
www.it-ebooks.info

http://www.it-ebooks.info/

PhantomJS Cookbook

Over 70 recipes to help boost the productivity of your
applications using real-world testing with PhantomJS

Rob Friesel

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

FM-2

PhantomJS Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production Reference: 1050614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-192-2

www.packtpub.com

Cover Image by Poonam Nayak (pooh.graphics@gmail.com)

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

FM-3

Credits

Author
Rob Friesel

Reviewers
Jamie Mason

Phil Sales

Ian Walter

Stéphane Wirtel

Commissioning Editor
Julian Ursell

Acquisition Editor
Nikhil Karkal

Content Development Editor
Manasi Pandire

Technical Editor
Nikhil Potdukhe

Copy Editors
Janbal Dharmaraj

Sayanee Mukherjee

Laxmi Subramanian

Project Coordinator
Danuta Jones

Proofreaders
Paul Hindle

Joanna McMahon

Indexers
Hemangini Bari

Tejal Soni

Production Coordinators
Conidon Miranda

Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.it-ebooks.info

http://www.it-ebooks.info/

FM-4

About the Author

Rob Friesel is a senior user interface developer and 10-year veteran at Dealer.com,
where he develops UI frameworks and toolkits for their enterprise platform. He blogs
about and presents on a variety of technologies, but his first love is the front-end. He has
contributed as a credited reviewer to several books on JavaScript and one on Clojure.
He tweets at @founddrama and blogs at http://blog.founddrama.net/.

This book would not have been possible without the support and
encouragement of so many people. I can't possibly name them all, but
there are few who come instantly to mind: the editorial team at Packt
Publishing, everyone at Dealer.com for listening to me ramble about this
stuff, Jonathan Phillips for being my first JavaScript mentor, Mike Fogus
for showing the way, Amy (my wife and partner-in-crime) for giving me the
space, and my sons Holden and Emery for every little worthwhile distraction.

www.it-ebooks.info

Dealer.com
http://blog.founddrama.net/
Dealer.com
http://www.it-ebooks.info/

FM-5

About the Reviewers

Jamie Mason is a consultant JavaScript engineer from the UK. Previously a senior engineer
at BSkyB—one of the UK's largest media organizations—he now helps companies of all shapes
and sizes with their JavaScript architecture, front-end performance, and more. He is the
developer of the popular image optimization tool ImageOptim-CLI, and he tweets about all
things front-end at @fold_left.

Phil Sales is a software development manager who has worked in this role for more than
10 years. He started and managed development and testing teams for various companies,
mostly in the banking domain. Most of his projects have been web application oriented, with
a Java/J2EE flavor. His latest endeavor involves starting up a Manila office for a UK-based
software vendor, with development, testing, and support teams. He has previously reviewed
the book Getting Started with PhantomJS, Aries Beltran, Packt Publishing.

I would like to thank Aries Beltran for getting me involved in reviewing books.
I would also like to thank my wife, Reza and my two boys, Kevin and Sean,
who I hope will learn how to code soon.

www.it-ebooks.info

http://www.it-ebooks.info/

FM-6

Ian Walter is a software developer and designer living in Boston, MA. He likes creating
software solutions that balance functionality and design. He has worked on every step of
the development process, from the design and mockup phase to the deployment and devops
phase, but enjoys working on front-end development the most. He currently works as the
Senior Full Stack Developer at Flashnotes.com, an online marketplace for students.

Stéphane Wirtel is a passionate developer interested in High Availability, Replication, and
Distributed Systems. He is also a core developer of the OpenERP project for six years now,
and a consultant for the High Availability of OpenERP and the SaaS architecture of OpenERP.
He has been a Linux user for 15 years and has been working with Python for a decade. If your
breakfast is composed of Redis, ZMQ, Riak, Flask, Salt, LLVM and Cpython, or Erlang and
Golang, then you will want to discuss this with him.

Stéphane does the promotion of Python through the Python-FOSDEM event (http://www.
python-fosdem.org) at Brussels. He is also a member of the Python Software Foundation
and the Association Francophone of Python (AFPy). You can reach him via http://wirtel.
be or via twitter @matrixise. The OpenERP company (http://www.openerp.com) is his
current employer.

Stéphane is a technical reviewer of the books Getting Started with PhantomJS, Aries Beltran,
Packt Publishing (http://www.packtpub.com/getting-started-with-phantomjs/
book) and Designing for Scalability with Erlang/OTP, Francesco Cesarini and Steve Vinoski,
O'Reilly Media (http://shop.oreilly.com/product/0636920024149.do).

I would like to thank my wife Anne, my daughter Margaux, my family, and
my friends.

www.it-ebooks.info

Flashnotes.com
http://www.python-fosdem.org
http://www.python-fosdem.org
http://wirtel.be
http://wirtel.be
http://www.openerp.com
http://www.packtpub.com/getting-started-with-phantomjs/book
http://www.packtpub.com/getting-started-with-phantomjs/book
http://shop.oreilly.com/product/0636920024149.do
http://www.it-ebooks.info/

FM-7

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Getting Started with PhantomJS 7

Introduction 7
Installing PhantomJS 8
Launching the PhantomJS REPL 10
Running a PhantomJS script 12
Running a PhantomJS script with arguments 14
Running PhantomJS with cookies 16
Running PhantomJS with a disk cache 19
Running PhantomJS with a JSON configuration file 22
Debugging a PhantomJS script 25

Chapter 2: PhantomJS Core Modules 33
Introduction 33
Inspecting the version at runtime 34
Managing cookies with the phantom object 35
Specifying a path for external scripts 39
Setting up a global PhantomJS error handler 42
Controlling the exit status of a PhantomJS script 44
Inspecting command-line arguments 47
Inspecting system environment variables 50
Saving a file from a PhantomJS script 53
Reading a file from PhantomJS 56
Creating a custom module for PhantomJS 60
Loading custom modules in PhantomJS 61

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Chapter 3: Working with webpage Objects 65
Introduction 65
Creating a web page instance in PhantomJS with the webpage module 66
Opening a URL within PhantomJS 68
Generating a POST request from PhantomJS 71
Inspecting page content from a PhantomJS script 74
Including external JavaScript on the page 77
Recording debugger messages 81
Simulating mouse clicks in PhantomJS 84
Simulating keyboard input in PhantomJS 88
Simulating scrolling in PhantomJS 92
Simulating mouse hovers in PhantomJS 96
Blocking CSS from downloading 99
Causing images to fail randomly 104
Submitting Ajax requests from PhantomJS 108
Working with WebSockets in PhantomJS 110

Chapter 4: Unit Testing with PhantomJS 115
Introduction 115
Running Jasmine unit tests with PhantomJS 116
Using TerminalReporter for unit testing in PhantomJS 120
Creating a Jasmine test runner for PhantomJS and every other browser 124
Running Jasmine unit tests with Grunt 126
Watching your tests during development with Grunt 129
Running Jasmine unit tests with the Karma test runner 133
Generating code coverage reports with Istanbul and the Karma test runner 135
Running Jasmine unit tests with Karma and PhantomJS from WebStorm 139
Running QUnit tests with PhantomJS 142
Running Mocha unit tests with PhantomJS 146

Chapter 5: Functional and End-to-end Testing with PhantomJS 151
Introduction 151
Running Selenium tests with PhantomJS and GhostDriver 152
Using WebdriverJS as a Selenium client for PhantomJS 156
Adding Poltergeist to a Capybara suite 160
Taking screenshots during tests with Poltergeist 163
Simulating precise mouse clicks with Poltergeist 166
Installing CasperJS 168
Interacting with web pages using CasperJS 169
End-to-end testing with CasperJS 172
Exporting test results from CasperJS in the XUnit format 176
Detecting visual regressions using PhantomCSS 177

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Chapter 6: Network Monitoring and Performance Analysis 183
Introduction 183
Generating HAR files from PhantomJS 184
Listing CSS properties 187
Generating an appcache manifest 189
Executing a simple performance analysis 192
Executing a detailed performance analysis 195
Executing a YSlow performance analysis with a custom ruleset 201
Automating performance analysis with YSlow and PhantomJS 205

Chapter 7: Generating Images and Documents with PhantomJS 221
Introduction 221
Rendering images from PhantomJS 222
Saving images as Base64 from PhantomJS 226
Rendering and rasterizing SVGs from PhantomJS 228
Generating clipped screenshots from PhantomJS 231
Saving a web page from PhantomJS as a PDF 236
Applying custom headers and footers to PDFs generated from PhantomJS 240
Testing responsive designs with PhantomJS 244

Chapter 8: Continuous Integration with PhantomJS 251
Introduction 251
Setting up PhantomJS in a CI environment 252
Generating JUnit reports 259
Generating TAP reports 267
Setting up a fully covered project in CI with PhantomJS 274

Index 281

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
With all the exciting things going on in the browser space, this is a fantastic time to be
a front-end developer. The family of technologies that we call HTML5 is giving us new
opportunities that were difficult or even impossible just a few years ago, and JavaScript has
flourished alongside it as rich web applications have become the norm. Throughout this time,
the WebKit project has emerged as the leader of this innovative streak. If you are unfamiliar
with WebKit, it is an open source web browser engine with contributors from companies such
as Apple, Google, and Nokia, to name a few. WebKit powers Safari, versions of Chrome,
and PhantomJS.

The reason you are reading this book is because you have discovered PhantomJS and want
to harness its full potential.

PhantomJS is one of the most important innovations in the front-end development tool
chain in the last several years. It has proven to be the ideal environment for lightning-fast
tests, both manual and automated. Since it is simply a specialized build of WebKit, front-end
developers can have confidence that their tests are being executed in a real browser, not a
simulated environment. As it is truly headless, it can be deployed anywhere without the hassle
of configuring Xvfb. Perhaps best of all, PhantomJS is fully scriptable using JavaScript, a tool
that every front-end developer already knows. All these elements combined have uniquely
positioned PhantomJS as the preferred testing environment among front-end developers for
quick feedback and continuous integration.

The PhantomJS Cookbook focuses on using PhantomJS as the preferred testing environment.
This book provides practical recipes that demonstrate the fundamentals of this headless
browser and also help you take advantage of it for a variety of testing tasks. In this book, you
will learn how to integrate PhantomJS into your development workflow at all stages. You will
learn how you can receive immediate feedback from your unit tests. You will learn how to
create a functional test suite that is both fast and automatic. Also, you will learn how to
add PhantomJS to your continuous integration system so that you can make end-to-end
and front-end performance tests first-class citizens of your build.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

2

What this book covers
Chapter 1, Getting Started with PhantomJS, introduces the PhantomJS browser and how
to work with it from the shell. It covers installing PhantomJS and how to run it with different
command-line arguments.

Chapter 2, PhantomJS Core Modules, discusses the core modules in PhantomJS, such as
phantom and system, and covers how to use the fs module to work with the filesystem.
The chapter also explains how to create your own modules and load them into your
PhantomJS scripts.

Chapter 3, Working with webpage Objects, introduces webpage objects and includes
sophisticated strategies for dealing with web page content. You will learn how to interact
with the page, simulate events, and capture those interactions for successful tests.

Chapter 4, Unit Testing with PhantomJS, explores how to use PhantomJS as an environment
for JavaScript unit tests. This chapter focuses on the Jasmine BDD testing framework, but will
also introduce two other popular frameworks, Mocha and QUnit.

Chapter 5, Functional and End-to-end Testing with PhantomJS, demonstrates functional and
end-to-end testing strategies with PhantomJS. The chapter surveys several different functional
testing tools, including Selenium, Poltergeist (a driver for Capybara), and CasperJS.

Chapter 6, Network Monitoring and Performance Analysis, illustrates how to perform automated
performance analysis with PhantomJS. The chapter explores topics such as how to generate
a HAR file for waterfall analysis, and how to use libraries such as confess.js and YSlow for
automated performance analysis.

Chapter 7, Generating Images and Documents with PhantomJS, shows how to generate
images and PDFs with PhantomJS. The chapter provides an overview of PhantomJS' built-in
image rendering features and explains how to apply them.

Chapter 8, Continuous Integration with PhantomJS, demonstrates PhantomJS as part of a
continuous integration (CI) strategy. The chapter surveys CI, using Jenkins as its specimen,
and shows how to fail builds on that system, concluding with a recipe for comprehensive
CI example.

What you need for this book
By and large, the only things that you will need for the recipes in this cookbook are your
normal web development toolkit and PhantomJS. For most recipes, you will not need
anything more than a terminal and a text editor or IDE. Some recipes, such as those that
discuss functional testing or continuous integration, will require other specific pieces of
software to be installed (for example, Selenium, Capybara, Jenkins, and so on), but those
requirements will be discussed in context with those recipes.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

3

Also, many of the recipes in this book illustrate their principles by executing against a
Node.js-based demonstration application. If you wish to follow along with the recipes exactly
as is, you will need to have Node.js version 0.10.2 or greater installed on your system.

Who this book is for
The PhantomJS Cookbook is targeted at experienced web developers who are interested in
using PhantomJS to add a comprehensive testing strategy to their development workflows.
This book assumes that you already have knowledge of the foundational front-end
development skills (such as JavaScript, HTML, and CSS) and some experience with testing
fundamentals. Some familiarity with PhantomJS is beneficial but not strictly required. Lastly,
some recipes may involve some other programming languages (for example, Java or Ruby)
and these will be called out where necessary.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "We can launch the
PhantomJS REPL from the command line using the phantomjs command."

A block of code is set as follows:

var system = require('system');
system.args.forEach(function(arg, i) {
 console.log(i + ' = ' + arg);
});
phantom.exit();

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

phantom.onError = function onErrorFn(msg, trace) {
 console.error('[PHANTOMJS ERROR] ' + msg);
 phantom.exit(1);
};

Any command-line input or output is written as follows:

phantomjs --cookies-file=cookie-jar access-secure-site.js

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

4

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Lastly, click on Save to persist
the changes to this job."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the
files e-mailed directly to you. The example code is also available on GitHub at
https://github.com/founddrama/phantomjs-cookbook.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
ttps://github.com/founddrama/phantomjs-cookbook
http://www.it-ebooks.info/

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1
Getting Started

with PhantomJS

In this chapter, we will cover the following recipes:

 f Installing PhantomJS

 f Launching the PhantomJS REPL

 f Running a PhantomJS script

 f Running a PhantomJS script with arguments

 f Running PhantomJS with cookies

 f Running PhantomJS with a disk cache

 f Running PhantomJS with a JSON configuration file

 f Debugging a PhantomJS script

Introduction
PhantomJS is the headless WebKit – a fully-fledged WebKit-based browser with absolutely
no graphical user interface. Instead of a GUI, PhantomJS features a scripting API that allows
us to do just about anything that we would do with a normal browser. Since its introduction in
2010, PhantomJS has grown to be an essential tool in the web development stack. It is ideal
for fast unit test watches, end-to-end tests in continuous integration, screen captures, screen
scraping, performance data collection, and more.

The recipes in this chapter focus on PhantomJS fundamentals. We will discuss how to
install PhantomJS, how to work with its Read-Evaluate-Print Loop (REPL), how to employ
its command-line options, and how to launch PhantomJS in a debug harness.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with PhantomJS

8

Installing PhantomJS
Let's begin the PhantomJS Cookbook with the recipe that is the prerequisite for all of the other
recipes—downloading and installing PhantomJS so that it is available on our computers.

Prebuilt binaries of PhantomJS are available for most major platforms, and in the interest of
expedience and simplicity, that is how we proceed. PhantomJS is designed to be a stand-alone
application, and in most situations, no external dependencies are required.

Getting ready
To install PhantomJS, we will need access to the Internet and permission to install applications.

How to do it…
Perform the following steps to download and install PhantomJS:

1. Navigate to the PhantomJS download page at http://phantomjs.org/download.

2. Locate and download the prebuilt binary that is appropriate for our system. Prebuilt
binaries exist for the following operating systems:

 � Windows (XP or later).

 � Mac OS X (10.6 or later).

 � Linux (for 32-bit or 64-bit systems). Current binaries are built on CentOS
5.8, and should run successfully on Ubuntu 10.04.4 (Lucid Lynx) or more
modern systems.

3. Extract the prebuilt binary. For Windows and OS X systems, this will be a .zip
archive; for Linux systems, this will be a .tar.bz2 archive. For Windows machines,
the binary should be phantomjs.exe; for OS X and Linux machines, the binary
should be bin/phantomjs.

We should place the binary somewhere on your system that
makes sense to us.

4. Once extracted, make sure to add PhantomJS to the system's PATH.

www.it-ebooks.info

http://phantomjs.org/download
http://www.it-ebooks.info/

Chapter 1

9

The PATH or search path is a variable on the command line that
contains a list of directories searched by the shell to find an executable
file when it is called. On POSIX-compatible systems (Linux and OS X),
this list is delimited by colons (:), and on Windows, it is delimited by
semicolons (;). For more information about the PATH variable, visit
http://en.wikipedia.org/wiki/PATH_(variable).

For a tutorial that focuses on POSIX-compatible systems, visit http://
quickleft.com/blog/command-line-tutorials-path.

For documentation on the Windows PATH, visit
http://msdn.microsoft.com/en-us/library/
w0yaz275(v=vs.80).aspx.

5. After placing the PhantomJS binary on our PATH, we can verify that it was installed by
typing the following in the command line:
phantomjs –v

The version of PhantomJS that we just installed should print out to the console.

If we have trouble here, we should check out the troubleshooting
guide on the PhantomJS project site at http://phantomjs.org/
troubleshooting.html.

How it works…
In an effort to lower the barrier to entry and help drive adoption, the prebuilt binaries of
PhantomJS are made available by community volunteers. This is, in part, an acknowledgment
that building PhantomJS from the source code can be a complex and time-consuming task.
To quote the build page on the PhantomJS site: "With 4 parallel compile jobs on a modern
machine, the entire process takes roughly 30 minutes." It is easy to imagine that this might
scare off many developers who just want to try it out.

These prebuilt binaries should therefore make it easy to drop PhantomJS onto any system and
have it running in minutes. These binaries are intended to be fully independent applications,
with no external library dependencies such as Qt or WebKit. On some Linux systems, however, a
little extra work may be required to ensure that the libraries necessary for proper font rendering
(for example, FreeType and Fontconfig) are in place, along with the basic font files.

Throughout this book, our code will assume that we are using
Version 1.9 or higher of PhantomJS.

www.it-ebooks.info

http://en.wikipedia.org/wiki/PATH_(variable)
http://quickleft.com/blog/command-line-tutorials-path
http://quickleft.com/blog/command-line-tutorials-path
http://msdn.microsoft.com/en-us/library/w0yaz275(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/w0yaz275(v=vs.80).aspx
http://phantomjs.org/troubleshooting.html
http://phantomjs.org/troubleshooting.html
http://www.it-ebooks.info/

Getting Started with PhantomJS

10

There's more…
In addition to the prebuilt binaries, Mac OS X users may also install PhantomJS using
Homebrew. To do this, enter the following as the command line:

brew update && brew install phantomjs

Note that installing PhantomJS with Homebrew also means that we will be compiling it
from source.

Homebrew is an open source, community-run package manager
for OS X built on top of Git and Ruby. To find out more information
about Homebrew, check out its website at http://brew.sh.
As a bonus, Homebrew also automatically adds PhantomJS to
your PATH.

Installing from Source
In the event that one of the prebuilt binaries is not suitable for your specific situation, you may
need to consider building PhantomJS from the source code. If this is the case, you will want to
check out the build instructions that are listed at http://phantomjs.org/build.html;
note that you will need the developer tools specific to your system (for example, Xcode on OS X
and Microsoft Visual C++ on Windows) to be installed before you begin.

Launching the PhantomJS REPL
In this recipe, we will learn how to use the PhantomJS REPL. The PhantomJS REPL is an
excellent tool for getting familiar with the runtime environment and for quickly hacking out an
idea without needing to write a fully qualified script.

Getting ready
To run this recipe, we will need to have PhantomJS installed on our PATH. We will also need
an open terminal window.

How to do it…
Perform the following steps to invoke and work in the PhantomJS REPL:

1. At the command-line prompt, type the following:
phantomjs

2. When the PhantomJS REPL starts up, we should see its default command-line prompt:
phantomjs>

www.it-ebooks.info

http://brew.sh
http://phantomjs.org/build.html
http://www.it-ebooks.info/

Chapter 1

11

3. At the PhantomJS prompt, we can enter any command from the PhantomJS API or
any other valid JavaScript expressions and statements. The REPL will print the return
value from the expression we entered, although we may need to wrap the expression
in a console.log statement for a readable response, for example:
phantomjs> 1 + 1

{}

phantomjs> console.log(1 + 1)

2

undefined

phantomjs> for (var prop in window) console.log(prop)

document

window

// 475 more...

undefined

4. When we are finished in the REPL, type the following command to exit the REPL:
phantom.exit()

How it works…
The PhantomJS REPL, also called interactive mode, was introduced to PhantomJS starting
with Version 1.5. The REPL is the default mode for PhantomJS when the application is invoked
without any arguments.

REPL stands for Read-Evaluate-Print Loop. The commands we enter at the prompt are read
by the interpreter, which evaluates them and prints the results, before finally looping back to
the prompt for us to continue. Many programming environments feature REPLs (for example,
Node.js provides another popular JavaScript REPL), and the debugger consoles in tools such
as the Chrome Developer Tools and Firebug would also qualify as REPLs. REPLs are useful for
quickly trying out ideas in the runtime environment.

In our example, we enter the PhantomJS REPL by invoking phantomjs from the command
line without any arguments. Once we are in the REPL, we can type in whatever commands we
need to explore our ideas, hitting Enter after each command. Note that we must enter a full
and syntactically valid expression or statement before hitting Enter; if we do not, PhantomJS
will report an error (for example, Can't find variable: foo or Parse error).

The PhantomJS REPL also features auto-completion. Hitting the Tab key in the REPL will
autoexpand our options. We can even hit Tab multiple times to cycle through our available
options; for example, try typing p and then hit Tab to see what options the REPL presents.

Finally, when we are finished, we use phantom.exit() to leave the REPL; we can also use
the Ctrl + C or Ctrl + D key commands to exit the REPL.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with PhantomJS

12

Running a PhantomJS script
This recipe demonstrates how to run a script using the PhantomJS runtime.

Getting ready
To run this recipe, we will need PhantomJS installed on our PATH. We will also need a script to
run with PhantomJS; the script in this recipe is available in the downloadable code repository
as recipe03.js under chapter01. If we run the provided example script, we must change
to the root directory for the book's sample code.

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you. Alternatively, you can use the Git version control
system to clone the repository. The repository is hosted on GitHub at
https://github.com/founddrama/phantomjs-cookbook.

How to do it…
Given the following script:

console.log('A console statement from PhantomJS on ' +
 new Date().toDateString() + '!');

phantom.exit();

Type the following at the command line:

phantomjs chapter01/recipe03.js

Throughout this book, we will be using POSIX-compatible
filesystem paths for command-line examples. Windows users
may find it helpful to change the forward slashes (/) to back
slashes (\) in filesystem paths.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/founddrama/phantomjs-cookbook
http://www.it-ebooks.info/

Chapter 1

13

How it works…
Our preceding example script performs the following actions:

1. We print a message to the console (including a date string) using console.log.

2. The script exits the PhantomJS runtime using phantom.exit.

3. Since we did not provide an integer argument to phantom.exit, it returns an exit
code of 0 (its default) to the shell.

As we learned in the Launching the PhantomJS REPL recipe, PhantomJS will enter the REPL
when invoked without any arguments. However, the runtime environment will attempt to
evaluate and execute the first unrecognized argument as though it were a JavaScript file,
regardless of whether or not it ends in .js. Most of the time that we work with PhantomJS,
we will interact with it using scripts such as these.

As long as PhantomJS can resolve the first unrecognized argument as a file and correctly
parse its contents as syntactically valid JavaScript, it will attempt to execute the contents.
However, what happens if those preconditions are not met?

If the argument cannot be resolved as a file on disk, or if the file has no contents, PhantomJS
will print an error message to the console, for example:

phantomjs does-not-exist-or-empty

Can't open 'does-not-exist-or-empty'

If the argument exists but the file's contents cannot be parsed as a valid JavaScript, then
PhantomJS will print an error message to the console and hang, for example:

phantomjs invalid.js

SyntaxError: Parse error

In the event of such a SyntaxError, the PhantomJS
process will not automatically terminate, and we must
forcefully quit it (Ctrl + C).

Recall that PhantomJS is a headless web browser, and it helps to think of it as a version of
Chrome or Safari that has no window. Just as we interact with our normal web browser by
entering URLs into the location bar, clicking the back button, or clicking links on the page, so
we will need to interact with PhantomJS. However, as it has no window and no UI components,
we must interact with it through its programmable API. The PhantomJS API is written in
JavaScript, and scripts targeting the PhantomJS runtime are also written in JavaScript; the API
is documented online at http://phantomjs.org/api/.

www.it-ebooks.info

http://phantomjs.org/api/
http://www.it-ebooks.info/

Getting Started with PhantomJS

14

There's more…
If you have been exposed to both PhantomJS and Node.js, you may be wondering about the
differences between them, especially after witnessing demonstrations of their respective
REPLs and script running abilities. When comparing the two, it is helpful to consider them using
the phrase "based on" as your frame of reference. Node.js is based on Google Chrome's V8
JavaScript engine; PhantomJS is based on the WebKit layout engine. Node.js is a JavaScript
runtime; PhantomJS has a JavaScript runtime. Where Node.js is an excellent platform for
building JavaScript-based server applications, it does not have any native HTML rendering.
This is the key differentiator when comparing it to PhantomJS. The mission of PhantomJS is
not to provide a platform for building JavaScript applications, but instead to provide a fast and
standards-compliant headless browser.

See also
 f The Running a PhantomJS script with arguments recipe

Running a PhantomJS script with arguments
In this recipe, we will learn how to run a PhantomJS script with additional arguments that are
passed into the script for evaluation. Note that these are arguments passed into the execution
context and are not command-line arguments for the PhantomJS runtime itself.

Getting ready
To run this recipe, we will need a script to run with PhantomJS; the script in this recipe is
available in the downloadable code repository as recipe04.js under chapter01. If we run
the provided example script, we must change to the root directory for the book's sample code.
Lastly, we will need the arguments we wish to pass into the script.

How to do it…
Given the following script:

if (phantom.args.length === 0) {
 console.log('No arguments were passed in.');
} else {
 phantom.args.forEach(function(arg, index) {
 console.log('[' + index + '] ' + arg);
 });
}

phantom.exit();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

Enter the following command at the command line:

phantomjs chapter01/recipe04.js foo bar "boo baa"

We will see the following results printed in the terminal:

[0] foo

[1] bar

[2] boo baa

How it works…
Our preceding example script performs the following actions:

1. It checks the length of the phantom.args array and prints a message if that array
is empty.

2. If the phantom.args array is not empty, we iterate over the items in the array,
printing their index followed by the value of the argument itself.

3. Lastly, we exit from the PhantomJS runtime using phantom.exit.

As we discussed in the Running a PhantomJS script recipe, PhantomJS will attempt to
evaluate and execute the first unrecognized argument as though it were a valid JavaScript file.
But what does PhantomJS do with all of the arguments after that?

The answer is that they are collected into the phantom.args array as string values.
Each argument after the script name goes into this array. Note that phantom.args does
not include the script name itself. Instead, PhantomJS records that in the read-only
phantom.scriptName property.

There's more…
It is worth noting that both phantom.args and phantom.scriptName are both marked
as deprecated in the API documentation. As such, usage of both of these properties is
discouraged. Although using them for quick one-off or exploratory scripts is fine, neither of
these properties should go into any library that we intend to maintain or distribute.

Wherever possible, we should use the system.args array (from the system module) instead
of phantom.args and phantom.scriptName.

When in doubt, check the PhantomJS project website and
its documentation at http://phantomjs.org/api/. It
is actively maintained, and as such will contain up-to-date
information about the preferred APIs.

www.it-ebooks.info

http://phantomjs.org/api/
http://www.it-ebooks.info/

Getting Started with PhantomJS

16

See also
 f The Inspecting command-line arguments recipe in Chapter 2, PhantomJS Core Modules

Running PhantomJS with cookies
In this recipe, we will learn how to use the cookies-file command-line switch to specify
the location of the file for persistent cookies in PhantomJS.

Getting ready
To run this recipe, we will need a script to run with PhantomJS that accesses a site where
cookies are read or written. We will need a filesystem path to specify it as the command-line
argument, making sure that we have write permissions to that path.

The script in this recipe is available in the downloadable code repository as recipe05.js
under chapter01. If we run the provided example script, we must change to the root directory
for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory) and
start the app with the following command:

node app.js

Node.js is a JavaScript runtime environment based on Chrome's V8
engine. It has an event-driven programming model and non-blocking I/O
and can be used for building fast networking applications, shell scripts,
and everything in between. We can learn more about Node.js including
how to install it at http://nodejs.org/.

We will use this demo for many recipes throughout this cookbook. When
we run the demo app for the first time, we need to download and install
the Node.js modules that it depends on. To do this, we can change to
the phantomjs-sandbox directory and run the following command:
npm install

How to do it…
Given the following script:

var webpage = require('webpage').create();

webpage.open('http://localhost:3000/cookie-demo', function(status) {

www.it-ebooks.info

http://nodejs.org/
http://www.it-ebooks.info/

Chapter 1

17

 if (status === 'success') {
 phantom.cookies.forEach(function(cookie, i) {
 for (var key in cookie) {
 console.log('[cookie:' + i + '] ' + key + ' = ' +
 cookie[key]);
 }
 });

 phantom.exit();
 } else {
 console.error('Could not open the page! (Is it running?)');
 phantom.exit(1);
 }
 });

Enter the following command at the command line:

phantomjs --cookies-file=cookie-jar.txt chapter01/recipe05.js

PhantomJS will create the cookie-jar.txt file for us; there is
no need to create it manually.

The script will print out the properties for each cookie in the response, as follows:

[cookie:0] domain = localhost
[cookie:0] expires = Sat, 07 Dec 2013 02:05:06 GMT
[cookie:0] expiry = 1386381906
[cookie:0] httponly = false
[cookie:0] name = dave
[cookie:0] path = /cookie-demo
[cookie:0] secure = false
[cookie:0] value = oatmeal-raisin
[cookie:1] domain = localhost
[cookie:1] expires = Sat, 07 Dec 2013 02:04:22 GMT
[cookie:1] expiry = 1386381862
[cookie:1] httponly = false
[cookie:1] name = rob
[cookie:1] path = /cookie-demo
[cookie:1] secure = false
[cookie:1] value = chocolate-chip

We can then open cookie-jar.txt in a text editor and examine its contents. The cookie jar
file should look something like the following:

[General]
cookies="@Variant(\0\0\0\x7f\0\0\0\x16QList<QNetworkCookie>\0\0\0\0\
x1\0\0\0\x2\0\0\0_dave=oatmeal-raisin; expires= Sat, 07 Dec 2013
 02:05:06 GMT; domain=localhost;
 path=/cookie-demo\0\0\0^rob=chocolate-chip; expires= Sat, 07 Dec
 2013 02:04:22 GMT; domain=localhost; path=/cookie-demo)"

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with PhantomJS

18

How it works…
Our preceding example script performs the following actions:

1. It creates a webpage object and opens the target URL (http://localhost:3000/
cookie-demo).

2. In the callback function, we check for status of 'success', printing an error
message and exiting PhantomJS if that condition fails.

Throughout this cookbook, we will use exit codes of 0 and 1 for
success and failure respectively, because those are the exit codes
traditionally used for those reasons on POSIX and Windows systems.

3. If we successfully open the URL, then we loop through each cookie in the phantom.
cookies collection and print out information about each one.

4. Lastly, we exit from the PhantomJS runtime using phantom.exit.

When we start PhantomJS with the cookies-file argument, we are telling the runtime to
read and write cookies from a specific location on the filesystem. What this allows us to do is
to use cookies in PhantomJS like we would with any other browser. In other words, an HTTP
response or client-side script can set cookies, and when we run our PhantomJS script against
that URL again, we can trust that the cookies are still there in the file.

Notice that the cookie jar file itself is essentially a plain text file. The actual file extension
does not matter; we used .txt in our example, but it could just as easily be .cookies
or even no extension at all. When persisting the cookies, PhantomJS writes them to this
file. If we examine the file, then we see that it is a serialized, text-based version of the
QNetworkCookie class that PhantomJS uses behind the scenes. Although the on-disk
version is not necessarily easy to read, we can easily make a copy and parse it or transform it
into its constituent cookies. This can be useful for examining their contents after a script has
completed (for example, to ensure that the expected values are being written to disk).

Additionally, with the cookies written to disk, they are available for future PhantomJS script
runs against URLs that expect the same cookies. For example, this can be useful when
running scripts against sites that require authentication where those authentication tokens
are passed around as cookies.

See also
 f The Managing cookies with the phantom object recipe in Chapter 2, PhantomJS

Core Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

19

Running PhantomJS with a disk cache
In this recipe, we will learn about running PhantomJS with an on-disk cache that is enabled
using the disk-cache and max-disk-cache-size command-line arguments. We can use
this to test how browsers cache our static assets.

Getting ready
To run this recipe, we will need a script to run with PhantomJS that accesses a website with
cacheable assets. Optionally, we will also need a sense of how large we wish to set the on-disk
cache (in kilobytes).

The script in this recipe is available in the downloadable code repository as recipe06.
js under chapter01. If we run the provided example script, we must change to the root
directory for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change into the phantomjs-sandbox directory (in the sample code's directory)
and start the app with the following command:

node app.js

How to do it…
Given the following script:

var page = require('webpage').create(),
 count = 0,
 until = 2;

page.onResourceReceived = function(res) {
 if (res.stage === 'end') {
 console.log(JSON.stringify(res, undefined, 2));
 }
};

page.onLoadStarted = function() {
 count += 1;
 console.log('Run ' + count + ' of ' + until + '.');
};

page.onLoadFinished = function(status) {
 if (status === 'success') {

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with PhantomJS

20

 if (count < until) {
 console.log('Go again.\n');
 page.reload();
 } else {
 console.log('All done.');
 phantom.exit();
 }
 } else {
 console.error('Could not open page! (Is it running?)');
 phantom.exit(1);
 }
};

page.open('http://localhost:3000/cache-demo');

Enter the following command at the command line:

phantomjs --disk-cache=true --max-disk-cache-size=4000
 chapter01/recipe06.js

The script will print out details about each resource in the response as JSON.

How it works…
Our preceding example script performs the following actions:

1. It creates a webpage object and sets two variables, count and until.

2. We assign an event handler function to the webpage object's
onResourceReceived callback. This callback will print out every property of each
resource received.

3. We assign an event handler function to the webpage object's onLoadStarted
callback. This callback will increment count when the page load starts and print a
message indicating which run it is.

4. We assign an event handler function to the webpage object's onLoadFinished
callback. This callback checks the status of the response and takes action
accordingly as follows:

 � If status is not 'success', then we print an error message and exit
from PhantomJS

 � If the callback's status is 'success', then we check to see if count is
less than until, and if it is, then we call reload on the webpage object;
otherwise, we exit PhantomJS

5. Finally, we open the target URL (http://localhost:3000/cache-demo) using
webpage.open.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

There's more…
Even though the disk cache is off by default, PhantomJS still performs some in-memory caching.
This detail becomes important in later explorations, as it produces some otherwise difficult to
explain results. For example, in our preceding sample script, we used webpage.reload for our
second request of the URL, and in that second request, we saw all of the images re-requested.
However, if we had used a second call to webpage.open (instead of webpage.reload),
then the onResourceReceived callback would have shown a second request to the URL but
none of the images would have been re-requested. (As an interesting aside, we would also see
that behavior if we set the disk-cache argument to false; the in-memory cache cannot
be disabled.)

Another interesting observation is that PhantomJS always reports an HTTP response status of
200 Ok for every successfully retrieved asset. If we look at the Node.js console output for the
demo app while our sample script runs, we can see the discrepancy. Again, when our sample
script runs, we can see that an HTTP status code of 200 is reported by PhantomJS for each
of the images during both the first and second request/response cycles. However, the output
from the Node.js app looks something like this:

GET /cache-demo 200 1ms - 573b

GET /images/583519989_1116956980_b.jpg 200 4ms - 264.64kb

GET /images/152824439_ffcc1b2aa4_b.jpg 200 8ms - 615.21kb

GET /images/357292530_f225d7e306_b.jpg 200 6ms - 497.98kb

GET /images/391560246_f2ac936f6d_b.jpg 200 5ms - 446.68kb

GET /images/872027465_2519a358b9_b.jpg 200 5ms - 766.94kb

GET /cache-demo 200 1ms - 573b

GET /images/152824439_ffcc1b2aa4_b.jpg 304 3ms

GET /images/357292530_f225d7e306_b.jpg 304 3ms

GET /images/391560246_f2ac936f6d_b.jpg 304 2ms

GET /images/583519989_1116956980_b.jpg 304 3ms

GET /images/872027465_2519a358b9_b.jpg 304 3ms

We can see that the server responds with 304 Not Modified for each of the image assets.
This is exactly what we would expect for a second request to the same URL when the assets
are served with Cache-Control headers that specify a max-age, and for assets that are
also cached to disk.

disk-cache
We can enable the disk cache by setting the disk-cache argument to true or yes. By default,
the disk cache is disabled, but we can also explicitly disable it by providing false or no to the
command-line argument. When the disk cache is enabled, PhantomJS will cache assets to the
on-disk cache, which it stores at the desktop services cache storage location. Caching these
assets has the potential to speed up future script runs against URLs that share those assets.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with PhantomJS

22

max-disk-cache-size
Optionally, we may also wish to limit the size of the disk cache (for example, to simulate
the small caches on some mobile devices). To limit the size of the disk cache, we use the
max-disk-cache-size command-line argument and provide an integer that determines
the size of the cache in kilobytes. By default (if you do not use the max-disk-cache-size
argument), the cache size is unbounded. Most of the time, we will not need to use the
max-disk-cache-size argument.

Cache locations
If we need to inspect the cached data that is persisted to disk, PhantomJS writes to the
desktop services cache storage location for the platform it's running on. These locations
are listed as follows:

Platform Location
Windows %AppData%/Local/Ofi Labs/PhantomJS/cache/http

Mac OS X ~/Library/Caches/Ofi Labs/PhantomJS/data7

Linux ~/.qws/cache/Ofi Labs/PhantomJS

These locations may not exist until after we have run PhantomJS
with the disk-cache argument enabled.

See also
 f The Opening a URL within PhantomJS recipe in Chapter 3, Working with

webpage Objects

Running PhantomJS with a JSON
configuration file

In this recipe, we will learn how to store PhantomJS configuration options in a JSON document
and load those options using the config command-line argument.

Getting ready
To run this recipe, we will need a JSON-formatted configuration file with our PhantomJS
command-line options.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

23

The script in this recipe is available in the downloadable code repository as recipe07.
js under chapter01. If we run the provided example script, we must change to the root
directory for the book's sample code. An example configuration file is also in this directory as
recipe07-config.json.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory) and
start the app with the following command:

node app.js

How to do it…
Select our command-line configuration options (changing hyphenated property names into
their camel-cased equivalents) and apply our values. Save these configuration settings to a
JSON-formatted document. For example, the contents of recipe07-config.json under
chapter01:

{
 "cookiesFile" : "cookie-jar.txt",
 "ignoreSslErrors" : true
}

For more information about JSON, including its formatting rules,
visit http://www.json.org.

Given the script from the Running PhantomJS with cookies recipe earlier in this chapter,
enter the following at the command line:

phantomjs --config=chapter01/recipe07-config.json
 chapter01/recipe07.js

How it works…
The configuration file is a JSON document where we can take our preferred
command-line arguments and store them on disk. The keys in the JSON object have
a one-to-one correspondence with the command-line arguments themselves – the
hyphenated command-line argument names are converted to their camel-cased versions
(for example, cookies-file becomes cookiesFile). The values in the JSON object follow
easy conversion rules based on the most applicable JavaScript primitives: strings are strings,
numbers are numbers, and true/false or yes/no become the corresponding true or
false Boolean literals. Creating our own JSON-formatted configuration file requires only
two things: a text editor and the knowledge of which command-line arguments we wish to
capture in it.

www.it-ebooks.info

http://www.json.org
http://www.it-ebooks.info/

Getting Started with PhantomJS

24

See http://phantomjs.org/api/command-line.html
for the complete list of documented command-line options in the
PhantomJS API.

The help and version command-line arguments do not have
corresponding versions in the JSON configuration file. Also, at the
time of writing this book, there is a documented defect wherein
the JSON key for the load-images argument is not recognized.

The example script in this recipe (recipe07.js under chapter01) is identical to the one
that we used for our demonstration in the Running PhantomJS with cookies recipe; we are
reusing it here for convenience. For a more thorough explanation of what it is doing, see the
How it works… section under that recipe.

When launching PhantomJS with the config command-line argument, the PhantomJS
runtime interprets the argument's value as a path on the filesystem and attempts to load and
evaluate that file as a JSON document. If the file cannot be parsed as a JSON document, then
PhantomJS prints a warning and ignores it. If the file is correctly parsed, then PhantomJS
configures itself as if the arguments in the JSON document had been passed as normal
command-line arguments.

This raises an interesting question: given equivalent arguments, which one takes precedence?
The one specified in the JSON configuration file? Or the one specified on the command line?
The answer is that it depends which one comes last. In other words, given recipe07-config.
json, we can run:

phantomjs --cookies-file=jar-of-cookies.txt
 --config=chapter01/recipe07-config.json chapter01/recipe07.js

That creates cookie-jar.txt, as specified in recipe07-config.json. While the
following command creates jar-of-cookies.txt, as specified on the command line:

phantomjs --config=chapter01/recipe07-config.json
 --cookies-file=jar-of-cookies.txt chapter01/recipe07.js

There's more…
Saving a PhantomJS configuration to a JSON document can help us in a couple of ways.
First, by putting it into a file, we can put it under version control and track the changes to
that configuration over time. Also, by putting the configuration into a file, it can more easily
be shared across teams or jobs in continuous integration.

www.it-ebooks.info

http://phantomjs.org/api/command-line.html
http://www.it-ebooks.info/

Chapter 1

25

See also
 f The Running PhantomJS with cookies recipe

Debugging a PhantomJS script
In this recipe, we will learn about remote debugging PhantomJS scripts using the
remote-debugger-port and remote-debugger-autorun command-line arguments.

Getting ready
To run this recipe, we will need the following:

 f PhantomJS installed on our PATH

 f A script to run with PhantomJS, which we are interested in debugging

 f Our computer's IP address

 f An open port over which the debugger will communicate

 f Another browser such as Google Chrome or Safari

The script in this recipe is available in the downloadable code repository as recipe08.js
under chapter01. If we run the provided example script, we must change to the root directory
of the book's sample code.

The script in this recipe runs against the demo site that is included with the cookbook's sample
code repository. To run that demo site, we must have Node.js installed. In a separate terminal,
change to the phantomjs-sandbox directory and start the app with the following command:

node app.js

How to do it…
Given the following script:

var page = require('webpage').create();

page.onResourceReceived = function(res) {
 if (res.stage === 'end') {
 console.log(JSON.stringify(res, undefined, 2));
 }
};

page.open('http://localhost:3000/cache-demo', function(status) {
 if (status === 'success') {

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with PhantomJS

26

 console.log('All done.');
 phantom.exit();
 } else {
 console.error('Could not open page! (Is it running?)');
 phantom.exit(1);
 }
});

Enter the following at the command line:

phantomjs --remote-debugger-port=9000 --remote-debugger-autorun=true
 chapter01/recipe08.js

Note that with the remote-debugger-autorun argument set to true, the script will run
immediately as it normally would, but it will also ignore calls to phantom.exit and suspend
execution, printing out the following message:

Phantom::exit() called but not quitting in debug mode.

If we want more control over when the script begins (for
example, we want to set breakpoints first), then simply omit
the remote-debugger-autorun argument. By omitting
that argument, PhantomJS will start and will load the script,
but will not execute it until you issue the __run() command
in the debugger.

Now we can open our other browser (for example, Chrome) and enter our IP address and
the port that we specified with remote-debugger-port. For example, if our computer's
IP address is 10.0.1.8, we would enter http://10.0.1.8:9000/ into the location bar.
Then, we should see something like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

27

The viewport will contain the PhantomJS browsing session's history as a list. As we are
interested in accessing the debugger tools, we will click on the link that reads about:blank.
This will take us to /webkit/inspector/inspector.html, and it should look something
like the following screenshot:

If we have worked in the Chrome or Safari developer tools before, the toolbar should be
familiar. While debugging PhantomJS scripts, we will be particularly interested in the
Scripts and Console tabs.

For those unfamiliar with the WebKit Web Inspector, check out
Majd Taby's thorough introduction, "The WebKit Inspector",
at http://jtaby.com/blog/2012/04/23/modern-
web-development-part-1.

www.it-ebooks.info

http://jtaby.com/blog/2012/04/23/modern-web-development-part-1
http://jtaby.com/blog/2012/04/23/modern-web-development-part-1
http://www.it-ebooks.info/

Getting Started with PhantomJS

28

Once we have the debugger open, click on the Scripts tab. In the Scripts tab, click on the
drop-down menu (in the top toolbar, just below the tabs) and select about:blank. This will
show us our script as seen in the following screenshot. Click on any line number in the
left-side gutter to set a breakpoint.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

29

With our breakpoint set, click on the Console tab to toggle into the console. Since we used
the remote-debugger-autorun argument, we will see our console.log and other such
statements printed to the console from our first (automatic) run. Note the blue prompt at the
bottom of the console as seen in the following screenshot; we can enter new expressions to
be evaluated here at this prompt. To run our PhantomJS script again, we enter __run().

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with PhantomJS

30

Entering __run() in the console will execute the script again. The script execution will pause
on any breakpoints that we set and we will automatically be brought into the Scripts tab. In
the Scripts tab, we can inspect our call stack, inspect local variables and objects at runtime,
manipulate the runtime environment through the console, and more.

When we are done debugging our script, we can simply close the browser and then use
Ctrl + C to quit the PhantomJS process in the terminal.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

31

How it works…
Our preceding example script is a simple one. We proceed in the following manner:

1. We create a webpage object.

2. We assign an event handler function to the webpage object's onResourceReceived
callback. This callback will print out each resource received using JSON.stringify.

3. Lastly, we open the target URL (http://localhost:3000/cache-demo) using
webpage.open, calling phantom.exit in the callback.

There's more…
Effective debugging is an essential skill for every developer, and it is fantastic that PhantomJS
has the WebKit remote debugging built-in as a first-class tool. While the debugger itself may
be overkill for simple situations, sometimes console.log just isn't a powerful enough
(or fast enough) tool. In those cases, it is comforting to know that you have these debug tools
at your disposal.

One important thing to note about using the remote debugger with PhantomJS is that we will
need to be aware of what context we are attempting to debug. Are we debugging the PhantomJS
script itself? Or a script on the page that the PhantomJS script is accessing? Or some interaction
between them? In the simple case (as previously demonstrated), the remote debug mode
makes it almost trivial to inspect our PhantomJS script's execution at runtime. However, it
does take some extra work if we need to also debug a script on the page that PhantomJS is
accessing. In those cases, we may find it useful to use the remote-debugger-autorun
argument; this will pre-populate the debugger's landing page with links to the inspector for the
PhantomJS script's context and also the accessed web page's context. We can open these links
each in a new tab, giving a separate debugger session for each context we need to work in.

remote-debugger-port
Of the two debugger-related command-line arguments, remote-debugger-port is the
essential one. The remote-debugger-port argument serves two functions. The first,
implicit function is to put PhantomJS into the debug harness. Its second, explicit function
is to set the port that PhantomJS will use for the WebKit remote debugging protocol.

Having these remote debugging capabilities in PhantomJS is extremely handy if we need to
inspect or otherwise troubleshoot some misbehaving or unpredictable code. But something
else that is nice about how the debugging toolkit is implemented is that we don't need
anything else except another browser with a GUI. We do not need to install any special
extensions in Chrome or Safari for the debugger to work. All we need to do is specify the port
on the command line and point the browser at our computer's IP and voila—the full power of
a GUI debugger for our otherwise headless web browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with PhantomJS

32

Although we can use any browser as the target viewport for the
remote debugger, our best results will be in Safari or Chrome.
Safari is currently the dominant WebKit-based browser; Chrome
uses the Blink rendering engine, but retains many of the features
from its WebKit heritage. The remote debugger will function in
other browsers (for example, Firefox or Opera) but certain things
may not render properly, making it much more difficult to use.

remote-debugger-autorun
The remote-debugger-autorun command-line argument is optional and if specified as
true, the script passed to PhantomJS will be run immediately in the debug harness. While
this may be a convenient feature, it is seldom what we want.

Under normal debugging, we would already have some idea of where our code is defective
(for example, from the errors or stack traces that we already have). With that knowledge,
we would want to start our PhantomJS script in the debug harness, then navigate to the
Scripts tab and set our breakpoints, and then execute the script.

If we have not set the script to run automatically, then how do we execute it? If we look again
at our script as it appears in the about:blank selection under the Scripts tab, we will notice
that it has been wrapped in a function and assigned to the variable named __run. To execute
our script, we enter __run() into the debugger console and hit enter to call the function.

www.it-ebooks.info

http://www.it-ebooks.info/

2
PhantomJS

Core Modules

In this chapter, we will cover:

 f Inspecting the version at runtime

 f Managing cookies with the phantom object

 f Specifying a path for external scripts

 f Setting up a global PhantomJS error handler

 f Controlling the exit status of a PhantomJS script

 f Inspecting command-line arguments

 f Inspecting system environment variables

 f Saving a file from a PhantomJS script

 f Reading a file from PhantomJS

 f Creating a custom module for PhantomJS

 f Loading custom modules in PhantomJS

Introduction
PhantomJS exposes several core APIs to work with the headless browser and with the
operating system that hosts the runtime. For example, we can get information about
PhantomJS, inspect our host environment for values assigned to variables, and read
from or write to the filesystem with the help of these APIs.

www.it-ebooks.info

http://www.it-ebooks.info/

PhantomJS Core Modules

34

The recipes in this chapter will focus on those APIs that are considered part of the PhantomJS
core. Specifically, we will introduce and discuss the global phantom object, the system and
fs modules, and how to create and load our own CommonJS-compatible modules.

Inspecting the version at runtime
This recipe will introduce the global phantom object in PhantomJS and discuss how we can
inspect the version at runtime using the version property.

Getting ready
To run this recipe, we will need a script that accesses phantom.version. The script in this
recipe is available in the downloadable code repository as recipe01.js under chapter02.
If we run the provided example script, we must change to the root directory for the book's
sample code.

How to do it…
Consider the following script:

console.log('PhantomJS');
console.log(' - major version: ' + phantom.version.major);
console.log(' - minor version: ' + phantom.version.minor);
console.log(' - patch version: ' + phantom.version.patch);
phantom.exit();

Given the preceding script, enter the following at the command line:

phantomjs chapter02/recipe01.js

Our output should look like the following:

PhantomJS

 - major version: 1

 - minor version: 9

 - patch version: 2

How it works…
Our script operates by accessing the version object on the global phantom object and writing
its properties (major, minor, and patch) to the console. The build of PhantomJS will have this
metadata built in and exposed through phantom.version as read-only information.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

35

Although our example is a trivial one, knowing the specific PhantomJS version at runtime can
be helpful for building flexible scripts/libraries. For example, knowing the version at runtime
can help us target preferred APIs while still falling back on older or deprecated ones in the
event that those APIs are not available.

Managing cookies with the phantom object
In this recipe, we will discuss how to work with cookies in PhantomJS. The phantom
object exposes two properties (cookies and cookiesEnabled) and three methods
(addCookie, clearCookie, and deleteCookie) that we can use to inspect and
manipulate cookies at runtime.

Getting ready
To run this recipe, we may wish to run PhantomJS with persistent cookies using the
cookies-file command-line argument.

The script in this recipe is available in the downloadable code repository as recipe02.js
under chapter02. If we run the provided example script, we must change to the root
directory for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run the demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory) and
start the app with the following command:

node app.js

How to do it…
Consider the following script:

var page = require('webpage').create(),
 url = 'http://localhost:3000/cookie-demo';

if (!phantom.cookiesEnabled) {
 console.log('Note: cookies not enabled.');
}

page.open(url, function(status) {
 if (status === 'success') {
 console.log('We start with these cookies:');
 phantom.cookies.forEach(function(c) {
 console.info(JSON.stringify(c, undefined, 2));
 });

www.it-ebooks.info

http://www.it-ebooks.info/

PhantomJS Core Modules

36

 phantom.addCookie({
 name: 'jerry',
 value: 'black-and-white',
 domain: 'localhost'
 });

 console.log('Added the "jerry" cookie; how many now? ' +
 phantom.cookies.length);

 phantom.deleteCookie('jerry');
 console.log('Deleted the "jerry" cookie; how many now? ' +
 phantom.cookies.length);

 phantom.clearCookies();

 console.log('How many cookies after a clear? ' +
 phantom.cookies.length);

 phantom.exit();
 } else {
 console.error('Something is wrong!');
 phantom.exit(1);
 }
});

Given the preceding script, enter the following at the command line:

phantomjs --cookies-file=cookie-jar.txt chapter02/recipe02.js

PhantomJS will create cookie-jar.txt for us; there is no
need to create it manually.

Our output should look like the following:

We start with these cookies:

{

 "domain": "localhost",

 "expires": "Thu, 19 Dec 2013 03:04:33 GMT",

 "expiry": 1387422273,

 "httponly": false,

 "name": "rob",

 "path": "/cookie-demo",

 "secure": false,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

37

 "value": "chocolate-chip"

}

{

 "domain": "localhost",

 "expires": "Thu, 19 Dec 2013 03:04:33 GMT",

 "expiry": 1387422273,

 "httponly": false,

 "name": "dave",

 "path": "/cookie-demo",

 "secure": false,

 "value": "oatmeal-raisin"

}

Added the "jerry" cookie; how many now? 3

Deleted the "jerry" cookie; how many now? 2

How many cookies after a clear? 0

How it works…
PhantomJS' global phantom object exposes properties and methods to inspect and manipulate
the runtime environment, including two properties and three methods for working with cookies.
They are:

 f cookies: This is an array holding the cookies
 f cookiesEnabled: This is a Boolean indicating whether cookies are enabled
 f addCookie(cookieObject): This adds the defined cookie to the CookieJar
 f deleteCookie(cookieName): This removes the named cookie from the CookieJar
 f clearCookies(): This is to remove all cookies from the CookieJar

We can find the cookie-related properties and methods discussed
in the PhantomJS API documentation for the phantom object at
http://phantomjs.org/api/phantom/.

These methods are in addition to any inspection or manipulation of cookies that occur as a
result of server- or client-side script operations. In other words, remote servers can still get/
set cookies on the HTTP request or response, and JavaScript running on the page can do the
same, but PhantomJS provides a way for us to perform additional operations on cookies.

In our preceding example script, we perform the following actions:

1. We create a webpage object.

2. We check phantom.cookiesEnabled and write a message if cookies are
not enabled.

www.it-ebooks.info

http://phantomjs.org/api/phantom/
http://www.it-ebooks.info/

PhantomJS Core Modules

38

Note that phantom.cookiesEnabled is not a read-only property.
When accessed, it returns a Boolean indicating whether the CookieJar
is enabled; it is enabled (returns true) by default. However, we can
set this property to false if we wish to disable cookies.

3. We open the target URL (http://localhost:3000/cookie-demo); in the
callback function, we check status and exit PhantomJS with a warning message
if it is not successful.

4. If the request is successful, we iterate through the original cookies using the standard
forEach function on the phantom.cookies array, printing each one to the console.

Note that phantom.cookies contains all the cookies that the
runtime environment has currently loaded, and this may include
cookies from previous sessions. For example, if we already have
cookies in our CookieJar file and move the first phantom.
cookies access to outside of the open callback, we may see
cookies from the last time we accessed this particular URL.

5. We add a cookie using phantom.addCookie, which takes a single argument:
an object that describes the cookie's properties. Note that the cookie object must
contain a name, a value, and a domain property, or the method call will fail and
return false.

6. We delete the cookie we just added using phantom.deleteCookie, which takes a
single argument: a string for the name of the cookie we wish to delete.

If we do not know the name of the cookie, we need to iterate through
the phantom.cookies array to identify the name of the cookie we
wish to delete.

7. We delete all cookies by calling phantom.clearCookies. This is functionally
equivalent to calling the clear cookies command from a menu or dialog in any other
browser. Lastly, we exit the PhantomJS runtime.

See also
 f The Running PhantomJS with cookies recipe in Chapter 1, Getting Started

with PhantomJS

www.it-ebooks.info

http://localhost:3000/cookie-demo
http://www.it-ebooks.info/

Chapter 2

39

Specifying a path for external scripts
In this recipe, we will introduce the libraryPath property on the phantom object and discuss
how to use it to control the source of scripts that are loaded in the runtime via injectJs.

Getting ready
To run this recipe, we will need at least one injectable script and the script that we want to run.

The script in this recipe is available in the downloadable code repository as recipe03.js
under chapter02. If we run the provided example script, we must change to the root
directory for the book's sample code.

How to do it…
Consider the following script:

console.log('Initial libraryPath: ' + phantom.libraryPath);

phantom.libraryPath = phantom.libraryPath.replace(/chapter02$/,
 'lib');

console.log('Updated libraryPath: ' + phantom.libraryPath);

var isInjected = phantom.injectJs('hemingway.js');

if (isInjected) {
 console.log('Script was successfully injected.');
 console.log('Give me some Fibonacci numbers! ' +
 fibonacci(Math.round(Math.random() * 10) + 1));

 phantom.exit();
} else {
 console.log('Failed to inject script.');
 phantom.exit(1);
}

Given the preceding code block, enter the following at the command line:

phantomjs chapter02/recipe03.js

Our output should look like the following:

Initial libraryPath: /Users/robf/phantomjs-cookbook/chapter02

Updated libraryPath: /Users/robf/phantomjs-cookbook/lib

Script was successfully injected.

Give me some Fibonacci numbers! 0,1,1,2,3,5,8,13,21,34

www.it-ebooks.info

http://www.it-ebooks.info/

PhantomJS Core Modules

40

How it works…
The injectJs method on the phantom object can take a script from the filesystem and
inject it into the current execution context. It works by loading the specified file (relative to the
current libraryPath), interpreting it, and applying the interpreted script (global variables
and all) to the current context; this operates in much the same way as JavaScript is imported
onto a web page via a script tag. We should use injectJs to import scripts that do not
conform to the CommonJS module proposal.

The CommonJS module proposal is a specification for loading
code that minimizes pollution of the global scope or namespace
in a JavaScript program by providing an exports object
(within the module) where we can attach our public properties
and methods, and a global require method that we can
use to import those modules. For more information about the
CommonJS module proposal, see http://wiki.commonjs.
org/wiki/Modules.

Our preceding example script performs the following actions:

1. We write the current base path for library scripts to the console using the phantom.
libraryPath property.

2. We update the default libraryPath (the script's working directory) to be our
intended target directory. Then, we write that to the console as well.

3. We import a script using phantom.injectJs, passing (in our case) only the filename
to the method. The method returns true if the script imports successfully and false
if it does not; this Boolean value is assigned to our variable, isInjected.

4. If the script imports successfully, we call the fibonacci function that was imported
from the script and write its results to the console. Then, we exit from PhantomJS.
Otherwise, we exit PhantomJS with an error message.

There's more…
As mentioned in the preceding section, a call to phantom.injectJs is functionally
equivalent to a script tag on a web page—code is read from the target, passed through
the interpreter, and applied to the execution context. The libraryPath property plays an
important role here because it provides the path on the filesystem that will be used to resolve
any relative paths requested through phantom.injectJs.

Injectable scripts can be stored in any readable location on the filesystem. The key requirement
of injectJs is that it can resolve the provided path and interpret the target as a syntactically
correct JavaScript file.

www.it-ebooks.info

http://wiki.commonjs.org/wiki/Modules
http://wiki.commonjs.org/wiki/Modules
http://www.it-ebooks.info/

Chapter 2

41

phantom.libraryPath
The libraryPath property on the phantom object is a simple one—it is a string that
holds the value for the absolute path that will be used to resolve scripts that are injected
into the execution context. The property on the phantom object is read/write, so we can
update it at any time during our script. However, it must be an absolute path. We can change
libraryPath to be a relative path, but methods that depend on it (for example, injectJs)
will fail. We can update libraryPath through a simple assignment, for example:

phantom.libraryPath = '/path/to/libraries';

phantom.injectJs
The injectJs method on the phantom object is one way that we can import external scripts
into our current execution context. As mentioned in the discussion of our example script, calls
to phantom.injectJs take a string as an argument, and that string should be a reference
to a file on the filesystem, either as a filename, a relative path, or an absolute path. The script
path argument is consumed as follows:

 f If PhantomJS can interpret the path as absolute, it will attempt to retrieve the script
from that location on the filesystem.

 f If PhantomJS cannot interpret the path as absolute, it will attempt to resolve that
script as relative to the specified libraryPath.

The injectJs method itself provides feedback about the loading operation in the form of its
return value: true if the script was successfully injected, and false if it failed for any reason.
If successfully injected, the interpreted contents of the script are applied to the outer space
(and not within any webpage objects) of the PhantomJS execution context.

phantom.injectJs versus require
It is important to consider the contents of any script before importing it with injectJs.
Just as scripts imported into a web page can easily "pollute" the global scope, so can
scripts imported using injectJs. Put another way, if we have a variable named foo in our
PhantomJS script, and then we use injectJs to import a script that also has a variable
named foo, they will collide, and the most recently added value for foo will take precedence.

Compare injectJs with the global require function that assumes the target files to be
CommonJS modules. Although scripts imported with injectJs have the potential to pollute
the current execution context and clobber variables or function names, we have a lot more
freedom to write these scripts in whatever style we choose. Contrast this with the require
function, which expects to resolve an exports object with the exposed methods and
properties. The require method is a safer solution, but it comes at the cost of flexibility, and
it cannot take advantage of phantom.libraryPath; meanwhile, injectJs can consume
scripts that otherwise target more platforms but carry more risks associated with the
PhantomJS global scope. It's up to us to consider those trade-offs when designing our library
scripts and how we will import them.

www.it-ebooks.info

http://www.it-ebooks.info/

PhantomJS Core Modules

42

See also
 f The Reading a file from PhantomJS recipe

 f The Loading custom modules in PhantomJS recipe

Setting up a global PhantomJS error handler
This recipe introduces the onError callback and demonstrates how we can use it to catch
and handle errors in the PhantomJS runtime. As this onError callback is attached to the
phantom object, we can use it to handle errors that are not otherwise handled by try-catch
statements in our PhantomJS scripts or by onError handlers attached to webpage objects.

Getting ready
To run this recipe, we will need a script that we believe has a tendency to fail.

The script in this recipe is available in the downloadable code repository as recipe04.js
under chapter02. If we run the provided example script, we must change to the root
directory for the book's sample code.

How to do it…
Consider the following script:

phantom.onError = function(message, trace) {
 console.error('[PHANTOMJS ERROR] ' + message);
 trace.forEach(function(t) {
 console.error(' >> [' + t.line + '] ' +
 (t.function ? '[' + t.function + '] ' : '') +
 t.file || t.sourceURL);
 });
 phantom.exit(1);
};

function doSomeErrorProneStuff() {
 throw new Error('Gremlins fed after midnight.');
}

doSomeErrorProneStuff();

console.log('Exiting cleanly.');
phantom.exit(0);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

43

Given the preceding script, enter the following at the command line:

phantomjs chapter02/recipe04.js

Our output should look like the following:

[PHANTOMJS ERROR] Error: Gremlins fed after midnight.

 >> [13] [doSomeErrorProneStuff] chapter02/recipe04.js

 >> [16] chapter02/recipe04.js

How it works…
Our preceding example script performs the following actions:

1. We attach the error handler by assigning the error-handling function to phantom.
onError. The onError function expects two parameters: message, which is the
message on the thrown error and trace, which is an array representing the call
stack leading to that unhandled error.

2. In our onError handler, we simply write the contents of the error message to the
console and then write out the stack trace as well.

3. We enter the main part of our script, declare our error-prone function
(doSomeErrorProneStuff), and immediately call that function. Note that
doSomeErrorProneStuff only throws an error that is unhandled, thus dumping
us into the onError handler.

4. Lastly, we write out a message to the console and then exit with a 0 status.
However, this code is effectively unreachable because of the error thrown by
doSomeErrorProneStuff.

Note that once we enter the onError handler, we are not returned to our previous execution
context. Depending on the specifications of our script, we will need to consider how to
proceed—is it sufficient just to console out the error message and stack trace? Or do we need
to reattempt an operation (for example, rerun a request with different arguments or a longer
timeout, and so on)? By applying a function to phantom.onError, we create a global error
handler that will catch all otherwise unhandled exceptions.

There's more…
As previously mentioned, when assigned, phantom.onError effectively creates a global error
handler in the PhantomJS runtime. It is worth noting here that simply setting up a function
on phantom.onError is not a substitute for safe code. Our scripts should still perform the
appropriate checks (for example, for types and non-null values, and so on) and use the if or
try-catch statements for flow control, wherever they make sense. However, there will be
occasions where it makes sense to set up error handlers with onError; for example, when we
cannot know all the places where an error might occur and we must ensure that our script exits,
even if it exits with an error code.

www.it-ebooks.info

http://www.it-ebooks.info/

PhantomJS Core Modules

44

onError parameters
As previously mentioned, the onError callback function takes two parameters: message
and trace. The message parameter is simple enough—it is the error message string from
the unhandled error.

The other parameter, trace, is an array of objects representing the call stack leading up to
the unhandled error. The individual objects in the trace array have the following properties:

 f file: This is a relative path to the source file for the code that was being executed in
that stack frame; file is mutually exclusive with the sourceURL property

 f sourceURL: This is the URL for the source file for the code that was being executed
in that stack frame; sourceURL is mutually exclusive with the file property

 f line: This is an integer corresponding with the line number in the source code for
the code that was being executed in that stack frame

 f function: This is the name (if any) of the function being executed in that stack
frame; if the function has no name, this will be an empty string

We saw the properties of the trace objects in use in the
onError callback function in our example script earlier in
this recipe.

See also
 f The Recording debugger messages recipe in Chapter 3, Working with webpage Objects

Controlling the exit status of a PhantomJS
script

Although we have seen and used phantom.exit in all of our previous examples, we will now
discuss it explicitly and learn in detail how it is used. In this recipe, we will learn how to control
the exit status of the PhantomJS application.

Getting ready
To run this recipe, we require a script where we need to control the exit status.

The script in this recipe is available in the downloadable code repository as recipe05.js
under chapter02. If we run the provided example script, we must change to the root
directory for the book's sample code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

45

How to do it…
Consider the following script:

console.log('Running the PhantomJS exit demo...');

if (Math.floor(Math.random() * 10) % 2 === 0) {
 console.log('Exiting cleanly from PhantomJS!');
 phantom.exit();
} else {
 console.log('Exiting with an error status.');
 phantom.exit(1);
}

Given the preceding script, enter the following at the command line:

phantomjs chapter02/recipe05.js

If the script makes a clean exit, our output should look like the following:

Running the PhantomJS exit demo...

Exiting cleanly from PhantomJS!

If the script exits with an error, our output should look like the following:

Running the PhantomJS exit demo...

Exiting with an error status.

We can also verify this from the command line on Linux and OS X as follows:

echo $?

On Windows, we can verify it as follows:

echo %ERRORLEVEL%

We will see a 0 or a 1, depending on whether the script exited successfully or with an
error, respectively.

How it works…
Though a trivial example, our example script works as follows:

1. We print our introductory message and then test whether a random number is even
or odd using a % 2 calculation.

2. If we have an even number, we make a clean exit from PhantomJS by calling
phantom.exit.

3. If we have an odd number, we exit from PhantomJS with an error by calling
phantom.exit and passing it a non-zero integer.

www.it-ebooks.info

http://www.it-ebooks.info/

PhantomJS Core Modules

46

The phantom.exit method is our only way to gracefully exit a script in PhantomJS. It takes
an optional integer as its only parameter, and this integer is the exit status that will be
returned to the shell session that initiated PhantomJS. If we do not pass any argument to
phantom.exit, then it will assume we are exiting successfully and will return a 0.

There's more…
Controlling the PhantomJS exit status is an important component of integrating the
application into many workflows. By exposing the ability to control the overall program exit
status through the phantom.exit API, our JavaScript scripts become first-class citizens on
the command line.

Type coercion with phantom.exit
Another interesting point to note about phantom.exit is that although its sole parameter
expects an integer, it exhibits some "typical JavaScript" coercive behavior with non-integer
arguments. For example, it effectively performs Math.round on floats, as follows:

phantom.exit(1.1);
// exits as 1
phantom.exit(1.9);
// exits as 2

Passing a string to phantom.exit will effectively cast the value to a number using the
Number constructor on that argument before falling back to its previously stated rounding
rules, as shown in the following code snippet:

phantom.exit('1');
// exits as 1
phantom.exit('1.5');
// exits as 2
phantom.exit('one');
// exits as 0

Note that strings that cannot be parsed into numbers are discarded, and the call to
phantom.exit is treated as though no arguments were passed.

As a final curiosity, the casting behavior with phantom.exit extends to Boolean values as
well. Consistent with JavaScript's rules for "truthy" and "falsy" values, Number casts true and
false to 1 and 0, respectively. Though this makes sense in JavaScript's larger context, it may
also seem somewhat counterintuitive when used with phantom.exit as follows:

phantom.exit(true);
// exits as 1 -- interpreted as an error
phantom.exit(false);
// exits as 0 -- interpreted as a success

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

47

Generally speaking, although we can pass these non-integer values to phantom.exit,
we should only pass integers or call the method with no arguments.

Inspecting command-line arguments
In this recipe, we introduce the system module and discuss how to inspect arguments that are
passed to the PhantomJS runtime environment from the command line. The system module is
the bridge between PhantomJS, its host operating system, and the process it runs in.

Getting ready
To run this recipe, we will need a script that accepts arguments from the command line.

The script in this recipe is available in the downloadable code repository as recipe06.js
under chapter02. If we run the provided example script, we must change to the root
directory for the book's sample code.

How to do it…
Consider the following script:

var system = require('system'),
 args = system.args;

console.log('script name is: ' + args[0]);

if (args.length > 1) {
 var restArgs = args.slice(1);
 restArgs.forEach(function(arg, i) {
 console.log('[' + (i + 1) + '] ' + arg);
 });
} else {
 console.log('No arguments were passed.');
}

phantom.exit();

Given the preceding script, enter the following at the command line:

phantomjs chapter02/recipe06.js first second "third and fourth"

www.it-ebooks.info

http://www.it-ebooks.info/

PhantomJS Core Modules

48

Our output should look like the following:

script name is: chapter02/recipe06.js

[1] first

[2] second

[3] third and fourth

How it works…
Our example script works as follows:

1. We require the system module. This is the module that contains the args array of
command-line arguments.

2. We assign the array of command-line arguments (system.args) to a variable, args.

3. We print out the name of the script from args[0]. The script name is always the first
item in the arguments array.

4. We take the rest of the arguments (using slice) and iterate through them, printing
out each one. If we failed to pass any other arguments, we simply print out a
message saying so.

5. We exit from PhantomJS.

The system module is our "window to the world," giving us a handful of properties that allow
us to see beyond PhantomJS and into the host operating system and its environment. In
this recipe, we are specifically interested in the args array, which holds the command-line
arguments otherwise passed to PhantomJS. As previously noted, the first item in the args
array is always the script name (as specified on the command line); the remaining items
are the strings that are parsed from the space-separated command-line arguments. It is
important to note that every element in the args array is treated as a string; if we need to
deal with other types, we will need to use the appropriate JavaScript parsing function (for
example, parseInt, parseFloat, and JSON.parse).

There's more…
The system.args array replaces the phantom.scriptName and phantom.args
properties that we saw in the Running a PhantomJS script with arguments recipe in Chapter
1, Getting Started with PhantomJS. As we noted previously, phantom.scriptName and
phantom.args are both deprecated, and we should prefer system.args for our scripts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

49

Establishing a command-line convention
Note that PhantomJS allows us to pass command-line arguments to our scripts, but it is not
opinionated about the format that those arguments take. Scripts that target PhantomJS and
make sufficiently prolific use of command-line arguments for runtime configuration should
adopt a consistent command-line argument pattern. Although unenforced, PhantomJS
establishes its convention through its own command-line API named parameters, with keys
prefixed by two dashes (--) and values separated by an equal to sign (=). For example:

phantomjs script.js --first=1 --second=true

If we frequently find ourselves in a situation where we need to parse these command-line
arguments, we can write a tiny utility script to help us create these runtime configuration
objects from the command-line arguments. For example:

function parseValue(v) {
 if (typeof v === 'undefined') {
 return true;
 } else {
 try {
 return JSON.parse(v);
 } catch (e) {
 return v;
 }
 }
}

function parseArguments(args) {
 return args.reduce(function(prev, current) {
 current = current.split('=');
 current[0] = current[0].replace(/^--/, '');

 prev[current[0]] = parseValue(current[1]);

 return prev;
 }, {});
}

// for example, use it like:
var args = require('system').args.slice(1);
parseArguments(args);

Such a utility script could be brought into other scripts through phantom.injectJs or by
using require (with some slight changes).

www.it-ebooks.info

http://www.it-ebooks.info/

PhantomJS Core Modules

50

See also
 f The Running a PhantomJS script with arguments recipe in Chapter 1, Getting Started

with PhantomJS

 f The Specifying a path for external scripts recipe

 f The Loading custom modules in PhantomJS recipe

Inspecting system environment variables
This recipe expands on the system module, demonstrating how to use its env property to
obtain the values of variables set in the host environment.

Getting ready
To run this recipe, we will need a script that expects to retrieve values from variables set in the
host environment; we should set those variables ahead of time for the sake of demonstration.

The script in this recipe is available in the downloadable code repository as recipe07.
js under chapter02. If we run the provided example script, we must change to the root
directory for the book's sample code.

How to do it…
Prepare the host environment by setting the BOOK_TITLE variable:

Platform Set variable by
Windows SET BOOK_TITLE=PhantomJS Cookbook

Mac OS X export BOOK_TITLE="PhantomJS Cookbook"

Linux export BOOK_TITLE="PhantomJS Cookbook"

Consider the following script:

var env = require('system').env,
 prop = 'BOOK_TITLE';

var keys = Object.keys(env).filter(function(k) {
 return k === prop;
});

if (keys.length === 1) {
 console.log(keys[0] + ' = ' + env[keys[0]]);
} else {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

51

 console.log('Could not find a property in env called ' + prop);
}

phantom.exit();

Given the preceding script, enter the following command at the command line:

phantomjs chapter02/recipe07.js

Our output should look like the following:

BOOK_TITLE = PhantomJS Cookbook

How it works…
Our example script works as follows:

1. We take the system module and grab the env property from it, assigning it to our
own env variable.

2. We use Object.keys to get just the keys from env; we then pass these keys
through the filter method, looking for one that matches the property we are
looking for, that is, BOOK_TITLE.

3. If we find a property called BOOK_TITLE in env, we print out the value of the
property. Otherwise, we print a message saying that we could find no such property.

4. We exit from PhantomJS.

The env property on the system module is a "plain" JavaScript object (key/value pairs)
representing the environment variables and their values, as provided by the host operating
system. The value of env is equivalent to what we would get on the command line for
printenv (in Linux or OS X) or SET (in Windows). It can be useful for getting the value of
system-wide properties or settings; however, env is read-only, and PhantomJS cannot add or
change any of its properties.

There's more…
As noted previously, the system module is our window to the rest of the world in our host.
We have seen how it can reveal arguments from the command line and spy on environmental
variables, but system also exposes several other properties:

 f The os property displays information about the host operating system. For example,
consider the following in the REPL:
phantomjs> require('system').os

{

 "architecture": "32bit",

www.it-ebooks.info

http://www.it-ebooks.info/

PhantomJS Core Modules

52

 "name": "mac",

 "version": "10.8 (Mountain Lion)"

}

 f The platform property displays the name of the platform (phantomjs); it is
read-only. For example, consider the following in the REPL:
phantomjs> require('system').platform

"phantomjs"

 f The pid property is another read-only property, and it displays the process ID for the
current PhantomJS runtime. For example, consider the following in the REPL:
phantomjs> console.log(require('system').pid)

11586

undefined

 f The system module exposes three other undocumented objects: stderr, stdin,
and stdout. All three of these objects have the following methods:

 � destroyed(QObject*)

 � destroyed()

 � deleteLater()

 � read(QVariant)

 � read()

 � write(QString)

 � seek(qint64)

 � readLine()

 � writeLine(QString)

 � atEnd()

 � flush()

 � close()

 f With these methods, PhantomJS offers access to the standard streams for reading
from and writing to our scripts interactively using the CommonJS IO/A proposal.
However, although these objects and their methods were introduced in PhantomJS
1.9, they are undocumented, and we should approach them with caution.

For more information on the CommonJS IO/A proposal, see
http://wiki.commonjs.org/wiki/IO/A.

www.it-ebooks.info

http://wiki.commonjs.org/wiki/IO/A
http://www.it-ebooks.info/

Chapter 2

53

Saving a file from a PhantomJS script
Now we will introduce the fs module which provides an API for working with the filesystem
from a PhantomJS script. In this recipe, we will demonstrate how to save a file from PhantomJS
and use the separator property for generating filesystem-safe paths, checking whether the
target directory exists, creating it if it does not, checking write permissions if it does, and then
persisting the contents to the filesystem.

Getting ready
To run this recipe, we will need a script that expects to write a file to the filesystem. In order to
write that file, we need write permissions in the destination directory.

The script in this recipe is available in the downloadable code repository as recipe08.js
under chapter02. If we run the provided example script, we must change to the root directory
for the book's sample code.

How to do it…
Consider the following script:

var fs = require('fs'),
 targetDir = 'foo-log';

if (!fs.exists(targetDir)) {
 console.log('Creating directory ' + targetDir);
 fs.makeDirectory(targetDir);
}

if (!fs.isWritable(targetDir)) {
 console.error(targetDir + ' is not writable!');
 phantom.exit(1);
}

console.log('Writing file...');
var currentTime = new Date().getTime();
fs.write(targetDir + fs.separator + currentTime + '.txt',
 'Current time is ' + currentTime, 'w');

phantom.exit();

Given the preceding script, enter the following at the command line:

phantomjs chapter02/recipe08.js

www.it-ebooks.info

http://www.it-ebooks.info/

PhantomJS Core Modules

54

We can verify that it worked by checking the filesystem, seeing that a new directory was created
with the name foo-log, and checking that it contains one file with a timestamp as its name.

How it works…
Our example script works as follows:

1. We take the fs module and assign it to a variable with the same name. We also
assign the name of our target directory to the variable targetDir.

2. We check whether our target directory exists using fs.exists. If the target directory
does not exist, then we create it using fs.makeDirectory.

3. We check whether the target directory is writable using fs.isWritable. If it is not
writable, we print an error to the console and exit PhantomJS.

4. Knowing that our target directory exists and is writable, we get the current time from
a new Date object and store it in the currentTime variable. We use currentTime
as part of the name of our file (adding .txt to the end); we also use currentTime
as part of the string that is written to that file. We persist this to the filesystem using
fs.write. In our call to fs.write, we construct the path using fs.separator,
which ensures that it uses the correct separator for our filesystem.

Note that fs.separator holds a / for POSIX-compatible
systems (Linux and OS X) or a \ for Windows. If our
scripts need to be portable across platforms, we must use
fs.separator to ensure compatibility.

5. We exit from PhantomJS.

For the API documentation on the fs (filesystem) module, see
http://phantomjs.org/api/fs/.

The fs module is the API provided by PhantomJS for interacting with the host filesystem. It
is modeled on the CommonJS Filesystem proposal; it features a robust set of properties and
methods for reading from and writing to files and for working with directory trees.

For more information on the CommonJS Filesystem proposal,
see http://wiki.commonjs.org/wiki/Filesystem.

Note that we use defensive code when dealing with the filesystem. As noted before, we take
care to check existence and permission at every step. Does our target directory exist? Can
we write to it? Our example isn't even as defensive as it could be. It pays to be cautious when
performing I/O—there's no telling what may go wrong along the way.

www.it-ebooks.info

http://phantomjs.org/api/fs/
http://wiki.commonjs.org/wiki/Filesystem
http://www.it-ebooks.info/

Chapter 2

55

There's more…
Most of the methods that we call in our example return Booleans. As noted before, code
that deals with the filesystem should be defensive, and as such, we find ourselves making
extensive use of existential- and permissions-related methods.

exists
The exists method takes a single argument, path, which is a string specifying the relative
or absolute path of the directory or file to check. The exists method returns true if the
reference exists and false if it does not.

makeDirectory
The makeDirectory method takes a single argument, path, which is a string specifying
the relative or absolute path of the directory to create. The makeDirectory method returns
true if the directory is created successfully and false if it fails for any reason. Note that
makeDirectory will not overwrite a directory that already exists, and it will return false.

isWritable
The isWritable method takes a single argument, path, which is a string specifying the
relative or absolute path of the directory or file to check. isWritable returns true if the
reference is writable and false if it is not.

write
The write method takes three arguments:

 f path: This is the relative or absolute path, as a string, of the file to be written

 f content: This is the content to be written to the filesystem, whether it is text or
binary data

 f mode: This is the write "mode" to use; it takes one of the following as a string: w
(write), a (append), or wb (write binary)

Given these three arguments, fs.write will write the contents to the filesystem (assuming
that the target directory exists and that we have write permissions); the method itself is void
and returns undefined.

In addition to the write method for writing files, the fs
module also exposes stream objects that have write
and writeLine methods. We will learn more about
steam objects in the Reading a file from PhantomJS
recipe later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

PhantomJS Core Modules

56

See also
 f The Reading a file from PhantomJS recipe

Reading a file from PhantomJS
In this recipe, we will expand on the fs module and demonstrate how to read from a file in
PhantomJS. We will cover the open method and discuss the stream object that it returns.

Getting ready
To run this recipe, we will need a script that expects to read a file from the filesystem and
a target file from which to read.

The script in this recipe is available in the downloadable code repository as recipe09.js
under chapter02. If we run the provided example script, we must change to the root
directory for the book's sample code.

How to do it…
Consider the following script:

phantom.onError = function(message, trace) {
 console.error('[Something went wrong!] - ' + message);
 phantom.exit(1);
};

var fs = require('fs'),
 _name = 'reamde.txt',
 path = require('system').args[0].split(fs.separator),
 file;

path = path.slice(0, path.length - 1).join(fs.separator);

fs.changeWorkingDirectory(path);

file = fs.open(_name, 'r');

console.log('[Reading ' + _name + '...]');
while (!file.atEnd()) {
 console.log(file.readLine());
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

57

console.log('[Closing ' + _name + '.]');
file.close();

phantom.exit();

Enter the following at the command line:

phantomjs chapter02/recipe09.js

Our output should look like the following:

[Reading reamde.txt...]

The Big U

Zodiac

Snow Crash

The Diamond Age: or A Young Lady's Illustrated Primer

Cryptonomicon

Quicksilver

The Confusion

The System of the World

Anathem

Reamde

[Closing reamde.txt.]

How it works…
Our example script works as follows:

1. We attach a global error handler using phantom.onError. As we are dealing with
I/O on the filesystem, it pays to be defensive.

2. We require the fs module and assign it to a variable with the same name. We also
assign the name of our target file to the _name variable. Then, we grab the path of
the currently executing script, split it on the host operating system's path separator,
and hold it as an array in the path variable.

3. We discard the filename from path and rejoin the path parts using the host
operating system's path separator. Then, we change our working directory using
fs.changeWorkingDirectory.

4. We create a handle to our target file using fs.open, which returns a stream object
that we assign to the file variable.

5. We loop through the file in a while statement, using file.atEnd to check our
progress through the lines of the file. In the body of the while statement, we use
file.readLine to get the contents of the current line in the file and write them to
the console.

www.it-ebooks.info

http://www.it-ebooks.info/

PhantomJS Core Modules

58

6. We terminate our stream operation using file.close.

7. We exit from PhantomJS.

As we discussed in the Saving a file from a PhantomJS script recipe earlier in this chapter, we
should be defensive when dealing with I/O operations. However, instead of the finely-grained
checks we performed in that recipe, we charge ahead optimistically through our script and
rely on our global error handler to bail us out in the event of a failure.

There's more…
Although we expanded somewhat on the fs module, the underlying lesson in this recipe is
around the stream objects and how to work with them.

changeWorkingDirectory
The changeWorkingDirectory method (on the fs module) allows us to change the current
working directory of the script's execution context. By default, our current working directory is
the working directory from which the script was launched, and not necessarily the directory
where the script "lives" on the filesystem. The changeWorkingDirectory method takes
a single argument, path, which is a string specifying the relative or absolute path of the
directory we want to change to. The changeWorkingDirectory method returns true
if the directory change is successful and false if it is not.

open
The open method (on the fs module) is the critical component of this recipe; it gives us our
handle to our target file, and it returns the stream object that we will work with while iterating
through the file's contents.

The open method takes two arguments, which are:

 f path: This is the relative or absolute path, as a string, of the file to be opened

 f mode: This is the mode we will use when opening stream for this file; it takes one
of the following as a string: r (read), w (write), a (append), rb (read binary), or wb
(write binary)

Again, open returns a stream object.

stream objects
In PhantomJS, a stream object is a handle to a file on the filesystem. With that handle,
we can inspect and manipulate the file. Note that stream objects impact our overhead for
system resources (for example, by opening sockets), and we must be diligent about closing
our streams as we finish with each object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

59

In our example, we perform some relatively trivial operations with our stream; for instance,
checking if we are at the end and reading the line. Nevertheless, the example provides a solid
foundation for how to think about and work with stream objects.

atEnd
The atEnd method on a stream object takes no arguments, and it returns true or false
depending on whether we have reached the end of that file or not. Using atEnd is an
excellent choice for iterating through the lines of a file when we have opened it in read mode.

readLine
The readLine method on a stream object returns the current line of content as a string.
Note that we cannot query the stream for the current line or the total lines; these are bits of
internal state that are not exposed on the API surface area.

close
The close method on a stream object completes our operations with it, and it is then ready
to be garbage collected; close is a void method and returns undefined. Note that we
cannot access the stream object after calling close.

Other stream methods
In addition to the previously described stream methods, stream objects have several
other methods:

 f read: This returns the entire content of stream as a string

 f write and writeLine: These take a single string as an argument and write it to
stream; specifically how the string is written will depend on the mode stream was
opened in

 f seek: This takes an integer as an argument and "seeks" that position in stream,
effectively moving the read caret to that position; positions in stream are 0 indexed,
and in this way we can think of them as arrays

 f flush: This takes no arguments and immediately flushes all pending input or output
on stream

See also
 f The Setting up a global PhantomJS error handler recipe

 f The Inspecting command-line arguments recipe

 f The Saving a file from a PhantomJS script recipe

www.it-ebooks.info

http://www.it-ebooks.info/

PhantomJS Core Modules

60

Creating a custom module for PhantomJS
In this recipe, we will learn how to create a custom module for PhantomJS that can be
imported into our script using the require function.

Getting ready
For this recipe, we will only need a text editor. Some knowledge of CommonJS modules is
useful but not strictly necessary.

How to do it…
In our text editor, we write the script that will be our module. As PhantomJS adheres to the
CommonJS module system, the contents of this file will not pollute the global execution
context after being imported; the only aspects of the script that are exposed will be those
items attached to the exports object, and even then it must be assigned to a variable after
the require expression.

For example, we could create our module in the following way:

function parseValue(v) {
 if (typeof v === 'undefined') {
 return true;
 } else {
 try {
 return JSON.parse(v);
 } catch (e) {
 return v;
 }
 }
}

function parseArguments(args) {
 return args.reduce(function(prev, current) {
 current = current.split('=');
 current[0] = current[0].replace(/^--/, '');

 prev[current[0]] = parseValue(current[1]);

 return prev;
 }, {});
}

exports.parseArgs = parseArguments;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

61

This would create a module with a single exposed method (parseArgs, in our example).

The preceding script is available in the downloadable code
repository as arg-parser.js under lib. For more
information about CommonJS modules, see http://
wiki.commonjs.org/wiki/Modules/1.1.1.

How it works…
As previously mentioned, PhantomJS adheres to the CommonJS modules proposal, and
as such, we can create modules targeting the PhantomJS platform by following these
conventions. The key points to keep in mind while creating a module are as follows:

 f The file constitutes the module. It may refer to other files and other modules, but the
file referenced by the require expression will be that file.

 f The file's contents do not pollute the global context. Variables and functions remain
private to the module, unless explicitly exposed; this gives us a lot of freedom in how
we design and implement our module.

 f Only the exports object is exposed. The only aspects of our module that are
exposed to its downstream consumers are those properties and methods that are
assigned to slots on the exports object. This exports object is what is returned
from a require expression after it has evaluated the module.

See also
 f The Loading custom modules in PhantomJS recipe

Loading custom modules in PhantomJS
In this recipe, we will learn how to load custom modules in our PhantomJS scripts using the
require function. PhantomJS has several built-in modules, but we can also write our own
(see the Creating a custom module for PhantomJS recipe earlier in this chapter) and import
them in this way.

Getting ready
To run this recipe, we will need a custom module that we want to import using the require
function; we can use the arg-parser.js module that we wrote in the Creating a custom
module for PhantomJS recipe earlier in this chapter.

www.it-ebooks.info

http://wiki.commonjs.org/wiki/Modules/1.1.1
http://wiki.commonjs.org/wiki/Modules/1.1.1
http://www.it-ebooks.info/

PhantomJS Core Modules

62

The script in this recipe is available in the downloadable code repository as recipe11.js
under chapter02. If we run the provided example script, we must change to the root directory
for the book's sample code.

How to do it…
Assuming that we are using our arg-parser.js script from the previous recipe, consider
the following script:

var argParser = require('../lib/arg-parser'),
 args = require('system').args.slice(1);

args = argParser.parseArgs(args);

Object.keys(args).forEach(function(k) {
 console.log(k + ' = ' + args[k] +
 ' (' + (typeof args[k]) + ')');
});

phantom.exit();

Given the preceding script, enter the following at the command line:

phantomjs chapter02/recipe11.js --one=1 --two="uno dos" --three

Our output should look like the following:

one = 1 (number)

two = uno dos (string)

three = true (boolean)

How it works…
Our example script works as follows:

1. We import our custom module using the require function. Note that we use a relative
path to that module, and that path is relative to the path of the executing script and not
relative to the current working directory (as reported by fs.workingDirectory).

2. We obtain the script arguments by requiring the system module and referencing the
args array. We then immediately slice the args array so that we have all of the
arguments except the first one (the script name).

3. We parse the arguments by calling the parseArgs method that is exposed by
our module.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

63

4. We iterate through the arguments and output the keys, their associated values, and
their types, as parsed by parseArgs.

5. We exit from PhantomJS.

For a discussion of the trade-offs between importing
modules with require versus importing scripts with
phantom.injectJs, see the Specifying a path for
external scripts recipe in this chapter.

See also
 f The Specifying a path for external scripts recipe

 f The Inspecting command-line arguments recipe

 f The Creating a custom module for PhantomJS recipe

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

3
Working with

webpage Objects

In this chapter, we will cover:

 f Creating a web page instance in PhantomJS with the webpage module

 f Opening a URL within PhantomJS

 f Generating a POST request from PhantomJS

 f Inspecting page content from a PhantomJS script

 f Including external JavaScript on the page

 f Recording debugger messages

 f Simulating mouse clicks in PhantomJS

 f Simulating keyboard input in PhantomJS

 f Simulating scrolling in PhantomJS

 f Simulating mouse hovers in PhantomJS

 f Blocking CSS from downloading

 f Causing images to fail randomly

 f Submitting Ajax requests from PhantomJS

 f Working with WebSockets in PhantomJS

Introduction
In addition to the core APIs discussed in the previous chapter, PhantomJS provides one other
critically important module as part of its standard library: the webpage module.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

66

The webpage module exposes methods for creating instances of webpage objects (which are
functionally equivalent to browser windows); these instances then have a suite of methods
and properties that we can use to inspect and interact with the web pages.

The recipes in this chapter take a deep dive into the webpage module and include strategies
for dealing with web page content. In particular, the recipes introduce us to techniques for
interacting with web pages and how to capture those interactions for successful tests.

Creating a web page instance in PhantomJS
with the webpage module

This recipe introduces the webpage module and demonstrates how to create an instance of
a webpage object.

Getting ready
To run this recipe, we will simply create an instance of a webpage object; we can do this in
the REPL.

See the Launching the PhantomJS REPL recipe in Chapter 1, Getting
Started with PhantomJS, for more information about the REPL.

How to do it…
After entering the PhantomJS REPL, perform the following steps:

1. Import the webpage module and assign it to a variable with that name, using the
following command:
phantomjs> var webpage = require('webpage');

undefined

2. Create an instance of a webpage object from the module, using the following
command:
phantomjs> var thePage = webpage.create();

undefined

3. Loop through the properties on the webpage instance and print them out, using the
following command:
phantomjs> for (var p in thePage) console.log(p);

objectName

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

67

title

frameTitle

content

frameContent

and 88 more

undefined

4. Destroy the webpage instance and exit PhantomJS, using the following command:
phantomjs> thePage.close();

undefined

phantomjs> phantom.exit();

How it works…
The webpage module exposes only one function, create, which is a factory function for
creating instances of webpage objects.

In this book, we will use the term webpage interchangeably to refer to
both the module and the object instances that we create from it. As the
module exists solely to create instances of the objects, it should not be
too confusing.

In our preceding example, we imported the webpage module using the require statement,
and then we immediately created an instance of a webpage object using the module's
create function.

We can think of individual webpage instances as if they were browser windows or tabs. These
webpage objects can be assigned URLs (not unlike typing a URL into the address bar), can
open those URLs, have a history (and can navigate forward and backward through it), and can
have frames, errors, console messages, and just about every other thing that a customary
browser window can have.

Our example demonstrates some of these properties and methods by iterating through the
object and printing them out to the console.

Lastly, we mark the webpage object as finished and ready for garbage collection by calling
its close method.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

68

There's more…
The webpage module's create method takes a single undocumented argument: opts. The
opts argument is an object of options and properties that would be assigned to the resulting
webpage instance. Though this seems useful, most of the properties on a webpage object
are simply ways of exposing internal state, and as such are internally managed; that being
said, we can assign properties like event listeners (such as the ones we will discuss later in
this chapter) to webpage objects in this way.

The WebPage constructor
Another way of creating webpage objects in a PhantomJS script is to use the (now deprecated)
WebPage constructor. For example, instead of using the webpage module, as we did in our
preceding example, we could do the following:

var thePage = new WebPage();

This code is functionally equivalent to:

var thePage = require('webpage').create();

We are likely to encounter the WebPage constructor in older PhantomJS scripts; though it is
useful to recognize it, we should not use it for anything new.

Opening a URL within PhantomJS
This recipe expands on the webpage object and introduces its open method. Here, we will
focus on the basic version of open, which takes a URL and a simple callback function.

Getting ready
To run this recipe, we will need a script that accesses a web page. For this example to
complete, an Internet connection is also required.

The script in this recipe is available in the downloadable code repository as recipe02.js
under chapter03. If we run the provided example script, we must change into the root
directory for the book's sample code.

How to do it…
Consider the following script:

var webpage = require('webpage').create();

webpage.open('http://blog.founddrama.net/', function(status) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

69

 switch (status) {
 case 'success':
 console.log('webpage opened successfully');
 phantom.exit(0);
 break;
 case 'fail':
 console.error('webpage did not open successfully');
 phantom.exit(1);
 break;
 default:
 console.error('webpage opened with unknown status: ' +
 status);
 phantom.exit(1);
 }
});

Enter the following on the command line:

phantomjs chapter03/recipe02.js

The script will output the appropriate message based on whether it successfully opened the
destination URL or not.

How it works…
Our example script performs the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name.

2. It calls webpage.open and passes it two arguments: a URL (http://blog.
founddrama.net/) and a callback function.

The callback function takes a single argument (status) and outputs the corresponding
message depending on whether open was successful or not. After writing that message
to the console, we exit from PhantomJS.

A webpage object is not very interesting by itself; we need to call open on it to arrive at
any content worth working with. In the form presented in this example, we are passing two
arguments to webpage.open: the first is the URL of our intended destination and the second
is our callback function—it's what we want to do after we have opened (or failed to open) the
URL. The callback function is called with one argument, status, which can be either the
string success or fail. Once the page is successfully opened, we can do any number of
manipulations with it; or, we can treat the failure condition as an opportunity to retry.

www.it-ebooks.info

http://blog.founddrama.net/
http://blog.founddrama.net/
http://www.it-ebooks.info/

Working with webpage Objects

70

Also, we must remember not to exit from PhantomJS prematurely. Calls to webpage.open
do not block, but instead kick off an asynchronous operation (retrieving that web page). If we
place our call to phantom.exit outside of the callback function of webpage.open, we can
cause our script to exit before the web page request is fulfilled. Make sure to place those calls
to phantom.exit inside of the callback function, or else find some other means to monitor
for the appropriate termination conditions.

There's more…
The open method on the webpage object has an overloaded signature. We can use it in the
following forms:

 f open(url): Taking in the URL only, this form eschews the callback function
and assumes that we will process the opened page using an onLoadFinished
event handler.

 f open(url, callback): This is the form that we used in our preceding example;
it takes the URL as the first argument and the callback function as the second
argument. Note that the URL is always the first argument, and the callback, if
present at all, is always the last. When we are dealing with open, we will mostly
be using this form.

 f open(url, method, callback): This form (and the one that follows) is used
when we wish to open a URL using an HTTP method other than GET. In this form,
the URL is the first argument. We then specify the HTTP method (as a string) as the
second argument, and then provide our callback function. We will mostly use this
form for DELETE requests.

 f open(url, method, data, callback): Similar to the form we just discussed,
this form is also not for GET requests. Once again, the URL is the first argument, we
then specify the HTTP method (as a string) and provide the data associated with our
request; lastly, we specify our callback function. We will mostly use this form for POST
and PUT requests.

Lastly, there is one more form, open(url, method, data, headers, callback), which
matches the form discussed in our last bullet, except that we can provide additional request
headers as an argument before our callback function. However, as this form is undocumented,
we should prefer the customHeaders property on our webpage objects, and consider using
them before this form of open. Be aware, however, that custom HTTP headers set with the
customHeaders property are applied to every request, and not just the current request.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

71

back function provided to the various forms of webpage.open is
functionally equivalent to any function that may be assigned as the
webpage.onLoadFinished event handler. However, the two are not
mutually exclusive, and can either be used in concert or can cancel each
other out. Generally speaking, we should use one or the other, unless there
is a good reason to use them together.
The webpage.onLoadFinished handler is particularly useful in places
where we need to change the behavior of our "after loading" response at
runtime, or where we need a consistent handler for every such load event
on a particu

See also
 f The Generating a POST request from PhantomJS recipe

 f The Recording debugger messages recipe, later in this chapter, which talks about
working with the webpage object event handlers, including onLoadFinished and
onLoadStarted.

Generating a POST request from PhantomJS
This recipe expands further on the webpage.open method by demonstrating its additional
parameters for specifying an HTTP method and data. The recipe's discussion will also reframe
the open method by illustrating how to use it for interacting with RESTful interfaces.

Getting ready
To run this recipe, we need a script that will make an HTTP request with a method other than
GET, and some knowledge of what the URL expects with respect to the HTTP verb and the
payload data (if any).

The script in this recipe is available in the downloadable code repository as recipe03.js
under chapter03. If we run the provided example script, we must change to the root directory
for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

72

How to do it…
Consider the following script:

var webpage = require('webpage').create(),
 url = 'http://localhost:3000/post-demo',
 postData = JSON.stringify({
 "foo": "bar",
 "now": new Date().getTime()
 });

webpage.customHeaders = { "Content-Type":"application/json" };

webpage.onInitialized = function() {
 webpage.customHeaders = {};
};

webpage.open(url, 'POST', postData, function(status) {
 if (status === 'fail') {
 console.error('Something went wrong posting to ' + url);
 phantom.exit(1);
 }

 console.log('Successful post to ' + url);
 phantom.exit(0);
});

Given the preceding script, enter the following at the command line:

phantomjs chapter03/recipe03.js

The script should print out the following:

Successful post to http://localhost:3000/post-demo

If we go back to the terminal where the demo app is running, we should see something like
the following in the console:

{ foo: 'bar', now: 1389059859377 }

POST /post-demo 200 1ms - 42b

How it works…
Our preceding example script performs the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name. It
also assigns our target URL to the url variable, and it assigns our payload data to
the postData variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

73

2. Since we serialize our POST data as JSON, the script sets the Content-Type header
to application/json using the webpage.customHeaders property.

3. Since customHeaders are sent with every request, and because we only want to
send them with our first (POST) request, it uses the webpage.onInitialized
event handler to clear out customHeaders. This event handler will be called after
the web page is created but before the URL is loaded.

4. It calls the four-argument form of webpage.open to perform the POST operation.
The arguments are as follows:

 � The URL

 � The HTTP method (for example, 'POST')

 � The payload data (for example, serialized JSON or an x-www-form-
urlencoded string)

 � The callback function

In our callback function, we print a message about the success (or failure) of our POST, and
then exit from PhantomJS.

It is important to know what data format our target URL expects and craft
our payload appropriately. Our example uses JSON because it is easier to
read when compared to form data (a content type of application/x-
www-form-urlencoded).

There's more…
What separates the code in this recipe from the simpler version of webpage.open that we
saw in the Opening a URL within PhantomJS recipe in this chapter are the arguments in the
second and third positions. To be specific, we are explicitly specifying which HTTP method
(or verb) we want to use for our request with the second argument; if this request expects
us to include data, we can pass it along as the next argument. In other words, although the
default mode for webpage.open is to perform a GET request, we are free to specify any of
the HTTP methods here.

In effect, this makes PhantomJS a REST client.

If you are asking "so what?", then consider it this way—by providing a way for PhantomJS
to perform a POST through webpage.open, we can test the forms on our websites, but by
permitting us to specify an HTTP method, it enables us to test our REST APIs as well. This
increases PhantomJS' value as a tool for integration and functional testing.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

74

This is not to suggest that PhantomJS is necessarily the best solution for testing your REST
APIs. Clearly, we need to consider our project's requirements and the other factors specific to
the situation—there may be other tools better suited to the job. On the other hand, it may be
totally reasonable and prudent to test both the web application and the underlying REST API
with PhantomJS, if for no other reason than we can test them both with the same tool. Again,
we must perform the due diligence for our specific circumstance, but it's helpful to know that
PhantomJS is an option.

Inspecting page content from a PhantomJS
script

This recipe introduces webpage.evaluate, which provides us with a hook into the context
and content of the web page we have requested, including ways to inspect and manipulate
the DOM. The cornerstone for many of the recipes that lie ahead will be webpage.evaluate.

Getting ready
To run this recipe, we will need a script that loads a web page, and we will need a callback
function to webpage.open that expects to work with the content of the HTTP response.

The script in this recipe is available in the downloadable code repository as recipe04.js
under chapter03. If we run the provided example script, we must change to the root directory
for the book's sample code. Lastly, for this example to work, we will need an Internet connection.

How to do it…
Consider the following script:

var webpage = require('webpage').create();

webpage.open('http://blog.founddrama.net/', function(status) {
 if (status === 'fail') {
 console.error('Failed to open requested page.');
 phantom.exit(1);
 }

 var titles = webpage.evaluate(function(selector) {
 var titles = [],
 forEach = Array.prototype.forEach,
 nodes = document.querySelectorAll(selector);

 forEach.call(nodes, function(el) {
 titles.push(el.innerText);
 });

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

75

 return titles;
 }, '.post h2');

 titles.forEach(function(t) {
 console.log(t);
 });

 phantom.exit();
});

Given the preceding script, enter the following at the command line:

phantomjs chapter03/recipe04.js

The script should print out the titles of the most recent posts on the blog.

How it works…
Our preceding example script performs the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name.

2. It calls webpage.open on our target URL (http://blog.founddrama.net/) and
passes it a callback function.

3. The callback function first inspects the status argument, and then it exits
PhantomJS if it equals fail.

4. It retrieves the titles of the blog posts and assigns them to the titles variable by
executing webpage.evaluate; it takes a callback function and an arbitrary number
of other arguments that will be forwarded to the callback. In this case, our second
argument is a selector string ('.post h2').

5. The callback function to webpage.evaluate is executed in the context of the
retrieved web page. In this example, we call document.querySelectorAll using
the selector that was passed in as the second argument to webpage.evaluate. We
then iterate through the NodeList, extracting the innerText of each element, and
finally returning the titles array.

Note that the callback function to webpage.evaluate is sandboxed; it
has access to the DOM and to any JavaScript loaded on that web page, but it
cannot "see out" into the PhantomJS execution context. We are limited with
respect to what we can send back and forth between the inner (web page)
and outer (PhantomJS) contexts, and what we send must be sent deliberately,
through function arguments or return values. Generally speaking, we can
only send primitive values (Booleans, numbers, and strings) or "JSON-ifiable"
values (arrays and objects)—no functions, DOM nodes, or references.

www.it-ebooks.info

http://blog.founddrama.net/
http://www.it-ebooks.info/

Working with webpage Objects

76

6. After webpage.evaluate returns, the titles array will hold the values of the titles
from the blog posts on the page. We can loop through the values using forEach, and
print each one to the console.

7. Lastly, we exit from PhantomJS.

The two most important things to remember about webpage.evaluate are: it is perhaps the
most critical tool in PhantomJS for inspecting web page contents, and its callback functions
are sandboxed.

With respect to the first point, webpage.evaluate is an essential tool for inspecting the
contents of the HTTP response. As noted previously though, the execution context for the
callback function is that of the web page, and as such it has access to all of the same things
that the web page has access to—the native DOM and BOM APIs, and any JavaScript loaded
on that page. This is important because it means that not only can we inspect the web page's
contents (as we did in our example), but we can also manipulate that page using our familiar
JavaScript-based tools.

With respect to the sandboxed nature of the webpage.evaluate context—it is imperative
to remember that we must be very deliberate and specific with how we try to move data
between the two execution contexts (the inner context of the web page and the outer context
of PhantomJS). As previously noted, if we can serialize the value as JSON, then it can cross the
boundary between the two contexts; we cannot pass around complex objects such as DOM
nodes or functions. Additionally, it is important to remember that the inner web page context
cannot look up into the PhantomJS context. This may violate some of our expectations about
how JavaScript works; it is not unreasonable to look at the preceding example and expect to
refactor it to look more like this:

var titles = [];

webpage.evaluate(function(selector) {
 var forEach = Array.prototype.forEach,
 nodes = document.querySelectorAll(selector);

 forEach.call(nodes, function(el) {
 titles.push(el.innerText);
 });
}, '.post h2');

After all, that's how scopes and closures work in JavaScript, right?

Except that in this case, we cannot consider the callback function of webpage.evaluate to
be a child scope of the main script. Instead, we must look at it as more of a parallel scope to
the one that otherwise contains it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

77

There's more…
In addition to evaluate, the PhantomJS webpage API also provides evaluateAsync. The
evaluateAsync method is a void method, and it returns immediately. As such, it does not
block (as evaluate does), but it also does not return any value after its evaluation is complete.
We can use some of the event handlers (for example, webpage.onConsoleMessage) to
intercept values, but if we are concerned with extracting data from the web page contents,
then we are better off sticking with webpage.evaluate.

Including external JavaScript on the page
In this recipe, we will learn how to incorporate external JavaScript onto a web page using the
includeJs and injectJs methods for remote and local scripts respectively.

Getting ready
To run this recipe, we will need a script that loads a web page, and also scripts that will be
loaded by that script to use within the web page context.

The script in this recipe is available in the downloadable code repository as recipe05.js
under chapter03. If we run the provided example script, we must change into the root directory
for the book's sample code. Also, for this example to work, we will need an Internet connection.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change into the phantomjs-sandbox directory (in the sample code's directory),
and start the app with the following command:

node app.js

How to do it…
Consider the following script:

var webpage = require('webpage').create(),
 script = '../lib/hemingway.js',
 jquery = 'http://ajax.googleapis.com/ajax/libs/jquery/2.0.3/
jquery.min.js';

webpage.open('http://localhost:3000/', function(status) {
 if (status === 'fail') {
 console.error('Failed to open web page.');
 phantom.exit(1);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

78

 if (webpage.injectJs(script)) {
 webpage.includeJs(jquery, function() {
 var fibs = webpage.evaluate(function() {
 var $ct = $('<div></div>').appendTo('body'),
 seed = Math.ceil(Math.random() * 10),
 fibs = [];

 fibonacci(seed).forEach(function(n) {
 $ct.append('<div class="fib">' + n + '</div>');
 });

 $('.fib').each(function(i, el) {
 fibs.push(el.innerText);
 });

 return fibs;
 });

 console.log('Fibonacci numbers inserted included:');
 fibs.forEach(function(n) {
 console.log(' \u20D7 ' + n);
 });

 phantom.exit();
 });
 } else {
 console.error('Something went wrong trying to inject ' +
 script);
 phantom.exit(1);
 }
});

Given the preceding script, enter the following at the command line:

phantomjs chapter03/recipe05.js

The script should print out a message that includes a list of the Fibonacci numbers that were
inserted on the page.

How it works…
Our preceding example script performs the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name. It
also specifies the path to our local and remote scripts, and assigns them to script
and jquery respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

79

2. It calls webpage.open on our target URL (http://localhost:3000/) and passes
it a callback function.

3. Our callback function first inspects the status argument, and exits PhantomJS if it
equals fail.

4. It calls webpage.injectJs, passing script as its sole argument; note that
webpage.injectJs returns true if it successfully loads the file from the filesystem
and places the script into the web page's execution context. If webpage.injectJs
returns false, it prints a message to the console and exits from PhantomJS.

5. It calls webpage.includeJs, passing jquery as the first argument (specifying the
URL of the script to load) and a callback function as the second argument.

6. In our callback function for webpage.includeJs, we declare the fibs variable and
assign to it whatever value is returned from a call to webpage.evaluate.

7. In our call to webpage.evaluate, we perform the following:

1. We create a container div ($ct) using jQuery, which we imported to the web
page using webpage.includeJs.

2. We create seed, which holds the seed value for our call to fibonacci.

3. We create a fibs array for this context to hold our return values.

4. We call fibonacci with seed and iterate over the values, appending a
div (with a class of fib) for each. Note that the fibonacci function was
imported using webpage.injectJs from the hemingway.js library.

5. We use jQuery to iterate over those divs, and extract the Fibonacci values
from the innerText of each element.

8. We return the array of Fibonacci numbers.

9. With the Fibonacci numbers assigned to fibs, we iterate over the list and print them
to the console.

10. Lastly, we exit from PhantomJS.

There's more…
The obvious difference between includeJs and injectJs is that the former loads a
remote file (from a URL) and the latter loads a local file (from the filesystem). However,
to fully understand what separates these two methods, we should take a closer look at them.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

80

includeJs
The includeJs method imports a script into the context of the loaded web page, loading
that resource from a URL; it effectively behaves just like any other dynamic script loading
operation—by creating script tags at runtime and appending them to the body. The following
two arguments are taken by includeJs:

 f The URL of the remote script resource as a string.

 f A callback function that is executed in the context of the web page. This callback
function takes a single argument (the URL of the imported resource) and has no
return value.

Note that includeJs is a void function and has no return value. Another
important thing to note about includeJs is that it is asynchronous; it will
not block the main thread of execution in our PhantomJS scripts while we
wait for the remote script to finish loading.
However, a word of caution about includeJs—the method provides us
no feedback about the success or failure of the resource we are trying
to load. Contrast this with webpage.evaluate, which passes a status
argument to its callback function to inform us whether the resource loaded
successfully; includeJs provides no such feedback and its callback
function may never execute if the script resource fails to load (for example,
because of a 404 error). As such, it may be prudent to wrap calls to
includeJs in some kind of timeout.

injectJs
The injectJs method on a webpage instance (not to be confused with phantom.
injectJs) imports a script into the context of the loaded web page, loading the resource
from a file. Effectively, injectJs works by:

 f Loading the script from the filesystem

 f Evaluating that script

 f Adding the contents of that script to the execution context of the web page

The injectJs method takes a single argument, the location of the file to load; if the file's
path is relative, and PhantomJS cannot locate it relative to the current directory, then
phantom.libraryPath is used to resolve the path.

The injectJs method returns true if the script was loaded successfully, and it returns
false if it was not.

Another thing to note about injectJs is that unlike includeJs, it is a synchronous method,
and it will block the thread until it returns.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

81

See also
 f The Specifying a path for external scripts recipe in Chapter 2, PhantomJS Core Modules
 f The Creating a custom module for PhantomJS recipe in Chapter 2, PhantomJS

Core Modules
 f The Loading custom modules in PhantomJS recipe in Chapter 2, PhantomJS

Core Modules
 f The Inspecting page content from a PhantomJS script recipe

Recording debugger messages
This recipe introduces the onConsoleMessage callback, discusses how to intercept
debugger messages on the web page, and forwards them to the command-line output.
The onConsoleMessage demonstration serves as an introduction to the other callbacks
(for example, onAlert, onLoadFinished, onResourceReceived, and so on) that can be
attached to webpage instances, while also providing a frame of reference for working with them.

Getting ready
To run this recipe, we will need a script that loads a web page, and then we will need JavaScript
that executes in the context of that web page and writes messages to its console object.

The script in this recipe is available in the downloadable code repository as recipe06.
js under chapter03. If we run the provided example script, we must change to the root
directory for the book's sample code.

How to do it…
Consider the following script:

var webpage = require('webpage').create();

webpage.onConsoleMessage = function(message, lineNum, sourceId) {
 console.log('[phantomjs:page] ' + message);
};

webpage.evaluate(function(url) {
 console.log('Hello from inside of ' + url);
}, webpage.url);

phantom.exit();

Given the preceding script, enter the following on the command line:

phantomjs chapter03/recipe06.js

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

82

The script's console output should look like the following:

[phantomjs:page] Hello from inside of about:blank

How it works…
Our preceding example script performs the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name.

2. It assigns a callback function to webpage.onConsoleMessage. This callback
function simply takes the console message from the web page (the message
argument) and writes it to the console from the PhantomJS context.

The API for the onConsoleMessage callback function specifies
three parameters: message (which we are using here), lineNum
(the line number in the script that generated the console message),
and sourceId (the source identifier or filename). However,
although the API outlines all three of these parameters, only
message is currently implemented as of version 1.9.2.

3. We call webpage.evaluate with a callback function, passing in the current URL
of webpage as the argument; the callback function does only one thing, it writes a
message to the web page's console.

4. Lastly, we exit from PhantomJS.

It is important to note here that the web page's console object is sandboxed, just like the
rest of the JavaScript execution context on the web page. As such, the web page's console
is completely separate from the PhantomJS console. However, the onConsoleMessage
callback provides a bridge between the two worlds, and it allows us to forward the console
messages from the web page out to our PhantomJS script.

There's more…
The onConsoleMessage callback is only one of 17 event-handler callbacks that can be
attached to webpage objects. As we previously illustrated with our onConsoleMessage
example, these callbacks can be used to pass information from the web page to the
PhantomJS context, or to have PhantomJS respond to events that occur within the web page.

These callbacks include:

 f onAlert: This handles calls to alert on the web page

 f onCallback: This is an experimental feature, the callback is used for posting
messages from the web page directly into the PhantomJS context

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

83

Note that onCallback is likely to be replaced by some other
message-based solution.

 f onClosing: This handles the web page's close event, either from within the web
page (window.close) or from PhantomJS itself (webpage.close)

 f onConfirm: This handles calls to confirm on the web page; returning true from
the callback is equivalent to clicking on OK, while returning false is equivalent to
clicking on Cancel

 f onConsoleMessage: Described earlier in this recipe, this callback handles calls
to the various console methods

 f onError: This handles JavaScript errors on the web page
 f onFilePicker: This handles filesystem prompts (for example, clicks to an HTML

input element with type="file" set)
 f onInitialized: This is called after the web page is created but before the URL

is loaded
 f onLoadFinished: This is called after the web page finishes loading; the callback

takes a single argument (status) and is analogous to the callback function used
with webpage.open

 f onLoadStarted: This is called when the web page starts loading
 f onNavigationRequested: This is called when any navigation event occurs on the

page; the callback's arguments describe the circumstances of the navigation event
 f onPageCreated: This is called when a new child window is opened (for example, via

window.open); this is only fired for direct descendants of the web page to which the
callback is assigned

 f onPrompt: This handles calls to prompt on the web page; it returns a string to use
as the input for the prompt window

 f onResourceError: This is called when there is an error loading a resource onto the
web page

 f onResourceReceived: This is called when the web page has received a resource; it
is fired once the reception starts, and again when it completes

 f onResourceRequested: This is called when the web page requests a resource;
used in combination with onResourceReceived, it can be used to generate the
data for the web page's resource waterfall (among other uses)

 f onUrlChanged: This is called when the web page navigates away from the
current URL

The individual callbacks are well documented in the online API for
the PhantomJS webpage object at http://phantomjs.org/
api/webpage/.

www.it-ebooks.info

http://phantomjs.org/api/webpage/
http://phantomjs.org/api/webpage/
http://www.it-ebooks.info/

Working with webpage Objects

84

The callbacks that can be assigned to the webpage object are an important part of scripting
PhantomJS, and they provide critical bridges between what is happening "inside" the web page
and "outside" in the script. Some of these callbacks (for example, onAlert, onConfirm,
onPrompt, and so on) provide us with ways to interact with the parts of the web page which
are otherwise not part of the DOM. Other callbacks (for example, onResourceError,
onResourceReceived, onResourceRequested, and so on) provide us with ways of gaining
insight into metadata about the web page, its resources, and its lifecycle.

See also
 f The Setting up a global PhantomJS error handler recipe in Chapter 2, PhantomJS

Core Modules

 f The Causing images to fail randomly and Blocking CSS from downloading recipes

Simulating mouse clicks in PhantomJS
In this recipe, we will demonstrate how to perform mouse clicks in a PhantomJS script.

Getting ready
To run this recipe, we will need a script that loads a web page, and that page will need a
target to click on.

The script in this recipe is available in the downloadable code repository as recipe07.
js under chapter03. If we run the provided example script, we must change to the root
directory for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

How to do it…
Consider the following script:

var webpage = require('webpage').create(),
 url = 'http://localhost:3000/';

webpage.viewportSize = { width: 1280, height: 800 };

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

85

webpage.onUrlChanged = function(targetUrl) {
 console.log('Latest URL: ' + targetUrl);
};

webpage.onLoadFinished = function(status) {
 if (status === 'fail') {
 console.error('webpage did not open successfully');
 phantom.exit(1);
 }

 if (webpage.url !== url) {
 console.log('URL changed; exiting...');
 phantom.exit();
 }

 var coords = webpage.evaluate(function() {
 var firstLink = document.querySelector('a');

 return {
 x: firstLink.offsetLeft,
 y: firstLink.offsetTop
 };
 });

 webpage.sendEvent('click', coords.x + 1, coords.y + 1);
};

webpage.open(url);

Given the preceding script, enter the following on the command line:

phantomjs chapter03/recipe07.js

The script should print out the following:

Latest URL: http://localhost:3000/

Latest URL: http://localhost:3000/cache-demo

URL changed; exiting...

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

86

How it works…
Note the page seen in the following screenshot:

Our preceding example script performs the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name; it
also assigns our target URL to url.

2. It sets webpage.viewportSize as a way to control the size of the viewport on our
virtual screen.

While setting the size of the viewport will affect the position of the
link on the page, and thus the coordinates that we retrieve during our
inspection of the DOM, it is not strictly necessary to set it. However, it
is a good habit to set the size of the viewport in our PhantomJS scripts,
because it can make it easier to reason about our scripts and can better
align the test environment to the ones we expect our code to run in.

3. We set the onUrlChanged callback function so that we can get feedback (in the
form of console messages) when the URL on the webpage object is changing.

4. Since we expect to visit more than one URL, we skip the usual callback function to
webpage.open and instead assign a handler to onLoadFinished.

5. In our onLoadFinished handler, we check the status argument first; if it equals
fail, then we print a message and exit from PhantomJS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

87

6. Next, in our onLoadFinished handler, we check whether webpage.url
(the current URL of the web page) matches url. If it does not, then we print
a message and exit from PhantomJS.

7. To get the coordinates for our mouse click, we use webpage.evaluate and assign
the result to the coords variable. In this case, we just click on the first link. As such,
we use document.querySelector('a') to get a reference to the link, and then
we return an object containing its offsetLeft and offsetTop properties.

8. We issue our click by calling webpage.sendEvent and passing it the string
click as its first argument (to indicate which event to send), and then our x and y
coordinates, as stored on the coords variable.

9. Lastly, we call webpage.open with our target URL, and we let the event handlers
(as previously described) do the rest.

In a nutshell, our example script opens a web page, prints the URL, clicks on the first link,
prints that URL, and exits.

There's more…
The signature for the sendEvent method is as follows:

sendEvent(mouseEventType, mouseX, mouseY, button)

Here, mouseEventType is required and the other three are optional.

The sendEvent method recognizes several available mouse events. These mouse
events include:

 f mouseup

 f mousedown

 f click

 f doubleclick

 f mousemove

All of these events have a one-to-one correspondence with the mouse events we are
accustomed to dealing with in our normal web programming.

The coordinate arguments (mouseX and mouseY) are passed as integers.

The button argument takes a string that describes which button is being clicked on.
The sendEvent method recognizes the following buttons:

 f left (default)
 f right

 f middle

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

88

No button press is recognized when the event name is mousemove. We
cannot simulate a drag-and-drop event.

Another curiosity to note about sendEvent is that it generates real mouse click events, and
not simulated or synthetic DOM events. If PhantomJS is a headless browser, then we can think
of mouse clicks of sendEvent as coming from an invisible or infinitely small mouse. This
is helpful because these clicks will register with event handlers that might otherwise ignore
certain synthetic DOM events.

See also
 f The Simulating keyboard input in PhantomJS recipe

 f The Simulating scrolling in PhantomJS recipe

 f The Simulating mouse hovers in PhantomJS recipe

Simulating keyboard input in PhantomJS
In this recipe, we will demonstrate how to perform keyboard input in a PhantomJS script.

Getting ready
To run this recipe, we will need a script that loads a web page, and that page will need some
element where we can perform text input.

The script in this recipe is available in the downloadable code repository as recipe08.
js under chapter03. If we run the provided example script, we must change to the root
directory for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

How to do it…
Consider the following script:

var webpage = require('webpage').create();

webpage.viewportSize = { width: 1280, height: 800 };

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

89

function getStageValue() {
 return webpage.evaluate(function() {
 return document.querySelector('#stage').innerText ||
 '<BLANK>';
 });
}

webpage.open('http://localhost:3000/input-demo', function(status) {
 if (status === 'fail') {
 console.error('webpage did not open successfully');
 phantom.exit(1);
 }

 console.log('Starting #stage text is: ' + getStageValue());

 webpage.evaluate(function() {
 document.querySelector('#demo').focus();
 });

 webpage.sendEvent('keypress', 'phantomjs');
 webpage.sendEvent('keypress', webpage.event.key.Enter);

 console.log('After input, #stage value is: ' + getStageValue());

 phantom.exit();
});

Given the preceding script, enter the following at the command line:

phantomjs chapter03/recipe08.js

The script should print out the following:

Starting #stage text is: <BLANK>

After input, #stage value is: phantomjs

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

90

How it works…
Note the page seen in the following screenshot:

Our preceding example script performs the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name.

2. It sets webpage.viewportSize as a way of controlling the size of the viewport on
our virtual screen.

3. It creates the getStageValue function, which we will use to retrieve the inner text
of the element with an ID of stage. If stage has no inner text, we will return the
string <BLANK>.

4. We call webpage.open with our target URL (http://localhost:3000/
input-demo) and callback function.

5. In our callback function, we check the status argument first; if it equals fail, then
we print a message and exit from PhantomJS.

6. We call getStageValue and print the initial value of the stage element to console.

7. We call webpage.evaluate, and in the body of its callback function, we give focus
to the input element we are interested in.

8. We make two consecutive calls to webpage.sendEvent. First, we send a keypress
event with the string phantomjs, effectively typing in that string. Second, we send
another keypress event, but this time our second argument is the character code
for the Enter key, as held in the webpage.event.key object hash.

9. We call getStageValue again and print its value to console to provide evidence
that our input has in fact been processed by the web page.

10. Lastly, we exit from PhantomJS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

91

There's more…
As discussed in the Simulating mouse clicks in PhantomJS recipe (earlier in this chapter),
PhantomJS considers these to be real events and not synthetic DOM events. To reuse the
analogy from that recipe: if PhantomJS is a headless browser, then we can think of webpage.
sendEvent as coming from an invisible or infinitely small keyboard.

The signature for the sendEvent method is as follows:

sendEvent(keyboardEventType, input, null, null, modifier)

Here, keyboardEventType and input are required, the third and fourth arguments are
ignored, and the modifier argument takes a hexadecimal integer that specifies a modifier key.

Note that sendEvent is used for sending both keyboard and mouse events,
but there is not complete parity between the function signatures required for
both usages. As such, the third and fourth parameters, which are useful for
sending mouse events, serve no purpose here. When sending keyboard events,
the third and fourth arguments are ignored, but should be sent as null.

The three keyboard event types include:

 f keydown

 f keyup

 f keypress

All of these events have a one-to-one correspondence with the keyboard events we are
accustomed to dealing with in our normal web programming.

The input argument can take several forms. The most convenient form is the first one
illustrated in our preceding example—pass a string as the argument, and PhantomJS will
automatically convert that singular call to sendEvent into N keyboard events (where N is
the length of the string). Alternatively, we can pass an integer, one that corresponds with the
charCode of the key press we are simulating; this is precisely what we did in our example's
second call to sendEvent, albeit behind the veneer of the webpage.event.key object.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

92

Individual webpage instances will have an event object which has a key
object that holds key/value pairs for the keys we expect to use. The keys
have human-readable names for their characters (for example, Ampersand,
Colon, Escape, and more); the values are the integers corresponding with
the charCode for those characters. An example of their use appears in the
preceding sample code as:

webpage.sendEvent('keypress',
 webpage.event.key.Enter);

The event.key object can be viewed as part of the webpage.js module
in the PhantomJS source code.

As previously noted, the third and fourth arguments are ignored.

The final argument is for any modifier key we may want to include as part of our keyboard
event. Similar to webpage.event.key, a shorthand object is provided for the modifier keys
in the form of webpage.event.modifier. These modifier keys include:

Modifier Value
shift 0x02000000

ctrl 0x04000000

alt 0x08000000

meta 0x10000000

keypad 0x20000000

Modifier keys can be combined using a bitwise OR operator. For example, to send Alt + Shift + s,
use the following command:

webpage.sendEvent('keypress', 's', null, null,
 webpage.event.modifier.alt | webpage.event.modifier.shift);

See also
 f The Simulating mouse clicks in PhantomJS recipe
 f The Simulating scrolling in PhantomJS recipe
 f The Simulating mouse hovers in PhantomJS recipe

Simulating scrolling in PhantomJS
This recipe introduces the scrollPosition property and how we can use it to simulate
scrolling in PhantomJS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

93

Getting ready
To run this recipe, we will need a script that loads a web page tall enough (or wide enough) to
scroll, and our script needs to expect to scroll the page.

The script in this recipe is available in the downloadable code repository as recipe09.js
under chapter03. If we run the provided example script, we must change to the root directory
for the book's sample code. Lastly, for this example to work, we will need an Internet connection.

How to do it…
Consider the following script:

var webpage = require('webpage').create();

webpage.viewportSize = { width: 1280, height: 800 };
webpage.scrollPosition = { top: 0, left: 0 };

webpage.open('https://twitter.com/founddrama', function(status) {
 if (status === 'fail') {
 console.error('webpage did not open successfully');
 phantom.exit(1);
 }

 var i = 0,
 top,
 queryFn = function() {
 return document.body.scrollHeight;
 };

 setInterval(function() {
 var filename = 'twitter-' + (++i) + '.png';
 console.log('Writing ' + filename + '...');
 webpage.render(filename);

 top = webpage.evaluate(queryFn);

 console.log('[' + i + '] top = ' + top);
 webpage.scrollPosition = { top: top + 1, left: 0 };

 if (i >= 5) {
 phantom.exit();
 }
 }, 3000);
});

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

94

Given the preceding script, enter the following at the command line:

phantomjs chapter03/recipe09.js

The script's console output will enumerate the names of the files it generates, and also
the height (in pixels) of the web page during each iteration. It will print out something like
the following:

Writing twitter-1.png...

[1] top = 2728

Writing twitter-2.png...

[2] top = 5071

Writing twitter-3.png...

[3] top = 6860

Writing twitter-4.png...

[4] top = 8911

Writing twitter-5.png...

[5] top = 11602

How it works…
As we can see in our rendered screenshots, we pitted our script against Twitter's infinite scroll
in order to prove our scroll simulation implementation. Our preceding example script performs
the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name.

2. It sets webpage.viewportSize as a way of controlling the size of the viewport on
our virtual screen.

3. It sets our initial webpage.scrollPosition to the extreme top/left (where we
expect it to be).

4. It calls webpage.open with our target URL (https://twitter.com/
founddrama) and callback function.

5. In our callback function, it checks the status argument first; if it equals fail, then
it prints a message and exits from PhantomJS.

6. It sets up the variables that we will use during our scroll iterations:

 � i is our counter (initialized to 0)

 � top holds the current scrollHeight of the page

 � queryFn holds the function we will use to query the web page for its
scrollHeight

7. We call setInterval with our scrolling function and a 3000 millisecond interval.

www.it-ebooks.info

https://twitter.com/founddrama
https://twitter.com/founddrama
http://www.it-ebooks.info/

Chapter 3

95

Note that we are using setInterval here in order to give the web page
enough time to load the next batch of tweets after we "reach the bottom".

In our scrolling function, we write the name of the rendered file to the console, and then
we render the current view. Then, we call webpage.evaluate with queryFn, assigning
the result to top. Next, we write the current value of top to the console and update
webpage.scrollPosition. Lastly, we check i to see whether we have reached our
limit, exiting PhantomJS after five iterations.

There's more…
The key to simulating scrolling in PhantomJS is to update the webpage.scrollPosition
object, which contains the top and left properties that correspond roughly to the
scrollTop and scrollLeft properties on the body element. Updating this object tells
PhantomJS that it has a new scroll position and to reinterpret the web page appropriately.

With respect to scrolling, use of the word simulation is more appropriate than it was with
mouse or keyboard events. If we refer back to the previous two recipes, we will remember
that webpage.sendEvent sends "real" and not "synthetic" DOM events to the web page.
However, things are trickier with the PhantomJS viewport and the way it handles scrolling.

Remember that PhantomJS is a headless web browser. As such, the DOM tree that it parses
and renders is not constrained by any physical device's viewport; even setting webpage.
viewportSize is more of a hint than a mandate. This explains why our rendered
screenshots are "super tall" and exceed our specified viewport size by thousands of pixels.

PhantomJS does provide a way for taking a snapshot of just the portion
of the page that we want (with webpage.clipRect), but this is extra
ceremony and is only meaningful for calls to webpage.render, and it has
nothing to do with scrolling.

So what does that mean? In a nutshell, it means that for most pages, webpage.
scrollPosition has very little utility. If we consider that traditional web pages load all of
their content as a single DOM tree, and we get it all on the first load, then PhantomJS is happy
to render the whole page as one continuous image. Where webpage.scrollPosition
becomes more interesting is in places where the scroll position is used as a trigger for other
events, such as infinite scroll.

See also
 f The Inspecting page content from a PhantomJS script recipe

 f The Simulating mouse clicks in PhantomJS recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

96

 f The Simulating keyboard input in PhantomJS recipe

 f The Simulating mouse hovers in PhantomJS recipe

 f The Rendering images from PhantomJS recipe in Chapter 7, Generating Images
and Documents with PhantomJS

 f The Generating clipped screenshots from PhantomJS recipe in Chapter 7, Generating
Images and Documents with PhantomJS

Simulating mouse hovers in PhantomJS
This recipe demonstrates how to simulate hovers and similar mouse events using
webpage.sendEvent.

Getting ready
To run this recipe, we will need a script that loads a web page with hover effects or similar
features that are sensitive to the mousemove event; our script needs to expect to interact
with these mousemove events.

The script in this recipe is available in the downloadable code repository as recipe10.js
under chapter03. If we run the provided example script, we must change to the root directory
for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

How to do it…
Consider the following script:

var webpage = require('webpage').create();

webpage.viewportSize = { width: 1280, height: 800 };

webpage.onConsoleMessage = function(m) {
 console.log(m);
 phantom.exit();
};

webpage.open('http://localhost:3000/hover-demo', function(status) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

97

 if (status === 'fail') {
 console.error('webpage did not open successfully');
 phantom.exit(1);
 }

 var coords = webpage.evaluate(function() {
 var box = document.querySelector('.hover-demo');

 return { x: box.offsetLeft, y: box.offsetTop };
 });

 webpage.sendEvent('mousemove', coords.x + 10, coords.y + 10);
});

Given the preceding script, enter the following at the command line:

phantomjs chapter03/recipe10.js

The script should print out the following:

[hover-demo] pointer has entered .hover-demo... [80 × 79]

How it works…
Note the page in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

98

Our preceding example script performs the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name.

2. It sets webpage.viewportSize as a way of controlling the size of the viewport
on our virtual screen.

3. The target web page will write a message to the console when it processes
the mousemove events. It attaches a callback function to webpage.
onConsoleMessage in order to intercept and forward those messages to the
PhantomJS context. After recording that console message, it exits from PhantomJS.

4. It calls webpage.open with our target URL (http://localhost:3000/
hover-demo) and callback function.

5. In our callback function, it checks the status argument first; if it equals fail, then
it prints a message and exits from PhantomJS.

6. It gets the coordinates of our target element from the web page context by calling
webpage.evaluate and assigning the return value to the coords variable. In that
callback function, it queries the DOM for our element of interest (.hover-demo) and
returns an object with its offsetLeft and offsetTop values.

7. It calls webpage.sendEvent for our mousemove event; this triggers the event
handler on the page to write to the web page's console that will be caught and
forwarded by the webpage.onConsoleMessage callback.

This causes the hover effect to trigger as seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

99

There's more…
As mentioned in the previous recipes regarding webpage.sendEvent, these are considered
real events and not synthetic DOM events. As such, this helps to avoid some of the problems
seen with synthetic DOM events not properly triggering their handlers.

The method signature for sendEvent was discussed in the Simulating mouse clicks in
PhantomJS recipe (earlier in this chapter), but it bears repeating that when we pass the
event type argument as mousemove, that the button argument is ignored.

An interesting side effect of calling sendEvent with mousemove is that it will also trigger
mouseover events on that element, though not mouseenter events; similarly, calling
sendEvent with coordinates that take us out of an element, will trigger mouseout events,
but not mouseleave events.

We can trigger these additional pointer events by calling sendEvent with
the proper string passed as the eventType argument; for example:

webpage.sendEvent('mouseenter', coords.x, coords.y);

However, given the nature of PhantomJS as a headless browser, and given
that there is no actual mouse cursor, these events are not necessarily
semantically meaningful and may yield unexpected results.

For more information on mouseenter and mouseleave, and the
difference between them and mouseover and mouseout, see the
QuirksMode.org article on the subject at http://www.quirksmode.
org/js/events_mouse.html#mouseenter.

See also
 f The Simulating mouse clicks in PhantomJS recipe

 f The Simulating keyboard input in PhantomJS recipe

 f The Simulating scrolling in PhantomJS recipe

Blocking CSS from downloading
In this recipe, we will demonstrate how to use the onResourceRequested callback to block
files from downloading. Although we can use this technique to block any resource type, we will
specifically be blocking CSS here; this can be useful to generate snapshots of how our sites
look when the CSS fails.

www.it-ebooks.info

QuirksMode.org
http://www.quirksmode.org/js/events_mouse.html#mouseenter
http://www.quirksmode.org/js/events_mouse.html#mouseenter
http://www.it-ebooks.info/

Working with webpage Objects

100

Getting ready
To run this recipe, we will need a script that loads a web page; that web page must use CSS so
that we can block the style sheet resources.

The script in this recipe is available in the downloadable code repository as recipe11.
js under chapter03. If we run the provided example script, we must change into the root
directory for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

How to do it…
Consider the following script:

var webpage = require('webpage').create(),
 url = 'http://localhost:3000/css-demo',
 cssRx = /\.css\??.*$/i,
 count = 0;

webpage.viewportSize = { width: 1280, height: 800 };

webpage.clipRect = {
 top: 0,
 left: 0,
 width: 1280,
 height: 800
};

webpage.onLoadStarted = function() {
 count += 1;
};

webpage.onResourceRequested = function(requestData, networkRequest) {
 if (count > 1 && cssRx.test(requestData.url)) {
 console.log('Dropping CSS for ' + url);
 networkRequest.abort();
 }
};

webpage.onLoadFinished = function(status) {
 if (status === 'fail') {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

101

 console.error(url + ' did not open successfully');
 phantom.exit(1);
 }

 if (count <= 1) {
 console.log('Rendering ' + url + ' with CSS...');
 webpage.render('demo-with-css.png');
 webpage.reload();
 } else {
 console.log('Rendering ' + url + ' without CSS...');
 webpage.render('demo-without-css.png');
 phantom.exit();
 }
};

webpage.open(url);

Enter the following at the command line:

phantomjs chapter03/recipe11.js

The script will print out messages about its progress, and when it completes, it will also have
rendered and saved two files (demo-with-css.png and demo-without-css.png) so that
we can observe the consequences.

Consider the demo with CSS as shown in the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

102

Now, consider the following demo without the CSS:

How it works…
Our preceding example script performs the following actions:

1. It sets up the variables we want to use over the life of our script. These
variables include:

 � webpage: This holds a webpage instance
 � url: This holds our target URL
 � cssRx: This holds a naïve regular expression for matching style sheets

based on file extension
 � count: This holds a count of the number of times we have requested our

target URL

2. We set webpage.viewportSize as a way of controlling the size of the viewport on
our virtual screen.

3. We set webpage.clipRect so that our screenshots are of a more manageable size.
4. We set an onLoadStarted callback function, whose only action is to

increment count.
5. We set our onResourceRequested callback function to look for style sheets. It

checks that count is greater than 1 (we want to get a snapshot of the page with the
styles first, after all!), and then checks whether requestData.url matches cssRx.
If both conditions are met, we call networkRequest.abort to block the CSS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

103

6. We set up an onLoadFinished callback function instead of passing it to our later
call to webpage.open. We do this as follows:

1. We check the status argument; if it equals fail, then we print a message
and exit from PhantomJS.

2. If count is less than or equal to 1, we print a message and render the web
page with the CSS; we then reload the page.

3. If count is greater than 1, we print a message and render the web page
without the CSS; we then exit from PhantomJS.

4. Lastly, we make our call to webpage.open with our target URL.

There's more…
As alluded to in the recipe's introduction, blocking the CSS has several practical applications.
Taking a snapshot of the site without CSS can help to see whether it is still usable even when
the CSS fails to download. In turn, this knowledge can help guide us toward better design
decisions (for example, through progressive enhancement). What makes this possible is the
onResourceRequested callback.

onResourceRequested
We use the onResourceRequested callback to monitor—and potentially modify—network
requests in PhantomJS. Every time PhantomJS makes a network request, this callback is
fired; it provides a hook into each network request made by that webpage instance.

The onResourceRequested callback function takes two arguments:

 f The requestData object describes the resource requested; it contains the
following properties:

 � id: This is an integer identifying the request (effectively a counter)

 � method: This is a string indicating the HTTP method used to make the
request (usually GET)

 � url: This is the URL of the request

 � time: This is the date/time stamp of the request

 � headers: These are any HTTP headers on the request

 f The networkRequest object represents the network request; it exposes two methods:

 � abort(): This aborts the request, which results in the onResourceError
callback being invoked

 � changeUrl(url): This allows us to change the URL on the request
(for example, to proxy certain scripts with local equivalents)

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

104

onResourceReceived
Although not used in the example, it is also worth discussing onResourceReceived,
the callback for successfully completed HTTP requests in PhantomJS. Just as we used
onResourceRequested to spy on requests, we can use onResourceReceived to inspect
responses. The onResourceReceived callback is fired at least twice for each response,
once at the beginning (identified as start) and once at the end (identified as end); the
callback may also fire for intermediate chunks.

The onResourceReceived callback function takes a single argument, response; it is an
object with the following properties:

 f id: This is an integer identifying the resource; this should correspond to the id
property in onResourceRequested

 f url: This is the URL of the completed request

 f time: This is the date/time stamp of the response

 f headers: These are the HTTP headers on the response

 f bodySize: This is the size of the response (in bytes)

 f contentType: This is the content type string sent by the server for this resource
(if any)

 f redirectURL: This is the redirect URL (if any)

 f stage: This is a string identifier for which stage of the response we are in
(start or end)

 f status: This is the HTTP status code of the response

 f statusText: This is the HTTP status text associated with the status code

See also
 f The Causing images to fail randomly recipe

Causing images to fail randomly
In this recipe, we will continue with onResourceRequested, introduce the onResourceError
callback, and use them to illustrate a strategy for randomly causing images to fail to download.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

105

Getting ready
To run this recipe, we will need a script that loads a web page; that web page must contain
images so that we can block them.

The script in this recipe is available in the downloadable code repository as recipe12.js
under chapter03. If we run the provided example script, we must change to the root
directory for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

How to do it…
Consider the following script:

var webpage = require('webpage').create(),
 url = 'http://localhost:3000/cache-demo',
 imgRx = /\.(?:gif|png|jpe?g)$/i,
 requestsMade = 0,
 requestsCanceled = 0;

webpage.viewportSize = { width: 1280, height: 800 };

webpage.onResourceRequested = function(requestData, networkRequest) {
 if (imgRx.test(requestData.url)) {
 requestsMade += 1;
 if (Math.floor(Math.random() * 10) % 3 === 0) {
 requestsCanceled += 1;
 networkRequest.abort();
 }
 }
};

webpage.onResourceError = function(resourceError) {
 console.error('Error with requested resource:\n' + JSON.
stringify(resourceError, undefined, 2));
};

console.log('Simulating poor network weather for ' + url);
webpage.open(url, function(status) {

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

106

 if (status === 'fail') {
 console.error(url + ' did not open successfully.');
 phantom.exit(1);
 }

 console.log('Canceled ' + requestsCanceled + ' of ' + requestsMade +
' image requests.');
 webpage.render('lost-images.png');
 phantom.exit();
});

Given the preceding script, enter the following at the command line:

phantomjs chapter03/recipe12.js

The script will print out a series of messages, including JSON representations of the network
request errors.

How it works…
Our preceding example script performs the following actions:

1. It sets up the variables we want to use over the life of our script. These
variables include:

 � webpage: It holds a webpage instance

 � url: It holds our target URL

 � imgRx: It holds a naïve regular expression for matching images based
on file extension

 � requestsMade and requestsCanceled: Both are counters to track
our requests

2. We set webpage.viewportSize as a way to control the size of the viewport on our
virtual screen.

3. We set our onResourceRequested callback function. This function takes two
arguments, requestData and networkRequest. In the body of the callback
function, we check the URL of requestData, and if it is determined to be an image,
we increment our requestsMade counter and randomly decide whether or not to
abort the networkRequest (incrementing the requestsCanceled counter if we do).

4. We set our onResourceError callback function. This function takes one argument
(resourceError), and with it we simply print it to the console.

5. We call webpage.open with our target URL (http://localhost:3000/
cache-demo) and callback function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

107

6. In our callback function, we check the status argument first; if it equals fail,
we print a message and exit from PhantomJS. Otherwise, we print a message to
the console about the number of requests made versus canceled; we then exit
from PhantomJS.

To summarize, our script makes a simple request to our target URL and then cancels a subset
of the subsequent image requests. We tap into the onResourceRequested callback to
examine (and cancel) requests, and we use onResourceError to confirm the cancellations.

There's more…
A script like this one can be useful for simulating poor network weather (for example, dropped
or otherwise unreliable connections). However, more importantly, this script illustrates the
basics of PhantomJS' resource failure callback.

onResourceError
We use the onResourceError callback to monitor and respond to errors with specific
resources requested in PhantomJS. When a resource fails for any reason in PhantomJS,
this callback is fired.

The onResourceError callback function takes a single argument, resourceError; it is an
object with the following properties:

 f id: This is an integer identifying the resource; this should correspond to the id
property in onResourceRequested

 f url: This is the URL of the failed request

 f errorCode: This is the error code associated with the error type in PhantomJS (that
is, an HTTP status code)

 f errorString: This is a brief explanatory message about the error

See also
 f The Blocking CSS from downloading recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

108

Submitting Ajax requests from PhantomJS
This recipe introduces methods for submitting XHR (XMLHttpRequest) or Ajax requests from
PhantomJS and describes how to deal with the responses.

Getting ready
To run this recipe, we will need a script that makes a direct request to a URL that expects XHR.

The script in this recipe is available in the downloadable code repository as recipe13.js
under chapter03. If we run the provided example script, we must change to the root
directory for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

How to do it…
Consider the following script:

var webpage = require('webpage').create();

webpage.onResourceReceived = function(response) {
 if (response.stage === 'end') {
 console.log('Content-Type: ' + response.contentType);
 }
};

webpage.open('http://localhost:3000/ajax-demo', function(status) {
 if (status === 'fail') {
 console.error('webpage did not open successfully');
 phantom.exit(1);
 }

 console.log(webpage.plainText);
 phantom.exit();
});

Enter the following at the command line:

phantomjs chapter03/recipe13.js

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

109

The script will print out the Content-Type header and the response body:

Content-Type: application/json; charset=utf-8

{

 "time": 1390098844062,

 "randomNumber": 22,

 "initials": "REF"

}

How it works…
Our preceding example script performs the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name.

2. It sets up our onResourceReceived callback function. In that callback function, we
check the stage property on the response object to see whether it equals end; if
so, we output the contentType.

3. We call webpage.open with our target URL (http://localhost:3000/
ajax-demo) and callback function.

4. In our callback function, we check the status argument first; if it equals fail,
we print a message and exit from PhantomJS.

5. We write webpage.plainText to the console.

6. Lastly, we exit from PhantomJS.

There's more…
The first thing to note about our example is that it was a normal request—there was no "magic",
and we did not even need to specify any special X-Requested-With header. However, it is
also worth noting that because we received a Content-Type of application/json, there
was no HTML delivered over the wire, and thus, no web page to evaluate.

How we make requests from PhantomJS ultimately depends on
what the server expects. Although this example did not include an
X-Requested-With header, that could be a critical part of a request
made against a different server. As always, it is important to know what
the server on the other end expects, and write scripts with that in mind.

PhantomJS exposes two properties on the webpage instance to directly inspect the contents
of the web page: content and plainText. All content (HTML tags, text, and so on) is
returned by webpage.content, while webpage.plainText (which we used in our script)
returns only the text content and none of the HTML tags.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

110

Common sense will tell us that we will be fine if we use webpage.content here because the
response body did not contain any HTML, but this would be a mistake. As PhantomJS is a web
browser and expects HTML in the response, it will wrap the JSON response in some simple
HTML before returning it. For example, in this case, webpage.content would give us:

<html><head></head><body><pre style="word-wrap: break-word;
 white-space: pre-wrap;">{
 "time": 1397442861438,
 "randomNumber": 20,
 "initials": "REF"
}</pre></body></html>

This is an important consideration when writing PhantomJS scripts that target URLs returning
JSON or other non-HTML payloads.

Working with WebSockets in PhantomJS
This recipe discusses how to open and work with a WebSocket connection in PhantomJS.

Getting ready
To run this recipe, we will need a script that requests a host that also exposes
WebSocket connections.

Although PhantomJS version 1.9 does have WebSocket support, that support
is limited to the hixie-76 draft of the protocol. PhantomJS 2.0 is scheduled
to include the more modern RFC 6455 version of WebSockets. When writing
scripts for PhantomJS that intend to use WebSocket connections, we must
ensure that the server supports the hixie-76 version of the protocol.

A good introduction to the WebSocket protocol and the HTML5 API can be
found at http://www.websocket.org/aboutwebsocket.html.

The script in this recipe is available in the downloadable code repository as recipe14.js
under chapter03. If we run the provided example script, we must change to the root
directory for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

www.it-ebooks.info

http://www.websocket.org/aboutwebsocket.html
http://www.it-ebooks.info/

Chapter 3

111

How to do it…
Consider the following script:

var webpage = require('webpage').create();

webpage.onConsoleMessage = function(m) {
 console.log(m);

 if (/^Closing WebSocket/.test(m)) {
 phantom.exit();
 }
};

webpage.open('http://localhost:3000/', function(status) {
 if (status === 'fail') {
 console.error('webpage did not open successfully');
 phantom.exit(1);
 }

 webpage.evaluateAsync(function() {
 var ws = new WebSocket('ws://localhost:3000/');

 function stringify(o) {
 return JSON.stringify(o, undefined, 2);
 }

 ws.onopen = function(event) {
 console.log('WebSocket opened...\n' + stringify(event));

 ws.send('ping');
 };
 ws.onmessage = function(event) {
 console.log('WebSocket message:\n' + stringify(event));
 };
 ws.onerror = function(event) {
 console.error('WebSocket error!\n' + stringify(event));
 };
 ws.onclose = function(event) {
 console.error('Closing WebSocket...\n' + stringify(event));
 };

 console.log('WebSocket created...\n' + stringify(ws));

 setTimeout(function() {
 ws.close();

www.it-ebooks.info

http://www.it-ebooks.info/

Working with webpage Objects

112

 }, 1000);
 });
});

Enter the following at the command line:

phantomjs chapter03/recipe14.js

The script will print out the JSON representations of the WebSocket activity.

How it works…
Our preceding example script performs the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name.

2. It sets up our onConsoleMessage callback function. This function forwards
console messages from the web page context to the PhantomJS context. It also
watches for messages starting with Closing WebSocket, and it exits PhantomJS when
it encounters such a message.

3. It calls webpage.open with our target URL (http://localhost:3000/) and
callback function.

4. In our callback function, it checks the status argument first; if it equals fail, then
it prints a message and exits from PhantomJS.

5. Using webpage.evaluateAsync, it enters the web page context and creates a
WebSocket object. After setting up our stringify shorthand function, it attaches
listeners to the WebSocket's callbacks. Then, it prints a message indicating that it
has created our WebSocket, and it instructs the web page context to terminate that
WebSocket connection after one second.

Of particular interest to us are the onopen, onmessage, and onclose callbacks. Each of
these callbacks writes a JSON version of the event object to console so that we can inspect
them. In the case of onmessage, we can see the data property on the event object, which
contains the payload data as sent from the server.

There's more…
Although PhantomJS technically has WebSocket support, WebSocket connections are not
directly observable. We cannot successfully call webpage.open with a ws:// prefixed
URL. WebSocket communication does not show up in onResourceRequested or
onResourceReceived callbacks, and there are no other methods that allow us to make
scripted WebSocket connections from PhantomJS without entering the web page context.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

113

However, because the internal webpage context supports WebSockets, so (by extension)
does PhantomJS. It takes some scripting acrobatics—creating the connections in a web page
context, forwarding the payload data to the console, spying on the console messages with
onConsoleMessage, and so forth—but we can use PhantomJS to communicate
with WebSockets.

As previously mentioned, the WebSocket connections are only indirectly observable. In this
recipe's example script, we need to use webpage.evaluateAsync to access the WebSocket
object and its messages from the web page context, and even then, we manually create the
connection, and then manually assign the appropriate callback functions that we spied on,
through an onConsoleMessage handler. If we try to inspect more sophisticated code in this
way, we may find that we need to resort to even more elaborate techniques to observe it, such
as metaprogramming or side-effect detection. Again, while not ideal, we can concoct ways to
interact with WebSockets if we feel the need—though getting there is not for the faint of heart!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

4
Unit Testing with

PhantomJS

In this chapter, we will cover:

 f Running Jasmine unit tests with PhantomJS

 f Using TerminalReporter for unit testing in PhantomJS

 f Creating a Jasmine test runner for PhantomJS and every other browser

 f Running Jasmine unit tests with Grunt

 f Watching your tests during development with Grunt

 f Running Jasmine unit tests with the Karma test runner

 f Generating code coverage reports with Istanbul and the Karma test runner

 f Running Jasmine unit tests with Karma and PhantomJS from WebStorm

 f Running QUnit tests with PhantomJS

 f Running Mocha unit tests with PhantomJS

Introduction
One of the most popular uses of PhantomJS among front-end developers is as the primary
testing environment for fast unit tests during development. Since PhantomJS is a headless
web browser, it can sit invisibly on the command line waiting for tests to be triggered—totally
unobtrusive until tests fail and it's time to raise the alarm.

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with PhantomJS

116

In this chapter, we will learn about using PhantomJS as just such an environment for
JavaScript unit tests. The chapter will focus on the Jasmine test framework, but will also
introduce two other popular frameworks, QUnit and Mocha. The recipes in this chapter
will look at a trivial string utilities library (string-utils.js under lib in the sample
repository), and tests for that library will provide the subject matter that underlies each
of the testing strategies discussed.

Running Jasmine unit tests with PhantomJS
This recipe will illustrate a basic Jasmine-based test suite and how to execute its test runner
under PhantomJS while extracting useful test feedback.

Getting ready
To run this recipe, we will need JavaScript code to test, and the tests for that code. To test our
code, we will use the Jasmine test framework.

Jasmine is a JavaScript framework used for writing tests in a behavior-driven
development (BDD) style. We will use it here because it is widely used, and
the tests are generally easy to read. Jasmine is open source (MIT licensed)
and we can find its documentation at http://jasmine.github.io/.
We will be using Jasmine version 1.3.1; we can download this version at
https://github.com/pivotal/jasmine/tree/v1.3.1.

The library code that we will test is available in the downloadable code repository as string-
utils.js under lib; the accompanying tests are available as string-utils-spec.js
under lib. The test runner is also available in the repository as recipe01-runner.html
under chapter04. If we run the provided example, we must change to the root directory for
the book's sample code.

Lastly, we will use the run-jasmine.js script that ships as part of the examples directory
with the PhantomJS source code. The example uses the $PHANTOMJS_SOURCE environment
variable, which refers to our clone of the PhantomJS source code.

We will want to set PHANTOMJS_SOURCE as an environment variable
in our shell. For example, if we cloned the PhantomJS source code to
/dev/phantomjs, then we want PHANTOMJS_SOURCE to refer to
that path. Many recipes in this cookbook will refer to the examples
in the PhantomJS source code, and it will be useful to have this
environment variable at our disposal.

www.it-ebooks.info

http://jasmine.github.io/
https://github.com/pivotal/jasmine/tree/v1.3.1
http://www.it-ebooks.info/

Chapter 4

117

How to do it…
Given our example library and its tests, let us call out the executor (the inline script) on the
test runner that kicks off the Jasmine tests:

(function(jasmine) {
 var env = jasmine.getEnv();

 env.addReporter(new jasmine.HtmlReporter());
 env.execute();
}(jasmine));

Then, we enter the following at the command line:

phantomjs $PHANTOMJS_SOURCE/examples/run-jasmine.js
 chapter04/recipe01-runner.html

The script will output the test results to the console. They should look like the following:

'waitFor()' finished in 200ms.

string-utils.js

Passing 10 specs

How it works…
There are three main components at work in our example:

 f Our tests, wrapped up inside the test runner

 f The run-jasmine.js script that loads and bootstraps the test runner

 f PhantomJS, which serves as the test environment

If we look at our tests (string-utils-spec.js), they are straightforward and use only the
basic testing functions that Jasmine provides. We have a few nested describe blocks (one
for each function on the txtr object), and a couple of it functions containing expect blocks
to document our specifications.

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with PhantomJS

118

For those unfamiliar with Jasmine, there are three fundamental building-block
functions that make up the test:

 f describe: These functions are suites and take a string (to describe
what is in the suite) and a function; the function may contain more
suites and/or specifications

 f it: These functions are specifications and take a string (to describe
what is in the specification) and a function; the function contains one
or more expectations

 f expect: These functions are expectations (also called assertions)
that take a value (the actual); the expectation is then chained with a
matcher function that takes the expected value

See the Jasmine documentation for more information at http://jasmine.
github.io/1.3/introduction.html.

We can open our test runner (recipe01-runner.html) in a normal browser and see the
results of the tests, as shown in the following screenshot:

Looking at the test runner, we can see that it performs the following actions:

1. It loads the CSS for the Jasmine test framework.

2. It loads the core Jasmine test framework and HtmlReporter.

www.it-ebooks.info

http://jasmine.github.io/1.3/introduction.html
http://jasmine.github.io/1.3/introduction.html
http://www.it-ebooks.info/

Chapter 4

119

Reporters are functions in Jasmine that take care of presenting
the test results to the user. One of Jasmine's built-in reporters,
HtmlReporter, converts the results into an HTML document to
be rendered in a web browser.

3. It loads the JavaScript code under test (string-utils.js).

4. It loads the tests (string-utils-spec.js).

5. It kicks off the Jasmine tests with the executor, which performs the following actions:

1. Gets a reference to the Jasmine environment and assigns it to the
variable env.

2. Creates and registers an HtmlReporter with the Jasmine environment.

3. Calls execute on the Jasmine environment to start the tests.

While these are arguably sufficient tests on their own, it seems excessive to open an extra
browser window just to run and check the tests each time.

The test runner, however, is just an HTML document like any other. This makes it a prime
candidate for being loaded and evaluated by PhantomJS.

Rather than writing our own PhantomJS script to load the page, we can tap into the
run-jasmine.js script that ships in the examples directory of the PhantomJS source
code. In a nutshell, the script works as follows:

1. It loads the system module so that we can inspect the script's arguments.

2. It sets up a waitFor function, which helps to monitor the page for the correct
conditions to indicate that the tests are complete.

3. It checks the number of arguments, exiting if the correct number (2) is not supplied.

4. It creates a webpage instance and attaches a simple onConsoleMessage callback
to forward console messages from the web page to the PhantomJS context.

5. The webpage instance opens the URL (supplied as the script's argument).

6. In the callback to webpage.open, it calls waitFor, first scanning the page for
pending tests. After the last pending test has cleared, it uses page.evaluate to
inspect the page for CSS classes that indicate failed tests.

7. If the script finds failed tests, it outputs the number of failed tests and messages
about each one, exiting PhantomJS with a status of 1. Otherwise, it prints the total
number of successful tests and exits with a status of 0.

PhantomJS provides the test environment itself. We invoke it on the command line, providing
our script (run-jasmine.js) and our target URL. All the work takes place within the
PhantomJS process, which will exit cleanly, not depending upon the outcome of the tests on
the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with PhantomJS

120

There's more…
The example in this recipe is convenient because it allows us to start using PhantomJS to
drive our existing browser-based Jasmine test suites without any conversion. This illustrates
some of the power that is inherent when using PhantomJS as a testing platform—we can
use the webpage API to inspect HTML documents and provide meaningful reports to the
command line about the success or failure of the tests within. It is interesting to note here
that the test runner even assumes that it will only ever be run as an HTML document—it
uses Jasmine's HtmlReporter only, which constructs the markup, but otherwise has no
expectation of providing command-line friendly output.

In many ways, this is great news. If we have existing Jasmine test suites written using only
the basic, core reporters, then we can dive right into using PhantomJS for tests during
development or as part of continuous integration. Additionally, PhantomJS is agnostic about
how we load our test runners, and it accepts files (as in our previous example) just as easily as
it accepts URLs over HTTP or HTTPS.

However, the run-jasmine.js script provides us with only the basic integration between
Jasmine tests and PhantomJS as the test environment. The script takes only one URL at a
time. As such, we must either pack every test into one test runner or wrap the script with
another, which can accept multiple URLs. If our needs exceed that which run-jasmine.js
can provide for us, there are more advanced options.

See also
 f The Using TerminalReporter for unit testing in PhantomJS recipe

 f The Creating a Jasmine test runner for PhantomJS and every other browser recipe

Using TerminalReporter for unit testing in
PhantomJS

This recipe introduces the jasmine-reporters library, and it explains how to
use TerminalReporter for clear and concise output on the command line when
using PhantomJS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

121

Getting ready
To run this recipe, we will need the following items:

 f JavaScript code to test, and the tests for that code

 f The Jasmine testing framework

 f The jasmine-reporters library

The jasmine-reporters library is a collection of advanced
reporters for the Jasmine test framework. It is an open source
(MIT licensed) project and is available at https://github.com/
larrymyers/jasmine-reporters.

The library code that we will use for our tests is available in the downloadable code repository
as string-utils.js under lib; the accompanying tests are available as string-utils-
spec.js under lib. The test runner is also available in the repository as recipe02-
runner.html under chapter04. If we run the provided example, we must change to the
root directory for the book's sample code.

Lastly, we will use a variation on the phantomjs.runner.sh launcher script, which is
included with our example repository and is derived from the version that ships with the
jasmine-reporters library.

How to do it…
Given our example library and its tests, let us call out the executor in the test runner using the
following code snippet:

(function(jasmine) {
 var env = jasmine.getEnv();

 env.addReporter(new jasmine.TerminalReporter({
 verbosity: 3,
 color: true
 }));
 env.addReporter(new jasmine.TrivialReporter());
 env.execute();
}(jasmine));

www.it-ebooks.info

https://github.com/larrymyers/jasmine-reporters
https://github.com/larrymyers/jasmine-reporters
http://www.it-ebooks.info/

Unit Testing with PhantomJS

122

Two things to note about the preceding code:

First, the executor function is from our HTML test runner, it is intended to be
run in the browser context, and it is not (by itself) targeting PhantomJS.

Second, like the previously described HtmlReporter,
TrivialReporter is a built-in Jasmine reporter that converts the test
results into an HTML document. The output from TrivialReporter is
simpler (and less "pretty") than that produced by HtmlReporter.

Then, we can enter the following at the command line:

lib/jasmine-reporters/phantomjs.runner.sh
 chapter04/recipe02-runner.html

The script will output the test results to the console, including a line-by-line report of
successes and failures.

How it works…
One of the first things that we are likely to notice here is that we are not explicitly calling
PhantomJS on the command line; we are calling the phantomjs.runner.sh script, which in
turn calls PhantomJS. This is provided as a convenience as it can help to ensure that some of
the "plumbing" around the test apparatus is initialized or cleaned.

Windows users will find that phantomjs.runner.sh expects to be run
in a bash shell, and as such it may not work for them. On Windows, we can
run the script from Cygwin (available at http://www.cygwin.com/) or a
similar POSIX-like shell; this is outside the scope of this book.
Alternatively, we can achieve the critical functionality of the phantomjs.
runner.sh script by entering the following at the command line:
phantomjs lib/jasmine-reporters/phantomjs-testrunner.js
file:///C:/Users/me/phantomjs-cookbook/chapter04/
recipe02-runner.html

Note that this requires the absolute path to the test runner, and that we
must use forward slashes (/) instead of backslashes (\).

The crux of phantomjs.runner.sh is how it calls PhantomJS with the phantomjs-runner.
js script. This performs many functions similar to the run-jasmine.js script from the
previous recipe; it inspects the script arguments, monitors the page for conditions indicating
that tests are "done", and sets up an onConsoleMessage callback. Additionally, phantomjs-
runner.js also collapses certain related console messages onto a single line, sets up a
stubbed file writer function on the window object (for capturing and exporting data for persisted
test reports), and manages the webpage instance for reliable reporting to the console.

www.it-ebooks.info

http://www.cygwin.com/
http://www.it-ebooks.info/

Chapter 4

123

More interesting than the phantomjs-runner.js script, however, is the inline executor
script on our test runner page. Just like in the previous recipe, the first thing that we do here is
access the Jasmine environment. However, instead of using HtmlReporter, this time we use
a combination of TerminalReporter and TrivialReporter. The TrivialReporter
is needed by phantomjs-runner.js; it uses the DOM elements created by the reporter to
infer when the tests on the page have finished running.

Although the comments in phantomjs-runner.js tell us
that TrivialReporter is required, this is not strictly true. The
phantomjs-runner.js script can also infer the test suite's
completion when using JUnitXmlReporter; this reporter will be
introduced in Chapter 8, Continuous Integration with PhantomJS.

The TerminalReporter is the critical component here—it gives us test output that
is specially formatted for the console, including an adjustable verbosity level, indented
formatting for nested describe blocks, and optionally colorized output.

There's more…
The TerminalReporter constructor takes a configuration object as its sole argument; the
configuration object has two options that we can set:

 f verbosity: This takes an integer between 0 and 3 (greater values are
more verbose)

 f color: This takes a Boolean that indicates whether to colorize the console
output or not

In addition to the TerminalReporter, the jasmine-reporters library also provides the
following reporters:

 f ConsoleReporter: This is a simpler Jasmine reporter for the console (no colorized
output, no other configurable parameters)

 f JUnitXmlReporter: This is a reporter that persists an XML-based test report to
the filesystem for use in continuous integration (CI) systems such as CruiseControl
or Jenkins

 f TapReporter: This is a reporter for the Test Anything Protocol, which also targets
CI systems

 f TeamcityReporter: This is a reporter for the TeamCity CI system by JetBrains

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with PhantomJS

124

See also
 f The Running Jasmine unit tests with PhantomJS recipe

 f The Creating a Jasmine test runner for PhantomJS and every other browser recipe

 f The Generating JUnit reports recipe in Chapter 8, Continuous Integration
with PhantomJS

 f The Generating TAP reports recipe in Chapter 8, Continuous Integration
with PhantomJS

Creating a Jasmine test runner for
PhantomJS and every other browser

This recipe illustrates how user-agent sniffing can switch between different Jasmine reporters
so that we use the appropriate reporters under the appropriate circumstances.

Getting ready
To run this recipe, we will need the following items:

 f JavaScript code to test, and the tests for that code

 f The Jasmine testing framework

 f The jasmine-reporters library

The library code that we will use for our tests is available in the downloadable code repository
as string-utils.js under lib; the accompanying tests are available as string-utils-
spec.js under lib. The test runner is also available in the repository as recipe03-
runner.html under chapter04. If we run the provided example, we must change to the
root directory for the book's sample code.

Lastly, we will use the version of phantomjs.runner.sh that is included with our example
repository and is derived from the version in the jasmine-reporters library.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

125

How to do it…
Given our example library and its tests, let us call out the executor in the test runner using the
following code snippet:

(function(jasmine) {
 var env = jasmine.getEnv();

 if (/PhantomJS/.test(navigator.userAgent)) {
 env.addReporter(new
 jasmine.JUnitXmlReporter('target/test-reports/', false));
 env.addReporter(new jasmine.TerminalReporter({
 verbosity: 3,
 color: true
 }));
 } else {
 env.addReporter(new jasmine.HtmlReporter());
 }

 env.execute();
 }(jasmine));

Note the highlighted portion of the executor code; this is where we
will determine which reporters to use at runtime.

Then, we can enter the following at the command line:

lib/jasmine-reporters/phantomjs.runner.sh
 chapter04/recipe03-runner.html

The script will output the test results to the console using the TerminalReporter, including
a line-by-line report of successes and failures.

Alternatively, we can open the test runner in a normal web browser and see a "pretty"
formatted report like we saw in the screenshot from the Running Jasmine unit tests with
PhantomJS recipe earlier in this chapter.

How it works…
The key to this recipe's solution is the user-agent sniffing that we performed in the executor. If
left unmodified, PhantomJS will reliably include the string PhantomJS in its user-agent string
when queried, for example:

Mozilla/5.0 (Macintosh; Intel Mac OS X) AppleWebKit/534.34 (KHTML,
 like Gecko) PhantomJS/1.9.2 Safari/534.34

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with PhantomJS

126

This allows us to take our tests and scripts from the previous recipes and build upon them so
that, with this small modification, we now have something that we can run in PhantomJS, with
suitable command-line output. This also allows us to open something in a normal browser and
receive attractive output there as well.

See also
 f The Using TerminalReporter for unit testing in PhantomJS recipe

 f The Generating JUnit reports recipe in Chapter 8, Continuous Integration
with PhantomJS

Running Jasmine unit tests with Grunt
In this recipe, we will learn about using Grunt to execute our Jasmine unit tests from the
command line. Grunt is a popular JavaScript task runner and is useful for automating repetitive
operations, such as scaffolding, minification, linting, and testing, on the command line.

Getting ready
To run this recipe, we will need the following items:

 f JavaScript code to test, and the tests for that code

 f Node.js and npm installed and on our PATH

The Node.js package manager is npm; it is used to download and
install Node.js packages for use in our projects. It is included as
part of the core Node.js platform. The typical pattern for using
npm looks like this:
npm <command> [<options>] [<package-name>]

For more information, enter the following on the command line:
npm help

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

127

 f The Grunt task runner (grunt-cli)

Grunt is a popular JavaScript task runner for the command line. We can
find out more about it at http://gruntjs.com/; we can install the
command-line interface using npm, as follows:
npm install --global grunt-cli

Note that our project will also need Grunt installed locally. We do this by
adding Grunt to our package.json using npm, as follows:
npm install grunt --save-dev

 f The grunt-contrib-jasmine module

The grunt-contrib-jasmine module is what allows us to run
Jasmine tests from Grunt. We can find out more about it at https://
npmjs.org/package/grunt-contrib-jasmine; we can install it
on the command line using npm, as follows:
npm install grunt-contrib-jasmine --save-dev

The library code that we will use for our tests is available in the downloadable code repository
as lib/string-utils.js; the accompanying tests are lib/string-utils-spec.js.

Grunt will need a package.json file (for Node.js and npm) and a Gruntfile in order to run its
tasks; one of each has been provided in the downloadable code repository in the chapter04
directory as package.json and Gruntfile.js, respectively.

To install the packages predefined in package.json, run the following
from the command line in the same directory as that file:
npm install

This will tell npm to retrieve the specified dependencies from over the
Internet and install them in the node_modules directory within the
current directory.

How to do it…
Given our example library and its tests, and given that we have installed Grunt and its Jasmine
module, let us add the appropriate testing task to our Gruntfile:

module.exports = function(grunt) {
 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),
 jasmine: {

www.it-ebooks.info

http://gruntjs.com/
https://npmjs.org/package/grunt-contrib-jasmine
https://npmjs.org/package/grunt-contrib-jasmine
http://www.it-ebooks.info/

Unit Testing with PhantomJS

128

 recipe04: {
 src: '../lib/string-utils.js',
 options: {
 specs: '../lib/string*-spec.js'
 }
 }
 }
 });

 grunt.loadNpmTasks('grunt-contrib-jasmine');
};

With our Jasmine task defined, we change to the chapter04 directory and run the task from
the command line, as follows:

grunt jasmine:recipe04

This should print the test results to the console; for example:

Running "jasmine:recipe04" (jasmine) task

Testing jasmine specs via phantom

..........

10 specs in 0.004s.

>> 0 failures

Done, without errors.

How it works…
As previously mentioned, Grunt is primarily a task runner and can assist with automating
a wide array of development tasks—from setting up the directory structure for new projects
and running JSHint to running tests (as we have done here) all the way through to packaging
your assets for production. In the highlighted portion of our Gruntfile, we have defined the
jasmine task with a sub-task called recipe04. In recipe04, we specify the location of
our source files with the src property, and then we specify the location of the associated
specifications/tests with the specs property (in the options object).

With our Jasmine task defined in our Gruntfile, it is a trivial matter to invoke it from the
command line. We simply enter the name of the executable (grunt), followed by the name of
the task (jasmine:recipe04); Grunt takes care of the rest.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

129

One advantage that is quickly noticeable here is that we do not need to maintain any .html
documents as test runners. We can specify our source files and their supporting tests (by
using strings, lists, or matcher patterns), and the Jasmine module can construct the test
runner dynamically. This eliminates a lot of the boilerplate that we otherwise need to create
and maintain with respect to our test runner pages.

As of version 0.6.0 of grunt-contrib-jasmine, the module only
supports Jasmine version 2.0 and above.
Although PhantomJS was not explicitly called out in this recipe, it is useful
to know that it is used transparently by Grunt when running the Jasmine
tasks. For example, when executing npm install in the chapter04
directory, we may notice that npm automatically checks whether PhantomJS
is installed. If it is, and the version is compatible, Grunt will delegate to the
one on the PATH; otherwise, npm will download and install a compatible
version into node_modules and configure Grunt to use it.

There's more…
The grunt-contrib-jasmine module provides a variety of configurable options, and this
recipe has only scratched the surface. In addition to what has been previously illustrated, we
can also instruct grunt-contrib-jasmine to perform the following actions:

 f Load third-party libraries or helper utilities that support our code or tests

 f Load CSS for the dynamically generated test runner page

 f Specify the name of the dynamically generated test runner page (and then, specify
whether to keep it after the test completes)

 f Specify whether to write JUnit reports and whether or not to consolidate them

See also
 f The Watching your tests during development with Grunt recipe

 f The Generating JUnit reports recipe in Chapter 8, Continuous Integration
with PhantomJS

Watching your tests during development
with Grunt

This recipe expands upon our combined use of PhantomJS with Jasmine and Grunt by
demonstrating how to automatically watch our files during development and re-execute
those tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with PhantomJS

130

Getting ready
To run this recipe, we will need the following items:

 f JavaScript code to test, and the tests for that code

 f A text editor with which to edit our code

 f Node.js and npm installed and on our PATH

 f The Grunt task runner (grunt-cli)

 f The grunt-contrib-jasmine module

 f The grunt-contrib-watch module

The grunt-contrib-watch module allows Grunt to watch our
filesystem during development and rerun certain tasks when it detects
changes. We can find out more about it at https://npmjs.org/
package/grunt-contrib-watch; we can install it on the command
line using npm, as follows:
npm install grunt-contrib-watch --save-dev

The library code that we will use for our tests is available in the downloadable code repository
as string-utils.js under lib; the accompanying tests are available as string-utils-
spec.js under lib.

Grunt will need a package.json file (for Node.js and npm) and a Gruntfile in order to run its
tasks; one of each has been provided in the downloadable code repository in the chapter04
directory as package.json and Gruntfile.js, respectively.

How to do it…
Given our example library and its tests, and given the jasmine task that we set up in our
Gruntfile in the previous recipe (Running Jasmine unit tests with Grunt), let us add a watch
task to our Gruntfile:

module.exports = function(grunt) {
 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),
 // jasmine task omitted from here
 watch: {
 scripts: {
 files: ['../lib/*.js'],
 tasks: ['jasmine']
 }

www.it-ebooks.info

https://npmjs.org/package/grunt-contrib-watch
https://npmjs.org/package/grunt-contrib-watch
http://www.it-ebooks.info/

Chapter 4

131

 }
 });

 grunt.loadNpmTasks('grunt-contrib-watch');
};

With our watch task defined, we can run it from the command line, as follows:

grunt watch

This should print out a message indicating that it is in a ready state, as follows:

Running "watch" task

Waiting...

Since we already have tests for our library code, let's open up string-utils.js under
lib in a text editor and break it, just to see what happens. Let's remove line 28 (case
'number':) and save the file.

Toggling back to our console window, we see that our watch task has triggered our Jasmine
tests, as shown:

>> File "../lib/string-utils.js" changed.

Running "jasmine:recipe04" (jasmine) task

Testing jasmine specs via phantom

....x..x..

string-utils.js:: txtr.format(s, /*...*/):: formats a string with
 numbers: failed

 Expected 'Foo {0}' to be 'Foo 42'. (1)

string-utils.js:: txtr.format(s, /*...*/):: formats a string with
 multiple items: failed

 Expected 'Foo Bar {1} baz true' to be 'Foo Bar 42 baz true'. (1)

10 specs in 0.004s.

>> 2 failures

Warning: Task "jasmine:recipe04" failed. Use --force to continue.

Aborted due to warnings.

Completed in 1.951s at Thu Jan 30 2014 21:00:17 GMT-0500 (EST) -
 Waiting...

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with PhantomJS

132

Back in our text editor, let's revert that breaking change. Toggling back to the console, we
should see that our tests are passing once again.

When we are finished with the watch task, we can cancel it by pressing CTRL + C.

How it works…
The crux of this recipe is in adding the watch task to Grunt, which will automatically run our
tests as files change. In our Gruntfile, we add the watch task and tell it which resources to
monitor (the array of patterns assigned to the files property). Then, in the tasks property,
we provide the list of tasks (in our case, ['jasmine']) that we want Grunt to run when it
detects changes.

By itself, grunt-contrib-watch does not provide very much; all it does is to watch the
filesystem and then trigger other tasks defined by other Grunt modules. In that respect, it
is still grunt-contrib-jasmine that does our unit testing, although we could just as
easily use another testing framework. Again, the main advantage provided here by grunt-
contrib-watch is the fact that we can start it, and it will provide continuous and nearly
instantaneous feedback while we develop.

As we noted in the Running Jasmine unit tests with Grunt recipe,
PhantomJS is a critical but secondary component here. Although we
are not invoking PhantomJS directly, using it helps to make watched
tests less intrusive when they're passing. As we've stated before, as
PhantomJS is a headless browser, it is the natural choice to use with
command-line utilities such as Grunt.

There's more…
The Grunt task runner has an impressive ecosystem of modules, and many of these modules
fit together easily, as we have already seen with grunt-contrib-jasmine and grunt-
contrib-watch. An example of another Grunt module that would help to enhance a
PhantomJS-based unit testing workflow is something such as grunt-notify.

The grunt-notify module is a module that can forward messages from Grunt into a
variety of notification systems, including Growl, Snarl, the built-in OS X notifications, and
Notify-Send. If the continuous test feedback in the console doesn't seem sufficiently obvious,
try something such as grunt-notify.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

133

Running Jasmine unit tests with the Karma
test runner

This recipe introduces the Karma test runner and describes how to configure it to execute
Jasmine tests in PhantomJS. Karma is a test runner that helps make test automation easier
by managing the test environments and target browsers, and test reporting for us through
simple configuration files.

Getting ready
To run this recipe, we will need the following items:

 f JavaScript code to test, and the tests for that code

 f Node.js and npm installed and on our PATH

 f The Karma test runner installed

Karma is a test runner that is agnostic to any underlying test framework or
target browser. We can find out more about it at http://karma-runner.
github.io/; we can install it on the command line using npm, as shown:
npm install karma-cli --global

npm install karma --save-dev

 f And the following plugins (npm modules) for Karma:
 � karma-jasmine

 � karma-phantomjs-launcher

Both of these Karma plugins can be installed as regular npm modules on the
command line, as shown:
npm install karma-jasmine --save-dev
npm install karma-phantomjs-launcher --save-dev

The library code that we will use for our tests is available in the downloadable code repository
as string-utils.js under lib; the accompanying tests are available as string-utils-
spec.js under lib.

Karma will need a configuration file in order to run tests; a sample configuration file has been
provided in the downloadable code repository in the chapter04 directory as recipe06.
conf.js. If we run the provided configuration file, we must change to the chapter04
directory of the book's sample code.

www.it-ebooks.info

http://karma-runner.github.io/
http://karma-runner.github.io/
http://www.it-ebooks.info/

Unit Testing with PhantomJS

134

How to do it…
Given our example library and its tests, and given that we have Karma installed, we can
configure Karma with our configuration file, recipe06.conf.js:

module.exports = function(config) {
 config.set({
 frameworks: ['jasmine'],
 files: [
 '../lib/string-utils.js',
 '../lib/string-utils-spec.js'
],
 browsers: ['PhantomJS'],
 singleRun: true
 });
};

With our configuration file defined, we can run Karma from the command line, as follows:

karma start recipe06.conf.js

This will print the results of the Karma test runner's execution, showing something like
the following:

INFO [karma]: Karma v0.10.9 server started at http://localhost:9876/

INFO [launcher]: Starting browser PhantomJS

INFO [PhantomJS 1.9.7 (Mac OS X)]: Connected on socket
 9oGHV5BryrH4seBDRZR2

PhantomJS 1.9.7 (Mac OS X): Executed 10 of 10 SUCCESS (0.02 secs /
 0.003 secs)

How it works…
Karma is one of the best testing tools available to front-end developers today, and it makes a
fantastic companion to PhantomJS for streamlining day-to-day development workflows. Karma
is a command-line test harness that consumes configuration files (which are themselves
nothing more than JavaScript) and then uses that configuration to automate almost all of the
boilerplate that goes into setting up and executing in the test environment. Similar to what
we saw in the Running Jasmine unit tests with Grunt recipe in this chapter, Karma frees us
from having to maintain the .html documents for our test runners; it constructs all of that
dynamically based on parameters that we specify in the configuration file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

135

For our introduction to Karma, we have used a very simple configuration file. Walking through
that configuration file, we perform the following actions:

1. We assign a function to module.exports, and that function takes a single
argument (config). This is the function that Karma calls internally to configure
itself at the beginning of the test run.

2. The main body of the function calls config.set with the actual configuration object,
applying defaults wherever we do not otherwise specify certain critical values.

3. We set the frameworks property to use jasmine.

4. We indicate the set of files to inject into the dynamic test runner (note that this
could be a glob pattern).

5. We specify what browsers we want to use; in our case, we want to start with
just PhantomJS.

6. We specify singleRun here so that we don't end up in watch mode.

Confident about our configuration file, we can pass it on the command line to Karma when
we otherwise trigger a test run via the start command. Once started, Karma consumes
the configuration file, constructs the appropriate test environment (loads plugins, builds test
runners, launches and slaves browsers), executes the tests, and returns the report.

There's more…
Like Grunt, Karma has a rich ecosystem of plugins and modules. A search at https://
npmjs.org will reveal dozens of modules/plugins, including support for different test
frameworks, reporters, preprocessors, browser launchers, and more. Similarly, there is also
a grunt-karma module so that you can drive Karma from Grunt. There is too much to make
a comprehensive survey of the Karma ecosystem here, but it's good to know that many of the
tools we may want for Karma already exist.

Generating code coverage reports with
Istanbul and the Karma test runner

This recipe expands on our use of the Karma test runner and introduces the Istanbul library
for static analysis of test coverage. Istanbul is a code coverage tool for JavaScript that
instruments the code under test and provides reports about statement, branch, function,
and line test coverage.

www.it-ebooks.info

https://npmjs.org
https://npmjs.org
http://www.it-ebooks.info/

Unit Testing with PhantomJS

136

Getting ready
To run this recipe, we will need the following items:

 f JavaScript code to test, and the tests for that code

 f Node.js and npm installed and on our PATH

 f The Karma test runner installed

 f The following plugins (npm modules) for Karma:
 � karma-jasmine

 � karma-phantomjs-launcher

 � karma-coverage

The karma-coverage plugin uses Istanbul to provide
reports on code coverage. We can learn more about Istanbul at
http://gotwarlost.github.io/istanbul/; we can
install it on the command line as:
npm install karma-coverage --save-dev

The library code that we will use for our tests is available in the downloadable code repository
as string-utils.js under lib; the accompanying tests are available as string-utils-
spec.js under lib.

Karma will need a configuration file in order to run tests; a sample configuration file has
been provided in the downloadable code repository in the chapter04 directory as
recipe07.conf.js. If we run the provided configuration file, we must change to the root
directory of the book's sample code.

How to do it…
Given our example library and its tests, and given that we have Karma and its coverage
plugin installed, we can add code coverage to Karma by updating our configuration file.
Let's examine the changes in recipe07.conf.js:

module.exports = function(config) {
 config.set({
 frameworks: ['jasmine'],
 files: ['../lib/string-utils*.js'],
 preprocessors: {
 '../lib/string-utils.js': 'coverage'
 },
 reporters: ['progress', 'coverage'],

www.it-ebooks.info

http://gotwarlost.github.io/istanbul/
http://www.it-ebooks.info/

Chapter 4

137

 browsers: ['PhantomJS'],
 singleRun: true
 });
};

In particular, we have added two things to our configuration:

 f We have specified use of the coverage preprocessor on a specific file (string-
utils.js; though that could just as easily have been a matcher pattern)

 f We have added the coverage reporter to the reporters list

With the configuration file updated, we can run Karma from the command line, as follows:

karma start chapter04/recipe07.conf.js

This will print the results of the Karma test runner's execution, but it will also generate a code
coverage report in the coverage directory. If we open the report formatted as .html, we will
see something as seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with PhantomJS

138

We can then drill into directories and files to see the actual line and branch coverage as seen
in the following screenshot:

How it works…
Adding Istanbul's code coverage to Karma involves installing the plugin and adding the
preprocessor and reporter to the configuration file. Once these have been added, generating
the code coverage reports is as simple as executing our tests as we normally would have, and
then examining the code coverage reports.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

139

There's more…
Code coverage reports, such as the ones generated by Istanbul, are powerful tools to have in
our development toolkit. A solid testing strategy can help us to be more thoughtful in our code
design and more confident while we refactor; but there's nothing quite like a code coverage
report to reveal the dusty corners we may have overlooked.

One caution about using the karma-coverage plugin—if our Karma configuration file is set
to run tests against multiple browsers (for example, PhantomJS and Chrome and Firefox),
then a code coverage report is only produced for one of them—and it's unpredictable which
one will get the report. Generally speaking, if we critically need the code coverage report, we
should set up a specific Karma configuration file for generating it, preferring PhantomJS as the
browser in which to do so.

Running Jasmine unit tests with Karma and
PhantomJS from WebStorm

This recipe illustrates how to set up the Karma test runner to run within WebStorm so that
we can receive feedback during development without leaving our IDE. WebStorm is an IDE
by JetBrains that is focused on JavaScript development and other front-end technologies
and tools.

Getting ready
To run this recipe, we will need the following items:

 f JavaScript code to test, and the tests for that code

 f Node.js and npm installed and on our PATH

 f The Karma test runner (and its supporting plugins/modules) installed

 f The WebStorm IDE

WebStorm is an IDE by JetBrains that is oriented toward front-end
developers and focused on JavaScript, CSS, and HTML. Support for
the Karma test runner was added in version 7; we can find out more
about WebStorm at http://www.jetbrains.com/webstorm/.

The library code that we will use for our tests is available in the downloadable code repository
as string-utils.js under lib; the accompanying tests are available as string-utils-
spec.js under lib.

www.it-ebooks.info

http://www.jetbrains.com/webstorm/
http://www.it-ebooks.info/

Unit Testing with PhantomJS

140

Karma will need a configuration file in order to run tests. For this recipe, we will reuse
recipe07.conf.js, which is provided in the chapter04 directory of the downloadable
code repository.

How to do it…
Given our example library and its tests, we can add our project to WebStorm.

The JetBrains WebStorm help site has detailed instructions for how to
import the existing code as a project at http://www.jetbrains.
com/webstorm/webhelp/importing-project-from-
existing-source-code.html.

The first time we want to run the Karma test runner from WebStorm, we will need to add a Run
Configuration for it, as follows:

1. In the Run menu, click on Edit Configurations…; alternatively, you can click on Edit
Configurations… under the Run item in the navigation bar.

2. In the Run/Debug Configurations dialog, click on the + button, and then select the
Karma option.

www.it-ebooks.info

http://www.jetbrains.com/webstorm/webhelp/importing-project-from-existing-source-code.html
http://www.jetbrains.com/webstorm/webhelp/importing-project-from-existing-source-code.html
http://www.jetbrains.com/webstorm/webhelp/importing-project-from-existing-source-code.html
http://www.it-ebooks.info/

Chapter 4

141

3. In the Run/Debug Configurations dialog, configure the Karma run configuration:

1. Give the Run Configuration a name (for example, Chapter 4 : Recipe 8).

2. Set the path to the Node.js interpreter (although this should be
set automatically).

3. Set the path to the Karma npm module (preferring the one local to the
project, if possible).

4. Set the path to the Karma configuration file (for example,
recipe07.conf.js).

4. Click on OK and return to WebStorm's editor context.

Now (and every time after this initial set up) we can run our tests using Karma, right
from within our IDE. We can select our Chapter 4 : Recipe 8 configuration from the Run
Configuration menu, and then click on the Run button.

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with PhantomJS

142

Clicking on the Run button will start Karma, which loads the specified configuration file,
launches PhantomJS (and/or other browsers), and then executes the tests, displaying the
results right in the IDE.

How it works…
As an IDE that is oriented towards the front-end development workflow, WebStorm has made
it an almost trivial task to add and configure Karma tests. The Run/Debug Configuration
menu treats Karma as a first-class citizen, putting it alongside Node.js, JsTestDriver, and
other well-known utilities. In effect, all we needed to do was fill in a few boxes and save our
configuration. Once configured, running our tests was a matter of pointing and clicking.
Although WebStorm does not honor the autoWatch configuration property (to keep the tests
running in the background), it is quite convenient to be able to click through the report in the
IDE and have it navigate directly to the test in question.

Running QUnit tests with PhantomJS
In this recipe, we will illustrate how to run QUnit-based unit tests through PhantomJS as an
alternative to Jasmine.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

143

Getting ready
To run this recipe, we will need JavaScript code to test, and the tests for that code. To test our
code, we will use the QUnit test framework.

QUnit (maintained by the jQuery Foundation) is a JavaScript framework
for writing unit tests; its assertion methods conform to the CommonJS
unit testing specification (see http://wiki.commonjs.org/wiki/
Unit_Testing/1.0). QUnit is open source (MIT licensed) and is
available at http://qunitjs.com/.
We will be using QUnit version 1.14.0.

The library code that we will use for our tests is available in the downloadable code
repository as string-utils.js under lib; the accompanying QUnit tests are available as
string-utils-tests.js under lib. The test runner is also available in the repository
as recipe09-runner.html under chapter04. If we run the provided example, we must
change to the root directory for the book's sample code.

Lastly, we will use the run-qunit.js script that ships with the PhantomJS source code in
the examples directory. The recipe uses the $PHANTOMJS_SOURCE environment variable,
which refers to our clone of the PhantomJS source code.

How to do it…
Given our example library, we can execute its tests by launching the test runner in PhantomJS
from the command line:

phantomjs $PHANTOMJS_SOURCE/examples/run-qunit.js
 chapter04/recipe09-runner.html

The script will output the test results to the console. They should look something like
the following:

'waitFor()' finished in 202ms.

Tests completed in 18 milliseconds.

16 assertions of 16 passed, 0 failed.

How it works…
There are three main components at work in our example:

 f Our tests, wrapped inside of the test runner

 f The run-qunit.js script that loads and bootstraps the test runner

 f PhantomJS that serves as the test environment

www.it-ebooks.info

http://wiki.commonjs.org/wiki/Unit_Testing/1.0
http://wiki.commonjs.org/wiki/Unit_Testing/1.0
http://qunitjs.com/
http://www.it-ebooks.info/

Unit Testing with PhantomJS

144

If we look at our tests (string-utils-tests.js), they are straightforward, they use
only the basic testing functions that QUnit provides, and they are assertion-for-assertion
equivalents to the Jasmine specifications we have used throughout the rest of this chapter.
We have partitioned the suite based on which method is being tested by using the module
function; then, we set up several tests using the test function, with one or more equal
assertions inside.

We can open our test runner (recipe09-runner.html) in a normal browser and see the
results of the tests:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

145

Looking at the test runner, we can see that it:

1. Loads the CSS for the QUnit test framework.

2. Contains two div nodes (qunit and qunit-fixture) as required by QUnit.

3. Loads the QUnit test framework.

4. Loads the JavaScript code under test (string-utils.js).

5. Loads the tests (string-utils-tests.js).

As we noted with our Jasmine examples, opening the test runner in a normal browser could
be sufficient. However, given that our aim is to streamline our development workflow on
the command line, we need a script that can load our test runner into PhantomJS, run the
tests, and interpret the results. Once again, the PhantomJS source code ships with a script
to manage run-qunit.js. The run-qunit.js script functions almost identically as the
run-jasmine.js script that we analyzed in the Running Jasmine unit tests with PhantomJS
recipe; the only notable differences are in the CSS selectors that it uses to inspect the page
for failures.

PhantomJS provides the test environment itself. We invoke it on the command line, providing
our script (run-qunit.js) and our target URL. All the work takes place within the PhantomJS
process, which will exit cleanly, or not, depending upon the outcome of the tests on the page.

There's more…
As we saw in the Running Jasmine unit tests with PhantomJS recipe in this chapter, one of
the advantages of using the run-qunit.js script is that we can start using our existing
QUnit tests immediately. We do not need to perform any conversion or migration, and there is
no additional adapter to install onto the test runner; run-qunit.js is already equipped to
scrape the results from the page and output them to the console.

Additionally, if we've adopted Grunt as part of our development workflow, we can add the
grunt-contrib-qunit module to our project, and with a couple of lines added to our
Gruntfile, we can drive our QUnit tests in PhantomJS with Grunt.

We can find out more about grunt-contrib-qunit at https://
npmjs.org/package/grunt-contrib-qunit; we can install it on
the command line using npm, as follows:
npm install grunt-contrib-qunit --save-dev

See also
 f The Running Jasmine unit tests with PhantomJS recipe

 f The Running Jasmine unit tests with Grunt recipe

www.it-ebooks.info

https://npmjs.org/package/grunt-contrib-qunit
https://npmjs.org/package/grunt-contrib-qunit
http://www.it-ebooks.info/

Unit Testing with PhantomJS

146

Running Mocha unit tests with PhantomJS
This recipe demonstrates how to run Mocha-based unit tests through PhantomJS as an
alternative to Jasmine and QUnit.

Getting ready
To run this recipe, we will need the following items:

 f JavaScript code to test, and the tests for that code

 f Node.js and npm installed and on our PATH

 f The Mocha test framework (included in lib/mocha)

Mocha is the "simple, flexible, and fun" JavaScript unit-testing framework
that runs in Node.js or in the browser. It is open source (MIT licensed), and
we can learn more about it at http://visionmedia.github.io/
mocha/; we can install Mocha on the command line using npm, as follows:
npm install --global mocha

 f The Chai assertion library (included in lib/chai)

Chai is a platform-agnostic BDD/TDD assertion library featuring several
interfaces (for example, should, expect, and assert). It is open source
(MIT licensed), and we can learn more about it at http://chaijs.
com/; we can install Chai on the command line using npm, as follows:
npm install chai --save-dev

 f The mocha-phantomjs module

The mocha-phantomjs module provides PhantomJS test runners
with Mocha. We can learn more about it at https://github.com/
metaskills/mocha-phantomjs; we can install it on the command
line using npm, as follows:
npm install --global mocha-phantomjs --save-dev

The library code that we will use for our tests is available in the downloadable code repository
as string-utils.js under lib; the accompanying Mocha/Chai tests are available as
string-utils-expectations.js under lib. The test runner is also available in the
repository as recipe10-runner.html under chapter04. If we run the provided example,
we must change to the root directory for the book's sample code.

www.it-ebooks.info

http://visionmedia.github.io/mocha/
http://visionmedia.github.io/mocha/
http://chaijs.com/
http://chaijs.com/
https://github.com/metaskills/mocha-phantomjs
https://github.com/metaskills/mocha-phantomjs
http://www.it-ebooks.info/

Chapter 4

147

How to do it…
Given our example library and its tests, let us call out the two inline JavaScript blocks in our
test runner. The first such block configures Mocha and exposes Chai to the tests as a global
variable, as shown in the following code snippet:

mocha.ui('bdd');
mocha.reporter('html');
expect = chai.expect;

The second such block is our executor, as shown:

if ('mochaPhantomJS' in window) {
 mochaPhantomJS.run();
} else {
 mocha.run();
}

With Mocha configured and our executor in place, we can launch the test runner from the
command line, as shown:

mocha-phantomjs chapter04/recipe10-runner.html

The script will output the test results to the console. They should look something like
the following:

string-utils.js

 txtr.capitalize(s)

 √ capitalizes the first letter

 txtr.dashedToCamel(s, ic)

 √ converts dashed-strings to camelCaseStrings

 √ converts dashed-strings to CamelCaseStrings with an initial capital
when specified

 txtr.format(s, /*...*/)

 √ formats a string with strings

 √ formats a string with numbers

 √ formats a string with a function

 √ formats a string with a boolean

 √ formats a string with multiple items

 √ returns the token itself when there are not enough arguments to
substitute for them all

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with PhantomJS

148

 √ returns the token itself when it cannot otherwise recognize or
handle the substitution

10 passing

How it works…
The mocha-phantomjs module provides the bridge between our test runner and the
PhantomJS test runtime. After setting up our tests using Mocha's BDD style and the Chai
assertions, we can open our test runner (recipe10-runner.html) in a normal browser
and see the results of the tests:

Looking at the test runner, we can see that it performs the following actions:

1. Sets the page's charset as UTF-8 with a meta tag (important for proper encoding of
certain characters used in the test framework).

2. Loads the CSS for the Mocha test framework.

3. Contains a div (mocha) as required by Mocha.

4. Loads the Chai assertion library and the Mocha test framework.

5. Configures Mocha (setting it to use the BDD style and an html reporter) and exposes
the chai.expect object as the global expect with an inline script.

6. Loads the JavaScript code under test (string-utils.js).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

149

7. Loads the tests (string-utils-expectations.js).

8. Runs the Mocha executor that kicks off mochaPhantomJS.run (if we are running
the mocha-phantomjs module); it kicks off mocha.run otherwise.

With the test runner properly set up, it can now execute tests in a normal browser
(as before) or in PhantomJS through the mocha-phantomjs module. Launching the
tests in mocha-phantomjs is as simple as entering the module's exported binary's
name on the command line followed by the path to the test runner.

There's more…
In addition to providing its core test runner for PhantomJS, mocha-phantomjs provides
hooks into the underlying Mocha framework. From the command line, we can specify that
mocha-phantomjs uses alternative reporters. For example, instead of the default spec
reporter, we can specify the -R flag on the command line followed by the name of our
preferred reporter (for example, dot, tap, xunit, or others), and mocha-phantomjs will
forward that along to Mocha when executing the tests. The mocha-phantomjs module can
also accept command-line arguments that are forwarded along to the underlying PhantomJS
instance, configuring aspects of the browser as well (for example, a cookie object, a viewport
size, and other settings).

Additionally, if we've adopted Grunt as part of our development workflow, then we can add the
grunt-mocha-phantomjs module to our project, and with a couple of lines added to our
Gruntfile, we can drive our Mocha tests in PhantomJS with Grunt.

Find out more about grunt-mocha-phantomjs at https://
npmjs.org/package/grunt-mocha-phantomjs; we
can install it on the command line using npm, as follows:
npm install grunt-mocha-phantomjs --save-dev

See also
 f The Running Jasmine unit tests with PhantomJS recipe

 f The Running Jasmine unit tests with Grunt recipe

www.it-ebooks.info

https://npmjs.org/package/grunt-mocha-phantomjs
https://npmjs.org/package/grunt-mocha-phantomjs
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

5
Functional and

End-to-end Testing
with PhantomJS

In this chapter, we will cover:

 f Running Selenium tests with PhantomJS and GhostDriver

 f Using WebdriverJS as a Selenium client for PhantomJS

 f Adding Poltergeist to a Capybara suite

 f Taking screenshots during tests with Poltergeist

 f Simulating precise mouse clicks with Poltergeist

 f Installing CasperJS

 f Interacting with web pages using CasperJS

 f End-to-end testing with CasperJS

 f Exporting test results from CasperJS in the XUnit format

 f Detecting visual regressions using PhantomCSS

Introduction
In addition to being a popular solution for fast front-end unit tests, PhantomJS has emerged
as a compelling component of functional or end-to-end test solutions. As we have noted
several times already, the headless nature of PhantomJS gives it some unique characteristics
that can help streamline the testing process, especially on certain systems where setting up
test automation with traditional browsers may be more cumbersome.

www.it-ebooks.info

http://www.it-ebooks.info/

Functional and End-to-end Testing with PhantomJS

152

In this chapter, we will learn about functional testing strategies with PhantomJS. We will
survey several different functional testing tools, including Selenium, Poltergeist (a driver for
Capybara), and CasperJS. We will also learn how to apply PhantomJS as part of the overall
testing stack.

Running Selenium tests with PhantomJS and
GhostDriver

This recipe introduces GhostDriver, an implementation of the WebDriver wire protocol, and
explains how to use it to run Selenium tests with PhantomJS as the target browser.

Getting ready
To run this recipe, we will need Selenium available on our system; our recipe will use version
2.39.0 of the Selenium Java server, but we must use version 2.33.0 or later to be able to use
GhostDriver. Our examples in this recipe will use the Java bindings for Selenium.

Selenium is a big enough topic on its own to be an entire
book, so we will not dive in deep here. As such, this
recipe assumes that we already have some knowledge of
Selenium as a testing utility.

Also, as we use the Selenium Java bindings, we assume
at least some basic knowledge of Java.

To simplify working with Java, we will need Maven installed and on our PATH.

Maven is a software project management and
comprehension tool that can be used to simplify working
with and building Java-based projects. We can learn more
about Maven at http://maven.apache.org/.

We will need a test suite (a set of Java test classes) that makes use of the
RemoteWebDriver class to connect with the remote PhantomJS instance for running our
functional tests. Our example will use the phantomjs.cookbook.RemoteWebDriverTest
class in the recipe01 folder under chapter05 in the downloadable code repository. If we
run the provided example tests, we must change to the chapter05/recipe01 directory for
the book's sample code.

GhostDriver must be available on our system. If we have PhantomJS 1.8 or greater installed,
then GhostDriver is already built-in.

www.it-ebooks.info

http://maven.apache.org/
http://www.it-ebooks.info/

Chapter 5

153

GhostDriver is an implementation of the remote WebDriver wire
protocol that uses PhantomJS as the target browser. If we need
to deal with GhostDriver independently from PhantomJS, or
otherwise wish to learn more about it, the project home page can
be found at https://github.com/detro/ghostdriver.

Lastly, the functional test in this recipe runs against the demo site that is included with the
cookbook's sample code repository. To run that demo site, we must have Node.js installed.
In a separate terminal, change to the phantomjs-sandbox directory (in the sample code's
directory), and start the app with the following command:

node app.js

How to do it…
First, we must spawn a PhantomJS instance and put it into a state where it is receptive to
remote WebDriver requests. We can initialize PhantomJS on the command line, as follows:

phantomjs --webdriver=4444

Second, consider the following test class:

package phantomjs.cookbook;

import org.junit.Test;
import org.openqa.selenium.By;
import org.openqa.selenium.Keys;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.openqa.selenium.remote.RemoteWebDriver;
import java.net.URL;
import static org.junit.Assert.assertEquals;

public class RemoteWebDriverTest {
 private static final String THE_TEXT = "PhantomJS + GhostDriver";

 @Test
 public void testGhostDriver() throws Exception {
 WebDriver driver = new RemoteWebDriver(
 new URL("http://localhost:4444/"),
 DesiredCapabilities.phantomjs());

 driver.get("http://localhost:3000/input-demo");

 WebElement demo = driver.findElement(By.id("demo"));

www.it-ebooks.info

https://github.com/detro/ghostdriver
http://www.it-ebooks.info/

Functional and End-to-end Testing with PhantomJS

154

 demo.sendKeys(THE_TEXT);
 demo.sendKeys(Keys.ENTER);

 WebElement stage = driver.findElement(By.id("stage"));

 final String stageText = stage.getText();

 assertEquals(THE_TEXT, stageText);
 }
}

In a new terminal window, we can execute our test on the command line using Maven,
as follows:

mvn clean test -Dtest=RemoteWebDriverTest

Maven may need to download some dependencies before it
can execute the tasks. This could take a little while depending
on our Internet connection speed, the state of the remote
Maven server, and other factors; so, let's be patient. When we
run the preceding command, Maven will first check whether
it has dependencies to resolve, it will then resolve those
dependencies, build the project, and run the Selenium tests.

The testing task's output will appear in the console and should look something like the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

155

How it works…
The first thing that we do in our recipe is start a PhantomJS instance using the webdriver
command-line argument, putting it into a state where it is receptive to remote WebDriver
connections on the specified port. We specify the port as the value following the webdriver
argument key. Specifying this argument tells PhantomJS to engage GhostDriver when it
launches, and it allows the browser to be controlled by remote Selenium automation.

Secondly, we launch our functional test from Maven using the test goal, indicating the
specific class (RemoteWebDriverTest) with the test argument.

Note that we also specified the clean goal in our example.
While not strictly necessary, it is a good idea to run clean
first, in order to sanitize the testing environment and minimize
the risk of complications.

Our test class, phantomjs.cookbook.RemoteWebDriverTest, contains a single method
(testGhostDriver) that performs the following actions:

1. It creates a new RemoteWebDriver instance and assigns it to the driver variable.
This instance is created with a URL of http://localhost:4444/ (the port where
our PhantomJS instance is listening for WebDriver connections) and a Selenium
Capabilities object that requests a PhantomJS browser instance.

2. With the driver instance created, we have it request the URL
http://localhost:3000/input-demo—part of our Node.js-based demo app.

3. Once loaded, we have our driver instance find the #demo element on the page and
save it to a variable with the name demo.

4. The RemoteWebDriver instance (driver) sends keyboard input to the demo
element; first, we send the string PhantomJS + GhostDriver, and the script
sends an Enter keypress.

5. We have our driver instance find the #stage element and save it to a variable
with the name stage. Then, we get the text from within stage, and save it to the
variable stageText.

6. Lastly, we assert that stageText does in fact match the text we input in step 4.

Maven runs the test class and outputs the results, informing us whether it passed or failed.

www.it-ebooks.info

http://www.it-ebooks.info/

Functional and End-to-end Testing with PhantomJS

156

There's more…
Although this recipe's example is as trivial as a functional test can be, it should convey the
simplicity of incorporating PhantomJS into our overall Selenium testing strategies. Adding
PhantomJS is just a matter of requesting a RemoteWebDriver instance with PhantomJS
capabilities and having a PhantomJS instance listening on the appropriate port. In this way,
we can take our existing Selenium functional tests and start running them in PhantomJS with
very little effort.

There are more options available to us. For example, we do not necessarily need to have a
PhantomJS instance running; instead of using the RemoteWebDriver class and requesting
PhantomJS capabilities, we can use the PhantomJSDriver class that provisions and
manages its own PhantomJS instance. Looking in the chapter05/recipe01 directory
again, we see an example of this with the PhantomJSDriverTest class. The only
significant difference between RemoteWebDriverTest and PhantomJSDriverTest
is the constructor used to create the WebDriver instance. To demonstrate how
PhantomJSDriver manages its own PhantomJS instances, we can kill our PhantomJS
process, and then launch the test class from the command line:

mvn clean test -Dtest=PhantomJSDriverTest

Watching the command-line output, we should see where the test class creates a PhantomJS
instance, binds to it, and then successfully executes its assertions.

Lastly, it is worth noting that although our examples here use Selenium's Java bindings, the
recipe should be equally applicable for any of the other language bindings, such as for C#,
Python, Ruby, or JavaScript.

Using WebdriverJS as a Selenium client for
PhantomJS

This recipe demonstrates how to use WebdriverJS as a JavaScript-based Selenium client.
We will run tests and discuss how to use the combination of WebdriverJS and PhantomJS for
ubiquitous JavaScript.

Getting ready
To run this recipe, we will need a Selenium server available and running on our system; our
recipe will use version 2.41.0 of the Selenium Java server, but we must use version 2.33.0 or
later to be able to use GhostDriver.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

157

The Selenium Standalone Server JAR can be downloaded from
the Selenium project website at http://docs.seleniumhq.
org/download/.

Once downloaded, the server can be started (listening on port
4444 by default) with Java on the command line, as follows:
java -jar selenium-server-standalone-2.41.0.jar

Selenium is open source and distributed under the Apache
License 2.0.

We will need WebdriverJS installed. WebdriverJS is a JavaScript-based Selenium client with a
fluent API that implements the WebDriver wire protocol.

WebdriverJS can be installed with the Node.js package manager,
npm, as follows:
npm install webdriverjs

Our example project (located in the chapter05/recipe02
directory) already lists WebdriverJS as a dependency in its
package.json file. We can learn more about WebdriverJS at
http://webdriver.io/.

The Mocha test framework must be installed; we will use the mocha binary to execute our
tests. We demonstrated how to install Mocha globally with npm in the Running Mocha unit
tests with PhantomJS recipe in Chapter 4, Unit Testing with PhantomJS.

We need GhostDriver available on our system. If we have PhantomJS 1.8 or greater installed,
then GhostDriver is already built-in.

The script for the functional test in this recipe is available in the downloadable code repository
as webdriverjs-test.js under chapter05/recipe02/. If we run the provided example
script, we must change to the root directory for the book's sample code.

Lastly, the functional test in this recipe runs against the demo site that is included with the
cookbook's sample code repository. To run that demo site, we must have Node.js installed.
In a separate terminal, change to the phantomjs-sandbox directory (in the sample code's
directory), and start the app with the following command:

node app.js

How to do it…
Consider our functional test script:

var assert = require('assert'),
 driver = require('webdriverjs'),
 client,

www.it-ebooks.info

http://docs.seleniumhq.org/download/
http://docs.seleniumhq.org/download/
http://webdriver.io/
http://www.it-ebooks.info/

Functional and End-to-end Testing with PhantomJS

158

 THE_TEXT = 'PhantomJS + GhostDriver';

describe('input-demo', function() {
 beforeEach(function(done) {
 client = driver.remote({
 desiredCapabilities: {
 browserName: 'phantomjs'
 }
 }).init();
 client.url('http://localhost:3000/input-demo', done);
 });

 afterEach(function(done) {
 client.end(done);
 });

 it('gets input from #demo and puts it onto #stage', function(done) {
 client
 .setValue('#demo', THE_TEXT + '\uE007')
 .getText('#stage', function(err, text) {
 assert(text === THE_TEXT, '#stage innerText equals ' + THE_
TEXT);
 })
 .call(done);
 });
});

Assuming that we already have our Selenium server running, we can execute our functional
test on the command line, as follows:

mocha chapter05/recipe02/webdriverjs-test.js

Mocha will execute the tests in the script and output the results to the console. Note that the
test output is not verbose and will look something like the following:

1 passing (2s)

We may get errors that read something like:
/input-demo "after each" hook:

 Uncaught TypeError: Cannot read property
 'sessionId' of undefined

In this case, we may need to reinstall the Node.js modules. In
these instances, try deleting the node_modules directory (in
chapter05/recipe02) and reinstalling the modules from
the command line, as follows:
npm install

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

159

How it works…
At a high level, Mocha serves as the test runner for our functional test script, automatically
provisioning the PhantomJS instance and connecting it to the Selenium server. More
specifically, our script does the following:

1. It imports our required modules: assert (the built-in Node.js assertion library) and
webdriverjs (our Selenium client).

2. It declares the client variable that will hold our WebdriverJS instance, and it also
assigns our specimen text to THE_TEXT.

3. It creates a BDD-style describe block to hold our test expectations.

4. It sets up a beforeEach function to initialize a WebdriverJS instance
with PhantomJS capabilities, and it directs it to our target URL
(http://localhost:3000/input-demo).

5. It sets up an afterEach function to signal to the client that we have finished.

6. It creates a test expectation that:

1. Sets the value of the #demo element to THE_TEXT.

2. Gets the value of the #stage element.

3. Asserts that the #demo input is the same as the #stage content.

4. Calls done to complete the test.

On the command line, we execute the functional test script using the mocha binary that
provides the test framework to the script. From within the script, WebdriverJS then provisions
the PhantomJS instance and connects to Selenium.

There's more…
One of the advantages of using a Selenium client such as WebdriverJS is that we can have
ubiquitous JavaScript in our project if we desire. For example, we may be more comfortable,
and thus, more productive writing JavaScript; or perhaps, we have our own internal JavaScript
libraries that we need to share between different environments. Whatever the reason, it is
useful to know that this option exists.

In addition to WebdriverJS, which we have discussed in this recipe, there is also
selenium-webdriver, the Selenium project's official JavaScript bindings for the WebDriver
wire protocol. We can find out more about selenium-webdriver at https://www.npmjs.
org/package/selenium-webdriver; an example of it appears in the downloadable code
repository as selenium-webdriver-test.js under chapter05/recipe02. We can run
that example from the command line as:

mocha chapter05/recipe02/selenium-webdriver-test.js

www.it-ebooks.info

https://www.npmjs.org/package/selenium-webdriver
https://www.npmjs.org/package/selenium-webdriver
http://www.it-ebooks.info/

Functional and End-to-end Testing with PhantomJS

160

Adding Poltergeist to a Capybara suite
In this recipe we introduce Poltergeist, the PhantomJS driver for Capybara tests. We will
illustrate a simple end-to-end test using Capybara and explain how to run such tests in
PhantomJS using Poltergeist.

Getting ready
To run this recipe, we will need a recent version of Ruby installed and on our PATH.

Ruby is a dynamic programming language that is both popular and
expressive. We use it here for these reasons. Capybara requires
version 1.9.3 or greater, but version 2.1.0 or greater is advised.
See the Ruby website for information about how to obtain and
install the runtime at https://www.ruby-lang.org/.

We will need the RubyGems package management framework for Ruby installed and on
our PATH.

We can find information about downloading and installing
RubyGems at http://rubygems.org/pages/download.

We will need Capybara installed.

Capybara is a Ruby library for simulating user interactions and
automating browsers. It is too large a topic to go into depth here. As
such, this recipe assumes that we already have some knowledge of
Capybara as a testing utility. We can find out more about Capybara
at http://jnicklas.github.io/capybara/.

We can install Capybara on the command line:
gem install capybara

Some Mac users may find that they need to install gems with
administrator privileges. In these cases, simply add sudo in front of
the installation command and enter our password when prompted.
For example, to install Capybara:
sudo gem install capybara

www.it-ebooks.info

https://www.ruby-lang.org/
http://rubygems.org/pages/download
http://jnicklas.github.io/capybara/
http://www.it-ebooks.info/

Chapter 5

161

We will need Poltergeist installed.

Poltergeist is a driver for Capybara that allows it to control the
PhantomJS browser. We can find out more about Poltergeist at
https://github.com/jonleighton/poltergeist.

We can install Poltergeist on the command line:
gem install poltergeist

We will need our suite of Capybara functional tests. The example tests are available in the
downloadable code repository as recipe03.rb under chapter05. If we run the provided
example, we must change to the root directory for the book's sample code.

Lastly, the functional test in this recipe runs against the demo site that is included with the
cookbook's sample code repository. To run that demo site, we must have Node.js installed.
In a separate terminal, change to the phantomjs-sandbox directory (in the sample code's
directory), and start the app with the following command:

node app.js

How to do it…
Consider the following Ruby script:

require 'rubygems'
require 'capybara'
require 'capybara/dsl'
require 'capybara/poltergeist'

Capybara.run_server = false
Capybara.default_driver = :poltergeist
Capybara.app_host = 'http://localhost:3000'

THE_TEXT = 'PhantomJS + Capybara + Poltergeist'

module CookbookCapybaraDemo
 class Demo
 include Capybara::DSL
 def test_input_demo
 visit '/input-demo'
 fill_in 'demo', :with => THE_TEXT
 find('#demo').native.send_key(:Enter)
 find('#stage').text
 end
 end

www.it-ebooks.info

https://github.com/jonleighton/poltergeist
http://www.it-ebooks.info/

Functional and End-to-end Testing with PhantomJS

162

end

demo = CookbookCapybaraDemo::Demo.new
text = demo.test_input_demo

puts "=> input '#{THE_TEXT}' and #stage received '#{text}' (same =
 #{text == THE_TEXT})"

Given the preceding script, enter the following at the command line:

ruby chapter05/recipe03.rb

This script should print out the following:

=> input 'PhantomJS + Capybara + Poltergeist' and #stage received
 'PhantomJS + Capybara + Poltergeist' (same = true)

How it works…
Much like Selenium, Capybara does not provide us with a test framework; instead, it
provides a domain-specific language (DSL) that allows us to specify user interactions that
it automates in the browser. Put more simply, Capybara is not a test framework, but it is a
mechanism for controlling the browser.

Our preceding example script performs the following actions:

1. It imports the Ruby gems (libraries) that we need, using a series of
require statements.

2. It configures Capybara, as follows:

1. It turns off run_server because we are using a remote host.

2. It sets Poltergeist to be our default_driver.

3. It specifies our application's host.

If we already have an existing functional test suite in place that is
configured to use Capybara, then 2.2 is the key step. If we require
capybara/poltergeist, then setting :poltergeist as
Capybara's driver should be sufficient for most scripts.

3. As THE_TEXT, it specifies a text fixture to use throughout our test.

4. It creates our module (CookbookCapybaraDemo) and the Demo class inside of
that. Our Demo class includes the Capybara DSL, and we define a single method
(test_input_demo).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

163

5. Our test_input_demo method performs the following:

1. It visits the /input-demo URL.

2. It fills in the #demo input with THE_TEXT.

3. It sends an Enter keypress to #demo.

4. It gets the text from the #stage element and returns it.

6. It creates a new instance of our Demo class and assigns it to demo; then, it executes
its test_input_demo method and assigns the results to text.

7. Lastly, it writes our message to the console.

Taking screenshots during tests with
Poltergeist

This recipe illustrates how to take screenshots from Capybara using Poltergeist, and it points
out a couple of things that differ from taking screenshots under PhantomJS.

Getting ready
To run this recipe, we will need the following items installed and available on the system:

 f Ruby 1.9.3 or greater, and the RubyGems package management framework

 f Capybara

 f Poltergeist

 f A suite of functional tests or browser automation scripts set to run in Capybara

Details on how to locate and install the preceding software
are discussed in the Adding Poltergeist to a Capybara suite
recipe earlier in this chapter.

The script we will use in this chapter is available in the downloadable code repository as
recipe04.rb under chapter05. If we run the provided example, we must change to the
root directory for the book's sample code.

Lastly, the functional test in this recipe runs against the demo site that is included with the
cookbook's sample code repository. To run that demo site, we must have Node.js installed.
In a separate terminal, change to the phantomjs-sandbox directory (in the sample code's
directory), and start the app with the following command:

node app.js

www.it-ebooks.info

http://www.it-ebooks.info/

Functional and End-to-end Testing with PhantomJS

164

How to do it…
Consider the following Ruby script:

require 'rubygems'
require 'capybara'
require 'capybara/dsl'
require 'capybara/poltergeist'

Capybara.run_server = false
Capybara.default_driver = :poltergeist
Capybara.app_host = 'http://localhost:3000'

module CookbookCapybaraDemo
 class Demo
 include Capybara::DSL
 def capture_viewport
 page.driver.resize 1280, 1024
 visit '/css-demo'demo'
 screenshot_name = 'chapter05-recipe04-viewport.png'
 save_screenshot(screenshot_name)
 puts "=> Captured as '#{screenshot_name}'"
 end
 end
end

demo = CookbookCapybaraDemo::Demo.new
demo.capture_viewport

Enter the following at the command line:

ruby chapter05/recipe04.rb

The script will render the viewport to disk as chapter05-recipe04-viewport.png, and it
will print a message to the console.

How it works…
Much of this script follows the pattern described in the previous recipe (Adding Poltergeist to a
Capybara suite), which we can summarize as follows: the script imports the necessary gems,
configures Capybara, creates an instance of our Demo class, and executes the method. To get
more specific about our capture_viewport method, it performs the following actions:

1. It sets the viewport size to 1280 × 1024 pixels (the default is 1024 × 768).

2. It visits the /css-demo resource.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

165

3. It instructs Poltergeist to take a screenshot.

4. It prints a message about the screenshot we just took.

There's more…
The first observation that we make is that Poltergeist's screenshots are (by default) bound
by the viewport, whereas PhantomJS' are not. (We were first introduced to PhantomJS'
webpage.render method in the Simulating scrolling in PhantomJS recipe in Chapter 3,
Working with webpage Objects.) That being said, it is a good idea for us to set the viewport
size appropriately before proceeding with the screenshot.

Poltergeist also provides two other (mutually exclusive) options for the call to
save_screenshot: :full and :selector.

The :full option tells Poltergeist to take a "full content" screenshot, much like PhantomJS'
default webpage.render behavior. We can use it as follows:

save_screenshot(screenshot_name, :full => true)

The :selector option allows us to pass a CSS selector to the method, which will scope the
screenshot to the specified element. This can be useful if we are only interested in grabbing a
screenshot of a specific part of the page. We can use it as follows:

save_screenshot(screenshot_name, :selector => '#id .class')

Calling save_screenshot with :selector is
the equivalent of using something like the DOM's
querySelector method; we will get back only the
first element that matches the selector.

Examples of using both :full and :selector
appear in the downloadable code repository in
recipe04.rb under chapter05 as capture_
full_page and capture_element, respectively.

See also
 f The Simulating scrolling in PhantomJS recipe in Chapter 3, Working with

webpage Objects

 f The Adding Poltergeist to a Capybara suite recipe

 f Chapter 7, Generating Images and Documents with PhantomJS

www.it-ebooks.info

http://www.it-ebooks.info/

Functional and End-to-end Testing with PhantomJS

166

Simulating precise mouse clicks with
Poltergeist

This recipe shows how to simulate precise mouse clicks from within a Capybara-backed test
using Poltergeist.

Getting ready
To run this recipe, we will need the following items installed and available on the system:

 f Ruby 1.9.3 or greater, and the RubyGems package management framework

 f Capybara

 f Poltergeist

 f A suite of functional tests or browser automation scripts set to run in Capybara

Details on how to locate and install the above software are
discussed in the Adding Poltergeist to a Capybara suite
recipe earlier in this chapter.

The script we will use in this chapter is available in the downloadable code repository as
recipe05.rb under chapter05. If we run the provided example, we must change to the
root directory for the book's sample code.

Lastly, the functional test in this recipe runs against the demo site that is included with the
cookbook's sample code repository. To run that demo site, we must have Node.js installed.
In a separate terminal, change to the phantomjs-sandbox directory (in the sample code's
directory), and start the app with the following command:

node app.js

How to do it…
Consider the following Ruby script:

require 'rubygems'
require 'capybara'
require 'capybara/dsl'
require 'capybara/poltergeist'

Capybara.run_server = false
Capybara.default_driver = :poltergeist
Capybara.app_host = 'http://localhost:3000'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

167

module CookbookCapybaraDemo
 class Demo
 include Capybara::DSL
 def precise_click
 page.driver.resize 1280, 1024
 visit '/precision-click'
 page.driver.click 1280 - 21, 1024 - 21
 end
 end
end

demo = CookbookCapybaraDemo::Demo.new
demo.precise_click

Given the preceding script, enter the following at the command line:

ruby chapter05/recipe05.rb

The script will print a message to the console that looks something like this:

[precision-click] pointer has click #precision-click... [1259 × 1003]

How it works…
Much of this script follows the same pattern described in an earlier recipe (Adding Poltergeist
to a Capybara suite), which we can summarize as follows: the script imports the necessary
gems, configures Capybara, creates an instance of our Demo class, and executes the method.
To get more specific about our precise_click method, it performs the following actions:

1. It sets the viewport size to 1280 × 1024 pixels (the default is 1024 × 768).

2. It visits the /precision-click resource.

3. It instructs Poltergeist to click on specific coordinates.

In our example, we calculate the coordinates to click based on
the viewport size (see step 1) and the known absolute position
of our target element (see precision-click.ejs under
phantomjs-sandbox/views for the CSS defining the
element's position).

4. Poltergeist automatically forwards the resulting JavaScript console.log statement
to STDOUT as a console message.

www.it-ebooks.info

http://www.it-ebooks.info/

Functional and End-to-end Testing with PhantomJS

168

There's more…
More often than not, we will not need to click on "precise coordinates" as we have done in our
example here. In fact, we could have accomplished the same thing with the following:

find('#precision-click-demo').click

However, for the instances when we do need this ability, it is good to know that it is there.

See also
 f The Adding Poltergeist to a Capybara suite recipe

Installing CasperJS
In this recipe, we introduce CasperJS—a scripting and testing utility that targets PhantomJS—and
demonstrate how to install it. We can think of CasperJS as a domain-specific language (DSL)
that simplifies the code that we write to target PhantomJS; in particular, it makes it easier to
reason about the asynchronous nature of PhantomJS.

Getting ready
Before we can install CasperJS, we need Python 2.6 or greater installed and on our
PATH. Windows users will need the .NET Framework 3.5 or greater (or Mono 2.10.8 or
greater) installed.

We will need Node.js and npm installed and on our PATH; we will also need an
Internet connection.

CasperJS requires PhantomJS version 1.8.2 or greater; however,
as this book assumes that we are running version 1.9 or greater
of PhantomJS, this should be fine.

How to do it…
The easiest way to install CasperJS is to use the Node.js package manager, npm. Enter the
following at the command line:

npm install -g casperjs

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

169

We should see the console output from npm as it resolves CasperJS and its dependencies.
After the installation is complete, we can type the following at the command line to verify
CasperJS' successful installation:

casperjs

If the installation was successful, CasperJS will print its help message to the console.

If the console output from npm does not indicate that there were
any problems during installation, but typing casperjs does not
produce the help message, then it is possible that the CasperJS
binary did not get added to the PATH. Double-check where npm
installed CasperJS and ensure that its path is added to our
system's PATH.

How it works…
Even though CasperJS is not a Node.js package in itself, the binary is distributed through
npm as a convenience. Since we already have npm installed and configured, and because
npm is used (in part) to install packages, it is well suited to helping us get CasperJS onto our
machines. By installing CasperJS with npm, we can allow that utility to manage the download,
and to manage situating it on the filesystem. Afterward, the casperjs binary should
automatically be on our PATH because we allowed npm to put it there; installing it with the -g
(or --global) command-line argument also means that it is now available system-wide.

There's more…
Although our best bet when installing CasperJS is to do so with npm, we also have other options.
OS X users can install it using Homebrew; users on all platforms can clone the Git repository and
reference the binary included there. More detailed instructions are available in the CasperJS
documentation at http://docs.casperjs.org/en/latest/installation.html.

Interacting with web pages using CasperJS
This recipe demonstrates how to open and interact with web pages using CasperJS. It
introduces the CasperJS API and discusses where to go for more information.

Getting ready
To run this recipe, the CasperJS binary must be installed and on our PATH; we will also
need a script that expects to use the CasperJS API for accessing, inspecting, or manipulating
web pages.

www.it-ebooks.info

http://docs.casperjs.org/en/latest/installation.html
http://www.it-ebooks.info/

Functional and End-to-end Testing with PhantomJS

170

The script in this recipe is available in the downloadable code repository as recipe07.js
under chapter05. If we run the provided example script, we must change to the root
directory for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

How to do it…
Consider the following script:

var casper = require('casper').create();

casper.start('http://localhost:3000/', function() {
 this.clickLabel('/input-demo', 'a');
});

casper.then(function() {
 this.sendKeys('#demo', 'PhantomJS + CasperJS',
 {keepFocus: true});
 this.sendKeys('#demo', casper.page.event.key.Enter,
 {keepFocus: true});

 this.echo('#stage text is:');
 this.echo(this.getHTML('#stage'));
});

casper.run();

Given the preceding script, enter the following at the command line:

casperjs chapter05/recipe07.js

The script will print out something like the following:

#stage text is:

PhantomJS + CasperJS

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

171

How it works…
Our script performs the following actions:

1. It instantiates an instance of a Casper object.

2. It starts our Casper instance, providing http://localhost:3000/ as our
destination. It also provides a callback function specifying that CasperJS should
click the link with the text /input-demo.

Note that the this object inside of a Casper object's
callback is bound to that Casper object instance.

3. It specifies a then function that indicates to CasperJS that the step should be run
after the previous one is complete. In that then function, the script performs the
following steps:

1. It sends the keyboard input PhantomJS + CasperJS to the #demo input
element using sendKeys on the Casper instance.

2. It uses sendKeys again, this time to send an Enter keystroke to #demo.

3. It gets the inner HTML of the #stage element (using getHTML on the
Casper instance) and prints it to the console using echo.

4. Lastly, it triggers the specified steps with a call to casper.run.

There's more…
In many ways, CasperJS itself is syntactic sugar around the PhantomJS API. Although a trivial
example, this recipe's demonstration illustrates the basics of CasperJS, including the following:

 f Navigating to web pages

 f Selecting and clicking on links

 f Sending keyboard input

 f Inspecting elements

All of these actions could be performed in a "raw" PhantomJS script, but they are arguably easier
with CasperJS. For most tasks we may want to perform in a PhantomJS script, the CasperJS API
includes an equivalent convenience function or a proxy method that delegates to the underlying
webpage object. Furthermore, the CasperJS API abstracts away some of the asynchronous
programming necessary in PhantomJS, making the scripts easier to comprehend.

www.it-ebooks.info

http://www.it-ebooks.info/

Functional and End-to-end Testing with PhantomJS

172

In addition to APIs for working with web pages, CasperJS also provides modules for working
with content client-side (clientutils), utilities for colorizing console output (colorizer),
a module to streamline mouse operations (mouse), a module for assertions and testing
functions (tester), and a module for general-purpose helpers and utilities (utils).

For more information about the CasperJS API, refer to the project's
robust online documentation at http://docs.casperjs.org/
en/latest/modules/index.html.

See also
 f The Installing CasperJS recipe

End-to-end testing with CasperJS
This recipe expands on CasperJS by introducing how to work with its testing API. We will
demonstrate how to create and run a simple end-to-end test.

Getting ready
To run this recipe, the CasperJS binary must be installed and on our PATH; we will also need
a script that expects to use the CasperJS API, particularly the tester module for executing
assertions and tests.

The script in this recipe is available in the downloadable code repository as recipe08.js
under chapter05. If we run the provided example script, we must change to the root
directory for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

How to do it…
Consider the following script:

casper.test.begin('Chapter 5 : Recipe #8', function(test) {
 var THE_TEXT = 'PhantomJS + CasperJS Testing';

 casper
 .start('http://localhost:3000/', function() {

www.it-ebooks.info

http://docs.casperjs.org/en/latest/modules/index.html
http://docs.casperjs.org/en/latest/modules/index.html
http://www.it-ebooks.info/

Chapter 5

173

 test.assertExists('[href="/input-demo"]');

 this.clickLabel('/input-demo', 'a');
 })
 .then(function() {
 var getDemoValue = (function() {
 return this.evaluate(function() {
 return __utils__.getFieldValue('demo');
 });
 }).bind(this);

 test.assertEquals(getDemoValue(), '',
 '#demo begins with no value set');
 test.assertSelectorHasText('#stage', '',
 '#stage begins with no text');

 this.sendKeys('#demo', THE_TEXT, {keepFocus: true});
 test.assertEquals(getDemoValue(), THE_TEXT,
 'value of #demo equals "' + THE_TEXT + '"');

 this.sendKeys('#demo', casper.page.event.key.Enter,
 {keepFocus: true});
 test.assertSelectorHasText('#stage', THE_TEXT,
 'innerHTML of #stage equals "' + THE_TEXT + '"');
 })
 .run(function() {
 test.done();
 });
});

Given the preceding script, enter the following at the command line:

casperjs test chapter05/recipe08.js

The script will print the test results to the console. With colorized output, our console should
look something like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Functional and End-to-end Testing with PhantomJS

174

How it works…
Our example test recipe builds on the one from Interacting with web pages using CasperJS; it
adds only the assertions, and is otherwise different in a couple of small but significant ways.
Walking through the script:

1. We tell the CasperJS environment that we are running a test scenario, initializing the
test with a call to casper.test.begin. Our arguments to casper.test.begin
include a string describing the scenario and the callback function that encapsulates
that scenario (the scenario's callback function has the test object passed in as
its argument).

Note that we do not make any calls to require in this test script.
This is an important difference from our previous recipe. When
called with the test argument on the command line, CasperJS
will manage the casper module on its own and assign it to a
variable with that name; any attempt on our part to initialize the
module will result in this error being printed to the console:
Fatal: you can't override the preconfigured
casper instance in a test environment.

2. We assign our test text to the variable THE_TEXT.

3. We set up the first part of our CasperJS test with a call to casper.start.
As we did in the previous recipe, we start off by pointing CasperJS at
http://localhost:3000/.

4. In the callback to casper.start, we make our first assertion using test.
assertExists and look for an element that matches the selector [href="/
input-demo"]. Assuming this assertion passes, we click on our link (with a call
to this.clickLink) to proceed to the next step in the end-to-end test.

5. Chaining the steps in the test together, we see that our next step is enclosed in a call
to casper.then.

6. In the callback to casper.then, the first thing that we do is create a function
(getDemoValue) that uses the casper instance's evaluate function (and
the __utils__ suite injected into the web page context) to extract the value
of the #demo field.

Note that we use a call to bind here, passing the this object of
the then callback, so that our call to evaluate is called from
the proper context.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

175

7. Next, we make two preliminary assertions, one using test.assertEquals
(to verify that #demo starts with no preset value) and another using
test.assertSelectorHasText (to verify that #stage contains no text).

8. We input text to #demo using this.sendKeys (like we did in our previous recipe);
immediately afterward, we assert that #demo contains THE_TEXT using
test.assertEquals.

9. We send an Enter keypress to #demo using this.sendKeys (again, like we did
in our previous recipe); immediately afterward, we assert that #stage contains
THE_TEXT using test.assertSelectorHasText.

10. With the then block ended, the next call in the chain is to casper.run, which sets
the script in motion. Lastly, the callback to casper.run makes a call to test.done
to signal that the test is complete.

Outside of the script itself, there is one other small but significant difference between this
recipe and the previous one. Whereas in the Interacting with web pages using CasperJS
recipe, we called the casperjs binary with the script as its only argument, here we call
casperjs followed by test and the path to the script. Adding the test argument on the
command line is necessary to put CasperJS into test mode. Again, putting all this together, it
looks like the following:

casperjs test chapter05/recipe08.js

There's more…
Although CasperJS is an excellent tool for writing web automation scripts, it really shines as an
end-to-end test utility. The fluent API and built-in assertion library are powerful tools that allow
us to quickly write comprehensive tests for our web applications.

CasperJS' tester module (the test instance in our recipe's example script) is both a robust
assertion library oriented towards the DOM and end-to-end testing and a framework for
managing those end-to-end tests. The module is well documented on the CasperJS website
at http://docs.casperjs.org/en/latest/modules/tester.html.

See also
 f The Installing CasperJS recipe

 f The Interacting with web pages using CasperJS recipe

www.it-ebooks.info

http://docs.casperjs.org/en/latest/modules/tester.html
http://www.it-ebooks.info/

Functional and End-to-end Testing with PhantomJS

176

Exporting test results from CasperJS in the
XUnit format

In this recipe, we demonstrate how to capture the CasperJS test output and persist it to disk
in the XUnit format. This is important for tracking test performance over time and integrating
CasperJS with continuous integration servers.

Getting ready
To run this recipe, the CasperJS binary must be installed and on our PATH; we will also need
a script that expects to use the CasperJS API, particularly the tester module for executing
assertions and tests. Lastly, we need to make sure that we have write permissions on the
directory where CasperJS will write the XUnit report.

We will reuse the script from the previous recipe here. That script is available in the
downloadable code repository as recipe08.js under chapter05. If we run the provided
example script, we must change to the root directory for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

How to do it…
Given our end-to-end test script (chapter05/recipe08.js), we can enter the following at
the command line:

casperjs test chapter05/recipe08.js --xunit=recipe09.xml

This will print the test results to the console the same way that it did in our previous recipe.
However, it will also write the test results to disk as an XML file in the XUnit format.

How it works…
Our previous recipe (End-to-end testing with CasperJS) includes the description of the testing
script; we can refer to that description if we need a discussion of its mechanics.

The key difference here is in how the test is invoked on the command line. Once again, we
execute the casperjs binary with the test argument and the path to the script; however, this
time we also use the --xunit argument and give it the report's desired filename as its value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

177

Behind the scenes, the --xunit argument tells the CasperJS test to call casper.test.
renderResults after all tests have been completed, converting the suite results into XML
and persisting that XML to disk as the test report. These XML reports are important to get
CasperJS properly integrated into many continuous integration environments.

We can learn more about the CasperJS command-line arguments
(and how it honors the PhantomJS command-line arguments) on
the documentation site at http://casperjs.readthedocs.
org/en/latest/cli.html#casperjs-native-options.

See also
 f The Installing CasperJS recipe

 f The End-to-end testing with CasperJS recipe

Detecting visual regressions using
PhantomCSS

This recipe introduces the PhantomCSS library for CasperJS and illustrates how to test for
visual regressions in web pages.

Getting ready
To run this recipe, the CasperJS binary must be installed and on our PATH; we will also need a
script that expects to use the CasperJS API to navigate to and inspect a web page.

We will need the PhantomCSS library, and we will need to make it available to our
CasperJS script.

PhantomCSS is a module for CasperJS that can automate
visual regression testing. It is an open source (MIT licensed)
project and is available at the following GitHub repository at
https://github.com/Huddle/PhantomCSS.

The PhantomCSS script is available in the downloadable
code repository as lib/phantomcss/phantomcss.js.

www.it-ebooks.info

http://casperjs.readthedocs.org/en/latest/cli.html#casperjs-native-options
http://casperjs.readthedocs.org/en/latest/cli.html#casperjs-native-options
https://github.com/Huddle/PhantomCSS
http://www.it-ebooks.info/

Functional and End-to-end Testing with PhantomJS

178

The script in this recipe is available in the downloadable code repository as recipe10.js
under chapter05. If we run the provided example script, we must change to the root directory
for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

How to do it…
Consider the following script:

var phantomcss = require('./../lib/phantomcss/phantomcss.js');

phantomcss.init({
 libraryRoot: './lib/phantomcss'
});

casper
 .start('http://localhost:3000/css-demo')
 .viewport(1280, 1024)
 .then(function() {
 phantomcss.screenshot('.jumbotron', 'jumbotron');
 phantomcss.compareAll();
 })
 .run(function(){
 casper.test.done();
 phantom.exit(phantomcss.getExitStatus());
 });

Given the preceding script, enter the following at the command line:

casperjs test chapter05/recipe10.js

CasperJS will print results to the console. The initial message (which appears in the following
screenshot) indicates that we have performed our first run and created the baseline images
for later comparisons.

To demonstrate the power of PhantomCSS' visual comparisons, we will need to change the
appearance of the targeted selector. In phantom-sandbox/views/css-demo.ejs, change
the h1 tag by deleting the <%= title %> directive and adding the text PhantomCSS FTW.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

179

Note that we do not need to restart the Node.js server; the
markup/text change will be picked up automatically. We may
also wish to open http://localhost:3000/css-demo in
a browser so that we can see the change for ourselves first.

Rerun PhantomCSS by entering the same command-line input as before. CasperJS should
print a message to the console; this time, the message should indicate that it failed the test
suite because it detected a change in the appearance of the targeted selector. With colorized
output, our console should look something like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Functional and End-to-end Testing with PhantomJS

180

In addition to this console output, PhantomCSS persists the images to disk so that we can
review them and see the visual regressions for ourselves. Most importantly, PhantomCSS
generates an "image diff" that highlights the differences between the two test runs, producing
something that looks like the following:

The image shows our failure diff and writes the image to disk as jumbotron_0.fail.png

How it works…
In a nutshell, PhantomCSS uses CasperJS (as backed by PhantomJS) to navigate through the
designated web pages, rendering the specified selectors, and then comparing the current
rendered image against the previous one to look for visual regressions; the tests pass or fail
based on whether we have introduced any visual regressions with our changes.

Walking through our script:

1. We import the PhantomCSS library, using require to read the module from the
filesystem and putting it into context as phantomcss.

2. Once imported, we initialize phantomcss by calling its init function. Here, we also
pass a configuration object to init, specifying the libraryRoot that we need to use.

Note that the libraryRoot path is relative to the directory
from which the script is run, and it is not relative to the script's
path on the filesystem.

Additionally, there are a total of 11 configurable options
that can be passed to PhantomCSS. Although these are not
explicitly documented, the testsuite.js file under demo
in the PhantomCSS repository lists them all.

3. We point our CasperJS instance (casper) at our target URL (http://localhost:
3000/css-demo) in our call to start; we then set the viewport to 1280 × 1024.

4. In our then callback, we call phantomcss.screenshot, instructing PhantomCSS to
render the specified selector (.jumbotron) to the specified filename (jumbotron).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

181

5. We call phantomcss.compareAll to take all of the images we have generated
(only one in our case) and compare them against the previous renderings.

6. Lastly, we kick off the script with our call to casper.run. In the callback function,
we make sure to call casper.test.done (to signal that the tests have completed)
and then forward the pass/fail status to PhantomJS with a call to phantom.exit
(getting the appropriate exit status with a call to phantomcss.getExitStatus).

There's more…
PhantomCSS is an excellent tool for creating test automation around our web applications'
CSS and overall visual appearance. Although the library itself does not have extensive
documentation, the main module (phantomcss.js) is relatively small (about 440 lines),
and the exported API methods are all conveniently listed at the top of the file. Our preceding
example highlights the critical methods.

For more information about use cases and the motivations
behind PhantomCSS, check out the introductory blog post by the
library's author, James Cryer, at http://tldr.huddle.com/
blog/css-testing/.

See also
 f The Loading custom modules in PhantomJS recipe in Chapter 2, PhantomJS

Core Modules

 f The Installing CasperJS recipe

 f The End-to-end testing with CasperJS recipe

 f Chapter 7, Generating Images and Documents with PhantomJS

www.it-ebooks.info

http://tldr.huddle.com/blog/css-testing/
http://tldr.huddle.com/blog/css-testing/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

6
Network Monitoring and

Performance Analysis

In this chapter, we will cover:

 f Generating HAR files from PhantomJS

 f Listing CSS properties

 f Generating an appcache manifest

 f Executing a simple performance analysis

 f Executing a detailed performance analysis

 f Executing a YSlow performance analysis with a custom ruleset

 f Automating performance analysis with YSlow and PhantomJS

Introduction
As a command-line utility, PhantomJS is ideally situated to handle a variety of test automation
tasks; as a web browser, PhantomJS' chief performance bottleneck is the same as every other
web browser's: network latency. Taken together, and in light of the mechanisms that it exposes
for monitoring network activity, this puts PhantomJS in an excellent position to carry out
performance analysis tasks.

We were introduced to these mechanisms earlier in this book. In Chapter 3, Working with
webpage Objects, we worked through two recipes: Blocking CSS from downloading and
Causing images to fail randomly. These recipes introduced the onResourceRequested,
onResourceReceived, and onResourceError callbacks, and they provide the foundation
for network monitoring and performance analysis in PhantomJS.

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

184

In this chapter, we will learn how to use PhantomJS for just such performance analysis tasks.
We will explore topics such as how to generate a HAR file for waterfall analysis, and how to
use libraries such as confess.js and YSlow to get feedback about our page performance.

Generating HAR files from PhantomJS
This recipe illustrates how to generate an HTTP Archive (HAR) file from the requests made
within PhantomJS. We will also introduce tools to visualize and analyze these HAR files.

Getting ready
To run this recipe, we will use the netsniff.js script that ships as part of the
examples directory with the PhantomJS source code. Our example here assumes that
$PHANTOMJS_SOURCE refers to our clone of the PhantomJS source code. We will also
need the URL of a web page to provide to the netsniff.js script.

To visualize the resource waterfall, we will need to have a HAR Viewer; this recipe uses the
Ruby HAR Library.

With Ruby and RubyGems installed on our system, we can easily
install the Ruby HAR Library as follows:
gem install har

Visit the project home page for more information about the HAR
Viewer at http://www.softwareishard.com/blog/
har-viewer/.

Alternatively, if we don't mind sending our HAR data over the
Internet in clear text, we can simply copy and paste our results into
the online HAR Viewer at http://www.softwareishard.com/
har/viewer/.

Lastly, the script in this recipe runs against the demo site that is included with the book's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory),
and start the app with the following command:

node app.js

www.it-ebooks.info

http://www.softwareishard.com/blog/ har-viewer/
http://www.softwareishard.com/blog/ har-viewer/
http://www.softwareishard.com/har/viewer/
http://www.softwareishard.com/har/viewer/
http://www.it-ebooks.info/

Chapter 6

185

How to do it…
With the Node.js demo app running, enter the following on the command line:

phantomjs $PHANTOMJS_SOURCE/examples/netsniff.js
 http://localhost:3000/css-demo > css-demo.har

This will generate the JSON for the HAR and persist it to disk as css-demo.har.

Now, we can open the HAR file by entering the following on the command line:

har css-demo.har

This will open the HAR Viewer in a new browser window as shown in the following screenshot:

Each item in the Preview tab of the HAR Viewer can be expanded to view details about each
request and response. We can also toggle to the HAR tab to navigate a tree view of the HAR
data itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

186

How it works…
The preceding example makes use of the netsniff.js script that ships with the PhantomJS
examples. In a nutshell, the netsniff.js script performs the following actions:

1. It takes in a URL as an argument from the command line.

2. It loads that URL as the target of the script's webpage object.

3. Using the onResourceRequested and onResourceReceived callbacks,
PhantomJS records information about every request and its associated response.
These data are collected in a JavaScript object that adheres to the HAR specification.

 � In the onResourceRequested callback, the script sets a key on the page.
resources object using the id of the current request; the object's entry
includes the request itself and two properties: startReply and endReply
(initially null).

 � In the onResourceReceived callback, the script examines the response's
stage property, assigning the response object to the startReply property
when res.stage equals start, and assigning the response object to the
endReply property when res.stage equals end.

PhantomJS assigns numeric IDs to requests and responses, and
the related requests and responses will share that ID. As such,
we can safely use that id property to match them in this fashion.

4. Once the target page has finished loading, PhantomJS logs the HAR object to
the console.

When PhantomJS logs the HAR data to the console, it channels the data to stdout. As we
want to capture the data, our command-line invocation includes redirecting the output to the
specified file (css-demo.har).

With our data written to disk, we can pass it to the Ruby HAR Library, which loads it into an
instance of the HAR Viewer and constructs a waterfall graph, as well as visualizations for
several other useful statistics about this page load event.

There's more…
The goal of the HTTP Archive (HAR) specification is to define a format that HTTP monitoring
tools can use to collect, export, and visualize HTTP request/response data. These HAR files
can be used to capture specific request instances and play them back later using tools such
as the HAR Viewer to construct waterfall graphs, or to perform other analyses on them. For
more information about the HAR 1.2 specification, see http://www.softwareishard.
com/blog/har-12-spec/.

www.it-ebooks.info

http://www.softwareishard.com/blog/har-12-spec/
http://www.softwareishard.com/blog/har-12-spec/
http://www.it-ebooks.info/

Chapter 6

187

Listing CSS properties
This recipe introduces the confess.js library and demonstrates how to use it to identify which
CSS properties are being used on a page.

Getting ready
To run this recipe, we will need a target URL for a website that uses CSS.

We will use the confess.js script to analyze the site and produce a report of the CSS
properties used on the page.

The confess.js library is an open source project by James Pearce that
provides several performance-related tasks to run under PhantomJS.
At this time, confess.js does not currently have a copyright license
listed in the repository; however, it can be obtained on GitHub at
https://github.com/jamesgpearce/confess.

After downloading the confess repository, we want to place it in the
lib directory of our downloadable sample code repository. Note that
if we download the .zip archive of the repository, we may need to
rename the folder from confess-master to confess.

Lastly, the script in this recipe runs against the demo site that is included with the book's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

How to do it…
With the Node.js demo app running, make sure we are in the root directory for the book's
sample code, and enter the following on the command line:

phantomjs lib/confess/confess.js http://localhost:3000/css-demo
 cssproperties lib/confess/config.json

Output similar to the following will be printed by confess.js:

Config:

 task: cssproperties

 userAgent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.11
 (KHTML, like Gecko) Chrome/17.0.963.12 Safari/535.11

www.it-ebooks.info

https://github.com/jamesgpearce/confess
http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

188

 wait: 0

 consolePrefix: #

 verbose: true

 url: http://localhost:3000/css-demo

 configFile: lib/confess/config.json

CSS properties used:

-webkit-animation-delay

-webkit-animation-direction

-webkit-animation-duration

-webkit-animation-fill-mode

-webkit-animation-iteration-count

and 102 more...

How it works…
The cssproperties task in confess.js tallies all of the CSS properties that are used in the
document and writes that list to the console. Internally, the cssproperties task makes a
call to the getCssProperties method (on the confess object) in the onLoadFinished
callback for the webpage instance. The getCssProperties method takes a single
argument, the webpage instance, and performs an evaluate on it, first accumulating the
properties cited in document.styleSheets; then it iterates over every element in the
document and determines what styles are applied in the DOM. The method returns an object
with the CSS properties as the keys and their tallies as the values; the onLoadFinished
callback, however, flattens this list and simply prints each one to the console.

On the command line, we invoke confess.js as we would any other PhantomJS script—with the
script name as the first argument after the phantomjs binary, and its arguments following
that. The following arguments are expected by confess.js:

 f The target URL

 f The task name

 f (Optionally) the path to the configuration file

If we leave off the configuration file, then it will look for a
config.json file in the working directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

189

There's more…
On the surface, the cssproperties task may seem more of a curiosity than anything else,
but the inventory of CSS properties can be revealing, especially on large projects. With respect
to performance concerns, this inventory can provide a place to start when trying to profile
web applications with sluggish or unresponsive user interfaces. Some CSS properties (or
combinations of properties) are widely believed to cause front-end performance issues, such
as declining frame rates. The inventory of CSS properties can reveal whether these properties
are present, and as such, they can give us a place to start our profiling.

See also
 f The Recording debugger messages recipe in Chapter 3, Working with

webpage Objects

 f The Generating an appcache manifest recipe

 f The Executing a simple performance analysis recipe

Generating an appcache manifest
This recipe expands on our usage of confess.js and shows how to use it to generate an
application cache (appcache) manifest for our web applications.

Getting ready
To run this recipe, we will need a target URL. We will use confess.js to analyze the site and
produce an appcache manifest.

Details about how to obtain confess.js are included in the
Listing CSS properties recipe earlier in this chapter.

Lastly, the script in this recipe runs against the demo site that is included with the book's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

190

How to do it…
With the Node.js demo app running, make sure we are in the root directory for the book's
sample code, and enter the following on the command line:

phantomjs lib/confess/confess.js http://localhost:3000/appcache-demo
 appcache lib/confess/config.json >
 phantomjs-sandbox/static/demo.appcache

Note that we are using redirection here to write the script's
output to the disk.

If we open the target URL (for example, in a regular browser), we will notice in the Node.js
console that the GET request to demo.appcache results in a 200 success and a delivered
file with that name. We will also notice that subsequent refreshes in the browser only request
demo.appcache (which results in a 304 redirect) and that we can even kill the Node.js
process entirely and the web page will continue to function.

How it works…
The appcache task in confess.js inspects the target web page and generates the manifest
based on the resources that it detects; then it writes that manifest to the console. Internally,
the appcache task hooks into the onResourceRequested and onLoadFinished
callbacks to generate the list of external resources to cache. If the confess.js configuration has
urlsFromRequests set to true, then it gathers the URLs of every requested resource based
on those requests. If the confess.js configuration has urlsFromDocument set to true, then
it gathers the URLs of each resource that it identifies in its call to getResourceUrls, which
inspects the web page itself. In both cases, the resource URLs are accumulated as keys on
an object (confess.appcache.resourceUrls), so we can be confident that we are only
getting one reference to each. Once the set of resource URLs has been generated, confess.js
prints the URLs to the console.

On the command line, we invoke confess.js as we would any other PhantomJS script—with the
script name as the first argument after the phantomjs binary, and its arguments following
that. The following arguments are expected by confess.js:

 f The target URL

 f The task name

 f (Optionally) the path to the configuration file

If we leave off the configuration file, then it will look for a
config.json in the working directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

191

As we have noted previously, since confess.js is printing the output to the console, and is thus
printing it to stdout, we need to capture it. Although it may be fine to copy and paste from
the terminal, a better option (and the one illustrated in our example) is to use text redirection
and forward the output to an appropriate file. In our example, we redirect the text to the
demo.appcache file in our phantomjs-sandbox application's static assets directory.

There's more…
The application cache (appcache) manifest is an HTML5 specification that allows developers
to enumerate resources (as a list of URLs) that compatible browsers will download and
cache to enable offline access to the master or parent resource (the web page). An appcache
manifest is simply a text file (served with a Content-Type of text/cache-manifest) that
contains that list of URLs.

Even though the application cache specification is relatively
small, it is too large a subject to discuss in detail here, and we
are simplifying some things for the sake of brevity. The Web has
many excellent in-depth discussions of the appcache; a good
place to start is A Beginner's Guide to Using the Application
Cache by Eric Bidelman at http://www.html5rocks.com/
en/tutorials/appcache/beginner/.

If we decide that our application needs offline support, and that an appcache is the right
solution, then the confess.js appcache task is something that we should consider working
into our build process. The script takes the tedium out of what is otherwise a laborious and
manual task.

It is worth noting that application cache manifests have some
specific rules about how they can be formatted. Although confess.
js is less likely to foul up the formatting than if we were to do it by
hand, it is still worth running the output through a validator; try
this one from http://manifest-validator.com/.

As the saying goes: Trust, but verify.

Configuration options
Although we have alluded to the confess.js configuration file several times before now, it
is worth describing it in a bit more detail here. The confess.js configuration file is a JSON
document that PhantomJS reads at runtime when executing a given confess.js task. We can
supply the path to the configuration file on the command line as the last argument to the
script; by default, confess.js will look for a config.json file in the working directory.

www.it-ebooks.info

http://www.html5rocks.com/en/tutorials/appcache/beginner/
http://www.html5rocks.com/en/tutorials/appcache/beginner/
http://manifest-validator.com/
http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

192

Although the configurable options are well defined in the README.md for the confess.js repo,
we should pay special attention to the following options:

 f appcache.urlsFromDocument: This is a Boolean (defaults to true) that indicates
whether confess.js should inspect the DOM and CSSOM for resources to add to
the appcache

 f appcache.urlsFromRequests: This is a Boolean (defaults to false) that indicates
whether confess.js should monitor requests for resources to add to the appcache

 f appcache.cacheFilter: This is a regular expression that tells confess.js which
resources to include in the appcache

 f appcache.networkFilter: This is a regular expression that tells confess.js which
resource to exclude from the appcache

See also
 f The Recording debugger messages recipe in Chapter 3, Working with

webpage Objects

 f The Listing CSS properties recipe

 f The Executing a simple performance analysis recipe

Executing a simple performance analysis
In this recipe, we will demonstrate how to execute a simple performance analysis
using confess.js.

Getting ready
To run this recipe, we will need a target URL.

We will use confess.js to analyze that target URL and produce a lightweight performance report.

Details about how to obtain confess.js are included in the
Listing CSS properties recipe, earlier in this chapter.

Lastly, the script in this recipe runs against the demo site that is included with the book's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

193

How to do it…
With the Node.js demo app running, make sure we are in the root directory for the book's
sample code, and enter the following on the command line:

phantomjs lib/confess/confess.js http://localhost:3000/css-demo
 performance lib/confess/config.json

Something similar to the following screenshot will be printed by confess.js to the console:

An example of the confess.js performance task output, including the ASCII waterfall chart

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

194

How it works…
The performance task in confess.js monitors the resources requested and received by
the target web page, captures timing and size information about each one, and writes that
information to the console. Internally, the performance task hooks into the onLoadStarted,
onResourceRequested, onResourceReceived, and onLoadFinished callbacks to
capture the complete request/response lifecycle. In onLoadStarted, it initiates the overall
timings, recording the start time of the leading web page request. In onResourceRequested,
it captures the starting information about each requested resource. In onResourceReceived,
it matches a given response to the initiating request and records the ending time and size of
that resource. In onLoadFinished, the script loops through the collected resources and prints
the timing and size information for each one; optionally (if verbose is true in the configuration
file) confess.js will also print an ASCII version of the waterfall graph.

On the command line, we invoke confess.js as we would any other PhantomJS script—with the
script name as the first argument after the phantomjs binary, and its arguments following
that. The following arguments are expected by confess.js:

 f The target URL

 f The task name

 f (Optionally) the path to the configuration file

If we leave off the configuration file, then it will look for a
config.json file in the working directory.

There's more…
The confess.js performance task provides us with a lightweight, command-line equivalent
to the Network panel that we find in the Chrome DevTools or the Net panel in Firebug. As in
those tools, the ASCII waterfall chart can give us an at-a-glance view of what our page's load
time looks like and where our bottlenecks might be. It gives us a leading summary about
the overall start-to-finish load time, how many resources we loaded, which resources were
fastest and slowest, and which resources were the smallest and largest. It also produces an
inventory of all the requested resources that we can trivially parse with a script. (Assuming,
of course, that we did not desire the level of detail that we would get from the HAR produced
by netsniff.js.) Despite the fact that it provides only a high level of detail, the confess.js
performance task can serve as an early warning sign that we have performance concerns
which we need to investigate.

Configuration options
Although the ASCII waterfall is one of the most interesting bits of output from the confess.js
performance task, it is also optional. If we set verbose to false in our configuration file, it
will be omitted from the console output.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

195

See also
 f The Recording debugger messages recipe in Chapter 3, Working with

webpage Objects

 f The Generating HAR files from PhantomJS recipe

 f The Listing CSS properties recipe

 f The Generating an appcache manifest recipe

 f The Executing a detailed performance analysis recipe

Executing a detailed performance analysis
This recipe introduces the YSlow library for PhantomJS and illustrates how to perform a
detailed performance analysis of a web page.

Getting ready
To run this recipe, we will need a target URL.

We will use the PhantomJS port of the YSlow library to execute the performance analysis on
our target web page.

YSlow is a library that analyzes web pages and produces
a report on that page's performance, grading it against
benchmarks and rules established by Yahoo! web performance
experts. We can find out more about YSlow for PhantomJS on
the project site at http://yslow.org/phantomjs/.

The examples that follow assume version 3.1.8 of the YSlow
library, which is included with the sample code repository.

YSlow is open source and distributed under the New
BSD License.

Lastly, the script in this recipe runs against the demo site that is included with the book's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

www.it-ebooks.info

http://yslow.org/phantomjs/
http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

196

How to do it…
With the Node.js demo app running, make sure we are in the root directory for the book's
sample code, and enter the following on the command line:

phantomjs lib/yslow.js -i grade -f tap http://localhost:3000/css-demo

YSlow will then print something like the following commands to the console:

TAP version 13

1..24

ok 1 B (89) overall score

ok 2 A (100) ynumreq: Make fewer HTTP requests

not ok 3 F (40) ycdn: Use a Content Delivery Network (CDN)

 message: There are 6 static components that are not on CDN. <p>You
 can specify CDN hostnames in your preferences. See
 <a href="https://github.com/marcelduran/yslow/wiki/FAQ#wiki-faq_
cdn">YSlow FAQ for details.</p>

 offenders:

 - "localhost: 6 components, 2753.1K"

 ...

ok 4 A (100) yemptysrc: Avoid empty src or href

not ok 5 F (23) yexpires: Add Expires headers

 message: There are 7 static components without a far-future
 expiration date.

 offenders:

 - "http://localhost:3000/components/bootstrap/dist/css/bootstrap.min.
css"

 - "http://localhost:3000/images/152824439_ffcc1b2aa4_b.jpg"

 - "http://localhost:3000/images/357292530_f225d7e306_b.jpg"

 - "http://localhost:3000/images/391560246_f2ac936f6d_b.jpg"

 - "http://localhost:3000/images/583519989_1116956980_b.jpg"

 - "http://localhost:3000/images/872027465_2519a358b9_b.jpg"

 - "http://localhost:3000/favicon.ico"

 ...

not ok 6 C (78) ycompress: Compress components with gzip

 message: There are 2 plain text components that should be sent
 compressed

 offenders:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

197

 - "http://localhost:3000/css-demo"

 - "http://localhost:3000/components/bootstrap/dist/css/bootstrap.min.
css"

 ...

ok 7 A (100) ycsstop: Put CSS at top

ok 8 A (100) yjsbottom: Put JavaScript at bottom

ok 9 A (100) yexpressions: Avoid CSS expressions

ok 10 N/A (-1) yexternal: Make JavaScript and CSS external # SKIP
 score N/A

 message: Only consider this if your property is a common user home
 page.

 ...

ok 11 A (100) ydns: Reduce DNS lookups

 offenders:

 - "localhost: 8 components, 2759.5K"

 ...

ok 12 A (100) yminify: Minify JavaScript and CSS

ok 13 A (100) yredirects: Avoid URL redirects

ok 14 A (100) ydupes: Remove duplicate JavaScript and CSS

ok 15 A (100) yetags: Configure entity tags (ETags)

ok 16 A (100) yxhr: Make AJAX cacheable

ok 17 A (100) yxhrmethod: Use GET for AJAX requests

ok 18 A (100) ymindom: Reduce the number of DOM elements

ok 19 A (100) yno404: Avoid HTTP 404 (Not Found) error

ok 20 A (100) ymincookie: Reduce cookie size

ok 21 A (100) ycookiefree: Use cookie-free domains

ok 22 A (100) ynofilter: Avoid AlphaImageLoader filter

ok 23 A (100) yimgnoscale: Do not scale images in HTML

ok 24 A (100) yfavicon: Make favicon small and cacheable

How it works…
As mentioned before, performance-focused engineers at Yahoo! created YSlow as a tool to
assess web page performance using a set of established best practices. Since its inception,
YSlow has been ported to many different flavors; today it exists as an extension for Chrome,
Firefox, Opera, and Safari, as a bookmarklet, as a Node.js application, as a command-line
tool, and as a PhantomJS script. The YSlow script works by loading the target URL and
analyzing it (including all its resources) and assessing each one against a specified ruleset
that defines what is acceptable, and what is not.

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

198

In the simplest case, we can invoke YSlow on the command line without any additional
arguments—just the phantomjs binary, the path to the YSlow script itself, and the target URL.
However, in this form, YSlow produces JSON, which is not terribly easy to read on the console.
In our example, we executed YSlow using the -i (information) and -f (format) arguments. We
asked for the grade information and tap formats respectively; these options make the output
significantly easier to read while still being something a machine can manageably parse.

Regardless of the output format selected, YSlow will give us a detailed evaluation of the target
URL compared to the ruleset provided. YSlow will summarize its findings with an overall score
(for example, B (89)), but also lists grades and scores for each of the rules in the ruleset.
This detailed analysis allows us to home in on our web application's problem areas. Given our
preceding example, we can see that we perform well across several dimensions (for example,
our content has no empty src or href attributes, none of our resources are giving a 404 error,
and that we have minified our JavaScript and CSS assets), but that there are others where
we have not done well (for example, we are not using any CDNs, we have not added Expires
headers, and we are not using gzip compression on our plain text assets). Armed with this
report, we can formulate an informed plan for improving our web application's performance.

More importantly, now we have baseline metrics with which to do before-and-after tests!

There's more…
YSlow gives us many more options than just the ones we have explored in the preceding
example. Let's explore some of YSlow's command-line options:

Information
Specified with the -i or --info flag, followed by the level value, the information argument
controls YSlow's verbosity. The output levels include the following:

 f basic: This is the simplest level, basic displays only the summary information
(overall score)

 f stats: This displays the summary information, as well as high-level statistics broken
down by resource type

 f grade: This displays the grade and score for each rule in the ruleset, along with any
messages or offending resources

 f comps: This displays a report about the page's components or resources, similar to
what we would find in a HAR; however, it does not provide any summary statistics

 f all: (The default level) this displays a report that combines the grade, stats, and
comps reports into one

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

199

Format
Specified with the -f or --format flag, followed by the format value, the format argument
instructs YSlow how to format the script's output. The supported formats include the following:

 f json: (The default format) this gets the output of the YSlow results in JSON

 f xml: This gets the output in a simple XML format

The element names in the YSlow xml format, and property
names in the YSlow json format align with the parameter
names of the YSlow beacon.

For more definitions and more information, see
http://yslow.org/user-guide/#yslow_beacon.

 f plain: This gets the output in a simple, plain text format

 f tap: This gets the output using TAP (Test Anything Protocol)

 f junit: This gives us the results using the xUnit style of XML for continuous
integration servers

Ruleset
Specified with the -r or --ruleset flag, followed by the ruleset value, this argument
configures YSlow to use a particular ruleset for its performance analysis. A ruleset is a
collection of performance rules that YSlow uses to grade a given website. The available
rulesets include the following:

 f ydefault: (This is the default ruleset) it includes the 23 rules that Yahoo!'s
Exceptional Performance team has identified as making 25-50 percent web page
response-time improvements

 f yslow1: This is also known as YSlow Classic; this includes the original 13 of the now
23 "Exceptional Performance" rules

 f yblog: This is a set of 14 performance rules that are targeted at small websites such
as blogs

For more information about the rulesets, see
http://yslow.org/user-guide/.

In the Executing a YSlow performance analysis with a custom
ruleset recipe (later in this chapter), we will also discuss how
to create our own custom rulesets.

www.it-ebooks.info

http://yslow.org/user-guide/#yslow_beacon
http://yslow.org/user-guide/
http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

200

User agent
Specified with the -u or --ua flag, followed by the quoted value, the user agent argument
allows us to specify or override the user agent that PhantomJS uses when representing itself
to the server. This is particularly useful when we know that the server is doing some user
agent string checking and serving particular content as a result. For example, if we wanted
PhantomJS to represent itself as an iPad, we might use the following command:

phantoms lib/yslow.js --ua "Mozilla/5.0 (iPad; CPU OS 6_0 like Mac OS
 X) AppleWebKit/536.26 (KHTML, like Gecko) Version/6.0 Mobile/10A5355d
 Safari/8536.25" http://localhost:3000/

Viewport
Specified with the -vp or --viewport flag, followed by x delimited dimensions, the viewport
argument allows us to specify the viewport size that PhantomJS will use for rendering the web
page. This can be useful when performance testing responsive designs that target multiple
viewports through fluid grids or media queries. For example, if we wanted to run YSlow against
a "mobile" viewport, we might use the following command:

phantomjs lib/yslow.js --viewport 320x356 http://localhost:3000/

Headers
Specified with the -ch or --headers flag, the headers argument allows us to specify a JSON
string that contains the custom headers we want to apply to our requests. For example, if we
wanted to pass along a cookie, we might use the following command:

phantomjs lib/yslow.js --headers '{"Cookie":"favorite=oatmeal-raisin"}'
 http://localhost:3000/

CDNs
Specified with the --cdns flag, the CDNs argument allows us to provide a list of domains,
where we know those domains to be content delivery networks and edge caches. For example,
if we have a site that uses photos from Flickr and JavaScript assets from CDNJS, then we
might use the following command:

phantomjs lib/yslow.js --cdns "staticflickr.com,cdnjs.cloudflare.com"
 http://localhost:3000/cdn-demo

See also
 f The Generating HAR files from PhantomJS recipe

 f The Executing a YSlow performance analysis with a custom ruleset recipe

 f The Automating performance analysis with YSlow and PhantomJS recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

201

Executing a YSlow performance analysis
with a custom ruleset

In this recipe, we will create a custom-defined ruleset for YSlow and execute a performance
analysis with it.

Getting ready
To run this recipe, we will need a target URL.

We will use the PhantomJS port of the YSlow library to execute the performance analysis on
our target web page. However, as we are creating a custom ruleset, we must build the library
from source. To obtain the YSlow library source code, we change directories into the sample
code repository and initialize the submodule as shown in the following command:

git submodule init && git submodule update

Alternatively, we can click the download link on the project's
GitHub page https://github.com/marcelduran/yslow.

If we download the .zip from the GitHub project page, we may
need to rename the folder from yslow-master to yslow
before we move it into the lib directory.

We will need a custom ruleset for the YSlow library. An example of such a custom ruleset is
included in the sample code repository as recipe06.js in the chapter06 directory.

To compile the YSlow library into a single package that includes our custom ruleset, we will
need the make binary.

Make is a mature, general-purpose command-line build tool used
to compile source files and perform other tasks. A project such as
the YSlow library may contain a Makefile that defines the tasks that
Make can execute for that project.

Many systems include the make binary by default; however, if we
need to install it or wish to find out more about it, we can do so at the
project website https://www.gnu.org/software/make/.

Lastly, the script in this recipe runs against the demo site that is included with the book's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

www.it-ebooks.info

https://github.com/marcelduran/yslow
https://www.gnu.org/software/make/
http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

202

How to do it…
Consider the following custom ruleset:

YSLOW.registerRuleset({
 id: 'cookbook',
 name: 'PhantomJS Cookbook Example Ruleset',
 rules: {
 ynumreq: {},
 yexpires: {},
 ycompress: {},
 ycsstop: {},
 yjsbottom: {},
 ydupes: {},
 ymindom: {},
 yno404: {},
 yemptysrc: {}
 },
 weights: {
 ynumreq: 8,
 yexpires: 2,
 ycompress: 4,
 ycsstop: 2,
 yjsbottom: 2,
 ydupes: 4,
 ymindom: 2,
 yno404: 2,
 yemptysrc: 4
 }
});

From the root of the sample code repository, we should copy the custom ruleset into place:

cp chapter06/recipe06.js lib/yslow/src/common/rulesets/cookbook.js

With our ruleset copied to the proper place, we need to add it into a custom build of the
YSlow library. From the root of the YSlow repository (lib/yslow), we enter the following
on the command line:

make phantomjs

After the build has completed, we should change to the root directory of the book's sample
code repository. From there, we can run our performance analysis with our custom ruleset
from the command line as follows:

phantomjs lib/yslow/build/phantomjs/yslow.js -f plain -i basic
 -r cookbook http://localhost:3000/css-demo

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

203

YSlow will then print something like the following to the console:

version: 3.1.8

size: 2758.9K (2758978 bytes)

overall score: A (91)

url: http://localhost:3000/css-demo

of requests: 8

ruleset: cookbook

page load time: 82

How it works…
Our example of a custom ruleset is admittedly a bit liberal, but it is sufficient for
demonstrating how to create one and incorporate it into our build of YSlow.

The first thing that we need to do when creating our custom ruleset is to decide what rules
to include. The rules themselves are defined in the YSlow source; we can find 23 standard
rules defined in src/common/rules.js. Each rule is defined with a call to YSLOW.
registerRule and includes the following:

 f The id that we will use in our ruleset to specify that rule

 f A url that provides background information on that rule

 f A category array that contains the general category to which the rule belongs

 f A config object to help define aspects of the rule and how we might evaluate scripts
in light of that rule

 f A lint function that consumes the config object and performs the actual
evaluation of the script for that rule

For a detailed discussion of each rule identified by Yahoo!'s
Exceptional Performance team, see http://developer.
yahoo.com/performance/rules.html.

There are 35 rules discussed on that web page, including the
23 "testable" rules that comprise YSlow's default ruleset.

The three default rulesets (ydefault, yslow1, and yblog)
are also defined in src/common/rules.js.

www.it-ebooks.info

http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html
http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

204

Once we have decided which rules to include in our ruleset, we can add our definition to
the file (for example, cookbook.js in our case). A ruleset is defined with a call to YSLOW.
registerRuleset; the single argument expected by registerRuleset is a configuration
object defining our ruleset. The properties of this configuration object include the following:

 f id: This is the string we will use to specify our ruleset on the command line

 f name: This is a short, descriptive name that we can use as documentation for
the ruleset

 f rules: This is an object that uses the individual rule IDs as its keys and overrides for
that rule's configuration object as the value

 f weights: This is an object that defines the weights to assign to each rule when
determining the overall grade and score for performance analysis

Once we have defined our ruleset, we need to create a custom build of the YSlow library that
incorporates that ruleset. Fortunately, the YSlow source code includes a Makefile that
already contains the instructions necessary to compile the library from the src directory. We
simply invoke make on the command line and specify the phantomjs target; Make will print
out a notice when the build is complete. By default, Make will place the compiled library in
build/phantomjs.

Once compiled, we can use our custom build of the library the same as we would the standard
one. To use our custom ruleset, we simply specify it by name using the -r flag.

There's more…
For most cases, using one of the three standard rulesets will be sufficient. In particular, the
ydefault ruleset is already a nearly comprehensive analysis and can give us an accurate
picture of our front-end performance and where we can improve. However, what if there are
aspects of ydefault that do not apply to our situation? What if using the GET method for
our XHR is not feasible? What if we have made a deliberate choice to inline our JavaScript
and CSS assets? What if we have written a new performance rule that we want to add to what
would otherwise be ydefault? This is where custom rulesets become important—in helping
us to execute the most appropriate analyses for our applications based on our knowledge of
our needs and constraints.

See also
 f The Generating HAR files from PhantomJS recipe

 f The Executing a detailed performance analysis recipe

 f The Automating performance analysis with YSlow and PhantomJS recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

205

Automating performance analysis with
YSlow and PhantomJS

This recipe demonstrates how to set up an automated performance analysis task on a
continuous integration server (for example, Jenkins CI) using PhantomJS and the YSlow library.

Getting ready
To run this recipe, the phantomjs binary will need to be accessible to the continuous
integration server, which may not necessarily share the same permissions or PATH as our
user. We will also need a target URL.

We will use the PhantomJS port of the YSlow library to execute the performance analysis on
our target web page. The YSlow library must be installed somewhere on the filesystem that
is accessible to the continuous integration server. For our example, we have placed the
yslow.js script in the tmp directory of the jenkins user's home directory.

To find the jenkins user's home directory on a POSIX-compatible system,
first switch to that user using the following command:
sudo su - jenkins

Then print the home directory to the console using the following command:
echo $HOME

See the Executing a detailed performance analysis recipe, earlier in this
chapter, for how to obtain the YSlow library.

We will need to have a continuous integration server set up where we can configure the jobs
that will execute our automated performance analyses. The example that follows will use the
open source Jenkins CI server.

Jenkins CI is too large a subject to introduce here, but this recipe does not
assume any working knowledge of it. For information about Jenkins CI,
including basic installation or usage instructions, or to obtain a copy for
your platform, visit the project website at http://jenkins-ci.org/.
Our recipe uses version 1.552.

The combination of PhantomJS and YSlow is in no way unique to Jenkins
CI. The example aims to provide a clear illustration of automated
performance testing that can easily be adapted to any number of
continuous integration server environments.

www.it-ebooks.info

http://jenkins-ci.org/
http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

206

The recipe also uses several plugins on Jenkins CI to help facilitate our automated testing.
These plugins include:

 f Environment Injector Plugin
 f JUnit Attachments Plugin
 f TAP Plugin
 f xUnit Plugin

Lastly, the script in this recipe runs against the demo site that is included with the book's
sample code repository. To run that demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

How to do it…
To execute our automated performance analyses in Jenkins CI, the first thing that we need to
do is set up the job as follows:

1. Select the New Item link in Jenkins CI. Give the new job a name (for example, YSlow
Performance Analysis), select Build a free-style software project, and then
click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

207

2. To ensure that the performance analyses are automated, we enter a Build Trigger
for the job. Check off the appropriate Build Trigger and enter details about it. For
example, to run the tests every two hours, during business hours, Monday through
Friday, check Build periodically and enter the Schedule as H 9-16/2 * * 1-5.

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

208

3. In the Build block, click on Add build step and then click on Execute shell. In the
Command text area of the Execute Shell block, enter the shell commands that we
would normally type at the command line, for example:
phantomjs ${HOME}/tmp/yslow.js -i grade -threshold "B" -f
 junit http://localhost:3000/css-demo > yslow.xml

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

209

4. In the Post-build Actions block, click on Add post-build action and then click on
Publish JUnit test result report. In the Test report XMLs field of the Publish JUnit
Test Result Report block, enter *.xml.

5. Lastly, click on Save to persist the changes to this job.

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

210

Our performance analysis job should now run automatically according to the specified
schedule; however, we can always trigger it manually by navigating to the job in Jenkins CI
and clicking on Build Now. After a few of the performance analyses have completed, we can
navigate to those jobs in Jenkins CI and see the results shown in the following screenshots:

The landing page for a performance analysis project in Jenkins CI

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

211

Note the Test Result Trend graph with the successes and failures.

The Test Result report page for a specific build

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

212

Note that the failed tests in the overall analysis are called out and that we can expand
specific items to view their details.

The All Tests view of the Test Result report page for a specific build

Note that all tests in the performance analysis are listed here, regardless of whether they
passed or failed, and that we can click into a specific test to view its details.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

213

How it works…
The driving principle behind this recipe is that we want our continuous integration server to
periodically and automatically execute the YSlow analyses for us so that we can monitor our
website's performance over time. This way, we can see whether our changes are having an
effect on overall site performance, receive alerts when performance declines, or even fail
builds if we fall below our performance threshold.

The first thing that we do in this recipe is set up the build job. In our example, we set up a new
job that was dedicated to the YSlow performance analysis task. However, these steps could be
adapted such that the performance analysis task is added onto an existing multipurpose job.

Next, we configured when our job will run, adding Build Trigger to run the analyses according
to a schedule. For our schedule, we selected H 9-16/2 * * 1-5, which runs the analyses
every two hours, during business hours, on weekdays.

While the schedule that we used is fine for demonstration
purposes, we should carefully consider the needs of our
project—chances are that a different Build Trigger will be
more appropriate. For example, it may make more sense
to select Build after other projects are built, and to have
the performance analyses run only after the new code has
been committed, built, and deployed to the appropriate QA or
staging environment. Another alternative would be to select
Poll SCM and to have the performance analyses run only
after Jenkins CI detects new changes in source control.

With the schedule configured, we can apply the shell commands necessary for the
performance analyses. As noted earlier, the Command text area accepts the text that we
would normally type on the command line. Here we type the following:

 f phantomjs: This is for the PhantomJS executable binary

 f ${HOME}/tmp/yslow.js: This is to refer to the copy of the YSlow library accessible
to the Jenkins CI user

 f -i grade: This is to indicate that we want the "Grade" level of report detail

 f -threshold "B": This is to indicate that we want to fail builds with an overall grade
of "B" or below

 f -f junit: This is to indicate that we want the results output in the JUnit format

 f http://localhost:3000/css-demo: This is typed in as our target URL

 f > yslow.xml: This is to redirect the JUnit-formatted output to that file on the disk

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

214

What if PhantomJS isn't on the PATH for the Jenkins CI user? A
relatively common problem that we may experience is that, although
we have permission on Jenkins CI to set up new build jobs, we
are not the server administrator. It is likely that PhantomJS is
available on the same machine where Jenkins CI is running, but
the jenkins user simply does not have the phantomjs binary
on its PATH. In these cases, we should work with the person
administering the Jenkins CI server to learn its path. Once we have
the PhantomJS path, we can do the following: click on Add build
step and then on Inject environment variables; drag-and-drop the
Inject environment variables block to ensure that it is above our
Execute shell block; in the Properties Content text area, apply the
PhantomJS binary's path to the PATH variable, as we would in any
other script as follows:
PATH=/path/to/phantomjs/bin:${PATH}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

215

After setting the shell commands to execute, we jump into the Post-build Actions block
and instruct Jenkins CI where it can find the JUnit XML reports. As our shell command is
redirecting the output into a file that is directly in the workspace, it is sufficient to enter an
unqualified *.xml here.

Once we have saved our build job in Jenkins CI, the performance analyses can begin right
away! If we are impatient for our first round of results, we can click on Build Now for our job
and watch as it executes the initial performance analysis.

As the performance analyses are run, Jenkins CI will accumulate the results on the filesystem,
keeping them until they are either manually removed or until a discard policy removes old
build information. We can browse these accumulated jobs in the web UI for Jenkins CI, clicking
on the Test Result link to drill into them.

There's more…
The first thing that bears expanding upon is that we should be thoughtful about what we use
as the target URL for our performance analysis job. The YSlow library expects a single target
URL, and as such, it is not prepared to handle a performance analysis job that is otherwise
configured to target two or more URLs. As such, we must select a strategy to compensate for
this, for example:

 f Pick a representative page: We could manually go through our site and select the
single page that we feel best represents the site as a whole. For example, we could
pick the page that is "most average" compared to the other pages ("most will perform
at about this level"), or the page that is most likely to be the "worst performing" page
("most pages will perform better than this"). With our representative page selected,
we can then extrapolate performance for other pages from this specimen.

 f Pick a critical page: We could manually select the single page that is most sensitive
to performance. For example, we could pick our site's landing page (for example, "it
is critical to optimize performance for first-time visitors"), or a product demo page (for
example, "this is where conversions happen, so this is where performance needs to
be best"). Again, with our performance-sensitive page selected, we can optimize the
general cases around the specific one.

 f Set up multiple performance analysis jobs: If we are not content to extrapolate
site performance from a single specimen page, then we could set up multiple
performance analysis jobs—one for each page on the site that we want to test. In
this way, we could (conceivably) set up an exhaustive performance analysis suite.
Unfortunately, the results will not roll up into one; however, once our site is properly
tuned, we need to only look for the telltale red ball of a failed build in Jenkins CI.

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

216

The second point worth considering is—where do we point PhantomJS and YSlow for the
performance analysis? And how does the target URL's environment affect our interpretation
of the results? If we are comfortable running our performance analysis against our production
deploys, then there is not much else to discuss—we are assessing exactly what needs to be
assessed. But if we are analyzing performance in production, then it's already too late—the
slow code has already been deployed! If we have a QA or staging environment available to
us, then this is potentially better; we can deploy new code to one of these environments for
integration and performance testing before putting it in front of the customers. However, these
environments are likely to be different from production despite our best efforts. For example,
though we may be "doing everything else right", perhaps our staging server causes all traffic
to come back from a single hostname, and thus, we cannot properly mimic a CDN, nor can we
use cookie-free domains. Do we lower our threshold grade? Do we deactivate or ignore these
rules? How can we tell apart the false negatives from the real warnings? We should put some
careful thought into this—but don't be disheartened—better to have results that are slightly off
than to have no results at all!

Using TAP format
If JUnit formatted results turn out to be unacceptable, there is also a TAP plugin for Jenkins
CI. Test Anything Protocol (TAP) is a plain text-based report format that is relatively easy for
both humans and machines to read. (We saw an example of TAP output from YSlow in the
Executing a detailed performance analysis recipe, earlier in this chapter.) With the TAP plugin
installed in Jenkins CI, we can easily configure our performance analysis job to use it. We
would just make the following changes to our build job:

1. In the Command text area of our Execute shell block, we would enter the
following command:
phantomjs ${HOME}/tmp/yslow.js -i grade -threshold "B" -f tap
 http://localhost:3000/css-demo > yslow.tap

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

217

2. In the Post-build Actions block, we would select Publish TAP Results instead of
Publish JUnit test result report and enter yslow.tap in the Test results text field.

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Performance Analysis

218

Everything else about using TAP instead of JUnit-formatted results here is basically the same.
The job will still run on the schedule we specify, Jenkins CI will still accumulate test results
for comparison, and we can still explore the details of an individual test's outcomes. The TAP
plugin adds an additional link in the job for us, TAP Extended Test Results, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

219

One thing worth pointing out about using TAP results is that it is
much easier to set up a single job to test multiple target URLs
within a single website. We can enter multiple tests in the Execute
Shell block (separating them with the && operator) and then
set our Test Results target to be *.tap. This will conveniently
combine the results of all our performance analyses into one.

See also
 f The Generating HAR files from PhantomJS recipe

 f The Executing a detailed performance analysis recipe

 f The Executing a YSlow performance analysis with a custom ruleset recipe

 f Chapter 8, Continuous Integration with PhantomJS

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

7
Generating Images

and Documents with
PhantomJS

In this chapter, we will cover:

 f Rendering images from PhantomJS

 f Saving images as Base64 from PhantomJS

 f Rendering and rasterizing SVGs from PhantomJS

 f Generating clipped screenshots from PhantomJS

 f Saving a web page from PhantomJS as a PDF

 f Applying custom headers and footers to PDFs generated from PhantomJS

 f Testing responsive designs with PhantomJS

Introduction
Up to this point, our discussion on PhantomJS focused on its headless nature; while there are
many advantages to it, there is also one obvious disadvantage—you can't see anything when
you need to.

Fortunately, the PhantomJS webpage API exposes a couple of methods for rendering web
page content as images and documents. We have seen a couple of these methods already;
in this chapter, we will explore them in more detail, and discuss how to apply them. We will
see strategies for exporting different types of images, PDFs, rasterizing SVGs, and everything
else we need to know to get visual information back out of PhantomJS.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Images and Documents with PhantomJS

222

Rendering images from PhantomJS
This recipe introduces the render method from the webpage module in PhantomJS;
we will use render to generate images of our web page content.

Getting ready
To run this recipe, we will need a script that intends to access a web page. We also need
permissions to write to the filesystem in that script's working directory.

The script in this recipe is available in the downloadable code repository as recipe01.js
under chapter07. If we run the provided example script, we must change to the root
directory for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run the demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory),
and start the app with the following command:

node app.js

How to do it…
Consider the following script:

var webpage = require('webpage').create(),
 filename = 'index.png';

webpage.viewportSize = { width: 1024, height: 384 };

webpage.open('http://localhost:3000/', function(status) {
 if (status === 'fail') {
 console.error('webpage did not open successfully');
 phantom.exit(1);
 }

 webpage.render(filename);

 console.log('webpage rendered as ' + filename);

 phantom.exit();
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

223

Given the preceding script, enter the following at the command line:

phantomjs chapter07/recipe01.js

The script should print out the following:

webpage rendered as index.png

We can locate index.png in the root directory for the book's sample code; when we open the
image, we should see something like the following screenshot:

How it works…
Our preceding example script performs the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name.
It also assigns our target image filename to the filename variable.

2. It sets the size of the viewport on the webpage instance by setting its
viewportSize property.

3. It calls webpage.open on our target URL (http://localhost:3000/) and
passes it a callback function. In the callback function, it exits PhantomJS with
an error status if the web page fails to load.

4. If the web page loads successfully, it makes a call to webpage.render,
passing it the name of the file we want for the output (filename).

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Images and Documents with PhantomJS

224

PhantomJS infers the file format from the file extension passed to
webpage.render. In this case, our target filename ends in .png,
so PhantomJS will render the image in the Portable Network Graphics
(PNG) format.

5. After the call to webpage.render is complete, we write a message to the console
and exit from PhantomJS.

There's more…
The render method on webpage instances is about as simple and intuitive as can be. We
simply call it with a filename, and a rendering of the current web page content is written to
disk. There is a little bit more to the method, which we will discuss in the following sections
of the chapter.

First, render can output in the following formats:

 f GIF

 f JPEG

 f PNG

 f PDF

We will discuss generating PDFs in more detail in the Saving a web page
from PhantomJS as a PDF recipe later in this chapter.

Behind the scenes, PhantomJS uses the QImage class (from the Qt
project) to render web page content as an image. As such, webpage.
render can technically output any format that QImage can; however, only
the preceding four formats listed are documented as supported by the
PhantomJS API. If our needs dictate another format (for example, TIFF),
then we can experiment with it.

On the subject of formats, and as we noted before, PhantomJS infers the file format from
the extension on the filename that is passed as the first argument to webpage.render.
However, we can override the actual format that is rendered by applying a format property
in the second argument to webpage.render, for example:

webpage.render('index.png', { format: 'jpg' });

This will render a JPG image with a filename of index.png. In other words, the format
property (in the second argument) takes precedence over whatever is implied through
the filename.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

225

If we supply a filename that does not have a file extension, and we do
not supply a format in the second argument, then the call to webpage.
render will fail silently. However, if we supply a filename without an
extension, but do supply a format in the second argument, then the file
will be written to disk (though without the extension).

When exporting JPEG images, we can also supply a quality property in the second
argument. The quality property takes an integer between 0 and 100, which will be
used as the quality setting when compressing the JPEG image, for example:

webpage.render('something.jpg', { quality: 90 });

This will render the current web page content as something.jpg with a 90 percent
quality rating.

Lastly, if we ever get something that we do not expect from our web page content rendering,
we should troubleshoot using questions such as:

 f Are we trying to capture a web page with a plugin? Remember that plugins such
as Flash and Silverlight cannot run within PhantomJS. As such, if our target web page
makes use of such a plugin, we will not be able to render it.

 f Are we capturing a single-page app? Many web pages written in a single-page
app style may have lazily-loaded content. As such, if our script is set up to make
its call to webpage.render immediately after the page finishes loading, then it's
possible that not all of its components have finished loading or painting. In a case
such as this, we should consider what other events we may listen to before making
our call to webpage.render. If all else fails, we can always try waiting a few
hundred milliseconds.

 f Does our target page perform an immediate redirect? Another possibility is that
our target URL performs an immediate redirect (for example, it returns a 301). As
the HTTP status code returned is less than 400, PhantomJS will interpret this as a
success. In such cases, we may need to ascertain what URL we are redirected to,
and then reconfigure our scripts so that we render the content for the downstream
destination page and not the original target.

 f Are we trying to take screenshots of something animated? Are we trying to capture
the web page state before the animation has started? Are we capturing it during or
after the process? This puts us in a position similar to the one when we were trying to
render a single-page app. We may need to inspect the web page manually and come
up with a strategy for timing the call to webpage.render. Is there an event we can
listen for, or do we need to set a timeout and wait?

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Images and Documents with PhantomJS

226

See also
 f The Saving images as Base64 from PhantomJS recipe

 f The Generating clipped screenshots from PhantomJS recipe

 f The Saving a web page from PhantomJS as a PDF recipe

Saving images as Base64 from PhantomJS
This recipe continues our discussion of rendering web page content by introducing the
renderBase64 method from the webpage module in PhantomJS.

Getting ready
To run this recipe, we will need a script that intends to access a web page.

The script in this recipe is available in the downloadable code repository as recipe02.js
under chapter07. If we run the provided example script, we must change to the root directory
for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run the demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

How to do it…
Consider the following script:

var webpage = require('webpage').create(),
 args = require('system').args,
 format = args[1] || 'jpeg';

webpage.viewportSize = { width: 1024, height: 768 };

webpage.open('http://localhost:3000/', function(status) {
 if (status === 'fail') {
 console.error('webpage did not open successfully');
 phantom.exit(1);
 }

 console.log(webpage.renderBase64(format));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

227

 phantom.exit();
});

Enter the following at the command line:

phantomjs chapter07/recipe02.js png

The script will print a Base64 encoded string of the web page's rendering (as a PNG) to
standard out.

How it works…
Our preceding example script performs the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name.
Next, it grabs the command-line arguments from the system module and assigns
them to the args variable; it also takes the first argument as the targeted rendering
format or falls back to JPEG.

2. It sets the size of the viewport on the webpage instance by setting its
viewportSize property.

3. It calls webpage.open on our target URL (http://localhost:3000/) and passes
it a callback function. In our callback function, it exits PhantomJS with an error status
if the web page fails to load.

4. If the web page loads successfully, it makes a call to webpage.renderBase64,
passing it the format we want for the output and writing that output to the console.

5. After the call to webpage.renderBase64 is complete, it exits from PhantomJS.

There's more…
The renderBase64 method on webpage instances takes a single argument, and that
argument is used to specify the image format used to render the web page content. The
supported formats for this method include BMP, GIF, JPEG (JPG is also acceptable), PNG,
PPM, TIFF, XBM, and XPM.

At the time of writing this book, many PhantomJS users have been
reporting problems using the GIF format. Given the low overall quality of
GIF images, we should prefer PNG or JPEG images anyway. See the issue
on GitHub for more information at https://github.com/ariya/
phantomjs/issues/10888.

www.it-ebooks.info

https://github.com/ariya/phantomjs/issues/10888
https://github.com/ariya/phantomjs/issues/10888
http://www.it-ebooks.info/

Generating Images and Documents with PhantomJS

228

If no argument is supplied to webpage.renderBase64, it falls back to the default PNG
format. If an unacceptable or unrecognized format is passed, the method will fail gracefully
and return an empty string.

Unlike webpage.render, the renderBase64 method does not interact with the filesystem
and brokers strictly in strings. Note that our example script needed to take the returned string
immediately and use it as the argument to console.log for us to see any evidence of its
operation at all. This is important to keep in mind as we consider using renderBase64 in
our scripts.

See also
 f The Rendering images from PhantomJS recipe

Rendering and rasterizing SVGs from
PhantomJS

In this recipe, we introduce how to load Scalable Vector Graphics (SVG) content into
PhantomJS and save rasterized versions of those images.

Getting ready
To run this recipe, we will need a script that accesses a web page and a target URL that
either is or contains SVG content. We also need write permissions to the filesystem in
that script's working directory.

The script in this recipe is available in the downloadable code repository as recipe03.js
under chapter07. If we run the provided example script, we must change to the root directory
for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run the demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory),
and start the app with the following command:

node app.js

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

229

How to do it…
Consider the following script:

var webpage = require('webpage').create(),
 filename = 'eyes.png';

webpage.open('http://localhost:3000/svg/eyes.svg',
 function(status) {
 if (status === 'fail') {
 console.error('webpage did not open successfully');
 phantom.exit(1);
 }

 webpage.render(filename);

 console.log('webpage rendered as ' + filename);

 phantom.exit();
});

Given the preceding script, enter the following at the command line:

phantomjs chapter07/recipe03.js

The script will load the SVG at the target URL and render it as a PNG. Our output should look
like the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Images and Documents with PhantomJS

230

How it works…
Our example script here operates identically to the one that we used in the Rendering images
from PhantomJS recipe earlier in this chapter. This script performs the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name.
It also assigns our target image filename to the filename variable.

2. It calls webpage.open on our target URL (http://localhost:3000/svg/eyes.
svg) and passes it a callback function. In our callback function, it exits PhantomJS
with an error status if the web page fails to load.

3. Note that our example script uses an SVG document directly as the target URL. We
could just as easily have loaded a normal target URL that coincidentally contained
SVG content. In fact, if we substitute http://localhost:3000/svg-demo for our
originally cited target URL, then we will see our example work on content that brings
in an SVG with an img element as well as an embedded svg element drawn to the
page using JavaScript.

4. If the web page loads successfully, it makes a call to webpage.render, passing it
the name of the file we want for the output.

5. After the call to webpage.render is complete, it writes a message to the console
and exits from PhantomJS.

There's more…
There is no catch to rendering SVG content with PhantomJS; SVG documents are first-class
citizens in PhantomJS, just like HTML. Calls to webpage.render will output whatever
PhantomJS has drawn to its otherwise invisible viewport. This applies to SVG content just
as easily as it applies to normal HTML content; we could render the contents of a canvas
element this way as well. Once again, the only real limitation of render (and renderBase64)
is that the method cannot produce an image for content that PhantomJS doesn't render—for
example, plugins such as Flash or Silverlight, the video and audio elements, WebGL, and
3D CSS effects. Other than this, the only trick to using PhantomJS for effective screenshots is
to be aware of any animation on the page and to time the renderings accordingly.

See also
 f The Rendering images from PhantomJS recipe

 f The Saving images as Base64 from PhantomJS recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

231

Generating clipped screenshots from
PhantomJS

This recipe introduces the clipRect property on webpage instances, and it describes its
role in rendering portions of our web page content. The recipe also illustrates how to set the
property dynamically (for example, to capture specific page elements).

Getting ready
To run this recipe, we will need a script that accesses a web page. We need some knowledge
of the structure of the target web page so that we can define a selector to use for further
targeting specific content on that web page. We also need write permissions to the filesystem
in that script's working directory.

The script in this recipe is available in the downloadable code repository as recipe04.
js under chapter07. If we run the provided example script, we must change to the root
directory for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run the demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory),
and start the app with the following command:

node app.js

How to do it…
Consider the following script:

var webpage = require('webpage').create(),
 selector = require('system').args[1],
 filename;

if (!selector) {
 console.error('no selector was specified');
 phantom.exit(1);
}

filename = selector.replace(/\s/g, '-')
 .replace(/\W/g, '') + '.png';

webpage.viewportSize = { width: 1024, height: 768 };

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Images and Documents with PhantomJS

232

webpage.open('http://localhost:3000/', function(status) {
 if (status === 'fail') {
 console.error('webpage did not open successfully');
 phantom.exit(1);
 }

 webpage.clipRect = webpage.evaluate(function(selector) {
 var el = document.querySelector(selector);
 return {
 top: el.offsetTop,
 left: el.offsetLeft,
 width: el.offsetWidth,
 height: el.offsetHeight
 };
 }, selector);

 webpage.render(filename);

 console.log('webpage rendered as ' + filename);

 phantom.exit();
});

Given the preceding script, enter the following at the command line:

phantomjs chapter07/recipe04.js ".jumbotron"

The script should print out the following:

webpage rendered as jumbotron.png

We can locate jumbotron.png in the root directory for the book's sample code; when we
open the image, we should see something like the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

233

How it works…
Our preceding example script performs the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name.

2. It optimistically grabs our selector string from the system arguments and assigns
it to the selector variable.

3. If selector is falsy, it exits PhantomJS with an error status. If it gets past this check,
it generates our filename from the selector string, sanitizing the whitespace and
non-alphanumeric characters; this is assigned to the filename variable. (We assign
null to filename if selector is otherwise falsy.)

JavaScript's notion of falsy values is partially responsible for its
notorious reputation with respect to type coercion. Falsy values
are those that are equivalent to false but are not strictly
false. JavaScript's falsy values include false, undefined,
null, 0, and '' (the empty string).

4. It sets the size of the viewport on the webpage instance by setting its
viewportSize property.

5. It calls webpage.open on our target URL (http://localhost:3000/) and
passes it a callback function. In our callback function, it exits PhantomJS with
an error status if the web page fails to load.

6. It assigns webpage.clipRect by evaluating selector on the web page and
using its offset dimensions. The selector value is passed as an argument to
the webpage.evaluate callback function; this callback function retrieves the
first matching element with document.querySelector, and then matches its
offsetTop, offsetLeft, offsetWidth, and offsetHeight values to the
corresponding properties on the object to be returned. The returned object is
assigned to webpage.clipRect.

7. The clipRect property is a contraction of "clipping rectangle", and it specifies a
mask that is used when rendering the web page content, effectively creating an
area of interest. Remember that calls to webpage.render and renderBase64
will capture the entire web page by default; setting clipRect allows us to render
only the selected portion.

8. With webpage.clipRect assigned, it makes our call to webpage.render,
passing it the name of the file we want for the output.

9. After the call to webpage.render is complete, it writes a message to the console
and exits from PhantomJS.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Images and Documents with PhantomJS

234

On the command line, we invoke the script in the usual fashion, but take care to enclose our
selector argument in quotes. Enclosing the selector argument in quotes ensures that the
selector—which can validly have spaces in it—is intact on the other side of that command-line
invocation. This allows us to pass selectors such as ".jumbotron h1" into our script for
better element targeting.

There's more…
As we have previously seen, the default mode for webpage.render in PhantomJS is to
capture the entire web page—all of its contents, regardless of the specified viewport size. For
novice users of PhantomJS, this can be a bit confusing. Although setting the viewport width
has direct consequences on the rendered output, the height often appears to do nothing.

The clipRect property gives us a way to get screenshots that may be a little more aligned
with our expectations. For example, if we want to get an idea of what our site looks like "above
the fold", we can pass it through a variation of the preceding script, which looks something
like the following:

var webpage = require('webpage').create(),
 args = require('system').args,
 width = args[1],
 height = args[2],
 filename = width + 'px-X-' + height + 'px.png';

if (!width || !height) {
 console.error('viewport size was not specified');
 phantom.exit(1);
}

webpage.viewportSize = { width: width, height: height };

webpage.clipRect = {
 top: 0,
 left: 0,
 width: width,
 height: height
};

webpage.open('http://localhost:3000/', function(status) {
 if (status === 'fail') {
 console.error('webpage did not open successfully');
 phantom.exit(1);
 }

 webpage.render(filename);
 phantom.exit();
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

235

Here, we pass the viewport's width and height as command-line arguments, and then set
both viewportSize and clipRect based on those arguments. This allows us to get the
"above the fold" screenshots in the way we expect them. For example, given that the effective
apparent viewport size of Safari on iOS is 320 × 356 pixels, enter the following at the
command line:

phantomjs chapter07/recipe04-supplement.js 320 356

We will get a screenshot of what our site looks like in Safari on an iOS device, as shown here:

CasperJS
It's worth noting here that some of the frameworks and libraries that target PhantomJS
already offer methods that do much of what we have discussed in this recipe. For example,
CasperJS offers the following methods that effectively wrap combinations of webpage.
render with webpage.clipRect:

 f casper.capture(filename[, clipRect, imgOptions]): If clipRect is
provided, the CasperJS instance (behind the scenes) will set webpage.clipRect,
make its call to webpage.render, and then immediately revert the clipRect
property.

 f casper.captureBase64(format[, area]): This renders only the specified
area (if provided); area may take the form of a CSS selector, an XPath selector,
or a clipRect object.

 f casper.captureSelector(filename, selector[, imgOptions]):
Given a CSS selector string (selector), CasperJS sets clipRect to the offset
bounds of the selector, and then writes the rendering to filename.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Images and Documents with PhantomJS

236

You can find more information about CasperJS image-capturing
methods in their API documentation at http://docs.casperjs.
org/en/latest/modules/casper.html.

See also
 f The Interacting with web pages using CasperJS recipe in Chapter 5, Functional and

End-to-end Testing with PhantomJS

 f The Rendering images from PhantomJS recipe

Saving a web page from PhantomJS
as a PDF

This recipe goes into more detail about webpage.render, and it shows how to generate
PDFs. We also introduce the paperSize property of webpage instances and how to control
the sizes of the pages in the PDF output.

Getting ready
To run this recipe, we will need a script that accesses a web page. We also need write
permissions to the filesystem in the script's working directory.

The script in this recipe is available in the downloadable code repository as recipe05.
js under chapter07. If we run the provided example script, we must change to the root
directory for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run the demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory),
and start the app with the following command:

node app.js

How to do it…
Consider the following script:

var webpage = require('webpage').create(),
 filename = 'css-demo.pdf';

webpage.viewportSize = { width: 1024, height: 768 };

www.it-ebooks.info

http://docs.casperjs.org/en/latest/modules/casper.html
http://docs.casperjs.org/en/latest/modules/casper.html
http://www.it-ebooks.info/

Chapter 7

237

webpage.paperSize = {
 format: 'Letter',
 orientation: 'portrait',
 border: '0.5in'
};

webpage.open('http://localhost:3000/css-demo', function(status) {
 if (status === 'fail') {
 console.error('webpage did not open successfully');
 phantom.exit(1);
 }

 webpage.render(filename);

 console.log('webpage rendered as ' + filename);

 phantom.exit();
});

Given the preceding script, enter the following at the command line:

phantomjs chapter07/recipe05.js

The script should print out the following:

webpage rendered as css-demo.pdf

We can locate css-demo.pdf in the root directory for the book's sample code. When we
open the PDF, we should see that it has rendered the web page.

How it works…
Our preceding example script performs the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name.
It also assigns our target image filename to the filename variable.

Note that, once again, we take advantage of the fact that calls to
webpage.render to infer the file type from the file extension,
hence using .pdf here.

2. It sets the size of the viewport on the webpage instance by setting its
viewportSize property.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Images and Documents with PhantomJS

238

3. It configures the size of the target pages for the PDF output using the paperSize
property on our webpage instance. It sets format of the paper to Letter (8.5" ×
11"); the orientation is set to portrait (taller, not wider); it also sets border
(or margin) to 0.5in.

4. It calls webpage.open on our target URL (http://localhost:3000/css-demo)
and passes it a callback function. In our callback function, it exits PhantomJS with an
error status if the web page fails to load.

5. If the web page loads successfully, it makes a call to webpage.render, passing it
the name of the file we want for the output.

6. After the call to webpage.render is complete, it writes a message to the console
and exits from PhantomJS.

There's more…
As we have witnessed in this chapter's preceding recipes, the render method is extremely
simple, and we can get a lot of mileage out of calling it with the right filename. When we break
it down, all that separates this chapter's recipe01.js from recipe05.js are the following:

 f Defining the paperSize property

 f Calling render with a filename ending with .pdf

webpage.paperSize
The paperSize property on our webpage instance is what tells the PhantomJS renderer how
large the pages in the PDF should be made when our content "prints". If paperSize is left
undefined, then the web page will define those dimensions, and the resulting PDF may have
an incorrect appearance. With this in mind, if we expect that our script will render to a PDF,
we should provide a defined paperSize. The paperSize property is itself an object that
assumes one of the following two forms:

 f { width, height, border }

 f { format, orientation, border }

In both cases, the border property is optional; when providing format, orientation is
also optional.

Note that we can set the page dimensions explicitly as an alternative to setting paperSize.

width and height
The width and height properties on the paperSize object are mutually dependent; if
you use one, you must use the other. Both properties take strings as their values, and those
strings are parsed into the page dimensions. The value strings take the form of a number
plus a unit; for example, 8.5in or 1000px. The acceptable units of measurement include
the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

239

 f mm

 f cm

 f in

 f px (default)

Another interesting note about the height and width properties is that they take
precedence over the format property. For example, consider the following:

webpage.paperSize = {
 format: 'Letter',
 width: '5cm',
 height: '5cm'
};

Given the preceding code snippet, the PDF output will be 5cm × 5cm and not 8.5" × 11".

format
The format property gives us a way to specify one of the standard page sizes; these string
values are shorthand for their heights and widths.

format value dimensions
A3 420mm × 297mm
A4 297mm × 210mm
A5 210mm × 148mm
Legal 14" × 8.5"
Letter 11" × 8.5"
Tabloid 17" × 11"

orientation
When paired with the format property, orientation tells the PhantomJS renderer
how to orient the pages within the rendered PDF. The two legal values are portrait and
landscape (tall and wide, respectively); portrait is the default if neither value is supplied.

border
The border property can be used with either the height/width or the format/
orientation combination—this is also optional under both scenarios. The border property
allows us to specify the margin between the edges of the page and rendered content. We can
specify the value for border in one of two forms.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Images and Documents with PhantomJS

240

The first form is similar to how we specify height and width, and it consists of a number
and unit of measurement; the specified border is translated as the margin for all four edges
of the page, for example:

webpage.paperSize = { border: '1in' };

This will set a one-inch margin around all four edges of our rendered PDF.

The second form is to specify an object with each margin defined individually, again using the
"number plus unit" syntax, for example:

webpage.paperSize = {
 border: {
 top: '1in',
 right: '0.5in',
 bottom: '1in',
 left: '0.5in'
 }
};

This will set a one-inch margin for the top and bottom, but a one-half-inch margin for the left
and right sides.

See also
 f The Rendering images from PhantomJS recipe

 f The Applying custom headers and footers to PDFs generated from PhantomJS recipe

Applying custom headers and footers to
PDFs generated from PhantomJS

In this recipe, we expand on the discussion of the paperSize property, and illustrate how to
use it to set up custom headers and footers in the PDF output. This can be useful for applying
titles, page numbers, or time/date stamps to the PDF renderings.

Getting ready
To run this recipe, we will need a script that accesses a web page. We also need write
permissions to the filesystem in that script's working directory.

The script in this recipe is available in the downloadable code repository as recipe06.js
under chapter07. If we run the provided example script, we must change to the root
directory for the book's sample code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

241

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run the demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory), and
start the app with the following command:

node app.js

How to do it…
Consider the following script:

var webpage = require('webpage').create(),
 filename = 'css-demo.pdf',
 datetime = new Date().toString(),
 title;

webpage.viewportSize = { width: 1024, height: 768 };

webpage.open('http://localhost:3000/css-demo', function(status) {
 if (status === 'fail') {
 console.error('webpage did not open successfully');
 phantom.exit(1);
 }

 title = webpage.evaluate(function() {
 return document.querySelector('title').innerText;
 });

 webpage.paperSize = {
 format: 'Letter',
 orientation: 'portrait',
 border: '0.5in',
 header: {
 height: '0.5in',
 contents: phantom.callback(function() {
 return '<h1 style="border-bottom:' +
 '1px #333 solid;color:#333;">' +
 title + '</h1>';
 })
 },
 footer: {
 height: '0.5in',
 contents: phantom.callback(function(pageNum, numPages) {
 return '<div style="border-top:1px #333 solid;color:#333;">' +
 '<div style="float:left;">Rendered: ' + datetime +
 '</div><div style="float:right;">Pages: ' +
 pageNum + '/' + numPages + '</div></div>';

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Images and Documents with PhantomJS

242

 })
 }
 };

 webpage.render(filename);

 console.log('webpage rendered as ' + filename);

 phantom.exit();
});

Given the preceding script, enter the following at the command line:

phantomjs chapter07/recipe06.js

The script should print out the following:

webpage rendered as css-demo.pdf

We can locate css-demo.pdf in the root directory for the book's sample code. When we
open the PDF, we should see that it has rendered the web page and applied the specified
headers and footers.

How it works…
Our preceding example script performs the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name. It
assigns our target image filename to the filename variable, gets the current date
and time, and assigns it to the datetime variable. It also declares a title variable
that we will use later.

2. It sets the size of the viewport on the webpage instance by setting its
viewportSize property.

3. It calls webpage.open on our target URL (http://localhost:3000/css-demo)
and passes it a callback function. In our callback function, it exits PhantomJS with an
error status if the web page fails to load.

4. If the web page loads successfully, it calls webpage.evaluate to extract the page
title (from the title element) and assigns the returned text to the title variable.

5. It configures the size of the target pages for the PDF output using the paperSize
property on our webpage instance. It sets format of the paper to Letter
(8.5" × 11"); orientation is set to portrait (taller, not wider); and it sets
border (or margin) to 0.5in.

6. In our webpage.paperSize object, it configures our header property; this property
has height that we specify as 0.5in and a contents block where it defines the
callback function that returns the content for the header region. For our header, it
outputs an h1 (with inline styles to define the bottom border) and the page title.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

243

7. Next, in our webpage.paperSize object, it configures our footer property; this
property also has a height value (specified as 0.5in) and a contents block
where we define the callback function that returns the content for the footer region.
The callback function will be called with two arguments (pageNum for the current
page number and numPages for the total number of pages). The function outputs
div (with inline styles to define the top border) with two floated inner divs: one that
contains the datetime value and the other with the page information.

8. With webpage.paperSize now defined, it makes our call to webpage.render,
passing it the name of the file we want for the output.

9. After the call to webpage.render is complete, it writes a message to the console
and exits from PhantomJS.

There's more…
The use cases for the header and footer properties on webpage.paperSize are fairly
self-evident; we can use this space to record metadata, such as the date or time when it was
generated, the originating URL, or the page title, about the rendered page. Both these properties
take the same form, and they have the similar properties of height and contents.

height
The height property of a header or footer object is a way for us to specify the height of the
header or footer region in the rendered PDF. We specify this height using the same number-and-
unit format as we do for the height, width, and border properties of webpage.paperSize;
once again, the value is specified as a string, and the accepted units are mm, cm, in, and px. It
is worth pointing out that the height is in addition to any top or bottom border region set, and the
header or footer is between the border region and the actual content.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Images and Documents with PhantomJS

244

contents
The contents property of a header or footer object is where we can generate the content
that will be applied to the header and footer regions of the rendered PDF. The value of the
property takes a special PhantomJS callback object that is generated by the phantom.
callback method (undocumented); fortunately, from a user perspective, we can think of this
as simply providing the appropriate decorator on top of the callback function that we have
otherwise defined and passed as the argument to phantom.callback.

The contents callback accepts two arguments: pageNum (holding the value of the current
page number) and numPages (holding the total number of pages). The function should return
a string that may contain HTML to format it or control the layout.

As these callback functions are "just JavaScript", we are free to perform any transformation
or logic that we need inside these functions. Furthermore, they run as closures inside the
PhantomJS script context (not the webpage context), and as such, they have access to all
variables and functions we may have defined in that context. This is how we are able to print
our datetime and title variables as part of the footer and header, respectively.

Lastly, the header and footer regions in the rendered PDF are effectively sandboxed portions
of the layout. In other words, they do not inherit any of the styles from the target web
page, and content in the header and footer regions cannot appear outside of the specified
dimensions. This means that we cannot use CSS positioning in combination with these
regions to produce watermarks; but it also means that we cannot accidentally overflow the
header or footer.

See also
 f The Inspecting page content from a PhantomJS script recipe in Chapter 3,

Working with webpage Objects

 f The Rendering images from PhantomJS recipe

 f The Saving a web page from PhantomJS as a PDF recipe

Testing responsive designs with PhantomJS
This recipe provides a strategy for automatically loading a web page at different viewport sizes,
capturing screenshots at each size, and thus testing our responsive design's breakpoints.

Getting ready
To run this recipe, we will need a script that accesses a web page; the target URL will need
to be a responsive design with several breakpoints or viewport targets that we want to test.
We also need write permissions to the filesystem in the script's working directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

245

The script in this recipe is available in the downloadable code repository as recipe07.
js under chapter07. If we run the provided example script, we must change to the root
directory for the book's sample code.

Lastly, the script in this recipe runs against the demo site that is included with the cookbook's
sample code repository. To run the demo site, we must have Node.js installed. In a separate
terminal, change to the phantomjs-sandbox directory (in the sample code's directory),
and start the app with the following command:

node app.js

How to do it…
Consider the following script:

var webpage = require('webpage').create(),
 args = require('system').args,
 viewports = args.slice(1).map(function(v) {
 return v.split(/x/i);
 }),
 filename;

function screenshot(vps) {
 var vp = vps.pop();
 webpage.viewportSize = { width: vp[0], height: vp[1] || 600 };

 setTimeout(function() {
 filename = vp.join('x') + '.png';

 webpage.render(filename);
 console.log('webpage rendered as ' + filename);

 vps.length > 0 ? screenshot(vps) : phantom.exit();
 }, 50);
}

webpage.open('http://localhost:3000/responsive-demo',
 function(status) {
 if (status === 'fail') {
 console.error('webpage did not open successfully');
 phantom.exit(1);
 }

 screenshot(viewports);
 }
);

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Images and Documents with PhantomJS

246

Given the preceding script, enter the following at the command line:

phantomjs chapter07/recipe07.js 1680x1050 1280x1024 1024x768 768x1280
 640x960 320x480

The script should print out the following:

webpage rendered as 320x480.png

webpage rendered as 640x960.png

webpage rendered as 768x1280.png

webpage rendered as 1024x768.png

webpage rendered as 1280x1024.png

webpage rendered as 1680x1050.png

We can locate each of these screenshots in the root directory for the book's sample code.
If we open each to inspect them, we should see that PhantomJS has rendered the web
page content at each of the supplied breakpoints.

How it works…
Our preceding example script performs the following actions:

1. It creates a webpage instance and assigns it to a variable with the same name;
it also assigns the script's command-line arguments to the args variable.

2. It plucks our target viewports from args and processes them, assigning them
to the viewports variable. This breaks down as follows:

1. Knowing that args is an array, and that the first element in the array is
always the script name, we can get the remaining arguments by calling
args.slice(1).

2. We call map on the sliced args array to generate the new array that will
be assigned to viewports.

3. Our map function takes the current command-line argument (as v) and
calls split on it with the regular expression /x/i (splitting on either X or
x). We return an array (to viewports) that contains the width and height
(1680x1050 becomes ['1680', '1050']).

3. It declares a filename variable that we will use later.

4. It sets up our screenshot function that we will use to iterate through the viewports
and render to disk as follows:

1. The screenshot function expects one argument (vps) that is an array of
the viewports.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

247

2. We use pop to obtain the last viewport off of the vps array and assign it
to the local vp variable.

3. We set webpage.viewportSize, using the first item in vp as width
and the second item as height; if height is not provided, we default
to 600 pixels.

Recall the mapping function we used when we declared and
assigned the viewports variable called split internally; this
ensured that each element in the viewports array would itself
be an array, even if it only had one element. This allows us to safely
specify only widths on the command line (if we were so inclined)
while still safely assigning webpage.viewportSize.

4. We set up our call to render inside setTimeout with a delay of
50 milliseconds.

It is tempting to use a more straightforward iterator here (for
example, forEach or a classic for loop), but that would ignore
the fact that PhantomJS still needs those milliseconds to re-layout
the content and reflow everything. If we used one of those more
straightforward iterators, we will find that PhantomJS cannot reflow
the page in its UI thread as quickly as webpage.render can be
called in the script thread. A more-than-ample 50-millisecond delay
and a recursive function are the most sensible options here, but
fine-tuning may be necessary for more complex responsive designs.

5. Within the setTimeout callback, we assign our filename variable
by joining the width and height with an x and appending the file
extension .png.

6. We call webpage.render with filename and print a message to
the console.

7. We check the length of the vps array. If it contains any more elements,
we call screenshot again with vps; otherwise, we exit PhantomJS.

5. It calls webpage.open on our target URL (http://localhost:3000/
responsive-demo) and passes it a callback function. In our callback function,
it exits PhantomJS with an error status if the web page fails to load.

6. It kicks off the rendering by calling screenshot with viewports as its argument.

We then invoke the script on the command line in the usual way, but we also provide our list
of target breakpoints (or viewports of interest) as additional command-line arguments. Each
breakpoint is specified as width and height, separated by an X or x character. As described
before, this list of breakpoints can be extracted from the command-line arguments and
formed into an array of arrays that we can recurse through for our screenshots.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Images and Documents with PhantomJS

248

There's more…
In our preceding example, we provided a list of breakpoints on the command line, recursed
through the breakpoints, and took screenshots of each. The breakpoints in our example
are simply a subset conveniently pilfered from the Window Resizer Chrome Extension,
and they should in no way be considered a canonical list of breakpoints; each project and
responsive design is different, and each team needs to decide which breakpoints they want
to use for testing. The viewports to target for testing is a complex question and warrants
careful consideration.

Once again, we are caught by that quirk of how PhantomJS treats the configured viewport
size for rendering the web page contents. Recall that webpage.render will output an image
with the entire web page contents, and not just the viewport size that we specified. If we are
truly concerned about just what shows up in the viewport, we can rewrite our screenshot
function to take advantage of clipRect as well as viewportSize, for example:

function screenshot(vps) {
 var vp = vps.pop();
 webpage.viewportSize = { width: vp[0], height: vp[1] || 600 };
 webpage.clipRect = {
 left: 0, width: vp[0],
 top: 0, height: vp[1] || 600
 };

 setTimeout(function() {
 // callback remains the same
 }, 50);
}

The preceding modified version of this recipe's example script appears
in the sample code repository as recipe07-cliprect.js under
chapter07.

Once again, the team needs to decide: do we want a screenshot of just the viewport,
or do we want screenshots of how the whole web page renders at that width?

Lastly, CasperJS provides a way of responding to the viewport size change through its API,
either as a callback function passed as the third argument to viewport or as the callback
function given to a then call after a call to viewport. For example, using Casper 1.1 or
greater, we can achieve feature parity with this recipe's example, using the following script:

var casper = require('casper').create(),
 viewports = casper.cli.args.map(function(v) {
 return v.split(/x/i).map(Number);
 }),

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

249

 filename;

function screenshot(vps) {
 var vp = vps.pop();

 casper.viewport(vp[0], vp[1] || 600, function() {
 filename = vp.join('x') + '.png';

 this.capture(filename);
 this.echo('webpage rendered as ' + filename);

 if(vps.length) screenshot(vps);
 });
}

casper.start('http://localhost:3000/responsive-demo', function() {
 screenshot(viewports);
}).run();

The CasperJS version of this recipe's example script appears in
the sample code repository as recipe07-casper.js under
chapter07. Also, the instructions for how to install CasperJS
appear in the Installing CasperJS recipe in Chapter 5, Functional
and End-to-end Testing with PhantomJS.

See also
 f The Inspecting command-line arguments recipe in Chapter 2, PhantomJS

Core Modules

 f The Interacting with web pages using CasperJS recipe in Chapter 5, Functional
and End-to-end Testing with PhantomJS

 f The Rendering images from PhantomJS recipe

 f The Generating clipped screenshots from PhantomJS recipe

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

8
Continuous Integration

with PhantomJS

In this chapter, we will cover:

 f Setting up PhantomJS in a CI environment

 f Generating JUnit reports

 f Generating TAP reports

 f Setting up a fully covered project in CI with PhantomJS

Introduction
Of all the places where PhantomJS has emerged as a compelling solution, the most powerful
is perhaps in the realm of continuous integration. Since PhantomJS is a completely headless
browser, it is extremely simple to install and operate on most systems—there is no fussing
with X virtual framebuffer (Xvfb) and no need for binding to virtual machines. The PhantomJS
binary is simply available on the host, and instances can be launched on demand from
whatever jobs request them.

In this chapter, we will learn how to use PhantomJS as part of our continuous integration (CI)
strategy. The chapter will survey ways of reporting test failures in CI systems as well as how to
fail builds when front-end tests don't pass.

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration with PhantomJS

252

Setting up PhantomJS in a CI environment
This recipe demonstrates how to install PhantomJS in a continuous integration environment
and how to expose it to the CI software.

Getting ready
We need a continuous integration server set up, where we can configure jobs that will use
PhantomJS. The example that follows will use the open source Jenkins CI server.

Jenkins CI is too large a subject to introduce here, and this recipe
assumes only a shallow working knowledge of it. For information
about Jenkins CI, including basic installation and usage instructions,
or to obtain a copy for your platform, visit the project website at
http://jenkins-ci.org/. Our recipe uses version 1.552.

Although our example uses Jenkins CI to illustrate its key points,
PhantomJS can be integrated with or called from any CI server
platform. The example here aims to provide a clear illustration of how
to configure PhantomJS, which we can adapt for any CI environment.

To run this recipe, we will need the PhantomJS binary installed and on PATH for the
continuous integration server, which may not necessarily share the same permissions
or PATH as our system user.

The easiest way to find out whether PhantomJS is on PATH for the
Jenkins CI system user is to navigate to the /systemInfo page
on the Jenkins CI server and look for the PATH variable in the table
under the Environment Variables heading. If the PATH value contains
the path to the phantomjs binary, then it is available to Jenkins CI
with no additional configuration.

This recipe also requires the Git plugin for Jenkins CI in order to integrate with the Git
source control management software and download the sample code repository in an
automated fashion.

There are several plugins for Jenkins CI to help integrate Git into our
CI workflow. The plugin we will use here is simply called Git plugin; we
can find out more about it at the plugin repository site at https://
wiki.jenkins-ci.org/display/JENKINS/Git+Plugin.

www.it-ebooks.info

http://jenkins-ci.org/
https://wiki.jenkins-ci.org/display/JENKINS/Git+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Git+Plugin
http://www.it-ebooks.info/

Chapter 8

253

We need a project under version control with the Git source control management software.

We can use the book's example code repository for this recipe. The
public URL that we will use for this recipe is https://github.com/
founddrama/phantomjs-cookbook.git.

This project must also contain components that expect to be run and/or tested in a web
browser and the tests for those components. For the sake of simplicity, we will use a simple
HTML page with JavaScript and its associated tests on the page. The web page in this
recipe is available in the downloadable code repository as recipe01-runner.html under
chapter08. The tests in this recipe are written using the Jasmine unit testing library, which
we introduced in Chapter 4, Unit Testing with PhantomJS. To execute the tests headlessly in
Jenkins, we will use the JUnitXmlReporter and TerminalReporter objects, and then
bootstrap the testing environment using the phantomjs-testrunner.js script, all of which
come from the jasmine-reporters library; these were also introduced in Chapter 4, Unit
Testing with PhantomJS.

How to do it…
Assuming that we already have a Jenkins CI server installed and running, here is how we
install PhantomJS and configure jobs to use it:

1. Perform the PhantomJS installation for that platform. Given the platform on which
our Jenkins CI instance is running, we follow the PhantomJS installation instructions
that are applicable to us. In most cases, a pre-built binary is already available.

A thorough discussion of installing PhantomJS on the major platforms
appears in the Installing PhantomJS recipe in Chapter 1, Getting Started
with PhantomJS.

2. Expose the PhantomJS executable to the CI system user. The Jenkins CI software
runs on the system as some user (for example, jenkins) and this user may not
have the same PATH, permissions, and privileges as the user we otherwise use
on that system. To expose PhantomJS to Jenkins CI, it must be on PATH for its user;
to do this, perform the following steps:

1. Click on Manage Jenkins in the left-side navigation.

2. On the Manage Jenkins page, click on Configure System from the
main menu.

www.it-ebooks.info

https://github.com/founddrama/phantomjs-cookbook.git
https://github.com/founddrama/phantomjs-cookbook.git
http://www.it-ebooks.info/

Continuous Integration with PhantomJS

254

3. On the Configure System page, find the section labeled Global properties
and check the box labeled Environment variables.

4. Click on the Add button to create a new name/value pair. Enter PATH in the
name field; in the value field, apply the path to the PhantomJS binary to the
PATH variable like we would normally, for example, /path/to/phantomjs/
bin:${PATH}.

5. Click on the Save button at the bottom of the Configure System page.

3. Add a job to Jenkins that will use PhantomJS. With PhantomJS now exposed to
Jenkins CI, we can configure a build job to execute our front-end tests as follows:

1. Click on New Item in the left-side navigation.

2. Enter a name for the job in the field labeled Item name, for example,
PhantomJS Cookbook - Chapter 8 - Recipe 1.

3. Select Build a free-style software project, and click on the OK button.

4. Under the Source Code Management block, select Git and enter the
repository's URL (https://github.com/founddrama/phantomjs-
cookbook.git) in the field labeled Repository URL.

www.it-ebooks.info

https://github.com/founddrama/phantomjs-cookbook.git
https://github.com/founddrama/phantomjs-cookbook.git
http://www.it-ebooks.info/

Chapter 8

255

If the repository is private, we must configure Credentials. The other
fields are optional, but we should configure a specific branch for the build.

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration with PhantomJS

256

5. Under the Build block, click on Add build step and the Execute shell item.
In the new Execute shell field, enter the commands necessary for running
the front-end tests, for example:
phantomjs lib/jasmine-reporters/phantomjs-testrunner.js
 "$(pwd)/chapter08/recipe01-runner.html"

6. Click on the Apply (or Save) button at the bottom of the job's
configuration page.

The Jenkins CI project wiki has a good introduction to adding and
administering software builds at https://wiki.jenkins-ci.
org/display/JENKINS/Building+a+software+project.

4. Run the job to execute the tests. After we have added our build job, we can run it
so that we can see the tests execute as follows:

1. From the Jenkins CI home page, select your job from the list in the main menu.

www.it-ebooks.info

https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project
https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project
http://www.it-ebooks.info/

Chapter 8

257

2. On the build job's landing page, click on the Build Now link in the
left-side navigation.

3. The build will appear in the Build History panel in the left-side navigation.
Clicking on the link in the panel for that specific build will take us to its page.

If we are fast enough (or the build is slow enough), we can click on
the progress bar that appears in the Build History panel under the
currently executing build. This will bring us to the Console Output
page for that build, and we can watch as the build executes.

4. On the build's page, we click on the Console Output link in the left-side
navigation. This brings us to a page that lists the console output that was
captured by Jenkins while running our build.

5. In the console output, we can see that our tests ran. We can also see which
of our tests failed, consequently failing the build.

5. Iterate! With our build jobs running and our tests executing successfully, we can
now go about the business of fixing our code, refactoring, retesting, and so forth.

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration with PhantomJS

258

How it works…
From start to finish, every step in this recipe is a fairly standard operation. The process of
PhantomJS installation here is the same as was followed in Chapter 1, Getting Started with
PhantomJS. We exposed PhantomJS to Jenkins CI by using the server's built-in tools to add
the binary to PATH. We added a job to execute our tests—again using built-in tools. Finally,
we ran those tests as part of our build.

The first step was covered in detail in the Installing PhantomJS recipe. The second and third
steps are more functions of Jenkins CI than they are of PhantomJS. However, the fourth step,
when we run the job, is where we need to pay the most attention.

In the Using TerminalReporter for unit testing in PhantomJS recipe in Chapter 4, Unit Testing
with PhantomJS, we launched our tests using the phantomjs.runner.sh shell script from the
jasmine-reporters library. This script may not function reliably when run from Jenkins CI;
as such, our Execute Shell field does what that script would normally do, it calls the PhantomJS
binary and passes it the phantomjs-testrunner.js script and the target URL. Our tests will
execute as we expect them to, and because our test runner (recipe01-runner.html) uses
TerminalReporter, we will get easy-to-read output in the console. As a result of the collection
of reporters we have used in our test runner, the phantomjs-testrunner.js script can
correctly interpret the unit test results and cause the PhantomJS process to exit with a non-zero
status, thus breaking the build.

There's more…
Though our recipe uses Jenkins CI, this is primarily for demonstration purposes. There is
nothing stopping us from integrating PhantomJS into a build stack that is otherwise based
around Bamboo, CruiseControl, TeamCity, Travis CI, or another CI server.

The critical thing to remember when integrating PhantomJS into our build infrastructure is
that we need to ensure that the PhantomJS binary is exposed through PATH to the CI server.
In some cases, we might get this "for free"; depending on where we install PhantomJS, it may
be available to the CI system user without the need for any special or additional configuration.
Alternatively, we could manage PATH using more traditional tools at the system level by
changing /etc/profile. Lastly, if we require more fine-grained control, we can use something
such as the Environment Injector plugin for Jenkins CI to add PhantomJS on a per-job basis.

This recipe is also equally applicable to other executables built on top of
PhantomJS. For example, if our job requires CasperJS to run end-to-end
tests, we can follow along as before, making sure to expose the CasperJS
binary on PATH in addition to (or instead of) PhantomJS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

259

See also
 f The Installing PhantomJS recipe in Chapter 1, Getting Started with PhantomJS

 f The Running Jasmine unit tests with PhantomJS recipe in Chapter 4, Unit Testing
with PhantomJS

 f The Using TerminalReporter for unit testing in PhantomJS recipe in Chapter 4,
Unit Testing with PhantomJS

 f The Creating a Jasmine test runner for PhantomJS and every other browser recipe
in Chapter 4, Unit Testing with PhantomJS

Generating JUnit reports
In this recipe, we will demonstrate how to fail builds by generating JUnit reports from tests run
via PhantomJS. As in the previous recipe, our demonstration will use Jenkins CI for the sake
of example.

Getting ready
We must have the PhantomJS binary exposed to the CI server, which may not necessarily
share the same permissions or PATH as our user.

We need a continuous integration server set up where we can configure jobs that will
use PhantomJS. Our example that follows will use the open source Jenkins CI server.

See the previous recipe (Setting up PhantomJS in a CI environment) for
more information on Jenkins CI and recommended plugins.

We need a project under version control with the Git source control management software.
See the Setting up PhantomJS in a CI environment recipe, earlier in this chapter, for the Git
repository URL of this book's sample code.

This project must also contain components that expect to be run and/or tested in a web browser
and the tests for those components. For the sake of simplicity, we will use a simple HTML page
with JavaScript and all its associated tests on that page. The web page in this recipe is available
in the downloadable code repository as recipe02-runner.html under chapter08. The
tests in this recipe were written using the Jasmine unit-testing library, which we introduced in
Chapter 4, Unit Testing with PhantomJS. To execute the tests headlessly in Jenkins, we will use
the JUnitXmlReporter object, and we will then bootstrap the testing environment using the
phantomjs-testrunner.js script, both of which come from the jasmine-reporters
library; these were also introduced in Chapter 4, Unit Testing with PhantomJS.

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration with PhantomJS

260

How to do it…
Assuming that we already have a Jenkins CI server installed and running, here is how we can
fail builds and publish test reports using JUnit:

1. Configure tests to use JUnitXmlReporter. Most unit test suites based on
Jasmine can be configured to export the JUnit-style XML reports by adding
JUnitXmlReporter that is contained in the jasmine-reporters library. After
including this in the test runner page with a script tag, we can initialize and add
one of these reporters to the Jasmine environment. For example, here is what we do
in chapter08/recipe02-runner.html:
var env = jasmine.getEnv();

env.addReporter(new jasmine.HtmlReporter());
env.addReporter(new jasmine.JUnitXmlReporter('test-reports/',
false));

env.execute();

2. Add our job in Jenkins CI and configure it to publish the JUnit reports. We can add
our job by following the steps used in the previous recipe (Setting up PhantomJS in
a CI environment; more specifically, refer to step 3 under the How to do it… section).
However, there is one important additional step here: after applying the commands
in the Execute shell field, we must tell Jenkins CI to publish the JUnit reports.

When creating a new job in Jenkins CI, one of the options is Copy existing
Item. Use this option to create the job for our second recipe more quickly,
tweaking only the specific parts that need to be changed (for example, the
job's name and which test runner it refers to). To copy a job, click on New
Item from the main navigation, as usual, and type the name of the job in the
Item name field. Then, click on the Copy existing Item option and type the
name of the job we want to copy in the field labeled Copy from (Jenkins CI
will automatically suggest matching names.) Lastly, click on the OK button.

Note that the body of our Execute shell field will contain this command:
phantomjs lib/jasmine-reporters/phantomjs-testrunner.js
 "$(pwd)/chapter08/recipe02-runner.html"

This corresponds with step 3.5 from the How to do it… section of this
chapter's first recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

261

To apply these commands, perform the following steps:

1. In the job's configuration screen, click on the Add post-build action button
and select the Publish JUnit test result report item.

2. In the Publish JUnit test result report section, find the Test report XMLs
field and enter a pattern to match the generated XML reports, for example,
test-reports/*.xml. Make sure that the pattern does not match any
files that are not test reports.

3. Click on the Save button at the bottom of the job's configuration page.

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration with PhantomJS

262

3. Run the job and view the test results. We can execute tests by clicking on a specific
job in Jenkins CI and then clicking on Build Now on the left-side navigation, as shown
in the previous recipe. Again, we can click on specific completed jobs (in the Build
History panel) and examine their outcomes, including the console output as seen in
the following image:

Note that Jenkins CI marks the build as UNSTABLE and not as FAILURE.
This indicates that the scripts run by the job exited with a success status,
but that the post-processing of the JUnit reports revealed test failures.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

263

4. Examine the test results and iterate. As previously mentioned, we can click on
individual builds and explore the test results that each job publishes. When we
configured the job to publish the JUnit reports, we also exposed two more navigation
items: Test Result and History. The Test Result page shows us the test outcomes
for that specific run of the job; History shows us a graph of the test performance
over time. We can use the data to identify defects in our code and fix issues before
publishing them to production. The Test Result page for the first run of our job shows
that four out of six tests fail, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration with PhantomJS

264

5. The history page for our job shows the test results after five runs, as seen in the
following screenshot:

How it works…
This recipe follows the same underlying mechanisms as in the previous recipe, Setting up
PhantomJS in a CI environment. We have our tests, we set up a job in Jenkins CI to run them,
and we watch for the test results reported for each build by the CI server. In this case, we
enhance Jenkins CI's ability to interpret the test results by using JUnitXmlReporter in our
Jasmine tests. This reporter generates an XML file that contains the test results, and this file
adheres to the format prescribed by JUnit, a unit-testing framework for Java that falls in the
xUnit family.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

265

Our first step is to add JUnitXmlReporter to our test runner. As noted before, this should
be a simple matter of including the library, creating an instance of the reporter, and adding
it to the Jasmine environment. The JUnitXmlReporter constructor function accepts
three arguments:

 f savePath: This indicates the directory where the XML reports should be written

PhantomJS will create the directory if it does not already exist.

 f consolidate: This indicates whether to save nested describe blocks within the
same XML file as their parent (default value is true)

 f useDotNotation: This indicates whether to separate suite names with dots instead
of spaces (default value is true)

With the proper reporter added to our test runner, we can configure a Jenkins CI job to build
the project and run the tests. Most of the job's configuration is identical to the one from the
previous recipe; however, as noted before, the important difference is the addition of the
Publish JUnit test result report post-build action.

It is interesting to note here that even if the tests fail, the job will be marked as a success
without the post-build action. Why? In our particular example, this is because the specific
combination of reporters (such as HtmlReporter and JUnitXmlReporter) does not
produce markup that the phantomjs-testrunner.js script interprets as a failure. Thus,
it does not pass a non-zero exit code to the underlying PhantomJS process, which then exits
as though everything was successful. However, Jenkins CI can speak JUnit, and when we have
this post-build action properly configured, it will read those XML test reports and appropriately
mark the build as unstable or failed.

Lastly, Jenkins CI can produce historical reports for us about the test performance over time.
This can help us to get a sense of how often we break the build, whether our test coverage
grows along with our code base, and any hot spots that may benefit from refactoring.

There's more…
Our example focused on Jasmine unit tests executed in an HTML-based test runner so that
we can introduce and illustrate some of the important components. However, just like we
can integrate PhantomJS into most continuous integration stacks, so can we integrate most
of our testing tools, for example:

 f If we run our tests with the Karma test runner, we can install the karma-junit-
reporter plugin, add junit to the reporters array in our configuration file,
and collect our test results that way.

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration with PhantomJS

266

 f If we use CasperJS for end-to-end tests, we can apply the --xunit argument in our
call to the binary, and it will produce a JUnit-compatible XML report.

 f If we choose Mocha for our tests, we can install mocha-jenkins-reporter using
npm, apply the --reporter mocha-jenkins-reporter argument in our call to
the binary, and it will produce a JUnit-compatible XML report.

When adapting this solution, the important things to remember are:

 f We need a CI server that consumes JUnit-compatible XML reports

 f We need a reporter for our chosen unit-testing framework, which can generate
the XML

See also
 f The Running Jasmine unit tests with PhantomJS recipe in Chapter 4, Unit Testing

with PhantomJS

 f The Using TerminalReporter for unit testing in PhantomJS recipe in Chapter 4,
Unit Testing with PhantomJS

 f The Running Jasmine unit tests with the Karma test runner recipe in Chapter 4,
Unit Testing with PhantomJS

 f The Running Mocha unit tests with PhantomJS recipe in Chapter 4, Unit Testing
with PhantomJS

 f The End-to-end testing with CasperJS recipe in Chapter 5, Functional and End-to-end
Testing with PhantomJS

 f The Exporting test results from CasperJS in the XUnit format recipe in Chapter 5,
Functional and End-to-end Testing with PhantomJS

 f The Setting up PhantomJS in a CI environment recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

267

Generating TAP reports
This recipe demonstrates how to fail builds by generating TAP reports from the tests run
via PhantomJS. As in the previous recipe, our demonstration will use Jenkins CI for the
sake of example.

Getting ready
We must have the PhantomJS binary exposed to the CI server, which may not necessarily
share the same permissions or PATH as our user.

We need a continuous integration server set up where we can configure jobs that will use
PhantomJS. Our example that follows will use the open source Jenkins CI server.

See the Setting up PhantomJS in a CI environment recipe (earlier in
this chapter) for more information about Jenkins CI and recommended
plugins.

On Jenkins CI, we need the TAP plugin installed so that we can take advantage of the TAP
reports. We can install the TAP plugin in the customary fashion, using the Plugin Manager
in Jenkins CI.

For more information on the TAP plugin for Jenkins CI, visit the
project page at https://wiki.jenkins-ci.org/display/
JENKINS/TAP+Plugin.

We need a project under version control with the Git source control management software
(see the Setting up PhantomJS in a CI environment recipe, earlier in this chapter, for the
Git repository URL of this book's sample code).

This project must also contain components that expect to be run and/or tested in a web
browser and the tests for those components. For the sake of simplicity, we will use a simple
HTML page with JavaScript and all its associated tests on that page. The web page in this
recipe is available in the downloadable code repository as recipe03-runner.html under
chapter08. The tests in this recipe were written using the Jasmine unit-testing library, which
we introduced in Chapter 4, Unit Testing with PhantomJS. To execute the tests headlessly in
Jenkins, we will use the TapReporter object, and then bootstrap the testing environment
using the phantomjs-testrunner.js script, both of which come from the jasmine-
reporters library; these were also introduced in Chapter 4, Unit Testing with PhantomJS.

www.it-ebooks.info

https://wiki.jenkins-ci.org/display/JENKINS/TAP+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/TAP+Plugin
http://www.it-ebooks.info/

Continuous Integration with PhantomJS

268

How to do it…
Assuming that we already have a Jenkins CI server installed and running, here is how we can
fail builds and publish TAP reports:

1. Configure tests to use JUnitXmlReporter. Most unit test suites based on Jasmine
can be configured to export TAP style reports by adding TapReporter, which is
contained in the jasmine-reporters library. After including this in the test runner
page with a script tag, we can initialize and add one of these reporters to the
Jasmine environment. For example, here is what we do in chapter08/recipe03-
runner.html:
var env = jasmine.getEnv();

env.addReporter(/PhantomJS/.test(navigator.userAgent) ?
 new jasmine.TrivialReporter() :
 new jasmine.HtmlReporter());

env.addReporter(new jasmine.TapReporter());

env.execute();

2. Add our job in Jenkins CI and configure it to publish the TAP reports. We can add our
job by following the steps we used in this chapter's first recipe, Setting up PhantomJS
in a CI environment (more specifically, refer to step 3 under the How to do it…
section). However, there are a couple of important differences we need to account
for in the job's configuration, which are as follows:

1. Under the Build block, click on Add build step and the Execute shell item.
In the new Execute shell field, enter the commands necessary to create the
target directory for the reports, and then run the front-end tests, for example:
mkdir -p test-reports && phantomjs
 lib/jasmine-reporters/phantomjs-testrunner.js
 "$(pwd)/chapter08/recipe03-runner.html" >
 test-reports/recipe03.tap

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

269

2. Click on the Add post-build action button and select the Publish TAP
Results item. In the Publish TAP Results section that appears, enter a value
(for example, test-reports/recipe03.tap) in the field labeled Test
results. Then, click on the Advanced… button and enable the option labeled
Failed tests mark build as failure.

3. Click on the Save button at the bottom of the job's configuration page, as
shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration with PhantomJS

270

3. Run our job and view the test results. We can execute tests as we did in the previous
recipes, by clicking on the specific job, and then clicking on Build Now from the
left-side navigation. Again, we can click on specific completed jobs (in the Build
History panel) and examine their outcomes, including the console output.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

271

4. Examine the test results and iterate. As mentioned before, we can click on individual
builds and explore the test results that each job publishes. When we configure
a job to publish the TAP reports, we also expose two more navigation items: TAP
Test Results and TAP Extended Test Results. Both these views show summaries
of the test results. We can use the data to identify defects in our code and fix
issues before publishing them to production. Observe the TAP test results in the
following screenshot:

The TAP Test Results page

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration with PhantomJS

272

Also, observe the TAP Extended test results in the following screenshot:

The TAP Extended Test Results page

How it works…
This recipe follows much the same pattern as our previous recipe, Generating JUnit reports.
We have our tests, we set up a job in Jenkins CI to run them, and we watch for the test results
reported for each build by the CI server. In this case, we are enhancing Jenkins CI's ability to
interpret the test results by using TapReporter in our Jasmine tests and then configuring
our build job to take advantage of the TAP plugin.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

273

Our first step is to add TapReporter to our test runner. As we noted before, this should be
a simple matter of including the library, creating an instance of the reporter, and adding it
to the Jasmine environment. Unlike JUnitXmlReporter, the TapReporter constructor
takes no arguments. Also, unlike JUnitXmlReporter, TapReporter writes its results to
the PhantomJS console, and not the filesystem; this means that we will need to capture the
TAP output.

Once we have the reporter added to our test runner, we can configure a Jenkins CI job to build
the project and run the tests. Most of the job's configuration is identical to the one from this
chapter's first recipe; however, as noted before, we have a couple of important differences.

The first important difference is in the Execute Shell block. The first thing that we need to do
differently here is to ensure that we have created the test-reports directory; we do this
using mkdir.

If we use a Linux or OS X system, we want to make sure to use the -p
argument to mkdir to ensure that our directory is created properly;
if we are on Windows, we can omit this argument.

The second important difference is that we redirect the output from PhantomJS (from the
phantomjs-testrunner.js script as it handles our target file/URL) to the filesystem.
We do this because TapReporter does not write its output to disk of its own accord.

The next important difference is our use of the TAP plugin and the Publish TAP Results post-
build action. By enabling and configuring this option, Jenkins CI is able to read the TAP report
from the location we specify, parse its contents, produce the report, and then mark the build
as failed if any of the tests do not pass.

See also
 f The Running Jasmine unit tests with PhantomJS recipe in Chapter 4, Unit Testing

with PhantomJS

 f The Automating performance analysis with YSlow and PhantomJS recipe
in Chapter 6, Network Monitoring and Performance Analysis

 f The Setting up PhantomJS in a CI environment recipe

 f The Generating JUnit reports recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration with PhantomJS

274

Setting up a fully covered project in CI with
PhantomJS

This recipe puts together many of the preceding lessons and illustrates how to set up a build
that will use PhantomJS for automated unit, end-to-end, and performance tests, ultimately
failing the build if any test fails. Our demonstration will use Jenkins CI.

Getting ready
We must have the PhantomJS binary exposed to the CI server, which may not necessarily
share the same permissions or PATH as our user.

Similarly, we need CasperJS installed and exposed to the continuous integration server.

We covered how to install CasperJS in the Installing CasperJS recipe in
Chapter 5, Functional and End-to-end Testing with PhantomJS. As with the
PhantomJS binary, we must take care to ensure that CasperJS is on PATH
for the continuous integration server's system user; this follows the same
principles that we applied in the Setting up PhantomJS in a CI environment
recipe (earlier in this chapter).

We need a continuous integration server set up where we can configure jobs that will use
PhantomJS. Our example that follows will use the open source Jenkins CI server.

See the Setting up PhantomJS in a CI environment recipe (earlier in this
chapter) for more information on Jenkins CI and recommended plugins.

We need a project under version control with the Git source control management software
(see the Setting up PhantomJS in a CI environment recipe, earlier in this chapter, for the Git
repository URL of this book's sample code).

This project must also contain components that expect to be run and/or tested in a web browser
and the tests for those components. The tests in this recipe will run against the /form-demo
URL in the phantomjs-sandbox application that is included with the cookbook's sample code
repository. All the tests in question appear under the phantomjs-sandbox/tests/ directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

275

The unit tests were written using the Jasmine unit testing library, which we introduced in
Chapter 4, Unit Testing with PhantomJS. To execute the tests headlessly in Jenkins, we will
use the JUnitXmlReporter object, and then bootstrap the testing environment using the
phantomjs-testrunner.js script, both of which come from the jasmine-reporters
library; these were also introduced in Chapter 4, Unit Testing with PhantomJS. The unit
test files include unit/form-demo-validators-spec.js and its test runner, unit/
form-demo-validators-runner.html.

The end-to-end tests were written using CasperJS and its testing DSL, which we introduced in
the End-to-end testing with CasperJS recipe in Chapter 5, Functional and End-to-end Testing
with PhantomJS. The end-to-end test file is chapter08-recipe05-spec.js under e2e.

The performance test will be run with the YSlow library, which we introduced in the Executing
a detailed performance analysis recipe in Chapter 6, Network Monitoring and Performance
Analysis. YSlow is included in the lib directory of the cookbook's sample code repository and
will be referenced in our build job.

Both the end-to-end and performance tests run against the demo site that is included with the
cookbook's sample code repository. To run the demo site, we must have Node.js installed. In
order to run the demo site during the continuous integration build properly, we need a wrapper
script to launch the site, run the end-to-end and performance tests, collect their results, and
kill the Node.js process. This wrapper script is included in the repository as test-wrapper.
sh under phantomjs-sandbox/tests.

How to do it…
Assuming that we already have a Jenkins CI server installed and running, here is how we can
configure and run a build with unit, end-to-end, and performance tests, publishing test reports
using JUnit, and failing the build should any of these tests fail:

1. Configure unit tests to use JUnitXmlReporter. The first step is to ensure that the
Jasmine-based unit tests can write their test results as JUnit-style XML reports. For
this, we need to add JUnitXmlReporter from the jasmine-reporters library
to our test runner.

We discussed how to add JUnitXmlReporter in the Generating JUnit
reports recipe earlier in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration with PhantomJS

276

2. Create a wrapper script to run the end-to-end and performance tests. As mentioned
in the Getting ready section of this recipe, our CI job will need a wrapper script to run
the demo app, execute the end-to-end and performance tests, and then shut down
the app. The cookbook's sample code repository includes an example of such a script
at phantomjs-sandbox/tests/test-wrapper.sh as shown:
#!/bin/bash
cd phantomjs-sandbox
node app.js > /dev/null 2>&1 &
NODE_PID=$!

cd ..

casperjs test --xunit="test-reports/TEST-casperjs-e2e.xml"
 --no-colors
 phantomjs-sandbox/tests/e2e/chapter08-recipe05-spec.js
E2E_STATUS=$?

echo "Running performance test with YSlow..."
phantomjs lib/yslow.js -i grade -f junit http://localhost:3000/
form-demo >
 test-reports/TEST-form-demo-yslow.xml
PERF_STATUS=$?
echo "Performance test results stored in
 test-reports/TEST-form-demo-yslow.xml"

kill $NODE_PID

[$E2E_STATUS = 0 -a $PERF_STATUS = 0]; exit $?

3. Add our job to Jenkins CI and configure it to execute our tests and publish their
reports. We can add our job by following the steps that were used in this chapter's
first and second recipes (Setting up PhantomJS in a CI environment and Generating
JUnit reports, respectively). The steps that follow here refer to adding the runner for
the wrapper script that executes the end-to-end and performance tests:

1. In the job's configuration screen, click on the Add build step button and
select the Execute shell item to add a second Execute shell block.

2. In the second Execute shell block, add the following command to run your
wrapper script:
./phantomjs-sandbox/tests/test-wrapper.sh

3. Click on the Save button at the bottom of the job's configuration page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

277

It may be helpful to "clean" the test-reports/ directory in the Jenkins
CI workspace before each run. The simplest way to do this is to add another
Execute shell block that deletes the directory, using the following command:
rm -rf test-reports/

Make sure to reorder the Execute shell blocks so that they run before all
the tests.

4. Run our job and view the test results. We can run our comprehensive test suite
here, which is similar to the suites in our previous recipes that featured Jenkins
CI, by clicking on a specific job, and then clicking on Build Now from the left-side
navigation. Again, we can click on specific completed jobs (in the Build History
panel) and examine their outcome, including the console output.

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration with PhantomJS

278

5. Examine the test results and iterate. As mentioned in previous recipes, we can click
on individual builds and explore the test results that each job publishes. Of particular
interest to us is the Test Result page where we find a summary of all the test failures.
As we expect, the post-build action that publishes the JUnit test reports aggregates
the test results from all of our test phases—unit, end-to-end, and performance—and
not only displays them as a single report but also marks the build as a failure if any
of these test phases produces a failure. With this knowledge, we can fix or improve
our code before taking it to production.

How it works…
This recipe demonstrates that it is possible, and with relatively minimal effort, to set up
a comprehensive automated test suite as part of our front-end build process. Our job
can execute our unit tests, run an instance of our application, execute end-to-end and
performance tests against it, and collect the test results. This recipe does not even illustrate
the other types of work that we may want in our continuous integration job, such as linting,
minification, or concatenation of JavaScript assets.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

279

Our first step is to add JUnitXmlReporter to our unit tests. This is an essential step in
making our unit tests first-class citizens of the continuous integration build. As we noted in
previous recipes, most unit test runners need no special modifications—we can simply drop
in the reporter, add it to the Jasmine environment, and the tests will produce the XML.

Secondly, we need a wrapper script for our end-to-end and performance tests so that we can
ensure that our specimen application is started properly and remains running for the duration
of the tests. This wrapper script will perform the following actions:

1. Start the Node.js demo app, forward its console output to /dev/null, and capture
its process ID.

2. Run the CasperJS end-to-end tests, specifying the --no-colors argument
(to make the Jenkins CI console output easier to read) and the --xunit argument
(with the path of the file where it will write its reports).

3. Run the YSlow performance test, indicating grade-level information and
JUnit-style output.

4. Kill the Node.js demo app using the process ID we captured earlier.

5. Exit the script with the appropriate status code.

With our unit tests ready and the wrapper script in place for our end-to-end and performance
tests, we can add the job in Jenkins CI. We have already discussed at length how to add and
run these jobs in previous recipes. The main thing that sets this recipe apart from the others
in this chapter is that it aggregates the test results after the build has completed. This allows
us to fail a build if any of our established tests fail, regardless of whether those tests are at
the unit, the functional, or the performance level.

See also
 f The Running Jasmine unit tests with PhantomJS recipe in Chapter 4, Unit Testing

with PhantomJS

 f The Installing CasperJS recipe in Chapter 5, Functional and End-to-end Testing
with PhantomJS

 f The End-to-end testing with CasperJS recipe in Chapter 5, Functional and
End-to-end Testing with PhantomJS

 f The Executing a detailed performance analysis recipe in Chapter 6,
Network Monitoring and Performance Analysis

 f The Setting up PhantomJS in a CI environment recipe

 f The Generating JUnit reports recipe

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
--cdns flag 200
--format flag

about 199
json format 199
junit format 199
plain format 199
tap format 199
xml format 199

--headers flag 200
--info flag

about 198
all level 198
basic level 198
comps level 198
grade level 198
stats level 198

--ruleset flag
about 199
yblog 199
ydefault 199
yslow1 199

--ua flag 200
--viewport flag 200

A
addCookie(cookieObject) method 37
Ajax requests

submitting, from PhantomJS 108-110
appcache manifest

about 191
configuration options 191, 192
generating 189-191
working 190

arguments
PhantomJS script, running with 14, 15

arguments, open method
mode 58
path 58

atEnd method 59

B
Base64

images, saving as 226, 227
behavior-driven development (BDD) 116

C
cache locations

for data inspection 22
Capybara

about 160
URL 160

Capybara suite
Poltergeist, adding to 160-163

casper.captureBase64(format[, area])
method 235

casper.capture(filename[, clipRect,
imgOptions]) method 235

casper.captureSelector(filename, selector
[, imgOptions]) method 235

CasperJS
about 168
end-to-end testing 172-175
installing 168, 169
methods 235
tests results, exporting from 176
URL, for image-capturing methods 236
URL, for online documentation 172
used, for interacting with web pages 169-172

www.it-ebooks.info

http://www.it-ebooks.info/

282

Chai
about 146
URL 146

changeWorkingDirectory method 58
CI

about 251
fully covered project, setting up in 274-279

CI environment
PhantomJS, setting up in 252-258

clearCookies() method 37
clipped screenshots

generating, from PhantomJS 231-235
close method 59
code coverage reports

about 139
generating, with Istanbul 136-138
generating, with Karma test runner 136-138

command-line arguments
inspecting 47, 48

command-line convention
establishing 49

command-line options, YSlow
--cdns flag 200
--format flag 199
--headers flag 200
--info flag 198
--ruleset flag 199
--ua flag 200
--viewport flag 200

CommonJS Filesystem proposal
URL 54

CommonJS IO/A proposal
URL 53

CommonJS module proposal
about 40
URL 40

confess.js library 187
configuration options, appcache manifest

appcache.cacheFilter 192
appcache.networkFilter 192
appcache.urlsFromDocument 192
appcache.urlsFromRequests 192

console.log statement 11

ConsoleReporter 123
continuous integration. See CI
cookie-jar.txt file 17
cookies

managing, with phantom object 35-38
PhantomJS, running with 16-18

cookies array 37
cookiesEnabled property 37
cookies-file argument 16, 18, 35
create method, webpage module

opts argument 68
CSS

blocking, from downloading 99-103
CSS properties

listing 187-189
custom footers

applying, to PDFs generated from
PhantomJS 240-243

custom headers
applying, to PDFs generated from

PhantomJS 240-243
custom module

creating, for PhantomJS 60, 61
loading, in PhantomJS 61, 62

Cygwin
URL 122

D
debugger messages

recording 81, 82
deleteCookie(cookieName) method 37
detailed performance analysis

executing 195-198
disk cache

PhantomJS, running with 19-21
disk-cache command-line argument 19, 21
domain-specific language (DSL) 162, 168

E
end-to-end testing, CasperJS 172-175
env property 51

www.it-ebooks.info

http://www.it-ebooks.info/

283

event-handler callbacks, webpage objects
onAlert 82
onCallback 82
onClosing 83
onConfirm 83
onConsoleMessage 83
onError 83
onFilePicker 83
onInitialized 83
onLoadFinished 83
onLoadStarted 83
onNavigationRequested 83
onPageCreated 83
onPrompt 83
onResourceError 83
onResourceReceived 83
onResourceRequested 83
onUrlChanged 83

exists method 55
exit status

controlling, of PhantomJS script 44, 45
expectations 117
external JavaScript

including, on page 77-79
external scripts

path, specifying for 39, 40

F
file

reading, from PhantomJS 56, 57
saving, from PhantomJS script 53, 54

file property 44
flush method 59
footer object

contents property 244
height property 243

fs module 54
fully covered project

setting up, in CI 274-279
function property 44
functions, Jasmine

describe 117
expect 117
it 117

G
GhostDriver

about 152, 153
Selenium tests, running with 152-155
URL 153

Git plugin
URL 252

global PhantomJS error handler
setting up 42, 43

Grunt
about 127
Jasmine unit tests, running with 126-128
tests, watching during development 129-132
URL 127

grunt-contrib-jasmine module
about 127, 129, 132
actions, performed 129

grunt-contrib-watch module
about 130-132
URL 130

grunt-karma module 135
grunt-mocha-phantomjs module

URL 149
grunt-notify module 132

H
header object

contents property 244
height property 243

Homebrew
about 10
URL 10

HTTP Archive (HAR) file
about 186
generating, from PhantomJS 184-186

I
images

causing, to fail 104-106
rendering, from PhantomJS 222-224
saving, as Base64 226, 227

includeJs method
about 80
arguments 80

www.it-ebooks.info

http://www.it-ebooks.info/

284

injectable scripts 40
injectJs method

about 39-41, 80
versus require method 41

installation, CasperJS 168, 169
installation, PhantomJS 8-10
interactive mode. See PhantomJS REPL
Istanbul

about 135
code coverage reports, generating

with 136-138
URL 136

isWritable method 55

J
Jasmine

about 116
URL, for documentation 116
URL, for downloading version 1.3.1 116

jasmine-reporters library
about 120, 124
URL 121

Jasmine test runner
creating, for PhantomJS 124-126

Jasmine unit tests, running
with Grunt 126-128
with Karma from WebStorm 139-142
with Karma test runner 133-135
with PhantomJS 116-119
with PhantomJS from WebStorm 139-142

Jenkins CI
about 205, 252, 258
URL, for project website 252

Jenkins CI project
URL 256

JSON configuration file
PhantomJS, running with 22-24

JUnit reports
generating 259-265

JUnitXmlReporter constructor function
about 123
consolidate 265
savePath arguments 265
useDotNotation 265

K
Karma

about 133, 134
Jasmine unit tests, running with 139-142

karma-coverage plugin 136, 139
karma-junit-reporter plugin 265, 266
Karma test runner

code coverage reports, generating
with 136-138

Jasmine unit tests, running with 133-135
keyboard input

simulating, in PhantomJS 88-91

L
libraryPath property 39, 41
line property 44

M
makeDirectory method 55
matcher function 117
Maven

about 152
URL 152

max-disk-cache-size command-line
argument 19, 22

message parameter 44
methods, networkRequest object

abort() 103
changeUrl(url) 103

mocha-phantomjs 146
Mocha unit tests

running, with PhantomJS 146-149
mode argument 58
mouse clicks

simulating, in PhantomJS 84-87
mouse hovers

simulating 96-99

N
networkRequest object

about 103
methods 103

www.it-ebooks.info

http://www.it-ebooks.info/

285

Node.js
about 14-16
and PhantomJS, differences 14
URL 16

npm (Node.js package manager) 126

O
onAlert callback 82
onCallback callback 82
onClosing callback 83
onConfirm callback 83
onConsoleMessage callback 82, 83
onError callback

about 42, 83
parameters 44

onError callback, parameters
message 44
trace 44

onFilePicker callback 83
onInitialized callback 83
onLoadFinished callback 83
onLoadStarted callback 83
onNavigationRequested callback 83
onPageCreated callback 83
onPrompt callback 83
onResourceError callback function 83, 107
onResourceReceived callback

function 83, 104
onResourceRequested callback function

about 83
arguments 103

onUrlChanged callback 83
open method

about 58, 70
arguments 58
overloaded signature 70

open(url, callback) method 70
open(url) method 70
open(url, method, callback) method 70
open(url, method, data, callback) method 70
opts argument 68
os property 51

P
page

external JavaScript, including on 77-79
page content

inspecting, from PhantomJS script 74-76
path

specifying, for external scripts 39, 40
path argument 58
PATH variable

about 9
URL, for information 9

PDFs, generated from PhantomJS
custom footers, applying to 240-243
custom headers, applying to 240-243

performance analysis
automating, with YSlow and

PhantomJS 205-215
options 215, 216
TAP format, using 216-218

permissions-related methods
exists method 55
isWritable method 55
makeDirectory method 55
write method 55

phantom.args array 15
PhantomCSS

about 181
used, for detecting visual

regressions 177-181
phantom.exit() function

about 11, 46
type coercion 46

PhantomJS
about 7
Ajax requests, submitting from 108-110
and Node.js, differences 14
clipped screenshots, generating

from 231-235
custom module, creating for 60, 61
custom modules, loading in 61-63
file, reading from 57
fully covered project, setting up in CI 274-279
HAR files, generating from 184-186

www.it-ebooks.info

http://www.it-ebooks.info/

286

images, rendering from 222-224
images, saving as Base64 226, 227
installing 8-10
installing, from Source 10
Jasmine test runner, creating for 124-126
Jasmine unit tests, running

with 116-119, 139-142
keyboard input, simulating in 88-91
Mocha unit tests, running with 146-149
mouse, simulating in 84-87
POST, generating from 71-74
QUnit tests, running with 142-145
responsive designs, testing with 244-248
running, with cookies 16-18
running, with disk cache 19-21
running, with JSON configuration file 22-24
Selenium tests, running with 152-155
setting up, in CI environment 252-258
SVGs, rasterizing from 228-230
SVGs, rendering from 228-230
TerminalReporter, using for unit

testing 121-123
URL, for API documentation 13, 37
URL, for build instructions 10
URL, for downloading 8
URL, for troubleshooting guide 9
URL, opening within 68, 69
Webdriver, using as Selenium client 156-159
web page, saving from 236-238

PhantomJS REPL
about 10
launching 11

phantomjs-runner.js script 123
phantomjs-sandbox directory 16
PhantomJS script

debugging 25-31
exit status, controlling of 44, 45
file, saving from 53, 54
page content, inspecting from 74-76
running 12, 13
running, with arguments 14, 15

phantom object
cookies, managing with 35-38

phantom.scriptName property 15
pid property 52
platform property 52
PNG format 224

Poltergeist
about 161
adding, to Capybara suite 160-163
precise mouse clicks, simulating

with 166-168
URL 161
used, for taking screenshots during

tests 163-165
Portable Network Graphics format. See PNG

format
POSIX-compatible systems

URL, for tutorials 9
POST

generating, from PhantomJS 71-74
precise mouse clicks

simulating, with Poltergeist 166-168
properties, requestData object

headers 103
id 103
method 103
time 103
url 103

properties, resourceError object
errorCode 107
errorString 107
id 107
url 107

properties, response object
bodySize 104
contentType 104
headers 104
id 104
redirectURL 104
stage 104
status 104
statusText 104
time 104
url 104

properties, system module
os 51
pid 52
platform 52

properties, trace parameter
file 44
function 44
line 44
sourceURL 44

www.it-ebooks.info

http://www.it-ebooks.info/

287

Q
QImage class 224
Qt 9
QUnit 143
QUnit tests

running, with PhantomJS 142-145

R
Read-Evaluate-Print Loop (REPL) 7, 11
readLine method 59
read method 59
remote-debugger-autorun argument 25, 32
remote-debugger-port argument 25, 31
renderBase64 method 227, 228
render method

about 222-225
output formats 224

reporters 119
reporters, Jasmine

ConsoleReporter 123
JUnitXmlReporter 123
TapReporter 123
TeamcityReporter 123

requestData object
properties 103

require method
about 60
versus injectJs method 41

resourceError object
properties 107

responsive designs
testing, with PhantomJS 244-248

Ruby 160
RubyGems

URL, for downloading 160
run-jasmine.js script 120
runtime

version, inspecting at 34

S
Scalable Vector Graphics. See SVGs
scrolling

simulating 92-95

seek method 59
Selenium 152
Selenium client

Webdriver, using as 156-159
Selenium Standalone Server JAR

URL, for downloading 156
Selenium tests

running, with GhostDriver 152-155
running, with PhantomJS 152-155

sendEvent method
about 87
button argument 87
mouse events 87

simple performance analysis
configuration options 194
executing 192-194

Source
PhantomJS, installing from 10

sourceURL property 44
specifications 117
stream methods

flush 59
read 59
seek 59
write 59
writeLine 59

stream object 58
suites 117
SVGs

rasterizing, from PhantomJS 228-230
rendering, from PhantomJS 228-230

system environment variables
inspecting 50-52

system module 51

T
TAP format

using 216-218
TapReporter 123
TAP reports

generating 267-273
TeamcityReporter 123
TerminalReporter

using, for unit testing 121-123
TerminalReporter constructor 123
Test Anything Protocol. See TAP format

www.it-ebooks.info

http://www.it-ebooks.info/

288

test results
exporting, from CasperJS 176

trace parameter
about 44
properties 44

type coercion, with phantom.exit method 46

U
unit testing

TerminalReporter, using for 121-123
URL

opening, within PhantomJS 68, 69

V
version

inspecting, at runtime 34
version property 34
visual regressions

detecting, PhantomCSS used 177-181

W
WebDriver 152
webdriver command-line argument 155
WebdriverJS

using, as Selenium client 156-159
WebKit 9
web page

interacting, CasperJS used 169-172
saving, from PhantomJS as PDF 236-238

webpage API 120
WebPage constructor 68
web page content rendering

questions, for troubleshooting 225
webpage.evaluate callback function 75
web page instance

creating, with webpage module 66, 67
webpage module

about 66, 222
create method 68
web page instance, creating with 66, 67

webpage objects 67
webpage.onLoadFinished handler 71

webpage.paperSize property
about 238
border 239
format 239
height 238
orientation 239
width 238

webpage.scrollPosition object
updating 95

WebSocket
URL 110
working with 110-113

WebStorm
about 139
Jasmine unit tests, running with

Karma 139-142
Jasmine unit tests, running with

PhantomJS 139-142
Windows PATH

URL, for documentation 9
writeLine method 59
write method 55, 59

X
XUnit format

test results, exporting from CasperJS 176
X virtual framebuffer (Xvfb) 251

Y
YSlow

about 195, 197
command-line options 198
working 198

YSlow, and PhantomJS
used, for automating performance

analysis 205-215
YSlow performance analysis

executing, with custom ruleset 201-204
YSLOW.registerRule 203

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying

PhantomJS Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

290

Getting Started with
PhantomJS
ISBN: 978-1-78216-422-7 Paperback: 140 pages

Harness the strength and capabilities of PhantomJS to
interact with the web and perform website testing with
a headless browser based on WebKit

1. Writing scripts that can interact directly with web
services and pages.

2. Interacting with social media websites using
PhantomJS scripts.

3. Creating web-based test scripts and running
them in a headless browser.

Mastering TypoScript
TYPO3 Website, Template, and Extension
Development
ISBN: 978-1-90481-197-8 Paperback: 400 pages

A complete guide to understanding and using TypoScript,
TYPO3's powerful configuration language

1. Powerful control and customization using
TypoScript.

2. Covers templates, extensions, admin, interface,
menus, and database control.

3. You don't need to be an experienced PHP
developer to use the power of TypoScript.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

291

Backbone.js Testing
ISBN: 978-1-78216-524-8 Paperback: 168 pages

Plan, architect, and develop tests for Backbone.js
applications using modern testing principles and practices

1. Create comprehensive test infrastructures.

2. Understand and utilize modern frontend testing
techniques and libraries.

3. Use mocks, spies, and fakes to effortlessly
test and observe complex Backbone.js
application behavior.

4. Automate tests to run from the command line,
shell, or practically anywhere.

Ext JS 4 Plugin and Extension
Development
ISBN: 978-1-78216-372-5 Paperback: 116 pages

A hands-on development of several Ext JS plugins
and extensions

1. Easy-to-follow examples on Ext JS plugins
and extensions.

2. Step-by-step instructions on developing Ext JS
plugins and extensions.

3. Provides a walkthrough of several useful Ext JS
libraries and communities.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
with PhantomJS
	Introduction
	Installing PhantomJS
	Launching the PhantomJS REPL
	Running a PhantomJS script
	Running a PhantomJS script with arguments
	Running PhantomJS with cookies
	Running PhantomJS with a disk cache
	Running PhantomJS with a JSON configuration file
	Debugging a PhantomJS script

	Chapter 2: PhantomJS
Core Modules
	Introduction
	Inspecting the version at runtime
	Managing cookies with the phantom object
	Specifying a path for external scripts
	Setting up a global PhantomJS error handler
	Controlling the exit status of a PhantomJS script
	Inspecting command-line arguments
	Inspecting system environment variables
	Saving a file from a PhantomJS script
	Reading a file from PhantomJS
	Creating a custom module for PhantomJS
	Loading custom modules in PhantomJS

	Chapter 3: Working with
webpage Objects
	Introduction
	Creating a web page instance in PhantomJS with the webpage module
	Opening a URL within PhantomJS
	Generating a POST from PhantomJS
	Inspecting page content from a PhantomJS script
	Including external JavaScript on the page
	Recording debugger messages
	Simulating mouse clicks in PhantomJS
	Simulating keyboard input in PhantomJS
	Simulating scrolling in PhantomJS
	Simulating mouse hovers in PhantomJS
	Blocking CSS from downloading
	Causing images to fail randomly
	Submitting Ajax requests from PhantomJS
	Working with WebSockets in PhantomJS

	Chapter 4: Unit Testing with PhantomJS
	Introduction
	Running Jasmine unit tests with PhantomJS
	Using TerminalReporter for unit testing in PhantomJS
	Creating a Jasmine test runner for PhantomJS and every other browser
	Running Jasmine unit tests with Grunt
	Watching your tests during development with Grunt
	Running Jasmine unit tests with the Karma test runner
	Generating code coverage reports with Istanbul and the Karma test runner
	Running Jasmine unit tests with Karma and PhantomJS from WebStorm
	Running QUnit tests with PhantomJS
	Running Mocha unit tests with PhantomJS

	Chapter 5: Functional and
End-to-end Testing
with PhantomJS
	Introduction
	Running Selenium tests with PhantomJS and GhostDriver
	Using WebdriverJS as a Selenium client for PhantomJS
	Adding Poltergeist to a Capybara suite
	Taking screenshots during tests with Poltergeist
	Simulating precise mouse clicks with Poltergeist
	Installing CasperJS
	Interacting with web pages using CasperJS
	End-to-end testing with CasperJS
	Exporting test results from CasperJS in XUnit format
	Detecting visual regressions using PhantomCSS

	Chapter 6: Network Monitoring and Performance Analysis
	Introduction
	Generating HAR files from PhantomJS
	Listing CSS properties
	Generating an appcache manifest
	Executing a simple performance analysis
	Executing a detailed performance analysis
	Executing a YSlow performance analysis with a custom ruleset
	Automating performance analysis with YSlow and PhantomJS

	Chapter 7: Generating Images and Documents with PhantomJS
	Introduction
	Rendering images from PhantomJS
	Saving images as Base64 from PhantomJS
	Rendering and rasterizing SVGs from PhantomJS
	Generating clipped screenshots from PhantomJS
	Saving a web page from PhantomJS as a PDF
	Applying custom headers and footers to PDFs generated from PhantomJS
	Testing responsive designs with PhantomJS

	Chapter 8: Continuous Integration with PhantomJS
	Introduction
	Setting up PhantomJS in a CI environment
	Generating JUnit reports
	Generating TAP reports
	Setting up a fully covered project in CI with PhantomJS

	Index

