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Preface

Many organizations have a treasure trove of data stored away in the many silos of in‐
formation within them. To unlock this information and use it to compete in the mar‐
ketplace, organizations have begun looking to Hadoop and “Big Data” as the key to
gaining an advantage over their competition. Many organizations, however, lack the
knowledgeable resources and data center space to launch large-scale Hadoop solutions
for their data analysis projects.

Amazon Elastic MapReduce (EMR) is Amazon’s Hadoop solution, running in Amazon’s
data center. Amazon’s solution is allowing organizations to focus on the data analysis
problems they want to solve without the need to plan data center buildouts and maintain
large clusters of machines. Amazon’s pay-as-you-go model is just another benefit that
allows organizations to start these projects with no upfront costs and scale instantly as
the project grows. We hope this book inspires you to explore Amazon Web Services
(AWS) and Amazon EMR, and to use this book to help you launch your next great
project with the power of Amazon’s cloud to solve your biggest data analysis problems.

This book focuses on the core Amazon technologies needed to build an application
using AWS and EMR. We chose an application to analyze log data as our case study
throughout this book to demonstrate the power of EMR. Log analysis is a good case
study for many data analysis problems that organizations faced. Computer logfiles con‐
tain large amounts of diverse data from different sources and can be mined to gain
valuable intelligence. More importantly, logfiles are ubiquitous across computer systems
and provide a ready and available data set with which you can start solving data analysis
problems.

Here is an outline of what this book provides:

• Sample configurations for third-party software
• Step-by-step configurations for AWS
• Sample code

vii
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• Best practices
• Gotchas

The intent is not to provide a book that has all the code, configuration, and so on, to be
able to plop this application on AWS and start going. Instead, we will provide guidance
to help you see how to put together a system or application in a cloud environment and
describe core issues you may face in working within AWS in building your own project.

You will get the most out of this book if you have a some experience developing or
managing applications developed for the traditional data center, but now want to learn
how you can move your applications and data into a cloud environment. You should be
comfortable using development toolsets and reviewing code samples, architecture di‐
agrams, and configuration examples to understand basic concepts covered in this book.
We will use the command line and command-line tools in Unix on a number of the
examples we present, so it would not hurt to be familiar with navigating the command
line and using basic Unix command-line utilities. The examples in this book can be used
on Windows systems too, but you may need to load third-party utilities like Cygwin to
follow along.

This book will challenge you with new ways of looking at your applications outside of
your traditional data center walls, but hopefully it will open your eyes to the possibilities
of what you can accomplish when you focus on the problems you are trying to solve
rather than the many administrative issues of building out new servers in a private data
center.

What Is AWS?
Amazon Web Services is the name of the computing platform started by Amazon in
2006. AWS offers a suite of services to companies and third-party developers to build
solutions using the computing and software resources hosted in Amazon’s data centers
around the globe. Amazon Elastic MapReduce is one of many available AWS services.
Developers and companies only pay for the resources they use with a pay-as-you-go
model in AWS. This model is changing the approach many businesses take at looking
at new projects and initiatives. New initiatives can get started and scale within AWS as
they build a customer base and grow without much of the usual upfront costs of buying
new servers and infrastructure. Using AWS, companies can now focus on innovation
and on building great solutions. They are able to focus less on building and maintaining
data centers and the physical infrastructure and can focus on developing solutions.
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Cloud Services and Their Impacts
Throughout this book, we discuss the many benefits of AWS and cloud services. Al‐
though these services do provide tremendous value to organizations in many ways, they
are not always the best option for every project. Running your application comes with
many of the same impacts and effects as using VMware or other virtualization technol‐
ogy stacks. These impacts can affect application performance and security, and your
application in the cloud may be running with multiple other customers on the same
machine. For most applications, the benefits of cloud computing greatly outweigh these
impacts. In Appendix B, we cover a number of the factors that impact cloud-based
applications. We suggest reviewing the items in Appendix B before starting your own
application to make sure it will be a good fit for AWS and cloud computing.

What’s in This Book?
This book is organized as follows. Chapter 1 introduces cloud computing and helps you
understand Amazon Web Service and Amazon Elastic MapReduce. Chapter 2 gets us
started exploring the Amazon tools we will be using to examine log data and execute
our first Job Flow inside of Amazon EMR. In Chapter 3, we get down to the business
of exploring the types of analyses that can be done with Amazon EMR using a number
of MapReduce design patterns, and review the results we can get out of log data. In
Chapter 5, we delve into machine learning techniques and how these can be imple‐
mented and utilized in our application to build intelligent systems that can take action
or recommend a solution to a problem. Finally, in Chapter 6, we review project cost
estimation for AWS and EMR applications and how to perform cost analysis of a project.

Sign Up for AWS
To get started, you need to sign up for AWS. If you are already an AWS user, you can
skip this section because you already have access to each of the AWS services used
throughout this book. If you are a new user, we will get you started in this section.

To sign up for AWS, go to the AWS website, as shown in Figure P-1.
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Figure P-1. Amazon Web Services home page

You will need to provide a phone number to verify that you are setting up a valid account
and you will also need to provide a credit card number to allow Amazon to bill you for
the usage of AWS services. We will cover how to estimate, review, and set up billing
alerts within AWS in Chapter 6.

After signing up for an AWS account, go to your My Account page to review the services
to which you now have access. Figure P-2 shows the available services under our account,
but your results will likely look somewhat different.

Remember, there are charges associated with the use of AWS, and a
number of the examples and exercises in this book will incur charges
to your account. With a new AWS account, there is a free tier. To
minimize the costs while learning about Amazon Elastic MapRe‐
duce, review the free-tier limitations, turn off instances after running
through your exercises, and learn how to estimate costs in Chapter 6.
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Figure P-2. AWS services available after signup

Code Samples in This Book
There are numerous code samples and examples throughout this book. Many of the
examples are built using the Java programming language or Hadoop Java libraries. To
get the most out of this book and follow along, you need to have a system set up to do
Java development and Hadoop Java JAR files to build an application that Amazon EMR
can consume and execute. To get ready to develop and build your next application,
review Appendix C to set up your development environment. This is not a requirement,
but it will help you get the most value out of the material presented in the chapters.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.
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Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming Elastic MapReduce by Kevin
J. Schmidt and Christopher Phillips (O’Reilly). Copyright 2014 Kevin Schmidt and
Christopher Phillips, 978-1-449-36362-8.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s lead‐
ing authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.
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Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Prog-Elastic-MapReduce.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Introduction to Amazon Elastic MapReduce

In programming, as in many fields, the hard part isn’t solving problems, but deciding
what problems to solve.

— Paul Graham
 Great Hackers

On August 6, 2012, the Mars rover Curiosity landed on the red planet millions of miles
from Earth. A great deal of engineering and technical expertise went into this mission.
Just as exciting was the information technology behind this mission and the use of AWS
services by the NASA’s Jet Propulsion Laboratory (JPL). Shortly before the landing,
NASA was able to provision stacks of AWS infrastructure to support 25 Gbps of
throughput to provide NASA’s many fans and scientists up-to-the-minute information
about the rover and its landing.Today, NASA continues to use AWS to analyze data and
give scientists quick access to scientific data from the mission.

Why is this an important event in a book about Amazon Elastic MapReduce? Access to
these types of resources used to be available only to governments or very large multi-
national corporations. Now this power to analyze volumes of data and support high
volumes of traffic in an instant is available to anyone with a laptop and a credit card.
What used to take months—with the buildout of large data centers, computing hard‐
ware, and networking—can now be done in an instant and for short-term projects in
AWS.

Today, businesses need to understand their customers and identify trends to stay ahead
of their competition. In finance and corporate security, businesses are being inundated
with terabytes and petabytes of information. IT departments with tight budgets are
being asked to make sense of the ever-growing amount of data and help businesses stay
ahead of the game. Hadoop and the MapReduce framework have been powerful tools
to help in this fight. However, this has not eliminated the cost and time needed to build
out and maintain vast IT infrastructure to do this work in the traditional data center.

1
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EMR is an in-the-cloud solution hosted in Amazon’s data center that supplies both the
computing horsepower and the on-demand infrastructure needed to solve these com‐
plex issues of finding trends and understanding vast volumes of data.

Throughout this book, we will explore Amazon EMR and how you can use it to solve
data analysis problems in your organization. In many of the examples, we will focus on
a common problem many organizations face: analyzing computer log information
across multiple disparate systems. Many businesses are required by compliance regu‐
lations that exist, such as the Health Insurance Portability and Accountability Act (HI‐
PAA) and the Payment Card Industry Data Security Standard (PCI DSS), to analyze
and review log information on a regular, if not daily, basis. Log information from a large
enterprise can easily grow into terabytes or petabytes of data. We will build a number
of building blocks of an application that takes in computer log information and analyzes
it for trends utilizing EMR. We will show you how to utilize Amazon EMR services to
perform this analysis and discuss the economics and costs of doing so.

Amazon Web Services Used in This Book
AWS has grown greatly over the years from its origins as a provider of remotely hosted
infrastructure with virtualized computer instances called Amazon Elastic Compute
Cloud (EC2). Today, AWS provides many, if not all, of the building blocks used in many
applications today. Throughout this book, we will focus on a number of the key services
Amazon provides.
Amazon Elastic MapReduce (EMR)

A book focused on EMR would not be complete without using this key AWS service
from Amazon. We will go into much greater detail throughout this book, but in
short, Amazon EMR is the in-the-cloud workhorse of the Hadoop framework that
allows us to analyze vast amounts of data with a configurable and scalable amount
of computing power. Amazon EMR makes heavy use of the Amazon Simple Storage
Service (S3) to store analysis results and host data sets for processing, and leverages
Amazon EC2’s scalable compute resources to run the Job Flows we develop to per‐
form analysis. There is an additional charge of about 30 percent for the EMR EC2
instances. To read Amazon’s overview of EMR, visit the Amazon EMR web page.
As the primary focus of this book, Amazon EMR is used heavily in many of the
examples.

Amazon Simple Storage Service (S3)
Amazon S3 is the persistent storage for AWS. It provides a simple web services
interface that can be used to store and retrieve any amount of data, at any time,
from anywhere on the Web. There are some restrictions, though; data in S3 must
be stored in named buckets, and any single object can be no more than 5 terabytes
in size. The data stored in S3 is highly durable and is stored in multiple facilities
and multiple devices within a facility. Throughout this book, we will use S3 storage

2 | Chapter 1: Introduction to Amazon Elastic MapReduce
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to store many of the Amazon EMR scripts, source data, and the results of our
analysis.

As with almost all AWS services, there are standard REST- and SOAP-based web
service APIs to interact with files stored on S3. It gives any developer access to the
same highly scalable, reliable, secure, fast, inexpensive infrastructure that Amazon
uses to run its own global network of websites. The service aims to maximize ben‐
efits of scale and to pass those benefits on to developers. To read Amazon’s overview
of S3, visit the Amazon S3 web page. Amazon S3’s permanent storage will be used
to store data sets and computed result sets generated by Amazon EMR Job Flows.
Applications built with Amazon EMR will need to use some S3 services for data
storage.

Amazon Elastic Compute Cloud (EC2)
Amazon EC2 makes it possible to run multiple instances of virtual machines on
demand inside any one of the AWS regions. The beauty of this service is that you
can start as many or as few instances as you need without having to buy or rent
physical hardware like in traditional hosting services. In the case of Amazon EMR,
this means we can scale the size of our Hadoop cluster to any size we need without
thinking about new hardware purchases and capacity planning. Individual EC2
instances come in a variety of sizes and specifications to meet the needs of different
types of applications. There are instances tailored for high CPU load, high memory,
high I/O, and more. Throughout this book, we will use native EC2 instances for a
lot of the scheduling of Amazon EMR Job Flows and to run many of the mundane
administrative and data manipulation tasks associated with our application build‐
ing blocks. We will, of course, be using the Amazon EMR EC2 instances to do the
heavy data crunching and analysis.

To read Amazon’s overview of EC2, visit the Amazon EC2 web page. Amazon EC2
instances are used as part of an Amazon EMR cluster throughout the book. We also
utilize EC2 instances for administrative functions and to simulate live traffic and
data sets. In building your own application, you can run the administrative and live
data on your own internal hosts, and these separate EC2 instances are not a required
service in building an application with Amazon EMR.

Amazon Glacier
Amazon Glacier is a new offering available in AWS. Glacier is similar to S3 in that
it stores almost any amount of data in a secure and durable manner. Glacier is
intended for long-term storage of data due to the high latency involved in the storage
and retrieval of data. A request to retrieve data from Glacier may take several hours
for Amazon to fulfill. For this reason, we will store data that we do not intend to
use very often in Amazon Glacier. The benefit of Amazon Glacier is its large cost
savings. At the time of this writing, the storage cost in the US East region was $0.01
per gigabyte per month. Comparing this to a cost of $0.076 to $0.095 per gigabyte
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per month for S3 storage, you can see how the cost savings will add up for large
amounts of data. To read Amazon’s overview of Glacier, visit the Amazon Glacier
web page. Glacier can be used to reduce data storage costs over S3, but is not a
required service in building an Amazon EMR application.

Amazon Data Pipeline
Amazon Data Pipeline is another new offering available in AWS. Data Pipeline is
a web service that allows us to build graphical workflows to reliably process and
move data between different AWS services. Data Pipeline allows us to create com‐
plex user-defined logic to control AWS resource usage and execution of tasks. It
allows the user to define schedules, prerequisite conditions, and dependencies to
build an operational workflow for AWS. To read Amazon’s overview of Data Pipe‐
line, visit the Amazon Data Pipeline web page. Data Pipeline can reduce the overall
administrative costs of an application using Amazon EMR, but is not a required
AWS service for building an application.

Amazon Elastic MapReduce
Amazon EMR is an AWS service that allows users to launch and use resizable Hadoop
clusters inside of Amazon’s infrastructure. Amazon EMR, like Hadoop, can be used to
analyze large data sets. It greatly simplifies the setup and management of the cluster of
Hadoop and MapReduce components. EMR instances use Amazon’s prebuilt and cus‐
tomized EC2 instances, which can take full advantage of Amazon’s infrastructure and
other AWS services. These EC2 instances are invoked when we start a new Job Flow to
form an EMR cluster. A Job Flow is Amazon’s term for the complete data processing
that occurs through a number of compute steps in Amazon EMR. A Job Flow is specified
by the MapReduce application and its input and output parameters.

Figure 1-1 shows an architectural view of the EMR cluster.
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Figure 1-1. Typical Amazon EMR cluster

Amazon EMR performs the computational analysis using the MapReduce framework.
The MapReduce framework splits the input data into smaller fragments, or shards, that
are distributed to the nodes that compose the cluster. From Figure 1-1, we note that a
Job Flow is executed on a series of EC2 instances running the Hadoop components that
are broken up into master, core, and task clusters. These individual data fragments are
then processed by the MapReduce application running on each of the core and task
nodes in the cluster. Based on Amazon EMR terminology, we commonly call the Map‐
Reduce application a Job Flow throughout this book.

The master, core, and task cluster groups perform the following key functions in the
Amazon EMR cluster:
Master group instance

The master group instance manages the Job Flow and allocates all the needed ex‐
ecutables, JARs, scripts, and data shards to the core and task instances. The master
node monitors the health and status of the core and task instances and also collects
the data from these instances and writes it back to Amazon S3. The master group
instances serve a critical function in our Amazon EMR cluster. If a master node is
lost, you lose the work in progress by the master and the core and task nodes to
which it had delegated work.
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Core group instance
Core group instance members run the map and reduce portions of our Job Flow,
and store intermediate data to the Hadoop Distributed File System (HDFS) storage
in our Amazon EMR cluster. The master node manages the tasks and data delegated
to the core and task nodes. Due to the HDFS storage aspects of core nodes, a loss
of a core node will result in data loss and possible failure of the complete Job Flow.

Task group instance
The task group is optional. It can do some of the dirty computational work of the
map and reduce jobs, but does not have HDFS storage of the data and intermediate
results. The lack of HDFS storage on these instances means the data needs to be
transferred to these nodes by the master for the task group to do the work in the
Job Flow.

The master and core group instances are critical components in the Amazon EMR
cluster. A loss of a node in the master or core group instance can cause an application
to fail and need to be restarted. Task groups are optional because they do not control a
critical function of the Amazon EMR cluster. In terms of jobs and responsibilities, the
master group must maintain the status of tasks. A loss of a node in the master group
may make it so the status of a running task cannot be determined or retrieved and lead
to Job Flow failure.

The core group runs tasks and maintains the data retained in the Amazon EMR cluster.
A loss of a core group node may cause data loss and Job Flow failure.

A task node is only responsible for running tasks delegated to it from the master group
and utilizes data maintained by the core group. A failure of a task node will lose any
interim calculations. The master node will retry the task node when it detects failure in
the running job. Because task group nodes do not control the state of jobs or maintain
data in the Amazon EMR cluster, task nodes are optional, but they are one of the key
areas where capacity of the Amazon EMR cluster can be expanded or shrunk without
affecting the stability of the cluster.

Amazon EMR and the Hadoop Ecosystem
As we’ve already seen, Amazon EMR uses Hadoop and its MapReduce framework at its
core. Accordingly, many of the other core Apache Software Foundation projects that
work with Hadoop also work with Amazon EMR. There are also many other AWS
services that may be useful when you’re running and monitoring Amazon EMR appli‐
cations. Some of these will be covered briefly in this book:
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Hive
Hive is a distributed data warehouse that allows you to create a Job Flow using a
SQL-like language. Hive can be run from a script loaded in S3 or interactively inside
of a running EMR instance. We will explore Hive in Chapter 4.

Pig
Pig is a data flow language. (The language is, not surprisingly, called Pig Latin.) Pig
scripts can be loaded into S3 and used to perform the data analysis in a Job Flow.
Pig, like Hive, is one of the Job Flow types that can be run interactively inside of a
running EMR instance. We cover the details on Pig and Pig Latin in Chapter 3.

Amazon Cloudwatch
Cloudwatch allows you to monitor the health and progress of Job Flows. It also
allows you to set alarms when metrics are outside of normal execution parameters.
We will look at Amazon Cloudwatch briefly in Chapter 6.

Amazon Elastic MapReduce Versus Traditional Hadoop
Installs
So how does using Amazon EMR compare to building out Hadoop in the traditional
data center? Many of the AWS cloud considerations we discuss in Appendix B are also
relevant to Amazon EMR. Compared to allocating resources and buying hardware in a
traditional data center, Amazon EMR can be a great place to start a project because the
infrastructure is already available at Amazon. Let’s look at a number of key areas that
you should consider before embarking on a new Amazon EMR project.

Data Locality
Amazon EMR uses S3 storage for the input and output of data sets to be processed and
analyzed. In order to process data, you need to transport it from the many sources where
it currently lives up to Amazon’s cloud into S3 buckets. This is not a major issue for
projects transitioning from other AWS services, but may be a barrier to projects that
need to transport terabytes or petabytes of data from another cloud provider or hosted
in a private data center to Amazon’s S3 storage.

In the traditional Hadoop install, data transport between the current source locations
and the Hadoop cluster may be colocated in the same data center on high-speed internal
networks. This lowers the data transport barriers and the amount of time to get data
into Hadoop for analysis. Figure 1-2 shows the data locations and network topology
differences between an Amazon EMR and traditional Hadoop installation.
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Figure 1-2. Comparing data locality between Hadoop and Amazon EMR environments

If this will be a large factor in your project, you should review Amazon’s S3 Import and
Export service option. The Import and Export service for S3 allows you to prepare
portable storage devices that you can ship to Amazon to import your data into S3. This
can greatly decrease the time and costs associated with getting large data sets into S3 for
analysis. This approach can also be used in transitioning a project to AWS and EMR to
seed the existing data into S3 and add data updates as they occur.

Hardware
Many people point to Hadoop’s use of low-cost hardware to achieve enormous compute
capacity as one of the great benefits of using Hadoop compared to purchasing large,
specialized hardware configurations. We couldn’t agree more when comparing what
Hadoop achieves in terms of cost and compute capacity in this model. However, there
are still large upfront costs in building out a modest Hadoop cluster. There are also the
ongoing operational costs of electricity, cooling, IT personnel, hardware retirement,
capacity planning and buildout, and vendor maintenance contracts on the operating
system and hardware.
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With Amazon EMR, you only pay for the services you use. You can quickly scale capacity
up and down, and if you need more memory or CPU for your application, this is a
simple change in your EC2 instance types when you’re creating a new Job Flow. We’ll
explore the costs of Amazon EMR in Chapter 6 and help you understand how to estimate
costs to determine the best solution for your organization.

Complexity
With the low-cost hardware of Hadoop clusters, many organizations start proof-of-
concept data analysis projects with a small Hadoop cluster. The success of these projects
leads many organizations to start building out their clusters and meet production-level
data needs. These projects eventually reach a tipping point of complexity where much
of the cost savings gained from the low-cost hardware is lost to the administrative, labor,
and data center cost burdens. The time and labor commitments of keeping thousands
of Hadoop nodes updated with OS security patches and replacing failing systems can
require a great deal of time and IT resources. Estimating them and being able to compare
these costs to EMR will be covered in detail in Chapter 6.

With Amazon EMR, the EMR cluster nodes exist and are maintained by Amazon. Am‐
azon regularly updates its EC2 Amazon Machine Images (AMI) with newer releases of
Hadoop, security patches, and more. By default, a Job Flow will start an EMR cluster
with the latest and greatest EC2 AMIs. This removes much of the administrative burden
in running and maintaining large Hadoop clusters for data analysis.

Application Building Blocks
In order to show the power of using AWS for building applications, we will build a
number of building blocks for a MapReduce log analysis application. In many of our
examples throughout this book, we will use these building blocks to perform analysis
of common computer logfiles and demonstrate how these same building blocks can be
used to attack other common data analysis problems. We will discuss how AWS and
Amazon EMR can be utilized to solve different aspects of these analysis problems.
Figure 1-3 shows the high-level functional diagram of the AWS components we will use
in the upcoming chapters. Figure 1-3 also highlights the workflow and inter-
relationships between these components and how they share data and communicate in
the AWS infrastructure.
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Figure 1-3. Functional architecture of our data analysis solution

Using our building blocks, we will explore how these can be used to ingest large volumes
of log data, perform real-time and batch analysis, and ultimately produce results that
can be shared with end users. We will derive meaning and understanding from data and
produce actionable results. There are three component areas for the application: col‐
lection stage, analysis stage, and the nuts and bolts of how we coordinate and schedule
work through the many services we use. It might seem like a complex set of systems,
interconnections, storage, and so on, but it’s really quite simple, and Amazon EMR and
AWS provide us a number of great tools, services, and utilities to solve complex data
analysis problems.

In the next set of chapters, we will dive into each component area of the application and
highlight key portions of solving data analysis problems:
Collection

In Chapter 2, we will work on data collection attributes that are the key building
blocks for any data analysis project. We will present a number of small AWS options
for generating test data to work with and learn about working with this data in
Amazon EMR and S3. Chapter 2 will explore real-world areas to collect data
throughout your enterprise and the tools available to get this data into Amazon S3.

Analysis
In Chapters 2 and 3, we will begin analyzing the data we have collected using Java
code to write map and reduce methods that will be run as Job Flows in Amazon
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EMR. In Chapter 4, we will show you that you don’t have to be a NASA rocket
scientist or a Java programmer to use Amazon EMR. We will revisit the same anal‐
ysis issues covered in earlier chapters, and using more high-level scripting tools like
Pig and Hive, solve the same problems. Hadoop and Amazon EMR allow us to bring
to bear a significant number of tools to mine critical information out of our data.

Machine learning
In Chapter 5, we will explore how machine learning can be used in EMR to derive
interesting results on data sets. Python is used for the examples in this chapter.

Storage
Storage and the costs of storing data are always an ever-growing problem for or‐
ganizations. After you have done your data analysis, you may need to retain the
original data and analysis for many years. Depending on the compliance needs of
an organization, the retention time can be very long. In Chapter 6, we will look at
cost-effective ways to store data for long periods using Amazon Glacier.

By now, you hopefully have an understanding of how AWS and Amazon EMR could
provide value to your organization. In the next chapter, you will start getting your hands
dirty. You’ll generate some simple log data to analyze and create your first Amazon EMR
Job Flow, and then do some simple data frequency analysis on those sample log
messages.
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CHAPTER 2

Data Collection and Data Analysis with AWS

Now that we’ve covered the basics of AWS and Amazon EMR, you can get to work on
using Amazon’s tools in the cloud. To get started, you’ll create some sample data to parse
your first Amazon EMR job. A number of AWS tools and techniques will be required
as part of this exercise to move the data to a location that Amazon EMR can access and
work on. This should give you a solid background on what is available, and how to begin
thinking about your data and overcoming challenges of moving your data into AWS.

Amazon EMR is built with many’ of the core components and frameworks of Apache
Hadoop. Apache Hadoop allows organizations to build data-intensive distributed
applications across a cluster of low-cost hardware. Amazon EMR simply takes this
technology and moves it to the Amazon cloud to run at web scale on Amazon’s AWS
hardware.

The key to all of this is the MapReduce framework. MapReduce is a powerful framework
used to break down large data sets into smaller sets that can be processed in Amazon
EMR across multiple EC2 instances that compose a cluster. To demonstrate the power
of this concept, in this chapter you’ll create an Amazon EMR Cluster, also known as a
Job Flow in Java. The Job Flow will determine message frequency for the test sample
data set. Of course, as with learning anything new, you are bound to make mistakes and
errors in the development of an Amazon EMR Job Flow. Toward the end of the chapter,
we will intentionally introduce a number of errors into the Job Flow so you can step
through the process of exploring Amazon EMR logs and tools. This process can help
you find errors and resolve problems in your own Amazon EMR application.

Log Analysis Application
Now let’s focus on building a number of the components of the log analysis application
described in Chapter 1. You will create your data set in the cloud on a Linux system
using Amazon’s EC2 service. Then the data will be moved through S3 to be processed
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by an application running on the Amazon EMR cluster, and in the end the processed
result set will show the error messages and their frequency. Figure 2-1 shows the work‐
flow of the system components that you’ll be building.

Figure 2-1. Application workflow covered in this chapter

Log Messages as a Data Set for Analytics
Since the growth of the Internet, the amount of electronic data that companies retain
has exploded. With the advent of tools like Amazon EMR, it is only recently that com‐
panies have had tools to mine and use their vast data repositories. Companies are using
their data sets to gain a competitive advantage over their rivals by mining their data sets
to learn what matters to their customer base the most. The growth in this field has put
data scientists and individuals with data analytics skills in high demand.

The struggle many have faced is how to get started learning with these tools and access
a data set of sufficient size. This is why we have chosen to use computer log messages
to illustrate many of the points in the first Job Flow example in this chapter. Computers
are logging information on a regular basis, and the logfiles are a ready and available data
source that most developers understand well from troubleshooting issues in their daily
jobs. Computer logfiles are a great data source to start learning how to use data analysis
tools like Amazon EMR. Take a look at your own computer—on a Linux or Macintosh
system, many of the logfiles can be found in /var/log. Figure 2-2 shows an example of
the format and information of some of the log messages that you can find.
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Figure 2-2. Typical computer log messages

If this data set does not work well for you and your industry, Amazon hosts many public
data sets that you could use instead. The data science website Kaggle also hosts a number
of data science competitions that may be another useful resource for data sets as you
are learning about MapReduce.

Understanding MapReduce
Before getting too far into an example, let’s explore the basics of MapReduce. MapRe‐
duce is the core of Hadoop, and hence the same is true for Amazon EMR. MapReduce
is the programming model that allows Amazon EMR to take massive amounts of data,
break it up into small chunks across a configured number of virtual EC2 instances,
analyze the data in parallel across the instances using map and reduce procedures that
we write, and derive conclusions from analyses on very large data sets.

The term MapReduce refers to the separate procedures written to build a MapReduce
application that perform analysis on the data. The map procedure takes a chunk of data
as input and filters and sorts the data down to a set of key/value pairs that will be
processed by the reduce procedure. The reduce procedure performs summary proce‐
dures of grouping, sorting, or counting of the key/value pairs, and allows Amazon EMR
to process and analyze very large data sets across multiple EC2 instances that compose
an Amazon EMR cluster.

Let’s take a look at how MapReduce works using a sample log entry as an example. Let’s
say you would like to know how many log messages are created every second. This can
be useful in numerous data analysis problems, from determining load distribution,
pinpointing network hotspots, or gathering performance data, to finding machines that
may be under attack. In general, these sorts of issues fall into a category commonly
referred to as frequency analysis. Looking at the example log record, the time in the log
messages is the first data element and notes when the message occurred down to the
second:

Apr 15 23:27:14 hostname.local ./generate-log.sh[17580]: INFO: Login ...
Apr 15 23:27:14 hostname.local ./generate-log.sh[17580]: INFO: Login ...
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Apr 15 23:27:15 hostname.local ./generate-log.sh[17580]: WARNING: Login failed...
Apr 15 23:27:16 hostname.local ./generate-log.sh[17580]: INFO: Login ...

We can write a map procedure that parses out the date and time and treats this data
element as a key. We can then use the key selected, which is the date and time in the log
data, to sort and group the log entries that have occurred at that timestamp. The pseu‐
docode for the map procedure can be represented as follows:

map( "Log Record" )
    Parse Date and Time
    Emit Date and Time as the key with a value of 1

The map procedure would emit a set of key/value pairs like the following items:

(Apr 15 23:27:14, 1)
(Apr 15 23:27:14, 1)
(Apr 15 23:27:15, 1)
(Apr 15 23:27:16, 1)
...

This simple map procedure parses a log line, emits the date and time as the key, and uses
the numeric value of one as the value in each pair. The data set generated by the map
procedure is grouped by the framework to combine duplicate keys and create an array
of values for each key. The following is the final intermediate data set that is sent to the
reduce procedure:

(Apr 15 23:27:14, (1, 1))
(Apr 15 23:27:15, 1)
(Apr 15 23:27:16, 1)
...

The reduce procedure determines a count of each key—date and time—by iterating
through the array of values and coming up with the total number of the log lines that
occurred each second. The pseudocode for the reduce procedure can be represented
something like the following:

reduce( Key, Values )
  sum = 0
  for each Value:
    sum = sum + value
  emit (Key, sum)

The reduce procedure will generate a single line with the key and sum for each key as
follows:

Apr 15 23:27:14 2
Apr 15 23:27:15 1
Apr 15 23:27:16 1
...
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The final result from the reduce procedure has gone through each of the date and time
keys from the map procedure and arrived at counts for the number of log lines that
occurred on each second in the sample logfile.

Figure 2-3 details the flow of data through the map and reduce phases of a Job Flow
working on the log data.

Figure 2-3. Data Flow through the map and reduce framework components

Collection Stage
To utilize the power of Amazon EMR, we need a data set to perform analysis on. AWS
services as well as Amazon EMR utilize Amazon S3 for persistent storage and data
retrieval. Let’s get a data set loaded into S3 so you can start your analysis.

The collection stage is the first step in any data analysis problem. Your first challenge
as a data scientist is to get access to raw data from the systems that contain it and pull
it into a location where it can actually be analyzed. In many organizations, data will
come in flat files, databases, and binary formats stored in many locations. Recalling the
log analysis example described in Chapter 1, we know there is a wide diversity of log
sources and log formats in an enterprise organization:

• Servers (Unix, Windows, etc.)
• Firewalls
• Intrusion detection systems (IDS)
• Printers
• Proxy servers
• Web application firewalls (WAF)
• Custom-built software

In the traditional setting, the data will be fed into the data analysis system with raw data
from applications, devices, and systems on an internal corporate network. In today’s
environments, it is conceivable that the data to be processed will be distributed on
internal networks, extranets, and even applications and sources running in a cloud
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environment already. These systems are all good and realistic sources of data for data
analysis problems in an organization.

In this section, you’ll provision and start an EC2 instance to generate some sample raw
log data. In order to keep the data collection simple, we’ll generate a syslog format log
file on the EC2 instance. These same utilities can be used to load data from the various
source systems in a typical organization into an S3 bucket for analysis.

Simulating Syslog Data
The simplest way to get started is to generate a set of log data from the command line
utilizing a Bash shell script. The data will have relatively regular frequency because the
Bash script is just generating log data in a loop and the data itself is not user- or event-
driven. We’ll look at a data set generated from system- and user-driven data in Chap‐
ter 3 after the basic Amazon EMR analysis concepts are covered here.

Let’s create and start an Amazon Linux EC2 instance on which to run a Bash script.
From the Amazon AWS Management Console, choose the EC2 service to start the
process of creating a running Linux instance in AWS. Figure 2-4 shows the EC2 Services
Management Console.

Figure 2-4. Amazon EC2 Services Management Console
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From this page, choose Launch Instance to start the process of creating a new EC2
instance. You have a large number of types of EC2 instances to choose from, and many
of them will sound similar to systems and setups running in a traditional data center.
These choices are broken up based on the operating system installed, the platform type
of 32-bit or 64-bit, and the amount of memory and CPU that will be allocated to the
new EC2 instance. The various memory and CPU allocation options sound a lot like
fast food restaurant meal size choices of micro, small, medium, large, extra large, double
extra large, and so on. To learn more about EC2 instance types and what size may make
sense for your application, see more at Amazon’s EC2 website, where Amazon describes
the sizing options and pricing available.

Speed and resource constraints are not important considerations for generating the
simple syslog data set from a Bash script. We will be creating a new EC2 instance that
uses the Amazon Linux AMI. This image type is shown in the EC2 creation wizard in
Figure 2-5. After choosing the operating system we will create the smallest option, the
micro instance. This EC2 machine size is sufficient to get started generating log data.

Figure 2-5. Amazon Linux AMI EC2 instance creation

After you’ve gone through Amazon’s instance creation wizard, the new EC2 instance is
created and running in the AWS cloud. The running instance will appear in the Amazon
EC2 Management Console as shown in Figure 2-6. You can now establish a connection
to the running Linux instance through a variety of tools based on the operating system
chosen. On running Linux instances, you can establish a connection directly through
a web browser by choosing the Connect option available on the right-click menu after
you’ve selected the running EC2 instance.
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Figure 2-6. The created Amazon EC2 micro instance in the EC2 Console

Amazon uses key pairs as a way of accessing EC2 instances and a
number of other AWS services. The key pair is part of the SSL encryp‐
tion mechanism used for communication between you and your cloud
resources. It is critical that you keep the private key in a secure place
because anyone who has the private key can access your cloud resour‐
ces. It is also important to know that Amazon keeps a copy of your
public key only. If you lose your private key, you have no way of re‐
trieving it again later from Amazon.

Generating Logs with Bash
Now that an EC2 Linux image is up and running in AWS, let’s create some log messag‐
es. The following simple Bash script will generate output similar to syslog-formatted
messages found on a variety of other systems throughout an organization:

#!/bin/bash

log_message()
{
        Current_Date=`date +'%b %d %H:%M:%S'`
        Host=`hostname`

        echo "$Current_Date $Host $0[$$]: $1" >> $2  
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}

# Generate a log events
for (( i = 1; i <= $1 ; i++ ))  
do
     log_message "INFO: Login successful for user Alice" $2 
     log_message "INFO: Login successful for user Bob" $2
     log_message "WARNING: Login failed for user Mallory" $2
     log_message "SEVERE: Received SEGFAULT signal from process Eve" $2
     log_message "INFO: Logout occurred for user Alice" $2
     log_message "INFO: User Walter accessed file /var/log/messages" $2
     log_message "INFO: Login successful for user Chuck" $2
     log_message "INFO: Password updated for user Craig" $2
     log_message "SEVERE: Disk write failure" $2
     log_message "SEVERE: Unable to complete transaction - Out of memory" $2 
done

Generates a syslog-like log message
The first parameter ($1) passed to the Bash script; we can specify any number
of log line iterations
The second parameter ($2) specifies the log output filename
The output we selected was a pseudo-output stream of items you may find in a
logfile

With the Bash script loaded into the new EC2 instance, you can run the script to generate
some test log data for Amazon EMR to work with later in this chapter. In this example,
the Bash script was stored as generate-log.sh. The example run of the script will generate
1,000 iterations or 10,000 lines of log output to a logfile named sample-syslog.log:

$ chmod +x generate-log.sh
$ generate-log.sh 1000 ./sample-syslog.log

Let’s examine the output the script generated. Opening the logfile created by the Bash
script, you can see a number of repetitive log lines are created, as shown in
Example 2-1. There will be some variety in the frequency of these messages based on
other processes running on the EC2 instance and other EC2 instances running on the
same physical hardware as our EC2 instance. You can find a little more detail on how
other cloud users affect the execution of applications in Appendix B.

Example 2-1. Generated sample syslog
Apr 15 23:27:14 hostname.local ./generate-log.sh[17580]: INFO: Login
successful for user Alice
Apr 15 23:27:14 hostname.local ./generate-log.sh[17580]: INFO: Login
successful for user Bob
Apr 15 23:27:14 hostname.local ./generate-log.sh[17580]: WARNING: Login
failed for user Mallory
Apr 15 23:27:14 hostname.local ./generate-log.sh[17580]: SEVERE: Received
SEGFAULT signal from process Eve
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Apr 15 23:27:14 hostname.local ./generate-log.sh[17580]: INFO: Logout
occurred for user Alice
Apr 15 23:27:14 hostname.local ./generate-log.sh[17580]: INFO: User
Walter accessed file /var/log/messages
Apr 15 23:27:14 hostname.local ./generate-log.sh[17580]: INFO: Login
successful for user Chuck
Apr 15 23:27:14 hostname.local ./generate-log.sh[17580]: INFO: Password
updated for user Craig
Apr 15 23:27:14 hostname.local ./generate-log.sh[17580]: SEVERE: Disk write failure
Apr 15 23:27:14 hostname.local ./generate-log.sh[17580]: SEVERE:
to complete transaction - Out of memory

Diving briefly into the details of the components that compose a single log line will help
you understand the format of a syslog message and how this data will be parsed by the
Amazon EMR Job Flow. Looking at this log output also helps you understand how to
think about the components of a message and the data elements needed in the MapRe‐
duce code that will be written to compute message frequency.
Apr 15 23:27:14

This is the date and time the message was created. This is the item that will be used
as a key for developing the counts that represent message frequency in the log.

hostname.local

In a typical syslog message, this part of the message represents the hostname on
which the message was generated.

generate-log.sh

This represents the name of the process that generated the message in the logfile.
The script in this example was stored as generate-log.sh in the running EC2 instance,
and this is the name of the process in the logfile.

[17580]

Typically, every running process is given a process ID that exists for the life of the
running process. This number will vary based on the number of processes running
on a machine.

SEVERE: Unable to complete transaction - Out of memory

This represents the free-form description of the log message that is generated. In
syslog messages, the messages and their meaning are typically dependent on the
process generating the message. Some understanding of the process that generated
the message is necessary to determine the criticality and meaning of the log message.
This is a common problem in examining computer log information. Similar issues
will exist in many data analysis problems when you’re trying to derive meaning and
correlation across multiple, disparate systems.

From the log analysis example application used to demonstrate AWS functionality
throughout this book, we know there is tremendous diversity in log messages and their
meaning. Syslog is the closest thing to a standard in logging when it comes to computer
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logs. Many would argue that it’s a bit of a stretch to call syslog a standard, because there
is still tremendous diversity in the log messages from system to system and vendor to
vendor. However, a number of RFCs define the aspects and meaning of syslog messages.
You should review RFC-3164, RFC-5452, and RFC-5427 to learn more about the critical
aspects of syslog if you’re building a similar application. Logging and log management
is a very large problem area for many organizations, and Logging and Log Management:
The Authoritative Guide to Understanding the Concepts Surrounding Logging and Log
Management, by Anton Chuvakin, Kevin Schmidt, and Christopher Phillips (Syngress),
covers many aspects of the topic in great detail.

Moving Data to S3 Storage
A sample data set now exists in the running EC2 instance in Amazon’s cloud. However,
this data set is not in a location where it can be used in Amazon EMR because it is sitting
on the local disk of a running EC2 instance. To make use of this data set, you’ll need to
move the data to S3, where Amazon EMR can access it. Amazon EMR will only work
on data that is in an Amazon S3 storage location or is directly loaded into the HDFS
storage in the Amazon EMR cluster.

Data in S3 is stored in buckets. An S3 bucket is a container for the objects, files, and
directories of information that you store in it. S3 bucket names need to be globally
unique, so choose your bucket name wisely. The bucket naming convention is a unique
URL naming constraint. An S3 bucket can be referenced by URL to interact with S3
with the AWS REST API. 

You have a number of methods for loading data into S3. A simple method of moving
the log data into S3 is to use the s3cmd utility:

hostname $ s3cmd --configure

For more information on installation and configuration of s3cmd, refer to the s3cmd
website. Let’s go ahead and move the sample log data into S3. Example 2-2 shows a
sample usage of s3cmd to load the test data into an S3 bucket named program-emr.

Example 2-2. Load data into an S3 bucket
hostname $ s3cmd mb s3://program-emr 
Bucket 's3://program-emr/' created
hostname $ s3cmd put sample-syslog.log s3://program-emr 
sample-syslog.log -> s3://program-emr/sample-syslog.log  [1 of 1]
 988000 of 988000   100% in    0s     7.44 MB/s  done
hostname $

Make a new bucket using the mb option. The new bucket created in the example
is called program-emr.
An s3cmd put is used to move the logfile sample-syslog.log into the S3 bucket
program-emr.
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All Roads Lead to S3
We chose the s3cmd utility to load the sample data into S3 because it can be used from
AWS resources and also from many of the systems located in private corporate networks.
Best of all, it is a tool that can be downloaded and configured to run in minutes to
transfer data up to S3 via a command line. But fear not: using a third-party unsupported
tool is not the only way of getting data into S3. The following list presents a number of
alternative methods of moving data to S3:
S3 Management Console

S3, like many of the AWS services, has a management console that allows manage‐
ment of the buckets and files in an AWS account. The management console allows
you to create new buckets, add and remove directories, upload new files, delete files,
update file permissions, and download files. Figure 2-7 shows the file uploaded into
S3 in the earlier examples inside the management console.

Figure 2-7. S3 Management Console

AWS SDK
AWS comes with an extensive SDK for Java, .NET, Ruby, and numerous other
programming languages. This allows interactions with S3 to load data and manip‐
ulation of S3 objects into third-party applications. Numerous S3 classes direct ma‐
nipulation of objects and structures in S3. You may note that s3cmd source code is
written in Python, and you can download the source from GitHub.
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S3 REST API
S3 also has a REST API that allows for interaction with S3 using standard HTTP
web service calls to manipulate S3 buckets and objects.

AWS Command Line Interface
The AWS Command Line Interface (CLI) performs many of the same functions
and features as s3cmd. Files can be uploaded and downloaded from S3 buckets. The
utility also supports a sync feature to keep a local repository of objects stored in S3
in sync. This utility also supports controlling other AWS services like EC2. The full
list of services supported by this utility are available on the AWS CLI reference
page. At the time of writing this book, this utility had only recently come out of
beta. The utility does not currently support controlling Amazon EMR services.

Developing a MapReduce Application
Amazon EMR and the underlying Hadoop frameworks it uses are built using the Java
programming language. To turn the MapReduce pseudocode into a Custom JAR Map‐
Reduce Job Flow, you will need to have a system set up to do Java development and will
need Hadoop Java JARs to build an application that Amazon EMR can consume and
execute. To get ready to develop your first Amazon EMR, review Appendix C to set up
your development environment.

Custom JAR MapReduce Job
Amazon EMR provides a number of ways to write map and reduce procedures, including
Hive, Streaming, Pig, or Custom JAR. A number of these Job Flow types will be covered
throughout this book. Because we are programmers at heart, let’s start using Java to
write a Custom JAR for the map and reduce procedures. Each of these EMR technology
types can be used to analyze data as a computational step in the Amazon EMR Cluster.
The set of steps run in Amazon EMR Cluster comprise a Job Flow for analyzing a data-
set. Hive, Streaming, Pig, and Custom Jar are the Job Flow types that can be used as
steps in an Amazon EMR cluster. 

Now that the theory behind how the MapReduce framework has been covered, let’s
translate the pseudocode into a Custom JAR Job Flow written in Java. A JAR file is simply
a compressed archive of compiled Java code. Writing Java applications for Amazon EMR
follows the same pattern as writing applications for Hadoop. The code developed here
will cover the map, reduce, and driver procedures. The driver procedure is the main
entry point that wires together the Job Flow application and tells MapReduce the classes
to use for map and reduce tasks. Translating the pseudocode into Java code creates a map
function implementation as shown in Example 2-3.
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Example 2-3. Mapper for counting log records per second
import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;

public class LogMapper extends MapReduceBase
    implements Mapper<LongWritable, Text, Text, IntWritable>
{
    private Text word = new Text();
    private final static IntWritable one = new IntWritable( 1 );

    public void map( LongWritable key,
                     Text value,
                     OutputCollector<Text, IntWritable> output,
                     Reporter reporter) throws IOException
    {
        // Get the value as a String
        String text = value.toString();

        // Retrieve the date and time out of the log message, first 15 characters
        String SyslogDateTime = text.substring(0, 15);

        // Output the syslog date and time as the key and 1 as the value
        output.collect( new Text(SyslogDateTime), one );
    }
}

From this example, note that there are no special AWS classes or libraries used to write
the map procedure. The Mapper interface comes from Hadoop Mapper imports in the
simple LogMapper class.

The map method is passed a portion of the raw data file as input. The map method focuses
on the value passed to it because this represents an individual row from the logfile.
Looking at the sample data, we can see the date and time are the first 15 characters of
each line of input. The map method will extract the date and time from the first 15
characters and use this as the key. The final portions of map procedure will emit the date
and time key and a value of one for each line in the logfile.

Let’s move on to the reduce procedure. The psuedocode can be translated into the
reduce procedure in a similar fashion to Example 2-4.
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Example 2-4. Reducer for counting log records per second
import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;

public class LogReducer extends MapReduceBase
  implements Reducer<Text, IntWritable, Text, IntWritable>
{
    public void reduce( Text key, Iterator<IntWritable> values,
            OutputCollector<Text, IntWritable> output,
            Reporter reporter) throws IOException
    {
        // Counts the occurrences of the date and time
        int count = 0;
        while( values.hasNext() )
        {
                // Add the value to our count
                count += values.next().get();
        }

        // Output the date and time with its count
        output.collect( key, new IntWritable( count ) );
    }
}

The reduce method passes an iterator for the value parameter. This iterator points to
the array of values for each key the method receives. The value of each element is not
relevant for the reducer in this simple example because every value is set to the value of
one. The reduce method simply iterates through and counts the number of elements
in the array that are of the same key—namely, date and time.

The final piece wires all these procedures together and is the main entry point for the
Job Flow. The driver method defines the map and reduce methods to use in the Amazon
EMR Job Flow, as shown in Example 2-5.

Example 2-5. Driver class for the log analyzer MapReduce Job Flow
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
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import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class LogAnalysisDriver extends Configured implements Tool {

        public int run(String[] args) throws Exception
        {
            JobConf conf = new JobConf(getConf(), getClass());
            conf.setJobName("Log Analyzer");

            FileInputFormat.addInputPath(conf, new Path(args[0]));
            FileOutputFormat.setOutputPath(conf, new Path(args[1]));

            conf.setOutputKeyClass(Text.class);
            conf.setOutputValueClass(IntWritable.class);

            conf.setMapperClass(LogMapper.class);
            conf.setCombinerClass(LogReducer.class);
            conf.setReducerClass(LogReducer.class);

            JobClient.runJob(conf);
            return 0;
        }

        public static void main(String[] args) throws Exception {
            int exitCode = ToolRunner.run(new LogAnalysisDriver(), args);
            System.exit(exitCode);
        }
}

To use the simple log analyzer, we must compile the driver, map, and reduce methods
into a JAR file and load the JAR file into an S3 bucket. In the next sections, we’ll run the
methods built here against the sample log, and then run an Amazon EMR Job Flow to
generate the log frequency analysis results.

Running an Amazon EMR Cluster
Let’s walk through executing the simple log analyzer in Amazon EMR. Start by choosing
Create Cluster from the Amazon EMR Console. As shown in Figure 2-8, the Job Flow
is given a name and the S3 location to use to write any log information from the Cluster,
or Job Flow, run.
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Figure 2-8. Amazon EMR New Cluster creation

Under Add Step, select the step type of Custom JAR. The parameters and location of
our Custom JAR are defined for the step by selecting Configure and add. Our Custom
JAR is added to the EMR Cluster by configuring a processing step in the Steps section.
In defining the parameters for the job in Figure 2-9, we specify the JAR filename and
location based on its location in S3 storage. We also define the parameters needed for
the execution of the Job Flow as arguments. The first parameter is the main driver class
in the JAR file. In Example 2-5, a set of required parameters defines the input file and
output path of the results. The sample input file—_sample-syslog.log_—is set as the
input file, and a new S3 location is defined as the output object to store the analysis from
the Job Flow. Below the Step configuration is a setting to Auto-terminate the cluster
after our step has completed. In the examples in this book, we will set this setting to yes
so the EMR cluster will go away after it is finished processing. This can help to reduce
the usage charges in AWS. Without setting this option, the cluster will continue running
until you choose to terminate it from the EMR Console. You will continue to be charges
AWS usage charges until the cluster terminates. 
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Figure 2-9. Amazon EMR Job Flow step parameters

For the remaining options in the Create Cluster screen, we will use the default sizing
options to run the first Job Flow. At the end, as shown in Figure 2-10, the new Job Flow
is created and your first Amazon EMR Job Flow is off and running in Amazon’s data
center!

Figure 2-10. Amazon running the Custom JAR in the EMR Console
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A common cause of Job Flow failure is the use of an S3 output loca‐
tion that already exists. In the examples, we chose an output location
that did not already exist in the S3 bucket prior to running the Job
Flow. If the output path specified in the JAR parameters already ex‐
ists, in most instances it will cause the job to fail. You may experi‐
ence this by trying to run the same job more than once with the exact
same parameters. The first time the Job Flow is run it will succeed, but
if you run it again with exactly the same parameters, all subsequent
attempts will fail.

Viewing Our Results
After the job completes, the analysis results will be available in S3 and you can retrieved
them to review the frequency counts in the log. The job will generate a part file for each
reducer task that is created by Amazon EMR. In general, a reducer is run on each of the
core and task nodes in the Amazon EMR cluster. Looking at the results of one of these
part files, we can see that they look very similar to what we expected from the walk‐
through of the MapReduce process with pseudocode:

Apr 21 19:16:38   50 
Apr 21 19:16:43    159
Apr 21 19:16:44    159
Apr 21 19:16:47    160
...

The key selected in the mapper was the date and time of the log entry. The key
was emitted out in the results by the reducer.
The reducer counted the number of instances of each key, and the total is emitted
as the second column of the result set.

The output from Amazon EMR may be one or many individual part files. The number
of part files generated is related to the number of reduce processes executed in the
Amazon EMR cluster. If your application calls for recombining the result set into a single
consolidated file, you can accomplish this by taking the result set and loading it into an
Amazon Relational Database, or running the result set through another application or
Amazon EMR Job Flow.
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Debugging a Job Flow
You may be asking yourself now, “What will I do if I have an error in my application
that is running in the cloud?” Fortunately, there are a number of tools and techniques
available to find out more information about Amazon EMR jobs running in the cloud.
In a time-honored tradition, let’s add a number of print statements to the mapper and
reducer methods so we can walk through some debugging techniques.

In the mapper method in Example 2-6, a standard error output line is added to detail
that the application is executing the map method of the Job Flow.

Example 2-6. Mapper with logging statements
import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;

public class LogMapper extends MapReduceBase
    implements Mapper<LongWritable, Text, Text, IntWritable>
{
    private Text word = new Text();
    private final static IntWritable one = new IntWritable( 1 );

    public void map( LongWritable key,
                     Text value,
                     OutputCollector<Text, IntWritable> output,
                     Reporter reporter) throws IOException
    {
        // Get the value as a String
        String text = value.toString();

        // Output a log message
        System.err.println("We are inside the map method"); 

        // Retrieve the date and time out of the log message, first 15 characters
        String SyslogDateTime = text.substring(0, 15);

        // Output the syslog date and time as the key and 1 as the value
        output.collect( new Text(SyslogDateTime), one );
    }
}
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A simple log statement to indicate the execution of the map routine in the log
output

For the reduce method, we’ll add similar logging to the routine to indicate the execution
of the reducer. In addition, we’ll intentionally introduce an arithmetic error to create a
problem in the application—a division-by-zero operation will cause the reduce routine
to fail during execution. Example 2-7 shows the changes made to the reduce method.

Example 2-7. Reducer that will fail with an arithmetic exception
import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;

public class LogReducer extends MapReduceBase
  implements Reducer<Text, IntWritable, Text, IntWritable>
{
    public void reduce( Text key, Iterator<IntWritable> values,
            OutputCollector<Text, IntWritable> output,
            Reporter reporter) throws IOException
    {
        // Output a log message
        System.err.println("We are inside the reduce method"); 

        // Counts the occurrences of the date and time
        int count = 0;
        while( values.hasNext() )
        {
            // Output a log message
            System.err.println("Uh oh!  We are going to divide by zero!");

                // Add the value to our count and divide by zero
                count += ( values.next().get() / 0 ); 
        }

        // Output the date and time with its count
        output.collect( key, new IntWritable( count ) );
    }
}

A simple log statement to indicate execution of the reducer in the log output
The alteration of the calculation to do divide by zero to cause the reducer to fail
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Now that the application has been modified to intentionally fail, let’s upload the new
JAR file and run through a debug of the application in Amazon EMR.

Running Our Job Flow with Debugging
When creating a new Job Flow, we have the option to enable logging and debugging,
and we can enable them independently. During the development phases of an applica‐
tion, it makes sense to enable these options to review application runs and track prob‐
lems. When logging is enabled, the logs of each Job Flow are written to an S3 location
that is chosen on Job Flow creation. If debugging is also enabled, Amazon EMR creates
indexes of the logfiles’ contents, which enables the Debug view of steps and tasks on the
Amazon EMR Management Console to review a Job Flow run.

The same initial parameters used in Figures 2-8 and 2-9 are used to start the Job Flow.
When setting up a new cluster, or Job Flow, in Figure 2-8select a location to store the
Job Flow logs. The debugging option is turned on by default, but confirm this option is
enabled before starting the Job Flow.

The Job Flow happily gets started by Amazon EMR as before, but when the job finishes
it does not show as Terminated - All Steps Completed as it did earlier. Reviewing
the state of the Job Flow in the Amazon EMR console shows it as simply Terminated.
Looking at the S3 output location, output from the failed run is not available in the run0
folder.

Enabling Job Flow logging and debugging is a great idea in develop‐
ment and testing. However, leaving logging and debugging turned on
for production Job Flows can use up a significant amount of S3 stor‐
age for the logfile and SimpleDB indexes. These options may also
greatly impact the performance of a Job Flow. Many developers will
choose to use Amazon AWS libraries or third-party logging utilities to
control and set logging levels for their Job Flows in production
environments.

Reviewing Job Flow Log Structure
Each Job Flow in Amazon EMR is given a unique identifier. The Job Flow IDs follow
the pattern of “j-XXXXXXXXXXXXX.” In Figure 2-11, the Amazon EMR console gives
a number of details about the execution of a Job Flow. By clicking on the Job Flow that
terminated with errors in the EMR Management Console, details including the unique
ID Amazon EMR assigned to the Job Flow are displayed in the Cluster Details page.
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Figure 2-11. Job Flow name in the Amazon EMR console

Looking in the S3 bucket and path that were set as the log location on the Job Flow in
Amazon EMR, we can see a number of new files and folders are now available following
the Job Flow execution. The folder name has the same name as the unique Job Flow ID
that Amazon assigned to it in the Amazon EMR console. The directory structure of the
logs for the failed Job Flow run in the example from Figure 2-11 appears in a folder
named j-391947SOBCQM. The following list describes the details of the directory
structure and information recorded about the Job Flow run in S3, as well as the purpose
of each recorded element:
daemons

The logs from each Hadoop process are stored in this folder. There is a directory
for each EC2 instance that composed our Amazon EMR cluster. The directory name
is the same name as the EC2 instance used in our cluster. You can determine the
purpose of each node by reviewing the logfiles in each directory. Each node can be
a data node or job tracker node, which map to the core, task, and master groups
discussed earlier.

jobs
The configuration settings used during Job Flow execution in the Amazon EMR
cluster are available in the logs in this folder. There are also independent logfiles
that detail the reduce and map execution and the number of attempts performed
on each of these.

node
Node logs detail the bootstrap actions taken on each node. The directory structure
starts with the same name as the EC2 instance that composed the Amazon EMR
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cluster. The details of the logfiles contained here can be useful if you are using a
number of custom bootstrap actions in the setup of your cluster.

steps
Job Flows are broken into steps. The example Job Flow in this chapter is a very
simple process that only contains two steps: the startup, which is performed by
Amazon EMR on every Job Flow, and the MapReduce phase that runs the map and
reduce methods. On more complex Job Flows, there may be many step directories,
or one for each step in the overall MapReduce Job Flow. The logs of each step have
the following structure:

controller
Information about the execution of the step and the status of the step at the end of
the execution.

syslog
Lists the execution of the step and the status of each task attempt. In our test, you
can see each task attempt returned a “FAILED” status.

stdout
The standard output from the process run in the step.

stderr
The standard error from the process run in the step. Because the logging informa‐
tion was written to standard error in the map and reduce methods, the log infor‐
mation appears here in step 2 as well as the stack trace when the application per‐
forms a divide-by-zero operation.

task-attempts
The logs for each task attempt are stored here. The logs of each task have the fol‐
lowing structure:

syslog
Detailed log information on the execution attempt of the task. In the recent run, a
divide-by-zero exception appears in the logfile along with the stack trace of the
failure to help trace the error to the line number in the code that failed.

stdout
The standard output from the process run of the attempt.

stderr
The standard error from the process run of the attempt. Because the logging in‐
formation was written to standard error in the map and reduce methods, the indi‐
vidual log statements are visible in the output of the log information here for each
attempt.
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If debugging had not been enabled on the Job Flow, you’d need to review the logfiles
individually to locate the application error. This is definitely possible, but because we
did enable debugging, we can use the Amazon EMR console debug feature to review
the logs without needing to understand the log hierarchy and execution process of the
application.

Debug Through the Amazon EMR Console
When you review the Steps section of the Cluster Details page, you can see each step
that was attempted and its status in the debug user interface in the EMR Console. From
the previous section on logfiles, this information is stored in /jobid/steps and can also
be viewed directly in S3. Figure 2-12 shows the graphical representation of the step log
data in the Amazon EMR Console.

Figure 2-12. Amazon EMR Cluster Details displaying the log files and debugger actions
of the failed Job Flow

Looking at each of the steps in the Cluster Details from Figure 2-12 shows that the
execution of the Custom JAR application failed. The Custom JAR step represents the
execution of the map and reduce methods on your syslog data. The controller, syslog,
stderr, and stdout map directly to the log structure discussed earlier. The map and reduce
methods written earlier write their log information to standard error with Java calls to
System.err.println(). In reviewing the stderr logs from the example step named
First Custom JAR Job Flow Step, the log output displays the exception being thrown
by arithmetic error in the Job Flow in Figure 2-13 .
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Figure 2-13. Failed step logging output and exception

In this simple error case, this is probably enough information to help us pinpoint the
problem in the application. In a real-world scenario, however, there may have been
individual tasks in the Job Flow that failed due to data-specific issues. After clicking on
the View Jobs option of the failed step, you see a graphical view with the job details for
S3 located in the jobs folder of the logs.

Drilling further down into the run of the Job Flow, you can get a view of the individual
tasks that composed the Job Flow by clicking on View Tasks. The task view in the de‐
bugger is sourced from the indexed information from the log data in the jobs folder.
When you look at the raw log in Figure 2-14 and compare this to the graphical view in
the Amazon EMR console in Figure 2-15, it becomes evident why some may prefer to
use the graphical debugger for troubleshooting.
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Figure 2-14. Raw job log data with task status

You can further drill down from the tasks in Figure 2-15 to view each attempt Amazon
EMR made in trying to get the Job Flow to complete. When you click View Attempts,
you’ll see the familiar syslog, stderr, stdout structure from the log data under your task-
attempts folder on S3 in graphical form.

Figure 2-15. Task view in the Amazon EMR debugger in Cluster Details

Debugging a Job Flow | 39

www.it-ebooks.info

http://www.it-ebooks.info/


Here you may be able to discover situations where the individual task attempts succee‐
ded or failed if you had cases where different data situations are causing failure only
occasionally. If you click stderr, you can see the individual log messages from the exe‐
cution map and reduce methods from the Job Flow run:

...
We are inside the map method
We are inside the map method
We are inside the map method
We are inside the map method
We are inside the map method
We are inside the reduce method
Uh oh!  We are going to divide by zero!

The exception generated intentionally in the application is under syslog. Here the stack
trace of the exception lists the call tree leading up to the error, and the error can be
traced back to the line of code that caused it. You can find the same information tracing
through the logs in S3, but the debugger in the Amazon EMR console allows you to
conveniently drill down through the logs without needing to jump back and forth be‐
tween different files in the S3 log structure.

...
2013-06-15 20:34:47,162 INFO org.apache.hadoop.io.compress.CodecPool (main): ...
2013-06-15 20:34:47,168 INFO org.apache.hadoop.mapred.TaskLogsTruncater ...
2013-06-15 20:34:47,250 INFO org.apache.hadoop.io.nativeio.NativeIO (main): ...
2013-06-15 20:34:47,250 INFO org.apache.hadoop.io.nativeio.NativeIO (main): ...
2013-06-15 20:34:47,253 WARN org.apache.hadoop.mapred.Child (main): Error ...
java.lang.ArithmeticException: / by zero
    at com.programemr.LogReducer.reduce(LogReducer.java:31)
        at com.programemr.LogReducer.reduce(LogReducer.java:13)
        at org.apache.hadoop.mapred.Task$OldCombinerRunner.combine(Task.java:1436)

Our Application and Real-World Uses
We have now successfully built the first building block of the log analysis application
described in Chapter 1. The application can now receive syslog-formatted log records
and determine the frequency of log events using Amazon EMR to count the number of
records per second.

This application is primarily focused on log analysis, but counting and frequency anal‐
ysis has many known uses in other data analysis situations. The MapReduce application
is performing what is considered a summarization design pattern by simply summing
up the values of a common key. Other real-world applications of this technique are:
Load or usage analysis

Many times it is useful to know how many users access a server or a website
throughout a time period. Web access logs or application logs that include the
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timestamps of user events could be imported and processed with a similar Map‐
Reduce application to determine usage frequency.

Minimum, maximum, average, and trending
From the individual number of events per second we calculated in this chapter, you
could load this data into a database, Excel, or even another Amazon EMR Job Flow
and determine what the maximum, minimum, and average load of events were on
the server throughout the day. This same technique could be used to determine the
peak traffic to a website to know if more capacity should be purchased or planned,
when to have more staff available throughout the day, or what may be common
slow periods so you can schedule maintenance or reduce staffing.

Our Application and Real-World Uses | 41

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 3

Data Filtering Design Patterns and
Scheduling Work

Our initial example from the previous chapter was a fairly simple application, but by
now you should understand the basics of getting an Amazon EMR job running with
log data. The application only involved grouping data records based on time in order
to determine the frequency of the messages we received every second. However, in many
data analysis problems, you want to filter your data down to a smaller data set and focus
the analysis on only key parts of the data set that are interesting. Like our log analysis
scenario, a lot of the data analysis problems focus on analyzing error scenarios and
anomalies. With large data sets this may feel like finding a needle in a haystack.

In this chapter, we’ll extend the Amazon EMR application to demonstrate a number of
additional useful MapReduce patterns for filtering and analyzing data sets. In demon‐
strating these new building blocks, we’ll use a new data source that contains a greater
variety of data than the earlier scenario. Going back to our NASA theme, you will use
a web access log published by NASA and analyze this log for web server errors. The
MapReduce patterns that we’ll look at will reduce the web server log data down to find
requests resulting in HTTP errors on NASA’s website. Additionally, we’ll combine con‐
cepts learned in Chapters 2 and 3 to show how filtering and summarization can be used
to gain greater insights into the data.

Toward the end of this chapter, we’ll look at production aspects of Amazon EMR ap‐
plications with a focus on some basic ways to schedule the data processing work with
AWS services and tools. Companies that are heavy users of Amazon EMR sometimes
build entire proprietary workflow systems to control, schedule, and maintain the AWS
resources used by their organization. Netflix, for example, recently open-sourced its
Genie system, which it is building to manage its Amazon EMR clusters, Job Flows, and
scheduling. There are a number of great utilities already available at AWS, including the
Amazon EMR command-line interface (CLI), that you can utilize to achieve a number
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of basic Amazon EMR operational tasks without needing to build an entire workflow
system yourself. To that end, we’ll do a basic walkthrough of using the Amazon EMR
CLI with Unix scripts and utilities running inside an Amazon EC2 instance to demon‐
strate scheduling Job Flows in Amazon EMR.

In addition to the Amazon EMR CLI, this chapter will explore the use of the AWS Data
Pipeline. The Data Pipeline allows you to create workflow processes to move data be‐
tween AWS services, schedule work like Amazon EMR workflows for data analysis, and
perform numerous other functions. We use it to build a scheduling scenario for the web
log filtering Job Flow created in this chapter.

Extending the Application Example
The application components in this chapter will follow the same data flow pattern cov‐
ered in Chapter 2. From Chapter 1, you will recall part of the example application pulled
in a data set from a web server. Web server log data will be the input into the workflow
where we’ll extend the application components to do deeper analysis using MapReduce
design patterns. Figure 3-1 shows the portion of our overall application and the flow of
data through the system in this chapter.

Figure 3-1. Chapter application data and workflow architecture

Understanding Web Server Logs
Web servers like Apache and IIS typically log every request that users and systems make
to retrieve information from a web server. Many companies today are already using
their web server logs for data analysis problems. The use of these logs ranges from A/B
testing of new website designs to analyzing user website actions to improve sales.
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NASA published the web server logfile used in this chapter back in 1995. At the time,
these web access logs were used as part of a paper entitled “Web Server Workload Char‐
acterization: The Search for Invariants” and appeared in the proceedings of the 1996
ACM SIGMETRICS Conference on the Measurement and Modeling of Computer Sys‐
tems. This seems like a long time ago, but the format and meaning of the web server
logs has not changed greatly over the years.

You can download the logs to use in the Amazon EMR MapReduce building blocks
developed throughout this chapter. We’ll perform the analysis using the July 1995 log‐
file. The logfile has a good variety and diversity of successful and unsuccessful web
requests made to the web server.

After downloading the web access log and opening the file, looking at the individual log
records will give us a number of entries similar to the following:

piweba2y.prodigy.com - - [02/Jul/1995:00:01:28 -0400] "GET ..." 404 -
dd04-014.compuserve.com - - [02/Jul/1995:00:01:28 -0400] "GET ..." 200 7074
j10.ptl5.jaring.my - - [02/Jul/1995:00:01:28 -0400] "GET ..." 304 0
198.104.162.38 - - [02/Jul/1995:00:01:28 -0400] "GET ..." 200 11853
buckbrgr.inmind.com - - [02/Jul/1995:00:01:29 -0400] "GET ..." 304 0
gilbert.nih.go.jp - - [02/Jul/1995:00:01:29 -0400] "GET ..." 200 1204

Individual log entries follow a pretty simple format of space-delimited columns, with
quotes and brackets used to further delimit columns that contain spaces in the data.
Let’s first examine the meaning of each of these data elements. Looking at the data this
way will help you figure out the map and reduce procedures to parse and analyze the
web server log.

You won’t use every column in the log in this chapter, but the data still needs to be parsed
to get to the columns used in the analysis. A single log record row breaks down into the
following data elements:

piweba2y.prodigy.com - - [02/Jul/1995:00:01:28 -0400]
    "GET /KSC.HTML HTTP/1.0" 404 -

IP address or hostname of client: -piweba2y.prodigy.com
The first element is the IP address or hostname of the client computer making a
request to retrieve information from the web server. In this dated example, note
that the request came from some web client inside the Prodigy network.

Identity check directive: -
This element is part of the identity check directive based on RFC 1413. In practice
this data is very unreliable except in very tightly controlled networks. In the web
logfile, a hyphen indicates that data is not available for this column. A common
data analysis problem is having data sets with missing or invalid data values. You
can use filtering to remove data with these issues to cleanse the data prior to further
analysis. For now, you don’t have to worry about it, because we won’t be focusing
on this column for this chapter.
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User ID: -
The third column is the user ID of the user making the request to the web server.
This typically requires that you enable HTTP authentication to receive this infor‐
mation in the log. In this example record, no data is provided for this column and
a hyphen indicates the empty value received.

Date, time, and time zone: [02/Jul/1995:00:01:28 -0400]
The fourth column is the date, time, and time zone offset of when the request
completed on the web server. The time zone offset of (-0400) indicates the server
is four hours behind coordinated universal time (UTC). UTC is a time similar to
Greenwich Mean Time (GMT), but is not adjusted for daylight savings time. The
incorporation of the time zone offset can help coordinate events across servers
located in different time zones. The full date and time is enclosed in brackets ([ ])
so we can parse the data can be parsed utilizing the delimiters to retrieve the full
time field, including any spaces in the data.

Web request: "GET /KSC.HTML HTTP/1.0"
The request line received from the client is delimited by double quotes. There is a
lot of useful information in the request line—including if it was a GET, PUT, or other
type of request—and, of course, the path and resource being requested. In this
example, the client did a GET request for KSC.HTML. This column will be used in
later examples to show the requests being made that resulted in an error in the web
log.

HTTP status sode: 404
This is the status code that the web server sent back to the client from the request.
We’ll use this later to filter out only web server records that contain requests that
resulted in an error. The map procedure, shown later, will use this data to determine
what data should be kept and what data should be thrown away. In general, the first
digit of the status code designates the class of response from the web server. A
successful response code has a beginning digit of 2; a redirection begins with a 3;
an error caused by the web client begins with a 4; and an error on the web server
begins with a 5. The full list of status codes is defined in the HTTP specification in
RFC2616. In this example record, a 404 response code was sent back to the client.
This means the request was for something that could be found on the web server.
Isolating 404 requests could be useful in finding broken links in a website or po‐
tentially locating someone maliciously making lots of requests to find known scripts
or command files that may help him gain access to a system.

Data size: -
The final data element is the size of the object returned. This is typically expressed
in bytes transferred back to the client. The example record has a hyphen for the size
of the data returned because the request was invalid and no object was found to
return.
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Now that the layout and meaning of the new data set has been covered, let’s look at how
data filtering can be done in an Amazon EMR application.

Finding Errors in the Web Logs Using Data Filtering
Data filtering is probably one of the simplest uses of the MapReduce framework. Fil‐
tering allows you to reduce your data set from a very large one to only a subset of data
on whic you can do further processing. The filtered data set that is returned could be
large or small—however, the key is the data has been filtered to support the application’s
analytics.

The MapReduce framework and Amazon EMR are well suited for performing a dis‐
tributed filtering task. Amazon EMR splits the web log into a number of smaller data
files depending on the number of core and task nodes in your cluster. The filtering
process takes each smaller file and executes the map procedure of the Job Flow. The map
procedure reduces the data set to the portions of the data needed for further analytics.
Figure 3-2 shows a high-level diagram of how this process works and the MapReduce
filter pattern that will be implemented in this chapter.

Figure 3-2. MapReduce filter pattern for error filtering

The following pseudocode demonstrates the algorithm being implemented in the map‐
per method:

map( "Log Record" )
    Parse Log Record elements
    If a record contains an error
      Emit Log Record and Error Code
    Else
      Do Nothing

In this case, the map procedure only emits the records that contain an HTTP status code
that indicates an error occurred in the request. If the log entry is a successful request,
the record will not be emitted from the mapper for any further analysis and processing.
This has the effect of throwing away all the successful web requests and only passing
along the error entries to the reduce phase of the Job Flow.
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For many filtering scenarios, the reduce phase may not be necessary because the map
portion of the code has already done the hard work of parsing the record and filtering
down the data set. Thus, the pseudocode for our reducer is very simple:

reduce( Key, Values )
  for each value
    emit (Key)

The reduce phase of the Job Flow simply removes any grouping on keys of the data
received from the earlier phases of the MapReduce cycle. The original error log line is
emitted back out into the final result set. The results will show up as individual part files
in an S3 bucket. The number of individual part files created is based on the number of
core and task nodes that run the reduce procedure in the Amazon EMR Job Flow.

Now that the web server log format and the MapReduce filter pattern concepts have
been covered, let’s explore the actual map and reduce code needed to implement the web
log filter.

Mapper Code
The mapper code looks like this:

import java.io.IOException;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;

public class WebLogErrorFilterMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable>
{

    /** The number of fields that must be found. */
    public static final int NUM_FIELDS = 7;

    public void map( LongWritable key, // Offset into the file
                     Text value,
                     OutputCollector<Text, IntWritable> output,
                     Reporter reporter) throws IOException
    {
        // Regular expression to parse Apache Web Log
        String logEntryPattern = "^(\\S+) (\\S+) (\\S+)
            \\[([\\w:/]+\\s[+\\-]\\d{4})\\]" + " \"(.+?)\" (\\d{3}) (\\S+)";

        // Get the Apache Web Log record as a String
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            String logEntryLine = value.toString();

        // Compile regular expression for parsing input
        Pattern p = Pattern.compile(logEntryPattern);
        Matcher matcher = p.matcher(logEntryLine);

        // Validate we have a valid log record
        if (!matcher.matches() ||
                      NUM_FIELDS != matcher.groupCount())
        {
              System.err.println("Bad log entry:");
              System.err.println(logEntryLine);
              return;
        }

            // Get the HTTP request information from the log entry
            Integer httpCode = Integer.parseInt(matcher.group(6));

        // Filter any web requests that had a 300 HTTP return code or higher
        if ( httpCode >= 300 )
        {
                // Output the log line as the key and HTTP status as the value
            output.collect( value, new IntWritable(httpCode) );
        }
    }
}

A regular expression parses the individual data elements from each log record. The map
procedure examines the HTTP status code from the parsed data and will only emit
records out of the map method for an HTTP status code of 300 or greater. The results
in the Job Flow processing only page requests that resulted in a redirect (300—399 status
codes), a client error (400—499 status codes), or a server error (500—599 status codes).
The filtering is performed in parallel, as the filtering work is distributed across the
individual nodes in the Amazon EMR cluster.

Reducer Code
The reducer is very simple because the data set has already been filtered down in the
mapper:

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;

public class WebLogErrorFilterReducer extends MapReduceBase
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  implements Reducer<Text, IntWritable, Text, IntWritable>
{
    public void reduce( Text key, Iterator<IntWritable> values,
            OutputCollector<Text, IntWritable> output,
            Reporter reporter) throws IOException
    {
        // Iterate over all of the values and emit each key value pair
        while( values.hasNext() )
        {
                output.collect( key, new IntWritable( values.next().get() ) );
        }
    }
}

A simple loop through each value in the array passed to the reducer will emit each key
and value pair into the final output data set. The reduce portion is not a requirement
in MapReduce and could be eliminated from this filtering Job Flow. The reduce pro‐
cedure is included in the application for completeness and to remove any unlikely
grouping that could occur if duplicate log record entries were encountered by the map‐
per.

Driver Code
The driver code does not look very different from the work done in Chapter 2. The
driver is required to set the map and reduce procedures in the Job Flow. The driver, as
was implemented earlier, accepts the S3 input and output locations as arguments and
sets the individual map and reduce class links to set up the running of the Job Flow.

import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import com.programemr.weblog_top_ten.WebLogErrorFilterMapper;
import com.programemr.weblog_top_ten.WebLogErrorFilterReducer;

public class WebLogDriver extends Configured implements Tool {

    public int run(String[] args) throws Exception
        {
            JobConf conf = new JobConf(getConf(), getClass());
            conf.setJobName("Web Log Analyzer");

            FileInputFormat.addInputPath(conf, new Path(args[0]));
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            FileOutputFormat.setOutputPath(conf, new Path(args[1]));

            conf.setOutputKeyClass(Text.class);
            conf.setOutputValueClass(IntWritable.class);

            conf.setMapperClass(WebLogErrorFilterMapper.class);
            conf.setCombinerClass(WebLogErrorFilterReducer.class);
            conf.setReducerClass(WebLogErrorFilterReducer.class);

            JobClient.runJob(conf);
            return 0;
        }

        public static void main(String[] args) throws Exception {
            int exitCode = ToolRunner.run(new WebLogDriver(), args);
            System.exit(exitCode);
        }

}

Running the MapReduce Filter Job
The process of running the filter Job Flow is nearly identical to the steps followed in
Chapter 2. Once the compiled Java JAR and the NASA Web Log have been uploaded to
an S3 bucket, you can create a new Cluster, or Job Flow, utilizing the “Create cluster”
option from the Amazon EMR Management Console. The Job Flow takes parameters
similar to those laid out in Figure 3-3. The parameter for the new MapReduce JAR sets
the main Java class along with the input and output locations needed for starting the
Job Flow processing.

Figure 3-3. Example Amazon EMR filter Job Flow step parameters
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Analyzing the Results
After the Job Flow completes, you can retrieve the results from the output S3 location
specified in the Job Flow parameters. The original data set contained a number of suc‐
cessful and failed requests, and in the end, the final data set shows the filtering that
occurred and a set of results that only contains the individual error lines.

The data flow through the Map and Reduce phases can be diagrammed like the pipeline
in Figure 3-4.

Figure 3-4. MapReduce Filter logical data flow

Let’s walk through what occurred in the filter Job Flow using a snapshot of some of the
sample data from the NASA web logfile. The following snapshot is truncated to improve
readability:

unicomp6.unicomp.net - - [01/Jul/1995:00:00:06 -0400] "GET ..." 200 3985
199.120.110.21 - - [01/Jul/1995:00:00:09 -0400] "GET ..." 200 4085
burger.letters.com - - [01/Jul/1995:00:00:11 -0400] "GET ..." 304 0
199.120.110.21 - - [01/Jul/1995:00:00:11 -0400] "GET ..." 200 4179
burger.letters.com - - [01/Jul/1995:00:00:12 -0400] "GET ..." 304 0
burger.letters.com - - [01/Jul/1995:00:00:12 -0400] "GET ..." 200 0
205.212.115.106 - - [01/Jul/1995:00:00:12 -0400] "GET ..." 200 3985

The mapper method parsed each field and examined the HTTP status code value, only
emitting lines that have a status code greater than 300. The entire original log line is
passed as the key, and the HTTP status code that was examined by the mapper is the
value. The HTTP status code emission enhances the readability of our final output
because it will be placed as the last item on each output record. The output from the
mapper would be similar to the following:

( burger.letters.com - - [01/Jul/1995:00:00:11 -0400] "GET ..." 304 0, 304 )
( burger.letters.com - - [01/Jul/1995:00:00:12 -0400] "GET ..." 304 0, 304 )

The data is further sorted and grouped by the MapReduce framework, and the re
duce method will receive a set of grouped values. The log lines look the same with
truncated GET request lines, but the individual requests are different. There are not any
duplicate full log lines in the logfile, so the grouping that occurs after the mapper does
not reduce the data set.
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( burger.letters.com - - [01/Jul/1995:00:00:11 -0400] "GET ..." 304 0, [304] )
( burger.letters.com - - [01/Jul/1995:00:00:12 -0400] "GET ..." 304 0, [304] )

The simple reduce walks through the array of values in a loop and emits out each line
and the HTTP status code. The final filtered results from the sample are shown here:

burger.letters.com - - [01/Jul/1995:00:00:11 -0400] "GET ..." 304 0     304
burger.letters.com - - [01/Jul/1995:00:00:12 -0400] "GET ..." 304 0     304

Building Summary Counts in Data Sets
We have now performed two basic but very common tasks in analyzing data. In many
data analysis applications, key portions of a data set are chosen via filtering and then
further calculations on this smaller set of data are performed. The counting example
from Chapter 2 is an example of further analysis that could be done. In the log analysis
application being used in this book, we can use a combination of these two analysis
techniques to derive counts on the website URL locations in the NASA logs that resulted
in an error. The code we’ll show in the next section demonstrates how to combine these
techniques.

Mapper Code
The incoming data is parsed into individual fields with the same regular expression as
was done in “Mapper Code” on page 48. This time, though, the focus is on the HTTP
request to specific web pages:

import java.io.IOException;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;

public class WebLogErrorCountMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable>
{

private final static IntWritable one = new IntWritable( 1 );

/** The number of fields that must be found. */
public static final int NUM_FIELDS = 7;

public void map( LongWritable key, // Offset into the file
                 Text value,
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                 OutputCollector<Text, IntWritable> output,
                 Reporter reporter) throws IOException
    {

        // Regular expression to parse Apache Web Log
        String logEntryPattern = "^(\\S+) (\\S+) (\\S+)
            \\[([\\w:/]+\\s[+\\-]\\d{4})\\]" + " \"(.+?)\" (\\d{3}) (\\S+)";

                // Get the Apache Web Log record as a String
        String logEntryLine = value.toString();

        // Compile regular expression for parsing input
        Pattern p = Pattern.compile(logEntryPattern);
        Matcher matcher = p.matcher(logEntryLine);

        // Validate we have a valid log record
        if (!matcher.matches() ||
                      NUM_FIELDS != matcher.groupCount())
        {
                      System.err.println("Bad log entry:");
                      System.err.println(logEntryLine);
                      return;
        }

                // Get the HTTP request information from the log entry
        Integer httpCode = Integer.parseInt(matcher.group(6));
        Text httpRequest = new Text(matcher.group(5));

        // Filter any web requests that had a 300 HTTP return code or higher
        if ( httpCode >= 300 )
        {
            // Output the HTTP Error code and page requested and 1 as the value
            //  We will use the value in the reducer to sum the total occurrences
            //  of the same web request and error returned from the server.
            output.collect( new Text(httpRequest), one );
        }
    }
}

The logic in the mapper pulls the HTTP status code and the HTTP request from the
individual log entry. The emitted records from the map method select the entries with
an HTTP status code of 300 or greater. This time, the key will be the HTTP request
made, and we’ll assign it a numerical value of 1 so a summation can be performed to
total up the number of identical web requests.

Reducer Code
The reducer takes on the form of the summarization pattern used in Example 2-4. This
is the same counting scenario used to find the frequency of log messages. The difference
now is that the keys being delivered from the mapper method are a filtered set of web
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request errors instead of full log lines. The reducer will generate a total in the final result
rather than ungrouping the data.

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;

public class WebLogErrorCountReducer extends MapReduceBase
  implements Reducer<Text, IntWritable, Text, IntWritable>
{
    public void reduce( Text key, Iterator<IntWritable> values,
            OutputCollector<Text, IntWritable> output,
            Reporter reporter) throws IOException
    {
        // Iterate over all of the values (counts of occurrences
        //    of the web requests)
        int count = 0;
        while( values.hasNext() )
        {
                // Add the value to our count
                count += values.next().get();
        }

        // Output the web request with its count (wrapped in an IntWritable)
        output.collect( key, new IntWritable( count ) );
    }
}

The driver code can be reused from our previous example in “Mapper Code” on page 53.

Analyzing the Filtered Counts Job
Recall the original data set that contained successful and failed requests. In this case, a
similar filtering will reduce the data set for summarization in the reduce method. Let’s
walk through a sample of the data set again to review what is occurring in each of the
methods with the combination of summarization and filtering. The new sample data
set contains a number of rows like the following:

netcom16 ... "GET /icons/sound.xbm HTTP/1.0"
    200 530
alcott2 ... "GET /shuttle/missions/sts-71/images/KSC-95EC-0868.jpg HTTP/1.0"
    200 61848
www-b6 ... "GET /:/spacelink.msfc.nasa.gov HTTP/1.0" 404 -
sac1-109 ... "GET /shuttle/missions/sts-71/mission-sts-71.html HTTP/1.0"
    200 12040
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jfpenter ... "GET /images/launch-logo.gif HTTP/1.0" 200 1713
ts02-ind-27 ... "GET /shuttle/countdown/video/livevideo.gif HTTP/1.0" 200 67065
sac1-109 ... "GET /shuttle/missions/sts-71/sts-71-patch-small.gif HTTP/1.0"
    200 12054

In the revised mapper method, each field is parsed and examined. The HTTP access
request is emitted only with a status code greater than 300. The HTTP request field itself
is used as the key, and you count the value of one to find out how many times the same
request resulted in an error. The output of the mapper on the input file would then be
similar to the following:

...
( "GET /:/spacelink.msfc.nasa.gov HTTP/1.0", 1 )
( "GET /:/spacelink.msfc.nasa.gov HTTP/1.0", 1 )
( "GET /:/spacelink.msfc.nasa.gov HTTP/1.0", 1 )
( "GET /:/spacelink.msfc.nasa.gov HTTP/1.0", 1 )
...

The data goes through the usual sorting and grouping by the MapReduce framework,
and the reduce method receives a set of grouped values. A number of requests resulted
in errors repeatedly in the data set, and they are grouped accordingly by the HTTP
request key. The data set going to the reducer is grouped like the following example:

...
( "GET /%20%20history/apollo/apollo-13/apollo-13.html HTTP/1.0", [1] )
( "GET /%20history/apollo/apollo-13/apollo-13.html HTTP/1.0", [1, 1, 1, 1] )
( "GET /:/spacelink.msfc.nasa.gov HTTP/1.0", [1, 1, 1, 1, ...] )
( "GET /%3A/spacelink.msfc.nasa.gov HTTP/1.0", [1, 1, 1, 1, ...] )
( "GET /%7Eadverts/ibm/ad1/banner.gif HTTP/1.0", [1] )
...

The reduce method walks through the grouping that has been done from the mapper
phase and adds up each value in the array. Because each of our keys is a request made
to the web server and the value is simply the count of 1 for each occurrence, this has the
net effect of creating a total count for each unique HTTP request that resulted in an
error. The filter result set in the end is like this:

....
GET /%20%20history/apollo/apollo-13/apollo-13.html HTTP/1.0     1
GET /%20history/apollo/apollo-13/apollo-13.html HTTP/1.0        4
GET /%3A//spacelink.msfc.nasa.gov HTTP/1.0      31
GET /%3A/spacelink.msfc.nasa.gov HTTP/1.0       36
GET /%7Eadverts/ibm/ad1/banner.gif HTTP/1.0     1
....
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This book focuses primarily on the use of AWS and Amazon EMR to
help you learn more about how you can build your application in
Amazon’s cloud. However, a solid understanding of MapReduce and
software development patterns is a good foundation to start with be‐
fore building an application of your own. To that end, we recom‐
mend MapReduce Design Patterns: Building Effective Algorithms and
Analytics for Hadoop and Other Systems (O’Reilly) by Donald Miner
and Adam Shook—it’s an excellent resource to learn more about Map‐
Reduce patterns that could be relevant to any MapReduce project you
start.

Job Flow Scheduling
Most of the items covered in the earlier chapters revolved around creating one-time
runs of Job Flows. In a real-world operational scenario, the application will likely need
to be a Job Flow that is run on a scheduled basis that processes new data when it becomes
available.

The real strength of MapReduce and Amazon EMR is the ability to process large vol‐
umes of data. However, data may not always be available, or the time needed to load all
required data into the cloud may necessitate processing the data in bulk on an hourly,
daily, or weekly basis. This can also help to control the costs of running your Amazon
EMR cluster.

The Amazon EMR Management Console allows new Job Flows to be created manually
for one-time execution or long-running clusters. However, it does not have a scheduling
option available. There are currently two major options available from Amazon. The
Amazon EMR CLI can be used to control existing Job Flows and create new ones, or
Amazon Data Pipeline can be used to create and schedule a full workflow of AWS
services including Amazon EMR Job Flows.

Scheduling with the CLI
You can download the Amazon Elastic MapReduce Ruby client utility (Amazon EMR
CLI) from Amazon’s Developer Tools site. The utility can be run from anywhere, in‐
cluding other running EC2 instances you may already have provisioned in AWS. If you
decide to run the utility on an EC2 instance, the Ruby programming language prereq‐
uisite is preloaded for you. However, the Amazon EMR CLI tool itself is not preloaded
on the Amazon Machine Images (AMI), so you will need to upload and configure it to
your running EC2 instance.

The Amazon EMR CLI provides a number of useful features as well as a number of
features that are not directly available from the Amazon EMR Management Console.
This section will focus on new Job Flow creation, but you may find each of the following
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options useful in the operation and control of Job Flows. Many of these options are
available in Amazon’s AWS API, but you can perform them using this utility without
needing to be a programmer.
Create a new Job Flow: --create

This option allows you to create a new Job Flow from the command line, performing
the same function as selecting Create New Job Flow in the Amazon EMR Manage‐
ment Console.

Create a Job Flow that stays running: --alive
The alive option allows your Amazon EMR cluster to continue running after it
has completed all the steps in a Job Flow. This option is available under the Ad‐
vanced Options and is called Keep Alive when you are creating a Job Flow from the
Console. This may be a useful feature if you want to add work, also known as
steps, to an already running Amazon EMR cluster. You will need to specifically
terminate the Job Flow if this option is used. You can terminate Job Flows from the
Management Console or by using the Terminate option from the Amazon EMR
CLI.

Resize a running Job Flow: --modify-instance-group, --add-instance-group
When a new Job Flow is created from the Amazon EMR console, there is no way
to change it or resize it from the user interface. If the initial Job Flow is too small
and is taking too long to complete, the only option from the Management Console
is to terminate it and restart the work. You can add task nodes using the --add-
instance-group option or additional nodes to any of the group types in the Am‐
azon EMR cluster using the --modify-instance-group option. Technically, the --
modify-instance-group option allows an EMR cluster to be increased or decreased
in size, but decreasing the number of Core or Master nodes from a running Job
Flow can lead to data loss and cause the Job Flow to fail.

Adding JAR steps to Job Flows: --jar, --main-class
These options are used on Job Flow creation, but can also be used to add steps to
an already running Job Flow. This can be useful when the --alive option is used
on Job Flow creation and additional work needs to be added to an already running
Amazon EMR cluster. The ability to add additional steps is not available from the
Amazon EMR Management Console. The --jar and --main-class options are
used for custom JAR MapReduce applications like the Job Flows demonstrated so
far in this book. There are other corresponding command-line options if other Job
Flow types are used.

Copying and retrieving files directly: --put, --get
The --put and --get options allow direct interaction with files on the Amazon
EMR master node. If an application wants to bypass S3 and place work directly on
the cluster, retrieve results, or do any custom functionality on the cluster directly,
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these options may be useful. In this book, we stick to the out-of-the-box function‐
ality available in S3 and Amazon EMR rather than direct manipulation of the cluster.

Amazon is trying to combine a number of its AWS command line-
utilities under a single AWS command-line interface. This utility will
allow you to use a single command-line utility to control many of the
services you use at Amazon. Another great benefit of this utility is that
it comes preloaded on the EC2 AMI and simply needs to be config‐
ured on any running EC2 instances. At the time of writing, the AWS
command-line interface was released as a developer preview and was
not mature enough for inclusion.

In the process of demonstrating Job Flow creation we will focus on the Amazon EMR
CLI --create option. The examples will mimic similar creation and execution processes
that were done manually in the Management Console in earlier chapters. Let’s walk
through a simple example of scheduling the MapReduce application from this chapter
with cron and the Amazon EMR CLI.

To start, you need to create a script to start a new Job Flow. The script will be the input
to a Unix cron schedule as shown here:

#!/bin/bash

~/elastic-mapreduce --create \
        --name "Filter Example Flow" \
        --num-instances 3 \ 
        --instance-type m1.small \ 
        --jar s3n://program-emr/weblog-filter.jar \ 
        --arg com.programemr.weblog_top_ten.WebLogDriver \ 
        --arg s3n://program-emr/NASA_access_log_Jul95 \
        --arg s3n://program-emr/run0

Specifies the number of EC2 instances to use in an Amazon EMR cluster similar
to manual runs in the Amazon EMR Management Console. These are broken
out into master and core groups for the cluster.
The type of EC2 instances to use for the Job Flow.
The custom JAR file to use for the Job Flow.
The list of arguments used in our previous examples to specify the main driver
class, and the input and output S3 locations.

Let’s run the script manually first and see what happens. You should see output from
the script similar to the following:
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[ec2-user@ip-10-1-1-1 ~]$ ./ScheduleJobFlow.sh
Created job flow j-18EXVE5FLOWH1
[ec2-user@ip-10-1-1-1 ~]$

The script was saved on the EC2 instance with the name ScheduleFlow.sh.

The Job Flow starts and will appear in the Amazon EMR Management Console just like
the Job Flow executions that were done earlier. The Amazon EMR CLI outputs the
internal ID of the Job Flow created. We can use this later to review log output in S3 and
to terminate the Job Flow using the Amazon EMR CLI Terminate option.

To schedule the Job Flow to run every hour, you can configure cron to execute the script.
Cron is a Linux utility that is already part of the EC2 instance and most Unix and Linux
systems. This book will not go into all the details of cron, but Linux Desktop Hacks: Tips
& Tools for Customizing and Optimizing your OS, by Nicholas Petreley and Jono Bacon
(O’Reilly), covers many of the basics for automating scripts.

Following is a simple example of a crontab entry for scheduling the script at the begin‐
ning of the hour. This entry can be added to the file /etc/crontab to schedule the script
with the cron daemon:

0 * * * * /user/ec2-user/ScheduleJobFlow.sh

The Job Flow will now be started every hour and will run to completion similar to earlier
manual executions performed from the Amazon EMR Management Console. We’ve
now automated the manual Job Flow creation from earlier with minimal scripting and
the use of cron as a scheduler.

Scheduling with AWS Data Pipeline
Automation gets much more complicated in scenarios that involve the coordination of
actions on multiple AWS services, S3 object manipulation, and reattempting processes
on failures. A more real-world scenario for a Job Flow is outlined in Figure 3-5.

60 | Chapter 3: Data Filtering Design Patterns and Scheduling Work

www.it-ebooks.info

http://shop.oreilly.com/product/9780596009113.do
http://shop.oreilly.com/product/9780596009113.do
http://www.it-ebooks.info/


Figure 3-5. Job Flow automation with multiple services and dependencies

Prior to AWS Data Pipeline, accomplishing many of the items in this scenario required
you to write numerous scripts, AWS utilities, and additional new applications using the
AWS SDK. With the release of AWS Data Pipeline, you can achieve this workflow using
this single web service from Amazon.

It is worth noting before you choose to use Data Pipeline that, at the time of writing,
the service was currently only available in the US East AWS region. As with most AWS
services, Amazon typically releases new features and functionality into the US East
region first and rolls out the feature to other AWS regions over time. The Amazon EMR
CLI covered earlier can be used to create new Job Flows in any of the AWS regions in
which you decide to run your Job Flow. Depending on where you run your MapReduce
application, this may limit your ability to use AWS Data Pipeline for scheduling your
Job Flows. We see real value and potential with this tool even this early in its product
life cycle. AWS Data Pipeline can reduce the operational resources needed to maintain
AWS resources by removing much of the additional scripting and applications noted
earlier. The potential benefits of this service warrant Data Pipeline’s inclusion as a tool
to consider in planning your project.
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Creating a Pipeline
Like in all AWS services, the first place to start is the Management Console. Choosing
Create Pipeline starts the process of creating a new pipeline. Figure 3-6 shows the initial
AWS Data Pipeline screen and the example settings used to start the creation of the
pipeline in this section.

Figure 3-6. AWS Data Pipeline creation settings

Let’s review the settings chosen on this initial pipeline setup:
Pipeline name

This is the name that will appear on the Data Pipeline Management Console and
is a user-configured value. Choosing a name that represents the purpose of the
pipeline is recommended.

Pipeline description
This is the description of what the pipeline will be used for, and can be anything
that helps describe the pipeline to others who will need to maintain and trouble‐
shoot it.
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Schedule
There are two options: Time Series Style Scheduling and Cron Style Scheduling.
Time Series Style Scheduling will schedule pipeline items to run after the specified
period of time has elapsed. Suppose an item in the pipeline is scheduled for January
1, 2013, at midnight and it should run every hour. With Time Series Style Sched‐
uling, the first time the pipeline item would execute is January 1, 2013, at 1:00 A.M.,
or after one hour has passed. With Cron Style Scheduling, a data pipeline item will
be scheduled at the beginning of a specified period. Using the same scenario, if an
item in the pipeline is scheduled for January 1, 2013, at midnight and should run
every hour, the first time the pipeline item would execute is January 1, 2013, at
midnight. Cron Style Scheduling was chosen in this walkthrough to mimic the
scheduling done earlier using cron with the Amazon EMR CLI.

Role
Role controls permissions and security between other AWS services. The security
role will be used for any actions taken by pipeline objects. Role settings become
important when you are integrating multiple AWS services running at different
levels of permission. For this example, we chose the default role setting.

Adding Data Nodes
Choosing Create Pipeline creates an empty data pipeline that is ready to be set up as a
workflow similar to what is described in Figure 3-5. We will develop the workflow using
data nodes and activities. Data nodes represent the S3 locations the input file is moved
to for processing later by Amazon EMR. Data nodes can also represent other Amazon
data storage services like DynamoDB or a MySQL database.

The activities represent the actions that will be performed in the pipeline. Copying the
input file between S3 locations and processing the data using Amazon EMR will be
translated into activities in the pipeline. To start, let’s create the input file data node in
Figure 3-7.
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Figure 3-7. Data Pipeline input file data node

In the workflow, in Figure 3-7, we need to specify the input file on S3 and check that
the file exists. These are added to the data node via the “Add an optional field” feature.
The File Path and Preconditions fields are used for these items. There are numerous
other fields that can be added, like Directory Path, which can be useful on data nodes.
You can explore and learn more about the Data Pipeline fields and any new additions
in the AWS Pipeline Definition Reference. The schedule and preconditions are separate
objects that are created in the user interface and can be re-used in other data nodes and
activities throughout the pipeline. Figure 3-8 shows the addition of the new fields and
the creation of the precondition object.
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Figure 3-8. Data Pipeline creating precondition

The precondition you created verifies that input file exists before proceeding further.
This is a useful check so that the later portions of the workflow will not get invoked and
use EC2 or Amazon EMR computing hours unless there is work that is ready to be
processed. After creating the new precondition, you can select the precondition object
in the “Precondition objects” panel for additional configuration. Use the check type of
S3KeyExists to verify the NASA logfile exists and is ready to be used in the rest of the
pipeline. Figure 3-9 shows the completed precondition object.
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Figure 3-9. Data Pipeline completed precondition object

The schedule object is set up in a similar fashion to the precondition object and will
appear in the Schedules panel. The configuration of a schedule is relatively straightfor‐
ward and does not require the selection of optional fields. Configuration involves setting
a start date and an hourly time period (once an hour) to set up a schedule similar to our
earlier command-line example. You could add an optional field, End Date, if you needed
to limit a pipeline object to a range of dates.

Every data node and activity has a Schedule field and can have separate and different
schedules through the execution of the pipeline. It is easy to imagine a different scenario
than what we’ve laid out here. Perhaps your scenario involves input files being copied
once an hour and only needing to run the Amazon EMR Job Flow once a day. A re‐
quirement like this would necessitate that you create more than one schedule object and
set it on activities and data nodes through the pipeline.

The first data node should look similar to Figure 3-10. Throughout the process, you can
use the Save Pipeline option to verify there are no missing fields or errors in the pipeline.
Any errors or warnings found during saving will appear in the Errors/Warnings panel.
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Figure 3-10. Data Pipeline completed input node

In the scheduling scenario, the input file is moved from the location used in earlier
examples to a new S3 location for processing. Traditional data processing scenarios
move input files to a new location for processing and then archive or delete the processed
files. To simulate a similar scenario, let’s create an output data node as the output location
for an S3 object copy activity. This location will be specified as the input parameter for
the Amazon EMR Job Flow. The output data node is set up with the parameters in
Table 3-1 to match the section’s scheduling scenario.

Table 3-1. Output data node scenario settings
Field Value

Name Web log processing location

Type S3DataNode

Schedule Schedule created earlier for once an hour

Directory Path s3://program-emr/input

Now you need to create an activity to perform the actual S3 file copy.

Adding Activities
Activities perform actions on the data nodes or other AWS services. They will need to
run on EC2 instances or Amazon EMR clusters, and these services can be set up as
resources in the Data Pipeline. From the scenario that is being created in data pipeline,
there are two activities that will occur. First, the input file will be copied to the processing
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location and, upon successful completion of the S3 copy, an Amazon EMR Job Flow
will pick up the input data and process it.

You can add these two activities using the Add Activity button. Table 3-2 shows the
settings used for the S3 copy activity node and the resources used to run it.

Table 3-2. Activity settings for copying input to new S3 location
Field Value

Name Copy input file to processing location

Type CopyActivity

Output Web log processing location

Schedule Schedule created earlier for once an hour

Input Web log input file S3 location

Runs On EC2 S3 copy resource

The S3 copy activity wires together the input and output Data Nodes we set up earlier.
Data Pipeline will draw this relationship in the diagram, similar to what you see in
Figure 3-11, indicating the direction in which the S3 object will be copied. The result
begins to look like a flowchart.

The Runs On field should be configured to the separate resource object that will be used,
and you can reuse this throughout the pipeline. The settings for the EC2 resource on
the new activity are shown in Table 3-3.

Table 3-3. Resource settings for the EC2 resource
Field Value

Name EC2 S3 copy resource

Type Ec2Resource

Role DataPipelineDefaultRole

Resource Role DataPipelineDefaultResourceRole

Schedule Schedule created earlier for once an hour

Log Uri s3://program-emr

Terminate After 30 minutes

Instance Type m1.small

The Instance Type is set to a minimum setting of m1.small due to the limited resources
needed to copy data in S3. This can be increased for special situations to improve per‐
formance, but in most scenarios a small EC2 instance to move files in S3 should be
sufficient.

The Log Uri writes logs to the S3 bucket location specified. This field and the Terminate
After fields were suggested additions made by Data Pipeline, but they are not required.
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The suggestions appear as warnings when the pipeline is saved. Log Uri aids in trou‐
bleshooting if there are issues with the activity, and the Terminate After option allows
you to set an upper time limit for the copy operation to complete. This will prevent any
runaway EC2 instances due to pipeline failures or S3 issues.

The configuration of the Amazon EMR activity follows a similar pattern, as shown in
Table 3-4.

Table 3-4. Activity settings for the Amazon EMR Job Flow
Field Value

Name Amazon EMR web log filter

Type EmrActivity

Step s3://program-emr/weblog-filter.jar, \ com.programemr.weblog_top_ten.We

bLogDriver, \ s3://program-emr/input/NASA_access_log_Jul95, \ s3://

program-emr/run0

Schedule Schedule created earlier for once an hour

Depends On Copy input file to processing location

Runs On Amazon EMR cluster

The type EmrActivity chosen for this activity tells Data Pipeline that you intend to use
Amazon EMR resources. The parameters on an Amazon EMR activity are slightly dif‐
ferent from the EC2 resource. The Step option appears as a field, and the settings pro‐
vided in this example should look similar to the Create Job Flow options set on previous
manual runs of Job Flows. Data Pipeline requires that your custom JAR and parameters
be combined into a single Step field, with individual parameters separated by commas.

When we laid out the scheduling scenario earlier, we noted that the EMR resources
should not be run if the input file did not exist and if the file was not successfully copied
to the new S3 processing location. The Depends On option enforces this check and
validates that the file has been copied to the processing location by setting the depend‐
ency on the successful completion of the S3 copy activity. You can add multiple Depends
On fields if your scenario has several dependencies that need to be met prior to an
activity running. The Runs On parameter is similar to the earlier activity and is con‐
figured to use the Amazon EMR resource with the settings listed in Table 3-5.

Table 3-5. Resource settings for the Amazon EMR resource
Field Value

Name Amazon EMR cluster

Type EmrCluster

Schedule Schedule created earlier for once an hour

Core Instance Count 2

Terminate After 30 minutes
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Field Value

Core Instance Type m1.small

Master Instance Type m1.small

Log Uri s3://program-emr

Emr Log Uri s3://program-emr

Terminate After 30 minutes

The Amazon EMR cluster settings look like what was input into the Amazon EMR
Management Console in previous Job Flow runs. Core Instance Count, Core Instance
Type, and Master Instance Type set the sizing of the Amazon EMR cluster groups. Log
Uri, Emr Log Uri, and Terminate After are not required fields, but will again help in
troubleshooting by providing log data from the Job Flow and limiting the execution
time of the cluster if there is an issue in pipeline execution.

Scheduling Pipelines
Your pipeline now represents the functionality from the initial scheduling scenario and
should look similar to Figure 3-11. It is in a pending state right now and will not run
until the Activate option is selected. Once activated, the pipeline will appear as scheduled
in the AWS Data Pipeline Management Console.

Figure 3-11. Fully built Job Flow scheduling Data Pipeline
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Reviewing Pipeline Status
From the AWS Data Pipeline Management Console, selecting View Instance Details
next to your pipeline allows you to determine the success and failure of the many dif‐
ferent activities and nodes. In scheduling the pipeline, we intentionally removed the
input file from S3. Figure 3-12 shows individual pipeline items waiting for the input file
dependency to be met.

Figure 3-12. Data Pipeline waiting on dependencies

The check for the input file shows as Running, and the details indicate the number of
retries AWS Data Pipeline will perform before waiting to try again later. The Data Pipe‐
line Management Console can be used for troubleshooting scenarios like this and to
check on successful and waiting pipeline processes.

AWS Pipeline Costs
AWS Data Pipeline is fairly cheap for the functionality it provides. The costs range from
free to $2.50 per activity (at the time of the writing of this book). You can find more
details on AWS Data Pipeline costs at the AWS Data Pipeline pricing page. Comparing
this cost with the cost of running on the smallest and cheapest EC2 micro Linux instance
for the entire month with a total monthly cost of $14.64, you can easily see how AWS
Data Pipeline can lower operational costs.
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Real-World Uses
You have now built a web server processor of the log analysis application described in
Chapter 1. Your application can now receive web access log records and review the error
requests experienced by users and the frequency of these errors occurring in the log.

The building blocks demonstrated in this chapter have a number of functional uses
outside of log analysis. The MapReduce application is performing what is considered
both filtering and summarization design patterns by removing unwanted data from the
data set and summing up the values of a common key. Other real-world applications of
this design technique are:
Data cleansing

Often, data sets contain erroneous information. This can be unrealistic values or
too many missing values to be of real use. Performing an initial data-cleansing phase
by filtering these values out can lead to better analysis by other applications or other
Amazon EMR Job Flows.

Distributed pattern matching
You can look for a specific string or match on a regular expression with a filter
pattern. This match can be done in parallel across multiple instances and return
matches much quicker than traditional search routines.
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CHAPTER 4

Data Analysis with Hive and Pig in Amazon
EMR

The examples in previous chapters focused on developing custom JAR Job Flows. This
Job Flow type makes heavy use of developing map and reduce routines using the Java
programming language. The development cycle of custom JAR Job Flows requires writ‐
ing map and reduce routines, compiling and packaging the build artifacts, uploading
these artifacts to S3, and then creating the Job Flow and retrieving results. This can be
a very time-consuming process to explore a data set and build an application. Custom
JAR Job Flows can also create barriers for organizations that don’t have Java knowledge
and experience.

Fortunately, you don’t need to be a Java programmer to develop MapReduce applications
and use the power of Amazon EMR. Amazon EMR supports several Job Flow applica‐
tion types that we will cover in this chapter, focusing heavily on Pig and Hive application
types and how they can be built and tested in Amazon EMR. Pig and Hive are higher-
level data processing languages that may be better choices for building Job Flows in
organizations that have greater technical expertise using scripting-based languages, or
have deep knowledge of SQL for extracting needed data elements.

Hive and Pig will be used in separate walkthroughs in this chapter to rebuild the data
filtering and request error counting examples from Chapter 3. The programs will be
directly run in an interactive mode on a live Amazon EMR cluster to explore the data
set and review the outcomes of each Hive and Pig command.

As you’ll see, Hive or Pig Job Flows can be used to build applications that perform many
of the same functions that have been covered in this book. They can also be used as tools
to perform ad hoc interactive query sessions against large data sets. This chapter will
help broaden the toolset that you can use to perform data analytics under Amazon EMR
regardless of whether your organization’s core strengths are in Java development, script‐
ing languages, SQL, or other programming languages.
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Let’s start by exploring the Job Flow types available under Amazon EMR.

Amazon Job Flow Technologies
Amazon EMR currently supports four different types of technologies to be added as
steps to an EMR cluster. Amazon has worked to tweak each of the cluster types to support
interaction with other AWS services and to perform well in the AWS cloud environment.
Selection of a particular cluster type is more dependent on the technology needs for
your project and the type of application being built. Let’s briefly examine the technol‐
ogies available for steps in an Amazon EMR cluster:
Hive

Hive is an open source data warehouse package that runs on top of Hadoop in
Amazon EMR. Hive Query Language (HQL) is a powerful language that leverages
much of the strengths of SQL and also includes a number of powerful extensions
for data parsing and extraction. Amazon has modified Hive to work in AWS and
to easily integrate with other AWS services. Hive queries are converted into a series
of map and reduce processes run across the Amazon EMR cluster by the Hive en‐
gine. Hive Job Flows are a good fit for organizations with strong SQL skills. Hive
also has a number of extensions to directly support AWS DynamoDB to populate
Amazon EMR data directly in and out of DynamoDB.

Custom JAR
Custom JAR Job Flows utilize core Hadoop libraries that are preloaded into the
cluster. A Java application is compiled and uploaded into S3 and is compiled against
the Hadoop libraries of the same version used in Amazon EMR. The previous ex‐
amples in this book exclusively used this job flow technology to demonstrate data
manipulation and analysis in Amazon EMR. Custom JAR Job Flows give developers
the greatest flexibility in writing MapReduce applications.

Streaming
Streaming Job Flows allow you to write Amazon EMR Job Flows in Ruby, Perl,
Python, PHP, R, Bash, or C++. The nodes of the cluster contain the Apache stream‐
ing library, and applications can reference functions from this library. When cre‐
ating a Streaming Job Flow, you can specify separate scripts for the mapper and
reducers executed in the Job Flow. Streaming Job Flows are also good for organi‐
zations familiar with scripting languages. This Job Flow type can be used to convert
an existing extract, transform, and load (ETL) application to run in the cloud with
the increased scale of Amazon EMR.

Pig program
Pig is a data flow engine that sits on top of Hadoop in Amazon EMR, and is pre‐
loaded in the cluster nodes. Pig applications are written in a high-level language
called Pig Latin. Pig provides many of the same benefits of Hive applications by
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allowing applications to be written at a higher level than the MapReduce routines
covered earlier. It has been extended with a number of user-defined functions
(UDFs) that allow it to work more readily on unstructured data. Pig, like Hive,
translates Pig scripts into a series of MapReduce jobs that are distributed and exe‐
cuted across the Amazon EMR cluster. Pig Job Flows are a good fit for organizations
with strong SQL skills that would like to extend Pig with UDFs to perform custom
actions.

The remainder of this chapter will focus on Pig and Hive applications in Amazon EMR.
These job flow technologies most closely resemble the functions and features demon‐
strated with the Custom JAR Job Flows covered earlier in this book. You can also run
Pig and Hive Job Flows inside of Amazon EMR in an interactive mode to develop, test,
and troubleshoot applications on a live, running Amazon EMR cluster.

More on Job Flow Types
This book does not cover the details of Streaming Job Flows in great
detail. Streaming Job Flows follow a similar development and testing
pattern as a standard command-line application, written in Ruby, Perl,
Python, PHP, R, Bash, or C++. We recommend reviewing Amazon
EMR’s sample word splitter application or the machine learning ex‐
amples in Chapter 5 written in Python to learn more about Stream‐
ing Job Flows.

What Is Pig?
Pig is an Apache open source project that provides a data flow engine that executes a
SQL-like language into a series of parallel tasks in Hadoop. Amazon has integrated Pig
into Amazon EMR for execution in Pig Job Flows. These additions allow Pig scripts to
access S3 and other AWS services, along with inclusion of the Piggybank string and date
manipulation UDFs, and support for the MapR version of Hadoop.

Pig performs similar data operations as SQL, but has its own syntax and can be extended
with user defined functions. You can join, sort, filter, and group data by using operators
and language keywords on data sets.

Utilizing Pig in Amazon EMR
A Pig Job Flow is typically created by choosing Pig Program in Add Step when creating
a new cluster, or Job Flow, from the Amazon EMR Management Console. Figure 4-1
shows the initial configuration for creating a Pig Job Flow.
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Figure 4-1. Creating a Pig Job Flow

Pig Job Flows can be run as a standard Job Flow where a Pig script is chosen in S3 for
execution, and also in an interactive mode. Creating an interactive Pig Session option
does not require any steps to be added or configured in Figure 4-1. This is possible
because as you recall from our first Job Flow in Figure 2-8 Hive and Pig are installed by
default on every new Cluster. The cluster will need to be setup with Auto-terminate
set to No though so the cluster stays running with no steps. In interactive mode, no
additional parameters, scripts, or settings are specified under the step Add and config
ure pop-up. Instead, you can enter Pig Latin commands and parameters directly at the
command line on the master node. This starts an interactive Job Flow that waits for a
connection to be made, after which you can enter commands into the cluster command
line on the master EMR node. The cluster will continue to run until you terminate it
using the Amazon EMR Management Console or EMR command-line tool.

The EC2 key pair under Security and Access is a required setting on interactive Job
Flows—you use it to connect directly to the master node in the Amazon EMR cluster.
If no key pair exists or you prefer a new one for your Amazon EMR instances, review
Amazon’s detailed article on creating a key pair for an interactive session. You specify
the key pair in the Security and Access section of the new cluster as shown in
Figure 4-2.
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Figure 4-2. Specifying an EC2 key pair on New Cluster creation

Connecting to the Master Node
Once the Pig interactive Job Flow has been created, the job appears in a Waiting state
in the Management Console, as shown in Figure 4-3. You’ll need to establish a session
so you can enter Pig commands directly into the EMR cluster. You use the Master Public
DNS Name to establish the connection to the master node—this name can be found in
the Cluster details page of the console as shown in Figure 4-3.

Figure 4-3. Public DNS name for connecting to the master node
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With this information, you can now establish a session to the master node using an SSH
client and the EC2 key pair. The following example uses a Linux command shell to
establish the session. Amazon has an excellent article on establishing a connection to
the master node using the EMR command-line utility or other operating systems in its
AWS documentation. After connecting to the node, use the pig command to get to an
interactive Pig prompt. You should have a session similar to the following:

$ ssh -i EMRKeyPair.pem hadoop@ec2-10-10-10-10.compute-1.amazonaws.com
Linux (none) 3.2.30-49.59.amzn1.i686 #1 SMP Wed Oct 3 19:55:00 UTC 2012 i686
--------------------------------------------------------------------------

Welcome to Amazon Elastic MapReduce running Hadoop and Debian/Squeeze.

Hadoop is installed in /home/hadoop. Log files are in /mnt/var/log/hadoop.
Check /mnt/var/log/hadoop/steps for diagnosing step failures.

The Hadoop UI can be accessed via the following commands:

  JobTracker    lynx http://localhost:9100/
  NameNode      lynx http://localhost:9101/

--------------------------------------------------------------------------
hadoop@ip-10-10-10-10:~$ pig
2013-07-21 19:53:24,898 [main] INFO  org.apache.pig.Main - Apache Pig
version 0.11.1-amzn (rexported) compiled Jun 24 2013, 18:37:44
2013-07-21 19:53:24,899 [main] INFO  org.apache.pig.Main - Logging error
messages to: /home/hadoop/pig_1374436404892.log
2013-07-21 19:53:24,988 [main] INFO  org.apache.pig.impl.util.Utils -
Default bootup file /home/hadoop/.pigbootup not found
2013-07-21 19:53:25,735 [main] INFO  org.apache.pig.backend.hadoop.
executionengine.HExecutionEngine - Connecting to hadoop file system
at: hdfs://10.10.10.10:9000
2013-07-21 19:53:28,851 [main] INFO  org.apache.pig.backend.hadoop.
executionengine.HExecutionEngine - Connecting to map-reduce job tracker
at: 10.10.10.10:9001
grunt>

Pig Latin Primer
Now that you’ve established a connection to the master node, let’s explore the Pig Latin
statements you’ll use in building your Pig Job Flow.
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LOAD
The first thing you will want to do in your application is load input data into the appli‐
cation for processing. In Pig Latin, you do this via the LOAD statement. Pig has been
extended by Amazon to allow data to be loaded from S3 storage.

As we saw in our previous Job Flows, the data in an application is generally loaded out
of S3. To load data into the Pig application, you’ll need to specify the full S3 path and
bucket name in the load statement. For example, to load sample-syslog.log from the
bucket program-emr, use the following LOAD statement:

LOAD 's3://program-emr/sample-syslog.log' USING TextLoader as (line:chararray);

The LOAD statement supports a number of load types, including TextLoader, PigStorage,
and HBaseStorage. The TextLoader is the focus of upcoming examples, which show its
ability to load a data set out of S3. We’ll also look at PigStorage and HBaseStorage, which
are useful for manipulating the Amazon EMR HDFS storage directly.

Pig Latin uses a concept of schemas. Schemas allow you to specify the structure of the
data when loading it via the LOAD statement. If your data contained four fields—log date,
host, application, and log message—then the schema could be defined as follows on the
LOAD statement:

LOAD 's3://program-emr/sample-syslog.log' USING TextLoader as
    (logdate:chararray, host:chararray, application:chararray, logmsg:chararray);

This can be useful in loading data sets with data structures that map easily to Pig’s default
schemas. For data sets that don’t map to existing schemas, it makes sense to load the
data into a single character array for parsing with Amazon’s piggybank UDF library.

STORE

The STORE statement allows you to write out data. STORE performs the opposite of the
LOAD statement and has also been modified to work with S3 and other AWS services.
You need the full S3 bucket and location path in order to specify the location of your
desired storage output. To write out data to S3, you could use an example like the fol‐
lowing to write processed results:

STORE user_variable into 's3://program-emr/processed-results';

DUMP

DUMP is a useful statement for debugging and troubleshooting scripts while they are
being developed in the interactive session. The DUMP statement will send the data held
by a variable to the screen.

DUMP user_variable;
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ILLUSTRATE

ILLUSTRATE is similar to the DUMP statement because it is primarily used for debugging
and troubleshooting purposes. ILLUSTRATE will dump a single row of the data to the
screen instead of the entire contents of a variable. In cases where it may be necessary to
verify that an operation is generating the proper format, you may prefer to use this in
order to see a single line of a variable instead of millions of rows of potential output.
ILLUSTRATE uses the same statement syntax as DUMP:

ILLUSTRATE user_variable;

FOREACH

FOREACH, as the name implies, performs an action or expression on every record in a
data pipeline in Pig. The results of FOREACH are new data elements that can be used later
in the interactive session or script. In Pig terminology, this is typically referred to as
projection. The following example generates, or projects, four new data elements from
the RAW_LOG row on which the FOREACH statement operates:

FOREACH RAW_LOG generate logdate:chararray, host:chararray,
    application:chararray, logmsg:chararray;

FILTER

The FILTER statement allows us to perform much of the data cleansing and removal
functions that were done in the custom JAR application. The FILTER statement takes
an expression and returns a data set matching the expression. It is similar to using a
WHERE clause in SQL, and can contain multiple expressions separated by and or or to
chain Boolean matching expressions together. An example of the FILTER statement
matching on a regular expression is listed here:

FILTER RAW_LOG BY line matches '.*SEVERE.*';

The equivalent FILTER statement in SQL would be expressed as follows and highlights
the SQL-like nature of Pig Latin:

select * from TMP_RAW_LOG where line like '%SEVERE%';

To connect the FILTER statement to the concepts you have already learned, we could
say that the FILTER statement performs much of the same function as the map phase in
our custom JAR. Each row is processed by the FILTER statement and emitted into the
variable that holds the results of the filter. From the custom JAR mapper, the FILTER
statement is performing the following logic:

...
// Filter any web requests that had a 300 HTTP return code or higher
if ( httpCode >= 300 )
{
    // Output the log line as the key and HTTP status as the value
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    output.collect( value, new IntWritable(httpCode) );
}
...

GROUP

You can use the GROUP statement to collate data on a projected element or elements of
a data set. GROUP can be useful for aggregating data to perform computations on a set of
values, including grouping data sets on one to many projected elements. The syntax of
the GROUP statement is as follows:

GROUP user_variable BY x;

The GROUP statement works very similarly to the GROUP clause in SQL. Expressing similar
functionality in SQL would yield the following equivalent statement:

select * from TMP_USER_VARIABLE GROUP BY X;

In the custom JAR application that we built in the previous chapter, the grouping was
done for us as part of the key/value pairs that are emitted by the mapper. The grouping
is utilized in the reduce phase of the custom JAR to perform calculations on the grouped
keys. The following portion of the reduce method utilizes the grouped data to count
the number of equivalent HTTP requests that resulted in an HTTP error:

...
// Iterate over all of the values (counts of occurrences of the web requests)
int count = 0;

while( values.hasNext() )
{
        // Add the value to our count
    count += values.next().get();
}
...

More on Pig
This book covers Pig briefly to demonstrate one of our earlier build‐
ing blocks that uses Pig Latin. There is a lot more to learn about Pig
Latin and the many data manipulations and analysis functions in the
language. To learn more about Pig, see Programming Pig by Alan Gates
(O’Reilly).

Exploring Data with Pig Latin
With a connection established, let’s walk through an interactive Pig session to demon‐
strate the Pig Latin statements in action. This will explore the data set against a live
Amazon EMR cluster.
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Pig relies on a set of UDFs to perform many of the data manipulation functions and
arithmetic operations. In Pig and Amazon EMR, a number of these functions are in‐
cluded in a Java UDF library called piggybank.jar. To use these functions, you must
register the Amazon library with Pig. You can use the EXTRACT routine in this library
to parse the NASA log data into its individual columns using the regular expression
from the previous log parsing custom JAR Job Flow. To register Amazon (and any other
UDFs), use the register statement. The individual UDF statements used should be
listed as DEFINEs in interactive sessions and Pig scripts. The following interactive session
details the process of registering the library and the UDF:

grunt> register file:/home/hadoop/lib/pig/piggybank.jar
grunt> DEFINE EXTRACT org.apache.pig.piggybank.evaluation.string.EXTRACT;
grunt>

The interactive Job Flow session that this created takes no parameters to start. To load
an input file, use the LOAD statement to bring the web logs into Amazon EMR from S3.
The TextLoader takes the S3 location and maps it to the schema defined as a single log
line projected by the line name given on the statement as an array of characters (char‐
array). The RAW_LOGS identifier will hold the data set loaded into Pig.

To verify what has been done so far, we can use the ILLUSTRATE statement to show a
single data value held by the RAW_LOGS identifier. Executing the ILLUSTRATE statement
causes Pig to create a number of MapReduce jobs in the Amazon EMR cluster, and
displays a data row to the screen from the cluster. The following interactive session
details the output returned from executing the ILLUSTRATE statement:

grunt> RAW_LOGS = LOAD 's3://program-emr/input/NASA_access_log_Jul95'
USING TextLoader as (line:chararray);
grunt> ILLUSTRATE RAW_LOGS;
2013-07-21 20:53:33,561 [main] INFO
org.apache.pig.backend.hadoop.executionengine.
HExecutionEngine - Connecting to hadoop file system at: hdfs://10.10.10.10:9000
2013-07-21 20:53:33,562 [main] INFO
org.apache.pig.backend.hadoop.executionengine.
HExecutionEngine - Connecting to map-reduce job tracker at: 10.10.10.10:9001
2013-07-21 20:53:33,572 [main] INFO
org.apache.pig.backend.hadoop.executionengine.
mapReduceLayer.MRCompiler - File concatenation threshold: 100 optimistic? false
2013-07-21 20:53:33,576 [main] INFO
org.apache.pig.backend.hadoop.executionengine.
mapReduceLayer.MultiQueryOptimizer - MR plan size before optimization: 1
...
...
2013-07-21 20:53:36,380 [main] INFO
org.apache.pig.backend.hadoop.executionengine.
mapReduceLayer.JobControlCompiler - Setting Parallelism to 1
2013-07-21 20:53:36,393 [main] WARN  org.apache.pig.data.SchemaTupleBackend -
SchemaTupleBackend has already been initialized
2013-07-21 20:53:36,396 [main] INFO
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org.apache.pig.backend.hadoop.executionengine.
mapReduceLayer.PigMapOnly$Map - Aliases being processed per job phase
(AliasName[line,offset]): M: RAW_LOGS[2,11] C:  R:
--------------------------------------------------------------------------------
| RAW_LOGS| line:chararray
--------------------------------------------------------------------------------
|         | slip137-5.pt.uk.ibm.net - - [01/Jul/1995:02:33:07 -0400] "GET /...
--------------------------------------------------------------------------------

This shows that the logfile is now loaded in the data pipeline for further processing.
From the work done on the custom JAR application, we know that the next logical step
in the Pig program is to parse the log record into individual data columns. You can use
the FOREACH statement with the UDF extract routine to iterate through each log line in
RAW_LOGS and split the data into projected named columns.

This should look very familiar because this is the same regular expression from Chap‐
ter 3 that you used to split up the data into columns. The data will need to be further
typecast to data types that can be used in arithmetic expressions. The FOREACH statement
needs to be executed again to convert the HTTP status and bytes columns from character
arrays to integers. The ILLUSTRATE statement shows the effect of the FOREACH statement
on the data set:

grunt> LOGS_BASE = FOREACH RAW_LOGS GENERATE
    FLATTEN(
      EXTRACT(line, '^(\\S+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\]
            "(.+?)" (\\d{3}) (\\S+)')
    )
    as (
      clientAddr:    chararray,
      remoteLogname: chararray,
      user:          chararray,
      time:          chararray,
      request:       chararray,
      status:        chararray,
      bytes_string:  chararray
  );
grunt> CONV_LOG = FOREACH LOGS_BASE generate clientAddr, remoteLogname, user,
time, request, (int)status, (int)bytes_string;
grunt> ILLUSTRATE CONV_LOG;
-------------------------------------------------------------------------------
| CONV_LOG| clientAddr:chararray| remoteLogname:chararray| user:chararray...
-------------------------------------------------------------------------------
|         | tty15-08.swipnet.se | -                      | -             ...
-------------------------------------------------------------------------------

The individual log line has now been expressed as individual fields, and has been con‐
verted to Pig data types that allow the log data to be filtered to only the HTTP error
entries. You can now use the FILTER statement to restrict the data set down by evaluating
the status value on each record in the logfile. The expression—(status >= 300)—maps
directly to the logic used in the map routine of the custom JAR to determine which
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records to emit and which ones to throw away for further processing in the data pipeline.
Using the ILLUSTRATE statement, we can assess the logic used in the filter to see the
resulting data set:

grunt> FILTERED = FILTER CONV_LOG BY status >= 300;
grunt> ILLUSTRATE FILTERED;
--------------------------------------------------------------------------------
| FILTERED| clientAddr:chararray| request:chararray                      | status
--------------------------------------------------------------------------------
|         | piweba3y.prodigy.com| GET /images/NASA-logosmall.gif HTTP/1.0| 304
--------------------------------------------------------------------------------

Now you can use the DUMP statement to further examine the resulting data set beyond
this initial record. At this point, much of the functionality of the mapper built earlier
has been covered. So far through the interactive session, the data has been imported
into Amazon EMR and filtered down to the records, including records of an HTTP
status value of 300 or higher.

In the custom JAR application, you needed to identify a key value so data could be
grouped and evaluated further in the reduce phase. The Pig script has not identified
any data element as a key in the commands that have been run. The GROUP statement
provides a similar key grouping from the earlier application. The request column is the
data element to allow the GROUP statement to build a data set for further calculations.

grunt> GROUP_REQUEST = GROUP FILTERED BY request;
grunt> ILLUSTRATE GROUP_REQUEST;
--------------------------------------------------------------------------------
| group:chararray | FILTERED:bag{:tuple(clientAddr:chararray,remoteLogname:..
--------------------------------------------------------------------------------
| GET /cgi-bin/imagemap/countdown?320,274 HTTP/1.0 | {(piweba2y.prodigy.com, ...
--------------------------------------------------------------------------------

The ILLUSTRATE statement on GROUP_REQUEST shows the results of the data grouping
based on HTTP requests. The data now looks very similar to the input to the reduce
phase of the earlier custom JAR application.

To compute the total number of error requests for each unique HTTP request string,
run the GROUP_REQUEST data through a FOREACH statement to count the number of entries
found in the log. The FLATTEN keyword will treat each request in a grouping as a separate
line for processing. The incoming data set prior to flattening will be a data tuple, or
array.

Group Key: GET /cgi-bin/imagemap/countdown?320,274 HTTP/1.0,
Tuple:     {(piweba2y.prodigy.com, ..., 98), (ip16-085.phx.primenet.com, ...,
98)}

The FLATTEN keyword expresses the array as individual data lines for the COUNT operation
to give us a total per request. The result of this operation yields a counting process similar
to the reduce routine in the custom JAR application. You can run the ILLUSTRATE or
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DUMP statements to validate the end results of the FOREACH statement. Finally, the STORE
statement writes the result set out to S3. The storage is handled automatically as part of
the custom JAR, but should be explicitly written out with the STORE statement in Pig:

grunt> FINAL_DATA = FOREACH GROUP_REQUEST GENERATE
FLATTEN(group) AS request, COUNT($1);
grunt> STORE FINAL_DATA into 's3://program-emr/pig-output';

Reviewing the end result set in S3 yields the same results as our custom JAR workflow.
The key differences, after we remove the numerous calls to ILLUSTRATE and DUMP, is a
small set of nine Pig Latin statements that generate the same output as the earlier custom
JAR Job Flow. With the custom JAR program, the process took several develop, build,
test, publish, and execute cycles to work out issues in developing the map and reduce
routines. With the interactive session, you are able to build and diagnose your applica‐
tion inside of a running Amazon EMR cluster.

Remember to Terminate Interactive Sessions
To clean up from the interactive session, you’ll need to choose the
Terminate option from the Amazon EMR console. Be aware that, un‐
like the previous custom JAR Job Flows, Amazon EMR will keep the
interactive session running and you will continue to incur Amazon
EMR usage charges until the cluster is terminated.

Running Pig Scripts in Amazon EMR
The load and store statements used in the interactive session used literal paths to very
specific files stored in S3. To turn the interactive session statements into a Pig script,
which can be used in Amazon EMR, you need to modify the literal paths to use the
$INPUT and $OUTPUT parameters, which will be passed to the Job Flow when it is created
in Amazon EMR. Adding these parameters—and removing the ILLUSTRATE and DUMP
statements from the interactive session—yields the following Pig script that can be run
in a noninteractive session in Amazon EMR:

--
-- setup piggyback functions
--
register file:/home/hadoop/lib/pig/piggybank.jar
DEFINE EXTRACT org.apache.pig.piggybank.evaluation.string.EXTRACT;

--
-- Load input file for processing
--
RAW_LOGS = LOAD '$INPUT' USING TextLoader as (line:chararray);

--
-- Parse and convert log records into individual column values
--
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LOGS_BASE = FOREACH RAW_LOGS GENERATE
    FLATTEN(
      EXTRACT(line, '^(\\S+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\]
        "(.+?)" (\\d{3}) (\\S+)')
    )
    as (
      clientAddr:    chararray,
      remoteLogname: chararray,
      user:          chararray,
      time:          chararray,
      request:       chararray,
      status:        chararray,
      bytes_string:  chararray
  );

CONV_LOG = FOREACH LOGS_BASE generate clientAddr, remoteLogname, user, time,
    request, (int)status, (int)bytes_string;

--
-- Remove log lines that do not contain errors and group data based on HTTP
--   request lines
--
FILTERED = FILTER CONV_LOG BY status >= 300;
GROUP_REQUEST = GROUP FILTERED BY request;

--
-- Count the log lines that are for the same HTTP request and output the
--   results to S3
--
final_data = FOREACH GROUP_REQUEST GENERATE FLATTEN(group) AS request, COUNT($1);
STORE final_data into '$OUTPUT';

You can upload this Pig script to an S3 bucket and select it as a parameter in creating a
Pig Program Job Flow. To run the Pig script from the Amazon EMR console, a Pig
Program step is added as a step in the cluster and the Pig script, input, and output files
are specified when configuring the step in cluster creation. Figure 4-4 shows the pa‐
rameters used in the Pig Program step with the Pig script, input, and output locations
set to the files used from the interactive session. Running this new Job Flow yields the
same results we saw during the interactive session and validates the changes made to
the script to take input and output parameters to the LOAD and STORE statements.
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Figure 4-4. Specifying parameters to a Pig script in noninteractive mode

What Is Hive?
Hive is a powerful SQL-like language that allows us to query Amazon EMR. Hive was
built to lower the barrier of entry for the large masses of IT professionals who know
how to develop in SQL and harness the power of Amazon EMR. The Hive Query Lan‐
guage (HQL) much more closely resembles SQL in feature and function than Pig. The
time required for someone who already understands SQL to begin developing in Hive
is much shorter than it would be for Pig or Java MapReduce development. Hive is
preinstalled on the Amazon EMR nodes in clusters using the Hive Program Job Flow.

Utilizing Hive in Amazon EMR
You’ll need to create an interactive session to walk through a number of HQL queries
inside the Amazon EMR cluster. You create the interactive Hive Job Flow from the
Amazon EMR Management Console. Starting an interactive Hive Session is created in
the same manner as the Pig example earlier. A new cluster is created with no steps added
and the cluster Auto-terminate option set to No. We can use the same EC2 key pair to
access the master node in the Amazon EMR cluster in the Hive session that we used for
the earlier Pig session walkthrough.

After connecting to the master node in the cluster, invoke the hive command to begin
working with HQL commands directly on the EMR cluster. A connection to an inter‐
active Hive Job Flow will look similar to the following example session:

$ ssh -i EMRKeyPair.pem hadoop@ec2-10-10-10-10.compute-1.amazonaws.com
Linux (none) 3.2.30-49.59.amzn1.i686 #1 SMP Wed Oct 3 19:55:00 UTC 2012 i686
--------------------------------------------------------------------------
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Welcome to Amazon Elastic MapReduce running Hadoop and Debian/Squeeze.

Hadoop is installed in /home/hadoop. Log files are in /mnt/var/log/hadoop.
Check /mnt/var/log/hadoop/steps for diagnosing step failures.

The Hadoop UI can be accessed via the following commands:

  JobTracker    lynx http://localhost:9100/
  NameNode      lynx http://localhost:9101/

--------------------------------------------------------------------------
hadoop@ip-10-10-10-10:~$ hive
Logging initialized using configuration in file:/home/hadoop/.versions/
hive-0.8.1/conf/hive-log4j.properties
Hive history file=/mnt/var/lib/hive_081/tmp/history/hive_job_log_hadoop_
201307220206_218802535.txt
hive>

Hive Primer
Now that you’ve established a session to the master node, you’ll use a number of HQL
statements to load, parse, filter, group, and output a result set out of Amazon EMR into
S3. The statements covered here should look very similar in form and function to SQL.
There are some key differences, but looking at the statements needed for a Hive appli‐
cation demonstrates how transferrable SQL knowledge is to Hive development.

SerDe
Hadoop and MapReduce applications that use formal programming languages can work
with data with limited structure. The statements and language constructs allow the data
to be parsed into a structure the application can work on, deserialize, and then write
out later in another format or structure after serialization.

SQL and database systems, however, work with data sets that have a defined structure
and set of data types. To allow Hive to have much of the language structure of SQL but
still be able to work with the limited structure of data in Hadoop, developers created a
number of serializers and deserializers, or SerDes, to allow Hive to input data into a
structured format. In the Pig and Java examples throughout the book, we used the
individual language constructs and regular expressions to perform the same serializa‐
tion and deserialization functionality. So, these should not be not new concepts when
compared to previous examples.

There are a number of SerDes available in Hive. SerDes are added to an HQL script
through add statements at the start of the script. We can use the regular expression used
in earlier examples in Hive as well by adding hive_contrib.jar as follows:

add jar /home/hadoop/hive/lib/hive_contrib.jar;
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Additional SerDes can be written and included from S3. This is one of the features
Amazon has added to support Hive in AWS. Amazon has also provided a SerDe for
working with JSON-formatted data. The JSON SerDe can be added to a script from its
S3 location in AWS as follows:

add jar s3://elasticmapreduce/samples/hive-ads/libs/jsonserde.jar;

SerDes define the input and output data formats when you are creating tables to process
and query inside of an HQL script. To parse the web logs, your input format needs to
specify a regular expression for your log, convert the columns to a set of strings defined
by the output format, and number each output column:

CREATE TABLE weblog_data(
        host STRING,
        identity STRING,
        user STRING,
        time STRING,
        request STRING,
        status STRING,
        size STRING)
      ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
      WITH SERDEPROPERTIES (
        "input.regex" = "^(\\S+) (\\S+) (\\S+) \\[([\\w:/]+
                \\s[+\\-]\\d{4})\\] \"(.+?)\" (\\d{3}) (\\S+)",
        "output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s"
      )
      LOCATION 's3://program-emr/input';

CREATE TABLE

The CREATE TABLE statement follows a similar syntax as SQL. The CREATE TABLE state‐
ment is used for input and output of data from the Hive script with a defined set of data
types and structure to the table. The earlier example created a table that maps to the
seven columns in our log data and imports the data set into this table from S3.

Amazon extensions to Hive allow access to tables stored in S3 and another AWS service,
DynamoDB. To create a table handled outside of the HDFS storage in the Amazon EMR
cluster, use the EXTERNAL keyword when creating the table. This tells Hive that the table
exists outside of its storage, and a LOCATION is required to tell Hive where the table exists.
The following example uses EXTERNAL to create a table in S3:

CREATE EXTERNAL TABLE MyTable (
        host STRING,
        identity STRING,
        user STRING,
        time STRING,
        request STRING,
        status STRING,
        size STRING)
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    ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
    LOCATION 's3://program-emr/output';

The schema information about what tables exist in Hive is maintained in the master
node, and by default is not maintained outside of the Amazon EMR cluster. This means
any table that is created in Hive will cease to exist once the Amazon EMR cluster is
terminated. You can persist the tables using the EXTERNAL keyword to store the data
outside of Amazon EMR on S3, Amazon’s Redshift Data Warehouse, or Amazon Rela‐
tional Database Service (RDS).

INSERT

The INSERT statement serves the same purpose in Hive as it does in SQL: to place data
into storage. Hive on Amazon EMR allows this location to be another Hive table, S3
location, external table, or another Amazon database service like DynamoDB. The
INSERT statements in Hive take a query as the data source to load data into the storage
location. To write the output of a query result to S3, use the following INSERT syntax in
Hive:

INSERT OVERWRITE DIRECTORY 's3://program-emr/hive-output' select * from table;

The OVERWRITE keyword in the example will replace the data in the destination. The
INTO keyword could be used in place of OVERWRITE to append the data rather than replace
it.

More on Hive
This chapter covers only a small portion of what can be accomplish‐
ed with Hive. To learn more about Hive, see Programming Hive by
Edward Capriolo, Dean Wampler, and Jason Rutherglen (O’Reilly).

Exploring Data with Hive
You can now put the Hive commands covered earlier to direct use in the interactive
Hive session. You’ll need to register the SerDe library with Hive so the data can be parsed
with the web log regular expression you used in earlier examples. You’ll start by adding
the contributed SerDe JAR to the session with a simple add jar statement and the
location of the library on the master node:

hive> add jar /home/hadoop/hive/lib/hive_contrib.jar;
Added /home/hadoop/hive/lib/hive_contrib.jar to class path
Added resource: /home/hadoop/hive/lib/hive_contrib.jar
hive>

The interactive session has no defined input or outputs. The CREATE TABLE statement
is used to pull in the web log information from S3. We parse the web log using the regex
SerDe from our library input to separate out each field to map to the table structure.
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The output format takes each record and maps it to the string data types for each column
in the table. The LOCATION specifies the directory where your input files are located.

hive> CREATE TABLE weblog_data(
        host STRING,
        identity STRING,
        user STRING,
        time STRING,
        request STRING,
        status STRING,
        size STRING)
      ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
      WITH SERDEPROPERTIES (
        "input.regex" = "^(\\S+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\] \
        \"(.+?)\" (\\d{3}) (\\S+)",
        "output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s"
      )
      LOCATION 's3://program-emr/input';
OK
Time taken: 22.122 seconds
hive>

Hive does not have the ILLUSTRATE statement like the earlier Pig example. However,
you can use standard SQL statements to review the data loaded into the weblog_data
table—this was created to confirm the data has been parsed and loaded into the Hive
table. Performing a simple count operation shows the full data set has been loaded into
Hive:

hive> select count(*) from weblog_data;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
...
...
2013-07-22 21:42:12,434 Stage-1 map = 100%,  reduce = 100%, Cumulative
CPU 31.28 sec
2013-07-22 21:42:13,444 Stage-1 map = 100%,  reduce = 100%, Cumulative
CPU 31.28 sec
2013-07-22 21:42:14,463 Stage-1 map = 100%,  reduce = 100%, Cumulative
CPU 31.28 sec
2013-07-22 21:42:15,480 Stage-1 map = 100%,  reduce = 100%, Cumulative
CPU 31.28 sec
MapReduce Total cumulative CPU time: 31 seconds 280 msec
Ended Job = job_201307220201_0001
Counters:
MapReduce Jobs Launched:
Job 0: Map: 1  Reduce: 1   Accumulative CPU: 31.28 sec   HDFS Read: 320
HDFS Write: 8 SUCCESS
Total MapReduce CPU Time Spent: 31 seconds 280 msec
OK
1891715
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Time taken: 149.023 seconds
hive>

You can review the individual rows of data using simple select statements to pull back
data rows from the Amazon EMR cluster:

hive> select * from weblog_data limit 1;
OK
199.72.81.55    -    -  01/Jul/1995:00:00:01 -0400      GET /history/apollo/
HTTP/1.0        200     6245
Time taken: 14.75 seconds
hive>

The execution times to run each of these Hive statements may appear shockingly high
for such a small data set to anyone who has performed similar queries against a tradi‐
tional database. The runtimes are high because the Hive command is being parsed and
run as a MapReduce job on multiple nodes in the EMR cluster. The execution times are
similar to runtimes from the earlier Job Flow applications. A traditional database system
that SQL commands are usually run on achieves higher performance compared to Hive
due to the structured nature of the data set and system and index optimizations that can
take advantage of the structure.

The query entered into the Hive command line is processed and turned into a set of map
and reduce jobs. These jobs are executed on each node against a shard of the data set
on each node and the end result set is returned. Hadoop does not have the strict data
structures and indexing that help a traditional database system perform SQL statements
quickly.

Filtering the data set in Hive is as simple as adding a WHERE clause to the HQL query.
Using the status column in the table, the expression (status >= 300) will typecast the
column and return the matching records. Using the earlier select statement, we can
obtain the count of error rows in the log as in the following example interactive session:

hive> select count(*) from weblog_data where status >= 300;
...
Total MapReduce CPU Time Spent: 36 seconds 850 msec
OK
190180
Time taken: 113.596 seconds
hive>

The map and reduce phases from the custom JAR application can be written into a single
HQL statement in Hive. The data filter is performed by the WHERE clause with a check
on the status column. You can perform the count and grouping of the data using the
group and COUNT(*) from standard SQL data functions and expressions. Utilizing the
INSERT statement stores the data to S3 and completes the set of functionality in Hive to
replicate the custom JAR Job Flow. The end result set in S3 is the same result set as the
earlier Job Flow examples.
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hive> INSERT OVERWRITE DIRECTORY 's3://program-emr/hive-output' select request,
count(*) from weblog_data where status>=300 group by request;
...
Counters:
15290 Rows loaded to s3://program-emr/hive-output
MapReduce Jobs Launched:
Job 0: Map: 1  Reduce: 1   Accumulative CPU: 36.65 sec   HDFS Read: 320 HDFS
    Write: 0 SUCCESS
Total MapReduce CPU Time Spent: 36 seconds 650 msec
OK
Time taken: 123.133 seconds
hive>

To clean up your interactive session, choose the Terminate option from the Amazon
EMR console. Be aware that Amazon EMR will keep the interactive session running
and you will continue to incur Amazon EMR usage charges until the cluster is termi‐
nated.

Running Hive Scripts in Amazon EMR
The Hive CREATE TABLE and INSERT statements need to use the $INPUT and $OUTPUT
parameters so the statements used in the interactive Hive session can be used in a Hive
script. Modifying these statements and removing the statements used to review the data
counts yields the following Hive script, which can be run in a noninteractive session in
Amazon EMR:

add jar /home/hadoop/hive/lib/hive_contrib.jar;

CREATE TABLE weblog_data(
  host STRING,
  identity STRING,
  user STRING,
  time STRING,
  request STRING,
  status STRING,
  size STRING)
ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
  "input.regex" = "^(\\S+) (\\S+) (\\S+) \\[([\\w:/]+
        \\s[+\\-]\\d{4})\\] \"(.+?)\" (\\d{3}) (\\S+)",
  "output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s"
)
LOCATION '${INPUT}';

INSERT OVERWRITE DIRECTORY '${OUTPUT}' select request,
    count(*) from weblog_data where status>=300 group by request;

This Hive script follows the same script execution pattern that has been used by all of
the Job Flows. It is uploaded to an S3 bucket and the input and output locations are
specified on the step configuration screen in Job Flow creation. The $INPUT and $OUT
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PUT variables are replaced with these Management Console values. Running the Job
Flow as a Hive script yields the same results and validates the parameter changes made
to the Hive statements.

Finding the Top 10 with Hive
Hive can be a powerful tool in lowering the barrier to entry so that many organizations
can begin using Amazon EMR to process and analyze data. Hive may also make it easier
to build applications that want to focus on data outliers or require data sorting and
ordering. Trying to find the “Top 10” is a common scenario that requires data ranking
and sorting on a smaller, final data set.

For the custom JAR application to find the Top 10 error records, you’d need to configure
the Amazon EMR cluster to have a single reduce routine to collate and sort the results
from each of the mappers. You could also do this by building multiple steps, with each
step performing a portion of the data manipulation to get to the final list of Top 10.

In Hive, adding the order and limit clause to the HQL statement removes much of the
work of figuring out how to configure the map and reduce phases—these are taken care
of by the Hive engine. In an interactive session, the Hive engine shows the HQL broken
down into multiple jobs to pull back a list of 10 requests that happen most frequently
in the web log:

hive> select request, count(*) as cnt from weblog_data where status >= 300\
group by request order by cnt DESC limit 10;
...
MapReduce Jobs Launched:
Job 0: Map: 1  Reduce: 1   Accumulative CPU: 36.7 sec   HDFS
Read: 320 HDFS Write: 1031366 SUCCESS
Job 1: Map: 1  Reduce: 1   Accumulative CPU: 5.24 sec   HDFS
Read: 1031843 HDFS Write: 460 SUCCESS
Total MapReduce CPU Time Spent: 41 seconds 940 msec
OK
GET /images/NASA-logosmall.gif HTTP/1.0    21010
GET /images/KSC-logosmall.gif HTTP/1.0    12435
GET /images/MOSAIC-logosmall.gif HTTP/1.0    6628
GET /images/USA-logosmall.gif HTTP/1.0  6577
GET /images/WORLD-logosmall.gif HTTP/1.0        6413
GET /images/ksclogo-medium.gif HTTP/1.0 5837
GET /images/launch-logo.gif HTTP/1.0    4628
GET /shuttle/countdown/liftoff.html HTTP/1.0    3509
GET /shuttle/countdown/ HTTP/1.0        3345
GET /shuttle/countdown/images/cdtclock.gif HTTP/1.0     3251
Time taken: 171.563 seconds
hive>
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Our Application with Hive and Pig
The Hive and Pig examples in this chapter can be used to replace a number of the
building blocks developed in earlier chapters. These approaches do not extend the ap‐
plication, but they allow additional technologies and languages to be brought to bear
on analyzing the data in Amazon EMR. You can use the interactive sessions to directly
interact with the Amazon EMR cluster and to analyze and examine large data sets using
ad hoc queries from the Amazon EMR master node.
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CHAPTER 5

Machine Learning Using EMR

So far we have covered various ways you can use EMR and AWS to accomplish some
interesting tasks surrounding log data analysis. The next step in building such a system
is to begin using machine learning algorithms aimed at predicting things based on your
data. In the example for this chapter, we’ll use a clustering technique to derive interesting
information about accesses to web log data.

A thorough discussion of machine learning is beyond the scope of this book. There are
many great resources that will help you understand machine learning. Hilary Mason’s
An Introduction to Machine Learning with Web Data is a great video course to get
started. A more formal treatment of machine learning is available in this Coursera
Machine Learning class. It’s taught by Stanford professor Andrew Ng and is very ac‐
cessible to most people—you don’t need to be a computer scientist to learn the material.

This chapter will not make you a machine learning expert, but we present a few examples
of how to use machine learning algorithms in EMR. Hopefully, this will pique your
interest in learning more about this topic.

A Quick Tour of Machine Learning
What is machine learning? Put simply, machine learning is the application of statistical
methods to derive meaning and understanding from information. The clustering al‐
gorithm we are going to use for this chapter is called k-Means. k-Means clustering is
used to find a number of clusters, k, for a set of data. The exact number of clusters is
user-defined—a bit more about this in a moment. The nice thing about k-Means is that
you can have unlabeled data and derive meaning from it. This mode of machine learning
is called unsupervised because no explicit labels or meaning is known ahead of time
regarding the data.

As we just noted, k-Means is a clustering algorithm. This means it gathers points (your
input data) around a predefined number of clusters, k. The idea is to help uncover
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clusters that occur in your data so you can investigate unusual or previously unknown
patterns in your data.

The selection of the k clusters (or k-cluster centroids) is somewhat dependent on the
data set you want to cluster. It is also part art and part science. You can start out with a
small number, run the algorithm, look at the results, increase the number of clusters,
rerun the algorithm, look at the results, and so on.

The other aspect of k-Means you need to be aware of is the distance measurement used.
Once your data points and k-cluster centroids are placed in a space, generally Cartesian,
one of several distance metrics is used to calculate the distance of each data point from
a nearby centroid. The most common distance metric used is called Euclidean dis‐
tance. Figure 5-1 shows the Euclidean formula for distance.

Figure 5-1. Euclidean formula

There are others distance metrics, which you can discover via one of the two resources
listed at the beginning of this chapter.

The basic k-Means algorithm is as follows:

1. Take your input data and normalize it into a matrix of I items.
2. The k centroids now need to be placed (typically randomly) into a space composed

of the I items.
3. A preselected distance metric is used to find the items in I that are closest to each

of the k centroids.
4. Recalculate the centroids.

The iterative part of the algorithm is steps 3 and 4, which we keep executing until we
reach convergence, which means the recalculations no longer produce change or the
change is very minimal. At this point we execute the k-Means algorithm. Generally
speaking, a concept called local minima is used to determine when convergence has
occurred.

The example that is used in this chapter is based off sample code that Hilary Mason used
in her Introduction to Machine Learning with Web Data video. The code she came up
with takes a data file of delicious links and tags to generate a co-occurrence set of tags
and URLs. A short snippet from the links file looks like this:
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http://blog.urfix.com/25-%E2%80%93-sick-linux-commands/,"linux,bash"
http://sentiwordnet.isti.cnr.it/,"data,nlp,semantic"
http://www.pixelbeat.org/cmdline.html,"linux,tutorial,reference"
http://www.campaignmonitor.com/templates/,"email,html"
http://s4.io/,"streammining,dataanalysis"
http://en.wikipedia.org/wiki/Adolphe_Quetelet,"statistics,history"

The format basically is URL,[csv list of tags]. The co-occurrence is used to find similar
things that occur close to each other. In the preceding data set, we are interested in
knowing which URLs share the same tags.

For those of you who want a more formal definition of co-
occurrence, you can see its Wikipedia entry, which states: “Co-
occurrence or cooccurrence is a linguistics term that can either mean
concurrence/coincidence or, in a more specific sense, the above-
chance frequent occurrence of two terms from a text corpus along‐
side each other in a certain order. Co-occurrence in this linguistic sense
can be interpreted as an indicator of semantic proximity or an id‐
iomatic expression.”

A nice property of the implementation is that not only are the tags clustered, but so are
the URLs. An interesting extension of this k-Means implementation might be to take
web server logs and cluster the geographic locations around common resources accessed
on the web server(s). This idea has several interesting outcomes, including that it:

• Helps you find what pages are more interesting to different parts of the US or world,
thereby allowing you to tailor content appropriately

• Helps you discover possible attacks from known cyberterrorism organizations that
operate out of certain geographic locations

It is this idea that we will pursue in the coming section.

Python and EMR
Back in Chapter 3 we showed you how to use the elastic-mapreduce CLI tool. In this
chapter, we will rely on this tool again, as opposed to the AWS user interface for running
EMR jobs. This has several advantages, including:

• It’s easy to use.
• You can keep a number of EMR instances running for a period of time, thereby

reducing your overall costs.
• It greatly aids in debugging during the development phase.
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Additionally, thus far in the book we have used Java programming examples. In this
chapter we’ll use the Python programming language to show how you can use EMR to
run machine learning algorithms.

The mrjob Python framework allows you to write pure Python Map‐
Reduce applications. You can run the code on your local machine
(which is great for debugging and testing), on a Hadoop cluster of your
own, or on EMR. We are not going to use this tool for this chapter; we
are going to use elastic-mapreduce, but just note that it’s out there for
you to explore and use.

We’ll also use the s3cmd command-line tool to upload and retrieve code, data, and
output files in S3.

Why Python?
So why use Python? Python has some great capabilities built into it for performing
numerical computations. On top of this, the Pycluster Python library has some great
support for performing k-Means clustering. This framework will be used to run the
algorithm. Another nice thing about Python is that, similar to Perl, your development
and deployment time are both greatly decreased because you can make code changes
and immediately run your application to test or debug it.

The scikit Python library implements many machine learning algo‐
rithms. It has great documentation and a ton of examples.

For the remainder of this section, we will discuss the data input for our application, the
mapper code, and then the reducer code. Finally, we put it all together and show how
to run the application on EMR.

The Input Data
Recall back in Chapter 2 where we had web log data that looked like this:

piweba2y.prodigy.com - - [02/Jul/1995:00:01:28 -0400] "GET ..." 404 -
dd04-014.compuserve.com - - [02/Jul/1995:00:01:28 -0400] "GET ..." 200 7074
j10.ptl5.jaring.my - - [02/Jul/1995:00:01:28 -0400] "GET ..." 304 0
198.104.162.38 - - [02/Jul/1995:00:01:28 -0400] "GET ..." 200 11853
buckbrgr.inmind.com - - [02/Jul/1995:00:01:29 -0400] "GET ..." 304 0
gilbert.nih.go.jp - - [02/Jul/1995:00:01:29 -0400] "GET ..." 200 1204

One of the things we can do is take the co-occurrence Python script and extend it to:
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1. Look at the source of the web request.
2. Convert it to a geographic location.
3. Collect the resources accessed from this and other locations.

Note that in the web log data, the first field in the data is the source of the request.

An example data file might look like this:

path-to-resource,"csv list of geographic locations"

While we don’t show it in this chapter, there are open source and commercial geographic
databases you can use to accomplish this task.

MaxMind provides geolocation information for IP addresses. It has
both web services and databases you can use. There are costs associ‐
ated with using such a service, so be sure you understand exactly how
you want to use something like this in your application.

The Mapper
Let’s take a look at the code for the mapper:

#!/usr/bin/env python
# encoding: utf-8
"""
tag_clustering.py

Created by Hilary Mason on 2011-02-18.
Copyright (c) 2011 Hilary Mason. All rights reserved.
"""

import csv
import sys

import numpy
from Pycluster import *

class TagClustering(object):

    def __init__(self):
        self.load_link_data()

    def load_link_data(self):
        for line in sys.stdin:
            print line.rstrip()

if __name__ == '__main__':
        t = TagClustering()
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This mapper code is really just a shell and is meant for illustrative purposes. It reads the
input fed to it on standard in stdin and spits it back out to standard out via stdout.
This stdout is then read in by the reducer code—more on the reducer soon.

So what would a real-world mapper do? Here are the bits we’re leaving out:

• It would handle parsing of the raw web log data to pull out the source hostname or
IP address of the request.

• It would do the geographic lookup for each source and group together resource
access by geographic region. This step would be considered a postprocessing step.

• Once done processing all raw log records, it would emit to standard out the re‐
sources and geolocations that will feed into the reducer.

Additionally, our example mapper only deals with a single input file. A real mapper is
likely going to process multiple, large logfiles. So the input might actually be a directory
containing the logfiles to process. The more data you have, especially over a long period
of time (one month, two months, etc.), will greatly increase the results of the clustering
process.

If you pass an S3 directory (e.g., s3n://bucketname/files_to_process/) to
the input option to EMR, it will handle taking all the files in the di‐
rectory and divvying them up among multiple mapper jobs.

We’ve put together the following contrived postprocessed data for use in our application.
Here is the sample:

"/history/apollo/","CA,TX"
"/shuttle/countdown/","AL,MA,FL,SC"
"/shuttle/missions/sts-73/mission-sts-73.html","SC,WA"
"/shuttle/countdown/liftoff.html","SC,NC,OK"
"/shuttle/missions/sts-73/sts-73-patch-small.gif","MS"
"/images/NASA-logosmall.gif","MS,FL"
"/shuttle/countdown/video/livevideo.gif","CO"
"/shuttle/countdown/countdown.html","AL"
"/","GA"

Basically what you have is a list of resources along with one or more geographic regions
that accessed the resource. We’ve used US states, but you could also include country
codes or other geo-identifiers.
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The Reducer
The reducer code is presented next. The first thing you will notice is that it’s a little more
involved than the mapper code. Areas that need more explanation are called out
explicitly.

#!/usr/bin/env python
# encoding: utf-8
"""
tag_clustering.py

Created by Hilary Mason on 2011-02-18.
Copyright (c) 2011 Hilary Mason. All rights reserved.
"""

import csv
import sys

import numpy
from Pycluster import *

class TagClustering(object):

    def __init__(self):
        tag_data = self.load_link_data()
        all_tags = []
        all_urls = []
        for url,tags in tag_data.items():
            all_urls.append(url)
            all_tags.extend(tags)

        all_tags = list(set(all_tags)) # list of all tags in the space

        numerical_data = [] # create vectors for each item
        for url,tags in tag_data.items():
            v = []
            for t in all_tags:
                if t in tags: 
                    v.append(1)
                else:
                    v.append(0)
            numerical_data.append(tuple(v))
        data = numpy.array(numerical_data) 

        # cluster the items
        # 20 clusters, city block distance, 20 iterations
        labels, error, nfound = kcluster(data, nclusters=6, dist='b',
        npass=20) 

        # print out the clusters
        clustered_urls = {}
        clustered_tags = {}
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        i = 0
        for url in all_urls:
            clustered_urls.setdefault(labels[i], []).append(url)
            clustered_tags.setdefault(labels[i], []).extend(tag_data[url])
            i += 1

        tag_list = {}
        for cluster_id,tags in clustered_tags.items(): 
             tag_list[cluster_id] = list(set(tags))

        for cluster_id,urls in clustered_urls.items(): 
            print tag_list[cluster_id]
            print urls

    def load_link_data(self):
        data = {}

        r = csv.reader(sys.stdin)
        for row in r:
            data[row[0]] = row[1].split(',')

        return data

if __name__ == '__main__':
        t = TagClustering()

The point of this code is to create a bit vector to feed into the clustering
algorithm.
We must present the clustering algorithm with a vector. This code creates a
numpy-formatted array. This representation is much more efficient than using
the standard Python built-in array.
Here is where the heavy lifting is done. It makes a call into the Pycluster library
function kcluster. Then it performs clustering based on how we configure it.
In this example, we ask it to create 6 clusters, use the city-block distance
measurement (dist=), and perform 20 passes (npass=). The number of passes
tells kcluster how many times to pass through the data until the results
converge, (i.e., there is little to no change in the calculations). Recall that the
local minima will be used to determine convergence.
This code accumulates all of the clustered tags into a data structure. This acts as
a lookup table when we print the clusters.
Using the lookup table of tags, the code prints out the states and the cluster of
resources.
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The city-block distance measurement is also called the Manhattan
distance, taxi cab distance, and others. You can read more about it here.

As note number 1 in the reducer code points out, a bit vector is used to encode the input
data for presentation to the clustering algorithm. If you print the data array, it looks like
this:

[[0 0 1 1 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 1 0 0 0 1 0]
 [1 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 1 0 0 0 0 0 0]
 [0 0 0 0 0 0 1 0 0 0 0 0]
 [0 1 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 1 0 1 0 0]
 [0 0 0 0 1 0 0 1 1 0 0 0]
 [0 0 0 0 0 1 0 1 0 0 1 1]]

There is one row for each line of input from the data file. Each column represents the
set of all geolocations (or tags, from the original implementation). This is I from our
algorithm description earlier in the chapter. It is done this way because we are not
initially starting with numerical data. Because we are clustering on nominal, text data,
we must normalize the input data into a format consumable by the distance calculation
we chose.

It should be noted that we are not taking into account the frequency of access to a given
URL or resource. So if, for example, “/” were accessed a million times, we don’t care.
Using logistic regression, we could predict the frequency with which a resource might
get accessed in the future. The Analytics Made Skeezy blog has a great example on how
to apply logistic regression (and how not to confuse it with linear regression).

As you can imagine, the larger the data set you plan to vectorize, the
more memory it will require. This might mean choosing larger in‐
stance types with more RAM and CPU power in your EMR cluster.

Putting It All Together
It’s now time to upload code and data files to S3 so you can provision the EMR cluster
and run your MapReduce job. First, you need to get the Pycluster library installed onto
your cluster. The reason you have to do this is because Pycluster is not available to
Python on the EMR cluster by default. The way you accomplish this is by creating a
script that downloads the tarball, extracts it, and runs the proper Python command to
build and install the library. The script looks like this:
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#!/bin/bash
# pycluster.sh
set -e
wget -S -T 10 -t 5 \
http://bonsai.hgc.jp/~mdehoon/software/cluster/Pycluster-1.52.tar.gz
mkdir -p ./Pycluster-1.52
tar zxvf Pycluster-1.52.tar.gz
cd Pycluster-1.52
sudo python setup.py install 

Here, the sudo command is used to build and install Pycluster. Without using
sudo, the library will be built and installed as the Hadoop user. You want to make
sure the library gets installed to the normal location so your script can use it.
Usage of the sudo command will not require password input, so it’s safe to use
in this manner.

You are now ready to upload your input data, mapper code, reducer code, and pyclus‐
ter.sh to S3:

$ s3cmd put links2.csv tag_clustering_mapper.py tag_cluster_reducer.py \
    pycluster.sh s3://program-emr/

With all the parts in place, you can now turn up the EMR cluster. You will want to create
the Job Flow and leave it alive for ease of rerunning the MapReduce application. The
following command should hopefully be familiar to you:

$ elastic-mapreduce --create --enable-debug --alive \
  --log-uri s3n://program-emr/emr/logs/ \
  --instance-type m1.small  \
  --num-instances 1 \
  --name python \
  --bootstrap-action "s3://program-emr/pycluster.sh" 

This is the bootstrap script you previously uploaded to S3. When AWS
provisions an EMR cluster, this script is run. You can run up to 16 actions per
elastic-mapreduce command. You can read more on bootstrap actions here.

Once the EMR cluster is bootstrapped and waiting for requests, you will have the
Pycluster library installed and ready for use. This feature of EMR is a great way to get
custom libraries and code on the cluster. This is also how you can alter various Hadoop
options for the cluster.

You are now ready to run the MapReduce program. Start it with the following command:

$ elastic-mapreduce --stream \ 
  --mapper s3://program-emr/tag_clustering_mapper.py \ 
  --input s3://program-emr/links2.csv \ 
  --output s3://program-emr/foo \ 
  --reducer s3://program-emr/tag_clustering_reducer.py \ 
  -j JOB_ID
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You are specifying the --stream option to the elastic-mapreduce command. This
means you also need to specify the path to the mapper, input data, output
location, and reducer code. If you do not specify all four items, the stream
command will fail.
This is the location where, upon success or failure, output will be placed.
This is the S3 path to your input data.
EMR will place success or failure status files in the S3 directory you specify with
this option.
The reducer code you want EMR to run is passed to this option.

Once your MapReduce job is finished, you will want to make sure you terminate your
cluster (recall we started it with the alive option):

$ elastic-mapreduce --terminate -j JOB_ID

Upon successful completion of the job, the reducer output will be placed in s3://program-
emr/foo/part-00000. You can download this file for inspection with the following S3
command:

$ s3cmd get s3://program-emr/foo/part-00000

If your job failed for whatever reason, the files in the S3 directory will look like
part-00001, part-00002, and so on. You can use these to determine why your job failed
and go fix the issue.

If you open the part-00000 file in your favorite editor, you will see the following (note
that the output was manually formatted to fit on the page):

['SC', 'WA']: ['/shuttle/missions/sts-73/mission-sts-73.html']
['CO', 'AL', 'GA']: ['/shuttle/countdown/video/livevideo.gif', \
    '/shuttle/countdown/countdown.html', '/']
['SC', 'NC', 'OK']: ['/shuttle/countdown/liftoff.html']
['CA', 'TX']: ['/history/apollo/']
['SC', 'FL', 'MA', 'AL']: ['/shuttle/countdown/']
['FL', 'MS']: ['/images/NASA-logosmall.gif', \
    '/shuttle/missions/sts-73/sts-73-patch-small.gif']

The output shows clusters around resources and the US states that tended to access
them. Some of the clusters are straight out of the data file like that for SC and WA:

['SC', 'WA']: ['/shuttle/missions/sts-73/mission-sts-73.html']

But if you look at this line:

['FL', 'MS']: ['/images/NASA-logosmall.gif', \
    '/shuttle/missions/sts-73/sts-73-patch-small.gif']

It is actually made up of these two data rows from our input file:
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"/shuttle/missions/sts-73/sts-73-patch-small.gif","MS"
"/images/NASA-logosmall.gif","MS,FL"

The results are not perfect. You can see that another FL from our input file appears in
this output line:

['SC', 'FL', 'MA', 'AL']: ['/shuttle/countdown/']

Recall that k-Means uses local minima to determine when it has converged. This can
cause poor clusters to be formed, which can cause the results to be suboptimal. The
bisecting k-Means algorithm is an extension on k-Means that aims to deal with poor
cluster creation. The hierarchical clustering is yet another algorithm that can help over‐
come poor convergence.

What About Java?
The Mahout Java library implements many popular machine learning algorithms with
an eye toward running on Hadoop. You can download the source package, build it, and
run prepackaged examples. Running Mahout in EMR is also possible, with a bit of work.

What’s Next?
This chapter showed the basics of how you can use EMR to run machine learning al‐
gorithms. Something worth noting is that not all data sets are amenable to running on
Hadoop, especially if splitting up the data set at map time will introduce inconsistencies
in the final results. This is also true of machine learning algorithms—not all of them
play nicely with the MapReduce paradigm.

For the curious-minded folks, here are three easy steps to becoming a machine learning
expert:

• Learn all you can about different machine learning algorithms, including the math
behind them.

• Experiment with sample code so you can take theory and turn it into practice.
• Once you are familiar with machine learning, you can start thinking about your

particular domain and how you can apply these algorithms to your data.
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CHAPTER 6

Planning AWS Projects and Managing Costs

Throughout the earlier chapters, we explored how to use Amazon EMR, S3, and EC2
to analyze data. In this chapter, we’ll take a look at the project costs of these components,
along with a number of the key factors to consider when building a new project or
moving an existing project to AWS. There are many benefits to moving an application
into AWS, but they need to be weighed against the real-world dependencies that can be
encountered in a project.

Developing a Project Cost Model
Whether a company is building a new application or moving an existing application to
AWS, developing a model of the costs that will be incurred can help the business un‐
derstand if moving to AWS and EMR is the right strategy. It may also highlight which
components of the application it makes sense to run in AWS and which components
will be run most cost effectively in an existing in-house infrastructure.

In most existing applications, the current infrastructure and software licensing can af‐
fect the costs and options available in building and operating an application in AWS. In
this section, we’ll compare these costs against the similar factors in AWS to help you
best determine the solution that meets your project’s needs. We’ll also help you deter‐
mine key factors to consider in your application development plan and how to estimate
and minimize the operational costs of your project.

Software Licensing
The data analysis building blocks covered in this book made heavy use of AWS services
and open source tools. In each of the examples, the charges to run the application were
only incurred while the application was running—in other words, the “pay as you go”
usage charges set by Amazon. However, in the real world, applications may make heavy
use of a number of third-party software applications. Software licensing can be a tricky
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problem in AWS (and many cloud environments) due to the traditional licensing models
that many third-party products are built around.

Traditional software licensing typically utilizes one or many of the licensing models
shown in Table 6-1.

Table 6-1. Cloud considerations for traditional software licensing models
Licensing
model

Description

CPU Many software packages license software based on the number of CPUs in the server or virtual machine. To stay
in compliance with CPU licensing in the AWS cloud, the EC2 instance or Amazon EMR instances must have the
same number or fewer virtual cores. The EC2 instance sizing chart can help you identify the EC2 instance types
with the needed number of CPUs. This licensing model can create challenges when the number of CPU licenses
forces an application to run on EC2 instances with memory sizes below what may be required to meet performance
needs.

Server In server- or node-locked licensing, the software can only be run on specific servers. Typically, as part of license
enforcement, the software will examine hardware attributes like the MAC address, CPU identifiers, and other
physical elements of a server. Software with this licensing restriction can be run in the AWS cloud, but will need
to be run on a predefined set of instances that matches the licensing parameters. This, like the CPU model, will
limit the ability to scale inside AWS with multiple running instances.

License
server

With a license server, the software will need to reach out and validate its license against another server either
located at the software firm that sells the software or on a standalone server. Software in this licensing model
will operate in AWS, but like the other licensing models, it will limit your ability to scale up in the AWS environment.
In the worst-case scenario, you may need to run a separate EC2 instance to act as a license server and incur EC2
charges on that license server instance.

None of the traditional software licensing models are terribly AWS-friendly. Such li‐
censing typically requires a large purchase up front rather than the pay-as-you-go model
of AWS services. The restrictions also limit the number of running instances and require
you to purchase licenses up to the application’s expected peak load. These limitations
are no worse than the scenario of running the application in a traditional data center,
but they negate some of the benefit gains from the pay-as-you-go model and from
matching demand with the near-instant elasticity of starting additional instances in
AWS.

Open source software is the most cloud-friendly model. The software can be loaded
into EMR and EC2 instances without the concern of license regimes that tie software
to specific machine instances. Many real-world applications, however, will typically
make use of some third-party software for some of the system components. An example
could be an in-house web application built using Microsoft Windows and Microsoft
SQL Server. How can an application like this be moved to AWS to improve scalability,
use EMR for website analytics, and still remain compliant with Microsoft software
licensing?
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AWS and Cloud Licensing
Many, but not all, applications can utilize the cloud licensing relationships Amazon has
developed with third-party independent software vendors like Microsoft, Oracle,
MapR, and others. These vendors have worked with Amazon to build AWS services
with their products preinstalled and include their licensing in the price of the AWS
service being used. With these vendors, software licensing is addressed using either a
pay-as-you-go model or by leveraging licenses already purchased (also known as the
“bring your own license” model).

With pay-as-you-go licensing, third-party software is licensed and paid for on an hourly
basis in the same manner as an EC2 instance or other AWS services. The exact amount
being paid to license the software by reviewing the charge information available on the
AWS service page. Returning to the earlier example of licensing a Windows Server with
Microsoft SQL Server, a review of the EC2 charge for a large Amazon Linux image
currently costs $0.24 per hour compared to the same size image with Microsoft Win‐
dows and SQL Server with a cost of $0.974 per hour. The additional software licensing
costs incurred to have Microsoft Windows and SQL Server preinstalled and running to
support our app is $0.734 for a large EC2 instance. These licensing costs can vary based
on instance sizing or could be a flat rate. Table 6-2 compares a number of AWS services
utilizing third-party software and the AWS open source equivalent to demonstrate the
licensing cost differences incurred.

Table 6-2. Open source and third-party licensing costs in AWS
Service Open source cost Third-party cost Difference in cost

EC2 Amazon Linux - Small - $0.06 per hour Windows Server - Small - $0.091 per hour 52% more ($0.031 per hour)

EC2 Amazon Linux - Large - $0.24 per hour Windows Server - Large - $0.364 per hour 52% more ($0.124 per hour)

EMR Amazon EMR - Large - $0.30 per hour MapR M3 - Large - $0.30 per hour Same price ($0.00 per hour)

EMR Amazon EMR - Large - $0.30 per hour MapR M5 - Large - $0.36 per hour 20% more ($0.06 per hour)

EMR Amazon EMR - Large - $0.30 per hour MapR M7 - Large - $0.43 per hour 43% more ($0.13 per hour)

The “bring your own license” model is another option for a select number of third-party
products. Both Microsoft and Oracle support this model in AWS for a number of their
products. This model is similar to the traditional software licensing model, with some
notable exceptions. The software is already preloaded and set up on instance images,
and there is no requirement to load software keys. Also, the license is not tied to a specific
EC2 or EMR instance. This allows the application to run on reserve, on-demand, or
spot instances to save costs on the EC2 usage fees. Most importantly, this allows a busi‐
ness’s existing software licensing investment to be migrated to AWS without incurring
additional licensing costs.
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More on AWS Cloud Licensing
The “pay as you go” prices for the many AWS products that are pre-
configured with third-party software can be found on the individual
services pricing pages. Third-party software configurations and pric‐
ing exist for EC2, Amazon EMR with MapR, and Relational Data‐
base Service (RDS).
The “bring your own license” model is a bit more complicated, with a
number of vendors having their own set of supported AWS licensing
products and cloud licensing conversion. Amazon has information on
Microsoft’s license mobility program on the site under the topic Mi‐
crosoft License Mobility Through Software Assurance. Information on
Oracle licensing can be found under the topic Amazon RDS for Ora‐
cle Database and can be run in either model.

Private Data Center and AWS Cost Comparisons
Now that you understand software licensing and how it impacts the project, let’s take a
look at the software and other data center components that need to be included in a
project’s cost projections. For example, consider the cost components of operating a
traditional application in a private data center versus running the same application in
AWS with similar attributes. In a traditional data center, you need to account for the
following cost elements:

• Estimated upfront costs of purchasing hardware, software licensing costs, and al‐
location of physical space in the data center

• Estimated labor costs to set up and maintain the servers and software
• Estimated data center costs of electricity, heating, cooling, and networking
• Estimated software maintenance and support costs

In the traditional data center, a company makes a capital expenditure to buy equipment
for the application. Because this is physical hardware that the company purchases and
owns outright, the hardware and software can typically be depreciated over a three-year
period. The IRS has a lot of great material on depreciation, but by this book’s definition,
depreciation reduces the cost of the purchased hardware and software over the three
years by allowing businesses to take a tax deduction on a portion of the original cost.

When you are running the same application in AWS, a number of the cost elements are
similar, but without much of the upfront purchasing costs. In an AWS environment,
project cost estimates need to account for the following elements:

• Estimated costs of EC2 and EMR instances over three years
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• Estimated labor costs to set up and maintain the EC2 and EMR instances and
software

• Estimated software maintenance and support costs

In AWS, there is no need to procure hardware, and in many cases the software costs are
hourly licensing charges for preinstalled third-party products. Services like AWS are
treated differently from a tax and accounting perspective. Because the business does not
own the software and hardware used in AWS in most cases, the business cannot de‐
preciate the cost of AWS services. At first, this may seem like this will increase the cost
of running an application in the cloud. However, the business also does not have all the
initial upfront costs of the traditional data center with the need to purchase hardware
and software before the project can even begin. This money can continue to be put to
work for the business until the AWS costs are incurred at a later date.

Cost Calculations on an Example Application
To put many of the licensing and data center costs that have been discussed in perspec‐
tive, let’s take a look at a typical application and compare the cost of purchasing and
building out the infrastructure in a traditional data center versus running the same
application in AWS.

For a data analysis application, let’s assume the application being built is a web appli‐
cation with a Hadoop cluster (which would be an EMR cluster in AWS), used to pull
data from the web servers to analyze traffic and log information for the site.

The site experiences the following load and server needs throughout the day:

• During business hours from 9 A.M. until 5 P.M., the application needs eight
Windows-based web servers, an Oracle database server, and a four-node Hadoop
cluster to process traffic.

• During the evening from 5 P.M. until midnight, the application can be scaled down
to four Windows-based web servers, an Oracle database server, and a three-node
Hadoop cluster to process traffic.

• During the early morning from midnight until 9 A.M., the application can be scaled
down to two Windows-based web servers, an Oracle database server, and a two-
node Hadoop cluster to process traffic.

In a traditional data center, servers are typically not scaled down and turned off. With
AWS, the number of EC2 instances and EMR nodes can be scaled to match needed
capacity. Because costs are only incurred on actual AWS usage, this is where some of
the cost savings start to become apparent in AWS—notably from lower AWS (and li‐
censing) charges as resources are scaled up and down throughout the day. In
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Table 6-3, we’ve broken out the costs of running this application in a traditional data
center and in AWS.

Table 6-3. Comparing application infrastructure costs
 Private data center

(initial)
AWS (initial) Private data center

(monthly)
AWS (monthly)

Windows servers $16,000 $0 $0 $1,218.00

Hadoop servers $8,000 $0 $0 $648.00

Database servers $2,000 $0 $0 $421.00

Utilities and building $0 $0 $1,000 $0

Windows software licenses $4,800 $0 $0 $0

Oracle software licenses $1,000 $0 $0 $0

Software support costs $0 $0 $18 $0

24/7 support $0 $0 $0 $100

Labor costs $3,125 $3,125 $9,375 $3,125

Totals $34,925 $3,125 $10,393 $5,512

In the cost breakout, don’t focus on the exact dollar amounts. The costs will vary greatly
based on the application being built, and the regional labor and utility costs will depend
on the city in which the application is hosted. The straight three-year costs of the project
come to $409,073 for the private data center and $201,557 with AWS. This is clearly a
significant savings using AWS for the application over three years.

There are two factors left out of this straight-line cost analysis. The costs do not take
into account the depreciation deduction for the purchased hardware in the private data
center. Also, the accounting concept of the present value of money is not included either.
In simplest terms, the present value attempts to determine how much money the busi‐
ness could make if it invested the money in an alterative project or alternative solution.
The net effect of this calculation is the longer a business can delay a cost or charge to
some point in the future, the lower the overall cost of the project. This means that many
of the upfront software licensing and hardware costs that are incurred in the private
data center are seen as being more expensive to the business because they must be
incurred at the very beginning of the project. The AWS usage costs, by comparison, are
incurred at a later date over the life of the project. These factors can have a significant
effect on how the costs of a project are viewed from an accounting perspective.

A large number of college courses and books are dedicated to calculating present value,
depreciation, and financial analysis. Fortunately, present value calculation functions are
built into Microsoft Excel and many other tools. To calculate the present value and
depreciation in this example, we make an assumption that the business can achieve a
10% annual return on its investments, and depreciation savings on purchased hardware
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roughly equates to $309.16 per month. Performing this calculation for the traditional
data center and AWS arrives at the following cost estimates in Excel:

Depreciation savings per month:
( $31,800 Hardware and Software * 35% Corporate Tax Rate ) / 36 Months
= $309.16 per month

Traditional Data Center:
$34,925 - (PV(10%/12, 36, $10,393)) + (PV(10%/12, 36, $309.16)) = $347,435.66

AWS:
$3,125 - (PV(10%/12, 36, $5,512)) = $173,948.69

The total cost savings in this example works out to be $173,486.97, even including
depreciation. A lot of the internal debates that occur in organizations on comparing
AWS costs to private data center costs leave out the labor, building, utility costs, financial
analysis, and many of the other factors in our example. IT managers tend to focus on
the costs that are readily available and easier to acquire, such as the hardware and soft‐
ware acquisition costs. Leaving these costs out of the analysis makes AWS appear sig‐
nificantly more expensive. Using only the acquisition costs in the example would have
AWS becoming more expensive for the database in about six months and for the web
servers in about two years. This is why it is critical to do this type of full analysis when
comparing AWS to all the major costs in the traditional data center.

This example is still rather simple, but can be useful for developing a quick analysis of
a project in comparing infrastructure costs. Other factors that are not included are
infrastructure growth to meet future application demand, storage costs, bandwidth,
networking gear, and various other factors that go into projects. Amazon has a number
of robust online tools that can help you do a more detailed cost analysis. The Amazon
Total Cost of Ownership (TCO) tool can be helpful in this area because it includes many
of these additional cost factors.

Existing Infrastructure and AWS
The example assumes that new hardware and software needs to be
purchased for a project. However, many large organizations have al‐
ready made large investments in their current infrastructure and da‐
ta center. When AWS services are compared to these already sunk costs
in existing software licenses, hardware, and personnel, they will, of
course, be a more expensive option for the organization. Justifying the
additional costs of AWS to management when infrastructure already
exists for a project can be challenging. The cost comparison in these
situations does not start to produce real savings for an organization
until the existing infrastructure needs to be upgraded or the data cen‐
ter has to be expanded to accommodate new projects.
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Optimizing AWS Resources to Reduce Project Costs
Many of the examples in this book have used the default region your account was created
in and on-demand pricing for AWS services. But in reality, many of the AWS products
do not have one single price. In many cases, the costs vary based on the region and type
of service used. Now that we understand the cost comparisons between a traditional
data center and AWS, let’s review what options are available in AWS to meet application
availability, performance, and cost constraints.

Amazon Regions
Amazon AWS has data centers located all around the world. Amazon groups its data
centers based on geographic regions. Currently, the default region when you create a
new account is US West Oregon. Figure 6-1 shows a number of the AWS regions that
you can choose when creating new Job Flows, or EC2 instances, or when accessing your
S3 stored data.

Figure 6-1. Amazon AWS region selections

Amazon attempts to keep similar AWS offerings and software versions in each of its
regions; however, there are differences in each region and you should review the AWS
regions and endpoints documentation to make sure the region in which the application
runs supports the features and functions it needs. AWS Data Pipeline is one example of
an AWS service covered in Chapter 3 that is currently only available in the US East
region.
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The cost of an AWS service will vary based on the AWS region in which the service is
located. Table 6-4 shows the differences in these costs (at the time of writing) of some
of the AWS services used in the earlier chapters.

Table 6-4. AWS region cost comparisons
AWS service US West (Oregon) US West (N. California) EU (Ireland) Asia Pacific (Tokyo)

EC2 Linux large $0.240 per hour $0.260 per hour $0.260 per hour $0.350 per hour

S3 first 1 TB/month $0.095 per GB $0.105 per GB $0.095 per GB $0.100 per GB

EMR EC2 large $0.300 per hour $0.320 per hour $0.320 per hour $0.410 per hour

Looking at these cost differences, you will note there is only a small cost difference
between the regions for each of these services. Though the differences look small, the
percentage increase can be significant. For example, running the same EC2 instance in
Tokyo instead of Oregon will be a 46 percent increase per hour. Let’s review the cost of
a small data analysis app running in each region using the following AWS services:

• 10 large EC2 node Amazon EMR cluster
• 1 terabyte of S3 storage

Looking at this small example application using the AWS Simple Monthly Calculator,
you can see that the small difference in the costs in each region for an app can cause the
real costs to vary by thousands of dollars per year, simply depending on the region in
which the application is run. Table 6-5 shows how the costs can add up simply by
changing AWS regions.

Table 6-5. Example app monthly costs per region
US West (Oregon) US West (N. California) EU (Ireland) Asia Pacific (Tokyo)

$2,519.59 per month $2,691.57 per month $2,680.63 per month $3,410.77 per month

Of course, cost is only one factor to consider in picking a region for the application.
Performance and availability could be more important factors that may outweigh some
of the cost differences. Also, where your data is actually located (aka data locality), the
type of data you are processing, and what you plan to do with your results are other key
factors to include in selecting a region. The time it takes to transfer your data to the US,
or country-specific rules like the EU Data Protection Directive, may make it prohibitive
for you to transfer your data to the cheapest AWS region. All of these factors need to be
considered before you just pick the lowest cost region.

Amazon Availability Zones
Amazon also has several availability zones within each region. Zones are separate data
centers in the same region. Amazon regions are completely isolated from one another,
and the failure in one region does not affect another—this is not necessarily the case for
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zones. These items are important in how you design your application for redundancy
and failure. For mission-critical applications, you should run your application in mul‐
tiple regions and multiple zones in each region. This will allow the application to con‐
tinue to run if a region or a zone experiences issues. This is a rare, but not completely
unheard of, event. The most recent high-profile outage of an AWS data center was the
infamous Christmas Eve 2012 outage that affected Netflix servers in the US East (N.
Virginia) region.

Maintaining availability of your app and continued data processing is important. Zones
and regions may seem less important because you aren’t running the data centers. How‐
ever, these become useful concepts to be aware of because running an application in
multiple regions or availability zones can increase the overall AWS charges incurred by
the application. For example, if an application was already using AWS services for a
number of other projects in one region in it may make sense to continue to use this
same region for other AWS projects. Amazon currently charges $0.02 per gigabyte for
US West (Oregon) to move your S3 data to another Amazon region. Other services, like
Amazon’s Relational Database Service (RDS), have higher charges for multi-availability
zone deployments.

EC2 and EMR Costs with On Demand, Reserve, and Spot Instances
Many of the earlier examples focused on EC2 and EMR instance sizes. Amazon also has
a number of pricing models depending on a project’s instance availability needs and
whether an organization is willing to pay some upfront costs to lower hourly usage
costs. Amazon offers the following pricing models for EC2 and EMR instances:
Pay as you go: on-demand

With on-demand instances, Amazon allows you to use EC2 and EMR instances in
its data center without any upfront costs. Costs are only incurred as resources are
used. If the application being built has a limited lifespan, or a proof of concept needs
to be developed to demonstrate the value of a potential project, on-demand in‐
stances may be the best choice.

Reserve instances
With reserve instances, an upfront cost is paid for instances that will be used on a
project. This is very similar to the traditional data center model, but can be a good
choice to match an organization’s internal annual budgeting and purchasing pro‐
cesses. A one-year or three-year agreement with Amazon can reserve a number of
instances. Purchasing reserve instances lowers the hourly usage rate in some cases
to as low as 30% of what would be paid for on-demand instances. Reserve instances
can greatly lower costs if the application is long-term and the EC2 and EMR capacity
needs are well known over a number of months or years.
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Spot instances
Spot instances allow an organization to bid on the price for the spare EC2 or EMR
compute capacity that exists at the time within AWS. Using spot instances can sig‐
nificantly lower the cost of an application’s operation if the application can grace‐
fully deal with instance failure and has flexibility in the amount of time it takes to
complete a Job Flow or the operations inside an EC2 instance. Spot instances be‐
come available once the going rate is equal to or less than the target price. However,
once the target price goes above a bid price, the spot instances will be terminated.
Task instances from the EMR examples are perfect candidates for spot instances in
Amazon EMR Job Flows because they do not hold persistent data and can be ter‐
minated without causing a Job Flow to fail.

Reserve Instances
If an application will run for an extended period of time every month, using reserved
instances is probably the most cost-effective option for an application. The hourly
charges are lower, and reserve instances are not subject to early termination like spot
instances. Reserve instances are purchased directly through the EC2 dashboard (see
Figure 6-2).

Figure 6-2. Purchasing AWS reserve instances

There are a number of key items to be aware of when you are purchasing reserve in‐
stances. Figure 6-2 shows purchasing reserve instances in a specific zone in a specific
region. This is important because when a Job Flow is created, it needs to use instances
from the same availability zone in order to use the purchased reserve instances. If a
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different availability zone is chosen or you allow Amazon to choose one for you, the Job
Flow will be charged the on-demand rate for any EC2 instances used in EMR.

Currently the only ways of specifying the availability zone when launching a new cluster,
or Job Flow, is by specifying the availability zone in the Hardware Configuration when
creating a new cluster, using the Elastic MapReduce command-line tool or the AWS
SDK. Example 6-1 shows creating a Job Flow using the command line. The
availability-zone option specifies the zone in which the job is created so the reserved
instances can be used.

Example 6-1. Specifying an availability zone on a Job Flow
hostname$ elastic-mapreduce --create --name "Program EMR Job Flow Reserve"
--num-instances 3
--availability-zone us-west-2a 
--jar s3n://program-emr/log-analysis.jar
--main-class com.programemr.LogAnalysisDriver
--arg "s3n://program-emr/sample-syslog.log"
--arg "s3n://program-emr/run0"
Created job flow j-2ZBQDXX8BQQW2

The availability-zone argument lets you specify the exact zone where you
want to create a Job Flow. This can allow you to use a purchased reserved instance
in EMR.

The exact types of instances used by a job flow can be determined by running the
command-line utility with the describe command-line option. Information is also
available by reviewing the Hardware Configuration section in the Cluster Details page
in the EMR Console. Figure 6-3 shows information on the cluster groups, bid price, and
instance counts used.
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Figure 6-3. Reviewing instance information used in the EMR Console

Spot Instances
Spot instances can make sense for task instances because they do not hold persistent
data like the core and master nodes of the EMR cluster. The termination of a task node
will not cause the entire Job Flow to terminate.

Technically, you can select spot instances for any of the nodes in the cluster, and use
them via the EMR Management Console, CLI, or the AWS SDK. In bidding for spot
instances, you can check the current price by checking the AWS spot instance page for
your region. Figure 6-4 shows using spot instances for the task nodes and setting a bid
price of $0.01.
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Figure 6-4. Using spot instances when creating a Job Flow

Additional spot instances—or really any instance type—can be added to a Job Flow that
is currently running. This may be useful if an application is getting behind and additional
capacity is needed to reduce a backlog of work. This functionality is available using the
Resize button on the Cluster Details page of a running Job Flow, the command-line
tool, or the AWS API. Here is an example of adding five spot task instances to a running
Job Flow:

./elastic-mapreduce --jobflow JobFlowId \ --add-instance-group task --

instance-type m1.small \ --instance-count 5 --bid-price 0.01

Reducing AWS Project Costs
There are a number of key areas you can focus on to reduce the execution costs of an
AWS project using EC2 and EMR. Keeping the following items in mind during devel‐
opment and operation can reduce the monthly AWS charges incurred by an application.

EMR and EC2 usage billed by the hour
One of the quirks in how AWS charges for services is that EC2 and EMR usage is charged
on an hourly basis. So if application fires up a test using a 10-instance EMR cluster that
immediately fails and has an actual runtime of only one minute, you will still be charged
for 10 hours of usage. This is one hour for each instance that ran for one minute. If the
application is started again 10 minutes later, the remaining time left in the hour cannot
be reclaimed by the newly running instances and new charges are incurred. To reduce
this effect, you can do the following on your project:
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• Use the minimum cluster size when developing an application in AWS. The appli‐
cation can be scaled up once it is ready to launch for production usage or load
testing.

• Amazon EMR allows Job Flow usage to be monitored through its monitoring tool
CloudFront. There is CloudFront Monitoring for Job Flows in the Monitoring
section of the Cluster Details page, as shown in Figure 6-5. You can review Job Flow
usage and verify how much of your Job Flow activity is processing data instead of
waiting for data to arrive. This allows the application to be monitored over time so
resources can be increased or decreased as load varies over the life of the application.

Figure 6-5. CloudFront monitoring of a Job Flow

Setting the Amazon EMR cluster size to a node level equal to or less
than the expected volume can lead to significant cost savings. An Am‐
azon EMR cluster can be resized after it has been started, but you will
typically only want to increase the cluster size. Reducing the number
of data nodes in an Amazon EMR cluster can lead to Job Flow fail‐
ure or data loss. For more information on resizing an Amazon EMR
cluster, review Amazon’s article on resizing a running cluster.

Cost efficiencies with reserved and spot instances
Earlier in the chapter, we discussed the different instance purchasing options and how
these instance types could be used by the application. To help users better understand
the costs with different execution scenarios, Amazon provides a general guide to help
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you decide when purchasing reserved instances would be the right choice to lower the
operational costs of running AWS services.

Using the small data analysis application discussed earlier in the chapter, let’s review a
number of scenarios of running the application in each region using the following AWS
services for 50% of the month.

• 10 large EC2 node Amazon EMR cluster
• 1 terabyte of S3 storage

In the case of on-demand instances we can use, the AWS Simple Monthly Calculator to
calculate the monthly costs incurred. There are no upfront costs for on-demand in‐
stances, only monthly costs for usage of the instances.

If you are willing to pay an upfront cost to get reserved EC2 capacity, you can get a lower
hourly charge per EC2 instance. This lowers the monthly utilization costs for instances.
Using reserved instances and assuming we will fall under Amazon’s heavy utilization
category, you can see the costs start to come down, even with only 50% monthly usage,
in Table 6-6.

However, we can gain the greatest cost savings by combining the use of reserved in‐
stances and spot instances. If your application has fluctuating loads or there is flexibility
in the time to complete the work in the Job Flows, a portion of the capacity could be
allocated as spot instances. Looking at this scenario using current spot prices, we can
see that the hourly cost savings approach the cost of reserved instances without the
upfront costs. Of course, the benefits of this structure are dependent on the availability
and prices of spot instances. Table 6-6 shows the cost comparisons of the same appli‐
cation utilizing each of these cost options.

Table 6-6. AWS on-demand, reserved, and spot instance cost scenarios
AWS on-demand service Costs AWS reserved service Costs AWS reserved and spot

service
Costs

10 EC2 large upfront cost $0 10 EC2 large upfront cost $10,280.00 5 EC2 large upfront cost $5,140.00

10 EC2 Linux large $878.41 10 EC2 reserved Linux large $336.72 5 EC2 reserved Linux large $168.36

0 EC2 Linux spot large $0 0 EC2 Linux spot large $0 5 EC2 Linux spot large $141.12

S3 1 TB $95.00 S3 1 TB $95.00 S3 1 TB $95.00

Total per month $973.41 Total per month $431.72 Total per month $404.48

Total for 3 years $35,042.76 Total for 3 years $25,821.92 Total for 3 years $19,701.28
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In general, if an application is up and running and consuming EC2 or
EMR hours for more than 40% of the month, it makes sense to start
purchasing reserved instances to save on monthly charges. Amazon
lists the break-even points between on-demand instances and the var‐
ious reserved utilization levels on the AWS EC2 website.

Project storage costs
Data analysis projects tend to consume vast amounts of storage. Amazon provides a
number of storage options to retain data and classifies the storage options as standard,
reduced redundancy, and Glacier storage. Let’s look at each of these and review the
benefits and costs of each option.
Standard storage

This is the default storage on anything stored in S3. Standard storage items are
replicated within the same facility and across several availability zones, so the data
has a very low likelihood of being lost. This type of storage is great if this is a primary
resource for the data that is not stored durably somewhere else. Standard storage
is also a good option if data lives only in the cloud or the cost and time of reloading
the data into S3 is too high to sustain a loss. Standard storage is the most expensive
S3 storage option, however.

Reduced redundancy storage
Data can also be stored with less redundancy in S3. Standard storage makes three
copies of a data element in a region, whereas reduced redundancy storage makes
only two copies of the data. This is still fairly robust durability. Reduced redundancy
can be set on any object uploaded to S3. This type of storage may be good if the data
is stored somewhere else in a durable manner or if the data has a limited lifespan.
Reduced redundancy storage is roughly 25% cheaper than standard storage.

Glacier storage
Glacier is Amazon’s data archival service. Data stored in Glacier may take several
hours to retrieve and is best for data that is rarely accessed. This type of storage is
best for data that has already been processed, but may need to be retained for com‐
pliance purposes or to generate reports at a later point in time. Glacier is Amazon’s
lowest cost storage option at only $0.01 per gigabyte.

Data life cycles
In many projects, you process your data and then need to retain that data for a number
of years, often for compliance or reporting reasons. Keeping this data around where it
is immediately available and stored on standard storage can become very expensive. In
S3, you can set up a data life cycle policy on each of your S3 buckets. With a life cycle
rule, you can have Amazon automatically delete or move your data to Glacier after a
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predefined time period. Figure 6-6 shows the configuration setting for a retention period
of 60 days. A rule can be created on any bucket in S3 to move data to Glacier after a
configurable period of time.

Figure 6-6. Defining an S3 life cycle rule

Let’s look at an example of how this will save on project costs.

Consider an organization with a one-year data retention policy that receives one tera‐
byte of data every month, but only needs to generate a report at the end of each month.
The organization keeps two months of data on live S3 storage in case the previous
month’s report needs to be rerun. At the end of this year, 12 terabytes of data are stored
at Amazon. Table 6-7 shows the cost comparisons of different storage policies and how
you can achieve cost savings using a data life cycle policy while still allowing the most
recent data to be immediately retrievable.

Table 6-7. Data storage cost comparisons
Storage strategy Annual cost

1TB per month using S3 standard storage only $6,420

1TB per month using S3 reduced redundancy storage only $5,136

1TB per month using S3 standard storage with Glacier 60-day retention $2,735
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Storage strategy Annual cost

1TB per month using Glacier storage only $780

1TB per month using S3 standard storage with Glacier 60-day retention $2,735

Amazon Tools for Estimating Your Project Costs
This chapter covered a number of key factors in evaluating a project in the traditional
data center and using AWS services. The examples used in this chapter may vary greatly
from the application for your organization. The following Amazon tools were used to
demonstrate many of the scenarios in this chapter and will be useful in estimating costs
for your project:
Amazon’s Total Cost of Ownership calculator

This is useful in comparing AWS costs to traditional data center costs for an appli‐
cation.

AWS Simple Monthly Calculator
This helps develop monthly cost estimates for AWS services, and scenarios can be
saved and sent to others in the organization.

Try these tools out on your project and see what solutions will work best for your or‐
ganization.
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APPENDIX A

Amazon Web Services Resources and Tools

Throughout the book, we provided a number of the AWS links and demonstrated the
tools. This appendix serves as a snapshot of resources that are useful for planning and
building applications utilizing Amazon EMR and various other supporting services and
information.

Amazon AWS Online Resources
The examples and information represented costs and services available at the time of
writing this book. Amazon regularly adds services, new service options, and competitive
pricing. We strongly recommend reviewing the latest information on AWS before start‐
ing your project.

The following links and information on Amazon’s AWS site should be helpful in using
and understanding the services in this book.
Amazon Web Services (AWS) home page

This is a starting point for learning about Amazon Web Services and signing up for
service.

Amazon Elastic MapReduce (EMR)
This is the service home page for Amazon Elastic MapReduce. The site provides a
detailed description of Amazon Elastic MapReduce, third-party software installa‐
tion options, and detailed pricing and configuration information.

Amazon Elastic Compute Cloud (EC2)
This is the service home page for Amazon Elastic Compute Cloud. The site provides
a detailed description of Amazon EC2 and detailed pricing information. Amazon
EC2 is used for a number of the source machines and to run tasks separate from
Amazon EMR throughout the book.
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Amazon Simple Storage Service
This is the service home page for Amazon Simple Storage Service (S3). The site
provides a detailed description of Amazon S3 and pricing information. Amazon S3
is used to store input and output data for Amazon EMR data analysis. Many of the
scripts and applications used for data analysis are stored in S3, and their S3 location
is specified in configuring Amazon EMR Job Flows.

Amazon Glacier
This is the service home page for Amazon Glacier. Amazon Glacier is a low-cost,
long-term storage solution for data in the book that may be needed in the future,
but is not currently being processed by EMR or reviewed by system users. Amazon
Glacier can be used for cost savings compared to online S3 storage.

AWS Data Pipeline
This is the service home page for AWS Data Pipeline. Data Pipeline is used to
automate EMR processing and reduce the administrative burden of maintaining
an EMR application in AWS.

Amazon AWS Cost Estimation Tools
When one transitions from internal systems to cloud-based solutions like AWS, the
discussion almost always comes down to considerations around cost. In Chapter 6, we
covered numerous real-world scenarios and estimation techniques to review project
costs. In running through the scenarios, we used the following online cost estimation
tools to review and compare costs in the scenarios.
Amazon Web Services Simple Monthly Calculator

This online calculator allows you to input the resources you expect to use in AWS
and determine the monthly cost of those services. The tool also allows you to “Save
and Share” your calculations, and produces a URL that can be given to others on
the project team or stakeholders for review.

Amazon Web Services Economics Center
The Economics Center helps you compare the costs of running an application in a
traditional data center and running the same application in AWS. This tool can be
useful in determining cost savings and comparing available resources inside an
organization.

AWS Best Practices and Architecture
Amazon provides a number of critical documents that help organizations start building
their applications using best practices. Also, for organizations that use third-party com‐
ponents like Microsoft Windows, Oracle, Red Hat Linux, and others, Amazon provides
a number of already configured EC2 instances and information on how to build your
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own Amazon Machine Images (AMI). The following links at AWS are useful for projects
that need this information:
Amazon Architecture Center

This AWS site helps developers review software reference architectures that were
designed to make best use of AWS services. The site can be useful in building a new
application or transitioning an existing application over to AWS. The information
will help the development team build applications in AWS that minimize downtime
and optimize scalability and performance.

Amazon Security Center
Security is one of the top reasons many organizations have been hesitant to move
their critical systems to cloud service providers like AWS. Amazon provides a great
deal of information on the security of AWS and its AWS data centers on this site.
Information on how AWS meets the compliance regulations for a number of in‐
dustry compliance regimes like PCI, HIPAA, and others is also published on this
site.

Amazon EC2 Instances
This site demystifies the Amazon EC2 instance sizes of small, medium, large, extra
large, and so on, and maps these sizes to their physical equivalents of CPU, memory,
and disk space allocations.

Create Your Own AMI
Amazon AWS has many of the common software configurations that many organ‐
izations use for applications. However, you may want to build an Amazon Machine
Image of special or in-house software so you can instantly start a preconfigured
image with your software. This guide provides details on how to build a custom
image to run inside EC2 or EMR.

Amazon EMR Distributions
As a developer in Amazon EMR, you must understand what features and APIs are
available. Fortunately, Amazon has extensive documentation of all of its AWS services
including developer documentation of EMR.

Amazon regularly updates the version of Hadoop and applies patches to integrate Ha‐
doop with AWS infrastructure and services. Table A-1 lists the versions of Hadoop that
are supported in Amazon EMR as of the writing of this book.

Table A-1. Amazon-supported Hadoop versions
Hadoop version Configuration parameters

1.0.3 --hadoop-version 1.0.3 --ami-version 2.3

0.20.205 --hadoop-version 0.20.205 --ami-version 2.0
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Hadoop version Configuration parameters

0.20 --hadoop-version 0.20 --ami-version 1.0

0.18 --hadoop-version 0.18 --ami-version 1.0

To find out the latest supported versions of Hadoop for EMR, visit the Supported Ha‐
doop Versions section of the EMR Developer Guide.
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APPENDIX B

Cloud Computing, Amazon Web Services,
and Their Impacts

Though cloud computing was originally conceived in the 1960s by pioneering think‐
ers like J.C.R. Licklider—who thought computing resources would become a public
utility like electricity-—it has only been recently with the start of AWS in 2006 and
Windows Azure in 2008 that we have seen businesses seriously moving many of their
core services outside of private data centers. There have been many discussions and
descriptions about what cloud computing is and its value to businesses. However, in
general we characterize it as a set of computing resources, CPU, memory, disk, and the
like that is available to an end user and the interactions that user has with these resources.

AWS Service Delivery Models
There are a number of delivery models for cloud services and how the end user accesses
these resources in the cloud. We will focus on the delivery methods specific to AWS and
the resources used in this book for Elastic MapReduce.

Platform as a Service
Platform as a Service (PaaS) allows the deployment of custom-built applications within
the cloud provider’s infrastructure. Elastic MapReduce is an example of an Amazon
cloud service that is delivered as a PaaS. As a user, you can deploy a number of precon‐
figured Amazon EC2 instances with the EMR software preinstalled. You can specify the
compute capacity and memory for these instances, and have access to make configu‐
ration changes to the EMR software. Amazon takes care of much of the customization
needed for the EMR software to work in its data center and with other Amazon services.
As a user of EMR, you can tune the configuration to your application’s needs and install
much of application through Amazon’s APIs and tools.
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Infrastructure as a Service
Infrastructure as a Service (IaaS) is probably the simplest cloud delivery method, and
one that seems most familiar to many professionals that have developed solutions to
run in private data centers. As a consumer of IaaS services, you have access to computing
resources of CPU, memory, disk, network, and other resources. Amazon’s EC2 is an
example of a cloud service delivered in the IaaS model. You can specify the size of an
EC2 instance and the operating system used, but it is up to you as a consumer of an EC2
instance to install OS patches, configure OS settings, and install third-party applications
and software components.

Storage as a Service
Storage as a Service (SaaS) allows you to store files or data in the provider’s data center.
Amazon S3 and Amazon Glacier are the storage services we use throughout this book.
Amazon charges on a per-gigabyte basis for these services and has replication and du‐
rability options.

We have discussed some of the benefits of AWS throughout the book, but we would be
remiss if we did not cover many of the key issues businesses must consider when moving
critical business data and infrastructure into the cloud.

Performance
Performance in cloud computing can vary widely between cloud providers. This vari‐
ability can be due to the time of day, applications running, and how many customers
have signed up for service from the cloud provider. It is a result of how the physical
hardware of memory and CPU in a cloud provider is shared among all the customers.

Most cloud providers operate in a multitenancy model where a single physical server
may run many instances of virtual computers. Each virtual instance uses some amount
of memory and CPU from the physical server on which it resides. The sharing and
allocation of the physical resources of a server to each virtual instance is the job of a
piece of software installed by the cloud provider called the hypervisor. Amazon uses a
highly customized version of the Xen hypervisor for AWS. As a user of EC2 and other
AWS services, you may have your EC2 instance running on the same physical hardware
as many other Amazon EC2 customers.

Let’s look at a number of scenarios at a cloud provider to understand why variability in
performance can occur. Let’s assume we have three physical servers, each with four
virtual instances running. Figure B-1 shows a number of virtual instances running in a
cloud provider.
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Figure B-1. Physical servers in the cloud with no hypervisor vacancies

Multiple customers are running on the same physical server and kept separated virtually
by the hypervisor. In Figure B-1, Physical Computer A has four virtual instances running
with Customer B, C, and D running at 100% utilization. Physical Computer B does not
have the same load profile with only one instance, Customer A, running an instance at
100% utilization. Physical Computer C does not have any instances with high resource
utilization and all instances on this computer are running at 25% or less utilization.
Even though Customer A has virtual instances running at low utilization on server A
and server C in this scenario, the software running on server A may run noticeably
slower than the software on server C due to the high load placed on the server by other
virtual instances running on the same physical hardware. This issue is commonly re‐
ferred to as the “noisy neighbor” problem.

We know that cloud providers rarely run at 100% utilization and due to the elasticity
provided in cloud infrastructure, vacancies on an individual server would occur from
time to time. Figure B-2 shows the same physical servers at a later time.

Figure B-2. Physical servers in the cloud with three hypervisor vacancies

Now a number of vacancies have appeared due to some customers turning off excess
capacity. The software on server A may now be performing significantly better and may
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be similar to the performance of server C because server A now has a 50% vacancy in
its hypervisor.

This is an initial shock to many businesses that first move to the cloud when they are
accustomed to dedicated physical servers for applications. AWS provides a number of
ways to tailor cloud services to meet performance needs.
Auto scaling

Amazon allows you to quickly scale up and down additional instances of many of
its AWS services. This allows you to meet variable traffic and compute needs quickly
and only pay for what you use. In a traditional data center, business have to estimate
potential demand, and typically find themselves purchasing too much or too little
capacity.

Multiple EC2 configuration options
Amazon has a wide variety of configurations for EC2 instances. They range from
micro instances all the way up to double extra-large instances. Each of the instance
types has a defined allocation of memory and CPU capacity. Amazon lists compute
capacity in terms of EC2 compute capacity. This is a rough measure of the CPU
performance of an early 2006 1.7 GHz Xeon processor and allows businesses to
translate current physical hardware requirements to cloud performance. Elastic
MapReduce uses these EC2 instance types to execute MapReduce jobs. You can find
more information on Amazon EC2 instance types on the AWS website under Am‐
azon EC2 Instance Types.

EC2 dedicated instances
Businesses may have very specialized needs for which they would like greater con‐
trol over the variable aspects of cloud computing, Amazon offers EC2 dedicated
instances as an option for customers with these needs. An EC2 dedicated instance
includes Amazon EC2 instances that run on hardware dedicated to a single cus‐
tomer. This is similar to the traditional data center hosting model where customers
have their own dedicated hardware that only runs their software. A key difference,
though, is that customers still only pay for the services they use and can scale up
and down these dedicated resources as needed. However, there is an extra per-hour
cost for this service that can greatly increase the cost of cloud services. You can find
more information on dedicated EC2 instances on the AWS website under Amazon
EC2 Dedicated Instances.
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Provisioned IOPS
Some applications require a high amount of disk read and write capacity. This is
typically measured as inputs and outputs per second (IOPS). Database systems and
other specialized applications are typically more bound by IOPS performance than
CPU and memory. Amazon has recently added the ability to specify IOPS capacity
and needs to its AWS EC2 instances.

We explored the performance of Elastic MapReduce throughout this book and helped
you understand how to size your AWS capacity. Chapter 6, in particular, looked at the
costs and trade-offs of different AWS options for our Elastic MapReduce application.

Elasticity and Growth
IT elasticity and the ability to quickly scale up and scale down is a major reason why
many enterprises begin to look at moving resources to the cloud. In the traditional IT
model, operations and engineering management need to evaluate what they believe will
be expected demand, and scale up IT infrastructure many months before the launch of
a project or a major initiative. Throughout the lifetime of an application there is an
ongoing cycle of estimating future IT resource demand with actual application demand
growth. This typically creates periods of excess and undercapacity throughout the life‐
time of an application due to the time between demand estimation and bringing new
capacity online in the data center.

AWS and cloud services reduce the time between increased demand for services and
capacity being available to meet that demand. Amazon Elastic MapReduce allows you
to scale capacity in the following ways.

Fixed Capacity
You can specify the size and number of each of the EC2 instances used in your EMR
Job Flows by specifying the instance count for each of the EMR Job Flow components.
Figure B-3 shows an example of the New Cluster, or Job Flow, configuration screen
where the number of EC2 instances are specified.
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Figure B-3. Configuring compute capacity for an Amazon EMR Job Flow

The size and number of instances will affect the amount of data you can process over
time. This is the capacity the job flow will use throughout its lifetime, but can be adjusted
using Amazon’s command-line tools or EMR Console to increase the instance counts
while the job is running. You will be charged reserve or on-demand hourly rates unless
you choose to request spot instances.

Variable Capacity
Amazon offers spot instance capacity for a number of the AWS services. Spot instances
allow customers to bid for spare compute capacity by naming the price they are willing
to pay for additional capacity. When the bid price exceeds the current spot price, the
additional EC2 instances are launched. Figure B-4 shows an example of bidding for spot
capacity for an EMR Job Flow.

We explored spot capacity in greater detail in Chapter 6, where we reviewed the cost
analysis of EMR configurations.
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Figure B-4. Bidding for spot capacity for an Amazon EMR Job Flow

Security
Concern about security is one of the biggest inhibitors to using cloud services in most
organizations. According to a 2009 Forrester survey of North American and European
businesses, 50% said their chief reason for avoiding cloud computing was security con‐
cerns. Within five years, however, Forrester expects cloud security to be one of the
primary drivers for adopting cloud computing.

So why has there been such a change in the view of security in the cloud? A lot of this
has come from the cloud providers themselves realizing that a key to increasing cloud
adoption is a focus on security. IBM and Amazon AWS have come out in recent years
with a robust set of details on how they protect cloud services and the results of inde‐
pendent evaluations of their security and responses to independent organizations like
the Cloud Security Alliance.

Security Is a Shared Responsibility
Amazon has an impressive set of compliance and security credentials on its AWS Se‐
curity and Compliance Center. Delving deeper into the AWS security whitepapers, cli‐
ents will note that Amazon has clearly stated that security is a shared responsibility in
AWS. Amazon certifies the infrastructure, physical security, and host operating system.
This takes a significant portion of the burden of maintaining compliance and security
off of AWS customers. However, AWS customers are still responsible for patching the
software they install into the infrastructure, guest operating system updates, and firewall
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and access policies in AWS. AWS customers will need to evaluate their in-house policies
and how they translate to cloud services.

Data Security in Elastic MapReduce
Amazon EMR heavily uses S3 for data input and output with Job Flows. All data transfers
to and from S3 are performed via SSL. Also, the data read and written by EMR is subject
to the permissions set on the data in the form of access control lists (ACLs). An EMR
job only has access to the data written by the same user. You can control these permis‐
sions by editing the S3 bucket’s permissions to allow only the applications that need
access to the data to use it.

Amazon has a number of excellent whitepapers at its Security and
Compliance Center. A review of its security overview with your inter‐
nal security team should be done before you move critical compo‐
nents and data to AWS services. Every project should also review the
list of security best practices prior to launch to verify it is compliant
with Amazon’s recommendations. If your organization works with
medical and patient data, make sure to also check out the AWS HI‐
PAA and HITECH compliance whitepapers.

Uptime and Availability
As applications and services are moved to the cloud, businesses need to evaluate and
determine the risk of having an outage of their cloud services. This is a concern even
with private data centers, but many organizations fear a lack of control when they no
longer have physical access to their data center resources. For some, this fear has been
validated by a number of high-profile outages and cloud service providers, including
Amazon AWS services. The most recent was the infamous Christmas Eve AWS out‐
age that took Netflix services offline during the holiday season.

AWS has a number of resources to help customers manage availability and uptime risks
to their cloud services.
Regions and availability zones

Amazon has data centers located in the United States and around the globe. These
locations are detailed as regions, and customers can pick multiple regions when
setting up AWS services to reduce the risk of an outage in an Amazon region. Each
region has redundancy built in, with multiple data centers laid out in each region
in what Amazon calls availability zones. Amazon’s architecture center details how
to make use of these features to build fault-tolerant applications on the AWS
platform.
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Service level agreement (SLA)
Amazon provides uptime guarantees for a number of the AWS services we covered
in this book. These SLAs provide for 99.95% uptime and availability for the EC2
instances, and 99.9% availability for S3 data services. Businesses are eligible for
service credits of up to 25% when availability drops below certain availability
thresholds.
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APPENDIX C

Installation and Setup

The application built throughout this book makes use of the open source software Java,
Hadoop, Pig, and Hive. Many of these software components are preinstalled and con‐
figured in Amazon EMR as well as the other AWS services used in examples. However,
to build and test many of the examples in this book, you many find it easier or more in
line with your own organizational policies to install these components locally. For the
Java MapReduce jobs, you will be required to install Java locally to develop the Map‐
Reduce application.

This appendix covers the installation and setup of these software components to help
prepare you for developing the components covered in the book.

Prerequisites
Many of the book’s examples (and Hadoop itself) are written in Java. To use Hadoop
and build the examples in this book, you will need to have Java installed. The examples
in this book were built using the Oracle Java Development Kit. There are now many
variations of the Java JDK available from OpenJDK to GNU Java. The code examples
may work with these, but the Oracle JDK is still widely available, free, and the most
widely used due to the long history of development of Java under Sun prior to Oracle
purchasing the rights to Java. Depending on the Job Flow type you are creating and
which packages you want to install locally, you may need multiple versions of Java in‐
stalled. Also, a local installation of Pig and Hadoop will require Java v1.6 or greater.

Hadoop and many of the scripts and examples in this book were developed on a Linux/
Unix-based system. Development and work can be done under Windows, but you
should install Cygwin to support the scripting examples in this book. When installing
Cygwin, make sure to select the Bash shell and OpenSSL features to be able to develop
and run the MapReduce examples locally on Windows systems.
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Hadoop, Hive, and Pig require the JAVA_HOME environment variable to
be set. It is also typically good practice to have Java in the PATH so scripts
and applications can easily find it. On a Linux machine, you can use
the following command to specify these settings:

export JAVA_HOME=/usr/java/latest
export PATH=$PATH:$JAVA_HOME/bin

Installing Hadoop
The MapReduce framework used in Amazon EMR is a core technology stack that is
part of Hadoop. In many of the examples in this book, the application was built locally
and tested in Hadoop before it was uploaded into Amazon EMR.

Even if you do not intend to run Hadoop locally, many of the Java libraries needed to
build the examples are included as part of the Hadoop distribution from Apache. The
local installation of Hadoop also allowed us to run and debug the applications prior to
loading them into Amazon EMR and incurring runtime charges testing them out. Ha‐
doop can be downloaded directly from the Apache Hadoop website.

In writing this book, we chose to use Hadoop version 0.20.205.0. This version is one of
the supported Amazon EMR Hadoop versions, but is currently in the Hadoop download
archive. Amazon regularly updates Hadoop and many of the other open source tools
used in AWS. If your project requires a different version of Hadoop, refer to Amazon’s
EMR developer documentation for the versions that are supported.

After you install Hadoop, it is convenient to add Hadoop to the path and define a variable
that references the location of Hadoop for other scripts and routines that use it. The
following example shows these variables being added to the .bash_profile on a Linux
system to define the home location and add Hadoop to the path:

$ export HADOOP_INSTALL=/home/user/hadoop-0.20.205.0
$ export PATH=$PATH:$HADOOP_INSTALL/bin

You can confirm the installation and setup of Hadoop by running it at the command
line. The following example shows running the hadoop command line and the version
installed:

$ hadoop version
Hadoop 0.20.205.0
Subversion https://svn.apache.org/repos/asf/hadoop/
common/branches/branch-0.20-security-205 -r 1179940
Compiled by hortonfo on Fri Oct  7 06:26:14 UTC 2011
$
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Hadoop can be configured to run in a standalone, pseudodistributed,
or distributed mode. The default mode is standalone. In standalone
mode, everything runs inside a single JVM, and this mode is most
suitable for debugging and testing MapReduce jobs. The other Ha‐
doop modes are suited to building out a true Hadoop cluster with
multiple servers acting as Hadoop nodes. Because this book is about
using Amazon EMR as your Hadoop cluster, we assume you will be
using Hadoop only for MapReduce development and testing. If you
would like to build out a more full-blown Hadoop cluster, O’Reilly has
a great book on Hadoop, Hadoop: The Definitive Guide, 3E, by Tom
White.
Hadoop has a fairly aggressive release cycle of close to 24 releases in
18 months. Amazon does not update Amazon EMR as aggressively, so
always review Amazon’s supported Hadoop version when starting new
projects!

Building MapReduce Applications
The majority of the code samples and applications built in this book are written in Java.
Most Java developers today use a Java IDE to develop Java applications. The most pop‐
ular Java IDEs available today are Eclipse, NetBeans, and IntelliJ. Each of these IDEs
has its strengths and weaknesses, but any of these environments can be used to build
and develop the Java MapReduce applications in this book.

We used the Eclipse Java IDE and installed the Eclipse Maven plug-in, m2eclipse, to
manage application dependencies. You can install the m2eclipse plug-in through the
Install New Software option inside of Eclipse.

To include the dependencies needed to build the MapReduce applications, create a
Maven project inside of Eclipse by selecting File→New→Other. The Maven project op‐
tion should be available after you install the m2eclipse plug-in. Figure C-1 shows the
Maven New Project option in Eclipse.
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Figure C-1. Creating an Eclipse Maven project

Select the program and project name of your application when going through the Eclipse
New Project Wizard. After the project is created, the Hadoop dependencies will need
to be added to the project so the application can make use of the Hadoop base classes,
types, and methods. You can add the Hadoop core dependencies by selecting the
pom.xml file that is in the root of the project. The pom.xml lists the Maven project details
and the dependencies of the project. After opening the pom.xml file in Eclipse, click on
the Dependencies tab to add new dependencies. The Hadoop core JAR files can be
searched for and added to the project as shown in Figure C-2.
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Figure C-2. Adding Hadoop dependencies in Eclipse

Running MapReduce Applications Locally
With Hadoop installed locally, you can build and test your MapReduce application
locally before uploading to Amazon EMR. The parameters and settings to the hadoop
command-line should look very similar to the parameters passed to Amazon EMR. To
test locally, run the hadoop command line application by telling it to execute the Map‐
Reduce JAR with the driver class and specified input and output locations. The following
shows an example local run of an application:

$ hadoop jar MyEMRApp.jar \
    com.programemr.MyEMRAppDriver \
    NASA_access_log_Jul95 \
    ~/output
13/10/13 22:02:04 WARN util.NativeCodeLoader: Unable to load native-hadoop ...
13/10/13 22:02:04 INFO mapred.FileInputFormat: Total input paths to process : 1
13/10/13 22:02:04 INFO mapred.JobClient: Running job: job_local_0001
13/10/13 22:02:04 INFO mapred.Task:  Using ResourceCalculatorPlugin : null
13/10/13 22:02:04 INFO mapred.MapTask: numReduceTasks: 1
13/10/13 22:02:04 INFO mapred.MapTask: io.sort.mb = 100
13/10/13 22:02:04 INFO mapred.MapTask: data buffer = 79691776/99614720
13/10/13 22:02:04 INFO mapred.MapTask: record buffer = 262144/327680
13/10/13 22:02:05 INFO mapred.JobClient:  map 0% reduce 0%
13/10/13 22:02:06 INFO mapred.MapTask: Starting flush of map output
...
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Installing Pig
In Chapter 4, we explored utilizing Apache Pig to develop Job Flows for Amazon EMR.
We developed and tested many of the Pig scripts used in this book utilizing an interactive
Pig session hosted at Amazon. This allows you to directly interact with an Amazon EMR
cluster with Hadoop and Pig preconfigured and installed for you.

Many organizations, however, may not want to do development on a live cluster or incur
the AWS charges for development and testing efforts. Just like Hadoop, Apache Pig can
be downloaded and installed locally. Hadoop and Java are prerequisites for Pig, and you
will need to install them prior to using Pig. The latest Pig version supported by Amazon
EMR at the time of this writing was v0.11.1. You can download Apache Pig directly from
the Apache Pig website.

After you install Pig, run pig at the command line to confirm the installation and exe‐
cution of Pig:

$ ./pig
2013-10-14 21:52:53,964 [main] INFO  org.apache.pig.Main -
Apache Pig version 0.11.1 (r1459641) compiled Mar 22 2013, 02:13:53
2013-10-14 21:52:53,964 [main] INFO  org.apache.pig.Main -
Logging error messages to: /Users/piguser/devtools/pig-0.11.1/
bin/pig_1381801973961.log
2013-10-14 21:52:53,982 [main] INFO  org.apache.pig.impl.util.Utils -
Default bootup file /Users/user/.pigbootup not found
2013-10-14 21:52:54,153 [main] INFO  org.apache.pig.backend.hadoop.
executionengine.HExecutionEngine - Connecting to hadoop file
system at: file:///
2013-10-14 21:52:54.219 java[2611:1703] Unable to load realm info
from SCDynamicStore
grunt>

Installing Hive
As with Pig, the easiest way to get Hive and Hadoop up and running and configured is
utilizing an Amazon EMR interactive Job Flow. Creating an interactive session in Am‐
azon EMR is covered in Chapter 4. However, if you need to install Hive, you can down‐
load it from the Apache Hive website.

After installing Hive, it is convenient to add Hive to the path and define a variable that
references the location of Hive for other scripts. The following example shows these
variables being added to the .bash_profile on a Linux system to define the home
location and add Hive to the path:

$ export HIVE_HOME=/home/user/hive-0.11.0
$ export PATH=$PATH:$HADOOP_INSTALL/bin:$HIVE_HOME/bin
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Just like with Pig, you can confirm the installation and setup of Hive by running it at
the command line:

$ hive

Logging initialized using configuration in jar:file:/Users/user/devtools/
hive-0.11.0/lib/hive-common-0.11.0.jar!/hive-log4j.properties
Hive history file=/tmp/user/hive_job_log_user_6659@localhost.
local_201310201926_1381209376.txt
2013-10-20 19:26:12.324 java[6659:1703] Unable to load realm info
from SCDynamicStore
hive>

Hive is very dependent on the version of Hadoop installed, and the
project does not keep many of the previous archived versions of Hive
that are needed for the earlier versions of Hadoop. Though the Apache
Hive website notes that the latest versions of Hive are compatible with
Hadoop version 0.20.205.0, running Hive against this version results
in an ALLOW_UNQUOTED_CONTROL_CHARS error. If you need to run Hive
locally for your project, we recommend running Hadoop v1.0.3, which
is also a version of Hadoop currently available in Amazon EMR.
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We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.
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Amazon Web Services (AWS)
basics of, viii
benefits of, 1
cloud licensing, 111
command-line interface, 59
data collection/analysis with (see data analy‐
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free tier access, x
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key services of, 2
prerequisites to working with, viii, xi
project planning in, 109–127
resources and tools for, 129–132
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service delivery models, 133
sign up for, ix
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B
Bash shell scripts, 18
best practices, 131
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loading data into, 23
management of, 24
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cloud computing

AWS service delivery models, 133
definition of, 133
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software licensing models, 110
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command-line interface, 59
complexity, EMR vs. Hadoop, 9
coordinated universal time (UTC), 46
core group instance
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key functions of, 6

cost management (see project planning)
Create Table statement, 89
Cron Style Scheduling, 63

D
daemon logs, 35
data analysis

basic approach to, 11
benefits of EMR for, 2
custom JAR for, 25, 74
data processing in, 15
EMR log analyzer example, 28
frequency analysis, 15
logfiles location and format, 14
viewing results, 31
with Hive, 87–95
with Pig, 75–86, 95

data analysis application
component areas of, 10
functional architecture of, 9
infrastructure costs, 113
initial building block, 40
log analysis workflow, 14
workflow architecture of, 44

data centers
AWS regions, 116
cost comparisons, 112
uptime and availability of, 140

data cleansing, 72
data collection

accessing raw data sources, 17
basic approach to, 10
syslog data simulation, 18

data filtering
basics of, 47
driver code, 50
Job flow, 51
mapper code, 48
result analysis, 52
summary counts example, 53
web server logs, 44

data locality, EMR vs. Hadoop, 7
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data loss, preventing, 58
data nodes, adding, 63
data storage

basic approach to, 11
costs of, 125
data life cycles, 126
moving data to S3, 23
security issues, 140

debugging, 32–40
design patterns (see data filtering)
distributed pattern matching, 72
driver procedure

basics of, 25
in data filtering, 50
log analyzer example, 27

DUMP statement, 79

E
EC2 (see Amazon Elastic Compute Cloud)
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finding with data filtering, 47
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Hadoop
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hardware, EMR vs. Hadoop, 8

Hive
basics of, 7, 74, 87
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data analysis with, 90
Hive Query Language (HQL), 88
installation of, 148
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master node connection, 87
running scripts, 93

hostname
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hypervisors, 134

I
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Infrastructure as a Service (IaaS), 134
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insert statement, 90
installation/setup

Hadoop, 144
Java IDE, 145
local installation, 143
of Hive, 148
of Pig, 148
prerequisites to, 143
running MapReduce locally, 147

instance availability, 118
IP address, in web server logs, 45

J
Job Flow

adding JAR steps, 58
cluster types, 74
creation in machine learning example, 106
creation with Hive, 87
creation with Pig, 75
custom JAR for, 25, 74
debugging, 32–40
definition of, 4
failure of, 31, 58

(see also debugging)
for data filtering, 51
log structure, 34
modifying a running, 58
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new job creation, 28, 34, 58
one-time execution vs. scheduling of, 57
parameter definition, 29, 31
sample development of, 13
scheduling with AWS Data Pipeline, 60–71
scheduling with CLI, 57
usage monitoring, 123

jobs logs, 35

K
k-Means clustering, 97
Keep Alive option, 58
key/value pairs

in Pig Job Flow, 76
private key access, 20
processing in map()/reduce() procedures, 15

L
licensing models, 110
Linux AMI micro EC2 instance, 19
load analysis, 41
LOAD statement, 79
Log Uri, 69
logfiles/log messages

Bash generation of, 20
component details, 22
determining messages per second, 15, 25
diversity in, 22
EMR log analyzer example, 28
location and format of, 14
logging statements with Mapper, 32
proprietary formats of, 17
syslog data simulation, 18
web server logs, 44

LogMapper class, 26

M
machine learning

basic approach to, 11
basics of, 97
benefits of Python, 99
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mapper code, 101
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study resources, 97, 108
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custom JAR for, 25
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O
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performance
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improving, 136
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Pig
basics of, 7, 75
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project planning
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cost model development, 109
cost reduction tips, 122
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pricing models per instance availability, 118
private data center vs. AWS, 112, 140
software licensing, 110
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Python
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input data, 100
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mapper code, 101
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custom JAR for, 25
for data filtering, 49
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reduced redundancy storage, 125
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online, 129
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scheduling with, 57
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scaling, 136
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Amazon Security Center, 131
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private key access, 20
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Service Level Agreement (SLA), 141
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