added to our View Controllers group.

Repeat this process two more times. The first file will be named
MyFoodsViewController and will be a subclass of UITableViewController.
Name the second file FoodDetailViewController and set it as a subclass of
UIViewController. We now have most of our required files for our application. In a
later chapter, we will be creating one last project file in our Custom Classes group.

Setting up the storyboard
Now that we have our files, we need to create some views in our storyboard and
hook them up to our classes we just created. Open Main.storyboard and you
should see our navigation controller and its root view controller (the menu view
controller). Let's add the remaining controllers to our storyboard now.

Open the Utilities pane on the right-hand side (if not already open) and click on
the Object Library. Our AddNewViewController and FoodDetailViewController
files are both subclasses of UIViewController, so drag two view controller
objects onto the storyboard. Our MyFoodsViewController is a subclass of
UITableViewController, so let's drag a UITableViewController object
onto the storyboard as well.

Select one of the UIViewControllers and open the identity inspector.
In the custom class section at the top, set this View Controllers class to
AddNewViewController. Now select the remaining UIViewController and set its
class to FoodDetailViewController. Lastly, select our UITableViewController
and set its class to MyFoodsViewController. Our storyboard now has all of the
objects needed for our application.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Our Application for iOS 7

[46]

AddNewViewController
Now that we have created our files and added the proper controllers to our
storyboard, let's go ahead and add the required objects to each controller. We will
start with the AddNewViewController object. Select it, and then navigate to Object
Library in the Utilities pane.

Our application will give users the ability to track what they eat. Each food item
will consist of an image, name/title, and the date it was created. We will need to
provide an image view to store the final image, a placeholder image view, and a
UITextField object to input the name of the food item.

Drag a UITextField object and two UIImageView objects onto the
AddNewViewController view. These will allow our user to interact with the view
and create food items for our app. In this chapter, we are simply adding all the
elements to our project, so do not worry about the size or positions of these objects.

Select the AddNewViewController object itself and then click on the assistant editor
button (the middle button in the top-right corner that resembles a tuxedo). Switch
to AddNewViewController.h if it is not already displayed. In order to access these
objects in our code, we will create outlets for each item in our code. While holding
down the control key on your keyboard, click-and-drag from the UITextField to the
header file and let go. Name this outlet nameTextField and click on Connect. Repeat
this for both UIImageViews. Name the first image view placeholderImageView and
the second finalImageView. We now have all required objects and connections for
AddNewViewController.

FoodDetailViewController
When a user selects one of their previously added food items, we want to display
a detailed view that includes a fullscreen background image, an image of the
food, the name of the food, and then finally the date it was saved. Select the
FoodDetailViewController class in the storyboard, and navigate back to the
Utilities pane and the Object Library.

Drag two UIImageViews and two UILabels onto the food detail view. Once
again, ignore the size and positioning of each item. We will also add outlets for
each object to our code, so go ahead and open the assistant editor and switch to
the FoodDetailViewController.h file. Control drag from the first image view
to the space between @interface and @end in the .h file, and name the outlet
backgroundImageView. Perform the same steps for the second image view and
name it foodImageView.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[47]

Our labels will be used to display the name and date related to the food item.
Control drag from the first label and name this outlet foodNameLabel. The second
UILabel should be named foodDateLabel. We now have all the views required for
our FoodDetailViewController class.

MyFoodsViewController
When we dragged the UITableViewController object to the storyboard, Xcode 5
automatically added a UITableView object, with a plane prototype cell, to the
controller. Food and Me will be using a custom UITableViewCell subclass to create
and lay out our table view cells. This will be covered in a later chapter, so for the
time being we will make one simple change to the MyFoodsViewController class.
Select the prototype cell and a small white box will appear at the bottom of the cell's
frame. Click-and-drag down this box to resize the cell. Set its height to 100 pixels, as
shown in the following screenshot:

Summary
In this chapter, we learned some of the newer design principles associated with
iOS 7. Additionally, we organized our project, created all of our required files, and
started our views in storyboard. We are ready to start writing some code and adding
functionality to our application.

In the next chapter, we will finish building the AddNewViewController class and
add the functionality to save our users' data for later viewing.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Saving
User Data

In this chapter, we will start by adjusting the style of our navigation bar to match
the navigation style of iOS 7. Next, we will create our buttons in the navigation bar
and hook them up to the proper methods. Once we adjust our storyboard, we can
start writing the code to allow a user to take or pick an image, give the item a title,
and then back up the data to disk for later use. On completing this chapter, our
application will have all the functionality required for users to save new food items!

Picking up where we left off
In the last chapter, we created all our files and then connected them to our
storyboard. We then added all of the required elements (labels, image views, and
so on) to each view controller. Last, we created outlets and connected them to our
storyboard elements. The purpose of this chapter, along with that of the following
chapter, is to finish building the application. We will be implementing one portion
of the core functionality, which is the ability to take or select a photo, add a name,
and then save the data. Once we complete this, we can start using some of the new
features of iOS 7 to add additional visual appeal to our application.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Saving User Data

[50]

The navigation bar style
Before we move on, let's go ahead and alter some of the navigation bar style options.
Our application will have the same navigation bar style in every view, so our best
approach is to use the appearance proxy on UINavigationBar in our AppDelegate
object. This will allow us to write the code only once, and the navigation bars in the
entire application will abide by these styles.

Switch to AppDelegate.m and scroll down to the
applicationDidFinishLaunchingWithOptions method. We are going to set the
color of the navigation bar, the font for the title label, and the navigation bar tint
color (this will change the color of the bar button items on the navigation bar).
Additionally, our application will have text-based bar button items, so we want to
set the appearance proxy on UIBarButtonItem to match our application style. Copy
and paste the following code into applicationDidFinishLaunchingWithOptions:

[[UINavigationBar appearance] setBarTintColor:
 [UIColor colorWithRed:200.0//255 green:0.0/255 blue:
 23.0/255 alpha:1.0f]];
[[UINavigationBar appearance] setTitleTextAttributes:
 @{NSForegroundColorAttributeName: [UIColor whiteColor],

 NSFontAttributeName:
 [UIFont fontWithName:@"HelveticaNeue" size:19.0f] }];

[[UINavigationBar appearance] setTintColor:[UIColor whiteColor]];

[[UIBarButtonItem appearance] setTitleTextAttributes:
 @{NSFontAttributeName:[UIFont fontWithName:
 @"HelveticaNeue-Light" size:18.0f]} forState:
 UIControlStateNormal];

First, we set the color of the navigation bar base to dark red. Next, we set the title
text font color to white and set its font to a specific font. You can replace this font
with any font you wish; I just like the way this font looks. To match our title text, all
navigation bar buttons should also be white, so we set the navigationTintColor
method (do not get confused with the navigationBarTintColor method, which will
change the color of the navigation bar itself and not the navigation items) to white.
Last, we alter the font of our UIBarButtonItem objects to match our navigation bar
title style.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[51]

Now that our navigation bar is styled, let's add some code to our
MenuViewController to finalize the style of our application. Switch to
MenuViewController.m and scroll down to the viewDidLoad method. First,
let's adjust the background color of the menu buttons. Previously, we set the
backgroundColor property to white, but let's change this to match our dark red
navigation bar. Replace the previous background color code with the following
code snippet:

bottomBarBG.backgroundColor = [UIColor colorWithRed:200.0/255
green:0.0/255 blue:23.0/255 alpha:0.7f];

Last, write the following code into the viewDidLoad method:

// Set this in every view controller so that the back button
 displays back instead of the root view controller name
self.navigationItem.backBarButtonItem = [[UIBarButtonItem alloc]
 initWithTitle:@" " style:UIBarButtonItemStylePlain target:nil
 action:nil];

This is a very handy piece of code to use. By default, when a viewController
method is pushed onto the navigation stack, it will display a back button (less-than
sign) and text. The text is based on the previous view controller's title. We want to
only display the < symbol, so we add the previous line of code. We are basically
telling the application that for every back button, the text should be equal to @"",
or an empty string. It is worth noting that this can be changed by setting the back
button property of the navigation item in our storyboard. The following screenshot is
an example of our application before and after introducing an empty string:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Saving User Data

[52]

Adding our button action
Our next step is to add the code to be called when the Add New button is pressed. In
our previous chapter, we created an action called addNewPressed and connected it to
our Add New button. Let's go ahead and write the code to present the proper view
controller when this button is pressed. First, switch to MenuViewController.h, and
directly underneath the standard #import for UIKit, let's import our view controllers
as shown in the following code snippet:

#import <UIKit/UIKit.h>
#import "AddNewViewController.h"
#import "MyFoodsViewController.h"

#define ADD_NEW_VIEW_CONTROLLER @"AddNew"

We have also defined a string literal for our storyboard ID for good practice. We have
named it ADD_NEW_VIEW_CONTROLLER so that we know what it contains. Switch back
to MenuViewController.m and scroll down to our addNewPressed method. As we
will be presenting this view controller (dragging it onto the screen from the bottom),
we need to also create a navigation controller to hold the AddNewViewController
object. The following is the code for adding a button action:

- (IBAction)addNewPressed:(UIButton *)sender {

// Present the addNewFoodViewController
AddNewViewController *vc = [self.storyboard
 instantiateViewControllerWithIdentifier:
 ADD_NEW_VIEW_CONTROLLER];"];
UINavigationController *nav =
 [[UINavigationController alloc] initWithRootViewController:vc];

[self.navigationController presentViewController:
 nav animated:YES completion:nil];

}

This code is pretty straightforward. We allocate our AddNewViewController object
by initializing it from our storyboard. Make sure that AddNewViewController in our
storyboard has the property for our storyboard ID set to AddNew so that it matches
our string literal defined earlier. Under certain circumstances, it is recommended to
preinitialize the view controller before presenting it if there is a noticeable lag between
the button press and the view being presented. Next, we create a navigation controller
and assign our newly created AddNewViewController as its root view controller. Last,
we tell the current navigation controller to present the new one. Go ahead and run the
application and test the functionality. The AddNewViewController object inside of a
navigation controller should slide onto the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[53]

Adding buttons to our navigation bar
You may have noticed that when presenting our AddNewViewController object,
we have no way to dismiss the view to get back to the menu. Let's add this
functionality now. We will be creating two bar button items that will be text-only
items. The first button, Cancel, will dismiss the view while the second, Save, will
save the new food entry.

Switch to AddNewViewController.m and scroll down to viewDidLoad. Add the
following code at the top of viewDidLoad:

// Add our bar button items
 UIBarButtonItem *cancelButton = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemCancel
 target:self action:@selector(cancelButtonPressed:)];
 UIBarButtonItem *saveButton = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemSave
 target:self action:@selector(saveButtonPressed:)];

// Assign the bar buttons to the navigation controller
[self.navigationItem setLeftBarButtonItem:cancelButton];
[self.navigationItem setRightBarButtonItem:saveButton];

Here, we create both bar button items using the built-in Cancel and Save bar button
items provided by iOS. Each button also has its own selector (or method) that we will
code in a moment. Next, we assign each bar button to the navigation bar. I chose to
place Cancel on the left-hand side and Save on the right-hand side of the bar; however,
this order is entirely up to you. If we run our application and click on the Add New
button, our view will slide into place, and you will see Cancel on the left-hand side
and Save on the right-hand side. Our appearance proxies defined in the app delegate
should also be reflected in the font and text color. Next, let's actually add the Cancel
button functionality.

Switch back to AddNewViewController.m and scroll down to the bottom of
viewDidLoad. We want to allow the user to cancel adding a food item, so let's write
the cancelButtonPressed method that we earlier assigned to our cancel button.
Directly below viewDidLoad, add the following code:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Saving User Data

[54]

- (void)cancelButtonPressed:(UIButton *)sender {

 // Dismiss the view
 [self.presentingViewController
 dismissViewControllerAnimated:YES completion:nil];

}

- (void)saveButtonPressed:(UIButton *)sender {

}

We have defined both our cancelButtonPressed and saveButtonPressed methods
here (saveButtonPressed has been intentionally left blank until later in the chapter).
In cancelButtonPressed, we simply tell the view controller to dismiss itself and set
the animated view controller to YES. Run the application and test this functionality.

Adjusting our storyboard view
Now that we have some of our code implemented, we need to finish arranging our
view in Main.storyboard. Previously, we only added the required elements and did
not position or size them correctly. Switch to Main.storyboard and scroll down to
the AddNewViewController object.

We have three items to position and size here, starting with the two image views.
Select the first image view, and in the Utilities pane, select the Size Inspector
submenu. Set the width and height to 180 pixels to create a perfect square. Position
this image view horizontally in the center of the view and slightly higher than the
vertical center of the view. Do not worry about being precise, and feel free to position
the image view where you think it looks best!

Repeat this process for the other image view, making it an identical size and in
exactly the same position. For this image view, switch to the Attributes Inspector
submenu (in the Utilities pane on the right-hand side) and set its image to
placeholder_image for placeholderImageView. Using the documents outline,
make sure that this image view is positioned below the other image view. We will be
using two image views to assist in save validation. When a user selects or takes an
image, it will be set to the top image view (the empty one) and cover the placeholder
image view beneath it. This allows us to check if the top image view contains
an image. If it does not, it means the user has not added an image and that the
placeholder is still visible. In this case, we will alert the user to let him/her know
that he/she must include a photo.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[55]

Last, we need to adjust the settings of our UITextField object that will be used to
type in the name of our food entry. Select the text field and reopen the Size Inspector
submenu from the Utilities pane. Set the height to 38 pixels and the width to 280
pixels. Position the text field horizontally centered and slightly above the image views.

Select the Attributes Inspector from the Utilities pane and change the following
settings:

• Alignment: Select the Center icon
• Placeholder: Type The Food Name
• Border Style: This field should be set to none (the first of the four buttons)
• Capitalization: Select Words

The final result should look something like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Saving User Data

[56]

Adding our delegates
Now that our view is completely set up, we can start coding the desired
functionality. Before we can move on, we need to specify some delegates that our
view controller will require to work. We will work with a text field, image picker,
navigation controller, and action sheet, all of which have their own custom delegates.
Switch to AddNewViewController.h and replace the line of code after #import with
the following code:

@interface AddNewViewController : UIViewController
 <UITextFieldDelegate, UIActionSheetDelegate,
 UIImagePickerControllerDelegate, UINavigationControllerDelegate>

Here, we are simply specifying the protocols that our class will conform to in
the code. With this final step, we can now start coding our functionality into
the application!

Using a tap gesture
For our application, a user can tap on the placeholder image in order to take or select
a photo. To do this, we will add a tap gesture recognizer directly to the placeholder
image view. Switch to AddNewViewController.m and scroll down to viewDidLoad.
Add the following code at the bottom of the viewDidLoad file:

// Add a border around our image view
[self.placeholderImageView.layer setBorderWidth:6.0f];
[self.placeholderImageView.layer setBorderColor:[UIColor
 colorWithRed:129.0/255.0 green:129.0/255.0 blue:130.0/255.0
 alpha:1.0].CGColor];

UITapGestureRecognizer *imageViewTapGesture =
 [[UITapGestureRecognizer alloc] initWithTarget:self
 action:@selector(imageViewTapped:)];
[imageViewTapGesture setNumberOfTapsRequired:1];];

[self.placeholderImageView setUserInteractionEnabled:YES];
[self.placeholderImageView
 addGestureRecognizer:imageViewTapGesture];

First, we add a border and a corner radius to our image view for visual effect. Next,
we create a tap gesture recognizer and assign it a method. We also set the property
numberOfTapsRequired to 1. The last step is to set the user interaction enabled on
our placeholder image view to YES and then add our gesture recognizer to it. Now,
our image view will keep listening for a single tap and call our imageViewTapped
method when a tap is detected.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[57]

When the image is tapped, we want to give the user an option to either select an
image from their library or take a new one using the camera. The best way to do this
is using an action sheet. Let's create the imageViewTapped method, have it display
an action sheet, and then respond to the users' selection accordingly. Below the
ButtonPressed methods, add the following code:

#pragma mark - User Interaction Methods

- (void)imageViewTapped:(id)sender {

 [[[UIActionSheet alloc] initWithTitle:nil
 delegate:self
 cancelButtonTitle:@"Cancel"
 destructiveButtonTitle:nil
 otherButtonTitles:@"Take Picture", @"Choose
 From Library", nil]
 showInView:self.view];

}

With this code, when the user taps on the image view, we create an action sheet and
display it in the current view. We only need the Cancel button and two additional
buttons, one for Take Picture and another for Choose From Library. In order for us
to respond accordingly to the selected action sheet button, we need to implement
the action sheet delegate method. Below the imageViewTapped method, add the
following code:

#pragma mark - Action Sheet Delegate

-(void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex {

 if (buttonIndex == actionSheet.cancelButtonIndex) {
 return;
 }

 if (buttonIndex == 0 && [UIImagePickerController
 isSourceTypeAvailable:
 UIImagePickerControllerSourceTypeCamera]) {
 // Take Picture Selected
 UIImagePickerController *imagePicker =
 [[UIImagePickerController alloc] init];
 imagePicker.delegate = self;
 imagePicker.allowsEditing = YES;

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Saving User Data

[58]

 [imagePicker setSourceType:
 UIImagePickerControllerSourceTypeCamera];

 [self.navigationController presentViewController:
 imagePicker animated:YES completion:nil];

 }

 if (buttonIndex == 1) {
 // Choose Photo From Library
 UIImagePickerController *imagePicker =
 [[UIImagePickerController alloc] init];
 imagePicker.delegate = self;
 imagePicker.allowsEditing = YES;
 [imagePicker setSourceType:
 UIImagePickerControllerSourceTypePhotoLibrary];

 [self.navigationController presentViewController:
 imagePicker animated:YES completion:nil];

 }

}

In this method, we first check if the selected button is the Cancel button, and if so,
we return to end the execution of this method, which will also hide the action sheet
for us. Next, we check if the button index is equal to 0, or Take Picture. If so, we
create an instance of UIImagePickerController. We set the delegate to self and
also allow editing (this will allow the user to crop the image into a perfect square,
which is ideal for our application), and then we set the source type to camera.

If the button index is 1, or Choose From Library, we use exactly the same code
with one exception. For this block, set the source type to photo library to display
the phone's camera library. Save our code and run the application. Everything
should work as expected.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[59]

Getting the image from
UIImagePickerController
Now that a user can take a photo or select from their phone's photo library, we need
to grab that image and display it. In order to do so, we need to implement the image
picker's delegate method, the didFinishPickingMediaWithInfo method. Below our
action sheet delegate method, add the following code:

#pragma mark - UIImagePicker Delegate

-(void)imagePickerController:(UIImagePickerController *)
 picker didFinishPickingMediaWithInfo:(NSDictionary *)info {

 UIImage *pic;

 //Grab the stored image
 if ([info objectForKey:UIImagePickerControllerEditedImage]) {
 pic = [info objectForKey:
 UIImagePickerControllerEditedImage];

 [self.finalImageView setImage:pic];
 [self.placeholderImageView setHidden:YES];

 }

 [self.presentingViewController dismissViewControllerAnimated:
 YES completion:nil];

}

In this method, we create an instance of UIImage and assign it using the info
dictionary provided by the image picker. Because we want our users to edit the
image, we want to grab the edited version instead of the original (which can be
accessed using UIImagePickerControllerOriginalImage). Now that we have our
final image, we assign it to our final image view and then hide the placeholder image
view. Last, we need to tell the image picker controller to dismiss itself to bring us
back to our AddNewViewController.

Save everything and run the code to test it out. If you wish to actually take a picture
with the camera, you must run this on an actual device.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Saving User Data

[60]

Adding the text field delegate
Now that we have our image, we need to set up the text field delegate. This is
probably the simplest of all delegate methods because we only need to tell the
application what to do when the return key is pressed. For our application, we
simply want to hide the keyboard. Below our image picker delegate method,
add the following code:

#pragma mark - Text Field Delegate

- (BOOL)textFieldShouldReturn:(UITextField *)textField {

 [textField resignFirstResponder];
 return NO;
}

This method simply tells the text view to resign first responder (hide the keyboard)
when the return key is pressed. A user can type in a name, press the return key, and
hide the keyboard. Make sure that the text fields delegate property has been set to
AddNewViewController (self) either in the storyboard or in viewDidLoad.

Saving the data
We now have everything we need from the user to create a new food entry. In order
to save the data, we will need to follow multiple steps so that we can access it again
later in the app. The save data method we created earlier will be quite long once
complete, so we will cover it piece by piece for simplicity, starting with a custom
date helper method.

Getting the date string
For our application, we will be creating a .plist file that will store the food entry's
name, date created, and the file path to the image. The image itself will be saved
separately in the documents directory. When saving any file to the documents
directory, you must specify a filename. In order to save multiple images, we need to
make sure that every single image file saved has a different filename. One of the best
(and most popular) ways to accomplish this is using a date.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[61]

Each device keeps track of the current date down to the millisecond. This means
that at any given millisecond, the date will be completely different from every date
before and every date after. This gives a great way to create a unique identifier for
each image based on when it was created. What we will do is grab the current date,
set the date format, and convert it to a string that we will then tack onto the end of
each filename. This way, every single image will have a unique filename that will
be stored in our .plist file to be accessed later.

I have created a simple helper method that returns the current date as a string value
that we can use for the filename, so let's add it to our code. Scroll down to the end
of the last method and add the following code:

#pragma mark - Date Helper Method

-(NSString*)stringForCurrentDateTime
{
 NSDateFormatter *format = [[NSDateFormatter alloc] init];
 [format setDateFormat:@"yyyyMMddHHmmss"];

 NSDate *now = [NSDate date];
 NSString *dateString = [format stringFromDate:now];

 return dateString;
}

With this code, we first create a date formatter that takes the year, month, day, hour,
minute, and second values of a date and pushes them together. Next, we create a
date object and set it to the current date and time. Finally, we create a string using
our date formatter and return it. Now that we have our helper method, let's add the
code to save the data!

Adding validation
We are now ready to implement the saveButtonPressed method. Before we write
any of the code to actually save the date, we first need to check that the user has
actually selected an image and added a name. This will prevent us from having any
errors and will guarantee that we have the required data. Scroll down to the empty
saveButtonPressed method we created earlier and add the following code:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Saving User Data

[62]

- (void)saveButtonPressed:(UIButton *)sender {

// Check if the image and title have been saved
// If so, save the image to the documents directory and dismiss
 the view

 if (self.finalImageView.image &&
 self.nameTextField.text.length > 0) {
 // Image and name have been set, so we can save

 } else {

 [[[UIAlertView alloc] initWithTitle:@"Missing Data"
 message:@"A title and image
 are both required to save."
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil]
 show];

 }

}

This validation is very simple but effective. Here, we put to use having multiple
image views by checking whether the final image view is nil. We also check to make
sure that a user has actually added text to the text field by checking that the text
property's length is greater than zero. If either of these two conditions is false, we
display an alert view telling the user that both a title and an image are required to be
saved. If both are true, we can proceed with our saving process. It is recommended
that you use a data model to maintain data in an application; however, for our
application, this will do fine.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[63]

Saving the image
The first step in the saving process is to save the image itself to the documents
directory. Inside the first if statement block, add the following code:

// get paths from root direcory and the main documents directory
 NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsPath = [paths firstObject];

// Set up and save our image to the documents directory
 NSString *imagePath = [documentsPath
 stringByAppendingPathComponent:[NSString
 stringWithFormat:@"image-%@", [self
 stringFromCurrentDateTime]]];

 NSData* data = UIImagePNGRepresentation
 (self.finalImageView.image);
 [data writeToFile:imagePath atomically:YES];

First, we grab the first element (which will always be the path to the documents
directory) from the list of directories in the file system. We then create a new path
for our image by adding a filename to the end of the documents path. The filename
is how we access the image later in our app. Using our date helper method, we set
the filename to image, and the returned date string is separated by a hyphen.
Now every image will be found in the documents directly with a unique filename.
Last, we create an instance of NSData, assign the user's final image to it as data
using UIImagePNGRepresentation, and then save the date to the image path
created previously.

Now that our image has been saved, we can save the rest of our data.

Creating versus loading the .plist file
In order to save the users' data, we will be creating a dictionary that contains all
relevant data for each food entry. We will then add this dictionary to a .plist file
and save the .plist file to the documents directory. To make sure we don't save
over our previous data, we must first check to see if our .plist file already exists.
Below the previous code for saving the image, add the following code:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Saving User Data

[64]

// Get the path to our Data/plist file and where we will be saving our
images
NSString *plistPath = [documentsPath
 stringByAppendingPathComponent:@"Data.plist"];

// Forward reference of our array
NSMutableArray *plistDataArray;

// Call the file manager to check if the file exists
NSFileManager *defaultManager = [NSFileManager defaultManager];
if ([defaultManager fileExistsAtPath:plistPath])
{
 // Assign the data
 // Get the current data from the plist file if it exists
 plistDataArray = [NSMutableArray
 arrayWithContentsOfFile:plistPath];

}
else
{
 //create empty file
 NSMutableArray *array = [NSMutableArray array];
 [array writeToFile:plistPath atomically:YES];
 plistDataArray = [NSMutableArray
 arrayWithContentsOfFile:plistPath];

}

First, we create another path by adding Data.plist to the end of the documents
directory created earlier (this name can be anything you wish as long as it ends in
.plist). Next, we create an empty array to hold the final .plist data and allow us
to append more data to the end of the file. We create an instance of NSFileManager
and use it to check if the file at the newly created path exists. If so, we set the
contents of our .plist file to the plistDataArray method.

If the .plist file does not exist, we instead create another empty array, save the
array as a .plist file, and then set the plistDataArray method to the content
of the newly created (but empty) .plist file. Now we can add more data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[65]

Adding a new entry
Now, we will grab the user data and turn it into a dictionary so that we can add
it to our data array. Then, we can save it to the documents directory. Add the
following code after the previous code:

// Create a new food item
NSMutableDictionary *foodItem = [[NSMutableDictionary alloc]
 init];
[foodItem setValue:self.nameTextField.text forKey:@"name"];
[foodItem setValue:imagePath forKey:@"image_filepath"];
[foodItem setValue:[NSDate date] forKey:@"date"];

[plistDataArray addObject:foodItem];
[plistDataArray writeToFile:plistPath atomically:YES];

[self dismissViewControllerAnimated:YES completion:nil];

Here, we create a new empty mutable dictionary. The dictionary is then filled with
the user-entered name, the image path used earlier, and the current date and time.
We then add this dictionary to our plistDataArray method and tell it to save
(write) the file. Last, we dismiss the view controller to bring us back to the menu
where we started, and our data has been saved!

Summary
In this chapter, we built the most important component of our application, the ability
to create new food entries. Now that all of this data has been saved, we can retrieve it
and start displaying it to our user. Because everything is saved directly to the device,
we are able to manipulate this data instantly and use it as we please.

In the next chapter, we will build the final piece of our application's core functionality:
viewing the user-created data both in a table view and in a detail view.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying User Data
We have almost completed our application; however, we still have one last major
piece of functionality to add. Now that our users can add content, they need to
be able to view that data. In this chapter, we will put together a custom cell, build
a table view to display a list of data, and build a detail view of the items when a
user selects an item from the list. On completing this chapter, we will have a fully
functional application.

We will begin by putting together our custom cell in the storyboard. Next, we will
add a button to the navigation bar so that users can add food while viewing their
current food items. Then, we will set up the table view, load our data, and pass the
data to the table view. Lastly, we will implement the detail view of the items when
a user selects an item from the table view. Let's get started!

Custom cell
Before we start writing our code to display the data, we want to create a custom table
view cell. With your project open, select File | New | File. Select Cocoa Touch as
the base and select Objective-C Class before clicking on Next. We want this class to
be a subclass of UITableViewCell. The cell will display food items, so let's give it the
name FoodCell. Save this file and move it into our Custom Class group (if it is not
already in it).

Now that we have our class, let's link it up to our storyboard. Open Main.
storyboard and find the table view controller we had previously moved into the
storyboard. After opening the Main.storyboard file, open the Utilities pane and
select the Identity section. Make sure that this view controller's class has been set
to MyFoodsViewController. Now select the blank table view cell and set its class
to our newly created FoodCell class.

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying User Data

[68]

Building the cell
Now that our class is linked, we can build the cell in our storyboard. The cell itself
will consist of a UIImageView object and two UILabel instances. Open the Utilities
pane and perform the following steps:

1. Drag a UIImageView object onto the cell itself to add it.
2. Set both the width and height to 100 pixels.
3. Position the image view to the far left of the cell.
4. Drag two UILabel instances onto the cell, positioned one above

the other.
5. From the Attributes pane, set the font family of the top label to

Helvetica Neue.
6. Set the style to Ultra Light.
7. Set the size to 20.
8. Repeat this for the second (bottom) cell, but set the size to 11.
9. Set both labels to be left aligned.
10. Position the labels horizontally to your preference.

Once completed, your cell should look similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[69]

Connecting the cell
Now that our cell is visually laid out, we need to connect it to the class we created
earlier; perform the following steps to connect this cell to our class:

1. Select the entire cell and then select the assistance editor. Make sure that
we are viewing FoodCell.h in the right panel.

2. Control drag from the image to create an outlet named foodImageView.
We want to avoid naming it just imageView because this property already
exists by default on UITableViewCell.

3. Do the same for both labels giving them the names foodNameLabel and
dateAddedLabel, respectively.

Creating properties
Now that our cell is ready, let's start coding MyFoodsViewController. This class
will be loading the saved user data in order to display it, so we need to create an
array property to hold the data. Additionally, we want our dates to be displayed in a
user-friendly format, so let's also create a date formatter property. The date formatter
is a useful class provided by Apple that allows you to manipulate the format of
dates based on specific patterns. This is helpful considering that different locales
require different formatted dates. Switch to MyFoodsViewController.h and add the
following code:

#import <UIKit/UIKit.h>
#import "FoodCell.h"
#import "AddNewViewController.h"
#import "FoodDetailViewController.h"

@interface MyFoodsViewController : UITableViewController

@property (strong, nonatomic) NSArray *myFoodsArray;
@property (strong, nonatomic) NSDateFormatter *dateFormatter;

@end

In the preceding code, we simply created both the required properties. In addition
to viewing the food items already created, a user will have the ability to create
new items from this view too. In order to support this, we import the custom cell
we created as well as the AddNewViewController class. We also imported the
FoodDetailViewController class so that we can display our detail view.

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying User Data

[70]

Adding food
The first thing we want to do is give the user the ability to add additional food items
from this view. The best way to do this is to add a button in the navigation bar.
Apple provides a system button to add items that will be displayed as a nice plus
button. Switch to MyFoodsViewController.m and scroll down to the viewDidLoad
method. Add the following code:

// Set our views title
self.title = @"MY FOODS";

// Create the plus button
UIBarButtonItem *plusButton = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd target:self
 action:@selector(addButtonPressed:)];

 // Assign the bar buttons to the navigation controller
[self.navigationItem setRightBarButtonItem:plusButton];

// Set this in every view controller so that the back button
 displays the back button only without the viewcontroller name
self.navigationItem.backBarButtonItem = [[UIBarButtonItem alloc]
 initWithTitle:@" " style:UIBarButtonItemStylePlain target:nil
 action:nil];

Here, we create a new UIBarButtonItem property to go on the navigation bar.
We have set the button to system item add to give us that plus button. Next, we tell
the navigation controller to add this button as a right-hand side bar button item so
it will show up on the right-hand side of the navigation bar.

Additionally, we set the title of the navigation controller and adjust the back button
text. By default, iOS will add the previous view controller's title to the back button.
For our application design, we simply want the back button icon only with no
text. This line of code can be added to any view controller you wish to replicate
this functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[71]

Lastly, we want to implement the same addButtonPressed method we used in
our MenuViewController. Add this code below viewDidLoad:

- (void)addButtonPressed:(id)sender {

 // Present the addNewFoodViewController
 AddNewViewController *vc = [self.storyboard
 instantiateViewControllerWithIdentifier:@"AddNew"];
 UINavigationController *nav = [[UINavigationController alloc]
 initWithRootViewController:vc];

 [self.navigationController presentViewController:nav
 animated:YES completion:nil];

}

Preparing the table view
Before we load any data, let's go ahead and set up our table view. To do so, we will
be editing our table view delegate methods that Xcode automatically created for us.
Scroll down to the numberOfSectionInTableview method and change the return
value from 0 to 1.

The next delegate method we should implement is numberOfRowsInSection.
This number will frequently change, so instead of hard coding the number as
in the previous method, we will set this to the count of myFoodsArray.
Every time the array is updated, the table view will also be updated.

The next method to update is cellForRowAtIndexPath. The default code will work
just fine as long as we update the class name and cell identifier. Replace Cell with
FoodCell and change the class declaration from UITableViewCell to FoodCell.

Lastly, we need to add an additional delegate method that was not added. Below
cellForRowAtIndexPath, type - table, and a list of possible methods will
appear. Scroll through, find didSelectRowAtIndexPath, and select it. Xcode 5 will
automatically type the remainder of the method call. Be sure to include the opening
and closing brackets of the method.

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying User Data

[72]

Your code should look like the following code:

#pragma mark - Tableview Methods

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 // Return the number of sections.
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 // Return the number of rows in the section.
 return self.myFoodsArray.count;
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 NSString *CellIdentifier = @"FoodCell";
 FoodCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier
 forIndexPath:indexPath];

 // Configure the cell...

 return cell;
}

-(void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[73]

Loading data
It's time to load our data so that we can display it in the table view. Loading the data is
very similar to the way we checked for files and saved the data in the previous chapter,
because both require a specified path in the documents directory to be defined. For our
application, we will create a method to load the data and return an array.

Place the following code below the addButtonPressed method:

- (void)loadFoodFromDocumentsDirectory {

 // Get paths from root directory and the main documents
 directory
 NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsPath = [paths objectAtIndex:0];

 // Get the path to our Data/plist file and where we will be
 saving our images
 NSString *plistPath = [documentsPath
 stringByAppendingPathComponent:@"Data.plist"];

 // Call the file manager to check if the file exists
 NSFileManager *defaultManager = [NSFileManager
 defaultManager];
 if ([defaultManager fileExistsAtPath:plistPath])
 {
 // Assign the data
 // Get the current data from the plist file if it exists
 self.myFoodsArray = [NSMutableArray
 arrayWithContentsOfFile:plistPath];
 [self.tableView reloadData];

 }
 else
 {
 // Do nothing
 }

}

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying User Data

[74]

This code should be somewhat familiar. First, we create an array of paths using
NSDocumentsDirectory and assign the path to the documents directory to a string.
Next, we define the path to the file we want to load, in this case the Data.plist file
we created previously. We allocate an NSFileManager instance and use it to check if
the specified file exists at that path. If so, we assign the contents of the file to self.
myFoodsArray and then reload the table view. Now, we have loaded all data (if any)
and passed that data on to the table view.

Displaying data
With our data loaded, we can now display the data in our custom cell. Scroll down
to cellForRowAtIndexPath and let's set up our cell.

First, we need to grab the current food item from our array. We will do this using
the indexPath.row parameter passed to cellForRowAtIndexPath. Add the
following line of code below our cell allocation and before return cell:

// Create an instance of the current food item
NSDictionary *currentFoodItem = self.myFoodsArray[indexPath.row];

Now that we have currentFoodItem, we can start assigning our custom
cells properties. Let's begin with the image. Add the following code to
cellForRowAtIndexPath:

// Grab the image from the current food item and set the cell
 image
UIImage *foodImage = [UIImage
 imageWithContentsOfFile:currentFoodItem[@"image_filepath"]];
cell.foodImageView.image = foodImage;

Here, we simply allocate an image based on the image_filepath key we created for
each food item. Next, we set this image as the current cell's image. Now, we can set
the text for the name of the food item with the following code:

// Set the name of the food
cell.foodNameLabel.text = [currentFoodItem objectForKey:@"name"];

The last item to update in our cell is the date the food item was added. We need
to actually create our date formatter before this will work; so, let's do that now.
Allocating date formatters can be very CPU-intensive, so we are creating a property
that is allocated only once, rather than each time a cell is loaded. Scroll down to the
viewDidLoad method and add the following code:

// Set the date formatter
self.dateFormatter = [[NSDateFormatter alloc] init];
[self.dateFormatter setDateFormat:@"MMM d, YYYY"];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[75]

First, we allocate and initialize our NSDateFormatter property. Next, we set the
date format. The format we have chosen will display the month as a word, the day
number in the month, and the year with all the digits. With all of this in place, run
your code to test it. If you don't have any food items yet, go ahead and add some
from this view to test its functionality.

Lastly, add the following final code to cellForRowAtIndexPath:

// Set the date using our date formatter
cell.dateAddedLabel.text = [self.dateFormatter
 stringFromDate:[currentFoodItem[@"date"]];

Here, we set the date of the cell to the current items date in the format specified by
our date formatter.

Showing the detail view
When selecting one of the food items, the user should be directed to a new view with
the capacity to display more details. All of the code to do this will be handled in
didSelectRowAtIndexPath.

Before we write the code to push our detail view, we are going to adjust its layout.
Switch to Main.storyboard, locate the FoodDetailViewController object, and
perform the following steps:

1. Select one of the image views and size it to fit the entire screen. This will
be our background image, so it must be the back layer as well. If needed,
use the document outline to arrange the views.

2. Select the remaining image view and set its size to 200 x 200 square pixels.
Position it centered horizontally and towards the top of the screen. This
will be the food items' large image.

3. Next, move the two labels in the view to just below the second image (the
food image). Select the first label and open the Attributes Inspector from the
Utilities pane. Set the font to Helvetica Neue Thin with a size of 24. Now,
change to the Size Inspector and set the label's width to 280 and height to 32.
Position this label centered horizontally and just below the food image.

4. Select the second label and set its font to Helvetica Neue Thin of size 13.
Also, change its width to 280 and height to 26. Also, position this label
centered horizontally just below the name label.

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying User Data

[76]

Everything in our storyboard is how we need it for the final app! The following
screenshot is what your FoodDetailViewController should look like:

Coding the detail view
When pushing the detail view, we will pass the food item dictionary as a property
so that we can display the data related to that food item in the detail view. To do
this, let's add a property. Switch to FoodDetailViewController.h, and beneath
our IBOutlets, add the following property:

@property (strong, nonatomic) NSDictionary *foodItem;

Creating blurred images
Now, we can pass a food item to this view controller. Next, we want to set the
background image of the detail view. For our application, we are going to use our
food image itself as the background image. Before we set the image, we will blur it
and apply a dark tint to create a nice blurred image effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[77]

In order to do this, we will be using a UIImage category provided by Apple on
the Apple Developer Portal. I have packed this category with the resources file
available for download with this book. Open the provided Food And Me folder
that was downloaded earlier from the Packt Publishing website (if you have not
downloaded these files, you can find them by visiting this link in your browser:
http://www.packtpub.com/) and then open the Apple Code folder. You will find
a .h file and a .m file titled UIImage+ImageEffects. Drag these files to your project
and make sure you check the copied items into the destination project folder.

Now that we have the files in our project, we need to import them. Add this import
statement below #import <UIKit/UIKit.h>:

#import "UIImage+ImageEffects.h"

Let's put this category to use. Switch to FoodDetailViewController.m, and inside
viewDidLoad, add the following code:

UIColor *tintColor = [UIColor colorWithWhite:0.11 alpha:0.36];

UIImage *foodImage = [UIImage imageWithContentsOfFile:[self.foodItem
objectForKey:@"image_filepath"]];

UIImage *blurredBackground = [foodImage applyBlurWithRadius:8
tintColor:tintColor saturationDeltaFactor:1.2 maskImage:nil];

self.backgroundImageView.image = blurredBackground;

First, we define a tint color for the image. We want it to be darkened so that white
text is easily visible on bright food images. Next, we create a UIImage object using
the image_filepath key from our foodItem property.

The next line is where the magic happens. We create a new UIImage instance and
assign it using a method from the ImageEffects category. This method takes a
few parameters.

The radius will determine how blurry the image will be. For best results, pick a
value between 1 and 12.

Tint Color is the color of the tint we would like on the image. You can set this to
any color you wish based on each app's design.

SaturationDeltaFactor will adjust the saturation of the image. The lower the
value of SaturationDeltaFactor, the more dull the image will be.

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying User Data

[78]

Masking the image allows you to pass in an image mask for more advanced
blur shapes.

The last line of code sets the background image to the food image so that our
background is completely filled; double-check the storyboard and make sure
that the background image has been set to the mode Aspect Fill.

The following screenshot is a before-and-after example:

All of these parameters can be adjusted to your liking based on preference and/or
app design.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[79]

Finishing our detail view
Now that we have our background image, let's fill in the rest of the information.
First, we will start with our regular food image. Add the following code to
viewDidLoad:

self.foodImageView.image = foodImage;

[self.foodImageView.layer
 setCornerRadius:self.foodImageView.frame.size.width / 2];
[self.foodImageView.layer setBorderWidth:4.0f];
[self.foodImageView.layer setBorderColor:[UIColor
 whiteColor].CGColor];

By reusing the foodImage object and setting it to the foodImageView property, we
save a few lines of code. Here, we also add a corner radius to create a round circle
image and apply a white border with a width of four pixels.

Now, we can write the code to display the name and date. Add the following code
to viewDidLoad:

self.foodNameLabel.text = [self.foodItem objectForKey:@"name"];

 // Set the date formatter
NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];
[dateFormatter setDateFormat:@"MMM d, YYYY"];

self.foodDateLabel.text = [dateFormatter
 stringFromDate:self.foodItem[@"date"]];

First, we set our name based on the foodItem property. Our date should be in
the same format as in our table view cell, so we use identical code to create an
NSDateFormatter object and set its format. Now, we use that date formatter
to set our date text.

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying User Data

[80]

Pushing the detail view
Now that we have completed our detail view, we can start creating and
pushing it onto the stack when a user selects their food items. Switch to
MyFoodViewController.m and scroll down to didSelectRowAtIndexPath.
Add the following code:

// Create an instance of the current food item
 NSDictionary *currentFoodItem = [self.myFoodsArray
 objectAtIndex:indexPath.row];

 FoodDetailViewController *vc = [self.storyboard
 instantiateViewControllerWithIdentifier:@"Food_Detail"];
 vc.foodItem = currentFoodItem;

 [self.navigationController pushViewController:vc
 animated:YES];

This code grabs the currently selected food item using indexPath.row. Next,
we allocate an instance of our FoodDetailViewController we just created and
set its foodItem property to the currently selected food item. Lastly, we push
the viewController onto the navigation stack. Go ahead, run your application,
and test out all functionality.

Summary
In this chapter, we finished our base application by adding the last piece of
functionality, displaying the users' saved data in a table view and creating
the detail view. We also learned how to create a blurred image using the
UIImage+ImageEffects category provided by Apple.

Now that we have completed our application, we can learn how to use TextKit
and manipulate text in iOS 7. We will then apply some of these new features to
our application to spice it up a bit!

www.it-ebooks.info

http://www.it-ebooks.info/

Manipulating Text with TextKit
We will start this chapter with an overview of the new UIKit hierarchy. From there,
we will dive directly into the dynamic text type to support OS-wide font and size
settings. Next, we will cover some of the new features, such as exclusion paths
to wrap texts around shapes and adding a letterpress effect with a few lines of
code. Last, we will discuss how to apply standard formatting to your text, such
as underlined text. Let's get started!

What is TextKit?
Prior to iOS 6, providing mixed styles for your text was available using UIWebView
and HTML markup or using the lower level framework Core Text. With the launch
of iOS 6, Apple introduced attributed strings, allowing developers to adjust color
and font attributes on defined subsections of any string. The first 10 characters could
be set to a color of yellow and the remaining characters a bold font.

In iOS 6, text-based UIKit controls were based on both Core Graphics and WebKit.
Here is a diagram to illustrate the hierarchy:

UILabel

String Drawing

UITextField

WebKit

Core Text

Core Graphics

UITextView UIWebView

www.it-ebooks.info

http://www.it-ebooks.info/

Manipulating Text with TextKit

[82]

You will notice that UITextView actually uses WebKit itself for the sake of drawing
attributed text using HTML. Although attributed strings provided many solutions
for working with text, they were limited in flexibility for advanced layouts. This
multi-line rendered text required the use of Core Text. This framework is very
difficult to work with and understand.

With iOS 7, Apple has introduced TextKit to streamline working with text. Apple
now inherits UITextView from TextKit rather than WebKit as illustrated in the
following figure:

UILabel UITextField

WebKit

Core Text

Core Graphics

UITextView UIWebView

TextKit

TextKit inherits all of the power found in Core Text (it is built on top of Core Text) and
provides it in an easy-to-use and much improved API. All text-based UIKit controls
(with the exception of UIWebView for obvious reasons) are now using TextKit. You
can see how the core structure is now much more refined with better flow.

TextKit can be divided into three primary classes:

• NSTextStorage: This class is used to store all text attribute information.
Think of it as an internal blueprint for all text effects. It is important to note
that NSTextStorage is a subclass of the NSMutableAttributedString class,
which is why it is responsible for all text attributes. In addition to storing text
attributes, NSTextStorage will also make sure everything stays consistent
during all editing operations.

• NSLayoutManager: This class will manage the way the data found in
NSTextStorage is laid out in the view (as the name implies). NSTextStorage
will notify this class if any changes or modifications have been made to the
stored text attributes. It will then update the views accordingly. As a result,
changes are reflected almost instantaneously.

• NSTextContainer: This class is responsible for specifying the view that
the text will be displayed in. NSTextContainer also keeps track of the
information related to the view, such as size/frame or shape. Most notably,
NSTextContainer is capable of storing an array of bezier paths, which we
will use later when creating exclusion paths. This is what allows TextKit to
flow text around images and other objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[83]

TextKit can be used for multiple text-based effects. This includes responding to
user-selected text sizes with dynamic type, wrapping text around an image with
exclusion paths, and text formatting similar to a rich text editor.

In this chapter, we will cover all of these features in detail and then apply some
of them to our application text. To start, let's look at dynamic type.

Dynamic type
One of the biggest new features of iOS 7 from a user experience standpoint is the
ability to adjust OS-wide text formatting. This includes increasing the font weight
(bold) and text size. These settings can be set in the device's settings application.
Although it is not a requirement to support dynamic type, it is recommended to do
so! Here is an example of these settings:

www.it-ebooks.info

http://www.it-ebooks.info/

Manipulating Text with TextKit

[84]

When typically dealing with fonts, we specify the font family name and the size we
want to set, as follows:

[UIFont fontWithName:@"HelveticaNeue" size:19.0f]

When working with dynamic type, we will use fonts with styles instead of using the
literal name of any font unlike the preceding code. UIFont has been equipped with
a new method called preferredFontForTextStyle. This loads the selected font
preferences from the user's device and sets the text to the given style. Here is
an example of the multiple font styles:

Subhead

Body

Caption 1

Caption 2

Footnote

Headline

Subhead

Body

Caption 1

Caption 2

Footnote

Headline

Subhead

Body

Caption 1

Caption 2

Footnote

Headline

The text on the left-hand side is the smallest size able to be rendered, the middle text
is the largest size possible, while the right-hand side text is each an option in bold
format. Let's take a look at an example of using TextKit for dynamic type. Here is
a code example:

self.foodDateLabel.font = [UIFont
 preferredFontForTextStyle:UIFontTextStyleHeadline];

As mentioned in the preceding code, we are not using an explicit font name,
but instead are using one of the six included styles. By doing this, we avoid
using hard-coded font names for our application. As a result, our application
will respond very well to user-defined font selections.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[85]

Handling updates
The preceding code will automatically render based on the user settings. A problem
occurs when you switch to settings and adjust the text size. If you switch back to
the application without closing it first, the text updates will not be reflected. This
is because in order to respond to actual changes, your controller must respond to
changes made using NSNotificatonCenter.

By adding the following code to the end of any viewDidLoad method, you can have
your controller respond to text updates:

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(prefer
redContentSizeChanged:)
 name:UIContentSizeCat
egoryDidChangeNotification
 object:nil];

The defined selector will look something like this:

- (void)preferredContentSizeChanged:(NSNotification *)notification {
 self.textView.font = [UIFont preferredFontForTextStyle:UIFontTextS
tyleHeadline];
}

First we register our class to receive notification updates based on the preferred
content size changing. So, if a user switches to the settings application and
changes the text size, our app will intercept this and call the defined method
preferredContentSizeChanged. Earlier, this method simply set the font;
however, now it will be pulling in the new user-defined text size.

Changing the text size can also affect your view layouts. Because of this, you want
to have your views to be responsive based on the text. Most of this can be done
using Auto Layout. While Auto Layout may work well in most cases, one area
where it does not work well is determining row height.

Exclusion paths
Exclusion paths allow you to wrap text around a particular view. Most text editors
provide support for this feature, and with TextKit, you can now do it in your
applications. With TextKit, you can wrap your text around both complex and
simple paths. For instance, you may want to wrap your text around a simple circle
or around a more complex shape such as a butterfly image. You may want to use
this feature when displaying text with images, or even views that provide relevant
details related to the text.

www.it-ebooks.info

http://www.it-ebooks.info/

Manipulating Text with TextKit

[86]

Let's assume you have a circular UIView that contains data related to a piece of
text. We want to center the circular UIImageView and wrap the text around it
on all sides. To test this, let's add a text view to our storyboard and wrap some
filler text around our food image. Switch to Main.Storyboard and select the
FoodDetailViewController class. Drag over a text view and resize it to be bigger
than the food image. Additionally, make sure that the text view is beneath the image
view. Here is what your storyboard should look like:

Make sure to create an outlet to FoodDetailViewController for our new text view.
Give it the name textview.

Switch to FoodDetailViewController.m and scroll to viewDidLoad. Add this line
of code at the very bottom:

UIBezierPath *circleExclusion = [UIBezierPath bezierPathWithOvalInRect
:CGRectMake(60, 40, 210, 210)];
 self.textView.textContainer.exclusionPaths = @[circleExclusion];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[87]

Here, we create a new bezier path and give it coordinates of a rectangle that are
equal to those of our image view rectangle. Now that we have defined the shape
for exclusion, it is time to tell the text view to pay attention to this exclusion path.
TextKit has included an additional property to the text container of all text-based
views called exclusionPaths. This parameter accepts an array, which means that
multiple exclusions can be handled at once. Here is the result:

www.it-ebooks.info

http://www.it-ebooks.info/

Manipulating Text with TextKit

[88]

Adding letterpress
Any text can appear to be letter pressed with the right amount of shadow and
highlight. TextKit provides an easy and effective way to accomplish this with a new
attribute parameter called NSTextEffectLetterpressStyle.

Here is an example with code:

NSDictionary *attributes = @{ NSForegroundColorAttributeName :
 [UIColor blueColor],
NSTextEffectAttributeName : NSTextEffectLetterpressStyle};
NSAttributedString* attrString = [[NSAttributedString alloc]
 initWithString:someString
 attributes:attributes];

Using attributed strings, we can apply this specific text effect in addition to other
attributes. That's all it takes to apply this subtle effect! Take a look at our app as
an example:

Text formatting
With TextKit, we can apply some fairly simple text editing properties to our text.
These include bold, italics, and underlined text. In order to do this, we are going
to use a brand new class available in iOS 7, UIFontDescriptor. This class is used
to describe a font and all of its attributes. Also, more importantly, you are able to
directly modify attributes and create a new font. All font attributes are represented
by either a dictionary or a key string constant.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[89]

Making text bold and italicizing
Let's take a look at a piece of code to see how we can make bold text using
UIFontDescriptor:

NSDictionary *currentAttributesDict = [self.textView.textStorage
attributesAtIndex:0

effectiveRange:nil];

UIFont *currentFont = [currentAttributesDict objectForKey:NSFontAttri
buteName];

UIFontDescriptor *fontDescriptor = [currentFont fontDescriptor];
UIFontDescriptor *changedFontDescriptor = [fontDescriptor fontDescript
orWithSymbolicTraits:UIFontDescriptorTraitBold];

UIFont *updatedFont = [UIFont fontWithDescriptor:changedFontDescriptor
size:0.0];

NSDictionary *dict = @{NSFontAttributeName: updatedFont};

 [self.textView.textStorage setAttributes:dict range:NSMakeRange(0,
self.textView.text.length)];

First we are grabbing the current attributes from a text view's text storage object.
Next we are creating a reference to the original font used for this piece of text. We
want to do this just in case we need that information (this is mostly dependent on
why the application is using UIFontDescriptor). We also create a reference to the
current font descriptor as well. Once we have all of this information, we create a new
font descriptor and set its symbolic trait to be bold. Lastly, we create an instance of
our new font that used our new font descriptor and assign it to our text view. To
change the text to italics, simply pass the proper symbolic trait.

A symbolic trait is actually just a property of a font that describes its style. It is an
unsigned 32-bit integer. Here is the list of all traits that has been provided by Apple:

typedef enum : uint32_t {
 /* Typeface info (lower 16 bits of
 UIFontDescriptorSymbolicTraits) */
 UIFontDescriptorTraitItalic = 1u << 0,
 UIFontDescriptorTraitBold = 1u << 1,
 UIFontDescriptorTraitExpanded = 1u << 5,
 UIFontDescriptorTraitCondensed = 1u << 6,
 UIFontDescriptorTraitMonoSpace = 1u << 10,
 UIFontDescriptorTraitVertical = 1u << 11,
 UIFontDescriptorTraitUIOptimized = 1u << 12,

www.it-ebooks.info

http://www.it-ebooks.info/

Manipulating Text with TextKit

[90]

 UIFontDescriptorTraitTightLeading = 1u << 15,
 UIFontDescriptorTraitLooseLeading = 1u << 16,

/* Font appearance info (upper 16 bits of
UIFontDescriptorSymbolicTraits */
 UIFontDescriptorClassMask = 0xF0000000,

 UIFontDescriptorClassUnknown = 0u << 28,
 UIFontDescriptorClassOldStyleSerifs = 1u << 28,
 UIFontDescriptorClassTransitionalSerifs = 2u << 28,
 UIFontDescriptorClassModernSerifs = 3u << 28,
 UIFontDescriptorClassClarendonSerifs = 4u << 28,
 UIFontDescriptorClassSlabSerifs = 5u << 28,
 UIFontDescriptorClassFreeformSerifs = 7u << 28,
 UIFontDescriptorClassSansSerif = 8u << 28,
 UIFontDescriptorClassOrnamentals = 9u << 28,
 UIFontDescriptorClassScripts = 10u << 28,
 UIFontDescriptorClassSymbolic = 12u << 28
} UIFontDescriptorSymbolicTraits;

Underlining text
Using TextKit to underline text is accomplished using a method similar to any one
of the methods shown in the preceding code, with some modifications. Here is a
code sample:

NSDictionary *currentAttributesDict = [self.textView.textStorage
attributesAtIndex:0

effectiveRange:nil];
NSDictionary *dict;

if ([currentAttributesDict
 objectForKey:NSUnderlineStyleAttributeName] ==
nil || [[currentAttributesDict objectForKey:NSUnderlineStyleAttributeN
ame] intValue] == 0) {

 dict = @{NSUnderlineStyleAttributeName:
 [NSNumber numberWithInt:1]};

}
else{
 dict = @{NSUnderlineStyleAttributeName:
 [NSNumber numberWithInt:0]};
}

[_textView.textStorage setAttributes:dict range:NSMakeRange(0,
 self.textView.text.length)];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[91]

Here we must check if the NSUnderlineStyleAttributeName attribute already
exists in our current text attributes. From here, we simply turn the underline
attribute On or Off and apply it to our text.

Summary
TextKit offers many great ways to manipulate text in iOS. Supporting these features
is key to providing a better experience for users. I recommend that you take the time
to navigate through Apple's documentation. We have covered many of the standard
uses in this chapter. TextKit is a very powerful new API that will continue to provide
innovative ways to be used.

In the final chapter, we are going to cover UIKit Dynamics. We will learn how
adding physics to our UI elements can create an exciting experience!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics with
UIKit Dynamics

This chapter will cover the basics of how UIKit Dynamics manages your application's
behaviors. We will cover specific behaviors, such as gravity, bounce, and other
physics properties. Additionally, we will learn how to create physical boundaries so
that our views have something to collide with. Without these boundaries, our views
would continue moving forever without stopping. We will cover how our views will
interact with one another, including collision detection/notifications and attaching
views to one another. Lastly, we will talk about motion effects and about creating a
parallax effect similar to iOS 7's home screen that moves when tilting your device.
We have a lot to cover, so let's get started!

Motion and physics in UIKit
With the introduction of iOS 7, Apple completely removed the skeuomorphic
design that has been used since the introduction of the iPhone and iOS. In its place
is a new and refreshing flat design that features muted gradients and minimal
interface elements. Apple has strongly encouraged developers to move away from a
skeuomorphic and real-world-based design in favor of these flat designs.

Although we are guided away from a real-world look, Apple also strongly
encourages that your user interface have a real-world feel. Some may think this is
a contradiction; however, the goal is to give users a deeper connection to the user
interface. UI elements that respond to touch, gestures, and changes in orientation are
examples of how to apply this new design paradigm. In order to help assist in this
new design approach, Apple has introduced two very nifty APIs, UIKit Dynamics
and Motion Effects.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics with UIKit Dynamics

[94]

UIKit Dynamics
To put it simply, iOS 7 has a fully featured physics engine built into UIKit. You can
manipulate specific properties to provide a more real-world feel to your interface.
This includes gravity, springs, elasticity, bounce, and force to name a few. Each
interface item will contain its own properties and the dynamic engine will abide by
these properties.

Motion effects
One of the coolest features of iOS 7 on our devices is the parallax effect found on
the home screen. Tilting the device in any direction will pan the background image
to emphasize depth. Using motion effects, we can monitor the data supplied by the
device's accelerometer to adjust our interface based on movement and orientation.

By combining these two features, you can create great looking interfaces with a
realistic feel that brings it to life. To demonstrate UIKit Dynamics, we will be adding
some code to our FoodDetailViewController.m file to create some nice effects
and animations.

Adding gravity
Open FoodDetailViewController.m and add the following instance variables to
the view controller:

UIDynamicAnimator* animator;
UIGravityBehavior* gravity;

Scroll to viewDidLoad and add the following code to the bottom of the method:

animator = [[UIDynamicAnimator alloc] initWithReferenceView:self.view];
gravity = [[UIGravityBehavior alloc] initWithItems:@[self.
foodImageView]];
 [animator addBehavior:gravity];

Run the application, open the My Foods view, select a food item from the table view,
and watch what happens. The food image should start to accelerate towards the
bottom of the screen until it eventually falls off the screen, as shown in the following
set of screenshots:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[95]

Let's go over the code, specifically the two new classes that were just introduced,
UIDynamicAnimator and UIGravityBehavior.

UIDynamicAnimator
This is the core component of UIKit Dynamics. It is safe to say that the dynamic
animator is the physics engine itself wrapped in a convenient and easy-to-use
class. The animator will do nothing on its own, but instead keep track of behaviors
assigned to it. Each behavior will interact inside of this physics engine.

UIGravityBehavior
Behaviors are the core compositions of UIKit Dynamics animation. These behaviors
all define individual responses to the physics environment. This particular behavior
mimics the effects of gravity by applying force. Each behavior is associated with a
view (or views) when created. Because you explicitly define this property, you can
control which views will perform the behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics with UIKit Dynamics

[96]

Behavior properties
Almost all behaviors have multiple properties that can be adjusted to the desired
effect. A good example is the gravity behavior. We can adjust its angle and
magnitude. Add the following code before adding the behavior to the animator:

gravity.magnitude = 0.1f;

Run the application and test it to see what happens. The picture view will start to
fall; however, this time it will be at a much slower rate. Replace the preceding code
line with the following line:

gravity.magnitude = 10.0f;

Run the application, and this time you will notice that the image falls much faster.
Feel free to play with these properties and get a feel for each value.

Creating boundaries
When dealing with gravity, UIKit Dynamics does not conform to the boundaries
of the screen. Although it is not visible, the food image continues to fall after it has
passed the edge of the screen. It will continue to fall unless we set boundaries that
will contain the image view. At the top of the file, create another instance variable:

UICollisionBehavior *collision;

Now in our viewDidLoad method, add the following code below our gravity code:

collision = [[UICollisionBehavior alloc] initWithItems:@[self.
foodImageView]];
collision.translatesReferenceBoundsIntoBoundary = YES;

[animator addBehavior:collision];

Here we are creating an instance of a new class (which is a behavior),
UICollisionBehavior. Just like our gravity behavior, we associate this
behavior with our food image view.

Rather than explicitly defining the coordinates for the boundary, we use the
convenient translatesReferenceBoundsIntoBoundary property on our collision
behavior. By setting this property to yes, the boundary will be defined by the bounds
of the reference view that we set when allocating our UIDynamics animator. Because
the reference view is self.view, the boundary is now the visible space of our view.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[97]

Run the application and watch how the image will fall, but stop once it reaches the
bottom of the screen, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics with UIKit Dynamics

[98]

Collisions
With our image view responding to gravity and our screen bounds we can start
detecting collisions. You may have noticed that when the image view is falling, it
falls right through our two labels below it.

This is because UIKit Dynamics will only respond to UIView elements that have
been assigned behaviors. Each behavior can be assigned to multiple objects, and each
object can have multiple behaviors. Because our labels have no behaviors associated
with them, the UIKit Dynamics physics engine simply ignores it.

Let's make the food image view collide with the date label. To do this, we simply
need to add the label to the collision behavior allocation call. Here is what the new
code looks like:

collision = [[UICollisionBehavior alloc] initWithItems:@[self.
foodImageView, self.foodDateLabel]];

As you can see, all we have done is add self.foodDateLabel to the initWithItems
array property. As mentioned before, any single behavior can be associated with
multiple items. Run your code and see what happens. When the image falls, it hits
the date label but continues to fall, pushing the date label with it.

Because we didn't associate the gravity behavior with the label, it does not fall
immediately. Although it does not respond to gravity, the label will still be moved
because it is a physics object after all. This approach is not ideal, so let's use another
awesome feature of UIKit Dynamics, invisible boundaries.

Creating invisible boundaries
We are going to take a slightly different approach to this problem. Our label is only
a point of reference for where we want to add a boundary that will stop our food
image view. Because of this, the label does not need to be associated with any UIKit
Dynamic behaviors. Remove self.foodDateLabel from the following code:

collision = [[UICollisionBehavior alloc] initWithItems:@[self.
foodImageView, self.foodDateLabel]];

Instead, add the following code to the bottom of viewDidLoad but before we add our
collision behavior to the animator:

// Add a boundary to the top edge
CGPoint topEdge = CGPointMake(self.foodDateLabel.frame.origin.x + self.
foodDateLabel.frame.size.width, self.foodDateLabel.frame.origin.y);
[collision addBoundaryWithIdentifier:@"barrier" fromPoint:self.
foodDateLabel.frame.origin toPoint:topEdge];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[99]

Here we add a boundary to the collision behavior and pass some parameters. First
we define an identifier, which we will use later, and then we pass the food date
label's origin as the fromPoint property. The toPoint property is set to the CGPoint
we created using the food date label's frame.

Go ahead and run the application, and you will see that the food image will now
stop at the invisible boundary we defined. The label is still visible to the user, but the
dynamic animator ignores it. Instead the animator sees the barrier we defined and
responds accordingly, even though the barrier is invisible to the user.

Here is a side-by-side comparison of the before and after:

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics with UIKit Dynamics

[100]

Dynamic items
When using UIKit Dynamics, it is important to understand what UIKit Dynamics
items are. Rather than referencing dynamics as views, they are referenced as items,
which adhere to the UIDynamicItem protocol. This protocol defines the center,
transform, and bounds of any object that adheres to this protocol. UIView is the most
common class that adheres to the UIDynamicItem protocol. Another example of a class
that conforms to this protocol is the UICollectionViewLayoutAttributes class.

Manipulating item properties
As mentioned before, UIDynamics items have properties that can be manipulated
and applied to multiple views/items in your interface. Let's see what it looks like to
adjust the elasticity property and apply it to our food image view.

Scroll to viewDidLoad and add the following code to its end:

UIDynamicItemBehavior* itemBehaviour = [[UIDynamicItemBehavior alloc]
initWithItems:@[self.foodImageView]];
itemBehaviour.elasticity = 0.6;
[animator addBehavior:itemBehaviour];

Here, we create a UIDynamicItemBehavior instance and initialize it with our self.
foodImageView. Next, we set the elasticity property and then add this new behavior to
our animator. Go ahead and run your code, and watch how the food image view will
now bounce a few extra times. Play with the elasticity value to see different results.

Elasticity is one of the many behaviors that can be altered. The following is a list of
all the properties available with UIDynamicItemBehavior:

• Elasticity: This property will define how elastic a collision is. The best way
to remember this is how bouncy the object will be. The higher the value, the
more an item will bounce.

• Friction: If an object slides across another surface, the friction property is
used to determine how much resistance the object receives.

• Density: This sets the overall simulated mass of the item. As with real
physics, the higher the mass, the more the force required to move an item.
One example of how to keep an item from moving when collided with is to
give it a very high-density compared to the other items colliding with it.

• Resistance: This is the resistance applied to any movement, not just sliding
across another surface as in the case of friction.

• angularResistance: When an item rotates, this property will determine the
resistance to the rotation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[101]

• allowsRotation: An optional property to keep an item from rotating,
regardless of what collisions and forces affect it.

Collision notifications
So far, we have set up gravity and added some boundaries, including an
invisible boundary for our date label. It is very common to respond to collisions
by performing some sort of task. For instance, in a game, once an enemy collides
with a bullet, we would destroy the enemy and increase the score.

We can track collisions by using collision notifications. In order to do so,
we must have our class adopt UICollisionBehaviorDelegate. Switch to
FoodDetailViewController.h and add the following protocol:

@interface FoodDetailViewController : UIViewController
 <UICollisionBehaviorDelegate>

Now switch back to FoodDetailViewController.m and locate the code we wrote
to create the collision behavior. Add the following line of code:

collision.collisionDelegate = self;

By setting the collision delegate, we can now use the following delegate method:

- (void)collisionBehavior:(UICollisionBehavior *)behavior
 beganContactForItem:(id<UIDynamicItem>)item
 withBoundaryIdentifier:(id<NSCopying>)identifier
 atPoint:(CGPoint)p {

 NSLog(@"Boundary contact occurred - %@", identifier);

}

This delegate method gets called every time a collision occurs, and we have set it up
to output the collision identifier we defined earlier. Run the code, and your console
output should look as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics with UIKit Dynamics

[102]

Using a combination of identifiers and other properties passed to this delegate
method, we can detect which collisions are happening and respond accordingly.
For example, let's animate the alpha of the food image view when a collision occurs.
Replace your delegate method code with the following code:

- (void)collisionBehavior:(UICollisionBehavior *)behavior
 beganContactForItem:(id<UIDynamicItem>)item
 withBoundaryIdentifier:(id<NSCopying>)identifier
 atPoint:(CGPoint)p {

 if ([(NSString *)identifier isEqualToString:@"barrier"]) {
 // The barrier was collided with
 [UIView animateWithDuration:0.3f animations:^{

 self.foodImageView.alpha = 0.0f;

 }];
 }

}

Here we cast the identifier as an NSString and then check if it is equal to the collision
identifier we want. If so, we perform a simple UIView animation that sets the alpha
value of the image view to zero, thus making it invisible. Using this delegate method
properly will allow you to accomplish a large number of tasks based on collisions.

Attaching items to other items
In addition to gravity and other physics properties, UIKit Dynamics also allows your
physics objects to interact with one another as they would in the real physical world.
For example, we can use the UIAttachmentBehavior method to link items together
as if they are attached with an invisible brace. Let's have our application create a new
square view and then attach it to our food image view, but only when a collision
occurs. Because our food image view will bounce a couple of times, the collision will
be detected each time. To keep from creating multiple squares, let's create another
instance variable to keep track of the first bounce.

Add the following line of code in the implementation block in
FoodDetailViewController.m:

BOOL firstBounce;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[103]

Now replace our delegate method code with the following code:

- (void)collisionBehavior:(UICollisionBehavior *)behavior
 beganContactForItem:(id<UIDynamicItem>)item
 withBoundaryIdentifier:(id<NSCopying>)identifier
 atPoint:(CGPoint)p {

 if (!firstBounce) {

 firstBounce = YES;

 UIView* square = [[UIView alloc]
 initWithFrame:CGRectMake(self.view.bounds.size.width / 2 - 50,
 400, 100, 100)];
 square.backgroundColor = [UIColor greenColor];
 [self.view addSubview:square];

 [collision addItem:square];
 [gravity addItem:square];

 UIAttachmentBehavior* attach = [[UIAttachmentBehavior
 alloc] initWithItem:self.foodImageView attachedToItem:square];
 [animator addBehavior:attach];

 }

}

Here we detect if the firstBounce Boolean value is not YES, and then create a new
UIView, add the gravity and collision items to it, use the UIAttachmentBehavior
method, and attach this new view to our food image view. Run the application, and
you will see that on the first bounce, a green square is created. Because we attach
this new view to the food image view, you will see that as it bounces the second and
third times, the square view moves with it as if attached.

Snapping items
Our last behavior we will cover in this book is the UISnapBehavior class. UIKit
Dynamics provides a built-in behavior that will snap an item from its starting point
to a specified end point with built-in damping. Let's have our food image view snap
from the top of the screen into its final position.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics with UIKit Dynamics

[104]

Scroll to viewDidLoad and remove all of our gravity and collision code (keep our
animator). Add the following code to viewDidLoad:

UISnapBehavior *snapBehaviour = [[UISnapBehavior alloc]
 initWithItem:self.foodImageView snapToPoint:CGPointMake(160,
 202)];
snapBehaviour.damping = 0.65f;
[animator addBehavior:snapBehaviour];

Here we allocate new UISnapBehavior and init options with our food image view.
We also pass the point we want the item to snap to, in this case, the final position of
the image view. We set the damping value to be a bit higher to give a milder spring
effect (the lower the number, the more springy the item will be).

The last thing to do is to change the starting point of the food image view. Switch
to Main.storyboard and drag the food image view to the top of the screen as high
as you wish (even offscreen). It is important to note that the greater the distance
of the starting point to the end point, the more springy the snap, so take this into
consideration when setting the damping property.

Run our application and see the results. The food image view should snap into place
with a nice spring effect. As you can see, using UIKit Dynamics is not only simple,
but can be very powerful.

Using motion in our app
In addition to UIKit Dynamics, we can also use UIMotionEffects to adjust the
user interface when a device is tilted horizontally. UIMotionEffects is an abstract
class that works best when subclassed. Apple has already made a subclass of
UIMotionEffects that will cover almost all use cases of motion in your apps.
This subclass is the UIInterpolatingMotionEffect class.

The UIInterpolatingMotionEffect instance is initialized with a key path and
a type. The type is what defines vertical and horizontal motions. The class will
automatically set the key value path based on the device's movements.

In our viewDidLoad method, add the following code at the bottom:

UIInterpolatingMotionEffect *horizontalMotionEffect =
 [[UIInterpolatingMotionEffect alloc] initWithKeyPath:@"center.x"
 type:UIInterpolatingMotionEffectTypeTiltAlongHorizontalAxis];

horizontalMotionEffect.minimumRelativeValue = @(-30);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[105]

horizontalMotionEffect.maximumRelativeValue = @(30);

[self.foodImageView addMotionEffect:horizontalMotionEffect];
[self.foodNameLabel addMotionEffect:horizontalMotionEffect];
[self.foodDateLabel addMotionEffect:horizontalMotionEffect];

Here we create our UIInterpolatingMotionEffect instance and assign it to the
horizontal axis motion tracking. Next we set a minimum and maximum relative
value. This determines how much the items will move left and right to simulate the
parallax effect we want. Lastly, we add the motion effect to all views that we want.
Our keyPath value can be assigned to a number of different values for different
effects. Run the application on a device and select a food item's detailed view to see
the results!

Additionally, we can go further by grouping multiple motion effects together, such as
both vertical and horizontal motions. Replace the preceding code with the following:

UIInterpolatingMotionEffect *horizontalMotionEffect =
 [[UIInterpolatingMotionEffect alloc] initWithKeyPath:@"center.x"
 type:UIInterpolatingMotionEffectTypeTiltAlongHorizontalAxis];

 horizontalMotionEffect.minimumRelativeValue = @(-30);
 horizontalMotionEffect.maximumRelativeValue = @(30);

 UIInterpolatingMotionEffect *verticalMotionEffect =
 [[UIInterpolatingMotionEffect alloc] initWithKeyPath:@"center.y"
 type:UIInterpolatingMotionEffectTypeTiltAlongVerticalAxis];

 verticalMotionEffect.minimumRelativeValue = @(-30);
 verticalMotionEffect.maximumRelativeValue = @(30);

 UIMotionEffectGroup *group = [UIMotionEffectGroup new];

 group.motionEffects = @[horizontalMotionEffect,
 verticalMotionEffect];

 [self.foodImageView addMotionEffect:group];
 [self.foodNameLabel addMotionEffect:group];
 [self.foodDateLabel addMotionEffect:group];

Here we simply duplicate the horizontal motion effect, but we set keyPath to
center.y and type to vertical. Run the application and check out the results.

As great and easy as these effects are, be careful not to go overboard. Each of the
items discussed in this chapter is designed to add subtle effects that work together
for an overall better user experience.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics with UIKit Dynamics

[106]

Summary
We have done it! From start to finish, we have built a fully functional application
using many of the great new features of iOS 7 and Xcode 5. In this chapter, we
topped everything off by adding some cool physical properties to our views.
Stacking these behaviors and motion effects together can create some really unique
interface effects. Now that we are at the conclusion of this book, you should be very
comfortable stepping into iOS 7 development. Taking advantage of all the new
features is the first step to building better applications with a better experience!

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
.plist file

creating versus loading 63, 64

A
accounts

automatic configuration 10
addButtonPressed method

implementing 71
Add New button 52
AddNewViewController

using 46
AddNewViewController object 52
Asset Catalog 12, 13
Auto Layout

using 29, 30
using, reasons 25, 26

Auto Layout issues
resolving 34

automatic configuration
with accounts 10, 11
with capabilities 11

B
backgroundColor property 51
boundaries

creating 96
branch 12
button actions

adding 52
setting up 28, 29

buttons
adding, to navigation bar 53

C
cancelButtonPressed method 53
capabilities

automatic configuration 11
cellForRowAtIndexPath method 71
collision notifications

used, for tracking collisions 101, 102
collisions

detecting 98
constraints

applying 30-34
custom cell

about 67
building 68
connecting 69
properties, creating 69

D
data

displaying 74, 75
loading 73, 74

data, saving
date string, getting 60, 61
image, saving 63
new entry, adding 65
.plist file, loading 63, 64
.plist file, saving 63, 64
validation, adding 61

date string
getting 61

debug gauges, Xcode 5 9
delegates

adding 56
detail view

blurred images, creating 76-78

www.it-ebooks.info

http://www.it-ebooks.info/

[108]

coding 76
completing 79
displaying 75, 76
pushing 80

didFinishPickingMediaWithInfo
method 59

documentation, Xcode 5
accessing 7, 8

dynamic type
about 83
updates, handling 85
working with 84

E
exclusion paths 85-87

F
FoodDetailViewController class

using 46
FoodDetailViewController object 75
food items

adding 70
table view, preparing 71-73

Foundation
importance 17

G
golden ratio grid system 42
gravity

adding 94, 95

I
IDE 5
image

getting, from UIImagePickerController 59
saving 63

imageViewTapped method 57
Integrated Development Environment. See

IDE
invisible boundaries

boundaries 98, 99
iOS 7 application

app icons 42

designing 39
navigation bar 40, 41
status bar 40, 41
UIKit element 41, 42

L
letterpress

adding 88

M
menu view

completing 35
MenuViewController class 27
modules

about 17, 18
PCH files 18, 19
smart importing 19, 20

motion effects
about 94
using, in app 104, 105

MyFoodsViewController class
using 47

N
navigation bar

about 40, 41
applicationDidFinishLaunchingWithOp-

tions method 50
backgroundColor property 51
buttons, adding to 53
navigationBarTintColor method 50
navigationTintColor method 50
viewController method 51
viewDidLoad method 51

navigation bar style options
altering 50, 51

navigationBarTintColor method 50
navigation controller

adding 36
NSArray

using 21
NSData

about 22
using 23

NSDateFormatter property 75

www.it-ebooks.info

http://www.it-ebooks.info/

[109]

NSProgress class
about 20
KVO, using 20

NSTimer
limitation 22
tolerance property 22
using 22

NSURLUtilities
about 23
using 23

numberOfRowsInSection method 71
numberOfSectionInTableview method 71

O
Open Quickly feature 6

P
PCH files 18, 19
plistDataArray method 64
precompiled header files. See PCH files
project files

creating 45

Q
quick build device selection 14

S
saveButtonPressed method

implementing 61
source control 12
status bar 40, 41
storyboard

building 27
setting up 45

storyboard previews
about 14
using 14, 15

storyboard view
adjusting 54-56

superellipse 42

T
table view

preparing 71-73
tap gesture

using 56-58
text

underlining, TextKit used 90, 91
text field delegate

adding 60
text formatting

about 88
bold text, creating 89
text, changing to italics 89, 90

TextKit
about 81, 82
classes 82, 83
used, for adding letterpress 88
used, for underlining text 90, 91

TextKit classes
NSLayoutManager 82
NSTextContainer 82
NSTextStorage 82

text updates
handling 85

U
UIAttachmentBehavior method

used, for attaching items to one another 102
UIBarButtonItem property

creating 70
UIDynamicAnimator 95
UIDynamicItemBehavior properties

allowsRotation 101
angularResistance 100
density 100
elasticity 100
friction 100
resistance 100

UIGravityBehavior 95
UIImagePickerController

image, getting from 59
UIImageView class 27

www.it-ebooks.info

http://www.it-ebooks.info/

[110]

UIImageView object 68
UIKit Dynamics

about 94
boundaries, creating 96
collisions 98
invisible boundaries, creating 98, 99
motion effects 94
motion effects, using in app 104, 105
physics, adding with 93, 94

UIKit Dynamics collisions
tracking, collision notifications

used 101, 102
UIKit Dynamics components

UIDynamicAnimator 95
UIGravityBehavior 95

UIKit Dynamics items
about 100
attaching, to one another 102, 103
properties, manipulating 100, 101
snapping 103

UIKit elements 41, 42
UISnapBehavior class

using 103

V
validation

adding 61
viewController method 51
viewDidLoad method 51

X
Xcode 5

about 5
automatic configuration with

accounts 10, 11
automatic configuration with

capabilities 11
new user experience 5-7
quick build device selection 14
top-level documentation 7

Xcode 5 debugger
about 8
features 8, 9

Xcode project
AddNewViewController 46
creating 26, 27
files, creating 45
FoodDetailViewController class 46
MyFoodsViewController class 47
organizing 43
storyboard, setting up 45

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Application Development in iOS 7

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Application Development with
Parse using iOS SDK
ISBN: 978-1-78355-033-3 Paperback: 112 pages

Develop the backend of your applications instantly
using Parse iOS SDK

1. Build your applications using Parse iOS
which serves as a complete cloud-based
backend service.

2. Understand and write your code on cloud
to minimize the load on the client side.

3. Learn how to create your own applications using
Parse SDK, with the help of the step-by-step,
practical tutorials.

iOS 7 Game Development
ISBN: 978-1-78355-157-6 Paperback: 120 pages

Develop powerful, engaging games with ready-to-use
utilities from Sprite Kit

1. Pen your own endless runner game using
Apple's new Sprite Kit framework.

2. Enhance your user experience with easy-to-use
animations and particle effects using Xcode 5.

3. Utilize particle systems and create custom
particle effects.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

iOS and OS X Network
Programming Cookbook
ISBN: 978-1-84969-808-5 Paperback: 300 pages

Over 50 recipes to develop network applications
in both the iOS and OS X environment

1. Use several Apple and third-party
APIs to develop both server and client
networked applications.

2. Shows you how to integrate all of the
third-party libraries and APIs with
your applications.

3. Includes sample projects for both iOS
and OS X environments.

RestKit for iOS
ISBN: 978-1-78216-370-1 Paperback: 118 pages

Link your apps and web services using RestKit

1. A step-by-step guide that goes beyond theory
and into practice.

2. Learn how to overcome hurdles that might
pop up along the way when using RestKit.

3. Learn how to integrate new frameworks into
an existing app.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Xcode 5 – A Developer's Ultimate Tool
	The new user experience
	Top-level documentation
	Debugger and debug gauges
	Automatic configuration with accounts and capabilities
	Source control
	Asset catalogs
	Quick build device selection
	Storyboard previews
	Summary

	Chapter 2: Foundation Framework – Growing Up
	Why Foundation matters
	Modules
	Precompiled headers – a partial solution
	Modules – smart importing

	NSProgress
	NSArray
	NSTimer
	NSData
	NSURLUtilities
	Summary

	Chapter 3: Auto Layout 2.0
	Why you should use Auto Layout
	Creating our project
	Starting our storyboard
	Setting up button actions
	Using Auto Layout
	Applying constraints
	Resolving Auto Layout issues
	Finishing our menu view
	Preparing for navigation
	Summary

	Chapter 4: Building Our Application for iOS 7
	Designing for iOS 7
	Navigation bar and status bar
	The new UIKit
	Updated app icons

	Putting together the pieces
	Project organization
	Creating the files
	Setting up the storyboard
	AddNewViewController
	FoodDetailViewController
	MyFoodsViewController

	Summary

	Chapter 5: Creating and Saving User Data
	Picking up where we left off
	Navigation bar style
	Adding our button action
	Adding buttons to our navigation bar
	Adjusting our storyboard view
	Adding our delegates
	Using a tap gesture
	Getting the image from UIImagePickerController
	Adding the text field delegate
	Saving the data
	Getting the date string
	Adding validation
	Saving the image
	Creating versus loading the .plist file
	Adding a new entry

	Summary

	Chapter 6: Displaying User Data
	Custom cell
	Building the cell
	Connecting the cell
	Creating properties

	Adding food
	Preparing the table view

	Loading data
	Displaying data
	Showing the detail view
	Coding the detail view
	Creating blurred images
	Finishing our detail view
	Pushing the detail view

	Summary

	Chapter 7: Manipulating Text with TextKit
	What is TextKit?
	Dynamic type
	Handling updates

	Exclusion paths
	Adding letterpress
	Text formatting
	Making text bold and italisizing

	Underlining text
	Summary

	Chapter 8: Adding Physics with UIKit Dynamics
	Motion and physics in UIKit
	UIKit Dynamics
	Motion effects

	Adding gravity
	UIDynamicAnimator
	UIGravityBehavior
	Behavior properties
	Creating boundaries
	Collisions
	Creating invisible boundaries
	Dynamic items
	Manipulating item properties
	Collision notifications
	Attaching items to other items
	Snapping items
	Using motion in our app
	Summary

	Index

