
M A N N I N G

Andres Almiray
Danno Ferrin
James Shingler

FOREWORD BY Dierk König

www.it-ebooks.info

http://www.it-ebooks.info/

Griffon in Action

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Griffon in Action

ANDRES ALMIRAY
DANNO FERRIN

JAMES SHINGLER

M A N N I N G
SHELTER ISLAND
www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical proofreader: Al Scherer
PO Box 261 Copyeditors: Tiffany Taylor, Andy Carroll
Shelter Island, NY 11964 Proofreader: Melody Dolab

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781935182238
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12
www.it-ebooks.info

www.manning.com
http://www.it-ebooks.info/

v

brief contents
PART 1 GETTING STARTED ..1

1 ■ Welcome to the Griffon revolution 3

2 ■ A closer look at Griffon 36

PART 2 ESSENTIAL GRIFFON..57

3 ■ Models and binding 59

4 ■ Creating a view 92

5 ■ Understanding controllers and services 117

6 ■ Understanding MVC groups 138

7 ■ Multithreaded applications 160

8 ■ Listening to notifications 191

9 ■ Testing your application 211

10 ■ Ship it! 242

11 ■ Working with plugins 258

12 ■ Enhanced looks 277

13 ■ Griffon in front, Grails in the back 302

14 ■ Productivity tools 322

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxii
about the cover illustration xxvi

PART 1 GETTING STARTED...1

1 Welcome to the Griffon revolution 3
1.1 Introducing Griffon 4

Setting up your development environment 5 ■ Your first
Griffon application 7

1.2 Building the GroovyEdit text editor in minutes 9
Giving GroovyEdit a view 9 ■ Making the menu items behave:
the controller 14 ■ How about a tab per file? 16
Making GroovyEdit functional: the FilePanel model 18
Configuring the FilePanel controller 19

1.3 Java desktop development: welcome to the jungle 22
Lots of boilerplate code (ceremony vs. essence) 23 ■ UI definition
complexity 24 ■ Lack of application life cycle management 26
No built-in build management 27
vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSviii
1.4 The Griffon approach 27
At the core: the MVC pattern 28 ■ The convention-over-
configuration paradigm 31 ■ Groovy: a modern
JVM language 33

1.5 Summary 35

2 A closer look at Griffon 36
2.1 A tour of the common application structure 37
2.2 The ABCs of configuration 39

A is for Application 40 ■ B is for Builder 41
C is for Config 43

2.3 Using Griffon’s command line 47
Build command targets 49 ■ Run command targets 50
Miscellaneous command targets 50

2.4 Application life cycle overview 51
Initialize 52 ■ Startup 53 ■ Ready 53
Shutdown 54 ■ Stop 55

2.5 Summary 56

PART 2 ESSENTIAL GRIFFON ..57

3 Models and binding 59
3.1 A quick look at models and bindings 60

Creating the project 60 ■ Creating the model 61
Creating the view 62 ■ Creating the controller 63

3.2 Models as communication hubs 64
MVC in the age of web frameworks 65
Rethinking the pattern 66

3.3 Observable beans 66
JavaBeans bound properties: the Java way 67 ■ JavaBeans bound
properties: the Groovy way 69 ■ Handy bound classes 72

3.4 Have your people call my people: binding 74
A basic binding call 75 ■ The several flavors of binding 76
Finding the essence 77 ■ Other binding options 80

3.5 The secret life of BindingUpdatable 83
Keeping track of bindings with the BindingUpdatable object 83
Managing the bindstorm: bind(), unbind(), and rebind() 84
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS ix
Manually triggering a binding: update() and reverseUpdate() 85
Grouping bindings together 85

3.6 Putting it all together 86
Setting up the model 87 ■ Defining a view 87
Adding the missing validations to the model 89

3.7 Summary 91

4 Creating a view 92
4.1 Java Swing for the impatient 93

“Hello World” the Swing way 94 ■ Extending “Hello World”:
“Hello Back” 95 ■ Swing observations 96

4.2 Groovy SwingBuilder: streamlined Swing 97
“Hello World” the SwingBuilder way 98
“Hello Back” with SwingBuilder 99

4.3 Anatomy of a Griffon view 100
Builders are key to views 101
Nodes as building blocks 102

4.4 Using special nodes 104
Container 104 ■ Widget 104 ■ Bean 105
Noparent 105 ■ Application 106

4.5 Managing large views 106
Rounding up reusable code 107 ■ Breaking a large view
into scripts 107 ■ Organize by script type 109

4.6 Using screen designers and visual editors 110
Integrating with the NetBeans GUI builder
(formerly Matisse) 110 ■ Integrating with
Abeille Forms Designer 114

4.7 Summary 116

5 Understanding controllers and services 117
5.1 Dissecting a controller 118

Quick tour of injected properties and methods 118
Using the post-initialization hook 121
Understanding controller actions 122

5.2 The need for services 124
Creating a simple service 125 ■ Creating a
Spring-based service 126
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSx
5.3 Artifact management 130
Inspecting artifacts 130 ■ Metaprogramming on artifacts 133
Artifact API in action 133

5.4 Summary 137

6 Understanding MVC groups 138
6.1 Anatomy of an MVC group 139

A look at each member 139 ■ Registering the MVC group 141
Startup groups 142

6.2 Instantiating MVC groups 143
Creation methods 143 ■ Marshaling the MVC
type instances 144 ■ Initializing group members 147
Advanced techniques 148

6.3 Using and managing MVC groups 151
Accessing multiple MVC groups 151
Destroying MVC groups 153

6.4 Creating custom artifact templates 155
Templates, templates, templates 156 ■ It’s alive! 158

6.5 Summary 159

7 Multithreaded applications 160
7.1 The bane of Swing development 161

Java Swing without threading 161 ■ Java Swing
with threading 163

7.2 SwingBuilder alternatives 166
Groovy Swing without threading 166 ■ Groovy Swing
with threading 167 ■ Synchronous calls with edt 170
Asynchronous calls with doLater 171 ■ Outside calls
with doOutside 171

7.3 Multithreaded applications with Griffon 172
Threading and the application life cycle 172
Threading support the Griffon way 173
Controller actions and multithreading:
a quick guide 173 ■ Fine-tuning threading
injection 175 ■ What about binding? 176

7.4 SwingXBuilder and threading support 177
Installing SwingXBuilder 177
The withWorker() node 178
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi
7.5 Putting it all together 179
Defining the application’s outline 180 ■ Setting up the
UI elements 181 ■ Defining a tab per loading technique 182
Adding the loading techniques 184 ■ FileViewer:
the aftermath 187

7.6 Additional threading options 188
Synchronous calls in the UI thread 188 ■ Asynchronous calls in
the UI thread 189 ■ Executing code outside of the UI thread 189
Is this the UI thread? 189 ■ Executing code asynchronously 189

7.7 Summary 190

8 Listening to notifications 191
8.1 Working with build events 192

Creating a simple script 192 ■ Handling an event with
the events script 193 ■ Publishing build events 195

8.2 Working with application events 196
E is for events 196 ■ Additional application event handlers 198
Firing application events 201

8.3 Your class as an event publisher 205
A basic Marco-Polo game 206 ■ Running the application 209

8.4 Summary 210

9 Testing your application 211
9.1 Griffon testing basics 212

Creating tests 213 ■ Running tests 214
Testing in action 217

9.2 Not for the faint of heart: UI testing 220
Setting up a UI component test 221
A hands-on FEST example 223

9.3 Testing with Spock and easyb 228
Spock reaches a new level 228 ■ FEST-enabled
Spock specifications 232 ■ easyb eases up BDD 233

9.4 Metrics and code inspection 236
Java-centric tools: JDepend and FindBugs 236 ■ Reporting Groovy
code violations with CodeNarc 236 ■ Measuring Groovy
code complexity with GMetrics 238 ■ Code coverage
with Cobertura 239

9.5 Summary 240
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxii
10 Ship it! 242
10.1 Understanding the common packaging options 243
10.2 Using Griffon’s standard packaging targets 244

The jar target 244 ■ The zip target 246 ■ The applet and
webstart targets 247 ■ Customizing the manifest 247
Customizing the templates 248

10.3 Using the Installer plugin 250
Building a distribution 251 ■ The izpack target 252
The rpm target 253 ■ The deb target 254
The mac target 255 ■ The jsmooth target 255
The windows target 255 ■ Tweaking a distribution 255

10.4 Summary 257

11 Working with plugins 258
11.1 Working with plugins 259

Getting a list of available plugins 259 ■ Getting plugin-specific
information 260 ■ Installing a plugin 261
Uninstalling a plugin 262

11.2 Understanding plugin types 262
Build-time plugins 263 ■ Runtime plugins 265

11.3 Creating the Tracer plugin and addon 267
Bootstrapping the plugin/addon 268 ■ Intercepting property
updates 269 ■ Using the plugin 270 ■ Intercepting
action calls 272 ■ Running the plugin again 273

11.4 Releasing the Tracer plugin 274
11.5 Summary 276

12 Enhanced looks 277
12.1 Adding new nodes 278

Registering node factories 278 ■ Using an implicit addon 282
Creating a builder 283

12.2 Builder delegates under the hood 285
Acting before the node is created 286 ■ Tweaking the
node before properties are set 286 ■ Handling node properties
your way 287 ■ Cleaning up after the node is built 287
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii
12.3 Quick tour of builder extensions in Griffon 288
SwingXBuilder 288 ■ JideBuilder 291 ■ CSSBuilder 293
GfxBuilder 296 ■ Additional builders 300

12.4 Summary 301

13 Griffon in front, Grails in the back 302
13.1 Getting started with Grails 303
13.2 Building the Grails server application 304

Creating domain classes 304 ■ Creating the controllers 305
Running the Bookstore application 306

13.3 To REST or not 307
Adding controller operations 307 ■ Pointing to resources
via URL 309

13.4 Building the Griffon frontend 311
Setting up the view 312 ■ Updating the model 314

13.5 Querying the Grails backend 315
Creating a service 315 ■ Injecting an instance of the service 317
Configuring the Bookstore application 318

13.6 Alternative networking options 320
13.7 Summary 321

14 Productivity tools 322
14.1 Getting set up in popular IDEs 323

Griffon and Eclipse 323 ■ Griffon and NetBeans IDE 327
Griffon and IDEA 331 ■ Griffon and TextMate 334

14.2 Command-line tools 336
Griffon and Ant 336 ■ Griffon and Gradle 338
Griffon and Maven 340

14.3 The Griffon wrapper 340
14.4 Summary 341

appendix Porting a legacy application 342

index 350
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

foreword
As soon as I heard about Griffon in Action, I was eager to get it into my hands. What I
expected was a typical Manning In Action book: providing an easy jump start, working
from actionable examples, and providing lots of insight about the technology at hand.
It turned out that this book not only lived up to my expectations, it exceeded them in
many ways.

 First, the authors’ knowledge is indisputable. This is obvious for the technology,
because we’re talking about main Griffon contributors. But beyond that comes experi-
ence about all aspects of developing desktop applications based on Swing, ranging
from how to set up your project, through proper separation of concerns, threading,
building, testing, visual composition, and code metrics, down to how to deliver the
final application to the customer.

 Second, the book goes beyond giving simple recipes. It explains the underlying
constraints and considerations that enable readers to make informed decisions about
their projects.

 Third, Griffon in Action is a great reference. I have it open whenever I write Griffon
applications so I can quickly look up an example or a list of available goodies. It is
such a thorough source of information that I consider it the definitive guide.

 Writing such a book is a huge effort—especially when aiming for approachability
and completeness at the same time. Additionally, the authors pushed the Griffon proj-
ect forward while writing this book, and one or the other may even have an additional
day job.
xv

www.it-ebooks.info

http://www.it-ebooks.info/

FOREWORDxvi
 A big “thank you” to the authors of this book; and to you, readers, a warm-hearted
“Keep groovin’.”

DIERK KÖNIG
Author of Groovy in Action

First and Second Editions
www.it-ebooks.info

http://www.it-ebooks.info/

preface
The book you’re holding in your hands went through a lot of iterations before it
reached its final form. We’re not referring to the editorial process, but rather to the
deep relationship it has with the topic it discusses: the Griffon framework. Both
evolved at the same time almost from the beginning.

 On a peaceful October afternoon back in 2007, Danno Ferrin, James Williams, and
I (all members of the Groovy development team) had a very productive chat over
Skype about the future of Groovy’s SwingBuilder—an enabler for writing desktop
GUIs using Swing as a DSL. We recognized the potential of mixing and matching dif-
ferent builders to write richer UIs, but the current syntax wasn’t pleasant to use. We
drafted a plan and got to work on our respective areas.

 Fast-forward to JavaOne 2008, where the three of us got to meet face to face for the
first time. Joined by Guillaume Laforge, we hatched the idea of what was to become
the Griffon framework. We knew that Grails was making waves in the web space, and
we felt the need for a similar outcome in the desktop space. Cue the light-bulb
moment: we agreed that creating a desktop framework that stuck as closely as possible
to Grails would be the way to go—although we didn’t have a name for it yet.

 Danno went back to his batcave after the conference and in a matter of weeks
bootstrapped the framework by forking Grails and removing all the webby stuff that
was not needed. Then he grafted in the most important pieces of Griffon’s architec-
ture: the UberBuilder, the MVC group conventions, and the application life cycle.

 We finally had something tangible. James picked the name and we went public
with the project on September 2008. The initial reaction from the community was so
xvii

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACExviii
positive than in a matter of months work on the book began. And this is where both
projects got intertwined.

 Together with Danno and Geertjan Wielenga, we wrote the first part of the book.
We went to work on the framework, and then we came back to the book when we
stopped to rethink where we were going with the framework. This kept going for
months: hacking some code, writing a few pages. In the meantime, we received plenty
of feedback about both projects. A particular advantage of this setup was that we were
able to address the needs of users and readers and thus save time, the most precious
resource for an open source effort.

 Eventually Geertjan and Danno reduced their contributions, and my coauthor and
good friend Jim Shingler joined the project. Being an early adopter of the technology
plus a seasoned Swing developer meant he was the right person for the job. And he
didn’t disappoint. Thank you, Jim!

 All this leads to where we are now, with you reading these pages. During the time
it took to get the book into your hands, we painstakingly revised its goals and the
framework, making sure both were kept as accurate and fresh as possible. Despite
what the naysayers have said for years—that Java on the desktop is no longer rele-
vant—the current situation couldn’t be further from the truth. Griffon has been used
to write applications that manage patient data, process the data required to manage
the railroad schedule of an entire country, and even talk to a satellite in space!

 It’s our hope that you’ll find the book to be the best resource for starting to work
with this technology. Keep it close as a reference when you’re in doubt about how to
use a particular feature.

 Enjoy!

ANDRES ALMIRAY
www.it-ebooks.info

http://www.it-ebooks.info/

acknowledgments
Griffon in Action is the culmination of the efforts of a lot of people, without whom we
would not have been able to accomplish its publication. We would like to begin by
thanking Josh A. Reed for pitching the book during an autumn conversation as well as
Christina Rudloff at Manning for getting the ball rolling. We need to express our appre-
ciation to our development editors, Tara McGoldrick Walsh, Lianna Wlasiuk, and
Cynthia Kane. Associate publisher Michael Stephens organized the project and got us on
track to get the book finished in a timely and organized manner. Thanks to our editorial
director Maureen Spencer, and to our copy editors, Tiffany Taylor and Andy Carroll, for
making our writing readable. And thanks to the rest of the Manning staff, including
Melody Dolab, Karen Tegtmeyer, Steven Hong, and Candace Gillhoolley.

 It’s important that a technical book be accurate, so we would like to thank our for-
mal technical reviewers, Dean Iverson, Dierk König, and Al Scherer. We also thank
those who read the book and provided feedback during various stages of the book’s
development: Geertjan Wielenga, Venkat Subramanian, Ken Kousen, Scott Davis,
Michael Kimsal, Peter Niederwiser, Alex Ruiz, Guillaume Laforge, Dierk König,
Hamlet D’Arcy, Gerrit Grünwald, Carl Dea, Dave Klein, Santosh D. Shanbhag, Edward
Gibbs, Bob Brown, Doug Warren, Shawn Hartsock, Jean-Francois Poilpret, Amos
Bannister, Gordon Dickens, Glen Smith, Jonas Bandi, Mykel Alvis, Eitan Suez, Sven
Haiges, Jonathan Giles, Robby O'Connor, Josh Reed, and James Williams. We also
thank Dierk for contributing the foreword to our book.

 Thanks to all those who have contributed to the Groovy, Griffon, and Grails projects,
especially Guillaume Laforge, Graeme Rocher, Jochen Theodoru, Alex Tkachman, Paul
xix

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTSxx
King, Hans Dockter, Peter Niederwiser, Luke Daley, Spring Source, and VMWare. We
would also like to thank other Groovy, Griffon, and Grails community contributors,
including James Williams for SwingXBuilder, Alexander Klein for bringing new ideas
to the framework, and René Gröschke and his build-bending Gradle powers. They
have created some great stuff and should be proud of themselves. Thanks to Sven
Haiges, Glen Smith, and Peter Ledbrook for their informative Grails podcast, where
Griffon was present on several occasions. Other special mentions go to Peter for the
countless exchanges we had regarding Grails and Griffon; Dick “I loooove the Groovy”
Wall, Tor Norbye, Carl Quinn, and Joe Nuxoll for the Java Posse podcast; and Michael
Kimsal for Groovy Mag.
ANDRES ALMIRAY

First and foremost, I would like to thank my wife, Ix-chel, for being my rock, anchor,
companion, and soul mate. You wouldn’t be holding this book in your hands without
her patience, understanding, and driving force. I’d like to thank my parents for bringing
me into this world and for all their love through the years. Patricia and Astrud: where
would I be without all your help? A very special and warm thank you to Christianne,
Joseph, and Didier Muelemans, dear mentors and beacons of hope. We had a group
of professors back in college who shaped our professional lives and led us to where we
are. Bruno Guardia, Enrique Espinoza, Carlos Guerra, Angel Kuri, and Barbaro Ferro,
I’m grateful for all your lessons and your words of encouragement.

 Danno Ferrin is the man with the plan. He wrote the initial pieces that eventually
led us to bring forth the Griffon framework. You rock!

 Geertjan Wielenga started the book with us; sadly, he had to let it go after a while.
Still, his contributions in the early stages are deeply engrained in the book. Thank
you for keeping the light of desktop Java shining bright (and the NetBeans Griffon
plugin too!).

 Thank you to the members of the Groovy community at large: Guillaume Laforge,
Graeme Rocher, Jochen Theodoru, Alex Tkachman, Paul King, Hans Dockter, Peter
Niederwiser, Luke Daley, Adam Murdoch, Dierk König, Hamlet D’Arcy, Roshan
Dawrani, Cédric Champeau, Stéphane Maldini, Dave Klein, Zachary Klein, Ben Klein,
Michael Kimsal, Jim Shingler, Chris Judd, Joseph Nusairat, Ken Kousen, Ken Sipe,
Andrew Glover, Venkat Subramanian, Scott Davis, Tim Berglund, Matthew
McCullough, Erik Wendelin, Burth Beckwith, Jeff Brown, Peter Ledbrook, Glen
Smith, Sven Haiges, Tim Yates, Marc Palmer, Robert Fletcher, Tomas Lin, Andre
Steingress, Andrew Eisenberg, Andy Clement, Peter Gromov, Colin Harrington,
Shawn Hartsock, Søren Berg Glasius, Hubbert Klein Ikkink, Sébastien Blanc, Vaclav
Pech, Russel Winder, Bernardo Gomez Palacios, Domingo Suarez, Jose Juan Reyes,
and Alberto Vilches.

 Java on the desktop has evolved a lot since the platform’s inception back in 1995.
The following people have carried it on their shoulders and sent it forward: Amy
Fowler, Richard Bair, Jasper Potts, Joshua Marinacci, Hans Muller, Chet Haase, Scott
Violet, Chris Campbell, Shannon Hickey, Romain Guy, Kirill Grouchnikov, Mikael
www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS xxi
Grev, Jean-Francois Poilpret, Karsten Lentzsch, Gerrit Grünwald, Jim Weaver, Stephen
Chin, Dean Iverson, Jim Clarke, Jonathan Giles, Carl Dea, Jeanette Winzenburg, and
Rémy Rakic.

 Thanks to the friends and colleagues I’ve met across the years: el equipazo! (Artemio
Urbina, Jose Luis Balderas, Pedro Iniestra, and Francisco Macias), Ignacio Molina,
Agustin Ramos, Kevin Nilson, Mike van Riper, Alex Ruiz, Yvonne Price, Stoyan Vassilev,
Jay Zimmerman, Ben Ellison, Deepak Alur, Etienne Studder, Johannes Bühler, Sven
Herke, Alberto Mijares, Detlef Brendle, Sibylle Peter, Dieter Holz, and Hans-Dirk Walter.

 Last but not least, thanks to Mac Liaw, the evil genius behind it all.
JIM SHINGLER

I would like to thank my wife, Wendy, and son, Tyler, for their support and patience
during the writing of the book and in our journey together through life. I would like
to thank all those who have contributed to my personal and professional growth over
the years: Wendy Shingler, Tyler Shingler, James L. Shingler Sr., Linda Shingler,
George Ramsayer, Chris Judd, Andres Almiray, Danno Ferrin, Tom Posival, Ken
Heintz, Bryce Kerlin, Rick Burchfield, David Lucas, Chris Nicholas, Tim Resch, BJ
Allmon, Kevin Smith, Jeff Brown, Dave Klein, Paul King, Soren Berg Glasius, Michael
Kimsal, Joseph Nusairat, Brian Sam-Bodden. Steve Swing, Brian Campbell, Greg
Wilmer, Rick Fannin, Kunal Bajaj, Mukund Chandrasekar, Seth Flory, Frank
Neugebauer, David Duhl, Jason Gilmore, Teresa Whitt, Jay Johnson, Gerry Wright, and
the many other people who have touched my life. I’d also like to thank Jay Zimmerman,
Andrew Glover, Dave Thomas, Venkat Subramaniam, Scott Davis, Neal Ford, Ted
Neward, and the other great speakers and influencers on the “No Fluff Just Stuff” tour.
DANNO FERRIN

I would like to thank K.D., S.R., C.B, J.C., H.G., and H.F. for their support and patience.
www.it-ebooks.info

http://www.it-ebooks.info/

about this book
Griffon in Action is a comprehensive introduction to the Griffon framework that covers
the basic building blocks such as MVC groups, binding, threading, services, plugins,
and addons. But don’t let this quick summary fool you into thinking the topics are
covered lightly. The book provides deep dives into the topics at hand, following a
practical approach to get you started as quickly as possible.

Who should read this book
This book is for anyone interested in writing desktop applications for the Java virtual
machine (JVM). Whether you’re a seasoned Java developer or just starting on your
way, Griffon in Action will give you the knowledge to get started writing desktop applica-
tions in a productive manner and—why not?—have some fun while you’re at it.

 Some experience with Java Swing is assumed. Previous experience with Grails is an
advantage, but we take the time to explain the crucial concepts where we think a com-
mon base should be explicitly stated. If you’re coming from another language back-
ground (such as Ruby or Python), you should find that using the Groovy language
comes naturally.

Roadmap
Griffon in Action gives a quick, accessible, no-fluff introduction to writing desktop appli-
cations in the Java universe.

 The book is divided into four parts:

■ Part 1 Getting started
■ Part 2 Essential Griffon
xxii

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK xxiii
■ Part 3 Advanced Griffon
■ Part 4 Extending Griffon’s reach

We cover what Griffon is in chapter 1: where did it come from, and why was such a
development platform needed in the first place? This chapter presents theory along
with a good deal of practical advice and code—we want you to get a quick start right
off the bat.

 In chapter 2, we explain the configuration options for an application both at com-
pile time and runtime. The command-line tools are discussed extensively.

 In part 2 of the book, we go deep into the Griffon’s lair and explore the MVC com-
ponents found in every Griffon application. Our first stop is modeling data and estab-
lishing automatic updates via binding. We hope that by the end of chapter 3, you’ll
agree that binding makes life much easier that manually wiring up triggers; and event
listeners will be a task you cross off your list permanently.

 Walking further into the den of the beast in chapter 4, we’ll discuss several tech-
niques for building a UI. Declarative programming is certainly within your reach, and
the fact that Griffon uses Groovy—a real programming language—makes things
much sweeter. You’ll find that the relationships between the different components
emerge naturally as you progress.

 Closer to the nest, in chapter 5, are the components that form the logic of an
application: controllers and services. They’re responsible for routing events and data,
as well as responding to user events.

 All the pieces will have fallen into place at this point, but you may have some unan-
swered questions regarding the relationships between components. Chapter 6 covers
in great detail how the platform manages its components and the facilities it puts at
your disposal to make the most out of them.

 In part 3, we progress to more advanced topics. Building a responsive application
can be a daunting task, but in chapter 7 we’ll show you a few options that will help you
sort out multithreading obstacles with ease. Dealing with highly coupled components
is equally intimidating; but, fortunately, Griffon lets you react to well-timed events
depending on the application’s life cycle. You can even trigger your own events. And
did we mention that the event system is also useful for the command line? Events are
essential to building an application, and we’ll show you how to use them.

 Chapter 8 offers complete coverage of notifications. Then, we’ll move to an often-
neglected aspect of desktop applications: proper testing, involving the UI. Griffon sim-
plifies that task as well, as we’ll explain in chapter 9.

 Finally, we get into the subject of deployment in chapter 10. We cannot stress
enough how important it is to package the application in a way that customers can start
using it immediately. Griffon provides highly configurable options to gift-wrap that
application, and you need only concern yourself with how you’ll ship it to your custom-
ers. The beast should be tamed by now and comfortably accepting your commands.

 We’ll begin part 4 by flying the friendly skies of plugins and extensions. We’ll bank
left to chart our way through chapter 11. Plugins, a key Griffon feature, let you as a
www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOKxxiv
developer customize further how applications are built and packaged, for example. In
chapter 12, we’ll climb up to the highest clouds, close to the stars, where the imagina-
tion roams freely through the vast expanse of customized views.

 Before we complete our journey and shoot for the stars, you’ll put all your new-
found knowledge and training to the test in chapter 13. We’ll show you how to build a
prototype application that spans both desktop and web spaces, thanks to friendly
cooperation between Griffon and Grails.

 You’ll want to keep your flying steed well nourished and in excellent condition. In
chapter 14, we’ll look at the most common tools, such as editors and build tools, that
you can use to maximize Griffon’s performance.

Code conventions
This book provides examples that demonstrate in a hands-on fashion how to use Grif-
fon features. Source code in listings or in text appears in a fixed-width font like
this to separate it from the ordinary text. In addition, class and method names,
object properties, and other code-related terms and content in text are presented
using the same fixed-width font.

 Code and command-line input/output can be verbose. In some cases, the original
source code (available online) has been reformatted; we’ve added line breaks and
reworked indentation to accommodate the page space available in the book. In rare
cases, when even this was not enough, line-continuation markers were added to show
where longer lines had to be broken.

 Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered cueballs link to additional explanations that follow
the listing.

Source code downloads
You can access the source code for all examples in the book from the publisher’s website:
www.manning.com/GriffoninAction. All source code for the book is hosted at GitHub
(github.com), a commercial Git hosting firm. We’ll maintain the current URL via the
publisher’s website, also mirrored at https://github.com/aalmiray/griffoninaction. To
simplify finding your way, the source code is maintained by chapter.

Software requirements
All you need to get started is a working version of Oracle’s JDK6 (available from http://
java.oracle.com) that matches your platform and operating system plus the latest sta-
ble Griffon release (from http://griffon.codehaus.org/download). Additional soft-
ware may be required, such as plugins or tools; we’ll provide download instructions
when applicable.
www.it-ebooks.info

http://www.manning.com/GriffoninAction
https://github.com/aalmiray/griffoninaction
http://java.oracle.com/
http://java.oracle.com/
http://griffon.codehaus.org/download
http://www.it-ebooks.info/

ABOUT THIS BOOK xxv
Staying up to date
We wrote the book as Griffon evolved, targeting 0.9.5 specifically, however subsequent
Griffon versions may have been released by the time you read this. New Griffon ver-
sions bring new functionality, and although Griffon reached 1.0 status right about the
time this book was finished, the Griffon team made sure to keep away from introduc-
ing breaking changes after 0.9.5 was released. This means all the knowledge you learn
here is valid for future releases.

 If portions of source code require modification for a future release, you’ll be able
to find information on the Griffon in Action Author Online forum (www.manning
.com/GriffoninAction).

 You can also use the Author Online forum to make comments about the book,
point out any errors that may have been missed, ask technical questions, and receive
help from the authors and from other users.

About the authors
ANDRES ALMIRAY is a Java/Groovy developer and Java Champion, with more than a
decade of experience in software design and development. He has been involved in
web and desktop application developments since the early days of Java. His current
interests include Groovy and Swing. He is a true believer in open source and has par-
ticipated in popular projects like Groovy, Grails, JMatter, and DbUnit, as well as start-
ing his own projects. Andres is a founding member and current project lead of the
Griffon framework. He blogs periodically at http://jroller.com/aalmiray and is a regu-
lar speaker at international conferences. You can find him on twitter as @aalmiray.

DANNO FERRIN is a component lead engineer with experience in Java, Groovy, and
Swing. He’s the cofounder of Griffon, an active committer to the Groovy language,
and a former committer to both Tomcat and Ant.

JAMES SHINGLER is the lead technical architect for Big Lots (a nationwide retailer base
in Columbus, Ohio), a conference speaker, an open source advocate, and coauthor of
Beginning Groovy and Grails (2008). The focus of his career has been using cutting-edge
technology to develop IT solutions for the retail, insurance, financial services, and
manufacturing industries. He has 14 years of large-scale Java experience and signifi-
cant experience in distributed and relational technologies.
www.it-ebooks.info

http://www.manning.com/
http://www.manning.com/
http://jroller.com/aalmiray
http://www.it-ebooks.info/

about the cover illustration
The figure on the cover of Griffon in Action is captioned “An inhabitant of Breno.” The
illustration is taken from a reproduction of the travel logs of Francesco Carrara (1812–
1854), a historian and archaeologist, who traveled extensively through Dalmatia,
Northern Italy, and Austria, recording his impressions of the history, politics, and cus-
toms of the places he visited. The travel logs, accompanied by finely colored illustra-
tions, give a rare and detailed account of regional life in that part of Europe in the
mid-nineteenth century. The illustrations were obtained from a helpful librarian at
the Ethnographic Museum in Split, situated in the Roman core of the medieval center
of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304.

 Breno is a small town in the province of Brescia in the Lombardy region of Italy. The
town is the historical capital of the Valcamonica, the valley formed by the river Oglio as
it flows through the surrounding Alps. The area is famous for its petroglyphs dating
from around 20,000 BC, which are listed among UNESCO’s World Heritage Sites.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It’s now hard to tell apart the inhabitants of
different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
to life by illustrations from old books and collections like this one.
xxvi

www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

Getting started

Our goal in part 1 is to get you up to speed on what Griffon offers to the
desktop application development experience by diving directly into code. Part 1
is all about hitting the ground running.

 We’ll introduce you to Griffon by guiding you through building your first
Griffon application: a simple multitabbed file viewer. You’ll experience most of
the tasks required to design, build, package, and deploy an application; and
we’ll take a quick look at the building blocks of the framework, its conventions,
and the application’s life cycle.

 Taking inspiration from mythology, a Griffon (or Griffin) is a mystical beast
that’s half eagle, half lion. In antiquity, the lion was considered the king of
beasts, while the eagle held the same title for birds. Thus an amalgam of both
creatures results in the king of all creatures. The Griffon framework is an amal-
gam between the web world (thanks to its Grails heritage) and the desktop
world. Griffons were thought to guard treasures and riches; in our case, Griffon
is the key to a productive experience when writing desktop applications.

 Let’s begin our journey by looking the Griffon directly in the eye.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Welcome to the
Griffon revolution
Welcome to a revolution in how desktop applications are designed, developed, and
maintained. You may be wondering, a revolution against what exactly? Let’s begin with
how you pick the application’s source layout, or how you organize build time versus
runtime dependencies. What about keeping the code clean? How do you deal with
multithreading concerns? Can you extend an application’s capabilities with plugins?
These are but a few of the most common obstacles that must be sorted out in order to
get an application out the door. Many hurdles and obstacles lurk in your path, waiting
their turn to make you slip that important deadline or drive you to frustration.

 Griffon is a revolutionary solution that can make your job easier while bringing
back the fun of being programmer. Griffon is a Model-View-Controller (MVC)
based, convention-over-configuration, Groovy-powered desktop application devel-
opment framework. Using Griffon to build your desktop applications will result in

This chapter covers
■ What Griffon is all about
■ Installing Griffon
■ Building your first Griffon application
■ Understanding how Griffon simplifies desktop

development
3

www.it-ebooks.info

http://www.it-ebooks.info/

4 CHAPTER 1 Welcome to the Griffon revolution
organized code and less of it. But why would you build a desktop application in the
first place? There are times when being close to the metal pays off really well: for
example, how would you access a local device like a scanner or a printer from a web
page? Via some other domain-specific device, perhaps? This is a valid use case sce-
nario in both financial and health industries. We believe that once you use Griffon,
you’ll enjoy it as much as we do.

 This chapter will get you started building Griffon applications. It lays out the core
concepts and underlying designs behind the framework. You’ll start by getting your
development environment set up and building your first Griffon application. You’ll
build on your first application and create a simple tab-based editor with a menu and
actions to open and save files. We’ll review some of the challenges with Java-based
desktop development and see how Griffon approaches it. Along the way, we’ll discuss
some of the core Griffon constructs, components, and philosophy.

 Are you ready to become truly productive building applications for the desktop?
Let’s begin!

1.1 Introducing Griffon
Griffon’s goal is to bring the simplicity and productivity of modern web application
frameworks like Grails and Rails to desktop development. Griffon leverages years of
experience and lessons learned by Grails, Groovy, Rails, Ruby, Java Desktop, and Java
developers and their communities. Griffon has adopted many of those languages’
and frameworks’ best practices, including Model-View-Controller, convention-over-
configuration, a modern dynamic language (Groovy), domain-specific languages (DSLs),
and the builder pattern.

 Web application development as we knew it suddenly changed in 2004, when a
framework named Ruby on Rails (RoR; http://rubyonrails.org) was released in the
wild. It showed that a dynamic language like Ruby could make you highly productive
when teamed with a well-thought-out set of conventions. Add the convention-over-
configuration paradigm and the viral reception from disheartened Java developers
longing for something better than JEE, and RoR suddenly stepped into the spotlight.

 A year later, another web framework appeared: its name was Grails, and Groovy was
its game. It followed RoR’s ideals, but its founders decided to base the framework on
well-known Java technologies such as the Spring framework, Hibernate, SiteMesh, and
Quartz. Grails included a default database and a full stack to develop JEE applications
without the hassle that comes with a regular JEE application.

 Grails grew in popularity and a community was created around it, to the point that
it’s now the most successful and biggest project at the Codehaus (www.codehaus.org),
an organization that hosts open source projects; that’s where Grails was born and
Griffon is hosted.

 Grails is a convention-over-configuration, MVC-based, Groovy-powered web appli-
cation development framework. Does that definition sound familiar? Just exchange
desktop for web, and you get Griffon.
www.it-ebooks.info

http://rubyonrails.org
www.codehaus.org
http://www.it-ebooks.info/

5Introducing Griffon
 Both frameworks share a lot of traits, and it’s no surprise that Griffon’s MVC design
and plugin facility were based on those provided by Grails, or that the command-line
tools and scripts found in one framework can also be found in the other. The decision
to use Grails as the foundation of Griffon empowers developers to switch between web
and desktop development: the knowledge gathered in one environment can easily be
translated to the other.

NOTE If you’re in a hurry to understand how to use plugins, take a quick
peek at chapter 11.

Let’s get started by setting up the development environment and building your first
simple Griffon application.

1.1.1 Setting up your development environment
In order to get started with Griffon, you’ll need the following three items in your tool-
box: a working JDK installation, a binary distribution of the Griffon framework, and
your favorite text editor or IDE.

 First, make sure you have the JDK installed. The version should be 1.6 or later: to
check, type javac -version from your command prompt.

 Next, download the latest IzPack-based Griffon distribution from http://griffon
.codehaus.org/download. The file link looks like this one:

griffon-0.9.5-installer.jar

Note that the version number may differ. The important thing is that you pick the
IzPack link. IzPack provides a cross-platform installer that should take care of installing
the software and configuring the environment variables for you. It will even unpack the
source distribution of the framework, where you can find sample applications that are
useful for learning cool tricks. You can run the installer by locating the file and double-
clicking it. Alternatively, you can run the following command in a console prompt:

java –jar griffon-0.9.5-installer.jar

If for some reason the installer doesn’t work for you, or if you’d rather configure
everything by yourself, download the latest Griffon binary distribution from the same
page in either zip or tar.gz format. Uncompress the downloaded file into a folder of
your choosing (preferably one whose name doesn’t contain whitespace characters).
A standard Griffon distribution contains all the files and tools you need to get going,
including libraries, executables, and documentation.

CAUTION If you’re working on a Windows platform, avoid installing Griffon
in the special Program Files directory, because the operating system may
impose special restrictions that hinder Griffon’s setup.

Next, set an environment variable called GRIFFON_HOME, pointing to your Griffon
installation folder. Finally, add GRIFFON_HOME/bin (or %GRIFFON_HOME%\bin on
Windows) to your path:
www.it-ebooks.info

http://griffon.codehaus.org/download
http://griffon.codehaus.org/download
http://www.it-ebooks.info/

6 CHAPTER 1 Welcome to the Griffon revolution
■ OS X and Linux—This is normally done by editing your shell configuration file
(such as ~/.profile) by adding the following lines:

export GRIFFON_HOME=/opt/griffon
export PATH=$PATH:$GRIFFON_HOME/bin

■ Windows—Go to the Environment Variables dialog to define a GRIFFON_HOME
variable and update your path settings (see figure 1.1).

Verify that Griffon has been installed correctly by typing griffon help at your com-
mand prompt. This should display a list of available Griffon commands, confirming
that GRIFFON_HOME has been set as expected and that the griffon command is avail-
able on your path. The output should be similar to this:

$ griffon help
Welcome to Griffon 0.9.5 - http://griffon.codehaus.org/
Licensed under Apache Standard License 2.0
Griffon home is set to: /opt/griffon

Be aware that Griffon may produce output in addition to this—particularly when run
for the first time, Griffon will make sure it can locate all the appropriate dependencies
it requires, which should be available in the folder where Griffon was installed.

Griffon commands
The griffon command is the entry point for other commands, such as the help com-
mand you just used. It’s a good idea to familiarize yourself with the additional
commands because they’re useful when you’re developing Griffon applications.
Using Griffon’s command line will be explored further in chapter 2.

Figure 1.1 Updating variable settings
on Windows
www.it-ebooks.info

http://www.it-ebooks.info/

7Introducing Griffon
Now you’re ready to start building your first application. You’ll start with a default
Griffon application and evolve it into a simple tab-based editor with a menu and
actions to open and save files. The application is small enough that you don’t need to
use an IDE. The goal is to learn how Griffon works, and using an IDE right now would
just add an extra layer for you to figure out.

 The first order of business in developing an application is setting up the directory
layout and defining references to the Griffon framework.

1.1.2 Your first Griffon application

Fortunately, you can do all the bootstrapping plus a bit more with a simple command.
All Griffon applications use the create-app command to bootstrap themselves. Enter
the following in your command-line window:

$ griffon create-app groovyEdit

That’s it! You can give yourself a pat on the back, because you’ve already done a lot of
the work that would have taken you considerably longer in regular Java/Swing. The
create-app command created the appropriate directory structure, the application,
and even skeleton code that can be used to launch the application.

But don’t take our word for it; take it for a spin.
Make sure you’re in the main folder of your new
application structure:

$ cd groovyEdit

Then type the following command at the com-
mand prompt:

$ griffon run-app

On issuing that command, you should see
Griffon compiling and packaging your sources.
After a few seconds, you’ll see a screen similar to
figure 1.2.

 Granted, it doesn’t look like much yet, but remember that although you haven’t
touched the code, the application is up and running in literally seconds.1 You ran the
application from the command line, but that isn’t your only option.

A quick peek at a simple Swing application
If you’re new to Swing, listing 1.9 in section 1.3 is a simple Java Swing application.
It will give you an idea of how Java desktop development was done before Griffon.

1 That is one of the advantages of the convention-over-configuration paradigm.

Figure 1.2 Your first application is up
and running in standalone mode.
www.it-ebooks.info

http://www.it-ebooks.info/

8 CHAPTER 1 Welcome to the Griffon revolution
 Java became famous in 1995 because it was possible to create little applications
called applets2 that run in a browser. Java also provides a mechanism for delivering
desktop applications across the network: Java Web Start. Although powerful, these
options carry with them the burden of configuration, which can get tricky in some sit-
uations. Wouldn’t it be great if Griffon applications could run in those two modes as
well, without the configuration hassle?

 As you’ll quickly discover, Griffon is all about productivity and having fun while
developing applications. That means it’s possible to provide these deployment options
in a typical Griffon way. Close the GroovyEdit application if it’s still running. Now, type
the following command, and you’ll launch the current application in Web Start mode:

$ griffon run-webstart

You should see Griffon compiling and packag-
ing your sources. After a few seconds, you’ll see
a screen similar to figure 1.3.

 Notice that Griffon performs some addi-
tional tasks, such as signing the Java archives
(jars). You’ll also see the Java Web Start splash
screen and a security dialog asking you to accept
the self-signed certificate. After you accept the
certificate—which is OK because the application
isn’t malicious in any way—you should again see
a screen similar to figure 1.2.

 Finally, you can run the application in applet
mode with the following command:

$ griffon run-applet

You should see Griffon compiling and packag-
ing your sources. After a few seconds, you’ll see
a screen similar to figure 1.4.

 This command signs the application’s jars as
well, if they’re not up to date. But if you
launched the applet mode after the previous
step, you won’t see the jars being signed. You’re
asked again to accept the certificate if you didn’t
do so previously. Then, after a moment, you
should see the application running again, using
Java’s applet viewer.

 Bearing in mind that you can deploy the application in any of these three modes,
we’ll continue with the standalone mode for the rest of the chapter, because it’s the

2 Who could forget the Dancing Duke and Nervous Text applets?

Figure 1.3 Your first application running
in Web Start mode

Figure 1.4 The GroovyEdit application
running in applet mode
www.it-ebooks.info

http://www.it-ebooks.info/

9Building the GroovyEdit text editor in minutes
fastest (it doesn’t require signing the jars that have been updated when you compile
the sources repeatedly). We’ll cover deployment options in greater detail in chapter
10, where you’ll even learn to create a cross-platform installer with minimal configura-
tion from your side.

 We hope you’re getting excited about the painless configuration: so far, you haven’t
done any! In the next section, you’ll build on this great start and create an editor.

1.2 Building the GroovyEdit text editor in minutes
Many consider Swing application development painful. “Aaargh, Swing!” sums up this
attitude. Swing development isn’t easy, and time to market suffers because of all the
tweaking required. There’s truth in these complaints, at least partly because the Swing
toolkit is more than 10 years old. It’s powerful, but it requires too much work for a
new developer to come to terms with quickly. Add to that the perils of Java’s multi-
threaded environment and the verbosity of Swing’s syntax, and the life of a Swing
developer, especially a newbie, isn’t easy.

 Given these hurdles, is it even possible to build a meaningful Swing application in
minutes? The answer is, of course, “Yes!” One of the core features of Griffon is a pow-
erful domain-specific language (DSL) that overcomes the issues we just mentioned.
SwingBuilder is a core Griffon component that allows you to easily create an applica-
tion using Swing. You’re about to find out how easy using Swing can be.

 In this section, you’ll expand your GroovyEdit application by adding tabs, a menu
structure, and the ability to open, save, and close files. At the end, you should have a
working application that looks similar to figure 1.5.

 At the next stop in your journey, you’ll add a bit of spice to the application by
changing the way it looks. To do so, you’ll modify your application’s view.

1.2.1 Giving GroovyEdit a view

The goal we’ve set for this chapter is to create an application that looks like figure 1.5,
which clearly doesn’t resemble figure 1.3. A quick glance at figure 1.5 reveals the fol-
lowing elements:

Figure 1.5 Finished GroovyEdit
application displaying two tabs with
its own source code
www.it-ebooks.info

http://www.it-ebooks.info/

10 CHAPTER 1 Welcome to the Griffon revolution
■ The menu bar has a single visible menu item (File).
■ Each tab displays the file name as its title.
■ The contents area has both vertical and horizontal scrollbars.
■ Each tab includes a Save button and a Close button. Those buttons have a mne-

monic set on their label.
■ The Save button is disabled.

You’re ready to roll up your sleeves and start coding! You’ll start by editing the applica-
tion’s view.

UNDERSTANDING THE ROLE OF THE VIEW

Griffon follows the MVC pattern (Model-View-Controller). This means the smallest
unit of structure in the application is an MVC group. An MVC group is a set of three
components, one for each member of the MVC pattern: model, view, and controller.
Each member follows a naming convention that’s easy to follow. We’ll look more
closely at the MVC paradigm in section 1.4.

 Griffon created an initial MVC group for the application when you issued the
create-app command. Equipped with this information, let’s look at the view: the part
of the application the user sees and interacts with (see the following listing). This file
is located at griffon-app/view/groovyedit/GroovyEditView.groovy.

package groovyedit
application(title: 'groovyEdit', size: [320,340], locationByPlatform:true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 // add content here
 label('Content Goes Here') // delete me
}

Griffon uses a declarative programming style to reduce the amount of work required
to build an application. From this code, you can see that the create-app command
defines an application titled GroovyEdit with a default size of 480 by 320, some icons,
and a Content Goes Here label.

 Let’s take a closer look. One of the goals of Griffon is to simplify and shield you
from implementation details. Java can be a bit of a hassle: desktop applications extend
javax.swing.JFrame, but applets extend javax.swing.JApplet. Griffon takes care
of this for you. In listing 1.1, the application node resolves to a javax.swing.JFrame
instance when run in standalone mode and a javax.swing.JApplet instance when run
in applet mode. After the code sets some basic properties, such as the title and the loca-
tion, in the application node, the label component resolves to javax.swing.JLabel.

 Next you’ll move forward with the application by adding a file chooser (JFile-
Chooser), a menu structure (JMenuBar), and a tab structure (JTabbedPane).

Listing 1.1 Default GroovyEditView
www.it-ebooks.info

http://www.it-ebooks.info/

11Building the GroovyEdit text editor in minutes
ADDING UI ELEMENTS

Following the preferred convention-over-configuration approach laid out by Griffon,
the GroovyEditView.groovy file should contain all the view components this MVC
group will work with. Replace the contents of the entire file (listing 1.1) with the code
in the following listing.

package groovyedit
fileChooserWindow = fileChooser()
fileViewerWindow = application(title:'GroovyEdit', size: [480,320],

locationByPlatform:true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 menuBar {
 menu('File') {
 menuItem 'Open'
 separator()
 menuItem 'Quit'
 }
 }
 borderLayout()
 tabbedPane(id: 'tabGroup', constraints: CENTER)
}

By now, you can begin to appreciate a few advantages of using a general programming
language like Groovy instead of a markup language like XML for declarative UI pro-
gramming. The code is close to what you would have written in Java, yet the verbosity
is kept to a minimum; there’s hardly a trace of visual clutter.

NOTE If you’re not that familiar with Groovy, please refer to Groovy in Action
(www.manning.com/koenig2/). For now, think of Groovy as a superset of
Java with shorthand notations to make your programming life easier.

In order to refer to these components from other files, you need to declare references
for the file chooser and the tabbed pane. The return value of the first node call
(fileChooser) is kept as an explicit variable B as you would in regular Groovy code.

SwingBuilder naming conventions
Swing components in Groovy follow naming conventions. Let’s take JLabel, for
example. Its corresponding Griffon component is label. Can you guess what the cor-
responding component is for JButton? If you guessed button, you’re correct!

The naming convention is roughly this: remove the prefixing J from the Swing class
name, and lowercase the next character. We’ll discuss declarative UI programming
with Groovy thoroughly in chapter 5, but for now this tip can save you from some head-
scratching as you read this chapter.

Listing 1.2 Adding menus and a tabbed pane to GroovyEditView.groovy

Declare FileChooserb

Declare menuBar and
menu structure

Declare reference
via id

c

www.it-ebooks.info

www.manning.com/koenig2/
http://www.it-ebooks.info/

12 CHAPTER 1 Welcome to the Griffon revolution
The second way to define a reference is by setting an id property c on the target
node. In this case, a variable named tabGroup is created that can be referenced from
the view script. The advantage of the second approach, as you’ll see later in the book,
is that you can create variable names in a dynamic way.

 Having done this, you can refer back to these components from the other files in
your application, while at the same time ensuring that all the view components are in
the same place. Imagine how useful that will be for someone maintaining the applica-
tion. They’ll know exactly where to go to find the application’s view components.

 Run the application by typing the following Griffon command at the command
prompt:

$ griffon run-app

When you do so, you should see a screen similar to figure 1.6.

ADDING THE MENU ITEMS

Next, you’ll spend some time working with the menu items. You’ve hard-coded the
names of the actions into the view of your application. Griffon lets you separate your
action code from the rest of your application. Defining an action also leads to code
reuse, because many Swing components can use the action definition to configure
themselves—for example, their label and icon—and also to handle the job they’re
supposed to do.

 You’ll define two actions in GroovyEditView.groovy. Note the id of each action:

actions {
 action(id: 'openAction',
 name: 'Open',
 mnemonic: 'O',
 accelerator: shortcut('O'))
 action(id: 'quitAction',
 name: 'Quit',
 mnemonic: 'Q',
 accelerator: shortcut('Q'))
}

Figure 1.6 The GroovyEdit
application now has a menu.
www.it-ebooks.info

http://www.it-ebooks.info/

13Building the GroovyEdit text editor in minutes
This code must precede the code that uses the actions. For example, you could insert
it before the application node or just before the application node is defined.

 In the definition of your menu items, change menuItem 'Open' to menuItem
openAction. Do the same for the Quit action:

 menuBar {
 menu('File') {
 menuItem openAction
 separator()
 menuItem quitAction
 }

Your GroovyEditView.groovy file should now look like the following listing.

package groovyedit
actions {
 action(id: 'openAction',
 name: 'Open',
 mnemonic: 'O',
 accelerator: shortcut('O'))
 action(id: 'quitAction',
 name: 'Quit',
 mnemonic: 'Q',
 accelerator: shortcut('Q'))
}

fileChooserWindow = fileChooser()
fileViewerWindow = application(title:'GroovyEdit', size:[480,320],

locationByPlatform:true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 menuBar {
 menu('File') {
 menuItem openAction
 separator()
 menuItem quitAction
 }
 }
 borderLayout()
 tabbedPane id: 'tabGroup', constraints: CENTER
}

Run the application again, and you’ll see the newly defined properties of the menu
items as shown in figure 1.7. They now include mnemonics and accelerators, honor-
ing the current operating system.

 What about adding some behavior to the menu items? A controller is the appropri-
ate location for behaviors.

Listing 1.3 Full source of GroovyEditView.groovy

Set open action

Set quit action
www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 1 Welcome to the Griffon revolution
1.2.2 Making the menu items behave: the controller

Remember the MVC group that was created by default along with the skeleton code?
One of the files that was created has the controller responsibility; its name should be
GroovyEditController.groovy, per the naming convention, and it should be located
in the griffon-app/controllers/groovyedit folder.

Now you’ll edit the controller file and define the behavior of your actions, as shown in
the next listing.

package groovyedit
import javax.swing.JFileChooser
class GroovyEditController {
 def view

 def openFile = {
 def openResult = view.fileChooserWindow.showOpenDialog()
 if(JFileChooser.APPROVE_OPTION == openResult) {
 }
 }

 def quit = {

Griffon naming conventions
By now you’ll probably have discovered the basics of the Griffon naming conventions.
It should follow that if the view and controller for the current MVC group are called
GroovyEditView and GroovyEditController, respectively, the model should be Groovy-
EditModel. It should also be evident that if the view’s location is griffon-app/views
and the controller’s is griffon-app/controllers, the model’s location should be griffon-
app/models. We’ll begin looking at models in section 1.2.4 and cover the directory
layout in more detail in the next chapter.

Listing 1.4 GroovyEditController with two actions

Figure 1.7 Native menu
accelerators (Windows)

Define file action

To be defined
shortly

Define quit
action

b

www.it-ebooks.info

http://www.it-ebooks.info/

15Building the GroovyEdit text editor in minutes
 app.shutdown()
 }

}

You start by declaring a view field, which, when the application is running, will point
to an instance of the view script. The framework will make sure to supply the correct
instance. That’s great, because now you can refer to the view components you’ve
defined there (through the references you created, remember?).

 Let’s move on with the implementation of the behavior for the Quit and Open File
actions. In the case of the Quit definition B, notice that you also have access to the
application as a whole, via the app reference—another handy reference automatically
injected at runtime.

Because Griffon handles the life cycle of the application for you, you can call the
shutdown() method on the application reference. It should then shut down gracefully
when called. If you’re interested in the application’s life cycle and how the framework
manages it, be sure to read section 2.4 in the next chapter.

 With this simple action completed, let’s focus on the business logic of your applica-
tion, which in this case is the opening of a file. That’s where the openFile() method
comes into play. The code is similar to what you can find in a regular Swing applica-
tion, except that you refer to the components in your view.

 You refer to the fileChooser that you defined in the view, after which you need to
add handling code for dealing with the file that has been opened.

You’re almost ready to try it again, but first hook up the previous behavior to each
action. Return to the view file, and change the action as follows:

To declare a variable or not
You may have noticed that a view property is defined for the controller whereas the
app variable is not. Still, the code will compile and work as expected. What’s going
on? How can you tell which variable needs to be declared and which doesn’t? In a
nutshell, every model, view, and controller class has direct access to the applica-
tion’s instance via the app variable that’s always injected. In contrast, other variables
must be declared explicitly. Don’t worry: we’ll spell out all the various properties you
may declare in each artifact type as we continue the book. Chapter 6 discusses all
things MVC.

Closure support in Griffon
Both openFile() and quit() look like methods, but they’re actually something dif-
ferent. Groovy has support for closures—reusable blocks of code. Closures are far
more versatile than methods in many situations, as you’re about to see.
www.it-ebooks.info

http://www.it-ebooks.info/

16 CHAPTER 1 Welcome to the Griffon revolution
action(id: 'openAction',
 name: 'Open',
 mnemonic: 'O',
 accelerator: shortcut('O'),
 closure: controller.openFile)

Note the closure attribute: it links back to the controller file where your behavior is
neatly organized in a closure. Also notice the symmetry in the available field names:
the controller has access to a view instance, and the view has access to a controller
instance. Again, this way, a maintainer of your code will know where each piece of the
application is found: views in the view file and behavior in the controller file.

 Make sure you also change the definition of the Quit action in the view file, so it
links back to the quit closure in the controller file.

 If you run the application at this point and click the Open menu, a fileChooser
should appear, but nothing else happens if you select a file and click the Open button.
You haven’t worked on that part of the application yet! You’ll do so in the next section
via a second MVC group, which will provide the view, the controller, and the model for
every tab.

1.2.3 How about a tab per file?

In many modern editors, when you open a new file, it’s opened in a new tab with the
file name displayed on the tab. To implement this UI functionality, you’ll create a MVC
group to display the file that you’ve opened via the Open action. The new MVC group
is where you’ll provide the view, controller, and model for that tab.

 Return to the command prompt in the GroovyEdit application’s root folder, and
run this command:

$ griffon create-mvc filePanel

You named the group filePanel because you’ll use a panel container, but you could
have chosen FileTab or some other name that indicates this group is related to files
and tabs. Again you end up with three files that follow the MVC pattern, each orga-
nized in a specific folder.

CREATING THE VIEW FOR THE FILEPANEL MVC GROUP

You’ll begin by adding some content to the view, whose name you should be able to
figure out by now: FilePanelView.groovy. See the following listing.

package groovyedit
tabbedPane(tabGroup, selectedIndex: tabGroup.tabCount) {
 panel(title: tabName, id: 'tab') {
 borderLayout()
 scrollPane(constraints: CENTER) {
 textArea(id: 'editor')
 }
 hbox(constraints: SOUTH) {
 button 'Save'

Listing 1.5 FilePanelView with a tab, a text area, and buttons

Define
tabb
www.it-ebooks.info

http://www.it-ebooks.info/

17Building the GroovyEdit text editor in minutes
 button 'Close'
 }
 }
}

Your view defines a tabbed pane this time, instead of an application. Because you’ll
embed this particular view in a tabbed pane, there’s no need for a top-level window.
Although at this moment it may appear that you’ll create a new tabbed pane each
time a view of this type is instantiated, nothing could be further from the truth.
Review the code again and notice that the tabbedPane references a tabGroup vari-
able B, which you’ll probably remember as a variable from listing 1.2. The tabbed-
pane component is one of the many smart Groovy Swing components that know
when they should create a new instance and when they should reuse a previous
instance, as is the case here.

 Tabbed panes accept any Swing node as content. Provided you set a title for them
(and a few additional properties), that title value will be used as the tab’s title. Because
you want the tab’s title to be the current file being edited, you can’t set it to a particu-
lar value; but you can set it to a variable with a value that will be determined at a later
point in your application, in a controller.

CONNECTING TWO MVC GROUPS

You may wonder how you connect the filePanel MVC group to the groovyEdit MVC
group. Back in the GroovyEditController, fill out the if clause of the openFile()
action as follows:

if(JFileChooser.APPROVE_OPTION == openResult) {
 File file = view.fileChooserWindow.selectedFile
 String mvcId = file.path + System.currentTimeMillis()
 createMVCGroup('filePanel', mvcId,
 [file: file, tabGroup: view.tabGroup, tabName: file.name, mvcId:
 mvcId])
}

Every member of an MVC group is able to instantiate another MVC group, via create-
MVCGroup(). Although the particulars of MVC groups will be covered in chapter 6, know
that this method requires three arguments: the type of group to be created, a unique
identifier, and additional values that can be useful when setting up each member.

 Take careful note of the values you’re passing to the filePanel MVC group. For
example, the file that has been opened is one of these values, as well as its name.
Within the controller of the filePanel MVC group, you’ll use these values to initialize
the model you’ll create there. That will expose these values to the rest of the MVC
group in a neat and consistent manner. Remember the tabGroup and tabName vari-
ables in FilePanelView.groovy? Now you know where their values come from.

 Before going further, run the application again. You should see a window like the
one shown in figure 1.8 (you’ve opened a few files).

 Nothing is shown in the tabs yet, because you haven’t added the necessary code.
But the name of the tab is the name of the file you instructed the code to open. In the
www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 1 Welcome to the Griffon revolution
next section, you’ll add the missing pieces: reading the content of the file and
enabling the Save and Close buttons.

1.2.4 Making GroovyEdit functional: the FilePanel model

A few variables should be shared consistently between the script providing the view
and the script providing the behavior. Models fit perfectly for that responsibility, mediat-
ing data between controllers and views. To that end, edit the FilePanelModel.groovy file,
which is in the griffon-app/models/groovyedit folder, and add the following definition.

package groovyedit
import groovy.beans.Bindable

class FilePanelModel {
 File loadedFile
 @Bindable String fileText
 @Bindable boolean dirty
 String mvcId
}

You define four properties: one for the file being edited, another to specify its content
as text, a property indicating whether the file’s content is changed, and a unique id
for the tab.

 As you can see, each property in a Groovy class is formed by defining its type and
its name. As opposed to what happens in Java, where these properties would be
scoped as package-protected fields, these fields will be mapped to their correspondent
properties following the Java Beans convention. The Groovy compiler will generate
the appropriate bytecode instructions for a pair of methods (the getter and setter)
and a private field. Also, notice the @Bindable attribute, which sets up Griffon data
binding. We’ll look at binding in the next section.

 Next, as you may have already guessed, you’ll configure the controller.

Listing 1.6 FilePanelModel with required model properties

Figure 1.8 GroovyEdit displaying
two tabs. But where is the content?
www.it-ebooks.info

http://www.it-ebooks.info/

19Building the GroovyEdit text editor in minutes
1.2.5 Configuring the FilePanel controller

You have a model, you have a view, and now it’s time to finish the MVC group by
addressing the controller, as shown in the next listing. The controller brings it all
together: it contains the logic to manage loading the file, saving the file, closing the
file, and making sure the MVC group is properly initialized.

package groovyedit
class FilePanelController {
 def model
 def view

 void mvcGroupInit(Map args) {
 model.loadedFile = args.file
 model.mvcId = args.mvcId
 execOutsideUI {
 String text = model.loadedFile.text
 execInsideUIAsync { model.fileText = text }
 }
 }

 def saveFile = {
 execOutsideUI {
 model.loadedFile.text = view.editor.text
 execInsideUIAsync { model.fileText = view.editor.text }
 }
 }

 def closeFile = {
 view.tabGroup.remove(view.tab)
 destroyMVCGroup(model.mvcId)
 }
}

Remember from the previous controller that a view property was auto-injected at run-
time? Well, in this case you also need a model. The framework again figures out the
correct type of model it should inject B, thanks to you defining a model field. Without

Behind the scenes
In a Java application, you would have to create the getters and setters yourself or use
an IDE to generate them. Griffon takes care of this for you. Talk about savings in lines
of code! And as an added bonus, the @Bindable annotation generates the required
code to make each annotated property observable. The property will fire up Property-
ChangeEvents whenever the value is modified. Say farewell to boilerplate code.

The particulars of bindings and @Bindable will be covered in chapter 3, where we
explain the main responsibilities of models. You’ll see later in chapters 4 and 5
how controllers and views communicate with each other thanks to bindings set on
model properties.

Listing 1.7 FilePanelController’s full implementation

Inject model and
view properties

b

Run outside
EDT

c

Read file

Run in
EDTd

Write file
www.it-ebooks.info

http://www.it-ebooks.info/

20 CHAPTER 1 Welcome to the Griffon revolution
going into too much detail at this point, the init method initializes the entire MVC
group with the values received when the user opens a file. Calls to execOutsideUI c
and execInsideUIAsync d handle the threading for your application. For now,
remember the following rule: when doing a computation or an operation that isn’t
related to the UI, perform it outside the event dispatch thread (EDT), but come back
to it if you do need to perform a UI update.

Similarly, you interact with your model from the saveFile closure, as well as from the
closeFile closure, while also interacting with your view. This is Griffon’s solution to
connecting the separate parts that make up your application. It might take some get-
ting used to at first, but it’s intuitive.

DEFINING ACTIONS

Next, as you did for the GroovyEdit MVC group, you need to hook the Save and Close
behaviors into the view. You do this by using the action’s id parameter. First, in the
FilePanelView.groovy class, define these actions before the tabbedPane node:

actions {
 action(id: 'saveAction',
 enabled: bind {model.dirty},
 name: 'Save',
 mnemonic: 'S',
 accelerator: shortcut('S'),
 closure: controller.saveFile)
 action(id: 'closeAction',
 name: 'Close',
 mnemonic: 'C',
 accelerator: shortcut('C'),
 closure: controller.closeFile)
}

Then, you change the buttons so the ids of these actions are hooked into them, as in
this case for the Save action:

button saveAction

Do the same for the Close action.
 Finally, let’s look at how the most important functionality in your application

is implemented.

Multithreaded Swing applications
As you’re probably aware, the Java platform provides a multithreaded environment for
running applications. There’s no doubt that concurrent programming is a hard task—
add the fact that Swing is a single-threaded UI toolkit, and you get a recipe for disas-
ter. But don’t worry: you’ve only caught a glimpse of what Griffon has to offer to aid
you in creating high-performing, multithreaded Swing applications. We’ll cover thread-
ing in more detail in chapter 7.
www.it-ebooks.info

http://www.it-ebooks.info/

21Building the GroovyEdit text editor in minutes
DISPLAYING THE OPEN FILE’S CONTENTS

How do you set the content of the opened file to the text value of the text area? As you
may recall, the file’s contents are read when the controller is initialized. Those con-
tents are then saved into a property in the model, which means you should edit the
definition of your text area in FilePanelView.groovy and bind its text property to
the file’s contents in the model:

textArea(id: 'editor', text: bind {model.fileText})

IMPLEMENTING THE SAVE BUTTON

You want to make sure that when there’s a change to the text in the text area, the Save
button is enabled. But it should be disabled if the contents return to their original
state (for example, if you edit the text so it’s what it previously was).

 Add the following bean definition to the end of the view file:

bean(model, dirty: bind {editor.text != model.fileText})

You’ve introduced a number of nodes for this particular view. The particulars for
working with nodes and views will be discussed in chapter 4. Now, whenever the text in
the text area doesn’t match the text in the model, the dirty boolean’s value switches,
which enables or disables the Save button.

 And that’s it. The code for this view is shown in the following listing.

package groovyedit
actions {
 action(id: 'saveAction',
 enabled: bind {model.dirty},
 name: 'Save',
 mnemonic: 'S',
 accelerator: shortcut('S'),
 closure: controller.saveFile)
 action(id: 'closeAction',
 name: 'Close',
 mnemonic: 'C',
 accelerator: shortcut('C'),
 closure: controller.closeFile)
}

tabbedPane(tabGroup, selectedIndex: tabGroup.tabCount) {
 panel(title: tabName, id: 'tab') {
 borderLayout()
 scrollPane(constraints: CENTER) {
 textArea(id: 'editor', text: bind {model.fileText})
 }
 hbox(constraints: SOUTH) {
 button saveAction
 button closeAction
 }
 }
}

bean(model, dirty: bind {editor.text != model.fileText})

Listing 1.8 Full source of FilePanelView.groovy

Action
set

Content area

Button
area

Bind model
dirty property
www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 1 Welcome to the Griffon revolution
Run the application, and it will function as it should. Open a file or two, make some
changes, and then save.

 We’ve covered a lot of ground. You have a functional application, and it required
no configuration at all. You’re also able to launch the application in three different
modes, again with no configuration changes from your side. Let’s look at some statis-
tics. At the command prompt, type griffon stats, and you should see output similar
to the following:

$ griffon stats

+----------------------+-------+-------+
| Name | Files | LOC |
+----------------------+-------+-------+
Models	2	12
Views	2	56
Controllers	2	40
Lifecycle	5	5
Integration Tests	2	10
+----------------------+-------+-------+		
Totals	13	123
+----------------------+-------+-------+

Amazing! The application took 123 lines of code and 13 files, of which you only
needed to edit 5. We won’t ask you to do mind gymnastics to figure out how much
code it would take you to accomplish the same feat with regular Java/Swing—it’s too
painful and tiresome.

 You may argue that although the application is functional, it’s lacking in some
areas: for example, each tab has Close and Save buttons instead of the application pro-
viding Close/Save menu items. There’s no Help menu, and the application doesn’t
confirm that it’s saving edits to disk before you quit it. As the book continues, you’ll
see how to add functionality to the application. The take-away here is that you’ve built
a functional multitabbed editor with relative ease.

 In order to gain a deeper understanding of Griffon and its driving goals, let’s take
a couple of minutes to look at some of the challenges of traditional Java desktop devel-
opment and follow up with Griffon’s approach to the challenges.

1.3 Java desktop development: welcome to the jungle
If you’ve developed Java desktop applications, take a few moments to reflect on your
past experiences. What things prevented you from reaching a goal on time? What prac-
tices would you have applied instead? Did the language get in the way instead of helping
you? Chances are, you’ve encountered one or more of the following pain points:

■ Lots of boilerplate code (ceremony versus essence)
■ UI definition complexity
■ Inconsistent application structure
■ Lack of application life cycle management
■ No built-in build management

Let’s review each of these.
www.it-ebooks.info

http://www.it-ebooks.info/

23Java desktop development: welcome to the jungle
1.3.1 Lots of boilerplate code (ceremony vs. essence)

The Java platform is a great place to develop applications, as witnessed by the myriad
libraries, frameworks, and enterprise solutions that rely on it. It’s also a wonderful
host to several programming languages, of which the Java programming language is
the first and the most widely used so far. Unfortunately, the language is showing its age
(it was introduced in 1995).

 The Java programming language was a refreshing change when it was first intro-
duced. Developers around the world were able to pick up the language and jump
ship, so to speak, in a matter of weeks. The language’s syntax and features were similar
to what developers were used to programming with, while at the same time Java
included new and desired features baked right into the language, such as threading
concerns and the notion that the network should be a first-class citizen. Everybody
marveled at it. That is perhaps why there were few complaints about the amount of
code it took to perform a simple task, such as printing a sequence of characters to the
console. The following code is a descriptive example (the often-used HelloWorld):

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Notice how much code has to be written just to print “Hello World!” This is referred
to as ceremony—stuff you just have to do. Don’t get us wrong: this example is much bet-
ter than what was previously available, but there’s still room for improvement. Imag-
ine for a moment that you know little about the Java language (if that’s the case, don’t
worry—we’ll explain what’s going on with that snippet of code). The essence of the pro-
gram is pretty much described by System.out.println("Hello World!");, but as you
can see you must type a few additional things to please the compiler.

 Every piece of code you write in the Java language must be tied to a class, because
Java is an object-oriented language that uses classes to define what an object can do.3

Thus you must define a HelloWorld class. A class may define a method with a special
signature (the main method) that’s used as the entry point of your program, so you
define it as well. In that method, you place the code that fulfills the task. How would
you explain to a person new to the Java language that they must know all these things
(and a few more, including access modifiers and static versus instance class members)
just to print a message to the console? All of this just to please the compiler and cre-
ate a simple example. Wouldn’t it be easier if the compiler accepted something like
the following?

println "Hello World!"

It might surprise you to learn that this Groovy example is equivalent to the Java exam-
ple. If this code makes more sense than the first version, it’s because the essence of the

3 As opposed to JavaScript, which uses prototypes to accomplish the same feat.
www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 1 Welcome to the Griffon revolution
task has been made explicit: no additional keywords or syntax constructs distract you
from understanding what the code does. This is exactly what we mean by essence versus
ceremony, a term Neal Ford4 mentions regularly.

 Java is a good language to develop applications, but it requires a steeper learning
curve than other languages that can run on the JVM—languages that provide the same
behavior in many respects, but in a more expressive manner. Griffon addresses this
issue through the use of the Groovy language, builders, and plugins.

 Strongly related to this point, defining a Java-based UI can be overly complex
and verbose.

1.3.2 UI definition complexity

The Java Standard Library, which comes bundled with the Java language when you
download the Java Development Kit (JDK) or Java Runtime Environment (JRE), deliv-
ers two windowing toolkits: the Abstract Windowing Toolkit (AWT) and Swing. Of the
two, Swing is the more widely used, because it’s highly configurable and extensible. But
those benefits come with a price: you have to write a lot of code to get a decent-looking
UI to work; you have to deal with many collaborators and helpers to react to events and
provide feedback; and on top of all that, you have to please the compiler again.

 Let’s review the following example of a basic straight Java application that copies
the value of a text widget into another when you click a button.

import java.awt.GridLayout;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JFrame;
import javax.swing.JTextField;
import javax.swing.JButton;
import javax.swing.SwingUtilities;

public class JavaFrame {
 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable(){
 public void run() {
 JFrame frame = buildUI();
 frame.setVisible(true);
 }
 });
 }

 private static JFrame buildUI() {
 JFrame frame = new JFrame("JavaFrame");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.getContentPane().setLayout(
 new GridLayout(3,1)
);

4 You can read Neal’s thoughts at http://memeagora.blogspot.com.

Listing 1.9 Basic Java Swing application

Swing components must
be created in EDT

Instantiate frame
and set properties
on it
www.it-ebooks.info

http://memeagora.blogspot.com
http://www.it-ebooks.info/

25Java desktop development: welcome to the jungle
 final JTextField input = new JTextField(20);
 final JTextField output = new JTextField(20);
 output.setEditable(false);
 JButton button = new JButton("Click me!");
 button.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent event) {
 output.setText(input.getText());
 }
 });
 frame.getContentPane().add(input);
 frame.getContentPane().add(button);
 frame.getContentPane().add(output);
 frame.pack();
 return frame;
 }
}

There have been several attempts to simplify how UIs are created in Java, to the point
of externalizing them in a different format; most of the time, the chosen format
is XML. For some reason, Java developers have had a strong love/hate relationship
with XML since the early days. When a configuration challenge appears or the need to
externalize an aspect of an application arises, XML is the choice 99% of the time. The
problem with XML is that it’s so easy to hurt yourself with it.5 Once you go down the
path of declarative UI programming with XML, you’ll eventually find yourself in a
world of pain.

 In listing 1.9, you can appreciate that the widgets are instantiated, configured with
additional properties, and added to a parent container according to the rules of a pre-
defined layout. Behavior is wired in a convenient way—well, as convenient as it can be
to define an anonymous inner class as the event handler on the button, which is a
common pattern in Swing applications.6 If you were to define the UI in XML format,
you would need to perform at least the following tasks:

■ Read the XML definition by means of SAX, DOM, or your own parser.
■ Translate the declarative definitions into widget instances.
■ Wire the behavior, perhaps by following a particular configuration path or a

predefined convention.

Of course, you’ll have to deal with exceptions, classpath configuration, and additional
setup: in other words, make sure your favorite debugger is close by. We guarantee
you’ll be reaching for it before the job is done.

 Now compare the Java program (listing 1.9) to a Griffon program that does the
same thing (in the next listing). The Griffon program uses Groovy and SwingBuilder
to remove most of the visual clutter and verbosity while retaining the same essence.

5 Hey, it has these sharp, pointy things < > or didn’t you notice? Stay away from sharp edges!
6 Anonymous inner classes, along with the other three types of inner classes, are advanced concepts that people

new to Java tend to stay away from. Go figure.

Add event listener
on button
www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 1 Welcome to the Griffon revolution
import groovy.swing.SwingBuilder
import static javax.swing.JFrame.EXIT_ON_CLOSE

new SwingBuilder().edt {
 frame(title: "GroovyFrame", pack: true, visible: true,
 defaultCloseOperation: EXIT_ON_CLOSE) {
 gridLayout cols: 1, rows: 3
 textField id: "input", columns: 20
 button("Click me!", actionPerformed: {
 output.text = input.text
 })
 textField id: "output", columns: 20, editable: false
 }
}

It may be hard to believe at first, but both listings produce the same behavior. The
advantages of listing 1.10 should be apparent to the naked eye: you’ve removed more
than half the original lines of code, the relationship between widgets and container is
more explicit (they’re all contained in a block that is defined in the container), the
event handler’s code has been reduced to its minimal essence, and some values (like
rows: and columns:) now have a sensible meaning. Griffon’s use of Groovy, builders,
and plugins makes creating UIs much easier than in the past. And Griffon has the
additional benefit of making the code easy to read.

 But what about application structure and life cycle issues?

1.3.3 Lack of application life cycle management

Every application requires some structure; otherwise it would be a maintenance night-
mare, to say the least. Applications have been built since the Java platform was born,
and for a while everybody followed Java best practices to build them. Then Struts
came into the web application development scene (http://struts.apache.org/). All of
a sudden people realized that a predefined structure that everyone agreed on was a
good idea: not only was it possible to recognize the function of a particular compo-
nent by its place and naming convention, but you could switch from one Struts appli-
cation to another and reap the benefits of knowing the basic structure. You could be
productive from the get-go.

 Tied to a particular structure, an application should be able to manage all aspects
of its life cycle: what to do to bootstrap itself, initialize its components (perhaps by
type, layer, or responsibility), allocate resources, and bind all event handlers, just to
name a few common tasks. Take for example LimeWire, a popular Java Swing applica-
tion used to share files on peer-to-peer networks. Can you imagine the phases the
application has to undertake to work properly? What about another popular Java
Swing application, NetBeans? Surely the people behind its design have given a lot of
thought to how the application should control its life cycle. What would it take for you
to achieve the same thing?

Listing 1.10 Simplified Swing application
www.it-ebooks.info

http://struts.apache.org/
http://www.it-ebooks.info/

27The Griffon approach
 It’s easy to get lost in the details. It should be more convenient to let a framework
resolve those matters for you. Fortunately, the Griffon framework addresses these
issues by providing a consistent application structure (see chapter 2, section 2.1) and
extensible life cycle event management (see section 2.4).

 Finally, there’s the matter of building the application in a reliable way while taking
care of proper dependency management, version control, and infrastructure upgrades.

1.3.4 No built-in build management

The Java platform offers a number of tools for project management, dependency
management, IDE integration, and so on. The problem is choosing the ones that solve
a particular problem while also being able to integrate with other tools and being
extensible enough. The question isn’t whether the tool is extensible but how soon
you’ll extend the tool. Sooner than later, you’ll face that decision.

 Choosing a build tool can lead to heated discussions among Java developers, just as
picking the best editor7 does. Many favor the simplicity of Ant; others preach the
advances pioneered by Maven, whereas its detractors complain that it requires down-
loading the whole internet just to execute a simple goal like cleaning the project’s
build directory. Some have gone outside of the bounds of XML-based tools and have
chosen Buildr or Rake/Raven, build tools that rely on expressive languages, or even
build-oriented DSLs.

 The point is that you might be stuck with a solution that may be unreliable or may
not work as expected with your next project due to its particular requirements. Hav-
ing to manage build configuration and artifacts can be taxing, considering you still
have to worry about production and testing artifacts in the first place. Like Grails,
Griffon comes with a build facility; you used it when you ran the Griffon command
run-app.

 Now that we’ve examined the obstacles that lie in the path of building a typical
application on the JVM, let’s discuss what Griffon does to sort them out and let you
reach the goal line.

1.4 The Griffon approach
Having experienced the issues described in the previous section, the creators of the
Grails and Griffon frameworks worked to make sure Grails and Griffon minimized if not
eliminated them. This section will give you more insight into Griffon and how it works.

 First and foremost, every application must have a well-defined kernel as its structure:
something that ties together all components given their responsibilities and relation-
ships with one another. The Griffon developers decided to pick the popular Model-
View-Controller pattern (MVC) as a basis. This is the framework’s shaping element.

 The next step was finding the proper balance between configuration and expected
conditions or conventions. We’re sure you agree that you’d like to spend more time

7 Everybody knows that vim is the one and only editor used by real programmers, right?
www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 1 Welcome to the Griffon revolution
pushing code to production than figuring out the proper configuration flags and
properties to get a particular piece of the application working. Along with common
components and tools, this is the framework’s constituent element.

 Finally, there’s the matter of the verbosity the Java language imposes. You want to
be productive without needing to learn a new language or leave all your Java knowl-
edge behind. This is where the Groovy language comes in: it’s a binding agent
between the shaping and constituent elements of the framework.

 Let’s see how these elements come together to offer you a better experience when
you’re developing a desktop application.

1.4.1 At the core: the MVC pattern

Nearly every developer who has created a professional GUI has had to work with or use
the Model-View-Controller pattern. And because practically every developer has to
write a GUI at some point, it’s a well-known pattern name. But its details aren’t as
widely known for several reasons. One is that when people say MVC, they can be refer-
ring to one of several different closely related patterns. To understand how this came
to be, you need to understand where the MVC pattern came from.

A BRIEF HISTORY OF MVC
When web applications started growing in popularity, the MVC paradigm was recast
against a physical structure that closely matched its triad: the model was the database
tier of the application, the view was the user’s web browser, and the controller was the
web application. The downside of this arrangement is that the view and the model don’t
directly communicate with each other. Instead, the controller mediates all interactions.

The MVC pattern as followed by modern web applications doesn’t literally place the
view and the model directly on the browser and the database; instead, all interactions

The original MVC code
The very first code ever to use the Model-View-Controller pattern was written circa
1978 by Trygve Reenskaug, a professor from the University of Oslo, while he was a
visiting scientist at ParcPlace. He wrote a couple of research notes on the subject
and, after consulting with Adele Goldberg, settled on the nomenclature of model,
view, and controller. What is interesting to note is that his original pattern contained
a fourth component, the editor, whose exclusion from almost all variations of the
MVC pattern heralded the mutable beginnings of the MVC pattern.

The original MVC code led a low-key life in the UI code of Smalltalk-80 for nearly a
decade before the first serious academic journal article was published by Glenn Kras-
ner and Stephen Pope in the August/September 1988 issue of the Journal of Object-
Oriented Programming. This article described MVC as more of a paradigm than a con-
crete pattern. Many later variations demonstrated the value of this paradigm, notably
the Presentation-Abstraction-Controller (PAC) pattern and the Model-View-Presenter
pattern from Taligent.
www.it-ebooks.info

http://www.it-ebooks.info/

29The Griffon approach
by the application server between these two pieces pass through code in the applica-
tion server. The pieces that correspond to communicating with the database and
browser are handled in the context of a model and view, respectively, all seen through
the glasses of a fixed request/response life cycle.

 This model 2 view of MVC is web centric, and it works well when you’re mediating
systems that are physically or network separated. But that is the exact opposite of what
a Rich Internet Application (RIA) is. Not only are all the pieces of the MVC triad local
to the same machine, but they also exist in the same process space. It’s because of this
fundamental difference that Griffon can cast its MVC handing closer to the original
vision of MVC.

GRIFFON AND MVC
What does Griffon bring to the table when it comes to MVC? A framework API referred
to as MVC groups: a hybrid of the old-school MVC pattern mixed with more modern
concepts such as injection and convention over configuration. Griffon automates the
creation of the model, view, and controller classes both at build time and at runtime.
It configures them via injection to follow the original convention of paths of refer-
ences, observed updates, and user interactions. It also has established file locations for
the created groups and other conventions relating to the life cycle of the MVC group.

 The MVC pattern is found in Griffon both at the architectural level and the presen-
tation layer. The latter is due to Swing’s inherent nature. Every component is designed
to conform to the pattern; Swing components follow the MVC pattern, but most of
them combine the view and the controller in the same class (for example, JButton)
while keeping the model in a separate class (ButtonModel). Speaking of the architec-
tural level, this is where the Griffon conventions come into play, as explained next.

MODEL

The model is responsible for holding the data and providing basic relationships
within this data. Some prefer designing an anemic model: that is, they believe the data
should be simple, and behavior should go into a different member of the MVC pat-
tern, even establishing data relationships. The advantage of this design is that you
know what models are capable of: holding data and nothing more. Anything else is
found in the controller. Others prefer a richer domain model, where data can manage
its own relationships and even talk to other models. We’re happy to say that Griffon
supports both visions; you’re free to make your models as anemic or rich as you want
them to be.

 Models in Griffon, not to be confused with domain models, are used exclusively to
help controllers and views communicate through data and events. Domain models, on
the other hand, describe the application in terms of entities. They’re usually rich and
often have relationships with each other. An example of a domain model would be
Company, Employee, and Address classes, whereas an example of a regular MVC model
would be an aggregation of instances of the domain classes, like a TableModel.
www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 1 Welcome to the Griffon revolution
VIEW

The view is responsible for displaying the data coming from the model in a meaning-
ful manner; it can even transform the data from one representation into another. For
example, a list of values can be defined in the model as a simple array or Java collec-
tion, and the view may display that data in tabular form using a JTable component
from the Swing component suite. But if a table isn’t desired, the view could display the
same data using a pull-down menu or combo box. The data doesn’t change, but its
view representation can vary as needed.

CONTROLLER

The controller is the command center. Every operation that affects the model from
the outside should be scrutinized and given the green light by a controller. The con-
troller then carries the burden8 of making all choices: whether data should be
affected, and what the view’s next state should be.

 The model may update the view indirectly with new data as long as the view is lis-
tening to changes from the model, but it should not cause a change in the view’s state
without the controller’s consent. How can the model update the view? Enter the
Observer pattern.

HOW THE OBSERVER PATTERN WORKS

The basic idea behind the Observer pattern is that two components may interact with
each other by having one of them push events to the other. The first component is
known as the emitter, and the second is known as the listener. Listeners must register
with an emitter before they get a chance to process events; otherwise they won’t
receive any. Emitters may accept as many listeners as they choose. In Griffon, any MVC
member can be registered as a listener on a model class, by means of Property-
ChangeListeners and PropertyChangeEvents.

 Figure 1.9 shows the associations between each member. A solid line indicates a
direct association, and a dashed line indicates an indirect association.

8 “Man is condemned to be free; because once thrown into the world, he is responsible for everything he does.”
—Jean-Paul Sartre

Figure 1.9 A diagram of
the Model-View-Controller
design pattern
www.it-ebooks.info

http://www.it-ebooks.info/

31The Griffon approach
Griffon gains a lot of momentum by using this design pattern. It is, after all, a widely
used design pattern in many frameworks, and plenty of developers use it as a guiding
principle for keeping components connected. This means you may be able to pick up
the pace quickly because you likely already know the core concepts.

 You’ll find the MVC pattern deeply ingrained in Griffon’s design. At the top level, it
helps in arranging artifacts by type and responsibilities. At a lower level, you’ll encoun-
ter it in the UI components. Swing relies heavily on this pattern, although many times
the view and controller responsibilities are found in the same class (JTable), whereas
the model is handled by a separate class (TableModel).

NOTE In chapter 3, we’ll discuss Griffon’s usage of MVC in depth.

The members of an MVC group are clearly defined in a Griffon application. Their
roles are well defined, but in order to make the most of them, you must be able to
configure their relationships and some of their properties. This brings us to the next
section: convention over configuration.

1.4.2 The convention-over-configuration paradigm

Configuration is one of the key aspects of any framework; finding the correct amount
of configuration is a tricky task. It’s well known that you can’t please everybody, so
compromises must be made and boundaries should be defined. For example, let’s
revisit Struts. Struts is a popular web application development framework that came
with a high price: over-configuration. Every property of every component had to be
defined in a configuration file. For a small application, that wasn’t too bad; but for full
enterprise applications, it meant a lot of work. And let’s not go into what a nightmare
it was to maintain such applications.

 Imagine for a moment that you have a bookstore domain model. You’ll most likely
encounter Book, Author, and Publisher domain objects. Following the MVC design
pattern, you’ll have a controller for each domain object: say, BookController,
AuthorController, and PublisherController. You’ll also need at least one view for
each domain object; and if your application provides CRUD-like operations in your
domain, it’s likely you’ll want three different views for each one, such as BookListView
(lists all books), BookShowView (shows one book at a time), and BookEditView (lets
you update a book’s properties). Figure 1.10 illustrates this model.

 Setting up this basic application would require a lot of configuration on the Struts
config file. Now imagine having a domain consisting of dozens of domain objects. Not
a happy picture.

 Did you notice what we just did? We assumed that the controllers have a particular
suffix, perhaps to easily identify them when browsing the application’s source code;
the views also follow a naming convention. If you take the naming convention a step
further, you can organize those components by responsibility in well-defined file fold-
ers, such as models, views, and controllers. If each component follows these simple
rules, the previously required heavy configuration is no longer needed; bootstrapping
www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 1 Welcome to the Griffon revolution
code should be able to figure out how each component must be assembled given
these conventions.

 That is precisely the power of the convention-over-configuration paradigm (http://
en.wikipedia.org/wiki/Convention_over_configuration). A developer should be required
to configure a particular aspect of a component or a set of components only when
that configuration deviates from the standard. This means that if you stick to a well-
known set of conventions, you’ll be able to create an application more quickly,
because you’ll spend less time configuring it; it’s even possible to manage relation-
ships between components this way as well.

 By using the convention-over-configuration paradigm, Griffon can figure out a
component’s responsibilities, inspecting its name, it location in the directory struc-
ture, and perhaps some of its properties. Say goodbye to long and painful XML

Figure 1.10 Bookstore
application MVC model
www.it-ebooks.info

http://en.wikipedia.org/wiki/Convention_over_configuration
http://en.wikipedia.org/wiki/Convention_over_configuration
http://www.it-ebooks.info/

33The Griffon approach
configuration files; search no more for obscure configuration flags. All the configu-
rable information you need to get your application off the ground is located close to
the place where it’s needed.

 Griffon also manages an application’s build cycle by providing a rich set of
command-line scripts and bindings to the popular Ant project, all of which we’ll dis-
cuss in chapter 2.

 Being able to follow a predefined convention requires a rich environment where
definitions can be created at the most convenient moment, even if that means at the
last possible moment, at runtime. This calls for an environment that accepts a
dynamic and highly adaptable solution, something the Java language can’t provide
but another language can—and that language is Groovy.

1.4.3 Groovy: a modern JVM language

Griffon relies on the power of Groovy to simplify development. Groovy complements
and extends Java. Taking a closer look at how Groovy complements Java will help you
understand how and why Griffon uses Groovy.

 We mentioned before that the JVM is a great platform to develop with; for a time,
the Java programming language was the only serious solution for getting things done.
But time has caught up with Java. For many developers, it represents a conceptual
cage without escape because the language changes slowly according to their needs.

 Java was designed as a statically typed language, meaning that you must write as
much type information as the compiler needs, even if that means repeating informa-
tion that is obvious to you. Dynamic languages, on the other hand, require you to
write less type information. Some languages are crazy enough to let go of all types!9

This in turn lets you deal with the particular task at hand, most of the time delaying
type checks until runtime.

 We could argue the static versus dynamic debate all day, and no one would be cor-
rect or happy in the end. The real problem is one of essence versus ceremony: how much
do you have to write in order to fulfill the required task, aided by the compiler and
runtime aspects of a particular language?

JAVA WITHOUT THE CEREMONY

Groovy is one of a particularly exciting batch of dynamic languages that run in the
JVM. What makes it exciting is that it brings to the surface the essence of the Java lan-
guage, while hiding the complexity and ceremony. But you can access that complexity
and verbosity if needed.

Groovy is what Java would have looked like if designed in the 21st century.
 —Scott Davis

Groovy was inspired by other popular languages, such as Smalltalk, Python, and Ruby;
but it remains true to Java in its core. Java is in its DNA, after all.

9 Madness! Where is the world heading?
www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 1 Welcome to the Griffon revolution
FROM JAVA TO GROOVY

The main advantage of learning Groovy from a Java developer’s perspective is that
almost 98% of Java code is valid Groovy code. The syntax is so close to Java that you
can, in many cases, rename your files from .java to .groovy, and both the Groovy com-
piler and the interpreter will be happy with them. This is of great use to you as Java
developer, because you’ll be able to learn Groovy at your own pace. Start with straight
Java syntax, and then take baby steps to some of Groovy’s features. As you become
more confident, you’ll add more features. Suddenly you’ll realize that writing idiom-
atic Groovy code isn’t that hard.

 Because it’s based on Java, Groovy interacts with any Java code you throw at it, be it
a simple Java class, a Java library, or a Java-based framework.

Groovy is Java, Java is Groovy.
 —Scott Davis

But other aspects of Groovy aren’t found in Java.

CLOSURES AND METAPROGRAMMING FEATURES

If Groovy was a simple syntactic-sugar coating over Java, its usage wouldn’t be compel-
ling. Groovy brings modern programming features to Java as well. One clear example
is closures, or anonymous functions as they’re known in other languages. Closures
have been the center of a heated and intense debate in the Java community—so
intense that it could be categorized as a religious debate. Although people are still
deciding the best approach for getting closures into Java, you can take advantage of
Groovy’s closures as soon as you pick it up; no need to wait for the debate’s outcome
and the next version of the JDK.

 Other useful and powerful features found in Groovy are its metaprogramming
capabilities. You can modify an object’s behavior at any point, whether at compile
time or at runtime. Yes, that’s right: you can monkey-patch an object’s behavior to
bend it to your will. Of course, you must be careful: a great responsibility is bestowed
on you when you harness the powers of metaprogramming. This reflects another
remark made by Scott Davis when he paraphrased Erwin Schrödinger and his famous
paradox (http://mng.bz/kM4S):

Groovy is Java, and Groovy is Not Java.
 —Scott Davis

It seems to contradict Scott’s first remark, but if you give it a little thought, both are
true. We’re sure that by the time you’ve finished reading this book, you’ll see Groovy
and Java in a different light: one of cooperation and synergy rather than adversity
and hostility.

 Griffon relies on Groovy in many ways. The most visible is in the view aspect of an
application, as you’ll see in the next chapter. It also relies heavily on Groovy’s meta-
programming facilities to implement and solve the convention-over-configuration
rules. This doesn’t mean you have to become a Groovy expert just to be able to handle
www.it-ebooks.info

http://mng.bz/kM4S
http://www.it-ebooks.info/

35Summary
the framework. As you’ll soon find out, Griffon presents sound choices here and there
without forcing you to take a single path from which there is no return.

 If all of what we’ve discussed sounds too good to be true, rest assured that it’s real.
Griffon is able to accomplish this because it stands on the shoulders of giants that laid
the path for some of its technical direction. But mostly, Griffon owes a lot of gratitude
to Grails.

1.5 Summary
Your feet are now wet; you’ve seen the Griffon take off. Before you continue your jour-
ney, let’s take a moment to remember what you’ve learned so far.

 You started this chapter by setting up your development environment and using
the griffon create-app command to create the GroovyEdit application. Next, you
built a multitabbed text editor. You found that Griffon works in groups of code based
on the Model-View-Controller paradigm. You implemented two MVC groups in this
chapter; by splitting your code into groups of this kind, you organize it in a logical
manner so that everything follows this well-known paradigm. This approach is dis-
cussed extensively in part 2 of the book.

 The convention-over-configuration paradigm is applied in many places. You created
all the GroovyEdit application files in specific folders and with a predetermined naming
pattern. Maintaining an application of this kind is thereby immeasurably simplified.

 Data binding between views and controllers comes naturally with Griffon. In the
model, you define a set of values that you reuse throughout your MVC groups. The
view components display the current status of the model, whereas the related control-
lers change them. No getters and setters need to be set between components, thanks
to the @Bindable annotation and Groovy’s short and concise syntax.

 Next, you visited the jungle. The Java platform is a great place to develop desktop
applications, but it’s not without its fair share of traps and obstacles. Griffon avoids
them by standing on the shoulders of giants: the Grails framework and its community,
the Groovy language, well-known design patterns, and convention over configuration.
Together they bring synergy and high productivity gains to the desktop development.

 Finally, you took a brief tour of MVC and how Griffon’s is different from web-based
MVC. Using the convention-over-configuration paradigm makes the application struc-
ture predictable and easy to follow. And Groovy is the glue that holds it all together. The
power and expressiveness of Groovy help you write concise, expressive, powerful code.

 In the next chapter, we’ll discuss the griffon command in further detail, plus the
default build-time configuration options.
www.it-ebooks.info

http://www.it-ebooks.info/

A closer look at Griffon
When starting the development of a brand-new desktop application, what are some
of the typical questions that spring to mind?

■ Where should the sources be placed?
■ What about configuration files?
■ Where should libraries and resources be placed, and how should they

be managed?
■ What about tests?

Isn’t that a huge burden when starting a project? Now imagine working on an exist-
ing project. You might stare at the project structure and the source, trying to make
sense out of it, perhaps looking for a common pattern that might help you.

 When it comes to developing Java desktop applications, no specification
describes what, when, and how things should be done. To make matters worse,

This chapter covers
■ The structure of every Griffon application
■ Conventional configuration
■ Command-line utilities
■ The application’s life cycle
36

www.it-ebooks.info

http://www.it-ebooks.info/

37A tour of the common application structure
every company and, often, each project, follows its own approach, making it harder to
switch from one development team to the next.

 In this chapter, we’ll look at how Griffon aims to bring order to this chaos. It does
so by providing a basic structure that all Griffon applications follow to the letter. Each
component has its place and purpose, making it easier for anyone to recognize its
role in the application in the blink of an eye. That in turn facilitates application
maintenance. We’ll also explore Griffon’s command-line tools, which make the job
of building your application snappier. We’ll round out this chapter with a look at the
application life cycle.

 Let’s begin by examining how Griffon applications are structured.

2.1 A tour of the common application structure
If you remember the exercise from chapter 1, where you created a simple multitabbed
file-viewer application, you’ll recall that each member of an MVC group follows the
naming and placing conventions applicable to its specific responsibilities. Filenames
of all MVC group members have a particular suffix that unambiguously spells out what
artifact they describe. Those files in turn are placed in directories that share the name
with the corresponding suffix. As it turns out, there are more conventional directories
to be found in a Griffon application.

 Griffon’s conventions are dictated by the common application structure shared by
all applications. As you might already know, this structure was created when you
invoked the griffon create-app command. Let’s see what else is created by that com-
mand. Figure 2.1 shows the directory structure of the GroovyEdit application.

 The core of the application resides in the griffon-app directory. There you can
find the code for all models, views, and controllers, which together form the back-
bone of the application. You also find other useful artifacts there. Table 2.1 shows a
breakdown of the contents of each directory.

 This directory structure is easy to follow. Herein lies one of the strengths of the
framework: convention over configuration. As you develop more and more Griffon
applications, you’ll come to appreciate that the applications all follow a common
structure and layout. It makes moving between applications much easier. You don’t
have to take the time to refamiliarize yourself with the application to remember where
the views, models, and controllers are located.

 You may notice a particular directory named griffon-app/conf; as its name sug-
gests, it’s a place for configuration files. As you may recall from chapter 1, every Grif-
fon application can be deployed in three modes: standalone, Web Start, and applet.
The conf directory holds the files and configuration settings to both run and deploy
applications in any of these deployment modes. We’ll cover deployment modes in
more detail in chapter 10 in the context of packaging options.

 This directory is populated with a set of default configuration files when an appli-
cation is created. Additional configuration files can be found here depending on which
plugins you have installed. Yes, Griffon supports the notion of framework plugins. If a
www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 2 A closer look at Griffon
Table 2.1 Directory structure of a Griffon application. Each directory serves a
particular purpose.

Directory Description Where to go for more info

griffon-app Core Griffon artifacts

+ conf Configuration elements, such as Builder.groovy Section 2.2

++ keys Private keystore for Web Start/applet signing Chapter 10

++ metainf Files that should be included in the application’s jar in
the META-INF directory

++ webstart Web Start templates Chapter 10

++ dist Miscellaneous files used in packaging Chapter 10

+ controllers Controllers providing actions Chapter 5

Figure 2.1 Directory structure of the GroovyEdit application
www.it-ebooks.info

http://www.it-ebooks.info/

39The ABCs of configuration
particular feature isn’t found in the framework itself, chances are that a plugin pro-
vides it. You’ll learn more about plugins in chapter 11.

 Let’s look at the basics of configuring an application, which will be helpful when
you need to tweak some of its settings.

2.2 The ABCs of configuration
When faced with the task of configuring a Griffon application, just think of it as being
as easy as A-B-C, short for Application.groovy, Builder.groovy, and Config.groovy (see
table 2.2). You can bet those names weren’t chosen lightly.

Groovy scripts are used as configuration files instead of XML or any other markup lan-
guage such as YAML or JSON. These scripts are the Groovy version of Java properties files.

 To get a better understanding of Griffon and how to configure it, let’s take a peek
in each configuration file of the sample application (GroovyEdit) you worked with in
chapter 1.

+ i18n Internationalization message bundles

+ lifecycle Application scripts to handle the life cycle Section 2.4

+ models Models Chapter 3

+ resources Application resources, such as images

+ views SwingBuilder DSL scripts Chapter 4

lib Jar archives

scripts Build-time scripts Chapter 8

src Other sources

+ main Other Groovy and Java sources

test Test sources Chapter 9

+ integration Application-wide tests

+ unit Component-specific tests

Table 2.2 A-B-C summary

Configuration Area Script name Purpose

Application Application.groovy Runtime configuration of MVC groups

Builder Builder.groovy Defines and constructs the application

Config Config.groovy,
BuildConfig.groovy

All other runtime configuration
Package and deployment configuration

Table 2.1 Directory structure of a Griffon application. Each directory serves a
particular purpose. (continued)

Directory Description Where to go for more info
www.it-ebooks.info

http://groovy.codehaus.org/FactoryBuilderSupport
http://groovy.codehaus.org/FactoryBuilderSupport
http://groovy.codehaus.org/FactoryBuilderSupport
http://www.it-ebooks.info/

40 CHAPTER 2 A closer look at Griffon
2.2.1 A is for Application

Your first stop in GroovyEdit’s configuration files is Application.groovy. The follow-
ing listing shows its contents as you left them in chapter 1.

application {
 title = 'GroovyEdit'
 startupGroups = ['groovyEdit']
 // Should Griffon exit when no Griffon created frames are showing?
 autoShutdown = true
 // If you want some non-standard application class, apply it here
 //frameClass = javax.swing.JXFrame'
}
mvcGroups {
 // MVC Group for "filePanel"
 'filePanel' {
 model = 'groovyedit.FilePanelModel'
 view = 'groovyedit.FilePanelView'
 controller = 'groovyedit.FilePanelController'
 }
 // MVC Group for "GroovyEdit"
 'groovyEdit' {
 model = 'groovyedit.GroovyEditModel'
 view = 'groovyedit.GroovyEditView'
 controller = 'groovyedit.GroovyEditController'
 }
}

As noted, Groovy configuration scripts are like Java properties files in disguise. The
advantages are clear: you can visualize hierarchies and categories more easily, and
you’re able to use more types other than plain strings. For example, application
.startupGroups is a list of values, and application.autoShutdown is a boolean value.
Groovy can parse these scripts by means of groovy.util.ConfigSlurper and groovy
.util.ConfigObject.

 This script contains two top-level nodes: application and mvcGroups. The
application node is responsible for holding the most basic information about your
Griffon application, such as its title.

INITIALIZING THE MVC GROUP

Looking closely at the value of the application.startupGroups B configuration
option, you’ll observe two things: it’s a list containing a single element, and the ele-
ment is the name of one of the MVC groups you created for that application.

 This configuration option tells the Griffon runtime which MVC groups should be
initialized when the application is bootstrapping itself. Recall from chapter 1 that
you had to explicitly initialize an instance of an MVC group of type FilePanel, but you
didn’t need to do so for the GroovyEdit group. Now you know why!

Listing 2.1 Contents of griffon-app/conf/Application.groovy

Initialize specified
MVC group

b

Declare MVC
groupsc
www.it-ebooks.info

http://www.it-ebooks.info/

41The ABCs of configuration
TERMINATING THE APP

The next configuration option, application.autoShutdown, controls whether the
application will terminate when all frames and windows created by Griffon directly—
that is, those created using the application node in a view script—are closed. As
you’ll soon find out, you aren’t constrained to using the application node on a view
script; other nodes let you build additional windows and dialogs. These nodes don’t
count as managed by Griffon for purposes of autoShutdown.

SETTING THE MAIN WINDOW CLASS

You already know that an application’s main window is determined by its runtime/
deployment target (the standalone and Web Start modes use a JFrame, whereas the
applet mode uses JApplet). But if you’d like to switch to a different class, you need to
provide a value for application.frameClass. The script suggests javax.swing.JFrame;
certainly any other subclass of javax.swing.JFrame will be gladly accepted by Griffon.

CONFIGURING MVC GROUPS

The second top-level node, mvcGroups c, lists all MVC groups configured in your
application. Typically an MVC group configuration defines the full qualified class
names of each of its members. Although the default settings follow a naming conven-
tion, you aren’t forced to follow it to the letter. But we’re getting ahead of ourselves.

The next file we’ll review is Builder.groovy. This script holds the configuration of one
of Griffon’s key components: the CompositeBuilder.

2.2.2 B is for Builder

Remember the controller and view scripts in the FilePanel MVC group in chapter 1
(listings 1.7 and 1.8, FilePanelController.groovy and FilePanelView.groovy)? Those
scripts rely on a Groovy feature called builders, which make creating hierarchical struc-
tures, such as Swing views, a breeze. Builders expose a series of nodes and methods that,
when used according to their build rules, produce the expected results. Builders help
you write code in a more expressive manner. In particular, CompositeBuilder is based on
FactoryBuilderSupport (http://groovy.codehaus.org/FactoryBuilderSupport). This is
important, because it enables CompositeBuilder to mix and match builders based on
FactoryBuilderSupport as well. Clever extension hooks are also provided, as we’ll
discuss in chapter 12.

 You may have noticed that whereas the FilePanelView file holds a Groovy script,
the FilePanelController file holds a class definition. The reason behind this choice
is that Views as scripts can be seen as a declarative approach to defining the visuals of

Can’t wait to dig in to MVC groups?
If you want to know more about MVC groups right now, you’re more than welcome to
jump to chapter 6. Remember to come back, though, because there’s more to learn
about configuring your application, such as views and their builders.
www.it-ebooks.info

http://groovy.codehaus.org/FactoryBuilderSupport
http://www.it-ebooks.info/

42 CHAPTER 2 A closer look at Griffon
an application. Even so, in listing 1.7 the controller is able to tap into “magical” meth-
ods that handle threading in a simple manner; the controller class doesn’t implement
a particular contract or extend a certain class that provides those methods. Something
else must be at work.

 The answer to this conundrum is the CompositeBuilder and its settings. The fol-
lowing listing shows Builder.groovy as configured in the example application.

root {
 'groovy.swing.SwingBuilder' {
 controller = ['Threading']
 view = '*'
 }
}

The CompositeBuilder, as its name implies, is a builder that mixes and matches other
builders. This feature is the key to adding functionality to your views and controllers
via additional nodes and will be examined in chapter 12. For now, let’s concentrate on
what the default configuration means to you as you’re getting started.

 Every Griffon application has an instance of CompositeBuilder. It’s used as the
provider of building blocks for views and controllers. You can think of a view script as
providing the application structure, while Groovy is the mortar that holds everything
together seamlessly. The default configuration sets up the basic information needed
for a run-of-the mill Swing application to get up and running. Figure 2.2 illustrates the
composite nature of the CompositeBuilder.

A word about builders
Many developers consider builders to be an eye-opening Groovy feature. Once you get
to know them, you’ll start to recognize patterns in your code where a builder is better
suited to solve the problem at hand. Groovy offers a few choices for creating your own
builders, and it packs many builders in its core distribution.

Listing 2.2 Contents of griffon-app/conf/Builder.groovy

Figure 2.2 CompositeBuilder
works with all builders based on
FactoryBuilderSupport.
www.it-ebooks.info

http://www.it-ebooks.info/

43The ABCs of configuration
In listing 2.2, the top-level node, root, marks the default namespace used by the
builder, which means that node names can be used as is. When an additional
namespace is present, its value is used as a prefix for the node names it contributes. As
a result, you can mix and match builders even if they contain colliding node names.

SwingBuilder is responsible for exposing all the nodes related to Swing components
found in the JDK (and some other useful methods you’ll discover along the way).

 Notice that SwingBuilder has view = '*' in its settings. This means all the nodes
and methods they provide will be contributed to all view scripts. Notice also that only
SwingBuilder defines controller = ['Threading']. This translates into all nodes
related to threading being exposed to controllers. That is the missing link in how con-
trollers are able to use threading facilities without resorting to inheritance: the
CompositeBuilder injects threading-related nodes and methods into controllers with
that particular setting.

 If all this builder and nodes talk is too much for you, don’t worry! Its impact will
come to you slowly as you progress with the book’s examples. Just remember that if
you ever need to adjust a builder’s settings or expose additional nodes to a controller,
Builder.groovy is the script you should tweak.

 We’ve covered A and B; now it’s time for C. This one is full of goodies, too.

2.2.3 C is for Config

The last two configuration files we’ll review are Config.groovy and BuildConfig.groovy:

■ Config.groovy—This file contains runtime configuration. Hmmm. Hold on a
second: we just described runtime configuration as the responsibility of the
Application.groovy script. The Application.groovy script only holds runtime
configuration pertaining to MVC groups; Config.groovy holds all other run-
time configuration the application may need. In the end, as illustrated in fig-
ure 2.3, both files are merged into a single object in memory from which an
application can read all the settings.

■ BuildConfig.groovy—This file is responsible for build-time configuration. It
holds the relevant information pertaining to each running environment, and
it defines configuration options that become relevant when you’re packaging
and deploying an application. You’ll learn more about those options in chap-
ter 10.

Figure 2.3 Merging the MVC runtime config
and all other runtime config into the runtime
application config
www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 2 A closer look at Griffon
Let’s continue with our exploration of runtime and build-time configuration by look-
ing at some typical tasks and where the configuration is located.

CONFIGURING YOUR ENVIRONMENTS

Have you ever needed to keep separate configuration settings for your development
and production code? If so you may have felt the pain of storing repeated information
or, worse, having outdated or incompatible settings across these environments. Fortu-
nately, Griffon makes this job easier by keeping all environment-related configuration
at the same location.

 Environments are a handy way to separate configuration settings depending on
the current phase of the application you’re dealing with. For example, you might want
to skip signing jar files when prototyping your application, because the signing pro-
cess takes a few additional seconds to finish. On the other hand, you’ll want all your
jars signed and verified before going into production, lest an ugly security error pop
up in front of your target audience.

 Griffon enables three environments by default:

■ Development (dev)
■ Test (test)
■ Production (prod)

The default settings for this particular configuration section can be rather long. The
following is a simplified version.

environments {
 development {
 . . .
 }
 test {
 . . .
 }
 production {
 . . .
 }
}

griffon {
 memory {
 //max = '64m'
 //min = '2m'
 //maxPermSize = '64m'
 }
 jars {
 sign = false
 pack = false
 destDir = "${basedir}/staging"
 jarName = "${appName}.jar"
 }
 webstart {

Listing 2.3 Environment settings on BuildConfig.groovy

Settings for dev environment

Settings for test environment

Settings for prod environment
www.it-ebooks.info

http://www.it-ebooks.info/

45The ABCs of configuration
 codebase = "${new
File(griffon.jars.destDir).toURI().toASCIIString()}"

 jnlp = 'application.jnlp'
 }
 applet {
 jnlp = 'applet.jnlp'
 html = 'applet.html'
 }
}

The environments top-level node is responsible for holding the settings for each envi-
ronment, and you may define as much as you want for each one.

 The griffon top-level node serves as a catch-all for any settings that weren’t speci-
fied. This means that if your BuildConfig.groovy file looks like this short version,
you’ll never sign any jars no matter which environment you choose to run, because
griffon.jars.sign is set to false and no other environment overrides that setting. If
you’re wondering where griffon.jars.sign is, you won’t find it in the config file
exactly like that. But you will find a griffon node, which contains a jar node, which
contains a sign variable. This is precisely how Groovy configuration scripts enhance
standard Java properties files.

 You might be wondering how Griffon knows which environment it should use
when running your application. The answer lies again in the rules of the convention-
over-configuration paradigm. By default, Griffon assumes the development environ-
ment when you run an application using this command:

$ griffon run-app

Conversely, it uses the test environment when you test your application using
this command:

$ griffon test-app

How do you specify which environment to use if you want to change the default?
You tell the griffon command which environment you want. For example, the fol-
lowing command runs the application in standalone mode using the production
environment:

$ griffon prod run-app

What if none of the default environments will work for your needs? In that case, you
can define a custom environment with any name you want—for example, special.

It works the same in Griffon as in Grails
The environment feature is another trait shared with Grails; there it’s used to quickly
switch between data sources. Seasoned Grails developers shouldn’t have much trou-
ble picking up how Griffon applications are configured. They’re pretty much the same
as their Grails cousins.
www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 2 A closer look at Griffon
You can instruct the griffon command that it should use that environment by adding
a command flag like this:

$ griffon -Dgriffon.env=special run-app

BuildConfig.groovy has one last responsibility, related to additional configuration
settings that other components might need.

CONFIGURING BUILD-RELATED SETTINGS

Every now and then, when you’re building an application, you need to make a few tweaks
to its build settings. Most of them are already exposed by the environments features we
just talked about. In the event that you create a build script or a build event handler
(explained in chapter 8) that requires a configurable choice, BuildConfig.groovy is a
good place to put the configuration settings. For now, there’s nothing much to see in the
sample application, but rest assured that we’ll visit this file again in chapter 8 when we
discuss build events and in chapter 11 when we touch the subject of plugins and addons.

 Now let’s cover the settings that you can configure in Config.groovy.

CONFIGURING LOGGING

Given that logging is a runtime concern, you’ll find its configuration in Config.groovy.
If you look at the contents of the file (see the next listing), it starts with a single config-
uration node. Its name should give you a hint of what is being configured.

log4j = {
 // Example of changing the log pattern for the default console
 // appender:
 appenders {
 console name: 'stdout', layout: pattern(conversionPattern: '%d [%t]
 ➥ %-5p %c - %m%n')
 }

 error 'org.codehaus.griffon'

 info 'griffon.util',
 'griffon.core',
 'griffon.swing',
 'griffon.app'
}

That’s right: you can configure logging for a Griffon application by means of a log-
ging DSL that works with Log4j. You can change two types of settings: the appenders to
use and the logging level per package.

Appenders specify where messages are sent or displayed and how they’re formatted.
The default configuration specifies a pattern to be used with the console appender.
This appender prints to the standard output any message that is logged. You can
choose two additional appender presets: file and event. The former saves all mes-
sages into a particular file that may grow indefinitely, and the latter pushes application
events for every matching logging call. (We cover application events in chapter 8.)

Listing 2.4 Contents of Config.groovy as created by default
www.it-ebooks.info

http://www.it-ebooks.info/

47Using Griffon’s command line
 Logging levels, on the other hand, define the priority of a logging message. For
example, in the default configuration, messages from the package org.codehaus
.griffon (and its subpackages) will be sent to an appender only if their priority is
error or higher. The following logging levels are available for configuration, sorted
from most important to least: fatal, error, warn, info, debug, and trace. You can use
two additional levels:

■ all—Enables all levels for a particular package
■ off—Disables all messages from a particular package

You configure a logging level by specifying the type (such as error or info) followed
by the name of a package or a list of packages.

TIP To learn more about this logging framework and, in particular, the lay-
out options for formatting messages, refer to Log4j’s documentation.

Last, you can also set in Config.groovy any additional configuration flags that might
be needed at runtime. No such flags are needed by default; that’s why you don’t see
any in Config.groovy after the application has been created. But plugins (and addons)
make extensive use of this file. We’ll cover plugins and addons in chapter 11. You’ll
also see a good example of additional configuration flags in chapter 13, where we’ll
specify dynamic behavior for some artifacts.

 This is all we’ll say about configuring a Griffon application for now. The griffon-
app/conf directory should be a familiar place: come back to this section if you have
any doubts about how a Griffon application can be configured. We’ll continue explor-
ing Griffon’s feature set by discussing command-line utilities.

2.3 Using Griffon’s command line
You’ve already seen some of Griffon’s commands when building the GroovyEdit sam-
ple application, such as create-app and run-app.

The Griffon command line is one more way Griffon makes your job easier. It encapsulates
repetitive tasks into single commands to save you time typing. This section provides a
detailed list of all the command targets available when you install the Griffon distribution.

 Table 2.3 lists several of the targets you can call using the griffon command, gives
a short description of each one, and also mentions in which chapter the command

What’s the difference between a command and a target?
A command is the entire line:

$ griffon create-app GroovyEdit

A target is the specific task you’re asking griffon to do:

create-app
www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 2 A closer look at Griffon
Table 2.3 Available griffon targets, including a short description and where you can
learn more

Target Description Where to go for more info

Build targets

create-app Creates a brand new application Section 2.3.1

create-mvc Creates an MVC group and adds it to the con-
figuration files

Chapter 6

compile Compiles all sources (except tests) Section 2.3.1

package Compiles and packages the application Section 2.3.1

clean Deletes compiled classes and compile
artifacts

Section 2.3.1

Run targets

run-app Runs the application in standalone mode Section 2.3.2

run-applet Runs the application in applet mode Section 2.3.2

run-webstart Runs the application in Web Start mode Section 2.3.2

shell Runs an interactive Groovy shell with the
application in the classpath

Section 2.3.2

console Runs an interactive Groovy visual console with
the application in the classpath

Section 2.3.2

Miscellaneous targets

help Displays a list of available commands Section 2.3.3

stats Shows how many lines of code are in your
application per artifact

Section 2.3.3

set-version Sets the application version on the applica-
tion’s metadata file

Section 2.3.3

upgrade Modifies your application to comply with a
newer Griffon version

Section 2.3.3

integrate Adds IDE-specific files to your application Section 2.3.3

create-script Creates a new Gant script Chapter 8

create-unit-test Creates a new unit test for any
source artifact

Chapter 9

create-
integration-test

Creates a new controller test Chapter 9

test-app Runs all application tests, both unit
and integration

Chapter 9
www.it-ebooks.info

http://www.it-ebooks.info/

49Using Griffon’s command line
will be covered. It’s worth saying that all of these commands are implemented using a
Groovy flavor of Ant (http://ant.apache.org) named Gant (http://gant.codehaus.org),
which makes them highly customizable.

 This is by no means a complete list of targets—future releases of Griffon might
provide additional scripts. Also, an installed Griffon plugin may provide more com-
mand targets via scripts (as you’ll see in chapter 11). You’ll have the opportunity to
provide your own commands as well, also using scripts.

Let’s review the command targets by category: build, run, and miscellaneous.

2.3.1 Build command targets

The build command targets allow you to create new artifacts, either source or com-
piled ones:

■ create-app—Chiefly takes one argument, the name of the application to build,
and then proceeds to create the entire application structure, configuration,
and templates.

■ The remaining targets—compile, package, and clean—are responsible for
transforming the application sources.

set-proxy Sets proxy settings allowing buildtime tools
access the network behind a firewall

Chapter 11

create-plugin Creates a new plugin project Chapter 11

package-plugin Packages the plugin, making it ready to be
installed

Chapter 11

release-plugin Uploads a plugin to the plugin repository Chapter 11

list-plugins Provides a list of available plugins Chapter 11

plugin-info Displays information about a particular plugin Chapter 11

install-plugin Installs a plugin on an application Chapter 11

uninstall-plugin Uninstalls a plugin from an application Chapter 11

What is Gant?
Gant is a Groovy-based tool that lets you script Ant tasks (see http://gant.codehaus
.org). It uses the Groovy language as a domain-specific language (DSL) to describe a
build manifest. You can think of it as a painless alternative to XML builds. Both Grails
and Griffon take advantage of this powerful tool.

Table 2.3 Available griffon targets, including a short description and where you can
learn more (continued)

Target Description Where to go for more info
www.it-ebooks.info

http://ant.apache.org
http://gant.codehaus.org
http://gant.codehaus.org
http://gant.codehaus.org
http://www.it-ebooks.info/

50 CHAPTER 2 A closer look at Griffon
■ compile—Compiles all available source code into byte code. This includes all
source code found under griffon-app (yes, the configuration files as well) and
additional source code found under src/main.

■ package—Assembles the application code into a jar, signs it along with addi-
tional jars found in the application’s lib directory if jar signing is enabled, and
compresses all jars for optimized download if packing is enabled. It also assem-
bles the required files for Web Start and applet deployment. The default loca-
tion for these artifacts is $basedir/staging, which is a setting you can modify
by editing BuildConfig.groovy.

■ clean—Deletes the working directory where all classes are compiled, along
with the staging directory.

2.3.2 Run command targets

You may already be familiar with this group, because all run-* targets are found here,
but this list provides a quick reminder:

■ run-app—Runs the application in standalone mode—in other words, as if it
were to be deployed as a regular desktop application on any platform.

■ run-applet—Runs the application in applet mode. If the default configuration
is in place, then application packaging signs and packs all jars.

■ run-webstart—Runs the application in Web Start mode. Just as in applet
mode, application packaging signs and packs all jars when configured to do so.

■ shell and console—Run an interactive Groovy shell with the packaged appli-
cation on the classpath, allowing you to run it for quick prototyping or API
exploration. The difference between these targets is that shell is strict com-
mand line and console displays a visual tool. In case you’re wondering, these
targets are found in Grails, too.

2.3.3 Miscellaneous command targets

The last group of command targets we’ll review in this chapter provide additional
behavior and information. Although we don’t cover the complete list, these command
targets are important enough to mention:

■ help—Displays the current Griffon version, sample usage of the griffon com-
mand, and a list of available commands. You saw the help command target in
chapter 1; it verified that you had a working Griffon installation.

■ stats—Also demonstrated in chapter 1; parses all of your application’s sources
and compiles a list of the number of lines of code per artifact type. This target
helps you realize how much you can attain with so little code, thanks to the
power of conventions.

■ set-version—Updates the application’s current version, found in the
application.properties file. If you look back at figure 2.1, you’ll see this file
www.it-ebooks.info

http://www.it-ebooks.info/

51Application life cycle overview
located at the root of your application’s directory. It’s important to update this
file using a command target because this file is also responsible for defining
which version of Griffon the application is compatible with, and as such this file
is an auto-generated one.

■ integrate-with—Adds IDE support files. Command-line tools and a simple
text editor are good enough to get you started, but if you need additional
power, you might want to try a Java IDE that supports Groovy and Griffon. At the
time of writing, you can specify the following command flags to integrate with a
particular IDE or build tool: eclipse, ant, gradle, textmate, and intellij.
For example, if you want to add Eclipse-specific support files, you invoke the
integrate command as follows:

$ griffon integrate-with –-eclipse

You can now open your project from within Eclipse, because this command cre-
ated a pair of files that every Eclipse project requires: .project and .classpath.
You can find comprehensive coverage of setting your IDE to work with Griffon
projects, as well as other productivity tools, in chapter 14.

■ upgrade—Upgrades your application from one version of Griffon to the latest
version installed. This target does its best to update all required files, but some-
times it needs help from external agents; this is where custom scripts and plu-
gins play a part in the grand scheme.

There’s one last topic to cover before we reach the end of this chapter, and it’s impor-
tant in terms of the facilities that must be provided by an application framework: the
application life cycle.

2.4 Application life cycle overview
Before we jump into the plumbing of MVC groups, we should explain a key concern
addressed by Griffon: the application’s life cycle and its management. As discussed in
chapter 1, each application should be responsible for bootstrapping itself, allocating
resources, and configuring its components as they’re being loaded, instantiated, and
wired up. It should also be able to handle its shutdown graciously, liberating any allo-
cated resources and performing any pending cleanup. If you’re building a Java appli-
cation by hand or using some other framework, it can be difficult to figure out where
and how to implement that logic.

 Again, Griffon shines and comes to your rescue. A Griffon application has a well-
defined life cycle, with each phase neatly handled by a particular script. This life cycle
provides easily identifiable places to put your application-specific life cycle logic.

 Look at your application’s structure in griffon-app/lifecycle, and you’ll see
several files, as listed in table 2.4. These scripts are responsible for handling each
phase of the life cycle, and they’re listed in the order in which the life cycle calls them.
www.it-ebooks.info

http://www.it-ebooks.info/

52 CHAPTER 2 A closer look at Griffon
CAUTION All life cycle scripts run in the event dispatch thread (EDT), and
you have to be careful with the code you place in them. Any long-running
computation will cause your application to appear unresponsive and sluggish.

Figure 2.4 shows the GroovyEdit application that you created in chapter 1.
 All life cycle scripts run in the EDT. There are some alternatives for proper thread-

ing and handling operations in the EDT; feel free to jump to chapter 7 if you can’t wait
to learn about them.

 The first stop in the chain of events handled by the life cycle is initialization.

2.4.1 Initialize

When you run GroovyEdit, initialization is the first life cycle phase that takes place
(see figure 2.5). It’s triggered after all configuration files have been initialized and
read but just before any component is instantiated, meaning you can’t access any MVC
members yet.

 But this is an excellent moment to tweak your application’s look and feel, because
not a single visual element has been constructed yet. You can do so either by following
the standard Swing approach or using the provided utilities. The template for this
script suggests a few tweaks, as shown in the following listing.

Table 2.4 Life cycle phases and associated scripts

Life cycle phase Script

Initialize Initialize.groovy

Startup Startup.groovy

Ready Ready.groovy

Shutdown Shutdown.groovy

Stop Stop.groovy

Figure 2.4 Application life cycle
www.it-ebooks.info

http://www.it-ebooks.info/

53Application life cycle overview
import groovy.swing.SwingBuilder
import static griffon.util.GriffonApplicationUtils.isMacOSX
SwingBuilder.lookAndFeel((isMacOSX ? 'system' : 'nimbus'), 'gtk', ['metal',

➥[boldFonts: false]])

The code in this script configures the look and feel. It relies on a list of names that
resolve to a particular lookAndFeel setting. For example, if you’re running on JDK 6
or newer, it’s most likely that Nimbus will be the chosen lookAndFeel; if it isn’t avail-
able, then the next element in the list will be tried, up to the default provided by the
Java platform, which is Metal.

 This phase is also useful for performing sanity checks on resources and configura-
tion settings, because you can abort or query the user for additional information. Just
remember that none of the MVC groups are initialized at this moment, so any UI you
display must be created manually.

 The second stop in the chain is startup.

2.4.2 Startup

The script that handles the startup phase is called right after all startup MVC groups
have been initialized (see figure 2.6). Remember the settings in Application.groovy
(section 2.2.1)? One controls which MVC groups should be instantiated by default
when the application runs: its name is startupGroups.

 You’re now able to reference any members of those MVC groups already initialized,
and you can start any background work that requires those references.

 Next in the chain is the ready phase.

2.4.3 Ready

At first, the ready phase may look superfluous. As with the startup phase, all startup
MVC components have been initialized (see figure 2.7). The catch is that this phase

Listing 2.5 Default contents of Initialize.groovy

Figure 2.5 Application life cycle: initialize
www.it-ebooks.info

http://www.it-ebooks.info/

54 CHAPTER 2 A closer look at Griffon
takes place after all events posted to the EDT queue have been processed. This means
if any of the initialized startup view scripts or code run by the previous phase posted
new events to the EDT queue, they should have been consumed by now. If you wanted
to restore a previous editing session, this would be a good place to do it.

 The main window of the GroovyEdit application is shown after this phase finishes.
The application has been fully initialized at this point; no further life cycle scripts will
be called until the application is ready to shut down in the next life cycle phase.

2.4.4 Shutdown

This is the last life cycle script called by Griffon. In the GroovyEdit application, this
phase can be triggered by choosing File > Quit or via a Window Close event.

 The shutdown phase represents the last chance for freeing used resources, saving
configuration settings, and closing any connections your application might have
opened. If you wanted to save a list of currently open files in GroovyEdit, this is where
you would do it.

Figure 2.6 Application life cycle: startup

Figure 2.7 Application life cycle: ready
www.it-ebooks.info

http://www.it-ebooks.info/

55Application life cycle overview
Once this phase has been executed, there is no turning back: your application will exit.

2.4.5 Stop

We know we said shutdown is the last life cycle phase of an application, but that’s only
partly true. Due to the three-way deployment targets supported by Griffon, this phase
comes in handy when you’re deploying to applet mode. Applets behave a bit differ-
ently than regular desktop applications or Web Start enabled ones. An applet is sup-
posed to run whenever the page that contains it is displayed in a browser. So although
startup works as expected with an applet, stop is a special life cycle phase for dealing
with browsers.

 An applet will sit there happily doing its job until one of the following happens:
you close the browser window or tab, or you move away from the page to another.

 In the former case, the application will cease to exist, in which case the shut-
down phase is called. In the latter case, the applet will be stopped; if you want to

Figure 2.8 Application life cycle: shutdown

Figure 2.9 Application life cycle: stop
www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 2 A closer look at Griffon
navigate back to the page where it’s found, the stop phase is called and its handler
script executed.

 There you have it: the application’s life cycle in a nutshell. It’s simple, but it’s a
powerful feature in Griffon’s arsenal against painful desktop application develop-
ment. Instead of figuring out when and how each of these tasks should be invoked,
you let Griffon call the phase-handler scripts when needed.

2.5 Summary
Phew! That was quite an exploration of a Griffon application’s structure. To recap,
every Griffon application shares the same directory structure according to the frame-
work’s conventions. This increases your productivity because every artifact has its
place and name according to its role. Once you learn the conventions, finding your
way around any other Griffon application should be a walk in the park.

 You learned that using Griffon is as easy as ABC: Application.groovy, Builder
.groovy, Config.groovy, and BuildConfig.groovy. You also learned about the basic
command targets provided by the griffon command. These command targets take
advantage of the framework’s conventions and your application’s configuration to do
their job. Additional command targets will be covered in later chapters of the book.

 Finally we touched on the subject of application life cycle management. It’s the
framework’s responsibility to figure out the correct stage when an application is run.
This relieves you of keeping tabs on how to do this kind of management, leaving you
the task of deciding what to do when a particular stage is triggered.

 This completes part 1 of the book. Next, we’ll spend some time with models and
learn how to automatically transfer values from views to models using bindings.
www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

Essential Griffon

Things get interesting in this part of the book. Here we’ll cover the three MVC
members that function as the cornerstone of every Griffon application. You’ll
learn about the responsibilities of models, views, controllers, and services.
You’ll find a thorough discussion on binding and observable events. By the end
of part 2, you’ll be confident in writing basic applications without a hitch.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Models and binding
Any sufficiently advanced technology is indistinguishable from magic, at least
according to Arthur C. Clarke. And getting data to automatically update itself in sev-
eral places with a few simple declarations looks magical at first, but when you learn
to identify the process that’s occurring it seems more mechanical than magical.

 Why are models used in the MVC framework, and what is their role? Models are
to some extent a shared whiteboard, where a controller or a view can update
abstract values and respond when it observes a change. The key in these instances is
the binding of the data, and to the uninitiated the bindings can appear magical.

 To understand and appreciate just how magical the binding support is in
Griffon, it’s necessary to go down to the lowest levels of code and see how you
would construct these patterns, and then show how the bind calls build on them.
It’s like long division: you can teach a child to use a calculator, but if they know
how the arithmetic works it seems a lot less magical and is conceptually easier
to grasp.

This chapter covers:
■ Creating models
■ Creating observable properties
■ Binding data from the model to the view
59

www.it-ebooks.info

http://www.it-ebooks.info/

60 CHAPTER 3 Models and binding
 But as with all magic, there are some dues to be paid. Before we dig into how it
works, you need to understand why you need to make it work.

 To give you some quick exposure to models and bindings, we’ll start by looking at
a form application with some bindings. If you’ve ever had to do binding manually, this
will excite you. Once you have some appreciation for models and bindings, the next
step is seeing how the model acts as a communication hub for the application. Then,
you’ll learn to make changes to the model observable to the application and how an
application can automagically respond to changes in the model. Sometimes you need
a little more control, so we’ll look at controlling when an application responds to
model changes. To bring it all together, you’ll build a mortgage calculator.

3.1 A quick look at models and bindings
The goal of this section is to help you gain an appreciation of the importance and power
of models and bindings. This preview will help you focus on the rest of the chapter.

 You’ll begin by building a simple application: a registration form. For this applica-
tion, you need the user’s name, last name, and address. Of course, you need a way to
submit the information: a Submit button. Let’s also assume that you need a way of
clearing all the information: a Reset button. From a requirements perspective, you’ve
been told that the Submit button shouldn’t be available until the user has entered all
the information, and the Reset button should be available once the user has entered
any information. Most people are visually oriented, so the application should look
something like figure 3.1.

 Now that you know the functional requirements of the application and how it
should look, you can get started building it.

3.1.1 Creating the project

If you’ve been working on the previous examples in the book, you know what’s com-
ing. First you create a project. Open a shell prompt into the directory in which you
want to create the Griffon application, and create a new form application:

$ griffon create-app form

As you’ve come to expect, Griffon sets up the project directory. Now let’s turn our
attention to creating the model, view, and controller.

Figure 3.1 The completed
registration application
www.it-ebooks.info

http://www.it-ebooks.info/

61A quick look at models and bindings
3.1.2 Creating the model

Looking at figure 3.1, it’s easy to see that the model will need to have the following
properties: name, lastName, and address. But you also have requirements for enabling
and disabling the Reset and Submit buttons. To accomplish that requirement, the
model needs a couple of additional properties: submitEnabled and resetEnabled.
You’ll use these two properties to determine when the buttons should be enabled.
The following listing shows how the model should look; please make sure to copy and
paste the contents into your Model file.

package form

import groovy.beans.Bindable

@Bindable
class FormModel {
 String name
 String lastName
 String address

 boolean submitEnabled
 boolean resetEnabled
}

In chapter 1, the @Bindable annotation was on the individual fields. What’s up here? By
moving the @Bindable up to the class level, all the fields become observable properties
with PropertyChangeSupport. This is another way that Griffon makes our lives better.

 That takes care of the information needs, but we’re not done with the model just
yet; now let’s focus on the rules, as well as enabling and disabling the buttons. The but-
tons will use the value of the submitEnabled and resetEnabled properties to deter-
mine if the buttons should be enabled or disabled. How do you deal with the rules and
logic of setting the values of the properties? You can create a helper closure (enabler)
that contains the rules and logic. The next listing shows the new helper closure.

package form

import groovy.beans.Bindable
import griffon.transform.PropertyListener
import static griffon.util.GriffonNameUtils.isBlank

@Bindable
@PropertyListener(enabler)
class FormModel {
 String name
 String lastName
 String address

 boolean submitEnabled
 boolean resetEnabled

Listing 3.1 FormModel.groovy

Listing 3.2 FormModel.groovy with enabler logic

Helper
utility

PropertyListener
definitionb
www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 3 Models and binding
 private enabler = { e ->
 submitEnabled = !isBlank(name) &&
 !isBlank(lastName) &&
 !isBlank(address)

 resetEnabled = !isBlank(name) ||
 !isBlank(lastName) ||
 !isBlank(address)
 }
}

The code contains two additional imports: a @PropertyListener annotation and the
enabler closure. The imports are straightforward and don’t need any additional
explanation. The enabler closure c takes an event as input. The closure uses the
isBlank helper to determine the value of submitEnabled and resetEnabled. Why
use isBlank in the first place? For one thing, it’s a utility method provided by the
Griffon runtime, which means it’s readily available at any time. Second, this utility is
written in such a way that it doesn’t require any external dependencies or additional
libraries other than the Griffon runtime itself.

 The enabler closure is in place, but how is it invoked? This is where the
@PropertyListener annotation B comes into play. The @Bindable annotation adds
PropertyChangeSupport to all fields of the class. This means that when any of the
field values change, a property change event is fired. The @PropertyListener is set up
at the class level to listen to all property-change events associated with the class. When an
event is fired, the enabler closure is invoked with the event. That’s pretty slick. You can
also apply @PropertyListener locally to a property; this will have the same effect as regis-
tering a PropertyChangeListener that handles change events for that property alone.
One thing to keep in mind when you’re using @PropertyListener in combination with
closures like enabler is that it’s highly recommended to apply the private visibility mod-
ifier to them. This keeps the code from bleeding out to other classes. You may recall that
everything in Groovy is public unless declared otherwise; the inner workings of such clo-
sures don’t concern classes other than the one that holds their definition.

 With the model out of the way, it’s time to focus on the rest of the application. Let’s
move on to the view to see how it uses the model’s properties.

3.1.3 Creating the view

Now it’s time to create the user interface. Take a quick look at figure 3.1: you need
three labels, three text fields, and two buttons. The following listing contains the
view code.

package form

application(title: 'form', preferredSize: [320, 240],
 pack: true,
 locationByPlatform:true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,

Listing 3.3 FormView.groovy

Enable/Disable
logicc
www.it-ebooks.info

http://www.it-ebooks.info/

63A quick look at models and bindings
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 borderLayout()
 panel(constraints: CENTER, border: emptyBorder(6)) {
 gridLayout(rows:3, columns:2, hgap:6, vgap:6)
 label 'Name:'
 textField columns:20,
 text: bind(target: model, 'name', mutual: true)
 label 'Last Name:'
 textField columns:20,
 text: bind(target: model, 'lastName', mutual: true)
 label 'Address:'
 textField columns:20,
 text: bind(target: model, 'address', mutual: true)
 }
 panel(constraints: SOUTH) {
 gridLayout(rows:1, cols: 2, hgap:6, vgap:6)
 button('Reset', actionPerformed: controller.reset,
 enabled: bind{ model.resetEnabled })
 button('Submit', actionPerformed: controller.submit,
 enabled: bind{ model.submitEnabled })
 }
}

You’ve seen view code before, and chapter 4 will go into more details, so we won’t go
into the view too deeply here. The view is set up as two panels. The first panel holds
the name, lastName, and address textFields and their associated labels. The second
panel holds the Reset and Submit buttons.

 The important thing to focus on right now is the bindings B. The binding is the
mechanism that associates the view component with the model property. The text-
Field bindings contain an extra parameter, mutual. Setting mutual to true creates a
bidirectional binding. When the view is changed, the model is updated, and when the
model is changed, the view is updated. You also see bindings on the buttons. Here
the binding determines whether the button is enabled or disabled. When the user
clicks a button, the associated actionPerformed is invoked.

 As you can see, the buttons invoke methods on the controller. Let’s look at the
controller next.

3.1.4 Creating the controller

The controller is responsible for orchestrating the application. In this simple applica-
tion, there isn’t much to do but reset the model values when the Reset button is
clicked and submit the model values when the Submit button is clicked. For Submit,
you’ll print the model values. The next listing contains the code you need.

package form

import griffon.transform.Threading

Listing 3.4 FormController.groovy

Bindingsb
www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 3 Models and binding
class FormController {
 def model
 def view

 @Threading(Threading.Policy.SKIP)
 def reset = {
 model.name = ''
 model.lastName = ''
 model.address = ''
 }

 def submit = {
 println "Name: ${model.name}"
 println "Last Name: ${model.lastName}"
 println "Address: ${model.address}"
 }
}

The controller is pretty straightforward—and now the application is complete. Go ahead
and run it. It’s amazing how much functionality you can enable with so little code.

 Models and bindings are important parts of a Griffon application. Although we
would love to take the credit for coming up with the idea to use models this way, Grif-
fon stands on the shoulders of giants. In the next section, we’ll take a quick tour of the
history of models.

3.2 Models as communication hubs
As we discussed in chapter 1, the Model-View-Controller pattern has gone through a
metamorphosis since its introduction in the late 1970s. Most relevant is the role of the
model portion of the triad and how it’s used in Griffon. Models in Griffon’s MVC
groups don’t fill exactly the same role they did decades ago; but after a long, strange
trip, the role of the model matches the original more closely than most models do in
typical web stacks.

 As originally implemented in Smalltalk-80 (http://en.wikipedia.org/wiki/Smalltalk),
the model portion of the triad came in two different types (although the names
weren’t codified until later releases):1

■ Domain model
■ Application model

Threading directives
Don’t worry too much about threading right now. Chapter 7 is devoted to multithreaded
applications, and it will fill in the blanks. In this case, @Threading(Threading
.Policy.SKIP) causes the reset method to be executed on the same thread that
called the action: the event dispatch thread (EDT), because the action will be linked
to a button.

1 http://c2.com/cgi/wiki?ModelModelViewController.

Threading
directive
www.it-ebooks.info

http://en.wikipedia.org/wiki/Smalltalk
http://c2.com/cgi/wiki?ModelModelViewController
http://www.it-ebooks.info/

65Models as communication hubs
The distinction between the two is mostly in what the type models. The domain model
is supposed to be ignorant of the UI and to serve the data needs of the particular prob-
lem domain being modeled.

 The application model is fully cognizant of the UI. Its responsibility is to serve as an
adapter between the domain model and the view by holding references to domain
models using fields, properties, or collections. Many support classes in Smalltalk, such
as ApplicationModel and ValueModel, supported the application model in this role.
Griffon’s model aligns with Smalltalk’s usage of ApplicationModel and ValueModel.
This is a bit of a departure from how Grails views models.

 Let’s continue by looking at how web frameworks view MVC and then contrast that
with Griffon’s usage of MVC.

3.2.1 MVC in the age of web frameworks

When web frameworks started using the MVC pattern, the role of the model was
almost exclusively served by the domain model. The duties of the application model
were split between the controller and the view. This was possible because the interac-
tion model of a web application changed from a triangle to being more like a layer
cake. This mirrors the classic three-tier web architecture that separated the database
(model) from the web browser (view), with an application server (controller) to run
the show.

 This paradigm shift brought a renewed emphasis on the domain model and
encouraged business rules that dictate correctness of data and the interactions them-
selves in domain-model objects—in other words, domain models became the most
important component that everything else revolved around.

 Web frameworks also are hampered by their connection between the model and
the view because of this layer-cake structure: any connection between the model
and the view must pass through the controller. There’s no way a model can notify a
view that there’s new data available to be consumed without the controller taking an
active role in the matter. They’re also usually hindered by the fact that the view must
initiate all activity and can’t react to changes in the model (although there are librar-
ies and frameworks to address this specific problem). Because of this, whenever you
hear a web framework calling itself an MVC framework, its model is almost always of
the domain model variety.

 All this work in domain models on the web has resulted in some great object-
relational mapping (ORM) libraries and database façade libraries that interact with
plain old Java objects (POJOs). This effort isn’t lost to a Griffon application, because
all the objects needed to access these domain models can be placed directly in the
model class and accessed by the view and the controller. These database-driven
domain models, however, lie outside the scope of this book.
www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 3 Models and binding
3.2.2 Rethinking the pattern

Looking beyond the domain model, Griffon allows for the application model to make
a comeback. Unlike a web application, all the portions of the model, view, and con-
troller exist in the same JVM. The proximity of the view to the model allows for the
change in the model to precipitate updates in the view, bypassing the controller class.
The view objects also have a direct reference to the model objects.

 One of the differences between Smalltalk and Griffon is how the role of the appli-
cation model is performed. Smalltalk placed a great emphasis on using objects as a
reification of the variables in the model. Griffon places a greater emphasis on the dec-
larations of the relationship. Griffon does generate objects in the background to man-
age the duties of the application model, but the developer doesn’t need to interact
with these unless they choose explicitly to do so.

 In that sense, the model in a Griffon application becomes a communication hub: a
place to store data and have other pieces of the equation react to it. A network service
may retrieve a new instant message and store that in the model object. The relevant
view can see this data loaded, automatically animate a globe to spin to the appropriate
area, and post a floating text box with the new message from a user on the other side
of the world. Once they’re set up, these interactions are easy to declare.

 Notification of these changes is the crux of the model. If a tree falls in a forest and
no one is there to see it, then it doesn’t matter if it makes a sound, because nobody
will react to the event. In order to react to a change, you must be able to observe it.
Observing the change in your beans is the next step.

3.3 Observable beans
Observable changes are one of the cornerstones of making binding work. Why are
observing and being observable important? Because if you can’t see something, you
can’t react to it. In programming, the act of observing a change can be difficult unless
you take certain preparatory steps to ensure that efficient observation occurs.

 One of the most accessible ways of observing a change is to look. But that can be
surprisingly expensive. You have to look all the time, because you aren’t sure when
something will change, what is going to change, or even if anything can change. You
could look now and then look again later. How do you know if something has
changed unless you mentally noted it? One alternative is to react to the new look as if
it were a change, but that leads to a lot of wasted effort when you’re observing some-
thing that rarely changes.

 The solution in these instances is to provide cues as to what can change, and pro-
vide facilities to track those changes. It’s kind of like a stage magician: good magicians
make it clear what they want the audience to follow. Sometimes it’s a flashy wand, or
attractive assistants, or the stage lights. But the effect is the same: if you follow the
cues, then when something changes you’re directly drawn to that change. The patterns
used in observable beans share at least one aspect with stage magic: sometimes the
change you’re observing isn’t what really happened, but it’s the change the magician
www.it-ebooks.info

http://www.it-ebooks.info/

67Observable beans
wants you to see. The rabbit that was placed in the collapsing box may not be the same
rabbit that was pulled out of the hat, but it’s meant to look like it is. Similarly, the 10-
digit phone number posted to the model may not be the same 7 digits entered into
the text field: an area code may have been added.

 JavaBeans provide a mechanism to point out where notable events may change,
and they even provide a mechanism for the user of an object to be notified when the
value of a property changes.

3.3.1 JavaBeans bound properties: the Java way

The upside of using JavaBeans is that it’s a well-established pattern with clear meaning
and a standard way to provide access. The downside is the large quantity of boilerplate
text that goes in to creating an observable property. Consider the following example,
which creates a model with two properties: stringProperty and longProperty.

import java.beans.PropertyChangeListener;
import java.beans.PropertyChangeSupport;

public class MyModel {
 private final PropertyChangeSupport pcs =
 new PropertyChangeSupport(this);

 public void addPropertyChangeListener
 ➥(PropertyChangeListener listener) {
 this.pcs.addPropertyChangeListener(listener);
 }

 public void removePropertyChangeListener
 ➥(PropertyChangeListener listener) {
 this.pcs.removePropertyChangeListener(listener);
 }

 public PropertyChangeListener[]
 ➥getPropertyChangeListeners() {
 return pcs.getPropertyChangeListeners()
 }
 }

 public void addPropertyChangeListener
 ➥(String propertyName,
 ➥PropertyChangeListener listener) {
 this.pcs.addPropertyChangeListener(
 ➥propertyName, listener);
 }

 public void removePropertyChangeListener
 ➥(String propertyName
 ➥PropertyChangeListener listener) {
 this.pcs.removePropertyChangeListener(
 ➥propertyName, listener);
 }

Listing 3.5 JavaBeans bound properties in Java, the long way

Listener supportb

Listeners for all
properties

c

Listeners for
specific
properties

d

www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 3 Models and binding
 public PropertyChangeListener[]
 ➥getPropertyChangeListeners(String propertyName) {
 return pcs.getPropertyChangeListeners(
 ➥propertyName);
 }
 }

 private String stringProperty = "";

 public String getStringProperty() {
 return stringProperty;
 }

 public void setStringProperty(String newValue) {
 String oldValue = stringProperty;
 stringProperty = newValue;
 pcs.firePropertyChange("stringProperty”,
 ➥oldValue, newValue);
 }

 private long longProperty = "";

 public long getLongProperty() {
 return longProperty;
 }

 public void setLongProperty(long newValue) {
 long oldValue = longProperty;
 longProperty = newValue;
 pcs.firePropertyChange("longProperty”,
 ➥oldValue, newValue);
 }
}

Wow! That’s a lot of code. What’s surprising is that the code shared across the two
properties takes up more space than the code handing the individual properties com-
bined! But we shouldn’t be too hard on plain old Java, because there could have been
a lot more code. The PropertyChangeSupport field B handles most of the bookkeep-
ing of tracking and firing the property-change events. The handling code in that class
would translate to about another four pages of code. The support isn’t perfect,
because you still need to create methods that match the bound properties pattern.
First you wire the prescribed methods to handle listening to all property changes c,
and then you add listeners for particular properties instead of all properties d.

 Now that you’ve written well over half the code, it’s time to write the property meth-
ods. First let’s examine stringProperty e. The field and getter are exactly the same as
for a nonbound property. The only difference is the setter. Instead of changing the field,
you must first cache the old value. Then you set the field and fire the change event. It’s
important that you do these items in this particular order, because the JavaBeans spec
requires calls to the getter during a property-change event to reflect the new value.

 Looking at longProperty f, you can see that the evolution of the Java language
has also made some of the handling easier. PropertyChangeSupport has fireProperty-
Change methods for firing property changes for Object, int, and boolean. How can

Listeners for
specific
properties

d

Methods for
stringProperty

e

Methods for
longProperty

f

www.it-ebooks.info

http://www.it-ebooks.info/

69Observable beans
this code compile? Java 5 added support for autoboxing, so the long primitive values
are automatically converted into Long wrapper objects.

 Considering all the boilerplate code and nuances in the implementation of Java-
Beans bound properties, it’s no wonder many developers choose not to implement
this pattern in their code. But how does Groovy make this easier?

3.3.2 JavaBeans bound properties: the Groovy way

Groovy has several language features that were specifically designed with JavaBeans in
mind. The first is the notion of a GroovyBean property. Whenever a field is declared with-
out a visibility modifier, Groovy automatically creates the boilerplate getter and setter for
it in the JVM bytecode, including the private field that backs the property. To mirror the
declaration of a property, Groovy also gives priority to JavaBeans properties whenever a
field is accessed on an object. To be more precise, instead of a field access on an object,
Groovy has property access. If there is a correctly constructed getter method, then the
results of that method are used. Only if no property exists is the field on the object
directly accessed. In other words, writing a class in Groovy like the following one

class Person {
 String name
}

has the same effect and produces equivalent bytecode to writing it the Java way:

public class Person {
 private String name;
 public static void setName(String name) { this.name = name; }
 public String getName() { return name; }
}

Groovy has a second language feature that assists in creating bound properties: the
Abstract Syntax Tree (AST) Transformation framework. When Groovy encounters an
annotation while compiling a class, the compiler will inspect the metadata on the
annotation itself. Some metadata will instruct the compiler to load additional classes
to do secondary alterations to the syntax tree of the compilation in progress. These
annotations are called AST Transformations, and when attached to particular fields,
classes, and/or methods, they can add boilerplate code that the developer need not
write. One of the annotations that come packaged with Groovy handles the genera-
tion of bound JavaBeans.

MAKING SIMPLE THINGS EASY
When you want to mark a property in your model as one that can be observed, all you
need to do is make sure the property is annotated with the groovy.beans.Bindable
annotation. The Groovy compiler will see the annotation and automatically generate
the long boilerplate to ensure that a property change will be observed. This is accom-
plished via AST annotations.

 The @Bindable annotation can be applied in two places. First, it can be applied on
the class itself. This causes all Groovy properties in that class to be treated as though
www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 3 Models and binding
they’re observable. In the following code, all the properties declared in the class will
be observable via PropertyChangeEvent events:

import groovy.beans.Bindable
@Bindable class MyApplicationClass {
 String propertyOne
 int propertyTwo
 boolean propertyThree
}

The annotation can also be applied to individual properties in a class. This allows a
class to pick and choose the properties that need to be exposed as bound properties.
This may be useful to prevent properties that change too frequently or infrequently
from being observable. It also allows the user to keep implementation details free
from prying eyes.

 In the following class, only the changes in propertyOne and propertyThree can be
observed via PropertyChangeEvent events:

import groovy.beans.Bindable
class myApplicationClass {
 @Bindable String propertyOne
 int propertyTwo
 @Bindable propertyThree
}

By using the AST Transformation facilities introduced in Groovy 1.6, you can make
standard read/write properties into bound properties. But in a large application, not
everything is standard; sometimes you need a little more magic than is commonly
called for.

MAKING DIFFICULT THINGS POSSIBLE

Often, a JavaBean property does more than stash a value. Not all changes are simple:
sometimes they have side effects, sometimes the property is a contributing part of
other properties, and sometimes the property may not represent what you think it
does. That was part of the thinking behind the JavaBeans getter/setter pattern. We
don’t want to make the ease of use get in the way of the cool stuff.

 How do you deal with complex setters without making users roll it all themselves?
By using conventions. The supporting items, when added by the @Bindable transfor-
mation, follow the same pattern and naming conventions

About AST annotations
The topic of AST annotations is interesting and could fill a book of its own. We’ve said
before that Groovy supports a feature called metaprogramming: the ability to change
the behavior of a class at runtime. It turns out AST annotations allow developers to
have their say with regard to metaprogramming at compile time. For thorough cover-
age of the AST Transformation framework, we recommend that you see the AST chap-
ter in Groovy in Action, second edition (Manning, 2012).
www.it-ebooks.info

http://www.it-ebooks.info/

71Observable beans
 The first thing the transformation does is look for an existing field of type Property-
ChangeSupport. If it finds such a field, the magic trick is over. This assumes the user
has a clear understanding of what they’re doing and what they want to do. On the
other hand, if such a field doesn’t exist, you create one and name it this$Property-
ChangeSupport. Yes, that’s a weird name for a field, but rest assured that the JVM is
perfectly capable of understanding such names. The Groovy compiler chooses that
name to keep the chances of a name collision very, very low. The transformation then
performs the burden of adding the boilerplate methods required to follow the Java-
Beans bound properties pattern: addPropertyChangeListener, removeProperty-
ChangeListener, and getPropertyChangeListeners in their various overloaded
forms. Finally, you add one last method of convenience: firePropertyChange.

 Once the groundwork is laid, the transformation can work on the custom parts of
the code: the bound setter methods. If no setter methods exists, then one is generated
using either an existing PropertyChangeSupport field or one that is generated by
the transformation. If the setter exists, already defined by the user, then the body of the
setter method is wrapped with code that will store the old value of the property and
fire a property-change event with the new value before returning from the method.
All this is handled without you having to write any boilerplate code.

 This isn’t the end of the road when it comes to bound properties. There’s one last
option: manual support. If there’s another property in the class being written (or its
superclass), then you can call the firePropertyChange method directly as needed. This
provides one last escape hatch for bizarre properties that defy standard configurations.

 The end result is that you as a developer don’t have to worry much when you add
an observable property to a class. As long as you follow the conventions, the compiler
will work its magic. It’s also good to know how you can deviate from the conventional
path and enter into the realm of configuration. The following listing shows several
options being used at once, each with specific effects.

import groovy.beans.Bindable

class ManyWaysToBind {
 long lastUpdate

 @Bindable String autoEverything

 @Bindable String customSetter

 public void setCustomSetter(String newValue) {
 lastUpdate = System.currentTimeMillis()
 }

 public void checkBlink() {
 boolean blink =(System.currentTimeMillis()/1000)%2
 firePropertyChange("blink", !blink, blink)
 }
}

Listing 3.6 Bound properties with @Bindable

Not
bindable

b
Simply
bindable

c

Custom
setter

d

Manually
bindable

e

www.it-ebooks.info

http://www.it-ebooks.info/

72 CHAPTER 3 Models and binding
This code sample demonstrates the four ways you can declare a bound property in
Groovy. The first example B is to have the property not be bound. Groovy will gener-
ate a non-eventful setter. The second example c is the most common case of a bound
property: a simple write to the backing field followed by a PropertyChangeEvent
event. But all the code to handle that is generated by the compiler and not seen in the
bean class. A less common example is the third case d, where other tasks need to be
performed in parallel to setting the property. The transformation wraps the corre-
sponding setter method body with the needed code to create a PropertyChangeEvent
event. Finally there’s the last case e, where nothing short of almost total control will
suffice. If the transformation has added the support classes by being attached to other
properties, then you can easily fire a property-change event whenever you need to.
This isn’t the best way to simulate a cursor blink, but there are worse ways.

3.3.3 Handy bound classes
In addition to creating your own model and adding @Bindable annotations, Groovy
has two other handy classes that provide simple property-change support semantics
without the ceremony of a full class: groovy.util.ObservableMap and groovy.util
.ObservableList. You would typically choose one or the other when looking for an
observable collection.

OBSERVABLE MAP

When it comes to property access, the map class in Groovy is one of the classes that get
the most special treatment from the runtime (see the following listing).

Map map = [:]

map.put('key', 'value')
result = map.get('key')

map['key'] = 'value'
result = map['key']

map.key = 'value'
result = map.key

A value stored in the map can be accessed in one of three ways: via the put(K, V) and
get(K) methods, via subscript notation, and via property notation. The most interest-
ing one for this discussion is the property notation. This makes a map look like a cus-
tom defined class without having to define the properties and methods of the class it’s
implementing. The ability of a map to support both types of notations for property
access pretty much makes the distinction between a POJO instance (or bean) and a
map disappear. The same can be said in regard to property access from a bean’s point
of view: both notations are supported.

 Observable maps make all the key/value pairs stored in the map react as though
they’re observable properties. They also add the option to filter out what properties
you want to fire the property events, as shown in the next listing.

Listing 3.7 java.util.Map access in Groovy
www.it-ebooks.info

http://www.it-ebooks.info/

73Observable beans
import java.beans.*

obj1 = new ObservableMap()
obj2 = new ObservableMap({k, v -> !(k ==~ /[A-Z]+/)})

listener = { evt -> println """$evt.propertyName:
 $evt.oldValue -> $evt.newValue""" } as
 ➥PropertyChangeListener

obj1.addPropertyChangeListener(listener)
obj2.addPropertyChangeListener(listener)

obj1.three = 3
obj2.three = 3
obj1.three = 'three'
obj2.three = 'three'

obj1.FOUR = 4
obj2.FOUR = 4

obj3 = new ObservableMap()
obj3.addPropertyChangeListener('passwd',
 { println "password was changed" } as

➥ PropertyChangeListener)

obj3.user = 'griffon'

obj3.passwd = 'rocks'
obj3.put('passwd', 'rocks!')
obj3['passwd'] = 'totally rocks!'

To begin this example, you compare the functionality of two observable maps. The
first object is a no-frills observable map, and the second is an observable map with a fil-
ter that prevents properties that only contain capital letters from firing events. A lis-
tener is attached to report any changes. When changing the objects, the first set of
events fire identically, with both objects reporting a change from null to 3 and a
change from 3 to the string three B. The next set of changes only fires once, because
obj2 has a filter that prohibits properties like FOUR from generating events c. Next
you create a new object and only listen to changes for the property passwd. Setting the
property user doesn’t trigger the event listener you’ve registered on obj3 because
you’re only listening to the property passwd. But if you set the value of passwd in any
of the acceptable ways, a property change event is fired, thus sending the following
message to the output:

password was changed

That message should appear three times because you changed the value of the passwd
property exactly three times.

OBSERVABLE LIST

The other class that gets a lot of built-in use from Groovy is the list. Because lists don’t
associate names with their content but instead associate ordinal positions, there’s no
mapping of properties as there is with maps. Instead, some of the operators in Groovy

Listing 3.8 ObservableMap in action

Assign values to
existing keys

b

Assign values
to new keys

c

www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 3 Models and binding
are overloaded when used on objects that are lists: the subscript operator and the left-
shift (<<) operator. The ObservableList fires its events when its contents change.

 One important change from the property-change listeners for a map is the event
object that’s generated from an ObservableList. The properties don’t change: the
contents of the list change. In order to properly reflect that, you add an additional
field to the property change event: index. This is the actual index in the list of the rel-
evant change, as demonstrated in the following code.

import java.beans.*

list1 = new ObservableList()
list2 = new ObservableList({v -> v != null})

listener = { evt -> println """at $evt.index:
 $evt.oldValue -> $evt.newValue""" } as
 PropertyChangeListener

list1.addPropertyChangeListener(listener)
list2.addPropertyChangeListener(listener)

list1.add(1)
[2,3,4].each { list1.add(it) }
list2 << 1 << 2 << 3 << 4

list1.set(3, 'three')
list2[3] = 'three'

list1[2] = null
list2[2] = null

You make two lists here. The first will react to all content changes, and the second
won’t report property changes if the element added is null. Next you create an ele-
ment listener. Instead of worrying about the propertyName on the event object, you
worry about the index on the event object. Adding an object to the list is treated the
same whether you use the ordinary add method or the left-shift (or insert) operator,
and each add generates a distinct event B. Changing the particular values also gener-
ates the same event, whether you do it via the method or the array accessor c. These
two lists aren’t identical; the second list won’t generate events for null objects. If you
set the second position to null, an event is generated only for the change to list1.

 These are the principal ways you can create changes in Groovy objects that can be
observed by an interested party. It’s nice that you can see these changes, but that’s only
half the story. You want to do cool stuff with these changes, and it would be magical if
you could do some of it automatically, as if one value was bound to another value…

3.4 Have your people call my people: binding
What is a binding? In Griffon, a binding has the following three constituent parts:

■ Trigger—Tells the binding that it needs to update
■ Read—Tells the binding what the new value is
■ Write—Takes the new value and does something with it

Listing 3.9 ObservableList in action

Trigger change events
by adding element

b

Trigger change events
by setting elements

c

www.it-ebooks.info

http://www.it-ebooks.info/

75Have your people call my people: binding
JavaBeans bound properties provide the simplest manifestation of a binding. From
a JavaBeans point of view, the trigger means the property is being changed, the read
means the source is reading the value of the property, and the write means the target
is storing the new property value in the variable.

 But you can make any of the three pieces of a binding as complex as you need to.
When you write a Griffon application, you’re probably using some complex binding
magic without even knowing it. That’s the point.

3.4.1 A basic binding call

The SwingBuilder class in Groovy contains more than just visual widgets; it also con-
tains helper nodes that are useful in building GUI applications. One of those is the
bind node that allows you to cleanly bind together the state of two objects. As we’ll dis-
cuss later, it can bind both bound and unbound properties. Let’s start with the simple
tricks first, as shown in the next listing.

import groovy.beans.Bindable
import groovy.swing.SwingBui
swing = new SwingBuilder()

class BindSample {
 @Bindable String foo
 String bar
}

sample = new BindSample(foo: 'One', bar: 'Two')
swing.bind(source: sample, sourceProperty: 'foo',
 target: sample, targetProperty: 'bar')

println "foo=$sample.foo bar=$sample.bar"

sample.foo = 'Three'

println "foo=$sample.foo bar=$sample.bar"

You can paste the contents of listing 3.10 into a file (for example, bindExample
.groovy) and run it directly from the command line, as long as you have Groovy
installed in your environment. Run the following command to satisfy your curiosity:

groovy bindExample.groovy

The execution of this script yields the following output:

foo=One bar=One
foo=Three bar=Three

Because this is an all-in-one example as a standalone Groovy script, you have to take
care of a bit of ceremony that you normally wouldn’t need to do. First, you import
SwingBuilder and instantiate an instance of it. Normally you wouldn’t need to do this
in Griffon, but because this is a standalone script you must do it explicitly. The next
step is something you would normally do in a model class: you declare the class and
the @Bindable attribute.

Listing 3.10 Simple binding example

Bind
fields

b

Change value
of field

c

www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 3 Models and binding
 With the ceremony over, you can get to the meat of the example. You now bind the
field bar on sample to be the same value as foo B. This binding takes effect instantly;
when you check the value of bar you see that it’s now 'One', which was the value
the field foo had when you instantiated the object. When you change the value of the
field foo c, it’s also reflected in the field bar, which is now 'Three' as well.

 That wasn’t so hard, was it? You’ve specified all the required members of a binding:
a source and the property to be read, along with a target and its property where the
value will be written. But there are different ways to create a binding.

3.4.2 The several flavors of binding

There’s more than one way to call the bind method. You’re expressing the essence of
the binding and extracting the needed ceremony from the context of the bind call.
But just as with long division, before you can understand the essence of the binding,
we need to examine a few fully expressed binding calls. There are three basic flavors:

■ By and large the most common flavor of binding is a property-to-property binding.
■ A less common but equally valuable flavor separates the trigger from the read.
■ The last flavor to fully declare a binding is a hybrid of the previous two forms.

SOURCE AND TARGET PROPERTY BINDING

Here’s a simple property-to-property binding:

bind(source: ownedCheckBox, sourceProperty: 'selected',
 target: model, targetProperty: 'owned')

In this case, the read and the trigger are expressed as the same thing: a bound prop-
erty on a particular object instance. The instance that will provide both the change
notification and the changed values is declared in the source attribute. The property
that will both provide the value and provide the trigger when it’s changed is declared
in the sourceProperty attribute. Both of these attributes constitute the trigger and
the read. The location to which you’ll write the value is declared in two parallel values,
the target attribute and the targetProperty attribute. Both properties together con-
stitute the write.

EVENT TRIGGER, CLOSURE READ, AND PROPERTY WRITE BINDING

Separating the trigger from the read is usually done when the property providing the
read value isn’t observable, but other events in the widget may notify you that states
need to be updated. One classic example is JTextComponent:

bind(source: myJTextArea.document,
 sourceEvent: 'undoableEditHappened',
 sourceValue: {myUndoManager.canUndo()},
 target: undoBtn, targetProperty: 'enabled')

The text property of the JTextComponent and its many subclasses doesn’t provide a
means to directly notify you when the value has changed, primarily because it isn’t
directly backed by a field but is the result of calculations done against the Document
object backing the text field. The Document object does provide events that you can
www.it-ebooks.info

http://www.it-ebooks.info/

77Have your people call my people: binding
latch on to in order to detect changes. To declare a non-property event trigger, you
need to declare source and sourceEvent attributes in the bind call.

 In addition to binding to an event, you can bind to values that aren’t directly prop-
erties. For example, if you’re updating an Undo button, the trigger is the document
manager but the actual value is managed by a third-party UndoManager instance. In this
case, you need to declare a sourceValue element and pass in a closure that will provide
the value to be read. This attribute is entirely independent of any other attributes.

 Targets, on the other hand, don’t provide as much flexibility as sources and trig-
gers. Both the target and targetProperty attributes are needed to determine where
to write the value. If you need to do fancy stuff, you can convert the value to some-
thing else. Say, for example, you bind a numeric property of the model to an input
field that has a currency format. The text coming from the input field will have a for-
mat that may not be appropriate for a numeric algorithm; this is where you require
a converter.

SOURCE EVENT AND PROPERTY, TARGET PROPERTY

The last way to fully declare a binding is a hybrid of the previous two. It isn’t nearly as
common as the other two methods and is mentioned here for completeness. You can
trigger from an arbitrary event on an object and also read the property from the
same object:

bind(source: myToggleButton,
 sourceEvent: 'actionPerformed',
 sourceProperty: 'selected',
 target: model, targetProperty: 'toggleSelected')

The same source attribute can be shared between a sourceEvent and a source-
Property element. In fact, they must share the same source if both attributes are
declared. If you need to have different sources, you’re better served by using the
sourceValue attribute and expressing the read as a closure. Finally, the write is
expressed by the target bean and the targetProperty.

 That covers the three basic forms of a fully expressed binding. But there are ways
to tease out the essence from the ceremony.

3.4.3 Finding the essence

You can use three approaches to more clearly express the essence of the binding:

■ Provide the source property and target property as unnamed arguments.
■ Imply source and target property bindings by using the bind() node as part of

another SwingBuilder node.
■ Express the trigger and read as closures.

IMPLICIT ARGUMENT PROPERTY

In chapter 4, we’ll go deeper into the structure of a builder node, but for this discus-
sion suffice to say that nodes can take arguments and attributes. Arguments don’t
have labels, but attributes do. When a bind node is passed an argument of type
www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 3 Models and binding
String, it’s presumed to be the value for the sourceProperty and targetProperty
attributes if those attributes aren’t passed in and are needed (see the following listing).

bind('selected', source: ownedCheckBox,
 target: model, targetProperty: 'owned')

bind(source: myJTextArea.document,
 sourceEvent: 'undoableEditHappened',
 sourceValue: {myUndoManager.canUndo()},
 'enabled', target: undoBtn)

bind('selected', source: myToggleButton,
 sourceEvent: 'actionPerformed',
 target: model, targetProperty: 'toggleSelected')

bind('selected',
 source: firstCheckBox,
 target: secondCheckBox)

The first three nodes in the example are reworked versions of the prior three examples,
except that in the first and the third nodes the sourceProperty attribute is implied by
the argument value, and in the second node it’s the targetProperty attribute that’s
implied. Note that the argument value can also imply both the sourceProperty and
targetProperty attributes, as shown in the fourth node. The result of the fourth bind
node is that the state of the secondCheckbox selection is driven by the first check box.

CONTEXTUAL PROPERTY BINDINGS

Another instance in which you can glean the essence of the ceremony is when the
bind node is constructed in the context of a view script and provides the declared
value of the attribute. In this case, the object that the node is creating becomes either
a source or a target object, and the attribute becomes the property for the implied
portion of the binding. The four nodes shown in the next listing are semantically
identical to the four nodes in listing 3.11, except that you recast them to be written as
properties in the declaration of the visual nodes.

checkbox('Owned',
 selected: bind(target: model, 'owned'))

button('Undo',
 enabled: bind(source: myJTextArea.document,
 sourceEvent: 'undoableEditHappened',
 sourceValue: {myUndoManager.canUndo()})

button('State Toggle',
 selected: bind(sourceEvent: 'actionPerformed',
 target: model, targetProperty: 'toggleSelected')

checkbox('Second',
 selected: bind('selected', source:firstCheckBox))

Listing 3.11 Implicit argument property examples

Listing 3.12 Contextual property binding examples
www.it-ebooks.info

http://www.it-ebooks.info/

79Have your people call my people: binding
What is notable about these examples is that half of the contextual properties result in
the source being represented by the context, and the other half result in the target
being represented by the binding. How does Griffon know where to use the context? It
looks at what is already explicitly provided and then provides the rest from the context.
But what happens if you provide both the source and the target in the binding but still
do the bind() node as the value to an attribute? The context of the bean then isn’t used
to calculate the binding; instead, the attribute is set with a BindingUpdatable object,
which stores the realization of the binding.

BINDING TO A CLOSURE

The final way to extract the essence of the binding from the full ceremonial declara-
tion of the bind node is to express the trigger and read values as a closure containing
the values to be queried. This is by far the most concise and expressive way to declare
a binding in Groovy or Griffon. This is the preferred way to define bindings where the
binding direction is from source to target only, as well as when the binding itself is
very simple. The following snippet shows how such closures can be defined:

checkbox('Owned', selected: bind { model.owned })

checkbox('Second',
 selected: bind { firstCheckBox.selected })

label(text: bind { "$model.completed / $model.total Completed" })

You’ll note that only two of the samples from the previous set of examples have been
repeated. Binding to a closure isn’t possible for all scenarios. A binding closure can
only be used to express the source and the source values. If a binding needs to trigger
from a non-property event, or the binding gets its source context from the node, then
a closure binding can’t be used.

 The closure binding is deceptive in its simplicity and power. The first two examples
show a simple closure binding: a single object reading a single property value. The

Peeking behind the curtain
How does the bind node deal with contextual properties? In part by using a stand-in
object and using an attribute delegate in the FactoryBuilderSupport to finish
the processing.

Semantically, the bind node is evaluated before the parent object is calculated. So
at the time the bind node is processed, it doesn’t have any way to get at the contex-
tual property. The BindFactory does whatever work it can with the explicit portion of
the node and then returns the half-built objects to stand in for its fully bound state.

Once the parent node starts processing, the FactoryBuilderSupport allows regis-
tered attribute delegates a chance to post-process the attribute values before it
applies them as properties to the resulting object. The BindFactory registers a del-
egate that will identify the stand-in object and finish the processing of the binding with
the name of the attribute and the instance of the object being constructed.
www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 3 Models and binding
third example shows a more powerful use: multiple properties being processed into a
new value. In this example, you can see that the closure binding represents a fourth
form of a fully expressed binding, one that triggers an update when one of several dis-
tinct properties determined at runtime are changed.

3.4.4 Other binding options

Beyond the basic requirements of the binding, you can wire in some other options
that affect the processing of a binding update. The binding can convert values being
read into other values, and it can also validate values and keep invalid values from
being passed to the target. When you’re using a binding, you aren’t stuck with a one-
to-one, take-it-or-leave-it update; values can be adjusted and even rejected. Extra attri-
butes can be added to the bind node to provide this added functionality. There are
also corner cases relating to some uses of the bind node that can be resolved by addi-
tional attributes.

CONVERTING VALUES READ FROM A BINDING

A common requirement is to translate one value into another. For example, a data
field may have a public name such as Red, Green, or Blue, but the data model may
require these values to be stored as ints: 0xff0000, 0x00ff00, and 0x0000ff, respec-
tively. This is clearly a task that should be done as close to the view as possible, to max-
imize the time that the data can be stored in its preferred format. To do this, you pass
an attribute converter into the binding arguments and provide a closure. This clo-
sure is given the value obtained from the read of the binding, and the result of the
closure is passed into the write of the binding. The following listing maps the com-
mon names of colors to the internal AWT object representing those colors.

Peeking further behind the curtain
The ability to trigger from multiple properties is mostly a side effect of how the closure
binding is implemented. Two language aspects of Groovy combine to allow for the clo-
sure binding to work. The first is the fully dynamic nature of each of its method invoca-
tions. When a method is invoked in Groovy, the invocation is passed through the
metaclass to allow it to provide alternate options dynamically at runtime. This is what
makes a dynamic language dynamic: the presence of some sort of Meta Object Protocol.

The second aspect of Groovy that allows the closure binding to work is the use of a
delegate on the closure object. Each closure is represented by a distinct Java object,
and a delegate can be assigned to that object. The unbound variables in the closure
are then resolved against either the object in which the closure was declared or the
delegate object.

The closure binding uses both of these features to get a listing of the objects and
properties that will be inspected for operability. When the binding instance is bound,
the properties for which changes can be observed are listened to for changes. When
any of the properties change, the value of the closure is evaluated, the target is
updated, and, if needed, new properties have listeners attached.
www.it-ebooks.info

http://www.it-ebooks.info/

81Have your people call my people: binding
def colors = [Red: Color.RED,
 Green: Color.GREEN,
 Blue: Color.BLUE]

comboBox(items:colors.collect {k, v -> k}, id:'combo')

label('Look at my colors!',
 foreground: bind (source:combo, 'selectedItem',
 converter: {v -> colors[v]}))

The issue is that the user expects to see the String names, but the label wants a color
object. The closure you provide takes the String value and maps it to the regular value.

 But what about instances where the bound values aren’t translatable to a model
value? How do you ensure that only the valid values are written to the target? Enter
the validator attribute.

VALIDATING VALUES READ FROM A BINDING

In listing 3.14, the validator closure is called when the content of the text field
changes, and if it returns a Boolean value of true, the binding update continues. If the
validator returns any other value, the binding update is silently stopped, and the value
read from the source is neither converted nor written to the target. In this listing you
change things up slightly from the previous incarnation. Instead of a combo box that
limits the user’s entries, you make the user type a valid color name into a text field.

def colors = [Red: Color.RED,
 Green: Color.GREEN,
 Blue: Color.BLUE]

textField('Green', id: 'colorField')

label('Type a color!',
 foreground: bind (source: colorField, 'text',
 validator: {colors.containsKey(colorField.text) },
 converter: {v -> colors[v]}))

To ensure that you only try to change the color for valid values, you add a validator
closure that checks to see if the color in the text field exists in the colors map. If it
doesn’t exist, then it’s as if the binding doesn’t exist. But if you pass the test, then the
label’s color is changed.

 It’s important to note here the relative order of evaluation of converters and vali-
dators. Validators are called and evaluated before converters so that if a value isn’t
valid, you won’t attempt to convert or write the value. This is a good thing for the con-
verter, because it can presume that the value has been vetted prior to being passed in
to the converter. The converter doesn’t have to check for bad values such as nulls or
division by zero if they’re stopped by the validator. In addition, if the converter has
side effects (such as caching values), then those side effects occur only when the val-
ues are actually updated.

Listing 3.13 Converting a binding value

Listing 3.14 Validating a binding value
www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 3 Models and binding
SETTING AN INITIAL VALUE

One corner case that can result from a contextual binding is that the attribute being
declared on the node is the source, and usually the declaration of the value is where
the bind node goes. There are two ways to solve this. The first is to place the bind
node on the target attribute on the target node. But this isn’t always desirable, for
many reasons. It may make the code harder to read, or the target node may not be
declared and may be a value passed into the script binding. In those cases, you can use
the value attribute to specify a value to be passed into the declaring source node.

 Why would you need to set the value? Because often the default isn’t what you want
to begin with:

checkbox("Check spelling before sending mail",
 selected: bind(target:model, 'spelcheck', value:true))

Some UI option should always be turned on by default. The checkbox widget defaults
to unselected, and if you don’t set a value, some people will always send poorly written
email. After the binding is set up, the value of the source is set to the value set in the
value attribute, and if this represents a change, the binding will automatically fire.

TURNING A BINDING OFF

Sometimes you don’t need a binding to fire the updates automatically. The resulting
object representing a fully assembled binding has the option to fire the bindings man-
ually or on demand. This allows the binding to represent the data flow between two
different properties without necessarily requiring them to be constantly in sync.

 The bind attribute controls whether a binding is set to automatically update. The
attribute accepts Boolean values, and by default it’s set to true.

 When would you not want a binding to be automatic? One example is a form that
directly updates the application model preferences when the user clicks OK. But what
if the user doesn’t want the changes set immediately? By setting the bind option to
false, the binding updates can be managed manually, as you’ll see later in the chapter.

TWO-WAY BINDING

All the bindings we’ve covered so far establish a one-way street between source and
target. In other words, the value travels from the source to the target. Sometimes,
however, you want the value to travel in both directions. A first approach to solving
this issue could be defining two bindings, exchanging the source for the target,
like this:

checkbox(id: 'check', selected: bind('value', source: model))
bean(model, value: bind('selected', source: 'check'))

Don’t worry too much about the bean node for the moment; we’ll cover it in the next
chapter. Suffice to say it allows you to use the builder syntax with any object. Unfortu-
nately, these bindings will cause an endless loop of events as soon as one of the two
properties changes value. This happens because one binding isn’t aware of the
other—they don’t communicate in any way. You can use an additional property to get
www.it-ebooks.info

http://www.it-ebooks.info/

83The secret life of BindingUpdatable
rid of the endless loop; its name is mutual, and it takes a Boolean as a value. Keeping
both properties in sync is done as follows:

checkbox(selected: bind('value', source: model, mutual: true))

You must pay attention to which object is set as the source, because it dictates the ini-
tial value transferred to the target. In the previous example, the value property of the
model object is bound immediately to the selected property of the check box. The
following example shows the inverse:

checkbox(selected: bind('value', target: model, mutual: true))

Take special notice of the subtle difference.
 How do you get access to the objects managing the bindings? It’s as if they have

their own secret life. There are, however, ways to access that secret life. Fair warning:
the next section includes specific details, and the discussion is fairly technical.

3.5 The secret life of BindingUpdatable
When you’re creating a binding, you need to use several objects to monitor and man-
age all the moving parts. Listeners need to be added to events, notes about the values
of objects being read need to be maintained, and the ultimate target of the write also
needs to be referenced. Wouldn’t it be nice if there was a nice, organized object to
track the end result of a binding? The good news keeps coming, because such an
object does indeed exist: BindingUpdatable! In this section, we’ll look at the Binding-
Updatable object and how you can manage bindstorms. You’ll also see how to manu-
ally manage and group bindings.

3.5.1 Keeping track of bindings with the BindingUpdatable object

Enter the BindingUpdatable interface. This interface handles operations that may be
of interest to an outsider that has found the object tracking the binding. The Binding-
Updatable object’s binding can be turned on or off, can be reset, can fire the update
immediately, and in some cases can even run in reverse! This object doesn’t expose
every detail directly, because the details vary wildly between declarations of the bind-
ing. If you know what you’re expecting, however, you can always cast or duck-type
down to a more specific application.

 The trick comes in getting the access to this BindingUpdatable object. The object
returned from the bind node is a BindingUpdatable, so you would think that getting
it would be simple. But one way won’t work: setting it as an attribute on some other
node. Why won’t this work? Because it looks the same as a contextual binding, and
this object is specifically checked for during the contextual binding magic (see the
“Peeking behind the curtain” sidebar earlier in this chapter).

 What options are left? You could try to use the assignment operator. This can result
in some funny-looking (but effective) code:

label(text: statusBinding = bind(source:model, 'status'))
www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 3 Models and binding
The problem is that many programmers aren’t used to seeing assignments that aren’t
standalone expressions. Some neat hacks result from using the assignment operator,
and they can yield terse code. But it’s often called write-only code and is error-prone for
even the most seasoned programmers. For maintenance reasons, clarity over clever-
ness should be the standard.

 The last option, and the preferable one, is to use an id: attribute in your bind
node. As we discussed in chapter 1 and will discuss in depth in chapter 4, every node
built by the builders in Griffon accepts the id: attribute and stores the resulting
object in the binding as though it were set with an assignment expression. You use it
just like any other attribute:

label(text: bind(source:model, 'status', id:'statusBinding'))

This serves to keep the information about the binding in the binding node. It also has
the nice side effect of making the code entirely declarative, with no imperative state-
ments obscuring the intended declarations.

3.5.2 Managing the bindstorm: bind(), unbind(), and rebind()

When it comes to binding, one of its strengths can also be one of its greatest weak-
nesses: automatic updates. On the one hand, they magically make values update when
the source value changes; on the other hand, the target value can unexpectedly
change without much warning or explanation. Many bindings happening at the same
time has gained a nickname: a bindstorm, where automatic updates fire en masse and
sometimes trigger other updates that continue to fire. The orderly execution of the
application has no choice but to run away and hide until the storm passes. To address
this problem, the BindingUpdatable object has three methods to tweak the automatic
nature of the binding in question: bind(), unbind(), and rebind().

 The bind() and unbind() methods work as a pair. The first serves to enable any
automatic portion of the binding. This includes adding event listeners (including
property-change listeners) to the appropriate objects for the binding. The unbind()
method does the opposite: it disables any automatic portion of the binding. This gen-
erally results in the removal of any listeners that the current binding may have in place.

 We need to point out two caveats about the finer parts of these two methods. First,
the automatic update portion of the binding may not be driven by JavaBeans events.
For example, the animate() node in the SwingXBuilder runs its updates from a
javax.swing.Timer instance, so bind() and unbind() methods in this case start and
stop the timer. This may have the side effect of preventing a program from exiting if
the bindings are left in place. The second caveat is that these methods are idempotent,
meaning 1 call to bind() has the same effect as 100 (until unbind() is called). The lis-
teners will be added only once until they’re removed.

 But how do you keep a binding in good working order in a constantly changing
environment? That is the purpose of the rebind() method: it causes a binding to
unbind and rebind itself, but only if it’s currently bound. This method usually
wouldn’t need to be called by external implementations, but there are corner cases
www.it-ebooks.info

http://www.it-ebooks.info/

85The secret life of BindingUpdatable
that Griffon can’t handle by itself. One example is a closure binding where one of the
observed properties is held in an array, and the array changes. There are no ways to
track the update of the array by observation. A quick call to rebind() ensures that the
listeners are properly attached without having to also check to see if the binding is
currently active; the checking is done under the covers.

3.5.3 Manually triggering a binding: update() and reverseUpdate()

A BindingUpdatable object for a binding that isn’t currently bound isn’t totally use-
less. In addition to having its binding activated, the binding can also be manually
fired via the update() method. When this method is called, the read and write por-
tions of the binding are fired as if the trigger for the property change had caused
their update to occur automatically. This is particularly useful when the unbind()
method has been called or the binding was created with bind: false as an attribute.
It’s worth remarking that the read is performed on the source and the write happens
on the target.

 The update() method also has a corresponding method, reverseUpdate(), that
will, if possible, reverse the role of the read and the write methods and do the update
in reverse. This method won’t work in all situations; in those cases, the reverse update
will silently fail. In particular, this will happen if the binding is a closure binding or the
source comes from a sourceValue closure. Principally this works with property-source
bindings where the source property is writable.

3.5.4 Grouping bindings together

Having all these accessible features in the BindingUpdatable class allows for powerful
manipulation. But some of the more complex binding scenarios often involve a large
number of bindings that need to be managed in concert. Manually calling each one
individually can be a drag, even with all the syntactic sugar that Groovy affords. This
brings us to the final piece of the puzzle: binding groups. Binding groups allow you to
aggregate multiple BindingUpdatable objects into a single BindingUpdatable object
that passes the method calls to each component binding.

SwingBuilder (discussed in chapter 4) has a node named bindGroup() that cre-
ates an instance of org.codehaus.groovy.binding.AggregateBinding. The only
attributes of note are the id: attribute for storing a reference to the binding group,
and the bind: attribute for the initial binding state. The group usually begins in a
bound state, and any bindings added to it will be bound (this is where the idempotent
nature of bind() comes in handy) unless the bind: attribute has been set to false.

 Generally you’ll want to define your binding groups before declaring any of your
bindings. That’s because the best way to add a binding is to add a group: attribute in
the binding as you declare it, passing in the binding group you bound earlier. This will
automatically add the binding generated into the binding group.

 For a concrete example, consider a form where the user may want to keep updates
from hitting the model until they apply the changes explicitly. For brevity, let’s consider
www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 3 Models and binding
only two possible options, each represented by two Boolean fields in the model. The
view code may look something like this:

bindGroup(id:'formElements', bound:false)

checkbox('Option A’, selected: bind (target:model,
 'optA', group:formElements))
checkbox('Option B', enable: bind (target:model,
 'optB', group:formElements))

button('Apply', actionPerformed:
 { formElements.update() })
button('Reset', actionPerformed:
 { formElements.reverseUpdate() })

formElements.reverseUpdate()

Because this is an update-on-demand situation, you set the binding group to
unbind its contents with the bound attribute being set to false. Then, in the wid-
gets, the bindings to the selected property are added to the bind group form-
Elements; you can later push updates to the model or pull updates from the model.
And for good measure, at the end of the script, you pull the values from the model
into the check boxes.

 There’s more than one way to add a binding to a binding group. Doing so using
the bindGroup attribute make sense when you’re declaring bindings in a view. But you
aren’t limited to creating bindings in declarative code. Two methods on the Aggregate-
Binding allow you add and remove bindings to its internal set: addBinding() and
removeBinding(). These methods (keeping with the theme) are also mostly idempo-
tent. We say mostly idempotent because order does matter. The order in which a bind-
ing is added to the binding group is the order in which it will be called when the
relevant BindingUpdatable methods are called. Removing the object will result in a
later call to add the same object, placing that object last in line, as though it had never
been seen.

3.6 Putting it all together
When you’re creating a model and view that magically
bind their values together, the binding can include a
lot of moving parts. But as we’ve said, knowing about
these moving parts is a lot like using long division: on
some level you need to know how it works, but you
can take most of it for granted. A full example will
help illustrate the point that in general, once the
bindings are in place, you can take their magic for
granted. In this section, you’ll create a mortgage cal-
culator like the one shown in figure 3.2.

 A ubiquitous part of any mortgage website is enabling the user to enter their loan
amount, the interest rate, and the term (the number of years over which they want to

Figure 3.2 The completed
Mortgage Calculator app
www.it-ebooks.info

http://www.it-ebooks.info/

87Putting it all together
pay the mortgage). The resulting formula to calculate the principal and interest (P&I)
payment is fairly simple (when compared to some other financial calculations):

PI = P * (r /(1 – (1 + r) ^ – N))

In this formula, PI represents the monthly principal and interest due, P is the initial
principal, r is the fractional monthly rate, and N is length of the loan in months. This
is enough to get started.

3.6.1 Setting up the model
First you create a project. Open a shell prompt into the directory where you want to
create the application, and create a new MortgageCalc application:

$ griffon create-app mortgageCalc

For a model, you want fields for the principal, rate, and term. You also need a prop-
erty that will calculate the P&I value from the provided fields.

import groovy.beans.Bindable

@Bindable
class MortgageCalcModel {
 float principal
 float monthlyRate
 float months

 float getPayment() {
 return principal * monthlyRate /
 (1-Math.pow(1/(1+monthlyRate),months))
 }
}

The principal, monthly rate, and months fields are all observable, because you need
to know when the model’s writeable values have been updated so you can get the new
payment value.

3.6.2 Defining a view
The next step is to create the view. You’ll do this iteratively so you can see how some of
the pieces of the binding make their way in; we’ll show pieces of the view only as
they’re needed. The first pass is to create form elements for each model field and map
them to their model fields (see the next listing).

label('Principal:')
textField(text: bind(target:model, 'principal',
 value:'330000'))

label('Interest Rate:')
textField(text: bind(
 target:model, 'monthlyRate', value:'6.0'))

Listing 3.15 MortgageCalcModel.groovy

Listing 3.16 Bindings on the model properties
www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 3 Models and binding
label('Term (Years):')
textField(text: bind(
 target:model, 'months', value:'30'))

label('Monthly Payment (P&I) :')
textField(editable:false,
 text: bind(source: model, sourceProperty: 'payment'))

The first problem you run into is that the payment field doesn’t automatically update
when the user changes the editable values. This is because the payment property of
the model isn’t an observable property. The simplest solution is to have the payment
field update when any of the other fields are updated:

label('Monthly Payment (P&I) :')
textField(editable:false,
 text: bind(source: model, sourceProperty: 'payment',
 sourceEvent: 'propertyChange'))

The next problem is that the data formats of the fields don’t match those of the
model. This is one of the primary uses of converters: converting one type of data
to another type. With a float conversion, the principal text field should now look
like this:

label('Principal:')
textField(text: bind(target:model, 'principal',
 value:'330000',
 converter: Float.&parseFloat))

Once the other input fields have the same converter, you should begin getting
updates to the payment field. The payment values will be completely nonsensical at
this point, with a payment in excess of the initial mortgaged amount. The problem
(which the astute reader may have seen coming miles away) is that the formula is
expressed in different units than the user expects: months and a fractional monthly
rate versus years and an annual percentage. This is the second primary purpose of
converters: to massage data values before they’re set in the model.

 The next question is to decide where to put the logic for validating and converting
the results. There’s no absolute answer. But because the logic can be somewhat arbi-
trary, it sounds like it should be stored in the controller. With closures stored in the
model, the code for the converters and validators looks something like this:

label('Interest Rate:')
textField(text: bind(target:model, 'monthlyRate',
 value:'6.5%',
 validator: controller.validateRate,
 converter: controller.convertRate))

Finally, you don’t want to visually cram all the fields together. The fields also shouldn’t
hug the edge of the frame. There are many ways to do this, but for this example you’ll
use an empty border and a grid layout with vertical and horizontal padding. After put-
ting all the pieces together, you get the final view for the application, as shown in the
next listing.
www.it-ebooks.info

http://www.it-ebooks.info/

89Putting it all together
application(title:'Mortgage Calculator', pack:true, locationByPlatform:true)
{

 panel(border: emptyBorder(6)) {

 gridLayout(rows:4, columns:2, hgap:6, vgap:6)

 label('Principal:')
 textField(text: bind(target:model, 'principal',
 value:'$200,000',
 validator: model.validatePrincipal,
 converter: model.convertPrincipal))

 label('Interest Rate:')
 textField(text: bind(target:model, 'monthlyRate',
 value:'6.5%',
 validator: model.validateRate,
 converter: model.convertRate))

 label('Term:')
 textField(text: bind(target:model, 'months',
 value:'30',
 validator: model.validateTerm,
 converter: model.convertTerm))

 label('Monthly Payment (P&I):')
 textField(editable:false,
 text: bind(source: model, sourceProperty: 'payment',
 sourceEvent: 'propertyChange',
 converter: model.convertPayment))
 }
}

The final task is to write what constitutes the validation logic.

3.6.3 Adding the missing validations to the model
In this example, the model holds all pertinent functions that affect its own values. In
other applications, you might feel like placing the validators in a controller, which is
OK, too. One reason for choosing the model instead of the controller is multithread-
ing concerns. For the moment, we ask you to trust our judgment; all will become
clearer in chapters 6 and 7.

 There are laws restricting how long a mortgage can be held, how much interest
can be charged, and, for some loans, how much principal can be borrowed. These
decisions should in no way affect the visual representation, so they shouldn’t be in the
view. The other option is to place them in the model, and this is a decision between a
concise model and a verbose model. For this example, you’ll choose a concise model
and place the constraints in the controller (see the next listing).

import groovy.beans.Bindable
import java.text.NumberFormat
import java.text.DecimalFormat

Listing 3.17 MortgageCalcView.groovy

Listing 3.18 Updated MortgageCalcModel with validation and conversion logic

Binding

Validator

Converter
www.it-ebooks.info

http://www.it-ebooks.info/

90 CHAPTER 3 Models and binding
@Bindable
class MortgageCalcModel {
 float principal
 float monthlyRate
 float months

 float getPayment() {
 return principal * monthlyRate /
 (1-Math.pow(1/(1+monthlyRate),months))
 }

 private currencyFormat = NumberFormat.currencyInstance
 private percentFormat = new DecimalFormat('0.00%')

 def validatePrincipal = {
 try {
 float principal = currencyFormat.parse(it)
 return principal > 0
 } catch (Exception e) {
 return false
 }
 }
 def convertPrincipal = currencyFormat.&parse

 def validateRate = {
 try {
 float rate = percentFormat.parse(it)
 return rate > 0 && rate < 0.30
 } catch (Exception e) {
 return false
 }
 }
 def convertRate = {
 return percentFormat.parse(it) / 12
 }

 def validateTerm = {
 try {
 def term = Float.parseFloat(it)
 return term > 0 && term < 100
 } catch (Exception e) {
 return false
 }
 }
 def convertTerm = {
 return Float.parseFloat(it) * 12
 }

 def convertPayment = {
 return currencyFormat.format(it)
 }
}

The model code also contains another often-overlooked aspect of simple GUIs like
this one: ease of use. By using the currency and percentage formats from the java.text
package, you present the numbers to the user in a format that more easily matches
their common usage: with currency symbols, comma-separated number groups, and a

Principal validator

Principal
converter
www.it-ebooks.info

http://www.it-ebooks.info/

91Summary
percentage sign for the rate. One nice side effect of using the percentage format is
that it automatically converts the percentage values to fractional values. Earlier drafts
of the code did this conversion by hand.

3.7 Summary
The model is a collection of data that exists to be shown and changed by the view and
the controller. But in order to make the process flow smoothly, the view needs to have
its data fed to it automatically. To do so, you mark the properties that you want to be
observable with the @Bindable annotation (or use the handy ObservableMap class),
and you find the places in the view class that need to be updated when properties in
the model are updated. The bind node can be used directly on the attributes of the
node or can be declared outside of the view tree.

 When declaring a binding operation, it’s essential that the three main pieces of the
bind be declared in some fashion: what triggers the update, what provides the value,
and where the value is placed. For simple property-to-property bindings, these are
provided by the properties themselves (assuming that the property providing the
value has been marked @Bindable). More advanced techniques trigger updates from
JavaBeans events and provide source values from arbitrary closures. The result of the
binding must go into a JavaBeans property. Finally you can do powerful things with
the objects the Griffon framework creates to track bindings.

 If we were magicians, we would be out of work by now, because we’ve laid bare
some of the best parts of the magic trick that is data-model binding. Whenever you see
a well-bound MVC group in action, it will still look magical. You’ll know how things
work, but you won’t have to worry about the details. It’s the magician who has to wash
the rabbit fur out of his hair every night, not the spectators!

 With models and bindings in your bag of tricks, it’s time to move on to views.
www.it-ebooks.info

http://www.it-ebooks.info/

Creating a view
Views in Griffon are responsible for composing the visuals aspects of your applica-
tion. Views are what the user interacts with. There are hundreds of components
that you can use to create a view; and no matter which one you choose, you can
compose the view in the same manner via a specialized DSL based on Groovy’s
SwingBuilder.

 Griffon views can also be composed of other views, resulting not just in clever
reuse of code but also in a way to display new elements on the fly.

 In this chapter, we’ll take a deeper look at Griffon views. We’ll start by examin-
ing a classic Swing example and then compare it to a Griffon example that imple-
ments the same functionality. After you’ve see how much easier Griffon is, we’ll
look at special features of Griffon views and how you can use these features to keep
your code organized when you build a large application. We’ll end this chapter by
showing how you can integrate views built with NetBeans GUI builder (formerly
Matisse) and Abeille Forms Designer into a Griffon application.

This chapter covers
■ A brief introduction to Swing
■ The basics of a Griffon view
■ Composing views with legacy source code
92

www.it-ebooks.info

http://www.it-ebooks.info/

93Java Swing for the impatient
 We’re about to enter the wild yet amazing world that is Java Swing, If you’re not
familiar with Swing, we encourage you to see Swing, 2nd edition (Manning, 2003) for
a thorough primer. This chapter assumes you have a fair understanding of Swing.

 We’ll start by briefly reviewing Swing before digging into the Groovy SwingBuilder,
just to cover the basics. If you’re familiar with Swing concepts, feel free to jump to sec-
tion 4.2 and get started with SwingBuilder. And if you’re already comfortable with
SwingBuilder, you can take the fast path to section 4.3 to learn more about the anat-
omy of a Griffon view.

4.1 Java Swing for the impatient
The basic premise of Swing is that the UI
is a hierarchical tree structure that’s the
result of component composition. We’re
using the word component to mean any
Swing/UI object. Components can be fur-
ther divided into containers and plain
components. A container can contain
other containers or plain components. A
plain component doesn’t contain any other components. Typical containers in Swing
are windows, dialogs, menus and panels; buttons, labels and menu items are examples
of plain components. This isn’t a complete list of the available Swing containers and
components, but it’s enough to get you started. Figure 4.1 illustrates the Swing com-
ponents of a simple “Hello World” application.

 Containers and components work together
through a parent-child relationship. Containers usually
handle how their components are visually arranged by
means of a helper layout object. Figure 4.2 illustrates
the parent-child nature of the component hierarchy
for the “Hello World” application in figure 4.1.

 Notice that the Swing component hierarchy is a bit
more elaborate than you may have imagined when looking at figure 4.1. The Swing UI
toolkit defines a number of intermediate components and containers that take care of
handling user events properly and changing the overall UI state. Take for example the
glass pane in figure 4.2. When that component becomes active, it will block any further
events from being sent to the components behind it—that is, the JLayeredPane and its
child components. In other words, it serves as a shield. Developers normally choose this
technique to signal that the application is in read-only mode until the current action is
finished. A glass pane is where you’ll usually see a waiting clock or an animated icon.

 You can change any object and its properties, of course, and plenty of options exist
to do so. There are even options that mimic the layout of a web page.

 In this section, you’ll get a feel for Swing by looking at the classic Swing “Hello
World” application. You’ll also extend the application to accept user input. We’ll

Figure 4.1 Swing containers and components

Figure 4.2 “Hello World”
component hierarchy
www.it-ebooks.info

http://www.it-ebooks.info/

94 CHAPTER 4 Creating a view
complete this section by making some observations about Swing development. On
with the show.

4.1.1 “Hello World” the Swing way

You’ll first create the classic “Hello World” in Swing. Noth-
ing fancy, just a window that says “Hello World,” as shown in
figure 4.3.

 The app is made up of a top-level component (a
JFrame), which is a container that holds a plain component
(a JLabel) that displays some text. The following listing
shows the code for this simple example.

import java.awt.Dimension;
import javax.swing.JFrame;
import javax.swing.JLabel;

public class HelloWorld {
 public static void main(String[] args) {
 // unsafe Swing threading
 JFrame frame = new JFrame();
 frame.setTitle("Hello World");
 frame.setSize(new Dimension(200, 100));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.getContentPane().add(new JLabel("Hello World"));
 frame.setVisible(true);
 }
}

In case you didn’t know already, Java Swing was designed around the time JavaBeans
conventions1 were laid out. It’s no surprise that a Swing component can be configured
by means of setting property values. Look what happens with the frame variable. An
instance of JFrame is created using the default constructor. As is customary according
to the JavaBeans conventions, a bean defines at least a no-args constructor. Then some
of its properties are mutated B. A property, by definition, consists of a pair of meth-
ods that follow a naming convention: T getProp() and set(T prop), where T stands
for the property type, getProp() retrieves the property’s value, and setProp()
mutates the value accordingly. Finally a JLabel (a component capable of displaying
text) is added to the frame’s content pane c, and the frame is displayed.

 This code should look familiar to those with a GTK (www.gtk.org), Qt (http://
qt.nokia.com), or Standard Web Toolkit (SWT; www.eclipse.org/swt) background. It
may even look similar to what you can do on the web with the Google Web Toolkit
(GWT; http://code.google.com/webtoolkit/). This example drives home the point

Listing 4.1 A bare-bones HelloWorld Swing application

1 http://en.wikipedia.org/wiki/JavaBean.

Figure 4.3 “Hello World” in
plain Swing. It can’t get
much more straightforward
than this.

Set properties
on frame

b

Create JLabel
and add to
framec
www.it-ebooks.info

www.gtk.org
www.eclipse.org/swt
http://en.wikipedia.org/wiki/JavaBean
http://qt.nokia.com
http://qt.nokia.com
http://code.google.com/webtoolkit/
http://www.it-ebooks.info/

95Java Swing for the impatient
that Swing applications are developed by means of composing a set of components
that follow the JavaBeans conventions.

 Let’s dig a little deeper and make your simple application take some input and
give you a response.

4.1.2 Extending “Hello World”: “Hello Back”
You can extend listing 4.1 with two additional Swing
concepts: layouts and event handlers. Instead of hav-
ing a hard-coded message displayed on a label, you’ll
now prompt the user for a name. The application will
respond using the user’s input. Figure 4.4 shows the
application running.

 To implement this behavior, you need to do
the following:

■ Build an input field, a button, and a label
■ Lay out the components in a meaningful manner
■ Register an event handler on the button

The following listing shows the minimal code to make it work.

import java.awt.Dimension;
import java.awt.GridLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.*;

public class HelloBack {
 public static void main(String[] args) {
 // unsafe Swing threading
 JFrame frame = new JFrame();
 frame.setTitle("Hello World");
 frame.setSize(new Dimension(200, 140));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 final JTextField textField = new JTextField();
 textField.setColumns(20);
 final JLabel label = new Jlabel();
 JButton button = new JButton("Say 'Hello'");

Beware the thread
Listing 4.1 omits an important rule when working with Swing, one that’s related to
the JVM’s multithreaded nature and Swing’s single-threaded design. It’s safe for
sample code to omit this rule, because including the code that enforces it would
result in longer examples that may obscure the point we’re trying to make. We’ll dis-
cuss threading issues in full detail in chapter 7. For now, we’ll mark unsafe threading
code with a comment.

Listing 4.2 “Hello Back” application that reads user input and displays it in Swing

Figure 4.4 The “Hello Back”
Swing application displaying the
user’s input after they click
the button

Create components
you need

b

www.it-ebooks.info

http://code.google.com/webtoolkit/
http://www.it-ebooks.info/

96 CHAPTER 4 Creating a view
 frame.setLayout(new GridLayout(3,1));
 frame.getContentPane().add(textField);
 frame.getContentPane().add(button);
 frame.getContentPane().add(label);

 button.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent evt) {
 String text = textField.getText().trim();
 if(text.length() == 0) return;
 label.setText("Hello "+ text +"!");
 }
 });

 frame.setVisible(true);
 }
}

Listing 4.2 fulfills the three goals. First you build the required input field, label, and but-
ton b. Notice that the variables that reference the input field and label are marked as
final; this will become clear in a minute. Next you arrange the three components by chang-
ing the default layout used by the frame: instead of a BorderLayout, you set it to a Grid-
Layout c with three rows and one column. Then the mystery behind using the final
keyword is revealed, when you set the required event handler on the button as an anony-
mous class d. As you may know, anonymous classes in Java can’t reference a variable out-
side of their scope unless it belongs to its parent class or is marked as final. In this case, the
variables are defined inside the same method that defines the anonymous classes, so
you’re forced to use the final keyword to make them visible. This is by no means the only
way to implement an application with this behavior, but it’s definitely the shortest.

 Although this is just the basics of Swing, you should now feel more confident with
it. Having a basic understanding of Swing will help you understand SwingBuilder and
appreciate how much easier Swing development is when you use Griffon and Swing-
Builder. Why do many developers complain about Swing if it appears to be so simple?
Alas, Swing isn’t without its kinks.

4.1.3 Swing observations

There are three factors working against Swing’s good reputation, all of which will be
explained next:

■ Java’s verbosity level—We’ve already established this point. Java is a great lan-
guage, and Swing is a good UI Toolkit; put them together, and people go crazy,
fast. So much code needs to be written to get them to work that not even an IDE
can keep you from going mad.

■ No Java generics—Swing was conceived and released long before generics made
it into the Java language. Although some Java APIs received a facelift when
generics were introduced (such as the Java Collections API), Swing was spared
them. This means developers must continually check and cast objects returned
by Swing classes. At the moment of writing the book, there are no plans in the
foreseeable future to change this fact.

Apply layoutc

Register event handlerd
www.it-ebooks.info

http://www.it-ebooks.info/

97Groovy SwingBuilder: streamlined Swing
■ Difficulty of threading—This is by far the most problematic issue with Swing.
Threading is a hard task to tackle. It doesn’t matter how well a Java library
smooths out the two previously exposed factors, proper threading support can
be the deal breaker.

Luckily, Griffon chose to use Groovy’s SwingBuilder. SwingBuilder is a Groovy class for
building hierarchical Swing structures. When used with the Groovy language, these
structures provide a solution for each of the factors we’ve just mentioned, as
explained in the next section.

4.2 Groovy SwingBuilder: streamlined Swing
SwingBuilder belongs to a group of help-
ful Groovy classes that follow the builder
pattern.2 The builder pattern is a com-
monly used technique for constructing
complex object structures. The goal of
the builder pattern is to encapsulate the
construction details within the builder to
provide the developer with an easier
method of creating a complex object
structure. SwingBuilder takes advantage
of the Groovy syntax and lets you declara-
tively define a hierarchical structure with
a small amount of code. Figure 4.5 illus-
trates SwingBuilder taking a declarative
view definition to render the view.

 Without going into too much detail
for the moment, let’s just say that Groovy’s
metaprogramming capabilities, its native map syntax, and its closures support are
a great help in implementing a builder. You’ll see all those features in action in a
few moments.

 In this section, you’ll build and extend the same “Hello World” application as ear-
lier, first using SwingBuilder and standalone Groovy scripts, then with Griffon. You’ll
see how much easier it is to do with Griffon and SwingBuilder than with plain Java.
Because the builder understands the context and hierarchical structure, you can write
significantly less code.

 Let’s tell the world hello with Griffon and SwingBuilder.

2 http://en.wikipedia.org/wiki/Builder_pattern.

Figure 4.5 How Groovy SwingBuilder creates
a view
www.it-ebooks.info

http://en.wikipedia.org/wiki/Builder_pattern
http://www.it-ebooks.info/

98 CHAPTER 4 Creating a view
4.2.1 “Hello World” the SwingBuilder way

Let’s revisit the “Hello World” application shown earlier in listing 4.1, this time imple-
mented with SwingBuilder.

import groovy.swing.SwingBuilder
import static javax.swing.JFrame.EXIT_ON_CLOSE

new SwingBuilder().frame(title: 'Hello World',
 size: [200,100],
 defaultCloseOperation: EXIT_ON_CLOSE,
 visible: true) {
 label 'Hello World!'
}

The output is the same as that shown in figure 4.3. When running this application,
you may notice that sometimes the label doesn’t appear; this is a side effect of using
unsafe Swing threading code B. You can manually change the size of the frame to
force an update, and the label should appear. But if you’re impatient to learn the
proper way to build a Swing application with SwingBuilder while honoring the thread-
ing rules, wait no longer; the following listing provides the answer. SwingBuilder
comes with a few methods that make threading a breeze.

import groovy.swing.SwingBuilder
import static javax.swing.JFrame.EXIT_ON_CLOSE

new SwingBuilder().edt {
 frame(title: 'Hello World',
 size: [200,100],
 defaultCloseOperation: EXIT_ON_CLOSE,
 visible: true) {
 label 'Hello World!'
 }
}

Remember that we’ll cover everything you need to know about Swing and threading
in chapter 7. For now, let’s inspect the code in listing 4.4. If you want to, you can flip
back to listing 4.1 and see how much the code has changed while still providing the
same behavior.

 First you need an instance of SwingBuilder; no surprises there. You use that
instance to build a top-level component: a JFrame. You do so by invoking the frame()
method on SwingBuilder. Note the parameters the method takes: title, size,
defaultCloseOperation, and visible properties are available. It isn’t coincidence
that they resemble the properties you set in the Java version—they’re the same prop-
erties! SwingBuilder uses the Groovy short map literal syntax. Whenever you see a
method call in Groovy that looks like method(param1: value1, param2: value2),
make no mistake: Groovy will convert it into a map under the covers. The added benefit

Listing 4.3 “Hello World” application implemented with Groovy’s SwingBuilder

Listing 4.4 “Hello World” with proper threading support

Unsafe Swing
threadingb

Run in EDT
(thread safe)
www.it-ebooks.info

http://www.it-ebooks.info/

99Groovy SwingBuilder: streamlined Swing
with SwingBuilder, and builders in general, is that it will use the map’s keys and values
to set matching properties on the target object.

 The second thing to notice is that SwingBuilder automatically converts a List into
a java.awt.Dimension. This is another feature provided by Groovy, and it’s why you
don’t need to import that class in the first place.

 Finally, somehow the label is added to the frame, but there’s no explicit call to do
so—or is there? Notice that the frame() method takes an additional closure as a
parameter; inside it, you’ll find the label definition. The closure notation clearly con-
veys the idea that a parent-child relationship exists within the frame and the label; the
builder knows that, and the label is automatically appended to the frame’s children.

 SwingBuilder reduces the amount of code you must write by allowing properties to
be set without explicit calls to their corresponding setter methods. It’s also aware of
the current scope and context of a particular node; that’s how it can embed child
components on parent components without you having to make an explicit call to an
add or register method on the parent.

 Now that you’ve seen the basic “Hello World” implemented with SwingBuilder, it’s
only fair that you do the same with the advanced version.

4.2.2 “Hello Back” with SwingBuilder

Again, you’ll use SwingBuilder and Groovy to reduce the amount of code and visual
clutter while retaining the same behavior as in listing 4.2. As we showed you with
Swing, you’ll enhance your simple app to prompt the user for a name in the next list-
ing. The application UI will display that input.

import groovy.swing.SwingBuilder
import static javax.swing.JFrame.EXIT_ON_CLOSE

new SwingBuilder().edt{
 frame(title: 'Hello World',
 defaultCloseOperation: EXIT_ON_CLOSE,
 size: [200, 140], visible: true) {
 gridLayout(cols: 1, rows: 3)
 tf = textField(columns: 20)
 button("Say 'Hello'", actionPerformed: {
 String text = tf.text.trim()
 if(text) lbl.text = "Hello ${text}!"
 })
 lbl = label()
 }
}

NOTE Notice the that edt{} is used to enable proper threading.

Let’s inspect listing 4.5 part by part. It builds a frame just as listing 4.4 did, so you’re
on the right track. The new bits are the frame’s layout and its children definitions.
The layout is defined by using the gridLayout() node B, which in comparison to its

Listing 4.5 Advanced “Hello World” with SwingBuilder

Set grid
layout

b

Create text input fieldc

Button with action
event handlerd
www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 4 Creating a view
Java counterpart makes explicit that it has one column and three rows. We intention-
ally switched the order to highlight the fact that Groovy’s map literal syntax when used
with method calls effectively turns itself into named parameters.

 The next element is the input field c, whose value is stored in a local variable
named tf. Next is the button d along with its event handler. Groovy is able to coerce a
closure into an implementation of a single method interface, such as ActionListener.
Add up the fact that Groovy closures accept a default parameter when none is defined,
and you get a recipe for short and concise code. But you can define a parameter for the
event handler closure, even its type, as shown in the following equivalent snippet:

 button("Say 'Hello'", actionPerformed: { ActionEvent evt ->
 })

It’s convenient to define an inline ActionListener using the closure notation men-
tioned earlier, especially when the behavior invoked is small. But as you’ll soon dis-
cover, it’s better to define the closures elsewhere (such as in a controller) to boost
readability and enforce code reuse.

 The final element is the label, which is saved with a variable named lbl. You might
wonder how it’s possible for the button to reference the label when such a component
hasn’t been defined yet. Well, the label is available by the time the event handler is
called; the difference is that the code associated with the event handler is executed
not when the builder is assembling the node but rather when the application is up
and running and the button is clicked. All local variables, such as tf and lbl, are
stored within the context of the builder. The builder is also set as the delegate of the
action closure. This is why you can access both variables inside that closure.

 There you have it. Groovy’s terse syntax coupled with SwingBuilder allows you to
write an application with half the code it would take with regular Java. The code turns
out to be more readable and expressive. And the application’s behavior stays the same.

 But what do all these things have to do with a Griffon view? We’ll answer that ques-
tion in the following section.

4.3 Anatomy of a Griffon view
In earlier chapters, we’ve shown you a few applications that rely on well-established
conventions. A subset of those conventions specifies how views can be created, but we
haven’t fully explained them— until now.

 In an application, the view(s) is the portion of the application that a user interacts
with to fulfill some goal. It’s what the user sees. Views are used to display information
and take user input.

 The last section gave you an inkling of what happens behind the curtains when
Griffon builds a view. Yes, SwingBuilder plays a key part in the process; but as you’ll
soon find out, there’s more to builders and views than meets the eye.

 In this section, we’ll look at the role of builders in the creation of views. You’ll see
that builders are made of nodes, and we’ll show you what nodes can do.
www.it-ebooks.info

http://www.it-ebooks.info/

101Anatomy of a Griffon view
4.3.1 Builders are key to views

At first glance, a view script is like any other Groovy script, with the peculiarity that it
runs under a specific context: an instance of SwingBuilder. SwingBuilder is always
available as a delegate, meaning all nodes and variables can be resolved against that
particular SwingBuilder instance. That’s half true; more accurately, a view script runs
under an instance of CompositeBuilder rather than SwingBuilder.

 We mentioned CompositeBuilder in chapter 2 when we discussed Builder.groovy;3

that file contains the blueprints for creating a CompositeBuilder, which is a special
class that helps build a view. Let’s review the contents of a typical griffon-app/conf/
Builder.groovy file:

root {
 'groovy.swing.SwingBuilder' {
 controller = ['Threading']
 view = '*'
 }
}
root.'SwingGriffonAddon'.addon = true

This file contains two builder definitions. The first definition tells the Composite-
Builder that an instance of SwingBuilder must be used. All nodes and methods will be
appended to the view, whereas all nodes and methods related to the Threading group
will be appended to controllers. By append, we mean the Griffon runtime will use
metaprogramming to extend the behavior of the application’s classes. You know this
because the view property has * as its value, whereas the controller property has a
list made up of a single element that happens to be the group containing all thread-
ing-related methods.

 In addition to *, you can use the values listed in table 4.1. These values have more
specific meanings. The properties that can be used as targets are the names of each
MVC member belonging to a group. You saw view and controller already, but know
that there may be additional members, such as model.

SwingBuilder defines a number of node groups, usually paired by behavior or similar
characteristics. You’ve seen Threading, but there are also Windows, TextWidgets,

3 Don’t forget your Griffon ABCs: application, builder, config.

Table 4.1 List of acceptable values per target

Value Effect

*:factories Contributes all node factories only

*:methods Contributes all explicit methods

*:props Contributes all explicit properties

* Contributes all nodes, methods, and properties
www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 4 Creating a view
Containers, and Binding node groups, to name a few. Please refer to SwingBuilder’s
javadoc to learn more about the currently available groups.

 The second builder definition instructs the CompositeBuilder that it must load a
runtime plugin (or, as we like to refer to it, addon) whose name is SwingGriffon-
Addon; all of the addon’s nodes will be contributed to views automatically. Addons are
Griffon’s answer to extensibility. By applying an addon to an application, you can
extend its functionality. You’ll see how it’s done in chapters 11 and 12.

 Adding new builders to the application’s configuration is easy. Append a few lines
resembling the SwingBuilder line you just saw. For example, you can embed Jide-
Builder (http://griffon.codehaus.org/JideBuilder) in this manner:

root {
 'groovy.swing.SwingBuilder' {
 controller = ['Threading']
 view = '*'
 }
 'griffon.builder.jide.JideBuilder' {
 view = '*'
 }
}
root.'SwingGriffonAddon'.addon = true

As an alternative, remember that Builder.groovy is a Groovy view of a properties file.
You can also append the following line to the default Builder.groovy file:

root.'griffon.builder.jide.JideBuilder'.view = '*'

Whichever option you pick, you must remember to place all of JideBuilder’s libraries
and dependencies in your application’s lib directory; otherwise you’ll get exceptions
while compiling your application.

As you can see, configuring the CompositeBuilder component requires no dark
magic at all.

 Now that you understand where nodes come from, you can put them where they
belong: in a view script.

4.3.2 Nodes as building blocks

Initially, all SwingBuilder nodes are available to be used in a view. SwingBuilder comes
with a lot of useful nodes from the start. We’ve already mentioned the rule that you

Get the plugin
Adding builders to your builder configuration can be automated via plugins. All the
builders shown at http://griffon.codehaus.org/Builders have companion plugins that
do just that. We’ll discuss how you can make your own plugins in chapter 11. We’ll
also provide plenty of information on how views can be extended via builders in chap-
ter 12.
www.it-ebooks.info

http://griffon.codehaus.org/JideBuilder
http://griffon.codehaus.org/Builders
http://www.it-ebooks.info/

103Anatomy of a Griffon view
obtain the name of a node based on the name of a Swing class: drop the first J from
the name and lowercase the following character. Thus JButton becomes button,
JTextField becomes textField, and so on.

 Nodes not only instantiate a particular JComponent (in the case of SwingBuilder
nodes) but also let you change an instance’s properties using property syntax. No
more lengthy calls to setter methods. Nodes are also aware of their surroundings.
You’ve seen how a parent node knows when and how a child node must be appended.
Most nodes use their nested closure as the source of child nodes. Others are smarter
and use the closure in other ways.

 For example, you’ve seen the combination of action and button nodes. What you
might not know is that the action closure can be defined in place in the action node.
No, we’re not talking about setting the closure as the value of the action’s closure
property, but rather about defining it as a nested closure on the action node itself.
This is how it’s done:

action(id: "clickAction", name: "Click me!") { evt ->
 println "You clicked on ${evt.source.class.name}"
}
button(clickAction)

Clicking the button results in the following being printed to the console:

You clicked on javax.swing.JButton

There are other nodes that rely on this technique. We’ll cover registering nodes in
chapter 12.

Using preconfigured variables
It’s important that you become familiar with all of the preconfigured variables that are
available to you in a view script, because many times you’ll need to lean on them to
get the results you want:

■ app—Every member of an MVC group has access to a variable named app that
points to the instance of the currently running application. It’s of type griffon
.core.GriffonApplication.

■ controller—If the current view has a controller associated with it, then this
variable points to that instance. It’s possible to have a view without a controller
instance assigned, or even to have a FooView with a BarController. It all
depends on how you configure your application.

■ model—The model variable points to a model instance. This variable may be null
for the same reasons laid out with the previous variable. But most of the time,
both model and controller point to valid instances, which also match the
view’s logical group. This is the behavior as per the default configuration of MVC
groups upon creation.

We’ll cover in detail how MVC groups can be configured when we reach chapter 6.
www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 4 Creating a view
In addition to preconfigured variables, which Griffon defines to make your job easier, you
also have access to a number of extra nodes that help you create custom components.

4.4 Using special nodes
More Swing components exist than those found in the JDK, but it would be a huge
task to hunt them all down and make a SwingBuilder node for each one for them. To
solve this problem, SwingBuilder includes a few extra nodes that aren’t related to a
particular Swing class, which can come in handy when you need to insert a custom
Swing component.

 Before we get into the subject, remember that each SwingBuilder node accepts a
value of the same type as the node, or a subclass. For example, you can use a label
node as follows:

label(new JLabel(), text: "This is a label")
label(new MyCustomJLabelClass(), text: "Custom text")

This snippet assumes MyCustomJLabelClass is a subclass of javax.swing.JLabel.
This fact is important because the special nodes we’re about to discuss also rely on it.

 In this section, we’ll look at five special nodes: container, widget, bean, noparent,
and application. We’ll examine what they do and how to use them. Let’s get started
by looking at container.

4.4.1 Container

The container node lets you embed any JComponent instance into the hierarchy with-
out restrictions. You may append child nodes to it by defining a nested closure. You
may set properties on the instance as you would with any other node. The following
are valid usages of the container node:

container(new JTextArea(), cols: 20, rows: 10)
container(new MyCustomJComponent(), name: "componentName") {
 button("This is a button")
}

As it turns out, this node functions like a pass-through node for any JComponent
instance. The first line declares a textArea that is 20 columns by 10 rows. It’s identi-
cal to

textArea(cols: 20, rows: 10)

If you’re uncertain about the superclass of the object you’d like to embed, container
is your best shot.

4.4.2 Widget

The widget node works similarly to the container node with a single difference: it
doesn’t support nesting of children. This means that although you can embed a
JPanel instance with it, you can’t attach any child components—you’ll get an excep-
tion if you attempt to do so. The following snippets show sample usages of this node:
www.it-ebooks.info

http://www.it-ebooks.info/

105Using special nodes
widget(new JPanel())
widget(new JTextArea(), cols: 20, rows: 10)
widget(new JPanel()) {
 borderLayout()
}

In this case, the first two uses of widget are fine, and the third fails.
 If widget is more restrictive than container, why have it in the first place? Well, to

signal that the node you’re embedding is essentially a leaf node and should by no
means contain any nested content.

4.4.3 Bean

The bean node can be seen as an über version of container because it lets you embed any
bean instance—it doesn’t matter if it’s an instance of JComponent. This fact has important
implications. If the instance you set as the node’s value is indeed a JComponent, then the
bean node works the same as container: it’s a pass-through node, and the instance is
added into the hierarchy. But if the instance isn’t a JComponent, it won’t be embedded
into the hierarchy.

 You can take advantage of that fact to bind to and from model properties using the
short bind syntax. Here is an example of what it would take to bind a textField’s
text property to a name property on the model:

textField(text: bind(target: model, targetProperty: "name"))

Now, using the bean node as a pass-through for the model instance, you get the follow-
ing snippet:

textField(id: "textSource")
bean(model, name: bind { textSource.text })

Arguably, you added a new line of code, but this version will come in handy the next
time you’d like to bind a source to at least two targets.

 This node is also useful to configure any instance using properties. It’s as if the
instance had its own node, but without a specific name tied to its class.

4.4.4 Noparent

This node has a funny name, but it does exactly what it says. Noparent is a node that
accepts child content, but that child content isn’t embedded into the hierarchy. Why
is this useful? Well, given that any JComponent-based node inserts its return value into the
hierarchy immediately, you won’t be able to manipulate a reference of a JComponent to
tweak its properties without inserting it into the hierarchy at that point. Neither
container, nor widget, nor bean will help you. But noparent will.

 Let’s look at an example. The following snippet shows what happens when you
tweak a button inside a panel that has a borderLayout() set:

panel {
 borderLayout()
 label("contents")
www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 4 Creating a view
 button(aButtonReference, text: "New Text")
}

Instead of the expected result shown in figure 4.6,
you the result shown in figure 4.7: the button has
replaced the label!

 If the button tweak is surrounded with a noparent
node, then you’ll get the expected result—in other
words, you’ll get figure 4.6. This is how you can do it:

panel {
 borderLayout()
 label("contents")
 noparent {
 button(aButtonReference, text: "New

Text")
 }
}

Easy as pie. We need to talk about one more node.

4.4.5 Application

The last node we’ll discuss is the application node. This one doesn’t belong to
SwingBuilder per se, but to ApplicationBuilder (one of Griffon’s internal builders).

 As we mentioned in chapter 1, this node shields you from the implementation
used to construct a main frame for your application. Whether your application is run-
ning in standalone or applet mode, this node makes sure to create the appropriate top-
level container for you. In standalone mode, the container is a javax.swing.JFrame; in
applet mode, it’s a subclass of javax.swing.JApplet.

 But you can change the underlying implementation to be used in standalone
mode. Recall from chapter 2 that the Application.groovy config script holds the
configuration of all MVC groups plus a few other properties pertaining to the applica-
tion. One of those properties controls the class to be used as the top-level container.
You can, for example, choose to use a JRibbonFrame (http://flamingo.dev.java.net)
from the Flamingo Swing components suite.

 That’s all for now regarding special nodes. Although Griffon goes a long way
toward making desktop development easier, in a large application the code can still
get unorganized. In the next section, we’ll discuss how to organize the code and man-
age your view scripts and their helper classes or scripts.

4.5 Managing large views
By now, you know Griffon takes care of creating a default view script every time you
create a new MVC group. You also know that a view script is the place to define all UI
elements by means of the SwingBuilder DSL. Armed with this knowledge, you may
build your UI to a point that the view script is too big or no longer maintainable. What
can you do in this case?

Figure 4.6 Expected result

Figure 4.7 Actual result
www.it-ebooks.info

http://flamingo.dev.java.net
http://www.it-ebooks.info/

107Managing large views
 In this section, we’ll discuss a few approaches to view management. We’ll start with
a tried-and-true approach: reusable code.

4.5.1 Rounding up reusable code
Remember that a view script is like any other Groovy script. This means you can refac-
tor reusable code into classes or closures. If you choose to create classes, you have abso-
lute freedom to choose where to put them. You can leave them in the same directory as
your views, you can put them under src/main, or you can put them in a new directory
of your choosing inside griffon-app. The important thing is that the compiler will
find your sources and compile them along with your views. But we certainly recom-
mend that you stick with the conventional locations, because doing so will make it eas-
ier for other developers who join the project to understand how the code is laid out.

 If you choose to place reusable code in the form of closures, make sure those clo-
sures are defined before they’re used, and be sure to omit the def keyword. If you use
def, the closure becomes a method definition on the script; this will change the dele-
gate used on the closure and result in unexpected behavior.

 If your view script is still too big, consider the next alternative: additional scripts.

4.5.2 Breaking a large view into scripts
Another option you have at your disposal is breaking a view script into smaller scripts.
The trick is figuring out a way to embed the components provided by a secondary
script into the primary one. Enter the build() method.

 The build()method takes a Class or a Script instance, evaluates its contents,
and, in the case of a Script, returns the last expression evaluated. Let’s see how you
can take advantage of this.

MEET SWINGPAD

Griffon bundles a few sample applications that showcase the framework’s features and
strengths. One of these applications is called SwingPad. You can think of SwingPad as
a view script–oriented version of groovyConsole. Figure 4.8 shows the outcome of
running a small view script in SwingPad.

 The SwingPad UI uses the screen real estate to display the following elements: a
menu bar, a toolbar, the main content, and a status bar. If you were to implement this
UI in a single view script, it might look like the following listing.

Figure 4.8 SwingPad running a
small view script. The right side is
the outcome of the code in the
editor on the left side.
www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 4 Creating a view
actions {
 action(id: "openAction",
 name: "Open...",
 closure: controller.fileOpen)
 . . .
}
application(...) {
 menuBar {
 menu "File" {
 menuItem openAction
 . . .
 }
 . . .
 }
 toolBar {
 button(saveAction)
 . . .
 }
 splitPane {
 panel { /* code editor goes here */ }
 panel { /* view output goes here */ }
 }
 statusBar {
 . . .
 }
}

Phew! That’s a lot of code. Imagine if you reprinted SwingPadView’s entire contents
with the single view script approach—you can bet it would take a lot of pages. And
that’s precisely the problem with keeping the code in a maintainable state: it’s too big
to fit in a single editor screen. But you can appreciate the structure of listing 4.6. Swing
actions reused across the application are denoted at b (you can see a glimpse of
them at c and d). And there are clearly code areas that match the UI elements pre-
viously identified (c, d, e, f).

 But you can do better than this.

CREATING SMALL SCRIPTS

What if you put each UI element (including the action definitions) into its own script,
and leave SwingPadView with the responsibility of piecing them together? This is
where the build() method shines. The next listing shows a revised version of Swing-
PadView in which every element has been relocated to its own script.

build(SwingPadActions)
application(...) {
 menuBar build(SwingPadMenuBar)
 toolBar build(SwingPadToolBar)
 widget build(SwingPadMainContent)

Listing 4.6 Brief layout of SwingPadView.groovy before breaking it up

Listing 4.7 Revised SwingPadView

Action
definitionsb

Menu barc

Toolbard

Main contente

Status barf
www.it-ebooks.info

http://www.it-ebooks.info/

109Managing large views
 statusBar build(SwingPadStatusBar)
}

That’s more manageable, wouldn’t you agree? But there’s a catch. Notice that the UI
element scripts are embedded directly using a node after being built. This means each
script must return a component that matches the expected type; otherwise the host
frame won’t know where to place them. You may notice in the SwingPad codebase that
some scripts make an explicit return, whereas others don’t; for example, SwingPad-
MenuBar returns a reference to the MenuBar node that was built, but SwingPadToolBar
doesn’t. There’s a simple explanation: remember that views are also Groovy scripts.
The return value of a Groovy script is the last expression that was evaluated. In the
case of SwingPadMenuBar, additional elements are being instantiated after the menuBar
node, which is why you must explicitly return a reference to the menuBar; on the other
hand, in SwingPadToolBar, the last expression evaluated was the toolbar node itself—
no need for an explicit return value in this case. The exception to this rule is the main
content pane, given that all other areas will be embedded in the appropriate place
due to their types.

 You may wonder what happens with action variables defined in the actions script.
How can you reference them from other scripts? The answer is that all the scripts
share the same SwingBuilder instance as delegate. They also share the same binding.
Thus any variable tied to the builder can be seen from other scripts. The same princi-
ple applies to any variables (including your own closures) found in the binding. This
is the sole reason why we suggested that you drop the def keyword when defining
reusable blocks of code in the form of closures.

 There is yet another alternative for splitting up your code base to keep it nice
and tidy.

4.5.3 Organize by script type
In the previous section, you saw how to split SwingPadView from a single script into a
primary script and five secondary ones. One of those scripts is named SwingPad-
Actions and contains all the action definitions. Now imagine what would happen in a
bigger application where each view had a companion actions script. Doesn’t it seem
as though actions belong to their own type like views do? Is there something you can
do about this?

 In chapter 6, we’ll explain how to compose an MVC group using configuration. As
a preview, you can alter the number and types of an MVC group.

 For illustration purposes, let’s say you want to add an actions element to Swing.
Begin by creating a new directory called actions under griffon-app:

$ mkdir -p griffon-app/actions/griffon/swingpad

Place all your action scripts in that directory. Next, edit the application’s configura-
tion file. Remember which file it is? A is for application, so go to griffon-app/conf/
Application.groovy and search for the definition of the groups you’d like to tune.
For example, you may find the following definition in SwingPad:
www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 4 Creating a view
SwingPad {
 model = "griffon.swingpad.SwingPadModel"
 view = "griffon.swingpad.SwingPadView"
 controller= "griffon.swingpad.SwingPadController"
}

All you have to do is insert a new member definition that follows this convention: the
name of the member matches the name of the directory. The next snippet shows how
the SwingPad MVC group would look if you added the new member:

SwingPad {
 model = "griffon.swingpad.SwingPadModel"
 actions = "griffon.swingpad.SwingPadActions"
 view = "griffon.swingpad.SwingPadView"
 controller= "griffon.swingpad.SwingPadController"
}

Doesn’t it look like the actions member belonged there from the start? You can do
the same for any other groups. Be careful with the member-definition order, because
actions are required by the view. By placing the actions definition before the view
definition, you instruct Griffon that the actions member must be initialized before
the view member.

 We’re almost finished, but we have one last topic to discuss in this chapter: how to
deal with legacy views.

4.6 Using screen designers and visual editors
We’ve discussed several ways to create s UI using the SwingBuilder DSL. But you may
not be able to build a new application from scratch every time. Sometimes it’s best to
reuse an existing view, which may rely on external libraries and/or layouts.

 In this section, we’ll show you step by step how to integrate legacy views that
depend on popular designer tools and libraries. Specifically, we’ll look at how to inte-
grate NetBeans GUI builder– and Abeille Forms Designer–based views into a Griffon
MVC group.

4.6.1 Integrating with the NetBeans GUI builder (formerly Matisse)

About the time of JavaOne 2006, a new layout for Swing was announced: the Swing-
Layout. Also known as GroupLayout, this layout and its related helpers belong to a
larger project within the NetBeans platform called the NetBeans GUI builder (for-
merly known as Project Matisse). This UI designer tool lets you design a UI using
drag-and-drop and property-editing techniques. It has become popular with many
Swing developers.

 Although UI elements created with the NetBeans GUI builder are easy to update
using the tool, the same can’t be said if you choose to do it in a programmatic way. Sim-
ply put, GroupLayout was designed with tool support in mind. Porting a GroupLayout-
based panel or frame is hard to accomplish by hand—it’s best to leave the work to
another tool. That’s right, we’re talking about the Griffon command line.
www.it-ebooks.info

http://www.it-ebooks.info/

111Using screen designers and visual editors
 You may have noticed a peculiar command name when you typed griffon help:
the generate-view-script command. This script is able to read GroupLayout defini-
tions and export them into a SwingBuilder friendly script. From there you can apply
all the SwingBuilder techniques you already know

 Let’s see an example of the script’s usage.

A NETBEANS GUI BUILDER VIEW

Assume for a moment that your company has a standard set of dialogs and frames that
need to be used in every application. One such component is a Login dialog, which
may look like figure 4.9.

 Granted, it looks a bit sparse, but it gets the job done. If you feel like creating the
same dialog in NetBeans GUI Builder, then please do so; we’ll be here waiting for you.
But remember, before you continue, copy the code for this dialog into your Griffon
application’s source directory. Either griffon-app/views or src/main is a good
place. Alternatively, you can drop a jar containing the compiled classes into your
application’s lib directory. On to the next step.

GENERATING THE VIEW SCRIPT

Now comes the easy part. generate-view-script takes a single argument: the full
qualified class name of your legacy view. If you don’t define an argument, the script

Figure 4.9 A basic legacy Login dialog. This dialog was created using the NetBeans GUI builder
visual designer.
www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 4 Creating a view
will prompt you for one. Before you proceed, make sure you’ve copied the jar that
contains GroupLayout’s classes into your lib directory. If you have NetBeans installed,
it will be located in modules/ext under the name appframework.<version>.jar.
Assuming the name of class you want to include into your application is LoginDialog,
the following command invocation should do the trick:

$ griffon generate-view-script LoginDialog

After the command has finished, you should see a new script named LoginDialog-
View.groovy located in griffon-app/views. The script looks like the following listing.

widget(new LoginDialog(), id:'loginDialog')

noparent {
 // javax.swing.JTextField usernameField declared in LoginDialog
 bean(loginDialog.usernameField, id:'usernameField')
 // javax.swing.JPasswordField passwordField declared in LoginDialog
 bean(loginDialog.passwordField, id:'passwordField')
 // javax.swing.JButton okButton declared in LoginDialog
 bean(loginDialog.okButton, id:'okButton')
 // javax.swing.JButton cancelButton declared in LoginDialog
 bean(loginDialog.cancelButton, id:'cancelButton')
}
return loginDialog

Well, well. Isn’t this interesting? Notice that the generated script uses the special
nodes we discussed back in section 4.4. The main component described by the view is
embedded into the script B using the widget node. You can change it to container if
you intend to make additional tweaks on the component’s children. Next you see the
usage of the noparent node in conjunction with the bean node to define references to
the dialog’s contents. If you didn’t use the noparent node, the dialog’s contents might
be inserted in the wrong place in the node hierarchy.

BINDING THE FIELDS

From here you can fine-tune the script, say by adding bindings between model and
view, or by adding references to controller actions. The next listing shows an updated
version of the generated script after adding a few binding and action references.

widget(new LoginDialog(mainFrame, true), id:'loginDialog')
noparent {
 bean(loginDialog.usernameField, id:'usernameField',
 text: bind(target: model, targetProperty: "username"))
 bean(loginDialog.passwordField, id:'passwordField',
 text: bind(target: model, targetProperty: "password"))
 bean(loginDialog.okButton, id:'okButton',
 actionPerformed: controller.loginOk)
 bean(loginDialog.cancelButton, id:'cancelButton',

Listing 4.8 Generated LoginDialogView.groovy script

Listing 4.9 Updated LoginDialogView.groovy

Main UI containerb

Bind to
model
property

Assign action
www.it-ebooks.info

http://www.it-ebooks.info/

113Using screen designers and visual editors
 actionPerformed: controller.loginCancel)
}
return loginDialog

Now you need to wire this view into an MVC group.

CREATING THE LOGIN MVC GROUP

To create a new group, type the following at your command prompt:

$ griffon create-mvc login

This command creates a model, view, and controller tied to the Login group. You can
safely delete LoginView because you already have a view—you just need to configure
it. Open Application.groovy, and locate the definition of the login group. Table 4.2
shows the necessary configuration changes.

LoginDialogView is now tied to the Login MVC group. All that’s left to do is fill in the
model and controller with the properties defined in listing 4.9.

GIVING THE LOGIN DIALOG SOME BEHAVIOR

To test whether the view is communicating with the controller, you’ll have Login-
Controller respond to input. If you enter a username and password, a message dialog
appears with the data you entered (see figure 4.10). And if you cancel the dialog, a
confirmation message appears (see figure 4.11).

 The controller actions that implement this functionality are shown in the follow-
ing listing.

Table 4.2 Changing the view associated with the login MVC group

Original code Revised code

mvcGroups {
 'login' {
 model = 'LoginModel'
 view = 'LoginView'
 controller = 'LoginController'
 }
…

mvcGroups {
 'login' {
 model = 'LoginModel'
 view = 'LoginDialogView'
 controller = 'LoginController'
 }
…

Figure 4.10 The user entered griffon and
random_password in the input fields of
LoginDialog, and then clicked OK.
www.it-ebooks.info

http://www.it-ebooks.info/

114 CHAPTER 4 Creating a view
import javax.swing.JOptionPane

class LoginController {
 def model
 def view

 def loginOk = { evt = null ->
 doLater {
 JOptionPane.showMessageDialog(view.mainFrame,
"""You entered the following information:
username: ${model.username}
password: ${model.password}
""".toString())
 }
 }

 def loginCancel = { evt = null ->
 doLater {
 JOptionPane.showMessageDialog(view.mainFrame,
 "You canceled the login dialog.")
 }
 }
}

You still need to create an instance of the login group and display the dialog. That’s the
responsibility of a controller, and we’ll give controllers wide coverage in the next chap-
ter. But if you can’t wait any longer to solve the puzzle, remember what you did in your
first Griffon application. That’s right, you used a method called createMVCGroup().

 The next integration scenario we’ll look at involves Abeille Forms Designer.

4.6.2 Integrating with Abeille Forms Designer

Abeille Forms Designer (http://java.net/projects/abeille/) is another great option
for visually designing UIs. Abeille is an open source tool that comes with a WYSIWYG
editor and serves as an abstraction over JGoodies FormLayout (http://java.net/projects/
forms/) and the JDK’s GridBagLayout.4 Figure 4.12 shows how LoginDialog would
look like had it been made with Abeille Forms Designer.

Listing 4.10 Implementation of LoginController

4 See http://madbean.com/anim/totallygridbag for a funny look at GridBagLayout.

Figure 4.11 The user canceled
LoginDialog by clicking Cancel.

Action results
in figure 4.10

Action results
in figure 4.11
www.it-ebooks.info

http://java.net/projects/abeille/
http://java.net/projects/forms/
http://java.net/projects/forms/
http://java.net/projects/forms/
http://madbean.com/anim/totallygridbag
http://www.it-ebooks.info/

115Using screen designers and visual editors
We must tell you up front that there’s no support for Abeille in the core framework,
but you can still use its features if you install a plugin. (We’ll cover all things related to
plugins in chapter 11.) You can install the latest version of the Abeille Forms plugin by
issuing the following command at your command prompt:

$ griffon install-plugin abeilleforms-builder

Once it’s installed, you’ll get a few new nodes that can be used in your view scripts, the
most important of which is formPanel. This node can read a form’s definition, prefer-
ably in XML format.

Assuming you placed the login form definition (in XML format as exported by Abeille
Forms Designer) under griffon-app/resources, you can then tweak LoginView as
shown in the following listing.

dialog(owner: mainFrame,
 id: "loginDialog",
 resizable: false,

Plugins for adding new nodes
Installing plugins is another way to add new nodes to CompositeBuilder. A number
of plugins do just that. We’ll show you how to create such a plugin in chapter 11.
We’ll also show you how to interact with the most common plugins that provide new
nodes in chapter 12.

Listing 4.11 LoginView configured with an Abeille Forms form

Figure 4.12 The LoginDialog panel edited with Abeille Forms Designer. Notice that the
grid can be made explicit to guide you in placing the components.
www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 4 Creating a view
 pack: true,
 locationByPlatform:true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 formPanel("login.xml")
 noparent {
 bean(model, username: bind{ usernameField.text })
 bean(model, password: bind{ passwordField.text })
 bean(okButton, actionPerformed: controller.loginOk)
 bean(cancelButton, actionPerformed: controller.loginCancel)
 }
}

There are a few differences from the NetBeans GUI builder example. The dialog defi-
nition is made explicit due to the form containing just a panel definition. You load
and build the form based on its XML definition B. Then you fine-tune each form
component by adding binding and action references c. Unfortunately, this code
must be written by hand, but as you can see the availability of special nodes makes this
task simple. As a matter of fact, the code resembles what you saw back in listing 4.9
after you fine-tune it.

 Don’t worry too much if you couldn’t get these examples to run. After all, we
didn’t provide you with the code for the legacy forms! But you can compare notes and
see the full source code in the book’s source repository.5

4.7 Summary
This was a whirlwind ride into Griffon views. We started this chapter by giving a brief
overview of the Swing toolkit. You wrote a simple Java Swing “Hello World” application
and then had it say something back to you. You also used Groovy SwingBuilder to
implement the “Hello World” application. You saw that Griffon does a nice job
addressing the drawbacks of the Java Swing version, including threading.

 Next we looked at the anatomy of a Griffon view. You saw that builders are key to
creating views and that a builder’s DSL makes it easy to create a component tree.
Along the way, you learned that Griffon has special nodes to help you use custom and
third-party components. We also looked at a couple of techniques for working with
large, complex views. For those who prefer using screen painters, Griffon has that cov-
ered too: using the output from the NetBeans GUI builder and Abeille Forms
Designer in a Griffon application is pretty easy using the special nodes.

 You now have a good understanding of Griffon view. But a view by itself doesn’t do
much—doing something with user input is the role of controllers and services. In the
next chapter, we’ll take a dive into those components.

5 http://github.com/aalmiray/griffoninaction.

Load and
build
form

b

Tune form’s
componentsc
www.it-ebooks.info

http://github.com/aalmiray/griffoninaction
http://www.it-ebooks.info/

Understanding
controllers and services
Wading through Griffon’s MVC is quite a journey, but we’re almost done reviewing
what it has to offer. The final piece we’ll look at takes care of routing all of the
user’s input to and from the appropriate handlers. We’re talking about the brains
of your application: the controller member of the MVC triad. In Griffon, this mem-
ber is mostly represented by controllers; services are also used to a lesser extent.

 Simply put, controllers have the responsibility to react to inputs, usually coming
from the UI. Inputs may also come from other locations, such as a service or an appli-
cation event (application events will be covered in chapter 8). But regardless of the
input’s source, the controller will most likely update the model, which in turn may
update the view. Figure 5.1 illustrates the controller reacting to multiple inputs.

 Controllers also have the ability to create and destroy other MVC groups, as you
saw back in chapter 1. The GroovyEditController creates a new MVC group
(FilePanel) for every tab that’s required. The FilePanelController cleans up the
group when the tab is disposed.

This chapter covers:
■ Controllers and their responsibilities
■ Services
■ Metaprogramming and inspection capabilities

on artifacts
117

www.it-ebooks.info

http://www.it-ebooks.info/

118 CHAPTER 5 Understanding controllers and services
 Controllers are positioned right in the
middle between inputs and outputs, orches-
trating who talks to whom and where inputs
are routed, and thus interacting with many
components. Given this, they’re a good loca-
tion to apply metaprogramming to compo-
nents when such a need arises.

 In this chapter, we’ll discuss what makes
controllers tick, their relationship to services,
and the metaprogramming options you can
apply to any application artifact.

Let’s take a closer look at controllers and their parts.

5.1 Dissecting a controller
A controller, in its most basic form, can be thought of as a collection of action han-
dlers. By now, you shouldn’t be surprised when we tell you that Griffon adds a couple
of convenience mechanisms to make working with controllers easy. Just like views,
controllers have access to injected properties and methods that will make your job eas-
ier. In some circumstances, when a controller is fully initialized, you may want to per-
form additional setup or initialization. For example, you may want to cache some data
from a web service or a database. Griffon provides a post-initialization hook to help
you; we’ll look at that too. Once we have that foundation set, we’ll examine the pri-
mary purpose of controllers: actions.

 Let’s get started on our dissection of controllers by looking at injected properties
and methods.

5.1.1 Quick tour of injected properties and methods

Controllers don’t exist in a vacuum. They interact with other parts of the applica-
tion, such as their view, the model, and the application. To understand controllers,
let’s preview some of the information we’ll cover in chapter 6: the properties and
methods that are injected into every controller managed by Griffon. We’ll start with
four properties.

APP

The app property points to the current running application. This property is useful
because you can access the application’s configuration through it. By manipulating

What is an application artifact?
Artifacts are major building blocks of a Griffon application. You’ve already been using
them. Out of the box, Griffon supplies the following artifacts: model, view, controller,
and service.

Figure 5.1 Controller receives stimulus from
event, service, or UI then updates the model
www.it-ebooks.info

http://www.it-ebooks.info/

119Dissecting a controller
app.config (an instance of groovy.util.ConfigObject), you can determine what
options and flags were set in Application.groovy.

 Through the app property, a controller can inspect other MVC groups, because the
application instance keeps a map of all currently instantiated MVC groups. Going back
to the GroovyEdit example, it’s possible for the GroovyEditController to determine
how many instances of the FilePanelController have been created either by count-
ing the number of tabs on the view or by inspecting app.controllers and checking
for their type. An application also exposes views (app.views), models (app.models),
and builders (app.builders).

 The app property also comes in handy when you’re dealing with application events.
Thanks to app, controllers can send events to other components of your application.

MODEL

The model property, when defined, lets the controller access the model that’s related
to its group. A controller usually updates the view via the model, assuming the proper
bindings are put into place. But there’s no strict requirement for a controller to always
have a model. If you feel your controller doesn’t require a model, you can safely
delete this property from the code; there won’t be an error, because Griffon will check
for the property declaration before setting the value.

VIEW

The view property references the third member of the MVC triad: the view. Like the
model, this property is optional. In some cases the controller may interact with the
view solely by updating the model, in which case deleting this property from the code
is safe.

BUILDER

The last of the optional properties, builder points to the builder used to create the
view related to this controller. The view and the builder may share the same variables,
but they’re two distinct objects: the view is a script that tells you what you just built,
and the builder is a CompositeBuilder instance that allows the controller to build new
UI components if needed.

 Now let’s look at the methods every controller shares.

CREATEMVCGROUP()AND BUILDMVCGROUP()
These two methods allow a controller to instantiate a new group. The former relies on
the latter: whereas createMVCGroup() returns a List of three elements (model, view,
and controller), buildMVCGroup() returns an MVCGroup instance with all the elements
that were created, including the builder. This is because an MVC group may have addi-
tional configured members, such as actions or dialogs. This being said, when you only
care about the canonical MVC group members, the first method is preferred; but if
you need to reference additional MVC members, the second method is the one you
should use.

 Here’s an example usage of createMVCGroup(). You use the assertions to verify that
you got the correct types for each member as defined in the group’s configuration:
www.it-ebooks.info

http://www.it-ebooks.info/

120 CHAPTER 5 Understanding controllers and services
def (m, v, c) = createMVCGroup("filePanel", [tabPane: view.tabPane])
assert m.class == FilePanelModel
assert v.class == FilePanelView
assert c.class == FilePanelController

Notice that you’re taking advantage of a cool feature found in Groovy since version 1.6:
multiple assignment. Compare the previous snippet with an invocation of buildMVC-
Group() with the same arguments:

MVCGroup group = buildMVCGroup("filePanel", [tabPane: view.tabPane])
assert group.model.class == FilePanelModel
assert group.view.class == FilePanelView
assert group.controller.class == FilePanelController

That’s right, you get each member keyed by its type, and the value is the proper
instance of each member.

DESTROYMVCGROUP()
This is the counterpart of the previous two methods. The destroyMVCGroup() method
removes the group reference from the application, thus making each MVC member a
candidate for garbage collection if no one else holds a reference to any member of
the group. The following snippet shows how this method can be used:

def (m, v, c) = createMVCGroup("filePanel", [tabPane: view.tabPane])
...
destroyMVCGroup("filePanel")

It’s important that every group is destroyed at the appropriate time. The application
will destroy every group that remains at the time of shutdown. But there may be times
when you need the group to be removed before the shutdown phase is triggered, such
as when closing one of the tabs in the GroovyEdit application; that’s when you’ll use
this method.

WITHMVCGROUP()
As we just explained, createMVCGroup() and destroyMVCGroup() are two sides of the
same coin. They help you create and destroy a particular group. The withMVCGroup()
method is a handy mixture of the two that makes sure the created group is destroyed
immediately after it’s no longer of use. For example:

withMVCGroup("dialog",[owner: window]) { m, v, c ->
 m.message = "Account processed succesfully"
 m.title = "Result"
 c.show()
}

The previous snippet assumes there’s an MVC group called dialog: it’s a short-lived
group by design, whose job is to display a customized dialog. The group will be auto-
matically destroyed once the dialog is dismissed by the user. How does the code know?
It’s likely that the dialog is a modal one, which means that when the dialog is shown, it
will block the current window until the dialog is dismissed. In terms of code, the closure
used as a parameter to withMVCGroup() is halted after the call to c.show() is executed.
www.it-ebooks.info

http://www.it-ebooks.info/

121Dissecting a controller
When the dialog is dismissed, the closure will resume execution; but there are no
more sentences to execute, thus returning control to the withMVCGroup() method.
The method in turn realizes there’s nothing left to do and immediately proceeds to
destroy the group.

NEWINSTANCE()
Last is the newInstance() method. Its responsibility is to create a new instance of a
particular class, with an associated type as metadata. Why is this method impor-
tant? Because it triggers an application event every time it’s invoked. You’ll see the
repercussions of such an event before the end of the chapter, when we discuss com-
plex services.

 This method takes two arguments: the class to be instantiated and an optional
type. The following snippet shows its usage:

newInstance(BookService, "service")
newInstance(Book, "")

In the first example, you create an instance of the BookService class and let every lis-
tener know that this instance is of type service. This is of course just for demonstra-
tion purposes; there’s no need to explicitly instantiate a service like this, as you’ll see
later in this chapter. Next you instantiate a Book. Given that this class is a regular bean
and has no ties to Griffon’s artifacts, you omit the type by setting the second argument
to an empty string. It could also have a null value.

 This sums up the properties and methods that every controller has. Now let’s look at
how you can do some additional setup of the controller using the post-initialization hook.

5.1.2 Using the post-initialization hook

Naturally, with every Java or Groovy class, you can define a constructor that performs
initialization tasks as you see fit. But what if you’d like to perform additional initializa-
tion after all members of a controller have been injected? That’s the reason we have
the mvcGroupInit() method.

NOTE Remember that the initialization order of MVC members is determined
by their definition order in Application.groovy. The order is set to model,
controller, view by default.

The signature of the method is this:

void mvcGroupInit(Map<String, Object> args)

It’s an optional method, so nothing bad will happen if you delete it from the source
generated by the default template, because it won’t be called if it’s not present. The
template adds it for your convenience and to remind you that you may perform addi-
tional initialization with it.

 Remember the map argument that the createMVCGroup() and buildMVCGroup()
methods require? It’s the same map you get as the input for mvcGroupInit(). You
may recall from the GroovyEdit application that FilePanelController defined this
www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 5 Understanding controllers and services
method. It did so to keep track of its mvcId, read the file’s text, and place the text on
the model. The following snippet reproduces the contents of that method:

 void mvcGroupInit(Map<String, Object> args) {
 model.loadedFile = args.file
 model.mvcId = args.mvcId
 doOutside {
 String text = model.loadedFile.text
 doLater { model.fileText = text }
 }
 }

This snippet also serves as a reminder that you can add other methods to controllers,
depending on the configuration you set in Builder.groovy. Suffice it to say that
threading-related methods are added to controllers by default. Those methods are
edt{}, doLater{}, and doOutside{}, which will receive full coverage in chapter 7. For
now, we’ll just say that these three methods make your life much easier when it comes
to multithreading code.

 It’s time to dive into the main responsibility of a controller: being an action handler.

5.1.3 Understanding controller actions

We’ve reached the core of a controller. Actions are the main reason for a controller’s
existence. You’ve seen them before in previous examples, and now it’s time to define
them properly.

 An action is nothing more than a closure property or a method that follows a conven-
tional set of arguments. It looks like the following when defined as a closure property:

def openFile = { evt = null -> ... }

The alternate form, for an action defined as a method, looks like this:

void openFile(evt = null) { ... }

Why allow two modes? The reason behind this design selection is that developers like
to have choices too. Some prefer the closure property notation, because it aligns per-
fectly with the conventions of Grails controllers. Others prefer a method definition,
because that’s what they’re used to, coming from Java. One thing is certain: it doesn’t
matter which mode you pick. Griffon will make sure it works.

 But there’s an advantage to using closure properties over method definitions.
When it comes to testing, it’s easier to overwrite an action implemented as a closure
than it is to mock out a method.

 About the conventional arguments: an action is usually tied to an event generated
by the UI. It may vary in type depending on the element to which you tie it. For exam-
ple, it may be an ActionEvent if you set the action as an ActionListener. Or it may be
a MouseEvent if you set the action to handle mousePressed on a button. Leaving the
type of the evt parameter as undefined gives you enough elbow room to switch an
action from one place to another without needing to change the action’s signature.
What do we mean by this? Say your intention is to react to events generated when a

Load file
outside EDT

Update model
inside EDT
www.it-ebooks.info

http://www.it-ebooks.info/

123Dissecting a controller
button or a menu is clicked. These components generate events of type ActionEvent.
Then you change your mind and would like to have the action react to mouse move-
ments, which are typically handled by MouseEvent. If the type of the evt argument is
strictly set and left unchanged, then it’s likely you’ll get a runtime exception when
running the application. But if the type of evt isn’t set, you can freely assign the action
to react to MouseEvents. This assumes that the action code doesn’t depend directly on
behavior available exclusively to a particular event type.

 There’s another advantage to omitting the type on the evt parameter: testing.
Assume for a moment that a controller has the following action:

def handleEvent = { evt = null ->
 if(evt?.source?.selected)
 doSomething()
 else
 doSomethingDifferent()
}

You’d like to test this code, but it may be a difficult task because the code expects a
nested element with a specific property to be defined in the evt argument. You may
need to create an event instance and populate it with the correct data, but which
event class should you use? Because there are no types involved, you can use Groovy’s
duck-typing approach. Yes, we’re suggesting you use a map as the value for evt. The
following code shows how to do this:

def evt = [source: [selected: true]]
myControllerInstance.handleEvent(evt)
evt.source.selected = false
myControllerInstance.handleEvent(evt)

The second line causes doSomething() to be called, and the last line causes doSome-
thingDifferent() to be called.

 One last thing we must cover about method arguments is the recommendation
that you define a default value. The template suggests that you set a null value, but it
could be a predefined map, as shown in the previous snippet. It can be any value that
makes sense for your action. Why would you need such a default value? Think for a
moment about what default values in Groovy allow you to do. That’s right: you can call
the method (or closure) without defining a value for a particular parameter. This
means you can call handleEvent in either of the following forms:

handleEvent([source:[selected: true]])
handleEvent()

This can greatly simplify the code you’ll need to write to call an action from within its
own controller—or any other MVC group member, for that matter.

NOTE This is all you need to know about a controller’s responsibilities for
now. But there’s more. In chapter 8, we’ll explain the relationship between
controllers and application events.
www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 5 Understanding controllers and services
Reusing business logic via services is an efficient way to scale an application, and we’ll
look at that next.

5.2 The need for services
We’ve showed you what makes a controller tick. As you know, every MVC group may
have its own controller. As you’ll learn in chapter 6, two or more MVC groups may share
a few of their members, or even the controller. But this sharing ability doesn’t scale
when what you need is a place to put your code where any controller or application
component can access it. You need good old-fashioned modularity.

 Not to get all philosophical, but the purpose of the controller is to control. Con-
trollers respond to actions and events and see that the appropriate code is executed.
Then the controller returns a response if appropriate. In general, in large applica-
tions that need to reuse code, in order to make it more manageable, reusable, and
testable, the controller should delegate to some other component to fulfill business
logic. Frequently, this other component is called a service. A service is an organiza-
tional technique for encapsulating logic for reuse.

 Services are flexible and have numerous uses. One example is accessing remote
web services. Let’s say you have a customer relationship management (CRM) solution
that exposes access via web services. Your application may need to access customer
information from multiple components within the application. Instead of duplicating
the code in each of the components, this is a good time to use a service. Figure 5.2
illustrates extracting web-service access used by two controllers into a shared service.

 Griffon comes with services support. A service in Griffon is stateless, akin to its
MVC brethren, and it follows a naming and location convention. There’s also a cre-
ation script that uses a simple template.

 In this section, you’ll see how to create simple and complex services. A simple service
is a lightweight service that has few or no dependencies on other components. When

Figure 5.2 Controllers sharing logic to access a remote web service
www.it-ebooks.info

http://www.it-ebooks.info/

125The need for services
a service gets more complex and has dependencies on other components, a more
involved approach is available.

 Let’s look at how simple and complex services are created with Griffon.

5.2.1 Creating a simple service
The recommended approach for creating services is to use Griffon’s create-service
command. In a brand-new Griffon application, go to your command prompt and type

$ griffon create-service simple

This will create a new artifact named SimpleService.groovy under griffon-app/services.
It will also create a SimpleServiceTest.groovy file under test/unit. This is why we
recommend that you use the script; not only does it create an artifact that follows the
naming conventions and contains a skeleton implementation, but it also generates a
test script for you.

 Now let’s peek into the generated code:

class SimpleService {
 def serviceMethod() {
 }
}

It couldn’t be any easier than this. A service class is like any other Groovy class you’ve
encountered so far; there’s no magic to it. It may contain as many methods as you like,
with the knowledge that public methods define the service contract. Service instances
are automatically created and managed by the Griffon runtime; they’re treated as single-
tons, although if you look again at the service you just defined there’s nothing stopping
you from creating your own instances. But it’s good to leave Griffon to do its own thing.

 How do you wire up a service into a control-
ler? You may be hoping that a convention exists to
help you attain this goal—and you’re correct!
Griffon injects an instance of a service on each
MVC member that has a property name, which
matches the simple name of the service. With the
service injected into the controller, as illustrated
in figure 5.3, the controller can invoke methods
on the service.

 Does this sound familiar? It works the same as
injecting model, view, and controller references on MVC members. Let’s look at
an example.

 Edit SimpleService.groovy in your favorite editor, making sure its contents look
like this:

class SimpleService {
 def greet(String who) {
 "Hello $who"
 }
}

Figure 5.3 Sample controller
invoking the greet() method on
a simple service
www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 5 Understanding controllers and services
SimpleService.greet() implements a “Hello World” style service call. It returns its
argument formatted as a greeting.

 Now let’s inject this service into a controller. Remember, you only need to define a
property that matches the simple name of the service; in this case, it will be simple-
Service. Assuming you had a service class com.acme.DeliveryService, its simple
name would be deliveryService. It’s important that the name match—otherwise the
service instance won’t be injected. You can define the type of the service as well. It
makes no difference to Griffon, but it may be important when editing your code in an
IDE or a power editor that supports code completion:

class SampleController {
 def simpleService
 void mvcGroupInit(Map<String, Object> args) {
 assert simpleService.greet("Griffon") == "Hello Griffon"
 }
}

This is a contrived example, because the controller has no actions. But it serves to ver-
ify that the service instance has been properly injected and that calling its service
method results in the expected output.

 Now you know how to inject services into controllers. The option of lightweight
service injection will work as long as your services are lean—in other words, they don’t
have dependencies on additional components. Fortunately, there’s a solution to this
problem too, which we’ll cover in the next section.

5.2.2 Creating a Spring-based service

As your application becomes more robust, you may need a more sophisticated service
implementation. Assume for a moment that you have a service that requires an addi-
tional dependency on another component. This dependency may be a data source
element that lets the service interact with a database, or it may be a JMS destination
queue or some other custom component exposed by your application. Now imagine
that those dependencies require additional setup as well. The list could go on and on.

 Inversion of Control1 (IoC) frameworks (or dependency injection,2 as some prefer
to call this approach) have risen to solve the problem of properly setting up a graph
of dependencies (sometimes including circular references!). Arguably the most popu-
lar of such frameworks in the Java space are Guice (http://code.google.com/p/
google-guice/) and the Spring framework (www.springsource.org/); there’s plenty of
information available that can help you get up to speed on them.

 Griffon comes with a couple of plugins that can help you use Guice or Spring.
You’ll be able to set up complex services, as long as you follow the framework’s rules.

1 http://en.wikipedia.org/wiki/Inversion_of_Control.
2 http://en.wikipedia.org/wiki/Dependency_Injection.
www.it-ebooks.info

www.springsource.org/
http://en.wikipedia.org/wiki/Inversion_of_Control
http://en.wikipedia.org/wiki/Dependency_Injection
http://code.google.com/p/google-guice/
http://code.google.com/p/google-guice/
http://www.it-ebooks.info/

127The need for services
 In this section, you’ll configure a complex service using the Spring plugin, because
a handful of additional Griffon plugins take advantage of Spring support. Some of
these plugins may be familiar to you if you come from a Grails background.

 The first thing you need to do is install the Spring plugin. To do so, go to your
command prompt, making sure you’re inside an application directory, and type the
following command:

$ griffon install-plugin spring

Good. Let’s move on.

CREATING A SERVICE

Now create another service, named complex:

$ griffon create-service complex

Let’s take a few more baby steps. First you’ll make sure both SimpleService and
ComplexService will be injected into your SampleController via Spring injection,
and then you’ll tweak ComplexService to have additional dependencies.

MODIFYING YOUR SERVICE AND CONTROLLER

Edit ComplexService, and change its default service method to look like this:

class ComplexService {
 def call(String name = "") {
 "complex replies: $name"
 }
}

Now go back to SampleController, and change its contents to look like this:

class SampleController {
 def simpleService
 def complexService

 void mvcGroupInit(Map<String, Object> args) {
 assert simpleService.greet("Griffon") == "Hello Griffon"
 assert complexService.call("Griffon") == "complex replies: Griffon"
 println "All is well"
 }
}

Run the application. If no errors appear on your console and you see the message “All
is well,” then you’re good to go with the next step. If there are errors, check to make
sure the names of the services are correct. Next, you’ll give the complex service a
dependency.

CREATING A CLASS AND ADDING IT TO YOUR SERVICE

Create a new class, and call it Thing. Make sure you place it under src/main/
Thing.groovy. The file contents should look like this:

class Thing {
 String value
}

www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 5 Understanding controllers and services
Go back to ComplexService, add a Thing property to it, and change the implementa-
tion of the call() method to use the new property:

class ComplexService {
 def thing

 def call(String name = "") {
 name ? "complex replies: $name" : thing.value
 }
}

You’re almost done.

MODIFYING THE CONTROLLER AGAIN

Now you’ll change the controller code again, and save the wiring setup of Thing into
ComplexService for last. Open SampleController in your editor, and type the following:

 void mvcGroupInit(Map<String, Object> args) {
 assert simpleService.greet("Griffon") == "Hello Griffon"
 assert complexService.call("Griffon") == "complex replies: Griffon"
 println complexService.call()
 }

Now you’re ready for the final step.

INJECTING THINGS INTO COMPLEXSERVICE

You need to instruct the Spring plugin that an instance of a Thing must be injected
into an instance of ComplexService. There are many ways to configure injection in
Spring. Perhaps the most popular is via XML, but many developers tend to shun any-
thing XML related. Don’t fret, there’s a groovier solution.

 Rising from the core of the Grails frame-
work, you find BeanBuilder (www.grails.org/
Spring+Bean+Builder). This builder lets you
configure an ApplicationContext using a
groovy DSL, much as you do with Swing and
the SwingBuilder DSL, or Ant build files via
AntBuilder. Figure 5.4 illustrates the process
of using BeanBuilder to inject resources
.groovy configuration information into the
ApplicationContext instance.

 It turns out the Spring plugin bundles
BeanBuilder and its supporting classes, mean-
ing the Spring beans DSL is yours to use on Griffon applications as well. Then how do
you take advantage of the Spring beans DSL? Create a new file named resources
.groovy under src/spring, and type in the following:

beans = {
 thing(Thing) {
 value = "All your Griffon are belong to us!"
 }
}

Figure 5.4 BeanBuilder processing
the resources.groovy file to build the
application context
www.it-ebooks.info

www.grails.org/Spring+Bean+Builder
www.grails.org/Spring+Bean+Builder
http://www.it-ebooks.info/

129The need for services
TIP The plugin creates the src/spring directory when you install it.

The BeanBuilder DSL requires that you define a top-level variable named beans. Its
value must be a closure containing bean definitions. A bean definition has the follow-
ing elements:

■ name—In this case, thing
■ class—In this case, the Thing class
■ optional—A nested closure containing property definitions

For the test example, we decided to grace thing’s value with a popular meme3 from
the early 2000’s; you may be familiar with it.

 You’re good to go. Run the application again, and if everything goes right you
should see the famous meme phrase printed on your console after a few logging state-
ments from the Spring plugin. The output will be similar to figure 5.5.

 Imagine wiring up data sources, JMS queues, and the like. It doesn’t seem that dif-
ficult now, does it?

 You’ve seen how simple and complex services can enhance your application’s
behavior. Services are often called from a controller, but given the choices of depen-
dency injection at your disposal you may inject them into other components too.

 Still, the behavior provided by controllers and services may not be enough to cover
your application’s requirements. Sometimes you’ll need to enhance a particular class
or a set of classes that belong to the same type, like models, for example. This goal can

3 http://en.wikipedia.org/wiki/All_your_base_are_belong_to_us. It keeps popping up from time to time!

Figure 5.5 Complex service results
www.it-ebooks.info

http://en.wikipedia.org/wiki/All_your_base_are_belong_to_us
http://www.it-ebooks.info/

130 CHAPTER 5 Understanding controllers and services
be achieved in several ways; we’ll discuss in the next section one that we’re sure you’ll
find useful.

5.3 Artifact management
We’ve discussed the various features of Griffon’s MVC implementation using a com-
mon set of artifacts: models, views, and controllers. We also added services into the
mix. They each possess their own individual properties, but they also share common
traits. For example, each artifact is located in a specific directory that shares a name
with the artifact’s type. Every file has a unique suffix that clearly indicates the artifact
type. Because of this, Griffon is able to group all the artifacts into a runtime represen-
tation that we call GriffonClass (see figure 5.6) A GriffonClass is a metadata class
that holds all the relevant info pertaining to artifacts, such as FilePanelController
or GroovyEditView. The type of metadata you have access to is specific per artifact.
For example, you can inspect controllers to figure out the names of all actions they
expose. Or you may want to know the names of all the service methods that a particu-
lar service class defined.

 In this section, we’ll discuss how the Artifact API comes into play. For example, it
can be used at runtime to figure out the names of all the actions exposed by a control-
ler. Suppose you wanted to build a form-based application where all interactions, rep-
resented by buttons or menus, were automatically mapped to the actions exposed by a
controller. Having a list of all available actions in the controller would certainly make
your job easier. You could then query all artifacts by means of the Artifact API, which is
available to you though the ArtifactManager. Let’s see how it’s done.

5.3.1 Inspecting artifacts

Every Griffon application has an implementation of the ArtifactManager interface.
At application startup, Griffon loads artifact metadata and makes it available for que-
rying via ArtifactManager. You can access ArtifactManager by asking the application
instance for it; you can either call the getArtifactManager() method on the app vari-
able or use property access and call app.artifactManager.

Figure 5.6 Core Griffon classes
that perform artifact management
www.it-ebooks.info

http://www.it-ebooks.info/

131Artifact management
Coming back to the hypothetical scenario we presented at the beginning of the previ-
ous section—gathering all actions exposed by a controller—the following snippet
shows how this can be done in a view script:

def griffonClass = app.artifactManager.findGriffonClass('AuthorController')
griffonClass.actionNames.each { actionName ->
 button(actionName, actionPerformed: controller[actionName])
}

Table 5.1 summarizes the methods and properties you can use to query artifact metadata.

You may have noticed that some of the methods and properties use a <type> place-
holder. This is because those methods and properties are dynamically generated when

Table 5.1 A comprehensive list of methods and properties available on ArtifactManager

Method Returns

findGriffonClass
(String className)

A GriffonClass instance whose artifact class matches the fully quali-
fied class name sent as argument. Returns null if no match is found.
Example: findGriffonClass
("com.acme.AnvilDeliveryService")

findGriffonClass
(Object object)

A GriffonClass instance whose artifact class matches the class of the
object sent as argument. Returns null if no match is found.
Example:
findGriffonClass(AnvilDeliveryServiceInstance)

findGriffonClass
(String name,
String type)

A GriffonClass instance whose artifact class matches the combina-
tion of class and type. Returns null if no match is found.
Example: findGriffonClass ("Book", "controller")

findGriffonClass
(Class clazz,
String type)

A GriffonClass instance whose artifact class matches the combina-
tion of class name and type. Returns null if no match is found.
Example: findGriffonClass (Author, "controller")

getClassesOfType
(String type)

An array of GriffonClass instances whose type matches the specified
argument. Never returns null; an empty array is returned if no match is found.
Example: getClassesOfType("service")

getAllClasses() An array of GriffonClass with all available artifact classes. Never
returns null.

is<type>Class
(Class clazz)

True if its argument is an artifact whose type matches <type>, or
false otherwise.
Example: isModelClass(FooModel) == true

get<type>Class
(Class clazz)

A GriffonClass whose class matches the provided argument.
Example: getViewClass(com.acme.BarView)

<type>Classes An array of GriffonClass where <type> is a valid artifact type. Never
returns null. This is the only dynamic property exposed by the
ArtifactManager.
Example: controllerClasses
www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 5 Understanding controllers and services
you use them. That is, there is no controllerClasses property on ArtifactManager
until you call it for the first time. Why is this? Because as a developer, you have the abil-
ity to define new artifact classes. How else would ArtifactManager know about your
new artifact types?

 Now that you know how to query for artifact metadata, let’s see what you can do
with it. The GriffonClass class has many methods that can be used to inspect an arti-
fact, and the most useful are described in table 5.2.

In addition, custom subclasses and implementations of GriffonClass can expose
more methods. For example, the GriffonClass for controllers (aptly named Griffon-
ControllerClass) allows you to query all controller action names. In contrast, the
GriffonClass for services (GriffonServiceClass) has a method for querying the names
of all service methods defined by a particular service. You’ll find that plugins and
addons can be used to deliver new GriffonClasses, such as charts and wizards.

 Now that you know how to query for artifact metadata and what to expect of such
metadata, we’re ready to explore the metaprogramming capabilities that the Artifact
API enables.

Table 5.2 The most commonly used methods of GriffonClass

Method Behavior

getApp() Returns the current application instance. Every artifact has this method.

newInstance() Creates a new instance of the particular artifact. Instances created in
this way benefit from the framework’s bean-management capabilities,
such as service injection and event firing.

getArtifactType() Returns the type of the artifact, such as controller or view.

getClazz() Returns the real class of the artifact this GriffonClass describes.
Example: com.acme.AnvilDeliveryService

getFullName() Returns the fully qualified class name of the real class.
Example: com.acme.AnvilDeliveryService

getPackageName() Returns the package name only, if it exists.
Example com.acme

getShortName() Returns the class name without any preceding package.
Example: AnvilDeliveryService

getPropertyName() Returns a name suitable to be used as a property.
Example: anvilDeliveryService

getName() Returns the short class name without the trailing type convention.
Example: anvilDelivery

getNaturalName() Returns a string representation that is suitable for human consumption.
Example: firstName becomes First Name
www.it-ebooks.info

http://www.it-ebooks.info/

133Artifact management
5.3.2 Metaprogramming on artifacts

Groovy supports metaprogramming at compile time and runtime. Lower-level
metaprogramming occurs at compile time. This can be done by using the AST trans-
formation, which we are obliged to remind you isn’t for the faint of heart. @Bindable
is a perfect example of this type of metaprogramming. Higher-level metaprogram-
ming occurs at runtime. This is the most typical, and it’s well documented in many
sources; Groovy in Action, 2nd edition (Manning, 2012, www.manning.com/koenig2) is
a great source to start with. @Bindable is also the one we’ll illustrate.

 Every class in the Groovy system has a companion MetaClass. Groovy uses this
meta descriptor to implement much of its Meta Object Protocol4 (MOP). When a
method is invoked on an object or a property is accessed, the MOP gets to work. The
MOP can follow several paths to resolve a method invocation; but for our purposes the
short story is that if the MetaClass has the method definition the MOP is looking for,
then the MOP will invoke it; if not, the MOP will try the class, resulting in an exception
if the method isn’t found. 5

Enough with the theory. Let’s move ahead into exploiting the introspection abilities
provided by GriffonClass.

5.3.3 Artifact API in action

Let’s say you need to build a form-based application that deals with personal records
found in a database. We’ll keep the code short for the moment—you won’t see any
database access shenanigans—but rest assured that Griffon has good support for con-
necting to databases and executing queries, thanks to its plugin system.

 Say that an initial version of the application looks like figure 5.7.
 This screen suggests a particular structure for the MVC group that handles it. You

can create a model that holds firstName, lastName, and address properties. You’ll
have to find a way to deal with proper capitalization for each property label. The
actions can be safely stored in a controller; label capitalization also plays a role here.
But the application isn’t complete; additional properties will be added to the model.
If you hard-code all values and properties in each MVC member, you’ll quickly reach a

4 See “Practically Groovy: Of MOPs and mini-languages,” http://mng.bz/us97, for an example usage of the
Groovy MOP.

Behind the scenes
One of the MetaClass features is that you can attach new methods and properties
to it at virtually any point while the application is running. This is true if the MetaClass
is an instance of ExpandoMetaClass,5 another fine addition to the Groovy language
that was incubated in the Grails project. Most of the time, when you set up additional
methods on a Groovy MetaClass you’ll find an ExpandoMetaClass under the covers.

5 http://groovy.codehaus.org/ExpandoMetaClass.
www.it-ebooks.info

www.manning.com/koenig2
http://mng.bz/us97
http://groovy.codehaus.org/ExpandoMetaClass
http://www.it-ebooks.info/

134 CHAPTER 5 Understanding controllers and services
point where there’s too much repetition. You need a better way to mine the informa-
tion found in the model and controller. This is where the Artifact API comes in.

 First you’ll define the model with the three properties you just saw, as the following
listing shows.

@groovy.beans.Bindable
class FormModel {
 String firstName
 String lastName
 String address
}

That takes care of the model. Don’t you love the simplicity of building observable
beans with Groovy and Griffon? The property names resemble the labels shown in fig-
ure 5.7, but you haven’t figured out a way to properly capitalize them; you’ll leave that
task to the view.

 Next you’ll define the controller in the following listing. This is where you’ll catch
a glimpse of the Artifact API at work.

import griffon.util.GriffonNameUtils
import griffon.transform.Threading
class FormController {
 def model

 def clear = {
 model.griffonClass.propertyNames.each { name ->
 model[name] = ''
 }
 }

 @Threading(Threading.Policy.SKIP)
 def submit = {
 javax.swing.JOptionPane.showMessageDialog(
 app.windowManager.windows.find{it.focused},
 model.griffonClass.propertyNames.collect([]) { name ->
 "${GriffonNameUtils.getNaturalName(name)} = ${model[name]}"

Listing 5.1 FormModel with three bindable properties

Listing 5.2 FormController, which can handle any model properties

Figure 5.7 First iteration of the
form. There are three input fields and
two actions.

Access model
properties

 b
www.it-ebooks.info

http://www.it-ebooks.info/

135Artifact management
 }.join('\n')
)
 }
}

As expected, the controller has two actions that match the labels on the buttons shown
in figure 5.7, although they also present the capitalization issue of the model properties.
What’s interesting are the lines where the controller queries the model for its griffon-
Class instance B. Models have a custom GriffonClass that provides additional intro-
spection capabilities; we mentioned this earlier. A model griffonClass exposes a
method that returns a list of names of all the observable properties the model defined.
In this case, this list will contain firstName, lastName, and address. That’s precisely
what you need. Inspecting the behavior of the controller further, notice that the clear
action resets the value of each property, and the submit action opens a dialog with each
value preceded by its label. And the mystery of proper capitalization is finally solved:
Griffon has a number of utility classes in its arsenal, and one of them, Griffon-
NameUtils, excels at transforming strings. Capitalization is one of the transformations.

 Next, you’ll define the view, as shown in the following listing. Notice that you’re
using the GriffonNameUtils class again.

import griffon.util.GriffonNameUtils as GNU
application(title: 'Form',
 pack: true,
 locationByPlatform:true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 borderLayout()
 panel(constraints: CENTER,
 border: titledBorder(title: 'Person')) {
 migLayout()
 model.griffonClass.propertyNames.each { name ->
 label(GNU.getNaturalName(name), constraints: 'left')
 textField(columns: 20, constraints: 'growx, wrap',
 text: bind(name, target: model, mutual: true))
 }
 }
 panel(constraints: EAST,
 border: titledBorder(title: 'Actions')) {
 migLayout()
 controller.griffonClass.actionNames.each { name ->
 button(GNU.getNaturalName(name),
 actionPerformed: controller."$name",
 constraints: 'growx, wrap')
 }
 }
}

Listing 5.3 FormView with two panels: model properties and controller actions

Accessing
model
properties

b

Access
controller
actions

c

www.it-ebooks.info

http://www.it-ebooks.info/

136 CHAPTER 5 Understanding controllers and services
You can appreciate at B that the same trick is used in the controller to query the
model for all its observable properties (that is, asking the model’s metadata about all
the properties it holds that are of interest for this application to work). The left panel
has a special layout6 that places each row nicely. A row is composed of a label and a
text field. The text of the label is properly capitalized thanks to GriffonNameUtils—
aliased to GNU using one of Groovy’s tricks to shorten a class name. Controllers also
have a special griffonClass of their own. This particular griffonClass has a method
that provides the names of the actions declared by the controller. Again this is pre-
cisely your goal, and you put that method to good use c.

 Now that all the portions of the code are ready, you can set up the application for
running it. Install the MigLayout plugin by invoking the following command at the
console prompt:

$ griffon install-plugin miglayout

Once the plugin is installed and the application is
running, filling out the form and clicking Submit
(see figure 5.7) should result in a dialog similar to
the one shown in figure 5.8.

 Let’s verify that the model and controller intro-
spection are working as we just described. In the-
ory, adding new properties to the model should
result in additional labels and text fields being dis-
played on the left side the form; a similar thing
should happen on the right side of the form if
actions are added to the controller. Update the
model by adding two more properties: city and
country. Then update the controller by adding a new action, like this:

def quit = {
 app.shutdown()
}

Launch the application once more. Lo and behold, the UI reflects your changes! Fig-
ure 5.9 shows how the UI looks now.

 Not bad at all. And you only had to add a few properties to the model and control-
ler. You can expect additional features for each custom griffonClass. You can inspect

6 migLayout() from the MigLayout plugin.

MigLayout
MigLayout is a good Lava layout manager. In listing 5.3, it’s used in the constraint
definitions. MigLayout defines the appearance and behavior of the fields and but-
tons. You can find out more at www.miglayout.com.

Figure 5.8 A dialog opens when you
click the Submit button. It shows all
the information entered by the user on
the form.
www.it-ebooks.info

www.miglayout.com
http://www.it-ebooks.info/

137Summary
them by using the options available to you, be it IDE code inspection or browsing the
API documentation that comes bundled with the Griffon distribution.

5.4 Summary
Controllers are a vital part of the MVC pattern. They’re responsible for routing inputs
and outputs between the other members of the MVC triad. Controllers in Griffon
share common properties with their models and views.

 You’ve seen how action handlers can be defined on a controller. You’ve also seen
that controllers can take you only so far when it comes to defining an application’s
logic. Sometimes you may need to put the logic on a service layer.

 You created a simple service to see Griffon’s lightweight service support. We also
examined a more complex service and saw the need for robust service support using
Guice or Spring.

 Finally, we covered the Artifact API, which gives you access to artifact metadata.
Think of it as introspecting into your application internals.

 In the next chapter, we’ll look at how models, views, and controllers form MVC
groups, and you’ll learn how to create and use MVC groups in your applications.

Figure 5.9 The form displaying the new
model properties and controller actions
www.it-ebooks.info

http://www.it-ebooks.info/

Understanding
MVC groups
We touched on the subject of MVC groups in previous chapters. As a matter of fact,
we covered each of the default individual members in the last three chapters. But
there’s more to groups than what you’ve seen so far. At this point, you know that a
group comprises model, view, and controller members, each of which follows a nam-
ing convention. But did you know you can define additional members in a group
that don’t necessarily follow the MVC pattern? Or that you can define a group with
only a view and a model? Also, recall from the first example in this book that you
can programmatically create new group instances on the fly, not just use those ini-
tialized by default upon application startup.

 In this chapter, we’ll discuss all these features and more. Our goal is to help you
gain a better understanding of the inner workings of MVC groups.

 Let’s begin the journey by recapping how MVC groups can be created and how
they behave. Some cautionary advice: the first two sections explain in detail what the
framework does when instantiating and managing groups. If you’re only interested

This chapter covers
■ Declaring MVC groups
■ Creating MVC groups
■ Using MVC groups
138

www.it-ebooks.info

http://www.it-ebooks.info/

139Anatomy of an MVC group
in working with MVC groups directly, you can skim through these sections to get a
basic understanding of the underlying mechanism and jump directly to section 6.3.
Of course, we recommend that you visit sections 6.1 and 6.2 if you have doubts or con-
cerns about the topics they discuss.

6.1 Anatomy of an MVC group
The easiest way to create an MVC group is via the Griffon command line. Assuming
you’re already inside a project like GroovyEdit (see chapter 1), you can create a
filePanel group like this:

$ griffon create-mvc filePanel

Executing this command does two things: it generates a set of files representing the
members (model, view, and controller) of the MVC group, and it changes the configu-
ration files to tell the framework that you have a new MVC group.

 Griffon generates four files, each in the appropriate functional directory: a model,
a view, a controller, and a test file. Each of the files also has a name derived from the
group name. And each of the files is in the same package, even though they live in dif-
ferent directories. Why? Because of convention over configuration: placing together
the files that fill the same responsibility encourages you to make sure the labor stays
appropriately divided.

 Let’s walk through each of the generated files. Don’t worry, this will be a quick
look. Because of Groovy’s power as a dynamic language, it strips away a lot of the cere-
mony you may expect to see—unless you’ve been using Groovy for a while already, in
which case its relative brevity won’t be a surprise.

6.1.1 A look at each member

The first stop on our MVC group tour is the model. Griffon generates a model file for
you based on the name of your MVC group in griffon-app/models. In this case, the
name of the file is FilePanelModel.groovy:

import groovy.beans.Bindable

class FilePanelModel {
 // @Bindable String propName
}

Yes, this code snippet is the entire contents of the file. Because you don’t yet know
what properties you want to add to your model, you don’t add any; the comment
serves to show how simple it is to create a bound property named propName. Uncom-
menting that line is all that’s required to get an observable property! But you knew
this already, because models were discussed in ample detail back in chapter 3.

 Next up is the view. The view files live under griffon-app/views/ and are named
based on the group name. This view will be called FilePanelView.groovy. Remember
the pattern? It’s a convention: all MVC group members are stored in griffon-app/<portion
name>/, and the names are <MVC Group name><portion name>.groovy. If you put
www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 6 Understanding MVC groups
your MVC group in a package, then the file will also be in an appropriately named set
of directories beneath the storage directory, just like any other Java file:

application(title:'GroovyEdit',
 //size:[320,480],
 pack:true,
 //location:[50,50],
 locationByPlatform:true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 // add content here
 label('Content Goes Here') // deleteme
}

It’s a bit longer than the model, mostly because you need to do something to get a
minimally functional MVC group going. The first thing you’ll notice is that there’s a
lot of nesting. That is because GUIs in Griffon are written in a declarative fashion (this
goes here, that goes there, these interact like this) rather that in the imperative fash-
ion (create the panel, create the button, add the button to the panel, create a listener,
add the listener to the button). This may seem weird at first, but it greatly improves
the readability and maintainability of the application.

 In the default view, you first declare an outer application (it could be a JFrame or
an applet; Griffon smooths over the differences for you). You set the Griffon logo as
the frame icons, and you do this in the view rather than apply a default because you’ll
likely want to create your own icon for your applications. Inside the frame, you create
a label indicating that the content goes here because—guess what?—the content goes
here. What kind of content? The components, widgets, and pixels that make up the
visual part of your application. Feel free to go back to chapter 4 to refresh your knowl-
edge of views and widget nodes.

 Your third stop is the controller. As per convention, you’ll find the controller file in
griffon-app/controllers/FilePanelController.groovy:

class FilePanelController {
 // these will be injected by Griffon
 def model
 def view

 void mvcGroupInit(Map args) {
 // this method is called after model and view are injected
 }

 /*
 def action = { evt = null ->
 }
 */
}

The truth is that almost all of this content could be erased, and the MVC group you gen-
erated would still function. This code is a stub for features you’ll almost certainly need to
www.it-ebooks.info

http://www.it-ebooks.info/

141Anatomy of an MVC group
add to get a reasonably useful MVC group—for example, one that defines actions that
respond to menu inputs, as you saw back in chapter 1 with GroovyEditController.

 At the top of the class definition are two fields to hold the references to the model
and the view. Griffon will inject these fields into the class when it instantiates it for
you, so all you need is appropriate properties for them to wind up in. There are
uncommon cases where you may not need to reference the model or the view, so you
could conceivably delete these properties.

 Next you have a method named mvcGroupInit. This method serves as a construc-
tor of sorts; it’s called after all of the portions are instantiated and fields have been
injected. You may remember we mentioned this method in the last chapter. We’ll go
into more detail in sections 6.2 and 6.3.

 Finally, a commented-out section of code represents the execution portion of an
action. In a well-behaved Swing application, actions are king, so first-class support of
actions is important. Actions can be implemented by defining either closure proper-
ties (as the template suggests) or public methods. The choice is yours. There’s a slight
performance advantage if the action is implemented as a public method, though;
recall our discussion of controller actions from chapter 5.

 Thought you were done, didn’t you? Sorry, but you’re not finished until you have
proper testing code. Because it isn’t strictly a part of the MVC group, only part of the
convention applies: the testing stub will be in the tests/integration directory. It will
be named as expected, though—FilePanelTests.groovy:

class FilePanelTests extends GroovyTestCase {
 void testSomething() {
 fail("Not implemented yet!")
 }
}

Again, the generated code is fairly sparse. Generated tests are wired to fail if left unim-
plemented. It’s up to you to decide how they should be implemented. After all, Grif-
fon alone can’t decide the best way to test your production code. Griffons may be
magical beasts, but they’re only mounts you ride into battle: you still need to fight the
battle. You can flip to chapter 9 to see how best to win the testing battle.

 Finally, after all the necessary files are generated, you need to register your MVC
group with the framework.

6.1.2 Registering the MVC group

Where do you register a group? In the Application.groovy file that lives in griffon-
app/conf. We won’t look at the whole file here; the following code shows just the parts
relating to MVC groups.

. . .
mvcGroups {
 // MVC Group for "FilePanel"

Listing 6.1 MVC group declarations in Application.groovy
www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 6 Understanding MVC groups
 'filePanel' {
 model = 'FilePanelModel'
 view = 'FilePanelView'
 controller = 'FilePanelController'
 }

 // MVC Group for "GroovyEdit"
 'groovyEdit' {
 model = 'GroovyEditModel'
 view = 'GroovyEditView'
 controller = 'GroovyEditController'
 }
}
. . .

The declaration of the MVC group is fairly straightforward: in the mvcGroups section
of the configuration, you declare the name of the MVC group and open a block
describing all the portions that compose the group. The group portions are assigned
to the names of the classes representing that portion of the MVC group. Note that the
class names are defined as strings, for the sole reason of avoiding eager class resolu-
tion when the group configuration is loaded and parsed. The MVC group type itself is
also in single quotes; this enables you to create groups that may not be groovy identifi-
ers, possibly including spaces, dots, and any other characters you feel like adding. A key
aspect of group names is that they must be unique within the application. If a duplicate
name is encountered, the last group registered will win over the previous ones.

 But what is this second MVC group doing in your pristine application? The
groovyEdit MVC group configuration listed in this example existed before you cre-
ated the filePanel MVC group; it was created when the application was created and is
the MVC group that serves as the master group of the whole application. We’ll go over
the ins and outs of multiple MVC groups in section 6.3.

 The last declarative detail is how MVC groups are bootstrapped.

6.1.3 Startup groups

In the Application.groovy file, there’s a property named application.startup-
Groups. This property is a list of the MVC groups that should be automatically started
up when the application framework starts up. These groups are created without
parameters and in the same order as they’re found in the list.

 By default, the MVC group created as a part of the initial application is added to
the list of startup groups. You’re free to add any number of groups that you declare
later. You could even leave the list empty, having no startup groups initialized auto-
matically. Of course, you would then need to bring up your MVC groups manually in
one of the life-cycle scripts like Startup or Ready. You may choose this option if one of
the initial groups requires additional parameters, for example.

 This concludes our quick summary of creating an MVC group from scratch. We
turn our gaze now to the runtime aspects of an MVC group, starting with finding out
how a group can be instantiated at any time.
www.it-ebooks.info

http://www.it-ebooks.info/

143Instantiating MVC groups
6.2 Instantiating MVC groups
You’ve seen the static view of an MVC group, where the code lives, where the declara-
tions about its details are made, and what defaults the framework puts in place. But
how do these pieces come to life? What is the man behind the curtain doing? We’ll
now look at the different methods that play a role in the group’s life cycle.

6.2.1 Creation methods

MVC groups usually don’t come into being by themselves. The one exception is the
startup groups discussed in section 6.1.3. After the bootstrap processes all initial
groups, you’re on your own to instantiate any group whenever you deem necessary.
The good news is that doing so is fairly simple. Three related methods are available to
every MVC member and the application instance: buildMVCGroup(), createMVCGroup(),
and withMVCGroup().

The first two methods are identical except for the return type. buildMVCGroup()
returns an instance of griffon.core.MVCGroup where each member can be found by
name, and createMVCGroup() returns a three-element array, with the contents being
model, view, and controller, in order. When coupled with the multiple-assignment syn-
tax introduced in Groovy 1.6, the createMVCGroup() method can make for some very
readable code. But when your MVC group is more than model, view, and controller,
the buildMVCGroup() method gives you access to all the created members.

 The methods have one required parameter and a couple of optional ones:

■ groupName—The only required parameter for createMVCGroup() and build-
MVCGroup(). It’s the MVC type to instantiate. groupName is the same as the key
used in the Application.groovy file.

■ groupId—Optional. This is a name you want to give to this particular instance
of the MVC group. If the name isn’t provided, the MVC type is used in its place.
The value of this parameter is important when you want to create multiple
instances of the same group type. In chapter 1, the GroovyEdit example used
this parameter, assigning a different value per tab.

Calls to createMVCGroup() and buildMVCGroup() check for collisions with
existing MVC groups. If the specified group name already exists as a group
instance, then the application may react in two ways: it either throws an exception
alerting you (the developer) that the code is performing an illegal operation, or it

Artifact API tip
Every artifact that implements griffon.core.GriffonArtifact has access to the
methods we’ll discuss shortly. All basic artifact types (model, controller, view, and
service) implement this interface. To safely determine whether an artifact supports
this feature, you can query its GriffonClass for its clazz property.
www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 6 Understanding MVC groups
alerts you of the problem but doesn’t throw an exception. In that case, the old
group is destroyed and the new one takes its place. You can alternate between
these two behaviors by changing the value of a configuration flag in Config.groovy:

griffon.mvcid.collision = 'warning'

Valid values for this flag are warning and exception. Throwing an exception is
the default behavior.

■ params—Optional map of arguments to be passed into the creating process.
You can use Groovy-style named parameters with this method. According to
normal Groovy conventions, each named parameter will be amalgamated into
the map that is passed into the method as its third parameter. These parameters
can be used to pass in configuration data, contextual data, or even portions of
other MVC groups. In the GroovyEdit example, this parameter was used to let the
newly created group know which title it should use for its tab, as well as where it
should add the new tab: in other words, the owning JTabbedPane instance.

The third method that lets you create a new instance of an MVC group is withMVC-
Group(). This method is aware of the life cycle common to all groups.

 A group created with this method will be automatically destroyed as soon as it’s no
longer of use. The typical case is a modal dialog that requires a few customizations
before displaying itself, perhaps capturing some input and returning back to the orig-
inal caller. Here’s an example of what we just described. Suppose a group named
query is responsible for capturing a user selection in a model property named choice.
The group’s controller also has an action named show that takes care of displaying
the dialog:

def output = null
withMVCGroup('query') { m, v, c ->
 c.show()
 output = m.choice
}

Using this construct liberates you from explicitly destroying the group instance after it
has been put to use. Destroying a group will be covered later in this chapter.

6.2.2 Marshaling the MVC type instances

Now that you’ve told the Griffon framework what MVC group you want to create and
given some parameters for this creation, the framework will dutifully run off and cre-
ate the MVC group and hand it back. Ordinarily, this process is a black box where
magic occurs. How Griffon creates the MVC groups may appear magical, but once you
know the secret, it isn’t. If you look behind the curtain, you see only a few interactions
that, when observed without understanding, appear to be magic. But if you know what
the interactions are, you can invoke what appears to be deeper magic later.

 This section will dive deep into the technical details in order to dispel the magic and
also give you a better understanding of what happens when a group is instantiated.
www.it-ebooks.info

http://www.it-ebooks.info/

145Instantiating MVC groups
Armed with this information, you should be able to make better choices when config-
uring groups and making group relationships.

METACLASS PREPARATIONS

When creating the group, the first task the framework accomplishes is loading the
Java class for the MVC group members. This is the plain Java part. What happens next
is Groovy.

 If the artifact or its superclass implements the griffon.core.GriffonArtifact
interface and the superclass is Object, then the Griffon compiler switches the super-
class to one that contains the app object and four method definitions (createMVC-
Group(), buildMVCGroup(), withMVCGroup(), and destroyMVCGroup()). If the artifact
or its superclass does not implement the griffon.core.GriffonArtifact interface,
the app and the four method definitions are injected directly into the artifact’s byte
code. The app field is a reference to the GriffonApplication object that serves as the
central touchstone for the whole application, where all of the magic pixie dust is
stored. The four injected methods are required for managing MVC groups. The first
three methods exist for creating groups and the last one for destroying groups (more
on that in the next section). These injections for an MVC member are compulsory;
every member gets them. And they will overwrite any existing field or methods by the
same name, so don’t even try!

 The next step for the framework is to create the builder. The builder declarations
in Builder.groovy have a syntax that allows various (features/behaviors) groups of
builder nodes and properties to be injected into specific MVC portions. The default
configuration has the threading group of methods being injected into the controller
portion of the MVC group. Chapter 7 has more details on how to use those injected
methods. But the injection of these properties and methods is under the control of
the developer of the application.

INSTANTIATIONS AND INJECTIONS

The next step is for the framework to instantiate each member. Note that until this
point, you’ve been manipulating the metaclasses that represent the members, not
actual instances of an object. When creating the instances, the framework creates the
objects in true JavaBeans fashion by calling the public no-args constructor on the object
class. There’s one wrinkle in this step, though. If a parameter passed into the build-
MVCGroup(), withMVCGroup(), or createMVCGroup() method matches the name of a
member, then you’ll use the provided value instead of creating a new one. Section 6.2.4
will discuss when and where you would want to do that.

 After the members are initialized, they’re stored in the app object. The app object
has a storage facility that exposes models, views, and controllers as properties, and a
catchall groups property as well. These properties are exposed as maps where each
member is keyed by its owner groupName: the unique group name, not the group type.
Section 6.3 will cover this in greater detail.

 The next listing depicts a controller with four properties defined. Two of them
have special meaning because they follow the naming conventions for MVC members;
www.it-ebooks.info

http://www.it-ebooks.info/

146 CHAPTER 6 Understanding MVC groups
the other two are run-of-the-mill properties. We’ll use this example to explain what
happens during a group’s instantiation, as triggered by the call to the buildMVC-
Group() method also shown in the listing.

class SampleController {
 def builder // injected by Griffon
 def model // injected by Griffon
 def foo // injected by Griffon
 def bar // injected by Griffon
}

buildMVCGroup('sample', foo:1, baz:2)

Now that Griffon has live objects representing the members of your MVC group, you
can start injecting values into the properties. Three types of properties are injected
into the portion instances:

■ builder—The builder that is created as part of the group. This property is easy
to spot; it’s always called builder. You may want to access this field because it
has the same variable scope as any of the scripts that make up the MVC group,
such as the view script. This is how a controller can peek into elements defined
in a view, for example, as long as those elements were either assigned to a vari-
able in the view script or had a value set for their id property (a useful trick you
might remember from chapter 5).

■ Properties whose names match portion names (model, view, or controller)—These
properties may vary with the particular setup of your MVC group. The intent of
this class of property injections is to allow the portions of the MVC group to see
and interact with each other, as if they were created as one object but having
distinct identities. For the MVC pattern to work successfully, it’s essential that
the controller have access to both the model and the view directly. By default,
the controllers created by the create-mvc script have the necessary fields for
injection of the model and the view. In listing 6.2, only the model will be
injected, because only the model has a property.

■ Properties whose names match parameter names passed in—These properties can be
tricky to spot. They create wonderfully terse code, but they also can be consid-
ered too clever. This is where some good software engineering discipline
comes in handy. When you’re declaring a property that’s meant to be injected,
leave a comment around the property stating that fact. In the example, you
passed in two named arguments, foo and baz. You also have two remaining
properties in the controller, foo and bar. The framework will inject the value
for foo into the controller, but it won’t inject the bar argument or inject any-
thing into the baz property because the names don’t match up between the
arguments and the properties.

Listing 6.2 Code injection example
www.it-ebooks.info

http://www.it-ebooks.info/

147Instantiating MVC groups
But what do you do with arguments that aren’t injected and properties that aren’t
injected to? How can you initialize them? That is an excellent question that we’ll
address next.

6.2.3 Initializing group members

Another question you may be asking is, “When do I get to play?” We’ve been discuss-
ing how the framework creates some of the core parts of the application, and as yet it
has been a mostly hands-off experience. Often, conventions and injection patterns
won’t fill the bill. Compelling graphics are rarely made via injection, and we’ve
reached the point where the MVC group members take an active role in their life
cycle: initialization.

 Griffon treats the initialization of the members in one of two wildly different fash-
ions: scripts that are executed and classes that have methods called. You can think of
this as the difference between two server-side technologies: JSPs and servlets. When it
comes down to executing the bytecode, they are the same thing—a Java class that
implements the javax.servlet.Servlet interface.

 One other detail needs to be reiterated and will likely come into play as you write your
members. They are initialized in the order in which they’re declared in the Application
.groovy file. By default the order is model, then view, then controller, but you can
change that order if you need to. The most common case for needing to do so is when
the controller creates other sub MVC groups and injects portions of the child view into
the view binding, so the view can wire those components directly into itself.

CLASSES AND THE MVCGROUPINIT() METHOD

The simpler of the two initialization mechanisms is the means that Griffon applies to
MVC portions classes, not scripts. Classes are members that don’t implement the
groovy.lang.Script interface. In the classes instance, the framework looks for a
method named mvcGroupInit() that takes a single argument java.util.Map. The
map contains the builder and all the instantiated portions, as well as any named
parameters passed into the call to buildMVCGroup() or createMVCGroup().

Variables that are injected and passed into scripts and argument maps
■ app—The GriffonApplication instance representing your app. (This will always

be present, regardless of whether a property is present.)
■ mvcType—The type of the MVC group.
■ mvcName—The name of the MVC group. Must be unique.
■ model—The model instance.
■ view—The view script.
■ controller—The controller instance.
■ <other portions>—Other portions specified by the MVC group.
■ <other args>—Anything passed in as a named parameter to build/with/

createMVCGroup.
www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 6 Understanding MVC groups
 Notice that the contents of the map passed in as the sole argument is the same set
of data that Griffon looks at to consider injections. This isn’t an accident, because some
of the arguments may not be injected into the portion that is being initialized. This is
especially true for model portions. The reason is that some of the arguments you pass
in may only be needed for initialization and aren’t needed for the life of the portion.

SCRIPTS AND SCRIPT EXECUTION

The other type of portion that Griffon encounters is Groovy scripts. Groovy scripts
look like extended code snippets but are converted into fully functional classes imple-
menting the groovy.lang.Script interface.

 When an MVC group member is being initialized and it’s a script, the script itself is
executed in the context of the builder that has been generated for the MVC group of
which it’s a member. Even though Groovy scripts can expose methods as if they were
object instances, any method named mvcGroupInit will be ignored in a script, defer-
ring to the execution of the script.

 One of the key differences of an MVC group script execution is that the execution
occurs as a desired effect of the builder object’s build(Script) method. When the
build method of a Griffon builder is called on a script instance, it does more than sim-
ply execute the script. Before the execution, the metaclass of the script instance is
manipulated so that when a method is executed or a property is referenced, the
builder is given a chance to intercept those calls and use the factories registered in
the builder. Because of this metaclass integration, the script can declare the GUI in a
context-free fashion. That is, there’s no need to prefix nodes with a variable that iden-
tifies the real builder type that contributed said nodes; there’s also no need for addi-
tional imports in many cases.

NOTE The mvcGroupInit() method has a counterpart method that we’ll dis-
cuss later in this chapter.

6.2.4 Advanced techniques

The basic conventions of the declaration and creation of the MVC groups can some-
times betray the subtleness of some of the more advanced techniques that can greatly
enhance the usability of the group instantiation facilities. Two of the most powerful
are preexisting member instances and multiple view components.

USING PREEXISTING MEMBER INSTANCES

When passing arguments to buildMVCGroup(), withMVCGroup(), or createMVC-
Group(), what happens when you pass in an argument whose key turns out to be the
same as a member name? In that case, the value provided is used as the member
instance. The framework doesn’t initialize a new instance of that member but instead
uses the value declared by the user directly.

 When would you do want to do this? Common scenarios are where a model object
is reused across multiple MVC groups. For example, a model representing a weather
forecast may be represented with numbers and images in one MVC group and may
www.it-ebooks.info

http://www.it-ebooks.info/

149Instantiating MVC groups
also be represented via thermometers and colors in another view. Controllers may also
be reused across multiple contexts where several UI buttons may have the same effect,
such as in a tool bar view and a menu view.

 This isn’t without side effects. The preexisting member will still participate in the
injection and initialization phases. So new values may be overwritten in the old object,
and the mvcGroupInit() method will be called multiple times. This can be turned
into a positive, however, if the mvcGroupInit() method serves to move the items
injected into the affected properties into internal collections.

MULTIPLE VIEW COMPONENTS

Another technique that may improve code readability is creating multiple unlinked
components in the view script. All the examples included in the Griffon SDK create a
single root component that’s composed of multiple children components, but noth-
ing in the framework requires this. You could declare several related components that
are driven by a single model and controller object.

 An example of using multiple components is a master-detail view, where the mas-
ter table and the detail panel are separate components. The master group defines a
view that can display an aggregated snapshot of all elements; its controller most likely
has a set of actions that allow you to navigate, edit, create, and delete such elements.
When an element detail is required, the detail group comes into play; its job is to dis-
play each of the properties of the selected element. The detail’s model can hold those
properties, and the detail’s view knows how to show them on the screen.

 Another example is a complex graph and an associated control panel that’s used
to manipulate the graph parameters. The MVC groups that use the graph can place
the two components in any location.

 One more possibility is a series of components that represent the underlying data
in a cohesive set of more basic components, such as a tree, a list, and a table. The
declaring MVC group is free to pick any number of the components to display as it
sees fit.

REMOVING MVC GROUP MEMBERS

The MVC Pattern in Griffon isn’t an absolute requirement but a strongly worded sugges-
tion. But sometimes you may wind up with empty portions. A widget that has no user
interaction and merely reflects changes to its model may not need a controller compo-
nent. The class can be deleted and the reference to the controller can be removed from
Applications.groovy. Similarly, a group that reflects no data, such as a license dialog,
or a group whose state is tracked by subgroups, may not need a model portion.

CREATING ADDITIONAL GROUPS

In addition to removing members, sometimes you may want to add members to the
group. Two common examples are an action member and an animation member. The
Greet example in the Griffon SDK adds an Actions member to the main Greet group
and the login page group. The code for these members consists of Groovy scripts, so
it’s evaluated with the same builder that evaluates the views.
www.it-ebooks.info

http://www.it-ebooks.info/

150 CHAPTER 6 Understanding MVC groups
 To create an additional member, you’ll need to do three things, all of which follow
the pattern set forth in section 6.1:

1 Create a directory to store the member’s code: griffon-app/<member>.
2 Create the class or script for the member, and name it <type><member>.
3 Edit Application.groovy to refer to the new member.

The first step is to create a new directory to store the source code for the new member.
This is typically added under griffon-app, and the name of the directory is the name
of the member. For example, if you were adding an actions member, you would cre-
ate a directory named griffon-app/actions. But the framework won’t enforce this—
as long as the named class can be found in the classpath at runtime, it will be used. The
class could live under the src/main directory or under any directory under griffon-app.
That’s because almost any directory under griffon-app is compiled as though it were a
source directory. The exceptions are i18n, resources, and most of conf.

 The next step is to create the code file to represent the member. You have two
choices: a Groovy script or a traditional class. The Groovy script will be executed by
the builder for the member, so it will have access to the same set of methods that the
view scripts have access to. It will also share the same binding context as the view
script. This is handy when the additional member represents actions or animations for
the view. The other option is to create a traditional class for the member. When you
follow this path, the same injection and life cycle patterns that apply to models and
controllers also apply to the new class. Either way, the class will be mutually injected
like all other group members are.

 To follow convention, you need to name the class with the member name as a suf-
fix in camel case. For example, Greet1 names its actions classes LoginPanelActions
and GreetActions. Although the framework won’t throw errors if you don’t follow
this convention, not doing so will create a problem in readability and maintenance of
the application, so following the convention is strongly recommended. The following
listing illustrates adding actions to the FilePanel.

mvcGroups {
 // MVC Group for "FilePanel"
 'filePanel' {
 model = 'FilePanelModel'
 actions = 'FilePanelActions'
 view = 'FilePanelView'
 controller = 'FilePanelController'
 }
 //...
}

1 Greet can be found in the samples directory of your Griffon installation.

Listing 6.3 Adding an actions member to FilePanel
www.it-ebooks.info

http://www.it-ebooks.info/

151Using and managing MVC groups
Finally, you need to register the member in the Application.groovy class. If you were
going to add an actions member to the FilePanel group of GroovyEdit, you would
add an entry under the mvcGroups.FilePanel group referring the name actions to the
FilePanelActions class.

 There’s one important item you must remember from earlier in this chapter: when
declaring members, order matters. The order in which the members are listed is the
order in which they will be initialized and executed. If the view is depending on
objects declared in the actions script, then the actions member must come before
the view script.

 Now that you understand the basics of MVC groups, let’s look at using and manag-
ing multiple MVC groups.

6.3 Using and managing MVC groups
Where are we so far? You know what the MVC pattern is, you know how Griffon
declares the pattern, and you know how to create an MVC group. Now you’re at per-
haps the most pertinent part: what do you do with it? As far as patterns go, the MVC
pattern requires a fair amount of setup and wiring. But the focus of the pattern is
about how the pieces interact in a running environment. In this section, you’ll see
how to access multiple MVC groups and destroy MVC groups when the application is
finished with them.

6.3.1 Accessing multiple MVC groups

How does an MVC group interact with the world? MVC groups, after all, are a lot like
atoms. They can do some interesting stuff all by their lonesome, but the real fireworks
occur at the molecular level when several atoms are combined. There are entire classes
in upper-level chemistry devoted to interesting combinations of carbon, oxygen, hydro-
gen, and nitrogen. The trick is getting them to interact with each other in specific ways.

 Interacting with other MVC groups is easy. You access properties and methods on
the members (model, view, and controller) that form the other MVC groups you wish
to interact with. The difficult part is getting hold of the portions from the other MVC
groups. There are two ways to obtain the other group portions: access them by their
MVC group name, or track the relevant members at the time the MVC group is cre-
ated, either by having the creating group store the created group’s members or by
passing in the creating group’s members as parameters on the call to createMVC-
Group(), withMVCGroup() or buildMVCGroup().

ACCESSING VIA REFERENCES

Here’s a snippet from the Greet sample application of the parent MVC group working
with the contents of a child MVC group. The parent group owns the following snippet,
and the userPane variable holds a reference to the child group:

def userPaneGroup = buildMVCGroup('userPane', mvcName,
 user:twitterService.userCache[username], closable:true);

view.tweetsTabbedPane.addTab("@$username", userPaneGroup.view.userPane)
www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 6 Understanding MVC groups
Here, the controller is generating an MVC group for a user tab. After the MVC group is
created, the controller takes the relevant widget from the new view and adds it to a
tabbed pane in the parent’s view.

 You can also use this technique in reverse: the child group does the adding, and
the parent fires and forgets. Here is how GroovyEdit does a similar action. First, in
GroovyEditController you find

createMVCGroup('filePanel' mvcId,
 [file: file, tabGroup: view.tabGroup, tabName: file.name, mvcId: mvcId])

Next, in FilePaneView you encounter

tabbedPane(tabGroup, selectedIndex: tabGroup.tabCount) {
 panel(title: tabName, id: "tab") {
 //....
 }
}

The controller for the parent MVC group passes in an instance of a TabbedPane that it
wants the child MVC group to add itself to. The child MVC group then uses the tabbed
pane that was passed in as a value to its own tabbedPane widget. A new pane isn’t cre-
ated; instead, the node will use the existing widget. This technique works with most
container types built by SwingBuilder.

ACCESSING VIA NAMES

Another method is to access groups via a symbolic name. Remember the second,
optional parameter on buildMVCGroup(), withMVCGroup(), and createMVCGroup()?
This is why it exists; it’s an application-wide name that can be used to access the
group’s parts without having to hold a direct reference to them. This frees the MVC
groups from having to store direct references to the other MVC groups.

 The object that is used to access the portions is the app property. This property is
unique from the other injectable properties in that it’s always available in MVC group
members because Griffon injects its value at the metaclass level. It also implements
the griffon.core.GriffonApplication interface.

 The relevant fields for MVC groups found in the aforementioned interface are the
groups property and the models, views, and controllers properties. The groups
property is a map containing all instantiated groups. Each group is keyed to the
names of the MVC groups that have been created. Each MVC group member is keyed
by name in its particular MVC group. The models, views, and controllers properties
are quick-access properties that are keyed on the MVC group name and return the
individual model, view, and controller of each group. If a member for the particular
type doesn’t exist, it isn’t stored and a null is returned if the member key is accessed.
These properties exist strictly as a convenience because they can be accessed from the
groups property.

 The Griffon SDK includes another sample application called WeatherWidget (look
for it under $GRIFFON_HOME/samples/WeatherWidget). One of its controllers initial-
izes four additional groups, as shown in the following listing.
www.it-ebooks.info

http://www.it-ebooks.info/

153Using and managing MVC groups
void mvcGroupInit(Map args) {
 createMVCGroup('smallForecast', 'small1')
 createMVCGroup('smallForecast', 'small2')
 createMVCGroup('smallForecast', 'small3')
 createMVCGroup('smallForecast', 'small4')
}

 (1..4).each {
 def day = forecastData.simpleforecast.forecastday[it]
 def smallModel = app.models["small$it"]

 smallModel.day = day.date.weekday
 // ... other such updates
}

The parent WeatherWidgetController creates four instances of the smallForecast
group and names them in a standard fashion. This explicit name is used in two places:
in the update logic where you access model members by name, and in the view for the
MVC group where you add the view widgets based on the explicit names given in the
controller (see the following listing).

hbox {
 widget(app.views.small1.smallPanel)
 hstrut(6)
 widget(app.views.small2.smallPanel)
 hstrut(6)
 widget(app.views.small3.smallPanel)
 hstrut(6)
 widget(app.views.small4.smallPanel)
}

This example also touches on a relevant point: when interacting with other MVC
groups, you won’t always do so at startup. Some interactions need to cross the MVC group
barriers. Often, the best place for building such interactions is the mvcGroupInit()
method of an artifact such as a controller. You can also use the life cycle scripts to build
such group relationships. Finally, there’s the option for fine-grained event listeners,
but we won’t explore that subject until chapter 8.

 Like all models with life cycles, the MVC group life cycle has to deal with death and
destruction, as we’ll discuss next.

6.3.2 Destroying MVC groups

A well-behaved application that runs for a long time will need to destroy at least some
of the MVC groups it creates. These groups may represent things such as transient dia-
logs or documents that the user has closed. But if these MVC groups are kept around
and none of their resources are reclaimed, eventually you’ll run out of memory.

Listing 6.4 WeatherWidgetController instantiating and using groups

Listing 6.5 WeatherWidgetView wiring up views from the instantiated views
www.it-ebooks.info

http://www.it-ebooks.info/

154 CHAPTER 6 Understanding MVC groups
 The destroyMVCGroup() method is used to destroy an MVC group. It takes only
one argument: a String that is the name of the MVC group (this is why mvcName is one
of the auto-injected variables). Figure 6.1 illustrates how this method works.

 Calling destroyMVCGroup() will perform all the needed cleanup actions such as
removing event listeners, invoking destroy callbacks, and disposing of Swing compo-
nents. The first action that the destroy method takes B is to remove any application
event listeners that the controller object may have registered with the framework.
When you’re tearing the group apart, you don’t want the framework asking it to
respond to any actions it may not be prepared to deal with any more.

 The next step in destruction is to call mvcGroupDestroy() on each of the MVC
group members c. Dispatching these methods is done mostly in the same manner as
calls to mvcGroupInit(). The only real difference is that there are no arguments to
this method. As in the init() call, the members are inspected in the order in which
they’re declared in the Application.groovy file. Each instance is examined for a
method named mvcGroupDestroy() that takes no arguments. Regardless of whether
the method terminates normally or throws an exception, the destruction of the group
will continue.

 The next step is to call the dispose() method on the builder object d. This will
cause the dispose() method to be called on all the registered builders as well. Two
important cleanup activities for SwingBuilder occur during this process. First, any
frame, dialog, or window that was created using the SwingBuilder APIs will have its

Figure 6.1 destroyMVCGroup() sequence
www.it-ebooks.info

http://www.it-ebooks.info/

155Creating custom artifact templates
dispose method called. This not only closes those windows but also frees up any native
resources that were consumed by them. Second, all bindings created with this builder
are unbound via the unbind() call. Hence, any listeners that were registered to facili-
tate the binding will be removed.

 Now you un-register the MVC group members from their registration in the Griffon-
Application object e. Why is this step saved until near the end? To allow the
mvcGroupDestroy() methods and disposal closures to reference the other portions by
name if required. Only when all the other cleanup activity has been performed can
the references to the members that make up the MVC group be removed.

 The final step is to trigger an application-wide DestroyMVCGroup event notifying
observers that the group has been destroyed f. This allows for additional cleanup
that other components might desire to perform. Be aware that at this point, the group
is no longer valid, and any references to its members have been purged from the
application’s cache. Any component that listens to this event should also purge any
references it holds to the destroyed group or its members.

 We’ve covered all runtime aspects of MVC group. Now it’s up to you to experiment
with the options at your disposal. Mixing the ability to create new groups with the
introspection capabilities of the Artifacts API should give you enough ammo to build
complex interactions with concise and readable code.

 We’re almost done with this chapter, but we can’t close it without mentioning
another useful feature of the Griffon framework. When it comes to creating MVC
groups, custom artifact templates can play a significant role.

6.4 Creating custom artifact templates
Recall from section 6.1 that the files of each MVC member are initially created with a
predetermined set of options. Well, each file is the result of a template being evalu-
ated within the boundaries of a set of conventions.

 Wouldn’t it be great if it were possible to override the default template of a certain
artifact before its corresponding file was created? It turns out, it’s possible. Suppose
you want to create a view that constructs a TabbedPane or a Dialog. If you have such a
template ready, then you can use it instead of the default view template. This saves you
the time of editing the freshly created view in order to replace the default code and
paste what you need. Remember that Griffon favors convention over configuration,
but that doesn’t mean it lets go of configuration altogether.

 Let’s follow a pragmatic approach to learning about the artifact templating
options by building a custom group whose main responsibility is to show an error dia-
log whenever an unknown error occurs. To give you an idea of what you’ll end up
with, glance at Figure 6.2.

 The first order of business will be to build the template of each MVC member.
www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 6 Understanding MVC groups
6.4.1 Templates, templates, templates

A template in Griffon is a simple text file that may contain special placeholders for spe-
cific variables. You may have noticed that every time you create a controller, the class
defined in the file matches the name of the file. A similar thing happens with the package
name for the class. Here, for example, is the template used by default for a model class:

@artifact.package@import groovy.beans.Bindable

class @artifact.name@ {
 // @Bindable String propName
}

You can see two different placeholders: one for the package name and one for the
class name. Table 6.1 lists all the available placeholders.

OK, you know what placeholders can be used, but how do you name your tem-
plates? And where do you put them? The answer to the first question is found in the
naming convention that you know by heart by now. A view class is constructed with a
view suffix, and a model class is constructed with a model suffix. This probably means
there are View.groovy and Model.groovy files lying somewhere in the Griffon SDK.

Table 6.1 Placeholders and their meaning

Placeholder Meaning

artifact.package Defines the name of the package to be used in the class. May
be empty.

artifact.name Name of the artifact, including suffix. Example: BookController.

artifact.name.plain Name of the artifact, excluding suffix. Example: Book.

artifact.superclass Name of the superclass, if any was defined (use -super-class
command flag).

griffon.version Griffon version currently being used. Example: 0.9.5.

griffon.project.name Name of the current project.

griffon.project.key Same as the previous, but uses a dot (.) instead of a slash as a
path separator.

Figure 6.2 A dialog with custom title, icon, and
message. The message’s text should change
according to the error that occurred.
www.it-ebooks.info

http://www.it-ebooks.info/

157Creating custom artifact templates
If you guessed this too, you’re on the correct path. This leads to the second answer:
Griffon is looking at a specific location for its own templates. That location could
be configurable, or it could possibly allow for several locations to be specified.
Well, it turns out the second guess is correct: there are several locations to be
searched for templates. Any additional artifact templates can be placed under src/
templates/artifacts—this includes both applications and plugins (we’ll cover plug-
ins in chapter 11).

 Armed with this knowledge, you can build the templates for each member of your
group. Let’s call them DialogView, DialogModel, and DialogController; we’ll pres-
ent them in this order. The next listing presents the template for the view. It’s sparse,
yes, but you don’t need much for this type of view

@artifact.package@import javax.swing.JOptionPane
optionPane(
 id: 'pane',
 messageType: JOptionPane.INFORMATION_MESSAGE,
 optionType: JOptionPane.DEFAULT_OPTION,
 icon: nuvolaIcon('core', category: 'apps', size: 64),
 message: bind {model.message})

The template sets up an optionPane node (it resolves to an instance of JOptionPane)
with a couple of properties. Note the use of the nuvolaIcon() node. This node is sup-
plied by a plugin and as such isn’t available in a view unless you install the correspond-
ing plugin in the target application that uses this template. If you’re curious, this is
done by invoking the following command:

$ griffon install-plugin nuvolaicons

This view template also sets up a binding with its model, which means you need to sup-
ply an observable property on the group’s model as well. The next listing shows what
the model template defines.

@artifact.package@import groovy.beans.Bindable
class @artifact.name@ {
 @Bindable String message = ''
 @Bindable String title = 'Error'
}

The group you’re building is simple, yet the model defines two properties that can be
used to provide a more personal touch when put to work.

 The third and last template we’ll cover belongs to the controller member of the
group. The controller is responsible for showing a dialog with the appropriate owner
and setting the title on the dialog (see the following listing).

Listing 6.6 Template definition for DialogView.groovy

Listing 6.7 Template definition for DialogModel.groovy
www.it-ebooks.info

http://www.it-ebooks.info/

158 CHAPTER 6 Understanding MVC groups
@artifact.package@ import java.awt.Window

class @artifact.name@ {
 def model
 def view

 def show = { Window window = null ->
 view.pane.createDialog(
 window ?: Window.windows.find{it.focused},
 model.title
).show()
 }
}

Once more you see the trick of defining a value for a parameter. This means the
show() action of a controller created with this template can be called with a Window
argument or with no argument at all. Either way, the dialog will be presented at the
center of the currently focused Window.

 Make sure you place these three files inside src/templates/artifacts at the root of
your application. You’re ready to bring this group to life.

6.4.2 It’s alive!
Up to this point, we’ve covered the setup of the templates and their conventions. Now
you can create your first MVC group from custom templates. In chapter 2, we dis-
cussed several of the command targets at your disposal, in particular the create-*
command targets. This command target bootstraps a particular artifact using pre-
defined template-naming conventions. The create-model command creates a model,
the create-view command view creates a view, and create-controller creates a con-
troller using standard templates. You can override those conventions and make the
command targets do your bidding.

 Every create-* command target requires an artifact type in order to work. Through
this type, you can inject your custom templates and let them be resolved instead of the
default ones. If a view requires a View.groovy template and has view as its suffix, it’s likely
that its type is view too. Follow the same train of thought for the other artifacts.

 You now have a custom template that you want to use. How do you put this tem-
plate together with the command line?

 The create-* command targets accepts an optional parameter that matches the
lowercase name of the type it can manage. For instance, if you want to target only
views, then you define a –view flag and the name of the target template as its values.

 Let’s put this new knowledge to the test. The following command invocation is
enough to create a group that uses all of your newly defined templates:

griffon create-mvc –view=DialogView \
 -model=DialogModel \
 -controller=DialogController sample

You should see output like this in your console after a few moments:

Listing 6.8 Template definition for DialogController.groovy
www.it-ebooks.info

http://www.it-ebooks.info/

159Summary
Running script /usr/local/griffon/scripts/CreateMvc.groovy
Environment set to development
Created DialogModel for Sample
Created DialogView for Sample
Created DialogController for Sample
Created IntegrationTests for Sample

Perfect! Now open each MVC member file in your favorite editor. Notice how every
placeholder has been replaced with the correct value for each artifact.

 Last, you need to instantiate this group in your code. Using the knowledge you’ve
gained from previous sections of this chapter yields the following code:

def (m, v, c) = createMVCGroup('sample')
m.message = """
 Oops! An unexpected error has occurred :-(
 $exception
""".toString()
c.show()
destroyMVCGroup('sample')

The caller code construct an instance of the sample group, sets a value for the model’s
message property, and calls the show() action on its controller. Finally, it performs
proper cleanup and deletes the group instance from the app’s cache after the dialog
has been dismissed.

 One final remark about templates: you can also place them inside plugins. This
means you can reuse the templates across several applications.

6.5 Summary
The MVC group facility is the means by which the Griffon framework encourages and
rewards adherence to the Model-View-Controller pattern. It also makes using MVC
groups the path of least resistance when it comes to creating GUIs—this resistance has
often been the main reason the pattern was abandoned or ignored.

 Griffon provides a bootstrapping mechanism to create the initial content of the
MVC group artifacts. Each artifact follows both a naming and a place convention that
can be exploited later to mix and match different values for each of its members.

 An MVC group is formed from a model, a view, and a controller. You can create groups
with fewer or more members, or reuse existing member instances between groups.

 Griffon provides both a declarative means to create MVC groups and rich means to
interact with the MVC groups once they’re created. Groups can be created, initialized,
and destroyed at will.

 Finally, you caught a glimpse of the templating mechanism the framework uses to
create each file. Because the mechanism is powered by conventions, it’s possible to
override the selection of the default templates and instruct the system to prefer a cus-
tom template of your choosing.

 This concludes our journey through the basic building blocks of the Griffon
framework. The next chapter will discuss the challenges of concurrency and thread-
ing, and how Griffon helps solve them.
www.it-ebooks.info

http://www.it-ebooks.info/

Multithreaded applications
We’re halfway through our journey of discovering what Griffon has to offer to desk-
top application development. By now you should be familiar with the core con-
cepts, such as the MVC pattern and the way Griffon implements it, its command
utilities, and its configuration options, just to name a few. But there’s more to Griffon
than that. For example, you can extend the framework’s capabilities to upgrade an
application’s looks. And you can certainly create an application that’s prepared to
deal with the terrible beast that is concurrent programming in the JVM.

 Handling threading in desktop applications is a crucial task. Do it carelessly,
and your users will walk away. Continue reading to find out the secrets for master-
ing multithreaded applications with Griffon.

This chapter covers:
■ Understanding the need for well-behaved

multithreaded desktop applications
■ Working with Griffon’s multithreading facilities

for Swing-based applications
■ Additional UI toolkit-agnostic threading facilities

for all components
160

www.it-ebooks.info

http://www.it-ebooks.info/

161The bane of Swing development
7.1 The bane of Swing development
As noted back in chapter 1, the JVM is a great place to develop applications for many
reasons. It’s an amazing piece of technology that harbors a huge ecosystem of librar-
ies, tools, and languages. The designers of the JVM and the Java language made a con-
scious decision to include multithreading support since the beginning, thus allowing
a wide range of applications to be built. Although many agree that building an appli-
cation with concurrency in mind isn’t an easy job, it beats what we had before the JVM
came forward.

 But writing desktop applications with Swing while taking concurrency into account
is a different game altogether, and it can get ugly pretty fast. It’s easy to make the
wrong assumptions when working with multithreaded applications. The threading
support found in the JVM and the Java programming language is certainly welcome,
but it’s not enough by itself.

 Swing is a powerful UI toolkit capable of handling a multitude of events at a time.
It handles events generated by user interaction, such as the push of a button, the
movement of the mouse over a component, or keyboard input. Swing also handles
internal events generated by the application and by its own internals, such as a repaint
request of a particular section of the UI. Swing handles the load by placing all events
in a queue and later dispatching them in the same order they entered the queue. The
responsibility of dispatching events falls to java.awt.EventQueue, and event dispatch-
ing must be performed in a special thread: the event dispatch thread (EDT).

 It so happens that the majority of events posted to the event queue are paint
requests; the rest deal with updates that may affect the UI state, possibly triggering
another paint request as a byproduct. This means the EventQueue is busy properly
updating the visuals of your application most of the time.

 Can you imagine what happens when an operation that isn’t UI-related, such as
reading a big file or querying a database, is executed in the EDT? In no particular
order: disaster, despair, frustration, and a lot of stress, mainly because the EDT should
be concerned with UI-related operations. Everything else should be run outside of
the EDT.

 Without further ado, let’s review what plain Java and Swing offer in terms of
threading support. We’ll use this basic understanding to showcase the advantages of
handling threading concerns with Groovy and SwingBuilder. Later we’ll show you how
Griffon uses these new building blocks and adds a few of its own.

7.1.1 Java Swing without threading

Let’s review a typical Swing example, as shown in listing 7.1. Chances are you’ve
encountered a similar piece of code around the web when searching for information
about Swing. This application is a simple file viewer. We could have chosen a network-
or database-aware application, but accessing the file system through I/O is a common
task and requires less setup. The implementation is straightforward, but we’ll explain
a little about the code.
www.it-ebooks.info

http://griffon.codehaus.org/SwingXBuilder
http://griffon.codehaus.org/SwingXBuilder
http://griffon.codehaus.org/SwingXBuilder
http://www.it-ebooks.info/

162 CHAPTER 7 Multithreaded applications
import java.awt.*;
import javax.swing.*;
import java.awt.event.*;
import java.io.*;

public class SimpleFileViewer extends JFrame {
 public static void main(String[] args) {
 SimpleFileViewer viewer = new SimpleFileViewer();
 }

 private JTextArea textArea;
 private static final String EOL = System.getProperty("line.separator");

 public SimpleFileViewer() {
 super("SimpleFileViewer");
 buildUI();
 setVisible(true);
 }

 private void buildUI() {
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 JButton button = new JButton("Click to select a file");
 textArea = new JTextArea();
 textArea.setEditable(false);
 textArea.setLineWrap(true);
 button.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent event) {
 selectFile();
 }
 });
 getContentPane().setLayout(new BorderLayout());
 getContentPane().add(button, BorderLayout.NORTH);
 getContentPane().add(new JScrollPane(textArea), BorderLayout.CENTER);
 pack();
 setSize(new Dimension(320, 240));
 }

 private void selectFile() {
 JFileChooser fileChooser = new JFileChooser();
 int answer = fileChooser.showOpenDialog(this);
 if(answer == JFileChooser.APPROVE_OPTION) {
 readFile(fileChooser.getSelectedFile());
 }
 }

 private void readFile(File file) {
 try {
 StringBuilder text = new StringBuilder();
 BufferedReader in = new BufferedReader(new FileReader(file));
 String line = null;
 while((line = in.readLine()) != null) {
 text.append(line).append(EOL);
 }
 textArea.setText(text.toString());
 textArea.setCaretPosition(0);

Listing 7.1 Java version of SimpleFileViewer

Create
subclass

b

Instantiated
outside EDT

c

Define event
handler

d

Executed
in EDTe

Doesn’t care
about EDT

f

www.it-ebooks.info

http://www.it-ebooks.info/

163The bane of Swing development
 } catch(IOException ioe) {
 ioe.printStackTrace();
 }
 }
}

The code starts by defining a subclass of javax.swing.JFrame B. In the good old
days, inheritance was regarded as the way to go most of the time; these days, people
tend to favor composition. Although this particular aspect doesn’t hinder you in creat-
ing a multithreaded Swing application, it imposes a design constraint that might affect
you later. For example, any object that interacts with an instance of SimpleFileViewer
could potentially change the layout, add or remove components from it, or even alter
the button’s behavior; all these are possible because the contract of a UI container
(such as JFrame) is exposed via the inheritance mechanism.

 Another recurring idiom in Swing applications is the usage of inner classes to
quickly define precise event handlers d. This is a powerful mechanism that tries its
best to be as friendly as anonymous functions are in other languages. They pretty
much behave like anonymous functions, other than their verbosity and some limita-
tions to enclosing scope and visibility. But we’re not about to discuss the merits of
Java’s inner-class design versus real anonymous functions.

 The catch is that while dealing with the amount of verbosity needed to wire up
these handy classes, you may forget about the intricacies of Swing threading. In case
you were wondering, event listeners receive a notification in the same thread that sent
them the message—that would be the EDT. This means you have to plan for select-
File() e to be called in the EDT. As listing 7.1 shows, there’s no indication that the
code is aware of this fact.

 Because the implementation of selectFile() doesn’t display any special thread-
handling code, it’s safe to assume that it will be executed in the same thread that
called it. This method will call readFile() f if the user has selected a file to read. If
there were any special code to properly handle threading, this would be it. Sadly, that
code isn’t there. The implementation will read the file’s contents in a buffer and
update the textArea, text, and caretPosition properties.

 Finally, at the application’s main entry point c, an instance of the SimpleFile-
Viewer class is created in the main thread. But there’s another catch: it’s recom-
mended that Swing components be initialized in the EDT. In this case, initialization
occurs in the main thread.

 Now that you know some of the pitfalls you need to avoid, the next section will
show how you can sort them out with plain Java.

7.1.2 Java Swing with threading

Let’s look now at a revised version that addresses the previously outlined problems:
you use composition instead of inheritance, you make sure readFile() is protected
against reading a file in the EDT, and you initialize all Swing components off the main
thread (see the following listing).
www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 7 Multithreaded applications
import java.awt.*;
import javax.swing.*;
import java.awt.event.*;
import java.io.*;

public class RevisedSimpleFileViewer {
 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 RevisedSimpleFileViewer viewer = new RevisedSimpleFileViewer();
 }
 });
 }

 private JTextArea textArea;
 private JFrame frame;
 private static final String EOL = System.getProperty("line.separator");

 public RevisedSimpleFileViewer() {
 frame = new JFrame("RevisedSimpleFileViewer");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.getContentPane().setLayout(new BorderLayout());
 frame.getContentPane().add(buildUI(), BorderLayout.CENTER);
 frame.pack();
 frame.setSize(new Dimension(320, 240));
 frame.setVisible(true);
 }

 private JPanel buildUI() {
 JPanel panel = new JPanel(new BorderLayout());
 JButton button = new JButton("Click to select a file");
 textArea = new JTextArea();
 textArea.setEditable(false);
 textArea.setLineWrap(true);
 button.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent event) {
 selectFile();
 }
 });
 panel.add(button, BorderLayout.NORTH);
 panel.add(new JScrollPane(textArea), BorderLayout.CENTER);
 return panel;
 }

 private void selectFile() {
 JFileChooser fileChooser = new JFileChooser();
 int answer = fileChooser.showOpenDialog(frame);
 if(answer == JFileChooser.APPROVE_OPTION) {
 readFile(fileChooser.getSelectedFile());
 }
 }

 private void readFile(final File file) {
 new Thread(new Runnable(){
 public void run() {

Listing 7.2 RevisedSimpleFileViewer with threading taken into account

Run code in EDTb

Use composed
JFramec

Executed
in EDTd

Read file
outside EDT

e

www.it-ebooks.info

http://www.it-ebooks.info/

165The bane of Swing development
 try {
 final StringBuilder text = new StringBuilder();
 BufferedReader in = new BufferedReader(new FileReader(file));
 String line = null;
 while((line = in.readLine()) != null) {
 text.append(line).append(EOL);
 }
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 textArea.setText(text.toString());
 textArea.setCaretPosition(0);
 }
 });
 } catch(IOException ioe) {
 ioe.printStackTrace();
 }
 }
 }).start();
 }
}

Although it’s not our intent to scare you off by incrementing the verbosity level, this is
how inner classes can be used to cope with threading problems. You may have noticed
that 15 lines have been added in the process of converting SimpleFileViewer to a well-
behaved Swing application.

 From top to bottom this time: A Swing utility class B is used to explicitly invoke a
piece of code in the EDT. You’ve now ensured that the UI is built in the correct thread.
A JFrame internal variable is used because RevisedSimpleFileViewer doesn’t inherit
from JFrame c. Notice that the button’s event handler d has been left untouched;
you’ll make sure the helper methods receive proper threading updates as shown by e
and f. A new thread is spun off e, effectively executing the file-read code outside of
the EDT; but once the contents have been finished, you need to update the textArea.
It’s back then into the EDT by using SwingUtilities.invokeLater() again. This par-
ticular Swing facility posts a new event into the event queue. On the other hand,
SwingUtilities.invokeAndWait() executes code in the EDT and waits until code
execution has finished. In other words, invokeLater() is an asynchronous call to the
EDT, whereas invokeAndWait() is a synchronous one.

 As you’ve seen, the EDT is both a blessing and a curse. On one hand, it makes the job
of dispatching events in a serialized way a reality. On the other hand, it spells disaster if
developers don’t take special care to avoid executing long-running operations on it.

More information about threading
Oracle keeps tutorials online if you’d like to learn more about Java technologies. One
of these tutorials is “Concurrency in Swing” (http://mng.bz/dKpA). This particular
document tells you everything you need to know about threading and Swing. We did
our best to sum up the contents and show you the common pitfalls.

Update UI
in EDTf
www.it-ebooks.info

http://mng.bz/dKpA
http://www.it-ebooks.info/

166 CHAPTER 7 Multithreaded applications
You’re here to learn about making the job of building Swing applications easier and
fun, so let’s look at the alternatives that Groovy offers.

7.2 SwingBuilder alternatives
Up to this point, you’ve seen numerous examples of Groovy’s SwingBuilder. You know
it reduces visual clutter and increases readability, but that doesn’t mean you’re safe
from shooting yourself in the foot just by relying on SwingBuilder alone. Groovy can
work its magic, but you have to give it a few nudges in the right direction from time
to time.

 In this section, we’ll revisit SwingBuilder for its Swing DSL capabilities, but this
time we’ll journey a bit deeper into the threading capabilities it exposes.

7.2.1 Groovy Swing without threading

Let’s revisit the first version of SimpleFileViewer (see listing 7.1), but switch to
Groovy. As shown in the following listing, the code’s design is pretty much the same
apart from using composition instead of inheritance from the get-go.

import groovy.swing.SwingBuilder
import javax.swing.JFrame
import javax.swing.JFileChooser

public class GroovyFileViewer {
 static void main(String[] args) {
 GroovyFileViewer viewer = new GroovyFileViewer()
 }

 private SwingBuilder swing

 public GroovyFileViewer() {
 swing = new SwingBuilder()
 swing.fileChooser(id: "fileChooser")
 swing.frame(title: "GroovyFileViewer",
 defaultCloseOperation: JFrame.EXIT_ON_CLOSE,
 pack: true, visible: true, id: "frame") {
 borderLayout()
 button("Click to select a file", constraints: context.NORTH,
 actionPerformed: this.&selectFile)
 scrollPane(constraints: context.CENTER) {
 textArea(id: "textArea", editable: false, lineWrap: true)
 }
 }
 swing.frame.size = [320,240]
 }

 private void selectFile(event = null) {
 int answer = swing.fileChooser.showOpenDialog(swing.frame)
 if(answer == JFileChooser.APPROVE_OPTION) {
 readFile(swing.fileChooser.selectedFile)
 }
 }

Listing 7.3 Groovy version of SimpleFileReader

Instantiated
outside EDT

b

Converts
method

to closure c
www.it-ebooks.info

http://www.it-ebooks.info/

167SwingBuilder alternatives
 private void readFile(File file) {
 swing.textArea.text = file.text
 swing.textArea.caretPosition = 0
 }
}

Comparing lines of code, listing 7.3 is 20 lines shorter than listing 7.1, but it still lacks
proper threading support. The application is still being instantiated in the main
thread B, which means the UI components are also being instantiated and config-
ured in the main thread. Next a Groovy shortcut c obtains a closure from an existing
method, a handy alternative to declaring an inlined closure. Back to the application’s
business end d, where the file is read in the current executing thread (that would be
the EDT again), and the textArea is updated in the same thread. In summary, you
made the code more readable but didn’t rid yourself of the threading problems.

 You could make a Groovy version of listing 7.2 too, using SwingUtilities and creat-
ing new threads, but Groovy has a tendency to simplify things. We’d like to show you
what the language has to offer before we get into SwingBuilder threading proper.

7.2.2 Groovy Swing with threading
The ability to use closures in Groovy is a big selling point to many developers, but the
ability to use Groovy closures with plain Java classes is perhaps the most compelling
reason to switch.

 Take a moment to look at the Java implementation of RevisedSimpleFile-
Viewer.readFile() in listing 7.2. Try to visualize its behavior behind the verbosity of
its implementation. Now look at the Groovy version of the same code, as shown in the
next listing; it’s a rather different picture.

 private void readFile(File file) {
 Thread.start {
 String text = file.text
 SwingUtilities.invokeLater {
 swing.textArea.text = text
 swing.textArea.caretPosition = 0
 }
 }
 }

We can almost hear you shouting with anger and disbelief, “Not fair!” (that is, if you’re
one of the countless developers who have been bitten by Swing threading problems in
the past). Otherwise it’s probably something like, “I didn’t know I could do that!”

 Among the several tricks Groovy has in its arsenal is one that is helpful with thread-
ing. You see, Groovy can translate a closure into an implementation of a Java interface
that defines a single method. In other words, Groovy can create an object that imple-
ments the Runnable interface: the behavior of its run() method is determined by the
closure’s contents. In listing 7.4, a new thread is created, the file’s contents are read in
that thread, and then you’re back into the EDT to update the textArea’s properties.

Listing 7.4 Groovy enhanced readFile()

Executed
in EDTd
www.it-ebooks.info

http://www.it-ebooks.info/

168 CHAPTER 7 Multithreaded applications
 This chapter would be over right now if these were the only things Groovy had to
offer regarding threading. Luckily, that isn’t the case. SwingBuilder also has some
tricks up its sleeve. The next listing shows the full rewrite of GroovyFileReader using
SwingBuilder’s threading facilities.

import groovy.swing.SwingBuilder
import javax.swing.JFrame
import javax.swing.JFileChooser

public class RevisedGroovyFileViewer {
 static void main(String[] args) {
 def viewer = new RevisedGroovyFileViewer()
 }

 private SwingBuilder swingBuilder

 public RevisedGroovyFileViewer() {
 swingBuilder = new SwingBuilder()
 swingBuilder.edt {
 fileChooser = fileChooser()
 frame(title: "RevisedGroovyFileViewer",
 defaultCloseOperation: JFrame.EXIT_ON_CLOSE,
 preferredSize: [320, 240],
 pack: true, visible: true, id: "frame") {
 borderLayout()
 button("Click to select a file", constraints: context.NORTH,
 actionPerformed: this.&selectFile)
 scrollPane(constraints: context.CENTER) {
 textArea(id: "textArea", editable: false, lineWrap: true)
 }
 }
 }
 }

 private void selectFile(event = null) {
 def fileChooser = swingBuilder.fileChooser
 int answer = fileChooser.showOpenDialog(swingBuilder.frame)
 if(answer == JFileChooser.APPROVE_OPTION) {
 readFile(swingBuilder.fileChooser.selectedFile)
 }
 }

 private void readFile(File file) {
 swingBuilder.doOutside {
 String text = file.text
 doLater {
 textArea.text = text
 textArea.caretPosition = 0
 }
 }
 }
}

Listing 7.5 SwingBuilder threading applied to GroovyFileReader

Executed
outside EDT

b

Convert
method into
closure

c Executed
in EDT

d

Frame set
in builder’s
context

e

FileChooser set on
builder’s context

 f

Executed
outside EDT

b

Executed
in EDTd
www.it-ebooks.info

http://www.it-ebooks.info/

169SwingBuilder alternatives
Judging by B, the application is still being instantiated on the main thread; this would
mean UI components are also being instantiated in that thread, but c says otherwise. At
that line, SwingBuilder is being instructed to run the code by making a synchronous call
to the EDT, thus ensuring that UI building is done in the correct thread. Notice at d
and e that because fileChooser and frame variables are tied to the builder’s context,
there’s no longer a need to define external variables to access those components if you
keep a reference to the builder (which you do). This design choice is taken into account
where the builder’s instance is used to get a reference to both fileChooser and frame f.

 The more interesting bits can be found at B and d. Calling doOutside{} on
SwingBuilder has pretty much the same effect as calling Thread.start{} except
there is a slight but important difference: the SwingBuilder instance is used as the
closure’s delegate. This means you can access any variables tied to that particular
instance and any SwingBuilder methods in the closure’s scope. That’s why the next
call to the SwingBuilder threading method d doLater{} doesn’t need to be pre-
fixed with the swing variable.

 But you can go further by combining selectFile() and readFile() in a single
method, and by encapsulating the method body with a special Groovy construct, as
shown in the next listing.

 private void selectFile(event = null) {
 swingBuilder.with {
 int answer = fileChooser.showOpenDialog(frame)
 if(answer == JFileChooser.APPROVE_OPTION) {
 doOutside {
 String text = fileChooser.selectedFile.text
 doLater {
 textArea.text = text
 textArea.caretPosition = 0
 }
 }
 }
 }
 }

This is quite the trick. By using the with{} construct, you’re instructing Groovy to over-
ride the closure’s delegate. In this case, its value will be the SwingBuilder instance your
application is holding. This means the closure will attempt to resolve all methods and
properties not found in RevisedGroovyFileViewer against the SwingBuilder instance.
That’s why the references to fileChooser and name, as well as method calls to doOut-
side{} and doLater{}, need not be qualified with the SwingBuilder instance. Sweet!

TIP The trick related to the use of the with{} construct can be applied to
any object—it isn’t SwingBuilder specific. This can greatly simplify the code
you place on a controller or service, for example.

Now let’s take a moment to further inspect SwingBuilder’s threading facilities.

Listing 7.6 Simplified version of selectFile() and readFile()
www.it-ebooks.info

http://www.it-ebooks.info/

170 CHAPTER 7 Multithreaded applications
7.2.3 Synchronous calls with edt

We have already established that code put in the edt{} block is executed directly in
the EDT—that is, the EDT thread will block until the code has completed its execu-
tion. This appears to be no different from explicitly calling SwingUtilities.invoke-
AndWait{}, but in reality there are three important things to consider.

 The first improvement found in edt{} is that the current SwingBuilder instance is
set as the closure’s delegate, so you can call any SwingBuilder methods and nodes
directly without needing to qualify them with an instance variable.

 The second convenience has to do with a particular rule of executing code in the
EDT. Once you’re executing code in the EDT, you can’t make an explicit call to Swing-
Utilities.invokeAndWait{} again. A nasty exception will be thrown if you do make
the call. Let’s see what happens when you naively make a synchronous call in the EDT
when you’re already executing code in that thread. The following listing displays this
example. Remember that the button’s ActionListeners are processed in the EDT.

import groovy.swing.SwingBuilder
import javax.swing.SwingUtilities

def swing = new SwingBuilder()
swing.edt {
 frame(title: "Synchronous calls #1", size: [200,100], visible: true) {
 gridLayout(cols: 1, rows:2)
 label(id: "status")
 button("Click me!", actionPerformed: {e ->
 status.text = "attempt #1"
 SwingUtilities.invokeAndWait{ status.text = "attempt #2" }
 })
 }
}

You were so infatuated with Groovy threading that you forgot for a moment that
SwingUtilities.invokeAndWait{} can’t be called in the EDT! If you run the applica-
tion and click the button, an ugly exception like the following is thrown:

Caused by: java.lang.Error: Cannot call invokeAndWait from the event
dispatcher thread

 at java.awt.EventQueue.invokeAndWait(EventQueue.java:980)
 at javax.swing.SwingUtilities.invokeAndWait(SwingUtilities.java:1323)
 at javax.swing.SwingUtilities$invokeAndWait.call(Unknown Source)

But if you rely on SwingBuilder.edt{} to make the synchronous call at B as shown in
the following listing, you get a different result: a working, bug-free application!

import groovy.swing.SwingBuilder

def swing = new SwingBuilder()
swing.edt {

Listing 7.7 Violating EDT restrictions

Listing 7.8 EDT restriction no longer violated

Synchronous
call in EDT

 b
www.it-ebooks.info

http://www.it-ebooks.info/

171SwingBuilder alternatives
 frame(title: "Synchronous calls #2", size: [200,100], visible: true) {
 gridLayout(cols: 1, rows:2)
 label(id: "status")
 button("Click me!", actionPerformed: {e ->
 status.text = "attempt #1"
 edt{ status.text = "attempt #2" }
 })
 }
}

Much better. The name change isn’t that hard to remember, is it?
 The third and final difference is that edt{} is smart enough to figure out whether

it needs to make a call to SwingUtilities.invokeAndWait{}. If the currently execut-
ing code is already on the EDT, then it will continue to be executed in the EDT; edt{}
makes a call to SwingUtilities.isEventDispatchThread() to figure that out.

 Making asynchronous calls to the EDT is your next goal.

7.2.4 Asynchronous calls with doLater

Posting new events to the EventQueue can be done by calling SwingUtilities
.invokeLater{}. These events will be processed by the EDT the next time it gets a
chance. That’s why these calls are called asynchronous; code posted this way may take
a few cycles to be serviced depending on the currently executing code in the EDT and
the EventQueue’s state.

 Parallel to what we described in the previous section, a call to doLater{} is like a
call to SwingUtilities.invokeLater{}. But you can guess the difference: just as with
edt{}, this method makes sure the current SwingBuilder instance is set as the clo-
sure’s delegate. Again, you don’t need to qualify SwingBuilder methods and proper-
ties; they’ll be already in scope.

 Because this threading facility always posts a new event to the EventQueue, there’s
nothing much else to see here. There are no calling-EDT violations to worry about as
in the previous section.

 One aspect of SwingBuilder threading remains for review: executing code outside
of the EDT.

7.2.5 Outside calls with doOutside

You may be detecting a trend. For every Groovy threading option, there’s a Swing-
Builder-based alternative that adds a bit of spice: the ability to register the current
SwingBuilder instance as the closure’s delegate, saving you from typing a lot of
repeated identifiers. The trend continues in this case, which means that calling
doOutside{} has the same effect as Thread.start{} with the added benefit of a
proper delegate set on the closure.

 This threading facility mirrors edt{} in the sense that when doOutside{} is invoked,
it spawns a new thread if and only if the current thread is the EDT; otherwise it calls the
code in the currently executing thread. This behavior was introduced in Groovy 1.6.3;
previous versions spawn a new thread regardless of the currently executing thread.
www.it-ebooks.info

http://www.it-ebooks.info/

172 CHAPTER 7 Multithreaded applications
 It appears this is all that SwingBuilder has to offer in terms of threading goodness—
or is it? We’ll revisit threading facilities in section 7.4; but before we get there, let’s see
how Griffon enables all these goodies. After all, that’s what you’re here to learn.

7.3 Multithreaded applications with Griffon
Griffon goes to great lengths to make your life more comfortable when dealing with
Swing threading. It’s as if the Swing threading problems don’t exist in the first place!
Well, not quite, but you get the point. Let’s start with what happens when the applica-
tion bootstraps itself.

7.3.1 Threading and the application life cycle

Back in chapter 2, we outlined the basic life cycle of each and every Griffon applica-
tion. Here’s a quick reminder.

 The Griffon launcher sets up the appropriate classpath and loads the application’s
main class. Then it proceeds to read all of the application’s configuration files located
at griffon-app/conf. These operations are carried out in the main thread.

 The initialization phase kicks in, giving you the choice to call custom code defined
at griffon-app/lifecycle/Initialize.groovy. The contents of this script are guar-
anteed to be executed in the EDT. As a matter of fact, all scripts under that directory
will be executed in the EDT—no exceptions.

 Between calling the initialization life-cycle script and the next phase, something
amazing happens—each MVC group configured to be initialized at startup comes to
life! View members are initialized in the EDT too, which ensures that all view scripts
are given proper threading handling. It’s like each one was wrapped with an implicit
call to edt{}.

 Once initialization is finished, it’s time for the next phase, Startup, which offloads
any custom code to its corresponding life-cycle script. Then comes the Ready phase,
which is guaranteed to be called after all pending events posted to the EventQueue
have been processed. After clearing this phase, the application is fully initialized and
configured, and it’s time to display its main window (if any). This operation is also
guaranteed to run in the EDT.

 As you may recall from chapters 4 and 6, Griffon makes sure a SwingBuilder
instance is available per view at all times. This facilitates the job of keeping references
to UI components in the view. Given that the other two members of the MVC triad can
read the view whenever they desire, all the dots are connected. Of course, this results
in the ability to call edt{}, doLater{}, and doOutside{} from any view script, but as
you saw in chapter 5, it’s the responsibility of controllers to provide the required
behavior. They’re the ones that have to deal with threading explicitly more than any
other MVC member.

 You might be thinking that it would be simpler to create an instance of Swing-
Builder during a controller’s initialization or perhaps tap into the MVC group’s associ-
ated builder by inspecting app.builders. But there’s a better way: the Griffon way.
www.it-ebooks.info

http://www.it-ebooks.info/

173Multithreaded applications with Griffon
7.3.2 Threading support the Griffon way

We’ve stressed on previous occasions that one of Griffon’s key components is the
CompositeBuilder; this remarkable component is capable of creating a mish-mash of
builders (albeit coherent and rather tasty). Every Griffon application sports a configu-
ration file for its CompositeBuilder, located at griffon-app/conf/Builder.groovy. If
that sounds familiar, it’s because this was explained in detail back in chapter 2. The
following listing reproduces the file’s contents upon creating an application

root {
 'groovy.swing.SwingBuilder' {
 controller = ['Threading']
 view = '*'
 }
}

Notice the Threading group being assigned to a controller property. That’s the
secret! SwingBuilder nodes can be found in groups: text component groups, button
and action groups, windows and containers, and so on. Of course, there’s a threading
group too. When the CompositeBuilder is processing its configuration file, it pays
attention to the group mechanism, assigning groups to views, controllers, or both.

 To recapitulate what listing 7.9 describes, all nodes that are contributed by Swing-
Builder are assigned to views; all nodes pertaining to SwingBuilder’s Threading group
are assigned to controllers as well. Finally, all nodes contributed by Application-
Builder are made available to views alone. With this configuration, you should be
able to call edt{}, doLater{}, and doOutside{} from any controller.

 Speaking of controllers, as you may recall from chapter 5, the main job of a con-
troller action is to react to view events and signal views of new data availability. This
means threading concerns are key when you’re implementing actions in controllers.
For this reason, Griffon applies special policies to controller actions, which we’ll dis-
cuss next.

7.3.3 Controller actions and multithreading: a quick guide

We all know the end result when a long computation is run in the UI thread: unhappy
users. We also know that to avoid this outcome, we must pay attention to proper
threading etiquette. Griffon simplifies the task of keeping tabs on the thread in which
a particular piece of code is being executed. Because controller actions hold a special
place between views and models, it’s also true that they receive additional care: Grif-
fon assumes that a controller action should be executed outside of the UI thread
unless otherwise specified.

 We’re back into the realm of convention over configuration. Most of the time, the
actions that a developer wires up with the view are set up to execute a long-running
computation or some logic that doesn’t affect the UI elements directly, and binding is
used for the rest. If that’s the common case, then it makes no sense to force a developer

Listing 7.9 Contents of griffon-app/conf/Builder.groovy
www.it-ebooks.info

http://www.it-ebooks.info/

174 CHAPTER 7 Multithreaded applications
to wrap an action with an explicit call to doOutside{}—let the framework do it! This
is a great feature that removes some of the pain of constantly thinking about thread-
ing concerns. But it comes with a price: when you do need an action to be executed in
a different threading mode, you must configure it that way. A typical scenario for such
a case is an action that performs navigation on UI components. But don’t be afraid,
the configuration is simple, as you’ll see in a moment.

 Remember the different configuration files available at your disposal in griffon-
app/conf? One in particular affects the build system. Yes, it’s BuildConfig.groovy. In
this file, you can change the configuration read by the Griffon compiler, because as it
turns out, it’s the compiler’s job to inject appropriate threading code into each action.
This means you must instruct the compiler to skip certain actions when you don’t
want the default threading wrapper code to be applied to them.

 The following snippet shows the typical setup for marking a set of actions to be
skipped from this special threading injection-handling mechanism:

compiler {
 threading {
 sample {
 SampleController {
 readAction = false
 }
 NoThreadingController = false
 }
 com {
 acme = false
 }
 }
}

Here’s a quick roundup of what’s happening. No threading code is injected into the
action named readAction on controllers of type sample.SampleController. If this con-
troller happens to define additional actions, they see their code updated with threading
wrapper injections. Only readAction isn’t affected by the automatic wrapping code. In
other words, this method disables injection with fine-grained control per action.

 Next is sample.NoThreadingController. There’s no action name related to this
type, which instructs the compiler to skip injection code to all actions found in that
controller. This is how you disable threading injection for a group of actions belong-
ing to the same type.

 Finally, all controllers found in the package com.acme or any of its subpackages
have their actions skipped from injection. This is how you can disable a whole set of
controllers that belong to the same hierarchy.

 Given that these settings affect the compilation process, you must recompile your
code right after making any adjustments to this configuration. Otherwise the changes
won’t be applied to the bytecode.

 Let’s pause for a moment and recap what you now know. All controller actions are
automatically executed outside of the UI thread because the compiler injects wrapping
www.it-ebooks.info

http://www.it-ebooks.info/

175Multithreaded applications with Griffon
code into each one. The wrapping code is basically a call to doOutside{} as if you
typed it explicitly. It’s also possible to disable threading injection by configuring com-
pile-time settings. Actions marked this way will be executed in the same thread as the
caller, which may be the UI thread. Is it possible to explicitly mark an action to be exe-
cuted in the UI thread? Yes, of course. You can do so with explicit calls to edt{} and
doLater{} as you saw before. But there’s another option in Griffon’s bag of tricks—
one that can be applied to any Groovy class, not just controllers.

7.3.4 Fine-tuning threading injection

Threading concerns are most important to controllers, but other components may
require special handling of threads too. It’s likely that those components (such as ser-
vices or plain beans) don’t participate in the threading injections done by the builder,
like controllers. But you can instruct the compiler to do the legwork for you, if you
give it a few hints in the correct places.

 Remember that @Bindable is a handy way to generate observable properties on a
bean. It works by hooking into the AST transformation framework. The feature we’ll
show you next also hooks into the compiler through the same mechanism. The follow-
ing snippet demonstrates it in all its glory:

import griffon.transform.Threading
class SomeBean {
 @Threading(Threading.Policy.OUTSIDE_UITHREAD)
 void fetchData(URL endpoint) { ... }
}

The @Threading annotation is responsible for advising the compiler about the thread-
ing hints we spoke of. You can apply this annotation either to methods or closure
properties; its value is the type of injection you want to see applied to the code. This
type has four possible settings, as explained in table 7.1.

Phew! That’s a lot to digest, and we still have a few more things to discuss. Don’t
worry—the next sections build on what you already know.

Table 7.1 Values for all types of injections that can be performed with @Threading

Setting Meaning

Policy.OUTSIDE_UITHREAD The code will be executed outside of the UI thread as if it
were wrapped with doOutside. This is the default value
for the annotation.

Policy.INSIDE_UITHREAD_SYNC The code will be executed synchronously in the UI thread,
as if it were wrapped with edt.

Policy.INSIDE_UITHREAD_ASYNC The code will be executed asynchronously in the UI thread,
as if it were wrapped with doLater.

Policy.SKIP No injection will be performed. The code will be executed
in the same thread as the caller.
www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 7 Multithreaded applications
7.3.5 What about binding?

If controller actions are automatically executed outside of the EDT by default, then
the following snippet might be doing the wrong thing:

class SampleController {
 def model
 def someAction {
 String input = model.input
 model.output = input * 2
 }
}

This particular controller has an action that reads a value from the model and sends it
back transformed. If the model properties are bound to UI components, this means
the value written back to the model will be sent in the same thread executing the
action, which you know is not the EDT. And that’s a problem.

 You could fix the code by wrapping the write back with a call to doLater{}.
Wouldn’t it be cool if Griffon knew about this case and automatically wrapped the call
for you? Well, it turns out it can. The code you previously thought was unsafe is safe.
We weren’t kidding about the great lengths Griffon goes to in order to make your life
easier. This behavior is also configurable, should you encounter the need to change
the default. The bind() node accepts the values listed in table 7.2 for a property
named update.

For example, if for some reason you want to force an update to always happen outside
of the EDT, you can use the defer setting when creating the binding, like this:

textField(text: bind(source: model,
 sourceProperty: 'output',
 update: 'defer'))

A demonstration of the threading facilities on controllers is in order. But before we
dive into it, we want to discuss one additional threading option.

Table 7.2 Update strategies applicable to bindings, and their meanings

Value Meaning

mixed Proceeds if the current thread is the UI thread. Otherwise, delivers the update using
doLater{}. This is the default for bound UI components.

async Posts the update with doLater{}.

sync Proceeds if the current thread is the UI thread. Otherwise, calls edt{}.

outside Proceeds if the current thread isn’t the UI thread. Otherwise, submits the update to an
ExecutorService.

same Proceeds in the current thread. This is the default for non-UI components.

defer Submits the update to an ExecutorService.
www.it-ebooks.info

http://www.it-ebooks.info/

177SwingXBuilder and threading support
7.4 SwingXBuilder and threading support
As you may be aware, the JDK provides many UI components, but it’s in no way com-
plete. There are myriad components out there, available for free or by paying a fee. At
some point, Sun Microsystems decided it was a good idea to create a repository that
could serve as an incubator for new ideas and components that, given the proper time
and maturity, could find their way into the JDK. And thus the SwingX project was born.

 Sun engineers spotted early on that dealing with threads in Swing applications was
a hard task, and they decided to alleviate the problem by creating a powerful threading-
aware component: the SwingWorker. This component was fostered by the SwingX
project and eventually found its way into the JDK when Java 6 was released in 2006.
The powers that be saw that the enhancements brought by SwingWorker were too
good to be left alone and decided to port it back to Java 5, but the code never made it
to the JDK 5 proper; it stayed at the SwingX project as a separate download.

 All this talk leads to the following: if your target platform is JDK 5, you’ll need a
SwingX jar to harness SwingWorker’s power. On the other hand, if your target is JDK 6
or beyond, there’s no additional library to set up. You can bet Griffon has something
up its sleeve, because it’s been good at facilitating things for you so far.

 In this case, plain SwingBuilder comes to your rescue. You see, SwingBuilder isn’t
the only builder capable of dealing with Swing components; a few others have ties to
SwingBuilder and the Griffon project, as we’ll discuss in chapter 12. Right now, we’ll
introduce SwingXBuilder, which is an official extension to SwingBuilder carried out as
one of Google’s Summer of Code 2007 entries.

 SwingXBuilder is capable of dealing with the complexity of setting up the proper
SwingWorker class depending on your development and deployment targets. Excited?
Let’s configure SwingXBuilder and explore its threading offerings.

7.4.1 Installing SwingXBuilder

Installing SwingXBuilder is as easy as fetching its latest release from http://griffon
.codehaus.org/SwingXBuilder, along with its dependencies from the SwingX project.
But there’s a quicker and painless option: you can install the swingx-builder plugin.
We might be getting a few steps ahead of ourselves, because plugins will be discussed
in full detail in chapter 11; nevertheless, here’s how you would install this plugin.
Open a command prompt or shell, and type in the following, making sure the com-
mand is executed in your application’s main directory:

$ griffon install-plugin swingx-builder

If you have access to the network, the command downloads the latest version of the
swingx-builder plugin and installs it on your application. That wasn’t so bad, was it?
The installation procedure does more than just set up the proper classpath configura-
tion by placing all required jars in your application’s lib directory; it also modifies
CompositeBuilder’s configuration script. Take a peek at griffon-app/conf/Builder
.groovy again, and you should see something like the following listing.
www.it-ebooks.info

http://griffon.codehaus.org/SwingXBuilder
http://griffon.codehaus.org/SwingXBuilder
http://www.it-ebooks.info/

178 CHAPTER 7 Multithreaded applications
root {
 'groovy.swing.SwingBuilder’ {
 controller = ['Threading']
 view = '*'
 }
}
jx {
 'groovy.swing.SwingXBuilder' {
 controller = ['withWorker']
 view = '*'
 }
}

There’s a new node, jx, which contains the definitions related to SwingXBuilder. This
node exposes a Threading group too, and in that group you’ll find what you’re looking
for: a withworker() node. What makes this node so special? Keep reading to find out.

7.4.2 The withWorker() node

As it turns out, withWorker() exposes the same public contract regardless of what ver-
sion of SwingWorker you’re currently dealing with (JDK 5 or JDK 6). This ensures that
no matter what platform your application is deployed to, it will behave the same.

 Let’s get down to business. This node relies on the builder pattern to configure the
underlying SwingWorker instance. There are four configurable nested nodes at your
disposal: onInit(), work(), onUpdate(), and onDone(). Of these, only two are required
to be defined by your code: work() and onDone(). This is how a typical usage looks:

jxwithWorker(start: true) {
 work {
 // work, work, and more work
 }
 onDone {
 // we’re done!
 }
}

Let’s break down each pseudo-node, starting with the one responsible for initializing
the worker.

INITIALIZING THE WORKER

Because you’re being shielded from the actual SwingWorker implementation chosen
at runtime, there’s no way for you to provide a constructor for it. But you can run ini-
tialization code before the worker gets on with its job; this is the responsibility of
onInit() pseudo-node. This node requires a closure that takes no parameters, so be
aware that the code defined in the closure will be executed in the current thread.

MAKING THE WORKER DO SOMETHING

When the worker is ready to be executed, either by defining a true value for its start
property or by calling its start() method directly, it will call the code defined by the

Listing 7.10 Updated configuration found on Builder.groovy
www.it-ebooks.info

http://www.it-ebooks.info/

179Putting it all together
work() pseudo-node. But as opposed to onInit(), the code defined for work() is
guaranteed to run outside the EDT. The onDone() pseudo-node will be called once
this one has finished doing whatever you instructed it to do.

 Occasionally, you’ll want to refresh the UI contents with the partial results, and you
need a way to get back into the EDT. Before you glance at the previous threading facil-
ities, you should know that the SwingWorker’s designers took this scenario into
account; thus there is a handy publish() method available. It signals the worker to
process whatever parameters you send to the publish() method in the EDT; that’s the
job of the third pseudo-node.

 One more thing: the last evaluated expression on this pseudo node will serve as
the computed value for the whole operation. You can access that value by calling
get(), typically in onDone().

UPDATING THE UI AS YOU GO

If publish() is responsible for sending data back into the EDT to be processed, it’s the
job of onUpdate() to do the actual processing. This node’s closure takes a single
parameter of type List; because publish() is a method that takes variable arguments,
all of them are collected in a List before being sent to onUpdate().

FINISHING THE JOB

It’s time up to tie any loose ends and process the results when the worker has finished
its business. This is where the onDone() pseudo-node steps up to handle the situation.
The closure you set to this node is executed back in the EDT. To obtain the value of
the computation made by work(), you call get().

 Enough theory. Let’s see all this in action!

7.5 Putting it all together
For demonstration purposes, and to draw a parallel to the discussion made through-
out this chapter, you’ll develop yet another FileViewer application. The difference is
that you’ll enable four different loading techniques using each of the threading
options at your disposal. You’ll be constantly updating a UI element on screen, too;
that way you’ll know right away if the application becomes unresponsive due to a
threading problem. Figure 7.1 shows the application.

 Each test executes a different loading technique. You’ll develop your threading-
aware FileViewer application in the following steps:

1 Outline the application.
2 Set up the UI.
3 Define the tabs.
4 Code the four file-loading techniques.

Time to flex those thinking and writing muscles: you have an application to build.
www.it-ebooks.info

http://www.it-ebooks.info/

180 CHAPTER 7 Multithreaded applications
7.5.1 Defining the application’s outline

Let’s ponder for a moment what you want to accomplish with the FileViewer applica-
tion. The following actions are common to all file-loading techniques, regardless of
threading approach:

■ Display a button that lets you choose the file to load.
■ Display a textArea with the file’s contents.
■ Display a progressBar that is updated constantly.
■ Provide each file-loading technique with its own tab and title.

You could pack each loading technique in its own MVC group, but that might lead
to repeated code. Another option would be creating a second MVC group, similar to
what you did with GroovyEdit back in chapter 1, but you would need a way to explicitly
instantiate each copy and wire it up to the tabbedPane (here’s a hint: you could do it
with one of the life-cycle scripts). Or you could keep it simple with a single MVC
group, and have a looping construct instantiating and wiring up each tab, all in the
view script. Let’s go with the third option, because it’s the simplest.

 First, let’s create the application. Drop to your command prompt, and type
the following:

$ griffon create-app FileViewer

Now change to the directory of the newly created application. To add the dependen-
cies you’ll need for this application by installing the SwingXBuilder plugin, drop into
your command prompt again and type

griffon install-plugin swingx-builder

Make sure SwingXBuilder’s Threading group is contributed to controller classes. Your
griffon-app/conf/Builder.groovy should contain something like this:

jx {
 'groovy.swing.SwingXBuilder' {

Figure 7.1 A threading-aware
FileViewer application displaying a
file using the first technique (Test
#1) for reading a file’s contents.
The other file-loading techniques
(Test #2, #3, and Test #4) depend
on the threading options employed.
www.it-ebooks.info

http://www.it-ebooks.info/

181Putting it all together
 controller = ['withWorker']
 view = '*'
 }
}

You’re done setting up the application—the only thing left is adding the fun bits to it.

7.5.2 Setting up the UI elements

The next step for evaluating each loading technique with threading on this applica-
tion is building the common UI elements. Open FileViewerView.groovy with your
favorite text editor or IDE, and replace its contents with the code shown in the follow-
ing listing.

import javax.swing.JTabbedPane

actions {
 action(id: "quitAction",
 name: "Quit",
 mnemonic: "Q",
 accelerator: shortcut("Q"),
 closure: controller.quit)
}

fileChooser = fileChooser()
mainWindow = application(title:'FileViewer', size: [480,320],

locationByPlatform:true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 menuBar {
 menu("File") {
 menuItem(quitAction)
 }
 }
 borderLayout()
 tabbedPane(constraints: CENTER, tabPlacement: JTabbedPane.LEFT)
}

There’s one more thing to do before you try the application for the first time. quit-
Action refers to an action named quit found in the controller, so let’s define that
action in FileViewerController.groovy as shown here:

class FileViewerController {
 def model
 def view

 def quit = { evt = null ->
 app.shutdown()
 }
}

Listing 7.11 Minimal implementation for FileViewerView.groovy without tabs
www.it-ebooks.info

http://www.it-ebooks.info/

182 CHAPTER 7 Multithreaded applications
At this point the application should be functional, although it only displays a menu
bar at this moment. You’ll fix that shortly by adding a tab for each of the loading tech-
niques you’d like to explore.

7.5.3 Defining a tab per loading technique

You’re ready to create the tabs, and you’ll handle this operation as a four-step procedure:

1 Define the common code for each tab.
2 Graft each tab into the tabbedPane.
3 Make sure the model is updated with the proper properties.
4 Add skeleton implementations for each of the required controller actions.

Return to the view script, and paste the code shown in listing 7.12 before anything
else. You can place this code anywhere in the script before the tabbedPane is defined,
but putting it at the top makes the script look cleaner.

def makeTab = { heading, loadTechnique, technique ->
 panel {
 borderLayout()
 panel(constraints: NORTH) {
 gridLayout(cols: 1, rows: 2)
 label(heading)
 button("Choose a file...",
 enabled: bind{ technique.enabled },
 actionPerformed: loadTechnique)
 }
 scrollPane(constraints: CENTER) {
 textArea(id: "editor",
 editable: false,
 lineWrap: true,
 text: bind{ technique.text },
 caretPosition: bind(source: technique,
 sourceProperty: "text", converter: {0}))
 }
 technique.progress = progressBar(indeterminate: true,
 minimum:0, maximum: 100,
 constraints: SOUTH)
 }
}

Let’s take a moment to review what’s going on with this piece of code. Each tab
requires the following:

■ Some heading text B, such as “No threading” as shown in figure 7.1.
■ A reference to a loadingTechnique c. This is a direct link to the appropriate

controller action.
■ An additional parameter for the closure that defines a tab: technique d.

Listing 7.12 Parameterized tab creation

Label with
heading text

b

Reference loading
technique

c

Text sourced
www.it-ebooks.info

http://www.it-ebooks.info/

183Putting it all together
Each loading technique is supposed to be independent from the rest. You don’t want
them to step on each other’s toes, which is why there will be a separate space on the
model. You’ll see how to do that when you get to the third step of this procedure.

 First, though, you must wire up each tab into the tabbedPane. Scroll down in your
editor, locate the tabbedPane definition, and replace it with the code shown in the
next listing.

tabbedPane(constraints: CENTER, tabPlacement: JTabbedPane.LEFT) {
 [[heading: "No threading", action: "readFileNoThreading"],
 [heading: "Threading - doOutside/doLater", action:
"readFileWithThreading"],
 [heading: "Threading - withWorker", action: "readFileWithWorker"],
 [heading: "Threading - progress update", action: "readFileWithUpdates"]]
 .eachWithIndex { entry, index ->
 index += 1
 def loadTechnique = controller."${entry.action}"
 def technique = model."technique$index"
 widget(title: "Test #"+index,makeTab(entry.heading, loadTechnique,
technique))
 }
}

You have a list of maps. A looping construct iterates over each entry, and the real val-
ues for loadTechnique and technique are calculated as you expect them to be.

 The variable loadTechnique is indeed a reference to a controller action. Judging
by the names on the maps, the first action will be resolved to controller.readFile-
NoThreading. Here you’re taking advantage of Groovy’s ability to let a property access
call be resolved in a dynamic way, because you’re using a parameterized String.

 The same trick is applied to the model property. Judging by that usage, there should
be four observable beans on the model whose names are technique1, technique2,
technique3, and technique4. That’s precisely what you’re about to implement.

 Open FileViewerModel.groovy in your editor, and write the following:

class FileViewerModel {
 Map technique1 = [text: "", enabled: true] as ObservableMap
 Map technique2 = [text: "", enabled: true] as ObservableMap
 Map technique3 = [text: "", enabled: true] as ObservableMap
 Map technique4 = [text: "", enabled: true] as ObservableMap
}

You’re using a quick prototyping technique here. Do you remember ObservableMap
and ObservableList from chapter 3? Usually you would create a simple class as a
holder for a few properties like the ones you need, and those properties need to be
made observable. Thanks to @Bindable, the code would’ve been shorter; but you went
with ObservableMap instead, which works like any other observable bean with the
added benefit that properties can be added at runtime (a fact you rely on). Look back
to listing 7.12, where the progressBar is defined. A new property with name progress

Listing 7.13 Adding parameterized tabs to the tabbedPane
www.it-ebooks.info

http://www.it-ebooks.info/

184 CHAPTER 7 Multithreaded applications
is added to the technique, and this means every ObservableMap in your model will
hold three properties once the application has processed the view script. If you’re
wondering why you need to keep a reference to the progressBar, the answer lies in
the final implementation of the controller’s actions. Speaking of which, let’s finish up
this procedure with the fourth step.

 The following code adds a skeleton implementation to each action found on
the controller:

class FileViewerController {
 def model
 def view

 def quit = { evt = null ->
 app.shutdown()
 }

 def readFileNoThreading = { evt = null -> }
 def readFileWithThreading = { evt = null -> }
 def readFileWithWorker = { evt = null -> }
 def readFileWithUpdates = { evt = null -> }
}

There you have it; this should be enough to launch the application and inspect its
visuals. Feel free to make any adjustments you like. You’re at the final phase of making
a multithreaded application: wiring up the different loading techniques using the var-
ious threading facilities provided by Griffon.

7.5.4 Adding the loading techniques

Here’s the attack plan for the four loading techniques you’ll implement:

■ Technique 1, readFileNoThreading, will read the file and update the textArea
in the current executing thread—in other words, you won’t use a threading facil-
ity. This will demonstrate what will happen if threading isn’t taken into account.
Considering that each controller action is executed outside the UI thread by
default, you must explicitly mark this one with @Threading.Policy.SKIP.

■ Technique 2, readFileWithThreading, will use doOutside{} to read the file’s
contents in a different thread other than the EDT. Then it’s back into the EDT
with doLater{} to update the textArea.

■ Technique 3, readFileWithWorker, is similar to the second, but it will perform
its job by using SwingWorker.

■ Technique 4, readFileWithUpdates, is a refined version of the previous one. It
will use SwingWorker to read the file’s contents, and it will also publish timely
updates as it reads the file. This is why you needed a reference to the progress-
Bar; you’ll use it as a status display.

Another tidbit before you get into the code, given that you’ll read the file’s contents
on a different thread than the EDT, is that the button that pops up the fileChooser
can be clicked several times before the first request has been processed fully. You need
www.it-ebooks.info

http://www.it-ebooks.info/

185Putting it all together
to find a way to avoid this kind of situation. Fortunately, the button’s enable state is
bound to a property on the model; you just have to make sure the value for that prop-
erty is toggled at the appropriate time.

 Without further ado, let’s open FileViewerController.groovy and add the code for
the four loading techniques.

READ FILE, NO THREADING

To replace the first threading action, paste in the code shown in the following listing.

private doWithSelectedFile = { Map technique, Closure codeBlock ->
 def openResult = view.fileChooser.showOpenDialog(view.mainWindow)
 if(JFileChooser.APPROVE_OPTION == openResult) {
 File file = new File(view.fileChooser.selectedFile.toString())
 technique.text = ""
 technique.enabled = false
 codeBlock(file)
 }
}

@Threading(Threading.policy.SKIP)
def readFileNoThreading = { evt = null ->
 def technique = model.technique1
 doWithSelectedFile(technique) { file ->
 technique.text = file.text
 technique.enabled = true
 }
}

Remember to include an import for javax.swing.JFileChooser and griffon.
transform.Threading at the top of the file, or you’ll get compilation errors. That’s
the minimal implementation for this action. The code isn’t protected against any I/O
errors that might occur, such as no read permissions or something similar; error han-
dling is left out to keep the code simple and on topic.

 You take the precaution of factoring out the common code that each technique
requires for selecting a target file and toggling the model’s enable property into a pri-
vate method—recall from chapter 5 that public methods will be seen as actions too.
This method takes two arguments; the first is the composed model space the tech-
nique requires (defined as an ObservableMap), and the second is a closure that
defines the code that puts the technique to work.

READ FILE WITH THREADING
Defining the second technique is pretty straight forward, as shown in the next listing.

def readFileWithThreading = { evt = null ->
 def technique = model.technique2
 doWithSelectedFile(technique) { file ->
 doOutside {

Listing 7.14 Full implementation of the readFileNoThreading action

Listing 7.15 Full implementation of the readFileWithThreading action
www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 7 Multithreaded applications
 technique.text = file.text
 technique.enabled = true
 }
 }
}

The second technique builds on the first. It makes sure that reading the file’s contents
takes place on a thread that isn’t the EDT, and then it proceeds to update the UI after
the text has been read. Of course, it does so back in the EDT because bindings will
update UI components in the EDT by default.

READ FILE WITH WORKER

The following listing shows the code for the third technique.

def readFileWithWorker = { evt = null ->
 def technique = model.technique3
 doWithSelectedFile(technique) { file ->
 jxwithWorker(start: true) {
 work { file.text }
 onDone {
 technique.text = get()
 technique.enabled = true
 }
 }
 }
}

Notice how similar listings 7.15 and 7.16 are. The most relevant change is how to
obtain the computed value once the calculation is finished, which is unique to the
withWorker() node.

READ FILE WITH UPDATES

There’s one final technique to try. As we mentioned before, you use SwingWorker
again, and this time the progressBar will serve as an indicator of how much progress
you have made when reading the file (see the following listing).

def readFileWithUpdates = { evt = null ->
 def technique = model.technique4
 doWithSelectedFile(technique) { file ->
 jxwithWorker(start: true) {
 onInit {
 technique.progress.with {
 setIndeterminate(false)
 setStringPainted(true)
 setString("0 %")
 }
 }
 work {
 int max = file.size()

Listing 7.16 Full implementation of the readFileWithWorker action

Listing 7.17 Full implementation of the readFileWithUpdates action
www.it-ebooks.info

http://www.it-ebooks.info/

187Putting it all together
 def buffer = new char[max/10]
 def text = new StringBuffer()
 file.withReader { reader ->
 (1..10).each { i ->
 reader.read(buffer, 0, buffer.size())
 text.append(buffer)
 Thread.sleep(300)
 publish(i*10)
 }
 }
 text.toString()
 }
 onUpdate { chunks ->
 technique.progress.string = chunks[0]+ " %"
 technique.progress.value = chunks[0]
 }
 onDone {
 technique.text = get()
 technique.progress.stringPainted = false
 technique.progress.indeterminate = true
 technique.enabled = true
 }
 }
 }
}

Here is what’s happening. As you may recall from listing 7.12, the progressBar is set
to indeterminate mode. You need to change it to deterministic mode, and you accom-
plish that during the worker’s initialization. Notice you’re reusing the with{} trick to
change the closure’s delegate. All three methods will be executed on the progressBar
associated with this technique.

 The worker reads the file in 10 chunks, one at a time, pausing briefly to simulate
slow I/O, and finally publishing the current chunk’s index B. This index will serve to
calculate the amount of progress the worker has made so far. Remember that all this
happens outside the EDT.

 Back in the EDT, the worker updates the UI state safely c, mainly by changing the
current value of the progressBar to a percentage of the total work so far. It updates
both the text and the value.

 When the worker has finished its job d, you’re again in the EDT, which is perfect
because the only things left to do are update the textArea’s contents and revert the
progressBar back to its previous state.

7.5.5 FileViewer: the aftermath

It took you a few iterations, but you’ve finished the job you set out to do: demonstrate
how the different threading facilities provided by SwingBuilder and Griffon can be
used in a typical scenario. We tried to keep the code’s verbosity at a minimum. Just
remember that the application isn’t completely safe from I/O errors occurring at
unexpected times; but that job shouldn’t be difficult, especially if Groovy techniques

Publish progress
(outside EDT)b

Update progress
bar (inside EDT)

c

Get computed value
(inside EDT)

d

www.it-ebooks.info

http://www.it-ebooks.info/

188 CHAPTER 7 Multithreaded applications
such as closure currying and metaprogramming are added to the mix. We hope you
enjoyed making this little application, and as a reward, here are the app’s stats:

+----------------------+-------+-------+
| Name | Files | LOC |
+----------------------+-------+-------+
Models	1	7
Views	1	55
Controllers	1	85
Lifecycle	5	3
Integration Tests	1	14
+----------------------+-------+-------+		
Totals	9	164
+----------------------+-------+-------+

Can you believe you accomplished so much with so little? Only 147 of those 164 lines
of code were explicitly written for this application.

7.6 Additional threading options
We’ve discussed all threading options related to Java Swing that Griffon has to offer.
But Swing isn’t the only toolkit that can be used in the JVM.

 There’s the Standard Widget Toolkit (SWT), for example. If you’re familiar with
the Eclipse IDE, then you’ve seen SWT in action. Its driving goal is to provide a seam-
less integration with the native environment, allowing the running platform to draw
the widgets by its own means; in Swing, on the other hand, an abstraction layer
(implemented with Java 2D by the release of JDK 6) draws all the bits.

 You’ve probably heard about JavaFX. It too is a UI toolkit that provides a modern
set of features. Qt from Nokia (originally from Trolltech), Apache Pivot from the
Apache Foundation, and GTK (on Linux) are other popular choices.

 Regardless of which one you pick to develop your next application, you’ll soon
face the problem of multithreading. Each toolkit deals with the problem in its own
way, often differently from the others. What if there was a common way to handle mul-
tithreading regardless of the toolkit? Better yet, what if it was close to what you already
know with Swing?

 This is precisely what the following Griffon threading facilities do for you. Let’s
start by finding out how you can call code in the UI thread. When dealing with Swing,
the UI thread is the EDT, but other toolkits call it something different.

7.6.1 Synchronous calls in the UI thread

In section 7.2.3, we explained the concept of the edt{} block. Its toolkit-agnostic
counterpart is execInsideUISync{}. This block guarantees that code passed to it is
executed synchronously in the UI thread. You can be sure this block performs exactly
the same motions as edt{} when running in Swing.

 It’s safe to change all calls from edt{} to execInsideUISync{} in all parts of a
Griffon application.
www.it-ebooks.info

http://www.it-ebooks.info/

189Additional threading options
7.6.2 Asynchronous calls in the UI thread

Following the steps of the previous block, the next one mimics closely what you can do
with doLater{}. Executing code in the UI thread in an asynchronous way can be
achieved by means of the execInsideUIAsync{} block.

 Similar to what Swing’s EDT does, all other toolkits have a way to post an event to
be processed in the UI thread at a later point in time. This threading block exploits
that option for each of the supported UI toolkits.

 Next in the list is executing code outside of the UI thread, but we’re pretty sure
you’ve guessed the name already.

7.6.3 Executing code outside of the UI thread

The name, as you probably guessed, is execOutsideUI{}, inspired by the already-
discussed doOutside{}. This block also ensures that all code passed to it is executed in
a thread that isn’t the UI thread.

 On more recent versions of Griffon (since 0.9), you’ll discover a few hints here and
there about the usage of these threading facilities. Their usage is preferred over the
Swing facilities, not just because they’re newer but because they make your code less frag-
ile to a sudden UI toolkit change if it’s required by your application. They also make the
code look more consistent across different toolkits. That way you can read code of an
SWT application and understand it more easily, even if the only toolkit you know is Swing.

 But you can use a few additional methods besides the three we just discussed. They
complete the set of threading options that Griffon has to offer.

7.6.4 Is this the UI thread?

In Swing, how do you find if the current thread is the EDT? That’s right: you ask the JVM
using SwingUtilities.isEventDispatchThread(). But as we said before, other UI tool-
kits have decided to use their own conventions that may or may not match Swing’s, so
you can be sure SwingUtilites won’t work for all cases. You need a way to query
whether a thread is the UI thread, and that’s the job of the isUIThread() method.

 This method, as well as the other threading methods introduced in section 7.6, are
available to all MVC artifacts and the application instance; you can call them pretty
much from anywhere.

7.6.5 Executing code asynchronously

Wait, didn’t we talk about this one before? Yes, we did, but in the context of executing
code asynchronously in the UI thread. This case is for executing code asynchronously
outside of the UI thread, as a promise for a future execution. And with that, we gave
away the name of the method: execFuture(). It may take either a Closure or a
Callable as argument and returns a Future instance. You’re free to do with the
Future object as you please.

 By default, this method is invoked using an ExecutorService that should be con-
figured to the number of cores available in the running platform. A variant of this
www.it-ebooks.info

http://www.it-ebooks.info/

190 CHAPTER 7 Multithreaded applications
method accepts an ExecutorService instance. In this way, you can configure all the
details of the execution.

7.7 Summary
This chapter has shown that you don’t need to be driven to the verge of despair while
making sure your Swing applications take concurrency and threading into account.
Thanks to the power of Groovy SwingBuilder and Griffon’s additional threading facil-
ities, this process doesn’t need to be a crazy ride.

 You learned that Groovy provides an advantage for threading by allowing any clo-
sure to be used as the body of a Runnable. You have two threading options: create a
closure and set it either as the parameter for a new Thread or as the parameter for the
helpful SwingUtilities.invokeAndWait() and SwingUtilities.invokeLater(). As
a third option, Groovy’s SwingBuilder makes the job of properly handling threading
in a Swing application much easier. A fourth threading option is based on JDK 6’s
SwingWorker or SwingX’s SwingWorker, a handy class that facilitates the job of offload-
ing work from the EDT.

 We also explored how Griffon makes sure the application life cycle is executed in
the correct threads depending on the particular phase. And you worked through a
full example of all of Griffon’s threading techniques. We’re confident it will inspire
you to thread into concurrency with more confidence (pun intended).

 Finally, we surveyed additional, UI-toolkit-agnostic threading options that Grif-
fon exposes.

 Now that you know how to deal with threading concerns, we’re ready to address
the subject of notifications and events. Given that many of them will occur at any
point of the execution of your application, you’ll have to either deal with them imme-
diately or delay their handling.
www.it-ebooks.info

http://www.it-ebooks.info/

Listening to notifications
Think for a moment how your typical work day starts. You get up on time (most
likely) because your alarm clock rings. You grab some warm toast for breakfast
because you hear it popped from the toaster. On your way to work, you know to
stop on the street because the traffic light changes to red.

 What is common to all these cases is that you take action as a response to some
stimulus, whether auditory (your alarm clock ringing) or visual (the traffic light). It’s
as if you’re reacting to signals sent by different agents. Could you imagine your morn-
ing routine without all those signals? It could turn out to be a bit chaotic. It might also
be tedious, because you’d constantly have to check for a particular condition to see if
you could proceed. Sometimes it’s better to react to a signal rather than poll for it.

 The same principle applies to applications. You know that during a build, a pre-
defined set of steps must take place. After all, the build must be reproducible every
time. But a build should also be extensible: not every shoe fits every foot. Sometimes

This chapter covers
■ Setting up event handlers on your build
■ Setting up application event handlers
■ Adding listeners to model updates
■ Transforming any class into an event publisher
191

www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 8 Listening to notifications
you’ll need to tweak the build. Signals, or events as we’ll call them from now on, are a
perfect fit to make this happen.

 In this chapter you’ll see how to use build events to change and/or extend the
build process. Next, you’ll take the information you learned about using events dur-
ing build time and see how the same idea applies to runtime using application events.
Finally, you’ll learn how easy it is to add event publishing to any class using the
@EventPublisher annotation.

 Let’s start by looking at how events can be used to change and/or extend the
build process.

8.1 Working with build events
We’re sure you’ve become accustomed to Griffon’s command-line tools by now. As
you may recall, the scripts rely on Gant (http://gant.codehaus.org), a Groovier ver-
sion of Ant (http://ant.apache.org), to work. Each script has a predefined set of
responsibilities. Some scripts even piggy-back on others to get the job done. What you
may not know is that you can interact with the build process, and even change it, by
means of build events.

 In this section, you’ll see that the build process uses build events to inform listen-
ers which step the build process is in. Using this information, listeners can take spe-
cific actions, such as post-processing resource files after the compile step has finished.

 To interact with events, an event handler must be registered. You use a special
script to register handlers, and the build system locates the script by means of the
naming convention. Before we get into the details of using this script, let’s see how to
create scripts with ease.

8.1.1 Creating a simple script
Scripts are just one of many of the Griffon artifacts available to you. You might have
noticed the scripts directory located under your application’s root directory; it’s
empty by default.

 Scripts are simple to create, but just to be on the safe side this first time, let’s rely
on the command line. Type the following commands at your prompt:

$ griffon create-app buildEvents
$ cd buildEvents
$ griffon create-script First

This creates a file named First.groovy inside the scripts directory. If you omit the
script name, the command will prompt you for one.

 Let’s peek into the file you just created:

target(name: 'first',
 description: "The description of the script goes here!",
 prehook: null, posthook: null) {
 // TODO: Implement script here
}

setDefaultTarget('first')
www.it-ebooks.info

http://gant.codehaus.org
http://ant.apache.org
http://www.it-ebooks.info/

193Working with build events
There isn’t much to see, other than the definition of the script’s default target.

Gant scripts are not only a groovier version of Ant’s XML-based scripts, they’re also
valid Groovy scripts. We know what you’re thinking right now, and you’re correct: you
can use any of Groovy’s features and mix them with Ant targets. Yes, you can mix clo-
sures, lists, maps, iterators, and pretty much everything you’ve learned so far pertain-
ing to Groovy. Isn’t that great? Not only do you get rid of XML’s visual clutter, but you
also gain a compile time checked script with powerful programming features.

 It’s time to continue with build events and their handlers now that you’ve got the
basics of scripts.

8.1.2 Handling an event with the events script

To interact with events, you must register an event handler using the specially named
script _Events.groovy. You can create it by hand or use the create-script command.

 Given that this is a special script, let’s start with a blank file. Fire up your favorite
editor, create a text file, paste the following code into it, and save it under scripts as
_Events.groovy.

eventCompileStart = {
 println "Griffon is compiling sources"
 ant.echo message: "This message written by an Ant target"
}

Working with Gant
If you’re familiar with Ant you’re more than ready to start hacking build scripts. If
you’re not, don’t worry; here are a few hints to get you up to speed.

Direct your browser to http://ant.apache.org/manual, and read a few pages, espe-
cially those that show how to set up a sample build file. You may notice an example
with a snippet similar to this:

<target name="init">
 <mkdir dir="build"/>
</target>

Armed with this knowledge, edit your First script to make it look like this:

target(name: 'first',
 description: "The description of the script goes here!",
 prehook: null, posthook: null) {
 ant.mkdir(dir: "build")
}
setDefaultTarget(first)

Do you see the trick? Basically, you have to transform XML code into Groovy code.
You should be able to call any Ant target from within your scripts; just remember to
qualify it with the ant. prefix.

Listing 8.1 Barebones _Events.groovy script listening to a single event
www.it-ebooks.info

http://ant.apache.org/manual
http://www.it-ebooks.info/

194 CHAPTER 8 Listening to notifications
Go back to your command prompt, and compile the buildEvents application. You
should see the following output:

Welcome to Griffon 0.9.5 - http://griffon.codehaus.org/
Licensed under Apache Standard License 2.0
Griffon home is set to: /usr/local/griffon

Base Directory: /tmp/buildEvents
Running script /usr/local/griffon/scripts/Compile.groovy
Resolving dependencies...
Dependencies resolved in 702ms.
Environment set to development
Resolving plugin dependencies ...
Plugin dependencies resolved in 763 ms.
Griffon is compiling sources
 [echo] This message written by an Ant target
...

Interesting, isn’t it? Toward the bottom, Griffon reassures you that it found your script
file as you get the printouts specified in the script itself. This is great; in the event (no
pun intended) you didn’t set the correct event handler (more on that in just a
moment), you still know your event script was located. Next, Griffon compiles sources,
which verifies that a regular Groovy statement can be used on the script. Finally, you
use one of Ant’s basic targets, the echo target.

 This is all fine and dandy; the script is working correctly because you followed the
convention for naming and writing an event handler. Perhaps it’s time to explain that
convention, don’t you think? Look again at your _Events.groovy script, and maybe
you can spot it.

 Event handlers are actually closure properties set on the script’s binding. They’re
of the form

event<EventName> = { args -> /* your code*/}

You can infer from _Events.groovy that the Griffon compile script fires a CompileStart
event. Table 8.1 summarizes the most common events and the targets that fire them.

Table 8.1 Events you’ll often see in a Griffon script

Target Event Fired when?

clean CleanStart Before cleaning the application’s artifacts

clean CleanEnd After cleaning has been completed

compile CompileStart When compilation starts

compile CompileEnd When compilation ends

packageApp PackagingStart Just before collecting jar files

packageApp PackagingEnd Just after collecting jar files

runApp RunAppStart Just before launching the application
www.it-ebooks.info

http://www.it-ebooks.info/

195Working with build events
There are of course more events than these. You’ll find a comprehensive list in the
Griffon Guide (http://griffon.codehaus.org/guide/latest/), or you can glance at
the scripts source code ($GRIFFON_HOME/scripts) if you’re feeling adventurous.

 You now know how to handle an event, but what about publishing one? That’s the
topic we’ll cover in the next section.

8.1.3 Publishing build events

If you think writing an event handler was easy, just wait until you see how you publish
an event! Every script you write will have the ability to publish events as long as you
include the Init script. Luckily, that’s what create-script generates. Let’s write a sim-
ple example using the Ping concept.

 Create a new script named Ping.groovy. Use create-script to make it easier:

$ griffon create-script Ping

Open it in your editor, and make sure it looks like this:

target(name: 'ping',
 description: "The description of the script goes here!",
 prehook: null, posthook: null) {
 event("Ping", ["Howdy!"])
}
setDefaultTarget('ping')

To add an event handler for the Ping event, open _Events.groovy (or create it in the
scripts directory if you don’t have it already). Remember the conventions? Do this:

eventPing = { msg ->
 println "Got '${msg}' from ping"
}

The only thing left to do is test it. Your Ping script is like any other Griffon script, which
means you can launch it using the griffon command. Scripts are not only useful for
handling events, but also work as an extension mechanism, at least at build time.

TIP We’ll explain more about Griffon’s extension mechanism, both at build
time and runtime, in chapter 11.

runApp RunAppEnd When the application has shut down

runApplet RunAppletStart Just before launching the application in applet mode

runApplet RunAppletEnd When the applet has shut down

runWebstart RunWebstartStart Just before launching the application in webstart mode

runWebstart RunWebstartEnd When the application has shut down

several StatusFinal Just before a script finishes or an error happens

Table 8.1 Events you’ll often see in a Griffon script (continued)

Target Event Fired when?
www.it-ebooks.info

http://griffon.codehaus.org/guide/latest/
http://www.it-ebooks.info/

196 CHAPTER 8 Listening to notifications
To launch the Ping.groovy script, go to your command prompt and type

$ griffon ping

Upon invoking that command, you should see something like this as output:

Welcome to Griffon 0.9.5 - http://griffon.codehaus.org/
Licensed under Apache Standard License 2.0
Griffon home is set to: /usr/local/griffon

Base Directory: /private/tmp/buildEvents
Running script /private/tmp/buildEvents/scripts/Ping.groovy
Resolving dependencies...
Dependencies resolved in 776ms.
Environment set to development
Resolving plugin dependencies ...
Plugin dependencies resolved in 796 ms.
Got 'Howdy!' from ping

Excellent! You just wrote your first custom event paired with an event handler. And it
only took a few lines of code.

 As you can see in Ping.groovy, publishing an event is only a matter of calling what
appears to be a method named event(). This method (which is actually a closure pro-
vided by the Init script, if you want to get technical about it) takes two parameters: a
String that identifies the type of event to fire and a List of arguments. In this case, the
Ping event sends a predefined message as a single argument. Assuming you’re working
within the boundaries of a Groovy script, you can send any valid Groovy object as an
argument—even closures, if that makes sense for the particular problem at hand.

 Now you know what to look for in a Griffon script when determining which events
can be fired at a specific point. Just do a search on event(), and you’re in business.

 The mechanism to build events is simple yet powerful. Wouldn’t it be great if there
was a similar mechanism at runtime? It turns out you can have that too.

8.2 Working with application events
An application can fire events in much the same way as build events are fired. That is,
the syntax is the same, but the source is a bit different. Don’t worry, we’ll cover the
details. Event handlers, on the other hand, come in several flavors. Given these facts,
let’s cover event handlers first. As you might expect, there are some default events
published by your application that you can try.

8.2.1 E is for events

We trust you remember the mnemonic rule related to Griffon’s configuration files
(see chapter 2 for a refresher). We’re talking about your ABCs: A for application, B for
builder, and C for config. Those are the standard (and required) files, but a few more
are optional. That’s the case with E for events.

 Let’s start with a fresh application. Go to your command prompt, and type

$ griffon create-app appEvents
www.it-ebooks.info

http://www.it-ebooks.info/

197Working with application events
The simplest way to register an application event handler is to create a file named
Events.groovy (be mindful of the missing underscore at the beginning of the filename)
and place it under griffon-app/conf. Open your editor and enter the following:

onBootstrapEnd = { app ->
 println "Application bootstrap finished"
}

Save the Events.groovy file, and run your appEvents application. A few lines after the
application’s jar has been packed and the application has been launched, you should
see this on your output:

Application bootstrap finished

Your event handler is open for business—congratulations! You’ll notice a slight differ-
ence from build event handlers. The convention here uses on instead of event as a
prefix. This is by design; it marks a clear distinction between build-time and runtime
event handlers.

 Table 8.2 summarizes all the events fired by every application by default. They are
listed in the order you will encounter them as the application loads. All of these events
have a single argument: the app instance.

Table 8.2 Application events tied to life-cycle phases

Event Fired when?

Log4jConfigStart After the application’s logging configuration has been read.

BootstrapStart After the application’s config has been read and before anything else
is initialized.

LoadAddonsStart Before any addons have been initialized.

LoadAddonStart Before a specific addon is initialized.

LoadAddonEnd After an addon has been initialized.

LoadAddonsEnd After all addons have been initialized.

BootstrapEnd At the end of the Initialize phase.

StartupStart Before any MVC group is created. Coincides with the Startup
life-cycle phase.

StartupEnd After the Startup life-cycle phase has finished.

ReadyStart Before the Ready life-cycle phase starts.

ReadyEnd After the Ready life-cycle phase has finished.

ShutdownRequested When a component calls the shutdown() method on the application.

ShutdownAborted When the Shutdown sequence is aborted by a ShutdownHandler.

ShutdownStart Before the Shutdown life-cycle phase starts.
www.it-ebooks.info

http://www.it-ebooks.info/

198 CHAPTER 8 Listening to notifications
NOTE If you’re wondering what addons are, skip to chapter 11. But come
back to continue learning about application events!

Table 8.3 lists the three other important events fired by an application, which are
related to MVC groups.

We hope that tables 8.2 and 8.3 give you enough information to keep you busy with
default events. But the Events.groovy script isn’t the only way to register application
event handlers. There are a few more techniques, which we’ll discuss next.

8.2.2 Additional application event handlers

You might have glanced at the base interface of all Griffon applications, if you have a
curious nature and a thing for reading source code. griffon.core.GriffonApplication
defines the following contract related to events:

 void addApplicationEventListener(Object handler);
 void addApplicationEventListener(String name, Closure handler);
 void addApplicationEventListener(String name, RunnableWithArgs handler);

 void removeApplicationEventListener(Object handler);
 void removeApplicationEventListener(String name, Closure handler);
 void removeApplicationEventListener(String name, RunnableWithArgs

handler);

You can gather from this that

■ Any object may become an application event listener.
■ Closures and instances of RunnableWithArgs may be registered as application

event listeners.

Table 8.3 Application events launched by createMVCGroup() and destroyMVCGroup()

Event Fired when?

NewInstance An object is created via app.newInstance()
Arguments: Class class, String type, Object instance
Example: event("NewInstance", [FooModel, "model",
fooModel])

InitializeMVCGroup Before group members are initialized—that is, before
mvcGroupInit() is called
Arguments: MVCGroupConfiguration config, MVCGroup group
Example: event("InitializeMVCGroup", config, group])

CreateMVCGroup After an MVC group is created
Argument: MVCGroup group
Example: event("CreateMVCGroup", [group])

DestroyMVCGroup After an MVC group is destroyed
Argument: MVCGroup group
Example: event("DestroyMVCGroup", [group])
www.it-ebooks.info

http://www.it-ebooks.info/

199Working with application events
The first statement is true as long as the object follows a specific set of conventions.
The conventions are similar to the ones we just laid out for Events.groovy. First, a lis-
tener may be a map, a script, or an object. Next, depending on the type of object, you
have the following options:

■ Map—Keys must match event names. Values must be closures or instances of
RunnableWithArgs that take the same number of arguments.

■ Script—The same rules as Events.groovy apply: each event handler is of the
form on<EventName> = { args -> /* code */ }.

■ Object—You must define either a method or a closure property that follows the
naming convention. Either of the following will work:

def onEventName = { args -> /* code }
void onEventName(args) { /* code */

Let’s look at an example.

EVENT HANDLER OPTIONS IN ACTION

Here’s a tip: all controllers are registered as application event listeners automatically.
You’ll use that fact in this small example.

 Once again, let’s start with a fresh application. Go to your command prompt and type

$ griffon create-app events

Open the EventsController.groovy file in your editor, and paste in the code found
in the following listing.

class EventsController {
 void mvcGroupInit(Map params) {
 app.addApplicationEventListener([
 ReadyStart: { a ->
 println "ReadyStart (via Map closure event handler)"
 },
 ReadyEnd: new RunnableWithArgs() {
 public void run(Object[] args) {
 println "ReadyEnd (via Map runnable event handler)"
 }
 }
])
 app.addApplicationEventListener("ReadyEnd") { a ->
 println "ReadyEnd (via Closure event handler)"
 }
 }

 def onReadyEnd = { a
 println "ReadyEnd (via Closure property event handler)"
 }

 void onReadyStart(a) {
 println "ReadyStart (via method event handler)"
 }
}

Listing 8.2 EventsController displaying all event-handler options at its disposal
www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 8 Listening to notifications
As you can see, on this controller you define four event handlers, all of them tied to
the start and end of the Ready life-cycle phase. A map-based event listener is regis-
tered with the application first. Notice that the keys are the same as the events you
intend to handle. The map contains two event handlers; the first is defined as a clo-
sure, and the second is an instance of RunnableWithArgs. Next a closure is registered
as an application event listener; the name of the event is set as the first argument of
the register method, and the closure is set as the second argument. Next you use a
closure property as an event handler. It looks similar to an action closure, doesn’t it?
If that bothers you, then you’ll be happy to know that you can choose a method as an
event handler too.

 Running the application should yield an output like this:

ReadyStart (via method event handler)
ReadyStart (via Map closure event handler)
ReadyEnd (via Closure property event handler)
ReadyEnd (via Map runnable event handler)
ReadyEnd (via Closure event handler)

Hurray! All the event handlers are working perfectly, and the job wasn’t that hard.
The power of convention over configuration manifests itself again.

 We need to discuss one last important piece of information regarding application
event handlers: their relationship with threading concerns.

EVENT HANDLERS AND THREADING

As you may recall from chapter 7, developing multithreaded applications in Swing is
hard. Fortunately, you discovered how Griffon greatly simplifies working with multiple
threads and the EDT, making a difficult task much simpler. What, then, are the impli-
cations of publishing multiple events and having several event handlers ready to pro-
cess those events?

 Well, if you send a lot of events in the EDT and also process them in the EDT, you’ll
get an unresponsive application. Clearly, there are times when firing an application
must be done outside of the EDT, as if the whole call was surrounded with doOutside{}
or execOutsideUI{}. But it’s also true that sometimes you want to post an event and
return immediately. You can instruct a handler to run inside a particular thread
regardless of how the event was published. You can always use any of the threading
facilities discussed in chapter 7 to wrap the handler’s body; this way, you’ll be sure the
handler will be executed in a particular thread no matter which thread was used to
fire the event.

 Pay close attention to this threading fact, because it will most likely trip you up if
you publish an event in the EDT and expect the handler to behave synchronously.
Remembering that controller actions are executed outside the EDT by default means
that publishing an event in the body of an action will happen outside the EDT as well.

 If you happen to change the default settings for actions, remember to update the
event-firing code accordingly. Oh, that’s right, we haven’t discussed how events can be
fired. That’s the topic of the next section.
www.it-ebooks.info

http://www.it-ebooks.info/

201Working with application events
8.2.3 Firing application events

Recall from earlier in this chapter that you fire a build event by calling event(event-
Name, args) on your script. Well, firing an application event is done pretty much the
same way; the only difference is that you have to qualify the call using the app variable. As
an added benefit, all Griffon applications let you fire application events that don’t
require an argument without needing to specify an empty list. This is because the remain-
ing contract on griffon.core.GriffonApplication defines the following methods:

void event(String eventName);
void event(String eventName, List params);
void eventAsync(String eventName);
void eventAsync(String eventName, List params);
void eventOutsideUI(String eventName);
void eventOutsideUI(String eventName, List params);

The first pair of methods generates an event that will notify listeners in the same thread as
the publisher—in other words, the event is handled synchronously to the publisher. This
is the default way to publish application events, because all of them should be handled
immediately after they’ve been posted. But if a listener chooses to handle the event in a
different thread, it can use any of the threading facilities we discussed in chapter 7.

 The second pair of methods posts an event and return immediately. This means event
listeners will be notified in a different thread than the publisher. It doesn’t matter if the
current thread is the UI thread; these methods guarantee that the event will be handled
in a different thread. You can use these methods when your code requires announcing a
change but doesn’t need to wait for any listeners to finish processing the announcement.

 The final pair is a combination of the previous two. These methods post an event,
but listeners may or may not be notified in the same thread as the publisher. The con-
dition that controls which thread is used is whether the publisher’s thread is the UI
thread. In other words, if the event is fired outside the UI thread, then the listeners
are notified in the same thread—exactly what happens with the first pair. But if the
publisher’s thread happens to be the UI thread, the listeners will be notified in a dif-
ferent thread, as with the second pair.

 Let’s follow up with another example. You’ll have a controller fire a Ping event and
handle it as well.

SETTING UP PINGCONTROLLER

Start by creating a new application name ping. You’ll begin with the event logic and
then move forward to the view and model. Open the PingController.groovy file that
was created with the application. The following listing shows the minimal code
required to achieve your goal.

class PingController {
 def model
 int count = 0

Listing 8.3 PingController sending and handling a custom application event
www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 8 Listening to notifications
 def doPing = { evt = null ->
 model.output = ""
 app.event("Ping")
 }

 def onPing = {
 String text = "Pong! (${++count})"
 executeInsideUIAsync { model.output = text }
 }
}

PingController does nothing more than react to an action, triggered by a view ele-
ment (which you’ll define shortly). The action clears a value in the model, which will be
used to display some kind of result judging by its name. Finally it fires a Ping event B.
This event is so simple it doesn’t require arguments. Ping events are handled at c, where
you learn that your suspicions about model.output were correct. A counter keeps
track of how many times the controller has received a Ping event.

 Time to move on to the model.

SETTING UP PINGMODEL

You need to add only one property to the model. Open PingModel in your editor. It
should look like this:

import groovy.beans.Bindable

class PingModel {
 @Bindable String output = ""
}

Your last task is to fill the details on the view.

SETTING UP PINGVIEW

You know what’s coming, don’t you? From your editor, open PingView.groovy, and
then paste in the contents of the following Listing.

actions {
 action(id: "pingAction",
 name: "Ping!",
 closure: controller.doPing)
}

application(title: 'Ping',
 size: [200, 100],
 locationByPlatform: true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 gridLayout(cols: 1, rows: 2)
 button(pingAction)
 label(text: bind{ model.output })
}

Listing 8.4 PingView.groovy

Fire Ping
event

b

Handle Ping
event

c

Call action
handler

b

Wire action to buttonc
Bind to
output
property

d

www.it-ebooks.info

http://www.it-ebooks.info/

203Working with application events
Listing 8.4 shows a bare-bones view. Its responsibilities are defining an action that will
call out to the controller’s doPing B action handler. That action is later wired up with
a button c, which means a Ping event will be fired every time you click the button.
Finally, a label d is set up as a witness of the Ping event handler: its text property is
bound to the model’s output property.

 When you run the application, you’ll see a small window
with a button and an empty label. Click the button a few times,
and you’ll see the label’s text change. Figure 8.1 shows the state
of the application after clicking the Ping! button five times.

 Congratulations! Your first custom application event is up
and running. But this example is trivial, and its behavior
could easily be attained by means of binding to a model prop-
erty. What’s the benefit of this approach? Let’s add a second
MVC group into the mix to find out.

GETTING MULTIPLE CONTROLLERS TO COMMUNICATE

Remember that the create-app command created a default MVC group. For this step,
you need to create another MVC group named pong. Use the create-mvc command to
make it simpler:

$ griffon create-mvc pong

This new MVC group will send a Pong event every time it receives a Ping. You’ll also fix
PingController to handle any Pong events that may be sent through the application.
Figure 8.2 describes the event flow between MVC groups.

 First, open PongController in your editor, and add a Ping event handler that trig-
gers a Pong event. This time you’ll send a message too:

class PongController {
 int count = 0

 def onPing = {
 app.event("Pong", ["Pong! Pong! (${++count})"])
 }
}

PongController also keeps a count of how many pings it has received. The Pong event
sends a message to its handlers; that way you know how many Pings PongController
has received so far.

Figure 8.1 Application
after clicking the Ping!
button five times

Figure 8.2 When you click the Ping
button, the Ping controller fires a Ping
event. The event is processed by the
Pong controller, which fires a Pong
event processed by the Ping controller.
www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 8 Listening to notifications
Next, back to PingController. You’ll fix it so an instance of the pong MVC group is
created, and append a Pong event handler as well. Append the following snippet at
the end of the PingController class:

 void mvcGroupInit(Map args) {
 createMVCGroup("pong")
 }

 def onPong = { pongText ->
 execInsideUIAsync { model.pongText = pongText }
 }

Now, you need to modify the Ping application’s model and view. In the previous code,
you can see a reference to model.pongText. This is a new model property, and you
need to add it. Do so by appending the following property definition to PingModel:

@Bindable String pongText = ""

The final step is fixing PingView to display the value of model.pongText; otherwise
you won’t be able to see if the Ping and Pong event handlers are properly set up!
Open PingView again. Locate the layout, button, and label definitions, and overwrite
them with the following snippet:

gridLayout(cols: 1, rows: 3)
button(pingAction)
label(text: bind{ model.output })
label(text: bind{ model.pongText })

That should take care of it. You’re ready to launch the application to test it.

WATCHING YOUR CONTROLLERS COMMUNICATE

Type griffon run-app at your command prompt. When
the application’s main frame appears, click the button a
few times. You should see something like what’s shown in
figure 8.3.

 It works! Now you have the basis of intercommunicating
controllers via events. You might have noticed that both con-
trollers define a Ping event handler and there’s only one
source of Ping events. Extrapolating the conditions of this
example, you can have many listeners on the same application event, which is great.
But what if you want a bit of privacy? Say you only want Ping and Pong events to be
sent between a small set of objects. We’re afraid application events won’t solve this

Creating an MVC group alternative
We chose to have you create an instance of the pong MVC group by calling create-
MVCGroup() directly. Of course, this isn’t the only way to do it; you could have added
pong to the list of groups to be initialized at startup by tweaking Application
.groovy. (Refer to chapter 6 for more information about MVC groups.)

Figure 8.3 Playing ping-
pong with events
www.it-ebooks.info

http://www.it-ebooks.info/

205Your class as an event publisher
problem. What if the event mechanism could be reused somehow? Aha! That’s the
topic of the next section.

8.3 Your class as an event publisher
Glancing back to the previous discussions of how griffon.core.GriffonApplication
supports application events and their listeners by means of a set of conventional meth-
ods, it looks like you could get away with adding a similar contract to any class. All you
would need to do afterward would be to fill in the blanks.

 Before you start designing a way to keep track of the multiple options of event lis-
teners—remember, you can register maps, closures, scripts, and any objects—let’s
think for a second. This task has already been solved by the framework; surely there’s
a piece of reusable code that you can plug into your own classes. It happens that such
support exists in the form of an interface named griffon.core.EventPublisher.
The contract is as follows:

void addEventListener(Object handler)
void addEventListener(String name, Closure handler)
void addEventListener(String name, RunnableWithArgs handler)
void removeEventListener(Object handler)
void removeEventListener(String name, Closure handler)
void removeEventListener(String name, RunnableWithArgs handler)
void publish(String name, List args = [])
void publishAsync(String namename, List args = [])
void publishOutsideUI(String eventName, List args = [])

Griffon provides a base implementation of the EventPublisher interface as well as a
composable component called EventRouter. It’s usually the case that an event-
publishing class implements the EventPublisher interface and uses a composed
instance of EventRouter to delegate all method calls pertaining to events. Great;
armed with this knowledge, you can add that contract to your classes, making sure
each method makes a delegate call to a private instance of EventRouter.

 If you think this sounds like copying and pasting a lot of boilerplate code, we
couldn’t agree more! The task of grafting an EventRouter into a particular class
sounds eerily familiar to the task of grafting PropertyChangeSupport into a class to
make it observable. Do you remember how the latter was solved? Using the @Bindable
annotation and the power of the AST Transformations framework. You can bet there’s
a similar solution for this case too.

 Enter the @griffon.transform.EventPublisher annotation and its companion
AST transformation. By annotating a class with this annotation, you get all the benefits
of event publishing. No need to copy and paste code. How’s that for productivity?

 We’re sure you’re itching to try this new feature, so let’s dive in! You may be famil-
iar with the game Marco Polo1 or its variations. In this section, you’ll try your hand at
an EventRouter as you simulate four Marco Polo players.

1 http://en.wikipedia.org/wiki/Marco_Polo_(game).
www.it-ebooks.info

http://en.wikipedia.org/wiki/Marco_Polo_(game)
http://www.it-ebooks.info/

206 CHAPTER 8 Listening to notifications
8.3.1 A basic Marco-Polo game

The Marco Polo game requires at least three participants. One of the participants is
blindfolded. The others can stay put or move around. The blindfolded player must
locate one of the other participants by using sound as a guide. At any given time, this
player may shout “Marco!” When that happens, all other players must respond by
shouting “Polo!” simultaneously. If the blindfolded player locates another player
by touching them, then the latter is blindfolded, everyone takes new positions, and
the game restarts.

 In this section, you’ll replicate a portion of the Marco Polo game by having a con-
troller serve as the Marco player and a few beans act as Polo players. All objects will
communicate via events.

 Create the application by typing the following command at your command prompt:

$ griffon create-app marco

The next steps in building this Marco Polo example are as follows:

1 Set up the controller (Marco).
2 Create the players (Polo).
3 Set up the model and view.

SETTING UP THE CONTROLLER (MARCO)
The controller contains half the logic you want to implement. It should be able to

■ Register players as event listeners
■ Fire a Marco event at any time
■ React to Polo events sent by players

The next listing demonstrates how each of these responsibilities can be implemented.
Note that this code doesn’t assert when the searching player locates any of the others.

Figure 8.4 A diagram of several players in the Marco Application triggering
“Marco” events at any given time
www.it-ebooks.info

http://www.it-ebooks.info/

207Your class as an event publisher
import griffon.transform.EventPublisher

@EventPublisher
class MarcoController {
 def model

 void mvcGroupInit(Map args) {
 def createAPlayerAndRegisterIt = { id ->
 def player = new Player(id)
 addEventListener(player)
 player.addEventListener(delegate)
 }
 (1..3).each { createAPlayerAndRegisterIt(it) }
 addEventListener(new Player(4))
 new Player(5)
 }

 def marco = { evt = null ->
 execInsideUISync { model.output = '' }
 publishEvent "Marco"
 }

 def onPolo = { msg ->
 execInsideUIAsync { model.output += msg + "\n" }
 }
}

Because any class can be annotated with @EventPublisher, you annotate Marco-
Controller with it. The controller still has the ability to publish and receive applica-
tion events, and now it can publish local events. All players are initialized during the
controller’s initialization phase. A player instance must register itself as a listener on
the controller B; this way, the player can listen for Marco events. The controller also
needs to register itself with the player c, because it will listen for Polo events sent by
that player. To demonstrate that event listeners aren’t automatically registered, you
create two additional players d. The first registers itself with the controller, but the
controller won’t listen to events published by it. Finally there’s an unconnected player
instance; it won’t listen to events sent by the controller.

 Now let’s look at the other part of the equation: the Player class.

SETTING UP THE PLAYERS (POLO)
The Player class is responsible for

■ Registering Polo event listeners
■ Posting a Polo event when it receives a Marco

Each Player should have an id to distinguish it from other players. You’ll print out a
message every time a Marco event comes in, so you can verify that each player received
the event (or, in the case of Player 5, that they didn’t). Figure 8.5 shows the connec-
tions between players and events.

Listing 8.5 MarcoController.groovy

Register
player with
controller

b

Register controller
with player

c

Instantiate
players

d

www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 8 Listening to notifications
Open your editor once more, and create a file named Player.groovy under the src/
main directory. Its contents should be the same as the following listing for now.

import griffon.transform.EventPublisher

@EventPublisher
class Player {
 private final int id

 Player(int id) {
 this.id = id
 }

 def onMarco = {
 println "Player ($id) got a Marco!"
 publishEvent "Polo", ["Polo! ($id)"]
 }
}

Once more you apply the @EventPublisher annotation to the Player class, making it
an automatic event-publishing object like MarcoController. You add a Marco event
handler B so players can respond to Marco events. Inside the body of the handler, a
printout is made and then a Polo event is published c using publishEvent, a method
injected by the @EventPublisher annotation.

 Moving on, you need a model property that will be used by the view to display who
answered with a Polo event.

ADJUSTING THE MODEL AND VIEW

The only thing left to do is set up the view details. First, though, make sure Marco-
Model’s source code looks like the next listing.

Listing 8.6 Player.groovy class receiving and sending events

Figure 8.5 Marco Polo event flow

Handle Marco
events

b

Publish
Polo event

c

www.it-ebooks.info

http://www.it-ebooks.info/

209Your class as an event publisher
import groovy.beans.Bindable

class MarcoModel {
 @Bindable String output
}

You need a way to trigger a Marco event from the controller and then display any
information that may have been set on the model property you just defined. Sounds
pretty straightforward, doesn’t it? The following listing covers all those points.

actions {
 action(id: "marcoAction",
 name: "Marco!",
 closure: controller.marco)
}

application(title: 'Marco! ... Polo!',
 size:[300,160],
 locationByPlatform:true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 borderLayout()
 button(marcoAction, constraints: NORTH)
 scrollPane(constraints: CENTER) {
 textArea(text: bind { model.output })
 }
}

All that’s left is to launch the application and see what happens.

8.3.2 Running the application

Launch the application by typing griffon run-app
at your command prompt. When it launches, you
see the application’s main window, as shown in
Figure 8.6.

 Click the button. Two things should happen.
First, the output at your command prompt should
look like the following:

Player (1) got a Marco!
Player (2) got a Marco!
Player (3) got a Marco!
Player (4) got a Marco!

This means Players 1 through 4 received a Marco event, but Player 5 was left out of
the game.

Listing 8.7 MarcoModel.groovy

Listing 8.8 MarcoView.groovy

Figure 8.6 Marco application
at startup
www.it-ebooks.info

http://www.it-ebooks.info/

210 CHAPTER 8 Listening to notifications
 Now look at the application’s text area, which
should look like figure 8.7.

 Only Players 1 through 3 responded with a
Polo event that the controller heard. Player 4 did
respond (as witnessed in the command prompt’s
output), but the controller didn’t listen to it.
Remember that the fourth player listens for Marco
events but the MarcoController doesn’t listen to
the player.

 That’s all there is to enabling local events in any class.

8.4 Summary
Understanding events and how to use them in the Griffon framework is a practical
concept that you’ll use often. Build events are used by the command-line tools to sig-
nal when a build step has started or ended. They also serve to signal other scripts
when an action can be taken. We gave the example of creating a directory before
sources were compiled, but given that scripts are actually Gant scripts, you can use any
available Ant target to accomplish what you need to do.

 Then we switched gears to application events. You played Ping-Pong to learn about
runtime application events. You also saw how to distinguish them from build events.
And you discovered how custom events can be fired and handled.

 Finally, you played another game, Marco Polo, to learn how to enhance classes
with event-publishing capabilities, effectively turning them into local event publishers.

 With a newfound appreciation for events under your belt, it’s time to consider test-
ing techniques. The next chapter will look at a few approaches for testing your Grif-
fon applications.

Figure 8.7 Marco application after a
Marco event
www.it-ebooks.info

http://www.it-ebooks.info/

Testing your application
Let’s pause for a moment and review all you’ve discovered about Griffon so far.
First, you’ve learned that all Griffon applications share the same basic structure.
You also know that application artifacts are organized by type and responsibility in
specific folders on disk. In addition, the MVC pattern is the cornerstone for Grif-
fon’s MVC groups. These, in turn, can be extended by adding other MVC groups
within them as members. Finally, you know that you should remember to take
threading into account. And you know that all artifacts are glued together via the
Groovy language.

 You now have models, views, controllers, services, scripts, event handlers, and
additional Java/Groovy sources. That’s a lot of stuff! And we’re not even dealing
with the extensions provided by Griffon plugins yet. All this leads to the follow-
ing questions:

This chapter covers
■ Testing Griffon applications
■ Using FEST for UI testing
■ The Spock and easyb plugins
■ The CodeNarc, GMetrics, and Cobertura testing

and metrics plugins
211

www.it-ebooks.info

http://www.it-ebooks.info/

212 CHAPTER 9 Testing your application
■ Where do you start testing?
■ What would be a good strategy for tackling tests?
■ UI testing: go or no go?
■ Is the application solid? Are code paths missing?

A sound answer to the first two questions would be: start small, and build up from
there. Another possible answer is: start with the test, and then write the production
code. The latter is known as test-driven development (TDD). As expected in this type
of scenario, people are divided into two camps: those who say TDD works, and those
who say that it’s a waste of time. We’re not here to try to convince you either way. But
should you choose to write tests first, you’ll face the issue in the third question.

UI testing requires effort. If you do it manually, it quickly becomes boring; plus
manual testing doesn’t reliably produce the same results for the same stimuli, because
of the human factor involved. Automated UI Testing more often than not requires a
lot of setup to be done up front. That’s why many developers skip doing these kinds of
tests. They can be brittle, because their setup is elaborate; and rapid changes in the
underlying code can render them obsolete, which often spells their doom and rapid
departure from the codebase.

 In addition, when you’re using a dynamic language, certain aspects of your code
are known at runtime only. But you shouldn’t skip testing your software altogether. We
think quality should be an integral part of any application, which is why Griffon comes
with testing support right from the start. In the immortal words of Phillip Crosby,
“Quality is free, but only to those willing to pay heavily for it.” Griffon gives you the
tools you need, but it’s up to you to adapt and apply them to your specific scenarios.
Aristotle said, “Quality isn’t an act. It’s a habit.” We believe Griffon’s testing facilities
will aid you in making that statement a reality.

 With all that in mind, let’s start with the build-small-then-bigger approach and see
where it leads. Later we’ll come back to UI testing and see if it’s really all that complicated.

 First, let’s go over some basic testing principles.

9.1 Griffon testing basics
All the Griffon applications you created in the previous chapters have a test file associ-
ated with a controller whenever a MVC group is created. If you’ve used the create-
script command target to create a custom script, you might have noticed that a test
file was created for it, too. And the same happens for a service when using the appro-
priate command.

 In this section, you’ll create and run some simple tests. You’ll learn how to run indi-
vidual tests and how to test by type, test by phase, and test by name. You’ll apply this
information to testing the service portion of a simple dictionary application. You’ll first
create unit and integration tests and inspect the contents of the created files.
www.it-ebooks.info

http://www.it-ebooks.info/

213Griffon testing basics
9.1.1 Creating tests

The Griffon commands gently remind you that a test should be written for various
artifacts. But the fact that a test for a model class isn’t automatically created doesn’t
mean it’s exempt of testing. If it makes sense for your code, by all means make a test for
your model class. Griffon has two default command targets for creating tests: create-
unit-test and create-integration-test. Both create a new test file using a default
template that’s suitable for the type of test that is required.

 Assuming you’re working on an existing Griffon application (in this case, an empty
application named sample), type the following at the command line:

$ griffon create-unit-test first

This command generates a file named FirstTests.groovy under the test/unit/sam-
ple directory. Browse to that directory, and open the file in your favorite editor. You
should see similar content to the following (white space removed for brevity):

package sample
import griffon.test.*

class FirstTests extends GriffonUnitTestCase {
 protected void setUp() { super.setUp() }
 protected void tearDown() { super.tearDown() }
 void testSomething() { fail("Not implemented!") }
}

Nothing fancy. Worth noting is the fact that the test class extends from Griffon-
UnitTestCase. This base test class provides a few additions over the standard
GroovyTestCase. For example, it exposes all methods from UIThreadManager.
There might be further additions to this class in later releases. Keep an eye on the
release notes!

 Now let’s look at the controller test file that was generated when the application
was created. Look in test/integration for a file that bears the name of the application
plus the Tests suffix (in this case, SampleTests), and open it in your editor. The follow-
ing snippet shows the file’s contents:

package sample
import griffon.core.GriffonApplication
import griffon.test.*

class SampleTests extends GriffonUnitTestCase {
 GriffonApplication app
 protected void setUp() { super.setUp() }
 protected void tearDown() { super.tearDown() }
 void testSomething() { fail("Not implemented!") }
}

Whoa. An integration test class extends from the same base class as a unit test. Well,
this means both kinds of tests share the same basic elements. But the other noticeable
change is the addition of an app property. This property, in theory, will hold the refer-
ence to a running Griffon application— the current application under test.
www.it-ebooks.info

http://www.it-ebooks.info/

214 CHAPTER 9 Testing your application
 That might make you wonder about the real difference between these two kinds of
tests. You see, when unit tests are run, they do so with the smallest set of automatic
dependencies possible: zero. The goal of a unit test is to play around with a compo-
nent in isolation. For this reason, there’s no application instance available for unit
tests, MVC groups, or services.

On the other hand, an integration test relies on the actual component relationships
being put to the test. This is why an integration test requires a live application.

 Now, given that the hierarchy of these tests goes all way back to the basic JUnit Test-
Case, you can apply JUnit tricks along with some new ones thanks to the power of
Groovy. Refer to Groovy’s Testing Guide (http://groovy.codehaus.org/Testing+Guide)
to learn more about all you can do with the language when it comes to testing.

 It’s time to run some tests, now that you know how they look.

9.1.2 Running tests

As with many things in Griffon, you can count on a command target to help you at
the appropriate time and place. This time it’s for running tests. Every test that was
created using the create-*-test command targets is ready to be run. It’s just that
the tests do nothing interesting with the code. Nevertheless, go to your command
prompt and type

$ griffon test-app

You should see a few messages about the application code being compiled (if it
wasn’t up to date already) and then a few more regarding the test code being
compiled. Then you’ll see a special block of text that specifically mentions the type
and number of tests being run. Here’s the output of running unit tests on the Sam-
ple application:

Running 1 unit test...
Running test sample.FirstTests...
 testSomething...FAILED
Tests Completed in 254ms ...

Tests passed: 0
Tests failed: 1

Mock testing in Groovy
While it’s true that unit tests should run their components in isolation, there are
times when you need to set up a collaborator or a stand-in. This is where mock test-
ing comes into play. There are several Java-based libraries for mocking objects
(EasyMock, jMock, Mockito). Groovy has its own version, using its metaprogram-
ming capabilities.
www.it-ebooks.info

http://groovy.codehaus.org/Testing+Guide
http://www.it-ebooks.info/

215Griffon testing basics
And here’s the output for the integration tests:

Running 1 integration test...
Running test sample.SampleTests...
 testSomething...FAILED
Tests Completed in 65ms ...

Tests passed: 0
Tests failed: 1

Depending on how the tests go (PASSED or FAILED), you’ll get a set of reports in text,
XML, and HTML format. Inspect the last lines of the output; you’ll see that the reports
were placed in the target/test-reports directory. The generated HTML reports use
the standard templating and conventions that you may already be familiar with. The XML
reports also use the same format as standard JUnit, which means you can mine them for
data as you would normally do when working with standard Java projects and JUnit.

But there’s an additional side effect of running tests in this manner. Maybe you
noticed it already: both unit and integration tests are run one after another with a sin-
gle command invocation. What if you only want to run unit tests, for quicker feed-
back? Further, what if you only want to run a single test, independent of its phase or
type? The test-app command is versatile in terms of its options. These and other
questions will be answered next.

RUNNING TESTS BY PHASE OR TYPE

Specifying a phase of test to be run is a feature found in the Griffon command’s bag of
tricks. The same can be inferred about test types. The test-app command uses a nam-
ing convention on its parameters to recognize your intentions. That convention is
phase:type.

 Want to run all JUnit tests in the unit phase? Then type the following:

$ griffon test-app unit:unit

All JUnit test types match their corresponding phase name by default. The default test
phases are unit, integration, and other. The other phase is used when script tests
are available.

 This naming convention is also flexible. You can omit either the phase or the type.
If the type is omitted, all test types in the same phase are run. (This will make more
sense when we introduce the spock type.) In the meantime, assuming you have both

Test phases and types
From Griffon’s point of view, unit and integration tests are phases, not types. The unit
phase may contain different types of tests. So far you’ve seen the standard type.
Later in this chapter, you’ll learn about the spock type. We’ll explain phases and
types in more detail in the next section.
www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 9 Testing your application
JUnit tests and Spock specifications available in the unit phase, you can run all of
them by invoking

$ griffon test-app unit:

But running JUnit tests only and skipping Spock specifications is done by invoking

$ griffon test-app :unit

The amazing thing about defining the test type alone is that you can execute all tests
of the same type regardless of the phase they belong to. Running all available Spock
specifications, including unit and integration ones, is as simple as calling

$ griffon test-app :spock

Isn’t that a time saver in terms of setup and configuration? We’d like to think so. But
we’re not done yet. The next section covers running specific tests by name.

RUNNING TESTS BY NAME

Sometimes you need to run a single test because it’s the one that’s been giving you
trouble all morning. There’s definitely no need to call all of the test’s buddies just to
obtain a report on the problem. Again, the test-app command is smart enough
to recognize several options, depending on what you throw at it.

 Need to run a single test file? Then specify it as the sole argument to the com-
mand, like this:

$ griffon test-app sample.First

Note the omission of the Tests suffix in the class name. This is important, because the
command will try to match the name to the several types that may be available. Some
types use a different file suffix. The command could run more than one test if you
have two or more test types that share a name (for example, sample.FirstTests and
sample.FirstSpec). No problem. Add a type specifier, and then you can be certain a
single type is called:

$ griffon test-app :unit sample.First

Phases, types, and test names are additive. Want to run all tests belonging to a specific
package, regardless of their phase and/or type?

$ griffon test-app sample.*

If you want to target a package and all its subpackages, use double asterisks (**)
instead of a single asterisk.

 You can also run all tests of a specific artifact. For example, suppose you have a
multitude of tests but only want to run those that affect services. Type the following:

$ griffon test-app *Service

There’s even a more specific option. You can run a single test method if needed:

$ griffon test-app First.testSomething

All that power in a single, innocent command. Who would have thought it? But we
haven’t covered all its tricks. A group of build events is triggered whenever a test runs:
www.it-ebooks.info

http://www.it-ebooks.info/

217Griffon testing basics
events that deal with the overall execution of tests, events that deal with the execution
of a particular phase, and events that trigger when a single test starts. The bottom line
is that if the testing facilities exposed by the framework aren’t enough for your needs,
chances are that you can tweak them via custom scripts and build event handlers.

 Let’s build a new application from scratch and add some tests to it.

9.1.3 Testing in action
You’ll build an application and exercise it
with some tests. The application is a diction-
ary query; see figure 9.1. You type a word in a
text field, click the Search button, and wait
for an answer based on the word’s definition.

 We’ll keep the code simple, because our
intent is to show the testing code, not the
production code. Don’t forget that you can
find the source code for this example at the
Griffon in Action GitHub site (https://github
.com/aalmiray/griffoninaction).

SETTING UP THE APPLICATION AND WRITING A TEST

Start by creating an application named dictionary. You know the magic word already:

$ griffon create-app dictionary

You now have three artifacts (model, view, and controller) and an integration test.
You’ll now create a dictionary service. It will serve as your search engine, with the
added benefit of a companion dictionary service unit test:

$ griffon create-service dictionary

You’ll fill out the code for the test first; this means you’ll get a failing test as a baseline.
Then you can fill in the blanks as much as possible to make the test turn green. With a
new test state, you can safely refactor the production code: as long as the tests stay
green, you’re doing it right. Your first attempt verifies some error conditions triggered
by insufficient or wrong input, as shown in the following listing.

package dictionary
import griffon.test.*
import static dictionary.DictionaryService.*

class DictionaryServiceTests extends GriffonUnitTestCase {
 DictionaryService service = new DictionaryService()

 void testServiceCantFindWord() {
 assert service.findDefinition('spock') == FIND_ERROR_MESSAGE
 }

 void testInvalidInput() {
 assert service.findDefinition('') == INPUT_ERROR_MESSAGE

Listing 9.1 Testing for error outputs in DictionaryService

Figure 9.1 Running Dictionary application

Test for
undefined
word

Test for invalid input
www.it-ebooks.info

https://github.com/aalmiray/griffoninaction
https://github.com/aalmiray/griffoninaction
http://www.it-ebooks.info/

218 CHAPTER 9 Testing your application
 assert service.findDefinition(' ') == INPUT_ERROR_MESSAGE
 }
}

Before you run the test, you have to define two constants and one method in your service.
Locate the DictionaryService.groovy file under griffon-app/services/dictionary,
and open it in your editor. Make sure its contents resemble the following listing.

package dictionary

class DictionaryService {
 static String INPUT_ERROR_MESSAGE = "Please enter a valid word"
 static String FIND_ERROR_MESSAGE = "Word doesn't exist in dictionary"

 String findDefinition(String word) {
 null
 }
}

Now you can run the test and see it fail. Execute the test-app command, targeting
the unit phase and type; in this way, you avoid running the default integration test cre-
ated when the application structure was initialized. After the code has been compiled
and the test has been run, you should see output similar to the following (minus the
power assert and exception information) in your console:

Running 2 unit tests...
Running test dictionary.DictionaryServiceTests...
 testServiceCantFindWord...FAILED
 testInvalidInput...FAILED
Tests Completed in 419ms ...

Tests passed: 0
Tests failed: 2

You knew the test was bound to fail from the start. Next you’ll fix the code and make
the test succeed.

DOES THE TEST PASS?
Go back to the service source, and edit the service method by copying the following
snippet:

 String findDefinition(String word) {
 if(GriffonNameUtils.isBlank(word)) return INPUT_ERROR_MESSAGE
 FIND_ERROR_MESSAGE
 }

Also make sure you add an import statement for griffon.util.GriffonNameUtils, a
handy class that provides a method that verifies if a String is null or empty, among
other things. Run the test again; it should succeed this time.

Listing 9.2 Adding enough code to DictionaryService to turn the test green
www.it-ebooks.info

http://www.it-ebooks.info/

219Griffon testing basics
 You finish the service implementation by updating the implementation of the
findDefinition() method. Next you’ll add a map as a lookup table for word defini-
tions. The next listing shows the full implementation of the DictionaryService class.

package dictionary
import static griffon.util.GriffonNameUtils.isBlank

class DictionaryService {
 static String INPUT_ERROR_MESSAGE = "Please enter a valid word"
 static String FIND_ERROR_MESSAGE = "Word doesn't exist in dictionary"

 static final Map WORDS = [
 groovy: "An agile and dynamic language for the Java platform.",
 grails: "A full stack web application development platform.",
 griffon: "Grails inspired desktop application development\
 platform."
]

 String findDefinition(String word) {
 if(isBlank(word)) return INPUT_ERROR_MESSAGE
 WORDS[word.toLowerCase()] ?: FIND_ERROR_MESSAGE
 }
}

The last step is to update the tests so the reviewed implementation of your service is
also tested.

UPDATING THE TESTS

The following listing displays the entire test case, which now contains a third test
method with a helper.

package dictionary
import griffon.test.*
import static dictionary.DictionaryService.*
import static griffon.util.GriffonNameUtils.isBlank

class DictionaryServiceTests extends GriffonUnitTestCase {
 DictionaryService service = new DictionaryService()

 void testServiceCantFindWord() {
 assert service.findDefinition('spock') == FIND_ERROR_MESSAGE
 }

 void testInvalidInput() {
 assert service.findDefinition('') == INPUT_ERROR_MESSAGE
 assert service.findDefinition(' ') == INPUT_ERROR_MESSAGE
 }

 void testServiceContainsWord() {
 ['Groovy', 'Grails', 'Griffon'].each { word ->
 assertValid(service.findDefinition(word))
 assertValid(service.findDefinition(word.toLowerCase()))

Listing 9.3 DictionaryService with a lookup table to store definitions

Listing 9.4 Three tests methods exercising DictionaryService

Dictionary

Find/search
logic

New test
method
www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 9 Testing your application
 assertValid(service.findDefinition(word.toUpperCase()))
 }
 }

 static assertValid(String definition) {
 assert !isBlank(definition)
 assert definition != INPUT_ERROR_MESSAGE
 assert definition != FIND_ERROR_MESSAGE
 }
}

Run the test once more; it should work correctly. Remember that you can browse the
resulting reports, which are written in several formats and located in the target/
test-reports directory. Figure 9.2 shows, for example, the report generated for your
single test case.

 That’s all you’ll do with this application for now. You’ve seen how unit and integra-
tion tests can be created and run. They fit the bill for starting small and then growing
the test codebase as needed. Now let’s look at the other kind of testing that always give
developers trouble: UI testing.

9.2 Not for the faint of heart: UI testing
You may have encountered this scenario: when an application is small, it’s fairly easy
to run UI tests manually. In other words, you can run the application through a pre-
defined set of scenarios and write down the results. If you notice something doesn’t
work right, you can hack some code to fix the problem.

 But this situation isn’t scalable. As soon as the application grows, UI testing
becomes a dragging weight, then a constant pain, and finally the thing that must be
avoided if you want to make the deadline.

 Automated UI testing is nothing new, especially to desktop applications. There are,
after all, plenty of options, each one with advantages and pitfalls.

Helper method used
by new test

Figure 9.2 HTML report of all the tests you ran on the dictionary application. There’s only a single test
class with three test methods reported. All succeeded.
www.it-ebooks.info

http://www.it-ebooks.info/

221Not for the faint of heart: UI testing
If you’re a seasoned Swing developer, you’ve likely heard about the following testing
frameworks: Abbot (http://abbot.sourceforge.net/doc/overview.shtml), jfcUnit (http://
jfcunit.sourceforge.net), Jemmy (https://jemmy.dev.java.net), and FEST (http://fest
.easytesting.org/). These tools work on the assumption that UI components can be
found by some programmatic means and that their state can be changed without
human intervention. Let’s see how they compare to each other.

9.2.1 Setting up a UI component test

Setting up each project varies from tool to tool. Regardless of how the tool must be
installed and its dependencies configured, you’ll face the following challenge: locat-
ing the component on the screen.

 Some of the previously mentioned tools rely on a helper class called java.awt
.Robot. This class is responsible for locating a component on the screen via its coordi-
nates and sending input events as if a human clicked a mouse button on the compo-
nent or pressed a key. Some rely on a different kind of Robot, but that’s basically what
needs to be done in order to automate this kind of test. Other tools work by referenc-
ing the live components.

 We’ll discuss briefly how each one of the three tools can be used.

ABBOT

In Abbot, for example, you must locate a UI component by conventional means, such
as by inspecting a container’s hierarchy or accessing a direct reference available in the
container instance. Alternatively, you can use Abbot’s finder utilities. Next you instan-
tiate a particular Abbot tester that knows how to work with the type of component you
want to test. Finally, you invoke the desired behavior on the tester and assert the com-
ponent’s state. Here’s a snippet of a ComponentTestFixture that shows how it can
be done:

JTextField textField = getFinder().
 find(new ClassMatcher(JTextField))
JButton button = getFinder().find(new Matcher() {
 public boolean matches(Component c) {
 c instanceof JButton && c.text == "Search"
 }
})
JTextArea textArea = getFinder().find(new ClassMatcher(JTextArea))
JTextComponentTester tester = new JtextComponentTester()
tester.actionEnterText(textField, "Griffon")
tester.actionClick(button)
assert "Griffon is cool!" == textArea.text

It works, but it’s a bit verbose. We’ve highlighted two parts of the code. The first shows
one of the many options that Abbot exposes to locate a component; this one locates a
JTextField by type. The second highlighted bit creates an Abbot helper object with
the responsibility of sending stimuli to the located UI components. Perhaps if the find-
ers were wrapped with a friendlier abstraction, you would be able to write less code.
Sadly, that abstraction isn’t provided by default by Abbot.
www.it-ebooks.info

http://abbot.sourceforge.net/doc/overview.shtml
http://jfcunit.sourceforge.net
http://jfcunit.sourceforge.net
https://jemmy.dev.java.net
http://fest.easytesting.org/
http://fest.easytesting.org/
http://www.it-ebooks.info/

222 CHAPTER 9 Testing your application
JFCUNIT

jfcUnit provides a better abstraction for its find mechanism. The following snippet of
a JFCTestCase shows how the same test behavior can be attained with jfcUnit:

Window window = app.windowManager.windows[0]
NamedComponentFinder finder =
 new NamedComponentFinder(JComponent.class, "word")
JTextField textField = (JTextField) finder.find(window, 0)
finder.setName("search")
JButton button = finder.find(window, 0)
finder.setName("result")
JTextArea textArea = finder.find(window, 0)
textField.setText("Griffon")
getHelper().enterClickAndLeave(new MouseEventData(this, button))
assert "Griffon is cool!" == textArea.text

Although the finder utilities are much better than Abbot’s, the API resembles Java as it
was before generics were introduced. You need to cast the found component to the
appropriate type. The same is true in Abbot. Now we’re down to Jemmy.

JEMMY

Jemmy is popular in the Java Swing community, perhaps due to its close relationship
to NetBeans. The following Jemmy snippet illustrates a more concise API for finding
components and asserting their state:

Window window = app.windowManager.windows[0]
JFrameOperator window = new JFrameOperator("App title")
JTextFieldOperator textField = new JtextFieldOperator(window)
JButtonOperator button = new JButtonOperator(window, "search")
JTextAreaOperator textArea = new JTextAreaOperator(window)
textField.typeText("Griffon")
button.push()
assert "Griffon is cool!" == textArea.text

Much better. But we omitted a few details that can get messy in Jemmy when com-
bined with Griffon: the proper application initialization inside a Jemmy test case. Of
course, you know that these examples are simple and that these frameworks provide
other capabilities, such as record-replay, externalized test configuration using XML,
and deep finder features. But the truth is that more often than not, you’ll face UI test-
ing code like that you’ve just seen. It’s not pretty, and it’s not easy to read. What if
there was a way to apply a DSL-like approach to UI testing—perhaps something similar
to the SwingBuilder DSL with which you’re already familiar?

 Enter Fixtures for Easy Testing (FEST). It’s aptly named because that’s precisely
what it does.

FEST
The origins of FEST can be traced back to an Abbot-based extension for TestNG. It was
later reworked from the ground up to be a separate project from Abbot, while also
adding support for JUnit. What makes FEST shine is its fluent interface design. Here’s
the same test code you’ve seen before, this time as a FEST snippet:
www.it-ebooks.info

http://www.it-ebooks.info/

223Not for the faint of heart: UI testing
Window mainWindow = app.windowManager.windows[0]
FrameFixture window = new FrameFixture(mainWindow)
window.textBox("word").enterText("Griffon")
window.button("Search").click()
window.textBox("result").requireText("Griffon is Cool!")

That’s concise and readable at the same time. Doesn’t this look like a winning propo-
sition for UI testing? Let’s continue with a real-world example of UI testing using FEST
and Griffon.

9.2.2 A hands-on FEST example

Time to get your hands dirty with the FEST API. With the bar green, you can concentrate
on building the remainder of the dictionary application as you left it in section 9.1.3.

CONTROLLER

The following listing displays half of the application’s logic: the controller. Its job is to
process the input typed by the user, call the DictionaryService to find a definition
for that input, and then send that definition back to the UI.

package dictionary

class DictionaryController {
 def model
 DictionaryService dictionaryService

 def search = {
 model.enabled = false
 String word = model.word

 try {
 String definition = dictionaryService.findDefinition(word)
 execInsideUIAsync { model.result = "${word}: $definition" }
 } finally {
 execInsideUIAsync { model.enabled = true }
 }

 }
}

You can see that the controller requires an instance of DictionaryService; that was
to be expected. It also requires three properties to be available in the model. Those
properties are as follows:

■ word—Contains the input from the user
■ result—Holds the word’s definition or an error message
■ enabled—Controls the Search button’s enabled state

MODEL

The model, in turn, is defined by the following listing.

Listing 9.5 Implementation of DictionaryController
www.it-ebooks.info

http://www.it-ebooks.info/

224 CHAPTER 9 Testing your application
package dictionary

import groovy.beans.Bindable
import griffon.transform.PropertyListener
import griffon.util.GriffonNameUtils

class DictionaryModel {
 @ PropertyListener (modelEnabler)
 @Bindable String word
 @Bindable String result
 @Bindable boolean enabled

 def modelEnabler = {
 enabled = !GriffonNameUtils.isBlank(it.newValue)
 }
}

The model contains all three previously discussed properties plus a local Property-
ChangeListener wired up using the @PropertyListener AST transformation B. This lis-
tener toggles the value of the enabled property c depending on the value of the word
property. The value will be true as long as the word property is neither null nor empty.

VIEW

The final artifact to be defined is the view, where all the things you wrote previously come
together. This is where you see the model properties being bound to UI components.

package dictionary

actions {
 action(searchAction,
 enabled: bind {model.enabled})
}

application(title: 'Dictionary',
 pack: true, resizable: false, locationByPlatform: true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 migLayout(layoutConstraints: 'fill')
 label 'Search term:', constraints: 'left'
 textField name: 'word', columns: 20,
 text: bind('word', target: model), constraints: 'wrap'
 button searchAction, name: 'search',
 constraints: 'span 2, right, wrap'
 scrollPane(constraints: 'span 2') {
 textArea name: 'result', editable: false,
 lineWrap: true, wrapStyleWord: true,
 columns: 28, rows: 5, text: bind {model.result}
 }
}

Listing 9.6 Implementation of DictionaryModel

Listing 9.7 Implementation of DictionaryView

Listener
AST

b

enabled
property

c

Define search
action

Lay out
screen
www.it-ebooks.info

http://www.it-ebooks.info/

225Not for the faint of heart: UI testing
Note that some components like the text fields, button, and text area have a name
property. This is because FEST uses the component name to locate components. If a
name property wasn’t defined, you would have to resort to finding the component by
type, which could result in the wrong component being found, depending on how the
components are laid out. The critical part of making any GUI tests reliable is finding
the components in a reliable manner; small changes in the layout shouldn’t break the
tests. The advantages of declaring this property will become apparent when you create
your first FEST test.

 There’s one additional step before you can run the application and test it manu-
ally. You must install two plugins: miglayout and actions. Otherwise, the migLayout()
node won’t be resolved at runtime; nor will the searchAction variable be created
automatically in the view. Again, you know the magic words already:

$ griffon install-plugin miglayout
$ griffon install-plugin actions

Run the application to kick its tires. Now, let’s continue with the next task: installing
and running FEST.

INSTALLING FEST
It should come as no surprise that Griffon sports a FEST plugin. This plugin not only
adds the required build-time libraries but also provides a set of scripts that help you
create FEST-based tests. Install the FEST plugin by invoking the following command:

$ griffon install-plugin fest

You’ll notice that two additional scripts are now available to you. You’ll also see that
FEST has a dependency on the Spock plugin. Although the FEST plugin provides inte-
gration with Spock, it by no means forces you to use Spock to run FEST. But it’s likely
that you’ll want to do so once you discover the goodness that Spock brings (we’ll dis-
cuss this later in the chapter).

 Create a FEST test for this application by invoking the following command:

$ griffon create-fest-test dictionary

It’s likely that you’ll be prompted to overwrite the DictionaryTests.groovy file
located at test/integration. Given that you haven’t made changes to this file yet, it’s
safe to overwrite it. Now open it in your editor. The next listing shows the content of a
freshly created FEST test.

package sample
import org.fest.swing.fixture.*
import griffon.fest.FestSwingTestCase

class DictionaryTests extends FestSwingTestCase {
 // instance variables:
 // app - current application
 // window - value returned from initWindow()
 // defaults to app.windowManager.windows[0]

Listing 9.8 FEST test for the Dictionary application

Extend from
FestSwingTestCase

b

Specify instance
variables

c

www.it-ebooks.info

http://www.it-ebooks.info/

226 CHAPTER 9 Testing your application
 void testSomething() {}

 // protected void onSetUp() {}

 // protected void onTearDown() { }

 // protected FrameFixture initWindow() {
 // return new FrameFixture(app.windowManager.windows[0])
 // }
}

The first thing you notice is that the base test case class is FEST-specific B. This base
class takes care of initializing the application up to the correct phase (in this case, the
main phase) and sets up a pair of useful properties c: the app property with which
you’re already familiar from integration tests, and a window property that points to a
FrameFixture instance. These properties belong to FestSwingTest, the superclass of
your test class, which is why they’ve been commented out, as a reminder.

 Fixtures are how FEST abstracts a UI component and queries its state. Fixtures are
organized in a similar hierarchy to their respective Swing components. There’s a
ComponentFixture, a ContainerFixture, and so on. The FEST team has paid close atten-
tion to making the design of the FEST API easy to understand. It’s IDE friendly because
many methods use proper generic signatures. Its fluent interface design also helps to
chain methods. You’ll discover the full impact of these benefits later in this section.

 As you can see in the initWindow() method d, the first window managed by the
application is returned. This becomes the value of the window property. Be sure to
override this method if you need to test a different window.

 The next step in this exercise is to fill out the test code.

YOUR FIRST FEST TEST

Let’s start with a sanity-check test. If you recall how the model, view, and controller
are set up, the Search button starts in disabled mode and is only enabled when the
user types a word in the text field. You’ll now write a test to verify that, as shown in
the next listing.

package dictionary
import org.fest.swing.fixture.*
import griffon.fest.FestSwingTestCase

class DictionaryTests extends FestSwingTestCase {
 void testInitialState() {
 window.button('search').requireDisabled()
 }

 protected void onTearDown() {
 app.models.dictionary.with {
 word = ""
 result = ""
 }
 }
}

Listing 9.9 Test that verifies the Search button is disabled

Return
first
window

d

Display disabled
Search button

b

Set model to
known statec
www.it-ebooks.info

http://www.it-ebooks.info/

227Not for the faint of heart: UI testing
This test turns out to be a walk in the park. Remember setting a name property on the
Search button back in listing 9.7? Well, in this test you put it to good use. Notice how
the window fixture can locate the button effortlessly by specifying the name of the
component you want to find. Pretty much all components can be found in this way.

 The button() method on the window fixture returns another FEST fixture, one
that knows how to query the state of a pushbutton. You can, for example, query its
text and its enabled state, which is precisely what you need for this test B. FEST’s fix-
tures provide a set of requireX methods to query and assert a component’s state. The
FEST team has gone to great lengths to make error messages comprehensible and
unambiguous. But should you need to check a component’s state directly, or if a
requireX method isn’t available in the fixture for some reason, you can get the
wrapped component and query it directly. Just remember that reading properties
from a UI component must be done inside the UI thread. This is a task that the FEST
fixtures and their requireX methods do well, and they shield you from dealing with
inappropriate threading code.

 The remaining code of the test c resets the application’s state by changing prop-
erty values in the model. It may seem unimportant at this point, because you only have
a single test; but this will become a key aspect for additional tests, because the same
application instance is shared across all integration tests. This means tests must be
good citizens and clean up after themselves—otherwise you could end up with a red
bar caused by a false result.

VERIFYING THE SERVICE ONCE MORE

Now that you’ve seen FEST in action, you’ll write another test that runs the happy
path: typing in a word that exists in the dictionary and clicking the Search button
results in the definition being shown in the result area. Pay close attention to the last
sentence, and look at the following snippet. Does the text description match the code
to the letter?

void testWordIsFound() {
 window.with {
 textBox('word').enterText('griffon')
 button('search').click()
 textBox('result')
 .requireText('griffon: Grails inspired desktop\
 application development platform.')
 }
}

Outstanding! The code matches the description. This is the real power of the FEST
API: it’s expressive. Add a bit of Groovy goodness, such as the optional semicolons,
and you get a concise DSL for UI testing.

 Let’s verify the opposite case: that a word that doesn’t exist results in an error mes-
sage being displayed. The test mirrors the last snippet, albeit with a few small changes:

void testWordIsNotFound() {
 window.with {
www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 9 Testing your application
 textBox('word').enterText('spock')
 button('search').click()
 textBox('result')
 .requireText("spock: Word doesn't exist in dictionary")
 }
}

And there you go. These three tests are all that is required to assert that the applica-
tion is working correctly for now. Assuming all the tests went well, you should end up
with a report that looks like figure 9.3.

 The FEST API provides fixtures for all components found in the JDK. There are also
a few extensions available for SwingX, JIDE Common Layer (JCL), and even Flamingo.
Chances are that there might already be a fixture for the component you need to test.
If that isn’t the case, don’t fret; the FEST wiki has plenty of information that will help
you dive deeper into the API. The FEST forum is also an active place where you can get
your questions answered.

 Time to move forward to other types of tests. Yes, it’s time to look at Spock and
other goodies.

9.3 Testing with Spock and easyb
We’ve mentioned before that JUnit isn’t the only type of test that can be run when
invoking the test-app command. There’s Spock, which we’ve briefly mentioned pre-
viously. There’s also easyb, a behavior-driven development (BDD) test framework for
Java and Groovy. We’ll cover Spock first, because it’s perhaps the more exotic option,
and then we’ll turn to easyb.

9.3.1 Spock reaches a new level

The Spock framework (http://spockframework.org) is the brainchild of Peter Niederwi-
eser, a nice Groovy fellow living in Austria. In Peter’s own words, “Spock takes inspiration

Figure 9.3 HTML report generated for the FEST integration test. All tests succeeded.
www.it-ebooks.info

http://spockframework.org
http://www.it-ebooks.info/

229Testing with Spock and easyb
from JUnit, jMock, RSpec, Groovy, Scala, Vulcans,1 and other fascinating life forms.”
Spock is a Groovy-based tool for testing Java and Groovy applications. Touting itself as
a “developer testing framework,” it can be used for anything between unit and func-
tional tests. What sets Spock apart from the competition is its unique DSL, which lets
you write tests that are far more succinct and expressive than, say, JUnit. Besides that,
Spock comes with its own tightly integrated mocking framework and provides exten-
sions for popular application frameworks like Grails and Spring.

 Let’s take a closer look. Install the Spock plugin, and create a unit specification for
DictionaryService:

$ griffon install-plugin spock
$ griffon create-unit-spec DictionaryService

You should now have a file named DictionaryServiceSpec.groovy in the test/
unit directory. Open it in an editor, and what do you see? The weirdest name for a
test method:

package dictionary
import spock.lang.*

class DictionaryServiceSpec extends Specification {
 def 'my first unit spec'() {
 expect:
 1 == 1
 }
}

It’s true: the name of the method is a Groovy string. In case you didn’t know it, the JVM
supports method names with characters that the Java language doesn’t allow, like spaces,
but that the Groovy compiler can allow. Therefore, Spock’s AST transform moves test
method names into annotations and replaces them with safe names in the AST. The
Spock runtime later undoes the effect, for example, by applying the reverse replacement
in stack traces. Another feature that might have caught your eye is the usage of a block
label and the fact that the expectation (an assertion) doesn’t require the assert keyword.

 Spock uses statement labels to divide test methods into blocks, each of which serves
a special role. For example, the when block exercises the code under test, and the then
block describes the expected outcome in terms of assertions and mock expectations.
Another frequently used block is expect, a combination of when and then that’s used
for testing simple function calls. Every statement in a then or expect block that pro-
duces a value (whose type isn’t void) is automatically treated as an assertion, without
having to use the assert keyword.

 What follows is a crash course on Spock features. You’ll update the Dictionary-
Service specification to mirror the previous test you wrote. First you’ll test the error
states that occur when invalid input or no input is given to an instance of the
DictionaryService. The following listing shows how the specification looks.

1 Vulcans?! Seriously: http://en.wikipedia.org/wiki/Vulcans.
www.it-ebooks.info

http://spockframework.org
http://en.wikipedia.org/wiki/Vulcans
http://www.it-ebooks.info/

230 CHAPTER 9 Testing your application
package dictionary
import spock.lang.*

class DictionaryServiceSpec extends Specification {
 def srv = new DictionaryService()

 def "No input results in an error"() {
 expect:
 srv.findDefinition('') == DictionaryService.INPUT_ERROR_MESSAGE
 }

 def "Wrong input results in an error"() {
 expect:
 srv.findDefinition('spock') == DictionaryService.FIND_ERROR_MESSAGE
 }
}

Nothing new here from the original template. You add two test methods for each of
the error conditions you may encounter with your service. Perhaps the biggest win so
far is a more descriptive test name and implicit assertions. Next you’ll add a third
method that checks the existence of words in the dictionary. Recall from listing 9.4
that you had to roll your own assertions and that you looped through a list of words.
The following listing shows one way to do it with Spock.

@Unroll("Entering '#word' results in '#definition'")
def "Correct input results in a definition being found"() {
 expect:
 definition == srv.findDefinition(word)

 where:
 word | definition
 'Groovy' | 'An agile and dynamic language for the Java platform.'
 'Grails' | 'A full stack web application development platform.'
 'Griffon' | 'Grails inspired desktop application development platform.'
}

Pay close attention to the definition line. Notice the usage of two variables that have
yet to be defined. Then look at the contents of the where: block. It looks like a table,
and the undefined variables appear to be column headers. Now observe the annota-
tion that’s attached to the test method on the first line: you’ll see that the undefined
variables are used again. This is a Spock feature called data tables, and it goes like this:

■ Spock runs the code block marked with expect: as many times as rows are
found in the data table defined in the where: block.

■ The column headers represent variable placeholders. For each iteration, they
take the appropriate row value according to their column index.

■ The @Unroll annotation makes sure a correct number of test methods are
reported, even using the variable placeholder values to adjust the method names.

Listing 9.10 DictionaryServiceSpec with two test methods

Listing 9.11 DictionaryServiceSpec: correct input results

Test no
input

Test not found input
www.it-ebooks.info

http://www.it-ebooks.info/

231Testing with Spock and easyb
It’s time to run this specification to see what happens. You’ll take advantage of the
phase:type test targeting to run this spec and this spec only:

$ griffon test-app unit:spock

After the spec is compiled, you should see output similar to the following:

Running 3 spock tests...
Running test dictionary.DictionaryServiceSpec...PASSED
Tests Completed in 217ms ...

Tests passed: 5
Tests failed: 0

The console report initially states that three Spock tests will be run. Those three tests
match the test methods you just wrote. But the number of tests passed is slighter
larger— five. This means the @Unroll annotation generated two additional methods,
given that there are three rows in the data table. The generated HTML confirms this
too, as you can see in figure 9.4.

Figure 9.4 HTML report of DictionaryServiceSpec. Pay close attention to the name of
the third method. Notice that the variable placeholders have been replaced with values from
the data table.
www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 9 Testing your application
There are of course more things you can do with Spock, but we’ll leave it for now.
Well, not exactly. Curious about using Spock and FEST together? Keep reading!

9.3.2 FEST-enabled Spock specifications

The FEST plugin comes with Spock support out of the box. There’s an additional
script named create-fest-spec just waiting to be put to work. Create a FEST specifi-
cation for your Dictionary application:

$ griffon create-fest-spec Dictionary

This specification will be placed under the test/integration/dictionary directory,
given that it requires a running application. Open it, and enter the following code.

package dictionary
import griffon.fest.*
import org.fest.swing.fixture.*

class DictionarySpec extends FestSpec {
 def "Initial state: 'Search' button is disabled"() {
 expect:
 window.button('search').requireDisabled()
 }

 def "Typing in a known word results in the
 ➥ definition being displayed"() {
 when:
 window.with {
 textBox('word').enterText('griffon')
 button('search').click()
 }
 then:
 window.textBox('result')
 .requireText('griffon: Grails inspired desktop application
 ➥ development platform.')
 }

 def "Typing in an unknown word results
 ➥ in an error message"() {
 when:
 window.with {
 textBox('word').enterText('spock')
 button('search').click()
 }
 then:
 window.textBox('result')
 .requireText("spock: Word doesn't exist in dictionary")
 }

 void onCleanup() {
 app.models.dictionary.with {
 word = ""

Listing 9.12 Full implementation of the DictionarySpec specification

Test
name

Expected
result

Test
name

Stimulus/
simulated
user input

Expected
result

Test
name

Stimulus/
simulated
user input

Expected
result
www.it-ebooks.info

http://www.it-ebooks.info/

233Testing with Spock and easyb
 result = ""
 }
 }
}

Although we don’t show it, you could use a data table in the first test method. Because
this specification and the previous integration test case are so simple, there seems to
be little advantage in using Spock and FEST together. But as soon as the tests grow,
you’ll notice the difference. Being able to type fewer keystrokes while remaining expres-
sive is a real productivity booster. Figure 9.5 shows the generated reports, which closely
resemble previous reports. Spock, FEST, and JUnit integrate seamlessly in Griffon.

 That was quite the fun ride! Let’s leave Spock and take a glance at easyb.

9.3.3 easyb eases up BDD

easyb (http://easyb.org) is a BDD2 framework created and lead by Andrew Glover. If
Andy’s name sounds familiar to you, it may be because he is a coauthor of the Groovy
in Action book—specifically, of the testing chapter, no less.

BDD is seen by many as the successor to TDD. It allows a team of disparate people
(developers, QA, and stakeholders) to come together and agree on what the applica-
tion must do and how it should do it. Perhaps this doesn’t sound different from a typ-
ical waterfall meeting. The catch, however, is that the agreements are recorded in a

2 http://en.wikipedia.org/wiki/Behavior_driven_development.

Figure 9.5 Test report
of a FEST+Spock
specification after
it runs successfully
www.it-ebooks.info

http://easyb.org
http://en.wikipedia.org/wiki/Behavior_driven_development
http://www.it-ebooks.info/

234 CHAPTER 9 Testing your application
language that’s nontechnical: that of the stakeholders. Yes, plain natural language.
Then another twist comes in: developers can take that language and produce match-
ing code that exercises the application behavior as expected. The trick is in the tool
that’s used to record the agreements and execute the code at the same time. Does this
sound like a good deal? Let’s try it. Install the easyb plugin, and create a basic story:

$ griffon install-plugin easyb
$ griffon create-unit-story dictionaryService

The file created is named DictionaryServiceStory.groovy and is placed in test/
unit/dictionary. This file contains a user story (a rather simple one) to give you a hint
of what easyb can do. The next listing shows the file’s contents.

package dictionary

scenario "Hello Groovy", {
 given "A prefix string 'Hello '", {
 prefix = "Hello "
 }

 and "A name is chosen, such as 'Groovy'", {
 name = "Groovy"
 }

 when "Both the prefix and name are concatenated into a greeting", {
 greeting = prefix + name
 }

 then "The greeting should be equal to 'Hello Groovy'", {
 greeting.shouldBe "Hello Groovy"
 }
}

This is a Groovy script with a few keywords B like scenario, given, and, when and
then. These keywords are methods that the easyb framework understands. Each
method takes two parameters. The first is a String and is typically used to register the
behavior in the terms of the stakeholder. The second is what developers write to fulfill
the stakeholder’s expectations, surrounded by a Groovy closure.

 Running the specification results in a report similar to that written by a JUnit test.
But you get an additional report that presents the story in layman’s terms. Run the
story by invoking the following command:

$ griffon test-app unit:easyb

After the command has finished, look in target/test-reports/plain. You’ll see two text
files. Open the one that has stories in its name. This is what it should contain:

1 scenario executed successfully. (0 behaviors were ignored)
 Story: dictionary service
 scenario Hello Groovy
 given A prefix string 'Hello '
 given A name is chosen, such as 'Groovy'

Listing 9.13 Basic easyb story as created by default

Easyb methods b
www.it-ebooks.info

http://www.it-ebooks.info/

235Testing with Spock and easyb
 when Both the prefix and name are concatenated into a greeting
 then The greeting should be equal to 'Hello Groovy'

That’s language that stakeholders can understand perfectly. With easyb, you can go
from one mode (stakeholder) to the next (developer) and back without much effort.

 You might be wondering about the create-integration-story script. Yes, it
works under the same rules as a JUnit integration test or a Spock integration specifica-
tion. Yes, this also means you can combine easyb and FEST. Having several options is
great, isn’t it? We won’t reproduce an easyb+FEST story; its content is similar to what
you’ve seen already, due to the simple nature of the application. But you can modify
the current story to have it exercise the DictionaryService. The following listing
defines a single scenario for the happy path: the service is asked for a definition you
know for certain can be found.

package dictionary
import static dictionary.DictionaryService.*

scenario "DictionaryService can find the word 'Griffon'", {
 given "an instance of DictionaryService is available", {
 service = new DictionaryService()
 }

 when "the word 'Griffon' is used as parameter", {
 result = service.findDefinition('Griffon')
 }

 then "the definition should be found", {
 result.shouldBe "Grails inspired desktop application development\
 platform."
 }
}

Running this story results in the following report found in target/test-reports/plain/
easyb-stories-unit.txt:

1 scenario executed successfully.
 Story: dictionary service
 scenario DictionaryService can find the word 'Griffon'
 given an instance of DictionaryService is available
 when the word 'Griffon' is used as parameter
 then the definition should be found

easyb makes a distinction between stories and scenarios. You can create scenario hier-
archies and even have scenarios as preconditions of other scenarios. The possibilities
multiply with each scenario you write.

 Now you know there are several ways to test a Griffon application, but tests aren’t
the only tools you can use to measure the health of an application. You should apply
metrics to it too, and that’s precisely the topic we’ll discuss in the next section.

Listing 9.14 easyb story that tests whether a word can be found
www.it-ebooks.info

http://www.it-ebooks.info/

236 CHAPTER 9 Testing your application
9.4 Metrics and code inspection
Code-analysis tools have existed for the Java language since its early days. A myriad of
options exist, both in the open source and commercial software spaces. In this sec-
tion, we’ll mention the open source Java-based tools, but our focus is on Groovy-based
code analysis tools. We’ll look at how they can be used to code issues.

 Let’s start with two plugins that deal with Java code.

9.4.1 Java-centric tools: JDepend and FindBugs

A lot of ink has been devoted to JDepend and FindBugs. A quick search on the
internet will give you plenty of results ranging from the tools’ official websites to
blog posts, forums, presentation slides, and, last but not least, configuration and
code examples.

JDepend (www.clarkware.com/software/JDepend.html) is a tool mainly used to
measure the coupling within classes. Unfortunately, it gives accurate readings for
Java source code only. But given that a Griffon application supports both Groovy
and Java sources, it might be a good idea to run this tool against a codebase of
moderate to large size. Of course, there’s a JDepend plugin for Griffon that you
can install.

 FindBugs (http://findbugs.sourceforge.net) is a popular choice with Java develop-
ers. This tool comes loaded with tons of rules and metrics that can help make your
code rock solid by identifying both common and obscure pitfalls of the Java language.
FindBugs can be run against Groovy source too, but there may be some false positives
given that the code generated by the Groovy compiler hasn’t been migrated com-
pletely (this claim is true for the 1.7.x series at least).

 Here’s an example. The compiler generates calls that create new instances of prim-
itive wrappers as was the custom in Java 1.4; that is, the compiler generates bytecode
that calls new Integer(1) and new Long(2), for example. Referencing primitive wrap-
pers since Java 1.5 has changed slightly, to Integer.valueOf(1) and Long.valueOf(2).
The former calls are inefficient and should be avoided whenever possible, in favor of
the latter form. Still, you’ll get accurate readings for your Java source code. As you
might expect, there’s a FindBugs plugin for Griffon too.

 If these tools are Java-source centric, what can be done for Groovy source? It turns
out a couple of tools are available that can produce similar reports, but that work spe-
cifically with Groovy source. Those tools are CodeNarc and GMetrics plugins. We’ll
also cover the Cobertura plugin.

9.4.2 Reporting Groovy code violations with CodeNarc

The elevator pitch for CodeNarc (http://codenarc.sourceforge.net) is “FindBugs for
Groovy code.” Ambitious but true. CodeNarc’s creator, Chris Mair, has done what
some thought was a very difficult task: build a static code analysis tool for a dynamic
language. What makes CodeNarc special on its own is that it relies on Groovy’s AST
transformation framework to walk the Groovy code and discover code violations. Yes,
www.it-ebooks.info

www.clarkware.com/software/JDepend.html
http://findbugs.sourceforge.net
http://codenarc.sourceforge.net
http://www.it-ebooks.info/

237Metrics and code inspection
the same AST transformation framework used by @Bindable. Give it a try and see what
you get for the Dictionary application:

$ griffon install-plugin codenarc

That should do the trick. This plugin adds a new script that calls CodeNarc’s code pro-
cessor with a standard configuration. You can change and tweak that configuration at
will. Be sure to review the plugin’s documentation page (http://griffon.codehaus.org/
Codenarc+Plugin) to learn about those tunable configuration flags. Running Code-
Narc as follows against the current application yields the report shown in figure 9.6:

$ griffon codenarc

Hmmm. The report looks clean. Is it true that the code is well crafted? Yes, at least
for CodeNarc’s standard set of violations. You’ll now change the code a bit and run
CodeNarc again, to see if you get a different picture of the codebase. Sprinkle a few
declared but unused variables in the code, paired with a couple of unnecessary
imports. Make sure you catch an exception in the controller code (you already have
a try/finally block that can be used for this negative refactoring). Ready? Re-run
CodeNarc, and inspect the generated report. You might get one that looks like
figure 9.7.

 Excellent! Wait— we’re getting excited because the code now fails a set of viola-
tions? Ahem. Well, you just verified that the code was in a pristine and healthy condi-
tion. The generated CodeNarc report contains links to explanations of each rule
validation. It also links to the offending source lines and code, making your job of fix-
ing the problems much easier.

 Next in our list of tools is the GMetrics plugin.

Figure 9.6 CodeNarc
report for the Dictionary
application. Everything
appears to be in order.
www.it-ebooks.info

http://griffon.codehaus.org/Codenarc+Plugin
http://griffon.codehaus.org/Codenarc+Plugin
http://www.it-ebooks.info/

238 CHAPTER 9 Testing your application
9.4.3 Measuring Groovy code complexity with GMetrics

The test bar may be green. The code may be healthy given a certain set of rules. But is
it too complex? Is there a tight coupling between two classes that should be broken
into a simpler form? These are the questions GMetrics (http://gmetrics.sourceforge
.net) can answer for your Groovy code.

GMetrics is another of Chris Mair’s projects. As a matter of fact, GMetrics’ configu-
ration closely mirrors CodeNarc’s. You’ll now install and run GMetrics:

$ griffon install-plugin gmetrics
$ griffon gmetrics

Those commands should install the plugin and run GMetrics with the default
configuration.

GMetrics measures three things in your code:

■ The number of lines per class
■ The number of lines per method
■ Cyclomatic complexity3

Figure 9.8 shows the report generated against the example codebase.
 Well, well. Looks like the number of lines for classes and methods are well within a

reasonable range. The cyclomatic complexity numbers, on the other hand, are a sur-
prise. Scroll down further, and you’ll see a different picture: the cyclomatic complexity

3 http://en.wikipedia.org/wiki/Cyclomatic_complexity.

Figure 9.7 Files in violation as found by
CodeNarc. The controller fails three
rules, whereas the view fails just one.
www.it-ebooks.info

http://gmetrics.sourceforge.net
http://gmetrics.sourceforge.net
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://www.it-ebooks.info/

239Metrics and code inspection
of the test code is really high (16), whereas the cyclomatic complexity of the application
is really low (6). The most complex class of the production code is DictionaryService.
That was to be expected because it’s the only one that has branching code. A high cyclo-
matic complexity number isn’t too worrying at the moment. But keep an eye on those
numbers; they’ll help you spot potential problems in your test code.

 There’s one last tool we’d like to cover. It’s always a good idea to know how much
of the production code is exercised by your tests, especially when TDD isn’t the driving
methodology. When you follow TDD to the letter, you’ll end up more often than not
with 100% code coverage.

9.4.4 Code coverage with Cobertura
When it comes to code-coverage tools for the Java platform, Cobertura (http://cobertura
.sourceforge.net) is the one many people think of. That might well be because of its
open source nature. Other popular choices for instrumenting code and obtaining a
code-coverage measure are EMMA (http://emma.sourceforge.net) and Atlassian’s Clover
(www.atlassian.com/software/clover). But when this chapter was written, the Cobertura-
based plugin was the only one available. Be sure to visit the Griffon Plugins page (http://
artifacts.griffon-framework.org/plugins) to see if a new coverage tool has been added as a
plugin. You can install the Cobertura plugin with the following command:

$ griffon install-plugin code-coverage

Once the code-coverage plugin has been installed, you only need to run a set of tests
with an additional command flag:

$ griffon test-app –coverage

Figure 9.8 GMetrics report on the Dictionary application. The class and method line numbers look
OK, but the cyclomatic complexity is high.
www.it-ebooks.info

www.atlassian.com/software/clover
http://cobertura.sourceforge.net
http://cobertura.sourceforge.net
http://emma.sourceforge.net
http://artifacts.griffon-framework.org/plugins
http://artifacts.griffon-framework.org/plugins
http://www.it-ebooks.info/

240 CHAPTER 9 Testing your application
This command exercises all tests found in the Dictionary application with all produc-
tion classes instrumented for code coverage. Figure 9.9 shows the coverage report
obtained after running this command.

 It appears that you have good code coverage: it’s reported at 100%! But the report
also shows that one of the classes/scripts isn’t fully covered. The script in question is
the Initialize script. Glancing at its content, you discover the truth. At the end of the
file is this line:

SwingBuilder.lookAndFeel((isMacOSX ? 'system' : 'nimbus'), 'gtk', ['metal',
 [boldFonts: false]])

It includes a branching statement. Given that the condition is platform-specific,
there’s no way you can verify for certain that all lines of code and all branches have
been covered. But you’re close. You can leave it as it stands.

 In case you’re wondering about code instrumentation, it’s basically a code transfor-
mation that inserts new bytecode that registers the execution of code paths. The
Cobertura plugin is preconfigured to overwrite the original bytecode with instru-
mented code, and it also cleans up after itself. Pay close attention to the compiled
code before you package and ship it. You don’t want to inadvertently ship a version
that contains instrumented code, do you?

 It’s been a wonderful journey through the guts of your application. Thanks to Grif-
fon’s testing facilities and its many test-related plugins, you can be certain that your
application is in good shape.

9.5 Summary
Testing is one of those tasks that often get relegated to the end of the development
cycle. Reasons vary, but typically it’s because writing testing code isn’t as fun as writing

Figure 9.9 Code-coverage report with Cobertura
www.it-ebooks.info

http://www.it-ebooks.info/

241Summary
production code. The Griffon framework recognizes this and tries its best to make
writing and executing test code as fun as doing the same with production code.

 Griffon provides a test-app command that comes loaded with a powerful and
flexible set of options that allows you to run tests in pretty much any way you want.
Test executions are separated into phases and types. Phases can cover many types, and
types can span several phases. This is great when you want to run all Spock specifica-
tions regardless of their phase, or if you want to run all unit tests regardless of whether
they’re JUnit tests, Spock specifications, or easyb stories.

 If writing testing code seems like an arduous task, writing UI testing code is often
viewed as certain doom. FEST brings a refreshing experience to writing tests from the
UI’s perspective, thanks to its fluent interface design, generics-aware API, and power-
ful abstractions.

 You’ve also learned that JUnit is no longer the only game in town. Spock provides
a rich testing DSL by stretching the capabilities of the Groovy language. easyb veers to
BDD, allowing a disparate team to communicate effectively and get results in their
own terms.

 Finally, you used CodeNarc, GMetrics, and Cobertura to probe and measure the
health of an application.

 Now that you know how to build a Griffon application and make sure it’s working
correctly, we can examine the last step in the application development cycle: shipping
the application to your customers.
www.it-ebooks.info

http://www.it-ebooks.info/

Ship it!
After spending a good amount of time having fun building a Griffon application,
suddenly you realize you must somehow deliver the application to your users. And
building an application takes time, even if you use the Griffon framework—after
all, the application doesn’t write itself, does it? There are many options for packag-
ing an application—which ones will be best suited for your needs? Memories of
painful packaging experiences may start to flow…

 The good news is that packaging an application is a task common to all applica-
tions, and Griffon provides packaging support out of the box. With Griffon, you get
a few choices that should get you out of trouble quickly. But if you require a packag-
ing option that packs more power, the solution is just one plugin install away.

 In this chapter, we’ll explore packaging options and packaging targets. We’ll
also walk you through using the Installer plugin.

This chapter covers
■ Packaging your application
■ Packaging with the Installer plugin
242

www.it-ebooks.info

http://www.it-ebooks.info/

243Understanding the common packaging options
10.1 Understanding the common packaging options
In chapter 2, we discussed using the Griffon configuration file, BuildConfig.groovy,
to determine which options to use when building an application. Turns out some of
those options control how some files are generated, particularly the applet and web-
start support files. It should come as no surprise that those configuration options are
reused when packaging the application for distribution.

 Before we get into how you configure jar, zip, applet, or webstart options, let’s look
at the options shared by all Griffon packaging targets:

■ The packaging target runs in the production environment by default. It’s con-
figured to sign and pack all jars. You can change these settings by editing
BuildConfig.groovy.

■ All packaging targets must build the application jar file, whose name is taken
from the following configuration flag: griffon.jars.jarName. The value of
this configuration flag can be determined by convention too. Have a look at the
application.properties file locate at the root of the application. You’ll notice
there’s one entry that specifies the application’s name while there’s a second
one that spells out what’s the latest version. In the case of the GroovyEdit appli-
cation these entries look like the following ones:
app.name=GroovyEdit
app.version=0.1

Now, look at figure 10.1, which shows the layout of the con-
figuration directory of the GroovyEdit application you first
created in chapter 1.

 You may remember the keys and webstart directories,
but dist and its subdirectories are new. Of particular
importance is the shared directory (shown highlighted in
figure 10.1). Each of the directories in griffon-app/conf/
dist matches a packaging target that will be discussed shortly,
except for shared. The responsibility of the shared direc-
tory is to hold files that are common across all packaging
targets (including those exposed by the Installer plugin).
This folder is a perfect place to put a README or LICENSE
file, for example.

 Now, as you’ve probably guessed, the other directories
provide target-specific files. Executing the zip target (griffon
package zip) results in all application files associated with that
target being created. They’re all the files from griffon-app/
conf/dist/zip and from griffon-app/conf/dist/shared.

 Based on the directory names in griffon-app/conf/dist, you can probably guess
what the default packaging targets supported by Griffon are, and you’d be right. The
packaging targets are jar, zip, applet, and webstart. We’ll look at each of them next.

Figure 10.1 Standard
directory structure of
an application’s
configuration files
www.it-ebooks.info

http://www.it-ebooks.info/

244 CHAPTER 10 Ship it!
10.2 Using Griffon’s standard packaging targets
The applet and webstart targets make perfect sense, given that an application can be
run in both of those modes. It follows that you should be able to package applications
for those modes. The jar and zip options take care of the standalone mode. You can
package the application in a single jar or zip that contains a conventional structure,
including platform-specific launcher scripts. The launcher scripts are used to start the
application. So, as you’d expect, when building a zip distribution, there’s a GroovyEdit
.bat batch file for Windows OS environments and a GroovyEdit shell script for Linux
and Mac OS X environments.

 Packaging an application for a desired target is as easy as running the follow-
ing command:

$ griffon package zip

You can even generate all default targets just by omitting a target. The following com-
mand generates all four default targets:

$ griffon package

Let’s start by looking at the simplest packaging target, then move on to the more com-
plex ones.

10.2.1 The jar target

Packaging your application in a single jar is perhaps the
quickest way to let your users enjoy your brand new
Griffon application. Many platforms are configured by
default to launch the application when a user double-
clicks the jar file. Figure 10.2 shows the files created for
the GroovyEdit application after the following command
has been executed:

$ griffon package jar

As an alternative, a user can invoke the following command to run the application:

$ java -jar GroovyEdit.jar

This particular packaging mode will expand the contents of all jar files required by
the application and package them in a single jar file. There may be times when a few
files may result in duplicate entries; for example, two of the application’s dependen-
cies may provide a file named META-INF/LICENSE.txt or build.properties or some
other file entry that may be fairly common. The default configuration keeps the first
file that was added to the main jar and ignores any subsequent duplicate files. But this
might not work for some cases. For instance, it’s common for classes that perform
dynamic lookup of services to use a filename by convention, which contains the fully
qualified class names of the services to be instantiated. If the duplicate file is skipped,
there’s a high chance that the application won’t work correctly, because at least a

Figure 10.2 Directory outline
of a jar distribution
www.it-ebooks.info

http://www.it-ebooks.info/

245Using Griffon’s standard packaging targets
portion of the services won’t be initialized! This happens because the service defini-
tions were discarded when duplicate entries were skipped. Clearly you need an alter-
native to just keeping the first file that appeared in the classpath. Fortunately, there’s
one solution to this problem: configuring a merging strategy per matching entry.

 The Griffon build includes a mechanism that lets you specify a merging strategy
for a particular file or path, using a pair of values: a regular expression that specifies
the path, and a class name that identifies the strategy to use. Table 10.1 describes the
currently available merging strategies and their behavior.

Now that you know about these merging strategies, how do you put them to good use?
These settings only apply when building the application jar so surely you’ll need to
update BuildConfig.groovy somehow. This is exactly what you’re going to do.

 Imagine for a moment that you know that two distinct XML files with the same
names and paths are included somewhere in the classpath; each one is provided by a
different jar file. It follows that they’ll collide when building a single jar for the appli-
cation. For some reason you’ve decided that you want to retain the last file encoun-
tered in the classpath (which is the opposite of the default convention). This means
you must configure a merging strategy for it. Open BuildConfig.groovy, and locate
the griffon.jars block. Update the text with the following snippet:

griffon {
 jars {
 merge = [
 '/my.xml': org.codehaus.griffon.ant.taskdefs.FileMergeTask.Replace
]
 }
}

Table 10.1 Merging strategies that can be applied to file paths when building an application in a single jar

Strategy Description

Skip Avoids any processing. Essentially keeps the previous file untouched
and discards the duplicate. This is the default behavior.

Replace Discards the previous file and keeps the newest.

Append Appends the contents of the new file at the end of the previous file.

Merge Common lines found in the new file are discarded. New lines in new
file are appended at the end of the previous file.

MergeManifest Manifest keys are merged by overriding the values of common keys
and adding missing keys found in the new file.

MergeProperties Like MergeManifest but works with properties files.

MergeGriffonArtifacts This special merging strategy uses a specific file that defines the
types and names of the artifacts that should be loaded at runtime.
www.it-ebooks.info

http://www.it-ebooks.info/

246 CHAPTER 10 Ship it!
The merge block is actually a Map, where the keys are regular expressions and the val-
ues are class instances—that’s why the Replace strategy uses the fully qualified class
name, but you can use an import statement to shorten it up a bit. This particular set-
ting looks for files named my.xml placed at the root of the application’s jar file. If a
match is found, the newest file will be kept and the older one discarded. If no matches
are found, nothing special happens for that path.

 The Griffon build system provides a default set of merging mappings, because
some paths are fairly common and their merging strategy is pretty consistent from
application to application. Table 10.2 lists those mappings.

There are several things worth noting about merges:

■ Your settings will override any defaults provided by the system.
■ Paths should be defined from the most specific to the least.
■ griffon.jars.jarName takes care of the application’s jar filename.

There are no additional settings you can configure for the
jar packaging target.

10.2.2 The zip target

The zip target generates a distribution directory commonly
found in Linux-like systems, but it isn’t restricted to such plat-
forms. It includes platform-specific launcher scripts for Win-
dows, and the Linux launcher can be used in Mac OS X too.

 Figure 10.3 shows the directory structure of a zip distri-
bution for the GroovyEdit application you developed back
in chapter 1.

 In short, the bin directory contains the application
launchers; the lib directory contains all application jar
files. The zip packaging target will also create a zip file with
all of these files and directories, as you can see in figure 10.3
(the file is GroovyEdit-0.1.zip).

 Next, we’ll cover both the applet and webstart targets,
because they share a lot of options.

Table 10.2 Commonly used paths and their default merging strategies

Path Strategy

/META-INF/griffon-artifacts.properties MergeGriffonArtifacts

/META-INF/MANIFEST.MF MergeManifest

/META-INF/services/.* Merge

.*.properties MergeProperties

Figure 10.3 Directory
outline of a zip distribution
www.it-ebooks.info

http://www.it-ebooks.info/

247Using Griffon’s standard packaging targets
10.2.3 The applet and webstart targets

If you edit the file BuildConfig.groovy, you’ll find a configuration section pertaining
to the webstart and applet targets, as shown here:

griffon {

 . . .

 webstart {
 codebase = "${new File(griffon.jars.destDir).toURI().toASCIIString()}"
 jnlp = 'application.jnlp'
 }
 applet {
 jnlp = 'applet.jnlp'
 html = 'applet.html'
 }
}

As you can see, you configure the location of the JNLP file as well as the codebase
property of the webstart target. For the applet target, you configure the location of the
JNLP and HTML files used to launch the applet.

 To override the codebase property at the command line, execute the follow-
ing command:

$ griffon package webstart -codebase=http://path/to/your/codebase

As you can see, there isn’t much magic going on when you use Griffon’s standard
packaging options, just a clever directory naming convention and some configuration
flags available for the central configuration file. It’s worth noticing that plugins (dis-
cussed in chapter 11) can also provide packaging artifacts; just follow the same direc-
tory naming conventions.

 Before we move on to additional packaging targets found outside of the default
set, we should look at a common option available to all packaging targets, including
those we’ll discuss later in this chapter. This feature is related to the manifest file that
every jar file must contain, including the application’s jar file.

10.2.4 Customizing the manifest

You might not know this, but jar files are pretty much the same thing as zip com-
pressed files. The difference is that jar files require a few additional files that provide
some metadata. This is the role of the manifest.mf file. If you’re curious, you might
have taken a peek at a jar file and found the following entry: META-INF/MANIFEST.MF.

 A manifest file is a collection of key/value pairs in plain text. In it, you’ll usually
find information about the tool that was used to create the jar file, as well as the ver-
sion of the JVM and maybe the license and the file’s creator.

 Griffon is aware of these common settings and will gladly generate a manifest file
that contains more information about the application you just packaged. Here, for
example, is the default manifest created for the GroovyEdit application:

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.8.1
www.it-ebooks.info

http://www.it-ebooks.info/

248 CHAPTER 10 Ship it!
Created-By: 19.1-b02-334 (Apple Inc.)
Main-Class: griffon.swing.SwingApplication
Built-By: aalmiray
Build-Date: 21-06-2011 19:02:28
Griffon-Version: 0.9.3
Implementation-Title: GroovyEdit
Implementation-Version: 0.1
Implementation-Vendor: GroovyEdit

As you might have guessed, all this information was gathered from the application
itself. And although this is fine and dandy, what happens if you require additional val-
ues in the manifest? What if you want to change the value of the Built-By key? Well,
you’re in luck, because these tasks can be performed by updating the build configura-
tion file. That’s right, you’re back to editing BuildConfig.groovy.

 Remember the griffon.jars block we described a few sections ago? We’ll touch
on that block once more by adding another configuration option. The following
piece of code demonstrates how you can set a new key as well as override the value of
a predefined key:

griffon {
 jars {
 manifest = [
 'SomeKey': 'Some Value',
 'Built-By': 'The Awesome Team'
]
 }
}

The manifest should have different values now. It should look something like this:

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.8.1
Created-By: 19.1-b02-334 (Apple Inc.)
Main-Class: griffon.swing.SwingApplication
Built-By: The Awesome Team
Build-Date: 21-06-2011 19:10:31
Griffon-Version: 0.9.3
Implementation-Title: GroovyEdit
Implementation-Version: 0.1
Implementation-Vendor: GroovyEdit
SomeKey: Some Value

Notice the appearance of a new key (SomeKey) and that Built-By has a different value.
 The final aspect we’ll cover for both applet and webstart packaging targets is the

templates used to generate the JNLP and HTML files required to launch the applica-
tion in the appropriate mode.

10.2.5 Customizing the templates

Earlier we described the contents of griffon-app/conf/dist. You may have noticed
that there’s another directory that appears to be a duplicate entry: griffon-app/
conf/webstart. This directory is not, in fact, a duplicate but a common location for
www.it-ebooks.info

http://www.it-ebooks.info/

249Using Griffon’s standard packaging targets
both applet and webstart packaging targets. It contains the basic templates and icons
that will be used when packaging the application in the desired deployment mode.

 You can alter any of these files at will; just be careful with the variables surrounded
by @ characters, because they will be used by the build system to store the values gath-
ered by inspecting the application’s conventions. Here are a few of them, in case
you’re curious:

<title>@griffon.application.title@</title>
<vendor>@griffon.application.vendor@</vendor>
<homepage href="@griffon.application.homepage@"/>

You can instruct the build system to apply a different value even if you don’t change
the templates themselves. Take another look at BuildConfig.groovy. Right at the end
of the file you’ll see a block of code that looks similar to the following:

deploy {
 application {
 title = "${appName} ${appVersion}"
 vendor = System.properties['user.name']
 homepage = "http://localhost/${appName}"
 description {
 complete = "${appName} ${appVersion}"
 oneline = "${appName} ${appVersion}"
 minimal = "${appName} ${appVersion}"
 tooltip = "${appName} ${appVersion}"
 }
 icon {
 'default' {
 name = 'griffon-icon-64x64.png'
 width = '64'
 height = '64'
 }
 splash {
 name = 'griffon.png'
 width = '391'
 height = '123'
 }
 selected {
 name = 'griffon-icon-64x64.png'
 width = '64'
 height = '64'
 }
 disabled {
 name = 'griffon-icon-64x64.png'
 width = '64'
 height = '64'
 }
 rollover {
 name = 'griffon-icon-64x64.png'
 width = '64'
 height = '64'
 }
 shortcut {
www.it-ebooks.info

http://www.it-ebooks.info/

250 CHAPTER 10 Ship it!
 name = 'griffon-icon-64x64.png'
 width = '64'
 height = '64'
 }
 }
 }
}

Feel free to make some changes and package the application in either applet or web-
start mode. You should see a difference in the generated files reflecting your modifica-
tions. The values for ${appName} and ${appVersion} are directly taken from the
application.properties file.

 Now that you know how to use Griffon’s standard packaging commands to package
an application, let’s look at the Installer plugin. The Installer plugin gives you a few
more options and the ability to create installers and launchers for multiple platforms.

10.3 Using the Installer plugin
Every Java developer knows the Java mantra by heart: compile once, run anywhere.
But package once install anywhere doesn’t work, especially when you want your users to
have a great user experience when installing your application. Installing the applica-
tion must appear native to the operating system your user is using.

 You can choose from several packaging options for each platform, and some of
them have been rounded up in a handy plugin called Installer. In this section, you’ll
install the Installer plugin, build a distribution, and take a quick look at several
installer targets: izpack, rpm, deb, mac, jsmooth, and windows.

 Installing the plugin is done the same way you install other plugins. The Installer
plugin can be installed by invoking the following command:

$ griffon install-plugin installer

Upon installing it, you’ll notice that this plugin provides plenty of new scripts—a pair
of scripts for each packaging target. At the time of writing, the targets are as listed in
table 10.3.

Table 10.3 Installer plugin targets

Target Description

izpack A universal installer using the IzPack project (http://izpack.org) and batch/shell scripts
for launching

rpm Creates a package in RPM format for Linux distributions

deb Creates Debian-based packages

mac Creates a Mac OS X application bundle plus a DMG

jsmooth A Windows launcher based on JSmooth (http://jsmooth.sourceforge.net) and zip files

windows An alias for the jsmooth target
www.it-ebooks.info

http://izpack.org
http://jsmooth.sourceforge.net
http://www.it-ebooks.info/

251Using the Installer plugin
How complicated is it to package an application using the Installer plugin? Executing
the packaging target isn’t complicated at all. The Installer plugin does a great job and
saves you a lot of work and headaches. Let’s take a closer look at using it.

10.3.1 Building a distribution

Each packaging target has a prepare script and a create script. The first step in build-
ing a distribution is to run the prepare script. This script copies any templates that
may be required by a particular distribution, placing them in $projectTargetDir/
installer/<target>. You can make as many changes to those templates as you choose.
Once you’re comfortable with those changes, it’s time to proceed to the next step.

TIP If you aren’t sure where the installer files are located, look at the output
of the package command. It has the exact path to the location of the files.

The second step is running the create script. This script is the real workhorse for each
packaging target. When it completes, the appropriate distribution will have been built
and placed in the standard distributions directory (dist).

 Figure 10.4 shows the result of executing some of the packaging targets in the
GroovyEdit application.

 Each packaging script fires convenient build events that you can hook into, mak-
ing the automation of hooking customized templates on your application a trivial
task. It also means you can invoke create-* right after prepare-*. These build
events have a single argument—the type of the package being built. Here’s a list of
the events fired:

■ PreparePackage<type>Start, PreparePackage<type>End—Triggered by the
prepare-* scripts

■ CreatePackage<type>Start, CreatePackage<type>End—Triggered by the cre-
ate-* scripts

Figure 10.4 The outcome of running
deb, izpack, mac, rpm, and zip
packaging targets on GroovyEdit
www.it-ebooks.info

http://www.it-ebooks.info/

252 CHAPTER 10 Ship it!
As an alternative to invoking two commands, prepare and create, to build a distribu-
tion, you can append the packaging target to the griffon package command. This
means you can package an application with an IzPack-based installer by typing the fol-
lowing at your command prompt:

$ griffon package izpack

Remember, too, that these additional packaging targets will automatically include all
shared and specific distribution files available at griffon-app/conf/dist.

 Let’s review the configuration options for each packaging target.

10.3.2 The izpack target

An IzPack installer provides a wizard-like expe-
rience when installing an application. You can
configure how many steps are used, how each
step page looks, and even hook into specific
platform settings. As a result, an IzPack-based
installer is perhaps the most versatile option
at your disposal, given that it produces a Java-
based installer that can be run on any plat-
form. There are plenty of configuration
options for IzPack, and we encourage you to
visit the official IzPack documentation site
to learn more about them (http://izpack.org/
documentation).

 Figure 10.5 shows the first page of the
IzPack installer created for the GroovyEdit
application using the default values provided
by the templates. Remember that you can either double-click the generated installer
jar or execute the following command at your console prompt:

$ java –jar <izpack_installer>.jar

The heart of this installer is located at $projectTargetDir/installer/izpack/
resources/installer.xml. Every referenced resource is relative to that file’s loca-
tion. You’ll want to customize this file in order to add or remove steps.

 Griffon has several pieces of information (application name, version, author, and
so on) that could be valuable when configuring the installer. Rather than having to
duplicate this information in the install source files, Griffon has created build vari-
ables to represent this information. The variables are independent from IzPack, and
Griffon will resolve them when the installer is created:

■ @app.name@—The name of the application as it’s found in the applica-
tion.properties metadata file

■ @app.version@—The current application version, also from the applica-
tion’s metadata

Figure 10.5 An IzPack installer for the
GroovyEdit application. The default installer
template runs eight steps.
www.it-ebooks.info

http://izpack.org/documentation
http://izpack.org/documentation
http://izpack.org/documentation
http://www.it-ebooks.info/

253Using the Installer plugin
■ @app.author@—The name of the application’s author; defaults to “Griffon”
■ @app.author.email@—The author’s contact details; defaults to user@griffon

.codehaus.org
■ @app.url@—The application’s website; defaults to http://griffon.codehaus.org

Now let’s investigate platform-specific installers.

10.3.3 The rpm target

RPM stands for Red Hat Package Manager. Originally developed by Red Hat in the
mid 90’s, this packaging option is commonly used in several Linux flavors. RPM uses a
special file, called the spec, to drive the creation of a package. You’ll find plenty of doc-
umentation for the RPM spec file format by doing an internet search. The http://
rpm.org site is a good place to start.

 The following default variable placeholders are used in the spec file, which you’ll
find in $projectTargetDir/installer/rpm/SPECS:

■ @app.name@—The name of the application as found in the application
.properties metadata file

■ @app.version@—The current application version, also from the application’s
metadata

■ @app.license@—The license of your application; defaults to “unknown”
■ @app.summary@—A brief description of the application; defaults to the applica-

tion’s name
■ @app.description@—A detailed description of the application’s features;

defaults to “unknown”
■ @app.url@—The application’s website; defaults to “unknown”

The following is the output of querying the generated RPM package for GroovyEdit:

rpm -qpil dist/rpm/noarch/GroovyEdit-0.1-1.noarch.rpm
Name : GroovyEdit

Version : 0.1
Release : 1
Install Date: (not installed)
Group : Applications/GroovyEdit
Size : 5817059
Signature : (none)
Packager : Andres Almiray
URL : unknown
Summary : GroovyEdit
Description : unknown
Relocations : (not relocatable)
Vendor : (none)
Build Date : Mon 24 May 2010 03:30:21 AM PDT
Build Host : aalmiray
Source RPM : GroovyEdit-0.1-1.src.rpm
License : unknown
// file list omitted for brevity
www.it-ebooks.info

http://griffon.codehaus.org
http://rpm.org
http://rpm.org
http://www.it-ebooks.info/

254 CHAPTER 10 Ship it!
RPM isn’t the only option for Linux-based installers. The next section describes
another popular one.

10.3.4 The deb target

Debian-based installers have been around as long as RPMs. There are several Debian-
based distributions out there; perhaps the best known is Ubuntu, due to its ease of use
and attention to detail regarding the overall user experience.

 Building a Debian package is much like building with an RPM or IzPack installer.
You just need to tweak the default settings found in $projectTargetDir/installer/
deb/resources/deb_settings.properties.

 The variable placeholders are pretty much the same ones as before, plus a few
Debian-specific ones. These are all of them, for the sake of completeness:

■ @app.name@—The name of the application as found in the application
.properties metadata file

■ @app.version@—The current application version, also from the applica-
tion’s metadata

■ @app.author@—The name of the application’s author; defaults to “Griffon”
■ @app.author.email@—The author’s contact details; defaults to user@griffon

.codehaus.org
■ @app.synopsis@—A brief description of the application; defaults to the appli-

cation’s name
■ @app.description@—A detailed description of the application’s features;

defaults to “unknown”
■ @app.depends@—The dependencies on other packages; defaults to “sun-java5-

jre | sun-java6-jre”

The following output is obtained by querying the generated .deb file for GroovyEdit:

new debian package, version 2.0.

 size 5346426 bytes: control archive= 737 bytes.
 236 bytes, 10 lines control
 1025 bytes, 13 lines md5sums

 Package: groovyedit
 Version: 0.1-1
 Section: contrib/misc
 Priority: extra
 Architecture: all
 Depends: sun-java5-jre | sun-java6-jre
 Installed-Size: 5839
 Maintainer: Griffon <user@griffon.codehaus.org>
 Description: groovyedit-0.1
 Unknown

On to the next platform: Mac OS X.
www.it-ebooks.info

http://www.it-ebooks.info/

255Using the Installer plugin
10.3.5 The mac target

The Apple-branded UNIX platform, Mac OS X, has become a popular choice for devel-
oping applications. Love it or hate it, the fact is that Mac OS X’s first directive is user
experience. They make working with applications so easy and intuitive that you don’t
need a manual most of the time. Installing an application is also a simple click-and-
drag operation.

 Applications in Mac OS X are installed via application bundles, which are nothing
more than a conventional directory structure—sound familiar? Application bundles
are also often distributed using a DMG file. The mac install target can generate both
types of archives, but DMG files can only be generated if you execute it when running
on Mac OS X.

 This time there are no variable placeholders that you can tweak, but you can
customize the application’s icon, by placing an .icns file that matches the applica-
tion name under griffon-app/conf/dist/mac. This means that if you were to dis-
tribute a Mac-based installer for GroovyEdit, and you wished to include a custom
icon for it, you’d have to name it griffon-app/conf/dist/mac/GroovyEdit.icns.
What happens if no custom icon file is defined? The application bundle will use the
default griffon.icns file.

10.3.6 The jsmooth target

JSmooth is an executable wrapper around Java. This packaging target will generate an
.exe file that can be used to run the application on Windows. There are several
options you can configure; perhaps the most interesting one allows the wrapper to
embed a particular version of a JRE, which means your application can run in self-
contained mode if a suitable JRE isn’t installed on the target computer.

JSmooth uses a template file similar to the other packaging targets. This template
includes variable placeholders, but there’s no need to change them because the cre-
ate-jsmooth script takes care of updating them with the appropriate values. As a mat-
ter of fact, it’s recommended that you don’t manually substitute any of the variable
placeholders you’ll find in the template.

 Refer to the JSmooth manual to learn more about the options available in the tem-
plate (http://jsmooth.sourceforge.net/docs/jsmooth-doc.html).

10.3.7 The windows target

The windows packaging target is just an alias for the jsmooth target; there’s nothing
new to add here. Perhaps in the future a different Windows-based option that doesn’t
rely on JSmooth might be added to the Installer plugin.

10.3.8 Tweaking a distribution

Let’s recap for a moment. The Griffon build system provides four default packaging
targets (jar, zip, applet, and webstart), which should cover your basic needs for
deploying an application. There’s also the Installer plugin, which provides additional
www.it-ebooks.info

http://jsmooth.sourceforge.net/docs/jsmooth-doc.html
http://www.it-ebooks.info/

256 CHAPTER 10 Ship it!
packaging targets (izpack, rpm, deb, dmg, and jsmooth). These additional packaging
targets are fully integrated with the package command.

 The conventions laid out by these packaging targets are good enough for most
cases. But if you need to tweak the configuration, what do you do? You can take advan-
tage of the following aspects of the build system:

■ Every build operation is encapsulated by a Gant target.
■ Start and end events for each invoked target are automatically triggered.
■ Event handlers can be built that react to those triggers.

Armed with this knowledge, you only need to know the name of the event you want to
handle and the location of the configuration files you need to tweak.

 Say, for example, you want to change the configuration for the izpack packaging
target. As we said before, this target requires an installer descriptor file, normally
named installer.xml. This file is usually generated automatically by the plugin and is
placed at ${projectWorkDir}/installer/izpack/resources. You must provide dif-
ferent contents for this file, which can be done easily by overwriting the file at the
right time, say at the end of the prepare phase but before the create script is called.
That’s the first requirement covered: knowing what to change and when. Now you
need to find a way to make the change happen.

 The second step is writing an event handler. In chapter 8, we discussed build
events and scripts—that’s precisely what you’ll use here. The build system will honor
all your build event handlers, as long as you place them in a file named _Events.groovy
and place it inside the scripts directory. You can create such a file and fill it with the
contents of the following listing.

eventPreparePackageIzpackEnd = {
 ant.copy(todir: "${projectWorkDir}/installer/izpack/resources", overwrite:

true) {
 fileset(dir: "${basedir}/src/installer/izpack/resources", includes:
"**")
 }

 ant.replace(dir: "${projectWorkDir}/installer/izpack/resources") {
 replacefilter(token: "@app.name@", value: griffonAppName)
 replacefilter(token: "@app.version@", value: griffonAppVersion)
 }
}

First you define the event handler according to the convention. You might remem-
ber it from section 10.3.1. Next, you overwrite the files created by the prepare phase
with your own. This script assumes that the new installer files are located relative to
the application’s root directory; you can pick a different location if required. Finally,
you replace any tokens found in the freshly copied files with their appropriate val-
ues; that way you can keep the files parameterized. You can also define your own
tokens and values.

Listing 10.1 Build event handler to override izpack packaging target settings
www.it-ebooks.info

http://www.it-ebooks.info/

257Summary
 This is a trivial example—you’re only copying static files and replacing some
tokens. A more elaborate tweak could involve generating files on the fly, for example.
There’s no limit to what you can do at the build level. Remember, you have the full
power of the Groovy language combined with the Gant target mechanism and all of
the Griffon libraries.

10.4 Summary
Packaging an application is one of those common tasks that an application framework
should help you get done consistently and quickly. Griffon supports several packaging
targets out of the box, depending on the target environment on which you intend to
distribute the application.

 The jar and zip targets are usually the preferred methods of distributing an appli-
cation for standalone consumption, whereas applet and webstart are used for their
respective environments.

 When the standard packaging targets prove to be inadequate for your application’s
needs, you can rely on the Installer plugin, which provides more targets that can be
hooked into the package command. Currently supported targets include izpack, rpm,
deb, mac, jsmooth, and windows. Additional targets may be added in future releases
of the Installer plugin.

 At this point, you’ve seen how to create a Griffon application from end to end.
We’ve covered packaging—what could be next? You’ve used them, and now it’s time
to learn how to create one: plugins.
www.it-ebooks.info

http://www.it-ebooks.info/

Working with plugins
We’ve covered a lot of ground discussing what Griffon can do for you, but there’s a
limit to what it can do alone. After all, it can’t predict what a future app will need—
sometimes Griffon requires a helping hand. This is where plugins fit in.

 You’ve seen plugins being put to work before. Recall from chapter 7 that Swing-
XBuilder provides additional threading facilities—this builder can easily be added
to your application by installing a plugin. In chapter 9 you learned about FEST and
easyb, two testing frameworks that can be configured to work with any Griffon appli-
cation. Using these tools is as simple as installing the appropriate Griffon plugin. And
in the last chapter, you learned how platform-specific installers can be created, also
via a plugin.

 In this chapter, we’ll look at how plugins work and how to make one. First, let’s
find out how plugins can be located, installed, and uninstalled.

This chapter covers
■ Working with plugins
■ Creating your own plugins
258

www.it-ebooks.info

http://www.it-ebooks.info/

259Working with plugins
11.1 Working with plugins
As with all the recurring tasks you can perform with Griffon, there are a few com-
mand targets exposed by the griffon command that are available to you when
working with plugins.

 In this section, we’ll briefly cover each plugin-related target.

11.1.1 Getting a list of available plugins

You may want to know which plugins are already available before you decide to create
one. Chances are there’s already a plugin that does what you need.

 Invoking the list-plugins command target at your command prompt displays a
table of all plugins in the central plugin repository (located at http://artifacts.griffon-
framework.org). Be mindful that this command will attempt to establish a network
connection to a remote server, so in some cases a corporate firewall may prevent you
from reaching the server. If this happens, make sure you configure an HTTP proxy
before launching the list-plugin command. Griffon includes a set of commands
that deal with HTTP proxies, most specifically add-proxy and set-proxy. Figure 11.1
shows the first plugins in that list.

 Another way to view available plugins is to point your browser to the following
address: http://artifacts.griffon-framework.org/plugins. That page provides additional
information about each plugin, such as compatible platforms and UI toolkits. The
next command target provides more information about a specific plugin.

Figure 11.1 A list of available plugins, with their names, versions, and short descriptions
www.it-ebooks.info

http://artifacts.griffon-framework.org
http://artifacts.griffon-framework.org
http://artifacts.griffon-framework.org/plugins
http://www.it-ebooks.info/

260 CHAPTER 11 Working with plugins
11.1.2 Getting plugin-specific information

Now that you know which plugins are available, you may want to know more about a
particular plugin without installing it. This can be accomplished by calling the
plugin-info command target with the plugin’s name as parameter. Figure 11.2 shows
what you get when querying the Spring plugin.

 Invoking the command yields the author’s name and email address, which may be
useful should you get stuck using the plugin. You also get a link to the plugin’s docu-
mentation page and additional information on UI toolkit and platform compatibility.
The last line will list all available releases in the repository, should you choose to install
a version other than the latest one.

 Speaking about installing, that’s our next command target.

Figure 11.2 Information on the Spring plugin. Notice that this plugin works with every UI toolkit and on
every platform.
www.it-ebooks.info

http://www.it-ebooks.info/

261Working with plugins
11.1.3 Installing a plugin

Installing a plugin is quite easy. You’ve done it a few times already. The most typical
method is the following:

$ griffon install-plugin gsql

This will install the latest version of the GSQL plugin (http://artifacts.griffon-framework
.org/plugin/gsql).

 Alternatively, you can install a specific version if the latest one doesn’t suit your
needs. You just need to add a version number as a parameter:

$ griffon install-plugin gsql 0.8

Remember that you can list all available releases of a plugin by invoking plugin-info.
What about unreleased plugins? Let’s say a friend of yours is developing a new plugin,
and it hasn’t been released yet and you’d like to try it out. Or maybe you’re doing
plugin development and want to use your unreleased plugin in a project. Is it possible
to install the plugin?

 Yes! You can install a plugin if you have access to the zip file that contains the
plugin. You need to specify the full path to the zip file as a parameter, instead of
the plugin name, like this:

$ griffon install-plugin /scratch/dev/custom/griffon-custom-0.1.zip

No matter how you install the plugin, you’ll see output similar to what’s shown in fig-
ure 11.3.

 Installing a plugin also installs all of its dependencies. In this case, the Clojure
plugin depends on the LangBridge plugin. Both plugins provide new scripts that
become available through the griffon command. You saw this in chapter 8 when we
looked at build-time events. Notice also that the Clojure plugin creates a new direc-
tory when installed (the directory name is src/clojure). You’ll see how that works when
you create your first plugin, just a few sections ahead.

 Installing a plugin isn’t just a matter of downloading a zip file and expanding its con-
tents in a specific directory—the application’s metadata must be updated too. For exam-
ple, installing the Clojure plugin in an application named sample would result in these
entries in the sample application metadata file (application.properties):

#Griffon Metadata file
#Sun Mar 11 18:20:06 CET 2012
app.griffon.version=0.9.5
app.name=sample
app.toolkit=swing
app.version=0.1
archetype.default=0.9.5
plugins.clojure=0.9
plugins.lang-bridge=0.5
plugins.swing=0.9.5

Next, if you have the option to install a plugin, it makes sense to have an option to
remove it as well.
www.it-ebooks.info

http://artifacts.griffon-framework.org/plugin/gsql
http://artifacts.griffon-framework.org/plugin/gsql
http://www.it-ebooks.info/

262 CHAPTER 11 Working with plugins
11.1.4 Uninstalling a plugin

To remove a plugin, call the uninstall-plugin command target. To uninstall the
Clojure plugin, type

$ griffon uninstall-plugin clojure

This target won’t just remove the plugin files from their install directory; it will also
update the application’s metadata properties and trigger uninstall events.

 Now that you know how to work with plugins, we’ll look at the two types of plugins
you can create.

11.2 Understanding plugin types
We’ve said that plugins extend what Griffon as a framework can do. They can also
extend what an application can do. There are two types of plugins: build time and
runtime plugins. Build-time plugins are perhaps the easiest to create, but runtime plug-
ins give you more bang for your buck. We’ll cover both in this section, starting with
build-time plugins.

Figure 11.3 Installing the Clojure plugin. Notice that this plugin provides new scripts.
www.it-ebooks.info

http://www.it-ebooks.info/

263Understanding plugin types
11.2.1 Build-time plugins
Build-time plugins are usually seen as framework extensions. They extend what Grif-
fon can do, but they aren’t available while the application is running. This is a depar-
ture from the Grails plugin system (on which Griffon’s is based) because every plugin
in Grails is available both at build time and runtime.

 These are the main responsibilities of a build-time plugin:
■ Make additional libraries available at runtime—This is what the SwingXBuilder

plugin does.
■ Provide additional scripts and build-time libraries—The

FEST and easyb plugins do this.
■ Deliver an addon—Addons are, as you’ll see later in the

chapter, runtime plugins.

Of course, you can mix these responsibilities. For example,
the Clojure plugin provides new scripts and delivers an
addon that allows an application to load Clojure code at
any time while running.

CREATING A PLUGIN

You create plugins much the same way as you create appli-
cations—by invoking a specialized command target:

$ griffon create-plugin foo

This will create a plugin named foo, whose structure is
shown in figure 11.4.

 Go ahead and open the plugin descriptor (FooGriffon-
Plugin.groovy) in your favorite editor. The following list-
ing contains a summarized version of its contents (comments
and reminder text have been omitted).

class FooGriffonPlugin {
 String version = '0.1'
 String griffonVersion = '0.9.5 > *'
 Map dependsOn = [:]
 List pluginIncludes = []
 List toolkits = []
 List platforms = []
 String license = '<UNKNOWN>'
 String documentation = ''
 String source = ''
 List authors = [
 [
 name: 'Your Name',
 email: 'your@email.com'
]
]
 String title = 'Plugin summary/headline'

Listing 11.1 Initial contents of a plugin descriptor

Figure 11.4 The directory
structure of a plugin. Notice
the resemblance to an
application’s structure.
The plugin descriptor is
highlighted.

Plugin
versions and
dependencies

b

Plugin
information

c

www.it-ebooks.info

http://www.it-ebooks.info/

264 CHAPTER 11 Working with plugins
 String description = '''
Brief description of Foo.

Usage

Lorem ipsum

Configuration

Lorem ipsum
'''
}

Every plugin must define a version number B. Although the suggested value is a num-
ber, you can change the value to be alphanumeric, like 0.2-BETA, or make it a full nor-
mal string, like bombastic. Griffon expects the numbering scheme to follow the
major.minor.patch pattern but doesn’t enforce it. As a matter of fact, a popular con-
vention during development is to append -SNAPSHOT to your plugin version, which
clearly states that the plugin is currently under development and is not yet ready to
be released.

 The next property, griffonVersion, informs the Griffon build with which Griffon
versions the plugin can work. It can be set as a simple number or as a range, like this:

lowerBound > upperBound

You can read the previous range as “works with any version from lowerBound up to
upperBound, inclusive.” You can use a wildcard (*) for either lowerBound or upper-
Bound, but not both at the same time. For example, the following range

* > 1.0

means “any version up to 1.0,” whereas the next one

1.0 > *

means “from 1.0 upwards, including the latest version.”
 The last property on the first block, dependsOn, defines which plugins are marked

as dependencies. Dependencies are declared in a map by name and version number.
The version number may again be a simple number, an alphanumeric string, or even
a version range. The following snippet states a dependency on the transitions and
rest plugins:

Map dependsOn = [transitions: '0.1.3', rest: 0.2]

Starting from version 0.3, Griffon supports several UI toolkits, not just Java Swing, as
well as platform-specific libraries. We won’t get into details right now, but you should
know that a plugin can state which platforms it can run on (using the platforms prop-
erty), and which toolkits it’s compatible with (using the toolkits property).

 The plugin information properties c are the plugin’s first line of documentation.
The information you place there will be displayed by both the list-plugins and
plugin-info command targets, so be sure to write what you think will be useful to you

Plugin
documentationd
www.it-ebooks.info

http://www.it-ebooks.info/

265Understanding plugin types
and to others who might use your plugin. Also, be mindful about the license that gov-
erns the code you’ll write. It’s always a good idea to let others know immediately
under which rules your code can be used with theirs. The value you specify in the
license property will be displayed every time the plugin is installed.

 The last property you see in the descriptor, documentation d should be a multiline
string containing a few paragraphs about how to use the plugin. The format accepted by
this string is Markdown text (http://daringfireball.net/projects/markdown).

 At this point you can make changes to the descriptor as you see fit. You can also
add as many scripts to the plugin as desired (remember to use griffon create-
script). You can even add an _Events.groovy script file (as described in chapter 8).
This last script will allow your plugin to participate as a build event handler.

 Speaking of events, we’ll discuss install and uninstall events next.

PLUGIN EVENTS

Recall from figure 11.3 that the Clojure plugin performs some actions upon installa-
tion. Every plugin has the option to execute custom code when installed, and there’s a
similar option for when they’re uninstalled. As you may suspect, this behavior is
attained via a special pair of scripts that follow a specific naming convention.

 Look inside your plugin’s scripts directory. You should see at least three files whose
names starts with an underscore (_) character. That character marks those scripts as
special—you can’t invoke them directly using the griffon command.

 The first file, _Install.groovy, can be used to execute code when the plugin is
installed. This is a regular Gant script file; you’re free to place any code that may help
your plugin in this script, the most typical scenario being the creation of a directory.

 The next file, _Uninstall.groovy, will be called when the plugin is uninstalled.
This is the time to clean up any plugin-specific artifacts that should not be present if
the plugin is gone. Also be sure to remove any configuration settings related to the
plugin that might cause trouble if left behind.

 Finally there’s _Upgrade.groovy. This script is called when griffon upgrade is
invoked on your application. This is the perfect moment to synchronize any differ-
ences between plugin versions installed on an application.

 That’s all for now regarding build-time plugins. Let’s continue with runtime plu-
gins and then you’ll be ready to make a plugin of your own.

11.2.2 Runtime plugins
Runtime plugins (or addons, as we prefer to call them) can dramatically enhance what
an application can do. They’re responsible for delivering a wide range of runtime ele-
ments. Addons are usually packaged within a plugin, which means build-time plugins
are the main delivery option for an addon.

 An addon can be created by invoking the create-addon command target:

$ griffon create-addon foo

This command will generate an addon descriptor, similar to a plugin descriptor, and will
append extra code to the plugin’s special scripts. You’ll typically run this command
www.it-ebooks.info

http://daringfireball.net/projects/markdown
http://www.it-ebooks.info/

266 CHAPTER 11 Working with plugins
inside an existing plugin project with the same name. If you
don’t, the create-addon command will first create the
plugin project and then create the addon descriptor. It’s
important to note that the addon descriptor and the plugin
names must match; that is, if the addon name is foo, then
the name of the plugin must also be foo. That code is
needed to configure the addon so it can be used by an appli-
cation; most of the time it can be left untouched because the
Griffon conventions kick in. The convention is that the addon’s
name should be the same as the plugin’s. This is enforced if
you call create-addon outside of a plugin project; a new
plugin matching the addon’s name will be automatically cre-
ated. Figure 11.5 shows the layout of a typical plugin/addon
combination project.

 Open the addon descriptor in an editor, and you’ll see
plenty of comments and reminder text for each of the possible contributions an addon
can deliver. Table 11.1 summarizes what an addon can bring to an application.

Addons have their own life cycle, and they’re also tightly integrated with the runtime
event system. The Griffon runtime will fire a series of events before and after each
addon has been loaded and configured, and before and after all addons have been
processed. You can listen to these events by placing appropriate application event
handlers at griffon-app/conf/Events.groovy (see chapter 8 for a quick reminder
on how to do that). Table 11.2 summarizes the events pushed by the application
while loading addons.

Table 11.1 A list of all possible runtime elements that an addon can deliver to an application. Not all of
them need to be specified.

Element Description

factories Nodes that will become available to MVC members

methods Additional methods to be injected to MVC members

props Additional properties to be injected into MVC members

mvcGroups New MVC groups

events Runtime event handlers

attributeDelegates
preInstantiateDelegates
postInstantiateDelegates
postNodeCompletionDelegates

Additional strategies used to tweak node building

Figure 11.5 An addon
named foo has been added
to a plugin, also named
Foo. The addon descriptor
is highlighted.
www.it-ebooks.info

http://www.it-ebooks.info/

267Creating the Tracer plugin and addon
If you’re curious, you may be wondering about the first lines of an addon descriptor.
There are four methods whose signatures match the following snippet:

void addonInit(GriffonApplication app) { ... }
void addonPostInit(GriffonApplication app) { ... }
void addonBuilderInit(GriffonApplication app) { ... }
void addonBuilderPostInit(GriffonApplication app) { ... }

These methods are invoked by an application at specific points during startup. The
first method is the local equivalent to the LoadAddonStart event, and the second
method is equivalent to LoadAddonEnd. The remaining methods are called before and
after builder contributions (factories, methods, properties, and builder delegates) are
processed. You aren’t forced to implement these methods; in fact, they’re usually left
untouched. You only need to be concerned with them should your addon need to run
specialized code while it’s being initialized.

 Enough theory—it’s time to build a plugin plus an addon to exercise what you
just learned.

11.3 Creating the Tracer plugin and addon
Everybody knows that as an application grows, it gets harder and harder to visualize
data flows, particularly when the user interacts with the application. During develop-
ment, developers often rely on two techniques to keep track of the data flow: either
launch the application in debug mode, attach it to a debugger, place some break-
points at the appropriate places and see the data live, or litter the code with println
statements. But there’s a third alternative: dynamically intercept method calls. Sea-
soned Java developers may recognize this technique as applying an around advice or
a before advice, as suggested by aspect-oriented programming (AOP). AOP became
popular in the early 2000s and successfully penetrated the enterprise in tandem with
the Spring framework (www.springframework.org). If AOP is an alien concept to you,
don’t worry. Groovy greatly simplifies applying AOP-like techniques thanks to its

Table 11.2 Events fired by an application while addons are loaded at boot time

Event Arguments Description

LoadAddonsStart app Fired before any addons are loaded.

LoadAddonStart name, addon, app Fired just before an addon’s contributions are
processed.

LoadAddonEnd name, addon, app Fired after an addon has been fully processed.

LoadAddonsEnd app, addons Fired after all addons have been loaded and pro-
cessed.
The addons argument is a map of addon
instances keyed by name.
www.it-ebooks.info

www.springframework.org
http://www.it-ebooks.info/

268 CHAPTER 11 Working with plugins
extensive metaprogramming capabilities;
this means you don’t need to learn an
AOP framework nor an AOP API in
order to enhance your application.

 It’s settled, then. You’ll use an AOP-
like approach to intercept controller
actions and model properties, similar to
what figure 11.6 shows. By intercepting
a controller action, you’ll know when it
has been activated; intercepting model
properties will let you know when the
data has changed and how.

 You’ll package this new behavior
with a plugin/addon combination. This
means you can install it at any time,
and then uninstall it when it’s no lon-
ger needed, thus leaving your code
untouched and relieving you from
launching a debugger.

11.3.1 Bootstrapping the plugin/addon

The first step is to bootstrap the plugin and addon descrip-
tors. You know what’s coming, don’t you? That’s right!
You’ll use the Griffon command-line tools to create both
descriptors, as explained in section 11.2.

 For this project, you’ll name the plugin Tracer. Execute
the following commands at the console prompt:

$ griffon create-plugin tracer
$ cd tracer
$ griffon create-addon tracer

You should have now a familiar set of files, similar to those
shown in figure 11.7.

 You’ll keep the plugin/addon simple, which means you
won’t include any external libraries or create additional files.
All the behavior will be concentrated in the addon descriptor.
Go ahead and modify the plugin descriptor as you see fit.

 Next you need to edit the addon descriptor by adding a skeleton of the behavior
you want to provide, as shown in the following listing.

import java.beans.*
class TracerGriffonAddon {

Listing 11.2 Initial addon code in TracerGriffonAddon.groovy

Figure 11.6 Intercepting a call to an application

Figure 11.7 Contents of the
Tracer plugin. You can see
the plugin and addon
descriptor files created by the
Griffon commands. The addon
descriptor is selected.
www.it-ebooks.info

mailto:user@griffon.codehaus.org
mailto:dev@griffon.codeha.sorg
http://www.it-ebooks.info/

269Creating the Tracer plugin and addon
 def events = [
 NewInstance: { klass, type, instance ->

 }
]

 void message(msg) {
 println msg
 }
}

You can see that this addon relies on an event handler to intercept and inject new behav-
ior into a recently created instance. The new code will be injected into every single
instance created by the application, regardless of its artifact type—some common artifact
types are controller and service, for example. You can further tune this design choice if
you want; for example, you could restrict the type to controller and model only.

message() is a generic message-printing method. Alternatives to this implementa-
tion would be to use a proper logging mechanism, or to send the message to a file or
even to a database. You have the last word on this design choice too—we’re just pre-
senting the basics.

 Now it’s time to start adding some behavior to the addon.

11.3.2 Intercepting property updates
For now, you’ll rely on the fact that observable beans publish change events whenever
one of their properties changes value. Recall from chapter 3 that Java uses Property-
ChangeEvent and PropertyChangeListener to enable change events and their han-
dlers. Adding a PropertyChangeListener to the intercepted instance should be enough
for now.

 Edit the addon descriptor once more, so that its contents match the following list-
ing. The revised parts are shown in bold.

import java.beans.*
class TracerGriffonAddon {
 def events = [
 NewInstance: { klass, type, instance ->
 addPropertyChangeListener(instance)
 }
]

 void addPropertyChangeListener(target) {
 MetaClass mc = target.metaClass
 if(mc.respondsTo(target, 'addPropertyChangeListener',
 ➥[PropertyChangeListener] as Class[])) {
 target.addPropertyChangeListener({ e ->
 message "${e.propertyName}: '${e.oldValue}' ->

'${e.newValue}'"
 } as PropertyChangeListener)
 }
 }

Listing 11.3 Intercepting property updates on an observable instance

To be
implemented

Intercepts
observable bean

b

Verifies
bean is
observable

c

Adds
listenerd
www.it-ebooks.info

http://www.it-ebooks.info/

270 CHAPTER 11 Working with plugins
 void message(msg) {
 println msg
 }
}

At B you add a call to a helper method that will be responsible for inspecting the
bean and applying the new behavior. You can see at c that the helper method doesn’t
blindly assume that the instance is observable; it checks via the instance’s metaclass to
see if it responds to the addPropertyChangeListener method. In this way you avoid
an exception from being thrown at runtime. Finally at d you define a closure and cast
it to PropertyChangeListener using Groovy’s as keyword. This is much better than
defining an inline inner class,1 don’t you think?

11.3.3 Using the plugin

You have enough behavior to try out the plugin. You need to package it before you use
it, though. This is again a simple task thanks to the griffon command line. Type the
following at your command prompt:

$ griffon package-plugin

You should see a few lines pass by and finally get a griffon-tracer-0.1.zip file in the cur-
rent directory. The name of the plugin is computed by convention. The version num-
ber is taken from the plugin descriptor, so make sure to update that file whenever you
want to build a newer version.

 You can install the plugin now that it has been pack-
aged. Remember from section 11.1.2 that you can spec-
ify the path to a plugin zip if the plugin isn’t available
from a repository, which is precisely the case here.

 Try installing the plugin in an existing Griffon
application—using the install-plugin command
and giving it the path of the zip file that was gener-
ated by the package-plugin command— and see what
happens when you run the application. For illustration
purposes, you’ll use a simple yet effective calculator as
see in figure 11.8. It takes two inputs and calculates
their sum once you click the button. Inputs, the out-
put, and the button’s enabled state are bound to
observable properties on the model.

 The application code is shown in the following list-
ing. We won’t discuss it thoroughly as our main con-
cern is the Tracer plugin. First comes the view, where
you can see all bindings being set up.

1 Groovy has supported inner class definitions since version 1.7, but casting a closure is more concise.

Figure 11.8 The calculator
application. The first screen shows
the application as it looks when it’s
launched. The second screen
shows the application after inputs
have been entered and the Result
button has been clicked.
www.it-ebooks.info

http://www.it-ebooks.info/

271Creating the Tracer plugin and addon
application(title: 'sample',
 pack:true,
 locationByPlatform:true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 gridLayout(cols: 2, rows: 3)
 label 'A:'
 textField(columns: 10,
 text: bind(target: model, 'inputA'))
 label 'B:'
 textField(columns: 10,
 text: bind(target: model, 'inputB'))
 button('Result ->', actionPerformed: controller.click,
 enabled: bind{ model.enabled })
 label text: bind{ model.output }
}

The next listing shows the model. You can appreciate all property definitions. There’s
also a local event handler that updates the model’s enable property if both inputs
have a value.

import groovy.beans.Bindable
import griffon.transform.PropertyListener

@PropertyListener(enabler)
class SampleModel {
 @Bindable String inputA
 @Bindable String inputB
 @Bindable String output
 @Bindable boolean enabled = false

 private enabler = { evt ->
 if(evt.propertyName in ['enabled', 'output']) return
 enabled = inputA && inputB
 }
}

Last comes the controller, shown in the following listing. Remember that it uses
proper threading to calculate the output outside of the EDT, and then it goes back
inside the EDT to update the view by setting the model’s output property.

class SampleController {
 def model

 def click = {
 execSync { model.enabled = false }
 String a = model.inputA
 String b = model.inputB

Listing 11.4 The calculator’s view

Listing 11.5 The calculator’s model

Listing 11.6 The calculator’s controller
www.it-ebooks.info

http://www.it-ebooks.info/

272 CHAPTER 11 Working with plugins
 try {
 Number o = Double.valueOf(a) + Double.valueOf(b)
 execSync { model.output = o }
 } catch(NumberFormatException nfe) {
 execSync { model.output = Double.NaN }
 } finally {
 execAsync { model.enabled = true }
 }
 }
}

If you made the plugin correctly, you should get a console output every time a model
property is updated. Launching the application yields

inputA: 'null' -> ''
inputB: 'null' -> ''

Hold on a second! What just happened? If you remember what was discussed in chap-
ter 3, bindings take effect as soon as they’re parsed in a View script; this means both
inputs change value from null to empty strings, as those are the values of their respec-
tive source text fields. Updating both inputs with values (see figure 11.7) and clicking
the button yields the following output in the console:

inputA: '' -> '1'
enabled: 'false' -> 'true'
inputB: '' -> '2'
enabled: 'true' -> 'false'
output: 'null' -> '3.0'
enabled: 'false' -> 'true'

Perfect! Now you know which values are held by model properties at a certain point
during the application’s execution, without needing to modify the application’s code.
You don’t have a time reference on each output message, though perhaps adding one
would be in order; the logging alternative looks more appealing now.

 Let’s get back to the tracer plugin in order to intercept whenever a controller
action is called.

11.3.4 Intercepting action calls

In the next listing you’ll go back to the plugin sources and edit the addon descriptor.
You’ll add another intercept handler to the NewInstance event handler, much like
you did before.

import java.beans.*
class TracerGriffonAddon {
 def events = [
 NewInstance: { klass, type, instance ->
 addPropertyChangeListener(instance)
 injectActionInterceptor(klass, instance)
 }
]

Listing 11.7 Updated addon descriptor with additional behavior

Intercept
bean

b

www.it-ebooks.info

http://www.it-ebooks.info/

273Creating the Tracer plugin and addon
 void injectActionInterceptor(klass, target) {
 Introspector.getBeanInfo(klass).propertyDescriptors.each { pd ->
 def propertyName = pd.name
 def oldValue = target."$propertyName"
 if(!oldValue?.getClass() ||
 ➥!Closure.isAssignableFrom(oldValue.getClass())) return
 def newValue = { evt = null ->
 message "Entering $propertyName ..."
 oldValue(evt)
 }
 target."$propertyName" = newValue
 }
 }
}

The new handler requires both the instance and its class B because you’re going to
use the standard Java Beans inspection mechanism to figure out which properties
can be intercepted. This is better than blindly assuming a specific property format or
property definition. The handler then inspects the instance’s class and iterates over
all PropertyDescriptor instances that the class exposes. The handler performs some
metaprogramming magic for each property whose value is a closure—it skips those
that don’t match the required criteria. You also save a reference to the current prop-
erty value, which will allow you to call the default behavior later on.

 Next you define the new value for a target action, which turns out to be
another closure. Note how it relies on the previous saved reference c to the old
behavior; this is how you can chain things together. Using Groovy’s closures makes
these steps a snap—you’d have to jump through a few hoops if you were using reg-
ular Java instead.

 The last step is to assign the new behavior to the instance’s property. You can rely
on Groovy’s dynamic dispatch capabilities to resolve the actual property name.

 But what about the intercepting code? It calls the message() method and then for-
wards the call to the old behavior. This is known as an around advice in AOP terminol-
ogy, because you’re decorating the call before it’s executed and then invoking the
original behavior. Note that you can remove the original behavior in this manner,
either intentionally or inadvertently.

 This concludes what you can do with this plugin. It’s time to test the changes.
Don’t forget to repackage the plugin by issuing the following command:

$ griffon package-plugin

If at any time you feel you need to start over, at least in terms of packaging, you can
issue the clean command. This will remove any compiled sources and the latest ver-
sion of the plugin zip file.

11.3.5 Running the plugin again

Install the plugin in the same fashion as you did before, by pointing the install-
plugin command target to the zip file’s path in your filesystem.

Invoke
old action
behaviorc
www.it-ebooks.info

http://www.it-ebooks.info/

274 CHAPTER 11 Working with plugins
Running the calculator application and clicking the button, following the same steps
as you did before, yields the following output on the console. The updated output is
shown in bold:

inputA: 'null' -> ''
inputB: 'null' -> ''
inputA: '' -> '1'
enabled: 'false' -> 'true'
inputB: '' -> '2'
enabled: 'true' -> 'false'
Entering click ...
output: 'null' -> '3.0'
enabled: 'false' -> 'true'

There you have it! Of course, we only looked at a small fraction of what addons can
do. The most common uses for addons are to provide new node factories and meta-
class enhancements, besides event handlers, as you just saw. Be sure to browse the
extensive list of plugins and addons that can be found at Griffon’s plugin repository
(http://artifacts.griffon-framework.org/plugins). You’ll find plenty of addons that
provide node factories, as you’ll see in chapter 12.

 Feel free to play around with the Tracer plugin, or better yet, create a plugin of
your own. Once you’re comfortable with it, you may want to release it to the public so
that others can use it in their own applications. This is the topic of the next section.

11.4 Releasing the Tracer plugin
Releasing a plugin is another task that’s automated by the Griffon command line. Isn’t
that great? Back in section 11.2.1, we described the properties that belong to a
plugin’s descriptor. The Griffon command line relies on them to generate appropri-
ate metadata in the form of a JSON formatted file.

 Perhaps you’ve noticed that file already while packaging your plugins. Here’s the
generated metadata for the Tracer plugin (the file’s name is located in target/package/
plugin.json):

{
 "type": "plugin",
 "name": "tracer",
 "title": "Plugin summary/headline",
 "license": "<UNKNOWN>",
 "version": "0.1",
 "source": "",
 "documentation": "",
 "griffonVersion":"0.9.5 > *",

Get the latest version
Before you install the plugin, double-check that you have the latest version. Many
headaches can be averted by a few seconds of carefully verifying that your tools, arti-
facts, and sources are in the proper state.
www.it-ebooks.info

http://artifacts.griffon-framework.org/plugins
http://www.it-ebooks.info/

275Releasing the Tracer plugin
 "description": "Brief description of Tracer.\n\nUsage\n----\nLorem
ipsum\n\nConfiguration\n-------------\nLorem ipsum",

 "authors": [
 {"name":"Your Name","email":"your@email.com"}
],
 "dependencies": [],
 "toolkits": [],
 "platforms": []
}

It looks a bit impersonal, because we didn’t update the plugin descriptor with specific
information (author, title, and license elements). Nevertheless, it gives you an idea of
what information will be stored in the plugin repository that can be used to identify a
plugin. This same information is used by the install mechanism when downloading
and installing a plugin in an application.

 There are at least two approaches to releasing a plugin into the public:

■ Manual
■ Standard

The manual way gives you more choices in source storage because you’re fully respon-
sible for adding plugins to your source control system. You’re free to choose the host-
ing solution for the plugin’s zip file and source code. The drawback is that the plugin
won’t be visible with the list-plugins and plugin-info command targets, at least
not until custom plugin repositories become available in Griffon.2 You basically pack-
age the plugin using the method you now know, and then publish the zip file to a URL
where other people can download it.

 The standard way will add all the plugin sources to the Griffon plugin repository.
You must be an authorized developer in order to do this, so make sure you send a
request to the developer’s list (dev@griffon.codehaus.org) before attempting to
release a plugin using this approach.

 After you’re authorized, invoke the following command at your console prompt to
release the Tracer plugin using the standard approach:

$ griffon release-plugin

This command target will take care of several tasks:

■ Compile the plugin’s sources
■ Generating the plugin zip and descriptor
■ Uploading the plugin zip to the central repository
■ Updating the central plugin metadata

You can appreciate why you need to be an authorized developer to use this release
approach.

 No matter which approach you follow, it’s always a good idea to send a message to
the user list (user@griffon.codehaus.org) to let other developers know about the

2 We expect this feature to be ready by the time this book hits the shelves.
www.it-ebooks.info

http://www.it-ebooks.info/

276 CHAPTER 11 Working with plugins
availability of your plugin. Feedback is a powerful tool; rely on your peers to get that
feedback sooner rather than later. And don’t forget: release early, release often.

11.5 Summary
Perhaps the greatest strength found in the Griffon framework is its ability to be
extended by plugins. This is an inherited feature from Grails. Both frameworks share
a lot of traits in their plugin systems; for example, listing, installing, and uninstalling a
plugin is virtually the same.

 But when it comes to developing a plugin, you’ll start to notice a few differences.
Griffon distinguishes between build time and runtime plugins, which are also known
as addons. This difference allows Griffon to be precise about the type of artifacts,
libraries, and behavior that’s exposed at build time versus at runtime.

 A build-time plugin can add new libraries and provide build-time events and
scripts. This is basically how you extend the framework’s capabilities. Good examples
of this kind of plugin are the testing-related FEST and easyb, because they never affect
the running application.

 An addon can add not only new libraries but also other runtime aspects, such as
application event handlers, metaclass enhancements, and node factories. Addons
expose another set of events that can be used to coordinate their initialization; and
addons can even communicate with each other, whether they have a strict depen-
dency on one another or not.

 Regardless of what kind of plugins you choose to build, you’ll eventually want to
publish them so other developers can use them. There are two approaches to achiev-
ing this goal, manual and standard, both with their pros and cons. No matter which
approach you choose, just remember that the Griffon command line is there to help
you get to your goal.

 Now it’s time to make your application look great. In the next chapter, we’ll
examine different techniques and plugins that can be used to enhance the look of
your application.
www.it-ebooks.info

http://www.it-ebooks.info/

Enhanced looks
Views draw the user’s attention, either by how they look or how they behave. It
doesn’t matter if you’re a newcomer to Java Swing or a seasoned expert—there will
be times when the standard widget set exposed by the JDK isn’t enough to create a
compelling user interface or to provide an incredible experience.

 Fortunately, Swing components are extensible. There are multiple third-party
components out there—some commercial, some open source. You can also change
how standard and custom components look by applying new Look & Feel classes. If
you don’t know what “Look & Feel” means in Swing, think of themes and skins.

 In this chapter, you’ll learn how views can be extended by registering additional
nodes that will handle custom components. You’ll also learn how the view build
process can be modified at specific points. Finally, we’ll enumerate and explain
some of the official SwingBuilder extensions harbored by the Griffon project.

This chapter covers
■ Adding custom nodes to views
■ Using third-party view extensions
277

www.it-ebooks.info

http://www.it-ebooks.info/

278 CHAPTER 12 Enhanced looks
12.1 Adding new nodes
You now know that SwingBuilder is a thin abstraction layer over Java Swing. This layer
only covers the standard set of Swing components. Or does it? There are ways to register
custom components directly on views (remember widget(), container(), and bean()
from chapter 4?). There’s also the option to register factories in an addon (as seen in
the previous chapter), which requires you to build and package an addon.

 But there are other ways to add new nodes to a view. We’ll discuss them in the fol-
lowing order:

■ Adding new node factories—This is the quickest method, and we’ll cover it first.
■ Using implicit addons—This method goes a step further as it increases code reuse.
■ Making your own builder—This technique is the most versatile.

12.1.1 Registering node factories

As you know, SwingBuilder relies on node factories to manipulate and instantiate
nodes. You may register as many node factories on a view script as needed. The advan-
tages of registering a node factory are as follows:

■ The node name is reusable everywhere in the script after the factory has been reg-
istered. This isn’t the case when using the special nodes container(), widget(),
and bean().

■ Factories determine how an instance is created. This is a useful feature when
the component you want to instantiate doesn’t provide a no-args constructor.

■ Factories have additional methods that let you tweak parent-child relationships,
how properties are set on a target instance, and so forth.

Let’s assume for a moment that you’d like to add a textField component that has the
ability to display a prompt. A quick search on the web should yield xswingx (http://
code.google.com/p/xswingx/) as a result. Browsing the code, you’ll discover JXText-
Field, a component that extends JTextField. You can add a node that knows how to
handle this component as follows:

import org.jdesktop.xswingx.JXTextField
registerBeanFactory("promptField", JXTextField)
promptField(prompt: "Type something here", columns: 20)

You’ve taken a shortcut here. The method registerBeanFactory() takes two parame-
ters: a string that will become the node name, and a class that’s assumed to be a
javax.swing.Component subclass. You can use this shortcut because JXTextField fol-
lows the JavaBeans conventions because it extends from JTextField, which also follows
the conventions.

 There’s a more general version of the previous method that can be used to register
any implementation of the groovy.util.Factory interface. This is its signature:

registerFactory(String name, groovy.util.Factory factory)
www.it-ebooks.info

http://code.google.com/p/xswingx/
http://code.google.com/p/xswingx/
http://www.it-ebooks.info/

279Adding new nodes
As a matter of fact, SwingBuilder will resolve all registerBeanFactory() calls to a
registerFactory(); it wraps the supplied component subclass into an appropriate
ComponentFactory.

 All this talk about factories and we haven’t showed you what a factory looks like!
The following listing shows the contract of groovy.util.Factory.

public interface Factory {
 boolean isLeaf()
 Object newInstance(FactoryBuilderSupport builder,
 ➥ Object name, Object value, Map attributes)
 ➥ throws InstantiationException, IllegalAccessException
 boolean onHandleNodeAttributes(FactoryBuilderSupport builder,
 ➥ Object node, Map attributes)
 void setParent(FactoryBuilderSupport builder,
 ➥ Object parent, Object child)
 void setChild(FactoryBuilderSupport builder,
 ➥ Object parent, Object child)
 void onNodeCompleted(FactoryBuilderSupport builder,
 ➥ Object parent, Object node)

 boolean isHandlesNodeChildren()
 boolean onNodeChildren(FactoryBuilderSupport builder,
 ➥ Object node, Closure childContent)

 void onFactoryRegistration(FactoryBuilderSupport builder,
 ➥ String registeredName, String registeredGroupName)
}

Note that almost all methods take a FactoryBuilderSupport instance B. As you may
remember, SwingBuilder is a subclass of FactoryBuilderSupport, and Griffon’s
CompositeBuilder works with subclasses of FactoryBuilderSupport. Coincidence?
Of course not! CompositeBuilder knows how to handle factories of any type.

 Let’s drill down into each of the factory’s methods from the factory implementa-
tion perspective:

■ isLeaf()—This method controls whether the node handled by this factory
supports nesting of other nodes. Returning true will mark the node as a leaf
node. You’ll get a RuntimeException if you attempt to nest a child node in a
leaf node.

About xswingx
xswingx is a project that provides a set of components that, according to its creator,
were missing from the popular SwingX project. Although you can certainly embed
these particular components with the technique we just demonstrated, there’s an
easier way to do it. We’ll revisit xswingx when we discuss official extension later in
this chapter.

Listing 12.1 The groovy.util.Factory interface

FactoryBuilderSupport
instance

b

www.it-ebooks.info

http://www.it-ebooks.info/

280 CHAPTER 12 Enhanced looks
■ newInstance()—Perhaps the most important method that must be imple-
mented, newInstance() is responsible for creating instances. You have access to
the current context via the builder parameter, the node’s name via the name
parameter, the node’s value (if any) via the value parameter, and any property
that was set using Map syntax via the attributes parameter. When implement-
ing this method, we recommend that you remove attribute keys for each value
in the attributes map that was used to create the target instance; otherwise
they’ll be set again by the method we’ll discuss next.

■ onHandleNodeAttributes()—This method is responsible for setting any
remaining properties that may not have been handled when newInstance()
was called, and sets them on the target instance. Note that it returns a Boolean
value. If the return value is false, the builder will ignore any remaining proper-
ties that the factory did not process explicitly. If the return value is true, the
builder will attempt to set any properties that are still left on the Map. Overrid-
ing this method can be useful in various circumstances, such as when a type
conversion must be executed before setting a property’s value or when there
are multiple setters for a particular property name.

■ setParent() and setChild()—These methods handle the relationships between
nodes. The former is called when the current node is the parent node, and the
latter is called when the current node is the one being nested inside another.

■ onNodeCompleted()—This method is your last chance to modify the node
before the builder continues with the next sibling node found in the script.
This is the perfect time to perform cleanup or assign lazy relationships, because
all child nodes have been processed at this point. The builder context comes in
handy when you need to keep track of private node data.

If all this seems a bit daunting, don’t worry. You’ll find plenty of code examples in the
various SwingBuilder factories (http://mng.bz/jYi1). We’re sure you’ll encounter
plenty of goodies and code snippets in that link that can help you.

 The remaining methods are rarely used outside of very specialized factories:

■ isHandlesNodeChildren() and onNodeChildren()—These are used to let the
factory take control of the node’s nested closure instead of the builder. This
is how the withWorker() node (remember it from chapter 7?) processes
nested closures that are mapped to the various life cycle methods on a Swing-
Worker instance.

■ onFactoryRegistration()—You can use this method to perform sanity checks
right after the factory has been added to a builder.

Figure 12.1 shows the flow followed by a factory’s methods when the builder requests a
node to be built.

 If you’re thinking of creating your own factories for handling custom components,
we suggest you create a subclass of groovy.util.AbstractFactory as a starting point. It
implements all factory methods except newInstance()with default behavior. To create a
www.it-ebooks.info

http://mng.bz/jYi1
http://www.it-ebooks.info/

281Adding new nodes
factory for a custom component that requires a constructor argument based on an
orientation parameter, for example, you’d do the following:

import com.acme.MyCustomComponent
class CustomComponentFactory extends AbstractFactory {
 Object newInstance(FactoryBuilderSupport builder, Object name,
 ➥Object value, Map attributes)
 throws InstantiationException, IllegalAccessException {
 String orientation = attributes.remove('orientation') ?: 'left'
 return new MyCustomComponent(orientation)
 }
}

And that would be it!
 This technique is useful for reusing the node many times in the same script. But

what if you need to reuse the node across scripts? Registering the node on each script
is a clear violation of the DRY (Don’t Repeat Yourself) principle—there must be
another way.

 As a matter of fact, there are two other ways to solve this problem. The first involves
an implicit addon, and the second is to make your own builder. Let’s look at the
implicit addon option first.

Figure 12.1 Factory methods
used during node building. The
setChild() method is called
on the parent factory if it exists.
www.it-ebooks.info

http://www.it-ebooks.info/

282 CHAPTER 12 Enhanced looks
12.1.2 Using an implicit addon

The implicit addon technique for adding nodes requires you to touch a configuration
file. Recall from chapter 4 that griffon-app/conf/Builder.groovy contains the con-
figuration for all nodes available to the CompositeBuilder. This means all you have to
do is somehow register a set of factories.

 Let’s look again at the default contents of Builder.groovy after a new application
has been created:

root {
 'groovy.swing.SwingBuilder' {
 controller = ['Threading']
 view = '*'
 }
}

Here you can see the root prefix. That prefix name is a special one; it instructs
CompositeBuilder to put all nodes into a default namespace. Node names will be avail-
able without any modifications.

 What if there was another special prefix that instructed the builder to process an
implicit addon? It turns out that there is! That special prefix is features, and it can hold all
the properties an addon descriptor can define, except events and mvcGroups. This means
you’re left with factories, methods, props, attributeDelegates, preInstantiateDelegates,
postIntantiateDelegates, and postNodeCompletionDelegates. Phew! That’s still quite a lot!

 To register a node for MyCustomComponent using an implicit addon, you only need
to append the code shown in the following listing to Builder.groovy.

features {
 factories {
 root = [
 myCustomComp: new MyCustomComponentFactory()
]
 }
}

A node named myCustomComp will be available to all view scripts now. You specify root
as a prefix; this avoids node name collisions. The root prefix is special because it’s
handled as if there were no prefix specified; in other words, it’s empty, and the node
name can be used as is. If you set any other value as a prefix, it should be used when
referring to the node.

 The following snippet shows an example of setting a different node prefix:

features {
 factories {
 my = [
 button: new MyCustomButton()
]
 }
}

Listing 12.2 Defining a custom node using an implicit addon in Builder.groovy
www.it-ebooks.info

http://www.it-ebooks.info/

283Adding new nodes
Now you can refer to this particular component as mybutton() in any view, as the fol-
lowing example depicts:

panel {
 mybutton(text: 'Click me!')
}

One neat trick that you can apply when registering a node factory is taking advantage
of conventions. If the component you need to register behaves like a regular Java
Swing component—if it has a no-args constructor and extends from JComponent or
any of its superclasses—you can skip creating a factory and declare the component
class, as follows:

features {
 factories {
 my = [
 clicker: javax.swing.JButton
]
 }
}

That wasn’t so bad, was it? You can apply this trick to factories defined in a regular
addon as well.

 But as neat and concise as implicit addons are, they have one disadvantage: you
can’t share the node registration with other applications. In order to do that, you’ll
have to create a plugin/addon combination. We covered plugins and addons in the
last chapter. What’s new is that you must define a factories block, similar to the one
demonstrated for implicit addons back in listing 12.2, but in this case you don’t need
to define a node prefix at all. Here’s how it’s done for the MigLayout plugin/addon:

import groovy.swing.factory.LayoutFactory
import net.miginfocom.swing.MigLayout
class MiglayoutGriffonAddon {
 def factories = [
 migLayout: new LayoutFactory(MigLayout)
]
}

That wasn’t so bad either. Creating your own builder, on the other hand, requires
more effort, but just a little more. Fair warning: we’re going to dive deeper and
deeper into the intricacies of builders and metaprogramming. But don’t feel discour-
aged by this; creating a builder is a simple task, despite all the magic that occurs
behind the curtains.

12.1.3 Creating a builder

This is perhaps the most thorough option you have at your disposal. Creating a
builder means you have full control over which node factories get registered and how.
You also have the option to register as many delegates as needed. This sounds similar
to addons, doesn’t it? The main advantage of creating a builder is that you can distrib-
ute your builder to be used outside of a Griffon application. Why would you want to
www.it-ebooks.info

http://www.it-ebooks.info/

284 CHAPTER 12 Enhanced looks
do that? Think of IDE integration for one, or the ability to use your builder with a sim-
ple Groovy script. As a matter of fact, this is how SwingXBuilder (and some of the offi-
cial extensions you’ll see later in the chapter) came to be in the first place.

 Builders should extend from FactoryBuilderSupport. This ensures that the
builder has all it needs to process factories and delegates, leaving you with the respon-
sibility of adding as many factories as you like.

 Say you’d like to create a builder for a MyCustomComponent and other cool compo-
nents you may have lying around. The following listing shows what such a builder
could look like.

class CoolBuilder extends FactoryBuilderSupport {
 CoolBuilder(boolean init = true) {
 super(init)
 }

 void registerCoolWidgets() {
 registerFactory('myCustomComp', new MyCustomComponentFactory())
 registerFactory('pushButton', new PushButtonFactory())
 }
}

Take note of the builder’s constructor. Every builder created in this way will automat-
ically search for methods that follow a naming convention; the assumption is that
these methods will register factories on the builder. We can appreciate the conven-
tion being applied to the registerCoolWidgets() method. This naming convention is
as follows:

void register<groupName>() { ... }

This means that every method that starts with the word register, doesn’t return a
value, and takes no arguments will be automatically called after the builder instance is
created. If that method happens to make a call to registerFactory(), those node fac-
tories will be added to the builder. You can use this approach to call anything you’d
like during node registration; for example, you can make calls to register any dele-
gates needed by the builder.

 There’s an additional benefit to automatic registration: all node factories and dele-
gates declared in a single register<groupName> method will share the same group-
Name. What are groups you ask? As seen in chapter 4, all builder nodes are put
together in groups, which facilitates the task of selecting which nodes can be activated
or applied to other MVC members. A perfect example is the Threading group declara-
tion found in Builder.groovy—you may recall that this configuration line makes it
possible for controllers to gain access to SwingBuilder’s threading facilities.

 Once you’re happy with the state of your builder, it’s time to add it to an applica-
tion. You can use a plugin to deliver the builder, as if it were an addon. Make sure you
write appropriate install and uninstall instructions in the plugin’s install and uninstall

Listing 12.3 Basic builder implementation
www.it-ebooks.info

http://www.it-ebooks.info/

285Builder delegates under the hood
scripts. What’s more, you can use the same code that create-addon puts in those
scripts; just substitute the addon reference for your builder’s. If you get lost somehow,
you can inspect existing builder plugins for additional clues.

 That’s it for adding nodes. You now know more about the magical things that hap-
pen during the node-building process, but there’s more. We’ve mentioned builder
delegates a few times in this and the previous chapter; perhaps it’s time to inspect
them further and discover exactly how they come into play.

12.2 Builder delegates under the hood
As you surely know by now, FactoryBuilderSupport is the base class for all builders
that rely on factories to build nodes. Factories encapsulate a great part of a node’s
build cycle, as you saw in the previous section. But it’s the builder that orchestrates
when and how those factories are called.

 It all starts by matching what appears to be a method name to a node name backed
by a factory. Node names are pretended methods, because there’s no way that Factory-
BuilderSupport can know in advance which node names will be used. FactoryBuilder-
Support relies on a Groovy metaprogramming technique called method missing, which
works as follows. Whenever you call a method on a Groovy class, the Meta Object Pro-
tocol (MOP) follows a series of paths searching for a suitable way to invoke the
method. If no match is found, it will attempt calling a special method named method-
Missing(). If such a method is provided by the class (there’s no default implementa-
tion for this method as handling this type of call is an optional operation), then it’s up
to the implementer to decide how the call should be handled.

 This is basically what FactoryBuilderSupport does. Whenever a method is
invoked and it isn’t found by regular means, methodMissing() kicks in. The builder
will attempt to resolve the node name to a factory, and if a match is found it will then
kick start the node build cycle. But if no match is found, you’ll get a MissingMethod-
Exception as a result of the method call.

 Once a factory is resolved, the build cycle continues; the builder will call out spe-
cific methods defined internally. Some of those methods expose extension points via
the closure delegates. Figure 12.2 shows the sequence of method calls exchanged
between builder and factory in order to build a node.

 Without further ado, these are the types of delegates you may add to a builder:

■ PreInstantiate delegates
■ PostInstantiate delegates
■ Attribute delegates
■ PostNodeCompletion delegates

We’ll discuss each delegate type in the order the builder encounters them during the
build cycle.
www.it-ebooks.info

http://www.it-ebooks.info/

286 CHAPTER 12 Enhanced looks
12.2.1 Acting before the node is created

PreInstantiate delegates are the first to be invoked, right before the node is created.
This is their signature:

{FactoryBuilderSupport builder, Map attributes, value -> ... }

The most typical use for this type of delegate is to perform sanity checks on the attri-
butes that are generic to all nodes.

 For example, you might want to check that an attribute named orientation always
has exactly one of the following string values: "left" or "right". If for some reason
that isn’t the case, your delegate may attempt a conversion or set a default value. After
this, every node that requires a valid value for its orientation property will have it.
Here’s what this delegate would look like:

builder.addPreInstantiateDelegate { builder, attributes, value ->
 String orientation = attributes.orientation?.toString()?.toLowerCase()
 if(orientation in ['left', 'right'])
 attributes.orientation = orientation
 else
 attributes.orientation = 'left'
}

The advantage of adding a delegate of this type is that you can effectively update attri-
butes without needing to change the code of a single factory.

12.2.2 Tweaking the node before properties are set

PostInstantiate delegates are the counterparts of the previous type. They go into effect
once the node has been built but before the builder has had a chance to set any
remaining attributes on it. This is their signature:

{FactoryBuilderSupport builder, Map attributes, node -> ... }

Figure 12.2 Builder and factory
engaged in the node build cycle.
Delegates are called on each phase
that matches their name.
www.it-ebooks.info

http://www.it-ebooks.info/

287Builder delegates under the hood
Note the slight change in the signature compared with the previous type. The third
argument is the node that has just been built.

 What are delegates of this type good for? Well, you could perform additional spe-
cific sanity checks on attributes, now that you know which node was built. You could
also inspect the node hierarchy in order to tweak parent-child relationships or to add
a temporal variable to the parent context—this variable could later be processed by
the parent’s factory or another delegate.

 Access to the current builder context is key to getting the job done. Here’s how
you can do it:

builder.addPostInstantiateDelegate { builder, attributes, node ->
 builder.context?.special = attributes.remove('special') ?: false
}

This delegate provides a hint for the parent factory so that it knows the current node
(its child) must be processed in a special way. But what if the factory doesn’t have code
that can handle this flag? The next two delegates can help remedy this situation.

12.2.3 Handling node properties your way

Perhaps you remember seeing an id property being used on view scripts from time to
time. This property doesn’t belong to any component class; rather, it’s handled by the
builder using an attribute delegate. Attribute delegates are guaranteed to be called
after a node instance has been created but before any properties are set by the fac-
tory or the builder. This means you can apply synthetic properties to a node, like the
id property.

 Attribute delegates have the following signature:

{FactoryBuilderSupport builder, node, Map attributes -> ... }

Note the subtle change in the order of arguments when compared to the postInstanti-
ate delegates.

 The following snippet shows how SwingBuilder handles the id attribute set on any
node, in case you were wondering:

{FactoryBuilderSupport builder, node, Map attributes ->
 String id = attributes.remove('id')
 if(id) builder.setVariable(id, node)
}

These are likely the type of delegates that you’ll encounter the most. SwingBuilder has
a few of them (besides the id-handling one), and other builders have their own, as
you’ll soon find out when we discuss CSS for Swing components later in this chapter.

 There’s one last delegate type that needs to be discussed.

12.2.4 Cleaning up after the node is built

PostNodeCompletion delegates are rarely seen, as most factories prefer to handle
cleanup code in their own onNodeCompleted() method. But in the event that you
www.it-ebooks.info

http://www.it-ebooks.info/

288 CHAPTER 12 Enhanced looks
need to perform cleanup operations that may affect several nodes, these delegates are
the perfect solution. They don’t get a chance to process a node’s attributes, as they all
should have been consumed by now, so their signature is as follows:

{FactoryBuilderSupport builder, parent, node -> ... }

This means it’s a good idea to store temporal data on the builder’s current context,
using any of the other three delegates we just discussed. For example, this is how you
can recall the special flag we set on the postInstantiate delegate example:

{FactoryBuilderSupport builder, parent, node ->
 if(builder.context.special) {
 parent?.postInit(node)
 }
}

This snippet assumes that the parent node has a postInit() method that should be
called only when the current node has been marked as special. You can choose to
remove a child element, change the node’s appearance, or build a new object on the
fly. Quite frankly, the possibilities are endless once you get the hang of the build cycle.

 You might want to explore the vast space of third-party Swing components now
that you know more about the inner workings of builders and their delegates, but
before you embark on that wonderful journey, let’s take a closer look at some Griffon-
related projects and plugins that can make your life easier. It also makes sense to run a
survey of the existing Griffon plugins (http://artifacts.griffon-framework.org/plugins)
before you start to build your own. It would be sad to invest your time creating a
builder or plugin for a set of components that have been covered by an official exten-
sion already, wouldn’t it?

12.3 Quick tour of builder extensions in Griffon
SwingBuilder isn’t the only builder that can be configured in a Griffon application.
You know this because we just discussed how custom builders can be created. We’ve
also mentioned SwingXBuilder a few times now. As a matter of fact, there are plenty of
builder extension options. We’ll briefly cover the main builders you’re most likely to
encounter in a daily basis. Let’s start with SwingXBuilder because you already know a
bit about it.

12.3.1 SwingXBuilder
In chapter 7, we explained that SwingXBuilder provides additional threading facilities
in the form of the withWorker() node, an abstraction over SwingLabs’ SwingWorker
and JDK 6’s SwingWorker. There’s more to SwingXBuilder than that. The SwingX proj-
ect was born as an incubator for ideas and components that might eventually find
their way into the JDK. SwingWorker is one of the few that made the transition.

 You’ll find a number of interesting components in the SwingX component suite.
Many were designed as replacements for existing Swing components; for example,
JXButton replaces JButton. SwingX offers more than just components, though. It also
www.it-ebooks.info

http://artifacts.griffon-framework.org/plugins
http://www.it-ebooks.info/

289Quick tour of builder extensions in Griffon
provides a Painters API that lets you override how a component is painted on the
screen without needing to create a subclass of said component.

 The easiest way to install SwingXBuilder (http://griffon.codehaus.org/SwingXBuilder)
on an application is by installing its companion plugin. That’s right, let the framework
do the hard work for you; the plugin will configure the builder on the application’s
metadata and config files. It will also copy required libs and dependencies when
needed. Invoke the following command at your command prompt to install the
plugin and builder:

$ griffon install-plugin swingx-builder

Once you have it installed, you’re ready to work.
 One last piece of information before you begin—remember we said that some

SwingX components were designed as replacements? Well, SwingXBuilder took that
into consideration, which means that some of its node names may clash with Swing-
Builder’s. That’s why this builder is configured with a different prefix: jx. Whenever
you see a node name that starts with that prefix, it’s a node that has been contributed
by SwingXBuilder.

 Figure 12.3 shows a simple application that contains two main elements: a header
and a TaskPane container. The header component uses the Painters API. This painter,
in particular, is a compound of three other painters:

■ The first painter provides the base color, a very dark shade of gray—almost black.
■ The second painter provides the pinstripes. You can change and tweak the

stripes’ angle, color, spacing, and more.
■ The last painter provides a glossy look. Everything looks better with a bit

of shine.

The TaskPane container emulates the behavior seen on earlier versions of the Win-
dows file explorer. It’s a TaskPaneContainer, and as its name implies it serves as a
place to embed TaskPanes. There are two TaskPanes in this container. Clicking Task
Group 2 will expand its contents (with a smooth animation); clicking it again will col-
lapse it. You can embed any Swing components in a TaskPane.

Figure 12.3 A simple
application composed of SwingX
components. The header’s visuals
were updated by a set of painters.
www.it-ebooks.info

http://griffon.codehaus.org/SwingXBuilder
http://www.it-ebooks.info/

290 CHAPTER 12 Enhanced looks

d
What’s that? What about the code, you say? It couldn’t be any easier, as shown in the
next listing.

import java.awt.Color
import org.jdesktop.swingx.painter.GlossPainter

gloss = glossPainter(
paint: new Color(1f, 1f, 1f, 0.2f), position:

➥GlossPainter.GlossPosition.TOP)
stripes = pinstripePainter(paint: new Color(1f, 1f, 1f, 0.17f),

➥spacing: 5.0)
matte = mattePainter(fillPaint: new Color(51, 51, 51))
compound = compoundPainter(painters: [matte, stripes, gloss])

application(title: 'swingx-test', pack: true, locationByPlatform: true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 borderLayout()
 jxheader(constraints: NORTH, title: "SwingXBuilder Example",
 description: "A brief example of SwingXBuilder in action",
 titleForeground: Color.WHITE,
 descriptionForeground: Color.WHITE,
 icon: imageIcon("/griffon-icon-48x48.png"),
 preferredSize: [480,80],
 backgroundPainter: compound)
)

 jxtaskPaneContainer(constraints: CENTER) {
 jxtaskPane(title: "Task group 1") {
 jxlabel("Action 1")
 }
 jxtaskPane(title: "Task group 2", expanded: false) {
 label("Action 2")
 }
 }
}

First, the painters are defined B. SwingXBuilder exposes a node for each of the
basic painters you’ll find on the Painters API. Then the compound painter is cre-
ated c; it only requires a list of painters to be used. At d the header component is
built. Note that all it takes is setting a few properties on that component. Setting the
compound painter is done as with every other property—there’s no magic to it.
Finally the TaskPanes are added to their container e. Note that the first TaskPane
refers to a jxlabel node, whereas the second refers to a label node. This means
that the first pane should have a JXLabel instance and the second should have a
JLabel instance. The use of the jx prefix makes switching from one type of node to
the other a simple task.

Listing 12.4 Some SwingXBuilder components in action

Define
painters

b

Define
compoun
painter

c

Define
JXHeader

d

Define
JXTaskPaneContainer

e

www.it-ebooks.info

http://www.it-ebooks.info/

291Quick tour of builder extensions in Griffon
 What’s more, the CompositeBuilder makes mixing nodes from two builders a triv-
ial task. The alternative would be quite verbose in terms of keeping the appropriate
builder references and node contexts in check. If Griffon did not provide a Composite-
Builder then Views would look like this:

swingx.jxpanel {
 swing.borderLayout()
 swingx.jxheader(constraints: NORTH, title: "SwingXBuilder",
 description: "Life without CompositeBuilder",
 titleForeground: Color.WHITE,
 descriptionForeground: Color.WHITE,
 icon: imageIcon("/griffon-icon-48x48.png"),
 preferredSize: [480,80],
 backgroundPainter: compound)
)
 swing.panel {
 swing.gridLayout(cols: 1, rows: 2)
 swing.button('Regular Swing button')
 swingx.jxbutton('Enhanced SwingX button')
 }
}

This snippet assumes there are two pre-existing builder instances; swing points to a
SwingBuilder instance, whereas swingx points to a SwingXBuilder instance. Notice how
you must qualify nodes with their respective builders in order to get the expected result.

 Make sure you check out SwingX’s other components. In particular, we’re sure
you’ll find these interesting:

■ JXErrorPane—Useful for displaying errors caused by an exception. Highly con-
figurable.

■ JXTitlePanel—A JPanel replacement that comes with its own title area.
■ JXTable—Row highlighting and sorting are but a few of its features. Some of its

features have been merged into JDK’s JTable.
■ JXHyperLink—A button that behaves like a hyperlink as seen on web pages.

The next builder we’ll cover is also quite popular.

12.3.2 JideBuilder

The announcement of the JIDE Common Layer (JCL) project (http://java.net/projects/
jide-oss/) becoming an open source project back in 2007 surprised many. Up to that
point, JIDE was a closed source component suite developed by JIDE Software. Many
components have been open sourced since the announcement. You’ll find some eas-
ily recognizable components, like split buttons (a component that’s both a button
and a menu), lists that can display check boxes (without the need of a custom ren-
derer), and combo boxes that support autocompletion, just to name a few. Despite
the number of components in the JCL, it only represents about 35 percent of the
components provided by JIDE Software; the rest are available through the purchase
www.it-ebooks.info

http://java.net/projects/jide-oss/
http://java.net/projects/jide-oss/
http://www.it-ebooks.info/

292 CHAPTER 12 Enhanced looks
of a commercial library. JideBuilder, like the previous builders we’ve discussed, pro-
vides a set of components ready to be used in Griffon Views. JideBuilder covers all
components available in JIDE CL; the commercial components aren’t supported by
the builder. But should you need to support any of the commercial components, the
task of adding them to the builder isn’t that difficult: you just need to register a fac-
tory for each component on the builder itself, and of course have a valid JIDE license
available in your settings.

 To install the builder, install its companion plugin. This is a recurring theme, isn’t
it? We did mention that plugins come in handy, and, as you’ll soon see, all officially
supported builders can be installed via plugins. The following command should do
the trick:

$ griffon install-plugin jide-builder

Take a look at the builder’s documentation site (http://griffon.codehaus.org/
JideBuilder) to find out more about the components that are now at your disposal.
We’re sure you’ll find SplitButton useful, especially for an application that requires
enterprise-like behavior. Here are some other components that fall into that category:

■ AutoCompletionComboBox—A combo box that comes with an autocompletion
feature. Options will be selected as you type on the combo box’s input field.

■ TriStateCheckBox—Useful when enabled and disabled settings are not enough.
■ SearchableBar—Adds searching capabilities to tables and trees.
■ DateSpinner—A spinner component that knows how to work with dates.

Figure 12.4 presents an application that show-
cases three JIDE components: checkBoxList, jide-
Button, and jideSplitButton.

 The list on the left in figure 12.4 doesn’t
require additional properties to be set in order to
display a checkbox per entry. Just set the data you
need, and that’s all.

 The first four buttons on the right belong to
the same type, but they’re rendered with different
styles. Hovering over Toolbar gives the button
raised edges, like the ones Toolbox has. Hovering
over Flat doesn’t change its appearance; it
remains flat. Hovering over the fourth button,
Hyperlink, gives the text an underline.

 Button + Menu is the special button we’ve
been talking about: a combination of button and
menu. If you keep the button pressed, a popup
menu appears, as shown in figure 12.4. The code is straightforward, as the following
listing shows.

Figure 12.4 An application built with
JIDE components. The checkBoxList
is at the left. Four JideButtons, each
with a different style applied, are at the
right. The fifth and last button is a
JideSplitButton, a combination of
button and menu.
www.it-ebooks.info

http://griffon.codehaus.org/JideBuilder
http://griffon.codehaus.org/JideBuilder
http://www.it-ebooks.info/

293Quick tour of builder extensions in Griffon
import com.jidesoft.swing.ButtonStyle

data = (1..20).collect([]){"Option $it"} as Object[]
application(title: 'jide-test', pack: true, locationByPlatform: true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 borderLayout()
 panel(border: titledBorder(title: "CheckBoxList"), constraints: WEST) {
 scrollPane(constraints: context.CENTER) {
 checkBoxList(listData: data)
 }
 }
 panel(border: titledBorder(title: "Buttons"), constraints: CENTER) {
 panel{
 gridLayout(cols: 1, rows: 5)

 ["Toolbar", "Toolbox", "Flat", "Hyperlink"].each

➥{ style ->
 jideButton(style, buttonStyle:

➥ButtonStyle."${style.toUpperCase()}_STYLE")
 }
 jideSplitButton("Button + Menu",
 customize: { m ->
 m.removeAll()
 (1..2).each{ m.add "Option $it" }
 })
 }
 }
}

Just pass an array of objects B or a model as data to create CheckBoxLists c.
JideButtons have a style property that controls how they’re rendered to the

screen. You can see a fairly common Groovy trick d used to read a constant field from
a Java class that follows a pattern. In this case, each element on the styles list serves as
the button’s text and as the basis to read a constant field on the ButtonStyle class.

 Creating the menu of a JideSplitButton e is a matter of defining a closure for its
customize property. Notice that all menu items are removed first, and then some are
added. Duplicate menu items will start piling up every time you display the menu if it’s
not done this way. This is due to JideSplitButton’s behavior of keeping a reference
to the menu it created the first time.

 The next builder is sure to catch your eye.

12.3.3 CSSBuilder
Hold on a moment! Is that CSS as in Cascading Style Sheets? As in a technology that’s
typically associated with web content but not desktop? The answer is, happily, yes! Styl-
ing desktop components by means of CSS, or a CSS-like solution, is one of those goals
that desktop developers often look for, besides better threading and binding.

Listing 12.5 JIDE’s CheckBoxList and buttons

Sample date
for list

b

CheckBoxListc

Four
JideButtons

d

jideSplitButtone
www.it-ebooks.info

http://www.it-ebooks.info/

294 CHAPTER 12 Enhanced looks
CSSBuilder is a wrapper on a handful of classes
that belong to the Swing-clarity project (http://
code.google.com/p/swing-clarity/), whose creators
are Ben Galbraith and Dion Almaer, from ajax-
ian.org fame. Those guys used to work on the desk-
top side before riding the Ajax wave revolution.

 The CSS support provided by Swing-clarity is able
to parse CSS2 selectors and colors. On top of Swing-
clarity, CSSBuilder adds support for 71 or more cus-
tom properties that are specific to Java Swing. Fig-
ure 12.5 depicts a trivial application where all the
visual components have received a facelift via CSS.

 In figure 12.5, the left side’s background is
darker than the right. Labels have an italicized style, whereas buttons have a bold
weight. All buttons share the same background color regardless of where they’re
placed. One button and one label have a red foreground color. The text on all com-
ponents is centered. Are you ready to see the CSS for this? The following listing con-
tains all that we just described, in CSS format.

* {
 color: white;
 font-size: 16pt;
 swing-halign: center;
}
#group1 {
 background-color: #303030;
 border-color: white;
 border-width: 3;
}
#group2 {
 background-color: #C0C0C0;
 border-color: red;
 border-width: 3;
}
jbutton {
 font-weight: bold;
 background-color: #777777;
 color: black;
}
jlabel { font-style: italic; }
.active { color: red; }

As you can see, CSSBuilder lets you apply a generic style B to all components. The
custom swing-halign property c is but one of the many Swing-specific properties
you can use; this one, in particular, will center the text of a component. Next, you can
see CSS properties for the left d and right e groups, with background and border
settings. Notice that groups use a selector that starts with a # character; its nature will

Listing 12.6 Swing CSS stylesheet

Figure 12.5 A CSS-styled Griffon
application. Each section has a
border applied, labels use italics,
and buttons have bolded text.
Button 1.2 and Label 2.2 share
red as their foreground color.

General purpose stylesb

Custom CSS propertyc

Left group
styled

Right group
stylee

Button stylef

Label
style

g
Targeted
style

h

www.it-ebooks.info

http://code.google.com/p/swing-clarity/
http://code.google.com/p/swing-clarity/
http://code.google.com/p/swing-clarity/
http://www.it-ebooks.info/

295Quick tour of builder extensions in Griffon
be revealed soon in the view code. Next, you can see button f and label g proper-
ties. They’re defined using another type of selector that matches the class name of the
target component. Last, you can see another selector h that defines a foreground
property with red as the value.

 The view code is simple, as the following listing attests.

application(id: "mainFrame", title: 'css-test',
 pack: true, locationByPlatform: true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 gridLayout(cols: 2, rows: 1)
 panel(name: "group1") {
 gridLayout(cols: 1, rows: 4)
 label("Label 1.1")
 label("Label 1.2")
 button("Button 1.1")
 button("Button 1.2", cssClass: "active")
 }
 panel(name: "group2") {
 gridLayout(cols: 1, rows: 4)
 label("Label 2.1")
 label("Label 2.2", cssClass: "active")
 button("Button 2.1")
 button("Button 2.2")
 }

There isn’t a lot of information here that suggests that this view can be styled with CSS,
other than the obvious cssClass property c. Hold on a second: that property is
applied to a JLabel and a JButton, but those components know nothing about CSS.
Their node factories also know nothing about CSS. How, then, is the application able
to apply the correct style?

 The answer lies in attribute delegates. CSSBuilder registers a custom attribute dele-
gate that intercepts the cssClass attribute and applies the style. Remember when we said
that groups use a special selector? Well now you know how it can be defined B. As a rule,
any node that has a name property defined (this is a standard Swing property, by the way)
will be accessible via the # selector (like #group1 and #group2), whereas any node that
defines a cssClass property will be accessible via the dot (.) selector (like .active).

 There are additional features to be found in CSSBuilder, such as jQuery-like com-
ponent finders using the $() method. Make sure you review the builder’s documenta-
tion (http://griffon.codehaus.org/CSSBuilder) to learn more about all the properties
and methods.

 You must perform two additional tasks before trying this example for yourself:

1 Save the CSS stylesheet in a file with a conventional name and location. Save the
contents of listing 12.6 as griffon-app/resources/style.css. Don’t worry, you can

Listing 12.7 A CSS styled view

Resolves to
named selectorb

Resolves to
class selector

c

Resolves to
named selectorb

Resolves to
class selectorc
www.it-ebooks.info

http://griffon.codehaus.org/CSSBuilder
http://www.it-ebooks.info/

296 CHAPTER 12 Enhanced looks
to use a different name and location if needed, but placing the file there with
that particular name will save you the trouble of additional configuration.

2 Tell the CSS system which elements need to be styled. Look carefully at listing 12.7
and you’ll see that the application node has an id declared with the value main-
Frame. You’ll use this id to instruct the CSS system that the frame and its con-
tents need styling.

Open griffon-app/lifecycle/Startup.groovy in your favorite editor. We’ve
chosen this life cycle script because all views have been constructed by the time
it’s called. This means the mainFrame will be ready to be styled.

Type the following snippet into the script, save it, and run the application:

import griffon.builder.css.CSSDecorator
CSSDecorator.decorate("style", app.builders.'css-test'.mainFrame)

We’ve covered component suites and component styling so far. Let’s jump into graph-
ics and drawings for a change.

12.3.4 GfxBuilder

The JDK comes with a number of drawing primitives and utility classes that are collec-
tively known as Java 2D (http://java.sun.com/docs/books/tutorial/2d). Because every
Swing component is drawn using Java 2D, it makes sense to review what you can do in
Java 2D—if you want to go the long route, that is. Java 2D suffers from the same prob-
lems you’ll encounter in plain Swing code. That’s why GfxBuilder was born in the first
place, just as SwingBuilder was for Swing.

 Based on this information, you can expect GfxBuilder to provide a node for each
of the Java 2D drawing primitives (like Rectangle, Ellipse, and Arc). It also provides
nodes for setting antialiasing (removing those ugly jaggies, http://en.wikipedia.org/
wiki/Jaggies), rendering hints, area operations, and much more. The following list
summarizes the types of nodes that are available to you when using GfxBuilder:

■ Canvas—The surface area where you place your drawings.
■ Standard shape nodes—Rect, circle, arc, ellipse, path.
■ Additional shape nodes—Asterisk, arrow, cross, donut, lauburu, and more; these

shapes come from the jSilhouette (https://github.com/aalmiray/jsilhouette-
geom) shape collection.

■ Standard and custom strokes—Think of strokes as shape borders.
■ Area operations—Add, subtract, intersect, xor.
■ Utility nodes—Such as color, group, clip, image.

What really makes using GfxBuilder a better experience than just plain Java 2D (other
than the use of Groovy features) is that it comes with a scene graphs baked right in.
Scene graphs allow graphics to be defined in retained mode, whereas Java 2D works in
direct mode. Direct mode means that graphics primitives will be drawn to the screen as
soon as the code that defines them is processed. Retained mode means that a scene
graph is created and a node is assigned to each drawing instruction. The scene graph
www.it-ebooks.info

http://java.sun.com/docs/books/tutorial/2d
http://en.wikipedia.org/wiki/Jaggies
http://en.wikipedia.org/wiki/Jaggies
https://github.com/aalmiray/jsilhouette-geom
https://github.com/aalmiray/jsilhouette-geom
http://www.it-ebooks.info/

297Quick tour of builder extensions in Griffon
controls when the graphics should be rendered to the screen and when they should
be updated. This relieves you of the burden of keeping track of areas that need to be
redrawn or updated—the scene graph does it for you.

 Figure 12.6 is a computerized rendition of what many of us drew as children at ele-
mentary school: a red-roofed house sitting on a patch of green grass, with the sun
shining over it and a clear blue sky.

 We know—it’s a bit childish. It will surely never grace the halls of a respected art
gallery, but one can dream, right? Still, this picture is a composition of geometric
shapes, colors, and strokes. How complicated can it be? We’ll let the code speak for
itself in the next listing.

application(title: 'gfx-test', pack: true, locationByPlatform: true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]){
 canvas(preferredSize: [300, 300]) {
 group {
 antialias true
 background(color: color(r: 0.6, g: 0.9, b:0.8))
 rect(y: 230, w: 300, h: 70, f: color(g: 0.8), bc: color(g:0.5)){
 wobbleStroke()
 }
 rect(x: 75, y: 150, w: 150, h: 100, f: 'white')
 triangle(x: 55, y: 150, w: 190, h: 50, f: 'red')
 rect(x: 130, y: 190, w: 40, h: 60, f: 'brown')
 circle(cx: 50, cy: 50, r: 30, f: 'yellow', bc: 'red')
 }
 }
}

That’s pretty straightforward, isn’t it? A background color turns out to be the blue sky.
There’s a patch of green grass, complete with some grass leaves (the wobbly stroke).

Listing 12.8 Drawing a happy house with Groovy

Figure 12.6 A simple drawing made with geometric
objects. There are three rectangles, one triangle, and
one circle, with different colors and strokes applied.

Blue sky
www.it-ebooks.info

http://www.it-ebooks.info/

298 CHAPTER 12 Enhanced looks
The house is composed of a white wall, a red roof, and a brown door. Last, the sun
shines over the whole scene.

 Perhaps it’s lost in the code’s simplicity, but notice that Swing nodes (application
and canvas) and graphics nodes (group, rect, circle, and so on) merge in a seamless
way. There’s no artificial bridge between them. We know we’ve said this a few times
already, but this is precisely the kind of power that Griffon’s CompositeBuilder puts at
your fingertips.

 Although there are other features to be found in
GfxBuilder (which could fill a chapter of their own), we
must keep things simple. Suffice it to say that every gfx
node is also an observable bean, and almost every prop-
erty triggers a PropertyChangeEvent, which means
you’ll be able to use binding with them. Another pow-
erful feature is the ability to define your own nodes
via node composition, and not just by subclassing a
node class.

 Figure 12.7 is a remake of an example shown in
Chet Haase and Romain Guy’s Filthy Rich Clients book
(http://filthyrichclients.org; highly recommended if
you want to learn the secrets for good-looking and
well-behaving applications). It’s a sphere created from
circles and gradients alone; in other words, 2D primi-
tives giving the illusion of a 3D object.1

 This time the code is partitioned in two: the view and a custom node that knows
how to draw spheres. Let’s look at the view first (see the next listing), because it’s the
simplest of the two.

 application(title:'sphere', pack: true, locationByPlatform:true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 canvas(preferredSize: [250, 250]) {
 group {
 antialias true
 background(color: color('white'))
 customNode(SphereNode, cx: 125, cy: 125)
 }
 }
}

1 Of course, everything you see in this book and your screen are 2D primitives. Still, the sphere looks like you
can almost grab it.

Listing 12.9 The SphereView view script

Figure 12.7 A sphere drawn with
nothing more than two circles and
four gradients

Custom node
definition

b

www.it-ebooks.info

http://filthyrichclients.org
http://www.it-ebooks.info/

299Quick tour of builder extensions in Griffon
As you can see, the view code is similar to the first GfxBuilder example. This time,
there’s a new node B used to render a sphere object. The customNode node takes
either a class or an instance of CustomNode: in this case SphereNode, whose entire def-
inition is found in the next listing.

import java.awt.Color
import griffon.builder.gfx.Colors
import griffon.builder.gfx.GfxBuilder
import griffon.builder.gfx.GfxAttribute
import griffon.builder.gfx.DrawableNode
import griffon.builder.gfx.CustomGfxNode

class SphereNode extends CustomGfxNode {
 @GfxAttribute(alias="r") double radius = 90
 @GfxAttribute double cx = 100
 @GfxAttribute double cy = 100
 @GfxAttribute Color base = Colors.get("blue")
 @GfxAttribute Color ambient = Colors.get(red: 6, green: 76, blue: 160,
 ➥alpha: 127)
 @GfxAttribute Color specular = Colors.get(r: 64, g: 142, b: 203, a: 255)
 @GfxAttribute Color shine = Colors.get("white")

 SphereNode() {
 super("sphere")
 }

 DrawableNode createNode(GfxBuilder builder) {
 double height = radius * 2
 builder.group(borderColor: 'none') {
 circle(cx: cx, cy: cy+radius,
 ➥radius: radius, sy: 0.3, sx: 1.2) {
 radialGradient {
 stop(offset: 0.0f, color: color('black'))
 stop(offset: 0.6f, color: color('black').derive(alpha: 0.5))
 stop(offset: 0.9f, color: color('black').derive(alpha: 0))
 }
 }

 circle(cx: cx, cy: cy, radius: radius) {
 multiPaint {
 colorPaint(color: base)
 radialGradient(radius: radius) {
 stop(offset: 0.0f, color: ambient)
 stop(offset: 1.0f, color: rgba(alpha: 204))
 }
 radialGradient(cy: cy + (height*0.9),
 fy: cy + (height*1.1)+20,
 radius: radius) {
 stop(offset: 0.0f, color: specular)
 stop(offset: 0.8f, color: specular.derive(alpha: 0))
 transforms{ scale(y: 0.5) }
 }
 radialGradient(fit: false, radius: height/1.4,
 fx: radius/2, fy: radius/4){

Listing 12.10 SphereNode definition

Must extend from
CustomNode

b

Define observable
propertyc

Must implement
with custom
drawing code

d

Define shadow’s
circle and gradient

e

Define sphere’s
circle and
gradientsf
www.it-ebooks.info

http://www.it-ebooks.info/

300 CHAPTER 12 Enhanced looks
 stop(offset: 0.0f, color: shine.derive(alpha:0.5))
 stop(offset: 0.5f, color: shine.derive(alpha:0))
 }
 }
 }
 }
 }
}

These are the code highlights. First, every custom node must extend the CustomGfx-
Node class B. Second, creating observable properties on custom nodes is similar to
creating observable properties on Model classes c. The only difference is the usage of
@GfxAttribute instead of @Bindable. Third, every custom node must have drawing
code that renders the node d; you’ll find that you can use the same nodes as if they
were regular drawings—even other custom nodes! Then the gradients are created at e
and f. In particular, the second of these f shows a unique feature: multipaints. If it
were not for multipaints, which are a series of paint instructions all applied to the
same shape, you’d have to define a circle for each gradient. This would complicate
matters, as some of those gradients are scaled and transformed according to the base
circle. It’s easier to calculate the transformations this way.

12.3.5 Additional builders

There are more builders and plugins than the ones we just explained, and it’s possible
that more builders have been added since this book saw print. You’ll find a detailed
list of available builders at http://griffon.codehaus.org/Builders.

 A quick survey of the builders that were left out of the book’s scope follows.

FLAMINGOBUILDER

The Flamingo (http://java.net/projects/flamingo/) component suite was created
and is maintained by Kirill Grouchnikov (www.pushing-pixels.org)—the same master-
mind behind the Substance look and feel project that makes Swing applications look
great. Perhaps the most interesting component found in this suite is JRibbon, a pure
Java implementation of the Ribbon component found in Microsoft Office 2007.
There’s also SVG support for creating icons and other goodies that complement the
Ribbon component.

MACWIDGETSBUILDER

MacWidgets (http://code.google.com/p/macwidgets) is a project started by Kenneth
Orr, whose aim is to provide components that follow Apple’s Human Interface Guide-
lines. They’re 100 percent Java but blend seamlessly with Apple’s look and feel, even
when not running on Apple’s OS X! That’s right—with MacWidgets you can create an
application that looks like a native OS X application but runs on Windows or Linux.
How crazy is that? Amazing!

TRIDENTBUILDER

Trident (http://kenai.com/projects/trident/pages/Home) is a general-purpose ani-
mation library created and maintained by the powerhouse that is Kirill Grouchnikov.
www.it-ebooks.info

www.pushing-pixels.org
http://griffon.codehaus.org/Builders
http://java.net/projects/flamingo/
http://code.google.com/p/macwidgets
http://kenai.com/projects/trident/pages/Home
http://www.it-ebooks.info/

301Summary
Trident takes off where Chet Haase’s Timing Framework ends, and then adds many
more things. Trident follows Timing Framework in spirit, but it isn’t based on the lat-
ter’s codebase at all. Kirill has put a lot of effort into this animation library. It’s small
and practical, to the point that it’s now the one used by both Substance and Flamingo
to drive their animation needs. Be sure to follow Kirill’s blog and watch some of the
videos related to Trident, Flamingo, and Substance that he has created over the years
(http://vimeo.com/kirillcool).

SWINGXTRASBUILDER

This is a collection of projects that don’t warrant a builder of their own because their
individual sets of components are rather small. Here you’ll find xswingx, which we dis-
cussed earlier in this chapter. There’s also L2FProd Commons (http://l2fprod.com/
common), providing task panes, an outlook bar, and a properties table. SwingX’s task
panes are based on L2FProd’s—the code was contributed from one project to the
other. There’s also Balloon tip (http://java.net/projects/balloontip/). If you ever
wanted to have a friendly pop-up like the ones you see appearing on your operating
system’s task bar, then the components provided by Balloon tip are the way to make
it happen.

ABEILLEFORM BUILDER

This builder was discussed briefly in chapter 4. It’s the workhorse behind the Abeille
Forms plugin. You may recall that Abeille Forms Designer is an open source alterna-
tive for designing forms and panels that relies on JGoodies FormLayout or the JDK’s
GridBagLayout to place components on a Swing container.

12.4 Summary
In this chapter, you learned how to enhance a view script. You can do it by adding new
nodes, for which there are also a number of alternatives: there’s the direct approach
of registering a node factory on a view script; then there’s the more reusable option of
using an implicit addon, which has the advantage of reusable nodes across scripts; and
finally, there’s the “make your own builder” option, which gives you the advantage of
using nodes outside of Griffon applications.

 Then we reviewed the different strategies FactoryBuilderSupport exposes to cus-
tomize the node build cycle without needing to modify existing factories. There are
four types of delegates that come into play at specific points of the build cycle. Each
one can complement the others, depending on what your needs are.

 Last, we surveyed the list of extensions in the form of builders. There are many
third-party component suites out there. These builders reduce the time you’d have to
spend hunting for custom components; they also reduce your learning curve, because
they follow the same conventions as SwingBuilder.

 In the next chapter, we’ll unite Griffon and Grails to build a Griffon Bookstore
application that uses Grails web services as a persistence mechanism.
www.it-ebooks.info

http://vimeo.com/kirillcool
http://l2fprod.com/common
http://l2fprod.com/common
http://java.net/projects/balloontip/
http://www.it-ebooks.info/

Griffon in front,
Grails in the back
It’s hard to find a web developer these days who hasn’t come across an Ajax- or RIA-
powered website. These technologies have become so ubiquitous that we can’t go
back to the times when Web 2.0 didn’t exist. There are myriad options for building
a web application that has Ajax built in or that presents a rich interface, in both the
frontend and backend tiers. Grails happens to be one of the front runners when
dealing with the JVM.

 We’ve mentioned Grails a few times already in this book. If you’re a developer
working on web applications and you haven’t given Grails a try, you owe it to your-
self to do so. We can guarantee you won’t be disappointed.

 Grails is a full-stack web development platform whose foundations lie in Spring
and Hibernate, so it shouldn’t be hard for a Java developer to pick it up and get to
work. But what really makes it revolutionary is its choice of default development
language: Groovy, the same as in Griffon.

 Grails has another ace up its sleeve: a ready-for-business command tool that’s
also extensible via plugins. It’s thanks to this plugin system that building a Grails

This chapter covers
■ Building a Grails server application
■ Building a Griffon UI
■ Connecting Grails and Griffon via REST
302

www.it-ebooks.info

http://www.it-ebooks.info/

303Getting started with Grails
application is a breeze. Need a way to search through your data? Install the Searchable
plugin. Your requirements ask for CouchDB instead of a traditional SQL store? No
problem, install the CouchDB plugin. What’s that? You need to protect certain parts
of an application using security realms? The Shiro plugin is here to help. You get the
idea.

 Out of the immense set of Grails plugins (by the team’s current count, it’s over
500), you’ll find a good number that deal with Ajax and RIAs. They’re pretty good.
But no matter which one you pick, there will be times when you require a feature that
can’t be implemented because of a browser limitation. That’s when it’s time to look
outside of the browser window at the space that allows you to run the browser. Yes,
that’s your computer’s desktop environment. This is where Griffon comes in.

 In this chapter, you’ll see how to take advantage of Grails’ powerful features to
build a backend, in literally minutes, followed up by building a frontend with Griffon.
The trick is finding a proper way to communicate between the two ends. We’ll show
you one of the many options you can use to connect a Grails server application with a
Griffon desktop application.

 First, though, you need to set up your environment, starting with Grails.

13.1 Getting started with Grails
Setting up Grails is as easy as setting up Griffon:

1 Point your browser to http://grails.org/Download, pick the latest stable release
zip, and unpack it in the directory of your choice.

2 Set an environment variable called GRAILS_HOME, pointing to your Grails
installation folder.

3 Add GRAILS_HOME/bin to your path. In OS X and Linux this is normally done
by editing your shell configuration file (such as ~/.profile) by adding the fol-
lowing lines:

export GRAILS_HOME=/opt/grails ex-
port PATH=$PATH:$GRAILS_HOME/bin

In Windows you’ll need to go into the System Properties window to define a
GRAILS_HOME variable and update your path settings.

Done? Perfect. You can verify that Grails has been installed correctly by typing grails
help in your command prompt. This should display a list of available Grails com-
mands, similar to the following:

$ grails help
| Environment set to development.....

Usage (optionals marked with *):
grails [environment]* [target] [arguments]*

Examples:
grails dev run-app
grails create-app books
www.it-ebooks.info

http://grails.org/Download
http://www.it-ebooks.info/

304 CHAPTER 13 Griffon in front, Grails in the back
This will confirm that your GRAILS_HOME has been set correctly and that the grails
command is available on your path.

 With installation out of the way, you’re ready to start building a Grails application.

13.2 Building the Grails server application
We’ll pick the familiar book/author domain because of its simplicity. Creating a Book-
store application is done with a simple command:

$ grails create-app bookstore

This command will create the application’s structure and download a minimum set of
plugins if you’re running Grails for the first time.

 That command looks oddly similar to Griffon’s, doesn’t it? Remember that Griffon
was born as a fork of the Grails codebase. You’ll put that claim to the test now. Besides
some unique concepts to Grails and Griffon, almost all commands found in both
frameworks provide the same behavior.

 You can run the application now, but because it’s empty you won’t see anything of
use. Next you’ll fill it up a bit.

13.2.1 Creating domain classes

Domain classes reveal some of the differences between Grails and Griffon. One of the
big differences is that Grails domain classes have access to Grails’ object relational
mapping (GORM) implementation, and Griffon doesn’t provide that functionality
by default.

 Create two domain classes: Book and Author. Make sure you’re in the application’s
directory before invoking the following commands:

$ grails create-domain-class Author
$ grails create-domain-class Book

This set of commands creates a pair of files under grails-app/domain/bookstore, aptly
named Author.groovy and Book.groovy. These two classes each represent a domain
object of your domain model. They both are empty at the moment. By contrast, Grif-
fon doesn’t support domain classes out of the box. This is a concern that’s left to plug-
ins, as domain classes aren’t a generic attribute of all Griffon applications.

 Go ahead and open the two classes in your favorite editor, or, if you prefer, in your
favorite IDE. Grails isn’t picky and will gladly work with any IDE or editor you throw at
it. Make sure that the contents of the Author and Book domain classes match the ones
in the following listings.

 First, let’s look at the Grails Author domain (grails-app/domain/bookstore/
Author.groovy):

package bookstore
class Author {
 static hasMany = [books: Book]
 static constraints = {
 name(blank: false)

One-to-many
relationship
www.it-ebooks.info

http://www.it-ebooks.info/

305Building the Grails server application
 lastname(blank: false)
 }

 String name
 String lastname

 String toString() { "$name $lastname" }
}

Now let’s look at the Grails Book domain (grails-app/domain/bookstore/Book.groovy):

package bookstore
class Book {
 static belongsTo = Author
 static constraints = {
 title(unique: true)
 }

 String title
 Author author

 String toString() { title }
}

Without going into much detail, the Author and Book classes define a pair of entities
that can be persisted to the default data store. If this is the first time you’ve encoun-
tered a Grails domain class, don’t worry, they don’t bite. Besides the simple properties
in each class, you’ll notice that there’s a one-to-many relationship from Author to
Book. You could make it a many-to-many relationship to more closely reflect the real
world, but let’s keep things simple for the moment.

 There’s another step that must be performed before you attempt to run the appli-
cation for the first time. You must expose the domain classes to the user in some way.

13.2.2 Creating the controllers
With a framework other than Grails, you’d need to write HTML or use some other
templating mechanism to expose your domain classes. With Grails you can let the
framework take over, as long as you stick to the conventions. If you only create a pair
of controller classes, one per domain class, nothing else needs to be done. Hurray
for scaffolding!

 Go back to your command prompt, and type the following:

$ grails create-controller Author
$ grails create-controller Book

Locate each controller under grails-app/controllers/bookstore and edit it, carefully
copying the following code into the appropriate file.

 First, here’s the Grails Author controller (grails-app/controllers/AuthorController
.groovy):

package bookstore
class AuthorController {
 static scaffold = true
}

www.it-ebooks.info

http://www.it-ebooks.info/

306 CHAPTER 13 Griffon in front, Grails in the back
Next, the Grails Book controller (grails-app/controllers/BookController.groovy):

package bookstore
class BookController {
 static scaffold = true
}

That’s all you need for now. Don’t be fooled, though—there’s a full-blown Spring
MVC-powered component behind each of these controllers.

 Perfect. You’re good to go.

13.2.3 Running the Bookstore application
Run the application with the following command:

$ grails run-app

After a few seconds, during which the command compiles and packages the application,
you’ll be instructed to visit the following address: http://localhost:8080/bookstore. Use
your favorite browser to navigate to that URL. You should see a page that looks like the
one in figure 13.1.

Figure 13.1 Bookstore webpage
www.it-ebooks.info

http://localhost:8080/bookstore
http://www.it-ebooks.info/

307To REST or not
You’ll see a default page listing some internal details of the application, like the cur-
rently installed plugins and their versions. You’ll also notice a pair of links that point
to the controller you wrote.

 Click the AuthorController link. You’re now on the starting page for all create, read,
update, and delete (CRUD) operations that affect an author. How is this possible? This is
the power of conventions. When you instructed each controller that a domain class
should be scaffolded, it generated (at compile time) the minimum required code and
templates to achieve basic CRUD operations on that specific domain class.

 You can play around with authors and books now. Try creating and removing
some. You may end up with a screen that resembles figure 13.2.

 Now that you’ve mastered the basics, let’s step it up a notch and expose the
domain classes to the outside world using a REST API. This is where picking up a good
remoting strategy to interface with the Griffon frontend pays off.

13.3 To REST or not
There’s no shortage of options for exposing data to the wild. You could go with a
binary protocol like RMI or Hessian, or you could pick a SOAP-based alternative. We’d
argue that a REST style is perhaps the simplest one. It doesn’t hurt that many Web 2.0
sites have chosen this style (or variants of it) to give developers access to the services
they provide. As you’ll see in just a few moments, exposing domain classes in a REST-
ful way with Grails is a piece of cake.

13.3.1 Adding controller operations

Love it or hate it, XML is a popular choice among Java developers for externalizing data.
Another format that gained momentum in Web 2.0 is JSON. There are a couple of ways to
produce and consume both formats in Grails, but let’s pick JSON for its simplicity.

Figure 13.2 The Bookstore application showing a list of two authors that were
created by clicking on the New Author link and filling in the generated form
www.it-ebooks.info

http://www.it-ebooks.info/

308 CHAPTER 13 Griffon in front, Grails in the back
What you want to do is expose each domain class with three operations:

■ List—Returns a collection of all instances of the domain available in the
data store

■ Show—Returns a single instance that can be found with a specific identifier
■ Search—Returns a collection of all domain instances that match certain criteria

All the results will be returned in JSON format.
 Go back to AuthorController, and make the necessary edits so that it looks like

the following listing.

package bookstore
import grails.converters.JSON
class AuthorController {
 static defaultAction = 'list'

 def list = {
 render(Author.list(params) as JSON)
 }

 def show = {
 def author = Author.get(params.id)
 if(!author) {
 redirect(action: 'list')
 } else {
 render(author as JSON)
 }
 }

 def search = {
 def list = []
 if(params.q) {
 list = Author.findAllByNameLike("%${params.q}%")
 if(!list) list = Author.findAllByLastnameLike("%${params.q}%")
 }
 render(list as JSON)
 }
}

Gone is the default scaffolding, which has been replaced by specific actions that
match the operations you want to expose to the outside world. The code is pretty
straightforward, but you’ll notice that there are calls to static methods on the Author
class that aren’t defined. These methods are added by the framework.

 Remember we spoke about Groovy’s metaprogramming capabilities? Well, here’s
proof that they’re put to good use. All Grails domain classes possess the ability to
invoke dynamic finder methods that magically match their own properties. For exam-
ple, in the search action, you can look up all authors using a like query on its name or
lastname property. These dynamic finder methods closely follow the operators and
rules that you find in SQL.

Listing 13.1 RESTful implementation of AuthorController

List
action

Show
action

Search
action
www.it-ebooks.info

http://www.it-ebooks.info/

309To REST or not
 One last point is that all results are returned in JSON format by using a type conver-
sion. Grails will figure out the proper content type to send to the client by inspecting
the format and data.

 The updated BookController class looks similar to the author class, as shown in
the next listing.

package bookstore
import grails.converters.JSON
class BookController {
 static defaultAction = 'list'

 def list = {
 def list = Book.list(params)
 render(list as JSON)
 }

 def show = {
 def book = Book.get(params.id)
 if(!book) {
 redirect(action: 'list')
 } else {
 render(book as JSON)
 }
 }

 def search = {
 def list = []
 if(params.q) {
 list = Book.findAllByTitleLike("%${params.q}%")
 }
 render(list as JSON)
 }
}

Here, too, you’ll find a dynamic finder on the Book class B. This one operates on the
book’s title property. Summarizing the added behavior, you can search authors by
name and lastname, and books can be searched by title. Both domain instances can
be listed in their entirety and looked up by a particular identifier.

 You must perform one final change before you can test the application.

13.3.2 Pointing to resources via URL

The REST style states that resources (domain info) should be available via a URL nam-
ing convention. There are many variations on the original guidelines, because REST
doesn’t impose strict rules on the conventions, so we’ll pick one that’s easily recogniz-
able. The root of the URL path must be the application name; Grails takes care of that.
The next element in the path will be the name of the domain class, followed by the
action you want to invoke, with optional parameters. Here are some examples for
the Author domain:

Listing 13.2 RESTful implementation of BookController

Search
action

b

www.it-ebooks.info

http://www.it-ebooks.info/

310 CHAPTER 13 Griffon in front, Grails in the back
/author -> default action, which in our case lists all entities
/author/search -> calls the search action on authors
/author/42 -> fetches the author with id = 42

With these examples in mind, look for a file named UrlMappings.groovy located in
grails-app/conf. Copy the contents of the following snippet into that file:

class UrlMappings {
 static mappings = {
 "/author/"(controller: 'author', action: 'list')
 "/author/search"(controller: 'author', action: 'search')
 "/author/list"(controller: 'author', action: 'list')
 "/author/$id"(controller: 'author', action: 'show')
 "/book/"(controller: 'book', action: 'list')
 "/book/search"(controller: 'book', action: 'search')
 "/book/list"(controller: 'book', action: 'list')
 "/book/$id"(controller: 'book', action: 'show')
 "/"(view:"/index")
 "500"(view:'/error')
 }
}

Given that you’ll use the application as the data provider for the desktop application,
it makes sense to start with some predefined domain instances, don’t you think?
Locate BootStrap.groovy, also located in grails-app/conf, and fill it with the con-
tents of the following listing.

import bookstore.Author
import bookstore.Book
class BootStrap {
 def init = { servletContext ->
 def authors = [
 new Author(name: 'Octavio', lastname: 'Paz'),
 new Author(name: 'Gabriel', lastname: 'Garcia Marquez'),
 new Author(name: 'Douglas R.', lastname: 'Hofstadter')
]

 def books = [
 new Book(title: 'The Labyrinth of Solitude'),
 new Book(title: 'No One Writes to the Coronel'),
 new Book(title: 'Goedel, Escher & Bach'),
 new Book(title: 'One Hundred Years of Solitude')
]

 authors[0].addToBooks(books[0]).save()
 authors[1].addToBooks(books[1]).save()
 authors[2].addToBooks(books[2]).save()
 authors[1].addToBooks(books[3]).save()
 }
}

You can appreciate a pair of new methods B that you needn’t write; the compiler and
the Grails framework can inject them for you.

Listing 13.3 Adding some initial data to the application via Bootstrap.groovy

Injected
methods

b

www.it-ebooks.info

http://www.it-ebooks.info/

311Building the Griffon frontend
 You can run the application now, but don’t use your browser to navigate to the var-
ious URLs. Use a command-line browser like curl or Lynx, which makes for quicker
debugging, or you could fire up groovysh if you don’t have a command-line browser.

 For example, the following command

$ curl http://localhost:8080/bookstore/author/1

results in the following output (formatted here for clarity):

{
 "class":"bookstore.Author",
 "id":1,
 "books":[{"class":"Book","id":1}],
 "lastname":"Paz",
 "name":"Octavio"
}

This command

$ curl http://localhost:8080/bookstore/book/search?q=Solitude

should give you the following results (also formatted for clarity):

[
 {
 "class":"bookstore.Book",
 "id":1,
 "author":{"class":"Author","id":1},
 "title":"The Labyrinth of Solitude"
 },{
 "class":"bookstore.Book",
 "id":4,
 "author":{"class":"Author","id":2},
 "title":"One Hundred Years of Solitude"
 }
]

TIP We highly recommend you pick up a Grails book, like the excellent
Grails in Action by Glen Smith and Peter Ledbrook (Manning, 2009), if you
found any of the steps so far to be a bit confusing. Those guys packed a lot of
tips and tricks into that book, and it can help you get up to speed with Grails
in no time.

You’re done with the server side of the application. Time to look at the other half.

13.4 Building the Griffon frontend
You’re back on familiar ground. Your target is to build an application that resembles
what figures 13.3 and 13.4 depict. The first shows a tabbed view of the application’s
domain classes.

 Figure 13.4 displays an elaborate search screen. A text box captures the search
string, a check box specifies which domain the search will act upon, and a table dis-
plays the search results.
www.it-ebooks.info

http://www.it-ebooks.info/

312 CHAPTER 13 Griffon in front, Grails in the back
Let’s get started. First create an application named bookclient—you already know
the drill:

$ griffon create-app bookclient

This gives you a shell of an application. Now you’ll spruce up the views.

13.4.1 Setting up the view
Swing is a vast toolkit—you know that already. You can do many things with it, or you can
frustrate yourself by using it alone. The Swing classes found in the JDK are good as a start-
ing point, but they fall short of providing a modern user experience. And let’s not talk
about layouts, especially GridBagLayout (http://madbean.com/anim/totallygridbag).
You’ll install a few plugins right away.

 MigLayout (http://miglayout.com) is the first on the list. It’s been said that using
this layout is like using CSS to position elements on a page.

 Next on the list is Glazed Lists (http://publicobject.com/glazedlists), which simpli-
fies working with lists, tables, and trees. It does so by providing a missing key from the
JDK’s List class: a List that produces events whenever its contents change.

 You can install all of these plugins with the following commands:

$ griffon install-plugin miglayout
$ griffon install-plugin glazedlists

While you’re installing plugins, you can install one that will allow you to query the
server side via a REST client. The plugin is aptly named rest:

$ griffon install-plugin rest

Figure 13.3 A tabbed view of all instances of
Author domain classes after querying the Grails
backend. The Books tab does the same for Book
domain classes.

Figure 13.4 The Search
tab for the Bookclient
application. Users can
search the bookstore
backend by querying
Authors or Books.
www.it-ebooks.info

http://madbean.com/anim/totallygridbag
http://miglayout.com
http://publicobject.com/glazedlists
http://www.it-ebooks.info/

313Building the Griffon frontend
Now let’s turn back to the view script and modify it to make it look like the screens
shown in figures 13.3 and 13.4. The next listing contains all the code that you need to
write to get the UI working.

package bookclient
makeTableTab = { params ->
 scrollPane(title: params.title) {
 table {
 def tf = defaultTableFormat(columnNames: params.columns)
 eventTableModel(source: params.source, format: tf)
 installTableComparatorChooser(source: params.source)
}}}

application(title: 'Bookclient', size: [480, 300],
 locationByPlatform: true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 tabbedPane {
 makeTableTab(title: 'Authors', columns: ['Name', 'Lastname'],
 source: model.authors)
 makeTableTab(title: 'Books', columns: ['Title'],
 source: model.books)
 panel(title: 'Search') {
 migLayout(layoutConstraints: 'fill')
 textField(columns: 30, text: bind('query', target: model))
 button('Search', actionPerformed: controller.search,
 enabled: bind{ model.enabled }, constraints: 'wrap')
 buttonGroup(id: 'choice')
 radioButton('Authors', buttonGroup: choice,
 selected: true, constraints: 'wrap',
 actionCommand: BookclientModel.AUTHORS)
 radioButton('Books', buttonGroup: choice, constraints: 'wrap',
 actionCommand: BookclientModel.BOOKS)
 label(text: bind{ model.status },
 constraints: 'span 2, center, wrap')
 scrollPane(constraints: 'span 2, growx, growy') {
 table {
 def columns = ['Title', 'Name', 'Lastname']
 def tf = defaultTableFormat(columnNames: columns)
 eventTableModel(source: model.results, format: tf)
 installTableComparatorChooser(source: model.results)
}}}}}

Recall that you can define any Groovy construct within a view script, because a view
script is also a valid Groovy script. That’s why you’ll spot a closure at the beginning B.
This closure will be used to build the first two tabs d, as their construction is identi-
cal; they only differ in the data source that feeds them. The third tab is a bit more
elaborate than the other two.

Listing 13.4 The view in all its glory

Reusable table
tab-building code

b
Nodes
contributed
by Glazed
Lists

c

Create
tab

d

Nodes
contributed
by Glazed
Lists

c

www.it-ebooks.info

http://www.it-ebooks.info/

314 CHAPTER 13 Griffon in front, Grails in the back
 Every child node of a tabbedPane must have a title property; that’s how the
tabbedPane knows what name should be used for the tab. You can easily spot the title
properties on each tab and their values (Authors, Books, and Search). The first and
second tabs make use of nodes provided by the Glazed Lists plugin c.

 These nodes build a TableModel out of some sort of data source (which will be
revealed to be a List that produces events, also from Glazed Lists). The model is then
added to its parent table. Finally, a sorting element is added to the table. Clicking on
the table headers will sort the data accordingly.

 Onward to the third tab. The main node is a panel whose title is Search. Inside this
panel is a migLayout definition. All elements inside the panel will be attached to it using
MigLayout’s settings. The six visible elements inside this panel are listed in table 13.1.

The second table also relies on nodes c provided by the Glazed Lists support found
in Griffon. These nodes operate by following a naming convention to name the prop-
erties in each element of the source list that feeds the table. We’ll soon come back to
how these conventions are put to work. For now, make a mental note of the names of
the columns used to build each of the tableFormat nodes.

 You can’t run the application just now. You’re missing a few properties on the model
and the definition of the search action on the controller. You’ll get a nasty runtime
exception if you attempt running the application at this stage. You’ll fill those holes next.

13.4.2 Updating the model

You might have noticed in listing 13.4 that the view expects a couple of properties to
be available in the model. A pair of constants must be defined in it as well. Some of
those properties are expected to be some kind of list. But not any list implementation
will do—you need a special one. An observable list, to be exact.

 We mentioned earlier that the Glazed Lists base building block is a List imple-
mentation that can trigger events whenever its contents change in some way. Those
events aren’t only triggered when an element is added or removed from the list, but
also when an existing element is updated internally. How cool is that?

 The following listing shows all the code that you must write to get the model ready
for this application.

Table 13.1 The Search tab’s visible elements

Element Purpose

Text field The text property is bound to a model property named query.

Button Triggers the controller’s search action.

Two radio buttons Specifies on which domain the search should be performed.

Label The text is bound to a model property named status.

Table wrapped in a scrollPane Displays search results.
www.it-ebooks.info

http://www.it-ebooks.info/

315Querying the Grails backend
package bookclient
import groovy.beans.Bindable
import griffon.transform.PropertyListener
import ca.odell.glazedlists.EventList
import ca.odell.glazedlists.BasicEventList
import ca.odell.glazedlists.SortedList
class BookclientModel {
 @PropertyListener(enabler)
 @Bindable String query
 @Bindable String status = ''
 @Bindable boolean enabled = false

 static final AUTHORS = 'author'
 static final BOOKS = 'book'

 EventList authors = new SortedList(new BasicEventList(),
 {a, b -> a.lastname <=> b.lastname} as Comparator)
 EventList books = new SortedList(new BasicEventList(),
 {a, b -> a.title <=> b.title} as Comparator)
 EventList results = new SortedList(new BasicEventList(),
 {a, b -> a.title <=> b.title} as Comparator)

 private enabler = { evt ->
 enabled = evt.newValue?.trim()?.size() ? true : false
 }
}

The model contains three lists, as expected. They will hold authors, books, and the
search results c. There are also other properties needed for the bindings. You might
remember the @PropertyListener annotation from previous chapters. If not, here’s a
quick reminder of its function: it’s an AST transformation that generates a Property-
ChangeListener around a closure or a closure field. In this case b, it turns out to be
a private field found on the same class. Whenever the query property changes value,
the enabler listener will be called.

 You’re almost done. The next and last step is to finish up the logic.

13.5 Querying the Grails backend
You’ve reached the point where you can connect the Griffon frontend with the Grails
backend. It’s the job of the controller (and perhaps of a helper service) to send REST
calls to Grails in order to get a list of each domain class type and to execute the search
queries that the user types.

 Let’s encapsulate all the network-related code—the REST calls—in a service.

13.5.1 Creating a service
Implementing the REST calls in a service allows you to keep the controller as a simple
entity that collects data from the model and updates the view with new data obtained
from the service and saved once more in the model. Type the following at your com-
mand prompt:

$ griffon create-service bookstore

Listing 13.5 The model with all the properties required by the view

Shortcut for
change listenersb

Observable
Glazed
Lists

c

www.it-ebooks.info

http://www.it-ebooks.info/

316 CHAPTER 13 Griffon in front, Grails in the back
This will create a service class named BookstoreService inside griffon-app/services/
bookstoreclient (see the following listing). But you knew this already, didn’t you?
For a quick refresh on Griffon services, feel free to look back at chapter 5.

package bookclient
class BookstoreService {
 List searchAuthors(model) {
 withRest(id: 'bookstoreREST') {
 def response = get(path: 'author/search', query: [q: model.query])
 response.data.inject([]) { list, author ->
 author.books.id.collect(list) { bookId ->
 def book = model.books.find{it.id == bookId}
 [title: book.title, name: author.name, lastname: author.lastname]
 }}}}

 List searchBooks(model) {
 withRest(id: 'bookstoreREST') {
 def response = get(path: 'book/search', query: [q: model.query])
 response.data.collect([]) { book ->
 def author = model.authors.find{it.id == book.author.id}
 [title: book.title, name: author.name, lastname: author.lastname]
 }}}

 void populateModel(model) {
 withRest(id: 'bookstoreREST',
 uri: 'http://localhost:8080/bookstore/'){
 def response = get(path: 'author')
 def authors = response.data.collect([]) { author ->
 [name: author.name, lastname: author.lastname, id: author.id]
 }
 execSync { model.authors.addAll(authors) }

 response = get(path: 'book')
 def books = response.data.collect([]) { book ->

Listing 13.6 Bookstore client with all required REST calls

Figure 13.5 Griffon Bookstore client calling
Grails Bookstore

Reuse REST
client

b

Reuse REST
client

b

Set REST client
for first time

c

www.it-ebooks.info

http://www.it-ebooks.info/

317Querying the Grails backend
 [title: book.title, id: book.id]
 }
 execSync { model.books.addAll(books) }
 }}
}

There are three service methods in this class. The first two B will be used to search
each of the domains given certain search criteria. If you recall from what you set up in
the view, the user enters the search criteria on a text field, which is bound to a model
property. In the implementation of each of the service methods is a call to a method
named withRest that isn’t defined by you. This method is provided by the REST
plugin, and it’s responsible for executing REST calls. The contents of this method are
bound to an instance of HTTPBuilder, another handy builder that provides a higher-
level API over Apache’s HTTPClient. The third method c will be used to populate the
initial data during application startup.

 You’ll notice that the third method defines a URL that points to the server running
the Grails app, whereas the other methods don’t. It’s your intention to call the third
method first in order to set up the HTTPBuilder object and later reuse it for any subse-
quent queries. That’s why there’s an id property defined as well. When the id prop-
erty is present, it means that a reference to the internal HTTPBuilder will be saved in
an in-memory storage managed by the REST plugin. There’s no need to pay a penalty
for setting up a new HTTPBuilder for each query made, is there?

 Finally, we can look at the controller now.

13.5.2 Injecting an instance of the service
The following listing shows all that there is to it. The controller relies on an injected
instance of the service you just defined.

package bookclient
class BookclientController {
 def model
 def view
 def bookstoreService

 def search = {
 execInsideUISync {
 model.enabled = false
 model.status = ''
 model.results.clear()
 }

 String where = view.choice.selection.actionCommand

 try {
 List results = []
 switch(where) {
 case BookclientModel.AUTHORS:
 results = bookstoreService.searchAuthors(model)
 break

Listing 13.7 The controller and service working in unison

Injected service
instance

b

www.it-ebooks.info

http://www.it-ebooks.info/

318 CHAPTER 13 Griffon in front, Grails in the back
 case BookclientModel.BOOKS:
 results = bookstoreService.searchBooks(model)
 break
 }
 execInsideUISync {
 int count = results.size()
 model.status = "Found $count result${count != 1 ? 's': ''}"
 if(results) model.results.addAll(results)
 }
 } finally {
 execInsideUIAsync { model.enabled = true }
 }
 }

 def onStartupEnd = { app ->
 execOutsideUI { bookstoreService.populateModel(model) }
 }
}

All the pieces are finally coming together. And we don’t mean just the Grails and
Griffon part, but everything else that you’ve learned so far along the journey.

 As a quick reminder of what we discussed in chapter 5, all services are automati-
cally handled by Griffon as singletons, even if the Spring plugin isn’t installed. These
services will be automatically injected into MVC members by following a naming con-
vention on the properties they expose. In this case, the controller has a property
whose name matches the logical name of the service B.

 Once the MVC group has been created, the application will switch from the startup
to the ready phase. The controller reacts to that change by listening to an event d.
During the handling of the event, it tells the service to load the data. This loading will
occur outside of the UI thread, but the model will be updated inside the UI thread—
the service has code to handle the latter case.

 The controller’s search action will be triggered once the user enters a query and
clicks the Search button in the view. The query will be sent to the server outside of the
UI thread once more, because that’s the default setting for controller actions, as you
might remember from chapter 7. Once the results come back, the controller updates
the view via the model back inside the UI thread c.

 Even though the description of the whole application takes a fair number of pages,
the code takes just a few pages.

 Now for the last piece you need to get this application running on its own.

13.5.3 Configuring the Bookstore application

The REST plugin will add dynamic methods to all controllers by default; after all,
that’s how it’s configured. But you need those dynamic methods to be added to ser-
vices instead. What can you do?

 Back in the first chapter, we mentioned that Griffon encourages convention over
configuration. This doesn’t mean that configuration is completely gone. You can alter
both the build-time and runtime configuration of a Griffon application. In chapter 2

Update view
inside UI thread

c

Set up data before
view is displayed

d

www.it-ebooks.info

http://www.it-ebooks.info/

319Querying the Grails backend
we discussed the options at your disposal for configuration. Now’s the time to put
those claims to the test.

 Locate the file Config.grooy inside griffon-app/conf. When you open it in an edi-
tor, you’ll find logging configuration by means of a Log4j DSL. Add the following line
to the file:

griffon.rest.injectInto = ['controller', 'service']

With this change, all REST dynamic methods should be added to both controllers and
services alike. Go ahead, give it a whirl! Remember to have Grails running in the back-
ground; otherwise the REST calls will fail at startup. The following commands are
enough to get the Grails backend running:

$ cd bookstore
$ grails run-app

Wait a few seconds, and then invoke the following commands at another com-
mand prompt:

$ cd bookclient
$ griffon run-app

Voilà! Run the application again, and you should be able to see the list of authors and
books. You should also be able to query authors by name and last name. Feel free to
play around with both applications. Maybe you feel like adding another search term
or a third element to the domain model, like a publisher.

 When the time is right, you’ll need to package the applications and deliver them to
your customers. Packaging in Grails is similar to Griffon—there’s a specialized com-
mand that takes care of all the details. A Grails application can be packaged in a WAR
file and then dropped into any JEE-compliant application server.

 The command to be executed is aptly named war, and can be invoked like this:

$ grails war

Yes, it’s that easy. After a while, you should see a WAR file that matches the name and
version of the application stored in the default location, the target directory located
at the root of the application’s codebase. You might remember the command for
packaging a Griffon application that you saw in chapter 10. Here it is again in its
short form:

$ griffon package

This command will generate four packages: zip, jar, applet, and webstart. Pick which-
ever you think is best for your customers. Also remember that the Installer plugin is
just a command invocation away; it provides more packaging targets that could be bet-
ter for your needs.

 That was quite a whirlwind ride, wasn’t it? You might remember that we decided
on a REST approach for these applications because of its simplicity, and we hope you
agree that we accomplished the goal of keeping both applications simple. But REST is
www.it-ebooks.info

http://www.it-ebooks.info/

320 CHAPTER 13 Griffon in front, Grails in the back
just one of the many options you have at your disposal. Perhaps the most common
would be a SOAP-based web service, as SOAP also facilitates communication between
heterogeneous systems.

13.6 Alternative networking options
If SOAP is your game, you’re in luck. Both Grails and Griffon have excellent support
for SOAP! You only need to install the corresponding plugin and tweak the sources.

 In the case of Grails, the recommended plugin is called xfire (http://grails.org/
plugin/xfire). This plugin can expose a service using Apache XFire as the workhorse.
The following snippet shows a simple example of its usage:

class SampleService {
 static expose = ['xfire']

 boolean myServiceMethod(String someValue) {
 someValue * 2
 }
}

The key to make this service available through a SOAP interface is in the static
expose property. Notice that it takes a list of strings as its value. Though you only spec-
ified xfire as the single element for the time being, it’s important to remember that
you can define more values; you’ll see when and why in a bit.

 The Griffon plugin counterpart is Wsclient (http://artifacts.griffon-framework.org/
plugin/wsclient). Like the REST plugin, this one will add dynamic methods that let
components send a SOAP request. These methods are added by default to controllers,
but you can change this preference via configuration in the same way you did before.
Here’s an example of how a Griffon controller could query the service:

String url = 'http://localhost:8080/exporter/services/sample?wsdl'
def result = withWs(wsdl: url) {
 myServiceMethod('griffon')
}
assert result == 'griffongriffon'

And that’s all there is to it.
 But your options don’t stop with REST and SOAP. There are other formats and pro-

tocols for performing data exchange. Table 13.2 enumerates the plugins in both
Grails and Griffon that can cover some of these additional options.

Table 13.2 Additional communication protocols supported by both Grails and Griffon

Grails Griffon Description

remoting rmi Java RMI protocol

remoting hessian Hessian/Burlap protocols by Caucho

xmlrpc xmlrpc XML-based RPC

protobuf protobuf Google’s protocol buffers
www.it-ebooks.info

http://grails.org/plugin/xfire
http://grails.org/plugin/xfire
http://artifacts.griffon-framework.org/plugin/wsclient
http://artifacts.griffon-framework.org/plugin/wsclient
http://www.it-ebooks.info/

321Summary
Griffon goes a little further by supporting the following protocols and binary formats:
Jabber, Avro, and Thrift.

13.7 Summary
Grails is by far the best option for building web applications in the JVM, enabling you
to use features that can be found in popular Java libraries and features only found in
the Groovy language. Griffon follows in Grails’ footsteps and aims to provide the same
productivity gains but in the desktop space. The two can be combined to build appli-
cations that touch desktop and server with the same approach to development: an
approach aimed at high productivity and making programming fun again.

REST APIs are but one of the many options you can pick to allow both sides to col-
laborate with each other. Grails has other plugins that can expose domain objects and
services via SOAP or remoting. Griffon similarly has plugins that can consume SOAP
and remoting.

 You got a good look at all the features offered by Griffon with a sample Bookstore
application. We touched every default artifact provided by the framework. You
installed a handful of plugins that enhanced the application’s capabilities, either by
providing new nodes to be used on views or dynamic methods ready to be called from
controllers and services.

 The application’s life cycle made an appearance too, and you saw how to handle
one of the many events it can trigger. You also tweaked the runtime configuration by
editing one of the standard configuration files found in every application.

 This exercise showed how closely related Griffon is to Grails, even though they tar-
get disparate running environments, such as desktop and web.

 Now that you’ve had a taste of a more elaborate application, it’s likely that the
notion of tool support has come to mind. We’ve left the best for last: productivity tools
and IDE integration will be the topics of the last stop on our journey.
www.it-ebooks.info

http://www.it-ebooks.info/

Productivity tools
The poet John Donne once wrote, “No man is an island,” reflecting on the fact that
all of humanity is interconnected. The same reflection can be applied to our soft-
ware tools and frameworks. In order to be really productive with one tool, you have
to reach out to others. The Griffon framework is no different, and it’s for that rea-
son that it provides hooks for popular Java and Groovy tools to help you write,
build, and deploy applications as part of a much larger ecosystem.

 In this chapter, we’ll look at popular software development tools such as IDEs.
These tools let developers write, refactor, and debug applications. They even
include build and deployment facilities. Not to be outdone by their visual brethren,
command-line tools are more than adequate to build, package applications in spe-
cific environments, such as continuous integration servers, and even deploy such
applications in a continuous delivery fashion.

 We’ll start with perhaps the most ubiquitous kind of tool that a Java developer
will come across: IDEs.

This chapter covers
■ Setting up popular IDEs and Griffon
■ Additional command-line tools
322

www.it-ebooks.info

https://github.com/griffon/griffon.tmbundle
http://www.it-ebooks.info/

323Getting set up in popular IDEs
14.1 Getting set up in popular IDEs
In the Java world, few start developing an application without the aid of an integrated
development environment (IDE) or even a power editor. The advantages of such tools
are clear to Java developers: the ability to refactor code without breaking the build,
file history management, syntax highlighting, code completion and code suggestion,
expandable macros, testing facilities, you name it. The bottom line is that IDEs make
working with Java a less painful experience.

 Because Groovy is closely related to Java, sometimes even being a substitute, you’d
expect a similar degree of support for it in the same Java IDEs, which is the case, to
varying degrees. At the time of writing, Groovy is on a clear path to becoming a first-
class citizen in popular IDEs, such as Eclipse, IntelliJ IDEA, and NetBeans IDE. Power
editors, such as jEdit and TextMate, aren’t left behind. The latter is a popular choice
for developers who like a certain fruity computer brand; it allows you to edit Groovy
code and even manage Groovy-powered applications.

 Let’s begin with Eclipse.

14.1.1 Griffon and Eclipse

We’ll discuss Eclipse first because it’s the dominant IDE on the market by a large mar-
gin, judging by its install base. We’ll cover the basic steps involved in getting a Griffon
application up and running. The first step is installing the Groovy Eclipse plugin.

INSTALLING THE GROOVY ECLIPSE PLUGIN

The home page for this plugin can be found at http://groovy.codehaus.org/Eclipse+
Plugin. You’ll require this plugin if you’re running a vanilla version of Eclipse or some
other distribution that doesn’t bundle the plugin.

NOTE If you happen to have SpringSource Tool Suite (www.springsource.com/
developer/sts), chances are that the Groovy plugin has already been config-
ured in your settings. You can check the status of the Groovy plugin by bring-
ing up the STS dashboard.

The plugin’s documentation page provides a quick overview of what you need in
order to install the plugin and what steps you need to perform. In most cases it’s a sim-
ple matter of pointing your Eclipse instance to an update site, letting Eclipse figure
out if additional dependencies must be met, and letting it download and install the
plugin. You should be able to compile and run Groovy projects after a quick restart.

 If that approach doesn’t work for some reason, you can install the plugin the man-
ual way. Locate the manual installation zip file on the Eclipse page, download it, and
expand it inside the plugins directory in your Eclipse install directory.

 Once that’s done, you’re ready to proceed with the next step—configuring your
Groovy environment.
www.it-ebooks.info

http://groovy.codehaus.org/TextMate
www.springsource.com/developer/sts
www.springsource.com/developer/sts
http://groovy.codehaus.org/Eclipse+Plugin
http://groovy.codehaus.org/Eclipse+Plugin
http://www.it-ebooks.info/

324 CHAPTER 14 Productivity tools
SETTING UP GROOVY AND GRIFFON

You must configure some environment settings in order to resolve classpath depen-
dencies that point to your Griffon installation. Go to the Preferences window found
on your Eclipse application. In the Java section locate Build Path and then Classpath
Variables, as shown in figure 14.1. You must define two more variables: USER_HOME and
GRIFFON_HOME. USER_HOME should point to the directory where your user account is
located. For example, if your account name is joecool, the value should be similar to
/home/joecool (Linux), /Users/joecool (Mac OS X), or C:\Documents and Settings\
joecool (Windows). The GRIFFON_HOME variable should point to your Griffon installa-
tion directory.

 You’re all set up now for the next step: importing your Griffon application
into Eclipse.

IMPORTING A GRIFFON APPLICATION

Importing a Griffon application is a three-step process.
 First you must generate a pair of files that allows Eclipse to treat a Griffon project

as an Eclipse one. In other words, you need to integrate the project with Eclipse. For-
tunately, there’s a Griffon command that relieves you of the burden of generating
those files. Type the following at your command prompt to complete the first step,
making sure your command prompt is already placed in the project’s directory:

$ griffon integrate-with -eclipse

This generates a pair of files: .project and .classpath. The first identifies the project as
an Eclipse project, whereas the second defines compile paths and libraries required
by the project.

Figure 14.1 The Classpath Variables preferences dialog box, showing the configured
variables after adding values for USER_HOME and GRIFFON_HOME
www.it-ebooks.info

http://www.it-ebooks.info/

325Getting set up in popular IDEs
The second step is to install a plugin that allows you to keep the .classpath file up to
date. Go back to your command prompt and type the following command:

$ griffon install-plugin eclipse-support

Now the .classpath file will be up to date every time you install or uninstall a plugin.
Remember to refresh the project inside Eclipse to get the latest version every time you
install or uninstall a plugin.

 Finally, the third step: importing the project into Eclipse. Bring up the Import dialog
box and select the Existing Projects into Workspace option, as shown in figure 14.2.

 Click the Next button and you’ll be presented with the Import Projects page, as
shown in figure 14.3. Type in or browse to select the directory that contains your
Griffon application. You’ll use a newly created application, named demo, as an exam-
ple here. Figure 14.3 shows the page’s state after typing in the root directory of a
freshly created application with the name demo.

 After this, nothing else needs to be configured. You can click the Finish button
and let the wizard figure out the rest.

 At this point, your Griffon application should be visible in the project explorer.

RUNNING A GRIFFON APPLICATION INSIDE ECLIPSE

All your Groovy sources will automatically benefit from the Groovy support provided
by the Groovy Eclipse plugin. This means you’ll be able to see the structure of a
Groovy class or script, block folding, syntax highlighting, and even call basic refactor-
ing operations, as shown in figure 14.4.

 All of this is great, but you’ll surely want to test drive your Griffon application.
You’ll rely on Eclipse’s Ant support, because at the time of writing there’s no explicit
Griffon support in Eclipse—this may change in the future.

 The trick is letting Eclipse know about the Ant build file that should be located in
your application’s main directory. Hold on a second, there’s no Ant build file yet! No

Figure 14.2 The Import dialog box
showing the recommended option for
importing a Griffon project into Eclipse
www.it-ebooks.info

http://www.it-ebooks.info/

326 CHAPTER 14 Productivity tools
Figure 14.3 The last step for
importing a Griffon project into
an Eclipse workspace

Figure 14.4 Eclipse, showing the structure of a Griffon application in the project explorer, as well as the
class structure of the DemoController
www.it-ebooks.info

http://www.it-ebooks.info/

327Getting set up in popular IDEs
worries—you can generate a suitable one by invoking the following command at the
command prompt:

$ griffon integrate-with -ant

Now go back to Eclipse, and don’t forget to refresh the project’s contents! Open the
Ant view if you don’t have it open already: go to Window > Show Views > Ant. On that
view, right-click to display a contextual menu, select the Add Buildfile option, locate
your application’s build file, and voilà! You should see a list of available targets in the
Ant view, as shown in figure 14.5. Without further ado, double-click on any target,
such as the run-app one, and after a few seconds your application should pop up.
Notice that the target’s output will be displayed in the Console view.

 You’re free now to explore what can be done with Eclipse. Remember that the Ant
build file contains just a small selection of the targets that can be called. You can tweak
it to meet your own needs.

 We’ll cover NetBeans next.

14.1.2 Griffon and NetBeans IDE

NetBeans IDE is another popular choice among Java developers. Though it was a late-
comer in terms of Groovy support, that didn’t prevent the NetBeans team from gain-
ing ground at a tremendous pace, to the point where this IDE can be considered the
second best when it comes to working with Groovy (and no, Eclipse isn’t first on that
list, yet).

Figure 14.5 An Ant view of the application’s targets, as shown by Eclipse’s Ant support
www.it-ebooks.info

http://www.it-ebooks.info/

328 CHAPTER 14 Productivity tools
Unlike Eclipse, a Groovy editor is a standard part of NetBeans IDE if you install the
full version, meaning that you don’t need to install any plugins to use Groovy in Net-
Beans IDE. In addition, there’s a plugin that integrates the Griffon commands into
NetBeans IDE, allowing you to create new Griffon applications right inside NetBeans IDE.

INSTALLING GROOVY AND GRIFFON IN NETBEANS IDE
From the NetBeans IDE download page (http://netbeans.org/downloads/index.html),
download and install the latest version of NetBeans IDE, making sure that you get
either the Java or the All download bundle. Once you’ve finished, you’ll have an
installation of NetBeans IDE that includes a Groovy editor, support for Grails, and
many other features. If you have the Java edition, make sure you install the Groovy
and Grails plugin before continuing with the next step.

 Next, you need to install the Griffon plugin. This task is similar to what we
described for Eclipse: you must tell the Plugin Manager to locate and install the Grif-
fon plugin. To do so, first browse to http://mng.bz/48M6 and download the zip file
with the latest version of the Griffon plugin. Back in NetBeans, go to Tools > Plugins.
When the Plugins dialog box comes up, switch to the Downloaded tab and install all
of the NBM files that are contained in the zip file you downloaded in previously. Fig-
ure 14.6 gives you an overview of what the Plugins dialog box should look like before
the installation is finished.

 Click on the Install button and, without needing to restart NetBeans IDE, you
should be ready for business with Griffon in NetBeans IDE.

 Now you’re ready to create an application.

Figure 14.6 Both Griffon NetBeans modules are selected for installation.
www.it-ebooks.info

http://mng.bz/48M6
http://netbeans.org/downloads/index.html
http://www.it-ebooks.info/

329Getting set up in popular IDEs
CREATING A GRIFFON APPLICATION

Unlike Eclipse, creating a Griffon application in NetBeans requires no previous con-
figuration. Bring up the New Project dialog box, which has a Groovy category contain-
ing a Griffon Application project, as shown in figure 14.7.

 On the next wizard page, you’ll be asked for the location of your Griffon applica-
tion. Type in or browse to select your application’s main directory. If Griffon Home
isn’t set, you’ll be able to set it in the wizard, as shown in figures 14.8 and 14.9.

 From here you should be able to edit all your source files to your heart’s content,
using the outline view in the Projects window to work with your new Griffon application.

Figure 14.7 NetBeans’ New Project wizard page with a project template selected,
which is required for setting up a Griffon application

Figure 14.8 The second step of the New Griffon Application wizard
www.it-ebooks.info

http://www.it-ebooks.info/

330 CHAPTER 14 Productivity tools
NetBeans’ Griffon plugin is aware of the Griffon conventions, so it shows each artifact
in its own place, as you can see in figure 14.10.

 The last bit of getting acquainted with NetBeans is running your application.

RUNNING A GRIFFON APPLICATION INSIDE NETBEANS

We’ve already given away the ending of this story. Switch back to the Projects tab,
right-click the project, and choose one of the Run commands. Or select the project
and click on the green arrow button on the toolbar. That was easy, wasn’t it?

 You can even call any Griffon command target available to the application by
selecting Run Griffon Command from the context menu. This should pop up a dialog
box that gives you a few choices. It even provides command name autocompletion—
sweet! Figure 14.11 shows what the dialog box looks like after typing “create” in the
command field.

Figure 14.9 Configuring
Griffon Home

Figure 14.10 Project view with artifacts properly identified
www.it-ebooks.info

http://www.it-ebooks.info/

331Getting set up in popular IDEs
A great thing about NetBeans’ Griffon support is that it’s able to open a Griffon proj-
ect from the get-go. There’s no need to generate integration files at all!

 We’re now up to the last IDE, which is IntelliJ IDEA. If you’re wondering which
Groovy IDE is the best around, you should look at this one.

14.1.3 Griffon and IDEA

IntelliJ IDEA is without a doubt the best Groovy IDE out there. JetBrains did a good job
of quickly supporting Groovy, and they update it quite often. You can download a copy
of IntelliJ IDEA from http://www.jetbrains.com/idea.

 Since IDEA release 7 chances are that Groovy support is already included in the
default set of plugins that come bundled in IDEA. Just to be sure, check that the Jet-
Groovy plugin is installed by looking at the Plugin Manager. Make sure you have the
Griffon plugin installed as well.

CREATING A GRIFFON APPLICATION

Once IDEA and the plugins are installed, you can safely invoke the New Project wizard,
shown in figure 14.12. You’ll observe that the last choice allows you to import an existing

Figure 14.11 The Run Griffon
Command dialog box, containing a list
of suggestions based on what was
typed in the Filter text field

Figure 14.12 IDEA’s New
Project wizard showing
several options. The
Griffon one is the last in
the list.
www.it-ebooks.info

http://www.jetbrains.com/idea
http://www.it-ebooks.info/

332 CHAPTER 14 Productivity tools
Griffon project, which is great! Don’t be fooled, though—this option also allows you
to create a brand new Griffon project, which is exactly what you’re going to do.

 The next page of the wizard asks for the project name and its location. It also
prompts you to select the Griffon SDK to use. If none are configured yet, you’ll be
asked to create one. Figure 14.13 shows the second wizard page, and figure 14.14
depicts the configuration of a Griffon SDK.

 Click the Finish button once you’ve finished configuring the settings to your
liking. IDEA should present a view similar to the one shown in figure 14.15. There
you can see that each artifact has been identified by type, just as it happened
in NetBeans.

Figure 14.13 Configuring the demo application

Figure 14.14 Selecting a Griffon SDK to be used with the demo application
www.it-ebooks.info

http://www.it-ebooks.info/

333Getting set up in popular IDEs
The Groovy editor provides syntax highlighting, code suggestions, and refactoring
options, exactly what you’d expect from an IDE.

RUNNING A GRIFFON APPLICATION INSIDE IDEA
Running a Griffon application in IDEA is a trivial task. See the green arrow at the cen-
ter of the top toolbar, next to the project’s name and the Griffon logo? Click on it, and
the application will be launched in standalone mode, just as if you invoked the run-
app command. In fact, IDEA invokes the run-app command for you, as you can verify
by looking at the messages that appear in the output console.

IDEA also gives you the option to invoke any command. Right-click on the project
name and select the Run Griffon Command option. This should bring up a dialog box
similar to the one shown in figure 14.16. This dialog box prompts you for the com-
mand name and any arguments it may take. It even remembers previous invocations.

Figure 14.15 A Griffon project, as shown in IDEA’s Griffon view

Figure 14.16 The dialog
box for running any Griffon
command. It takes the name of
the command and any optional
arguments as input.
www.it-ebooks.info

http://www.it-ebooks.info/

334 CHAPTER 14 Productivity tools
In summary, all three major IDEs have good support for developing Griffon applica-
tions. Expect such support to be improved in each of these IDEs as new releases
are published.

 There’s one more tool we’ll cover, and though it’s not a Java IDE per se, it’s a
powerful text editor, and a very popular one with Mac OS X users. Yes, we’re referring
to TextMate.

14.1.4 Griffon and TextMate

TextMate is a well-known text editor for Mac OS X, produced by MacroMates. You can
download it directly from http://macromates.com. TextMate’s functionality can by
extended by installing new bundles. There are several bundles to be found out there,
and there are a few ways to install them.

INSTALLING THE GRIFFON BUNDLE

Follow these instructions to install the Griffon bundle.
 First, you need to create a directory where the bundle will reside. Go to your com-

mand prompt and execute the following command:

$ mkdir -p /Library/Application\ Support/TextMate/Bundles

The next step is easy if you have git installed. The popular GitHub website has some
pointers on how to get it done; see http://help.github.com/ for reference. This step
will also let you update the bundle effortlessly whenever a new version becomes avail-
able. Change into the directory you just created, and clone the bundle’s repository
using git, like this:

$ cd /Library/Application\ Support/TextMate/Bundles
$ git clone https://github.com/griffon/griffon.tmbundle.git

The bundle is now available. You can keep the bundle up to date by pulling the latest
changes from the repository, as you’d do with any git repository:

$ cd /Library/Application\ Support/TextMate/Bundles
$ git update

If you don’t have git installed on your system, there’s an alternative. Point your
browser to https://github.com/griffon/griffon.tmbundle. You’ll notice that there’s a
button close to the top that lets you download a copy of the Griffon bundle repository
in zip format; click on it. A file named something like griffon-griffon.tmbundle-
749a7b6.zip should be downloaded. Don’t worry if the numbers don’t match—they’re
a reference to the last commit made to the repository. What’s important is that now
you have a snapshot of the whole bundle.

 Now all you need to do is change into the bundle directory you created in the first
step, unpack the file, and rename the directory created by unpacking it:

$ cd /Library/Application\ Support/TextMate/Bundles
$ unzip griffon-griffon.tmbundle-749a7b6.zip
$ mv griffon-griffon.tmbundle-749a7b6.zip griffon.tmbundle
www.it-ebooks.info

http://help.github.com/
https://github.com/griffon/griffon.tmbundle
http://macromates.com
http://www.it-ebooks.info/

335Getting set up in popular IDEs
Either way, you should now have a working Griffon bundle. Open TextMate, and
inspect the Bundle menu: Groovy Griffon should appear in the list.

 Follow the same steps to install the Groovy bundle. More details can be found at
http://groovy.codehaus.org/TextMate.

SETTING UP THE ENVIRONMENT

Before you attempt to use the bundle, you must fix the path environment settings
used by TextMate. Go to the Preferences menu, choose the Advanced options, and
select the Shell Variables tab. Locate the entry named PATH and update its value. Make
sure you enter the full path to the Griffon binaries. Figure 14.17 shows a typical setup.

 It’s time to give the bundle a try. Open any Griffon application, such as the demo
application you used before. Figure 14.18 shows how TextMate presents the view and
the rest of the project’s contents in a sidebar.

 The Groovy bundle provides syntax highlighting for all Groovy source files, as well
as other features such as macros and code snippets that should let you write code in
a flash.

RUNNING A GRIFFON APPLICATION INSIDE TEXTMATE

The main job of the Griffon bundle is to deliver a set of commands that can be
invoked when the sources opened in the editor belong to a Griffon application.

 Look at the Bundles menu again. Search for the Groovy Griffon menu item, and
then select Commands. There are a few familiar names there, aren’t there? You can
run the application in any of the three development modes. Furthermore, there’s an
option to run any Griffon command available, including those provided by plugins
and the application itself. You can also clean compiled artifacts or install a plugin
from the editor.

 Figure 14.19 shows the default commands that the bundle provided at the time
of writing.

Figure 14.17 The PATH configuration,
showing the full path of a Griffon
installation being added at the
beginning of the variable’s value
www.it-ebooks.info

http://groovy.codehaus.org/TextMate
http://www.it-ebooks.info/

336 CHAPTER 14 Productivity tools
Select the Run App command. A new dialog
box should pop up. It gives a view of the
command output—output that should be
familiar to you as it’s the invocation of the
run-app command applied to your applica-
tion. Figure 14.20 shows a typical run of
this command.

 That’s all the visual aids for now. But if
command-line tools happen to be your cup
of coffee, then no worries. We’ve got you
covered with the next section.

14.2 Command-line tools
Way before Java IDEs and other visual tools emerged from the minds of their creators,
we had the command line. This simple interface is the common denominator in all
platforms. Tools that target the command line can be useful in situations where visual
aids aren’t reliable, might get in the way, or are too slow to get the job done. The fol-
lowing sections describe some of the common tools you’ll encounter when dealing
with the command line.

14.2.1 Griffon and Ant

Ant (http://ant.apache.org/) is perhaps the best-known command-line tool in the Java
space, besides the Java compiler itself from the Java SDK. It’s been around for many
years now, and chances are that you’ve encountered an Ant build file sometime during
your career. Despite its old age, some organizations still rely on Ant to do the job.

Figure 14.18 The view of the demo application. Notice that TextMate provides a detailed list
of all files in a sidebar.

Figure 14.19 A list of default commands
provided by the bundle. This list might be
updated in future versions of the bundle.
www.it-ebooks.info

http://ant.apache.org/
http://www.it-ebooks.info/

337Command-line tools
What happens if you’re working with a team that relies on Ant for its build, and you
must integrate a Griffon application into the mix? No problem, simply integrate it.
You see, Griffon is aware of Ant’s existence, and it understands Ant’s conventions. Nat-
urally it provides a way to generate a build script suitable for Ant.

 If you read the Eclipse section earlier in this chapter, then you know what’s going
to happen. Execute the following command to integrate a Griffon application into an
Ant build:

$ griffon integrate-with -ant

This command will generate a build.xml file with some Ant targets already config-
ured. Running the ant command with the -p flag enabled will list all of the available
targets, like this:

$ ant -p
Buildfile: /Users/aalmiray/demo/build.xml

Main targets:

 clean --> Cleans a Griffon application
 debug-app --> Run a Griffon application in standalone mode with

➥debugging turned on
 dist --> Packages up Griffon artifacts in the Production

➥Environment
 run-app --> Run a Griffon application in standalone mode
 run-applet --> Run a Griffon application in applet mode
 run-webstart --> Run a Griffon application in webstart mode
 test --> Run a Griffon applications unit tests
Default target: run-app

Each one of those targets is backed by a specific Griffon command. For example,
invoking ant run-app would be the same as invoking griffon run-app. Sweet!

 You can create new Griffon-aware tasks too. Open the build file in your favorite
editor, and paste in the following snippet:

Figure 14.20 The output
of invoking the Run App
command from within the
bundle. Notice that the
output is the same as
you’d get when invoking
the command by
regular means.
www.it-ebooks.info

http://www.it-ebooks.info/

338 CHAPTER 14 Productivity tools
<target name="zip" description="--> Zips the application">
 <griffon>
 <arg value="package"/>
 <arg value="zip"/>
 </griffon>
</target>

The new target should package the application using the zip deployment mode. Now,
go back to your command prompt and invoke it:

$ ant zip

A few moments later, you should have the application packaged in zip mode, as
expected. Be mindful that this setup requires you to have a valid JDK installed and a
JAVA_HOME environment variable that points to the installation directory. The same
rule applies for a Griffon installation and a GRIFFON_HOME variable.

14.2.2 Griffon and Gradle
Gradle (http://gradle.org/) is a newcomer compared to Ant, but it builds on the les-
sons Ant and Maven have learned. Gradle provides many advantages over Ant. For
example, it has a full-blown object model of your project. Gradle can discern with
100% accuracy which tasks should be invoked and which can be skipped, for example.
This decreases build time dramatically, as the tool won’t waste time computing out-
puts for tasks that need not be run.

 Gradle also follows the convention-over-configuration paradigm, meaning that a
build file will contain only the configuration that deviates from the conventions set
forth by the tool and any plugins applied to it. Furthermore, Gradle uses a real pro-
gramming language (Groovy, in this case) instead of XML to describe what the build
should do.

 In order to integrate Griffon with Gradle, you need to use the Gradle Griffon plugin.
You can either integrate an existing application or create a new one from the get-go.

INTEGRATING AN EXISTING APPLICATION

The process for integrating an existing application with Gradle is almost identical to
the process for integrating an application with Ant. You’ll use the same command, but
with a different argument this time:

$ griffon integrate-with -gradle

The output of this command is a build.gradle file that contains the minimal setup
required by Gradle to build and run the application. At the moment of writing, the
generated file looks like the following listing.

buildscript {
 repositories {
 mavenCentral()
 mavenRepo url: 'http://repository.codehaus.org/'

Listing 14.1 A default Gradle build file created by the Griffon command
www.it-ebooks.info

http://gradle.org/
http://www.it-ebooks.info/

339Command-line tools
 mavenRepo url: 'http://repo.grails.org/grails/core/'
 mavenRepo url: 'http://repository.springsource.com/maven/bundles/

release'
 mavenRepo url: 'http://download.java.net/maven/2/'
 }

 dependencies {
 classpath('org.codehaus.griffon:griffon-gradle-plugin:1.1.0')
 classpath('org.codehaus.griffon:griffon-scripts:0.9.5')
 }
}

griffonVersion = '0.9.5'
version = '0.1'

apply plugin: 'griffon'

repositories {
 mavenCentral()
 mavenRepo url: 'http://repository.codehaus.org/'
}

dependencies {
 compile "org.codehaus.griffon:griffon-rt:$griffonVersion"
}

It’s quite possible that by the time you give it a try, the template used to create this file
will have been updated with additional tasks. Go ahead; take it for a spin by calling the
clean command:

$ gradle clean
:clean
Resolving dependencies...
Dependencies resolved in 366ms.
Running pre-compiled script
Environment set to development
 [delete] Deleting directory /Users/aalmiray/demo/build/classes
 [delete] Deleting directory /Users/aalmiray/demo/build/plugin-classes
 [delete] Deleting directory /Users/aalmiray/demo/build/resources
 [delete] Deleting directory /Users/aalmiray/demo/build/test-classes
 [delete] Deleting directory /Users/aalmiray/demo/build/test-resources
 [delete] Deleting directory /Users/aalmiray/demo/staging

BUILD SUCCESSFUL

Good, it works. The plugin lets you invoke any Griffon command by prefixing
griffon- in front of the command name. Say you’d like to run the application using
Gradle—simply type the following at your command prompt:

$ gradle griffon-run-app

It’s useful as it is, but the Gradle support is in its early stages as we write this. It’s likely
that you’ll experience better integration when you try it.
www.it-ebooks.info

http://www.it-ebooks.info/

340 CHAPTER 14 Productivity tools
CREATING A NEW APPLICATION

We almost forgot to cover the other case regarding Gradle integration. You can bootstrap
a new application by starting with just a Gradle build. See the code in listing 14.1? Save it
in a new build.gradle build file, and call the following command:

$ gradle init

This will create the initial structure for a Griffon application. Of course, you shouldn’t
call it in an already existing application, lest you overwrite some files.

14.2.3 Griffon and Maven

What about Maven? It’s also a very popular build tool among Java developers. Unfor-
tunately, the Griffon team hasn’t come up with definite support for Maven at the time
of writing. It’s possible that a Maven plugin providing Griffon integration will soon
find its way into the Griffon toolbox. Keep your eyes peeled at the official Griffon web-
site and mailing lists to find out more.

 The tools we’ve reviewed so far have a wide range of features and differ in many
areas, but they have one common attribute: they must be installed on your system
before you can use them. What if you don’t have the tool installed, not even Griffon,
and you still want to build an application? Don’t fret, there’s an answer for that: the
Griffon wrapper.

14.3 The Griffon wrapper
Quick question: How do you make use of a tool without having the tool at your dis-
posal? You rely on another tool to reach the first, of course.

 Imagine the following scenario. Bob and Alice are working on the same project,
which happens to be a Griffon application. Alice has followed due diligence and has
installed Griffon on her system and created the initial structure of the application,
committed the source to a code repository, and sent a message to Bob letting him
know he can grab a copy and continue the work.

 Bob decided to skip setting up Griffon on his machine because he didn’t want to
mess with his environment settings. How will he be able to build the application?
Alice, being a dutiful developer, made sure to include a few files that the create-app
command added by default when the application was created. These are the files:

■ griffonw
■ griffonw.bat
■ wrapper/griffon-wrapper.jar
■ wrapper/griffon-wrapper.properties

The first two are script files, and the last two are a binary and a configuration file.
Combined, they form the Griffon wrapper. The wrapper lets you call any Griffon com-
mand as if you had a local Griffon distribution configured. As a matter of fact, one will
www.it-ebooks.info

http://www.it-ebooks.info/

341Summary
be configured for this particular project. With this tool, Bob is able to compile the
application by typing the following at his command prompt:

$./griffonw compile

Next, he must create a new MVC group for the application. What should he do now?
The answer is to invoke the create-mvc command target using the wrapper again:

$./griffonw create-mvc viewer

Excellent! Every command becomes available to Bob, thanks to the wrapper. Now
extrapolate this scenario to a continuous integration server. You usually require
administrative access to the server that hosts the CI environment in order to install a
new tool. If you don’t have the right access permissions, you might have to wait for IT
to resolve the matter, which may take some time. But if your CI software lets you
invoke an arbitrary command on the same sources you’re about to build, then it’s only
a matter of configuring the Griffon wrapper. Your only requirement is to have a work-
ing JDK installed in the CI server, which should be there from the start.

14.4 Summary
Griffon provides its own toolchain by offering a command-line tool that has been dis-
cussed throughout this book. But there are other tools that can make a Java developer
very productive when building applications. IDEs, visual editors, and additional com-
mand-line tools are among the most common choices.

 Popular Java IDEs such as Eclipse, NetBeans IDE, and IntelliJ IDEA provide support
for Griffon in various degrees. Most of them have an easy-to-follow setup. Once any of
these tools has been configured, a developer should be able to move code around
much faster, apply refactoring techniques, and invoke Griffon commands from within
the IDE.

 There are also other command tools, such as Ant and Gradle, that when used in
combination can extend the reach of a particular build. These tools can permit a Grif-
fon application to participate in a much larger build, for example.

 Then there’s the Griffon wrapper, the ultimate command-line tool for building
Griffon applications without even having an existing Griffon distribution locally installed.

 We’re glad you stayed with us for the long ride. We hope you have enjoyed the
journey as much as we did. We also hope you come back to these chapters when you
need a quick recap of a particular feature or setting. And keep in mind that the Grif-
fon framework continues to grow by means of its plugin system, not just by the fea-
tures added to its core. Keep an eye on the plugin community.

 There’s no place on the desktop that Griffon can’t reach. The sky is the limit!
www.it-ebooks.info

http://www.it-ebooks.info/

appendix
Porting a

legacy application

You’ve seen how Griffon can be used to create desktop applications from scratch,
and you’ve had a lot of fun while doing so. Sadly, all isn’t fun and giggles when it
comes to dealing with existing Java-based applications, because you can’t go back in
time and begin the project with Griffon as the starting tool. But as the saying goes,
hope dies last, and there’s hope for solving this problem. No, it’s not a time
machine, no matter how much we long for a TARDIS; rather, it’s a set of tips and
features that can ease the transition from a full Java Swing application to a Griffon-
enabled one.

 Let’s begin with the visible aspect of an application.

Handling legacy views
You might recall that back in section 4.6, we discussed two options that allow you to
adapt a legacy view into a Griffon application without changing the source of the
existing view classes: the ability to wrap a Swing GUI Builder (formerly Matisse) view
into a Groovy view script, or use the Abeille Forms Designer plugin if your views
rely on AFD. Here’s a quick summary of both approaches.

Swing GUI Builder views

A Swing GUI Builder view class is normally generated via templates. The most usual
template creates a subclass of JComponent, registers a field for each visible compo-
nent, and finally arranges all components using a complex set of instructions using
GroupLayout’s API. The Griffon script generate-view-script relies on these facts
and generates a view script that exposes each of the visible components and returns
the top-level container (the subclass of JComponent). This script expects the name
342

www.it-ebooks.info

http://www.it-ebooks.info/

343Handling legacy views
of the class to be converted, whose file should reside somewhere in the application’s
source directories. Where to put the file is up to you; we recommend src/main instead
of griffon-app/views, because the class isn’t a real Griffon view.

 Here’s how a wrapped view may look:

widget(new LoginDialog(), id:'loginDialog')
noparent {
 bean(loginDialog.usernameField, id:'usernameField')
 bean(loginDialog.passwordField, id:'passwordField')
 bean(loginDialog.okButton, id:'okButton')
 bean(loginDialog.cancelButton, id:'cancelButton')
}
return loginDialog

You can infer from this script that the top-level class LoginDialog is a subclass of
JComponent. You can also infer that the four beans declared afterward are visible com-
ponents that belong to said class. Notice the usage of the noparent node to avoid
exposing the components to unsuspecting containers. Once all components are avail-
able in a view, you can apply them to the same techniques and tricks applicable for all
other nodes, such as binding.

generate-view-script comes bundled with the default distribution; there’s no
need to install additional software to make it work. But you do need to add to your appli-
cation whatever dependencies the legacy view class requires, such as grouplayout.jar or
swing-application.jar.

Abeille Forms Designer views

Unlike the previous option, you do need to install additional software in order to work
with AFD views. Fortunately, that software comes bundled as a Griffon plugin, which
means installing it is just a command invocation away:

$ griffon install-plugin abeilleforms-builder

AFD views are stored in either XML or a custom binary format. Regardless of which
one is used, the plugin should be able to expose the contents of a form. Given that
form definitions aren’t code, it’s better to place them under griffon-app/resources;
otherwise, use your best judgment depending on your preferences. The only con-
straint is that the form definitions must be available in the application’s classpath.

 Here’s how the previous view might look with AFD. We also added a few customiza-
tions for binding and registering actions on the buttons:

formPanel("login.xml", id: 'loginPanel')
noparent {
 bean(model, username: bind{ usernameField.text })
 bean(model, password: bind{ passwordField.text })
 bean(okButton, actionPerformed: controller.loginOk)
 bean(cancelButton, actionPerformed: controller.loginCancel)
}
return loginPanel
www.it-ebooks.info

http://www.it-ebooks.info/

344 APPENDIX Porting a legacy application
The code is simple. It follows the same approach as the Swing GUI Builder view wrap-
per: exposing the top-level form as a container plus all of its children components.

 But what happens if your view can’t be wrapped with any of these options? No
problem. Assuming the view class follows a design similar to the one used by Swing
GUI Builder views, you can manually create a view script that exposes the top-level con-
tainer and its children, using a combination of widget, container, and bean nodes.
The last approach we’ll cover is a full-blown Java view, no Groovy at all.

Custom Java-based views

If for some reason you feel the need to build a view in 100% Java or you’re unable to
use Groovy, don’t worry; you can still take advantage of Griffon. For the first case, you
only need to write a class that provides the same behavior as a Griffon view, including
the hooks to the application’s life cycle. If you’re thinking already about how to
accomplish such a task, then don’t bother too much; it already exists, and here’s how
you can take advantage of it.

 First you’ll convert an existing Groovy-based view into a Java source file. Say, for exam-
ple, that you have an existing application with an MVC group named sample. By conven-
tion, it will have a view script named SampleView located in the sample package in
griffon-app/views. Armed with this knowledge, you can invoke the following command:

$ griffon replace-artifact sample.SampleView –type=view –fileType=java

Looking carefully at the command’s arguments, you can expect the source file griffon-
app/views/sample/SampleView.groovy to be replaced by another file with the same
name but with .java as its extension. Its contents are also different from the original
file. This is how the view looks after it has been converted from Groovy to Java:

package sample;

import java.awt.*;
import javax.swing.*;
import java.util.Map;

import griffon.swing.SwingGriffonApplication;
import org.codehaus.griffon.runtime.core.AbstractGriffonView;

public class SampleView extends AbstractGriffonView {
 // these will be injected by Griffon
 private SampleController controller;
 private SampleModel model;

 public void setController(SampleController controller) {
 this.controller = controller;
 }

 public void setModel(SampleModel model) {
 this.model = model;
 }

 // build the UI
 private JComponent init() {
 JPanel panel = new JPanel(new BorderLayout());
www.it-ebooks.info

http://www.it-ebooks.info/

345Handling legacy views
 panel.add(new JLabel("Content Goes Here"), BorderLayout.CENTER);
 return panel;
 }

 @Override
 public void mvcGroupInit(final Map<String, Object> args) {
 execSync(new Runnable() {
 public void run() {
 Container container = (Container)
 getApp().createApplicationContainer();
 if(container instanceof Window) {
 containerPreInit((Window) container);
 }
 container.add(init());
 if(container instanceof Window) {
 containerPostInit((Window) container);
 }
 }
 });
 }

 private void containerPreInit(Window window) {
 if(window instanceof Frame) ((Frame) window).setTitle("sample");
 window.setIconImage(getImage("/griffon-icon-48x48.png"));
 // uncomment the following lines if targeting +JDK6
 // window.setIconImages(java.util.Arrays.asList(
 // getImage("/griffon-icon-48x48.png"),
 // getImage("/griffon-icon-32x32.png"),
 // getImage("/griffon-icon-16x16.png")
 //));
 window.setLocationByPlatform(true);
 window.setPreferredSize(new Dimension(320, 240));
 }

 private void containerPostInit(Window window) {
 window.pack();
 ((SwingGriffonApplication)

getApp()).getWindowManager().attach(window);
 }

 private Image getImage(String path) {
 return Toolkit.getDefaultToolkit().getImage
 (SampleView.class.getResource(path));
 }
}

A quick survey of the code reveals that the new view extends from a particular class
(AbstractGriffonView), which you can assume implements all the required behavior
of a Griffon view. There are also properties that match the other two MVC members of
the group, the controller and the model. You can delete those if they aren’t needed.
Next you find the hook into the application’s life cycle. Recall from chapter 6 that the
mvcGroupInit method is called by the application once all members of a group have
been instantiated but before the building of the group has been completed. This is
the perfect time to customize the view. Also of important note is the usage of the
www.it-ebooks.info

http://www.it-ebooks.info/

346 APPENDIX Porting a legacy application
execInsideUISync method to guarantee that the UI components are built inside the
UI thread. This method is one of the threading options we discussed back in chapter 7.
The default template suggests that you build the UI using a private method named
init; this is a standard practice with generated code. The key aspect is that you’re free
to implement this method as you see fit.

XML-based views

There’s one last alternative to building an UI declaratively: using XML. For some
strange reason, XML has been the preferred go-to format for externalizing almost
every aspect of a Java application since the early days. We won’t engage in a discussion
of whether XML is good or bad, but the moment you step outside of declarative pro-
gramming by adding behavior, well … let’s just say there are better ways to spend your
time than battling the angle-bracket monster.

 Java-based Griffon views come with a ready-to-use mechanism for dealing with
XML. You may have noticed that the AbstractGriffonView class exposes a pair of
methods named buildViewFromXml: one takes a map as a single argument, and the
other takes a map and a string. Both methods will read an XML definition, but the first
relies on the convention over configuration precept to determine the name of the file
while the other takes the name as an argument. What could be the convention here?
If you guessed the name of the view class, then you’re on the correct path again.

 Suppose you have a Java-based view whose full qualified class name is com.acme
.SampleView. By convention, the XML file should be named SampleView.xml, and it
should be somewhere in the classpath under a directory structure equal to com/acme.
XML-based views are typically placed in griffon-app/resources, but this isn’t a strict
requirement. The code needed to read and bootstrap a simple externalized view looks
like the following snippet:

package com.acme;

import java.util.Map;
import org.codehaus.griffon.runtime.core.AbstractGriffonView;

public class SampleView extends AbstractGriffonView {
 private SampleController controller;
 private SampleModel model;

 public void setController(SampleController controller) {
 this.controller = controller;
 }

 public void setModel(SampleModel model) {
 this.model = model;
 }

 public void mvcGroupInit(Map<String, Object> args)
 buildViewFromXml(args);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

347Full Java MVC members
Pay attention to the bolded section—that’s all you need to instruct the view to read
the default XML file. The args parameter contains all the elements the view’s builder
might require, such as the controller and model. The XML file could look like this:

<application title="app.config.application.title"
 pack="true">
 <actions>
 <action id="'clickAction'"
 name="'Click'"
 closure="{controller.click(it)}"/>
 </actions>

 <gridLayout cols="1" rows="3"/>
 <textField id="'input'" columns="20"
 text="bind('value', target: model)"/> <textField id="'output'"
 columns="20"
 text="bind{model.value}" editable="false"/>
 <button action="clickAction"/>
</application>

It resembles a Groovy view, doesn’t it? That’s because this feature directly translates
the XML text into a Groovy representation that the view’s builder can understand. As a
matter of fact, it generates an inline script that is equivalent to the following:

application(title: app.config.application.title, pack: true) {
 actions {
 action(id: 'clickAction', name: 'Click', closure: {controller.click(it)})
 }
 gridLayout(cols: 1, rows: 3)
 textField(id: 'input', text: bind('value', target: model), columns: 20)
 textField(id: 'output', text: bind{model.value}, columns: 20, editable:
 false)
 button(action: clickAction)
}

Notice the usage of Groovy expressions in the XML. It’s like having a ready-made expres-
sion language! Also, be sure to use escape literal values with single or double quotes, as
is done here for the id properties of each text field; otherwise the builder will complain.
You might be thinking, “If the XML looks so close to what you would write in Groovy,
why bother with the XML in the first place?” We wonder that too; alas, some people still
prefer XML over a scripting language. It’s just the way the world works.

Full Java MVC members
As you just saw in the previous section, the ability to change the source type of a view is
useful and isn’t restricted to views; you can replace a controller, a model, or even a ser-
vice in the same manner. You can also create a new group using Java as the source type
from the start—just make sure you specify the fileType parameter, as demonstrated
in the following example:

$ griffon create-mvc custom -fileType=java
www.it-ebooks.info

http://www.it-ebooks.info/

348 APPENDIX Porting a legacy application
This command will generate all MVC members using a Java-based template instead of
the default Groovy one. You’ve seen the view already, so let’s take a peek at the con-
troller and model. First comes the controller:

package sample;

import java.awt.event.ActionEvent;
import org.codehaus.griffon.runtime.core.AbstractGriffonController;

public class CustomController extends AbstractGriffonController {
 private CustomModel model;
 public void setModel(CustomModel model) { this.model = model; }
 public void action(ActionEvent e) {}
}

This class must comply with the contract of a Griffon controller—that’s why it extends
from a specific class (AbstractGriffonController). The template shows how actions
can be defined. Because you’re working with Java now, using closures is out of the
question, but actions can be defined as public methods. You can change the type
of the parameter; ActionEvent is the most usual case, which is why it’s suggested by
the template.

 Next is the model:

package sample;

import org.codehaus.griffon.runtime.core.AbstractGriffonModel;

public class CustomModel extends AbstractGriffonModel {
 private String input;

 public String getInput() { return input; }
 public void setInput(String input) {
 firePropertyChange("input", this.input, this.input = input);
 }
}

As with the previous two artifacts, the model requires a custom superclass (Abstract-
GriffonModel). The template shows how a simple observable property can be defined.
It must be done in this way because @Bindable can’t be used with Java code.

 It’s worth mentioning that there’s a specific interface for each artifact type pro-
vided by Griffon. Following the naming conventions, their class names are as follows:

griffon.core.GriffonModel
griffon.core.GriffonView
griffon.core.GriffonController
griffon.core.GriffonService

You’re required to implement the corresponding interface for a particular artifact.
Given that the behavior is similar for all artifacts, Griffon provides base implementations
for each interface; these are the abstract classes you saw in the previous code snippets.
But nothing prevents you from implementing any of these interfaces from scratch.

 If you’re wondering whether a different source file type can be applied to the ini-
tial MVC group without resorting to calling replace-artifact, then the answer is yes.
Just be sure to specify the fileType argument when issuing the call to create-app.
www.it-ebooks.info

http://www.it-ebooks.info/

349Using events to your advantage
Preferring services over controllers
You know now that every MVC member can be written in Java too. Although that abil-
ity can be useful, sometimes it’s better to keep the encapsulation of legacy code and
not mix it with specific Griffon artifact behavior. This is where services come to your
aid. You can use a service as a bridge between controllers and the target legacy code.
In this way, you can take full advantage of Groovy in your controller, models, and views
while still accessing all the behavior from the legacy classes from a safe vantage point.

 Keep in mind that services are treated as singletons and are automatically instanti-
ated by the framework. Services are also automatically registered as application event
listeners, which can help at times to initialize any components belonging to the leg-
acy code.

Using events to your advantage
Recall from chapters 2 and 8 that Griffon provides a powerful event mechanism that’s
paired with the application’s life cycle. This enables you to register initialization code
for any legacy component that can be performed at the right time. Be aware that
addons fire a new set of events when they’re being processed by the application while
it’s starting up; you’ll have more options to micromanage the instantiation and cus-
tomization of legacy code.

 Finally, remember that any component can be transformed into an event publisher
if it’s annotated with @EventPublisher or, in the case of Java code, if it relies on Event-
Router to send out notifications. Events make it simple to communicate disparate
components, which is always a good thing to have in mind when you’re dealing with
legacy code.
www.it-ebooks.info

http://www.it-ebooks.info/

index
Symbols

_Events.groovy script 193–195
_Install.groovy 265
_Uninstall.groovy 265
_Upgrade.groovy 265
@Bindable 18, 133
@Bindable transformation 70
@EventPublisher 349
@griffon.transform

.EventPublisher
annotation 205

@PropertyListener
annotation 62

@Threading 175

A

Abbot 221
component test 221

Abeille Forms Designer 114–
116

views 343–344
AbeilleForm Builder 301
Abstract Syntax Tree (AST)

Transformation. See AST
Transformation

AbstractGriffonController 348
AbstractGriffonModel 348
AbstractGriffonView 345
action 122–123

as closure property or
method 122

defining 20
ActionEvent 348

actionPerformed 63
actions plugin 225
addBinding() 86
addon 102, 265–267

creating 265
descriptor 265, 268
events fired while loading 267
runtime elements 266

addPropertyChangeListener 71
AggregateBinding 86
Almaer, Dion 294
Ant 336–338

integrating Griffon app
into 337

Apache Pivot 188
Apache XFire 320
app object 145
app property 118, 152
app variable 103
app.artifactManager 130
app.builders 119
app.config 119
app.models 119
app.views 119
appender 46
applet 8
applet file, packaging 247
application

initialization 52–53
legacy. See legacy application
multithreaded 20
multithreaded. See multi-

threaded application
packaging 319
packaging. See packaging

applications

ready 53–54
shutdown 54–55
startup 53
stop 55–56

application event 196–205
application life cycle 51–56

phases 52
initialize 52–53
ready 53–54
shutdown 54–55
startup 53
stop 55–56

scripts 52
EDT 52

application model 64, 66
application node 40, 106
application structure 37–39
application.autoShutdown 40–

41
application.frameClass 41
Application.groovy 39–41
application.properties 50
application.startupGroups 40,

142
startupGroups 53

Aristotle, on quality 212
artifact 118, 130–137

custom template 155–159
inspecting 130–132
metaprogramming 133

Artifact API 130–137
ArtifactManager 130–132

methods 131
properties 131

aspect-oriented programming
(AOP) 267
350

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 351
AST annotation, and
metaprogramming 70

AST Transformation 69–70, 133
asynchronous calls 171
attribute delegate 287–288

B

BalloonTip 301
bean definition 129
bean node 105
bean, observable 66–74
BeanBuilder 128
bind

bind attribute 82
bind: attribute 85
bind() method 84–85
bind() node 176

BindFactory 79
bindGroup() 85
binding 60–64, 74–83, 176

automatic updates 82, 84
basic 75–76
bidirectional 63
binding to a closure 79–80
contextual property 78–79
converting values read

from 80–81
flavors 76–77
grouping 85–86
implicit argument

property 77–78
manually triggering 85
mortgage calculator

example 86–91
observable changes 66–74
property to property 76
separating trigger from

read 76–77
setting initial value 82
turning off 82
two-way 82–83
update strategies 176
validating values read from

81
binding group 85–86
BindingUpdatable 79, 83–86

accessing 83
bindstorm 84–85
boilerplate code, in Java 23–24
bookstore application 304–321

configuring 318–320
Griffon frontend 311–315
model 314–315
networking options 320–321

querying Grails backend 315–
320

REST 307–311
service 315–318
view 312–314

BootStrap.groovy 310
BootstrapEnd event 197
BootstrapStart event 197
bound property 66–74

declaring 72
manual support 71

build event 192–196
build settings, configuring 46
build() method 107–109
BuildConfig.groovy 39, 43, 46–

47, 174
builder 41–43

adding 102
adding delegates to 285
and views 101–102
CompositeBuilder. See Com-

positeBuilder
creating 283–285
extensions. See builder exten-

sions
factory naming

convention 284
list of available 300
namespaces 43
nodes 101–102
root node 43

builder extensions 288–301
CSSBuilder 293–296
GfxBuilder 296–300
JideBuilder 291–293
SwingXBuilder 288–291

builder pattern 97
builder property 119, 146
Builder.groovy 39, 41–43, 101,

173
buildMVCGroup() method 119,

143–144
parameters 143

build-time plugin. See plugin,
build-time

buildViewFromXml
method 346

Burlap protocol 320

C

class
anonymous 96
as event publisher 205–210
domain class. See domain class

inner 163
instance of, creating 121

clean target 50
CleanEnd event 194
CleanStart event 194
clear action 135
closure 15, 34

binding to 79–80
Cobertura 239–240
code coverage. See Cobertura
Codehaus 4
CodeNarc 236–237
command line 47–51
command targets. See griffon

command
command vs. target 47
command-line tools 336–340

Ant 336–338
integrating Griffon app

into 337
Gradle 338–340

creating a Griffon app
340

integrating Griffon
app 338–339

Maven 340
compile target 50
CompileEnd event 194
CompileStart event 194
component 93

container. See container
hierarchy 93
plain component 93
testing. See UI testing, compo-

nent test
CompositeBuilder 41–43, 101
concurrency 161–166
conf directory 37
Config.groovy 39, 43–47, 319

default contents 46
configuration 39–47

Application.groovy 40–41
balancing with

conventions 27
of build-related settings 46
of development

environment 44–46
of environments 44
of logging 46–47
scripts 39

console appender 46
console target 50
container 93

component hierarchy 93
container node 104
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX352
controller 19–22, 118–137
actions 122–123
actions and

multithreading 173–175
behaviors and 14–16
creating 63–64
disabling 174
injected properties 118–119

app 118
builder 119
model 119
view 119

injecting service into 125
introduction to 30
methods of 119–121

buildMVCGroup() 119
createMVCGroup() 119
destroyMVCGroup() 120
newInstance() 121
withMVCGroup() 120

multiple,
communicating 203–205

post-initialization hook 121–
122

preferring services over 349
controller property 101, 146
controller variable 103
controllers directory 38
controllers property 152
convention over

configuration 31–33, 139
conventions, balancing with

configuration 27
converter

converting data types 88
massaging data values 88
order of evaluation 81

converter attribute 80
create-addon 266
create-app 7, 37, 49
create-controller 158
create-integration-test 213
create-model 158
CreateMVCGroup event 198
createMVCGroup() method 17,

114, 119, 143–144
application events launched

by 198
parameters 143

create-script 193, 195
create-service 125
create-unit-test 213
create-view 158
Crosby, Phillip, on quality 212
CSSBuilder 293–296

curl 311
cyclomatic complexity 238

D

data type, converting 88
Davis, Scott 34
deb target 254
delegate

adding to builder 285
attribute delegate 285
postInstantiate delegate 285
postNodeCompletion

delegate 285
preInstantiate delegate 285–

286
dependency injection 126
dependsOn 264
DestroyMVCGroup event 198
destroyMVCGroup()

method 120, 154
application events launched

by 198
development environment 5–7,

44–45
configuring 44–46

dispose() 154
dist directory 38
distribution

building 251–252
tweaking 255–257

doLater{} 122, 171
domain class 304–305

controller operations 307–
309

controllers 305–306
exposing via REST 307–311
pointing to resources via

URL 309–311
domain model 64

in web frameworks 65
doOutside{} 122, 171
dynamic method, adding to

service 318

E

easyb 233–235
scenarios 235
stories 234

echo target 194
Eclipse 323–327

Ant support 325
importing Griffon app 324–

325

installing 323
running Griffon app 325–327
setting up Groovy and

Griffon 324
EDT

asynchronous calls in 189
executing code outside of 189
identifying 189
synchronous calls in 188

edt{} 122, 170–171
emitter 30
enabler closure 62
environment

configuring 44
custom 45
defaults 44
specifying 45

environments node 45
essence vs. ceremony 24, 33
event

application events 196–205
default 197
launched by createMVC-

Group() and
destroyMVCGroup() 198

build events 192–196
common 194
default 196–198
event listener 198
event mechanism and app life

cycle 349
firing 201–205
handling with events

script 193–195
publishing 195–196
publishing via a class 205–210
targets 194

event appender 46
event dispatch thread

(EDT) 161–165
event handler 95

_Events.groovy script 193–195
build event vs. application

event 197
form 194
options 198–200
registering 193, 197
threading and 200

event listener 198
event() method 196
EventPublisher interface 205
EventRouter 205, 349
Events.groovy 197
example application,

GroovyEdit 9–22
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 353
execFuture() 189
execInsideUIAsync{} 20, 189
execInsideUISync{} 188, 346
execOutsideUI{} 20, 189
ExpandoMetaClass 133
extensibility, addons and 102

F

factory methods 279–280
FactoryBuilderSupport 41, 79,

279, 284–285
FEST 221

component test 222–223
example app 223–228
extensions 228
fixtures 226
installing 225–226
name property 225
requiredX methods 227

file appender 46
file contents, displaying 21
fileType parameter 347
Filthy Rich Clients 298
final keyword 96
FindBugs 236
findGriffonClass method 131
firePropertyChange method 71
Flamingo 106
FlamingoBuilder 300
Ford, Neal 24
formPanel node 115
frame() method 98
frontend, connecting to Grails

backend 315

G

Galbraith, Ben 294
Gant 49, 193
generate-view-script 111, 342
get() method 179
get<type>Class() method 131
getAllClasses() method 131
getApp() method 132
getArtifactManager()

method 130
getArtifactType() method 132
getClassesOfType() method 131
getClazz() method 132
getFullName() method 132
getName() method 132
getNaturalName() method 132
getPackageName() method 132

getPropertyChangeListeners()
method 71

getPropertyName()
method 132

getShortName() method 132
GfxBuilder 296–300

node types 296
retained mode 296

Glazed Lists 312
Glover, Andrew 233
GMetrics 238–239
Google Web Toolkit (GWT)

94
Google, protocol buffers 320
Gradle 338–340

creating a Griffon app 340
integrating Griffon app 338–

339
Grails

as foundation for Griffon 4
backend, connecting to Grif-

fon frontend 315
packaging 319
server application 304–321

configuring 318–320
Griffon frontend 311–315
model 314–315
networking options 320–

321
querying Grails

backend 315–320
REST 307–311
service 315–318
view 312–314

setting up 303
Grails object relational mapping

(GORM) 304
Grant, scripts 193
GridBagLayout 114, 312
gridLayout() node 99
Griffon

binding 176
controller actions and

multithreading 173–175
development environment

5–7
foundations of 5
introduction 4
naming conventions 14
plugins 288
scripts. See script
threading injection 175
threading support 173
vs. Smalltalk 66
wrapper. See wrapper

griffon command 6
targets 47–49

build targets 49–50
miscellaneous targets 50–

51
run targets 50

griffon node 45
GRIFFON_HOME 5, 324, 338
griffon.core.EventPublisher 205
griffon.core.GriffonApplication

103, 152, 198
griffon-app directory 37
GriffonApplication 145
GriffonClass 130

methods of 132
GriffonController 348
GriffonControllerClass 132
GriffonModel 348
GriffonNameUtils 135, 218
GriffonService 348
GriffonServiceClass 132
GriffonUnitTestCase 213
griffonVersion property 264
GriffonView 348
Groovy 33–35

basis in Java 34
code complexity, measuring.

See GMetrics
code violations. See CodeNarc
method missing

technique 285
Testing Guide 214

groovy.beans.Bindable
annotation 69

groovy.util.AbstractFactory 280
groovy.util.ConfigObject 40
groovy.util.ConfigSlurper 40
groovy.util.ObservableList 72–

74
groovy.util.ObservableMap 72–

73
GroovyBean property 69
GroovyEdit example

application 9–22
Grouchnikov, Kirill 300
group: attribute 85
GroupLayout 110
groups property 152
GTK 94, 188
GUI, written in declarative

fashion 140
Guice 126
Guy, Romain 298
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX354
H

Haase, Chet 298
help target 50
hessian plugin 320
Hessian protocol 320
HTTPBuilder 317
HTTPClient 317

I

i18n directory 39
id: attribute 84
IDEA 331–334

creating a Griffon app 331–
333

running a Griffon app 333–
334

idempotent 84
IDEs 323–336

Eclipse 323–327
Ant support 325
importing Griffon

app 324–325
installing 323
running Griffon app 325–

327
setting up Groovy and

Griffon 324
IDEA 331–334

creating a Griffon app 331–
333

running a Griffon app 333–
334

NetBeans 327–331
creating a Griffon app 329–

330
installing Groovy and

Griffon 328
running a Griffon app 330–

331
inheritance 163
init method 20, 346
Init script 195
initialization 52–53
Initialize.groovy 52–53, 172
InitializeMVCGroup event

198
initWindow() method

226
injected property 118–119

app 118
builder 119
model 119
view 119

inner class 163
coping with threading

problems 165
Installer plugin 250–257

building a distribution 251–
252

deb target 254
installing 250
izpack target 252–253
jsmooth target 255
mac target 255
rpm target 253–254
tweaking a distribution 255–

257
windows target 255

installer.xml 256
integrate command 51
integrate-with target 51
integration directory 39
IntelliJ IDEA. See IDEA
Inversion of Control (IoC) 126
invokeAndWait() method 165
invokeLater() method 165
IoC. See Inversion of Control

(IoC)
is<type>Class method 131
isHandlesNodeChildren()

method 280
isLeaf() method 279
isUIThread() method 189
IzPack 5, 252–253

J

jaggies, removing 296
jar file

manifest 247–248
packaging 244–246

merging mappings 246
merging strategies 245

Java
as basis for Groovy 34
lack of generics 96
RMI protocol 320
Swing. See Swing
verbosity of 96

Java 2D 296
direct mode 296

Java desktop development
boilerplate code 23–24
Griffon solutions to issues

with 27–35
issues with 22–27
lack of app life-cycle

management 26–27

no built-in build
management 27

UI definition complexity 24–
26

JAVA_HOME 338
java.awt.EventQueue 161
java.awt.Robot 221
java.util.Map 72
JavaBeans

binding 75
bound properties

Groovy way 69–72
Java way 67–69

JavaFX 188
JComponent, instantiating 103
JDepend 236
Jemmy 221

component test 222
JetGroovy 331
jfcUnit 221

component test 222
JGoodies FormLayout 114
JIDE Common Layer (JCL) 291
JideBuilder 102, 291–293
JLabel 94
JRibbonFrame 106
jSilhouette 296
jsmooth target 255
JTextComponent 76
jx prefix 289
JXErrorPane 291
JXFrame 41
JXHyperLink 291
JXTable 291
JXTextField 278
JXTitlePanel 291

K

keys directory 38
Krasner, Glenn 28

L

L2FProd Commons 301
layout 95
legacy application, porting 342–

349
lib directory 39
lifecycle directory 39
LimeWire 26
list

index field 74
observable 73–74
overloaded operators 73
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 355
list action 308
listener 30
list-plugins 259, 264
LoadAddonEnd event 197
LoadAddonsEnd event 197
LoadAddonsStart event 197
LoadAddonStart event 197
Log4jConfigStart event 197
logging

appenders 46
configuring 46–47

logging level 47
configuring 47

lookAndFeel 53
Lynx 311

M

mac target 255
MacroMates 334
MacWidgetsBuilder 300
main directory 39
main window class 41
Mair, Chris 236, 238
manifest, for jar file. See jar file,

manifest
map

observable 72–73
value, accessing 72

Marco-Polo example
application 206–210

Matisse. See NetBeans GUI
builder

Maven 340
menu items, adding 12–13
merging strategy 245
Meta Object Protocol

(MOP) 133, 285
MetaClass 133
metaprogramming 34, 133

and AST annotations 70
method

common to controllers 119–
121

pretended 285
method missing technique 285
methodMissing() method 285
MigLayout 136, 225, 312, 314
MissingMethodException 285
mock testing 214
model 60–64

application model. See applica-
tion model

as communication hub 64–66
creating 61–62

domain model. See domain
model

introduction to 29
model property 119, 146
model variable 103
models directory 39
models property 152
Model-View-Controller

pattern 28–31
controller. See controller
griffon and 29
history of 28
model. See model
Observer pattern. See

Observer pattern
original code 28
view. See view

MOP. See Meta Object Protocol
(MOP)

multiple assignment 120
multithreaded application 172–

176
application life cycle 172
binding 176
controller actions and

multithreading 173–175
Griffon threading

support 173
threading injection 175

mutual property 83
MVC group 10, 138–159

anatomy of 139–142
bootstrapping 142
configuring 41
controller 140
creating 139
creation methods 143–144
destroying 120, 153–155
initializing 40
instantiating 119, 143–151
Java 347–348
members

adding 149
initializing 147–148
instantiating 145–147
multiple view

components 149
preexisting instances 148
removing 149

metaclass preparations 145
model 139
multiple, accessing 151–153

via names 152–153
via references 151–152

naming conventions 139

registering 141–142
testing code 141
type instances 144–147
using and managing 151–155
view 139

MVC group, creating 113
MVC, and web frameworks 65
mvcGroupDestroy()

method 154
mvcGroupInit() method 121–

122, 141, 147, 153, 198, 345
mvcGroups node 40

N

naming conventions, Griffon 14
NetBeans 327–331

creating a Griffon app 329–
330

installing Groovy and
Griffon 328

running a Griffon app 330–
331

NetBeans GUI builder 110–114
view 111–114

NewInstance event 198
newInstance() method 121,

132, 280
Niederwieser, Peter 228
node

adding 278–285
creating a builder 283–285
factory methods 279–280
plugin/addon

combination 283
using implicit addon 282–

283
with plugins 115

as a building block 102–104
builders and 101–102
factory. See node factory
naming 103
special 104–106

application node 106
bean node 105
container node 104
noparent node 105–106
widget node 104

node factory, registering 278–
281

noparent node 105–106, 343
nuvolaIcon() 157
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX356
O

ObservableList 73–74
ObservableMap 72–73
Observer pattern 30–31
onDone() node 178–179
onFactoryRegistration()

method 280
onHandleNodeAttributes()

method 280
onInit() node 178
onNodeChildren() method

280
onNodeCompleted()

method 280
onUpdate() node 178–179
openFile() method 15
org.codehaus.groovy.binding

.AggregateBinding 85
Orr, Kenneth 300

P

package command 319
package target 50
packaging applications 243–

257, 319
customizing templates 248–

250
Installer plugin 250–257

building a
distribution 251–252

deb target 254
installing 250
izpack target 252–253
jsmooth target 255
mac target 255
rpm target 253–254
tweaking a

distribution 255–257
windows target 255

jar manifest 247–248
options 243
shared directory 243
targets 244–250

applet 247
jar 244–246
webstart 247
zip 246

packaging target. See packaging
applications, targets

PackagingEnd event 194
PackagingStart event

194
Ping, example script 195

plugin 259–262
action call, intercepting 272–

273
as dependency 264
bootstrapping 268–269
build-time 263–265
creating 263–265
documentation 265
events 265
example 267–276
getting list of 259
Griffon version 264
information about 260
information properties 264
installing 261
packaging 270–272
platform 264
property updates,

intercepting 269–270
releasing 274–276
runtime. See addon
toolkits, compatible 264
types 262–267
uninstalling 262
version number 264
version, checking 274

plugin-info 260, 264
Pope, Stephen 28
post-initialization hook 121–122
postInstantiate delegate 286–

287
postNodeCompletion

delegate 287
production environment 44
property

bound. See bound property
injected. See injected property
marking as observable 69

PropertyChangeEvent 30
PropertyChangeListener 30,

269
protobuf plugin 320
publish() method 179
publishEvent 208

Q

Qt 188

R

readFile() method 163
ready 53–54
Ready.groovy 52–54

ReadyEnd event 197
ReadyStart event 197
rebind() method 84–85
Red Hat Package Manager

(RPM) 253
Reenskaug, Trygve 28
registerFactory() method 284
remoting plugin 320
removeBinding() method 86
removePropertyChangeListener

71
requiredX method 227
resources directory 39
resources, URL naming

convention 309
REST plugin, dynamic

methods 318
REST, exposing domain

classes 307–311
reverseUpdate() method 85
Rich Internet Application

(RIA) 29
rmi plugin 320
rpm target 253–254
Ruby on Rails 4
run-app target 50
RunAppEnd event 195
run-applet target 50
RunAppletEnd event 195
RunAppletStart event 195
RunAppStart event 194
runtime plugin. See addon
run-webstart target 50
RunWebstartEnd event 195
RunWebstartStart event 195

S

script, creating 192–193
scripts directory 39
search action 308
selectFile() method 163
service 124–130, 315–318

adding a class to 127
adding dynamic methods

to 318
complex 126–130

creating 127
definition of 124
injecting into controller 125
preferring over

controllers 349
simple 125–126

creating 125
simple name 126
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 357
service (continued)
Spring-based 126–130

creating 127
type 126

set(T prop) 94
setChild() method 280
setParent() method 280
set-version target 50
shared directory 243
shell target 50
show action 308
shutdown 54–55
Shutdown.groovy 52, 54–55
shutdown() method 15
ShutdownAborted event 197
ShutdownRequested event 197
ShutdownStart event 197
SimpleService.groovy 125
SimpleServiceTest.groovy 125
Smalltalk vs. Griffon 66
SOAP 320
source attribute 76
sourceProperty attribute 76
sourceValue 77
Spock 228–233

blocks 229
data tables 230
FEST-enabled specs 232–233

Spring 126
injection, configuring 128–

130
plugin, installing 127

SpringSource 323
src directory 39
Standard Web Toolkit (SWT) 94
Standard Widget Toolkit

(SWT) 188
stand-in object 79
startup 53
Startup.groovy 52–53
StartupEnd event 197
StartupStart event 197
stats target 50
StatusFinal event 195
stop 55–56
Stop.groovy 52, 55–56
Struts 26, 31
submit action 135
Swing 93–97

“Hello World” 94–96
concurrency 161–166
difficult of threading 97
event handler 95
Groovy

doLater{} 171

doOutside{} 171
edt{} 170–171
with threading 167–169
without threading 166–167

issues with 96–97
Java

with threading 163–166
without threading 161–163

Java verbosity 96
lack of Java generics 96
layout 95
threading 165

Swing GUI Builder, views 342–
343

SwingBuilder 9, 43, 97–100
“Hello World” 98–100
alternatives 166–172
bind node 75
converts List into

java.awt.Dimension 99
map literal syntax 98
naming conventions 11
node groups 101
nodes 102–104
views and 101–102

Swing-clarity 294
SwingLayout 110
SwingPad 107–108
SwingUtilities.invokeAndWait()

method 165
SwingUtilities.invokeLater()

method 165, 171
SwingUtilities.isEventDispatch-

Thread() method 171
SwingWorker 177
SwingX 177, 288
SwingXBuilder 288–291

installing 177–178, 289
threading support 177–179
withWorker() node 178–179

swingx-builder 177
SwingxtrasBuilder 301

T

T getProp() 94
tabbedPane 17, 314
TableModel 314
target attribute 76
target vs. command 47
target, packaging. See packaging

applications, targets
target/test-reports directory

215
targetProperty attribute 76

template 156–158
location 157
naming 156
placeholders 156

test
creating 213–214
integration tests 213
output 214
phases 215
running 214–217

by name 216–217
by phase or type 215–216

unit tests 213
test directory 39
test environment 44–45
test-app command 215–217
testing

basics 212–220
code analysis 236–240
code coverage. See Cobertura
example app 217–220
Groovy Testing Guide 214
measuring Groovy code com-

plexity. See GMetrics
mock testing 214
reporting Groovy code viola-

tions. See CodeNarc
target/test-reports

directory 215
UI. See UI testing
with Spock and easyb 228–

235
See also Spock

text editor. See TextMate
TextMate 334–336

environment, setting up 335
installing Griffon bundle 334
installing Groovy bundle 335
running griffon app 335–336

threading
and application life cycle 172
Apache Pivot and 188
difficulty of 97
EDT

asynchronous calls in 189
executing code outside

of 189
identifying 189
synchronous calls in 188

event handlers and 200
example application 179–188
execSync{} 188
executing code

asynchronously 189
Griffon support 173
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX358
threading (continued)
injection 175
injection, disabling 174
JavaFX and 188
Qt and 188
Standard Widget Toolkit

(SWT) and 188
Swing and 165
SwingXBuilder support

for 177–179
threading directive 64
TridentBuilder 300

U

UI testing 220–228
component test 221–223

in Abbot 221
in FEST 222–223
in Jemmy 222
in jfcUnit 222

example app 223–228
unbind() method 84–85, 155
UndoManager 77
uninstall-plugin 262
unit directory 39
update() method 85
upgrade target 51
UrlMappings.groovy 310
user interface

definition complexity in
Java 24–26

elements, adding 11–12
testing. See UI testing
XML and 25

USER_HOME 324

V

validator
closure 81
order of evaluation 81

value attribute 82
variable

preconfigured 103
whether to declare 15

view
anatomy of 100–104
breaking into smaller

scripts 107–109
builders and 101–102
converting from Groovy to

Java 344
creating 62–63
custom, Java-based 344–346
integrating with Abeille Forms

Designer 114–116
integrating with NetBeans

GUI builder 110–114
introduction to 30
large, managing 106–110
legacy view 342–347
legacy views 110–116
organizing by script type 109–

110
reusing code 107
role of 10
small scripts 108–109
source type, changing 342–

347
SwingPad and 107–108
XML-based 346–347

view property 101, 119, 146

view script, preconfigured
variables 103

views directory 39
views property 152

W

war command 319
WeatherWidget 152
web framework

and MVC pattern 65
domain models 65

Web Start 8
webstart directory 38
webstart file, packaging 247
widget node 104
window property 226
windows target 255
with{} 169
withMVCGroup() method 120,

143–144
withworker() node 178–179
work() node 178–179
wrapper 340
Wsclient plugin 320

X

xfire plugin 320
xmlrpc plugin 320
xswingx 278, 301

Z

zip file, packaging 246
www.it-ebooks.info

http://www.it-ebooks.info/

A. Almiray ● D. Ferrin ● J. Shingler

Y
ou can think of Griff on as Grails for the desktop. It is a
Groovy-driven UI framework for the JVM that wraps
and radically simplifi es Swing. Its declarative style and

approachable abstractions are instantly familiar to developers
using Grails or JavaFX.

With Griffon in Action you get going quickly. Griff on’s conven-
tion-over-confi guration approach requires minimal code to get
an app off the ground, so you can start seeing results immedi-
ately. You’ll learn how SwingBuilder and other Griff on “builders”
provide a coherent DSL-driven development experience. Along
the way, you’ll explore best practices for structure, architecture,
and lifecycle of a Java desktop application.

What’s Inside
● Griff on from the ground up
● Full compatibility with Griff on 1.0
● Using SwingBuilder and the other “builders”
● Practical, real-world examples
● Just enough Groovy

Written for Java developers—no experience with Groovy, Grails,
or Swing is required.

Andres Almiray is the project lead of the Griff on framework,
frequent conference speaker, and Java Champion. Danno Ferrin
is cofounder of Griff on and an active Groovy committer.
James Shingler is a technical architect, conference speaker,
open source advocate, and author.

To download their free eBook in PDF, ePub and Kindle formats, owners
of this book should visit manning.com/GriffoninAction

$44.99 / Can $47.99 [INCLUDING eBOOK]

GRIFFON IN ACTION

JAVA

M A N N I N G

“A thorough source
of information ... the

defi nitive guide.”
—From the Foreword by Dierk

König, author of Groovy in Action

“If you think building
 desktop apps is complex,
this awesome book will
change your mind!”—Guillaume Laforge

Groovy project lead

“Brings life back into
Java desktop application

development.”—Santosh Shanbhag
Monsanto Company

“Griff on makes Java GUI
programming easy. Griff on
in Action makes it fun.”—Michael Kimsal, publisher of

GroovyMag

SEE INSERT

www.it-ebooks.info

http://www.it-ebooks.info/

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	Roadmap
	Code conventions
	Source code downloads
	Software requirements
	Staying up to date
	About the authors

	about the cover illustration
	Part 1—Getting started
	1 Welcome to the Griffon revolution
	1.1 Introducing Griffon
	1.1.1 Setting up your development environment
	1.1.2 Your first Griffon application

	1.2 Building the GroovyEdit text editor in minutes
	1.2.1 Giving GroovyEdit a view
	1.2.2 Making the menu items behave: the controller
	1.2.3 How about a tab per file?
	1.2.4 Making GroovyEdit functional: the FilePanel model
	1.2.5 Configuring the FilePanel controller

	1.3 Java desktop development: welcome to the jungle
	1.3.1 Lots of boilerplate code (ceremony vs. essence)
	1.3.2 UI definition complexity
	1.3.3 Lack of application life cycle management
	1.3.4 No built-in build management

	1.4 The Griffon approach
	1.4.1 At the core: the MVC pattern
	1.4.2 The convention-over-configuration paradigm
	1.4.3 Groovy: a modern JVM language

	1.5 Summary

	2 A closer look at Griffon
	2.1 A tour of the common application structure
	2.2 The ABCs of configuration
	2.2.1 A is for Application
	2.2.2 B is for Builder
	2.2.3 C is for Config

	2.3 Using Griffon’s command line
	2.3.1 Build command targets
	2.3.2 Run command targets
	2.3.3 Miscellaneous command targets

	2.4 Application life cycle overview
	2.4.1 Initialize
	2.4.2 Startup
	2.4.3 Ready
	2.4.4 Shutdown
	2.4.5 Stop

	2.5 Summary

	Part 2—Essential Griffon
	3 Models and binding
	3.1 A quick look at models and bindings
	3.1.1 Creating the project
	3.1.2 Creating the model
	3.1.3 Creating the view
	3.1.4 Creating the controller

	3.2 Models as communication hubs
	3.2.1 MVC in the age of web frameworks
	3.2.2 Rethinking the pattern

	3.3 Observable beans
	3.3.1 JavaBeans bound properties: the Java way
	3.3.2 JavaBeans bound properties: the Groovy way
	3.3.3 Handy bound classes

	3.4 Have your people call my people: binding
	3.4.1 A basic binding call
	3.4.2 The several flavors of binding
	3.4.3 Finding the essence
	3.4.4 Other binding options

	3.5 The secret life of BindingUpdatable
	3.5.1 Keeping track of bindings with the BindingUpdatable object
	3.5.2 Managing the bindstorm: bind(), unbind(), and rebind()
	3.5.3 Manually triggering a binding: update() and reverseUpdate()
	3.5.4 Grouping bindings together

	3.6 Putting it all together
	3.6.1 Setting up the model
	3.6.2 Defining a view
	3.6.3 Adding the missing validations to the model

	3.7 Summary

	4 Creating a view
	4.1 Java Swing for the impatient
	4.1.1 “Hello World” the Swing way
	4.1.2 Extending “Hello World”: “Hello Back”
	4.1.3 Swing observations

	4.2 Groovy SwingBuilder: streamlined Swing
	4.2.1 “Hello World” the SwingBuilder way
	4.2.2 “Hello Back” with SwingBuilder

	4.3 Anatomy of a Griffon view
	4.3.1 Builders are key to views
	4.3.2 Nodes as building blocks

	4.4 Using special nodes
	4.4.1 Container
	4.4.2 Widget
	4.4.3 Bean
	4.4.4 Noparent
	4.4.5 Application

	4.5 Managing large views
	4.5.1 Rounding up reusable code
	4.5.2 Breaking a large view into scripts
	4.5.3 Organize by script type

	4.6 Using screen designers and visual editors
	4.6.1 Integrating with the NetBeans GUI builder (formerly Matisse)
	4.6.2 Integrating with Abeille Forms Designer

	4.7 Summary

	5 Understanding controllers and services
	5.1 Dissecting a controller
	5.1.1 Quick tour of injected properties and methods
	5.1.2 Using the post-initialization hook
	5.1.3 Understanding controller actions

	5.2 The need for services
	5.2.1 Creating a simple service
	5.2.2 Creating a Spring-based service

	5.3 Artifact management
	5.3.1 Inspecting artifacts
	5.3.2 Metaprogramming on artifacts
	5.3.3 Artifact API in action

	5.4 Summary

	6 Understanding MVC groups
	6.1 Anatomy of an MVC group
	6.1.1 A look at each member
	6.1.2 Registering the MVC group
	6.1.3 Startup groups

	6.2 Instantiating MVC groups
	6.2.1 Creation methods
	6.2.2 Marshaling the MVC type instances
	6.2.3 Initializing group members
	6.2.4 Advanced techniques

	6.3 Using and managing MVC groups
	6.3.1 Accessing multiple MVC groups
	6.3.2 Destroying MVC groups

	6.4 Creating custom artifact templates
	6.4.1 Templates, templates, templates
	6.4.2 It’s alive!

	6.5 Summary

	7 Multithreaded applications
	7.1 The bane of Swing development
	7.1.1 Java Swing without threading
	7.1.2 Java Swing with threading

	7.2 SwingBuilder alternatives
	7.2.1 Groovy Swing without threading
	7.2.2 Groovy Swing with threading
	7.2.3 Synchronous calls with edt
	7.2.4 Asynchronous calls with doLater
	7.2.5 Outside calls with doOutside

	7.3 Multithreaded applications with Griffon
	7.3.1 Threading and the application life cycle
	7.3.2 Threading support the Griffon way
	7.3.3 Controller actions and multithreading: a quick guide
	7.3.4 Fine-tuning threading injection
	7.3.5 What about binding?

	7.4 SwingXBuilder and threading support
	7.4.1 Installing SwingXBuilder
	7.4.2 The withWorker() node

	7.5 Putting it all together
	7.5.1 Defining the application’s outline
	7.5.2 Setting up the UI elements
	7.5.3 Defining a tab per loading technique
	7.5.4 Adding the loading techniques
	7.5.5 FileViewer: the aftermath

	7.6 Additional threading options
	7.6.1 Synchronous calls in the UI thread
	7.6.2 Asynchronous calls in the UI thread
	7.6.3 Executing code outside of the UI thread
	7.6.4 Is this the UI thread?
	7.6.5 Executing code asynchronously

	7.7 Summary

	8 Listening to notifications
	8.1 Working with build events
	8.1.1 Creating a simple script
	8.1.2 Handling an event with the events script
	8.1.3 Publishing build events

	8.2 Working with application events
	8.2.1 E is for events
	8.2.2 Additional application event handlers
	8.2.3 Firing application events

	8.3 Your class as an event publisher
	8.3.1 A basic Marco-Polo game
	8.3.2 Running the application

	8.4 Summary

	9 Testing your application
	9.1 Griffon testing basics
	9.1.1 Creating tests
	9.1.2 Running tests
	9.1.3 Testing in action

	9.2 Not for the faint of heart: UI testing
	9.2.1 Setting up a UI component test
	9.2.2 A hands-on FEST example

	9.3 Testing with Spock and easyb
	9.3.1 Spock reaches a new level
	9.3.2 FEST-enabled Spock specifications
	9.3.3 easyb eases up BDD

	9.4 Metrics and code inspection
	9.4.1 Java-centric tools: JDepend and FindBugs
	9.4.2 Reporting Groovy code violations with CodeNarc
	9.4.3 Measuring Groovy code complexity with GMetrics
	9.4.4 Code coverage with Cobertura

	9.5 Summary

	10 Ship it!
	10.1 Understanding the common packaging options
	10.2 Using Griffon’s standard packaging targets
	10.2.1 The jar target
	10.2.2 The zip target
	10.2.3 The applet and webstart targets
	10.2.4 Customizing the manifest
	10.2.5 Customizing the templates

	10.3 Using the Installer plugin
	10.3.1 Building a distribution
	10.3.2 The izpack target
	10.3.3 The rpm target
	10.3.4 The deb target
	10.3.5 The mac target
	10.3.6 The jsmooth target
	10.3.7 The windows target
	10.3.8 Tweaking a distribution

	10.4 Summary

	11 Working with plugins
	11.1 Working with plugins
	11.1.1 Getting a list of available plugins
	11.1.2 Getting plugin-specific information
	11.1.3 Installing a plugin
	11.1.4 Uninstalling a plugin

	11.2 Understanding plugin types
	11.2.1 Build-time plugins
	11.2.2 Runtime plugins

	11.3 Creating the Tracer plugin and addon
	11.3.1 Bootstrapping the plugin/addon
	11.3.2 Intercepting property updates
	11.3.3 Using the plugin
	11.3.4 Intercepting action calls
	11.3.5 Running the plugin again

	11.4 Releasing the Tracer plugin
	11.5 Summary

	12 Enhanced looks
	12.1 Adding new nodes
	12.1.1 Registering node factories
	12.1.2 Using an implicit addon
	12.1.3 Creating a builder

	12.2 Builder delegates under the hood
	12.2.1 Acting before the node is created
	12.2.2 Tweaking the node before properties are set
	12.2.3 Handling node properties your way
	12.2.4 Cleaning up after the node is built

	12.3 Quick tour of builder extensions in Griffon
	12.3.1 SwingXBuilder
	12.3.2 JideBuilder
	12.3.3 CSSBuilder
	12.3.4 GfxBuilder
	12.3.5 Additional builders

	12.4 Summary

	13 Griffon in front, Grails in the back
	13.1 Getting started with Grails
	13.2 Building the Grails server application
	13.2.1 Creating domain classes
	13.2.2 Creating the controllers
	13.2.3 Running the Bookstore application

	13.3 To REST or not
	13.3.1 Adding controller operations
	13.3.2 Pointing to resources via URL

	13.4 Building the Griffon frontend
	13.4.1 Setting up the view
	13.4.2 Updating the model

	13.5 Querying the Grails backend
	13.5.1 Creating a service
	13.5.2 Injecting an instance of the service
	13.5.3 Configuring the Bookstore application

	13.6 Alternative networking options
	13.7 Summary

	14 Productivity tools
	14.1 Getting set up in popular IDEs
	14.1.1 Griffon and Eclipse
	14.1.2 Griffon and NetBeans IDE
	14.1.3 Griffon and IDEA
	14.1.4 Griffon and TextMate

	14.2 Command-line tools
	14.2.1 Griffon and Ant
	14.2.2 Griffon and Gradle
	14.2.3 Griffon and Maven

	14.3 The Griffon wrapper
	14.4 Summary

	appendix Porting a legacy application
	Handling legacy views
	Swing GUI Builder views
	Abeille Forms Designer views
	Custom Java-based views
	XML-based views

	Full Java MVC members
	Preferring services over controllers
	Using events to your advantage

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Back cover

