
www.it-ebooks.info

http://www.it-ebooks.info/

iOS and OS X Network
Programming
Cookbook

Over 50 recipes to develop network applications in both
the iOS and OS X environment

Jon Hoffman

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

iOS and OS X Network Programming
Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1150114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-808-5

www.packtpub.com

Cover Image by Jarosław Blaminsky (milak6@wp.pl)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Jon Hoffman

Reviewers
Chady Kassouf

Shahin Katebi

Josh Rufer

Acquisition Editor
Vinay Argekar

Lead Technical Editor
Ritika Dewani

Technical Editors
Pratik More

Shweta Pant

Ritika Singh

Nachiket Vartak

Copy Editors
Dipti Kapadia

Kirti Pai

Shambhavi Pai

Project Coordinator
Joel Goveya

Proofreader
Joanna McMahon

Indexer
Monica Ajmera Mehta

Graphics
Yuvraj Mannari

Abhinash Sahu

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Jon Hoffman has close to 20 years of experience in the field of Information Technology.
Over these 20 years, Jon has worked in the areas of system administration, network
administration, network security, development and architecture. Currently, he works as
a software engineer at Syn-Tech Systems. He has started a network development blog at
http://network-development.blogspot.com that will enhance and expand on the
material covered in this book.

Over the past five years, he has developed numerous applications for the iOS platform. These
include several apps that he has published in the App Store, apps that he has written for third
parties, and numerous enterprise applications.

What really drives Jon are the challenges in Information Technology; there is nothing more
exhilarating for him than overcoming a challenge. Some of Jon's other interests are watching
baseball (Go Sox!) and basketball (Go Celtics!). Jon also really enjoys Taekwondo; he and his
eldest daughter Kailey are on pace to get their black belts together in the spring of 2014.

I would like to thank my wonderful wife Kim, without whose support,
encouragement, patience, and understanding, this book would have never
been written. I would also like to thank my two wonderful daughters Kailey
and Kara, who have both been my inspiration and driving force since they
were born. To my dog, Buddy, maybe one day I will be the person who he
thinks I am.

I would like to give special thanks to all of the wonderful people at Packt
Publishing who have helped me along the way.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Chady Kassouf is an independent iOS and web development expert. He started
programming 21 years ago and hasn't stopped since.

Five years ago, he decided to leave his job as a team leader in one of the leading digital
agencies, and started his own business.

His interests outside of computers include arts, music, and fitness. He can be found online at
http://chady.net/.

Shahin Katebi is a software architect and developer with 10 years of experience in
creating apps for various platforms (Mac, iOS, Windows, and the Web). He works as a mobile
solutions consultant with different companies, and also works with some startup teams
worldwide. He teaches iOS/Mac OS development, and as a mentor at Startup Weekend
events, helps startup teams make their own business. He is the founder and team leader at
Seeb Co. (http://seeb.co/), a creative mobile app development organization creating
apps for customers around the world.

www.it-ebooks.info

http://www.it-ebooks.info/

Josh Rufer attended university and majored in graphic arts. As passionate as he was for
his traditional artwork, he found far more enjoyment in the art of human interaction. His first
position was as the junior interface designer for a small XP programming group. Without enough
work to keep him busy, he quickly outpaced his job title and was promoted to senior user
experience engineer. On enhancing his programming skills in Java and C++, he was promoted to
the position of junior programmer and again promoted as a senior software engineer.

Always looking for more challenges, he formed a one-man design and software engineering
firm called Guy Writes Code. This allowed him to focus his free time on the things that most
interested him: designing and development for the iPhone and iPad. He has created several
public applications for companies such as Metabahn and Camdilleo Media. He is currently
working on iPad-based training and simulation applications, including augmented reality
training on the iPad.

When possible, Josh has helped with fact checking and technical editing for books such as
Deploying with JRuby by Joe Kutner.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: BSD Socket Library 7

Introduction 7
Finding the byte order of your device 10
Retrieving network address information 12
Performing a network address resolution 16
Creating an echo server 22
Creating an echo client 31
Creating a data server 38
Creating a data client 42

Chapter 2: Apple Low-level Networking 45
Introduction 45
Retrieving network address information 46
Performing a network address resolution 48
Creating an echo server 55
Creating an echo client 63
Creating a server to receive data 68
Creating a client to send data 76
Checking the network status 78

Chapter 3: Using Libnet 83
Introduction 83
Installing libnet 89
Adding libnet to your project 91
Resolving names to addresses with libnet 93
Retrieving local addresses with libnet 97
Constructing a Ping packet with libnet 100

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Constructing a UDP packet with libnet 106
Constructing a TCP packet with libnet 113

Chapter 4: Using Libpcap 123
Introduction 123
Adding libpcap to your project 125
Retrieving network device information 128
Capturing packets 130
Decoding Ethernet headers 136
Decoding IP headers 139
Decoding ARP headers 142
Decoding TCP headers 146
Decoding UDP headers 149
Decoding ICMP headers 151
Filtering packets 154
Saving a capture file 157
Creating a simple port scanner using libnet and libpcap together 159

Chapter 5: Apple High-level Networking 167
Introduction 167
Performing HTTP(S) synchronous GET requests 168
Performing HTTP(S) synchronous POST requests 172
Performing HTTP(S) asynchronous GET requests 176
Performing HTTP(S) asynchronous POST requests 182
Parsing an RSS feed with NSXMLParser, NSURL, and NSData 185
Creating a peer-to-peer bluetooth network 193

Chapter 6: Bonjour 199
Introduction 199
Publishing a Bonjour service 200
Discovering a Bonjour service 204
Resolving a Bonjour service 209
Creating an echo server that uses Bonjour to advertise the service 212
Creating an echo client that uses Bonjour to discover the service 218

Chapter 7: AFNetworking 2.0 Library 227
Introduction 227
Checking the network connection type and changes 228
Creating a web client using AFHTTPSessionManager 230
Creating a custom response serializer 235
Using the UIImageView+AFNetworking category 239
Downloading files with a progress bar 243

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Chapter 8: MKNetworkKit 247
Introduction 247
Creating and using the MKNetworkKit engine 249
Uploading a file using MKNetworkKit 253
Downloading a file using MKNetworkKit 258
Using the UIImageView+MKNetworkKitAdditions.h category and
caching the images 261
Adding a progress bar to upload or download 266

Index 271

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Darwin forms the core set of components for OS X and iOS, and is compatible with Single
UNIX Specification Version 3 and POSIX UNIX. Therefore, OS X and iOS are considered to be
Unix operating systems. This means that OS X and iOS use the same basic networking stack
that all Unix operating systems use.

Apple has added several frameworks on top of the basic Unix networking stack. This
includes frameworks such as CFNetworking and Bonjour, as well as classes such as
NSURLConnection. There are also several outstanding third-party frameworks written
specifically for OS X and/or iOS.

There are numerous books written to teach network development in a Unix environment.
However, it is hard to find books dedicated to teaching network development, specifically
in an Apple environment that discusses Apple-specific libraries and frameworks. Using
and understanding these frameworks can greatly reduce the time needed to add network
components to our applications.

This book will begin by discussing the lower-level frameworks, such as BSD Sockets
and CFNetworking. Higher-level frameworks and third-party libraries are based on these
frameworks, so understanding how they work is essential for understanding how the higher-
level libraries work.

We will then look at two libraries, one to construct and inject network packets, and another to
capture incoming packets. These libraries are specific to OS X development. We will then look
at Apple's higher-level frameworks followed by two outstanding third-party frameworks.

What this book covers
Chapter 1, BSD Socket Library, shows the reader how they can use the BSD Socket Library
in their iOS and OS X applications. While this chapter will show them how to obtain network
address information and also how to check the network status, the primary focus will be on
creating client/server applications for both iOS and OS X devices. We will be creating server
applications for iOS devices. This is a very important chapter for the reader because every
other API is directly or indirectly based on the BSD Socket Library.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

2

Chapter 2, Apple Low-level Networking, will show the reader how to obtain network address
information but the primary focus will be on creating client/server applications for iOS and
OS X devices. CFNetworking is Apple's wrapper around the BSD Socket Library. These APIs
are designed for easier usage, to integrate better with run loops, and they contain a number
of classes to help implement various protocols without having to know the details of those
protocols.

Chapter 3, Using Libnet, shows the reader how to use libnet to retrieve network address
information, perform network address resolution, and also to manually construct network
packets. The chapter is written specifically for OS X. Libnet is a packet construction library that
allows the developer to manually create and send out individual packets.

Chapter 4, Using Libpcap, shows how to use libpcap with an OS X application and will end by
building a utility to capture packets. This chapter is written specifically for OS X. Libpcap is a
packet-capture library that has been complied for virtually every Unix/Linux distribution, and
this includes the OS X environment, but unfortunately it does not include iOS.

Chapter 5, Apple High-level Networking, covers some of Apple's higher-level APIs that can be
used for specific purposes. This includes Synchronous and Asynchronous HTTP connections
for retrieving XML feeds and also the Bluetooth connectivity between two devices.

Chapter 6, Bonjour, shows the reader how they can implement Bonjour network services in
their applications. By the end of the chapter, the reader will be able to implement Bonjour
services in their application.

Chapter 7, AFNetworking 2.0 Library, shows the reader how to retrieve and send text as well
as data to and from remote servers by using the AFNetworking library. AFNetworking is an
amazing network library for iOS and OS X. It is built on top of Apple's foundation framework
and is incredibly easy to use.

Chapter 8, MKNetworkKit, shows the reader how to retrieve and send text as well as data
to and from remote servers by using the MKNetworkKit library. MKNetworkKit is an awesome
networking framework written in Objective-C. The framework is based on blocks and is
ARC ready.

What you need for this book
To follow the examples in this book, the reader should have a good understanding of iOS and
OS X development techniques, as well as a good understanding of Objective-C and the Xcode
development environment. It is also recommended that the reader have at least a basic
understanding of TCP networks and how they work.

Readers should have an Apple computer with OS X 10.8 or higher installed. They also need to
install Xcode Version 4.3.2 or higher.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

3

Who this book is for
This book is written for both Enterprise and App Store developers who are interested in adding
networking components to their applications. The examples in this book, with the exception of
Chapter 2, Apple Low-level Networking, and Chapter 3, Using Libnet, can be applied to both
OS X and iOS developers.

Enterprise developers will find the examples in the book extremely helpful while connecting
their applications with the backend servers. Whether these connections are custom socket
connections or web APIs, the examples in this book will be invaluable resources to an
Enterprise developer.

iOS and OS X App Store developers will find the examples extremely helpful while adding
network components to their applications. The examples in this book cover both peer-to-peer
and client/server applications.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "This recipe will introduce libnet_init() and
libnet_destroy() functions."

A block of code is set as follows:

libnet_t *lnet;
 u_int32_t target, source;
 u_int16_t id,seq;
 char payload[] = "Hello from libnet";
 char errbuf[LIBNET_ERRBUF_SIZE];

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

#import <Foundation/Foundation.h>

 #define LISTENQ 1024
 #define MAXLINE 4096

 typedef NS_ENUM(NSUInteger, BSDServerErrorCode) {
 NOERROR,
 SOCKETERROR,
 BINDERROR,
 LISTENERROR,
 ACCEPTINGERROR
};

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

4

 @interface BSDSocketServer : NSObject

 @property int errorCode, listenfd;

 -(id)initOnPort:(int)port;
 -(void)echoServerListenWithDescriptor:(int)lfd;
 -(void)dataServerListenWithDescriptor:(int)lfd;

 @end

Any command-line input or output is written as follows:

cd ~/Downloads

tar xopf libnet-1.2-rc2.tar

cd libnet-1.2-rc2

New terms and important words are shown in bold. Words that you see on the screen, in menus
or dialog boxes for example, appear in the text like this: "To run your project as root, from the top
menu navigate to Project | Scheme | Edit Scheme as shown in the following screenshot:"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message. If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, see our author
guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

5

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1
BSD Socket Library

In this chapter, we will cover:

 f Finding the byte order of your device

 f Retrieving network address information

 f Performing network address resolution

 f Creating an echo server

 f Creating an echo client

 f Creating a data server

 f Creating a data client

Introduction
The Berkeley Socket API (where API stands for Application Programming Interface) is a set
of standard functions used for inter-process network communications. Other socket APIs also
exist; however, the Berkeley socket is generally regarded as the standard.

The Berkeley Socket API was originally introduced in 1983 when 4.2 BSD was released. The API
has evolved with very few modifications into a part of the Portable Operating System Interface
for Unix (POSIX) specification. All modern operating systems have some implementation of the
Berkeley Socket Interface for connecting devices to the Internet. Even Winsock, which is MS
Window's socket implementation, closely follows the Berkeley standards.

BSD sockets generally rely on client/server architecture when they establish their
connections. Client/server architecture is a networking approach where a device is assigned
one of the two following roles:

 f Server: A server is a device that selectively shares resources with other devices on
the network

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

8

 f Client: A client is a device that connects to a server to make use of the shared
resources

Great examples of the client/server architecture are web pages. When you open a web page in
your favorite browser, for example https://www.packtpub.com, your browser (and therefore
your computer) becomes the client and Packt Publishing's web servers become the servers.

One very important concept to keep in mind is that any device can be a server, a client, or
both. For example, you may be visiting the Packt Publishing website, which makes you a client,
and at the same time you have file sharing enabled, which also makes your device a server.

The Socket API generally uses one of the following two core protocols:

 f Transmission Control Protocol (TCP): TCP provides a reliable, ordered, and error-
checked delivery of a stream of data between two devices on the same network. TCP
is generally used when you need to ensure that all packets are correctly received and
are in the correct order (for example, web pages).

 f User Datagram Protocol (UDP): UDP does not provide any of the error-checking or
reliability features of TCP, but offers much less overhead. UDP is generally used when
providing information to the client quickly is more important than missing packets (for
example, a streaming video).

Darwin, which is an open source POSIX compliant operating system, forms the core set of
components upon which Mac OS X and iOS are based. This means that both OS X and iOS
contain the BSD Socket Library.

The last paragraph is very important to understand when you begin
thinking about creating network applications for the iOS platform,
because almost any code example that uses the BSD Socket Library
will work on the iOS platform. The biggest difference between using the
BSD Socket API on any standard Unix platform and the iOS platform is
that the iOS platform does not support forking of processes. You will
need to use multiple threads rather than multiple processes.

The BSD Socket API can be used to build both client and server applications; in this chapter,
we will be building both types of applications. In the downloadable code, you will find server/
client applications for both the iOS and OS X platforms. Before we begin with our recipes,
there are a few networking concepts that you should understand:

 f IP address: Any device on an Internet Protocol (IP) network, whether it is a client or
server, has a unique identifier known as an IP address. The IP address serves two
basic purposes: host identification and location identification.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

9

There are currently two IP address formats:

 � IPv4: This is currently the standard for the Internet and most internal
intranets. This is an example of an IPv4 address: 83.166.169.231.

 � IPv6: This is the latest revision of the Internet Protocol (IP). It was developed
to eventually replace IPv4 and to address the long-anticipated problem
of running out of IPv4 addresses. This is an example of an IPv6 address:
2001:0db8:0000:0000:0000:ff00:0042:8329. An IPv6 can be
shortened by replacing all the consecutive zero fields with two colons. The
previous address could be rewritten as 2001:0db8::ff00:0042:8329.

 f Ports: A port is an application or process-specific software construct serving as
a communications endpoint on a device connected to an IP network, where the
IP address identifies the device to connect to, and the port number identifies the
application to connect to.

The best way to think of network addressing is to think about how you mail a letter.
For a letter to reach its destination, you must put the complete address on the
envelope. For example, if you were going to send a letter to friend who lived at the
following address:

Your Friend

123 Main St

Apt. 223

San Francisco CA, 94123

If I were to translate that into network addressing, the IP address would be equal to
the street address, city, state, and zip code (123 Main St, San Francisco CA, 94123),
and the apartment number would be equal to the port number (223). So the IP
address gets you to the exact location, and the port number will tell you which door to
knock on.

A device has 65,536 available ports with the first 1024 being reserved for common
protocols such as HTTP, HTTPS, SSH, and SMTP.

 f Fully Qualified Domain Name (FQDN): As humans, we are not very good at
remembering numbers; for example, if your friend tells you that he found a really
excellent website for books and the address was 83.166.169.231, you probably
would not remember that two minutes from now. However, if he tells you that the
address was www.packtpub.com, you would probably remember it. FQDN is the
name that can be used to refer to a device on an IP network.

So now you may be asking yourself, how does the name get translated to the IP
address? The Domain Name Server (DNS) would do that.

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

10

 f Domain Name System Servers: A Domain Name System Server translates a fully
qualified domain name to an IP address. When you use an FQDN of www.packtpub.
com, your computer must get the IP address of the device from the DNS configured
in your system. To find out what the primary DNS is for your machine, open a terminal
window and type the following command:
cat /etc/resolv.conf

 f Byte order: As humans, when we look at a number, we put the most significant
number first and the least significant number last; for example, in number 123, 1
represents 100, so it is the most significant number, while 3 is the least significant
number. For computers, the byte order refers to the order in which data (not only
integers) is stored into memory. Some computers store the most significant bytes first
(at the lowest byte address), while others store the most significant bytes last.

If a device stores the most significant bytes first, it is known as big-endian, while a
device that stores the most significant bytes last is known as little-endian.

The order of how data is stored in memory is of great importance when developing
network applications, where you may have two devices that use different byte-
ordering communication. You will need to account for this by using the Network-to-
Host and Host-to-Network functions to convert between the byte order of your device
and the byte order of the network.

The byte order of the device is commonly referred to as the host byte
order, and the byte order of the network is commonly referred to as
the network byte order.

The discussion on byte order does lead us directly to the first recipe of this chapter, Finding
the byte order of your device.

Finding the byte order of your device
In the Introduction section of this chapter, one of the concepts that was briefly discussed
was how devices store information in memory (byte order). After that discussion, you may be
wondering what the byte order of your device is.

The byte order of a device depends on the Microprocessor architecture
being used by the device. You can pretty easily go on to the Internet and
search for "Mac OS X i386 byte order" and find out what the byte order
is, but where is the fun in that? We are developers, so let's see if we can
figure it out with code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11

We can determine the byte order of our devices with a few lines of C code; however, like most
of the code in this book, we will put the C code within an Objective-C wrapper to make it easy
to port to your projects. The downloadable code for this chapter contains the Objective-C
classes within an application to test your system.

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it…
Let's get started by defining an ENUM in our header file:

1. We create an ENUM that will be used to identify the byte order of the system as
shown in the following code:
 typedef NS_ENUM(NSUInteger, EndianType) {
 ENDIAN_UNKNOWN,
 ENDIAN_LITTLE,
 ENDIAN_BIG
};

2. To determine the byte order of the device, we will use the byteOrder method as
shown in the following code:

-(EndianType)byteOrder {
 union {
 short sNum;
 char cNum[sizeof(short)];
 } un;
 un.sNum = 0x0102;
 if (sizeof(short) == 2) {
 if(un.cNum[0] == 1 && un.cNum[1] == 2)
 return ENDIAN_BIG;
 else if (un.cNum[0] == 2 && un.cNum[1] == 1)
 return ENDIAN_LITTLE;
 else
 return ENDIAN_UNKNOWN;
 } else
 return ENDIAN_UNKNOWN;
}

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

12

Downloading the example code

You can download the example code files for all Packt Publishing books you
have purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

How it works…
In the ByteOrder header file, we defined an ENUM with three constants. The constants
are as follows:

 f ENDIAN_UNKNOWN: We are unable to determine the byte order of the device

 f ENDIAN_LITTLE: This specifies that the most significant bytes are last (little-endian)

 f ENDIAN_BIG: This specifies that the most significant bytes are first (big-endian)

The byteOrder method determines the byte order of our device and returns an integer that
can be translated using the constants defined in the header file. To determine the byte order
of our device, we begin by creating a union of short int and char[]. We then store the
value 0x0102 in the union. Finally, we look at the character array to determine the order
in which the integer was stored in the character array. If the number one was stored first, it
means that the device uses big-endian; if the number two was stored first, it means that the
device uses little-endian.

The downloadable code contains projects for both the Mac OS X and iOS devices, so you can
see how to use this class and also test the byte order of your devices.

Retrieving network address information
Many programs will need to know the network information about the available interfaces
on the device they are running on. This recipe will show you how to retrieve the network
information for all the active network interfaces on your device. The information that we will be
retrieving is the interface name, IP version, IP address, netmask, and default gateway.

We will start off by creating a NetworkAddressStore class that can be used to store the
information for a given network interface. We will then get a list of active network interfaces
and create an instance of the NetworkAddressStore class for each interface. These
objects will then be stored in NSMutableArray.

This recipe will also introduce several new functions and two new structures, including the
very important sockaddr family of structures. We will discuss these new functions and
structures as we describe the code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it…
Let's retrieve the network address information for our device as follows:

1. To retrieve the network address information, we will use the getifaddrs()
function. This function will store a reference to a linked list of ifaddrs structures.
Each ifaddrs structure will represent a physical or virtual network interface. The
getifaddrs() function will return 0 if it was successful, or -1 if there was a problem.

The getifaddrs(struct ifaddrs **ifad) function is not a part of the POSIX
standard, but it is a part of most BSD systems; therefore, it is on both OS X and iOS.
Refer to the following code:

struct ifaddrs *interfaces = NULL;
int success = 0;
success = getifaddrs(&interfaces);

2. Once we have the linked list of ifaddrs, we will need to loop through the list and
retrieve the information about each network interface as shown in the following code:
struct ifaddrs *temp_addr = interfaces;
for (temp_addr = interfaces; temp_addr != NULL; temp_addr =
 temp_addr->ifa_next) {

 int ipversion;
 NSLog(@"************************");
 if(temp_addr->ifa_addr->sa_family == AF_INET) {
 NSLog(@"IPv4");
 ipversion = AF_INET;
 } else if(temp_addr->ifa_addr->sa_family == AF_INET6) {
 NSLog(@"IPv6");
 ipversion = AF_INET6;
 } else {
 NSLog(@"Unknown IP version");
 ipversion = 0;
 }

The temp_addr ifaddrs structure is a temporary structure that will be used
as we loop through the linked list. We will need to keep a pointer pointing to
the first ifaddrs structure so we can properly release the structure using the
freeifaddrs() function when we are done with it.

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

14

We then create a for loop to loop through our ifaddrs linked list.

We check the IP address version being used by checking sa_family; if it is IPv4, we
set ipversion to AF_INET; if it is IPv6, we set ipversion to AF_INET6. We will
use this variable later in our inet_ntop() functions.

If the IP address version is neither IPv4 nor IPv6, we set ipversion to 0.

3. We need to define three character arrays to hold our network address, netmask, and
gateway information for the network interfaces. In the following code snippet, three
character arrays are defined:
 char naddr[INET6_ADDRSTRLEN];
 char nmask[INET6_ADDRSTRLEN];
 char ngate[INET6_ADDRSTRLEN];

We set the size of the array to INET6_ADDRSTRLEN because it is larger than INET_
ADDRSTRLEN, so it will hold either IPv4 or IPv6 addresses. INET6_ADDRSTRLEN is
defined as 46, and INET_ADDRSTRLEN as 16.

4. Now we need to show the result, for which we will use the following code:

 NSLog(@"Name: %@",[NSString stringWithUTF8String:temp_addr-
>ifa_name]);
 inet_ntop(ipversion,&((struct sockaddr_in *)temp_addr->ifa_
addr)->sin_addr,naddr,INET_ADDRSTRLEN);
 NSLog(@"Address: %@",[NSString
stringWithUTF8String:naddr]);
 if ((struct sockaddr_in6 *)temp_addr->ifa_netmask != NULL) {
 inet_ntop(ipversion,&((struct sockaddr_in *)temp_addr-
>ifa_netmask)->sin_addr,nmask,INET_ADDRSTRLEN);
 NSLog(@"Netmask: %@", [NSString
stringWithUTF8String:nmask]);
 }
 if ((struct sockaddr_in6 *)temp_addr->ifa_dstaddr != NULL) {
 inet_ntop(ipversion,&((struct sockaddr_in *)temp_addr-
>ifa_dstaddr)->sin_addr,ngate,INET_ADDRSTRLEN);
 NSLog(@"Gateway: ", [NSString
stringWithUTF8String:ngate]);
 }
 }
freeifaddrs(interfaces);

The ifa_name character array of the ifaddr structure contains the name of the
interface; therefore, we convert ifa_name to NSString and log it.

We then use the inet_ntop function to populate the naddr, nmask, and ngate
character arrays, convert them to NSStrings, and log them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

The data returned from the getifaddrs() function is dynamically allocated and
should be released using the freeifaddrs() function when it is no longer needed
to avoid any memory leaks.

How it works…
The getifaddrs() function will store a reference to a linked list of ifaddrs structures. The
ifaddrs structure looks like the following:

struct ifaddrs { *ifa_next; /* Pointer to next struct */
 char *ifa_name; /*Interface name */
 u_int ifa_flags; /*Interface flags */
 struct sockaddr *ifa_addr; /*Interface address */
 struct sockaddr *ifa_netmask; /*Interface netmask */
 struct sockaddr *ifa_dstaddr; /*P2P interface destination or
Broadcast address */
 void *ifa_data; /*Address specific data */
}

We use ifa_next in our for loop because it points to the next element in our linked list. If
ifa_next equals NULL, we have reached the end of our linked list.

If you look closely, you will notice that the ifaddrs structure contains three sockaddr
structures. The sockaddr structure is a generic structure that pointers are cast to. The
sockaddr structure looks like the following code snippet:

struct sockaddr {
 uint8_t sa_len;
 sa_family_t sa_family;
 char sa_data[14];
}

Depending on the value of sa_family, we can cast the sockaddr structure as sockaddr_
in (for IPv4 addresses) or sockaddr_in6 (for IPv6 addresses) before retrieving the address
information. We use sa_family to determine the IP address version of the structure. The
sa_family values contain one of the following listed values:

 f AF_UNIX: Local to host (pipes)

 f AF_INET: The IPv4 address family

 f AF_INET6: The IPv6 address family

 f AF_NS: Xerox NS protocols

 f AF_CCITT: CCITT protocols, X.25

 f AF_HYLINK: NSC Hyperchannel

 f AF_ISO: ISO protocols

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

16

We use ifa_name of the ifaddrs structure to determine the name of the interface.

We used the inet_ntop function to convert the binary representation of the network address
that is stored in the sockaddr structure to a character array. If you look at the ntop part of
the function name, n stands for network and p stands for the presentation, so you can read
the function name as the "inet network to presentation" function. There is a corresponding
inet_pton function that converts an ASCII string to binary, which you can think of as inet
presentation to network.

The downloadable code contains projects for both the Mac OS X and iOS devices. Sample
projects use a NetworkAddressStore class to store the information returned by the
getifaddrs() functions. This will make it easier to integrate this recipe with your project.

Performing a network address resolution
Most applications will eventually need to convert host/service names to sockaddr structures
and sockaddr structures to host/service names. The BSD Socket Library has two functions
to assist with these conversions:

 f Getaddrinfo(): This is a function that will return information about a given
host/service name. The results are returned in an addrinfo structure.

 f Getnameinfo(): This is a function that will return the host and service names,
given a sockaddr structure.

The getaddrinfo() and getnameinfo() functions make the gethostbyname(),
gethostbyaddr(), and getservbyport() functions obsolete. One of the main
advantages that the getaddrinfo() and getnameinfo() functions has over the obsolete
functions is that they are compatible with both IPv4 and IPv6 addresses.

In this recipe, we will encapsulate getaddrinfo() and getnameinfo() into an Objective-C
class. This class will not hide most of the complexity of the two functions; however, it will save
you from having to worry about NSString to character array conversions and will also handle
the memory management of the addrinfo structures for you.

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it…
Let's get started with the AddrInfo class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

17

Creating the AddrInfo header file
The header file for the AddrInfo class looks like the following:

 #import <Foundation/Foundation.h>

 @interface AddrInfo : NSObject

 @property (nonatomic, strong) NSString *hostname, *service;
 @property (nonatomic) struct addrinfo *results;
 @property (nonatomic) struct sockaddr *sa;
 @property (nonatomic, readonly) int errorCode;

 -(void)addrWithHostname:(NSString*)lHostname Service:(NSString *)
lService andHints:(struct addrinfo*)lHints;
 -(void)nameWithSockaddr:(struct sockaddr *)saddr;

 -(NSString *)errorString;

@end

The addrinfo header file defines four properties. The hostname, service, and results
properties will contain the results of the address resolution queries, and the errorCode
property will contain any error code that is returned.

We are also defining three methods in our header file. The addrWithHostname:Service:
andHints: method, which takes supplied hostname, service, and hints (we will discuss
the hints structure when we discuss how to use the AddrInfo class) and populates the
results property using the getaddrinfo() function. The nameWithSockaddr: method,
which takes supplied sockaddr and populates the hostname and service properties using
the getnameinfo() function. If there is an error with either of the methods, the errorCode
property is set to the returned error code.

The errorString method takes the error code from the errorCode property and returns a
string that tells what the error code is.

Creating the AddrInfo implementation file
To create the AddrInfo implementation file, we use the following code:

 #import "AddrInfo.h"
 #import <netdb.h>
 #import <netinet/in.h>
 #import <netinet6/in6.h>

 @implementation AddrInfo

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

18

 -(instancetype)init {
 self = [super init];
 if (self) {
 [self setVars];
 }
 return self;
 }

We begin the implementation file by importing the headers that are needed. We also define
an init constructor for our class that uses the setVars method to reset our properties to
default values. Let's look at the addrWithHostname:Service:andHints: method:

-(void)addrWithHostname:(NSString*)lHostname Service:(NSString *)
lService andHints:(struct addrinfo*)lHints {

 [self setVars];
 self.hostname = lHostname;
 self.service = lService;

 struct addrinfo *res;

 _errorCode = getaddrinfo([_hostname UTF8String], [_service
UTF8String], lHints, &res);
 self.results = res;

}

The addrWithHostname:Service:andHints: method will retrieve the addresses
for a given hostname. We start off by resetting the properties to default values using the
setVars method. We then set the hostname and service properties with the values
passed to the method.

Since the getaddrinfo() function expects character arrays for hostname and service,
we need to convert our NSString values to character arrays. This is done by using the
UTF8String method of the NSString class. We also pass the addrinfo hints structure
and the address of the res addrinfo structure. The results of the getaddrinfo()
function are put into the errorCode property. If the getaddrinfo() function call was
successful, errorCode will be equal to 0.

When the getaddrinfo() function returns, the res structure contains the results that we
use to set the results property:

-(void)nameWithSockaddr:(struct sockaddr *)saddr {

 [self setVars];
 char host[1024];
 char serv[20];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

19

 _errorCode = getnameinfo(saddr, sizeof saddr, host, sizeof host,
serv, sizeof serv, 0);

 self.hostname = [NSString stringWithUTF8String:host];
 self.service = [NSString stringWithUTF8String:serv];

}

The nameWithSockaddr: method will retrieve the names associated with a given IP
address. We start this method by calling the setVars method to initialize the object's
properties. We then define the two character arrays that will contain the results of the
getnameinfo() function call.

The getnameinfo() function will take the address information from the saddr sockaddr
structure, perform a lookup for the host/service name, and put the results into the host
and serv character arrays. If the getnameinfo() function was successful, it will return 0,
otherwise it will return -1.

Finally, we convert the host and serv character arrays to NSStrings and put the values
into the hostname and service properties:

-(void)setVars {
 self.hostname = @"";
 self.service = @"";
 self.results = @"";
 _errorCode = 0;
}

The setVars method simply sets all the method's NSString properties to empty
strings and the errorcode property to 0. This gives us a well-defined starting point for
the method properties to make sure they do not contain stale information. Let's look at the
errorString: method:

-(NSString *)errorString {
 return [NSString stringWithCString:gai_strerror(_errorCode) encodi
ng:NSASCIIStringEncoding];
}

The errorStiring method uses the gai_strerror() function to convert the error code
from either the getnameinfo() or getaddrinfo() function calls to an actual error method
that can tell us what went wrong; let's look at the setResults: method:

-(void)setResults:(struct addrinfo *)lResults {
 freeaddrinfo(self.results);
 _results = lResults;
}

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

20

We create the setResults: method because we need to call the freeaddrinfo()
function to release the results before setting the new results. This will avoid memory leaks in
our application.

Using the AddrInfo class to perform the address/hostname
resolution
In the following sample code, we will show how to get the hostname www.packtpub.com to
list the IP addresses and then convert those IP addresses back to the hostnames:

 struct addrinfo *res;
 struct addrinfo hints;

 memset(&hints, 0, sizeof hints);
 hints.ai_family = AF_UNSPEC;
 hints.ai_socktype = SOCK_STREAM;

We begin our address/hostname resolution code by setting up two addrinfo structures. The
res structure will be used as a temporary store when we loop though the linked list of results
that are returned to us from the addrWithHostname:Service:andHints: method. The
hints structure will store the hints that we are going to pass to the addrWithHostname:Ser
vice:andHints: method to let the method know what type of addresses we are looking for.

Whenever you create a new structure that you plan on setting the values for, you should
always use the memset() function to clear the memory of the structure. This will ensure that
there is nothing in the memory that will corrupt the structure.

We set ai_family to AF_UNSPEC and ai_socktype to SOCK_STREAM. This tells the
getaddrinfo() function that we are looking for any IP version (IPv4 or IPv6) but limiting
our socket type to socket streams (these settings are used when we want to make a TCP
connection). We could set the ai_family to AF_INET4 to limit the results to only IPv4
results, or set it to AF_INET6 for only IPv6 results. Let's look at how we would initiate the
AddrInfo object:

AddrInfo *ai = [[AddrInfo alloc] init];
[ai addrWithHostname:@"www.packtpub.com" Service:@"443"
 andHints:&hints];
if (ai.errorCode != 0) {
 NSLog(@"Error in getaddrinfo(): %@",[ai getErrorString]);
 return -1;
 }

We now initiate our AddrInfo object and call the addrWithHostname:Service:andHin
ts: method. For our example, we are requesting an address lookup for the www.packtpub.
com hostname. The service we are requesting is port 443, which is HTTPS, and we are also
supplying our hints structure, which specifies the type of addresses we are looking for.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

The code then checks to see if we have any errors; if so, it logs them and exits. Depending on
what your application does, you will probably want to catch the error and display a message to
the user. Let's loop though the addresses and display the results:

 struct addrinfo *results = ai.results;
 for (res = results; res!= NULL; res = res->ai_next) {
 void *addr;
 NSString *ipver = @"";
 char ipstr[INET6_ADDRSTRLEN];

 if (res->ai_family == AF_INET) {
 struct sockaddr_in *ipv4 = (struct sockaddr_in *)res->ai_
addr;
 addr = &(ipv4->sin_addr);
 ipver = @"IPv4";
 } else if (res->ai_family == AF_INET6){
 struct sockaddr_in6 *ipv6 = (struct sockaddr_in6 *)res->ai_
addr;
 addr = &(ipv6->sin6_addr);
 ipver = @"IPv6";
 } else {
 continue;
 }
 inet_ntop(res->ai_family, addr, ipstr,sizeof ipstr);
 NSLog(@" %@ %s", ipver, ipstr);
 AddrInfo *ai2 = [[AddrInfo alloc] init];
 [ai2 getNameWithSockaddr:res->ai_addr];
 if (ai2.errorCode ==0)
 NSLog(@"--%@ %@",ai2.hostname, ai2.service);
 }
 freeaddrinfo(results);

If there are no errors, we loop though the results. After we initialize the variables, we check
to see if the address family is AF_INET (IPv4 address). If so, we create a sockaddr_in
structure, retrieve the address from the sin_addr variable, and set ipver to IPv4.

If the address family was not AF_INET, we check to see if the address family is AF_INET6
(IPv6 address). If so, we create a sockaddr_in6 structure, retrieve the address from the
sin_addr6 variable, and set ipver to IPv6.

If the address family is neither AF_INET nor AF_INET6, we continue the for loop without
logging the address.

The inet_ntop() function converts the address from binary to text form so that we can
display it. The NSLog line will display the IP version followed by the IP address.

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

22

Now that we have retrieved the IP address, we will need to send it back to the
hostname. For this, we take the sockaddr from our results structure and send
it to the nameWithSockaddr: method of the AddrInfo class. When the
nameWithSockaddr: method completes, it will populate the hostname and service
properties of the AddrInfo object.

Finally, we use the freeaddrinfo()function to release the results in order to prevent any
memory leaks.

How it works…
In this recipe, we used the getaddrinfo() and getnameinfo() functions to get the IP
address and hostname. These functions are provided as part of the standard POSIX API.

While these functions are black-box functions, there is really nothing magical about them.
Internally, these functions call lower-level functions to send our requests to the appropriate
DNS server to perform the resolution.

Creating an echo server
In this recipe, we will be creating an echo server that will listen on port 2004. Once the
connection is established, the server will echo the text received back to the client.

As we did in the earlier recipes, we will encapsulate the socket, bind, and listen steps into
an Objective-C class, complete with error checking to make it easy for you to add this code to
your project.

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it….
Let's get started by creating a BSDSocketServer class that will greatly simplify the creation
of a BSD socket server. While this recipe is focused on setting up an echo server, in the
Creating a data server recipe of this chapter, you will see that the code can be modified very
easily to create other types of servers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

23

Creating the BSDSocketServer header file
The BSDSocketServer header file looks like the following code:

#import <Foundation/Foundation.h>

#define LISTENQ 1024
#define MAXLINE 4096

typedef NS_ENUM(NSUInteger, BSDServerErrorCode) {
 NOERROR,
 SOCKETERROR,
 BINDERROR,
 LISTENERROR,
 ACCEPTINGERROR
};

@interface BSDSocketServer : NSObject

@property (nonatomic) int errorCode, listenfd;
-(id)initOnPort:(int)port;
-(void)echoServerListenWithDescriptor:(int)lfd;

@end

The header file of the BSDSocketServer class starts off by defining the LISTENQ constant
as 1024. This constant will be the maximum number of pending connections that can be
queued up at any given time before the sockets stop accepting new connection requests.

We also define the maximum length of the inbound string for the echo server, which we will
set as 4096 characters.

We then define an ENUM with our five error conditions:

 f NOERROR: This determines that no errors occurred while performing the socket, bind,
and listen steps

 f SOCKETERROR: This determines that the error occurred while creating the socket

 f BINDERROR: This determines that the error occurred while binding the sockaddr
family of structures with the socket

 f LISTENERROR: This determines that the error occurred while preparing to listen on
the socket

 f ACCEPTINGERROR: This determines that the error occurred while accepting
a connection

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

24

The BSDSocketServer has two properties. The errorCode property will contain the
error code if any of the functions fails, while the listenfd property will contain the socket
descriptor. This descriptor can be used outside the BSDSocketServer object to create your
server if you want to have your server code outside the BSDSocketServer class.

The header defines one constructor called initWithPort:, which has one parameter
to define the port number to listen on. The header file also defines one method that sets
up the echo server once we initialize the server within the initWithPort: constructor.
As you build your own servers, you will want to add separate methods such as the
echoServerListenWithDescriptor: method, to handle them while using the
initWithPort: constructor to initialize the server.

Creating the BSDSocketServer implementation file
Now let's look at the BSDSocketServer implementation file. The code for this
implementation file is as follows:

 #import "BSDSocketServer.h"
 #import <sys/types.h>
 #import <arpa/inet.h>
 @implementation BSDSocketServer

We begin the implementation file by importing the header files needed to implement our echo
server. Let's look at the initOnPort: constructor:

-(instancetype)initOnPort:(int)port {
 self = [super init];
 if (self) {
 struct sockaddr_in servaddr;

 self.errorCode = NOERRROR;
 if ((self.listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 self.errorCode = SOCKETERROR;
 else {
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
 servaddr.sin_port = htons(port);

 if (bind(self.listenfd, (struct sockaddr *)&servaddr,
sizeof(servaddr)) <0) {
 self.errorCode = BINDERROR;
 } else {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

25

 if ((listen (self.listenfd, LISTENQ)) <0) {
 self.errorCode = LISTENERROR;
 }
 }
 }
 }
 return self;
 }

The BSDSocketSever.m class has a single constructor called initWithPort:. This
constructor will take a single parameter named port of type int. This port parameter is
the port number that we want our server to bind to. This number can range from 0-65535;
however, you will need to have the root access to bind to ports below 1024, so I recommend
you to use port numbers greater than 1024.

We define a sockaddr_in structure (remember, sockaddr_in is for IPv4 and sockaddr_
in6 is for IPv6) named servaddr. To begin with, we set the errorCode variable to NOERROR.

To set up a socket, we will need to call the socket(), bind(), and listen() functions.
If any of these functions fail, we will want to set the errorCode variable and skip the rest of
the initialization.

We use the socket() function to create our socket using the AF_INET (IPv4) and SOCK_
STREAM (TCP) parameters. If you would like to use IPv6, you would change AF_INET to
AF_INET6. If you would like to use UDP instead of TCP, you would change SOCK_STREAM to
SOCK_DGRAM.

Prior to calling the bind() function, we need to set up a sockaddr structure that contains
the IP version, interface, and port number that we will be binding the socket to. Before
populating the sockaddr structure with the information, we would want to clear the memory
to make sure there is no stale information that may cause our bind function to fail. We do
this using the memset() function.

After we clear the memory of the sockaddr structure, we set the values. The sin_family
address family is set to AF_INET, which sets the IP version to IPv4. The sin_addr.s_addr
address is set using htonl(INADDR_ANY) to let the socket bind to any interface on the
device. The sin_port number is set to the port number using the htons(port) function.

The htonl() and htons() functions convert the byte order of the values passed in from
the host byte order to the network byte order, so the values can be properly interpreted when
making network calls. If you are unsure what byte order is, you can refer to the Finding the
byte order of your device recipe of this chapter.

After we have our sockaddr structure set, we use it to bind the socket to the address
specified in the servaddr structure.

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

26

If our bind() function call is successful, we attempt to listen to the socket for new
connections. We set the maximum number of backlog connection attempts to the LISTENQ
constant, which is defined as 1024.

After we initiate the BSDSocketServer object using the initOnPort:
constructor, we will have a server that is actively listening for new connections on
the port, but now we need to do something when the connection comes in. That
is where the echoServerListenWithDescriptor: method comes in. The
echoServerListenWithDescriptor: method will listen for new connections and when one
comes in, it will start a new thread to handle the connection, as shown in the following code:

 -(void)echoServerListenWithDescriptor:(int)lfd {
 int connfd;
 socklen_t clilen;
 struct sockaddr_in cliaddr;
 char buf[MAXLINE];

 for (;;) {
 clilen = sizeof(cliaddr);
 if ((connfd = accept(lfd, (struct sockaddr *)&cliaddr,
&clilen))<0) {
 if (errno != EINTR) {
 self.errorCode = ACCEPTINGERROR;
 NSLog(@"Error accepting connection");
 }
 } else {
 self.errorCode = NOERRROR;
 NSString *connStr = [NSString
stringWithFormat:@"Connection from %s, port %d", inet_ntop(AF_INET,
&cliaddr.sin_addr,buf, sizeof(buf)),ntohs(cliaddr.sin_port)];
 NSLog(@"%@", connStr);

 //Multi-threaded
 dispatch_async(dispatch_get_global_queue(DISPATCH_
QUEUE_PRIORITY_HIGH, 0), ^{
 [self strEchoServer:@(connfd)];
 });
 }
 }
 }

The echoServerListenWithDescriptor: method will use the accept() function to
accept incoming connections on the supplied socket descriptor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

27

Within the echoServerListenWithDescriptor: method, we create a for loop that will
loop forever because each time a new connection is accepted, we will want to pass the control
of that connection to a separate thread and then come back and wait for the next connection.

The accept() function detects and initializes incoming connections on the listening
socket. When a new connection is made, it will return a new socket descriptor. If there is a
problem initializing the connection, the accept() function will return -1. If the connection is
successfully initialized, we determine the IP address and port number from where the client is
connecting and log it.

Finally, we use dispatch_async() to add our strEchoServer() method to the dispatch
queue. If we simply called the method directly without dispatch_async(), the server would
only be able to handle one incoming connection at a time. With dispatch_async(), each
time a new connection comes in, the strEchoServer() method gets passed to the queue
and then the server can go back to listening for new connections. The strEchoServer()
method listens to establish connections for incoming text and then echoes that text back to
the client. Refer to the following code:

 -(void)strEchoServer:(NSNumber *) sockfdNum {
 ssize_t n;
 char buf[MAXLINE];

 int sockfd = [sockfdNum intValue];
 while ((n=recv(sockfd, buf, MAXLINE -1,0)) > 0) {
 [self written:sockfd char:buf size:n];
 buf[n]='\0';
 NSLog(@"%s",buf);
 [[NSNotificationCenter defaultCenter] postNotificationName:
@"posttext" object:[NSString stringWithCString:buf encoding:NSUTF8Str
ingEncoding]];

 }
 NSLog(@"Closing Socket");
 close(sockfdNum);
 }

The strEchoServer: method has one parameter that is a socket descriptor to read from.
We set up the while loop that will loop each time data comes in on the socket. When the
data is received, the recv() function will put the incoming bytes into the buffer pointed to by
buf. The recv() function will then return the number of bytes that are read. If the number
of bytes is zero, the client is disconnected; if it is less than zero, there is an error. For the
purpose of this recipe, we will close the socket if the number of bytes returned is zero or less.

As soon as the data is read from the socket, we call the written:char:size: function
to write the data back to the client. This essentially is our echo server; however, we want to
perform some additional steps so we can see when the data is received.

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

28

We will want to terminate the buf character array with a NULL terminator prior to converting
it to NSString, so we do not get any additional garbage in our string. After we terminate the
character array, we post a notification named posttext with the text from the socket. This
will allow us to set an observer within our program that will receive all incoming text from the
socket. In our example code, this notification will be used to display the incoming text to the
screen, but it can also be used for logging or anything else we think of. If you do not want to
do anything with the text that is sent, you can safely ignore the notification.

Once the client closes the connection, we will want to close the socket on our end. The
close() function at the end of the strEchoServer: method does this for us if the number
of bytes returned from the recv() function is zero or less:

 -(ssize_t) written:(int)sockfdNum char:(const void *)vptr
size:(size_t)n {

 size_t nleft;
 ssize_t nwritten;
 const char *ptr;

 ptr = vptr;
 nleft = n;
 while (nleft > 0) {
 if ((nwritten = write(sockfdNum, ptr, nleft)) <= 0) {
 if (nwritten < 0 && errno == EINTR)
 nwritten = 0; /* and call write() again */
 else
 return -1; /* error */
 }

 nleft -= nwritten;
 ptr += nwritten;
 }
 return(n);
 }

 @end

The written:char:size: method is used to write the text back to the client and has
three parameters. These parameters are: sockfdNum, which is the socket descriptor to write
to; the vptr pointer, which points to the text to be written; and n, which is the length of the
text to be written.

The written:char:size: method uses the write() function to write the text back to
the client. This method returns the number of bytes written, which may be less than the total
number of bytes you told it to write. When that happens, we will need to make multiple write
calls until everything is written back to the client.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

29

We set ptr to point to the beginning of the text to send back and then set nleft to the size
of the text to write. If the write function does not send all the text to the client, ptr will be
moved to point to where we will begin the next write from and nleft will be set to the number
of remaining bytes to write. The while loop will continue to loop until all text is written back
to the client. If the write function returns a number less than 0, it means that there was a
problem writing to the socket, so we return -1.

Using the BSDSocketServer class to start the echo server
The following code will start our server and can be used on both the iOS and OS X platforms:

 BSDSocketServer *bsdServ = [[BSDSocketServer alloc] initOnPort:2004];
 if (bsdServ.errorCode == NOERRROR) {
 [bsdServ echoServerListenWithDescriptor:bsdServ.listenfd];

 } else {
 NSLog(@"%@",NSString stringWithFormat:@"Error code %d recieved.
Server was not started", bsdServ.errorCode]);
 }

We begin by initializing our BSDSocketServer object by setting the port number for our
server. In this example, we use port 2004. We then verify that we did not have any issues
initializing our server and if everything was good, we call the echo server listener method.

When you create your own server, you will want to keep the initWithPort: constructor
to establish the connection and then create your protocol in a separate method such as
the echoServerListenWithDescriptor: method shown in this recipe. You will see an
example of this in the Creating a data server recipe of this chapter.

The downloadable code contains sample projects for both iOS and OS X.

Once you download the code, you can start the server and test it using the
following telnet command:
telnet localhost 2004

Once telnet makes the connection, type any text and press the Enter key.
Once you press the Enter key, the text you typed in will be echoed back to you.

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

30

The following screenshot shows how the telnet session will work with our echo server:

How it works…
When you create a server using BSD sockets, you need to call the socket(), bind(), and
listen() methods in that order:

 f int socket(int domain, int type, int protocol): This function returns
an integer descriptor that can be used to identify the socket in all future function
calls.

 f int bind(int sockfd, const struct sockaddr *my_addr, socklen_t
addrlen): This function will bind the network interface and port combination to the
socket. We will need to create a sockaddr structure with the IP version, network
interfaces, and the port number to bind the socket prior to calling the bind()
function.

 f int listen(int sockfd, int backlog): This function begins listening to the
socket for any incoming connections.

The socket, bind, and listen steps described are the normal steps needed to prepare a TCP
server and to create a listening descriptor. The listening descriptor will be used to accept
incoming connections. Once we have the listening descriptor, we can then wait for incoming
connections and respond to them.

When you create your own servers, you will want to use the initOnPort: constructor to
initiate the server, but write separate functions to handle the incoming requests. You will see
this in the Creating a data server recipe when we create a data server to receive images from
a client.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

31

Once we have our socket created, we can call the method that will listen on the socket (the
echoServerListenWithDescriptor: method). This method uses the accept() function
to listen for incoming connections. The accept() function will create a new socket for each
incoming connection and then remove the connection from the listen queue. If you recall, we
defined that the listen queue can contain up to 1024 connections before it stops accepting
new ones.

The strEchoServer: function is where we actually implement our echo server. This method
uses the recv() function to receive the incoming data (in our case, incoming text) from an
open socket. Once the text is received, we call the written:char:size: method to write
the data back to the client.

Creating an echo client
In the Creating an echo server recipe of this chapter, we created an echo server and then
tested it using telnet. Creating the server was pretty fun, but testing with telnet was a kind
of anti-climax; so in this recipe, we will be creating a client that we can use to connect to our
echo server.

When we created the echo server, we created a BSDSocketServer class to help with the
creation of our server applications. In this recipe, we will be creating a BSDSocketClient
class to help with the creation of our client applications.

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it…
Now let's create an echo client that will communicate with our echo server:

Creating the BSDSocketClient header file
We will begin by creating the BSDSocketClient header file, as shown in the following code:

#import <Foundation/Foundation.h>

typedef NS_ENUM(NSUInteger, BSDClientErrorCode) {
 NOERRROR,
 SOCKETERROR,
 CONNECTERROR,
 READERROR,
 WRITEERROR
};

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

32

#define MAXLINE 4096

@interface BSDSocketClient : NSObject

@property (nonatomic) int errorCode, sockfd;

-(instancetype)initWithAddress:(NSString *)addr andPort:(int)port;
-(ssize_t) writtenToSocket:(int)sockfdNum withChar:(NSString *)vptr;
-(NSString *) recvFromSocket:(int)lsockfd withMaxChar:(int)max;

We begin the header file by defining the five error conditions that may occur while we are
connecting to the server. If an error occurs, we will set the errorCode property with the
appropriate code.

We then define the maximum size of the text that we can send to our server. This is really used
strictly for this example; on production servers, you will not want to put a limit such as this.

The BSDSocketClient header defines two properties, errorCode and sockfd. We expose
the errorCode property, so classes that use the BSDSocketClient class can check for
errors, and we expose the sockfd socket descriptor in case we want to create the client
protocol outside the BSDSocketClient class.

The header file also defines one constructor and two methods, which we will be exposing in
the BSDSocketClient class.

The initWithAddress:andPort: constructor creates the BSDSocketClient object with
the IP address and port combination for connection. The writtenToSocket:withChar:
method will write data to the socket that we are connected to, and the
recvFromSocket:withMaxChar: method will receive characters from the socket.

Creating the BSDSocketClient implementation file
Now we need to create the BSDSocketClient implementation file, as shown in the
following code:

 #import "BSDSocketClient.h"
 #import <sys/types.h>
 #import <arpa/inet.h>

 @implementation BSDSocketClient

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

33

We begin the BSDSocketClient implementation file by importing the headers needed to
create our client. Let's look at the initWithAddress:andPort: constructor:

 -(id)initWithAddress:(NSString *)addr andPort:(int)port {
 self = [super init];
 if (self) {
 struct sockaddr_in servaddr;

 self.errorCode = NOERRROR;
 if ((self.sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 self.errorCode = SOCKETERROR;
 else {
 memset(&servaddr,0, sizeof(servaddr));
 servaddr.sin_family = AF_INET;
 servaddr.sin_port = htons(port);
 inet_pton(AF_INET, [addr cStringUsingEncoding:NSUTF8Strin
gEncoding], &servaddr.sin_addr);

 if (connect(self.sockfd, (struct sockaddr *)&servaddr,
sizeof(servaddr)) < 0) {
 self.errorCode = CONNECTERROR;
 }
 }
 }
 return self;
 }

The initWithAddress:andPort: constructor is used to set up the connection with the
server. We define a sockaddr_in structure named servaddr. This structure will be used to
define the address, port, and IP version of our connection.

If you recall, we initialized the server for the echo server by making the socket(), bind(),
and listen() function calls. To initialize a client, you only need to make two function calls.
These are the same socket() call you made for the server followed by a new function called
connect().

We make the socket() function call using the AF_INET (IPv4) and SOCK_STREAM (TCP)
parameters. If you would like to use IPv6, you would change AF_INET to AF_INET6. If you
would like to use UDP instead of TCP, you would change SOCK_STREAM to SOCK_DGRAM. If
there is an issue creating the socket, we will set the errorCode variable to SOCKETERROR
and skip the rest of the code.

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

34

Prior to calling the connect function, we need to set up a sockaddr structure that contains
the IP version, address, and port number we will be connecting to. Before populating the
sockaddr structure with the information, we will want to clear the memory to make sure that
there is no stale information that may cause our bind function to fail. We do this using the
memset() function.

After we clear the memory for the sockaddr structure, we set the values. We set the IP
version to IPv4 by setting the sin_family address to AF_INET. The sin_port number is
set to the port number by using the htons() function. We convert the IP address that we are
connecting to from NSString to cString and use the inet_pton() function to convert the
address to a network address structure that is put into servaddr.sin_addr.

After we have our sockaddr structure set, we attempt to connect to the server using the
connect() function. If the connection fails, the connect() function returns -1. Let's look at
the writtenToSocket:withChar: method:

-(ssize_t) writtenToSocket:(int)sockfdNum withChar:(NSString *)vptr {

 size_t nleft;
 ssize_t nwritten;
 const char *ptr = [vptr cStringUsingEncoding:NSUTF8StringEncodi
ng];

 nleft = sizeof(ptr);
 size_t n=nleft;
 while (nleft > 0) {
 if ((nwritten = write(sockfdNum, ptr, nleft)) <= 0) {
 if (nwritten < 0 && errno == EINTR)
 nwritten = 0;
 else {
 self.errorCode = WRITEERROR;
 return(-1);
 }
 }

 nleft -= nwritten;
 ptr += nwritten;
 }
 return(n);
 }

The writtenToSocket:withChar: method is used to write the text to the server. This
method has two parameters: sockfdNum, which is the socket descriptor to write to, and vptr
NSString, which contains the text to send to the server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

35

The writtenToSocket:withChar: method uses the write() function to write the text to
the client. This method returns the number of bytes written, which may be less than the total
number of bytes you told it to write. When that happens, we will need to make multiple write
calls until everything is written back to the client.

We convert vptr to cString pointed to by the ptr pointer using the
cStringUsingEncoding: method.

If the write() function does not send all the text to the client, the ptr pointer will be
moved to point where we will begin the next write from, and nleft will be set to the
number of remaining bytes to write. The while loop will continue to loop until all the text
is written. If the write function returns 0 or less, we check for errorsLet's look at the
recvFromSocket:withMaxChar: method:

 -(NSString *) recvFromSocket:(int)lsockfd withMaxChar:(int)max {
 char recvline[max];
 ssize_t n;

 if ((n=recv(lsockfd, recvline, max -1,0)) > 0) {
 recvline[n]='\0';
 return [NSString stringWithCString:recvline
encoding:NSUTF8StringEncoding];
 } else {
 self.errorCode = READERROR;
 return @"Server Terminated Prematurely";
 }
 }

 @end

The recvFromSocket:withMaxChar: method is used to receive characters from the
server and returns an NSString representing the characters received.

When the data comes in, the recv() function will put the incoming text into the buffer
pointed to by the recvline pointer. The recv() function will return the number of bytes
read. If the number of bytes is zero, the client is disconnected; if it is less than zero, it means
there was an error.

If we successfully received text from the client, we put a NULL terminator at the end of the
text, convert it to NSString, and return it.

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

36

Using the BSDSocketClient to connect to our echo server
The downloadable code contains examples for both iOS and OS X. If you run the iOS example
in the iPhone simulator, the app looks like the following screenshot:

You will type the text you wish to send in the UITextField and then click on the Send
button. The text that is received back from the server, in our case Hello from Packt, is
displayed below the Text Received: label.

We will look at the sendPressed: method in the iOS sample code as an example of how
to use the BSDSocketClient method. This method is called when you click on the Send
button. Refer to the following code:

 -(IBAction)sendPressed:(id)sender {
 NSString *str = textField.text;
 BSDSocketClient *bsdCli = [[BSDSocketClient alloc]
initWithAddress:@"127.0.0.1" andPort:2004];
 if (bsdCli.errorCode == NOERRROR) {
 [bsdCli writtenToSocket:bsdCli.sockfd withChar:str];

 NSString *recv = [bsdCli recvFromSocket:bsdCli.sockfd
withMaxChar:MAXLINE];
 textRecvLabel.text = recv;
 textField.text = @"";

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

37

 } else {
 NSLog(@"%@",[NSString stringWithFormat:@"Error code %d
recieved. Server was not started", bsdCli.errorCode]);
 }
 }

We begin by retrieving the text that was entered in the UITextField. This is the text that we
will be sending to the echo server.

We then initialize the BSDSocketClient object with an IP address of 127.0.0.1, which is
the local loopback adapter, and a port number of 2004 (this needs to be the same port that
your server is listening on). If you run this on an iPhone, you will need to set the IP address to
the address of the computer that is running the echo server.

Once the connection with the server is established, we call the
writtenToSocket:withChar: method to write the text entered in the UITextField to
the server.

Now that we have sent the text, we need to retrieve what comes back. This is done by calling
the recvFromSocket:withMaxChar: method to listen to the socket and retrieve any text
that comes back.

Finally, we display the text that was received from the server to the screen and clear the
UITextField so that we can enter in the next text.

How it works…
When we created the BSD echo server in the Creating an echo server recipe of this chapter,
we went through a three-step process to prepare the TCP server. These were the socket
(create a socket), bind (bind the socket to the interface), and listen (listen for incoming
connections) steps.

When we create the BSD echo client, we make the connection in a two-step process. These
are the socket (create a socket just like the echo server) and connect (this connects to the
server) steps. The client calls the connect() function to establish a connection with the
server. If no errors occur, it means we have successfully created a connection between the
server and the client.

When you create your own clients, you will want to use the initWithAddress:andPort:
constructor to initiate the connection and then write your own code to handle your protocol.
You can see the Create a data client recipe of this chapter when we create a data client to
send an image to the server.

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

38

Creating a data server
In the Creating an echo server recipe, we created a server that accepted incoming text and
echoed it back to the client. That recipe demonstrated how to send and receive text through a
socket connection. Now you may be asking yourself, how do I send and receive datafiles, such
as images or PDF files, through a socket connection?

Sending and receiving data over a socket connection is really not that different from sending
and receiving text. You go through all the same steps to set up your sockets for sending or
receiving, but at the end you get NSData instead of a character array.

For this recipe, we will be using the same BSDSocketServer class that we used in the
Creating an echo server recipe of this chapter, since we can reuse the initOnPort:
constructor and just add the methods to implement the protocol.

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it…
Let's start creating our data server.

Updating the BSDSocketServer header file
We will be updating the BSDSocketServer header file that we created in the Creating an
echo server recipe of this chapter. The new header file looks like the following code:

 #import <Foundation/Foundation.h>

 #define LISTENQ 1024
 #define MAXLINE 4096

 typedef NS_ENUM(NSUInteger, BSDServerErrorCode) {
 NOERROR,
 SOCKETERROR,
 BINDERROR,
 LISTENERROR,
 ACCEPTINGERROR
};
 @interface BSDSocketServer : NSObject

 @property int errorCode, listenfd;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

39

 -(id)initOnPort:(int)port;
 -(void)echoServerListenWithDescriptor:(int)lfd;
 -(void)dataServerListenWithDescriptor:(int)lfd;

 @end

The only addition to the header file is where we added the new method that will be used to
listen and process new requests for our data server. As we create new types of servers, we
can reuse the initOnPort: constructor since all the sockets are set up the same way. How
each type of server handles the incoming request will vary; therefore, you will need a separate
method to handle each of the protocols.

Updating the BSDSocketServer implementation file
Even though we only define one new method in our header file, we really need two new methods
in our implementation file. The first one is the dataServerListenWithDescriptor:
method we defined in the header file; refer to the following code:

 -(void)dataServerListenWithDescriptor:(int)lfd {
 int connfd;
 socklen_t clilen;
 struct sockaddr_in cliaddr;
 char buf[MAXLINE];

 for (;;) {
 clilen = sizeof(cliaddr);
 if ((connfd = accept(lfd, (struct sockaddr *)&cliaddr,
&clilen))<0) {
 if (errno != EINTR) {
 self.errorCode = ACCEPTINGERROR;
 NSLog(@"Error accepting connection");
 }
 } else {
 self.errorCode = NOERRROR;
 NSString *connStr = [NSString
stringWithFormat:@"Connection from %s, port %d", inet_ntop(AF_INET,
&cliaddr.sin_addr,buf, sizeof(buf)),ntohs(cliaddr.sin_port)];
 NSLog(@"%@", connStr);

 //Multi-threaded
 dispatch_async(dispatch_get_global_queue(DISPATCH_
QUEUE_PRIORITY_HIGH, 0), ^{
 [self getData:@(connfd)];
 });

 }
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

40

The dataServerListenWithDescriptor: method is almost an exact
duplicate of the echoServerListenWithDescriptor: method. The
dataServerListenWithDescriptor: method uses the accept() function to accept
incoming connections on the supplied socket descriptor.

Within the dataServerListenWithDescriptor: method, we create a forever loop
because each time a new connection is accepted, we will want to pass control of that
connection to a separate thread and then come back and wait for the next connection.

The accept() function detects and initializes incoming connections on the listening socket.
When a new connection is made, the accept() function will return a new socket descriptor.
If there is a problem in initializing the connection, the accept function will return -1. If the
connection is successfully initialized, we determine the IP address and port number that the
client is connecting from and log them to the screen.

Finally, we use dispatch_async to add our getData() method to the queue. If we simply
called the method directly without dispatch_async, the server would only be able to handle
one incoming connection at a time. With dispatch_async, each time a new connection is
established, the getData() method gets passed to the queue and the server can go back to
listening for new connections.

The getData() method listens to establish connections for incoming data:

 -(void)getData:(NSNumber *) sockfdNum {
 ssize_t n;
 UInt8 buf[MAXLINE];
 NSMutableData *data = [[NSMutableData alloc] init];

 int sockfd = [sockfdNum intValue];
 while ((n=recv(sockfd, buf, MAXLINE -1,0)) > 0) {

 [data appendBytes:buf length:n];
 }
 close(sockfd);

 [[NSNotificationCenter defaultCenter] postNotificationName:@"pos
tdata" object:data];

 NSLog(@"Done");
 }

In the strEchoServer: method that was used to retrieve text for our echo server, we used
a char buf[MAXLINE] buffer to store the characters that we received. In the getData:
method, we will use a UInt8 buf[MAXLINE] buffer to store our data as it comes in. We also
define a NSMutableData object that holds all the data that is received.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

41

Keep in mind that the MAXLINE constant limits the amount of data retrieved at a time and
does not limit the total data. Where the MAXLINE constant is defined to be 4096, if we were
receiving a file of 8000 bytes, we would receive the first 4096 bytes chunks. These first 4096
bytes would be appended to the NSMutableData object and then we would receive the next
3904 bytes, which would also be appended to the NSMutableData object, thus forming the
entire file.

Once we receive all the data, we close the socket and post a notification with the name
postdata. This notification can then be captured in our code so that we can do something
with the incoming data once all the data is received. The iOS example expects the incoming
data to be an image, so it displays the incoming data in a UIImageView.

Using the BSDSocketServer to create our data server
The downloadable code for this chapter contains samples for both iOS and OS X. Let's take a
quick look at how we start the server in the iOS sample, by referring to the following code:

 -(void)startServer {
 [[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(newDataRecieved:) name:@"postdata" object:nil] ;

 BSDSocketServer *bsdServ = [[BSDSocketServer alloc]
initOnPort:2006];
 if (bsdServ.errorCode == NOERRROR) {
 [bsdServ dataServerListenWithDescriptor:bsdServ.listenfd];

 } else {
 NSLog(@"%@",[NSString stringWithFormat:@"Error code %d
recieved. Server was not started", bsdServ.errorCode]);
 }

 }

 -(void)newDataRecieved:(NSNotification *)notification {
 NSData *data = notification.object;
 imageView.image = [UIImage imageWithData:data];
 }

In the startSvr method, the first thing we do is set up a notification that will listen for the
postdata notification. When the postdata notification is received, the listener will send the
data to the newDataReceived: method to update our imageView with the data.

We initialize the BSDSocketServer object and tell it to listen on port 2006. If there are
no errors while initializing the server, we call the dataServerListenWithDescriptor:
method, which will listen for incoming data and process it.

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

42

How it works…
When we created the data server, we used the same initOnPort: constructor that we used
for the echo server. This is because the same socket, bind, and listen steps are required
for both. What we had to change were the methods that listened and processed incoming
connections. When you create your own servers, you will also want to use the initOnPort:
constructor and then write your own methods to handle the incoming connections.

Once we have our socket created, we can call the method that will listen on the socket. This
is the dataServerListenWithDescriptor: method. This method uses the accept()
function to listen for incoming connections. The accept() function will create a new socket
for each incoming connection and then remove the connection from the listen queue. If you
recall, we defined that the listen queue can contain up to 1024 connections before it stops
accepting new ones.

The getData: method is where we actually implement our server. This method uses the
recv() function to receive the incoming data. As the data comes in, we append it to the
NSMutableData object until all the data is received.

Creating a data client
In the Creating a data server recipe of this chapter, we updated our BSDSocketServer class
so we could set up a server that could receive data. In this recipe, we will be updating our
BSDSocketClient class so we can set up a client to upload data to our data server.

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it…
Let's update the BSDSocketClient class to include our data client.

Updating the BSDSocketClient header file
Since we will be able to use the same constructor (initWithAddress:andPort:) that we
used when we connected to the echo server, all we need to do is to add a method to send
the data itself. This method will be called sendData:toSocket:. The following is the new
BSDSocketClient header file:

 #import <Foundation/Foundation.h>

 typedef NS_ENUM(NSUInteger, BSDClientErrorCode) {
 NOERRROR,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

43

 SOCKETERROR,
 CONNECTERROR,
 READERROR,
 WRITEERROR
};
 #define MAXLINE 4096

 @interface BSDSocketClient : NSObject

 @property int errorCode, sockfd;

 -(id)initWithAddress:(NSString *)addr andPort:(int)port;
 -(ssize_t) writtenToSocket:(int)sockfdNum withChar:(NSString *)vptr;
 -(NSString *) recvFromSocket:(int)lsockfd withMaxChar:(int)max;
 -(ssize_t)sendData:(NSData *)data toSocket:(int)lsockfd;

 @end

Updating the BSDSocketClient implementation file
We now need to add the sendData:toSocket: method to our BSDSocketClient class:

-(ssize_t)sendData:(NSData *)data toSocket:(int)lsockfd
 {
 NSLog(@"sending");
 ssize_t n;
 const UInt8 *buf = (const UInt8 *)[data bytes];

 if ((n = send(lsockfd, buf,[data length],0)) <=0) {
 errorCode = WRITEERROR;
 return -1;
 } else {
 errorCode = NOERRROR;
 return n;
 }
 }

The sendData:toSocket: method accepts two parameters: the data to send to the server
and the socket descriptor to which we want to send the data. Since the BSD Socket Library
does not recognize the NSData objects, we will need to convert the data to bytes and then to
a UInt8 buffer prior to sending it.

Once we have our UInt8 buffer, we use the send() function to send the data to the server.
The send() function will return the number of bytes sent to the server; if that number is less
than 0, it means there is a problem and we return an error.

www.it-ebooks.info

http://www.it-ebooks.info/

BSD Socket Library

44

Using the BSDSocketClient to connect to our data server
Let's take a look at the sample code that uses the sendData:toSocket method:

 BSDSocketClient *bsdCli = [[BSDSocketClient alloc]
initWithAddress:@"127.0.0.1" andPort:2006];
 if (bsdCli.errorCode == NOERRROR) {
 NSData *data = [NSData dataWithContentsOfFile:@"/Users/
hoffmanjon/Documents/GreenGuyLarge.png"];
 [bsdCli sendData:data toSocket:bsdCli.sockfd];
 } else {
 NSLog(@"%@",[NSString stringWithFormat:@"Error code %d recieved.
", bsdCli.errorCode]);
 }

We start off by initializing the BSDSocketClient object with the IP address 127.0.0.1 and
with a port of 2006. If you are running the sample server on another device, you will need
to change the IP address. If there are no issues initializing the client, we load an image and
convert it to an NSData object. You will need to change the location of the file to the location
on your machine that contains an image.

We then pass the NSData object that contains the image to the sendData:toSocket method.

How it works…
When we created the BSD data server, we went through a three-step process to prepare the
TCP server and to create listen on the socket. These were socket (create a socket), bind (bind
the socket to the interface), and listen (listen for incoming connections).

When we create the BSD data client, we make the connection in a two-step process. These
steps are socket (create a socket just like the echo server) and connect (this connects to
the server). The client calls the connect() function to establish a connection with the server.
If no error occurs, we have a connection between the server and the client. This connection
process is the same code we used to establish a connection with the echo server.

Once we have the connection established with the server, we need to send our data to the
server. In our example, we will be sending an image file over; however, this same code can be
used to send any binary file. The client and the server just need to agree on what type of file is
to be sent.

The first thing we need to do is to convert the file to an NSData object and pass that to the
sendData:toScoket: method. When the sendData:toSocket: method has the NSData
object, it converts it to a Uint8 buffer. We then use the send() function to send the Uint8
buffer to the server.

www.it-ebooks.info

http://www.it-ebooks.info/

2
Apple Low-level

Networking

In this chapter, we will cover:

 f Retrieving network address information

 f Performing network address resolution

 f Creating an echo server

 f Creating an echo client

 f Creating a server to receive data

 f Creating a client to send data

 f Checking the network status

Introduction
The primary API behind Apple's low-level networking is the CFNetwork API.

The simplest way to describe CFNetworking is to say that it is an Apple-specific extension to
the BSD socket API. The CFNetworking stack is based on and relies on the BSD socket API
that was discussed in Chapter 1, BSD Socket Library. It is recommended that the reader
understands the concepts discussed in Chapter 1, BSD Socket Library, prior to going through
this chapter. While this chapter will focus primarily on CFNetworking for most of the recipes,
we will also use NSHost and the system configuration framework for retrieving network
address information and checking the network status recipes. The biggest advantage that
BSD sockets have over CFNetwork is the compatibility with other forms of Unix. This is a pretty
big advantage when you think of all the BSD socket code on the Internet that you can use.
However, if your application is Apple-specific, it is recommended that you use CFNetwork
wherever you can.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

46

CFNetwork offers numerous advantages over BSD sockets. The biggest advantage is the
run-loop integration. So if your application is run-loop-based, you will be able to implement
network services without implementing numerous threads.

CFNetwork also contains a number of objects to help you implement specific protocols
without having to know the implementation details about the protocols. This includes the
CFFTP API to assist in implementing the FTP protocol, and CFHTTP to assist in implementing
the HTTP protocol.

To understand CFNetworking, you should be aware of the main building blocks that make up
CFNetwork, which are as follows:

 f CFSocket: It is an abstraction of the BSD socket covered in Chapter 1, BSD Socket
Library. One of the main differences between the BSD socket and the CFSocket is
that the CFSocket can be integrated with a run loop.

 f CFStream: It provides both read and write streams and makes it easy to exchange
data not only across networks but also with files and memory objects.

 f CFSocketStream: It provides an extension for CFStream to work with network
sockets.

 f CFFTP: It provides an API for communicating with FTP servers.

 f CFHTTP: It provides an API for communicating with HTTP servers.

 f CFHTTPAuthentication: It provides an API for responding to HTTP
authentication challenges.

Retrieving network address information
Most applications that communicate over a network will eventually need to know the
information from the available network interfaces of the device they are running on. This
recipe will show you how to retrieve the network addresses for all the active network
interfaces on the device.

This recipe will use the NSHost class to retrieve a list of addresses on your local device. While
NSHost is available on iOS, it is a private (undocumented) class. It is also noted on a number
of forum posts that Apple has rejected iOS apps for using NSHost. If you need to retrieve
network address information within an iOS application, it is recommended that you use the
Retrieving network address information recipe from Chapter 1, BSD Socket Library, in this
book, and not the NSHost class described in this recipe.

Getting ready
This recipe is compatible with both iOS and OS X, but it is recommended that you do not use
NSHost on the iOS platform. No extra frameworks or libraries are required.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

47

How to do it...
We retrieve the network address information in the following manner:

1. Let's retrieve the network address information of our local device:
NSHost* myHost =[NSHost currentHost];
if (myHost)
{
 NSArray *addresses = [myHost addresses];

 for (NSString *address in addresses) {
 NSLog(@"%@", address);
 }
}

2. To create an NSHost object, you will want to use one of the following three class
methods (do not use alloc and init to create the object):

 � currentHost: It returns an NSHost object, which represents the host the
process is currently running on.

 � hostWithAddress: It returns an NSHost object representing the
host defined by the supplied IP address. You would use this method by
supplying the address as an NSString object; for example, [NSHost
hostWithAddress:@"83.166.169.231"].

 � hostWithName: It returns an NSHost object representing the host
defined by the supplied hostname. You would use this method by
supplying the address as an NSString object; for example, [NSHost
hostWithName:@"www.packtpub.com"].

For our recipe, we are looking for the network address information of the localhost; therefore,
we will use the currentHost method to create our NSHost object.

How it works…
The NSHost class provides various methods that can be used to access the name and
address information for a host. An NSHost object will represent an individual host and will
contain all the network addresses and names associated with that host.

While NSHost is much easier to use than the Retrieving network address
information recipe in Chapter 1, BSD Socket Library, NSHost is an
undocumented (private) class for iOS. It could be changed or removed
anytime from the iOS SDK. Apple could also reject your iOS app for using
NSHost; therefore, it should only be used in OS X applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

48

Performing a network address resolution
Most applications that use the Internet to communicate will eventually need to convert a
hostname to an IP address or an IP address to a hostname. This recipe will encapsulate the
network address resolution functionality into a standalone Objective-C class. You will notice
in this recipe that most of the CFNetworking API calls are made up of C functions, and use a
structure similar to the addrinfo structure that the BSD API uses.

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it…
Let's get started!

Creating the CFNetworkUtilities header file
The following is the code snippet for creating the CFNetworkUtilities header file:

#import <Foundation/Foundation.h>

typedef NS_ENUM(NSUInteger, CFNetworkingSelf.errorCode) {
 NOERROR,
 HOSTRESOLUTIONERROR,
 ADDRESSRESOLUTIONERROR
};
@interface CFNetworkUtilities : NSObject

@property int (nonatomic) self.errorCode;

-(NSArray *)addressesForHostname:(NSString *)hostname;
-(NSArray *)hostnamesForAddress:(NSString *)address;

@end

The CFNetworkUtilities header file begins by defining an enum datatype that will represent
our error conditions. These error conditions will be stored in the errorCode property.

We are also defining two methods for our implementation:

 f addressesForHostname: This method returns the network addresses for
the given hostnames

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

49

 f hostnamesForAddress: This method returns the hostnames for the given
network addresses

Creating the CFNetworkUtilities implementation file
The following is the code snippet for creating the CFNetworkUtilities implementation file:

#import "CFNetworkUtilities.h"
#if TARGET_OS_IPHONE
#import <CFNetwork/CFNetwork.h>
#else
#import <CoreServices/CoreServices.h>
#endif

#import <sys/types.h>
#import <sys/socket.h>
#import <netdb.h>

@implementation CFNetworkUtilities

We begin our CFNetworkUtilities implementation file by importing the header files that
we will need for our address resolution. Notice the #if...#else...#endif block; it will
import the correct headers based on the platform the code is running on.

Now let's create the addressesForHostname: method. This method is used to obtain a list
of IP addresses associated with the hostname.

-(NSArray *)addressesForHostname:(NSString *)hostname {
 self.errorCode = NOERROR;
 char ipAddr[INET6_ADDRSTRLEN];
 NSMutableArray *addresses = [[NSMutableArray alloc]
 init];

 CFHostRef hostRef =
 CFHostCreateWithName(kCFAllocatorDefault,
 (CFStringRef)hostname);

This method begins by setting the errorCode property to NOERROR. If any error occurs during
the execution of this method, we will set errorCode and return nil.

We then define the ipAddr array of type char and set the length to the value defined by the
INET6_ADDRSTRLEN constant. We set the char array to INET6_ADDRSTRLEN so it can hold
either IPv6 or IPv4 addresses. The INET6_ADDRSTRLEN constant is defined as 46, and the
INET_ADDRSTRLEN constant is defined as 16.

We also define the NSMutableArray object that will be used to store and return the list of IP
addresses for the hostname.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

50

We create a reference to a CFHost object using the CFHostCreateWithName() function.
This function creates a reference to a CFHost object, given a hostname. There is another
function that you will see in our hostnamesForAddress: method later in this section,
named CFHostCreateWithAddress(), which will return a reference to a CFHost object,
given the IP address. The CFHostStartInfoResolution() function begins the address
resolution as follows:

 BOOL success = CFHostStartInfoResolution(hostRef,
 kCFHostAddresses, nil);
 if (!success) {
 self.errorCode = HOSTRESOLUTIONERROR;
 return nil;
 }

 CFArrayRef addressesRef =
 CFHostGetAddressing(hostRef, nil);
 if (addressesRef == nil){
 self.errorCode = HOSTRESOLUTIONERROR;
 return nil;
 }

The type of resolution to perform is defined by the second parameter. In this example, we
use kCFHostAddresses, which specifies that we want to retrieve the list of IP addresses.
You can also use the kCFHostNames constant to specify that you want to retrieve the list
of hostnames, or kCFHostReachability to specify that you would like to retrieve the
reachability information.

Next, we call the CFHostGetAddressing() function to retrieve the list of addresses
for the host. You must call the CFHostStartInfoResolution() function to perform
the address resolution prior to calling the CFHostGetAddressing() function, as
CFHostGetAddressing() is the function that performs the actual address resolution.

Now we need to loop though the list of addresses for the host:

 CFIndex numAddresses = CFArrayGetCount(addressesRef);
 for (CFIndex currentIndex = 0; currentIndex <
 numAddresses; currentIndex++) {
 struct sockaddr *address = (struct sockaddr
 *)CFDataGetBytePtr(CFArrayGetValueAtIndex(
 addressesRef, currentIndex));
 if (address == nil){
 self.errorCode = HOSTRESOLUTIONERROR;
 return nil;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

51

 getnameinfo(address, address->sa_len,
 ipAddr, INET6_ADDRSTRLEN, nil, 0, NI_NUMERICHOST);
 if (ipAddr == nil){
 self.errorCode = HOSTRESOLUTIONERROR;
 return nil;
 }
 [addresses addObject:[
 NSString stringWithCString:ipAddr
 encoding:NSASCIIStringEncoding]];
 }

 return addresses;
}

The CFArrayGetValueAtIndex() function retrieves a pointer to the value at the given
index in a CFArray. The CFDataGetBytePtr() function returns a pointer to the CFData
object's internal bytes, which we cast as a sockaddr pointer.

The getnameinfo() function then returns the IP address from the sockaddr structure and
puts the value into the ipAddr character array. The NI_NUMERICHOST flag defines that we
would like to return the address in the numeric form instead of the hostname.

Once all addresses are processed, we return the addresses array, which contains the list of
the IP addresses associated with the host.

Now let's create the hostnamesForAddress: function.

The hostnamesForAddress: method is used to provide an IP address to a list of
hostnames associated with the address.

-(NSArray *)hostnamesForAddress:(NSString *)address {
 self.errorCode = NOERROR;
 struct addrinfo hints;
 struct addrinfo *result = NULL;
 memset(&hints, 0, sizeof(hints));
 hints.ai_family = AF_UNSPEC; // Any Address Version,
 could set to AF_INET or AF_INET6 if we wanted to limit
 the IP version
 hints.ai_socktype = SOCK_STREAM; // Limit our search to
 Socket Stream, se could also set this to SOCK_DGRAM
 hints.ai_protocol = 0;

The hostnamesForAddress: method begins by defining the errorCode property to
NOERROR. If any error occurs during the execution of this method, we will set the errorCode
property and return nil.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

52

We then define the addrinfo structures, hints and result. The addrinfo structure is
the same addrinfo structure that was discussed in Chapter 1, BSD Socket Library.

The memset() function is used to clear the memory needed for the hints structure. We
clear the hints structure prior to using it to ensure that there is nothing in the memory that
may corrupt the getaddrinfo() function call.

Now we call the getaddrinfor() function to convert the IP address into a linked list of
addrinfo structures:

 int error = getaddrinfo([address
 cStringUsingEncoding:NSASCIIStringEncoding], NULL,
 &hints, &result);
 if (error != 0) {
 self.errorCode = ADDRESSRESOLUTIONERROR;
 return nil;
 }
 CFDataRef addressRef = CFDataCreate(NULL, (
 UInt8 *)result->ai_addr, result->ai_addrlen);

 if (addressRef == nil){
 self.errorCode = ADDRESSRESOLUTIONERROR;
 return nil;
 }
 freeaddrinfo(result);

The getaddrinfo() function expects character arrays for the hostname and service,
so we need to convert our NSString values to character arrays. This is done using the
cStringUsingEncoding: method of the NSString class. We also pass the addresses of
the hints and result structures. The results of the getaddrinfo() function are put into
the error variable. If the getaddrinfo() function call was unsuccessful, it will return 0.
If the getaddrinfo() function was successful, it will return the result structure, which
contains the results.

We create a reference to a CFData object by calling the CFDataCreate() function and
passing to it the ai_addr structure. Now that we have the address information we are looking
for in addressRef, we can free our result structure by calling the freeaddrinfo()
function. We use the CFHostCreateWithAddress() function to create a reference to the
CFHost object using the CFDataRef we just created as follows:

 CFHostRef hostRef = CFHostCreateWithAddress(
 kCFAllocatorDefault, addressRef);
 if (hostRef == nil) {
 self.errorCode = ADDRESSRESOLUTIONERROR;
 return nil;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

53

 CFRelease(addressRef);

 BOOL isSuccess = CFHostStartInfoResolution(
 hostRef, kCFHostNames, NULL);
 if (!isSuccess) {
 self.errorCode = ADDRESSRESOLUTIONERROR;
 return nil;
 }

Once we have our reference to the CFHost object, we can release the addressRef by calling
the CFRealease() function. Remember, it is very important to release the structures and
references once you are done with them; otherwise, your application will contain memory
leaks.

The CFHostStartInfoResolution() function begins the address resolution. If you
remember from the addressesForHostname: method mentioned earlier, the type
of resolution to perform is defined by the second parameter. In this example, we use
kCFHostName, which specifies that we are looking for the hostname.

 CFArrayRef hostnamesRef = CFHostGetNames(hostRef, NULL);
 NSMutableArray *hostnames = [NSMutableArray array];
 for (int currentIndex = 0; currentIndex < [(NSArray
 *)hostnamesRef count]; currentIndex++) {
 [hostnames addObject:[(NSArray *)hostnamesRef
 objectAtIndex:currentIndex]];
 }

 return hostnames;
}

We now use the CFHostGetNames() function to retrieve a list of hostnames. You must call
the CFHostStartInforResolution() function to perform the name resolution prior to
calling the CFHostGetNames() function.

Now that we have the list of hostnames for our host, we loop through the list of names, convert
them to NSString objects, and put them in a NSMutableArray. This array is then returned.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

54

The downloadable code has sample code for both iOS and OS X platforms. The iOS example
looks like the following screenshot:

This sample app lets the user put a hostname in the Address Lookup field to look up the
address information associated with the hostname. The user can also put an IP address in the
Host Lookup field to look up the hostname information. The results will appear in the Results
text field at the bottom of the screen.

How it works...
The four steps for the hostname to an IP address resolution are as follows:

1. First, the CFHostCreateWithName() function creates a CFHost reference.

2. Then CFHostStartInfoResolution() begins the address to host resolution.

3. Next, CFHostGetAddressing() gets the addresses for the host. At this point,
you have a reference to a CFArray that contains the sockaddr structures, which
represent the address information for the host.

4. Finally, Getnameinfo()retrieves the IP address of the host using the
sockaddr structure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

55

The following are the steps for an IP address to hostname resolution:

1. Create an addrinfo structure that contains the information about the type of
address we are looking for.

2. Using the Getaddrinfo() function is used to populate a linked list of the
addrinfo structures that represent the host.

3. Next, CFDataCreate() creates a reference to the CFData object for the address
from the addrinfo structure.

4. Then CFHostCreateWithAddress() creates a reference to the CFHost object
from the CFData reference.

5. Next, CFHostStartInfoResolution() begins the address to host resolution.

6. Finally, CFHostGetNames() gets the hostnames for the host. At this point, you have
the reference to a CFArray that contains the hostnames for the host.

Creating an echo server
In this recipe, we will be creating an echo server that will listen on a specified port. Once a
connection is established, the server will echo any text received back by the client.

There are several ways to create a CFSocket. For this recipe, we will create a BSD socket and
then use the CFSocketCreateWithNative() method to create the CFSocket from the
native BSD socket.

To create a BSD socket, you must first create a socket using the socket() function. This
function returns an integer descriptor that can be used to identify the socket for all future
function calls. Once we have the socket descriptor, we need to bind the network interfaces
and port to the socket. We create a sockaddr structure with the IP address version, IP
address, and the port number to bind the socket. We will then call the bind() function to
bind the sockaddr structure and the socket together. Finally, we will need to listen on the
socket for new connections. This can be done with the listen() function.

The socket's bind and listen steps are the normal steps needed to prepare a TCP server and to
create a listening descriptor with the BSD socket API. The listening descriptor will then be used
in the CFSocketCreateWithNative() function to create the CFSocket from the native BSD
socket. Once the CFSocket is created, we will then add it as the source to our run loop.

In the downloadable code for this recipe, we will encapsulate the creation of the server
into an Objective-C class complete with error checking, to make it easy for you to add this
code to your project.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

56

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it...
Let's get started!

Creating the CFSocketServer header file
The following is the code snippet for creating the CFSocketServer header file:

#import <Foundation/Foundation.h>

typedef NS_ENUM(NSUInteger, BSDServerErrorCode) {
 NOERROR,
 SOCKETERROR,
 BINDERROR,
 LISTENERROR,
 CFSOCKETCREATEERROR,
 ACCEPTINGERROR
};
@interface CFSocketServer : NSObject

@property (nonatomic) CFSocketRef sRef;
@property (nonatomic) int listenfd, self.errorCode;

-(instancetype)initOnPort:(int)port;

@end

The CFSocketServer header file begins by defining an enum datatype that contains the six
error conditions that can be returned when attempting to create the socket. The header file
also defines two properties (listenfd and errorCode) and one constructor.

If you have reviewed the recipe from Chapter 1, BSD Socket Library, where we created an
echo server using BSD sockets, you may be wondering where the method to listen on the
socket is. Since we are creating the server using CFNetwork and CFSockets, we will be using
the run loop to monitor the socket and notify us when a connection comes in. This is the
pretty big advantage of using CFNetwork.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

57

Creating the CFSocketServer implementation file
We start off by importing the headers that we need as follows:

#import "CFSocketServer.h"
#import <CoreFoundation/CFSocket.h>
#import <sys/socket.h>
#import <netinet/in.h>

#define LISTENQ 1024

@implementation CFSocketServer

We start off by importing the headers that are needed for the CFSocketServer
implementation. The LISTENQ constant is the maximum number of pending connections
that can be queued up at any one time before the sockets stop accepting new connection
requests.

Now let's create the initOnPort: constructor.

This constructor will take a single parameter named port of type int. The port parameter is
the port number to bind to the server. This number can range from 0 to 65535; however, you
will need root access to bind to the ports below 1024, so I recommend you use port numbers
greater than 1024.

-(instancetype)initOnPort:(int)port {
 struct sockaddr_in servaddr;
 CFRunLoopSourceRef source;
 const CFSocketContext context = {0, NULL, NULL, NULL, NULL};
 self.errorCode = NOERROR;
 if ((self.listenfd = socket(AF_INET, SOCK_STREAM,
 IPPROTO_TCP))<0) {
 self.errorCode = SOCKETERROR;
 } else {
 memset(&servaddr, 0, sizeof(servaddr));
 servaddr.sin_family = AF_INET;
 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
 servaddr.sin_port = htons(port);
 if (bind(self.listenfd, (struct sockaddr *)&servaddr,
 sizeof(servaddr)) <0) {
 self.errorCode = BINDERROR;
 } else {
 if (listen(self.listenfd, LISTENQ) <0) {
 self.errorCode = LISTENERROR;
 } else {

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

58

 self.sRef = CFSocketCreateWithNative(NULL, self.listenfd,
 kCFSocketAcceptCallBack,
 acceptConnection, &context);
 if (self.sRef == NULL) {
 self.errorCode = CFSOCKETCREATEERROR;
 }else {
 source = CFSocketCreateRunLoopSource
 (kCFAllocatorDefault, self.sRef, 0);
 CFRunLoopAddSource(CFRunLoopGetCurrent(), source,
 kCFRunLoopDefaultMode);
 CFRelease(source);
 CFRunLoopRun();
 }
 }
 }

 }
 return self;
}

We start the initOnPort: constructor by defining sockaddr_in, CFRunLoopSourceRef,
and CFSocketContext. The sockaddr_in structure is the same that we saw in Chapter 1,
BSD Socket Library.

To set up a socket, we will need to call the socket(), bind(), and listen() functions just
as in the recipes from Chapter 1, BSD Socket Library. If any of these functions fail, we will
want to set the errorCode property and skip the rest of the initialization.

We use the socket() function to create our socket using the AF_INET (IPv4) and SOCK_
STREAM (TCP) parameters. If you would like to use IPv6, you will need to change AF_INET
to AF_INET6. If you would like to use UDP instead of TCP, you will need to change SOCK_
STREAM to SOCK_DGRAM.

Prior to calling the bind() function, we need to set up a sockaddr structure that contains
the IP address version, IP address, and port number that we will be binding the socket to.
Before populating the sockaddr structure with the information, we will need to clear the
memory to make sure there is no stale information that may cause our bind() function to
fail. We do this using the memset() function.

After we clear the memory for the sockaddr structure, we will set the values. The sin_
family field is set to AF_INET to set the IP address version to IPv4. The sin_addr.s_addr
field is set to INADDR_ANY to let the socket bind to any interface on the device. The sin_
port field is set to the port number.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

59

The htonl() and htons() functions convert the byte order of the values from host byte
order to network byte order, so the values can be properly interpreted when making the
network calls. If you are unsure what byte order is, you can refer to the Finding the byte order
of your device recipe in Chapter 1, BSD Socket Library.

Once we have the sockaddr structure set, we use it to bind the socket to the address(es)
specified in the servaddr structure. If our bind() function call was successful, we
attempt to listen to the socket for new connections. We set the maximum number of backlog
connection attempts to the LISTENQ constant, which is defined as 1024.

At this point, we have our BSD socket listening for incoming connections.

We use the CFSocketCreateWithNative() function to create the CFSocket from our
native BSD socket. This function will either return a reference to the CFSocket or return
NULL, if there was an error. The CFSocketCreateWithNative() functions accept several
parameters in the following order:

 f CFAllocatorRef: This is the allocator used to allocate memory to the new object.
Generally, this is set to NULL or kCFAllocatorDefault to use the current default.

 f CFSocketNativeHandle: This is the native BSD socket that we created earlier.

 f CFOptionFlags: It is a bitwise OR combination of socket activities that should
cause a callback to be triggered.. The options are as follows:

 � kCFSocketNoCallBack

 � kCFSocketReadCallBack

 � kCFSocketAcceptCallBack

 � kCFSocketDataCallBack

 � kCFSocketConnectCallBack

 � kCFSocketWriteCallBack

 f CFSocketCallBack: It is the C function to be called when a callback is triggered.

 f CFSocketContext: The CFSocketContext parameter is created at the beginning
of the initWithPort: constructor.

If the CFSocket was successfully created, we create a CFRunLoopSourceRef by calling the
CFSocketCreateRunLoopSource() function. The CFSocketCreateRunLoopSource()
function accepts three parameters in the following order:

 f CFAllocatorRef: This is the allocator parameter used to allocate memory to the
new object. Generally, this is set to NULL or kCFAllocatorDefault to use the
current default.

 f CFSocketRef: The CFSocketRef that was created using the
CFSocketCreateWithNative() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

60

 f CFIndex: It is a priority index that indicates the order in which the run loop
is processed.

We now add our CFRunLoopSourceRef to a run loop. This is done using the
CFRunLoopAddSource() function. The CFRunLoopAddSource() function has three
parameters in the following order:

 f CFRunLoopRef: It is the run loop to add our CFRunLoopSourceRef.

 f CFRunLoopSourceRef: It is the run loop source reference that we created.

 f CFStringRef: It is the run loop mode to add to the source. The only option at this
time is the kCFRunLoopDefaultMode constant.

Once we add the CFRunLoopSourceRef to a run loop, we can clean up the references that
are no longer needed. This is done using the CFRelease() function.

The last thing we do is call the CFRunLoopRun() function to run the current
thread's CFRunLoop. At this point, our server is listening on the port defined by
our port variable, and will call our acceptConnection() function defined in the
CFSocketCreateWithNative() function every time a new connection comes in.

Now let's write the acceptConnection() function to accept the incoming connections:

void acceptConnection(CFSocketRef sRef, CFSocketCallBackType
 cType, CFDataRef address, const void *data, void *info)
{
 CFSocketNativeHandle csock = *(CFSocketNativeHandle *)data;
 CFSocketRef sn;
 CFRunLoopSourceRef source;

 const CFSocketContext context = {0, NULL, NULL, NULL, NULL};

 sn = CFSocketCreateWithNative(NULL, csock,
 kCFSocketDataCallBack, receiveData, &context);

 source = CFSocketCreateRunLoopSource(NULL, sn, 0);
 CFRunLoopAddSource(CFRunLoopGetCurrent(), source,
 kCFRunLoopDefaultMode);
 CFRelease(source);
 CFRelease(sn);
}

The acceptConnection() function accepts the standard parameters of a CFSocket
callback. We begin this function by retrieving the native socket handle from the incoming
data by typecasting it as CFSocketNativeHandle. The CFSocketNativeHandle is the
typedef of an int type.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

61

We use the CFSocketCreateWithNative() function to create a new CFSocketRef from
CFSocketNativeHandle (csock). In the CFSocketCreateWithNative() function
call, we define a callback of type kCFSocketDataCallBack. This callback will call the
receiveData() function every time new data is received.

We then create a CFRunLoopSourceRef using the CFSocketCreateRunLoopSource()
function, add the CFRunLoopSourceRef to the current run loop, and release the references.

Now let's write the receiveData() function to receive the text as it comes in. The
receiveData() function accepts the standard parameters for a CFSocket callback.

void receiveData(CFSocketRef sRef, CFSocketCallBackType
cType,CFDataRef address, const void *data, void *info)
{
 CFDataRef df = (CFDataRef) data;
 long len = CFDataGetLength(df);
 if(len <= 0) return;

 UInt8 buf[len];
 CFRange range = CFRangeMake(0,len);

 CFDataGetBytes(df, range, buf);
 buf[len]='\0';
 NSString *str = [[NSString alloc] initWithData:(NSData*)data
 encoding:NSASCIIStringEncoding];
 NSLog(@"Received: %@",str);
 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"posttext" object:str];
 CFSocketSendData(sRef, address, df, 0); // Echo back
}

In the receiveData() function, the data parameter contains the incoming data. This is
standard for a callback of type kCFSocketDataCallBack. So the first thing we do in the
receiveData() function is to convert the data to a CFDataRef reference, and then check
the length to verify that it is greater than 0.

We convert the CFDataRef to a UInt8 array, which is then converted to an NSString object.
We then post an NSNotification object with the name posttext that contains the incoming
text. This notification can be safely ignored if you do not want to do anything with the text.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

62

Finally, we call the CFSocketSendData()function to echo the text back to the client that
sent it.

Once you have downloaded the code, you can start the server and test it
using the following telnet command:
telnet localhost 2004

Once telnet makes the connection, type any text in and press the Enter key.

Once you press the Enter key, the text you typed in will be echoed back to you.

How it works...
In order to create our socket, we start off by creating a native (BSD) socket. The code to create
a native BSD socket is the same code that we used in Chapter 1, BSD Socket Library. Once
the socket is created, we then use the CFSocketCreateWithNative() method to create
the CFSocket.

To create a server using BSD sockets, you must first create a socket using the socket()
function. This function returns an integer descriptor that can be used to identify the socket for
all future function calls.

We will need to create a sockaddr structure with the IP address version, IP address, and
the port number to bind the socket. We then call the bind() function to bind the sockaddr
structure and the socket together.

Finally, we will need to listen on the socket for new connections. This can be done with the
listen() function.

The socket's bind and listen steps are the normal steps needed to prepare a TCP
server, and to create a listening descriptor. The listening descriptor will be used to
accept incoming connections.

Once we have created the native socket, we create the CFSocket using the
CFSocketCreateWithNative() function. The CFSocket is used to create a run loop source
with the CFSocketCreateRunLoopSource() function, which is then added to the run loop.

When we created the CFSocket using the CFSocketCreateWithNative() function, we
created a callback that would call the acceptConnection() method each time a new
connection came in.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

63

The acceptConnection() method creates a new socket for each incoming connection,
and then removes the connection from the listen queue. If you recall, we set the maximum
number of connections in the queue to be 1024 before it stops accepting new connections.
When we create the CFSocket, we use the CFSocketCreateWithNative() function again,
but this time we create a callback that will call the receiveData() method whenever data is
received on the socket.

The receiveData() method uses the CFSocketSendData() function to echo the text
back to the client.

Creating an echo client
In the Creating an echo server recipe of this chapter, we created an echo server using
CFNetworking and tested it with the telnet command. In this recipe, we will create an echo
client that can be used to test the echo server. Also note that the echo client and server
applications created in Chapter 1, BSD Socket Library, can be used interchangeably with the
echo client and server applications created in this chapter.

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it...
Let's begin!

Creating the CFSocketClient header file
The following is the code snippet for creating the CFSocketClient header file:

#import <Foundation/Foundation.h>

typedef NS_ENUM(NSUInteger, CFNetworkServerErrorCode) {
 NOERROR,
 SOCKETERROR,
 CONNECTERROR,
 READERROR,
 WRITEERROR
};

#define MAXLINE 4096

@interface CFSocketClient : NSObject

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

64

@property (nonatomic) int errorCode;
@property (nonatomic) CFSocketRef sockfd;

-(instancetype)initWithAddress:(NSString *)addr andPort:(int)port;

-(NSString *) writtenToSocket:(CFSocketRef)sockfdNum
withChar:(NSString *)vptr;

@end

The CFSocketClient header file begins by defining the five error conditions in an enum
datatype that could occur while our echo client is running. We also define the errorCode
and sockfd properties. The errorCode property will contain one of the five error conditions,
and the sockfd property will contain the socket handle once the connection is made to the
server.

The header file also defines the initWithAddress:onPort: constructor. This constructor
will attempt to make a connection to an echo server on the port defined by the port
parameter.

The writtenToSocket:withChar: method will write the text to the server and also receive
the response.

Creating the CFSocketClient implementation file
The following is the code snippet for creating the CFSocketClient implementation file:

#import "CFSocketClient.h"
#import <CoreFoundation/CFSocket.h>
#import <sys/socket.h>
#import <netinet/in.h>
#import <arpa/inet.h>

@implementation CFSocketClient

We begin our CFSocketClient implementation file by importing the headers we need to
make our CFSocket client.

Let's create the initOnAddres:withPort: constructor. This constructor will attempt to
make a connection to the server using the IP address and port number combination that is
passed to it. You could make another constructor that would take a hostname rather than an
IP address, and use the CFNetworkUtility class from the Performing network address
resolution recipe in this chapter to convert the hostname to an IP address:

-(instancetype)initWithAddress:(NSString *)addr andPort:(int)port {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

65

 self.sockfd = CFSocketCreate(NULL, AF_INET, SOCK_STREAM,
 IPPROTO_TCP,0, NULL,NULL);
 if (self.sockfd == NULL)
 self.errorCode = SOCKETERROR;
 else {

 struct sockaddr_in servaddr;
 memset(&servaddr, 0, sizeof(servaddr));
 servaddr.sin_len = sizeof(servaddr);
 servaddr.sin_family = AF_INET;
 servaddr.sin_port = htons(port);
 inet_pton(AF_INET, [addr cStringUsingEncoding:
 NSUTF8StringEncoding], &servaddr.sin_addr);
 CFDataRef connectAddr = CFDataCreate(NULL, (unsigned char
 *)&servaddr, sizeof(servaddr));
 if (connectAddr == NULL)
 self.errorCode = CONNECTERROR;
 else {
 if (CFSocketConnectToAddress(self.sockfd, connectAddr, 30)
 != kCFSocketSuccess)
 self.errorCode = CONNECTERROR;
 }
 }
 return self;
}

We begin the initOnAddress:withPort: constructor by calling the CFSocketCreate()
function to create a CFSocket. The CFSocketCreate() function accepts several parameters
in the following order:

 f CFAllocatorRef: This is the allocator used to allocate memory for the new object.
Generally, this is set to NULL or kCFAllocatorDefault to use the current default.

 f SInt32: This is the protocol family for the socket. In our example, we are using AF_
INET; however, we could also use AF_INET6 if we wanted to use IPv6.

 f SInt32: This is the socket type for the socket. In our example, we use SOCK_STREAM
to create a socket stream (TCP). If we wanted to use UDP, we would set it to SOCK_
DGRAM.

 f SINT32: This is the protocol to be used. In our example, we set it to IPPROTO_TCP,
but it could also be IPPROTO_UDP.

 f CFOptionFlags: This is the callback type that is a bitwise OR combination of socket
activities, which should cause a callback to be triggered. The options are:

 � kCFSocketNoCallBack

 � kCFSocketReadCallBack

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

66

 � kCFSocketAcceptCallBack

 � kCFSocketDataCallBack

 � kCFSocketConnectCallBack

 � kCFSocketWriteCallBack

 f CFSocketCallBack: This is the C function to be called when a callback is triggered.

 f CFSocketContext: In this example, we are setting it to NULL.

After we create our CFSocket, we need to create a sockaddr structure that contains the
server information that we are trying to connect to. Whenever you create a sockaddr
structure, you should always clear the memory used by the structure prior to setting the
structure's information. In this example, we use the memset() function to do this.

After we clear the memory of our sockaddr structure, we can set the values. The sin_
family field is set to AF_INET to set the IP address version to IPv4. The sin_port field is
set to the port number passed to the constructor using the htons() function. We then use
the inet_pton() function to convert the address to an address structure (in_addr) and
put the results into servaddr.sin_addr.

The sockaddr structure, once created, will need to be converted to CFData to be used in the
CFSocketConnectToAddress() function. This is done with the CFDataCreate() function,
which returns a CFDataRef. The CFSocketConnectToAddress() function is called to
open up a connection to the remote server.

Now let's create the writtenToSocket:withChar: method:

-(NSString *) writtenToSocket:(CFSocketRef)sockfdNum
 withChar:(NSString *)vptr
{

 char buffer[MAXLINE];

 CFSocketNativeHandle sock = CFSocketGetNative(sockfdnum);
 const char *mess = [vptr
 cStringUsingEncoding:NSUTF8StringEncoding];

 NSLog(@"%s", mess);
 send(sock, mess, strlen(mess)+1, 0);
 recv(sock, buffer, sizeof(buffer), 0);
 NSLog(@"%s", buffer);
 return [NSString stringWithUTF8String:buffer];
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

67

The writtenToSocket:withChar: method writes the characters to the socket identifier.
This method takes two parameters: sockfdNum, which is a CFSocketRef, and vptr, which
is a pointer to the string we wish to send to the server. We use the CFSocketGetNative()
method to convert the CFSocketRef to a native BSD socket handle.

We then convert the NSString object to a char pointer, and use the BSD send() function
to send the text to the echo server. After we send the text, we listen on the socket for the
returning characters. This is done with the recv() function.

Using the CFSocketClient class
The downloadable code contains examples for both iOS and OS X. If you run the iOS example
in the iPhone simulator, the app looks like the following screenshot:

Type the text you wish to send in the Text to send field, and then click on the Send button.
The text that is received back from the server, in this case Hello, appears directly below the
Text Received label.

We will look at the sendPressed: method in the iOS sample code as an example of how to use
the BSDSocketClient method. This method is called when you click on the Send button.

-(IBAction)sendPressed:(id)sender {
 NSString *str = textField.text;
 CFSocketClient *cf = [[[CFSocketClient alloc]
 initWithAddress:@"127.0.0.1" andPort:2004] autorelease];

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

68

 if (cf.self.errorCode == NOERRROR) {
 NSString *recv = [cf writtenToSocket:cf.sockfd withChar:str];
 NSLog(@"%@",recv);
 textRecvLabel.text = recv;
 textField.text = @"";

 } else {
 NSLog(@"%@",[NSString stringWithFormat:@"Error code %d
 recieved. Server was not started", cf.self.errorCode]);
 }
}

We start executing the method by retrieving the text that was entered in the Text to send field.
This is the text that we will be sending to the echo server.

We then initiate the BSDSocketClient object with the IP address 127.0.0.1, which is the
local loopback adapter, and the port number as 2004. If you run this on an iPhone, you will
need to set the IP address to the address of the computer that is running the echo server. You
will also need to set the port number to the port that the server is bound to.

Once we have successfully connected the client, we call the writtenToSocket:withChar:
method to write the text entered in the Text to send field to the server.

Finally, we populate the UITextField with the information received back from the echo server.

How it works...
The following are the steps to create a CFSocket connection to a server:

1. Create a CFSocket reference using the CFSocketCreate() function.

2. Create a sockaddr structure with the IP address version, IP address, and port
number.

3. Use the CFDataCreate() function to create a reference to a CFData object that
represents the sockaddr structure from step 2.

4. Use the CFSocketConnectToAddress() function to create a connection to
the server. At this point, if nothing failed, we will have an open socket connection to
the server and you can use any of the BSD or CFNetwork functions to read or write to
the socket.

Creating a server to receive data
In the Creating an echo server recipe of this chapter, we created an echo server using Apple's
CFNetwork API. This server accepted incoming text and echoed it back to the client. That
recipe demonstrated how to send and receive text through a socket connection.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

69

This following recipe will demonstrate how to send and receive datafiles such as
images through a socket connection. Sending and receiving data over a socket connection
with CFNetworking is not that different from sending and receiving text. You basically go
through all the same steps to set up the socket, but you finally receive CFData rather than a
character array.

We will be updating the CFSocketServer class from the Creating an echo server recipe of
this chapter, to handle both our echo and data servers depending on the flag you set.

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it…
Let's get started!

Updating the CFSocketServer header file
The following is the code snippet for creating the CFSocketServer header file:

#import <Foundation/Foundation.h>

typedef NS_ENUM(NSUInteger, CFNetworkServerErrorCode) {
 NOERROR,
 SOCKETERROR,
 BINDERROR,
 LISTENERROR,
 CFSOCKETCREATEERROR,
 ACCEPTINGERROR
};

typedef NS_ENUM(NSUInteger, CFNetworkServerType) {
 SERVERTYPEECHO,
 SERVERTYPEIMAGE
};

#define NOTIFICATIONTEXT @"posttext"
#define NOTIFICATIONIMAGE @"postimage"

@interface CFSocketServer : NSObject

@property (nonatomic) int errorCode;
@proprtyy (nonatomic) CFSocketRef sRef;

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

70

-(id)initOnPort:(int)port andServerType:(int)sType;

@end

The CFSocketServer header file begins by defining the six error conditions that could occur
within an enum datatype. We also set up another enum datatype that is used to define the
server type (echo server or image server). You can add additional server types, such as PDF
and Word doc, as your need arises, or simply create a generic datatype to accept any data
connection. We then define the name of the notifications that are used to post incoming text
and image data.

We changed the constructor that was used in the Creating an echo server recipe of
this chapter to the initOnPort:andServerType: constructor. This will allow us to
define the server type that we are going to create, which requires us to have separate
CFSocketCreateWithNative() function calls for each type of server.

Updating the CFSocketServer implementation file
We start off with adding the imports needed for the CFSocketServer file implementation
as follows:

#import "CFSocketServer.h"
#import <CoreFoundation/CFSocket.h>
#import <sys/socket.h>
#import <netinet/in.h>
#import <arpa/inet.h>
#define LISTENQ 1024

@implementation CFSocketServer

We begin the implementation file by importing the headers files needed. We also define
our LISTENQ constant as 1024. The LISTENQ constant represents the number of pending
connections that can be queued up before our server stops accepting new connections.

Now let's update the initOnPort:andServerType: constructor. The
initOnPort:andServerType: constructor is the same constructor that we created in the
Creating an echo server recipe, except for one very important change. This change occurs at the
end where we create the CFSocket from the native BSD socket. If you recall from the Creating
an echo server recipe, we used the CFSocketCreateWithNative() function to create the
CFSocket. This function defines the callback to call when you receive an incoming connection.

In our example, we will want to call a different function depending on the server type. This
requires us to have separate CFSocketCreateWithNative calls for each type of server.

-(instancetype)initOnPort:(int)port andServerType:(int)sType {
 struct sockaddr_in servaddr;
 CFRunLoopSourceRef source;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

71

const CFSocketContext context = {0, NULL, NULL, NULL, NULL};
self.errorCode = NOERROR;
int listenfd;
if ((listenfd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP))<0) {
 self.self.errorCode = SOCKETERROR;
} else {
 memset(&servaddr, 0, sizeof(servaddr));
 servaddr.sin_family = AF_INET;
 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
 servaddr.sin_port = htons(port);
 if (bind(listenfd, (struct sockaddr *)&servaddr,
 sizeof(servaddr)) <0) {
 self.self.errorCode = BINDERROR;
 } else {
 if (listen(listenfd, LISTENQ) <0) {
 self.errorCode = LISTENERROR;
 } else {
 if (sType == SERVERTYPEECHO)
 self.sRef = CFSocketCreateWithNative(NULL, listenfd,
 kCFSocketAcceptCallBack, acceptConnectionEcho, &context);
 else if (sType == SERVERTYPEIMAGE)
 self.sRef = CFSocketCreateWithNative(NULL, listenfd,
 kCFSocketAcceptCallBack, acceptConnectionData, &context);
 else
 self.sRef = NULL;
 if (self.sRef == NULL) {
 self.errorCode = CFSOCKETCREATEERROR;
 }else {
 NSLog(@"Starting");
 source = CFSocketCreateRunLoopSource(NULL, self.sRef, 0);
 CFRunLoopAddSource(CFRunLoopGetCurrent(), source,
 kCFRunLoopDefaultMode);
 CFRelease(source);
 CFRunLoopRun();
 }
 }
 }

 }
 return self;
}

We start the initOnPort:andServerTyper: constructor by defining a sockaddr_in
structure, CFRunLoopSourceRef, and CFSocketContext. The sockaddr_in structure is
the same that is referred to in the BSD socket API.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

72

If you recall from the recipe's introduction, in order to set up a socket, we will need to call the
socket(), bind(), and listen() functions. If any of these functions fail, we will want to
set the errorCode property and skip the rest of the initialization.

We attempt to create our socket using the AF_INET (IPv4) and SOCK_STREAM (TCP)
parameters. If you would like to use IPv6, you will need to change the AF_INET parameter to
AF_INET6. If you would like to use UDP instead of TCP, you could change the SOCK_STREAM
parameter to SOCK_DGRAM.

Prior to calling the bind() function, we need to set up a sockaddr structure that contains
the IP address version, IP address, and port number that we will be binding the socket to.
Before populating the sockaddr structure with the information, we need to clear the memory
to make sure there is no stale information that may cause our bind() function to fail. We do
this using the memset() function.

After we clear the memory for our sockaddr structure, we set the values. The sin_family
field is set to AF_INET to set the IP address version to IPv4. The sin_addr.s_addr field is
set to INADDR_ANY to let the socket bind to any interface on the device. We set sin_port to
the port number passed to the constructor using the htons() function.

The htonl() and htons() functions convert the byte order of the values from host byte
order to network byte order so the values can be properly interpreted when making the
network calls. If you are unsure what byte order is, you can refer to the Finding the byte order
of your device recipe from Chapter 1, BSD Socket Library.

After we have our sockaddr structure set, we use it to bind the socket to the address(es)
specified in the servaddr structure. If the bind() function call was successful, we
attempt to listen to the socket for new connections. We set the maximum number of backlog
connection attempts to the LISTENQ constant, which is defined as 1024.

If the server type is set to SERVERTYPEECHO (for an echo server), the run loop will call the
acceptConnectionEcho() function when an incoming connection is detected.

If the server type is set to SERVERTYPEIMAGE (for an image server), the run loop will call the
acceptConnectionImage() function when an incoming connection is detected.

If the server type is neither SERVERTYPEECHO nor SERVERTYPEIMAGE, we set sRef to NULL. If
sRef is NULL, we set the errorCode property and skip the rest of the connection code.

We now need to add our CFRunLoopSourceRef to a run loop. This is done using the
CFRunLoopAddSource() function. The CFRunLoopAddSource() function has three
parameters in the following order:

 f CFRunLoopRef: This is the run loop to add to our CFRunLoopSourceRef.

 f CFRunLoopSourceRef: This is the run loop source reference that we created.

 f CFStringRef: This is the run loop mode to add to the source. The only option at this
time is kCFRunLoopDefaultMode.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

73

Once we add our CFRunLoopSourceRef reference to a run loop, we can clean up the
references that are no longer needed. This is done using the CFRelease() function and is
very important to avoid memory leaks in our application.

The last thing we call is the CFRunLoopRun() function to run the current thread's
CFRunLoop. At this point, our server is listening on the port defined by our port variable, and
will call the appropriate acceptConnection function (either acceptConnectionEcho()
or acceptConnectionData()) defined in the CFSocketCreateWithNative() function
every time a new connection comes in.

The next two functions can be seen in the Creating an echo server recipe of this chapter. They
are for our echo server:

//For Echo server
void receiveDataEcho(CFSocketRef sRef, CFSocketCallBackType
 cType,CFDataRef address, const void *data, void *info)
{...}

void acceptConnectionEcho(CFSocketRef sRef, CFSocketCallBackType
 cType, CFDataRef address, const void *data, void *info)
{...}

Now let's write our function to accept the incoming connections for our data server:

void acceptConnectionData(CFSocketRef sRef, CFSocketCallBackType
 cType, CFDataRef address, const void *data, void *info)
{
 CFSocketNativeHandle csock = *(CFSocketNativeHandle *)data;
 CFSocketRef sn;
 CFRunLoopSourceRef source;

 const CFSocketContext context = {0, NULL, NULL, NULL, NULL};

 sn = CFSocketCreateWithNative(NULL, csock,
 kCFSocketDataCallBack, receiveDataData, &context);

 source = CFSocketCreateRunLoopSource(NULL, sn, 0);
 CFRunLoopAddSource(CFRunLoopGetCurrent(), source,
 kCFRunLoopDefaultMode);
 CFRelease(source);
 CFRelease(sn);
}

The acceptConnectionImage() function begins by retrieving the native socket handle
from the incoming data and putting it in csock, which is CFSocketNativeHandle.
CDSocketNativeHandle is typedef from an int type.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

74

We use the CFSocketCreateWithNative() function to create a new CFSocketRef
from csock. In the CFSocketCreateWithNative() function, we define a callback of type
kCFSocketDataCallBack. This callback will call the receiveDataData() function every
time new data is received.

We then create a CFRunLoopSourceRef using the CFSocketCreateRunLoopSource()
function, and add the CFRunLoopSourceRef to the current run loop.

Let's create the receiveDataData()function. This function gets called whenever data is
received on an established connection. This function accepts the standard parameters for a
CFSocket callback.

//For Data server
void receiveDataData(CFSocketRef sRef, CFSocketCallBackType
cType,CFDataRef address, const void *data, void *info)
{
 CFDataRef df = (CFDataRef) data;
 NSData *imgData = (NSData *)df;
 struct sockaddr_in addr = *(struct
 sockaddr_in*)CFDataGetBytePtr(address);
 char buf[INET6_ADDRSTRLEN];
 NSString *connStr = [NSString stringWithFormat:@"Connection from
 %s, port %d", inet_ntop(AF_INET, &addr.sin_addr,buf,
 sizeof(buf)),ntohs(addr.sin_port)];
 NSLog(@"%@", connStr);
 [[NSNotificationCenter defaultCenter]
 postNotificationName:NOTIFICATIONIMAGE object:imgData];
}

In the receiveDataData() function, the data parameter contains the incoming data.
This is standard for a kCFSocketDataCallBack callback. So the first thing we do in the
receiveDataData() function is convert the data to a CFDataRef reference, and then
convert the CFDataRef to an NSData object.

Once we have the NSData object, we post the data with a notification, so anything listening
for the "postimage" notification will receive the data.

You will notice that the acceptConnectionEcho() function uses
almost the exact same code as the acceptConnectionData()
function. The only difference is we have different callback
functions defined in the CFSocketCreateWithNative()
function. We could combine the two functions and make separate
CFSocketCreateWithNative() function calls depending on the
server type, but I prefer to separate them so each server type has its own
workflow and the only common function is when we initiate the sockets.
It really is a matter of preference.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

75

Using the CFSocketServer class
The code bundle provided with this book and the code snippet in this chapter is not
designed to handle multiple connections at the same time. For example, if you have two
clients sending data at the same time, the data from the two clients will get combined and
that would not be good.

When you write an application that is designed for multiple clients, you will want to use the
information in the CFDataRef address parameter to distinguish between the different clients.
From the logging information, you will see that each connection has a unique IP address and
port number combination.

One of the simplest ways to create a server that can handle multiple connections is to create
an NSDictionary object that contains the IP address, port number, and NSdata object.
Then post the NSDictionary object to the notification rather than just the NSData object.
The method that receives the notification will then be able to distinguish the data from
different clients.

The downloadable code contains examples for both iOS and OS X. These samples will accept
the incoming images, and either save the image to the disk (OS X project) or display it in a
UIImageView object (iOS project).

How it works...
In order to create our CFSocket, we start off by creating a native (BSD) socket, and then use
the CFSocketCreateWithNative() method to create the CFSocket.

To create a server using BSD sockets, you must first create a socket using the socket()
function. The function returns an integer descriptor that can be used to identify the socket in
all future function calls.

Once we have the socket descriptor, we need to bind the network interface and port to the
socket. We will need to create a sockaddr structure with the IP address version, address,
and the port number to bind the socket to. We will then call the bind() function to bind the
sockaddr structure and the socket together.

Finally, we will need to listen on the socket for new connections. This is done with the
listen() function.

The socket's bind and listen steps are the normal steps needed to prepare a TCP server
and to create a listening descriptor. The listening descriptor will be used to accept incoming
connections. Once we have created the native socket, we can create the CFSocket using the
CFSocketCreateWithNative() function. The CFSocket is used to create a run-loop source
with the CFSocketCreateRunLoopSource() function, which is then added to the run loop.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

76

When we created the CFSocket using the CFSocketCreateWithNative() function,
we then created a callback that would call the appropriate acceptConnection method
(acceptConnectionEcho() for the echo server or acceptConnectionData() for the
data server) each time a new connection came in.

The acceptConnection() method creates a new socket for each incoming connection,
and then removes the connection from the listen queue. When we create the CFSocket for
the incoming connections, we use the CFSocketCreateWithNative() function again;
however, this time we create a callback that will call the appropriate receiveData() method
whenever data is received on the socket.

Creating a client to send data
In the Creating a data server recipe from Chapter 1, BSD Socket Library, we created a server
that can receive incoming data. In this recipe, we will create a client application that will send
images to that server.

Also note that the data client and server applications created in Chapter 1, BSD Socket
Library, can be used interchangeably with the data client and server applications created in
this chapter.

We will be expanding the CFSocketClient class that we wrote in the Creating a data client
recipe from Chapter 1, BSD Socket Library, to handle both the echo client and the data client.

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it...
Let's get started!

Updating the CFSocketClient header file
In the header file, we add the sendDataToSocket:withData: method:

#import <Foundation/Foundation.h>

typedef NS_ENUM(NSUInteger, CFNetworkClientErrorCode) {
 NOERRROR,
 SOCKETERROR,
 CONNECTERROR,
 READERROR,
 WRITEERROR
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

77

#define MAXLINE 4096
@interface CFSocketClient : NSObject

@property (nonatomic) int self.errorCode;
@property (nonatomic) CFSocketRef sockfd;

-(id)initWithAddr:(NSString *) addr andPort:(int)port;

-(ssize_t) writtenToSocket:(CFSocketRef)sockfdNum withChar:(NSString
*)vptr;
-(ssize_t)sendDataToSocket:(CFSocketRef)lsockfd withDAta:NSData *)
data;

@end

Updating the CFSocketClient implementation file
This is the same CFSocketClient file as in the Creating an echo client recipe, except
that we are adding the sendDataToSocket:withData: method as shown in the following
code snippet:

-(ssize_t)sendDataToSocket:(CFSocketRef)lsockfd withData: (NSData
 *)data
{
 NSLog(@"sending");
 ssize_t n;
 const UInt8 *buf = (const UInt8 *)[data bytes];
 CFSocketNativeHandle sock = CFSocketGetNative(self.sockfd);

 if ((n = send(sock, buf,[data length],0)) <=0) {
 self.errorCode = WRITEERROR;
 n=-1;
 } else {
 self.errorCode = NOERRROR;
 }
 NSLog(@"Done");
 CFSocketInvalidate(lsockfd);
 CFRelease(lsockfd);
 lsockfd = NULL;
 return n;

}

The sendDataToSocket:withData: method will write the data to the already established
socket. This method begins by converting the NSData object to a UInt8 buffer. We then
convert the CFSocketRef to a BSD socket handle using the CFSocketGetNative()
function call.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

78

The send() function is used to send the data to the server. If the send() function returns
0 or less sent bytes, it means there was a problem with sending the data, and we set the
errorCode property to WRITERROR.

After the data is sent, we close the socket connection. If your client application requires you
to send multiple files over the same socket, you will want to comment these out and close the
connection when you are done.

The downloadable code contains examples for both iOS and OS X.

How it works...
The following are the steps to create a CFSocket connection to a server:

1. Create a CFSocket reference using the CFSocketCreate() function.

2. Create a sockaddr structure with the IP address version, IP address, and port number.

3. Use the CFDataCreate() function to create a reference to a CFData object that
represents the sockaddr structure from step 2.

4. Use the CFSocketConnectToAddress() function to create a connection to the
server. At this point, if nothing fails, we will have an open socket connection to the
server, and we can send our data across.

Checking the network status
Any time you create an iOS application that communicates to other devices over the Internet,
you will eventually need to verify that you have a connection prior to making your network
calls. This can be done pretty easily by verifying that the address we are trying to connect is
reachable, but only lets you know if you have a network connection or not.

When you write applications that communicate with mobile devices over the Internet, one of
the things you need to keep in mind is that your users probably have a data plan that limits
the amount of data they can send in a month. If they exceed that limit, they may have to pay
an extra fee. If your application sends large amounts of data, it would be good to know what
type of network connection the user currently has; if it is a mobile connection (as opposed to a
Wi-Fi connection), warn the user prior to sending the data.

This recipe will check the type of network connection our device has. For this project, we
will be using Apple's System Configuration framework, so you will need to import it into your
project when you use this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

79

Getting ready
This recipe is compatible with iOS and you will need to import Apple's System Configuration
framework into your project.

How to do it...
Let's get started!

Creating the NetworkDetect header file
Let's create the NetworkDetect header file as follows:

#import <Foundation/Foundation.h>

typedef NS_ENUM(NSUInteger, NetworkTypes) {
 NONETWORK,
 MOBILE3GNETWORK,
 WIFINETWORK
};

@interface NetworkDetect : NSObject

+(int)networkConnectionType;

@end

The NetworkDetect header file starts out by defining the three network types that we will be
looking for in an enum datatype. We also define the one method that we will use to check the
network connection type; it is the networkConnectionType: method.

Creating the NetworkDetect implementation file
The following is the code snippet for creating the NetworkDetect implementation file:

#import "NetworkDetect.h"
#import <SystemConfiguration/SystemConfiguration.h>
#import <net/if.h>

@implementation NetworkDetect

+(int)networkConnectionType
{
 const char *hostname = "www.packtpub.com";
 SCNetworkReachabilityRef reachabilityRef =
 etworkReachabilityCreateWithName(NULL, hostname);

www.it-ebooks.info

http://www.it-ebooks.info/

Apple Low-level Networking

80

 SCNetworkReachabilityFlags flags;
 SCNetworkReachabilityGetFlags(reachabilityRef, &flags);
 BOOL isReachable = ((flags & kSCNetworkFlagsReachable) != 0);
 BOOL needsConnection = ((flags &
 kSCNetworkFlagsConnectionRequired) != 0);
 NSLog(@"%d %d", isReachable, needsConnection);
 if(isReachable && !needsConnection) // connection is available
 {
 // determine what type of connection is available
 BOOL isCellularConnection = ((flags &
 kSCNetworkReachabilityFlagsIsWWAN) != 0);

 if(isCellularConnection)
 return MOBILE3GNETWORK; // cellular connection available
 else
 return WIFINETWORK; // Wi-Fi connection available
 }
 return NONETWORK; // no connection at all
}

@end

The networkConnectionType: method begins by setting hostname to the URL of the
server we are connecting to. To determine if we have a network connection and the type
of connection, we need to create a SCNetworkReachability reference. To get the
SCNetworkRechabilityRef, we use the SCNetworkReachabilityCreateWithName()
function, which requires a hostname to connect to.

After we get our SCNetworkReachabilityRef, we need to retrieve the
SCNetworkReachabilityFlags enum from the reference. This is done with the
SCNetworkReachabilityGetFlags() function.

Once we have the network reachability flags, we can begin testing our connection. We use
the bitwise AND operator to see if the host is reachable (isReachable) and if it needs to
establish a connection before we can communicate with the host (needsConnection). If the
isReachable flag is false or needsConnection is true, we return NONETWORK, meaning
the host is not reachable.

If we are able to connect to the host, we then check to see if we have a cellular connection
by checking the network reachability flags again. If we have a cellular connection, we
return MOBILE3GNETWORK; otherwise, we assume we have a Wi-Fi connection and return
WIFINETWORK.

The downloadable code contains a sample iOS application for this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

81

How it works...
In this recipe, we use the SCNetworkReachibility API to determine the reachability of
a remote host and the current network configuration. One thing to keep in mind is that the
SCNetworkReachability API does not actually determine if the host received the data
packet. It only has the ability to determine if we can send packets to the remote host.

Once we create the SCNetworkReachability reference with the
SCNetworkReachibilityCreateWithName() function, we pull the reachability flags
using the SCNetworkReachibilityGetFlags() function. We can then determine if
the network is reachable, if it needs a connection, and what type of connection it has, by
examining the flags.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

3
Using Libnet

In this chapter, we will cover:

 f Installing libnet

 f Adding libnet to your project

 f Resolving names to addresses with libnet

 f Retrieving local addresses with libnet

 f Constructing a Ping packet with libnet

 f Constructing a UDP packet with libnet

 f Constructing a TCP packet with libnet

Introduction
Libnet is a library that allows developers to construct and inject individual network packets. The
libnet API hides most of the packet creation low-level details from the developer and allows the
developer to quickly create and inject simple packets. Not only can libnet be used to create very
powerful network security and monitoring tools, but it can also be used for malicious activities.

While it is possible to compile libnet for the iPhone, if your app
constructs custom packets and injects them into the network, Apple will
probably reject your app. The code in this chapter is written and tested
for OS X; it may or may not work on iOS.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

84

When computers on an IP network wish to communicate, they exchange packets. These
packets contain two types of information that are as follows:

 f Control information (header): The header provides information that the network
needs to route the packet to the correct destination. This includes source and
destination addresses, checksums, control flags, sequence numbers, and Time to
Live.

 f User data (payload): The user data, more commonly known as the payload, is the
information that the computers wish to exchange. This can be anything from web
pages to encrypted files to streaming video.

Large chunks of data are broken apart into multiple packets. For protocols such as TCP that
require reliable communication, a sequence number in the header is used to reassemble the
data in the correct order, regardless of the order in which the packets were received.

A packet is built in layers as shown in the following diagram:

The four layers of the packet are as follows:

 f Application layer: In this layer, an application creates the payload. This is where
higher level protocols, such as FTP, HTTP, or SMTP do their work. The application
headers and the payload are added to this layer.

 f Protocol layer: This layer provides a uniform networking interface that hides the
underlying network connections. This is where the payload is broken into multiple
packets (if needed) and reassembled. This layer is where a protocol-specific header,
such as TCP, UDP, or ICMP, is added.

 f Internet layer: Every device on an IP network is identified by a unique address known
as an IP address. There are two versions of IP addresses: IPv4 and IPv6. This is the
layer where the IP header is added.

 f Link layer: There are many different types of network connections, such as Ethernet,
802.11 Wi-Fi, and Point-to-Point Protocol (PPP). The Link layer defines the method
in which the host communicates to the network.

Each of these layers wraps (or a better term would be encapsulates) the layers below it. We can
think of it as an onion where each layer of the onion completely encompasses all layers below.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

85

The biggest strength of this model is that each layer is independent of all the other layers.
For example, the Internet layer does not need to know, nor does it rely on, anything from the
Protocol layer.

With this in mind, a packet is constructed in the following order:

1. Get the data (the payload) we wish to send across.

2. Construct the Application header that contains the payload.

3. Construct the Protocol header that encapsulates the Application header and
the payload.

4. Construct the IP header that encapsulates the Protocol header (the Protocol
header encapsulates the Application header and the payload).

5. Construct the Frame header that encapsulates the IP header (the IP header
encapsulates the Protocol header that encapsulates the Application header and
the payload).

When we are constructing our packets, it is very important to understand how the different
layers wrap or encapsulate the layer above them. We also need to understand that when a
device receives a packet, it peels the layers away. Using the preceding onion analogy, each
layer of the onion needs to be completely peeled away to get to the next layer. Refer to the
following diagram:

The examples in this chapter use the libnet raw socket interface (rather than the link-layer
interface), which means we do not need to worry about coding the Link layer. The link-layer
interface is slightly more complex but gives you control over how the Frame layer headers are
created. The following steps show how we will build packets in this chapter:

1. Get the data (the payload) we wish to send across. Typically, this will be a text string
or data.

2. Build the Protocol header that encapsulates the payload. Depending on the protocol
we are using, we would use one of the libnet_build functions, such as libnet_
build_tcp, libnet_build_udp, or libnet_build_icmpv4_echo.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

86

3. Build the IP header that encapsulates the Protocol header. We can use libnet_
build_ipv4 or libnet_autobuild_ipv4 to do this.

4. Use the libnet_write() function to set the packet out.

The various Protocol headers will be covered in their respective recipes. The IP header is
constant for each of the protocols so we will cover this header here:

The following list gives a brief explanation about each of the fields in the IP header:

 f Version: This refers to the version of the IP packet. Its value can be either 4 (IPv4)
or 6 (IPv6). For our examples, we will only be using IPv4, but libnet does have IPv6
versions for all of the functions discussed in this chapter.

 f Header Length: This is the number of 32-bit words in the TCP header. The
minimum value is 5. Since the IP header may contain a variable number of options,
this field specifies the size of the header.

 f Type of Service: This field, now known as Differentiated Services Code Point
(DSCP), may indicate a particular quality of service needs. Libnet still refers to TOS
and is usually set to 0.

 f Total Length: This gives the total length of the entire packet, including that of
the header and the data, in bytes. The minimum size is 20 and the maximum size is
65535. Some networks set restrictions on the packet size, which may fragment the
packet.

 f Identification: This field is primarily used to uniquely identify fragments of an
original packet.

 f Flags: This refers to three flags that are defined in the IP packet. They are as follows:

 � Bit 0: This is reserved and must be 0.

 � Bit 1: If the Don't Fragment (DF) flag is set and fragmentation is needed to
route the packet, the packet will be dropped.

 � Bit 2: If a packet is fragmented, all the fragments will have the More
Fragment (MF) flag set except for the last one. The flag is cleared for the
packets that are not fragmented.

 f Fragment Offset: This specifies the offset of a particular fragment and is relative
to the beginning of the original unfragmented packet.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

87

 f Time to Live: This indicates the number of hops the packet can be routed. This
number is decremented at each hop until it reaches its destination or it reaches 0.
If the Time to Live reaches 0 before the packet reaches its destination, the packet is
discarded.

 f Protocol: This is the IP Protocol ID.

 f Header Checksum: This is the checksum of the IP header.

 f Source Address: This is the IPv4 address of the sender.

 f Destination Address: This is the IPv4 address of the destination.

 f IP Option: This field is normally not used.

The libnet_build_ipv4() functions take the parameters mentioned in the following list;
the list also shows how they are mapped to the fields in the IP header:

 f ip_len: This maps to the Total Length field.

 f tos: This maps to the Type of Service field.

 f id: This maps to the Identification field.

 f frag: This maps to the Fragmentation Offset field.

 f ttl: This maps to the Time to Live field.

 f prot: This maps to the Protocol field.

 f sum: This maps to the Checksum field and is set to 0 (zero) to have libnet autofill the
checksum.

 f src: This maps to the Source Address field.

 f dst: This maps to the Destination Address field.

 f payload: This is the Option payload that is null if there is no payload. It does not
directly map to anything in the header.

 f payload_s: This denotes the size of the payload or 0. It does not directly map to
anything in the header.

 f libnet_t: This is the libnet context that is to be used.

 f ptag: This refers to the Protocol tag if we are modifying an existing header or 0 if
we build a new one.

Whenever we use the libnet library in a project, we will need to run the project as the root (the
super user). This has to do with creating and injecting packets into the network. Generally, this
operation is not permitted for normal users. Luckily for us, Xcode allows us to run our project
as a root.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

88

To run your project as a root, navigate to Project | Scheme | Edit Scheme from the top menu
as shown in the following screenshot:

In the window that opens up, change the Debug Process As selection from Me to root as
shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

89

Note that when you debug your process as root, you will periodically be asked for your
password. Your user needs to be an administrator on the computer for this to work. If you are
not an administrator, you will not be able to debug your application as a root.

Before we get into actually constructing packets, we will need to download and install the
libnet library.

Installing libnet
In this recipe, we will show you how to download and install libnet on your computer. Libnet
was originally maintained on the http://packetfactory.openwall.net/ site; however,
this site has not been updated since 2007. Since then, a number of individuals have forked
the library in an attempt to maintain it. The version that we will be using is the libnet-dev
project located at http://sourceforge.net/.

Getting ready
To get ready for the installation, we will need to download libnet. The projects in this
chapter have been tested with the 1.2-RC2 Version, and you can find this version at
http://sourceforge.net/projects/libnet-dev/files/libnet-1.2-rc2.tar.
gz/download.

Some of the code in this chapter have issues with Version 1.16.
If you currently have 1.16 installed, you will need to update it to
1.2.

How to do it…
Once libnet is downloaded, we can install it by performing the following steps:

1. Open a terminal window by going to Applications | Utilities | Terminal.

Assuming that libnet was downloaded to the Downloads directory, we will want to
go to the Downloads directory, untar the libnet tar file, and then move to the libnet
directory that was created when we untared the libnet tar file:

cd ~/Downloads

tar xopf libnet-1.2-rc2.tar

cd libnet-1.2-rc2

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

90

The actual libnet download is in gzip format with the file name libnet-
1.2-rc.tar.gz. However, if you download the file with Safari, it will
automatically unzip the file for you, leaving you with the file libnet-
1.2-rc2.tar. If you use another browser, you may need to unzip the file
manually before you run the tar command. To unzip the file manually, run
the following command:
gunzip libnet-1.2-rc.tar.gz

2. Now we need to compile and install libnet. If you are familiar with compiling libraries
or applications on other Unix platforms, this should seem pretty familiar to you. From
the libnet directory, run the following commands:
./configure

make

sudo make install

When you run the sudo make install command, you will need to enter your
password to let you run the command as a super user.

3. Let's verify whether we have successfully installed libnet by running the following two
commands:

 � The output should show the libnet directory and the libnet.h file on using
the following command:
ls /usr/local/include | grep libnet

 � The output should show multiple libnet library files: libnet.1.dylib,
libnet.9.dylib, libnet.a, libnet.dylib, and libnet.la on using
the following command:

ls /usr/local/lib | grep libnet

How it works…
The ./configure, make, and sudo make install commands are pretty much the
standard commands used for installing applications and libraries from source on a Unix-
based system. The ./configure command configures the source for your system. The
make command reads the Makefile created by the ./configure command and builds
the application/library. The sudo make install command installs the application/library.
The make install command usually requires super user privileges so it can install files to a
system directory, which is why we have sudo before it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

91

Adding libnet to your project
Once libnet is installed, we need to add it to our project to be able to use it. There are a
number of ways to do this; we will be covering the recommended way in this recipe.

Getting ready
Before we can add libnet to our project, we need to install it on our system. The Installing
libnet recipe in this chapter covers how to do this.

How to do it…
Once the project is created, we will need to follow the ensuing steps to add libnet to it:

1. Begin by selecting the project in Xcode. Select Target and then select Build Settings;
you should be able to see something similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

92

2. Scroll down in the Build Settings until you get to the Linking section. Under the
Other Linker Flags option, add -lnet.

3. Now scroll down until you reach the Search Paths section and add /usr/local/
lib to Library Search Paths as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

93

4. Finally, we will want to add /usr/local/include to the header's search path.
This will allow us to import the libnet.h header file without having to give the full
path to it.

How it works…
When we add -lnet to Other Linker Flags, we are telling Xcode to link the libnet library to our
project. The only problem with linking libnet to our project is that the library is located in the
/usr/local/lib directory, which Xcode does not know about. This is why we add /usr/
local/lib to the Library Search Path setting. This tells Xcode to also look in /usr/local/
lib for libraries that it needs.

Resolving names to addresses with libnet
In this recipe, we learn how to resolve DNS names (such as www.packtpub.com) to IP
addresses using libnet. This recipe will introduce libnet functions that will resolve the address
from the DNS name and display the address. It will also introduce the libnet_init() and
libnet_destroy() functions.

The libnet_init() function initializes and returns a libnet context. This context is the
center of everything that libnet does. A libnet context should be initialized prior to using any
of the libnet functions. The context should also be destroyed, using the libnet_destroy()
function, once it is no longer needed.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

94

Getting ready
Prior to running the examples in the chapter, we will need to download and install libnet (see
the Installing libnet recipe of this chapter). You will also need to add libnet to your project (see
the Adding libnet to your project recipe of this chapter).

Don't forget that if we wish to run our project within Xcode, we will need to change the scheme
Debug Process As setting to run the project as root (see the Introduction of this chapter for
directions on how to do this).

How to do it…
We will be resolving www.packtpub.com to its IPv4 and IPv6 addresses.

Importing the libnet header
At the top of your class, you will need to have the following line to import the libnet header:

#import "libnet.h"

For resolving www.packtpub.com to its IPv4 and IPv6 addresses, use the following code:

 libnet_t *lnet;
 char errbuf[LIBNET_ERRBUF_SIZE];
 u_int32_t addr;
 struct libnet_in6_addr addr6;
 char ipv6addr[64];

 char addr_str[] = "www.packtpub.com";

 lnet = libnet_init(LIBNET_RAW4, NULL, errbuf);
 if (lnet == NULL) {
 NSLog(@"libnet_init() failed: %s", errbuf);
 exit(EXIT_FAILURE);
 }
 //IPv4
 addr = libnet_name2addr4(lnet, addr_str, LIBNET_RESOLVE);
 NSLog(@"%s",libnet_addr2name4(addr, LIBNET_DONT_RESOLVE));
 //IPv6
 addr6 = libnet_name2addr6(lnet, addr_str, LIBNET_RESOLVE);
 libnet_addr2name6_r(addr6, LIBNET_DONT_RESOLVE, ipv6addr,
sizeof(ipv6addr));
 NSLog(@"%s",ipv6addr);

 libnet_destroy(lnet);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

95

We start off by declaring the variables we will be using within our code.

Most lnet examples you see in books or on the Internet use the
name l for the libnet context, so usually, the declaration looks like this:
libnet_t *l. Personally, I like using variable names that are longer
than one character so they have meaning when I read code. So I usually
use the variable name of lnet for the libnet context.

This is just my personal preference and either l or lnet will work equally
well.

The libnet_init() function is used to initiate the libnet context. We should initiate the
context before calling any other libnet functions. The libnet_init() function takes the
following three arguments:

 f Injection type: For everything in this chapter we will be using LIBNET_RAW4. The
other types are LIBNET_LINK, LIBNET_LINK_ADV, LIBNET_RAW4, LIBNET_RAW4_
ADV, LIBNET_RAW6, and LIBNET_RAW6_ADV.

 f Device: This is the name of the interface to be used, or we set it to NULL to let libnet
choose the interface.

 f Error Buffer: This is a buffer that will contain any errors if something goes wrong with
the request.

After we initiate the libnet context, we verify that the libnet context was properly initialized.
If it wasn't initialized properly, we display the error and exit, otherwise we call the libnet_
name2addr4() function. This function will take a char array and return a network-byte-
ordered IPv4 address. In our example, the char array contains a hostname (such as www.
packtpub.com), but it can also contain an IP address.

The libnet_name2addr4() function accepts the following three arguments:

 f libnet_t *lnet: This is a pointer to the libnet context to use.

 f host_name: This is a pointer to the char array containing the name.

 f uint8_t use_name: This can be either LIBNET_RESOLVE or LIBNET_DONT_
RESOLVE. If the char array contains a hostname such as www.packtpub.com,
we would want the libnet_name2addr() function to perform a DNS lookup prior
to creating the network-byte-ordered IPv4 address; therefore, we would set this to
LIBNET_RESOLVE. If the hostname contained an IP address, we would not want
libet_name2addr4() to perform a DNS lookup, so we would use LIBNET_DONT_
RESOLVE.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

96

Once we have the address in a network-byte-ordered format, we need to convert it to a
presentable form. In the preceding example, we used the libnet_addr2name4() function
but we set the use_name parameter to LIBNET_DONT_RESOLVE. This function takes a
network-byte-ordered IPv4 address and returns a pointer to a char array containing the IP
address in a format that we can present. This function takes two arguments:

 f uint32_t in: The network-byte-ordered IPv4 address.

 f uint8_t use_name: This can be either LIBNET_RESOLVE or LIBNET_DONT_
RESOLVE. If we wish to get the hostname of the device we would set this to LIBNET_
RESOLVE. If we wish to get the IP address to a presentable format, we would set this
to LIBNET_DONT_RESOLVE.

The libnet_name2addr4() and libnet_addr2name4() functions work only with
IPv4 addresses. Libnet also provides functions for IPv6 functions. We use the libnet_
name2addr6() function to return the libnet_in6_addr structure containing a network-
byte-ordered IPv6 address. This function takes the same arguments as the libnet_
name2addr4() function described previously.

Once we have the IPv6 address in the libnet_in6_addr structure, we need to convert it
to a presentable form. We can do this with the libnet_addr2name6_r() function. This
function accepts the following four arguments:

 f libnet_in6_addr *addr: This is the libnet_in6_addr structure we previously
created using the libnet_name2addr6() function.

 f uint8_t use_name: This can be either LIBNET_RESOLVE or LIBNET_DONT_
RESOLVE. If we wish to get the hostname of the device we would set this to LIBNET_
RESOLVE. If we wish to get the IP address to a presentable form, we would set this to
LIBNET_DONT_RESOLVE.

 f char* ipv6addr: This is the char array that will contain the hostname or IPv6
address if the libnet_addr2name6_r() function was successful.

 f int ipv6addr_len: This gives the maximum size of the ipv6addr char array.

Finally, we call the libnet_destroy() function to properly release our libnet context.

How it works…
When you use libnet, the first thing you need to do is to create a libnet context. This is done
using the libnet_init() function. Once you create a libnet context, always remember
to release it properly by using the libnet_destroy() function. If you do not release the
context properly, your application will have leaks.

Once we had the libnet context, we use the libnet_name2addr4() function to perform a
DNS lookup for the hostname and return a network-byte-ordered IPv4 address. We then used
the libnet_addr2name4() function to convert the network-byte-ordered IPv4 address into
a form that we could display.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

97

For the IPv6 address, we used the libnet_name2addr6() function to perform a
DNS lookup for the hostname and return a libnet_in6_addr structure containing the
network-byte-ordered IPv6 address. We then used the libnet_addr2name6() function to
convert the libnet_in6_addr structure to a form that we could display.

Retrieving local addresses with libnet
Within the libnet library, there are a number of instances where you will need the local
addresses (hardware and/or IP addresses). If we were sending a packet, we will need to know
the hardware address of the device at the Link layer. For the IP headers, we need to know the
IP addresses (either IPv4 or IPv6) so that we can put it in the Source Address field.

In this recipe, we will show how to retrieve and display the hardware, IPv4, and IPv6 addresses
using libnet.

Getting ready
Prior to running the examples in the chapter, we will need to download and install libnet (see
the Installing libnet recipe of this chapter). You will also need to add libnet to your project (see
the Adding libnet to your project recipe of this chapter.

If we wish to run our project within Xcode, we will need to change the scheme Debug Process
As setting to run as root, as described in the Introduction section of this chapter.

How to do it…
Let's get the local addresses of our device.

Importing the libnet header
At the top of your class, you will need to import the libnet header:

#import <libnet.h>

Retrieving the local IP and hardware addresses of our device
Use the following code for retrieving the local IP and hardware addresses of our device:

 libnet_t *lnet;
 char errbuf[LIBNET_ERRBUF_SIZE];
 u_int32_t addr;
 struct libnet_in6_addr addr6;
 char ipv6addr[64];
 struct libnet_ether_addr *mac_addr;
 lnet = libnet_init(LIBNET_RAW4, NULL, errbuf);

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

98

 if (lnet == NULL) {
 NSLog(@"Error with libnet_init(): %s", errbuf);
 exit(EXIT_FAILURE);
 }
 //IPv4
 addr = libnet_get_ipaddr4(lnet);
 if (addr != -1)
 NSLog(@"IPv4 address: %s\n", libnet_addr2name4(addr,LIBNET_DONT_
RESOLVE));
 else {
 NSLog(@"Error retrieving IP address: %s",libnet_geterror(lnet));
 exit(EXIT_FAILURE);
 }
 //IPv6
 addr6 = libnet_get_ipaddr6(lnet);
 libnet_addr2name6_r(addr6, LIBNET_DONT_RESOLVE, ipv6addr,
sizeof(ipv6addr));
 NSLog(@"%s",ipv6addr);
 //MAC
 mac_addr = libnet_get_hwaddr(lnet);
 if (mac_addr != NULL)
 NSLog(@"MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n",mac_addr-
>ether_addr_octet[0],mac_addr->ether_addr_octet[1],mac_addr->ether_
addr_octet[2],mac_addr->ether_addr_octet[3],mac_addr->ether_addr_
octet[4],mac_addr->ether_addr_octet[5]);
 else
 NSLog(@"Couldn't get my MAC address: %s\n",libnet_
geterror(lnet));
libnet_destroy(lnet);

We begin by declaring the variables that we will be using to retrieve the local IP and hardware
addresses. We use the libnet_init() function to initiate the libnet context. We need to
initiate the context before calling any other libnet functions. The libnet_init() function
takes the following three arguments:

 f Injection Type: For everything in this chapter, we will be using LIBNET_RAW4.
The other types are: LIBNET_LINK, LIBNET_LINK_ADV, LIBNET_RAW4, LIBNET_
RAW4_ADV, LIBNET_RAW6, and LIBNET_RAW6_ADV.

 f Device: This is the name of the interface to use, or we set it to NULL to let libnet
choose the interface.

 f Error Buffer: This buffer contains any errors that occur if something goes wrong
with the request.

We should always verify that the libnet context is properly initialized. If it isn't properly
initialized, we display the error and exit.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

99

We then retrieve and display the IPv4 address for the local device. We do this by using
the libnet_get_ipaddr4() function. This function takes a libnet context as the only
argument. If the context was initialized without a device, this function will attempt to find one.
If the function fails, it will return -1.

If the libnet_get_ipaddr4() function was successful, we use the libnet_
addr2name4() function to convert the network-byte-ordered IPv4 address to a char
array that we can display. The libnet_addr2name4() function takes the following two
arguments:

 f uint32_t in: This is the network-byte-ordered IPv4 address.

 f uint8_t use_name: This can be either LIBNET_RESOLVE or LIBNET_DONT_
RESOLVE. If we wish to get the hostname of the device, we would set this to LIBNET_
RESOLVE. If we wish to get the IP address to a presentable form, we would set it to
LIBNET_DONT_RESOLVE.

Now, we retrieve and display the IPv6 address of the local device. To do this, we use the
libnet_get_addr6() function. This function takes a libnet context as its only argument. If
the context was initialized without a device, the function will attempt to find one, just like the
libnet_get_addr4() function does. If the function fails and returns an in6addr_error,
we can use libnet_geterror() to tell us what happened.

We use the libnet_addr2name6_r() function to convert the libnet_in6_addr structure
to a form that we can display. This function accepts the following four arguments:

 f libnet_in6_addr *addr: This is the libnet_in6_addr structure we previously
created using the libnet_name2addr6() function.

 f uint8_t use_name: This can be either LIBNET_RESOLVE or LIBNET_DONT_
RESOLVE. If we wish to get the hostname of the device, we would set this to LIBNET_
RESOLVE. If we wish to get the IP address to a presentable form, we would set this to
LIBNET_DONT_RESOLVE.

 f char* ipv6addr: This is the char array that will contain the hostname or IPv6
address if the libnet_addr2name6_r() function was successful.

 f int ipv6addr_len: This is the maximum size of the ipv6addr char array.

If there was an error retrieving the IPv6 address, the char array will contain ffff:ffff:fff
f:ffff:ffff:ffff:ffff:ffff.

Finally, we retrieve and display the hardware address for the local device. To do this, we
use the libnet_get_hwaddr() function. This function takes a libnet context as the only
argument. If the context was initialized without a device, the function will attempt to find
one. If the function fails, it will return NULL, otherwise it will return a libnet_ether_addr
structure that contains the hardware address.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

100

We need to call the libnet_destroy() function to release our libnet context properly.
It is important that we remember to call this function, otherwise our application will have
memory leaks.

How it works…
To retrieve the local addresses, we used the following libnet functions:

 f libnet_get_ipaddr4(): This retrieves the local IPv4 address

 f libnet_get_ipaddr6(): This retrieves the local IPv6 address

 f libnet_get_hwaddr(): This retrieves the local hardware address

If we were to use the addresses in conjunction with other libnet functions (such as populating
fields of a header), we would use the results as they are returned by these functions. However,
in this recipe, we convert the results to a form that we could display.

Constructing a Ping packet with libnet
In this recipe, we will construct an ICMP (Ping) packet and inject it into the network. The
device that receives the packet should respond back with an ICMP response packet. However,
libnet is a packet construction and an injection library, not a packet capture library, so we will
use Wireshark (http://www.wireshark.org) to see the packets that we send out and the
packet that is returned. In Chapter 4, Using Libpcap, we will see how to capture packets.

In order to create an ICMP packet and inject it into the network, we will need to create an ICMP
header and an IP header. The IP header and the corresponding libnet_build_ipv4()
function were covered in the Introduction section of this chapter, so we will not cover that in
detail here. We will cover the ICMP header and the libnet_build_icmpv4_echo() function
in depth. There are a number of different ICMP types; in this recipe, we will be covering the Echo
(request). The following diagram shows what the ICMP header looks like:

The following list gives a brief explanation of each of the fields in the ICMP header:

 f ICMP Type: This identifies the ICMP message type. The Echo request message is
type 8, while the Echo reply is type 0.

 f code: This is not used in the Echo reply so this is set to 0.

 f Checksum: This is the checksum for the ICMP header.

 f Identifier: This is the identification field that can be used to match up the Echo
request with the Echo reply.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

101

 f Sequence Number: This is a sequence number that can also be used to match up
an Echo request with the Echo reply.

 f Optional Data (payload): This is the additional data that is sent with the header.

The libnet_build_icmpv4_echo() function takes the following arguments. The list also
shows how they match up with the ICMP header fields:

 f type: This maps to the ICMP Type field. In our example, we will use the ICMP_ECHO
type defined in the libnet-headers.h file. This header is included when you
import the libnet.h header.

 f code: This maps to the Code field. It will be 0 in our example.

 f sum: This maps to the Checksum field. If we set it to 0, libnet will autofill it.

 f id: This maps to the Identifier field.

 f seq: This maps to the Sequence Number field.

 f payload: This maps to the Optional Data (payload) field.

 f payload_s: This is the size of the payload.

 f lnet: This is the libnet context that is to be used.

 f ptag: This is the protocol tag we use if we are modifying an existing header or 0 to
build a new one.

Getting ready
Prior to running the examples in the chapter, we will need to download and install libnet (see
the Installing libnet recipe of this chapter). You will also need to add libnet to your project (see
the Adding libnet to your project recipe of this chapter).

If we wish to run our project within Xcode, we will need to change the scheme Debug Process
As setting to run as root, as described in the Introduction section of this chapter.

How to do it…
Let's create and inject our first packet.

Importing the libnet header
At the top of your class, you will need to import the libnet header:

#import <libnet.h>

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

102

Defining variables
Use the following code for defining variables:

 libnet_t *lnet;
 u_int32_t target, source;
 u_int16_t id,seq;
 char payload[] = "Hello from libnet";
 char errbuf[LIBNET_ERRBUF_SIZE];

We start by setting up the variables that we will be using. We will be including an optional
payload, which is the text in the payload char array.

Initiating the libnet context
Use the following code for initiating the libnet context:

 lnet = libnet_init(LIBNET_RAW4, NULL, errbuf);
 if (lnet == NULL) {
 NSLog(@"Error with libnet_init(): %s", errbuf);
 exit(EXIT_FAILURE);
 }

We use the libnet_init() function to initiate the libnet context. We need to initiate the
context before calling any other libnet functions. The libnet_init() function takes the
following three arguments:

 f Injection Type: For everything in this chapter we will be using LIBNET_RAW4.
The other types are: LIBNET_LINK, LIBNET_LINK_ADV, LIBNET_RAW4, LIBNET_
RAW4_ADV, LIBNET_RAW6, and LIBNET_RAW6_ADV.

 f Device: This is the name of the interface that is to be used, or else we set it to NULL
to let libnet choose the interface.

 f Error Buffer: This is a buffer that contains the errors if something goes wrong
with the request.

Setting the target and source IP addresses
Use the following code for setting the target and source IP addresses:

target = libnet_name2addr4(lnet, 10.0.0.1, LIBNET_DONT_RESOLVE);
source = libnet_get_ipaddr4(lnet);
if (source == -1) {
 NSLog(@"Error retrieving IP address: %s",libnet_geterror(lnet));
 libnet_destroy(lnet);
 exit(EXIT_FAILURE);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

103

We use the libnet_name2addr4() function to get the network-byte-ordered IPv4
address of the target device (the device we are sending the ICMP packet to). The libnet_
name2addr4() function accepts the following three arguments:

 f libnet_t *lnet: This is a pointer for the libnet context to be used.

 f host_name: This is a pointer to the char array containing the name.

 f uint8_t use_name: This can be either LIBNET_RESOLVE or LIBNET_DONT_
RESOLVE. If the char array contained a hostname such as www.packtpub.com,
we would want libnet_name2addr4() to perform a DNS lookup to resolve the
name prior to creating the network-byte-ordered IPv4 address; therefore, we would
use LIBNET_RESOLVE. If the char array contains an IP address we would not want
libet_name2addr4() to perform a DNS lookup, so we would use LIBNET_DONT_
RESOLVE.

We then use the libnet_get_ipaddr4() function to retrieve the IPv4 address of our local
device. This function takes a libnet context as the only argument. If the context was initialized
without a device, the function will attempt to find one. If the function fails, it will return -1.

Creating a random number to be used as an identifier
To create a random number to be used as an identifier, use the following code:

/* Generating a random id */
libnet_seed_prand (lnet);
id = (u_int16_t)libnet_get_prand(LIBNET_PR16);

The libnet_seed_prand() seeds the pseudo-random number generator. The LIBNET_
PR16 constant specifies a number between 0 and 32767.

Building the ICMP header
Use the following code for building the ICMP header:

/* Building ICMP header */
seq = 1;

if (libnet_build_icmpv4_echo(ICMP_ECHO,
 0,
 0,
 id,
 seq,
 (u_int8_t*)payload,
 sizeof(payload),
 lnet,
 0) == -1)
{

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

104

 NSLog(@"Error building UDP header: %s\n",libnet_geterror(lnet));
 libnet_destroy(lnet);
 exit(EXIT_FAILURE);
}

To build the ICMP header, we use the libnet_build_icmpv4_echo() function. We
covered how the parameters map to the ICMP Echo header in the introduction section of this
recipe. The values of each parameter are as follows:

 f type: This is ICMP_ECHO (8), which specifies that this is an Echo request

 f code: This is 0 and it is not used for the ICMP Echo request

 f sum: This is set to 0 to let libnet generate the checksum

 f id: This is the pseudo-random number that we generated

 f seq: This is the seq variable that is set to 1

 f payload: This is our payload

 f payload_s: This is our payload sized

 f lnet: This is the libnet context to be used with this header

 f ptag: This is set to 0 to generate a new header

Building the IPv4 header
Use the following code for building the IPv4 header:

/* Building IP header */

if(libnet_build_ipv4(LIBNET_IPV4_H + LIBNET_ICMPV4_ECHO_H +
sizeof(payload),
 0,
 id,
 0,
 64,
 IPPROTO_ICMP,
 0,
 source,
 target,
 NULL,
 0,
 lnet,
 0) == -1)
{
 NSLog(@"Error building IP header: %s\n",libnet_geterror(lnet));
 libnet_destroy(lnet);
 exit(EXIT_FAILURE);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

105

To generate the IPv4 header, we use the libnet_build_ipv4() function. We covered this
function and how the parameters map to the header fields in the Introduction section of this
chapter. The values for each parameter are as follows:

 f ip_len: This is the size of the IPv4 header, the ICMPv4 header, and the payload
added together

 f tos: We are not using this, so we set it to 0

 f id: This is the pseudo-random number that is generated

 f frag: This is not fragmented, so the offset is 0

 f ttl: This is set to a maximum of 64 hops

 f prot: Protocol type is set to IPPROTO_ICMP

 f sum: This is set to 0 to let libnet autofill

 f src: This is the source IPv4 address

 f dst: This is the destination IPv4 address

 f payload: This sets the payload to Null

 f payload_s: This sets the payload size to 0

 f libnet_t: This is the libnet context

 f ptag: This is set to 0 and, therefore, a new header is built

Injecting the ICMP packet
We use the libnet_write()function to inject the ICMP packet in the following manner:

/* Writing packet */
int bytes_written = libnet_write(lnet);
if (bytes_written != -1)
 printf("%d bytes written to device %s.\n", bytes_written,
 libnet_getdevice(lnet));
else
 NSLog(@"Error writing packet: %s\n",libnet_geterror(lnet));

libnet_destroy(lnet);

The libnet_write() function returns the number of bytes written, or -1 if the operation
fails. If the operation is successful, we log the number of bytes written; otherwise, we log the
error message .

Don't forget to release the libnet context using the libnet_destory() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

106

How it works…
The steps to create and send an ICMP packet are as follows:

1. Create the libnet context using the libnet_init() function.

2. Get the target IPv4 address using the libnet_namte2addr4() function.

3. Get the source IPv4 address using the libnet_getaddr4() function.

4. Create the ICMPv4 Echo header using the libnet_build_icmpv4_echo()
function.

5. Create the IPv4 header using the libnet_build_ipv4() function.

6. Send the packet out with the libnet_write() function.

7. Release the libnet context with the libnet_destroy() function.

If you use Wireshark to watch the packet go out and to see the response, it would look
something like this:

Constructing a UDP packet with libnet
The User Datagram Protocol (UDP) sends datagrams to other hosts on an IP network without
any prior handshaking to set up the communication channel between the devices. A datagram
is just a packet (like an ICMP or TCP packet), except that the delivery, arrival time, and
sequence are not guaranteed. The UDP protocol is considered to be an unreliable protocol
because there is no guarantee of delivery.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

107

The minimalist approach of UDP makes it ideal for real-time applications, such as Voice over
IP, online games and streaming media, where dropping of packets is preferred over waiting
for delayed packets. If guarantee of delivery is needed so that packets are not dropped,
applications should use TCP or SCTP instead of UDP.

In this recipe, we will be creating a UDP packet and sending it to a remote device. We will use
Wireshark (http://www.wireshark.org) to see the packets that we send out, however,
we will not see any return packet because UDP on its own does not send a response.

In order to create a UDP packet and write it to the network, we will need to create a UDP
header and an IP header. The IP header and the corresponding libnet_build_ipv4()
function were covered in the Introduction section of this chapter, so it will not be covered here
in detail. We will be looking at the libnet_build_udp() function and the UDP header as
shown in the following diagram:

The following list gives a brief explanation of each of the fields in the UDP header:

 f Source Port: This identifies the port used by the sender, and we can assume that
any reply can be sent to this port. If no reply is needed or wanted, then we should set
this port to 0, indicating that we are not expecting a reply.

 f Destination Port: This identifies the port on the client that the datagram packet
is going to. This port should be a valid port number between 0 and 65535.

 f Length: This is the size of the UDP header and the payload.

 f Checksum: This is the checksum for the UDP header.

The arguments taken by the libnet_build_udp() function and how they match up with
the UDP header fields are mentioned in the following list:

 f sp: This maps to the Source Port field

 f dp: This maps to the Destination Port field

 f len: This maps to the Length field

 f sum: This maps to the Checksum field

 f payload: This maps to the Optional Data (payload) field

 f payload_s: This is the payload size

 f lnet: This is the libnet context that is used with this header

 f ptag: This is a protocol tag that is used if we are modifying an existing header or 0 to
build a new one

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

108

Getting ready
Prior to running the examples in the chapter, we will need to download and install libnet (see
the Installing libnet recipe of this chapter). We will also need to add libnet to our project (see
the Adding libnet to your project recipe of this chapter).

If we wish to run the project within Xcode, we will need to change the scheme Debug Process
As setting to run as root, as described in the Introduction section of this chapter.

How to do it…
Let's create and inject a UDP packet.

Importing the libnet header
At the top of your class, you will need to import the libnet header using the following code:

#import <libnet.h>

Defining Variables
 libnet_t *lnet;
 u_int32_t target, source;
 u_int16_t id,seq;
 char payload[] = "Hello from libnet";
 char errbuf[LIBNET_ERRBUF_SIZE];

We start off by setting up the variables that we will be using to create and inject our UDP
packet. We will be including an optional payload, which is the text of the payload char array.

Initiating the libnet context
Use the following code for initiating the libnet context:

 lnet = libnet_init(LIBNET_RAW4, NULL, errbuf);
 if (lnet == NULL) {
 NSLog(@"Error with libnet_init(): %s", errbuf);
 exit(EXIT_FAILURE);
 }

We use the libnet_init() function to initiate the libnet context. The libnet context needs
to be initiated before calling any other libnet functions. The libnet_init() function takes
three arguments:

 f Injection Type: For everything in this chapter, we will be using LIBNET_RAW4.
The other types are: LIBNET_LINK, LIBNET_LINK_ADV, LIBNET_RAW4, LIBNET_
RAW4_ADV, LIBNET_RAW6, and LIBNET_RAW6_ADV.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

109

 f Device: The interface to use or NULL to let libnet choose the interface.

 f Error Buffer: This is a buffer that will contain any errors if something goes wrong
with the request.

We then verify that the libnet context was properly initialized. If it wasn't properly initialized, we
display the error and exit.

Setting the target and source IP addresses
Use the following code for setting the target and source IP addresses:

target = libnet_name2addr4(lnet, "10.0.0.1", LIBNET_DONT_RESOLVE);
source = libnet_get_ipaddr4(lnet);
 if (source == -1) {
 NSLog(@"Error retrieving IP address:
 %s",libnet_geterror(lnet));
 libnet_destroy(lnet);
 exit(EXIT_FAILURE);
 }

The libnet_name2addr4() function gets the network-byte-ordered IPv4 address. This
function accepts the following three arguments:

 f libnet_t *lnet: This is a pointer to the libnet context to be used.

 f host_name: This is a pointer to the char array containing the name.

 f uint8_t use_name: This can be either LIBNET_RESOLVE or LIBNET_DONT_
RESOLVE. If the char array contained a hostname such as www.packtpub.com,
we would want libnet_name2addr4() to perform a DNS lookup to resolve the
name prior to creating the network-byte-ordered IPv4 address, therefore, we would
use LIBNET_RESOLVE. If the hostname contained an IP address, we would not want
libnet_name2addr4() to perform a DNS lookup so we would use LIBNET_DONT_
RESOLVE.

We use the libnet_get_ipaddr4() function to retrieve the IPv4 address. This function
takes the libnet context as the only argument. If the context was initialized without a device,
the function will attempt to find one; if it fails it will return -1.

Creating a random number to be used as an identifier
Use the following code to create a random number to be used as an identifier:

 /* Generating a random id */
 libnet_seed_prand (lnet);
 id = (u_int16_t)libnet_get_prand(LIBNET_PR16);

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

110

The libnet_seed_prand seeds the pseudo-random number generator. The libnet_get_
prand() function generates a pseudo-random value within the rand value specified. The
LIBNET_PR16 constant specifies a number between 0 and 32767.

Building the UDP header
Use the following code to build the UDP header:

 /* Building UDP header */
 seq = 1;

 if (libnet_build_udp(
 libnet_get_prand (LIBNET_PRu16),
 101,
 LIBNET_UDP_H+ sizeof(payload),
 0,
 (u_int8_t*)payload,
 sizeof(payload),
 lnet,
 0) == -1)
 {
 NSLog(@"Error building ICMP header: %s\n",libnet_
geterror(lnet));
 libnet_destroy(lnet);
 exit(EXIT_FAILURE);
 }

The UDP header is generated using the libnet_build_udp() function. We covered how
the parameters map to the UDP header in the introduction section of this recipe. The values
of each parameter are as follows:

 f sp: We use the libnet_get_prand() function to generate a random port to be
used for the source port.

 f dp: This is the destination port. We are sending packets to port 101 on the
destination device.

 f len: This is the size of the UDP header and the payload size added together to give
us the total size.

 f sum: This is set to 0, so libnet will autofill.

 f payload: This is our payload.

 f payload_s: This is our payload size.

 f lnet: This is the libnet context to be used with this header.

 f ptag: This is set to 0 for generating a new header.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

111

Building the IPv4 header
Use the following code to build the IPv4 header:

 /* Building IP header */

 if(libnet_build_ipv4(LIBNET_IPV4_H + LIBNET_UDP_H + sizeof(payload),
 0,
 id,
 0,
 64,
 IPPROTO_UDP,
 0,
 source,
 target,
 NULL,
 0,
 lnet,
 0) == -1)
 {
 NSLog(@"Error building IP header: %s\n",libnet_geterror(lnet));
 libnet_destroy(lnet);
 exit(EXIT_FAILURE);
 }

We generate the IPv4 header using the libnet_build_ipv4() function. We covered the
libnet_build_ipv4() function and how the parameters map to the header fields in the
Introduction section of this chapter. The values for each parameter are as follows:

 f ip_len: This is the size of the IPv4 header, the UDP header, and the payload added
together

 f tos: We are not using this so we set it to 0

 f id: This is the pseudo-random number

 f frag: This is not fragmented so the offset is 0

 f ttl: This is set to a maximum of sixty-four hops

 f prot: The protocol type is set to IPPROTO_UDP

 f sum: This is set to 0 to have libnet autofill

 f src: This is the source IPv4 address

 f dst: This is the destination IPv4 address

 f payload: This is set to Null

 f payload_s: The payload size is 0

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

112

 f libnet_t: This is the libnet context

 f ptag: This is set to 0 to build a new header

Injecting the packet
Use the following code for injecting the packet:

 /* Writing packet */
 int bytes_written = libnet_write(lnet);
 if (bytes_written != -1)
 NSLog(@"%d bytes written to device %s.\n", bytes_written, libnet_
getdevice(lnet));
 else
 NSLog(@"Error writing packet: %s\n",libnet_geterror(lnet));

 libnet_destroy(lnet);

We use the libnet_write() function to inject the UDP packet. The libnet_write()
function returns the number of bytes written, or -1 if the operation fails. If the operation is
successful, we log the number of bytes written, otherwise we log the error message.

Finally, we use the libnet_destory() function to release the libnet context.

How it works…
The steps to create and send a UDP packet are as follows:

1. Create the libnet context using the libnet_init() function.

2. Get the target IPv4 address using the libnet_namte2addr4() function.

3. Get the source IPv4 address using the libnet_getaddr4() function.

4. Create the UDP header using the libnet_build_udp() function.

5. Create the IPv4 header using the libnet_build_ipv4() function.

6. Send out the packet with the libnet_write() function.

7. Release the libnet context with the libnet_destroy() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

113

If you use Wireshark to watch the packet get injected it would look like the following screenshot:

Constructing a TCP packet with libnet
Using Transmission Control Protocol (TCP), a device sends packets to other devices on
an IP network. TCP is designed to provide a reliable, ordered, and error-checked delivery of
packets between applications. This does add additional overheads as compared to UDP, so
applications that do not require reliability should use UDP instead.

When a device wants to communicate with another device using TCP, a three-way handshake
must occur. The first device begins by sending a TCP packet with the SYN flag set. This is like
saying, "Hi Joe. Can we talk?" The remote device is supposed to respond with a packet that
has the SYN/ACK (synchronize/acknowledge) flags set, which is like Joe saying, "Sure, we
can talk. What's up?" The three-way handshake is completed when the first device responds
again with a packet that has the ACK flag set. This is like responding to Joe by saying, "Good,
because I have something important to tell you."

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

114

The following diagram shows the three-way handshake:

Once the three-way handshake is completed, the connection is considered to be established,
which means the communication between the two devices can begin.

In order to create a TCP packet and inject it to the network, we will need to create a TCP header
and an IP header. The IP header and the corresponding libnet_build_ipv4() function were
covered in the Introduction section of this chapter, so we will not cover it in detail here. We will
be looking at the TCP header and the libnet_build_TCP() function here.

The following list explains the fields in the preceding diagram:

 f Source Port: This identifies the port from where the packet is being sent.

 f Destination Port: This identifies the port on the client that the TCP packet is
going to.

 f Sequence Number: This is the initial sequence number for this session if the SYN
flag is set. If the SYN flag is not set then this is the sequence number of the first data
byte of this segment for this session.

 f Acknowledgement Number: If the ACK flag is set, this value is the next sequence
number that the receiver is expecting. The first ACK that is sent by both ends of the
communication acknowledges the other end's initial sequence number.

 f Data Offset: This gives the size of the TCP header.

 f Reserved: This is reserved for future use and should be set to 0.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

115

 f Flags: This refers to the TCP flags, which are as follows:

 � NS: Explicit Congestion Notification (ECN)-nonce that protects against
concealment.

 � CWR: This stand for Congestion Window Reduced.

 � ECE: This indicates that the TCP peer is ECN capable if the SYN flag is also
set.

 � URG: This indicates that the Urgent Pointer field of the header is
significant.

 � ACK: This indicates that the acknowledgment field is significant. All packets
after the initial SYN packet should have this flag set.

 � PSH: This indicates the need to push the data up to the receiving application
immediately and not wait for additional packets to fill the buffer.

 � RST: This resets the connection.

 � SYN: This synchronizes the sequence numbers; this flag is set in the first
packet sent from one device to another.

 � FIN: This indicates that the device has finished talking.

 f Window: This is the maximum size of data the sender of this segment is willing to
accept from the receiver at one time.

 f Checksum: This is the checksum for the TCP header.

 f Urgent Pointer: This is used in conjunction with the URG flag. This field contains
the sequence number for the last byte of urgent data.

The following list shows the arguments the libnet_build_tcp() function takes and how
they match up with the TCP header fields:

 f sp: This maps to the Source Port field

 f dp: This maps to the Destination Port field

 f seq: This maps to the Sequence Number field

 f ack: This maps to the Acknowledgment Number field

 f control: This maps to the Flags field

 f win: This maps to the Window field

 f sum: This maps to the Checksum field

 f urg: This maps to the Urgent Pointer field

 f len: This shows the size of the TCP packet field

 f payload: This maps to the optional data (payload) field

 f payload_s: This gives the payload size

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

116

 f lnet: This is the libnet context to be used with this header

 f ptag: This is the protocol tag if we are modifying an existing header or 0 to build a
new one

Getting ready
Prior to running the examples in the chapter, we will need to download and install libnet (see
the Installing libnet recipe of this chapter). We will also need to add libnet to our project (see
the Adding libnet to your project recipe of this chapter).

If we wish to run our project within Xcode, we will need to change the scheme Debug Process
As setting to run as root, as described in the Introduction section of this chapter.

How to do it…
Let's create and inject a TCP packet.

Importing the libnet header
At the top of your class, you will need to import the libnet header:

#import <libnet.h>

Defining variables
Use the following code for defining variables:

 libnet_t *lnet;
 u_int32_t target, source;
 u_int16_t id,seq;
 char payload[] = "Hello from libnet";
 char errbuf[LIBNET_ERRBUF_SIZE];

We start off by declaring the variables we will be using to create and inject our TCP packet. We
will be including an optional payload, which is the text in the payload char array.

Initiating the libnet context
To initiate the libnet context, use the following code:

 lnet = libnet_init(LIBNET_RAW4, NULL, errbuf);
 if (lnet == NULL) {
 NSLog(@"Error with libnet_init(): %s", errbuf);
 exit(EXIT_FAILURE);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

117

We use the libnet_init() function to initiate the libnet context. We should initiate
the context before calling other libnet functions. The libnet_init() function takes
three arguments:

 f Injection Type: For everything in this chapter, we will be using LIBNET_RAW4.
The other types are: LIBNET_LINK, LIBNET_LINK_ADV, LIBNET_RAW4, LIBNET_
RAW4_ADV, LIBNET_RAW6, and LIBNET_RAW6_ADV.

 f Device: The interface to use or NULL to let libnet choose the interface.

 f Error Buffer: This is a buffer that will contain any errors if something goes wrong
with the request.

We then verify whether the libnet context was properly initialized. If it wasn't, we display the
error and exit.

Setting the target and source IP addresses
We use the libnet_name2addr4() function to get the network-byte-ordered IPv4 address.

The libnet_name2addr4()function accepts the following three arguments:

 f libnet_t *lnet: This is a pointer to the libnet context to use.

 f host_name: This is a pointer to the char array containing the name.

 f uint8_t use_name: This can be either LIBNET_RESOLVE or LIBNET_DONT_
RESOLVE. If the char array contained a hostname such as www.packtpub.com,
we would want libnet_name2addr4() to perform a DNS lookup to resolve the
name prior to creating the network-byte-ordered IPv4 address; therefore, we would
use LIBNET_RESOLVE. If the hostname contained an IP address, we would not want
libet_name2addr4() to perform a DNS lookup, so we would use LIBNET DONT_
RESOLVE.

target = libnet_name2addr4(lnet, "10.0.0.1", LIBNET_DONT_RESOLVE);
source = libnet_get_ipaddr4(lnet);
if (source == -1) {
 NSLog(@"Error retrieving IP address: %s",libnet_
geterror(lnet));
 libnet_destroy(lnet);
 exit(EXIT_FAILURE);
 }

We use the libnet_name2addr4() function to get the network-byte-ordered IPv4 address.
It accepts the following three arguments:

 f libnet_t *lnet: This is a pointer to the libnet context to be used.

 f host_name: A pointer to the char array containing the name.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

118

 f uint8_t use_name: This can be either LIBNET_RESOLVE or LIBNET_DONT_
RESOLVE. If the char array contained a hostname such as www.packtpub.com,
we would want libnet_name2addr4() to perform a DNS lookup to resolve the
name prior to creating the network-byte-ordered IPv4 address, therefore, we would
use LIBNET_RESOLVE. If the hostname contained an IP address, we would not
want libet_name2addr4() to perform a DNS lookup, so we would use LIBNET
DONT_RESOLVE.

We use the libnet_get_ipaddr4()function to retrieve the IPv4 address. This function
takes a libnet context as the only argument. If the context was initialized without a device, the
function will attempt to find one; if it fails, it will return -1.

Creating a random number to be used as an identifier
To create a random number to be used as an identifier, use the following code:

 /* Generating a random id */
 libnet_seed_prand (lnet);
 id = (u_int16_t)libnet_get_prand(LIBNET_PR16);

The libnet_seed_prand seeds the pseudo-random number generator. The libnet_get_
prand() generates a pseudo-random value within the rand-specified value. The LIBNET_
PR16 specifies a number between 0 and 32767.

Building the TCP header
Use the following code for building the TCP header:

/* Building TCP header */
 seq = 1;

 if (libnet_build_tcp (libnet_get_prand (LIBNET_PRu16),
 80,
 0,
 0,
 TH_SYN,
 1024,
 0,
 0,
 LIBNET_TCP_H,
 (u_int8_t*)payload,
 sizeof(payload),
 lnet,
 0) == -1)
 {
 NSLog(@"Error building TCP header: %s\n",libnet_geterror(lnet));
 libnet_destroy(lnet);
 exit(EXIT_FAILURE);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

119

We build the TCP header using the libnet_build_tcp() function. In the introduction
section of this recipe, we covered how the parameters map to the TCP header. The values of
each of the parameter are as follows:

 f sp: We use the libnet_get_prand() function to generate a random port to use
for the source port.

 f dp: We use this for sending to port 80 on the destination computer.

 f seq: This denotes the sequence number 0.

 f ack: This is the acknowledgement number of 0.

 f control: This sets the SYN (synchronize flag). For multiple flags, we would OR them
together. For example, if we wanted to set both the SYN and ACK flag, we would set
this field to TH_SYN|TH_ACK.

 f win: This denotes the maximum window size in 1024 octets (bytes).

 f sum: This sets the Checksum to 0 so that libnet autofills.

 f urg: This sets the Urgent Pointer field to 0 because we are not using it.

 f len: This is the size of the TCP header.

 f payload: This is our payload.

 f payload_s: This is the payload size.

 f lnet: This is the libnet context to be used with this header.

 f ptag: This is 0 and is used to generate a new header.

Building the IPv4 header
Use the following code for building the IPv4 header:

 /* Building IP header */

 if(libnet_build_ipv4(LIBNET_TCP_H + LIBNET_IPV4_H + sizeof(payload),
 0,
 id,
 0,
 64,
 IPPROTO_TCP,
 0,
 source,
 target,
 NULL,
 0,
 lnet,
 0) == -1)

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libnet

120

 {
 NSLog(@"Error building IP header: %s\n",libnet_geterror(lnet));
 libnet_destroy(lnet);
 exit(EXIT_FAILURE);
 }

We generate the IPv4 header using the libnet_build_ipv4() function. We covered the
libnet_build_ipv4() function and how the parameters map to the header fields in the
Introduction section of this chapter. The values for each parameter are as follows:

 f ip_len: This is the size of the IPv4 header, the TCP header, and the payload added
together

 f tos: We are not using this so we set it to 0

 f id: This is the pseudo-random number generated on line 24

 f frag: This is not fragmented, so the offset is 0

 f ttl: This is set to a maximum of sixty-four hops

 f prot: This sets the protocol type to IPPROTO_TCP

 f sum: This is set to 0 to have libnet autofill

 f src: This is the source IPv4 address

 f dst: This is the destination IPv4 address

 f payload: The payload is set to Null

 f payload_s: This denotes the payload size as 0

 f libnet_t: This is the libnet context

 f ptag: This is set to 0 to build a new header

Injecting the packet
Use the following code for injecting the packet:

 /* Writing packet */
 int bytes_written = libnet_write(lnet);
 if (bytes_written != -1)
 printf("%d bytes written.\n", bytes_written);
 else
 NSLog(@"Error writing packet: %s\n",libnet_geterror(lnet));

 libnet_destroy(lnet);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

121

We use the libnet_write() function to send out the TCP packet. The libnet_write()
function returns the number of bytes written, or -1 if the operation fails. If the operation is
successful, we log the number of bytes written, otherwise we log the error message.

Finally, we use the libnet_destory()function to release the libnet context.

How it works…
The steps to create and send a TCP packet are as follows:

1. Create the libnet context using the libnet_init() function.

2. Get the target IPv4 address using the libnet_namte2addr4() function.

3. Get the source IPv4 address using the libnet_getaddr4() function.

4. Create the TCP header using the libnet_build_tcp() function.

5. Create the IPv4 header using the libnet_build_ipv4() function.

6. Send out the packet with the libnet_write() function.

7. Release the libnet context with the libnet_destroy() function.

If you use Wireshark to watch the packet getting injected and to see the response, it should
look like the following screenshot:

A lot of experimenting can be done with libnet, especially with the TCP packets. Try setting
different flags and seeing what type of response comes back. In the next chapter, we'll discuss
the libpcap library, which is a packet capture library. In that chapter, we will also discuss how
to use libnet and libpcap together.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

4
Using Libpcap

In this chapter, we will cover:

 f Adding libpcap to your project

 f Retrieving network device information

 f Capturing packets

 f Decoding Ethernet headers

 f Decoding IP headers

 f Decoding ARP headers

 f Decoding TCP headers

 f Decoding UDP headers

 f Decoding ICMP headers

 f Filtering packets

 f Saving a capture file

 f Creating a simple port scanner using libnet and libpcap together

Introduction
In the previous chapter, we discussed libnet, which is a library for constructing and injecting
individual network packets. Being able to create and inject packets into the network is a very
powerful feature, but to really make it useful, we need to be able to read the packets that
come back. This is where libpcap comes in.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

124

While it is possible to compile libpcap for iOS and jailbreak the phone to run
the application as root, Apple would almost certainly reject your application.
The code in this chapter is written and tested for OS X. It may or may not work
for iOS.

The libpcap library is a packet-capturing library that is used by many popular network packet
analyzers, including tcpdump (which maintains the libpcap library) and Wireshark (used
in Chapter 3, Using Libnet). It can also be used for network monitors, intrusion detection
systems, and network testers.

This library provides a cross-platform API to capture, filter, and save packets. It was originally
developed as part of the tcpdump project. The low-level packet capture code was extracted
from the main tcpdump project and made into a library that tcpdump now links to.

Typically, when a network interface receives a packet, it checks to see if the destination MAC
address on the packet matches its own address. If it does match, the interface then sends
the packet up through the protocol stack. When we run a packet analyzer and set the network
interface to the promiscuous mode, copies of all of the packets that the interface receives
(even if the packet is not destined for the device) are sent to the packet capture utility.
Switched networks do offer some protection and require more than just putting a network
interface into the promiscuous mode to see all of the traffic, but the packet capture utility still
receives a copy of all of the packets destined for the device that it is running on.

When a packet is received by the packet capture utility, it is complete with all of the headers.
If you recall from Chapter 3, Using Libnet, a packet is built in layers.

The four layers are as follows:

 f Application layer: This layer is where the application creates the payload. This is
where high-level protocols, such as FTP, HTTP, SMTP, and many more do their work.
The application headers and payload are added in this layer.

 f Protocol layer: This layer provides a uniform networking interface that hides the
underlying network connections. This is where the payload is broken up into multiple
packets (if needed) and reassembled. This layer is where the protocol-specific header,
such as the TCP, UDP, or ICMP is added.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

125

 f Internet layer: Every device on an IP network is identified by a unique address called
an IP address. There are two versions of IP addresses: IPv4 and IPv6. This layer is
where the IP header is added.

 f Link layer: There are many different types of network connections such as Ethernet,
Wi-Fi, Point-to-Point Protocol (PPP), and so on. The Link layer defines the method by
which the host communicates with the network.

Each of these layers wraps or encapsulates the layer above it. We can think of it as an onion
where each layer of the onion completely encompasses all of the layers below it. When we
built the packet with libnet, we built it using the top-down approach by adding the Application
layer first followed by the Protocol, Internet, and Link layers. When we capture a packet with
libpcap, we need to peel the layers away from the bottom-up, starting with the Link layer
followed by the Internet, Protocol, and Application layers.

We will be discussing each header type and the information that it contains in the various
decoding recipes of this chapter. We will also build a PCAP_Headers.h file as we go through
the recipes of this chapter. The PCAP_Headers.h header will contain the structures and
constants that are needed to decode the headers. You can see the entire PCAP_Headers.h
file in the downloadable code for this chapter.

As we go through this chapter's recipes, we will be adding the functions for a packet capture
library. You can see the complete code for the packet capture utility in the PCAPcapture
project from the downloadable code.

Adding libpcap to your project
The first thing that we need to do is add libpcap to our project. Whenever there is a project
that you need to add libpcap to, you need to follow the steps mentioned here.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

126

Getting ready
We need to create an OS X project that we can add the libpcap library to.

How to do it…
Once the project is created, we need to add the library to our project using these steps:

1. Select the project name from the project navigator area within your Xcode project.

2. Select the project name from the TARGET section.

3. Select the Build Phases tab and open the Link Binary With Libraries section.

4. Click on the + sign.

5. Type libpcap in the search box and select the libpcap.dylib library.

Now that we have the library linked to the project, we need to set the application to run as root
for debugging. To do so, follow these steps:

1. To run your project as root, navigate to Product | Scheme | Edit Scheme from the
top menu as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

127

2. In the window that opens up, change the Debug Process As selection from Me to root:

One thing to note is that when you debug the process as root, you will be periodically asked for
your password. You also need to be an administrator for the computer you are working on.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

128

How it works…
In this recipe, we added the libpcap library by linking the libpcap library to our target. We used
the libpcap library that is compiled by Apple and comes with OS X. While you could compile
our own version, if you want to distribute your app it is probably safer to use the version that
comes along with your operating system.

The libpcap library requires root privileges to run since it accesses the network interfaces, so
we set the application to run as root; this allows us to test it within Xcode.

Retrieving network device information
When we start using libpcap, we can specify a particular interface or let libpcap pick one up
for us. In this recipe, we will retrieve a list of the network interfaces that are available and the
address information for those interfaces.

To retrieve all of the devices, we use the pcap_findalldevs() function that returns a
linked list of network interfaces. Each element in the list is of the pcap_if_t type. The
pcap_if_t structure contains the following elements:

 f pcap_if *next: This denotes the next element in the list. The value is NULL if it is
the last element.

 f char *name: This denotes the name of the device. This name can be passed to
other functions to identify the device.

 f char *description: This description provides a human-readable description of
the device.

 f pcap_addr *addresses: This is a pointer to the first element of a list of addresses
for the interface.

 f u_int: The PCAP_IF_ interface flags. Currently the only possible flag is PCAP_IF_
LOOPBACK, which is set if this interface is loopback.

You will see the pcap_addr structure within pcap_if_t. The pcap_addr structure is a
linked list of addresses that belong to this interface. The pcap_addr structure contains the
following elements:

 f pcap_addr *next: This denotes the next element in the list. Its value is NULL if it is
the last element.

 f sockaddr *addr: This is a pointer to the sockaddr structure containing
the IP address.

 f sockaddr *netmask: This is a pointer to the sockaddr structure containing
the netmask.

 f sockaddr *broadaddr: This is a pointer to the sockaddr structure containing the
broadcast address.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

129

 f sockaddr *dstaddr: This is a pointer to the sockaddr structure containing the
destination address. Its value will be NULL if it is not a point-to-point interface.

Getting ready
Prior to running this recipe, we need to follow the Adding libpcap to your project recipe
presented earlier in this chapter.

How to do it…
Let's retrieve the network interfaces by following the ensuing steps:

1. We start off by importing the following necessary header files:
 #import <pcap.h>
 #import <arpa/inet.h>

The first few lines are the header files that are to be imported. Notice that on the
second line we are importing the pcap.h header; this is the header for the pcap library.

2. We need to define the following variables:
 pcap_if_t *allDevs;
 char errbuf[PCAP_ERRBUF_SIZE];

The allDevs pcap_if_t structure will contain the list of network interfaces when
the pcap_findalldev() function is complete. The errbuf array will contain the
error if the pcap_findalldevs function fails.

3. Let's get the list of network interfaces.
 if (pcap_findalldevs(&allDevs, errbuf) == -1) {
 NSLog(@"Error: %s", errbuf);
 return -1;
 }

We call the pcap_findalldevs() function to get the list of all of the network
interfaces. If the pcap_findalldevs() function fails, it will return -1. The list of
network interfaces will be returned in the allDevs structure.

4. Finally, we display the information about the network interfaces as follows:

 for(pcap_if_t *dev=allDevs; dev; dev=dev->next)
 {
 NSLog(@"\n");
 NSLog(@"%s", dev->name);
 NSLog(@"-----------------------");
 char addr[INET6_ADDRSTRLEN];

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

130

 pcap_addr_t *adrs = dev->addresses;
 for(;adrs;adrs = adrs->next) {
 struct sockaddr *sa = adrs->addr;
 inet_ntop(sa->sa_family, &(((struct sockaddr_in *)
sa)->sin_addr),
 addr, sizeof(addr));
 NSLog(@" %s", addr);
 }
 }
 }

Here, we loop through the list of network interfaces returned from the pcap_
findalldevs() call. The first thing we do is log the name of the network interface.
This will be similar to en0, lo0, or p2p0.

Next, we set up a character array to hold the address when we convert the address
within the sockaddr structure to a character array. We use the INET6_ADDRSTRLEN
constant because it is large enough to hold both the IPv4 and IPv6 addresses.

The pcap_if_t structure contains a pointer to a pcap_addr_t structure that
contains a list of addresses associated with this network interface. We retrieve a
pointer to this structure and then loop through the addresses. Next, we pull out the
sockaddr structure that represents the address itself.

We use the inet_ntop() function to convert the address into a human-readable
format and log it.

How it works…
The pcap library provides a pcap_findalldevs() function that returns a linked list of all
of the network interfaces on your device. Within the pcap_if structure, there is a pointer to
a pcap_addr structure. This structure is a linked list that contains the addresses associated
with the interface.

Capturing packets
In this recipe, we will show you how to use the libpcap library to capture packets. We will also
introduce some basic libpcap concepts, such as the pcap handler and filters.

Getting ready
Prior to running this recipe, we need to follow the Adding libpcap to your project recipe
presented earlier in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

131

How to do it…
Let's capture some packets by following the ensuing steps:

1. We start off by defining the following three symbols for use in our code:
#define SNAPLEN 65535
#define PROMISC 1
#define TIMEOUT 500

The SNAPLEN constant defines the maximum size of the packet to be captured.
The PROMISC constant specifies whether we want to set the interface to the
promiscuous mode or not; 1 is true and 0 is false. The TIMEOUT constant is the
read timeout in milliseconds.

2. We need to define the following variables:
 pcap_t *handle;
 char errbuf[PCAP_ERRBUF_SIZE];
 bpf_u_int32 localNet, netMask;
 struct bpf_program filterCode;
 char filter[] = "arp or tcp or udp or icmp";

The three variables to note are:

 � pcap_t *handle: This is the pcap handler. The pcap_t variable is a
typedef from the pcap structure. This is the main monolithic structure that
contains all of the details that make up the pcap descriptor and references
a libpcap session.

 � Char filter[]: This is the filter code that will tell libpcap which types of
packets should be captured. The arp or tcp or udp or icmp string
specifies that we want to capture any ARP, TCP, UDP, or ICMP packet. We will
discuss how to write filter code in the Filtering packets recipe.

 � Struct bpf_program filterCode: When we pass the filter code
through the pcap_compile() function, filterCode will be populated with
the compiled version of the filter string.

3. The first thing we are going to do is decide which network interface to capture the
packets on:
 char *dev = pcap_lookupdev(errbuf);
 if (dev==NULL) {
 NSLog(@"Error finding default device %s", errbuf);
 exit(2);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

132

We can define the network interface by hardcoding the interface name like this:
char *dev = "en0", or we could allow libpcap to choose an interface by using the
pcap_lookupdev() function. In our example, we will use the pcap_lookupdev()
function that returns a pointer to a string; this string contains the name of the first
network interface suitable for use with libpcap. If there is an error, the function will
return NULL and populate the error buffer.

4. Once we have the network interface that will be used to capture the packets, we need
to open it:
 handle = pcap_open_live(dev, SNAPLEN, PROMISC, TIMEOUT, errbuf);
 if (handle == NULL) {
 NSLog(@"Can not open device %s", errbuf);
 exit(2);
 }

To open the network interface, we use the pcap_open_live() function. This
function takes the following five arguments:

 � char *device: This is a pointer to a string that contains the name of the
network interface to use for the packet capture.

 � int snaplen: This is the maximum size of the packet to be captured. The
term SNAPLEN stands for "snapshot length". If the packet is larger than this
value, the packet will be truncated to the length defined by SNAPLEN.

 � int promisc: This specifies whether the interface should be put into
the promiscuous mode or not. Defining it as 1 will put the interface into
promiscuous mode; this will allow us to capture all of the packets rather than
just the packets destined for our interface.

 � int to_ms: This specifies the read timeout in milliseconds.

 � Char *errbuf: This is the error buffer that will contain the error if libpcap
cannot open the interface.

The function returns a pcap_t handler or NULL if the function fails. The pcap_t
handler is needed for most of the libpcap functions.

5. Next, we do a network lookup to determine the network and netmask of the
network interface:
if (pcap_lookupnet(dev, &localNet, &netMask, errbuf) == -1) {
 pcap_close(handle);
 NSLog(@"pcap_lookupnet failed");
 exit(2);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

133

We look up the network and netmask of the network interface by using the pcap_
lookupnet() function that takes the following four arguments:

 � char *device: This is a pointer to a string containing the name of the
network interface to be used for the packet capture.

 � bpf_u_int32 *netp: This is the network that the network interface is on.
For example, if the IP address of the network interface is 10.0.0.4 and that
of the netmask is 255.255.255.0, then the network would be 10.0.0.0.

 � bpf_u_int32 *maskp: This is the netmask of the network that the
interface is on.

 � Char *errbuf: This is the error buffer that will contain the error if libpcap
cannot open the interface.

If the pcap_lookupnet() function is successful, it will return 0, otherwise it
will return -1 and the errbuf array will be populated with the appropriate error
message.

6. Now we need to set the filter:
if (pcap_compile(handle, &filterCode, filter, 1, netMask) == -1) {
 pcap_close(handle);
 NSLog(@"pcap_compile failed");
 exit(2);
}
if (pcap_setfilter(handle, &filterCode) == -1) {
 pcap_close(handle);
 NSLog(@"Can't install filter");
 exit(2);
 }

The filter will tell libpcap and the packet capture interface which packets we wish
to capture. The first step is to compile our filter string; this is done using the pcap_
compile() function that takes the following five arguments:

 � pcap_t *p: This is the pcap handler that was created using the pcap_
open_live() function.

 � struct bpf_program *fp: This points to the bpf_program structure
that will contain the compiled version of our filter when the pcap_
compile() function returns.

 � It will be used by the pcap_setfilter() function.

 � char *filter: This contains the filter code.

 � int optimize: This controls whether the compiled code is optimized or
not. Set this to 1 to perform optimization.

 � bpf_u_int32 netmask: This is the netmask of the interface. It was
obtained by the pcap_lookupnet() function call.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

134

After we compile the filter code, we need to set the filter. This is done using the
pcap_setfilter() function that accepts the two following arguments:

 � pcap_t *p: This is the pcap handler that was created with the pcap_
open_live() function.

 � struct bpf_program *fp: This is the compiled version of our filter code
that was generated using the pcap_compile() function.

Both the pcap_compile() and pcap_setfilter() functions return 0 if they are
successful and -1 if they are not. Once the filter is set by the pcap_setfilter()
function, libpcap begins to capture the packets.

7. Now that the packet capture has begun, we need a way to see the packets:
 pcap_loop(handle, -1, got_packet,NULL);

 pcap_freecode(&filterCode);
 pcap_close(handle);

There are two ways for us to retrieve the captured packets: we can use the pcap_
next() function to return the next captured packet or we can use the pcap_loop()
function that will trigger a callback for each packet that is captured. The preferable
method is to use pcap_loop() to capture multiple packets since you set up a
callback that is called when a packet is captured. The pcap_next() function is
written for capturing single packets. We will use the pcap_loop() function here
since we want to capture more than one packet; however, we will use the pcap_
next() function in our Creating a simple port scanner using libnet and libpcap
together recipe, which appears later in this chapter. The pcap_loop() function
takes the following four arguments:

 � pcap_t *p: This denotes the pcap handler that was created with the
pcap_open_live() function.

 � int cnt: This indicates the number of packets to be captured before
returning. If this is set to 0 or less, the function will loop forever or until the
EOF or error is encountered.

 � pcap_handler callback: This is the function to be called for each
packet that is captured. The prototype for a callback function is: void got_
packet(u_char *args, const struct pcap_pkthdr *header,
const u_char *packet);. We will see a sample callback later in this
recipe.

 � u_char *args: This is a pointer to the first argument to be passed to the
callback function.

We then need to free our compiled filter and the pcap handler. This is done using the
pcap_freecode() and pcap_close() functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

135

8. Now, let's create our callback function in the following manner:

void got_packet(u_char *args, const struct pcap_pkthdr *header,
const u_char *packet) {

 if (packet != NULL) {
 NSLog(@"Got Packet");
 }
}

We can't arbitrarily define our callback function because then the pcap_loop()
function will not know how to call it. The prototype for the callback looks like this:
void got_packet(u_char *args, const struct pcap_pkthdr *header,
const u_char *packet);, where it takes the following three arguments:

 � u_char *args: This corresponds to the u_char *args line in the pcap_
loop() function.

 � const struct pcap_pkthdr *header: This is the pcap header that
contains information about when the packet was sniffed and how large it is.

 � cont u_char *packet: This is the packet itself. We will see how to read
this packet in future recipes.

Currently, the code simply logs that we received a packet each time a packet is captured. We
will be building on this callback function in the upcoming recipes of this chapter.

How it works…
To capture packets using libpcap, we followed the ensuing steps:

1. We used the pcap_lookupdev() function to determine the network interface.

2. We opened the interface by using the pcap_open_live() function.

3. We determined the network information for the interface by using the pcap_
lookupnet() function.

4. Then, we compiled the filter code by using the pcap_compile() function.

5. Next, we set the filter. We used the pcap_setfilter() function to do so.

6. We used the pcap_loop() function to retrieve the captured packets and to set the
callback function to be used when we retrieve a packet.

7. Lastly, we created the callback function to call when we retrieve a packet.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

136

Decoding Ethernet headers
If we recall how the headers are layered from this chapter's introduction, the first layer we will
need to peel off is the Ethernet (Link layer) header. It looks like this:

The hardware will filter out the preamble, so we will not have access to it, but we need to
retrieve the following elements:

 f Destination Address: This is the MAC address of the computer that this packet is
being sent to

 f Source Address: This is the MAC address of the computer that this packet came from

 f Type: This is used to indicate the type of protocol that is encapsulated. Some of the
common protocols are as follows:

 � 0x0800—IPv4

 � 0x0806—ARP

 � 0x8035—RARP

 � 0x86DD—IPv6

 f Data: This indicates the payload

 f Frame Check Sequence: This indicates the checksum that is added to the frame to
detect transmission errors

We will build a PCAP_Headers.h file that contains the structures and constants needed to
decode the various packet headers. The entries in the PCAP_Headers.h file for the Ethernet
header are as follows:

//Ethernet header
#define ETHERNET_SIZE 14
#define ETHERNET_ADDRESS_LENGTH 6
struct pcap_ethernet {
 u_char ether_dhost[ETHERNET_ADDRESS_LENGTH];
 u_char ether_shost[ETHERNET_ADDRESS_LENGTH];
 u_short ether_type;
};

#define ETHERTYPE_IP 0x0800
#define ETHERTYPE_ARP 0x0806

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

137

We start off by defining the Ethernet header size to be 14 bytes. This is the 6 bytes for the
destination address, 6 bytes for the source address, and 2 bytes for the type.

We then define the address length to be 6 bytes.

Next we define a pcap_ethernet structure that represents the Ethernet headers. We will use
this structure to retrieve the Ethernet information from our packet that is captured by libpcap.

Finally we define two types of protocols: the IP and ARP protocols.

Getting ready
Prior to running this recipe, we need to follow the Adding libpcap to your project recipe
explained earlier in this chapter. We also need to go through the Capturing packets recipe
explained earlier in this chapter to begin capturing packets prior to decoding them.

How to do it…
To decode the Ethernet header we will modify the got_packet() callback function to
decode the Ethernet headers and determine if it is an IP, ARP, or other type of packet. We will
also be logging the sender and the destination MAC addresses from the Ethernet headers.

The libpcap callback function requires three arguments. These are as follows:

 f u_char *args: This is the pointer to the first argument to be passed to the callback
function

 f const struct pcap_pkthdr *header: This is the pcap header that contains
the information about when the packet was sniffed and how large it is

 f const u_char *packet: This is the packet itself

Let's look at the code to decode the Ethernet header:

void got_packet(u_char *args, const struct pcap_pkthdr *header,const
u_char *packet) {

 if (packet != NULL) {
 const struct pcap_ethernet *ethernet = (struct pcap_ethernet
*)packet;

 NSString *sMac = [NSString stringWithFormat:@"%02X:%02X
:%02X:%02X:%02X:%02X",ethernet->ether_shost[0],ethernet->ether_
shost[1],ethernet->ether_shost[2],ethernet->ether_shost[3],ethernet-
>ether_shost[4],ethernet->ether_shost[5]];

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

138

 NSString *dMac = [NSString stringWithFormat:@"%02X:%02X
:%02X:%02X:%02X:%02X",ethernet->ether_dhost[0],ethernet->ether_
dhost[1],ethernet->ether_dhost[2],ethernet->ether_dhost[3],ethernet-
>ether_dhost[4],ethernet->ether_dhost[5]];

 NSLog(@"Source MAC: %@", sMac);
 NSLog(@"Destin MAC: %@", dMac);
 switch (ntohs(ethernet->ether_type)) {
 case ETHERTYPE_IP:
 NSLog(@"IP: %d", ethernet->ether_type);
 // decodeIp(packet);
 break;
 case ETHERTYPE_ARP:
 NSLog(@"ARP: %d", ethernet->ether_type);
 // decodeArp(packet);
 break;
 default:
 break;
 }
 }
 }

Now let's look at the steps to decode the Ethernet header:

1. We start the got_packet() function by verifying that the packet itself is not NULL. If
it is NULL, we simply bypass all of the code.

If the packet is not NULL, we typecast it to the custom pcap_ethernet structure
that we discussed in the introduction of this recipe. This allows us to retrieve the
Ethernet header information from our packet.

2. Once we have our packet typecasted as a pcap_ethernet structure, we convert the
source and destination host's MAC address from u_char arrays to NSString. This is
done with the stringWithFormat method of NSString.

3. Finally we create a switch statement that switches on the type of protocol that the
packet contains. We determine the type of protocol by looking at the ether_type
element of the Ethernet header. In the PCAP_Headers.h file, we define two protocol
types: ETHERTYPE_IP and ETHERTYPE_ARP. If the protocol is of any other type, we
skip it.

You will notice that we are calling the decodeIp() and decodeArp() functions in the
switch statement. We will discuss these functions in the Decoding IP headers and Decoding
ARP headers recipes. Once we create these functions, we will be able to uncomment these
two lines.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

139

How it works…
To retrieve the Ethernet header information from the packet, we typecasted the packet into
the custom pcap_ethernet structure that is defined in our PCAP_Headers.h file. The
pcap_ethernet structure looks like this:

 struct pcap_ethernet {
 u_char ether_dhost[ETHERNET_ADDRESS_LENGTH];
 u_char ether_shost[ETHERNET_ADDRESS_LENGTH];
 u_short ether_type;
 };

After we typecast the packet, we are able to pull out the destination and source MAC
addresses and the protocol type.

Decoding IP headers
In the Decoding Ethernet headers recipe, we created the got_packet() callback function
that libpcap called for each packet that was captured. In this function, we showed you how to
pull the Ethernet header information from the packet and created a switch statement that
called different functions based on the protocol type. In that switch statement, we made a
reference to a decodeIp() function that is used to decode the IP headers. In this recipe, we
will create this decodeIp() function.

The IP header is a part of the second layer (Internet layer) of our header stack. Its structure is
shown in the following diagram:

The components are explained as follows:

 f Version: This is the version of the IP packet. It can either be 4 (IPv4) or 6 (IPv6). For
our examples, we will only look at IPv4.

 f Header Length: This indicates the number of the 32-bit words in the TCP header. The
minimum value is 5.

 f Type of Service: This is now known as DSCP (Differentiated Services Code Point); it
may indicate a particular quality of service that is needed.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

140

 f Total Length: This is the total length of the packet, including the header and
data, in bytes. The minimum size is 20 bytes and the maximum size is 65535
bytes. Some networks set restrictions on the packet size that may cause the
packet to be fragmented.

 f Identification: This field is primarily used to uniquely identify the fragments of an
original packet.

 f Flags: This includes the following three flags as defined in the IP packet:

 � Bit 0: This reserved bit must be 0.

 � Bit 1: If the Don't Fragment (DF) flag is set and fragmentation is needed to
route the packet, the packet will be dropped.

 � Bit 2: If a packet is fragmented, all of the fragments will have the More
Fragments (MF) flag set, except for the last one. This flag is cleared for the
packets that are not fragmented.

 f Fragment Offset: This specifies the offset of a particular fragment relative to the
beginning of the original unfragmented packet.

 f Time to Live: This gives the number of hops the packet can be routed through. This
number is decremented at each hop until it reaches its destination or 0.

 f Protocol: This indicates the IP protocol ID.

 f Header Checksum: This indicates the checksum of the IP header.

 f Source Address: This indicates the IPv4 address of the sender.

 f Destination Address: This indicates the IPv4 address of the destination.

 f IP Option: This field is not normally used.

If you recall from this chapter's introduction, we need to build a PCAP_Headers.h file that
contains the structures and constants that are needed to decode the various packet headers.
To retrieve the IP header information, we define a pcap_ip structure that will be used to
typecast the packets that are captured. The pcap_ip structure looks like this:

struct pcap_ip {
 u_int8_t ip_vhl; // header length and version
 u_int8_t ip_tos; // type of service
 u_int16_t ip_len; // total length
 u_int16_t ip_id; // identification
 u_int16_t ip_off; // fragment offset
#define IP_RF 0x8000 // reserved fragment flag
#define IP_DF 0x4000 // don't fragment flag
#define IP_MF 0x2000 // more fragments flag
#define IP_OFFMASK 0x1fff // mask for fragmenting bits
 u_int8_t ip_ttl; // time to live

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

141

 u_int8_t ip_p; // protocol
 u_int16_t ip_sum; // checksum
 struct in_addr ip_src, ip_dst; // source and dest address
};

We also define the following two functions in the PCAP_Headers.h file:

#define GET_IP_VERSION(ip) (((ip)->ip_vhl & 0xf0) >> 4) //get
version
#define GET_IP_HEADER_LENGTH(ip) ((ip)->ip_vhl & 0x0f) //get
header length

Getting ready
Prior to running this recipe, we need to follow the Adding libpcap to your project recipe
provided earlier in this chapter. We also need to go through the Capturing packets recipe
(earlier in this chapter) to capture packets prior to decoding them.

You should also go through the Decoding Ethernet headers recipe. We will expand the code
from that recipe to include a section for decoding the IP headers.

How to do it…
Let's decode the IP header. The following function is used to decode our IP packets:

 void decodeIp(const u_char *packet) {
 const struct pcap_ip *ip = (struct pcap_ip *)(packet + ETHERNET_
SIZE);
 uint version = GET_IP_VERSION(ip);
 NSString *from = [NSString stringWithFormat:@"%s",inet_ntoa(ip-
>ip_src)];
 NSString *to = [NSString stringWithFormat:@"%s",inet_ntoa(ip->ip_
dst)];
 switch (ip->ip_p) {
 case IPPROTO_TCP:
 NSLog(@"Found TCP packet from: %@ to: %@",from,to);
 // decodeTCP(packet);
 break;
 case IPPROTO_UDP:
 NSLog(@"Found UDP packet from: %@ to: %@",from,to);
 // decodeUDP(packet);
 break;
 case IPPROTO_ICMP:
 NSLog(@"Found ICMP packet from: %@ to: %@",from,to);
 // decodeICMP(Packet);

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

142

 break;
 default:
 NSLog(@"Found Unknown packet from: %@ to: %@",from,to);
 break;
 }
}

Let's look at the steps to decode the IP header:

1. We begin the decodeIp() function by typecasting the packet as a pcap_ip
structure. Notice how we offset the packet by the size of the Ethernet header
(packet + ETHERNET_SIZE). We do this because the Ethernet headers
encapsulate the IP headers. If we had not offset the address, we would retrieve the
Ethernet header information instead of the IP headers.

2. Next, we determine the IP version by using the GET_IP_VERSION function that we
defined in the PCAP_Headers.h file. We use the standard inet_ntoa() function to
convert the IP source and destination addresses from a host address in the network
byte order to a C string.

3. Finally, we create a switch statement that switches on the IP protocol type and calls
the appropriate decoding function. These functions will be discussed in the later
recipes, but for now they are commented out.

How it works…
To retrieve the IP header information from the packet, we typecasted the packet to the custom
pcap_ip structure that is defined in our PCAP_Headers.h file. We had to offset the address
of the packet by the size of the Ethernet header to ensure that we were retrieving the IP
header and not the Ethernet headers.

After we typecasted the packet, we were able to pull out the IP addresses and the protocol
type using the functions defined in our PCAP_Headers.h file.

Decoding ARP headers
In the Decoding Ethernet headers recipe, we created the got_packet() callback function
that libpcap called for each packet that was captured. In this function, we learned how to
pull out the Ethernet header information from the packet and created a switch statement
that switched on the protocol type. In that switch statement, we made a reference to the
decodeArp() function that is used to decode the ARP headers. In this recipe, we will create
that decodeArp() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

143

The ARP header is a part of the second layer (Internet layer) of our header stack. Its structure
is shown in the following diagram:

Let's take a look at the fields of the ARP header:

 f Hardware Type: This specifies the network protocol type. Some of the defined values
are:

 � 1 – Ethernet

 � 6 – IEEE 802 network

 � 7 – ARCNET

 � 15 – Frame Relay

 � 18 – Fibre Channel

 � 20 – Serial Line

 f Protocol Type: This specifies the internetworking protocol type. Some of the defined
values are:

 � 0x0800 – IPv4

 � 0x0806 – ARP

 � 0x8035 – RARP

 � 0x86DD – IPv6

 f Hardware Address Length: This specifies the length of the hardware address in
bytes. The Ethernet address size is 6 bytes.

 f Protocol Address Length: This specifies the length of the protocol address in bytes.
The IPv4 address size is 4 bytes.

 f OP Code: This specifies the operation that the sender is performing. The defined
values are:

 � 1 – Request

 � 2 – Reply

 f Source Hardware Address: This denotes the hardware address of the sender.

 f Source Protocol Address: This denotes the protocol address of the sender.

 f Destination Hardware Address: This denotes the hardware address of the receiver.

 f Destination Protocol Address: This denotes the protocol address of the receiver.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

144

If you recall from the chapter introduction, we need to build a PCAP_Headers.h file that
contains the structures and constants needed to decode the various packet headers. To
retrieve the ARP header information, we define a pcap_arp structure that we will typecast
this packet to. This is similar to what we did in the Decoding Ethernet headers recipe of this
chapter. The pcap_arp structure looks like this:

struct pcap_arp {
 u_int16_t arp_htype; // Hardware Type
 u_int16_t arp_ptype; // Protocol Type
 u_char arp_hlen; // Hardware Address Length
 u_char arp_plen; // Protocol Address Length
 u_int16_t arp_type; // ARP type
 u_char arp_sha[6]; // source hardware address
 u_char arp_spa[4]; // source IP address
 u_char arp_dha[6]; // destination hardware address
 u_char arp_dpa[4]; // destination IP address
};

We also define two constants in the PCAP_Headers.h file for the ARP headers. These
are as follows:

#define ARP_REQUEST 1 // ARP Request
#define ARP_REPLY 2 // ARP Reply

Getting ready
Prior to running this recipe, we need to follow the Adding libpcap to your project recipe that
appears earlier in this chapter. We also need to go through the Capturing packets recipe to
begin capturing the packets prior to decoding them.

You should also go through the Decoding Ethernet headers recipe of this chapter because we
will expand that code for this recipe to include a section for decoding the ARP headers.

How to do it…
Let's decode the ARP header. The following function decodes the ARP packets:

 void decodeArp(const u_char *packet) {
 const struct pcap_arp *arp = (struct pcap_arp *)(packet +
ETHERNET_SIZE);
 switch (ntohs(arp->arp_type)) {
 case ARP_REQUEST:
 NSLog(@"ARP Request");
 NSLog(@"From: %d.%d.%d.%d",arp->arp_spa[0],arp->arp_
spa[1],arp->arp_spa[2],arp->arp_spa[3]);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

145

 NSLog(@"To: %d.%d.%d.%d",arp->arp_dpa[0],arp->arp_
dpa[1],arp->arp_dpa[2],arp->arp_dpa[3]);
 break;

 case ARP_REPLY:
 NSLog(@"ARP Response");
 NSLog(@"From: %02X:%02X:%02X:%02X:%02X:%02X",arp-
>arp_sha[0],arp->arp_sha[1],arp->arp_sha[2],arp->arp_sha[3],arp->arp_
sha[4],arp->arp_sha[5]);
 NSLog(@"To: %d.%d.%d.%d",arp->arp_dpa[0],arp->arp_
dpa[1],arp->arp_dpa[2],arp->arp_dpa[3]);
 break;

 default:
 NSLog(@"ARP Type: %d",arp->arp_type);
 break;
 }
}

Let's look at the steps to decode the ARP header:

1. We begin the decodeArp() function by typecasting the packet as a pcap_arp
structure. Notice how we offset the packet by the size of the Ethernet header
(packet + ETHERNET_SIZE). We do this because the Ethernet headers
encapsulate the ARP headers. If we do not offset the packet, we will retrieve the
Ethernet header information instead of the ARP header.

2. The remainder of the decodeArp() function is a switch statement that displays
different information depending on whether the ARP type is a request, reply, or
unknown. If the packet is an ARP request, we display the IP address for the sender
and receiver. If the packet is an ARP response, we display the sender's MAC address
and the receiver's IP address.

How it works…
To retrieve the ARP header information from the packet, we typecasted the packet to the
custom pcap_arp structure that is defined in our PCAP_Headers.h file. We had to offset
the address of the packet by the size of the Ethernet header to ensure that we were retrieving
the ARP header and not the Ethernet header.

Once we had the pcap_arp structure, we could pull out the address information and tell if
the packet is an ARP request or reply.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

146

Decoding TCP headers
In the Decoding IP headers recipe of this chapter, we created a decodeIp() function that
decoded the IP headers of a packet. In that function, if the protocol type was TCP, we called a
decodeTcp() function. We will create the decodeTcp() function in this recipe.

The TCP header is a part of the third layer (Protocol layer) of our header stack.

The TCP header looks like this:

Let's take a look at the fields of the TCP header:

 f Source Port: This identifies the port that the packet is being sent from on the sending
device.

 f Destination Port: This identifies the port that the packet is going to on the receiving
device.

 f Sequence Number: This is the initial sequence number for this session if the SYN flag
is set. If the SYN flag is not set, this is the sequence number of the first data byte of
this segment for this session.

 f Acknowledgement Number: This value is the next sequence number that the
receiver is expecting if the ACK flag is set. The first ACK packet that is sent by each
end of the communication acknowledges the other end's initial sequence number.

 f Data Offset: This is the size of the TCP header.

 f Reserved: This is reserved for future use; it should be set to 0.

 f Flags: The TCP flags are as follows:

 � NS: This flag implements the Explicit Congestion Notification (ECN) nonce
that protects against concealment.

 � CWR: This flag stands for Congestion Window Reduced.

 � ECE: This flag indicates that the TCP peer is ECN-capable if the SYN flag
is also set.

 � URG: This flag indicates that the Urgent Pointer field of the header
is significant.

 � ACK: This flag indicates that the Acknowledgement Number field is
significant. All of the packets after the initial SYN packet sent by the client
should have this flag set.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

147

 � PSH: This flag indicates that the data needs to be pushed up to the receiving
application immediately and not wait for any additional packets to fill the
buffer.

 � RST: This flag resets the connection.

 � SYN: This flag synchronizes the sequence numbers; it is set in the first
packet that is sent from one device to another.

 � FIN: This flag indicates that the device has finished talking.

 f Window: This is the maximum size of data that the sender of this segment is willing
to accept from the receiver at any point of time.

 f Checksum: This is the checksum for the TCP header.

 f Urgent Pointer: This is used in conjunction with the URG flag. It contains the
sequence number for the last byte of urgent data.

If you recall from the chapter introduction, we need to build a PCAP_Headers.h file that
contains the structures and constants that are needed to decode the various packet headers.
To retrieve the TCP header information, we define a pcap_tcp structure that we will typecast
the packet to. This is similar to what we did in the Decoding Ethernet headers recipe of this
chapter. The pcap_tcp structure looks like this:

struct pcap_tcp {
 u_short tcp_sport; // source port
 u_short tcp_dport; // destination port
 u_int tcp_seq; // sequence number
 u_int tcp_ack; // acknowledgement number
 u_int tcp_x2:4, // (unused)
 tcp_off:4; // offset
 u_char tcp_flags;
#define TCP_FIN 0x01
#define TCP_SYN 0x02
#define TCP_RST 0x04
#define TCP_PUSH 0x08
#define TCP_ACK 0x10
#define TCP_URG 0x20
#define TCP_ECE 0x40
#define TCP_CWR 0x80
#define TCP_FLAGS (TH_FIN|TH_SYN|TH_RST|TH_ACK|TH_URG|TH_
ECE|TH_CWR)
 u_short tcp_win; // window
 u_short tcp_sum; // checksum
 u_short tcp_urp; // urgent pointer
};

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

148

Getting ready
Prior to running this recipe, we need to follow the Adding libpcap to your project recipe
explained earlier in this chapter. We also need to go through the Capturing packets recipe to
begin capturing the packets prior to decoding them.

You should have also gone through the Decoding Ethernet headers and Decoding IP headers
recipes because we will expand the code from those recipes to include a section for decoding
the TCP headers.

How to do it…
Let's decode the TCP header. The decodeTcp() function is as follows:

void decodeTcp(const u_char *packet) {
 struct pcap_ip *ip = (struct pcap_ip *)(packet + ETHERNET_SIZE);
 int offset = GET_IP_HEADER_LENGTH(ip)*4;
 struct pcap_tcp *tcp = (struct pcap_tcp *)(packet + ETHERNET_SIZE
+ offset);

 int from = ntohs(tcp->tcp_sport);
 int to = ntohs(tcp->tcp_dport);
 NSString *flags = [NSString stringWithFormat:@"%s%s%s%s%s%s",(tcp-
>tcp_flags & TCP_FIN) ? "F" : "",
 (tcp->tcp_flags & TCP_SYN) ? "S" : "",
 (tcp->tcp_flags & TCP_RST) ? "R" : "",
 (tcp->tcp_flags & TCP_PUSH)? "P" : "",
 (tcp->tcp_flags & TCP_ACK) ? "A" : "",
 (tcp->tcp_flags & TCP_URG) ? "U" : ""];
 NSLog(@"TCP packet from port: %d to port: %d with flags: %@",
from, to, flags);
}

Let's look at the steps to decode the TCP header:

1. Since the IP packet can be of variable lengths, the first thing we need to do is obtain
the size of the IP header so that we can calculate the offset needed to retrieve the
TCP header. We begin our decodeTcp() function by typecasting the packet as
pcap_ip (IP header) and then retrieve the size of the IP header using the GET_IP_
HEADER_LENGTH function.

2. Once we have the size of the IP header, we can calculate the offset to the TCP header
by adding the sizes of the Ethernet and IP headers. With the offset we can typecast
the packet as a pcap_tcp structure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

149

3. We retrieve the source and destination ports from the header using the ntohs()
function that converts the port information from the network byte order into the host
byte order. We then create a flags string that lists the TCP flags that are set within
the packet. Finally, we log the source port, destination port, and TCP flags.

How it works…
To retrieve the TCP header information from the packet, we first had to determine the size
of the IP header, since the IP header can be of varying sizes. We do this by retrieving the IP
header in the same manner that we did in the Decoding IP headers recipe of this chapter.

Once we had the size of the IP header, we can calculate the offset to the TCP header. With the
offset, we can typecast the packet as a pcap_tcp structure and retrieve the information that
we need from the TCP header.

Decoding UDP headers
In the Decoding IP headers recipe of this chapter, we created a decodeIp() function that
decoded the IP headers of a packet. If the protocol type was UDP in that function, we called a
decodeUdp() function. We will create the decodeUdp() function in this recipe.

The UDP header is a part of the third layer (Protocol layer) of our header stack. This is what
the UDP header looks like:

Let's take a look at the fields of the UDP header:

 f Source Port: This field identifies the port used by the sender, and it can be assumed
that any reply should be sent to this port. If no reply is needed or wanted, we should
set this port to 0, indicating that we are not expecting a reply.

 f Destination Port: This field identifies the port on the client to which the datagram has
to be sent. The port should be a valid port number between 0 and 65535.

 f Length: This field indicates the size of the UDP header and the payload.

 f Checksum: This field indicates the checksum for the UDP header.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

150

If you recall from the chapter introduction, we need to build a PCAP_Headers.h file that
contains the structures and constants needed for decoding the various packet headers.
To retrieve the UDP header information, we define a pcap_udp structure that we will be
typecasting the packet header to. This is similar to what we did in the Decoding Ethernet
headers recipe of this chapter. The pcap_udp structure looks like this:

struct pcap_udp {
 unsigned short int udp_sport; // source port
 unsigned short int udp_dport; // destination port
 unsigned short int udp_len; // length
 unsigned short int udp_sum; //checksum
};

Getting ready
Prior to running this recipe, we need to follow the Adding libpcap to your project recipe
explained earlier in this chapter. We also need to go through the Capturing packets recipe to
begin capturing the packets prior to decoding them.

You should also go through the Decoding Ethernet headers and Decoding IP headers recipes
of this chapter because we will expand on these recipes to include a section for decoding the
UDP headers.

How to do it…
Let's decode the UDP header. The following function decodes the UDP packets:

 void decodeUdp(const u_char *packet) {
 struct pcap_ip *ip = (struct pcap_ip *)(packet + ETHERNET_SIZE);
 int offset = GET_IP_HEADER_LENGTH(ip)*4;
 struct pcap_udp *udp = (struct pcap_udp *)(packet + ETHERNET_SIZE
+ offset);

 int from = ntohs(udp->udp_sport);
 int to = ntohs(udp->udp_dport);
 NSLog(@"UDP packet from port: %d to port: %d", from, to);
}

Let's take a look at the steps to decode the UDP header:

1. Since the IP packet can be of variable length, the first thing that we need to do is
obtain the size of the IP header so that we can calculate the offset needed to retrieve
the UDP header. We begin our decodeUdp() function by typecasting the packet as
pcap_udp (IP header) and then retrieve the size of the IP header using the GET_IP_
HEADER_LENGTH function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

151

2. Once we have the size of the IP header, we can calculate the offset to the UDP header
by adding the sizes of the Ethernet and IP headers. With the offset, we typecast the
packet as a pcap_udp structure.

3. Finally, we retrieve the source and destination ports from the header and then log the
UDP packet port information.

How it works…
To retrieve the UDP header information from the packet, we had to first determine the size
of the IP header since the IP header can be of varying sizes. We do this by retrieving the IP
header in the same manner that we did in the Decoding IP headers recipe of this chapter.

Once we have the size of the IP header, we could calculate the offset to the UDP header. With
the offset, we can typecast the packet as a pcap_udp structure and retrieve the information
that we need from the UDP header.

Decoding ICMP headers
In the Decoding IP headers recipe of this chapter, we created a decodeIp() function that
decoded the IP headers of a packet. If the protocol type was ICMP in that function, we called a
decodeICMP() function. We will create the decodeICMP() function in this recipe.

Even though our layer diagram shows the ICMP packet as a part of the Internet layer, from the
libpcap point of view, it is a part of the third layer (Protocol layer) of our header stack; this is
because the IP header encapsulates the ICMP header.

The ICMP header looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

152

The components are explained as follows:

 f ICMP Type: This field identifies the ICMP message type. The Echo request message is
type 8 and the Echo reply is type 0.

 f Code: This field is not used in the Echo request or reply so this is set to 0.

 f Checksum: This field contains the checksum for the ICMP header.

 f Identifier: This is the identification field that can be used to match the Echo request
with an Echo reply.

 f Sequence Number: This field contains the sequence number that can also be used to
match an Echo request with an Echo reply.

 f Optional Data (Payload): This field contains the additional data sent along with the
header.

If you recall from the chapter introduction, we need to build a PCAP_Headers.h file that
contains the structures and constants needed to decode the various packet headers. To
retrieve the ICMP header information, we define a pcap_icmp structure that we will be
typecasting the packet to. This is similar to what we did in the Decoding Ethernet headers
recipe of this chapter. The pcap_icmp structure looks like this:

struct pcap_icmp {
 u_char icmp_type; // ICMP Type
 u_char icmp_code; // ICMP Code
 u_short icmp_sum; // ICMP Checksum
 u_short icmp_id; // ID
 u_short icmp_seq; // Sequence #
};

We also define six common ICMP types. This code will be used in the u_char icmp_type
element of the pcap_icmp structure.

#define ICMP_ECHO_REPLY_TYPE 0
#define ICMP_ECHO_REQUEST_TYPE 8
#define ICMP_REDIRECT_TYPE 5
#define ICMP_DESTINATION_UNREACHABLE_TYPE 3
#define ICMP_TRACEROUTE_TYPE 30
#define ICMP_TIME_EXCEEDED_TYPE 11

Getting ready
Prior to running this recipe, we need to follow the Adding libpcap to your project recipe
explained earlier in this chapter. We also need to go through the Capturing packets recipe in
order to begin capturing the packets prior to decoding them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

153

You should also go through the Decoding Ethernet headers and Decoding IP headers recipes
of this chapter because we will be expanding on those recipes to include a section for
decoding the ICMP headers.

How to do it…
Let's decode the ICMP header. The function to decode the ICMP packets is as follows:

void decodeICMP(const u_char *packet) {
 struct pcap_ip *ip = (struct pcap_ip *)(packet + ETHERNET_SIZE);
 int offset = GET_IP_HEADER_LENGTH(ip)*4;
 struct pcap_icmp *icmp = (struct pcap_icmp *)(packet + ETHERNET_
SIZE + offset);

 NSString *typeStr = @"ICMP Unknown";
 int iType = icmp->icmp_type;
 switch (iType) {
 case ICMP_ECHO_REPLY_TYPE:
 typeStr=@"ICMP Reply";
 break;
 case ICMP_ECHO_REQUEST_TYPE:
 typeStr=@"ICMP Request";
 break;
 case ICMP_REDIRECT_TYPE:
 typeStr=@"ICMP Redirect";
 break;
 case ICMP_DESTINATION_UNREACHABLE_TYPE:
 typeStr=@"ICMP Unreachable";
 break;
 case ICMP_TRACEROUTE_TYPE:
 typeStr=@"ICMP Traceroute";
 break;
 case ICMP_TIME_EXCEEDED_TYPE:
 typeStr=@"ICMP Time Exceeded";
 break;

 default:
 break;
 }
 NSLog(@"ICMP packet of type: %@", typeStr);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

154

Let's take a look at the steps to decode the ICMP header:

1. Since the IP packet can be of variable length, the first thing that we need to do is
obtain the size of the IP header so that we can calculate the offset needed to retrieve
the ICMP header. We begin our decodeICMP() function by typecasting the packet as
pcap_ip (IP header) and then retrieve the size of the IP header using the GET_IP_
HEADER_LENGTH function.

2. Once we have the size of the IP header, we can calculate the offset to the ICMP
header by adding the sizes of the Ethernet and IP headers. With the offset, we can
typecast the packet as a pcap_icmp structure.

3. Finally, we create a switch statement that switches on the ICMP type. We use
the ICMP types defined in the PCAP_Headers.h file to identify the ICMP type of
the packet.

How it works…
To retrieve the ICMP header information from the packet, we had to first determine the size
of the IP header since the IP header can be of varying sizes. We do this by retrieving the IP
header in the same manner that we did in the Decoding IP headers recipe of this chapter.

Once we have the size of the IP header, we can calculate the offset to the ICMP header.
With the offset, we can then typecast the packet as a pcap_icmp structure and retrieve the
information that we need.

Filtering packets
In the Capturing packets recipe of this chapter, we showed a basic filter of char filter[]
= "arp or tcp or udp or icmp";. In this recipe, we will take a more in-depth look at
how to create a filter.

Since the libpcap library is used as the packet-capturing library for the tcpdump project,
the libpcap filters take the same format as the tcpdump filter format. Any of the tcpdump
filter expressions that we find on the Internet should work with libpcap. A Google search for
"tcpdump filter" will return lots of results, but we will go over the basics in this recipe.

Getting ready
The filters that we will create in this recipe can be used along with the code in the Capturing
packets recipe of this chapter. You should go through it to understand where to use these filters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

155

How to do it…
Let's create a filter.

When we create a filter for libpcap to use, we create it as a char array. We then use the
pcap_compile() function to compile the expression to a bpf_program. The compiled
bpf_program is then set using the pcap_setfilter() function. The following is the filter-
specific code from the Capturing packets recipe of this chapter:

char filter[] = "arp or tcp or udp or icmp";
if (pcap_compile(handle, &filterCode, filter, 1, netMask) == -1) {
 pcap_close(handle);
 NSLog(@"pcap_compile failed");
 exit(2);
}

if (pcap_setfilter(handle, &filterCode) == -1) {
 pcap_close(handle);
 NSLog(@"Can't install filter");
 exit(2);
}

Let's take a look at some of the more useful filters:

 f Host: The filters that work with the source and destination hosts are as follows:

 � dst host {host}: This matches the IPv4 or IPv6 destination fields to
{host}

 � src host {host}: This matches the IPv4 or IPv6 source fields to {host}

 � host {host}: This matches the IPv4 or IPv6 fields of either the destination
or the source to {host}

 � ether dst {addr}: This matches the Ethernet address of the destination
host to {addr}

 � ether src {addr}: This matches the Ethernet address of the source host
to {addr}

 � ether host {addr}: This matches the Ethernet address of either the
destination or source host to {addr}

 f Network: The filters that work with the source and destination networks are as follows:

 � dst net {net}: This matches the IPv4 or IPv6 destination networks to
{net}

 � src net {net}: This matches the IPv4 or IPv6 source networks to {net}

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

156

 � net {net}: This matches the IPv4 or IPv6 source or destination networks
to {net}

 f Port: The filters that work with the source and destination ports are as follows:

 � dst port {port}: This matches the destination port number of the TCP or
UDP packets to {port}

 � src port {port}: This matches the source port number of the TCP or
UDP packets to {port}

 � port {port}: This matches either the destination or source port numbers
of the TCP or UDP packets to {port}

 � {protocol} dst port {port}: This matches the destination port
number for {protocol} with {port}

 � {protocol} src port {port}: This matches the source port number
for {protocol} with {port}

 � {protocol} port {port}: This matches either the source or destination
port numbers for {protocol} with {port}

 f Protocol: The filters that work with the protocol type are as follows:

 � ip proto {protocol}: This matches the protocol of an IP packet to
{protocol}

 � ip6 proto {protocol}: This matches the protocol of an IP6 packet to
{protocol}

 � ip broadcast: This matches an IP broadcast packet

IP protocols can be ICMP, ICMP6, IGMP, IGRP, PIM, AH, ESP, UDP, or TCP.

 � ether proto {protocol}: This matches the protocol of an Ethernet
packet to {protocol}

 � ether broadcast: This matches an Ethernet broadcast packet

Ethernet protocols can be IP, IP6, ARP, RARP, ATALK, AARP, DECENT, SCA, LAT,
MOPDL, MOPRC, or ISO.

 � {protocol}: This matches the protocol of the packet to {protocol}.
This is what we used in our filter when we defined it as arp or tcp or
udp or icmp. The protocol can be any of the IP or Ethernet protocols
listed previously.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

157

The preceding expressions can be combined using the following tokens:

 f Negation: The tokens to be used are "!" or "not"

 f Concatenation: The tokens to be used are "&&" or "and"

 f Alternation: The tokens to be used are "||" or "or "

Here are some examples of pcap filters:

 f "tcp or udp": This filter captures all of the TCP and UDP packets but drops the
others

 f "dst host 10.0.0.24": This filter captures all of the packets destined for
10.0.0.24

 f "tcp src port 22": This filter captures all of the TCP packets that have a source
port of 22

 f "host 10.0.0.24 or host 10.0.026": This filter captures the packets that have
a source or destination address of either 10.0.0.24 or 10.0.0.26

How it works…
To create a filter for libpcap, we need to write the filter code and put it in a char array. We will
then compile the filter code using the pcap_compile() function and set the filter using the
pcap_setfilter() function.

Saving a capture file
There will be times when we want to capture packets and not view the results immediately.
The libpcap library has functions to open and save the packets to a binary file. This file has the
same format as a tcpdump save file.

Getting ready
Prior to running this recipe, we need to follow the Adding libpcap to your project recipe
explained earlier in this chapter. We also need to go through the Capturing packets recipe. We
will discuss how to modify the packet capture code in order to save the captured packets to a
save file.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

158

How to do it…
Let's save our captured packets to a file:

1. We begin by defining a pcap_dumper_t pointer and creating a pcap_loop. This will
be the pointer to our save file.

In our packet capture code from the Capturing packets recipe of this chapter, we
want to replace the pcap_loop statement with the following lines:
 pcap_dumper_t *dumpfile=pcap_dump_open(handle, "~/pcapdump.
pcap");
 if(dumpfile==NULL){
 NSLog(@"Error opening output file");
 exit(2);
 }

 pcap_loop(handle, 0, dispatcher_handler, (unsigned char *)
dumpfile);
 pcap_dump_close(dumpfile);

We start off by opening the packet capture dump file and write to it using the pcap_
dump_open() function. If the pcap_dump_open() function is successful, it will
return a pcap_dumper_t structure. If it fails, it will return NULL.

In our pcap_loop() function, we pass the pcap_dumper_t structure as an
argument to our callback function. The callback function gets called each time a
packet is captured by libpcap.

Finally, we close the dump file by using the pcap_dump_close() function.

2. Let's create the callback function for our pcap_loop. The callback function looks like
this:
void dispatcher_handler(u_char *dumpfile, const struct pcap_pkthdr
*header, const u_char *pkt_data)
{
 pcap_dump(dumpfile,header,pkt_data);

 //view file "tcpdump -qns 0 -A -r ~/pcapdump.pcap"
}

The callback function does the actual writing of the packets to the save file. This is done
using the pcap_dump() function. This function accepts the following three arguments:

 � u_char *fp: This argument acts as the pcap_dumper_t pointer for our
save file. It is created using the pcap_dump_open() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

159

 � struct pcap_pkthdr *header: This argument acts as the pointer for
the packet header data.

 � u_char *packet: This argument acts as the pointer for the packet to
be written.

How it works…
To write packets to a save file, we followed the ensuing steps:

1. We opened the file and wrote to it using the pcap_dump_open() function.

2. We passed the pcap_dumper_t structure as an argument to the callback function.

3. In the callback function, we wrote the packet to the save file using the pcap_dump()
function.

4. When we are done writing all of our packets, we use the pcap_dump_close()
function to close the file.

Creating a simple port scanner using libnet
and libpcap together

In Chapter 3, Using Libnet, we discussed how to use libnet to inject packets into the network.
In this chapter, we discussed how to use libpcap to capture and analyze the incoming packets.
The next logical question is, "How can we use libnet and libpcap to create some really
awesome network security tools?" This recipe is written to show you how we can use libnet
and libpcap together.

We will build a simple port scanner that scans a range of ports on a remote device and lists
whether that port is open or closed. We will implement a SYN scan. This is a scan that sends
a packet with the SYN flag set, and if the port is open, the remote device will respond with
a packet that has the SYN and ACK flags set. If the port is not open, the remote device will
respond with a packet that has the RST flag set.

We will not go into the technical details of how libpcap and libnet work because that was
covered in this chapter and in Chapter 3, Using Libnet. Instead, we will discuss how we can
use libnet and libpcap together to create the port scanner.

Getting ready
Prior to using libnet and libpcap together, we need to follow the Adding libpcap to your project
recipe of this chapter and the Adding libnet to your project recipe of Chapter 3, Using Libnet.
The following sections will show you how to add libnet and libpcap to your project. We should
be familiar with using both libnet and libpcap.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

160

How to do it…
Let's get started:

1. We start off by defining the variables for our scanner:
 libnet_t *lnet;
 pcap_t *pcap;
 char errbuf[PCAP_ERRBUF_SIZE];
 bpf_u_int32 localNet, netMask;
 u_int32_t source, target;
 struct bpf_program filterCode;
 struct pcap_pkthdr header;
 const u_char *packet;
 libnet_ptag_t tcp = 0, ipv4 = 0;
 int reply = 0;
 char *TARGETIP = "10.0.0.16";
 char filter[] = "src host 10.0.0.16 && tcp";

Most of these will look very familiar if you have looked at the libnet and libpcap
recipes in this book. The important lines to look at here are the final two lines. These
define our target device's IP address; in this case, we will be scanning the device with
an IP address of 10.0.0.16 and defining the filter that we will be using to capture
packets with libpcap. Notice that the filter specifies the IP address of our target host
and the TCP protocol. The filter line will set the filter only to capture the TCP packets
from our target host.

2. Now, let's set up our libnet environment:
//Libnet Setup
 lnet = libnet_init(LIBNET_RAW4, NULL, errbuf);
 if (lnet == NULL) {
 NSLog(@"Error with libnet_init(): %s", errbuf);
 exit(EXIT_FAILURE);
 }

 target = libnet_name2addr4(lnet, TARGETIP, LIBNET_DONT_RESOLVE);
 source = libnet_get_ipaddr4(lnet);
 if (source == -1) {
 NSLog(@"Error retrieving IP address: %s",libnet_
geterror(lnet));
 libnet_destroy(lnet);
 exit(EXIT_FAILURE);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

161

 libnet_seed_prand (lnet);

You can refer to Chapter 3, Using Libnet, for more details on this code.

3. Next, we will set up our libpcap environment in the following manner:
 //PCAP Setup
 char *dev = pcap_lookupdev(errbuf);
 if (dev==NULL) {
 NSLog(@"Error finding default device %s", errbuf);
 exit(2);
 }

 pcap= pcap_open_live(dev, SNAPLEN, PROMISC, TIMEOUT, errbuf);
 if (pcap == NULL) {
 NSLog(@"Can not open device %s", errbuf);
 exit(2);
 }

 if (pcap_lookupnet(dev, &localNet, &netMask, errbuf) == -1) {
 pcap_close(pcap);
 NSLog(@"pcap_lookupnet failed");
 exit(2);
 }

 if (pcap_compile(pcap, &filterCode, filter, 1, netMask) == -1) {
 pcap_close(pcap);
 NSLog(@"pcap_compile failed");
 exit(2);
 }

 if (pcap_setfilter(pcap, &filterCode) == -1) {
 pcap_close(pcap);
 NSLog(@"Can't install filter");
 exit(2);
 }

We use the pcap_setFilter() function to set our filter and once the filter is set,
libpcap begins capturing packets. This is fine because the filter that we set up is only
looking for packets from our target host and we have not sent any packets to that
host yet.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

162

4. Now, we loop through the ports we wish to send:
 //Looping through ports
 for (int portNum=1; portNum<1024; portNum++) {

In this example, we loop from port 1 to port 1024 looking for any open ports.

5. We build our TCP header as follows:
 /* Building TCP header */
 if ((tcp = libnet_build_tcp (libnet_get_prand (LIBNET_PRu16),
 portNum,
 0,
 0,
 TH_SYN,
 1024,
 0,
 0,
 LIBNET_TCP_H,
 NULL,
 0,
 lnet,
 tcp)) == -1)
 {
 NSLog(@"Error building TCP header: %s\n",libnet_
geterror(lnet));
 libnet_destroy(lnet);
 exit(EXIT_FAILURE);
 }

We construct the TCP header using libnet's libnet_build_tcp() function, setting
the port number we wish to scan.

6. We build the IPv4 header as follows:
 /* Building IP header */
 if((ipv4 = libnet_build_ipv4(LIBNET_TCP_H + LIBNET_IPV4_H ,
 0,
 libnet_get_prand (LIBNET_PRu16),
 0,
 64,
 IPPROTO_TCP,
 0,
 source,
 target,
 NULL,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

163

 0,
 lnet,
 ipv4)) == -1)
 {
 NSLog(@"Error building IP header: %s\n",libnet_
geterror(lnet));
 libnet_destroy(lnet);
 exit(EXIT_FAILURE);
 }

We build the IPv4 header using the libnet_build_ipv4() function; it enables us
to set the source and destination IPv4 addresses.

7. Inject the packet into the network in the following manner:
 /* Writing packet */
 int bytes_written = libnet_write(lnet);
 if (bytes_written == -1)
 NSLog(@"Error writing packet: %s\n",libnet_geterror(lnet));
 else {
 reply =0;
 while (!reply) {

This will send our SYN packet to the target computer. If there is failure in injecting the
packet, we log an error and move on.

We then start a while loop. This while loop will loop until we receive a reply from
our target device for the correct port number or until the packet is NULL (the capture
times out).

8. Now we wait for a response from the target:

 packet = pcap_next(pcap, &header);
 //Capture timed out
 if (packet == NULL) {
 NSLog(@"Port %d: No Reply (timeout)", portNum);
 reply =1;
 } else {
 struct pcap_ip *ip = (struct pcap_ip *)(packet +
ETHERNET_SIZE);
 int offset = GET_IP_HEADER_LENGTH(ip)*4;
 struct pcap_tcp *tcp = (struct pcap_tcp *)(packet +
ETHERNET_SIZE + offset);

 int from =ntohs(tcp->tcp_sport);
 //If port matches the packet we sent out

www.it-ebooks.info

http://www.it-ebooks.info/

Using Libpcap

164

 if (from == portNum) {
 if (tcp->tcp_flags & TCP_RST) {
 NSLog(@"Port %d: Closed", from);
 } else if (tcp->tcp_flags & TCP_SYN) {
 NSLog(@"Port %d: Open", from);
 } else {
 NSLog(@"Port %d: Unknown", from);
 }
 reply = 1;
 }
 }
 }
 }
}
libnet_destroy(lnet);
pcap_close(pcap);

We use the pcap_next() function to read the next packet that was captured. If the
request times out or if there was an issue with the capture, the packet will be NULL,
otherwise the function will return a u_char pointer to the data in the packet.

If the packet returns NULL, we assume that the capture timed out, log it, and set
the reply to 1. This will allow us to go on to the next port. If the computer is down or
behind a firewall, we may not see a reply, so we do not want to wait forever.

If the packet is not NULL, it means that we received a valid packet and need to
determine the source number of the port. We compare this port number with the port
that we sent the SYN packet to. If the two port numbers match, we look at the TCP
flags to determine whether the port is closed (if we receive an RST packet) or opened
(if we receive a SYN packet). We then set our reply to 1, which will allow us to move
on to the next port to be scanned.

If the two port numbers do not match, it means that we are receiving some other
communication from our target host and we need to loop back to get the next packet.

Once we have looped through all of the ports that we wish to scan, we clean up by
calling the libnet_destroy() and libpcap_close() functions.

How it works…
We started off by setting up our libnet and libpcap environments. This included setting up
our capture filters and capturing the packets. After we had our environments set, we started
a loop that looped through the list of ports we wished to scan. In this loop, we created a TCP
packet for each port with the SYN flag set and sent it to the device that we were scanning at
that moment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

165

If you remember from our earlier examples, we used the pcap_loop() function that called
a callback function each time a packet came in. In this example, we used the pcap_next()
function to capture the packet from the target device because we are looking for just one
packet with the correct port/address information and not at continuously capturing packets.

With our simple scanner, we are able to identify the three possible states the ports we scan
can be in; they are as follows:

 f If the pcap_next() function times out, we can assume that the port is filtered by a
firewall or that the device is not reachable

 f If we receive a packet with the correct port/address combination and with the RST
flag set, it means that the port is closed and no application is listening on that port

 f If we receive a packet with the correct port/address combination and with the SYN flag
set, it means that the port is open and there is an application listening on that port

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

5
Apple High-level

Networking

In this chapter, we will cover:

 f Performing HTTP(S) synchronous GET requests

 f Performing HTTP(S) synchronous POST requests

 f Performing HTTP(S) asynchronous GET requests

 f Performing HTTP(S) asynchronous POST requests

 f Parsing an RSS feed with NSXMLParser, NSURL, and NSData

 f Creating a peer-to-peer bluetooth network

Introduction
In the previous chapters, we covered a variety of libraries and APIs designed to give us
low-level access to the network interfaces. These libraries and APIs are designed to give
developers great flexibility in how devices communicate over the network. While this flexibility
and control is nice to have, there are times when we want to communicate using standard
protocols and do not want to spend time implementing the communication mechanism
ourselves. This is where the higher-level libraries in the following chapters come in.

In this chapter, we will be covering some of Apple's high-level networking APIs. The APIs
discussed in this chapter hide the underlying network communication mechanism from
the developer and allow them to focus on implementing their business logic rather than
the network code. These recipes are designed to connect to servers over the Internet or to
connect multiple devices through bluetooth.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple High-level Networking

168

The synchronous and asynchronous HTTP(S) connection recipes are great recipes to connect
to custom web services. I have used these for many projects that required me to interact
with backend services to send/receive both XML- and JSON-formatted documents as well as
images and PDF files.

The Parsing an RSS feed with NSXMLParser, NSURL, and NSData recipe is great for parsing
RSS feeds (obviously), but it can also be used for other XML feeds. All you need to do is
change the XML element names to match what the feed sends.

The Creating a peer-to-peer bluetooth network recipe uses Apple's game kit API to create a
mini network between two devices. While bluetooth networks limit what you can send, they
can work well while sending small amounts of information between two devices.

Performing HTTP(S) synchronous GET
requests

In this recipe, we will create a WebServiceConnectSynchronous class that will be able to
perform the HTTP GET requests. In the next recipe, Performing HTTP(S) synchronous POST
requests, we will add a method to perform POST requests. If we follow the HTTP specifications
to the letter, we would use the HTTP GET request to retrieve data from a server. For example,
when you request a web page from a server, you submit a GET request to the server,
requesting that the web page be sent to you. If you want to send information to the server, like
filling out a form, you would want to submit a POST request.

For an HTTP GET request, if any parameters need to be sent to the service, they should be
included in the URL. There are two primary ways to include the parameters in GET requests:

 f Path parameter: In this method, the parameters are a part of the URL path itself. For
example, in the URL http://mytest.com/testservice/value1, the value1
path element is the parameter.

 f Query parameter: In this method, the parameters are added to the URL at the end of
the path as key-value pairs. For example, in the URL http://mytest.com/testse
rvice?key1=value1&key2=value2, key1 and key2 are the keys, while value1
and value2 are the values for the keys.

The type of parameters that you use will depend on what the server expects and are usually
defined by the developer who is creating the service.

Since the requests in this recipe are made synchronously, the application will freeze while
it is waiting for a response from the server. This may cause usability issues if the request
takes more than a second to come back. As a general rule, if you are making a synchronous
request, you will want to display an activity indicator so that the user knows that the
application is waiting for data to be loaded.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

169

I normally display some sort of activity indicator over my screen and then
start the synchronous HTTP request in a separate thread. Once the request
from the server comes back, I send a notification to the main thread with the
server response.

A synchronous request should be used only when you do not want the users interacting
with your application while it is sending the HTTP request. Apple does support multiple APIs
for making HTTP requests. For this recipe, we will be using NSMutableURLRequest and
NSURLConnection to submit the requests.

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it…
We will begin by creating the WebServiceConnectSynchronous class.

Creating the WebServiceConnectSynchronous header file
#import <Foundation/Foundation.h>

#define WEBSERVICESUCCESS 200

@interface WebServiceConnectSynchronous : NSObject

@property int statusCode;
@property (retain, nonatomic) NSError *error;

-(NSString *)sendGetRequest:(NSDictionary *)params toUrl:
 (NSString *)urlString;
@end

This WebServiceConnectSynchronous header file begins by defining the return code for a
successful HTTP request to be 200. This is defined within the HTTP specifications and can be
used for all HTTP requests.

There are two properties that are also defined within the header file. The statusCode property
is the code returned from the server after the request. If the request is successful, statusCode
will contain 200, otherwise statusCode will contain the HTTP error code. The error property
will contain detailed information about any errors that occurred with the request.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple High-level Networking

170

The sendGetRequest:toURL: method will be used to send an HTTP GET request to the
server. The return value will be the response from the server. The parms parameter will be an
NSDictionary object that contains the parameters to pass to the server. If you recall from
the introduction, the GET query parameters take the form of key-value pairs and really lend
themselves to being defined in an NSDictionary object, which also stores information in the
key-value pairs.

The sendGetRequest:toURL: method returns an NSString object with a response from
the request. This is used when we are expecting text back from the server like XML, JSON, or
HTML. If we wish to receive binary files, such as PDF or images, back from the server, we can
change the return type to an NSData object instead of the NSString object. We will point out
the change needed when we discuss the code.

Creating the sendGetRequest:toURL: method
Let us first start by creating a sendGetRequest method.

-(NSString *)sendGetRequest:(NSDictionary *)params toUrl:
 (NSString *)urlString {

 NSMutableString *paramString = [NSMutableString
 stringWithString:@"?"];
 NSArray *keys = [params allKeys];
 for (NSString *key in keys) {
 [paramString appendFormat:@"%@=%@&",key,
 [params valueForKey:key]];

 }
 NSString *urlRequest = [NSString stringWithFormat:@"%@%@",
 urlString,[paramString substringToIndex:
 [paramString length]-1]];

 NSMutableURLRequest *request =[NSMutableURLRequest
 requestWithURL:[NSURL URLWithString:urlRequest]];
 [request setHTTPMethod:@"GET"];

 NSURLResponse *res;
 NSData *resp = [NSURLConnection sendSynchronousRequest:request
 returningResponse:&res error:&error];

 NSHTTPURLResponse *httpResponse = (NSHTTPURLResponse *)res;
 statusCode = [httpResponse statusCode];

 return [[NSString alloc] initWithData:resp
 encoding:NSUTF8StringEncoding];
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

171

We begin the sendGetRequest:toUrl: method by taking the NSDictionary object that
contains the parameters we want to pass to the server, and converting it to a formatted string.
The parameter string for query parameters should be formatted as key=value and multiple
parameters should be separated with an ampersand (&) symbol. A parameter string with
multiple parameters will look like this: key1=value1&key2=value2&key3=value3.

This method can be used for both path parameters and query parameters. If the web service
takes a path parameter, we can include it in the URL and leave the parmas NSDictionary
empty.

Once we have our parameter string, we append it to the URL to create the final URL that
will be used to connect to the server. We then create an NSMutableURLRequest object
using the NSURL object that we create using urlRequest. We set the request type of the
NSMutableURLRequest object as an HTTP GET request.

We then call the sendSynchronousRequest:returningResponse:error: method of
the NSURLConnection class. The NSData resp object that is returned will contain the
actual response from the server. Normally, this response will be in plaintext data (XML, JSON,
or HTML), but it can also be binary data if the web service returns a binary file, such as an
image or PDF. In this recipe, we will be expecting a plaintext response.

The error parameter in the NSURLConnection call is used to get information about any
specific errors. We can set this to nil if we do not care about the errors, but it is very helpful
for troubleshooting.

We typecast NSURLResponse as an NSHTTPURLResponse object so that we can extract
HTTP-specific information from the response. We are more concerned about the status
code of the response and we use it to set the statusCode property. You can also use the
allHeadeFields: method of the NSHTTPURLResponse object to get an NSDictionary
object containing the HTTP headers from the response.

We convert the NSData resp object that contains the response from the server to an
NSString object, which is then returned. We can remove the NSData to NSString
conversion and return the NSData object if we are expecting a binary file from our server. We
kept the conversion in our sample code because this type of code is used primarily to retrieve
plaintext responses, such as XML, JSON, or HTML.

How it works…
To make a synchronous GET request using NSURLConnection, follow these steps:

1. Create the URL request with the parameters in the URL string.

2. Create an NSMutableURLRequest with the URL created in step 1.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple High-level Networking

172

3. Send the request using the NSURLConnection. This request will return three
separate responses as follows:

 � NSData: This is an object that contains the actual response. It usually takes
the form of an HTML, XML, or JSON (plaintext) document. We could use
Apple's NSJSONSerialization classes to process the JSON responses.

 � NSHTTPURLResponse: This is an object that contains the status code and
HTTP headers.

 � NSError: This contains additional error information if there is a problem
with the request.

Performing HTTP(S) synchronous POST
requests

In this recipe, we will be adding the sendPostRequest:toUrl: method to the
WebServiceConnectSynchronous class that we created in the Performing HTTP(S)
synchronous GET requests recipe. If we follow the HTTP specifications to the letter, we
would use an HTTP POST request when we want to send data to a server for processing. For
example, if you fill out an HTTP form (for instance, from a login page), you would submit a
POST request that contains the form information.

To perform a POST request, we should have some data to post to the server. This data takes
the form of key-value pairs. These pairs are separated by an ampersand (&) symbol and each
key is separated from its value by an equal (=) sign.

The keys and values to submit are as follows:

firstname: Jon
lastname: Hoffman
age: 44 years

The post request would be encoded as follows:

firstname=Jon&lastname=Hoffman&age=44

The encoded data can then be added to the HTTP request prior to being sent to the server.

Since the requests in this recipe are made synchronously, the application will freeze while
it is waiting for a response from the server. This may cause usability issues if the request
takes more than a second to come back. As a general rule, if you are making a synchronous
request, you will want to display an activity indicator so that the user knows that the
application is waiting for data to be loaded.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

173

I normally display some sort of activity indicator over my screen and
then start the synchronous HTTP request in a separate thread. Once the
request from the server comes back, I send a notification to the main
thread with the server response.

A synchronous request should be used only when you do not want the users interacting
with your application while it is making the HTTP request. Apple does support multiple APIs
for making HTTP requests; for these recipes we will be using NSMutableURLRequest and
NSURLConnection to submit our requests.

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it…
Let's add the POST method to our WebServiceConnectSynchronous class.

Updating the WebServiceConnectSynchronous header file
This header file is the same header file that we created in the Performing HTTP(S) synchronous
GET requests recipe, except that we are adding the sendPostRequest:toUrl: method. This
method will be used to send an HTTP POST request to the server. The return value will be the
response from the server as shown in the following snippet:

#import <Foundation/Foundation.h>

#define WEBSERVICESUCCESS 200

@interface WebServiceConnectSynchronous : NSObject

@property int statusCode;
@property (retain, nonatomic) NSError *error;

-(NSString *)sendGetRequest:(NSDictionary *)params toUrl:(NSString *)
urlString;
-(NSString *)sendPostRequest:(NSDictionary *)params toUrl:(NSString *)
urlString;
@end

The parms parameter in the sendPostRequest:toUrl: method is an NSDictionary
object that contains the parameters to be passed to the server. If you recall from the
introduction, the POST parameters take the form of key-value pairs and really lend themselves
to being defined in an NSDictionary object that also stores information in key-value pairs.
The second parameter of this method is the URL that we will be sending the request to.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple High-level Networking

174

The sendPostRequest:toUrl: method returns an NSString object with the response
from the server. This is used when we are expecting text, such as XML, JSON, or HTML, back
from the server. If we wish to receive binary files, such as PDF or images, back from the
server, we would change the return type to an NSData object instead of an NSString object.
We will point out the change needed when we discuss the code.

Creating the sendPostRequest:toUrl: method
The POST request is very similar to the GET request as seen in the following code snippet:

-(NSString *)sendPostRequest:(NSDictionary *)params toUrl:(NSString *)
urlString {

 NSMutableString *paramString =
 [NSMutableString stringWithString:@""];
 NSArray *keys = [params allKeys];
 for (NSString *key in keys) {
 [paramString appendFormat:@"%@=%@&",key,
 [params valueForKey:key]];]];
 }
 NSString *postString = @"";
 if ([paramString length] > 0)
 postString = [paramString substringToIndex:
 [paramString length]-1];

 NSMutableURLRequest *request =[NSMutableURLRequest
 requestWithURL:[NSURL URLWithString:urlString]];
 [request setHTTPMethod:@"POST"];
 [request setHTTPBody:[postString
 dataUsingEncoding:NSUTF8StringEncoding]];

 NSURLResponse *res;
 NSData *resp = [NSURLConnection sendSynchronousRequest:request
 returningResponse:&res error:
&error];

 NSHTTPURLResponse *httpResponse = (NSHTTPURLResponse *)res;
 statusCode = [httpResponse statusCode];

 return [[NSString alloc] initWithData:resp
 encoding:NSUTF8StringEncoding];
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

175

We begin the sendPostRequest:toUrl: method by taking the params parameter, which
contains the parameters that we want to pass to the server, and converting it to a formatted
string. The parameter string for an HTTP POST request should be formatted as key=value ,
and multiple parameters should be separated with an ampersand (&). A parameter string with
multiple parameters will look like this: key1=value1&key2=value2&key3=value3.

We will have a trailing & symbol in our parameter string because the preceding code writes
each parameter as key=value& with an & symbol at the end to prepare it for the next key-
value pair. Therefore, after we build the paramString, we check to see if the length of the
parameter string is greater than 0, and if so, we remove the trailing & symbol.

Once we have the paramString, we create an NSMutableURLRequest using NSURL
that we created using the urlString parameter. We set the request type of the
NSMutableURLRequest object as an HTTP POST request.

We then call the sendSynchronousRequest:returningResponse:error: method of
the NSURLConnection class. The NSData resp object that is returned will contain the
actual response. Normally, this response will be plaintext data (such as XML, JSON, or HTML),
but it can also be binary data if the web service returns a binary file such as an image or PDF.
For example here, we will be expecting a plaintext response.

The error parameter in the NSURLConnection call is used to get information about any
errors in the request. You can set this to nil if you do not care about the errors, but it is very
helpful for troubleshooting purposes.

We typecast NSURLResponse as an NSHTTPURLResponse so that we can extract the
HTTP-specific information from the response. We are more concerned about the status
code of the response and we use it to set the statusCode property. You can also use the
allHeadeFields: method of the NSHTTPURLResponse object to get an NSDictionary
object that contains the headers from the response.

We convert the NSData resp object that contains the response from the server to an
NSString object that will be returned. We can remove the NSData to NSString conversion
if we were expecting binary files from our server; however, we kept the conversion in our
sample code because this type of code is used primarily to retrieve plaintext data, such as
XML, JSON, or HTML.

How it works…
To make a synchronous POST request using NSURLConnection, follow these steps:

1. Create an NSString object containing the parameters to pass to the server. This string
will take the format of key1=value1&key2=value2, where each key-value pair is
separated by an & symbol and each key is separated from the value by the = symbol.

2. Create an NSMutableURLRequest with the URL created in step 1.

3. Add the parameter string to the NSURLMutableRequest.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple High-level Networking

176

4. Send the request using the sendSynchronousRequest:ReturningResponse
:error method from the NSURLConnection class. This request will return three
separate responses as follows:

 � NSData: This is an object that contains the actual response. This usually
takes the form of an HTML, XML, or JSON (plaintext) document. We can use
Apple's NSJSONSerialization classes to process the JSON responses.

 � NSHTTPURLResponse: This is an object that contains the status code and
HTTP headers.

 � NSError: This is an object that contains additional error information if there
is a problem with the request.

Performing HTTP(S) asynchronous GET
requests

In this recipe, we will create a WebServiceConnectAsynchronous class that will be able
to perform an HTTP GET request asynchronously. If we follow the HTTP specifications to the
letter, we would be using the HTTP GET request to retrieve data from a server. For example,
when you request a web page from a server, you submit an HTTP GET request.

For an HTTP GET request, if any parameters need to be sent to the resource, they should be
included in the URL. There are two primary ways to include the parameters in a GET request:

 f Path parameter: In this method, the parameters are part of the URL path itself. For
example, in the URL http://mytest.com/testservice/value1, the value1
path element is the parameter.

 f Query parameter: In this method, the parameters are added to the URL at the end of
the path as key-value pairs. Let's consider the URL http://mytest.com/testser
vice?key1=value1&key2=value2. In this URL, key1 and key2 are the keys while
value1 and value2 are the values.

The type of parameters that you use will depend on what the server expects.

Asynchronous requests do have a major advantage over synchronous requests shown in the
synchronous recipes. When an asynchronous request is made, control is returned back to the
app while it waits for a response from the server. This allows the user to continue to interact
with the app while we are loading content. However, this is a double-edged sword because
there are times we do not want the user to interact with our app while it is loading content.

Some people say that synchronous requests must never be used when
loading web services. However, my philosophy is to use the type of request
that is right for your application. You can always make a synchronous
request in a separate thread so that your user interface does not freeze
when you make the web service call.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

177

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it…
Let's create the WebServiceConnectAsynchronous class.

Creating the WebServiceConnectAsynchronous header file
The header file for the WebServiceConnectAsynchronous class is as follows:

#import <Foundation/Foundation.h>

#define WEBSERVICENOTIFICATIONSUCCESS @"WebserviceConnectSuccess"
#define WEBSERVICENOTIFICATIONERROR @"WebserviceConnectError"

@interface WebServiceConnectAsynchronous : NSObject {
 NSMutableData *responseData;
}

-(void)sendGetRequest:(NSDictionary *)params toUrl:
 (NSString *)urlString;

@end

We define the name of the two notifications that we will use depending on if the web service
request was successful or not. These notifications are WEBSERVICENOTIFICATIONSUCCESS
and WEBSERVICENOTIFICATIONERROR. A successful notification will contain an NSString
object that represents the response from the server, while an error notification will contain an
NSError object.

We also define a method: the sendGetRequest:toURL: method. This method will be used
to send a GET request to the server. The return value will be the response from the server.

Creating the sendGetRequest:toURL: method
The sendGetRequest:toURL: is the method that we call to send the asynchronous request
to the server. The code for this method is as follows:

-(void)sendGetRequest:(NSDictionary *)params toUrl:
 (NSString *)urlString {

 responseData = [[NSMutableData alloc]init];

www.it-ebooks.info

http://www.it-ebooks.info/

Apple High-level Networking

178

 NSMutableString *paramString = [NSMutableString
 stringWithString:@"?"];
 NSArray *keys = [params allKeys];
 for (NSString *key in keys) {
 [paramString appendFormat:@"%@=%@&",key,
 [params valueForKey:key]];
 }

 NSString *urlRequest = [NSString
 stringWithFormat:@"%@%@",urlString,[paramString
 substringToIndex:[paramString length]-1]];

 NSMutableURLRequest *request =[NSMutableURLRequest
 requestWithURL:[NSURL URLWithString:urlRequest]];
 [request setHTTPMethod:@"GET"];

 [[NSURLConnection alloc] initWithRequest:request
 delegate:self];
}

We begin the sendGetRequest:toUrl: method by taking the params object, which
contains the parameters that we want to pass to the server, and converting it to a formatted
string. The parameter string for query parameters should be formatted as key=value and
multiple parameters should be separated by &. A parameter string with multiple parameters
will look like this: key1=value1&key2=value2&key3=value3.

This method can be used for both path parameters and query
parameters. If the web service takes a path parameter, include it in the
URL and do not put any parameters in the NSDictionary.

Once we have our parameter string, we append it to the URL to create the final URL that will
be used to connect to the server.

We then create an NSMutableURLRequest object using an NSURL object. We create it using
urlRequest and set the request type as an HTTP GET request.

Finally, we create the NSURLConnection object using the initWithRequest:delegate:
method. This will create an asynchronous request to the server defined in the
NSMutableURLRequest object and all callbacks from the asynchronous request will be sent
to the delegate defined by the delegate parameter. In this code, we define the delegate as the
current object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

179

We will need to create the six callback methods that will be used as we receive responses
back from the server.

Even though some of these methods are not required, I would
recommend implementing all of them, even if the only thing you do is log
from them. They will definitely help when you are troubleshooting issues.

Creating the connection:didReceiveResponse: callback method
The connection:didReceiveResponse: method is called when the connection has
received sufficient data to construct an NSURLResponse object as shown in the following
snippet:

-(void)connection:(NSURLConnection *)connection
 didReceiveResponse:(NSURLResponse *)response
{
 NSLog(@"Received Response - WebServiceConnect");
 [responseData setLength:0];
}

There is the rare case where we may receive multiple connection:didReceiveResponse:
calls for the same request. In Apple's delegate reference for the
NSURLConnectionDelegate protocol, they noted that when the content type of
the load data is multipart/x-mixed-replace, the delegate will receive multiple
connection:didReceiveResponse: calls.

In our code, we will set the length of the response data to 0, which will clear out the data to
ensure that there is nothing in the data that would corrupt our response.

Creating the connection:didReceiveData: callback method
The connection:didReceiveData: method is called when data is received from
our request.

-(void)connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)data
{
 [responseData appendData:data];
 NSString*tmp = [[NSString alloc] initWithData :
 responseData encoding:NSUTF8StringEncoding];
 NSLog(@"Resonse so far: %@", tmp);
}

It is very rare for all data from a response to come back through a single call to
connection:didReceiveData:. Therefore, we need to append the data to our
responseData variable each time this method is called.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple High-level Networking

180

We also log the response so that we can see what is coming back. You can safely comment
out these lines, but they are helpful when trying to troubleshoot issues.

Creating the connection:didFailWithError: callback method
The connection:didFailWithError: method is called when the response failed to
return correctly.

-(void)connection:(NSURLConnection *)connection
didFailWithError:(NSError *)error
{
 [[NSNotificationCenter defaultCenter] postNotificationName:WEBSERVIC
ENOTIFICATIONERROR object: error];
}

In the preceding code, we post a notification that the request failed so that any code listening
for the notification will know about the failure. We also send the NSError object containing
the error with the notification so that the listening code can determine what caused the error.

Creating the connectionDidFinishLoading: callback method
The connectionDidFinishLoading: method is called when the entire response has been
received from the server as shown in the following code snippet:

-(void)connectionDidFinishLoading:(NSURLConnection *)
 connection
{
 NSString *res = [[NSString alloc] initWithData:responseData
encoding:NSUTF8StringEncoding];
 NSLog(@"Results: '%@'", res);
 [[NSNotificationCenter defaultCenter]
 postNotificationName:WEBSERVICENOTIFICATIONSUCCESS
 object:res];
}

There should be one or more connection:didReceiveReponse: calls prior to calling
the connectionDidFinsihLoading: method. Therefore, the responseData object will
contain the entire response from the server.

The preceding code will convert the responseData object to an NSString object and then
post a notification that the web service call was successful. The notification will contain the
response as an NSString object. We could remove the NSData to NSString conversion
and return the NSData object if we were expecting a binary file from our server. We kept the
conversion in our sample code because this type of code is typically used to retrieve plaintext
messages, such as XML, JSON, or HTML. We could use Apple's NSJSONSerialization
classes to process JSON responses.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

181

Creating the connection:willSendRedirect:redirectResponse:
callback method
The connection:willSendRequest:redirectResponse: method is called when it
is determined that the request is going to be redirected to another URL. This is done in the
following manner:

- (NSURLRequest *)connection: (NSURLConnection *)connection
 willSendRequest: (NSURLRequest *)request redirectResponse:
 (NSURLResponse *)redirectResponse;
{
 NSLog(@"Redirecting: %@", request.URL);
 return request;
}

In most instances, this would be allowed, but there are times when we may not want our
request to be redirected. If we did not want our request to be redirected, we will return nil.

Creating the connection:willCacheResponse: callback method
Finally, the last delegate method is the connection:willCacheResponse: method. This
method is called prior to the response being cached to allow us the opportunity to alter the
response prior to caching it, as shown in the following code snippet:

- (NSCachedURLResponse *)connection:(NSURLConnection *)
 connection willCacheResponse:(NSCachedURLResponse*)
 cachedResponse {
 return nil;
}

We set the return value to nil to make sure the response is not cached. It is preferable to not
cache the response while interacting with web services that are used as APIs because we want
to make sure that each call gets sent to the server and we do not receive a cached response.

If you are making multiple connections with the same
WebServiceConnectAsynchronous object, you will have problems
with the response data from the multiple requests being combined. All the
callback methods contain an NSURLConnection parameter that will tell
you what connection the callback is for. You can use this to identify which
connection is making the callback and decide how to handle it.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple High-level Networking

182

How it works…
When we made the synchronous requests the application froze while it waited for a response
from the server. With the asynchronous GET request, once the request is made, control is
turned back to the application while our code waits for the response. As data is received, our
callback methods are called to handle the response.

The events that will trigger a callback are as follows:

 f If a redirect occurs, the connection:willSendRequest:redirectResponse:
method is called to process the redirect.

 f When there is enough data received to construct an NSURLResponse, the
connection:didReceiveResponse: method is called. This is where we will want
to reset any objects that are needed to handle the response data as we receive it.

 f If there is an error, the connection:didFailWithError: method is called with
an NSError object that we can parse to determine what caused the error.

 f Once our client begins to receive the response from the server, the
connection:didReceiveData: method is called with an NSData object
that contains the response. This method is called multiple times until all the
data is received.

 f When all the data has been received, the connectionDidFinishLoading:
method is called to let us know that we have received everything from the server.

Performing HTTP(S) asynchronous POST
requests

In this recipe, we will be adding the sendPostRequest:toUrl: method to the
WebServiceConnectAsynchronous class that we created in the Performing HTTP(S)
asynchronous GET requests recipe. If we follow the HTTP specifications to the letter, we
would use the HTTP POST request when we want to send data to a server for processing. For
example, if you fill out an HTTP form (for instance, from a login page), you would submit an
HTTP POST request that contains the form information.

To perform a POST request, you should have some data to post to the server. This data takes
the form of a key-value pair, just like the GET query request. We also submit the data in the
same format as the GET query request, where each key-value pair is separated by & and each
key is separated from its value by =. Here is an example.

If we had the following key-value pairs:

firstname: Jon
lastname: Hoffman
age: 44 years

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

183

Our POST request will be encoded as follows:

firstname=Jon&lastname=Hoffman&age=44

The encoded data can then be added to the HTTP request prior to being sent to the server.

Asynchronous requests do have a major advantage over synchronous requests described in
the synchronous recipes. When an asynchronous request is made, control is returned back to
the app while it waits for a response back from the server. This allows the user to continue to
interact with the app while we are loading the content. However, this is a double-edged sword
because there are times when we do not want the user to interact with our app while it is
loading content.

Some people say that synchronous requests must never be used while
loading web services; however, my philosophy is to use the type of request
that is right for your application. You can always make a synchronous
request in a separate thread so that your user interface does not freeze
while making the web service call.

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it…
For this recipe, we will be updating the WebServiceConnectAsynchronous class that we
created in the Performing HTTP(S) synchronous GET requests recipe. Let's get started.

Updating the WebServiceConnectAsynchronous header file
The new WebServiceConnectAsynchronous header file is as follows:

#import <Foundation/Foundation.h>

#define WEBSERVICESUCCESS 200

#define WEBSERVICENOTIFICATIONSUCCESS @"WebserviceConnectSuccess"
#define WEBSERVICENOTIFICATIONERROR @"WebserviceConnectError"

@interface WebServiceConnectAsynchronous : NSObject {
 NSMutableData *responseData;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Apple High-level Networking

184

-(void)sendGetRequest:(NSDictionary *)params toUrl:
 (NSString *)urlString;
-(void)sendPostRequest:(NSDictionary *)params toUrl:
 (NSString *)urlString;

@end

The only update to the WebServiceConnectAsynchronous header file is to add the
sendPostRequest:toURL: method, which will be used to send a POST request to the server.

Creating the sendPostRequest:toURL: method
Let us take a look at how to create the sendRequest:toURL: method:

-(void)sendPostRequest:(NSDictionary *)params toUrl:
 (NSString *)urlString {

 responseData = [[NSMutableData alloc]init];
 NSMutableString *paramString = [NSMutableString
 stringWithString:@""];
 NSArray *keys = [params allKeys];
 for (NSString *key in keys) {
 [paramString appendFormat:@"%@=%@&",key,
 [params valueForKey:key]];
 }
 NSString *postString = @"";
 if ([paramString length] > 0)
 postString = [paramString substringToIndex:
 [paramString length]-1];

 NSMutableURLRequest *request =[NSMutableURLRequest
 requestWithURL:[NSURL URLWithString:urlString]];
 [request setHTTPMethod:@"POST"];
 [request setHTTPBody:[postString
 dataUsingEncoding:NSUTF8StringEncoding]];
 [[NSURLConnection alloc] initWithRequest:request delegate:self];
}

We begin the sendPostRequest:toUrl: method by taking the params object that
contains the parameters that we want to pass to the server and converting it to a formatted
string. The parameter string for query parameters should be formatted as key=value
pairs and multiple parameters should be separated with &. A parameter string with multiple
parameters will look like this: key1=value1&key2=value2&key3=value3.

Once we have our parameter string, we create an NSMutableURLRequest using NSURL,
which we create using urlString. We then set the request method to a POST method and
add the parameters to the request.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

185

We create NSURLRequest using the initWithRequest:delegate: method. This will
create an asynchronous request to the URL defined in the NSMutableURLRequest and all
callbacks from the request will use the delegate defined by the delegate parameter. In the
preceding code, we define the delegate as the current object.

The POST request will use the same callbacks that we created in the Performing HTTP(S)
asynchronous GET requests recipe. Please refer to it for details on the callback methods.

How it works…
When we made the synchronous requests, the application froze while it waited for a response
from the server. With the asynchronous GET and POST requests, once the request is made,
control is turned back to the application. As data is received from the server, the callback
methods are called to handle the response.

The events that will trigger a callback are as follows:

 f If a redirect occurs, the connection:willSendRequest:redirectResponse
method is called to process the redirect.

 f When there is enough data received to construct the NSURLResponse object, the
connection:didReceiveResponse: method is called. This is where we will want
to reset any objects that are needed to handle the response data as we receive it.

 f If there is an error, the connection:didFailWithError: method is called with
an NSError object that we can parse to determine the cause of the error.

 f Once our client begins to receive the response from the server, the
connection:didReceiveData: method is called with an NSData object
that contains the response. This method is called multiple times until all the data
is received.

 f When all the data has been received, the connectionDidFinishLoading:
method is called to let us know that we have received everything from the server.

Parsing an RSS feed with NSXMLParser,
NSURL, and NSData

While this recipe shows you how to parse an RSS feed using NSXMLParser, NSURL, and
NSData, it is very easy to convert this code to parse any XML feed. All you need to do is
change the tags that you are looking for.

In the previous recipes, we used NSURLConnection to access web services. For this recipe,
we will be using the dataWithContentsFromURL: method of the NSData class to access
a web service. We will assume that the response is an XML data feed and will use the
NSXmlParser to parse the XML feed.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple High-level Networking

186

This recipe will load and parse the XML content synchronously. You will want to display an
activity indicator to let the user know that the application did not freeze while the URL was
loading. As in the synchronous HTTP GET and POST request recipes, it is recommended that
we send the dataWithContentsFromURL: request in a separate thread. This allows us to
display an activity indicator, letting the user know that we are loading information and that our
application did not freeze.

An RSS feed can have several tags, but for our purpose we will be looking for the title,
description, and pubDate tags.

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it…
Let's parse our RSS feed.

Creating the RSSItem header file
We begin by creating a class to hold the information we are extracting from the RSS feed. This
class will be called RSSItem. We will begin by creating the header file in the following manner:

#import <Foundation/Foundation.h>

@interface RSSItem : NSObject

@property (strong, nonatomic) NSString *title, *description;
@property (strong, nonatomic) NSDate *date;

@end

The RSSItem class will have the following three properties:

 f title: It will contain the contents of the RSS title tag

 f description: It will contain the contents of the RSS description tag

 f date: It will contain the contents of the pubDate tag as an NSDate object

Creating the RSSItem implementation file
Now, let's look at the implementation file for the RSSItem class.

#import "RSSItem.h"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

187

@implementation RSSItem
-(instancetype)init {
 if (self = [super init]) {
 self.title = @"No Title";
 self.description = @"No Description";
 self.date = [[NSDate alloc] init];
 }
 return self;
}

@end

The only method that we define is the default constructor to initialize our properties. This class
is designed to hold the information that is coming back in the RSS feed.

Creating the ParseRSS header file
We will now create the ParseRSS class that retrieves the contents of a URL and then parses
the XML. We will begin by creating the ParseRSS header file in the following manner:

#import <Foundation/Foundation.h>

@interface ParseRSS : NSObject<NSXMLParserDelegate> {
 NSXMLParser * rssParser;
 NSString * currentElement;
 NSMutableString *currentElementString;
 NSMutableDictionary *currentElementData;
 NSDateFormatter *formatter;
}

@property (strong, nonatomic) NSMutableArray *items;

-(id)initWithUrl:(NSString *)urlString;

@end

Inside the interface declaration of the ParseRSS class, we define that this class will
implement the NSXMLParserDelegate protocol. This is the delegate that we use for our
XML parsing.

We define several instance variables that will be used by NSXmlParser to parse the XML
document. We also define an NSDateFormatter class reference that will be used to convert
the date from the RSS feed to an NSDate object.

The items property will contain the results once the parser has finished parsing the
XML document.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple High-level Networking

188

We also define one constructor that will be used to create instances of our ParseRss class.
This constructor takes one parameter, which will be the URL containing the RSS feed that
needs to be parsed.

Creating the initWithUrl: constructor
Lets begin building our ParseRSS implementation file and also look at the initWtihUrl
constructor. This can be done in the following manner:

#import "ParseRSS.h"
#import "RSSItem.h"

#define ITEMSEPERATOR @"item"
#define ITEMTITLEKEY @"title"
#define ITEMDESCRIPTIONKEY @"description"
#define ITEMDATEKEY @"pubDate"

#define RSSDATEFORMATTER @"EEE, dd MMM yyyy HH:mm:ss Z"
@implementation ParseRSS

-(id)initWithUrl:(NSString *)url {
 if(self == [super init]) {
 currentElementData = [[NSMutableDictionary alloc] init];
 currentElementString = [[NSMutableString alloc] init];
 formatter = [[[NSDateFormatter alloc] init] retain];
 [formatter setDateFormat:RSSDATEFORMATTER];
 }

 [self parseXMLFileAtURL:url];
 return self;
}

We begin the ParseRSS implementation by defining several constants. These constants are
used by the NSXMLParser class to identify the information we want to pull out of the RSS feed.

The RSSDATEFORMATTER constant is used by NSDateFormatter to convert the date from
the RSS feed to an NSDate object.

The initWithUrl: constructor begins by initiating the currentElementData and
currentElementString objects. As the NSXMLParser class parses the XML document,
we will be using the currentElementString object as a temporary storage to hold the
value of the current element. The currentElementData object will contain the information
we want to pull out of each post. This will be the information that we want to store in the
RSSItem object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

189

We end the initWithUrl: constructor by calling the parseXmlFileAtUrl: method, which
will parse the XML document from the specified URL.

Creating the parseXMLFileAtUrl: method
The parseXMLFileAtURL: method retrieves the XML document from the URL, initializes the
NSXMLParser, and begins parsing the document in the following manner:

-(void)parseXMLFileAtURL:(NSString *)URL {
 items = [[NSMutableArray alloc] init];

 NSURL *xmlURL = [NSURL URLWithString:URL];
 NSData *myData = [NSData dataWithContentsOfURL:xmlURL];

 rssParser = [[NSXMLParser alloc] initWithData:myData];
 [rssParser setDelegate:self];
 [rssParser parse];
}

The parseXmlFileAtURL: method begins by initiating the item's NSMutableArray. We
then create an NSURL object from the URL parameter that was passed into this method.

The dataWithContentsOfURL: method from the NSData class makes an HTTP GET request
to a URL and waits for the data to be returned from the server. This one-line request is a lot
simpler than the NSUrlConnection object used in the previous recipes, but with this simplicity
you lose a lot of control, namely, you are limited to making synchronous GET requests.

We then initiate the NSXMLParser class, which sets the delegate and finally begins parsing
our document.

Creating the parserDidStartDocument: NSXMLParserDelegate
method
The first NSXMLParserDelegate method we are going to create is the
parserDidStartDocument: method, which is also the first NSXmlParser delegate
method that is called, as shown in the following snippet:

-(void)parserDidStartDocument:(NSXMLParser *)parser {
 NSLog(@"found file and started parsing");
}

This method is called when the NSXMLParser class determines that it has an XML document
that can be parsed and is about to begin parsing.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple High-level Networking

190

Creating the parser:parserErrorOccurred: NSXMLParserDelegate
method
We will now look at the parser:parserErrorOccurred: method:

-(void)parser:(NSXMLParser *)parser parseErrorOccurred:
 (NSError *)parseError {
 NSString * errorString = [NSString stringWithFormat:@"Unable to
 download RSS feed from web site (Error code %i)",
 [parseError code]];
 NSLog(@"Error: %@", errorString);

}

The parser:parseErrorOccurred: delegate method is called if there is a problem with
the XML document and the parser is unable to parse it.

Creating the parser:didStartElement:namespaceURI:qualifiedNa
me:attributes: NSXMLParserDelegate method
Let us now move on to the parser:didStartElement:namespaceURI:qualifiedName
:attributes: method:

-(void)parser:(NSXMLParser *)parser didStartElement:
 (NSString *)elementName namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName attributes:
 (NSDictionary *)attributeDict{
 currentElement = [elementName copy];
 currentElementString = [NSMutableString stringWithString:@""];
 if ([elementName isEqualToString:ITEMSEPERATOR])
 {
 [currentElementData removeAllObjects];
 }
}

The parserDidStartElement:namespaceURI:qualifiedName:attributes: delegate
method is called when the parser detects that an XML tag has started. For example, if we have
the XML tag pair <xmlTag>value</xmlTag>, the parserDidStartElement:namespace
URI:qualifiedName:attributes: method is called when the parser encounters the first
<xmlTag>. This allows us to store the element name. In our example, the element name is
xmlTag, and it resets the value stored in the currentElementString object.

We also check to see if the element name is equal to the <status> tag since the status tag
denotes that we are about to parse a new post in the RSS feed. If it is equal to the <status>
tag, we remove all the objects from the currentElementData dictionary so that the values
from our previous post do not get mixed with the next post.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

191

Creating the parser:didEndElement:namespaceURI:qualifiedNa
me: NSXMLParserDelegate method
The parser:didEndElement:namespaceURI:qualifiedName: delegate method is
called when the parser detects that an XML tag has ended. For example, if we have the XML
tag pair <xmlTag>value</xmlTag>, the parser:didEndElement:namespaceURI:qu
alifiedName: method is called when the parser encounters the </xmlTag>. This allows
us to store the value of our currentElementString object with the appropriate key in our
currentElementData dictionary as shown in the following code snippet:

-(void)parser:(NSXMLParser *)parser didEndElement:
 (NSString *)elementName namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName{
 if ([elementName isEqualToString:ITEMSEPERATOR])
 {
 RSSItem *item = [[[RSSItem alloc] init] autorelease];
 item.description = [currentElementData
 objectForKey:ITEMDESCRIPTIONKEY];
 item.title = [currentElementData objectForKey:ITEMTITLEKEY];
 item.date = [formatter dateFromString:[currentElementData
 objectForKey:ITEMDATEKEY]];
 [items addObject:item];
 }
 NSString *string = [currentElementString
 stringByTrimmingCharactersInSet:[NSCharacterSet
 whitespaceAndNewlineCharacterSet]] ;
 if([currentElement isEqualToString:ITEMDATEKEY])
 [currentElementData setObject:[string copy]
 forKey:ITEMDATEKEY];
 if([currentElement isEqualToString:ITEMTITLEKEY])
 [currentElementData setObject:[string copy]
 forKey:ITEMTITLEKEY];
 if([currentElement isEqualToString:ITEMDESCRIPTIONKEY])
 [currentElementData setObject:[string copy]
 forKey:ITEMDESCRIPTIONKEY];
}

We trim currentElementString by calling the stringByTrimmingCharacterInSet:
method to remove any new line or white spaces at the beginning and end of
currentElementString.

Finally, we look to see if currentElement is one of the three tags that we are looking
for, and if it is, we store the trimmed version of currentElementString in our
currentElementData dictionary object with the appropriate key.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple High-level Networking

192

Creating the parser:foundCharacters: NSXMLParserDelegate
method
The parser:foundCharacters: delegate method is called when the parser finds the value
between a set of tags in the following manner:

-(void)parser:(NSXMLParser *)parser foundCharacters:
 (NSString *)string
{
 [currentElementString appendString:string];
}

In the previous method, you were probably wondering where we got the
currentElementString object from. The parser:foundCharacters: delegate
method is called when the parser finds the value between a set of tags. For example, if we
have the XML tag pair <xmlTag>value</xmlTag>, the parser:foundCharacters:
method is called when the parser gets to value. Since the value can be very long,
the parser:foundCharacters: method may be called multiple times so that the
currentElementString object is an NSMutableString that we continue to append the
value foundCharacters value to. The currentElementString is reset in the parserD
idStartElement:namespaceURI:qualifiedName:attributes: delegate method, as
shown in the Creating the parser:didStartElement:namespaceURI:qualifiedName:attributes:
NSXMLParserDelegate method section of this recipe, so that the value is cleared at the start
of each new XML tag.

Creating the parserDidEndDocument: NSXMLParserDelegate
method
The parserDidEndDocument: method is called when NSXmlParser reaches the end of
the XML document.

-(void)parserDidEndDocument:(NSXMLParser *)parser
{
 NSLog(@"Items %d",[items count]);
}

In this example, we simply log the number of items found.

How it works…
We begin by retrieving the XML document from the URL of our service. We use the
dataWithContentsOfURL: method of the NSData class to perform a synchronous GET
request to a URL.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

193

Once we have the XML document, we use NSXmlParser to parse the document. The
NSXMLParserDelegate class specifies that we need to create six delegate methods to
perform the parsing. The methods are:

 f parserDidStartDocument: This is called when the parser begins parsing the XML
document

 f parser:parseErrorOccurred: This is called if there is an error in the XML
document

 f parserDidStartElement:namespaceURI:qualifiedName:attributes:
This is called when an XML tag is opened

 f parser:didEndElement:namespaceURI:qualifiedName: This is called when
an XML tag is closed

 f parser:foundCharacters: This is called when the parser is reading the value of
an XML tag

 f parserDidEndDocument: This method is called when the parser has completed
parsing the XML document

Once the NSXmlParser finishes parsing the XML document, the items property will contain
an array of RSSItem objects. Each RSSItem object will contain the information for one post.

Creating a peer-to-peer bluetooth network
In this recipe, we will create a peer-to-peer bluetooth network, which we will use to exchange
text messages. To create a bluetooth peer-to-peer network, we will use Apple's Game Kit
framework. So, we will need to add the Gamekit framework to our project.

The downloadable code for this project creates a peer-to-peer network that is used to
exchange text messages. Each individual message that is sent over the bluetooth network can
have a maximum size of 90 KB. If the data that we are sending is greater then 90 KB, we will
need to break the data apart and send it as multiple messages.

We will be implementing the GKPeerPickerController and GKSession delegate
methods. The GKPeerPickerController method provides a standard user interface,
which allows one iOS device to connect to another iOS device. Once the two devices are
connected, a GKSession object is returned. The GKSession object is used to send and
receive data between the two peers.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple High-level Networking

194

When the peer picker that is displayed by the GKPeerPickerController class is looking
for other devices to connect to, it looks as follows:

Once other devices are found, GKPeerPickerController will display the names of these
other devices as shown in the following screenshot:

Getting ready
This recipe is compatible only with iOS. We will need to add Apple's Gamekit framework
to our project.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

195

How to do it…
Let's create the bluetooth connection.

Displaying the GKPeerPickerController
The first thing we need to do is establish the connection between our two devices. This is done
with the GKPeerPickerController class, therefore, the first method we will implement is
the method to display the GKPeerPickerController. This is done as follows:

-(void)sessionConnect {
 self.mPeerPicker = [[GKPeerPickerController alloc]init];
 self.mPeerPicker.delegate = self;
 self.mPeerPicker.connectionTypesMask =
 GKPeerPickerConnectionTypeNearby;
 [mPeerPicker show];
}

We begin by initiating our mPeerPicker object, which will display the peer picker. We
set the GKPeerPickerController delegate to the current object and define the
connectionTypeMask to be GKPeerPickerConnectionTypeNearby, which tells the
peer picker to look for a bluetooth connection. Finally, we call the show method, which will
display the peer picker.

Creating the two delegate methods for
GKPeerPickerControllerDelegate
We will now need to implement two delegate methods for
GKPeerPickerControllerDelegate. The first is the peerPickerController:
sessionForConnectionType: method that returns a GKSession object for a
given session type. In our case, we only defined one connection type and that is
GKPeerPickerConnectionTypeNearby as shown in the following snippet:

-(GKSession *) peerPickerController:(GKPeerPickerController *)
 picker sessionForConnectionType:(GKPeerPickerConnectionType)
 type {
 self.mSession = [[GKSession alloc]initWithSessionID:
 @"PacktPubPeer" displayName:nil sessionMode:GKSessionModePeer]
 return mSession;
}

We create a new session using a session ID constant that uniquely identifies our service. In
this example, our session ID is PacktPubPeer. If you have two versions of your application,
like a standard and pro version, you can broadcast the same session ID in each application so
that users can communicate no matter which version they have.

www.it-ebooks.info

http://www.it-ebooks.info/

Apple High-level Networking

196

The other delegate method for GKPeerPickerControllerDelegate that we need to
implement is the peerPickerController:didConnectPeer:toSession: method.

-(void)peerPickerController:(GKPeerPickerController *)picker did
 ConnectPeer:(NSString *)peerID toSession:(GKSession *)session {
 [mSession setDataReceiveHandler:self withContext:NULL];
 [mPeerPicker dismiss];
 self.mPeerPicker = nil;
}

The peerPickerController:didConnectPeer:toSession: is called when a session
between two devices have been accepted by both parties. The first thing we do is set the
dataReceiveHandler for the session to the current object. This object should implement
the GKSession delegate methods that are called when new messages come in. We will learn
about this method shortly.

After we set the dataReceiveHandler, we dismiss the GKPeerPickerController and
set it to nil.

Disconnecting from the peer network
We now need a way to disconnect from our peer network. This is done using the following
sessionDisconnect method:

-(void)sessionDisconnect {
 [self.mSession disconnectFromAllPeers];
}

To disconnect, we call the disconnectFromAllPeers method of our GKSession object.
This will disconnect the device from the other devices on our peer-to-peer network.

Sending data to the peer
Now, let's create the sendDataToPeer: method to send data across our peer-to-peer
network. We do it in the following manner:

-(void)sendDataToPeer:(NSString *)text{
 NSError *error;
 [self.mSession sendDataToAllPeers:[text dataUsingEncoding:NSSt
ringEncodingConversionAllowLossy] withDataMode:GKSendDataReliable
error:&error];
}

The mSession object was created in the peerPickerController:sessionForConnect
ionType: method in the previous section. We call the sendDataToAllPeers:withData
Mode:error: method to send the message to all the peers in our network.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

197

Receiving data from the peer
When a new message is received, the receiveData:fromPeer:inSession:context:
delegate method is called in the following manner:

- (void)receiveData:(NSData *)data fromPeer:(NSString *)peer
 inSession: (GKSession *)session context:(void *)context {
 NSString *receivedStr = [NSString stringWithUTF8String:
 [data bytes]];
 NSLog(@"Received >>>>>>>> %@",receivedStr);
}

In the preceding code, we take the NSData object, convert it to a string, and log it. In the
downloadable code, the sample application for this recipe let's you create a peer-to-peer
network and then send text messages between the two devices. The code also implements
several optional delegate methods.

How it works…
To create our peer-to-peer bluetooth network between two devices, the first thing we
needed to do was to establish a connection between the devices. This is done with
GKPeerPickerController. The GKPeerPickerController class displays a user
interface that lets the user select other devices to connect to. When a device attempts to
connect to another device, the users of the other device can opt to either accept or decline
the connection.

Once the connection is made, we receive a GKSession object that can then be used to send
and receive data. We also set the dataReceiveHandler to our current class; therefore,
we need to implement the receiveData:fromPeer:inSession:context: GKSession
delegate method to handle incoming messages from other peers.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

6
Bonjour

In this chapter, we will cover:

 f Publishing a Bonjour service

 f Discovering a Bonjour service

 f Resolving a Bonjour service

 f Creating an echo server that uses Bonjour to advertise the service

 f Creating an echo client that uses Bonjour to discover the service

Introduction
Bonjour is Apple's implementation of Zero Configuration Networking (Zeroconf). Zeroconf
is a methodology that automatically creates a usable computer network without manual
operator intervention or the need for special configuration servers. Bonjour locates devices
and services on a local network using the multicast Domain Name System (mDNS) service.

In other words, Bonjour allows for the automatic discovery and configuration of devices and
services without the user having to manually configure them. A great example of Bonjour in
the real world is a printer connected to the USB port of an Apple Time Capsule. Any device
that has Bonjour enabled and is connected to the local network will be able to find and use
the printer without the network configuration of the printer.

The Bonjour API provides a solution to publish, browse, and resolve a service or device. The
main thing to be kept in mind is that Bonjour does not implement the service; it just provides
a means to discover and find the service.

Bonjour was originally introduced by Apple in 2002 as Rendezvous, but was renamed to
Bonjour in 2005. Apple has made the source code for the Bonjour mDNS responder available
as part of the Darwin open source project.

www.it-ebooks.info

http://www.it-ebooks.info/

Bonjour

200

In the final two recipes of this chapter, we will use the echo server and client that we built in
Chapter 2, Apple Low-level Networking, and put a Bonjour wrapper around them so that our
echo client can automatically find the echo server and connect to it. In those examples, we will
highlight the separation between Bonjour and the implementation of the service.

Publishing a Bonjour service
Bonjour allows for the discovery of network devices and services on an IP network without a
centralized server. In this recipe, we will create a class called BonjourPublishServices
that will contain the code needed to publish a service with NSNetService.

The NSNetService class is normally used to publish information about a socket server.
While it is also typical for NSNetService and the socket server to be running within the same
application, it is not a requirement since NSNetService does not use, nor is it dependent on
the socket server in any way.

As the publication of the service may not happen instantaneously, NSNetService should
publish the request asynchronously. NSNetService uses delegate methods to handle the
notifications of the service publication. Each delegate method receives an NSNetService
object that identifies the service calling the method; therefore, one delegate can handle
multiple services.

While it is possible for one delegate to manage multiple service
publications, my preference is to have a one-to-one relationship between
the delegate and the service that it publishes. This allows me to manage
the NSNetService object totally within the delegate class.

How you manage multiple service publications should depend on the
needs of the project you are working on.

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it...
Let's create our BonjourPublishServices class:

1. We will begin by creating the header file for the BonjourPublishServices class:
#import <Foundation/Foundation.h>

typedef NS_ENUM(NSUInteger, BonjourPublishStatus) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

201

 BONJOURPUBLISHSTOPPED,
 BONJOURPUBLISHSTARTED
};
#define BONJOURNOTIFICATIONSTOP @"bonjourstopped"
#define BONJOURNOTIFICATIONSTART @"bonjourstarted"

@interface BonjourPublishServices : NSObject
<NSNetServiceDelegate>

@property int status;
@property (strong, nonatomic) NSNetService *service;
@property (retain, nonatomic) NSString *publishedName;

-(void)startServiceOfType:(NSString *)type andPort:(int)port;
-(void)stopService;

@end

The header file begins by defining an enum that will be used to define the state of
the service. We then define two constants (BONJOURNOTIFICATIONSTOP and
BONJOURNOTIFICATIONSTART) that specify the names of the notifications that our
BonjourPublishServices class will be sending.

We will also define three properties within the BonjourPublishServices
header file: the status property that will contain the present status of our Bonjour
publication service, the service property that will contain the NSNetService
object that we are publishing, and the publishedName property that will contain
the name that the service is published under. Unless we specifically disable service
renaming (using the publishWithOptions: method), our service can be renamed
if there is a naming conflict with another service on the existing network. Therefore,
when our service is initially published, it is good practice to store it under its
published name.

If we wanted BonjourPublishServices to handle multiple service publications,
we would want to change the service property to a NSMutableDictionary object
in order to hold the multiple services. The NSMutableDictionary key could be the
name that the service is published under, as the name needs to be unique.

Finally, we defined two methods: one to publish our service with a specified service
type and port, and the other to stop publishing our service.

2. Now, let's build the BonjourPublishServices implementation file:
#import "BonjourPublishServices.h"

@implementation BonjourPublishServices

www.it-ebooks.info

http://www.it-ebooks.info/

Bonjour

202

-(void)startServiceOfType:(NSString *)type andPort:(int)port {
 self.status = BONJOURPUBLISHSTOPPED;
 self.service = [[NSNetService alloc] initWithDomain:@""
 type:type name:@"" port:port];
 if (self.service) {
 [self.service setDelegate:self];
 [self.service publish];
 }
 else {
 [[NSNotificationCenter defaultCenter]
 postNotificationName:BONJOURNOTIFICATIONSTOP object:nil];
 }
}

The startServiceOfType:andPort: method is used to publish our service, and
it accepts two parameters. These parameters are as follows:

 � type: This is a service type. The service type is an NSString object,
which represents both the application layer protocol (HTTP, FTP, and so on)
and the transport protocol (TCP or UDP) in a specific format that looks like
{protocol}.{transport}. As an example, if we were to publish an
SFTP service using TCP, the service type would be _SFTP._tcp.

 � port: This is a service type that represents the port number to which the
service we are publishing is bound. This number can range from 0 to 65535.

We begin the startServiceOfType:andPort: method by creating an instance
of the NSNetService class using the initWithDomain:type:name:port:
constructor. This constructor takes four arguments, which are stated as follows:

 � Domain: This argument is used to specify the domain in which our service
has to be registered. To specify the default domain, pass @"". We will want
to use the default domain unless there is a specific reason for not using it.

 � type: This is the service type that we pass into our method and has been
described previously.

 � name: This argument is used to specify the name that is used to advertise
the service. If we pass @"", NSNetService will advertise the service under
the device's name. As mentioned earlier, unless we specifically disable
service renaming, the service could be renamed if there is a conflict on the
local network.

 � port: This is an argument that the service is bound to.

If we receive a valid NSNetService object (not nil), we set the delegate to
our current object, and then call the publish method in order to publish the
service. If we want to disable the renaming of the service, we would use the
publishWithOptions: method and set the NSNetServiceNoAutoRename flag.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

203

3. Let's create the stopService method:
-(void)stopService {
 [self.service stop];
 [[NSNotificationCenter defaultCenter]
 postNotificationName:BONJOURNOTIFICATIONSTOP
 object:nil];
}

The stopService method simply calls the stop method of the NSNetService
object. Then, we have to send out a notification that the service has stopped.

4. We now need to create the four delegate methods for our NSNetService instance.
We will start with the netServiceWillPublish: method:
-(void)netServiceWillPublish:(NSNetService *)sender {
 self.status = BONJOURPUBLISHSTOPPED;
}

The netServiceWillPublish: method is called prior to the service being
published through Bonjour. In our example, we set the status property to stop.
This method can be used to verify whether the service we are advertising is actually
running prior to publishing it through Bonjour.

5. Now, we are going to create the netServiceDidPublish: delegate method:
-(void)netServiceDidPublish:(NSNetService *)sender {
 self.status = BONJOURPUBLISHSTARTED;
 self.publishedName = sender.name;
 [[NSNotificationCenter defaultCenter]
 postNotificationName:BONJOURNOTIFICATIONSTART
 object:nil];
}

The netServiceDidPublish: method is called once the service has been
successfully published. In this method, we set the publishedName property to
the actual name that the service was published under, and the status property to
start in order to show that the service is published through Bonjour. We then send
a notification that the service has been published.

6. We will now create the netService:didNotPublish: delegate method:
-(void)netService:(NSNetService *)sender
didNotPublish:(NSDictionary *)errorDict {

 self.status = BONJOURPUBLISHSTOPPED;
 [[NSNotificationCenter defaultCenter]
 postNotificationName:BONJOURNOTIFICATIONSTOP
 object:nil];

}

www.it-ebooks.info

http://www.it-ebooks.info/

Bonjour

204

The netService:didNotPublish: method is called when there is an issue in
publishing the service. The errorDict dictionary will contain the errors.

7. The last delegate method is the netServiceDidStop: method:
-(void)netServiceDidStop:(NSNetService *)sender {
 self.status = BONJOURPUBLISHSTOPPED;
 [[NSNotificationCenter defaultCenter]
 postNotificationName:BONJOURNOTIFICATIONSTOP
 object:nil];
}

The netServiceDidStop: method is called when the service is stopped.

8. To publish a service with the BonjourPublishServices class, we use the
startServiceOfType:andPort: method as shown in the following lines of code:
pubService = [[BonjourPublishServices alloc] init]
[pubService startServiceOfType:@"_message._tcp."
 andPort:9711];

9. To stop the publication of a service, we would call the stopService method as
shown in the following line of code:

[pubService stopService];

The downloadable code for this chapter contains a project that publishes a service
using the BonjourPublishServices class but does not actually listen for any
requests on the socket.

How it works...
To publish a service, we perform the following steps:

1. Initialize the NSNetService instance with the name, type, Domain, and
port arguments.

2. Assign a delegate to the NSNetService instance.

3. Publish the NSNetService instance with the publish method.

Discovering a Bonjour service
In this recipe, we will use the NSNetServiceBrowser class to look for our published service.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

205

The NSNetServiceBrowser class is used to find the services that are published by
NSNetService. Once we initialize the NSNetServiceBrowser object, we need to assign a
delegate, and then we can begin browsing for services. Taking into account the possibility of
delays in receiving responses from the services and also because services can come online
or go offline at any time, the NSNetServiceBrowser object performs the service discovery
asynchronously. The NSNetServiceBrowser class relies on the delegate methods to handle
the notifications of the services coming online or going offline.

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it...
In this recipe, we will create a BonjourBrowserService class that will have all the code
and callback methods required to discover services:

1. We will begin by creating our BonjourBrowserService header file:
#import <Foundation/Foundation.h>
typedef NS_ENUM(NSUInteger, BonjourBrowserStatus) {
 BONJOURBROWSERSTOPPED,
 BONJOURBROWSERSEARCHING
};
#define BONJOURBROWSERNOTIFICATION @"bonjourBrowserChange"
@interface BonjourBrowserService : NSObject<NSNetServiceBrowserDel
egate>

@property int status;
@property (strong, nonatomic) NSNetServiceBrowser *serviceBrowser;
@property (strong, nonatomic) NSMutableArray *services;

-(void)startBrowsingForType:(NSString *)type;
-(void)stopBrowsing;

@end

We begin the BonjourBrowserService header file by defining an enum
that will be used to define the state of the browser. We then define a constant
(BONJOURBROWSERNOTIFICATION), which is the name of the notification that the
BonjourBrowserService header file uses to notify the listening objects that the
state of the browser has changed.

www.it-ebooks.info

http://www.it-ebooks.info/

Bonjour

206

We define three properties: a status property that will hold the current status
of our browser, a serviceBrowser property that contains the instance of our
NSNetServiceBrowser class, and an NSMutableArray property that will contain
a list of all the active services that our browser has found.

Finally, we define two methods: one to start the browser
(startBrowsingForType:) and the other to stop our browser (stopBrowsing).

2. Now, let's take a look at the implementation file for the BonjourBrowserService
class:
#import "BonjourBrowserService.h"

@implementation BonjourBrowserService

-(id)init {
 self = [super init];
 if (self) {
 self.services = [[NSMutableArray alloc] init];
 self.status = BONJOURBROWSERSTOPPED;
 }
 return self;
}

We begin the BonjourBrowserService class by creating a default
constructor that initiates the services property and sets the status
property to BONJOURBROWSERSTOPPED in order to indicate that the browser
is not active.

3. Let's create the startBrowsingForType: method:
-(void)startBrowsingForType:(NSString *)type {
 self.serviceBrowser = [[NSNetServiceBrowser alloc] init];
 [self.serviceBrowser setDelegate:self];
 [self.serviceBrowser searchForServicesOfType:type
inDomain:@""];
 self.status = BONJOURBROWSERSEARCHING;
}

The startBrowsingForType: method begins by initiating the
NSNetServiceBrowser object. We then set the delegate for the
NSNetServiceBrowser class to the current object as we will be
implementing the delegate methods within this class. Finally, we call
the searchForServicesOfType:inDomain: method to search for
the service type defined within the local domain.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

207

4. Let's create the stopBrowsing method to stop our browser:
-(void)stopBrowsing {
 [self.serviceBrowser stop];
 [self.services removeAllObjects];
}

The stopBrowsing method stops the NSNetServiceBrowser class from running
and removes all of the NSNetService objects from the services property. If our
application wants to retain the list of services after the NSNetServiceBrowser
object has stopped searching, we can keep the NSNetService objects, but this
information will become out of date very quickly.

5. The next five methods are the NSNetServiceBrowser delegate methods. These
methods will be called at various times in the NSNetServiceBrowser object's life
cycle. We will start with the netServiceBrowserWillSearch: method:
-(void)netServiceBrowserWillSearch:(NSNetServiceBrowser *)
aNetServiceBrowser {
 self.status = BONJOURBROWSERSEARCHING;
 [self changeNotification];
}

The netServiceBrowserWillSearch: method is called prior to the
NSNetServiceBrowser object starting the search.

6. Let's create the netServiceBrowserDidStopSearch: delegate method:
-(void)netServiceBrowserDidStopSearch:(NSNetServiceBrowser *)
aNetServiceBrowser {
 self.status = BONJOURBROWSERSTOPPED;
 [self changeNotification];
}

The netServiceBrowserDidStopSearch: method is called when the
NSNetServiceBrowser object has stopped searching.

7. Now let's create the netServiceBrowser:didNotSearch: method:
-(void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser
didNotSearch:(NSDictionary *)errorDict {
 self.status = BONJOURBROWSERSTOPPED;
 [self changeNotification];
}

The netServiceBrowser:didNotSearch: method is called if an error occurs
while searching for services. The errorDict dictionary will contain all the errors.

www.it-ebooks.info

http://www.it-ebooks.info/

Bonjour

208

8. Now, let's look at the netServiceBrowser:didFindService:moreComing:
method:
-(void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser
didFindService:(NSNetService *)aNetService moreComing:(BOOL)
moreComing {
 [self.services addObject:aNetService];
 if (!moreComing)
 [self changeNotification];
}

The netServiceBrowser:didFindService:moreComing: method is called
each time the browser finds a new service. The moreComing variable indicates
whether the browser has found additional services that it will be sending notifications
for. Even if moreComing is false, we could still receive additional netServic
eBrowser:didFind:moreComing: calls as additional services are found. The
moreComing flag only indicates if the browser is currently aware of additional
services.

In this method, we add the NSNetService object to our NSMutableArray service.
We then send out a change notification only if we know that there are no additional
services coming in. If there are 20 services queued up in the browser, we do not
want to update our user interface 20 times; instead, we will wait until we have all
of the services identified, and then send the change notification to update our user
interface.

9. Next, we look at the netServiceBrowser:didRemoveService:moreComing:
method:
-(void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser
didRemoveService:(NSNetService *)aNetService moreComing:(BOOL)
moreComing {
 [self.services removeObject:aNetService];
 if (!moreComing)
 [self changeNotification];
}

The netServiceBrowser:didRemoveService:moreComing: method is called
each time a service disappears from the network. This occurs if the service is no
longer being published and does not indicate that the service itself is down.

In this method, we remove the service from the services property, and then
send out a change notification only if there are no additional services that need to
be removed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

209

10. Finally, we look at the changeNotification method:

-(void)changeNotification {
 [[NSNotificationCenter defaultCenter]
 postNotificationName:BONJOURBROWSERNOTIFICATION
 object:nil];
}

The changeNotification method sends a notification to any listening object that
something has changed within our browser service, that is, a service was added,
a service was removed, the browser stopped, or the browser started. It is up to the
listening code to determine what changed and what to do with it.

How it works...
To discover published services using the NSNetServiceBrowser class, perform the
following steps:

1. Initiate an NSNetServiceBrowser object.

2. Set a delegate to receive notifications from the NSNetServiceBrowser object.

3. Set the service type and domain to browse.

4. Respond to messages sent to the NSNetServiceBrowser delegate.

Resolving a Bonjour service
Now that we are able to publish and find the services, we need to be able to resolve the
service so that we can connect to it. By resolving the service, we mean that we need to get
the information required to establish a network connection with the actual service. This
information will be the port number and either the hostname or the IP address information to
connect to.

If you are going to save the connection information to connect at a later stage, you will want
to save the hostname and port combination. If you are going to connect right away, you can
get the sockaddr structure from the NSNetService object and use this to connect. It is
recommended that you do not store the address information for future connections because
the IP address can change, especially on a network that uses DHCH.

For the example code, we will be using the sockaddr structure to connect because it
fits nicely in our BSD and CFNetwork examples. We will also show you how to pull out the
hostname and port number of the NSNetService object.

As the service may not resolve instantaneously, NSNetService resolves the service
asynchronously and will call one of the delegate methods depending on whether it was able to
resolve the service or not.

www.it-ebooks.info

http://www.it-ebooks.info/

Bonjour

210

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it...
Let's create a BonjourResolverService class to resolve our service:

1. We will begin by looking at the BonjourResolverService header file:
#import <Foundation/Foundation.h>

#define BONJOURRESOLVERNOTIFICATION @"resolverComplete"

@interface BonjourResolverService : NSObject
<NSNetServiceDelegate>

-(void)resolveService:(NSNetService *)service;
@end

We begin the header file by defining one constant. This constant
(BONJOURRESOLVERNOTIFICATION) is the name of the notification that we will
send once the service has been resolved. If there is an issue in resolving the service,
we will send the same notification, but the object returned with the notification will be
nil.

We also define one method for our BonjourResolverService class: the
resolveService: method. We will send the NSNetService class which we wish
to resolve to the resolveService: method.

2. Let's look at the implementation file for the BonjourResolverService class. We
will begin by looking at the resolveService: method:
#import "BonjourResolverService.h"

@implementation BonjourResolverService

-(void)resolveService:(NSNetService *)service {
 [service setDelegate:self];
 [service resolveWithTimeout:5.0];
}

The resolveService: method takes the NSNetService object, sets the delegate
to the current object, and then calls the resolveWithTimeout: method to resolve
our service. Timeout is the number of seconds for which we have to wait for the
service to resolve before it gives up.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

211

3. We now need to create the two delegate methods that will be called by the
NSNetService instance as the service gets resolved. The first method that we will
look at is the netServiceDidResolveAddress: method:
-(void)netServiceDidResolveAddress:(NSNetService *)sender {
 NSArray *addresses = sender.addresses;
// Use hostname and port combination if you are saving the
connection information
// NSString *hostname = sender.hostName;
// int port = sender.port;
 [[NSNotificationCenter defaultCenter]
 postNotificationName:BONJOURRESOLVERNOTIFICATION
 object:addresses];
}

The netServiceDidResolveAddress: method will be called if the service was
successfully resolved. We can use the addresses property of the NSNetService
object if we are looking for an array of the sockaddr structures. If we want to
store the connection information for later use, we will use the hostName and port
properties to retrieve the hostname and port information from the service.

We will then send the notification that the service was resolved with the addresses
object, which contains the sockaddr structures. If we were returning the hostname
and port number, we would want to create an NSDictionary object that will contain
the hostname / port combination.

4. Now, let's create the netService:didNotResolve: delegate method:

-(void)netService:(NSNetService *)sender
didNotResolve:(NSDictionary *)errorDict {
 [[NSNotificationCenter defaultCenter] postNotificationName:BON
JOURRESOLVERNOTIFICATION object:nil];
}

The netService:didNotResolve: method is called if we are unable to resolve
the service information within the timeout. If this happens, we still send a notification
but the object returned is nil.

How it works...
To resolve the connection information of the NSNetService object, we will perform the
following steps:

1. Set the delegate of the NSNetService object.

2. Call the resolveWithTimeout: method.

3. Then respond to messages sent by the NSNetService instance to its delegate.

www.it-ebooks.info

http://www.it-ebooks.info/

Bonjour

212

Creating an echo server that uses Bonjour
to advertise the service

Now that we know how to publish, find, and resolve a service, let's put it all together with an
actual service to connect to. In this recipe, we will take the echo server that we created in
Chapter 2, Apple Low-level Networking, and add the code to publish the service with Bonjour.

The downloadable code for this chapter contains an iOS application that uses both
the CFSocketServer class (from Chapter 2, Apple Low-level Networking) and the
BonjourPublishServices class (from this chapter). The application, once the user
clicks on the Start button, will attempt to publish the service; however, the echo server
will start when the application first starts up. Keep in mind that publishing the service and
implementing the service are two separate processes and do not actually depend on each
other. When the application first starts up, the screen looks like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

213

The Bonjour Status label shows that the service has stopped and does not have a service
name. When the user clicks on the Start button, the application attempts to publish the
service, and if successful, the screen will look like the following screenshot:

Note that the Bonjour Status label now shows that the service has started, and the service
name it is published under is My Macbook Pro. Once a client connects to the service and
sends some text, the Incoming Text line will show what the client has sent.

There are no modifications to the CFSocketServer or BonjourPublishServer classes,
so we will not be going into the details of these classes in this recipe. Instead, we will
show you how to use them together to create an echo server and then publish information
about the server. Therefore, we will be looking at the code for the view controller of the
BonjourEchoServer sample project included in the downloadable code for this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Bonjour

214

Getting ready
The view controller that we are working with is for iOS; however, the code required to publish the
service is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it...
Let's look at the view controller code:

1. We begin by creating the header file for our view controller. This is the view controller
that will manage the screen we saw earlier:
#import <UIKit/UIKit.h>
#import "BonjourPublishServices.h"

#define PORT 2007

@interface ViewController : UIViewController{
 UILabel *echoText;
 IBOutlet UILabel *statusLabel, *serviceNameLabel;
 IBOutlet UIButton *serviceButton;
 BonjourPublishServices *pubService;
 bool serviceStarted;
 CFSocketRef sRef;
}

@end

We begin by defining three UILabel objects that will be tied to our user interface.
The echoText label will change as new text comes in from the client. The
statusLabel label will show whether the service is published by Bonjour or not. The
serviceNameLabel label will contain the name that the service is published under,
or will show no name if the service is not currently published.

Next, we define the UIButton that will be used to start or stop the publication of the
service. The label on this button will change depending on whether it can be used to
start or stop the publication.

The BonjourPublishServices pubService object is used to start/stop the
publication of our service. CFSocketRef sRef will be used to identify our socket
that the echo server is using. Finally, the serviceStarted boolean will be true if
the service has started, or false if it has not.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

215

2. Now, let's look at the implementation of our view controller. We start off with the
viewDidLoad method, so we can set up our notification listeners and also start
the echo server itself. One thing to note here is that the echo server will start on
startup, but the service will not be published until the user clicks on the button to
publish the service. This is to demonstrate that these are two separate processes
and do not rely on each other, but it is advisable to verify that the server is running
prior to publishing it. It is recommended that when the server stops, we also stop
publishing it through Bonjour
- (void)viewDidLoad
{
 [super viewDidLoad];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(newTextRecieved:) name:@"posttext"
 object:nil] ;
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(bonjourStarted:)
 name:BONJOURNOTIFICATIONSTART object:nil] ;
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(bonjourStopped:)
 name:BONJOURNOTIFICATIONSTOP object:nil] ;
 pubService = [[BonjourPublishServices alloc] init];
 serviceStarted = NO;

 [NSThread detachNewThreadSelector:@selector(threadStart)
 toTarget:self withObject:nil];
}

After the view loads, we set up three notification listeners. These listeners listen for
new text being received, as well as for the start/stop of the service being published.

After we set up our notification listeners, we initialize the
BonjourPublishServices object that we will use to publish the service. We also
set the serviceStarted boolean to false, indicating that we have not published
our service. Finally, we create a new thread that will start up our echo server. The new
thread will execute the threadStart method.

3. Let's look at the threadStart method:
-(void)threadStart {
 CFSocketServer *cf = [[CFSocketServer alloc]
 initOnPort:2007];

 if (cf.errorCode != NOERROR) {
 NSString *str = [NSString stringWithFormat:@"Error
 starting server. Error code: %d",cf.errorCode];

www.it-ebooks.info

http://www.it-ebooks.info/

Bonjour

216

 [self
 performSelectorOnMainThread:@selector(setLabelText:)
 withObject:str waitUntilDone:NO];
 }
}

The threadStart method is called when we want to start the echo server. We use
the initOnPort: constructor of the CFSocketServer class to start the server.

If there is an error in starting the echo server, the error message will be displayed
within the echoText label of UILabel.

4. Now, let's look at the setLabelText: method:
-(void)setLabelText:(NSString *)str {
 [echoText setText:str];
}

The setLabelText: method sets the text for the echoText label to the text that
was passed to it.

5. When a user clicks on the button named serviceButton, it calls the
registerService: method. Let's take a look at this method:
-(IBAction)registerService:(id)sender {
 if (!serviceStarted){
 [pubService startServiceOfType:@"_echo._tcp."
 andPort:PORT];
 } else {
 [pubService stopService];
 }

}

The registerService: method checks whether the service is currently published.
If the service has not been published, it calls the startServiceOfType:andPort:
method of the pubService object of the BonjourPublishServices class to start
the service. We set the type argument to _echo._tcp. to signify that this is an
echo server running over TCP. We also set the port argument to 2007. If the service
has already started, we call the stopService method of the pubService object of
BonjourPublishServices.

6. Finally, we need to set up the three methods: bonjourStarted:,
bonjourStopped:, and newTextReceived:, which our notification listeners will
call, as follows:

-(void)bonjourStarted:(NSNotification *)notification {
 serviceNameLabel.text = pubService.publishedName;
 statusLabel.text = @"Started";

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

217

 serviceStarted = YES;
 serviceButton.titleLabel.text = @"Stop";
}

-(void)bonjourStopped:(NSNotification *)notification {
 serviceNameLabel.text = @"";
 statusLabel.text = @"Stopped";
 serviceStarted = NO;
 serviceButton.titleLabel.text = @"Start";
}

The bonjourStarted: and bonjourStopped: methods are called when the
publication of our service is started or stopped, respectively. These two methods
update the labels to let the user know whether the service is published or not.

The newTextReceived: method is called when the echo server receives new text
from the client.

-(void)newTextRecieved:(NSNotification *)notification {
 [self
 performSelectorOnMainThread:@selector(setLabelText:)
 withObject:[notification object] waitUntilDone:NO];
}

Here, we echo the text to the screen so that the user can see the incoming text.

How it works...
The key thing to be kept in mind is that the publication of the service and the service itself are
totally independent of each other. It is up to the developer to make sure that the service he/
she is publishing is actually running.

In our example, we start the echo server after the application has started. If there is an error
in starting the echo server, an error is displayed.

When the user clicks on the Start button to start the service, we call the
startServiceOfType:andPort: method of our BonjourPublishServices class. This
method will attempt to publish the service.

After the service is published, we rely on our notification methods to handle the events. The
users can enable/disable the publication of the service by clicking on the start/stop button.

www.it-ebooks.info

http://www.it-ebooks.info/

Bonjour

218

Creating an echo client that uses Bonjour to
discover the service

In the previous recipe, we used the CFSocketServer and BonjourPublishServices
classes to create an echo server and to publish it. In this recipe, we will be using
CFSocketClient, BonjourBrowserService, and BonjourResolverService to find
the echo server and to connect to it.

The downloadable code for this chapter contains a BonjourEchoClient project that will
search for servers published by the BonjourEchoServer project, which was covered in the
Creating an echo server that uses Bonjour to advertise the service recipe, and then we will send
a text string to the server. The server should respond back with the same string that we sent.

If the client is unable to find any published echo servers, the app would look like the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

219

Since our client is set up to continuously pool, once a server is published, the client will detect
it and list the server in the Send to box. The screen will look like the following screenshot:

Once a server is detected, we can then type something in the Text to send box, and then
select the server to send the text. Once the server echoes back the response, the client will
display what was sent and received in the bottom box.

For this recipe, we will be using the CFSocketClient class that we created in
Chapter 2, Apple Low-level Networking, as well as the BonjourBrowserService and
BonjourResolverService classes that we created earlier in this chapter.

Unlike the Bonjour echo server where we used the classes as they were originally written, we
did make one modification to the CFSocketClient class. In the original CFSocketClient
class, the initWithAddress:andPort: constructor creates the sockaddr structure for
us using the address and port number parameters. The BonjourResolverService class
returns an array of sockaddr structures, so it seems counterproductive to pull the address
and port information out of the sockaddr structure just to rebuild it later. Hence, we add a
initWithSockAddr: constructor to the CFSocketClient class.

www.it-ebooks.info

http://www.it-ebooks.info/

Bonjour

220

Getting ready
This recipe is compatible with both iOS and OS X. No extra frameworks or libraries are required.

How to do it...
Let's create the Bonjour client application:

1. Following is the code for the initWithSockAddr: constructor, which we are adding
to the CFSocketClient class:
-(id)initWithSockAddr:(struct sockaddr)sockaddr {
 self.sockfd = CFSocketCreate(NULL, AF_INET, SOCK_STREAM,
 IPPROTO_TCP,0, NULL,NULL);
 if (self.sockfd == NULL)
 errorcde = SOCKETERROR;
 else {
 [self logSockAddr:&sockaddr];
 CFDataRef connectAddr = CFDataCreate(NULL, (unsigned
 char *)&sockaddr, sizeof(sockaddr));
 if (connectAddr == NULL)
 errorcde = CONNECTERROR;
 else {
 CFSocketConnectToAddress(self.sockfd, connectAddr,
 30);
 }
 }
 return self;
}

We begin the initWithSockAddr: constructor by creating a CFSocket instance
using the CFSocketCreate() function. The CFSocketCreate() function accepts
several parameters in the following order:

 � CFAllocatorRef allocator: This allocator is used to allocate memory
for the new object. Generally, this is set to NULL or kCFAllocatorDefault
in order to use the current default.

 � SInt32 protocolFamily: This is the protocol family for the socket. In
our example, we are using AF_INET, but we could also use AF_INET6 if we
wanted to use IPv6.

 � SInt32 socketType: This is the socket type for the socket. In our
example, we use SOCK_STREAM to create a socket stream (TCP). If we
wanted to use UDP, we would set it to SOCK_DGRAM.

 � SINT32 protocol: This is the protocol that we use. In our example, we set
it to IPPROTO_TCP, but it could also be IPPROTO_UDP.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

221

 � CFOptionFlags callBackTypes: This is the callback type which is a
bitwise OR combination of socket activities that should cause a callback to
be called. Following are the callback types:

 � kCFSocketNoCallBack

 � kCFSocketReadCallBack

 � kCFSocketAcceptCallBack

 � kCFSocketDataCallBack

 � kCFSocketConnectCallBack

 � kCFSocketWriteCallBack

 � CFSocketCallBack callout: This is a C function to be called when a
callback type is triggered.

 � CFSocketContext *context: This is a structure holding contextual
information for the CFSocket instance. In our example, we set it to NULL.

The sockaddr structure will need to be converted to CFData in order for
it to be used by the CFSocketConnectToAddress() function. This is
done with the CFDataCreate() function, which returns CFDataRef. The
CFSocketConnectToAddress() function is called to open up a connection to the
remote server.

2. Now, let's start creating the view controller for our BonjourEchoClient project.
Like the BonjourEchoServer project in this chapter, this is what we will be focusing
on to show you how Bonjour works with the echo client. We start by looking at the
view controller header file:
#import <UIKit/UIKit.h>
#import "BonjourBrowserService.h"
#import "BonjourResolverService.h"

@interface ViewController : UIViewController {
 IBOutlet UITextField *textToSend;
 IBOutlet UITextView *resultsView;
 IBOutlet UITableView *tableView;

 BonjourBrowserService *browser;
 BonjourResolverService *resolver;
}

@end

We begin by defining the UITextField, UITextView, and UITableView instances
that we use in our user interface. We then define the BonjourBrowserService and
the BonjourResolverService objects that we will be using.

www.it-ebooks.info

http://www.it-ebooks.info/

Bonjour

222

3. Now, let's look at the implementation of our view controller:
- (void)viewDidLoad
{
 super viewDidLoad];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(bonjourBrowserNotification:)
 name:BONJOURBROWSERNOTIFICATION object:nil] ;
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(bonjourResolverNotification:)
 name:BONJOURRESOLVERNOTIFICATION object:nil] ;

 browser = [[BonjourBrowserService alloc] init];
 resolver = [[BonjourResolverService alloc] init];
 [browser startBrowsingForType:@"_echo._tcp."];
}

We start off with the viewDidLoad method so that we can set up our
notification listeners and also initiate the BonjourBrowserService and the
BonjourResolverService objects. We then call the startBrowsingForType:
method of the BonjourBrowserService class. This method will start browsing for
published servers with the _echo._tcp. service type. This is the service type that
we defined in the BonjourEchoServer project.

4. Let's look at the bonjourBrowserNotification: method:
-(void)bonjourBrowserNotification:(NSNotification
 *)notification {
 [tableView reloadData];
}

When we receive a notification that something has changed with our
BonjourBrowserService object, the bonjourBrowserNotification: method
is called. This includes the instances of when a new service is found, a server is
removed, or the browser has stopped. When any of these events happen, we would
want to reload our table view to update the list of services that our browser knows
about.

5. We now need to implement our UITableView delegate methods that will be used by
the table view:
- (CGFloat)tableView:(UITableView *)tableView
 heightForRowAtIndexPath:(NSIndexPath *)indexPath
{
 return 35;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

223

The tableView:heightForRowAtIndexPath: method just tells the table view
about the height of the row.
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [browser.services count];
}

The tableView numberOfRowsInSection: method tells the table view how
many rows are needed. For this method, we return the number of objects in the
service property of BonjourBrowserService. If you recall, the service
property contains the list of services that the browser has found.
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }

 NSNetService *service = [browser.services
 objectAtIndex:indexPath.row];
 cell.textLabel.text = service.name;
 cell.textLabel.font = [UIFont systemFontOfSize:14];
 return cell;
}

The tableView cellForRowAtIndexPath: method returns the cell for the table
view and the index specified. The import part of this method is where we get the
NSNetService object from the services array. We get the service name from the
NSNetService object to display in our table view.
- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 [self.view endEditing:YES];
 NSNetService *service = [browser.services
 objectAtIndex:indexPath.row];
 [resolver resolveService:service];
}

www.it-ebooks.info

http://www.it-ebooks.info/

Bonjour

224

The tableView didSelectRowAtIndexPath: method is called if we select one
of the rows in the table view. We get the NSNetService object from the service
array and pass it to our BonjourResolverService object.

6. Once the BonjourResolverService class has resolved the
NSNetService object, it sends back a notification, which is handled by our
bonjourResolverNotification: method:

-(void)bonjourResolverNotification:(NSNotification
 *)notification {
 NSArray *addresses = (NSArray *)notification.object;
 bool sent = NO;
 if (addresses != nil) {
 NSMutableString *results = [NSMutableString
 stringWithFormat:@"sent: %@\n", textToSend.text];
 for (NSData *data in addresses) {
 struct sockaddr *addr = (struct sockaddr *)[data
 bytes];
 if (!sent && addr->sa_family == AF_INET) {
 NSString *str = textToSend.text;
 CFSocketClient *cf = [[CFSocketClient alloc]
 initWithSockAddr:*addr];
 if (cf.errorCode == NOERROR) {
 NSString *recv = [cf writtenToSocket:cf.sockfd
 withChar:str];
 [results appendFormat:@"received: %@", recv];
 resultsView.text = results;
 sent = YES;
 textToSend.text = @"";
 } else {
 NSLog(@"%@",[NSString stringWithFormat:@"Error
 code %d recieved. Server was not started",
 cf.errorCode]);
 }
 }
 }
 }
}

We begin the bonjourResolverNotification: method by retrieving the
addresses array from the notification object and verifying that the array is not
nil. If it is nil, this means that there was an issue in resolving NSNetService. We
also set sent to NO to indicate that we have not sent the message to the server yet.
As a service may have multiple valid addresses, we want to make sure that we only
send it once.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

225

We then start looping through the addresses array to get the individual sockaddr
address structure. For each sockaddr structure, we look to see whether the family
of address is IPv4, and whether we have sent the message yet. If we match these
criteria, we will send the message to the address.

To send the message, we attempt to create an instance of the CFSocketClient
class using the sockaddr structure. If the creation of the CFSocketClient class
was successful, we call the writtenToSocket:withChars: method to send the
message to the server. The writtenToSocket:withChars: method returns the
server response if the message was successfully sent. We then append the message
that was received to our results string and update our user interface.

How it works...
When the application first starts, we initiate our BonjourBrowserService object to begin
searching for published services with the _echo._tcp. service type. As we continuously
listen for published services, you will see them being added or removed from the table view as
the servers are started and stopped.

Once a service has been found, the user can then send a message to it by typing a message
in the Text to Echo box and selecting the server we wish to send it to.

When the user selects the server to which the message has to be sent, the first thing that
we need to do is to retrieve the NSNetService object from the list of services. Once we have
the NSNetService object, we then need to resolve it using our BonjourResolverService
object.

The resolver service returns an array of sockaddr structures, which are the addresses of the
server. Once we have the address information, we use our CFSocketClient class to write
the message to the server and get the response. Finally, we update the user interface and
wait for the next request.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

7
AFNetworking 2.0

Library

In this chapter, we will cover:

 f Checking the network connection type and changes

 f Creating a web client using AFHTTPSessionManager

 f Creating a custom response serializer

 f Using the UIImageView+AFNetworking category

 f Downloading files with a progress bar

Introduction
AFNetworking is an amazing network library for iOS and OS X and is incredibly easy to use.
It is also very lightweight, modular, and superfast. You can download the AFNetworking
library and sample code from the AFNetworking website at https://github.com/
AFNetworking/AFNetworking.

In November 2013, the AFNetworking framework was updated to Version 2.0. This was a
major update and drastically changed the way we used the library within our applications.
This chapter will only cover Version 2.0 of the AFNetworking library.

For this chapter, we will be focusing on AFHTTPSessionManager whose class hierarchy
goes back up to the NSURLSession class; therefore, the code in this chapter requires a
minimum iOS version of 7.0 or a minimum Mac OS X version of 10.9. If your app targets
iOS 6.0 or Mac OS X 10.8, you will want to use AFHTTPRequestOperationManager
instead of AFHTTPSessionManager. For this chapter, we really needed to choose one
of the two methods to focus on, and AFHTTPSessionManager has been chosen as the
preferred method.

www.it-ebooks.info

http://www.it-ebooks.info/

AFNetworking 2.0 Library

228

AFNetworking does require Automatic Reference Counting (ARC), so you will need to enable
ARC support in your application prior to adding AFNetworking to your project. AFNetworking is
distributed under a license that allows us to freely distribute our apps. The licensing terms are
as follows:

Copyright (c) 2013 AFNetworking (http://afnetworking.com/)

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Before you begin any recipe in this chapter, you will need to download the AFNetworking
library at https://github.com/AFNetworking/AFNetworking. The class files in the
AFNetworking library are divided into two directories. These directories are as follows:

 f AFNetworking: This contains all of the networking, serialization, and
session classes

 f UIKit+AFNetworking: This contains all of the category classes that add
functionality to the various views

Once you have the library, add the required classes to your project.

Checking the network connection type and
changes

AFNetworking comes with the AFNetworkReachabilityManager class that makes it very
easy to detect the network connection type of the device our application is running on and
also notifies us if the connection type changes. This can come in handy if we are creating an
application that is heavily reliant on the Internet or has large downloads/uploads that we want
to run only when connected to Wi-Fi.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

229

Getting ready
You will need to download and add AFNetworking to your project.

How to do it…
Let's create our reachability client by using the following code:

AFNetworkReachabilityManager *reachability =
[AFNetworkReachabilityManager sharedManager];

[reachability
 setReachabilityStatusChangeBlock:^(AFNetworkReachabilityStatus
 status) {
 switch (status) {
 case AFNetworkReachabilityStatusReachableViaWWAN:
 NSLog(@"----Connection WWAN");
 break;
 case AFNetworkReachabilityStatusReachableViaWiFi:
 NSLog(@"----WIFI");
 break;
 case AFNetworkReachabilityStatusNotReachable:
 NSLog(@"----Not Reachable");
 break;
 default:
 break;
 }
 }];

Since the AFNetworkReachabilityManager class implements the singleton design
pattern, we begin by referencing the AFNetworkReachabilityManager instance using
the sharedManager method. We then use the setReachabilityStatusChangeBlock:
method to set a block of code to call whenever the network status changes. That's it!
AFNetworking makes it that easy to monitor for any network status changes.

The sample code simply logs the network connection type. Normally, we would put some logic
for each case type, but for our simple example, logging the connection type is enough.

The AFNetworkReachabilityManager class has some other useful methods and
properties as well. These are as follows:

 f managerForDomain: This method allows us to specify a specific domain that needs
to be monitored

 f networkReachabilityStatus: This property returns the current reachability status

www.it-ebooks.info

http://www.it-ebooks.info/

AFNetworking 2.0 Library

230

 f reachable: This property returns a BOOL variable, specifying whether the network is
available or not

 f reachableViaWWAN: This property returns a BOOL variable, specifying whether the
network is available through WWAN

 f reachableViaWiFi: This property returns a BOOL variable, specifying if the
network is available through Wi-Fi

How it works…
Since AFNetworkReachabilityManager implements the singleton design pattern, we
used the shardManager method to obtain the AFNetworkReachabilityManager
instance. We then used the setReachabilityStatusChangeBlock: method to set up the
block of code that will be called whenever the status of our network connection changes.

Creating a web client using
AFHTTPSessionManager

In this recipe, we will be subclassing AFHTTPSessionManger to create a class that
can be used to access the iTunes Search API. This class will be reliant on Apple's
NSURLSessionConfiguration and NSURLSessionDataTask classes to implement the
network functionality. Therefore, the minimum system requirements for this recipe will be
iOS 7 or Mac OS X 10.9.

The AFHTTPSessionManager class is a subclass of AFURLSessionManager that contains
methods for making standard HTTP requests, such as GET, POST, and DELETE. When we set
the baseURL property, these HTTP requests will be made using relative paths. In this recipe,
we will be setting the baseURL property to https://itunes.apple.com/; therefore, all
HTTP requests will be made to https://itunes.apple.com/ with any additional path
elements appended at the end.

Getting ready
You will need to download and add AFNetworking to your project. This recipe requires a
minimum iOS version of 7.0 or a minimum Mac OS X version of 10.9 to run.

How to do it…
Let's create the ITunesClient class. This class will be used to retrieve album information
from the iTunes Search API.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

231

Creating the ITunesClient header file
The ITunesClient is a subclass of AFHTTPSessionManager and is defined as follows:

#import "AFHTTPSessionManager.h"

@interface ITunesClient : AFHTTPSessionManager

+ (ITunesClient *)sharedClient;
- (NSURLSessionDataTask *)searchType:(NSString *)type
 withTerm:(NSString *)term completion:(void (^)(NSDictionary
 *results, NSError *error))completion;

@end

Within the header file, we are defining two methods. The ITunesClient class will implement
the singleton design pattern, so we will use the static sharedClient method to reference
the ITunesClient instance. We will then use the searchType:withTerm:completion:
method to search the iTunes library.

Creating the sharedClient method
The sharedClient method will be used to reference the ITunesClient instance:

+ (ITunesClient *)sharedClient {
 static ITunesClient *sharedClient = nil;
 static dispatch_once_t onceToken;
 dispatch_once(&onceToken, ^{
 NSURL *baseURL = [NSURL
 URLWithString:@"https://itunes.apple.com/"];

 NSURLSessionConfiguration *config =
 [NSURLSessionConfiguration defaultSessionConfiguration];

 sharedClient = [[ITunesClient alloc]
 initWithBaseURL:baseURL sessionConfiguration:config];
 sharedClient.responseSerializer =
 [AFJSONResponseSerializer serializer];
});
return sharedClient;
}

Within the sharedClient method, we define a static variable called sharedClient
that is initialized once and only once. We ensure it is initialized only once by using the
dispatch_once method from Grand Central Dispatch (GCD). This is the recommended
way for implementing the singleton design pattern within Objective-C.

www.it-ebooks.info

http://www.it-ebooks.info/

AFNetworking 2.0 Library

232

Within the dispatch_once block, we define a baseURL variable and set it to
https://itunes.apple.com. This is not the full URL to the iTunes Search API
but is the base URL for iTunes. We will add the rest of the URL when we call the
searchType:withTerm:completion:failure: method. We then create
NSURLSessionConfiguratin using defaultSessionConfiguration. We could
customize the NSURLSessionConfiguration, but for this example we will simply take
the defaults.

We now initiate the shared ITunesClient by calling the initWithBaseURL:ses
sionConfiguration: constructor. Once the sharedClient is initiated, we set a
responseSerializer (we will be discussing response serializer in the Creating a custom
response serializer recipe of this chapter). For our example, we will use the standard
AFJSONResponseSerializer that comes with the AFNetworking library since the iTunes
Search API response, by default, is in the JSON format. The response serializer will be used
to parse the response.

Creating the searchType:withTerm:completion: method
The searchType:withTerm:completion: method is used to make a search request to
the iTunes Search API in the following manner:

- (NSURLSessionDataTask *)searchType:(NSString *)type
 withTerm:(NSString *)term completion:(void (^)(NSDictionary
 *results,NSError *error))completion {

 NSDictionary *params = [[NSDictionary alloc]
 initWithObjectsAndKeys:type,@"entity",term,@"term", nil];

 NSURLSessionDataTask *task = [self GET:@"/search"
 parameters:params success:^(NSURLSessionDataTask *task, id
 responseObject) {

 NSHTTPURLResponse *httpResponse = (NSHTTPURLResponse
 *)task.response;
 if (httpResponse.statusCode == 200) {
 dispatch_async(dispatch_get_main_queue(), ^{
 completion(responseObject, nil);
 });
 } else {
 dispatch_async(dispatch_get_main_queue(), ^{
 completion(nil, nil);
 });
 }

 } failure:^(NSURLSessionDataTask *task, NSError *error) {
 dispatch_async(dispatch_get_main_queue(), ^{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

233

 completion(nil, error);
 });
 }];
 return task;
}

We use the type parameter to specify the type of search (album, music, software, and
so on), and the term parameter is the search term. We begin this method by creating a
NSDictionary object that contains the search term and type. The search type is set with a
key of entity and the search term is set with a key of term. This NSDictionary will be used
as the parameter for our HTTP request.

We then call the GET:parameters:success:failure: method that is defined in the
AFHTTPSessionManager super class. This method makes an HTTP GET request to a URL
that is built with the base URL, the path defined in the GET method, and the parameters
passed in. If we pass in a type of Album and a term of Jimmy+Buffett, the iTunes API will
return a list of albums by the artist Jimmy Buffett. If you would like to learn more about the
iTunes Search API, you can find more information at http://www.apple.com/itunes/
affiliates/resources/documentation/itunes-store-web-service-search-
api.html.

The HTTP POST request is made the same way as the GET request in our example. All we need
to do is replace the GET:parameters:success:failure: method with the POST:param
eters:success:failure: method. The POST request puts the parameters in the request
body, while the GET request puts the parameters in the URL.

In the GET:parameters:success:failure: method, we pass two blocks of code. The
success block is called if the request is successful. Keep in mind that a successful call occurs
when we receive a valid HTTP response back from the server. This does not mean that the
request itself was successful, so, within the success block, we verify that our response code is
200, which signifies that the call itself was successful. If the response code is 200, we return
our responseObject to our completion block. If the response code was not 200, we return
nil to our completion block.

Prior to our success block being called, AFHTTPSessionManager passes the response to a
response serializer. If you recall from the sharedClient method, we defined the response
serializer for this class to be AFJSONResponseSerializer, which parses a JSON response
and returns an NSDictionary object that contains the results.

AFNetworking contains several standard response serializers that we can use,
including AFJSONResponseSerializer, AFXMLResponseSerializer,
AFXMLDocumentResponseSerializer, AFPropertyListResponseSerializer,
and AFImageResponseSerializer. In the Creating a custom response serializer recipe
of this chapter, we will learn how to subclass a response serializer to customize how it parses
the response.

www.it-ebooks.info

http://www.it-ebooks.info/

AFNetworking 2.0 Library

234

Using the ITunesClient class
The following code shows the use of ITunesClient with the sharedClient method:

NSString *type=@"album";
NSString *term=@"jimmy+buffett";

ITunesClient *itunesClient = [ITunesClient sharedClient];
[itunesClient searchType:type withTerm:term
 completion:^(NSDictionary *results, NSError *error) {
 if (results) {
 NSLog(@"%@",results);
} else {
 NSLog(@"ERROR: %@", error);
 }
 }];

To use the ITunesClient class, we begin by referencing the ITunesClient instance by
using the sharedClient method. We then call the searchType:withTerm:completion:
method to perform the search. In this simple example, if the results are not nil (no errors),
we log the results, otherwise we log the error from the response. By creating a client class,
such as ITunesClient, it makes it easy to call the web API from anywhere in our code.

How it works…
In this recipe, we created the ITunesClient by subclassing the AFHTTPSessionManager
class. This class implements the singleton design pattern; therefore, we started off by
creating a static sharedClient method that is used to reference the instance. Within the
sharedClient method, we defined the base URL that our client will be connecting to, the
NSURLSessionConfiguration for the client, and the response serializer to be used for
serializing the response that is returned.

We then created the searchType:withTerm:completion: method to call the iTunes
Search API. This method accepts the following three parameters:

 f type: This denotes the type of search to be performed

 f term: This indicates the term to be searched

 f completion: This represents the block of code that is to be performed once the
search is complete

If we were creating a client class for a web API that required more than two or three
parameters, we would want to create a NSDictionary object with the parameters needed
for our HTTP request rather than passing the individual parameters into this method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

235

Within the searchType:withTerm:completion: method, we called the
AFHTTPSessionManager class' GET:parameters:success:failure: method to
perform the actual GET request. If we received a valid HTTP response from the web service,
AFNetworking would call the response serializer defined in our sharedClient method to
serialize the response and then pass the response to the success block of code. If we did not
receive a valid HTTP response, the failure block would be called.

Creating a custom response serializer
In the Creating a web client using AFHTTPSessionManager recipe of this chapter, we used
AFJSONResponseSerializer, which comes with AFNetworking, to serialize the response
that is returned from the iTunes Search API. The standard AFNetworking response serializers
work well for simple responses, but what if we want to create a custom serializer that would
parse the response for us rather than just send back an NSDictionary object? We can
subclass any of the response serializers provided by AFNetworking to accomplish that.

In this recipe, we will be subclassing AFJSONResponseSerializer so that our
ITunesClient class returns an NSArray object that contains an array of objects that in
turn contains the information from the iTunes Search API response.

Getting ready
You will need to download and add the AFNetworking to your project. You should also
complete the Creating a web client using AFHTTPSessionManager recipe of this chapter
since we will be elaborating on it further in this recipe.

How to do it…
Let's start by creating an AlbumInformaiton class.

Creating the AlbumInformation header file
The AlbumInformation class will be used to store information about the individual albums
returned from our iTunes Search in the following manner:

#import <Foundation/Foundation.h>

@interface AlbumInformation : NSObject

@property (strong, nonatomic) NSString *artistName, *albumName,
 *imgUrl, *trackCount;

-(instancetype)initWithDictionary:(NSDictionary *)dict;

@end

www.it-ebooks.info

http://www.it-ebooks.info/

AFNetworking 2.0 Library

236

In the header file, we define four properties to store the artist name, album name, image
URL, and the number of tracks in the album. There is a lot more information returned in the
iTunes Search API, but for our simple example, we will pull out just these four items. If you
are interested in learning more about the iTunes Search API and the data returned, you can
refer to Apple's API page at http://www.apple.com/itunes/affiliates/resources/
documentation/itunes-store-web-service-search-api.html.

We also define a single constructor that accepts an NSDictionary object as its only
parameter. This NSDictionary object will contain the information returned from the
iTunes Search API and parsed by AFJSONResponseParser.

Creating the AlbumInformation implementation file
Now, let's look at the implementation file for our AlbumInformation class:

#import "AlbumInformation.h"

@implementation AlbumInformation

-(instancetype)initWithDictionary:(NSDictionary *)dict {
 if (self = [super init])
 {
 self.artistName = [dict objectForKey:@"artistName"];
 self.albumName = [dict
 objectForKey:@"collectionCensoredName"];
 self.imgUrl = [dict objectForKey:@"artworkUrl100"];
 self.trackCount = [dict objectForKey:@"trackCount"];
 }
 return self;
}

@end

The only method that is implemented here is our custom constructor. This constructor parses
the NSDictionary object and pulls out the information for our four properties.

Creating the ITunesResponseSerializer header file
Now, let's create our custom response serializer. The ITunesResponseSerializer header
file looks as follows:

#import "AFURLResponseSerialization.h"
#import "AlbumInformation.h"

@interface ITunesResponseSerializer :AFJSONResponseSerializer

@end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

237

We know by looking at the iTunes Search API that the default return type is JSON; therefore, our
ITunesReponseSerializer class is going to subclass the AFJSONResponseSerializer
class because it already contains the JSON parser. Essentially, we do not want to rewrite
the JSON parser; we just want to parse the results from the JSON parser and return only the
information that we need in an array of the AlbumInformation classes.

Our header file contains two imports: the AlbumInformation header file, which
we created in step one, and the AFURLResponseSerialization header file. The
AFURLResponseSerialization header file contains the header information for all of
AFNetworking's built-in response serializers; therefore, anytime we use one of these, we
will need to import this header file.

Creating the ITunesResponseSerializer implementation file
We will be overriding the resonseObjectFromResponse:data:error: method from the
AFJSONResponseserializer method in the following manner:

-(id)responseObjectForResponse:(NSURLResponse *)response
 data:(NSData *)data error:(NSError *__autoreleasing *)error
{
 NSMutableArray *retArray = [[NSMutableArray alloc] init];
 NSDictionary *json = [super responseObjectForResponse:response
 data:data error:error];
 NSArray *results = [json objectForKey:@"results"];
 for (NSDictionary *result in results) {
 [retArray addObject:[[AlbumInformation alloc]
initWithDictionary:result]];
 }
 return retArray;
}

This method is responsible for parsing our response. Within our responseObjectForResp
onse:data:error: method, we call the AFJSONResponseSerializer class' response
ObjectForResponse:data:error: method to do the initial parsing of the JSON response
and to return an NSDictionary object that contains the results.

We can then extract the results from the NSDictionary object and create
AlbumInformation objects for each of the albums returned from the iTunes Search API.
We then put the AlbumInformation objects in an NSArray object that is returned.

The responseObjectForResponse:data:error: method is also good for validating the
response to ensure that we received the expected data/format back.

www.it-ebooks.info

http://www.it-ebooks.info/

AFNetworking 2.0 Library

238

Adding ITunesResponseSerializer to our ITunesClient
Now, let's look at how we would use ITunesResponseSerializer with our ITunesClient:

+ (ITunesClient *)sharedClient {
 static ITunesClient *sharedClient = nil;
 static dispatch_once_t onceToken;
 dispatch_once(&onceToken, ^{
 NSURL *baseURL = [NSURL
 URLWithString:@"https://itunes.apple.com/"];

 NSURLSessionConfiguration *config =
 [NSURLSessionConfiguration defaultSessionConfiguration];

 sharedClient = [[ITunesClient alloc]
 initWithBaseURL:baseURL sessionConfiguration:config];
 // sharedClient.responseSerializer =
 [AFJSONResponseSerializer serializer];
 sharedClient.responseSerializer =
 [ITunesResponseSerializer serializer];
 });

 return sharedClient;
}

Originally, the sharedClient method set responseSerializer to an
AFJSONResponseSerializer serializer. To use our new ITunesResponseSerializer,
we simply comment out the original line and then set responseSerializer to our new
ITunesResponseSerializer.

Using the new ITunesClient class
Finally, let's look at how we would use the new ITunesClient in our code:

NSString *type=@"album";
NSString *term=@"jimmy+buffett";
ITunesClient *itunesClient = [ITunesClient sharedClient];
[itunesClient searchType:type withTerm:term
 completion:^(NSArray *results, NSError *error) {
 if (results) {

 for(AlbumInformation *album in results) {
 NSLog(@"--------Artist Name: %@",
 album.artistName);
 NSLog(@" Album: %@", album.albumName);
 NSLog(@" img URL: %@", album.imgUrl);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

239

 NSLog(@" Track Count: %@",
 album.trackCount);
 }

 } else {
 NSLog(@"ERROR: %@", error);
 }
 }];

This is essentially the same method from the Creating a web client using
AFHTTPSessionManager recipe of this chapter, except that we are receiving an NSArray in
the completion block of the searchType:withTerm:completion: method rather than an
NSDictionary object. In this example, we loop through the results and log the information.
In the Using the UIImageView+AFNetworking category recipe of this chapter, we expand on
this recipe to display the information, and the album image, in an UITableView.

How it works…
To create our custom response serializer, we subclassed AFNetworking's
AFJSONResponseSerializer class. We did this so that we could use the existing parser
within AFJSONResponseSerializer rather than write our own JSON parser. AFNetworking
has several built-in response parsers that you can subclass or use as is, like we did in
this recipe.

We overrode the responseObjectForResponse:data:error: method of the
AFJSONResponseSerializer class. This is the method that is called by AFNetworking
once the response has been received and is ready to be parsed. In this method, we called the
AFJSONResponseSerializer class' responseObjectForResponse:data:error:
method to do the initial parsing and to return an NSDictionary object. We then wrote our
code to extract only the data we were interested in and return the results in an NSArray object.

By creating a custom-response serializer, we are able to put the parsing logic in our custom-
response serializer rather than having it spread across various places throughout our code.

Using the UIImageView+AFNetworking
category

AFNetworking makes downloading images incredibly easy and provides a category
for the UIImageView class that adds a method to download images asynchronously
from the Internet and display them. The method added to the UIImageView class is
setImageWithURL:placeholder:, which places a temporary image in the UIImageView
class while it downloads the final image asynchronously from the URL provided. As you will
see in this recipe, this method is really useful when building a UITableView, where each
cell contains an image that needs to be downloaded from the Internet.

www.it-ebooks.info

http://www.it-ebooks.info/

AFNetworking 2.0 Library

240

In the Creating a web client using AFHTTPSessionManager recipe, we created our
ITunesClient class to call the iTunes Search API. Then, in the Creating a custom
response serializer recipe, we added a custom-response serializer to extract the
information that was returned from the iTunesSearch API. In this recipe, we will display
this information, including the images, in the UITableView class. These images will
be loaded on demand using the setImageWithURL:placeholder: method from the
UIImageView+AFNetworking category.

For this recipe, we will be looking strictly at the view controller class that displays
the UITableView. We will not need to change the code of the ITunesClient,
ITunesResponseSerializer, or AlbumInformation classes from the earlier recipes.

Getting ready
You will need to download and add the AFNetworking to your project. You should have also
completed the Creating a web client using AFHTTPSessionManager and Creating a custom
response serializer recipes, since we will be building on the code from these two recipes
to retrieve our album information from the iTunes Search API.

You will also need to include the UIImageView+AFNetworking class from the
UIKit+AFNetworking directory in your project. The UIKit+AFNetworking files are
included when you download AFNetworking.

How to do it…
Let's take a look at how we would use the UIImageView_AFNetworking category in
our project.

Updating the ViewController header file
Let's start by adding a couple of properties in the view controller's header file. These
properties are as follows:

@property (strong, nonatomic) IBOutlet UITableView *tableView;
@property (strong, nonatomic) NSArray *albums;

The tableView property will be UITableView, which we will be using to display our results,
and the albums property, which will contain the results of the iTunes Search.

Updating the viewDidLoad method of the ViewController
Now, let's look at the implementation. We start off by updating the viewDidLoad method
that is called when the view is displayed. Let's look at the following code snippet:

- (void)viewDidLoad
{
 [super viewDidLoad];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

241

 NSString *type=@"album";
 NSString *term=@"jimmy+buffett";
 ITunesClient *itunesClient = [ITunesClient sharedClient];
 [itunesClient searchType:type withTerm:term
 completion:^(NSArray *results, NSError *error) {
 if (results) {
 self.albums = results;
 [self.tableView reloadData];
 } else {
 NSLog(@"ERROR: %@", error);
 }
 }];
}

In the viewDidLoad method, we call the ITunesClient, just like we did in the Creating a
custom response serializer recipe. The only difference is that we point the albums property
to the results returned from ITunesClient and then reload the UITableView property.

Creating the UITableView delegate methods
We now need to add the delegate methods for our UITableView in the following manner:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [self.albums count];
}

- (CGFloat)tableView:(UITableView *)tableView
 heightForRowAtIndexPath:(NSIndexPath *)indexPath
{
 return 75.0;
}

- (UITableViewCell *)tableView:(UITableView *)lTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *cellID = @"Cell";
 UITableViewCell *cell = [lTableView
 dequeueReusableCellWithIdentifier:cellID];
 if (!cell) {
 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:cellID];
 }
 AlbumInformation *album = [self.albums
 objectAtIndex:indexPath.row];

www.it-ebooks.info

http://www.it-ebooks.info/

AFNetworking 2.0 Library

242

 cell.textLabel.numberOfLines = 3;
 cell.textLabel.font = [UIFont systemFontOfSize:14];
 cell.textLabel.text = album.albumName;

 cell.detailTextLabel.font = [UIFont boldSystemFontOfSize:16];
 cell.detailTextLabel.text = [NSString
 stringWithFormat:@"Tracks: %@",album.trackCount];

 NSURL *url = [[NSURL alloc] initWithString:album.imgUrl];
 [cell.imageView setImageWithURL:url placeholderImage:[UIImage
 imageNamed:@"loading"]];
 return cell;
}

These three methods are all standard UITableView delegate methods. The tableView:n
umbersOfRowsInSection: method returns the number of albums in our albums property.
The tableView:heightForRowAtIndexPath: method sets the height of rows in our
UITableView. In the tableView:cellForRowAtIndexPath: method, we define the
style of the cell as UITableViewCellStyleSubtitle, which contains a titleLabel,
detailTextLabel, and an imageView.

The indexPath parameter that was passed into the tableView:cellForRowAtInd
exPath: method is used to retrieve the AlbumInformation object from our albums
NSArray. This is the album information that we will be displaying in this cell. We set the cell's
textLabel to the album's albumName property and the cell's detailTextLable to the
album's trackCount property.

Now, we come to the image that we wish to display in the cell. We have the image URL from
the search results in our AlbumInformation object, so the first thing we need to do is to
turn that into an NSURL object using NSURL's initWithString constructor. Once we have
the NSURL object, we use the setImageURL:placeholderImage: method that was
added to UIImageView by AFNetworking's UIImageView+AFNetworking category.

The setImageURL:placeholderImage: method loads the UIImage specified in the
placeholderImage parameter into the UIImageView. It then asynchronously loads
the image specified from the URL, and when the image finishes loading, it replaces the
placeholder image with the image from the URL. That is really all there is to loading the
UIImageView asynchronously and to have a placeholder image displayed while the image
is loading.

Another advantage of using the UIImageView+AFNetworking category is that it uses
AFImageCache (a subclass of NSCache) internally to optimize performance for scroll views.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

243

How it works…
AFNetworking has a category that adds the setImageURL:placeholderImage:
method to the UIImageView class. This method will display UIImage defined by the
placeholderImage parameter in UIImageView and then load the image from the URL
asynchronously. Once the image finishes loading the placeholder, the image will be replaced
with the image from the URL.

AFNetworking has a UIButton+AFNetworking category that has a similar method. This
method is known as setImageForState:withURL:placeholderImage:. This method
functions in the same way as the UIImageView+AFNetworking category but loads the
image into UIButton.

Downloading files with a progress bar
AFNetworking includes a UIProgressView+AFNetworking category that makes it easy to
add a progress bar to either an upload or download session task. In this recipe, we will create
the NSURLSessionDownloadTask using AFNetworking and then add a progress bar to show
the progress of the download.

Getting ready
You will need to download and add AFNetworking to your project. You will also need to include
the UIProgressView+AFNetworking class from the UIKit+AFNetworking directory into
your project. The UIKit+AFNetworking files are included when you download AFNetworking.

How to do it…
Let's look at how we would add a progress bar to our projects.

Creating the download task
The download task will simply download a large file from the Internet:

NSURLSessionConfiguration *configuration =
 [NSURLSessionConfiguration defaultSessionConfiguration];
 AFURLSessionManager *sessionManager = [[AFURLSessionManager
 alloc] initWithSessionConfiguration:configuration];
 NSURLRequest *request = [NSURLRequest requestWithURL:[NSURL
 URLWithString:@"http://ipv4.download.thinkbroadband.com/20MB.zip"]
];

 NSURLSessionDownloadTask *task = [sessionManager
 downloadTaskWithRequest:request progress:nil

www.it-ebooks.info

http://www.it-ebooks.info/

AFNetworking 2.0 Library

244

 destination:^NSURL *(NSURL *targetPath, NSURLResponse
 *response) {
 NSURL *documentsDirectoryPath = [NSURL
 fileURLWithPath:[NSSearchPathForDirectoriesInDomains(NSDocumentDir
 ectory, NSUserDomainMask, YES) firstObject]];

 return [documentsDirectoryPath
 URLByAppendingPathComponent:@"20MB.zip"];
 } completionHandler:^(NSURLResponse *response, NSURL
 *filePath, NSError *error) {
 NSLog(@"File downloaded to: %@", filePath);

 }];

We begin by defining NSURLSessionConfiguration using the default session
configuration, which is usually a good place to start. Once we have the default configuration,
we can customize it, but for this example we will leave the default as is.

We create an instance of AFURLSessionManager and pass the
NSURLSessionConfiguration that we just created. We also send an NSURLRequest
with the URL of the file that we wish to download.

Next, we create an instance of the NSURLSessionDownloadTask class by using the
AFURLSessionManager class' downloadTaskWithRequest:progress:destination:
completionHandler: method. The four parameters for this method are as follows:

 f request: This is the NSURLRequest that points to the file we want to download. We
set this to the NSURLRequest that we created.

 f progress: This is a progress object to monitor the download. We will be using
AFNetworking's UIProgessView+AFNetworking category to handle our progress
bar, so we will set this to nil in our example.

 f destination: This is a block of code to be executed for determining the destination
of the file being downloaded. In our example, we are saving the file to the documents
directory by the name 20MB.zip.

 f completionHandler: This is a block of code to be executed once the download is
complete. In our example, we just log the path of the file.

If you run this code, nothing will actually happen because it is waiting for us to call the
resume method for the task, but before we do that, we need to add our progressView.

Adding the progressView
Let's add our progress view and resume our download task by using the following code:

[self.progressView setProgressWithDownloadProgressOfTask:task
 animated:YES];
[task resume];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

245

We assume that we have a property called progressView and that it ties back to the
progress bar that we are displaying. We use the setProgressWithDownloadProg
ressOfTask:animated: method, which is added to our UIProgressView by the
UIProgressView+AFNetworking category, to tie our NSURLSessionDownloadTask
to the progress bar. That is all we need to do; AFNetworking takes care of the rest for us.

We then start the download by calling the resume method of the
NSURLSessionDownloadTask.

How it works…
In this recipe, we used the AFURLSessionManager class' downloadTaskWithRe
quest:progress:destination:completionHandler: method to create the
NSURLSessionDownloadTask. This task was used to download our file and to save it to the
app's documents directory. We then added the download task to UIProgressView by using
the setProgressWithDownloadProgressOfTask:animated: method, which was added
to the UIProgressView class by the UIProgressView+AFNetworking category. Once the
progress view was added, we called the resume method on NSURLSessionDownloadTask
to start the download.

If we wished to add a progress view to an upload task, we would follow the same steps
as the download task, but we would create NSURLSessionUploadTask (instead of
NSURLSessionDownloadTask) and pass it to the setProgressWithUploadProgressOf
Task:animated: method.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

8
MKNetworkKit

In this chapter, we will cover:

 f Creating and using the MKNetworkKit engine

 f Uploading a file using MKNetworkKit

 f Downloading a file using MKNetworkKit

 f Using the UIImageView+MKNetworkKitAdditions.h category and caching the images

 f Adding a progress bar to upload or download

Introduction
MKNetworkKit is an awesome networking framework written in Objective-C. This framework
uses blocks and is ARC-ready. Although you have to write more code with MKNetworkKit
over other networking frameworks such as AFNetworking, you gain more control on the
working of the framework. You can download the framework from https://github.com/
MugunthKumar/MKNetworkKit.

The MKNetworkKit framework consists of two main classes and a number of categories. The
classes are as follows:

 f MKNetworkEngine: MKNetworkEngine manages the connections to a host. Some
of the items that MKNetworkEngine manages are reachability, queues, hostname,
and caching. To really take advantage of MKNetworkEngine you should subclass it
for each unique host that you are connecting to.

 f MKNetworkOperation: This is a subclass of NSOperation; it wraps both the
request and response classes. We can create a MKNetworkOperation class for
each network operation that our application needs.

www.it-ebooks.info

http://www.it-ebooks.info/

MKNetworkKit

248

To use MKNetworkKit in our projects, we need to add the MKNetworkKit classes and the
following Apple frameworks:

 f ImageIO.framework

 f Security.framework

 f SystemConfiguration.framework

 f CFNetwork.framework

MKNetworkKit can be used for free by attributing the author on the product's about page. If
you would prefer not to attribute the author of this framework or if you wish to help support
the development, you can purchase licenses on the website.

The license for the code is the same as AFNetworking:

Created by Mugunth Kumar (@mugunthkumar) on 11/11/11.

Copyright (C) 2011-2020 by Steinlogic Consulting and Training Pte Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

249

Creating and using the MKNetworkKit engine
In this recipe we will be creating a subclass of MKNetworkEngine; this creates an iTunes
engine to perform a search using the iTunes Web API. While it is not necessary to create a
subclass of MKNetworkEngine for each host that you are connecting to, it is recommended.

There are three main advantages to subclassing MKNetworkEngine. They are as follows:

 f Each subclass of MKNetworkEngine contains its own Reachability object. This
Reachability object will notify our class if there are changes in its availability or
how we connect to the server.

 f Each subclass also contains its own set of queues for MKNetworkOperation.

 f You can customize an engine to the needs of a specific server.

For best practice, we want to set up a separate MKNetworkEngine subclass for each
host that we connect to. As an example, if our application was connecting to Yahoo and
iTunes, we would want to have two MKNetworkEngine subclasses; one for Yahoo and one
for iTunes. We can set up our own library of engines of those engines that we want to use in
multiple applications.

Everything in MKNetworkKit depends on the MKNetworkEngine and the
MKNetworkOperation classes, so basic knowledge of how to set them up and use them is
essential to understanding the use of the framework.

Getting ready
This recipe is compatible with both iOS and OS X. We need to download the framework
from https://github.com/MugunthKumar/MKNetworkKit and add it to our project.
Additionally, we will need to add the following four frameworks:

 f ImageIO.framework

 f Security.framework

 f SystemConfiguration.framework

 f CFNetwork.framework

How to do it…
Let's create the ITunesEngine header file.

www.it-ebooks.info

http://www.it-ebooks.info/

MKNetworkKit

250

Creating the ITunesEngine header file
The ITunesEngine class is a subclass of MKNetworkEngine. It is defined as follows:

#import "MKNetworkEngine.h"

#define ITUNESSERVER @"itunes.apple.com"
#define ITUNESSEARCHPATH @"/search"

@interface ITunesEngine : MKNetworkEngine

-(MKNetworkOperation *)searchITunesWithParams:(NSDictionary *)
parameters;
-(MKNetworkOperation *)connectToITunesWithPath:(NSString *)path
andParms:(NSDictionary *)parameters;

@end

We begin by defining the following two constants:

 f ITUNESERVER: This is the hostname that we are connecting to

 f ITUNESSEARCHPATH: This is the path to the search services

We also define the following two methods:

 f -(MKNetworkOperation *)connectToITunesWithPath:andParms: This is
the generic method that can connect to any service; we need to provide the path to
the service and the parameters.

 f -(MKNetworkOperation *)searchITunesWithParams: This is the method
that will call the iTunes search service with the parameters provided. This method will
call the preceding generic service and supply the path to the search service. This is a
convenience method, so the client does not need to know the path to the service.

Creating the ITunesEngine implementation file
Let's take a look at how we can implement the ITunesEngine with the following code:

#import "ITunesEngine.h"

@implementation ITunesEngine

-(id)init {
 if (self = [super initWithHostName:ITUNESSERVER]) {
 return self;
 } else {
 return nil;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

251

We begin by overriding the standard init constructor and calling initWithHostName:
method of the MKNetworkEngine class to initiate our engine. This will initiate the engine
with the hostname for Apple's iTunes API, and our MKNetworkOperation instance will
prepend this hostname to all of the requests. We can override this hostname by calling
MKNetworkOperation's initWithHost: constructor and pass in the name of the host that
we wish to connect to.

The requestor could use initWithHostname: to set the hostname; however, if we override
the init method to set it, the client does not need to know the connection information.

Let's look at the searchITunesWithParams: method:

-(MKNetworkOperation *)searchITunesWithParams:(NSDictionary *)
parameters {
 return [self connectToITunesWithPath:ITUNESSEARCHPATH
andParms:parameters];
}

The searchITunesWithParams: method is a convenience method that will call the
connectToITunesWithPath:andParams: method and set the path for the requestor.
When we combine this method with the init method defined earlier, the requestor does not
need to know anything about the connection information for the iTunes Search API. Granted,
the requestor needs to know which parameters to set, but at least MKNetworkKit can hide the
connection information.

Now let's look at the connectToITunesWithPath:andParams: method:

-(MKNetworkOperation *)connectToITunesWithPath:(NSString *)path
andParms:(NSDictionary *)parameters {
 MKNetworkOperation *operation = [self operationWithPath:path
params:parameters httpMethod:@"GET" ssl:NO];
 return operation;
}

The connectToITunesWithPath:andParams: method calls the operationWithPath:
params:httpMethod:ssl: method of the MKNetworkEngine class to create
a MKNetworkOperation object, which we will then return to the requestor. The
MKNetworkOperation class is a subclass of NSOperation and encapsulates the request
and response operations.

Using the ITunesEngine class
Now that we have our ITunesEngine class, let's take a look at how we can use it in our code:

NSDictionary *parameters = @{@"term":@"jimmy+buffett",@"entity":@"alb
um"};
ITunesEngine itunes = [[ITunesEngine alloc] init];

www.it-ebooks.info

http://www.it-ebooks.info/

MKNetworkKit

252

MKNetworkOperation *operation = [itunes searchITunesWithParams:parame
ters];

[operation addCompletionHandler:^(MKNetworkOperation
*completedOperation)
 {
 NSData *responseData = [completedOperation responseData];
 NSError *error;
 NSDictionary *dict = [NSJSONSerialization
JSONObjectWithData:responseData options:0 error:&error];
 NSArray *results = dict[@"results"];
 UIAlertView *av = [[UIAlertView alloc] initWithTitle:@"Success"
message:[NSString stringWithFormat:@"Found %d Albums",[results count]]
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles:nil];
 [av show];
 }errorHandler:^(MKNetworkOperation *errorOp, NSError* error) {

 UIAlertView *av = [[UIAlertView alloc] initWithTitle:@"Network
Error" message:[NSString stringWithFormat:@"%@",error] delegate:nil
cancelButtonTitle:@"OK" otherButtonTitles:nil];
 [av show];
}];
[itunes enqueueOperation:operation];

We begin by creating the parameters that MKNetworkEngine will use to create our request.
Since the iTunes Search API uses the HTTP GET method, these parameters will be added to
the URL (for example, ?term=jimmy+buffett&entity=album). If we use the HTTP POST
method, MKNetworkKit will use these parameters to construct the POST request.

We initiate our ITunesEngine class by using the init constructor that we created. This will
initiate the ITunesEngine using itunes.apple.com as the hostname. We do not want to
create a new ITunesEngine class for each request that we make to itunes.apple.com.
Remember that one of the advantages of subclassing MKNetworkEngine is that each engine
has its own set of queues. By creating a global queue for your object or a global application
instance (in the application delegate), you can take complete advantage of the queues for
multiple network requests.

We then create MKNetworkOperation by using the searchITunesWithParams:
method and passing it the parameters that we created. Now that we have an instance of
MKNetworkOperation, we can add callbacks such as a completion handler or progress alerts.

In this recipe, we just need to be alerted when a request is completed so that we can process
the response or display an error if something goes wrong. To add a completion handler, we
need to call the addCompletionHandler:errorHandler: method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

253

The CompletionHandler section is the block of code that is to be run upon the successful
completion of our request. It starts off by retrieving the response data that came back using
the responseData property of the completedOperation object. We then use Apple's
NSJSONSerialization class to parse the JSON object that was returned and write it to an
NSDictionary object. We then retrieve the results array from the NSDictionary object
and display an alertView that shows the number of results we received.

The ErrorHandler, which is called if there is an issue with the request, displays an alert
with the error.

Finally, we call the MKNetworkEngine class's enqueueOperation: method to queue up
our Operation object.

How it works…
We began by creating the ITunesEngine instance, which is a subclass of
MKNetworkEngine. The ITunesEngine class contains the connection information for
connecting to the iTunes APIs. In this example, we only connected to the iTunes Search API,
but we can add additional iTunes APIs to this class if need be. To take complete advantage of
the queuing capability of the engine, you need to make it a pseudo singleton and create one
instance of your object for your application.

Among other things, the ITunesEngine class manages the reachability, queues, and
caching of the requests to the host. When we created the ITunesEngine class we added
two methods to assist in creating MKNetworkOperation objects from the engine. The
MKNetworkOperation class wraps up the individual request/response into one operation.

In our code we initiated the ITunes engine with the init constructor that we created to
set the hostname for the iTunes host, and then created the MKNetworkOperation objects
with their parameters. Once we had the MKNetworkOperation object, we added the
completion and error handlers along with the block of code to verify whether the operation
was successful or had an error. At this point our operation was set to run, so we added it to
the ITunesEngine queue by calling the enqueueOperation: method.

In the Using the UIImageView+MKNetworkKitAdditions.h category and caching the images
recipe of this chapter, we will be adding image loading and caching.

Uploading a file using MKNetworkKit
In this recipe we will show you how to use MKNetworkKit to upload a file to a server by
attaching it as part of a multipart form POST request. Since all of MKNetworkKit's functionality
is encapsulated within MKNetworkEngine and MKNetworkOperation, we need to create
an engine for our upload.

www.it-ebooks.info

http://www.it-ebooks.info/

MKNetworkKit

254

We will be using the addData:forKey:mimeType:filename: method to upload an image.
The MKNetworkOperation class also has an addFile:forKey:mimeType:filename:
method that allows us to attach a file directly.

Getting ready
This recipe is compatible with both iOS and OS X. We need to download the framework from
https://github.com/MugunthKumar/MKNetworkKit and add it to our project. We also
need to add the following four frameworks:

 f ImageIO.framework

 f Security.framework

 f SystemConfiguration.framework

 f CFNetwork.framework

How to do it…
Let's create the FileUploadEngine class.

Creating the FileUploadEngine header file
The FileUploadEngine class is a subclass of MKNetworkEngine. This class will be used
when we want to upload the data to a service. If you walked though the Creating and using the
MKNetworkKit engine recipe of this chapter, the code to create the engine will look very familiar.

The header file code for the FileUploadEngine class is as follows:

#import "MKNetworkEngine.h"

#define FILEUPLOADSERVER @"localhost:8080"
#define FILEUPLOADPATH @"/fileupload"

@interface FileUploadEngine : MKNetworkEngine

-(MKNetworkOperation *)postFileToServerWithParameters:(NSDictionary *)
params;
-(MKNetworkOperation *)postFileToServerWithParameters:(NSDictionary *)
params Path:(NSString *)path andSSL:(bool)ssl;

@end

We begin by defining the following two constants:

 f FILEUPLOADSERVER: This is the hostname that we are connecting to

 f FILEUPLOADPATH: This is the path to the search services

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

255

We also define the two methods that follow:

 f postFileToServerWithPath:Parameters:andSSL:: This is the generic
method that can connect to any service on the given host. We need to provide the
path to the service and the parameters.

 f postFileToServerWithParameters:: This is a method that will call the
specific FILEUPLOADSERVER with the parameters provided. This method will call
the preceding generic service and supply the path to the upload service. This is a
convenience method, so the client does not need to know the path to the service.

Creating the FileUploadEngine implementation file
Now let's implement the FileUploadEngine class as follows:

#import "FileUploadEngine.h"

@implementation FileUploadEngine

-(id)init {
 if (self = [super initWithHostName:FILEUPLOADSERVER]) {
 return self;
 } else {
 return nil;
 }
}

We begin by overriding the standard init constructor and calling the MKNetworkEngine
class's initWithHostName: method to initiate our engine. This will initiate the engine with
the service's hostname. The MKNetworkOperation class will prepend this hostname to all
of the requests.

The requestor could use the initWithHostname: method to set the hostname; however, if
we use the new init constructor, the client does not need to know what the hostname is.

Let's look at the postFileToServerWithParameters: method:

-(MKNetworkOperation *)postFileToServerWithParameters:(NSDictionary *)
params {
 return [self postFileToServerWithParameters:params
Path:FILEUPLOADPATH andSSL:NO];
}

www.it-ebooks.info

http://www.it-ebooks.info/

MKNetworkKit

256

The postFileToServerWithParams: method is a convenience method that will call the
postFileToServerWithPath:andParams:andSSL: method and set the path for the
requestor. When we combine this method with the init constructor defined earlier, the
requestor method does not need to know any of the connection information for the file upload
server. Granted, they do need to know which parameters to set, but MKNetworkKit makes
connecting to a service easy.

Now let's look at the postFileToServerWithParameters:Path:andSSL: method:

 -(MKNetworkOperation *)postFileToServerWithParameters:(NSDictionary
*)params Path:(NSString *)path andSSL:(bool)ssl {
 MKNetworkOperation *operation = [self operationWithPath:path
params:params httpMethod:@"POST" ssl:ssl];
 return operation;
 }

The postFileToServerWithPath:andParams: method calls the MKNetworkEngine
class's operationWithPath:params:httpMethod:ssl: method to create
a MKNetworkOperation object, which we will then return to the requestor. The
MKNetworkOperation class is a subclass of NSOperation and encapsulates the request
and response operations.

Using the FileUploadEngine class
Now that we have created the FileUploadEngine class, let's look at how we can use it:

 NSData *imageData = UIImageJPEGRepresentation([UIImage
imageNamed:@"IMG_1168.jpg"], 1.0);

 FileUploadEngine *fue = [[FileUploadEngine alloc] init];
 MKNetworkOperation *operation = [fue postFileToServerWithParameters:
nil];

 [operation addData:imageData forKey:@"image" mimeType:@"image/jpeg"
fileName:@"IMG_1168.jpg"];

 [operation addCompletionHandler:^(MKNetworkOperation
*completedOperation)
 {
 NSLog(@"Complete");
}errorHandler:^(MKNetworkOperation *errorOp, NSError* error) {

 UIAlertView *av = [[UIAlertView alloc] initWithTitle:@"Error"
message:[NSString stringWithFormat:@"%@",error] delegate:nil
cancelButtonTitle:@"OK" otherButtonTitles:nil];
 [av show];
 }];
[fue enqueueOperation:operation];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

257

We begin by converting our image to an NSData object using the
UIImageJPEGRepresentation function. This function will read an UIImage object and
return an NSData object representing the image.

We then initiate our FileUploadEngine object using the init constructor that we
created. This will set the hostname of the server for us. We could use MKNetworkOperation's
constructor initWithHostname: to set the hostname ourselves, if we needed to.

Once we have our FileUploadEngine object, we call the
postFileToServerWithParameters: method to create the MKNetworkOperation
object. We set the parameters to nil because we do not need to add additional parameters
in our example here. If we did have additional parameters to set, we could add them.

We then add the NSData object to our multipart form-data. To do this we call the
addData:forKey:mimeType:filename: method of the MKNetworkOperation class.
That is it; MKNetworkKit takes care of the rest for us.

We add the completion and error handlers to MKNetworkOperation. The completion
handler just logs that the operation is complete and the error handler displays an alert if we
had an issue.

Finally, we call enqueueOperation: method of the MKNetworkEngine class to queue up
our operation object.

How it works…
We began by creating the FileUploadEngine class that is a subclass of
MKNetworkEngine. The FileUploadEngine class encapsulates the connection
information for connecting to the file upload service. To take complete advantage of the
queuing capability of the engine, you need to make it a pseudo singleton and create one
instance of your object for your application.

In our code we initiated the FileUploadEngine class with the init constructor that we
created to set the hostname and then created the MKNetworkOperation class. Once
we had MKNetworkOperation, we added an NSData object to the operation by using
the addData:forKey:mimeType:filename: method of the MKNetworkOperation
class. We then added the completion and error handlers to our operation. At that point our
operation was set to run, so we added it to the FileUploadEngine queue by calling the
enqueueOperation: method.

In the Adding a progress bar to upload or download recipe ahead, we will be adding a
progress bar to this operation.

www.it-ebooks.info

http://www.it-ebooks.info/

MKNetworkKit

258

Downloading a file using MKNetworkKit
In the previous recipe, we saw how to upload a file using MKNetworkKit. In this recipe we
will be downloading a file from the Internet. Since all of MKNetworkKit's functionality is
encapsulated within the MKNetworkEngine and MKNetworkOperation classes, we need
to create an engine first.

We will be using the downloadFileAtPath: method of the MKNetworkOperation class to
download the file at the specified path. We will then add the addDownloadStream: callback
to our MKNetworkOperation object. This callback will write the file to a stream.

While this recipe downloads an image, we can use the same methods to download any type
of file.

Getting ready
This recipe is compatible with both iOS and OS X. We need to download the framework from
https://github.com/MugunthKumar/MKNetworkKit and add it to our project. We also
need to add the following four frameworks:

 f ImageIO.framework

 f Security.framework

 f SystemConfiguration.framework

 f CFNetwork.framework

How to do it…
Let's create the ImageDownloadEngine class.

Creating the ImageDownloadEngine header file
The ImageDownloadEngine can be used to queue up multiple download requests; it is
defined as follows:

#import "MKNetworkEngine.h"

#define FILEDOWNLOADSERVER @"a2.mzstatic.com"

@interface ImageDownloadEngine : MKNetworkEngine

-(MKNetworkOperation *)downloadFileAtPath:(NSString *)path;

@end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

259

We begin the header file by defining the FILEDOWNLOADSERVER constant to point to the host
that contains the files we wish to download. We then define the downloadFileAtPath:
method that will create the MKNetworkOperation object.

Creating the ImageDownloadEngine implementation file
Now let's create the implementation file for ImageDownloadEngine as follows:

 #import "ImageDownloadEngine.h"

 @implementation ImageDownloadEngine

 -(id)init {
 if (self = [super initWithHostName:FILEDOWNLOADSERVER]) {
 return self;
 } else {
 return nil;
 }
 }

We begin by overriding the standard init constructor and calling the MKNetworkEngine
class's initWithHostName: method to initiate our engine. This will initiate the engine with
the service's hostname. The MKNetworkOperation class will prepend this hostname to all
of the requests.

The requestor could use the initWithHostname: method to set the hostname; however, if
we use the new init constructor, the client does not need to know what the hostname is.

Let's look at the downloadFileAtPath: method:

-(MKNetworkOperation *)downloadFileAtPath:(NSString *)path {
 MKNetworkOperation *operation = [self operationWithPath:path
params:nil httpMethod:@"GET" ssl:NO];
 return operation;
}

The downloadFileAtPath: method calls the operationWithPath:params:
httpMethod:ssl: method to create the MKNetworkOperation class.

Now let's see how we can use this engine to download a file. The following code will use the
ImageDownloadEngine class to download a file and save it onto the disk:

 ImageDownloadEngine ide = [[ImageDownloadEngine alloc] init];
 MKNetworkOperation *operation = [ide downloadFileAtPath:@"/us/
r1000/107/Features/22/58/71/dj.xdzqqclr.100x100-75.jpg"];

www.it-ebooks.info

http://www.it-ebooks.info/

MKNetworkKit

260

 NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirect
ory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *appFile = [documentsDirectory stringByAppendingPathCompone
nt:@"jb.jpg"];

 [operation addDownloadStream:[NSOutputStream outputStreamToFileAtPath
:appFile append:YES]];
 [operation addCompletionHandler:^(MKNetworkOperation
*completedOperation)
 {
 NSLog(@"completed");
 }errorHandler:^(MKNetworkOperation *errorOp, NSError* error) {

 UIAlertView *av = [[UIAlertView alloc] initWithTitle:@"Error
Retrieving Weather" message:[NSString stringWithFormat:@"%@",error]
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles:nil];
 [av show];
 }];
 [ide enqueueOperation:operation];

We begin by initiating our ImageDownloadEngine object using the init constructor that we
created. This will set the hostname of the server for us. We could use MKNetworkOperation's
constructor initWithHostname: to set the hostname ourselves, if need be.

We then call the downloadFileAtPath: method to create the MKNetworkOperation
object. We then save the file to the application's document directory by getting the path to the
document directory, creating a download stream using the path, and then adding that stream
to our MKNetworkOperation object. The MKNetworkOperation instance will write the file
that we are downloading to the stream.

We create the completion and error handlers for our MKNetworkOperation object. The
completion handler just logs that the operation is complete and the error handler displays an
alert if we had an issue.

Finally, we add our MKNetworkOperation object to the ImageDownloadEngine queue so
that it runs.

How it works…
We begin by creating the ImageDownloadObject class that is a subclass of
MKNetworkEngine. The ImageDownloadEngine class encapsulates the connection
information for connecting to the image we wish to download. To take complete advantage of
the queuing capability of the engine, you need to make it a pseudo singleton and create one
instance of your object for your application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

261

In our code we initiated the ImageDownloadEngine class with the init constructor that
we created to set the hostname and then called the downloadFileAtPath: method
to create an instance of MKNetworkOperation. Once we had MKNetworkOperation,
we added an NSOutputStream object to the MKNetworkOperation object using the
addDownloadStream: method. The file was downloaded to this stream. We then added the
completion and error handlers to our operation. At that point our operation was set to run, so
we added it to the FileUploadEngine queue by calling the enqueueOperation: method.

In the Adding a progress bar to upload or download recipe ahead, we will be adding a
progress bar to this operation.

Using the UIImageView+MKNetworkKitAddi
tions.h category and caching the images

In this recipe we will expand on the ITunesEngine header file created in the Creating and
using the MKNetworkKit engine recipe of this chapter by adjusting the caching settings
of MKNetworkEngine. We will also use the UIImageView+MKNetworkKitAdditions
category to download images and display them once the download is complete.

This recipe will introduce two concepts: the MKNetworkKit caching capability and using the
categories that come with MKNetworkKit. We will also get a better understanding of why we
subclass MKNetworkEngine.

Getting ready
This recipe is compatible with both iOS and OS X. We will need to download the framework
from https://github.com/MugunthKumar/MKNetworkKit and add it to our project.
Additionally, we need to add the following four frameworks:

 f ImageIO.framework

 f Security.framework

 f SystemConfiguration.framework

 f CFNetwork.framework

How to do it…
We will begin by defining the ITunesEngine class, just like we did in the Creating and using
the MKNetworkKit engine recipe. This class is a subclass of the MKNetworkEngine class.

www.it-ebooks.info

http://www.it-ebooks.info/

MKNetworkKit

262

Creating the ITunesEngine header file
The ITunesEngine class is a subclass of MKNetworkEngine. It is defined as follows:

#import "MKNetworkEngine.h"

#define ITUNESSERVER @"itunes.apple.com"
#define ITUNESSEARCHPATH @"/search"

@interface ITunesEngine : MKNetworkEngine

-(MKNetworkOperation *)searchITunesWithParams:(NSDictionary *)
parameters;
-(MKNetworkOperation *)connectToITunesWithPath:(NSString *)path
andParms:(NSDictionary *)parameters;

@end

We begin by defining the following two constants:

 f ITUNESERVER: This is the hostname that we are connecting to

 f TUNESSEARCHPATH: This is the path to the search services

We also define two methods as follows:

 f connectToITunesWithPath:Params:: This is the generic method that
can connect to any service; we need to provide the path to the service and the
parameters.

 f searchITunesWithParams:: This is the method that will call the iTunes search
service with the parameters provided. This method will call the preceding generic
service and supply the path to the search service. It is a convenience method, so the
client does not need to know the path to the service.

Creating the ITunesEngine implementation file
Now let's create the implementation file for ITunesEngine as follows:

 #import "ITunesEngine.h"

 @implementation ITunesEngine

 -(id)init {
 if (self = [super initWithHostName:ITUNESSERVER]) {
 [self useCache];
 return self;
 } else {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

263

 return nil;
 }
 }

We begin by overriding the standard init constructor that calls the MKNetworkEngine
class's initWithHostName: method. This will initiate the engine with the hostname for
Apple's iTunes API. The MKNetworkOperation class will prepend this hostname to all of
the requests.

By default, MKNetworkEngine does not cache our requests; we enable caching and set up
our cache directory by calling the useCache method.

The requestor could use initWithHostname: method to set the hostname; however, if we
override the init constructor to set it, the client does not need to know what the hostname
is. We also use this constructor to set up our cache.

Let's look at the searchITunesWithParams: method:

-(MKNetworkOperation *)searchITunesWithParams:(NSDictionary *)
parameters {
 return [self connectToITunesWithPath:ITUNESSEARCHPATH
andParms:parameters];
}

The searchItunesWithParams: method is a convenience method that will call the
connectToITunesWithPath:andParams: method and set the path for the requestor.
When we combine this method with the init method defined earlier, the requestor does not
need to know any of the connection information for the iTunes Search API. Granted they do
need to know which parameters to set, but they do not need to know anything about the host
or path.

Now let's look at the connectToITunesWithPath:andParams: method:

-(MKNetworkOperation *)connectToITunesWithPath:(NSString *)path
andParms:(NSDictionary *)parameters {
 MKNetworkOperation *operation = [self operationWithPath:path
params:parameters httpMethod:@"GET" ssl:NO];
 return operation;
}

The connectToITunesWithPath:andParams: method calls the MKNetworkEngine
class's operationWithPath:params:httpMethod:ssl: method to create
a MKNetworkOperation object, which we will then return to the requestor. The
MKNetworkOperation class is a subclass of NSOperation and encapsulates the request
and response operations.

www.it-ebooks.info

http://www.it-ebooks.info/

MKNetworkKit

264

Adjusting the cache settings
In order to adjust the cache settings to meet our needs, we will be overriding two of the
MKNetworkEngine methods. The first is the cacheDirectoryName method that defines
the directory our cached images will be saved to, and the second is the cacheMemoryCost
method that defines how much of the cache will be saved to memory and how much of it will
be saved onto the disk:

//for image cache
-(NSString *)cacheDirectoryName {
 NSArray *paths = NSSearchPathForDirectoriesInDomains(NSCachesDirec
tory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *cacheDirectoryName = [documentsDirectory stringByAppendi
ngPathComponent:@"Hoffman.Jon.ItunesCache"];
 return cacheDirectoryName;
}

The cacheDirectoryName method allows us to define the directory that we will use for our
image cache. This directory will contain the cache files of everything we download. It is a good
idea to create a separate cache directory above the normal application cache so that we can
clean it out using the MKNetworkEngine class's emptyCache method.

Our version of cacheDirectoryName retrieves the path to the application's cache directory
and then appends a directory name of "Hoffman.jon.ItunesCache". If this directory does
not exist, MKNetworkEngine will create it:

-(int)cacheMemoryCost {
 return 0;
}

The cacheMemoryCost method defines how much cache we wish to keep in memory and
how much we want to write onto the disk. The cacheMemoryCache method returns an
integer value. The larger the number, the more MKNetworkKit caches to memory. In our
example, we will return zero, which tells MKNetworkKit to cache everything onto the disk.
Normally, you would not want to do this because in-memory cache is much quicker, but we
want to see the disk cache in action. You can adjust this setting depending on how much
memory your application can reserve for the memory cache. If your application sends a
UIApplicationDidReceiveMemoryWarningNotification, MKNetworkKit will dump
the in-memory cache onto the disk.

Using the new ITunesEngine class
Now that we have our cache set up, let's load in some images to see it in action. The sample
project for this recipe (and the Creating and using the MKNetworkKit engine recipe) displays a
list of Jimmy Buffett albums in a UITableView.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

265

Let's modify the tableView:cellForRowAtIndexPath: method to download and display
the album cover:

- (UITableViewCell *)tableView:(UITableView *)lTableView cellForRowAtI
ndexPath:(NSIndexPath *)indexPath {
 static NSString *cellID = @"Cell";
 UITableViewCell *cell = [lTableView dequeueReusableCellWithIdenti
fier:cellID];
 if (!cell) {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellS
tyleSubtitle reuseIdentifier:cellID];
 }

 NSDictionary *album = [self.albums objectAtIndex:indexPath.row];

 cell.textLabel.numberOfLines = 3;
 cell.textLabel.font = [UIFont systemFontOfSize:14];
 cell.textLabel.text = [album objectForKey:@"collectionName"];

 cell.detailTextLabel.font = [UIFont boldSystemFontOfSize:16];

 cell.detailTextLabel.text = [NSString stringWithFormat:@"Tracks:
%@",[album objectForKey:@"trackCount"]];

 NSURL *url = [[NSURL alloc] initWithString:[album
objectForKey:@"artworkUrl60"]];

 [cell.imageView setImageFromURL:url placeHolderImage:[UIImage
imageNamed:@"loading"] usingEngine:self.itunes animation:NO];

 return cell;
}

We begin by setting up the UITableViewCell. We will be using the
UITableViewCellStyleSubtitle cell style that includes a UIImageView to display our
album cover.

We then retrieve an NSDictionary object that contains the album information for this cell
and displays the album title and the number of tracks in the album. Then we retrieve the URL
of the album cover image and convert it into an NSURL object.

www.it-ebooks.info

http://www.it-ebooks.info/

MKNetworkKit

266

We use the setImageFromURL:placeHolderImage:usingEngine:animation:
method that was added to the UIImageview class by the UIImageView+MKNetworkKit
Additions category. This method will load the image from the URL and, while it is loading,
put the placeHolderImage in place. It will use the queues and cache settings from the
provided MKNetworkEngine object. In our case we will use the ITunesEngine class to load
the images. Finally, we can add the animation when the image is displayed.

How it works…
By default, MKNetworkKit does not cache responses. This means that each time you
request a file from the Internet, MKNetworkKit will retrieve it. This is usually the behavior we
want because when you make a request to a Web API, you expect to get the latest results.
MKNetworkOpertion also has a method isCachedResponse that can be used to check
whether the response is a cached response or not.

To enable the cache with MKNetworkKit, the first thing we did was set the cache directory
overriding the MKNetworkEngine class's cacheDirectoryName method. We want to make
sure that we create a separate cache directory for each engine's cache so that we can use the
clearCache method to clear out the cached files only for our engine.

The next thing we did was overrode the cacheMemoryCost value to adjust the in-memory
cache setting. By default, this method returns 10; we tell MKNetworkKit to cache the last 10
requests in memory. Depending on the memory footprint of your application, you may adjust
this by increasing or decreasing it. Our sample project set the in-memory cost to 0 so that all
of the requests were cached onto the disk. We did this so you could see what was cached, but
this is probably not what we would do for a production application.

Finally, we called the MKNetworkEngine class's useCache method to set up the cache
directory and enabled caching for this engine. We would only want to enable cache for the
engines that specifically need it. It would also be acceptable to have two engines for the same
host, one that enables caching and one that doesn't.

Adding a progress bar to upload or download
When we have a large upload or download, we generally want to have a progress indicator
that we can show to the users so that they have an idea of how much longer the upload or
download will take. The MKNetworkKit makes showing a progress indicator incredibly easy.

In this recipe we will be adding a progress indicator that will show the progress of downloading
a large file. We will be using the onDownloadProgressChanged: callback of the
MKNetworkOperation class to track the progress of our download. If we want the progress
indicator to work for an upload, we need to use the onUploadProgressChanged: callback.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

267

Getting ready
This recipe is compatible with both iOS and OS X. We need to download the framework
from https://github.com/MugunthKumar/MKNetworkKit and add it to our project.
Additionally, we need to add the following four frameworks:

 f ImageIO.framework

 f Security.framework

 f SystemConfiguration.framework

 f CFNetwork.framework

How to do it…
Let's create the FileDownloadEngine header file.

Creating the FileDownloadEngine header file
The header file for the FileDownloadEngine looks like this:

#import "MKNetworkEngine.h"

#define DOWNLOADHOST @"download.aptana.com"

@interface FileDownloadEngine : MKNetworkEngine

-(MKNetworkOperation *)downloadFileAtURL:(NSString *)urlString
andSSL:(bool)ssl;

@end

We begin by defining a constant that will contain the host that we will be connecting to by
default. We also define the downloadFileAtURL:andSSL: method that returns an instance
of the MKNetworkOperation class.

Creating the FileDownloadEngine implementation file
Now let's create the implementation file for the FileDownloadEngine class:

#import "FileDownloadEngine.h"

@implementation FileDownloadEngine

-(id)init {
 if (self = [super initWithHostName:DOWNLOADHOST]) {

www.it-ebooks.info

http://www.it-ebooks.info/

MKNetworkKit

268

 return self;
 } else {
 return nil;
 }
}

We begin by overriding the standard init constructor which calls the MKNetworkEngine
class's initWithHostName: method to initiate our object. This will initiate the engine with
the hostname defined by the DOWNLOADHOST constant. The MKNetworkOperation class
will prepend this hostname to all of the requests.

We can override this hostname by calling MKNetworkOperation's initWithHost:
constructor and passing in the name of the host we wish to connect to.

Let's look at the downloadFileAtURL:andSSL: method:

-(MKNetworkOperation *)downloadFileAtURL:(NSString *)urlString
andSSL:(bool)ssl {
 MKNetworkOperation *operation = [self operationWithPath:urlString
params:nil httpMethod:@"GET" ssl:ssl];
 return operation;
}

The downloadFileAtURL: method calls the operationWithPath:params:httpMethod
:ssl: method to create a MKNetworkOperation class.

Now let's look at how we can use this engine and add a progress indicator to
MKNetworkOperation:

FileDownloadEngine fde = [[FileDownloadEngine alloc]init];
 MKNetworkOperation *operation = [fde downloadFileAtURL:DOWNLOADPATH
andSSL:NO];

 NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirect
ory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];];
 NSString *filePath = [documentsDirectory stringByAppendingPathCompone
nt:@"myFile.dmg"];

 [operation addDownloadStream:[NSOutputStream outputStreamToFileAtPath
:filePath append:YES]];
 [operation onDownloadProgressChanged:^(double progress) {
 progressView.progress = progress;
 progressLabel.text = [NSString stringWithFormat:@"%0.2f",(progre
ss*100)];
 }];
 [fde enqueueOperation:operation];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

269

We begin by initiating our FileDownloadEngine object by using the custom
init constructor that we created. Once the object is initiated, we use the
downloadFileAtURL:andSSL: method to create an instance of the
MKNetworkOperation class.

We want to save the file to the application's document directory, so we retrieve the path to
the documents directory and then append the name of the file to the path. We then create a
download stream using the previously created path and add it to our MKNetworkOperation
object. The MKNetworkKit will write the file that we are downloading to the stream.

The onDownloadProgressChanged block is called at various times during the download
process. The value of the double parameter ranges from 0 to 1 depending on the progress
of the download. We have to update UIProgressView and progressLabel as the
download progresses.

The onUploadProgressChanged: function operates exactly like the
onDownloadProgressChanged: function. The only difference is that
the onUploadProgressChanged: callback monitors uploads while the
onDownloadProgressChanged: callback monitors downloads.

We finally add the operation to the FileDownloadEngine queue by calling the
enqueueOperation: method. We can add a completion and error handler to notify us when
the download or upload is complete, but it is not required as our progress bar will show us
when the download is complete.

How it works…
If we want to add a progress indicator to MKNetworkOperation we will have to add the
onDownloadProgressChanged: or onUploadProgressChanged: callback. These
callbacks are called at various times when a file is being downloaded or uploaded.

The callback has one parameter, double. This double ranges from 0 (when nothing has
been downloaded) to 1 (when the download is complete). Inside the callback we update our
progress indicator using the double parameter that is passed in.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
-(MKNetworkOperation *)connectToITunesWit

hPath:andParms: 250
{protocol} 156
{protocol} dst port {port} 156
{protocol} port {port} 156
{protocol} src port {port} 156

A
acceptConnectionEcho() function 74
acceptConnection() function 60
acceptConnectionImage() function 73
acceptConnection() method 63, 76
accept() function 31, 42
ACCEPTINGERROR 23
ack 115, 119
ACK 115, 146
Acknowledgement Number 114
acknowledgement number field 146
addData:forKey:mimeType:filename: method

257
addDownloadStream: method 261
addressesForHostname: method 48, 49
addresses object 211
AddrInfo class

using, to perform address resolution 20-22
using, to perform hostname resolution 20-22

AddrInfo header file
creating 17

AddrInfo implementation file
creating 17

addrWithHostname:Service:andHints: method
17, 18, 20

AFHTTPSessionManager
about 227
ITunesClient class, creating 234
ITunesClient header file, creating 231
searchType:withTerm:completion: method,

creating 232, 233
sharedClient method, creating 231, 232
used, for creating web client 230

AFJSONResponseSerializer class 237
AFNetworking

about 227, 228
URL 227

AFNetworking directory 228
AFNetworkReachabilityManager class

about 228, 229
managerForDomain method 229
networkReachabilityStatus property 229
reachable property 230
reachableViaWiFi property 230
reachableViaWWAN property 230

AFNetworkReachabilityManager instance
229

AlbumInformation header file
creating 235, 236

AlbumInformation implementation file
creating 236

allHeadeFields: method 171
Apple low-level networking 45
application layer 84, 124
ARP headers

decoding 142-145
Destination Hardware Address field 143
Destination Protocol Address field 143
Hardware Address Length field 143
hardware type field 143

www.it-ebooks.info

http://www.it-ebooks.info/

272

OP Code field 143
Protocol Address Length field 143
protocol type field 143
Source Hardware Address field 143
Source Protocol Address field 143

Automatic Reference Counting (ARC) 228

B
baseURL property 230
Berkeley Socket API 7
BINDERROR 23
bind() function 25, 26, 55
bonjourBrowserNotification: method 222
BonjourBrowserService class 205, 206
BonjourBrowserService object 222
BonjourPublishServices class 200, 204, 217
BonjourPublishServices pubService object

214
bonjourResolverNotification: method 224
BonjourResolverService class 210, 219, 224
BonjourResolverService object 222, 225
Bonjour service

about 200-203
discovering 205-209
resolving 209-211

bonjourStarted: method 217
bonjourStopped: method 217
bpf_u_int32 *maskp 133
bpf_u_int32 netmask 133
bpf_u_int32 *netp 133
BSD Socket API 8
BSDSocketClient class

about 31
using, for echo server connection 36, 37

BSDSocketClient header 32
BSDSocketClient header file

creating 31, 32, 42
BSDSocketClient implementation file

creating 32-35, 43
BSDSocketClient method 36
BSDSocketClient object 44
BSD sockets 7
BSDSocketServer class

used, for starting echo server 29, 30
using, to create data server 41

BSDSocketServer header file
creating 23, 24
updating 38, 39

BSDSocketServer implementation file
creating 24-29
updating 39-41

BSDSocketSever.m class 25
byte order

about 10
of device, finding 10-12

ByteOrder header file
ENDIAN_BIG 12
ENDIAN_LITTLE 12
ENDIAN_UNKNOWN 12

byteOrder method 12

C
cacheDirectoryName method 264, 266
cacheMemoryCost method 264
capture file

saving 157-159
CFAllocatorRef 59, 65
CFAllocatorRef allocator 220
CFArrayGetValueAtIndex() function 51
CFDataCreate() function 221
CFFTP 46
CFHostCreateWithName() function 50
CFHostGetAddressing() function 50
CFHostGetNames() function 53
CFHostStartInfoResolution() function 50, 53
CFHTTP 46
CFHTTPAuthentication 46
CFIndex 60
CFNetwork 46
CFNetworkUtilities header file

creating 48
CFNetworkUtilities implementation file

creating 49-54
CFOptionFlags 59, 65
CFOptionFlags callBackTypes 221
CFRealease() function 53
CFRunLoopAddSource() function 60, 72
CFRunLoopRef 60, 72
CFRunLoopRun() function 60
CFRunLoopSourceRe 72

www.it-ebooks.info

http://www.it-ebooks.info/

273

CFRunLoopSourceRef 60
CFSocket 46
CFSocketCallBack 59, 66
CFSocketCallBack callout 221
CFSocketClient class

about 219, 225
using 67, 68

CFSocketClient header file
creating 63
updating 76

CFSocketClient implementation file
creating 64-66
updating 77

CFSocket connection
to server, creating 68

CFSocketConnectToAddress() function 66,
221

CFSocketContext 59, 66
CFSocketContext *context 221
CFSocketCreate() function 220
CFSocketCreateRunLoopSource() function

59, 62
CFSocketCreateWithNative() function 55, 61,

74, 76
CFSocketCreateWithNative() method 55, 75
CFSocketNativeHandle 59
CFSocketRef 59
CFSocketServer class

about 212, 216
using 75, 76

CFSocketServer header file
creating 56
updating 69, 70

CFSocketServer implementation file
creating 57-63
updating 70-74

CFSocketStream 46
CFStream 46
CFStringRef 60, 72
changeNotification method 209
char *description 128
char *device 132, 133
Char *errbuf 132, 133
char *filter 133
Char filter[] 131

char* ipv6addr 96, 99
char *name 128
checksum 100, 107
checksum field 147, 149, 152
client

CFSocketClient header file, updating 76
CFSocketClient implementation file, updating

77, 78
creating, to send data 76

code 100, 101, 104
code field 152
connect() function 34, 37, 44
connection:didFailWithError: callback method

creating 180
connection:didReceiveData: callback method

creating 179
connection:didReceiveResponse: callback

method
creating 179

connection:willCacheResponse: callback
method

creating 181
connection:willSendRedirect:redirectRespon

se: callback method
creating 181

connectionDidFinishLoading:callback method
creating 180

connectToITunesWithPath:andParams:
method 251, 263

const struct pcap_pkthdr *header 135, 137
const u_char *packet 137
control 115, 119
control information (header) 84
cont u_char *packet 135
cStringUsingEncoding: method 35, 52
currentHost method 47
CWR 115, 146

D
data client

BSDSocketClient header file, updating 42
BSDSocketClient implementation file,

updating 43
connecting to, BSDSocketClient used 44
creating 42

www.it-ebooks.info

http://www.it-ebooks.info/

274

Data Offset 114
data offset field 146
data server

BSDSocketServer header file, updating 38
BSDSocketServer implementation file, updat-

ing 39, 40
connecting to, BSDSocketClient used 44
creating 38
creating, BSDSocketServer used 41

dataServerListenWithDescriptor: method 39-
42

decodeArp() function 145
decodeICMP() function 154
decodeTcp() function 148
destination Address 136, 140
Destination Address, IP header 87
Destination Hardware Address field 143
Destination Port 107, 114
destination port field 146, 149
Destination Protocol Address field 143
device

about 95, 98, 102
byte order, finding 10, 12
network address information,

retrieving 13-15
Differentiated Services Code Point (DSCP) 86
dispatch_once method 231
DNS names

libnet header, importing 94-96
to addresses, resolving with libnet 93-96

domain argument, service type 202
Domain Name System Servers 10
Don’t Fragment (DF) flag 86
downloadFileAtPath: method 259, 260
downloadFileAtURL: method 268
downloadTaskWithRequest:progress:destinati

on:completionHandler: method 244
dp 107, 115, 119
DSCP (Differentiated Services Code Point)

139
dst 87, 105, 111, 120
dst host {host} 155
dst net {net} 155
dst port {port} 156

E
ECE 115, 146
echo client

BSDSocketClient header file, creating 31, 32
BSDSocketClient implementation file, creating

32-35
CFSocketClient class used 67, 68
CFSocketClient header file, creating 63, 64
CFSocketClient implementation file, creating

64-67
creating 31, 63, 218-225

echo server
BSDSocketServer header file, creating 23, 24
BSDSocketServer implementation file, creat-

ing 24-29
CFSocketServer header file, creating 56
CFSocketServer implementation file, creating

57-63
connecting to, BSDSocketClient used 36, 37
creating 22, 55, 56, 212-217
starting, BSDSocketServer class used 29, 30

echoServerListenWithDescriptor: method 24,
26, 31, 40

ENDIAN_BIG 12
ENDIAN_LITTLE 12
ENDIAN_UNKNOWN 12
enqueueOperation: method 257
Eror Buffer 95, 98, 102, 109, 117
errorCode property 17, 24, 49, 64
errorStiring method 19
ether broadcast 156
ether dst {addr} 155
ether host {addr} 155
Ethernet headers

decoding 136-139
ether proto {protocol} 156
ether src {addr} 155
Explicit Congestion Notification (ECN) 115

F
file

downloading, MKNetworkKit used 258
uploading, MKNetworkKit used 253, 254

FileDownloadEngine class 267

www.it-ebooks.info

http://www.it-ebooks.info/

275

files
downloading, with progress bar 243-245
download task, creating 243, 244
progressView, adding 244, 245

FileUploadEngine class
about 255, 257
using 256

FileUploadEngine header file
creating 254

FileUploadEngine object 257
FILEUPLOADPATH 254
FILEUPLOADSERVER 254
FIN 115, 147
flags field 140, 146
flags, IP header 86
flags, TCP packet

about 115
ACK 115
CWR 115
ECE 115
FIN 115
NS 115
PSH 115
RST 115
SYN 115
URG 115

frag 87, 105, 111, 120
fragment offset field 140
Fragment Offset, IP header 86
Frame Check Sequence 136
freeifaddrs() function 13, 15
Fully Qualified Domain Name (FQDN) 9

G
GET:parameters:success:failure: method 233
getaddrinfo() function 17-20, 22, 52
Getaddrinfo() function 16, 55
getaddrinfor() function 52
getData: method 42
getData() method 40
getifaddrs() function 13, 15
GET_IP_HEADER_LENGTH function 148
getnameinfo() function 17, 19, 22, 51

GKPeerPickerController
displaying 195

GKPeerPickerController class 194, 197
GKPeerPickerControllerDelegate

delegate methods, creating for 195, 196
GKPeerPickerController method 193
got_packet() function 138
Grand Central Dispatch (GCD) 231

H
Hardware Address Length field 143
hardware type field 143
header checksum field 140
Header Checksum, IP header 87
header length field 139
Header Length, IP header 86
host

about 155
dst host {host} 155
ether dst {addr} 155
ether host {addr} 155
ether src {addr} 155
host {host} 155
src host {host} 155

host {host} 155
host_name 95, 103, 109, 117
hostname

to IP address resolution 54
hostnamesForAddress: method 49, 50, 51
hostWithAddress 47
hostWithName 47
htonl() function 25, 59
htons() function 25, 34, 59
HTTP/HTTPS asynchronous POST request

about 182, 183
sendPostRequest:toURL: method, creating

184, 185
WebServiceConnectAsynchronous header file,

updating 183, 184
HTTP(S) asynchronous GET request

connection:didReceiveResponse: callback
method, creating 179

connection:didFailWithError: callback method,
creating 180

www.it-ebooks.info

http://www.it-ebooks.info/

276

connection:didReceiveData: callback method,
creating 179

connection:willCacheResponse: callback
method

creating 181
connection:willSendRedirect:redirectRespon

se: callback method, creating 181
connectionDidFinishLoading:callback method,

creating 180
performing 176
sendGetRequest:toURL: method, creating

177-179
WebServiceConnectAsynchronous header file,

creating 177
HTTP(S) synchronous GET requests

performing 168, 169
sendGetRequest:toURL: method, creating

170-172
WebServiceConnectSynchronous header file,

creating 169, 170
HTTP(S) synchronous POST requests

performing 172
WebServiceConnectSynchronous header file,

updating 173, 174
sendPostRequest:toUrl: method, creating

174, 175

I
ICMP header

building 103, 104
checksum 100, 152
code 100, 152
ICMP Type 100, 152
identifier 100
Optional Data (payload) 101, 152
Sequence Number 101, 152

ICMP packet
injecting 105

ICMP Type 100, 152
id 87, 101, 104, 105, 111, 120
identification field 140
identification, IP header 86
identifier field 100, 152
ImageDownloadEngine class 259-261
ImageDownloadEngine header file

creating 258

ImageDownloadEngine implementation file
creating 259

inet_ntop function 14, 16
inet_ntop() function 21, 130
inet_pton() function 34, 66
initOnAddres:withPort: constructor 64
initWithAddress:andPort: constructor 32, 33,

37
initWithAddress:onPort: constructor 64
initWithHostName: method 251, 255, 263
initWithPort: 24
initWithPort: constructor 29
initWithRequest:delegate: method 178
initWithUrl: constructor

creating 188
Injection Type 95, 98, 102, 108, 117
int bind(int sockfd, const struct sockaddr

*my_addr, socklen_t addrlen) function
30

int cnt 134
internet layer 84, 125
Internet Protocol (IP) network 8
int ipv6addr_len 96, 99
int listen(int sockfd, int backlog) function 30
int optimize 133
int promisc 132
int snaplen 132
int socket(int domain, int type, int protocol)

function 30
int to_ms 132
ip6 proto {protocol} 156
IP address 8
ip broadcast 156
IP header

about 86
decoding 139-142
Destination Address 87
flags 86
Fragment Offset 86
Header Checksum 87
Header Length 86
identification field 86
IP Option 87
protocol 87
Source Address 87
Time to Live 87
Total Length 86

www.it-ebooks.info

http://www.it-ebooks.info/

277

Type of Service 86
version 86

ip_len 87, 105, 111, 120
IP option field 140
ip proto {protocol} 156
IPv4 9
IPv4 header

building 104, 105, 111-120
dst 111
frag 111
id 111
ip_len 111
libnet_t 112
payload 111
payload_s 111
prot 111
ptag 112
src 111
sum 111
tos 111
ttl 111

IPv6 9
ITunesClient class

about 230
using 234, 238, 239

ITunesClient header file
creating 231

ITunesEngine class
about 253
using 251

ITunesEngine header file
creating 250, 262

ITunesEngine implementation file
creating 250, 251, 262, 263

ITUNESERVER 250, 262
ITunesResponseSerializer

about 237
adding, to ITunesClient 238

ITunesResponseSerializer header file
creating 236

ITunesResponseSerializer implementation file
creating 237

K
kCFSocketDataCallBack callback 74

L
len 107, 115, 119
length 107
length field 149
libnet

about 83
adding, to project 91-93
installing 89, 90
ping packet, constructing with 100-106
TCP packet, constructing with 113-121
UDP packet, constructing with 106-112
used, for retrieving local address 97-100

libnet_addr2name4() function 96, 99
libnet_addr2name6() function 97
libnet_addr2name6_r() function 96, 99
libnet_build_icmpv4_echo() function

about 100, 101
code 101, 104
id 101, 104
lnet 101, 104
payload 101, 104
payload_s 101, 104
ptag 101, 104
seq 101, 104
sum 101, 104
type 101, 104

libnet_build_ipv4() functions
about 87, 100
abouy 111
dst 87, 120
frag 87, 120
id 87, 120
ip_len 87, 120
libnet 120
libnet_t 87
payload 87, 120
payload_s 87, 120
prot 87, 120
ptag 87, 120
src 87, 120
sum 87, 120
tos 87, 120
ttl 87, 120

libnet_build_tcp() function
about 119

www.it-ebooks.info

http://www.it-ebooks.info/

278

ack 115, 119
control 115, 119
dp 115, 119
len 115, 119
lnet 116, 119
payload 115, 119
payload_s 115, 119
ptag 116, 119
seq 115, 119
sp 115, 119
sum 115, 119
urg 115, 119
win 115, 119

libnet_build_udp() function 107
libnet_destroy() function 93, 96, 100, 105,

112
LIBNET_DONT_RESOLVE 96
libnet_get_addr4() function 99
libnet_get_addr6() function 99
libnet_get_hwaddr() function 99, 100
libnet_get_ipaddr4() function 99, 100, 109
libnet_get_ipaddr6() function 100
libnet_in6_addr *addr 96, 99
libnet_in6_addr structure 97
libnet_init() function

about 93, 96, 102, 121
device 109, 117
Error Buffer 109, 117
Injection Type 108, 117

libnet_name2addr4() function
about 95, 97, 109, 117
host_name 109
libnet_t *lnet 109
uint8_t use_name 109

libnet_name2addr6() function 96, 99
libnet_name2addr() function 95
LIBNET_RESOLVE 96
libnet_t 87, 105, 112, 120
libnet_t *lnet 95, 103, 109, 117
libnet_write() function 86, 105, 112, 121
libpcap

adding, to project 125-128
libpcap library 124
link layer 84, 125
LISTENERROR 23

listenfd property 24
little-endian 10
lnet 101, 107, 110, 119
local addresses

hardware addresses of device, retrieving 97-
99

libnet header, importing 97
local IP of device, retrieving 97-100
retrieving, with libnet 97-99

M
make command 90
make install command 90
managerForDomain method 229
memset() function 20, 25, 52, 72
MKNetworkEngine 247
MKNetworkKit

about 247
FileUploadEngine class, using 256, 257
FileUploadEngine header file, creating 254,

255
FileUploadEngine implementation file,

creating 255, 256
ImageDownloadEngine header file, creating

258
ImageDownloadEngine implementation file,

creating 259-261
used, for downloading file 258
used, for uploading file 253
using 248
using, for free 248

MKNetworkKit engine
creating 249
ITunesEngine class, using 251, 252
ITunesEngine header file, creating 250
ITunesEngine implementation file, creating

250, 251
subclassing, advantages 249

MKNetworkOperation 247, 256, 259
MKNetworkOperation instance 260
MKNetworkOperation object 253, 261
moreComeing flag 208
More Fragment (MF) flag 86
multicast Domain Name System (mDNS) 199

www.it-ebooks.info

http://www.it-ebooks.info/

279

N
name argument, service type 202
nameWithSockaddr: method 17, 19
net {net} 156
netService:didNotResolve: method 211
netServiceBrowser:didFindService:

moreComing: method 208
netServiceBrowser:didNotSearch: method

207
netServiceBrowser:didRemoveService:

moreComing: method 208
netServiceBrowserWillSearch: method 207
netServiceDidPublish: method 203
netServiceDidResolveAddress: method 211
netServiceDidStop: method 204
netServiceWillPublish: method 203
network

about 155
dst net {net} 155
net {net} 156
src net {net} 155

network address information
retrieving 12-16, 46, 47

network address resolution
AddrInfo class used 20-22
AddrInfo header file, creating 17
AddrInfo implementation file, creating 17-20
CFNetworkUtilities header file, creating 48
CFNetworkUtilities implementation file,

creating 49-55
performing 16, 48

NetworkAddressStore class 12
network connection type

checking 228-230
networkConnectionType: method 80
NetworkDetect header file

about 79
creating 79

NetworkDetect implementation file
creating 79, 80

network device information
retrieving 128-130

networkReachabilityStatus property 229
network status

checking 78, 79

NetworkDetect header file, creating 79
NetworkDetect implementation file, creating

79, 80
newDataReceived: method 41
newTextReceived: method 217
NOERROR 23
NS 146
NSData 172
NSData resp object 171, 175
NSDictionary object 233
NSError 172
NSHost class 46
NSHost object 47
NSHTTPURLResponse object 172, 175
NSMutableArray property 206
NSMutableData object 41, 42
NSMutableDictionary key 201
NSMutableDictionary object 201
NSMutableURLRequest object 178
NSNetServiceBrowser class 204, 206, 209
NSNetServiceBrowser object 205-207
NSNetService class 200
NSNetService object 200, 209, 211, 225
NSURLConnection object 178
NSURLSession class 227

O
onDownloadProgressChanged block 269
onUploadProgressChanged: callback 266
onUploadProgressChanged: function 269
OP Code field 143
operationWithPath:params:httpMethod:ssl:

method 251, 256, 259
Optional Data (payload) 101, 152

P
packet

about 84
building 85
capturing 130-135
construction 85
control information (header) 84
filtering 154, 155, 157
IP header 86

www.it-ebooks.info

http://www.it-ebooks.info/

280

layers 84
user data (payload) 84

parms parameter 170
parser:didEndElement:namespaceURI:qualifie

dName: NSXMLParserDelegate method
creating 191

parser:didEndElement:namespaceURI:qualifie
dName method 193

parser:didStartElement:namespaceURI:
qualifiedName:attributes: NSXML-
ParserDelegate method

creating 190
parser:foundCharacters: NSXMLParser

Delegate method
creating 192

parser:foundCharacters method 193
parser:parseErrorOccurred method 193
parser:parserErrorOccurred: NSXMLParser

Delegate method
creating 190

parserDidEndDocument: NSXMLParserDel-
egate method

creating 192
parserDidEndDocument method 193
parserDidStartDocument: NSXMLParserDel-

egate method, creating 189
parserDidStartDocument method 193
parserDidStartElement:namespaceURI:

qualifiedName:attributes 193
ParseRSS header file

creating 187
parseXMLFileAtUrl: method, creating 189
path parameter method 168
payload 87, 101, 105, 110, 115, 120
payload_s 87, 104, 107, 111, 115, 120
pcap_addr *addresses 128
pcap_addr *next 128
pcap_addr_t structure 130
pcap_compile() function

arguments 133
pcap filters

examples 157
pcap_findalldevs() function 128, 130
pcap_handler callback 134
PCAP_Headers.h header 125
pcap_if *next 128

pcap_if_t structure 128, 130
pcap_lookupdev() function 132
pcap_lookupnet() function

arguments 133
pcap_loop() function

arguments 134
pcap_open_live() function

arguments 132
pcap_setfilter() function

arguments 134
pcap_t *handle 131
pcap_t *p 133, 134
peer-to-peer bluetooth network

creating 193-195
data, receiving from peer 197
data, sending to 196
GKPeerPickerControllerDelegate, delegate

methods creating for 195, 196
GKPeerPickerController, displaying 195
peer network, disconnecting from 196

ping packet
constructing, with libnet 100, 101
ICMP header, fields 100
ICMP packet, creating 106
ICMP packet, injecting 105
ICMP packet, sending 106
libnet context, initiating 102
libnet header, importing 101
random number, creating 103
source IP addresses, setting 102, 103
target IP addresses, setting 102, 103
variables, defining 102

placeholderImage parameter 243
Point-to-Point Protocol (PPP) 84, 125
port

about 9
dst port {port} 156
port {port} 156
{protocol} dst port {port} 156
{protocol} port {port} 156
{protocol} src port {port} 156
src port {port} 156

Portable Operating System Interface for Unix
(POSIX) 7

port argument, service type 202
port {port} 156
port, service type 202

www.it-ebooks.info

http://www.it-ebooks.info/

281

POST:parameters:success:failure: method
233

postFileToServerWithParameters: method
255, 257

postFileToServerWithParameters:Path:andS
SL: method 256

postFileToServerWithParams: method 256
postFileToServerWithPath:andParams:andS

SL: method 256
postFileToServerWithPath:andParams:

method 256
postFileToServerWithPath:Parameters:andS

SL 255
potage 101
progress bar

adding, to display download status 266
adding, to display upload status 266
download task, creating 243, 244
FileDownloadEngine header file, creating 267
FileDownloadEngine implementation file,

creating 267, 269
files, downloading with 243
progressView, adding 245

progressView
adding 244

project
libnet, adding 91-93
libpcap, adding 125-128

prot 87, 105, 111, 120
protocol

about 156
ether broadcast 156
ether proto {protocol} 156
ip6 proto {protocol} 156
ip broadcast 156
ip proto {protocol} 156
{protocol} 156

Protocol Address Length field 143
protocol field 140
protocol, IP header 87
protocol layer 84, 124
protocol type field 143
PSH 115, 147
ptag 87, 104, 107, 112, 119, 120
publishedName property 201, 203
publishWithOptions: method 201

Q
query parameter method 168

R
Reachability object 249
reachable property 230
reachableViaWiFi property 230
reachableViaWWAN property 230
receiveDataData() function 74
receiveData() function 61
receiveData() method 76
recvFromSocket:withMaxChar: method 32,

35
recv() function 27, 31, 35, 42
registerService: method 216
reserved 114
reserved field 146
responseData property 253
responseObjectForResponse:data:error:

method 237
response serializer

AlbumInformation header file, creating 235,
236

AlbumInformation implementation file,
creating 236

creating 235
ITunesResponseSerializer, adding to ITunes

Client 238
ITunesResponseSerializer header file, creating

236
ITunesResponseSerializer implementation file,

creating 237
new ITunesClient class, using 238, 239

RSS feed
initWithUrl: constructor, creating 188
parser:didEndElement:namespaceURI:

qualifiedName: NSXMLParserDelegate
method, creating 191

parser:didStartElement:namespaceURI:
qualifiedName:attributes: NS
XMLParserDelegate method, creating
190

parser:foundCharacters: NSXMLParser
Delegate method, creating 192

parser:parserErrorOccurred: NSXMLParser
Delegate method, creating 190

www.it-ebooks.info

http://www.it-ebooks.info/

282

parserDidEndDocument:
NSXMLParserDelegate method 192

parserDidStartDocument: NSXMLParserDel-
egate method, creating 189

ParseRSS header file, creating 187
parseXMLFileAtUrl: method, creating 189
parsing, with NSData 186
parsing, with NSURL 185
parsing, with NSXMLParser 185
RSSItem header file, creating 186
RSSItem implementation file, creating 186

RSSItem header file
creating 186

RSSItem implementation file
creating 186

RST 115, 147

S
SCNetworkReachibilityCreateWithName()

function 81
SCNetworkReachibilityGetFlags() function 81
searchITunesWithParams: method 251, 262,

263
searchType:withTerm:completion: method

231, 234
creating 232, 233

sendData:toSocket: method 43, 44
sendDataToAllPeers:withDataMode:error:

method 196
sendDataToSocket:withData: method 77
send() function 44
sendGetRequest:toURL: method

about 170
creating 170, 171, 177, 179

sendPostRequest:toUrl: method
about 172, 173
creating 174-176

sendPressed: method 36
sendSynchronousRequest:returningResponse:

error: method 171
seq 101, 104, 115, 119
Sequence Number 101, 114, 146, 152
server

CFSocketServer class, using 75, 76
CFSocketServer header file, creating 69, 70

CFSocketServer implementation file, updating
70-74

creating, to receive data 68, 69
serviceBrowser property 206
service property 201
setImageURL:placeholderImage: method 242
setImageWithURL:placeholder: method 240
setLabelText: method 216
setProgressWithDownloadProgressOfTask:ani

mated: method, 245
setReachabilityStatusChangeBlock: method

229, 230
setVars method 19
shardManager method 230
sharedClient method

about 234
creating 231

simple port scanner
creating, libnet and libpcap used together

159-165
SInt32 65
SINT32 65
SINT32 protocol 220
SInt32 protocolFamily 220
SInt32 socketType 220
sockaddr *addr 128
sockaddr *broadaddr 128
sockaddr *dstaddr 129
sockaddr *netmask 128
sockaddr structure 66, 221
SOCKETERROR 23
socket() function 25, 33, 55, 58
Source Address field 97, 136, 140
Source Address, IP header 87
Source Hardware Address field 143
Source Port 107, 114
source port field 146, 149
Source Protocol Address field 143
sp 107, 115, 119
src 87, 105, 111, 120
src host {host} 155
src net {net} 155
src port {port} 156
startBrowsingForType: method 206, 222
startServiceOfType:andPort: method 202,

217

www.it-ebooks.info

http://www.it-ebooks.info/

283

statusCode property 171
stopBrowsing method 207
stopService method 203
strEchoServer: function 31
strEchoServer: method 27
Struct bpf_program filterCode 131
struct bpf_program *fp 133, 134
struct pcap_pkthdr *header 159
sudo make install command 90
sum 87, 104, 107, 111, 119
SYN 115, 147

T
tableView:cellForRowAtIndexPath: method

242, 265
tableView:heightForRowAtIndexPath: method

242
tableView cellForRowAtIndexPath: method

223
tableView:heightForRowAtIndexPath: method

223
tableView numberOfRowsInSection: method

223
tableView property 240
TCP 8
TCP header

acknowledgement number field 146
building 118
checksum field 147
data offset field 146
decoding 146-149
destination port field 146
flags field 146
reserved field 146
sequence number field 146
source port field 146
urgent pointer field 147
window field 147

TCP packet
Acknowledgement Number 114
checksum 115
constructing, with libnet 113-118
creating 121
Data Offset 114
Destination Port 114
flags 115

injecting 120, 121
IPv4 header, building 119, 120
libnet_build_tcp() function 115
libnet_build_TCP() function 114
libnet context. initiating 116
libnet header, importing 116
random number, creating 118
Reserved 114
sending 121
Sequence Number 114
source IP addresses, setting 117
Source Port 114
target IP addresses, setting 117
TCP header 114
TCP header, building 118, 119
Urgent Pointer 115
variables, defining 116
window 115

temp_addr ifaddrs structure 13
term parameter 233
threadStart method 216
time to live field 140
Time to Live, IP header 87
toal length field 140
tos 87, 105, 111, 120
Total Length, IP header 86
Transmission Control Protocol. See TCP
ttl 87, 105, 111, 120
TUNESSEARCHPATH 250, 262
type 101, 104
type argument, service type 202
type of service field 139
Type of Service, IP header 86
type parameter 233
type, service type 202

U
u_char *args 134, 135, 137
u_char *fp 158
u_char *packet 159
UDP header

building 110
checksum 107, 149
decoding 149151
Destination Port 107, 149
dp 107, 110

www.it-ebooks.info

http://www.it-ebooks.info/

284

len 107, 110
length field 149
lnet 107, 110
payload 107, 110
payload_s 107, 110
ptag 107, 110
Source Port 107, 149
sp 107, 110
sum 107, 110

UDP packet
about 8
constructing, with libnet 106-112
creating 112
injecting 112
IPv4 header, building 111
libnet context, initiating 108
libnet header, importing 108
random number, creating 109
sending 112
source IP addresses, setting 109
target IP addresses, setting 109
UDP header, building 110

UIImageJPEGRepresentation function 257
UIImageView+AFNetworking category

using 239, 240
ViewController header file, updating 240
viewDidLoad method, updating 240

UIImageView class 239
UIImageView+MKNetworkKitAdditions.h

category
cache settings, adjusting 264
new ITunesEngine class, using 264, 266
using 261

UIKit+AFNetworking directory 228
u_int 128
uint8_t use_name 95, 99, 103, 118
uint32_t in 96, 99
UIProgressView+AFNetworking class 243
UITableView delegate methods

creating 241-243
ulibnet_get_ipaddr4() function 103
urg 115, 119
URG 115, 146

Urgent Pointer 115
urgent pointer field 147
useCache method 263
use_name parameter 96
User Datagram Protocol. See UDP packet
user data (payload) 84
UTF8String method 18

V
version field 139
version, IP header 86
ViewController header file

updating 240
viewDidLoad method

about 215
updating 240, 241

W
web client

creating, AFHTTPSessionManager used 230
WebServiceConnectAsynchronous header file

creating 177
WebServiceConnectSynchronous class 172
WebServiceConnectSynchronous header file

creating 169, 170
updating 173

win 115, 119
window, TCP packet 115
Wireshark

about 100
URL 107

write function 29
written:char:size: method 28, 31
writtenToSocket:withChar: method 32, 35,

37, 64, 67, 225

Z
Zero Configuration Networking (Zeroconf)

199

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
iOS and OS X Network
Programming Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

iOS Development Using
MonoTouch Cookbook
ISBN: 978-1-84969-146-8 Paperback: 384 pages

109 simple but incredibly effective recipies for
developing and deploying applications for iOS using C#
and .NET

1. Detailed examples covering every aspect of iOS
development using MonoTouch and C#/.NET

2. Create fully working MonoTouch projects using
step-by-step instructions

3. Recipes for creating iOS applications meeting
Apple's guidelines

RubyMotion iOS Development
Essentials
ISBN: 978-1-84969-522-0 Paperback: 262 pages

Create apps that utilize iOS device capabilities without
learning Objective-C

1. Get your iOS apps ready faster with RubyMotion

2. Use iOS device capabilities such as GPS, camera,
multitouch, and many more in your apps

3. Learn how to test your apps and launch them on
the AppStore

4. Use Xcode with RubyMotion and extend your
RubyMotion apps with Gems

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Xcode 4 Cookbook
ISBN: 978-1-84969-334-9 Paperback: 402 pages

Over 100 recipes to build your own fun and exciting iOS
applications

1. Learn how to go about developing some simple,
yet powerful applications with ease using recipes
and example code

2. Teaches how to use the features of iOS 6 to
integrate Facebook, Twitter, iCloud, and Airplay
into your applications

3. Lots of step-by-step recipe examples with
ample screenshots right through to application
deployment to the Apple App Store to get you up
to speed in no time, with helpful hints along the
way

Flash iOS Apps Cookbook
ISBN: 978-1-84969-138-3 Paperback: 420 pages

100 practical recipes for developing iOS apps with Flash
Professional and Adobe AIR

1. Build your own apps, port existing projects, and
learn the best practices for targeting iOS devices
using Flash

2. How to compile a native iOS app directly from Flash
and deploy it to the iPhone, iPad or iPod touch

3. Full of practical recipes and step-by-step
instructions for developing iOS apps with
Flash Professional

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: BSD Socket Library
	Introduction
	Finding the byte order of your device
	Retrieving network address information
	Performing network address resolution
	Creating an echo server
	Creating an echo client
	Creating a data server
	Creating a data client

	Chapter 2: Apple Low-level Networking
	Introduction
	Retrieving network address information
	Performing network address resolution
	Creating an echo server
	Creating an echo client
	Creating a server to receive data
	Creating a client to send data
	Checking the network status

	Chapter 3: Using Libnet
	Introduction
	Installing libnet
	Adding libnet to your project
	Resolving names to addresses with libnet
	Retrieving local addresses with libnet
	Constructing a Ping packet with libnet
	Constructing a UDP packet with libnet
	Constructing a TCP packet with libnet

	Chapter 4: Using Libpcap
	Introduction
	Adding libpcap to your project
	Retrieving network device information
	Capturing packets
	Decoding Ethernet headers
	Decoding IP headers
	Decoding ARP headers
	Decoding TCP headers
	Decoding UDP headers
	Decoding ICMP headers
	Filtering packets
	Saving a capture file
	Creating a simple port scanner using libnet and libpcap together

	Chapter 5: Apple High-level Networking
	Introduction
	Performing HTTP(S) synchronous GET requests
	Performing HTTP(S) synchronous POST requests
	Performing HTTP(S) asynchronous GET request
	Performing HTTP/HTTPS asynchronous POST request
	Parsing an RSS feed with NSXMLParser, NSURL, and NSData
	Creating a peer-to-peer bluetooth network

	Chapter 6: Bonjour
	Introduction
	Publishing a Bonjour service
	Discovering a Bonjour service
	Resolving a Bonjour service
	Creating an echo server that uses Bonjour to advertise the service
	Creating an echo client that uses Bonjour to discover the service

	Chapter 7: AFNetworking 2.0 Library
	Introduction
	Checking the network connection type and changes
	Creating a web client using AFHTTPSessionManager
	Creating a custom response serializer
	Using the UIImageView+AFNetworking category
	Downloading files with a progress bar

	Chapter 8: MKNetworkKit
	Introduction
	Creating and using the MKNetworkKit engine
	Uploading a file using MKNetworkKit
	Downloading a file using MKNetworkKit
	Using the UIImageView+MKNetworkKitAdditions.h category and caching the images
	Adding a progress bar to upload or download

	Index

