
S T E P H E N A . T H O M A S

D A T A
V I S U A L I Z A T I O N

W I T H J A V A S C R I P T

D A T A
V I S U A L I Z A T I O N

W I T H J A V A S C R I P T

SHELVE IN: COM
PUTERS/

W
EB PROGRAM

M
ING

$39.95 ($45.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

M A D E V I S U A L .
Y O U R D A T A

You’ve got data to communicate. But what kind of
visualization do you choose, how do you build it,
and how do you ensure that it’s up to the demands
of the Web?

In Data Visualization with JavaScript, you’ll learn how

practical visualizations for your data. Step-by-step
to use JavaScript, HTML, and CSS to build the most

examples walk you through creating, integrating,
and debugging different types of visualizations and

Then you’ll move on to more advanced topics,

line, and scatter graphs, in no time.
will have you building basic visualizations, like bar,

• Create tree maps, heat maps, network graphs,
word clouds, and timelines

• Map geographic data, and build sparklines and
composite charts

• Add interactivity and retrieve data with AJAX

“ I L I E F LAT .”

Th is book uses a durab le b ind ing that won’t snap shut.

• Manage data in the browser and build data-driven
web applications

• Harness the power of the Flotr2, Flot, Chronoline.js,
D3.js, Underscore.js, and Backbone.js libraries

If you already know your way around building a
web page but aren’t quite sure how to build a good
visualization, Data Visualization with JavaScript will
help you get your feet wet without throwing you into the
deep end. Before you know it, you’ll be well on your
way to creating simple, powerful data visualizations.

and has developed complex JavaScript visualizations

A B O U T T H E A U T H O R

Stephen A. Thomas specializes in frontend development
at Georgia Tech’s Department of Education Technology

for the health-care and security industries. He writes and

conferences around the world.
speaks about data visualization in publications and at

including how to:

D
A

T
A

 V
IS

U
A

L
IZ

A
T

IO
N

W
IT

H
 JA

V
A

S
C

R
IP

T
D

A
T

A
 V

IS
U

A
L

IZ
A

T
IO

N
W

IT
H

 JA
V

A
S

C
R

IP
T

T
H

O
M

A
S

SFI-00000

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization
with JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization
with JavaScript

Stephen A. thomAS

www.it-ebooks.info

http://www.it-ebooks.info/

DATA VISUALIZATION WITH JAVASCRIPT. Copyright © 2015 by Stephen A. Thomas.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the

copyright owner and the publisher.

Printed in USA

First printing

19 18 17 16 15 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-605-2

ISBN-13: 978-1-59327-605-8

Publisher: William Pollock

Production Editor: Laurel Chun

Cover Illustration: Beth Middleworth

Developmental Editor: Seph Kramer

Technical Reviewer: Christopher Keen

Copyeditor: Rachel Monaghan

Compositor: Lynn L’Heureux

Proofreader: Emelie Burnette

Indexer: BIM Indexing & Proofreading Services

The visualization on the cover is inspired by the work of Mike Bostock.

It is described in “Creating a Unique Visualization” on page 252.

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 415.863.9900; info@nostarch.com

www.nostarch.com

The Library of Congress Cataloging-in-Publication Data

Thomas, Stephen A., 1962-

 Data visualization with JavaScript / by Stephen A. Thomas.

 pages cm

 ISBN 978-1-59327-605-8 -- ISBN 1-59327-605-2

 1. Information visualization--Data processing. 2. JavaScript (Computer program language) I. Title.

 QA76.9.I52T46 2015

 005.2'762--dc23

 2014039759

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and company names

mentioned herein may be the trademarks of their respective owners. Rather than use a trademark symbol with every occurrence of a

trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention

of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the

preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person or entity with respect to

any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
Stephen A. Thomas specializes in frontend development at Georgia Tech’s Depart-
ment of Education Technology and has developed complex JavaScript visualiza-
tions for the health-care and security industries. He writes and speaks about data
visualization in publications and at conferences around the world.

About the Technical Reviewer
Chris Keen resides in Atlanta, Georgia, and has been writing JavaScript since
2004. Chris has had the honor of working on visualizations ranging from an
SVG tweet map at Weather.com to full-blown interactive maps with Leaflet.js at
Endgame Systems. Chris is currently infatuated with making data dashboards
using Backbone, Epoxy, and D3. Chris recently founded Keen Concepts (http://
keenconcepts.io/), and he consults on JavaScript-rich web applications.

www.it-ebooks.info

http://keenwebconcepts.com/kwc/development/
http://keenwebconcepts.com/kwc/development/
http://www.it-ebooks.info/

Brief Contents
Acknowledgments ..xvi

Introduction ... 1

Chapter 1: Graphing Data .. 5

Chapter 2: Making Charts Interactive ... 47

Chapter 3: Integrating Charts on a Page.. 89

Chapter 4: Creating Specialized Graphs ...119

Chapter 5: Displaying Timelines ...147

Chapter 6: Visualizing Geographic Data ...179

Chapter 7: Custom Visualizations with D3.js .. 223

Chapter 8: Managing Data in the Browser ... 269

Chapter 9: Building Data-Driven Web Applications: Part 1 295

Chapter 10: Building Data-Driven Web Applications: Part 2 327

Index ... 353

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Contents in Detail
Acknowledgments ..xvi

Introduction ... 1
The Book’s Philosophy ... 2
The Book’s Contents .. 3
Source Code for Examples .. 4

Chapter 1: Graphing Data .. 5
Creating a Basic Bar Chart ... 6

Step 1: Include the Required JavaScript... 6
Step 2: Set Aside a <div> Element to Hold the Chart .. 7
Step 3: Define the Data .. 7
Step 4: Draw the Chart ... 8
Step 5: Fix the Vertical Axis ... 9
Step 6: Fix the Horizontal Axis .. 10
Step 7: Adjust the Styling ..12
Step 8: Vary the Bar Color ...13
Step 9: Work Around Flotr2 “Bugs” .. 14

Plotting Continuous Data with a Line Chart .. 15
Step 1: Define the Data .. 15
Step 2: Graph the CO2 Data .. 16
Step 3: Add the Temperature Data ..17
Step 4: Improve the Chart’s Readability ..17
Step 5: Clarify the Temperature Measurements ... 18
Step 6: Label the Chart .. 20
Step 7: Work Around Flotr2 “Bugs” .. 21

Emphasizing Fractions Using a Pie Chart ... 21
Step 1: Define the Data .. 23
Step 2: Draw the Chart ... 23
Step 3: Label the Values ... 24
Step 4: Work Around Flotr2 “Bugs” .. 25

Plotting X/Y Data with a Scatter Chart ... 25
Step 1: Define the Data .. 26
Step 2: Format the Data ... 26
Step 3: Plot the Data ... 26
Step 4: Adjust the Chart’s Axes ... 27
Step 5: Label the Data .. 28
Step 6: Clarify the X-Axis .. 29
Step 7: Answer Users’ Questions .. 30
Step 8: Work Around Flotr2 “Bugs” .. 33

Adding Magnitudes to X/Y Data with a Bubble Chart ... 34
Step 1: Define the Data .. 34
Step 2: Create a Background for the Chart .. 35
Step 3: Plot the Data ... 36

www.it-ebooks.info

http://www.it-ebooks.info/

x | Contents in Detail

Step 4: Add the Background ... 37
Step 5: Color the Bubbles .. 38
Step 6: Adjust the Legend Styles .. 40
Step 7: Work Around Flotr2 “Bugs” .. 41

Displaying Multidimensional Data with a Radar Chart ... 41
Step 1: Define the Data .. 42
Step 2: Create the Chart .. 44
Step 3: Work Around Flotr2 “Bugs” .. 45

Summing Up .. 46

Chapter 2: Making Charts Interactive .. 47
Selecting Chart Content .. 48

Step 1: Include the Required JavaScript Libraries ... 49
Step 2: Set Aside a <div> Element to Hold the Chart 50
Step 3: Prepare the Data .. 50
Step 4: Draw the Chart ... 51
Step 5: Add the Controls ... 52
Step 6: Define the Data Structure for the Interaction 54
Step 7: Determine Chart Data Based on the Interaction State........................ 55
Step 8: Add the Controls Using JavaScript .. 57
Step 9: Respond to the Interaction Controls ... 58

Zooming In on Charts ... 59
Step 1: Prepare the Page .. 60
Step 2: Draw the Chart ... 60
Step 3: Prepare the Data to Support Interaction ...61
Step 4: Prepare to Accept Interaction Events .. 62
Step 5: Enable the Interaction ... 63

Tracking Data Values .. 65
Step 1: Set Aside a <div> Element to Hold the Charts 66
Step 2: Prepare the Data .. 67
Step 3: Draw the Charts ... 68
Step 4: Implement the Interaction .. 71

Retrieving Data Using AJAX .. 75
Step 1: Understand the Source Data ...76
Step 2: Get the First Level of Data via AJAX ... 77
Step 3: Process the First Level of Data ... 80
Step 4: Get the Real Data ... 81
Step 5: Process the Data .. 84
Step 6: Create the Chart .. 85

Summing Up .. 88

Chapter 3: Integrating Charts on a Page .. 89
Creating a Classic Sparkline .. 91

Step 1: Include the Required JavaScript Libraries ... 91
Step 2: Create the HTML Markup for the Sparkline .. 91
Step 3: Draw the Sparkline ... 92
Step 4: Adjust the Chart Style ... 93

www.it-ebooks.info

http://www.it-ebooks.info/

 Contents in Detail | xi

Charting Many Variables .. 94
Step 1: Prepare the HTML Markup .. 94
Step 2: Draw the Charts ... 95
Step 3: Establish a Default Style for the Charts ... 96
Step 4: Modify the Default Style for Special Classes .. 97
Step 5: Create a Unique Style for a Specific Chart .. 99

Annotating Sparklines .. 101
Step 1: Prepare the Data .. 102
Step 2: Prepare the HTML Markup ... 102
Step 3: Add the Chart ... 102
Step 4: Add the Primary Annotation ... 103
Step 5: Provide Additional Information .. 105

Drawing Composite Charts ... 105
Step 1: Draw the Trading Volume Chart ... 106
Step 2: Add the Closing Price Chart ... 106
Step 3: Add the Annotations ... 107
Step 4: Show Details as a Chart ... 108

Responding to Click Events ..110
Step 1: Add the Chart ..110
Step 2: Handle Click Events ..111
Step 3: Improve the Transitions ..112
Step 4: Animate ..114

Updating Charts in Real Time ...115
Step 1: Retrieve the Data ...116
Step 2: Update the Visualization ..116

Summing Up ...117

Chapter 4: Creating Specialized Graphs ...119
Visualizing Hierarchies with Tree Maps... 120

Step 1: Include the Required Libraries ... 120
Step 2: Prepare the Data ...121
Step 3: Draw the Tree Map ...121
Step 4: Vary the Shading to Show Additional Data ... 122

Highlighting Regions with a Heat Map ... 125
Step 1: Include the Required JavaScript... 126
Step 2: Define the Visualization Data.. 127
Step 3: Create the Background Image ... 127
Step 4: Set Aside an HTML Element to Contain the Visualization 128
Step 5: Format the Data ... 128
Step 6: Draw the Map ... 129
Step 7: Adjust the Heat Map z-index .. 130

Showing Relationships with Network Graphs .. 130
Step 1: Include the Required Libraries ... 130
Step 2: Prepare the Data ...131
Step 3: Define the Graph’s Nodes .. 132

www.it-ebooks.info

http://www.it-ebooks.info/

xii | Contents in Detail

Step 4: Connect the Nodes with Edges ... 133
Step 5: Automate the Layout ... 134
Step 6: Add Interactivity..137

Revealing Language Patterns with Word Clouds .. 138
Step 1: Include the Required Libraries ... 139
Step 2: Prepare the Data .. 140
Step 3: Add the Required Markup ...141
Step 4: Create a Simple Cloud ...142
Step 5: Add Interactivity... 143

Summing Up .. 146

Chapter 5: Displaying Timelines ...147
Building Timelines with a Library .. 148

Step 1: Include the Required Libraries ... 148
Step 2: Prepare the Data ...149
Step 3: Draw the Timeline .. 150
Step 4: Set Chronoline.js Options for the Data ... 150

Building Timelines with JavaScript .. 153
Step 1: Prepare the HTML Skeleton .. 154
Step 2: Start JavaScript Execution .. 154
Step 3: Create the Timeline in Semantic HTML ... 155
Step 4: Include the Supporting Content .. 157
Step 5: Optionally Take Advantage of jQuery ..159
Step 6: Fix Timeline Problems with CSS ..159
Step 7: Add Styles to Visually Structure the Timeline161
Step 8: Add Interactivity... 163

Using a Web Component ..167
Step 1: Preview the Standard Component ... 168
Step 2: Include the Required Components ..170
Step 3: Prepare the Data ...170
Step 4: Create a Default Timeline ..172
Step 5: Adjust the Timeline Styles ...174

Summing Up ...177

Chapter 6: Visualizing Geographic Data...179
Using Map Fonts ... 180

Step 1: Include the Fonts in the Page ... 180
Step 2: Display One Country ..181
Step 3: Combine Multiple Countries into a Single Map 182
Step 4: Vary the Countries Based on the Data .. 183
Step 5: Add a Legend ... 185

Working with Scalable Vector Graphics ... 186
Step 1: Create the SVG Map .. 188
Step 2: Embed the Map in the Page ... 189
Step 3: Collect the Data ... 190
Step 4: Define the Color Scheme .. 191
Step 5: Color the Map .. 192

www.it-ebooks.info

http://www.it-ebooks.info/

 Contents in Detail | xiii

Step 6: Add a Legend ... 193
Step 7: Add Interactions ..194

Including Maps for Context ... 197
Step 1: Set Up the Web Page .. 198
Step 2: Prepare the Data .. 198
Step 3: Choose a Map Style ... 199
Step 4: Draw the Map ... 199
Step 5: Add the Sightings .. 200

Integrating a Full-Featured Mapping Library .. 201
Step 1: Prepare the Data .. 201
Step 2: Set Up the Web Page and Libraries ... 202
Step 3: Draw the Base Map .. 203
Step 4: Add the Routes to the Map .. 205
Step 5: Add an Animation Control .. 207
Step 6: Prepare the Animation .. 210
Step 7: Animate the Routes ..211
Step 8: Create Labels for the Stops ...214
Step 9: Build the Label Animation .. 216
Step 10: Incorporate Label Animation in the Animation Step 218
Step 11: Add a Title ... 221

Summing Up .. 222

Chapter 7: Custom Visualizations with D3.js ... 223
Adapting a Traditional Chart Type .. 224

Step 1: Prepare the Data .. 225
Step 2: Set Up the Web Page .. 225
Step 3: Create a Stage for the Visualization ... 226
Step 4: Control the Chart’s Dimensions ... 227
Step 5: Draw the Chart Framework ... 228
Step 6: Add the Data to the Chart .. 231
Step 7: Answer Users’ Questions .. 232

Creating a Force-Directed Network Graph ... 232
Step 1: Prepare the Data .. 233
Step 2: Set Up the Page ... 234
Step 3: Create a Stage for the Visualization ... 235
Step 4: Draw the Graph’s Nodes ... 235
Step 5: Draw the Graph’s Edges ... 238
Step 6: Position the Elements .. 238
Step 7: Add Force Direction to the Graph ... 240
Step 8: Add Interactivity... 242
Step 9: Experiment with Other Enhancements ... 245

Creating a Scalable Map .. 245
Step 1: Prepare the Data .. 245
Step 2: Set Up the Page ... 246
Step 3: Create a Map Projection ... 246
Step 4: Initialize the SVG Container .. 247
Step 5: Retrieve the Map Data... 247

www.it-ebooks.info

http://www.it-ebooks.info/

xiv | Contents in Detail

Step 6: Draw the Map ... 248
Step 7: Retrieve the Weather Data .. 249
Step 8: Plot the Data ... 249
Step 9: Add Interactivity .. 250

Creating a Unique Visualization... 252
Step 1: Prepare the Data .. 253
Step 2: Set Up the Page ... 253
Step 3: Create a Stage for the Visualization ... 254
Step 4: Create Scales .. 254
Step 5: Retrieve the Data ... 256
Step 6: Draw the Visualization ... 258
Step 7: Color the Areas .. 259
Step 8: Make the Visualization Interactive ... 262

Summing Up .. 267

Chapter 8: Managing Data in the Browser ... 269
Using Functional Programming ... 270

Step 1: Start with an Imperative Version... 271
Step 2: Debug the Imperative Code .. 271
Step 3: Understand the Problems Imperative

Programming May Introduce.. 272
Step 4: Rewrite Using Functional Programming Style 273
Step 5: Evaluate Performance.. 273
Step 6: Fix the Performance Problem ..274

Working with Arrays .. 275
Extracting Elements by Position ... 275
Combining Arrays ... 278
Removing Invalid Data Values ... 280
Finding Elements in an Array... 281
Generating Arrays ... 282

Enhancing Objects ... 283
Working with Keys and Values ... 283
Cleaning Up Object Subsets ... 285
Updating Attributes.. 286

Manipulating Collections ... 288
Working with Iteration Utilities .. 289
Finding Elements in a Collection .. 290
Testing a Collection .. 292
Rearranging Collections .. 292

Summing Up .. 294

Chapter 9: Building Data-Driven Web Applications: Part 1 295
Frameworks and Libraries .. 297

Step 1: Select an Application Library ... 297
Step 2: Install Development Tools .. 298
Step 3: Define a New Project ... 298
Step 4: Add Our Unique Dependencies .. 301

www.it-ebooks.info

http://www.it-ebooks.info/

 Contents in Detail | xv

Models and Views ... 302
Step 1: Define the Application’s Models .. 303
Step 2: Implement the Model.. 304
Step 3: Define the Application’s Collections ... 306
Step 4: Define the Application’s Main View ... 307
Step 5: Define the Main View Templates ...311
Step 6: Refine the Main View ..314

Views for Visualizations ..316
Step 1: Define the Additional Views ..317
Step 2: Implement the Details View ...317
Step 3: Implement the Properties View ...318
Step 4: Implement the Map View .. 322
Step 5: Implement the Charts View .. 325

Summing Up .. 326

Chapter 10: Building Data-Driven Web Applications: Part 2 327
Connecting with the Nike+ Service .. 328

Step 1: Authorize Users .. 328
Step 2: Accept the Nike+ Response ... 330
Step 3: Page the Collection ... 330
Step 4: Dynamically Update the View ... 334
Step 5: Filter the Collection ... 335
Step 6: Parse the Response ... 336
Step 7: Retrieve Details .. 336

Putting It All Together .. 340
Step 1: Create a Backbone.js Router .. 340
Step 2: Support Run Models Outside of Any Collection 342
Step 3: Let Users Change Views .. 345
Step 4: Fine-Tune the Application ... 349

Summing Up .. 351

Index ... 353

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments
Even though it’s been said many times, there’s no getting around the fact that
a book is the work of many people other than the author. This book certainly
wouldn’t have been possible without the patience of Seph and the other fine folks
at No Starch Press. There simply is no better publisher for technical books. Kudos
also to Chris for the technical review, though, of course, the remaining mistakes
are mine alone. I owe a special thanks to NickC for his generosity; it’s such a plea-
sure to meet folks that appreciate the true community spirit of the Web and web
development. Finally, shout-outs to the team developing the Open Academic
Environment and my colleagues at the Georgia Institute of Technology; working
with them is a true pleasure.

www.it-ebooks.info

http://www.oaeproject.org
http://www.oaeproject.org
http://www.it-ebooks.info/

Introduction

It’s getting hard to ignore the importance of
data in our lives. Data is critical to the largest
social organizations in human history (giants
like Facebook and Google), and its collection
has widespread geopolitical implications, as
we all saw with the NSA surveillance scandal.
But it’s also getting easier to ignore the data
itself. One estimate suggests that 99.5% of the
data our systems collect goes to waste.

www.it-ebooks.info

https://www.facebook.com/data
http://www.theguardian.com/world/the-nsa-files
http://www.theregister.co.uk/2012/06/04/big_data_too_big/
http://www.it-ebooks.info/

2 | Introduction

Data visualization is a tool that addresses this gap. Effective visualizations
clarify; they transform abstract collections of numbers into shapes and forms that
viewers quickly grasp and understand. The best visualizations impart this under-
standing intuitively. Viewers comprehend the data immediately—without thinking.
This frees viewers to more fully consider the implications of the data: the stories it
tells, the insights it reveals, or even the warnings it offers.

If you’re developing websites or web applications today, there’s a good
chance you have data to communicate—data best presented in a good visual-
ization. But how do you know what kind of visualization is appropriate? And even
more importantly, how do you actually create one? In the chapters that follow, we
explore dozens of different visualizations, techniques, and toolkits. Each example
discusses the appropriateness of the visualization (and suggests possible alterna-
tives) and provides step-by-step instructions for adding the visualization to your
web pages.

The Book’s Philosophy
In creating this book, I’ve tried to follow four main principles to make sure it pro-
vides meaningful and practical guidance.

Implementation vs. Design
This book won’t teach you how to design data visualizations. Quite honestly,
there are other authors far better qualified than me for that (Edward Tufte, for
example). Instead, this book will focus on implementing visualizations. When
appropriate, I’ll take a slightly bigger picture view to discuss the strengths and
weaknesses of particular visualization strategies, but the main goal is to show
you how to create a wide range of visualizations. (I recognize that sometimes
the boss absolutely insists on a pie chart.)

Code vs. Styling
As you might guess from the title, this book focuses on how to use Java-
Script code to create visualizations. The examples don’t assume you’re
a JavaScript expert—and I’ll be sure to explain any code more complicated
than a basic jQuery selector—but I won’t spend much time discussing styles
for the visualizations. Fortunately, styling visualizations is pretty much the
same as styling other web content. Basic experience with HTML and CSS
will serve you well when you add visualizations to your pages.

Simple vs. Complex
Most of the book’s examples are simple, straightforward visualizations. Com-
plex visualizations can be engaging and compelling, but studying a lot of
advanced code usually isn’t the best way to learn the craft. In these examples,
I’ll try to stay as simple as possible so you can clearly see how to use the vari-
ous tools and techniques. Simple doesn’t mean boring, however, and even
the simplest visualizations can be enlightening and inspiring.

www.it-ebooks.info

http://www.edwardtufte.com/tufte/books_vdqi
http://www.it-ebooks.info/

 Introduction | 3

Reality vs. an Ideal World
When you begin building your own visualizations, you’ll discover that the
real world is rarely as kind as you’d wish. Open source libraries have bugs,
third-party servers have security issues, and not every user has updated
to the latest and greatest web browser. I’ve addressed these realities in the
examples in this book. I’ll show you how to accommodate older browsers
when it’s practical, how to comply with security constraints such as Cross-
Origin Resource Sharing (CORS), and how to work around bugs in other
folks’ code.

The Book’s Contents
The chapters that follow cover a variety of visualization techniques and the
JavaScript libraries that we can use to implement them.

 > Chapter 1 begins with the most basic visualizations—static charts and
plots—using the Flotr2 library.

 > Chapter 2 adds interactivity to the visualizations, giving users the chance
to select content, zoom in, and track values. The chapter also shows how to
retrieve data for visualizations directly from the Web. For variety, its examples
use the Flot library, which is based on jQuery.

 > Chapter 3 looks at integrating multiple visualizations and with other content
on a web page; it uses the jQuery sparklines library.

 > In Chapter 4, we consider visualizations other than standard charts and
plots, including tree maps, heat maps, network graphs, and word clouds.
Each example focuses on a particular JavaScript library designed specifically
for the visualization type.

 > Chapter 5 covers time-based visualizations. It looks at several ways to visual-
ize timelines, including traditional libraries; pure HTML, CSS, and JavaScript;
and full-featured web components.

 > In Chapter 6, we consider geographic data as we look at different ways to
incorporate maps into our visualizations.

 > Chapter 7 introduces the powerful D3.js library, a flexible and full-featured
toolkit for building custom visualizations of almost any type.

 > Beginning in Chapter 8, we consider other aspects of web-based visualiza-
tions. This chapter shows off the Underscore.js library, which makes it easy to
prepare the data that drives our visualizations.

 > Finally, Chapters 9 and 10 walk through the development of a complete,
single-page web application that relies on data visualization. Here we’ll see
how to use modern development tools such as Yeoman and the Backbone.js
library.

www.it-ebooks.info

http://www.humblesoftware.com/flotr2/
http://www.flotcharts.org/
http://omnipotent.net/jquery.sparkline/
http://d3js.org/
http://www.it-ebooks.info/

4 | Introduction

Source Code for Examples
To make the text as clear and readable as possible, examples usually contain iso-
lated snippets of JavaScript, plus occasional fragments of HTML or CSS. Complete
source code for all examples is available on GitHub at http://jsDataV.is/source/.

www.it-ebooks.info

https://github.com/sathomas/jsDataV.is-source
http://www.it-ebooks.info/

1
Graphing Data

Many people think of data visualization as intri-
cate interactive graphics of dazzling complex-
ity. Creating effective visualizations, however,
doesn’t require Picasso’s artistic skill or Turing’s
programming expertise. In fact, when you con-
sider the ultimate purpose of data visualization—
helping users understand data—simplicity is one
of the most important features of an effective
visualization. Simple, straightforward charts are
often the easiest to understand.

www.it-ebooks.info

http://www.it-ebooks.info/

6 | Chapter 1

After all, users have seen hundreds or thousands of bar charts, line charts, X/Y
plots, and the like. They know the conventions that underlie these charts, so they
can interpret a well-designed example effortlessly. If a simple, static chart presents
the data best, use it. You’ll spend less effort creating your visualization, and your
users will spend less effort trying to understand it.

There are many high-quality tools and libraries to help you get started with
simple visualizations. With these tools, you can avoid reinventing the wheel, and
you can be assured of a reasonably attractive presentation by sticking with the
library defaults. We’ll look at several of these tools throughout the book, but for
this chapter we’ll use the Flotr2 library (http://www.humblesoftware.com/flotr2/).
Flotr2 makes it easy to add standard bar charts, line charts, and pie charts to any
web page, and it also supports some less common chart types. We’ll take a look
at all of these techniques in the examples that follow. Here’s what you’ll learn:

 > How to create a basic bar chart

 > How to plot continuous data with a line chart

 > How to emphasize fractions with a pie chart

 > How to plot X/Y data with a scatter chart

 > How to show magnitudes of X/Y data with a bubble chart

 > How to display multidimensional data with a radar chart

Creating a Basic Bar Chart
If you’re ever in doubt about what type of chart best explains your data, your first
consideration should probably be the basic bar chart. We see bar charts so often
that it’s easy to overlook how effective they can be. Bar charts can show the evo-
lution of a value over time, or they can provide a straightforward comparison of
multiple values. Let’s walk through the steps to build one.

Step 1: Include the Required JavaScript
Since we’re using the Flotr2 library to create the chart, we need to include that library
in our web pages. The Flotr2 package isn’t currently popular enough for public con-
tent distribution networks, so you’ll need to download a copy and host it on your
own web server. We’ll use the minimized version (flotr2.min.js) since it provides the
best performance.

Flotr2 doesn’t require any other JavaScript libraries (such as jQuery), but it
does rely on the HTML canvas feature. Major modern browsers (Safari, Chrome,
Firefox) support canvas, but until version 9, Internet Explorer (IE) did not. Unfor-
tunately, there are still millions of users with IE8 (or even earlier). To support those
users, we can include an additional library (excanvas.min.js) in our pages. That library
is available from Google (https://code.google.com/p/explorercanvas/). Start with
the following skeleton for your HTML document:

<!DOCTYPE html>
<html lang="en">

www.it-ebooks.info

http://www.humblesoftware.com/flotr2/
https://code.google.com/p/explorercanvas/
http://www.it-ebooks.info/

 Graphing Data | 7

 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <!-- Page Content Here -->

u <!--[if lt IE 9]><script src="js/excanvas.min.js"></script><![endif]-->
 <script src="js/flotr2.min.js"></script>
 </body>
</html>

Since other browsers don’t need excanvas.min.js, we use some special
markup at u to make sure that only IE8 and earlier will load it. Also, notice that
we’re including the JavaScript libraries at the end of the document. This approach
lets the browser load the document’s entire HTML markup and begin laying out
the page while it waits for the server to provide the JavaScript libraries.

Step 2: Set Aside a <div> Element to Hold the Chart
Within our document, we need to create a <div> element to contain the chart. This
element must have an explicit height and width, or Flotr2 won’t be able to construct
the chart. We can indicate the element’s size in a CSS style sheet, or we can place
it directly on the element itself. Here’s how the document might look with the latter
approach.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <div id="chart" style="width:600px;height:300px;"></div>
 <!--[if lt IE 9]><script src="js/excanvas.min.js"></script><![endif]-->
 <script src="js/flotr2.min.js"></script>
 </body>
</html>

Note that we’ve given the <div> an explicit id ("chart") so we can reference it
later. You’ll need to use a basic template like this (importing the Flotr2 library and
setting up the <div>) for all the charts in this chapter.

Step 3: Define the Data
Now we can tackle the data that we want to display. For this example, I’ll use the
number of Manchester City wins in the English Premier League for the past seven
years. Of course you’ll want to substitute your actual data values, either with inline
JavaScript (like the following example) or by another means (such as an AJAX call
to the server).

www.it-ebooks.info

http://www.it-ebooks.info/

8 | Chapter 1

<script>
var wins = [[[2006,13],[2007,11],[2008,15],[2009,15],[2010,18],[2011,21],
 [2012,28]]];
</script>

As you can see, we have three layers of arrays. Let’s start from the inside and
work our way out. For Flotr2 charts, each data point is entered in a two-item array
with an x-value and y-value. In our case we’re using the year as the x-value and the
number of wins as the y-value. We collect all these values in another array called a
series. We place this series inside one more outer array. We could enter multiple
series into this outer array, but for now we’re showing only one series. Here’s a
quick summary of each layer:

 > Each data point consists of an x-value and a y-value packaged in an array.

 > Each series consists of a set of data points packaged in an array.

 > The data to chart consists of one or more series packaged in an array.

Step 4: Draw the Chart
That’s all the setup we need. A simple call to the Flotr2 library, as shown here,
creates our first attempt at a chart.

window.onload = function () {
 Flotr.draw(
 document.getElementById("chart"),
 wins,
 {
 bars: {
 show: true
 }
 }
);
};

First we make sure the browser has loaded our document; otherwise, the
chart <div> might not be present. That’s the point of window.onload. Once that
event occurs, we call Flotr.draw with three parameters: the HTML element to con-
tain the chart, the data for the chart, and any chart options (in this case, we specify
options only to tell Flotr2 to create a bar chart from the data).

Since Flotr2 doesn’t require jQuery, we haven’t taken advantage of any
of jQuery’s shortcuts in this example. If your page already includes jQuery, you
can use the standard jQuery conventions for the Flotr2 charts in this chapter to
execute the script after the window has loaded, and to find the <div> container
for the chart.

Figure 1-1 shows what you’ll see on the web page.

www.it-ebooks.info

http://www.it-ebooks.info/

 Graphing Data | 9

25.0

20.0

15.0

2005.0 2006.0 2007.0 2008.0 2009.0 2010.0 2011.0 2012.0 2013.0

Figure 1-1: The Flotr2 library turns data into a basic (if unpolished)
bar chart.

Now you have a bar chart, but it’s not showing the information very effec-
tively. Let’s add some options incrementally until we get what we want.

Step 5: Fix the Vertical Axis
The most glaring problem with the vertical axis is its scale. By default, Flotr2 auto-
matically calculates the range of the axis from the minimum and maximum values
in the data. In our case the minimum value is 11 wins (from 2007), so Flotr2 dutifully
uses that as its y-axis minimum. In bar charts, however, it’s almost always best to
make 0 the y-axis minimum. If you don’t use 0, you risk overemphasizing the dif-
ferences between values and confusing your users. Anyone who glances at the
chart in Figure 1-1, for example, might think that Manchester City did not win any
matches in 2007. That certainly wouldn’t do the team any justice.

Another problem with the vertical axis is the formatting. Flotr2 defaults to a
precision of one decimal place, so it adds the superfluous “.0” to all the labels. We
can fix both of these problems by specifying some y-axis options.

Flotr.draw(document.getElementById("chart"), [wins], {
 bars: {
 show: true
 },
 yaxis: {
 min: 0,
 tickDecimals: 0
 }
});

www.it-ebooks.info

http://www.it-ebooks.info/

10 | Chapter 1

The min property sets the minimum value for the y-axis, and the tickDecimals
property tells Flotr2 how many decimal places to show for the labels. In our case
we don’t want any decimal places.

As you can see in Figure 1-2, adding these options definitely improves the
vertical axis since the values now start at zero and are formatted appropriately for
integers.

30

20

2005.0 2006.0 2007.0 2008.0 2009.0 2010.0 2011.0 2012.0 2013.0

25

15

10

5

0

Figure 1-2: Simple options help Flotr2 construct a better vertical axis.

Step 6: Fix the Horizontal Axis
The horizontal axis needs some work as well. Just as with the y-axis, Flotr2 assumes
that the x-axis values are real numbers and shows one decimal place in the labels.
Since we’re charting years, we could simply set the precision to 0, as we did for the
y-axis. But that’s not a very general solution, since it won’t work when the x-values
are non-numeric categories (like team names). For the more general case, let’s first
change our data to use simple numbers rather than years for the x-values. Then we’ll
create an array that maps those simple numbers to arbitrary strings, which we can
use as labels.

var wins = [[[0,13],[1,11],[2,15],[3,15],[4,18],[5,21],[6,28]]];
var years = [
 [0, "2006"],
 [1, "2007"],
 [2, "2008"],
 [3, "2009"],
 [4, "2010"],
 [5, "2011"],
 [6, "2012"]
];

www.it-ebooks.info

http://www.it-ebooks.info/

 Graphing Data | 11

As you can see, instead of using the actual years for the x-values, we’re simply
using 0, 1, 2, and so on. We then define a second array that maps those integer
values to strings. Although here our strings are years (and thus numbers), they
could be anything.

Another problem is a lack of spacing between the bars. By default, each bar
takes up its full horizontal space, but that makes the chart look very cramped. We
can adjust that with the barWidth property. Let’s set it to 0.5 so that each bar takes
up only half the available space.

Here’s how we pass those options to Flotr2.

Flotr.draw(document.getElementById("chart"), wins, {
 bars: {
 show: true,
 barWidth: 0.5
 },
 yaxis: {
 min: 0,
 tickDecimals: 0
 },
 xaxis: {

u ticks: years
 }
});

Note at u that we use the ticks property of the x-axis to tell Flotr2 which
labels match which x-values. Now we’re starting to get somewhere with our chart,
as shown in Figure 1-3. The x-axis labels are appropriate for years, and there is
space between the bars to improve the chart’s legibility.

30

20

2006 2007 2008 2009 2010 2011 2012

25

15

10

5

0

Figure 1-3: We can define our own labels for the horizontal axis.

www.it-ebooks.info

http://www.it-ebooks.info/

12 | Chapter 1

Step 7: Adjust the Styling
Now that the chart is functional and readable, we can pay some attention to the
aesthetics. Let’s add a title, get rid of the unnecessary grid lines, and adjust the
coloring of the bars.

Flotr.draw(document.getElementById("chart"), wins, {
 title: "Manchester City Wins",
 colors: ["#89AFD2"],
 bars: {
 show: true,
 barWidth: 0.5,
 shadowSize: 0,
 fillOpacity: 1,
 lineWidth: 0
 },
 yaxis: {
 min: 0,
 tickDecimals: 0
 },
 xaxis: {
 ticks: years
 },
 grid: {
 horizontalLines: false,
 verticalLines: false
 }
});

As you can see in Figure 1-4, we now have a bar chart that Manchester City
fans can be proud of.

30

25

20

15

10

5

0
2006 2007 2008 2009 2010 2011 2012

Manchester City Wins

Figure 1-4: Additional options let us adjust the visual styles of the chart.

www.it-ebooks.info

http://www.it-ebooks.info/

 Graphing Data | 13

For any data set of moderate size, the standard bar chart is often the most
effective visualization. Users are already familiar with its conventions, so they don’t
have to put any extra effort into understanding the format. The bars themselves
offer a clear visual contrast with the background, and they use a single linear
dimension (height) to show differences between values, so users easily grasp the
salient data.

Step 8: Vary the Bar Color
So far our chart has been monochromatic. That makes sense because we’re show-
ing the same value (Manchester City wins) across time. But bar charts are also
good for comparing different values. Suppose, for example, we wanted to show
the total wins for multiple teams in one year. In that case, it makes sense to use a
different color for each team’s bar. Let’s go over how we can do that.

First we need to restructure the data somewhat. Previously we’ve shown only
a single series. Now we want a different series for each team. Creating multiple
series lets Flotr2 color each independently. The following example shows how the
new data series compares with the old. We’ve left the wins array in the code for
comparison, but it’s the wins2 array that we’re going to show now. Notice how the
nesting of the arrays changes. Also, we’re going to label each bar with the team
abbreviation instead of the year.

var wins = [[[0,13],[1,11],[2,15],[3,15],[4,18],[5,21],[6,28]]];
var wins2 = [[[0,28]],[[1,28]],[[2,21]],[[3,20]],[[4,19]]];
var teams = [
 [0, "MCI"],
 [1, "MUN"],
 [2, "ARS"],
 [3, "TOT"],
 [4, "NEW"]
];

With those changes, our data is structured appropriately, and we can ask
Flotr2 to draw the chart. When we do that, let’s use different colors for each team.
Everything else is the same as before.

Flotr.draw(document.getElementById("chart"), wins2, {
 title: "Premier League Wins (2011-2012)",
 colors: ["#89AFD2", "#1D1D1D", "#DF021D", "#0E204B", "#E67840"],
 bars: {
 show: true,
 barWidth: 0.5,
 shadowSize: 0,
 fillOpacity: 1,
 lineWidth: 0
 },
 yaxis: {
 min: 0,
 tickDecimals: 0
 },

www.it-ebooks.info

http://www.it-ebooks.info/

14 | Chapter 1

 xaxis: {
 ticks: teams
 },
 grid: {
 horizontalLines: false,
 verticalLines: false
 }
});

As you can see in Figure 1-5, with a few minor adjustments we’ve completely
changed the focus of our bar chart. Instead of showing a single team at different
points in time, we’re now comparing different teams at the same point in time.
That’s the versatility of a simple bar chart.

30

25

20

15

10

5

0
MCI MUN ARS TOT NEW

Premier League Wins (2011-2012)

Figure 1-5: Bar charts can compare different quantities at one point
in time as well as the same quantity at different points in time.

We’ve used a lot of different code fragments to put together these examples.
If you want to see a complete example in a single file, check out this book’s
source code at http://jsDataV.is/source/.

Step 9: Work Around Flotr2 “Bugs”
If you’re building large web pages with a lot of content, you may run into a Flotr2
“bug” that can be quite annoying. I’ve put “bug” in quotation marks because the
Flotr2 behavior is deliberate, but I believe it’s not correct. In the process of con-
structing its charts, Flotr2 creates dummy HTML elements so it can calculate their
sizes. Flotr2 doesn’t intend these dummy elements to be visible on the page, so it
“hides” them by positioning them off the screen. Unfortunately, what Flotr2 thinks
is off the screen isn’t always. Specifically, line 2,281 of flotr2.js is:

D.setStyles(div, { "position" : "absolute", "top" : "-10000px" });

www.it-ebooks.info

http://www.it-ebooks.info/

 Graphing Data | 15

Flotr2 intends to place these dummy elements 10,000 pixels above the top
of the browser window. However, CSS absolute positioning can be relative to the
containing element, which is not always the browser window. So if your document
is more than 10,000 pixels high, you may find Flotr2 scattering text in random-
looking locations throughout the page. There are a couple of ways to work around
this bug, at least until the Flotr2 code is revised.

One option is to modify the code yourself. Flotr2 is open source, so you can
freely download the full source code and modify it appropriately. One simple
modification would position the dummy elements far to the right or left rather
than above. Instead of "top" you could change the code to "right". If you’re not
comfortable making changes to the library’s source code, another option is to find
and hide those dummy elements yourself. You should do this after you’ve called
Flotr.draw() for the last time. The latest version of jQuery can banish these extra-
neous elements with the following statement:

$(".flotr-dummy-div").parent().hide();

Plotting Continuous Data with a Line Chart
Bar charts work great for visualizing a modest amount of data, but for more signifi-
cant amounts of data, a line chart can present the information much more effec-
tively. Line charts are especially good at revealing overall trends in data without
bogging the user down in individual data points.

For our example, we’ll look at two measures that may be related: carbon
dioxide (CO2) concentration in the atmosphere and global temperatures. We want
to show how both measures have changed over time, and we’d like to see how
strongly related the values are. A line chart is a perfect visualization tool for look-
ing at these trends.

Just like for the bar chart, you’ll need to include the Flotr2 library in your web
page and create a <div> element to contain the chart. Let’s start prepping the data.

Step 1: Define the Data
We’ll begin with CO2 concentration measurements. The US National Oceanographic
and Atmospheric Administration (NOAA) publishes measurements (http://www.esrl
.noaa.gov/gmd/ccgg/trends/co2_data_mlo.html) taken at Mauna Loa, Hawaii, from
1959 to the present day. The first few values are shown in the following excerpt.

var co2 = [
 [1959, 315.97],
 [1960, 316.91],
 [1961, 317.64],
 [1962, 318.45],
 // Data set continues...

www.it-ebooks.info

http://www.esrl.noaa.gov/gmd/ccgg/trends/co2_data_mlo.html
http://www.esrl.noaa.gov/gmd/ccgg/trends/co2_data_mlo.html
http://www.esrl.noaa.gov/gmd/ccgg/trends/co2_data_mlo.html
http://www.it-ebooks.info/

16 | Chapter 1

NOAA also publishes measurements of mean global surface temperature
(http://www.ncdc.noaa.gov/cmb-faq/anomalies.php). These values measure the dif-
ference from the baseline, which is currently taken to be the average temperature
over the entire 20th century. Since the CO2 measurements begin in 1959, we’ll use
that as our starting point for temperature as well.

var temp = [
 [1959, 0.0776],
 [1960, 0.0280],
 [1961, 0.1028],
 [1962, 0.1289],
 // Data set continues...

Step 2: Graph the CO2 Data
Graphing one data set is quite easy with Flotr2. We simply call the draw() method
of the Flotr object. The only parameters the method requires are a reference to
the HTML element in which to place the graph, and the data itself. The lines prop-
erty of the data object indicates that we want a line chart.

Flotr.draw(
 document.getElementById("chart"),
 [{ data: co2, lines: {show:true} }]
);

Since Flotr2 does not require jQuery, we’re not using any jQuery conve-
nience functions in our example. If you do have jQuery on your pages, you can
simplify the preceding code a little. In either case, Figure 1-6 shows the result.

380

360

340

320

1960 1970 1980 1990 2000 2010

Figure 1-6: The first chart shows one data set.

www.it-ebooks.info

http://www.ncdc.noaa.gov/cmb-faq/anomalies.php
http://www.it-ebooks.info/

 Graphing Data | 17

The chart clearly shows the trend in CO2 concentration for the past 50-plus
years.

Step 3: Add the Temperature Data
With a simple addition to our code, we can include temperature measurements in
our chart.

Flotr.draw(
 document.getElementById("chart"),
 [
 { data: co2, lines: {show:true} },
 { data: temp, lines: {show:true}, yaxis: 2 }
]
);

Note that we include the yaxis option for the temperature data and give it a
value of 2. That tells Flotr2 to use a different y-scale for the temperature data.

The chart in Figure 1-7 now shows both measurements for the years in ques-
tion, but it’s gotten a little cramped and confusing. The values butt up against the
edges of the chart, and the grid lines are hard for users to interpret when there are
multiple vertical axes.

380

360

340

320

1960 1970 1980 1990 2000 2010

0.00

0.20

0.40

0.60

Figure 1-7: A single chart can show multiple data sets.

Step 4: Improve the Chart’s Readability
By using more Flotr2 options, we can make several improvements in our line chart’s
readability. First we can eliminate the grid lines, since they aren’t relevant for the
temperature measurements.

www.it-ebooks.info

http://www.it-ebooks.info/

18 | Chapter 1

We can also extend the range of both vertical axes to provide a bit of
breathing room for the chart. Both of these changes are additional options to the
draw() method.

Flotr.draw(
 document.getElementById("chart"),
 [
 { data: co2, lines: {show:true} },
 { data: temp, lines: {show:true}, yaxis: 2 }
],{

u grid: {horizontalLines: false, verticalLines: false},
v yaxis: {min: 300, max: 400},
w y2axis: {min: -0.15, max: 0.69}

 }
);

The grid options at u turn off the grid lines by setting both the
horizontalLines and verticalLines properties to false. The yaxis options at v
specify the minimum and maximum value for the first vertical axis (CO2 concentra-
tion), while the y2axis options at w specify those values for the second vertical axis
(temperature difference).

The resulting graph in Figure 1-8 is cleaner and easier to read.

380

360

340

320

1960 1970 1980 1990 2000 2010

0.00

0.20

0.40

0.60

300

400

Figure 1-8: Removing grid lines and expanding the axes makes
the chart easier to read.

Step 5: Clarify the Temperature Measurements
The temperature measurements might still be confusing to users, since they’re
not really temperatures; they’re actually deviations from the 20th-century average.
Let’s convey that distinction by adding a line for that 20th-century average and

www.it-ebooks.info

http://www.it-ebooks.info/

 Graphing Data | 19

explicitly labeling it. The simplest way to do that is to create a “dummy” data set
and add that to the chart. The extra data set has nothing but zeros.

var zero = [];
for (var yr=1959; yr<2012; yr++) { zero.push([yr, 0]); };

When we add that data set to the chart, we need to indicate that it corre-
sponds to the second y-axis. And since we want this line to appear as part of the
chart framework rather than as another data set, let’s deemphasize it somewhat by
setting its width to one pixel, coloring it dark gray, and disabling shadows.

Flotr.draw(
 document.getElementById("chart"),
 [
 { data: zero, lines: {show:true, lineWidth: 1}, yaxis: 2,
 shadowSize: 0, color: "#545454" },
 { data: co2, lines: {show:true} },
 { data: temp, lines: {show:true}, yaxis: 2 }
],{
 grid: {horizontalLines: false, verticalLines: false},
 yaxis: {min: 300, max: 400},
 y2axis: {min: -0.15, max: 0.69}
 }
);

As you can see, we’ve placed the zero line first among the data sets. With
that order, Flotr2 will draw the actual data on top of the zero line, as shown in Fig-
ure 1-9, reinforcing its role as chart framework instead of data.

380

360

340

320

1960 1970 1980 1990 2000 2010

0.00

0.20

0.40

0.60

300

400

Figure 1-9: A dummy data set can emphasize a position on a chart axis.

www.it-ebooks.info

http://www.it-ebooks.info/

20 | Chapter 1

Step 6: Label the Chart
For the last step in this example, we’ll add appropriate labels to the chart. That
includes an overall title, as well as labels for individual data sets. And to make it
clear which axis refers to temperature, we’ll add a “°C” suffix to the temperature
scale. We identify the label for each data series in the label option for that series.
The overall chart title merits its own option, and we add the “°C” suffix using a
tickFormatter() function.

Flotr.draw(
 document.getElementById("chart"),
 [{
 data: zero,
 label: "20th-Century Baseline Temperature",
 lines: {show:true, lineWidth: 1},
 shadowSize: 0,
 color: "#545454"
 },
 {
 data: temp,
 label: "Yearly Temperature Difference (°C)",
 lines: {show:true}
 },
 {
 data: co2,
 yaxis: 2,
 label: "CO₂ Concentration (ppm)",
 lines: {show:true}
 }
],
 {
 title: "Global Temperature and CO₂ Concentration (NOAA Data)",
 grid: {horizontalLines: false, verticalLines: false},
 y2axis: {min: -0.15, max: 0.69,

u tickFormatter: function(val) {return val+" °C";}}
 yaxis: {min: 300, max: 400},
 }
);

For each value on the axis, the formatter function is called with the value,
and Flotr2 expects it to return a string to use for the label. As you can see at u, we
simply append the " °C" string to the value.

Notice that we’ve also swapped the position of the CO2 and temperature
graphs. We’re now passing the temperature data series ahead of the CO2 series.
We did that so that the two temperature quantities (baseline and difference) appear
next to each other in the legend, making their connection a little clearer to the user.

www.it-ebooks.info

http://www.it-ebooks.info/

 Graphing Data | 21

And because the temperature now appears first in the legend, we’ve also swapped
the axes, so the temperature axis is on the left. Finally, we’ve adjusted the title of the
chart for the same reason. Figure 1-10 shows the result.

0.60 ºC

0.40 ºC

0.20 ºC

0.00 ºC

1960 1970 1980 1990 2000 2010
300

320

340

360

380

400

20th-Century Baseline Temperature
Yearly Temperature Difference (ºC)
CO Concentration (ppm)2

Global Temperature and CO Concentration (NOAA Data)2

Figure 1-10: Labeling the axes and adding a legend completes
the chart.

A line chart like Figure 1-10 excels in visualizing this kind of data. Each data
set contains over 50 points, making it impractical to present each individual point.
And in fact, individual data points are not the focus of the visualization. Rather, we
want to show trends—the trends of each data set as well as that data set’s correla-
tion to the others. Connecting the points with lines leads the user right to those
trends and to the heart of our visualization.

Step 7: Work Around Flotr2 “Bugs”
Be sure to refer to Step 9 of “Creating a Basic Bar Chart” on page 14 to see how
to work around some “bugs” in the Flotr2 library.

Emphasizing Fractions Using a Pie Chart
Pie charts don’t get a lot of love in the visualization community, and for a pretty
good reason: they’re rarely the most effective way to communicate data. We will
walk through the steps to create pie charts in this section, but first let’s take some
time to understand the problems they introduce. Figure 1-11, for example, shows
a simple pie chart. Can you tell from the chart which color is the largest? The
smallest?

www.it-ebooks.info

http://www.it-ebooks.info/

22 | Chapter 1

Figure 1-11: Pie charts can make
it hard to compare values.

It’s very hard to tell. That’s because humans are not particularly good at
judging the relative size of areas, especially if those areas aren’t rectangles. If we
really wanted to compare these five values, a bar chart works much better. Fig-
ure 1-12 shows the same values in a bar chart.

Figure 1-12: Bar charts usually make
comparisons easier.

Now, of course, it’s easy to rank each color. With a bar chart we only have to
compare one dimension—height. This yields a simple rule of thumb: if you’re com-
paring different values against one another, consider a bar chart first. It will almost
always provide the best visualization.

One case, however, where pie charts can be quite effective is when we want
to compare a single partial value against a whole. Say, for example, we want to
visualize the percentage of the world’s population that lives in poverty. In that
case, a pie chart may work quite well. Here’s how we can construct such a chart
using Flotr2.

Just as in Step 1 of “Creating a Basic Bar Chart” on page 6, we need to
include the Flotr2 library in our web page and set aside a <div> element to contain
the chart we’ll construct.

www.it-ebooks.info

http://www.it-ebooks.info/

 Graphing Data | 23

Step 1: Define the Data
The data here is quite straightforward. According to the World Bank (http://www
.newgeography.com/content/003325-alleviating-world-poverty-a-progress-report),
at the end of 2008, 22.4 percent of the world’s population lived on less than
$1.25/day. That’s the fraction that we want to emphasize with our chart.

var data = [[[0,22.4]],[[1,77.6]]];

Here we have an array with two data series: one for the percentage of the
population in poverty (22.4) and a second series for the rest (77.6). Each series itself
consists of an array of points. In this example, and for pie charts in general, there is
only one point in each series, with an x-value and a y-value (which are each stored
together in yet another, inner array). For pie charts, the x-values are irrelevant, so
we simply include the placeholder values 0 and 1.

Step 2: Draw the Chart
To draw the chart, we call the draw() method of the Flotr object. That method
takes three parameters: the element in our HTML document in which to place the
chart, the data for our chart, and any options. We’ll start with the minimum set of
options required for a pie chart.

window.onload = function () {
 Flotr.draw(document.getElementById("chart"), data, {
 pie: {
 show: true
 },
 yaxis: {

u showLabels: false
 },
 xaxis: {

v showLabels: false
 },
 grid: {

w horizontalLines: false,
x verticalLines: false

 }
 });
}

As you can see, Flotr2 requires a few more options for a minimum pie chart
than it does for other common chart types. For both the x- and y-axes we need to
disable labels, which we do by setting the showLabels property to false at u and v.
We also have to turn off the grid lines, as a grid doesn’t make a lot of sense for a
pie chart. We accomplish that by setting the verticalLines and horizontalLines
properties of the grid option to false at w and x.

Since Flotr2 doesn’t require jQuery, we’re not using any of the jQuery con-
venience functions in this example. If you do have jQuery for your pages, you can
simplify this code a bit.

www.it-ebooks.info

http://www.newgeography.com/content/003325-alleviating-world-poverty-a-progress-report
http://www.it-ebooks.info/

24 | Chapter 1

Figure 1-13 is a start, but it’s hard to tell exactly what the graph intends
to show.

22.40%

77.60%

Figure 1-13: Without effective labeling,
pie charts can be difficult to interpret.

Step 3: Label the Values
The next step is to add some text labels and a legend to indicate what the chart
is displaying. To label each quantity separately, we have to change the structure
of our data. Instead of using an array of series, we’ll create an object to store each
series. Each object’s data property will contain the corresponding series, and we’ll
add a label property for the text labels.

var data = [
 {data: [[0,22.4]], label: "Extreme Poverty"},
 {data: [[1,77.6]]}
];

With our data structured this way, Flotr2 will automatically identify labels
associated with each series. Now when we call the draw() method, we just need to
add a title option. Flotr2 will add the title above the graph and create a simple
legend identifying the pie portions with our labels. To make the chart a little more
engaging, we’ll pose a question in our title. That’s why we’re labeling only one of
the areas in the chart: the labeled area answers the question in the title.

Flotr.draw(document.getElementById("chart"),data, {
 title: "How Much of the World Lives on $1.25/Day?",
 pie: {
 show: true
 },
 yaxis: {
 showLabels: false
 },
 xaxis: {
 showLabels: false
 },

www.it-ebooks.info

http://www.it-ebooks.info/

 Graphing Data | 25

 grid: {
 horizontalLines: false,
 verticalLines: false
 }
});

The chart in Figure 1-14 reveals the data quite clearly.

22.40%

77.60%

Extreme Poverty

How Much of the World Lives on $1.25/Day?

Figure 1-14: Labels and titles can help
make a chart engaging.

Although pie charts have a bad reputation in the data visualization com-
munity, there are some applications for which they are quite effective. They’re not
very good at letting users compare multiple values, but as shown in this example,
they do provide a nice and easily understandable picture showing the proportion
of a single value within a whole.

Step 4: Work Around Flotr2 “Bugs”
Be sure to refer to Step 9 of “Creating a Basic Bar Chart” on page 14 to see how
to work around some “bugs” in the Flotr2 library.

Plotting X/Y Data with a Scatter Chart
A bar chart is often most effective for visualizing data that consists primarily of a
single quantity (such as the number of wins in the bar charts we created earlier).
But if we want to explore the relationship between two different quantities, a scat-
ter chart can be more effective. Suppose, for example, we wish to visualize the
relationship between a country’s health-care spending (one quantity) and its life
expectancy (the second quantity). Let’s step through an example to see how to
create a scatter chart for that data.

www.it-ebooks.info

http://www.it-ebooks.info/

26 | Chapter 1

Just as in Step 1 of “Creating a Basic Bar Chart” on page 6, we need to
include the Flotr2 library in our web page and set aside a <div> element to contain
the chart we’ll construct.

Step 1: Define the Data
For this example, we’ll use the 2012 report from the Organisation for Eco-
nomic Co-operation and Development (OECD; http://www.oecd-ilibrary.org/
social-issues-migration-health/data/oecd-health-statistics_health-data-en). This
report includes figures for health-care spending as a percent of gross domestic
product, and average life expectancy at birth. (Although the report was released
in late 2012, it contains data for 2010.) Here you can see a short excerpt of that data
stored in a JavaScript array:

var health_data = [
 { country: "Australia", spending: 9.1, life: 81.8 },
 { country: "Austria", spending: 11.0, life: 80.7 },
 { country: "Belgium", spending: 10.5, life: 80.3 },
 // Data set continues...

Step 2: Format the Data
As is often the case, we’ll need to restructure the original data a bit so that it
matches the format Flotr2 requires. The JavaScript code for that is shown next. We
start with an empty data array and step through the source data. For each element
in the source health_data, we extract the data point for our chart and push that
data point into the data array.

var data = [];
for (var i = 0; i < health_data.length; i++) {
 data.push([
 health_data[i].spending,
 health_data[i].life
]);
};

Since Flotr2 doesn’t require jQuery, we’re not using any of the jQuery con-
venience functions in this example. But if you’re using jQuery for other reasons in
your page, you could, for example, use the .map() function to simplify the code for
this restructuring. (In Step 7 of “Selecting Chart Content”on page 55, there’s a
detailed example of the jQuery .map() function.)

Step 3: Plot the Data
Now all we need to do is call the draw() method of the Flotr object to create our
chart. For a first attempt, we’ll stick with the default options.

www.it-ebooks.info

http://www.oecd.org/health/healthpoliciesanddata/oecdhealthdata2012.htm
http://www.oecd.org/health/healthpoliciesanddata/oecdhealthdata2012.htm
http://www.oecd.org/health/healthpoliciesanddata/oecdhealthdata2012.htm
http://www.it-ebooks.info/

 Graphing Data | 27

Flotr.draw(
 document.getElementById("chart"),
 [{ data: data, points: {show:true} }]
);

As you can see, Flotr2 expects at least two parameters. The first is the element
in our HTML document in which we want the chart placed, and the second is the
data for the chart. The data takes the form of an array. In general, Flotr2 can draw
multiple series on the same chart, so that array might have multiple objects. In our
case, however, we’re charting only one series, so the array has a single object. That
object identifies the data itself, and it tells Flotr2 not to show points instead of lines.

Figure 1-15 shows our result. Notice how the points are pressed right up
against the edges of the chart.

82.0

80.0

78.0

76.0

7.5 10.0 12.5 15.0 17.5

Figure 1-15: The default scatter chart options don’t provide any
margins.

Step 4: Adjust the Chart’s Axes
The first attempt isn’t too bad, but Flotr2 automatically calculates the ranges for
each axis, and its default algorithm usually results in a chart that’s too cramped.
Flotr2 does have an autoscale option; if you set it, the library attempts to find sen-
sible ranges for the associated axes automatically. Unfortunately, in my experience
the ranges Flotr2 suggests rarely improve the default option significantly, so in most
cases we’re better off explicitly setting them. Here’s how we do that for our chart:

Flotr.draw(
 document.getElementById("chart"),
 [{
 data: data,

www.it-ebooks.info

http://www.it-ebooks.info/

28 | Chapter 1

 points: {show:true}
 }],
 {
 xaxis: {min: 5, max: 20},
 yaxis: {min: 70, max: 85}
 }
);

We’ve added a third parameter to the draw() method that contains our
options, which in this case are properties for the x- and y-axes. In each case, we’re
explicitly setting a minimum and maximum value. By specifying ranges that give
the data a little breathing room, we’ve made the chart in Figure 1-16 much easier
to read.

85.0

80.0

75.0

70.0
5.0 10.0 15.0 20.0

Figure 1-16: Specifying our own axes makes the chart easier to read.

Step 5: Label the Data
Our chart so far looks reasonably nice, but it doesn’t tell users what they’re seeing.
We need to add some labels to identify the data. A few more options can clarify
the chart:

Flotr.draw(
 document.getElementById("chart"),
 [{
 data: data, points: {show:true}
 }],
 {
 title: "Life Expectancy vs. Health-Care Spending",
 subtitle: "(by country, 2010 OECD data)",
 xaxis: {min: 5, max: 20, utickDecimals: 0,
 title: "Spending as Percentage of GDP"},

www.it-ebooks.info

http://www.it-ebooks.info/

 Graphing Data | 29

 yaxis: {min: 70, max: 85, vtickDecimals: 0, title: "Years"}
 }
);

The title and subtitle options give the chart its overall title and subtitle,
while the title properties within the xaxis and yaxis options name the labels for
those axes. In addition to adding labels, we’ve told Flotr2 to drop the unnecessary
decimal point from the x- and y-axis values by changing the tickDecimals property
at u and v. The chart in Figure 1-17 looks much better.

85

80

75

70
5 10 15 20

(by country, 2010 OECD data)

Years

Spending as Percentage of GDP

Life Expectancy vs. Health-Care Spending

Figure 1-17: Labels and titles clarify the chart’s content.

Step 6: Clarify the X-Axis
Although our chart has definitely improved since our first attempt, there is still one
nagging problem with the data presentation. The x-axis represents a percentage,
but the labels for that axis show whole numbers. That discrepancy might cause our
users some initial confusion, so let’s get rid of it. Flotr2 allows us to format the axis
labels however we want. In this example, we simply wish to add a percentage sym-
bol to the value. That’s easy enough:

Flotr.draw(
 document.getElementById("chart"),
 [{
 data: data, points: {show:true}
 }],
 {
 title: "Life Expectancy vs. Health-Care Spending",
 subtitle: "(by country, 2010 OECD data)",

www.it-ebooks.info

http://www.it-ebooks.info/

30 | Chapter 1

 xaxis: {min: 5, max: 20, tickDecimals: 0,
 title: "Spending as Percentage of GDP",

u tickFormatter: function(val) {return val+"%"}},
 yaxis: {min: 70, max: 85, tickDecimals: 0, title: "Years"}
 }
);

The trick is the tickFormatter property of the xaxis options at u in the preced-
ing code. That property specifies a function. When tickFormatter is present, Flotr2
doesn’t draw the labels automatically. Instead, at each point where it would draw a
label, it calls our function. The parameter passed to the function is the numeric value
for the label. Flotr2 expects the function to return a string that it will use as the label.
In our case we’re simply adding a percent sign after the value.

In Figure 1-18, with the addition of the percentage values labeling the hori-
zontal axis, we have a chart that presents the data clearly.

85

80

75

70
5% 10% 15% 20%

(by country, 2010 OECD data)

Years

Spending as Percentage of GDP

Life Expectancy vs. Health-Care Spending

Figure 1-18: Formatting the axis labels clarifies the content.

The scatter chart excels at revealing relationships between two different
variables. In this example, we can see how life expectancy relates to health-care
spending. In aggregate, more spending yields longer life.

Step 7: Answer Users’ Questions
Now that our chart successfully presents the data, we can start to look more care-
fully at the visualization from our users’ perspective. We especially want to antici-
pate any questions that users might have and try to answer them directly on the
chart. There are at least three questions that emerge in the chart as it now stands:

1. What countries are shown?
2. Are there any regional differences?
3. What’s that data point way over on the right?

www.it-ebooks.info

http://www.it-ebooks.info/

 Graphing Data | 31

One way to answer those questions would be to add mouseovers (or tool
tips) to each data point. But we’re not going to use that approach in this example
for a couple of reasons. First (and most obviously), interactive visualizations are the
subject of Chapter 2; this chapter considers only static charts and graphs. Secondly,
mouseovers and tool tips are ineffective for users accessing our site on a touch
device, such as a smartphone or tablet. If we required users to have a mouse to fully
understand our visualization, we might be neglecting a significant (and rapidly grow-
ing) number of them.

Our approach to this problem will be to divide our data into multiple series
so that we can color and label each independently. Here’s the first step in breaking
the data into regions:

var pacific_data = [
 { country: "Australia", spending: 9.1, life: 81.8 },
 { country: "New Zealand", spending: 10.1, life: 81.0 },
];
var europe_data = [
 { country: "Austria", spending: 11.0, life: 80.7 },
 { country: "Belgium", spending: 10.5, life: 80.3 },
 { country: "Czech Republic", spending: 7.5, life: 77.7 },

// Data set continues...

var us_data = [
 { country: "United States", spending: 17.6, life: 78.7 }
];

Here, we’re giving the United States its own series, separate from the Americas
series. That’s because the United States is the outlier data point on the far right of
the chart. Our users probably want to know the specific country for that point, not
just its region. For the other countries, a region alone is probably enough identi-
fication. As before, we need to restructure these arrays into Flotr2’s format. The
code is the same as in Step 4; we’re just repeating it for each data set.

var pacific=[], europe=[], americas=[], mideast=[], asia=[], us=[];
for (i = 0; i < pacific_data.length; i++) {
 pacific.push([pacific_data[i].spending, pacific_data[i].life]);
}
for (i = 0; i < europe_data.length; i++) {
 europe.push([europe_data[i].spending, europe_data[i].life]);
}
// Code continues...

Once we’ve separated the countries, we can pass their data to Flotr2 as
distinct series. Here we see why Flotr2 expects arrays as its data parameter. Each
series is a separate object in the array.

www.it-ebooks.info

http://www.it-ebooks.info/

32 | Chapter 1

Flotr.draw(
 document.getElementById("chart"),
 [
 { data: pacific, points: {show:true} },
 { data: europe, points: {show:true} },
 { data: americas, points: {show:true} },
 { data: mideast, points: {show:true} },
 { data: asia, points: {show:true} },
 { data: us, points: {show:true} }
],{
 title: "Life Expectancy vs. Health-Care Spending",
 subtitle: "(by country, 2010 OECD data)",
 xaxis: {min: 5, max: 20, tickDecimals: 0,
 title: "Spending as Percentage of GDP",
 tickFormatter: function(val) {return val+"%"}},
 yaxis: {min: 70, max: 85, tickDecimals: 0, title: "Years"}
 }
);

With the countries in different data series based on regions, Flotr2 now col-
ors the regions distinctly, as shown in Figure 1-19.

85

80

75

70
5% 10% 15% 20%

(by country, 2010 OECD data)

Years

Spending as Percentage of GDP

Life Expectancy vs. Health-Care Spending

Figure 1-19: Splitting the data into multiple data sets lets us assign
different colors to each.

For the final enhancement, we add a legend to the chart identifying the
regions.

www.it-ebooks.info

http://www.it-ebooks.info/

 Graphing Data | 33

Flotr.draw(
 document.getElementById("chart"),
 [
 { data: pacific, label: "Pacific", points: {show:true} },
 { data: europe, label: "Europe", points: {show:true} },
 { data: americas, label: "Americas", points: {show:true} },
 { data: mideast, label: "Middle East", points: {show:true} },
 { data: asia, label: "Asia", points: {show:true} },
 { data: us, label: "United States", points: {show:true} }
],{
 title: "Life Expectancy vs. Health-Care Spending (2010 OECD data)",

u xaxis: {min: 5, max: 25, tickDecimals: 0,
 title: "Spending as Percentage of GDP",
 tickFormatter: function(val) {return val+"%"}},
 yaxis: {min: 70, max: 85, tickDecimals: 0, title: "Years"},

v legend: {position: "ne"}
 }
);

In order to make room for the legend, we increase the range of the x-axis at
u and position the legend in the northeast quadrant at v.

This addition gives us the final chart shown in Figure 1-20.

85

80

75

70
5% 10% 15% 20% 25%

Years

Spending as Percentage of GDP

Life Expectancy vs. Health-Care Spending (2010 OECD data)

Asia
Europe
Middle East
Pacific
Americas
United States

Figure 1-20: Adding a legend completes the chart.

Step 8: Work Around Flotr2 “Bugs”
Be sure to refer to Step 9 of “Creating a Basic Bar Chart” on page 14 to see how
to work around some “bugs” in the Flotr2 library.

www.it-ebooks.info

http://www.it-ebooks.info/

34 | Chapter 1

Adding Magnitudes to X/Y Data
with a Bubble Chart
Traditional scatter charts, like those described in the previous example, show the
relationship between two values: the x-axis and the y-axis. Sometimes, however,
two values are not adequate for the data we want to visualize. If we need to visual-
ize three variables, we could use a scatter plot framework for two of the variables
and then vary the size of the points according to the third variable. The resulting
chart is a bubble chart.

Using bubble charts effectively requires some caution, though. As we saw
earlier with pie charts, humans are not very good at accurately judging the relative
areas of nonrectangular shapes, so bubble charts don’t lend themselves to precise
comparisons of the bubble size. But if your third variable conveys only the general
sense of a quantity rather than an accurate measurement, a bubble chart may be
appropriate.

For this example we’ll use a bubble chart to visualize the path of Hurricane
Katrina in 2005. Our x- and y-values will represent position (latitude and longitude),
and we’ll ensure our users can interpret those values very accurately. For the third
value—the bubble area—we’ll use the storm’s sustained wind speed. Since wind
speed is only a general value anyway (as the wind gusts and subsides), a general
impression is sufficient.

Just as in Step 1 of “Creating a Basic Bar Chart” on page 6, we need to
include the Flotr2 library in our web page and set aside a <div> element to contain
the chart we’ll construct.

Step 1: Define the Data
We’ll start our example with data taken from Hurricane Katrina observations by
United States National Oceanic and Atmospheric Administration (NOAA). The data
includes the latitude and longitude of the observation and the sustained wind
speed in miles per hour.

var katrina = [
 { north: 23.2, west: 75.5, wind: 35 },
 { north: 24.0, west: 76.4, wind: 35 },
 { north: 25.2, west: 77.0, wind: 45 },
 // Data set continues...

For the bubble chart, Flotr2 needs each data point to be an array rather than
an object, so let’s build a simple function to convert the source data into that format.
To make the function more general, we can use an optional parameter to specify
a filter function. And while we’re extracting data points, we can reverse the sign of
the longitude so that west to east displays left to right.

www.it-ebooks.info

http://www.it-ebooks.info/

 Graphing Data | 35

function get_points(source_array, filter_function) {
u var result = [];

 for (var i=0; i<source_array.length; i++) {
 if ((typeof filter_function === "undefined")
 || (typeof filter_function !== "function")
 || filter_function(source_array[i])) {
 result.push([
 source_array[i].west * -1,
 source_array[i].north,
 source_array[i].wind
]);
 }
 }
 return result;
}

The code for our function starts by setting the return value (result) to an
empty array at u. Then it iterates through the input source_array one element
at a time. If the filter_function parameter is available, and if it is a valid func-
tion, our code calls that function with the source array element as a parameter.
If the function returns true, or if no function was passed in the parameter, then
our code extracts the data point from the source element and pushes it onto the
result array.

As you can see, the filter_function parameter is optional. If the caller omits
it (or if it is not a valid function), then every point in the source ends up in the result.
We won’t use the filter function right away, but it will come in handy for the later
steps in this example.

Step 2: Create a Background for the Chart
Because the x- and y-values of our chart will represent position, a map makes the
perfect chart background. To avoid any copyright concerns, we’ll use map images
from Stamen Design (http://stamen.com/) that use data from OpenStreetMap
(http://openstreetmap.org/). Both are available under Creative Commons licenses,
CC BY 3.0 (http://creativecommons.org/licenses/by/3.0) and CC BY SA (http://
creativecommons.org/licenses/by-sa/3.0), respectively.

Projections can be a tricky issue when you’re working with maps, but the
smaller the mapped area, the less of an effect projections have, and they’re less
critical in the center of the mapped region. For this example, with its relatively
small area and action focused in the center, we’ll assume the map image uses a
Mercator projection. That assumption lets us avoid any advanced mathematical
transformations when converting from latitude and longitude to x- and y-values.

Figure 1-21 shows the map image on which we’ll overlay the hurricane’s path.

www.it-ebooks.info

http://stamen.com/
http://openstreetmap.org/
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by-sa/3.0
http://www.it-ebooks.info/

36 | Chapter 1

Figure 1-21: A map image can be used as the background for a chart.

Step 3: Plot the Data
It will take us several iterations to get the chart looking the way we want, but let’s
start with the minimum number of options. One parameter we will need to specify
is the bubble radius. For static charts such as this example, it’s easiest to experi-
ment with a few values to find the best size. A value of 0.3 seems effective for our
chart. In addition to the options, the draw() method expects an HTML element that
will contain the chart, as well as the data itself.

Flotr.draw(
 document.getElementById("chart"),
 [{
 data: get_points(katrina),
 bubbles: {show:true, baseRadius: 0.3}
 }]
);

As you can see, we’re using our transformation function to extract the data
from our source. The return value from that function serves directly as the second
parameter to draw().

For now, we haven’t bothered with the background image. We’ll add that to
the chart once we’ve adjusted the data a bit. The result in Figure 1-22 still needs
improvement, but it’s a working start.

www.it-ebooks.info

http://www.it-ebooks.info/

 Graphing Data | 37

32.5

30.0

27.5

25.0

-87.5 -85.0 -82.5 -80.0 -77.5

Figure 1-22: A basic bubble chart varies the size of the data points.

Step 4: Add the Background
Now that we’ve seen how Flotr2 will plot our data, we can add in the background
image. We’ll want to make a few other additions at the same time. First, as long as
we’re adding the background, we can remove the grid lines. Second, let’s disable
the axis labels; latitude and longitude values don’t have much meaning for the
average user, and they’re certainly not necessary with the map. Finally, and most
importantly, we need to adjust the scale of the chart to match the map image.

Flotr.draw(
 document.getElementById("chart"),
 [{
 data: get_points(katrina),
 bubbles: {show:true, baseRadius: 0.3}
 }],
 {

u grid: {
 backgroundImage: "img/gulf.png",
 horizontalLines: false,
 verticalLines: false
 },

v yaxis: {showLabels: false, min: 23.607, max: 33.657},
w xaxis: {showLabels: false, min: -94.298, max: -77.586}

 }
);

www.it-ebooks.info

http://www.it-ebooks.info/

38 | Chapter 1

We’ve added grid options starting at u to tell Flotr2 to omit both horizontal
and vertical grid lines, and they designate the background image. Our image
shows latitude values from 23.607°N to 33.657°N and longitude from 77.586°W to
94.298°W. At v and w we provide those values as ranges for the xaxis and yaxis
options, and disable labels for both axes. Note that because we’re dealing with
longitudes west of 0, we’re using negative values.

At this point the chart in Figure 1-23 is looking pretty good. We can clearly
see the path of the hurricane and get a sense of how the storm strengthened and
weakened.

Figure 1-23: With a map as the background image, the chart has a
meaningful context.

Step 5: Color the Bubbles
This example gives us a chance to provide even more information to our users
without overly distracting them: we have the option to modify the bubble colors.
Let’s use that freedom to indicate the Saffir-Simpson classification for storm inten-
sity at each measurement point.

Here’s where we can take advantage of the filter option we included in the
data formatting function. The Saffir-Simpson classification is based on wind speed,
so we’ll filter based on the wind property. For example, here’s how to extract only
those values that represent a Category 1 hurricane, with wind speeds from 74 to
95 miles per hour. The function we pass to get_points returns true only for appro-
priate wind speeds.

www.it-ebooks.info

http://www.it-ebooks.info/

 Graphing Data | 39

cat1 = get_points(katrina, function(obs) {
 return (obs.wind >= 74) && (obs.wind < 95);
});

To have Flotr2 assign different colors to different strengths, we divide the
data into multiple series with the following code. Each series gets its own color.
In addition to the five hurricane categories, we’ve also parsed out the points for
tropical storm and tropical depression strength.

Flotr.draw(
 document.getElementById("chart"),
 [
 {
 data: get_points(katrina, function(obs) {
 return (obs.wind < 39);
 }),
 color: "#74add1",
 bubbles: {show:true, baseRadius: 0.3, lineWidth: 1}
 },{
 // Options continue...
 },{
 data: get_points(katrina, function(obs) {
 return (obs.wind >= 157);
 }),
 color: "#d73027",
 label: "Category 5",
 bubbles: {show:true, baseRadius: 0.3, lineWidth: 1}
 }
],{
 grid: {
 backgroundImage: "img/gulf.png",
 horizontalLines: false,
 verticalLines: false
 },
 yaxis: {showLabels: false, min: 23.607, max: 33.657},
 xaxis: {showLabels: false, min: -94.298, max: -77.586},
 legend: {position: "sw"}
 }
);

We’ve also added labels for the hurricane categories and placed a legend in
the lower left of the chart, as you can see in Figure 1-24.

www.it-ebooks.info

http://www.it-ebooks.info/

40 | Chapter 1

Figure 1-24: Different colors can indicate wind strength.

Step 6: Adjust the Legend Styles
By default, Flotr2 seems to prefer all elements as large as possible. The legend in
Figure 1-24 is a good example: it looks cramped and unattractive. Fortunately, the
fix is rather simple: we simply add some CSS styles to give the legend padding. We
can also set the legend’s background color explicitly rather than relying on Flotr2’s
manipulation of opacity.

.flotr-legend {
 padding: 5px;
 background-color: #ececec;
}

To prevent Flotr2 from creating its own background for the legend, set the
opacity to 0.

Flotr.draw(
 document.getElementById("chart")
 // Additional options...
 legend: {position: "sw", backgroundOpacity: 0,},
 // Additional options...

With that final tweak, we have the finished product of Figure 1-25. We don’t
want to use the Flotr2 options to specify a title, because Flotr2 will shrink the chart
area by an unpredictable amount (since we cannot predict the font sizing in the
users’ browsers). That would distort our latitude transformation. Of course, it’s easy
enough to use HTML to provide the title.

www.it-ebooks.info

http://www.it-ebooks.info/

 Graphing Data | 41

Figure 1-25: A bubble chart shows a third dimension (wind speed),
as well as position.

The bubble chart adds another dimension to the two-dimensional scatter
chart. In fact, as in our example, it can add two further dimensions. The example
uses bubble size to represent wind speed and color to indicate the hurricane’s
classification. Both of these additional values require care, however. Humans are
not good at comparing two-dimensional areas, nor can they easily compare rela-
tive shades or colors. We should never use the extra bubble chart dimensions
to convey critical data or precise quantities. Rather, they work best in examples
such as this—neither the exact wind speed nor the specific classification need be
as precise as the location. Few people can tell the difference between 100- and
110-mile-per-hour winds, but they certainly know the difference between New
Orleans and Dallas.

Step 7: Work Around Flotr2 “Bugs”
Be sure to refer to Step 9 of “Creating a Basic Bar Chart” on page 14 to see how
to work around some “bugs” in the Flotr2 library.

Displaying Multidimensional Data
with a Radar Chart
If you have data with many dimensions, a radar chart may be the most effective
way to visualize it. Radar charts are not as common as other charts, though, and
their unfamiliarity makes them a little harder for users to interpret. If you design
a radar chart, be careful not to increase that burden.

www.it-ebooks.info

http://www.it-ebooks.info/

42 | Chapter 1

Radar charts are most effective when your data has several characteristics:

 > You don’t have too many data points to show. Half a dozen data points is
about the maximum that a radar chart can accommodate.

 > The data points have multiple dimensions. With two or even three dimen-
sions to your data, you would probably be better off with a more tradi-
tional chart type. Radar charts come into play with data of four or more
dimensions.

 > Each data dimension is a scale that can at least be ranked (from good to bad,
say), if not assigned a number outright. Radar charts don’t work well with
data dimensions that are merely arbitrary categories (such as political party
or nationality).

A classic use for radar charts is analyzing the performance of players on a
sports team. Consider, for example, the 2012 starting lineup of Miami Heat, a team
in the National Basketball Association (NBA). There are only five data points (the
five players). There are multiple dimensions—points, assists, rebounds, blocks,
steals, and so on—and each of those dimensions has a natural numeric value.

Table 1-1 shows the players’ 2011–2012 season averages per game, as well as
the team totals (which include the contributions of nonstarters).

Table 1-1: Miami Heat 2011–2012 Season

player points Rebounds Assists Steals Blocks

Chris Bosh 17.2 7.9 1.6 0.8 0.8

Shane Battier 5.4 2.6 1.2 1.0 0.5

LeBron James 28.0 8.4 6.1 1.9 0.8

Dwyane Wade 22.3 5.0 4.5 1.7 1.3

Mario Chalmers 10.2 2.9 3.6 1.4 0.2

Team total 98.2 41.3 19.3 8.5 5.3

Just as in Step 1 of “Creating a Basic Bar Chart” on page 6, we need to
include the Flotr2 library in our web page and set aside a <div> element to contain
the chart we’ll construct.

Step 1: Define the Data
We’ll start with a typical JavaScript expression of the team’s statistics. For our
example we’ll start with an array of objects corresponding to each starter, and
a separate object for the entire team.

var players = [
 { player: "Chris Bosh", points: 17.2, rebounds: 7.9, assists: 1.6,
 steals: 0.8, blocks: 0.8 },
 { player: "Shane Battier", points: 5.4, rebounds: 2.6, assists: 1.2,
 steals: 1.0, blocks: 0.5 },

www.it-ebooks.info

http://www.it-ebooks.info/

 Graphing Data | 43

 { player: "LeBron James", points: 28.0, rebounds: 8.4, assists: 6.1,
 steals: 1.9, blocks: 0.8 },
 { player: "Dwyane Wade", points: 22.3, rebounds: 5.0, assists: 4.5,
 steals: 1.7, blocks: 1.3 },
 { player: "Mario Chalmers", points: 10.2, rebounds: 2.9, assists: 3.6,
 steals: 1.4, blocks: 0.2 }
];
var team = {
 points: 98.2,
 rebounds: 41.3,
 assists: 19.3,
 steals: 8.5,
 blocks: 5.3
};

For an effective radar plot, we need to normalize all the values to a com-
mon scale. In this example, let’s translate raw statistics into team percentage. For
example, instead of visualizing LeBron James’s scoring as 28.0, we’ll show it as
29 percent (28.0/98.2).

There are a couple of functions we can use to convert the raw statistics into
an object to chart. The first function returns the statistics object for a single
player. It simply searches through the players array looking for that player’s name.
The second function steps through each statistic in the team object, gets the cor-
responding statistic for the named player, and normalizes the value. The returned
object will have a label property equal to the player’s name, and an array of nor-
malized statistics for that player.

 var get_player = function(name) {
 for (var i=0; i<players.length; i++) {
 if (players[i].player === name) return players[i];
 }
}
var player_data = function(name) {
 var obj = {}, i = 0;
 obj.label = name;
 obj.data = [];
 for (var key in team) {
 obj.data.push([i, 100*get_player(name)[key]/team[key]]);
 i++;
 };
 return obj;
};

For example, the function call player_data("LeBron James") returns the fol-
lowing object:

{
 label: "LeBron James",
 data: [
 [0,28.513238289205702],

www.it-ebooks.info

http://www.it-ebooks.info/

44 | Chapter 1

 [1,20.33898305084746],
 [2,31.60621761658031],
 [3,22.352941176470587],
 [4,15.09433962264151]
]
}

For the specific statistics, we’re using a counter from 0 to 4. We’ll see how to
map those numbers into meaningful values shortly.

Since Flotr2 doesn’t require jQuery, we aren’t taking advantage of any jQuery
convenience function in the preceding code. We’re also not taking full advantage
of the JavaScript standard (including methods such as .each()), because Internet
Explorer releases prior to version 9 do not support those methods. If you have
jQuery on your pages for other reasons, or if you don’t need to support older IE
versions, you can simplify this code quite a bit.

The last bit of code we’ll use is a simple array of labels for the statistics in our
chart. The order must match the order returned in player_data().

var labels = [
 [0, "Points"],
 [1, "Rebounds"],
 [2, "Assists"],
 [3, "Steals"],
 [4, "Blocks"]
];

Step 2: Create the Chart
A single call to Flotr2’s draw() method is all it takes to create our chart. We need to
specify the HTML element in which to place the chart, as well as the chart data. For
the data, we’ll use the get_player() function shown previously.

Flotr.draw(document.getElementById("chart"),
 [
 player_data("Chris Bosh"),
 player_data("Shane Battier"),
 player_data("LeBron James"),
 player_data("Dwyane Wade"),
 player_data("Mario Chalmers")
],{

u title:
 "2011/12 Miami Heat Starting Lineup — Contribution to Team Total",

v radar: { show: true },
w grid: { circular: true, },

 xaxis: { ticks: labels, },
 yaxis: { showLabels: false, min:0, max: 33, }
 }
);

www.it-ebooks.info

http://www.it-ebooks.info/

 Graphing Data | 45

This code also includes a few options. The title option at u provides an
overall title for the chart, and the radar option at v tells Flotr2 the type of chart we
want. With a radar chart, we also have to explicitly specify a circular (as opposed
to rectangular) grid, so we do that with the grid option at w. The final two options
detail the x- and y-axes. For the x-axis, we use our labels array to give each statis-
tic a name, and for the y-axis, we forgo labels altogether and explicitly specify the
minimum and maximum values.

The only real trick is making the HTML container wide enough to hold both the
chart proper and the legend, since Flotr2 doesn’t do a great job of calculating the
size appropriately. For a static chart such as this one, trial and error is the simplest
approach and gives us the chart shown in Figure 1-26.

Points

Blocks

Steals Assists

Rebounds

LeBron James
Dwyane Wade
Chris Bosh
Mario Chalmers
Shane Battier

2011/12 Miami Heat Starting Lineup − Contribution to Team Total

Figure 1-26: Radar charts let users compare multiple data
variables at once.

Although it’s certainly not a surprise to NBA fans, the chart clearly demon-
strates the value of LeBron James to the team. He led the team in four of the five
major statistical categories.

The radar chart lends itself only to a few specialized applications, but it can
be effective when there is a modest number of variables, each of which is easily
quantified. In Figure 1-26, each player’s area on the chart roughly corresponds to
his total contribution across all of the variables. The relative size of the red area
makes James’s total contribution strikingly clear.

Step 3: Work Around Flotr2 “Bugs”
Be sure to refer to Step 9 of “Creating a Basic Bar Chart” on page 14 to see how
to work around some “bugs” in the Flotr2 library.

www.it-ebooks.info

http://www.it-ebooks.info/

46 | Chapter 1

Summing Up
The examples in this chapter provide a quick tour of the many types of standard
data charts, the simplest and most straightforward tool for visualizing data. Each
of these charts is especially effective for certain types of visualizations.

Bar charts The workhorse of charts. Effective at showing the change of a
quantity over a small number of regular time intervals, or at comparing sev-
eral different quantities against one another.

Line charts More effective than bar charts when there is a large number
of data values to show, or for showing quantities that vary on an irregular
schedule.

Pie charts Often overused but can be effective to highlight the proportion
of a single value within a whole.

Scatter charts Effective for showing possible relationships between two
values.

Bubble charts Adds a third value to scatter charts but should be used
carefully, as it’s difficult to accurately assess the relative areas of circular
regions.

Radar charts Designed to show several aspects of the subject on one
chart. Not as familiar to many users but can be effective for certain special-
ized cases.

www.it-ebooks.info

http://www.it-ebooks.info/

2
making Charts

Interactive

In Chapter 1 we saw how to create a wide vari-
ety of simple, static charts. In many cases such
charts are the ideal visualization, but they don’t
take advantage of an important characteristic
of the Web—interactivity. Sometimes you want
to do more than just present data to your users;
you want to give them a chance to explore the
data, to focus on the elements they find partic-
ularly interesting, or to consider alternative

www.it-ebooks.info

http://www.it-ebooks.info/

48 | Chapter 2

scenarios. In those cases we can take advantage of the Web as a medium by add-
ing interactivity to our visualizations.

Because they’re designed for the Web, virtually all of the libraries and tool-
kits we examine in this book include support for interactivity. That’s certainly true
of the Flotr2 library used in Chapter 1. But let’s take the opportunity to explore an
alternative. In this chapter, we’ll use the Flot library (http://www.flotcharts.org/),
which is based on jQuery and features exceptionally strong support for interactive
and real-time charts.

For this chapter, we’re also going to stick with a single data source: the gross
domestic product (GDP) for countries worldwide. This data is publicly available
from the World Bank (http://data.worldbank.org/). It may not seem like the most
exciting data to work with, but effective visualizations can bring even the most
mundane data alive. Here’s what you’ll learn:

 > How to let users select the content for a chart

 > How to let users zoom into a chart to see more details

 > How to make a chart respond to user mouse movements

 > How to dynamically get data for a chart using an AJAX service

Selecting Chart Content
If you’re presenting data to a large audience on the Web, you may find that differ-
ent users are especially interested in different aspects of your data. With global
GDP data, for example, we might expect that individual users would be most inter-
ested in the data for their own region of the world. If we can anticipate inquiries
like this from the user, we can construct our visualization to answer them.

In this example, we’re targeting a worldwide audience, and we want to show
data for all regions. To accommodate individual users, however, we can make the
regions selectable; that is, users will be able to show or hide the data from each
region. If some users don’t care about data for particular regions, they can simply
choose not to show it.

Interactive visualizations usually require more thought than simple, static
charts. Not only must the original presentation of data be effective, but the way
the user controls the presentation and the way the presentation responds must be
effective as well. It usually helps to consider each of those requirements explicitly.

1. Make sure the initial, static presentation shows the data effectively.
2. Add any user controls to the page and ensure they make sense for the

visualization.
3. Add the code that makes the controls work.

We’ll tackle each of these phases in the following example.

www.it-ebooks.info

http://www.flotcharts.org/
http://data.worldbank.org
http://www.it-ebooks.info/

 Making Charts Interactive | 49

Step 1: Include the Required JavaScript Libraries
Since we’re using the Flot library to create the chart, we need to include that
library in our web pages. And since Flot requires jQuery, we’ll include that in our
pages as well. Fortunately, both jQuery and Flot are popular libraries, and they are
available on public content distribution networks (CDNs). That gives you the option
of loading both from a CDN instead of hosting them on your own site. There are
several advantages to relying on a CDN:

Better performance If the user has previously visited other websites that
retrieved the libraries from the same CDN, then the libraries may already exist
in the browser’s local cache. In that case the browser simply retrieves them
from the cache, avoiding the delay of additional network requests. (See the
second disadvantage in the next list for a different view on performance.)

Lower cost One way or another, the cost of your site is likely based on how
much bandwidth you use. If your users are able to retrieve libraries from a
CDN, then the bandwidth required to service their requests won’t count
against your site.

Of course there are also disadvantages to CDNs as well.

Loss of control If the CDN goes down, then the libraries your page needs
won’t be available. That puts your site’s functionality at the mercy of the CDN.
There are approaches to mitigate such failures. You can try to retrieve from
the CDN and fall back to your own hosted copy if the CDN request fails.
Implementing such a fallback is tricky, though, and it could introduce errors
in your code.

Lack of flexibility With CDN-hosted libraries, you’re generally stuck with
a limited set of options. For example, in this case we need both the jQuery
and Flot libraries. CDNs provide those libraries only as distinct files, so to get
both we’ll need two network requests. If we host the libraries ourselves, on
the other hand, we can combine them into a single file and cut the required
number of requests in half. For high-latency networks (such as mobile net-
works), the number of requests may be the biggest factor in determining the
performance of your web page.

There isn’t a clear-cut answer for all cases, so you’ll have to weigh the options
against your own requirements. For this example (and the others in this chapter),
we’ll use the CloudFlare CDN.

In addition to the jQuery library, Flot relies on the HTML canvas feature. To
support IE8 and earlier, we'll include the excanvas.min.js library in our pages and
make sure that only IE8 and earlier will load it, just like we did for our bar chart in
Chapter 1. Also, since excanvas isn’t available on a public CDN, we’ll have to host
it on our own server. Here’s the skeleton to start with:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">

www.it-ebooks.info

http://www.it-ebooks.info/

50 | Chapter 2

 <title></title>
 </head>
 <body>
 <!-- Content goes here -->
 <!--[if lt IE 9]><script src="js/excanvas.min.js"></script><![endif]-->
 <script src="//cdnjs.cloudflare.com/ajax/libs/jquery/1.8.3/jquery.min.js">
 </script>
 <script src="//cdnjs.cloudflare.com/ajax/libs/flot/0.7/jquery.flot.min.js">
 </script>
 </body>
</html>

As you can see, we’re including the JavaScript libraries at the end of the
document. This approach lets the browser load the document’s entire HTML
markup and begin laying out the page while it waits for the server to provide the
JavaScript libraries.

Step 2: Set Aside a <div> Element to Hold the Chart
Within our document, we need to create a <div> element to contain the chart we’ll
construct. This element must have an explicit height and width, or Flot won’t be
able to construct the chart. We can indicate the element’s size in a CSS style sheet,
or we can place it directly on the element itself. Here’s how the document might
look with the latter approach.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>

u <div id="chart" style="width:600px;height:400px;"></div>
 <!--[if lt IE 9]><script src="js/excanvas.min.js"></script><![endif]-->
 <script src="//cdnjs.cloudflare.com/ajax/libs/jquery/1.8.3/jquery.min.js">
 </script>
 <script src="//cdnjs.cloudflare.com/ajax/libs/flot/0.7/jquery.flot.min.js">
 </script>
 </body>
</html>

Note at u that we’ve given the <div> an explicit id so we can reference it
later.

Step 3: Prepare the Data
In later examples we’ll see how to get the data directly from the World Bank’s web
service, but for this example, let’s keep things simple and assume we have the data
already downloaded and formatted for JavaScript. (For brevity, only excerpts are
shown here. The book’s source code includes the full data set.)

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 51

var eas = [[1960,0.1558],[1961,0.1547],[1962,0.1574], // Data continues...
var ecs = [[1960,0.4421],[1961,0.4706],[1962,0.5145], // Data continues...
var lcn = [[1960,0.0811],[1961,0.0860],[1962,0.0990], // Data continues...
var mea = [[1968,0.0383],[1969,0.0426],[1970,0.0471], // Data continues...
var sas = [[1960,0.0478],[1961,0.0383],[1962,0.0389], // Data continues...
var ssf = [[1960,0.0297],[1961,0.0308],[1962,0.0334], // Data continues...

This data includes the historical GDP (in current US dollars) for major regions
of the world, from 1960 to 2011. The names of the variables are the World Bank
region codes.

 QNote: At the time of this writing, World Bank data for north America was
temporarily unavailable.

Step 4: Draw the Chart
Before we add any interactivity, let’s check out the chart itself. The Flot library pro-
vides a simple function call to create a static graph. We call the jQuery extension
plot and pass it two parameters. The first parameter identifies the HTML element
that should contain the chart, and the second parameter provides the data as an
array of data sets. In this case, we pass in an array with the series we defined earlier
for each region.

$(function () {
 $.plot($("#chart"), [eas, ecs, lcn, mea, sas, ssf]);
});

Figure 2-1 shows the resulting chart.

25

20

15

10

5

0
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 2-1: Flot can show a static line chart well with just default options.

www.it-ebooks.info

http://www.it-ebooks.info/

52 | Chapter 2

It looks like we’ve done a good job of capturing and presenting the data
statically, so we can move on to the next phase.

Step 5: Add the Controls
Now that we have a chart we’re happy with, we can add the HTML controls to
interact with it. For this example, our goal is fairly simple: our users should be
able to pick which regions appear on the graph. We’ll give them that option
with a set of checkboxes, one for each region. Here’s the markup to include the
checkboxes.

<label><input type="checkbox"> East Asia & Pacific</label>
<label><input type="checkbox"> Europe & Central Asia</label>
<label><input type="checkbox"> Latin America & Caribbean</label>
<label><input type="checkbox"> Middle East & North Africa</label>
<label><input type="checkbox"> South Asia</label>
<label><input type="checkbox"> Sub-Saharan Africa</label>

You may be surprised to see that we’ve placed the <input> controls inside the
<label> elements. Although it looks a little unusual, that’s almost always the best
approach. When we do that, the browser interprets clicks on the label as clicks on
the control, whereas if we separate the labels from the controls, it forces the user
to click on the tiny checkbox itself to have any effect.

On our web page, we’d like to place the controls on the right side of the chart.
We can do that by creating a containing <div> and making the chart and the con-
trols float (left) within it. While we’re experimenting with the layout, it’s easiest to
simply add the styling directly in the HTML markup. In a production implementa-
tion, you might want to define the styles in an external style sheet.

<div id="visualization">
 <div id="chart" style="width:500px;height:333px;float:left"></div>
 <div id="controls" style="float:left;">
 <label><input type="checkbox"> East Asia & Pacific</label>
 <label><input type="checkbox"> Europe & Central Asia</label>
 <label><input type="checkbox"> Latin America & Caribbean</label>
 <label><input type="checkbox"> Middle East & North Africa</label>
 <label><input type="checkbox"> South Asia</label>
 <label><input type="checkbox"> Sub-Saharan Africa</label>
 </div>
</div>

We should also add a title and instructions and make all the <input> check-
boxes default to checked. Let’s see the chart now, to make sure the formatting
looks okay (Figure 2-2).

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 53

0

5

10

15

20

25

1960 1970 1980 1990 2000 2010

Select Regions to Include:

Europe & Central Asia
East Asia & Pacific
Latin America & Caribbean
Middle East & North Africa
South Asia
Sub-Saharan Africa

Gross Domestic Product (Current USD in Trillions)

Figure 2-2: Standard HTML can create controls for chart interaction.

Now we see how the controls look in relation to the chart in Figure 2-2,
and we can verify that they make sense both for the data and for the interaction
model. Our visualization lacks a critical piece of information, though: it doesn’t
identify which line corresponds to which region. For a static visualization, we
could simply use the Flot library to add a legend to the chart, but that approach
isn’t ideal here. You can see the problem in Figure 2-3, as the legend looks confus-
ingly like the interaction controls.

0

5

10

15

20

25

1960 1970 1980 1990 2000 2010

Select Regions to Include:

Europe & Central Asia
East Asia & Pacific
Latin America & Caribbean
Middle East & North Africa
South Asia
Sub-Saharan Africa

Gross Domestic Product (Current USD in Trillions)

Europe & Central Asia
East Asia & Pacific
Latin America & Caribbean
Middle East & North Africa
South Asia
Sub-Saharan Africa

Figure 2-3: The Flot library’s standard legend doesn’t match the
chart styles well.

We can eliminate the visual confusion by combining the legend and the
interaction controls. The checkbox controls will serve as a legend if we add color
boxes that identify the chart lines.

www.it-ebooks.info

http://www.it-ebooks.info/

54 | Chapter 2

We can add the colored boxes using an HTML tag and a bit of styling.
Here is the markup for one such checkbox with the styles inline. (Full web page
implementations might be better organized by having most of the styles defined
in an external style sheet.)

<label class="checkbox">
 <input type="checkbox" checked>
 <span style="background-color:rgb(237,194,64);height:0.9em;
 width:0.9em;margin-right:0.25em;display:inline-block;"/>
 East Asia & Pacific
</label>

In addition to the background color, the needs an explicit size, and we
use an inline-block value for the display property to force the browser to show the
span even though it has no content. As you can also see, we’re using ems instead
of pixels to define the size of the block. Since ems scale automatically with the text
size, the color blocks will match the text label size even if users zoom in or out on
the page.

A quick check in the browser can verify that the various elements combine
effectively (Figure 2-4).

0

5

10

15

20

25

1960 1970 1980 1990 2000 2010

Select Regions to Include:

Europe & Central Asia
East Asia & Pacific
Latin America & Caribbean
Middle East & North Africa
South Asia
Sub-Saharan Africa

Gross Domestic Product (Current USD in Trillions)

Figure 2-4: Interaction controls can also serve as chart elements
such as legends.

That looks pretty good, so now we can move on to the interaction itself.

Step 6: Define the Data Structure for the Interaction
Now that the general layout looks good, we can turn back to JavaScript. First we
need to expand our data to track the interaction state. Instead of storing the data
as simple arrays of values, we’ll use an array of objects. Each object will include the
corresponding data values along with other properties.

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 55

var source = [
 { data: eas, show: true, color: "#FE4C4C", name: "East Asia & Pacific" },
 { data: ecs, show: true, color: "#B6ED47", name: "Europe & Central Asia" },
 { data: lcn, show: true, color: "#2D9999",
 name: "Latin America & Caribbean" },
 { data: mea, show: true, color: "#A50000",
 name: "Middle East & North Africa" },
 { data: sas, show: true, color: "#679A00", name: "South Asia" },
 { data: ssf, show: true, color: "#006363", name: "Sub-Saharan Africa" }
];

Each object includes the data points for a region, and it also gives us a place
to define additional properties, including the label for the series and other status
information. One property that we want to track is whether the series should be
included on the chart (using the key show). We also need to specify the color for
each line; otherwise, the Flot library will pick the color dynamically based on how
many regions are visible at the same time, and we won’t be able to match the color
with the control legend.

Step 7: Determine Chart Data Based on the Interaction State
When we call plot() to draw the chart, we need to pass in an object containing the
data series and the color for each region. The source array has the information we
need, but it contains other information as well, which could potentially make Flot
behave unexpectedly. We want to pass in a simpler object to the plot function. For
example, the East Asia & Pacific series would be defined this way:

{
 data: eas,
 color: "#E41A1C"
}

We also want to be sure to show the data only for regions the user has
selected. That may be only a subset of the complete data set. Those two opera-
tions—transforming array elements (in this case, to simpler objects) and filtering an
array to a subset—are very common requirements for visualizations. Fortunately,
jQuery has two utility functions that make both operations easy: $.map() and
$.grep().

Both .grep() and .map() accept two parameters. The first parameter is an array
or, more precisely, an “array-like” object. That’s either a JavaScript array or another
JavaScript object that looks and acts like an array. (There is a technical distinction,
but it’s not something we have to worry about here.) The second parameter is a
function that operates on elements of the array one at a time. For .grep(), that func-
tion returns true or false to filter out elements accordingly. In the case of .map(), the
function returns a transformed object that replaces the original element in the array.
Figure 2-5 shows how these functions convert the initial data into the final data array.

www.it-ebooks.info

http://www.it-ebooks.info/

56 | Chapter 2

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

Object 1

Object 3

Object 4

Object 6

Object A

Object B

Object C

Object D

Original
Array

Filtered
Array

Transformed
Array

$.grep() $.map()

Figure 2-5: The jQuery library has utility functions to help transform
and filter data.

Taking these one at a time, here’s how to filter out irrelevant data from the
response. We use .grep() to check the show property in our source data so that it
returns an array with only the objects where show is set to true.

$.grep(
 source,
 function (obj) { return obj.show; }
)

And here’s how to transform the elements to retain only relevant properties:

$.map(
 source,
 function (obj) { return { data: obj.data, color: obj.color }; }
)

There’s no need to make these separate steps. We can combine them in a
nice, concise expression as follows:

$.map(
 $.grep(
 source,
 function (obj) { return obj.show; }
),
 function (obj) { return { data: obj.data, color: obj.color }; }
)

That expression in turn provides the input data to Flot’s plot() function.

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 57

Step 8: Add the Controls Using JavaScript
Now that our new data structure can provide the chart input, let’s use it to add
the checkbox controls to the page as well. The jQuery .each() function is a conve-
nient way to iterate through the array of regions. Its parameters include an array of
objects and a function to execute on each object in the array. That function takes
two parameters, the array index and the array object.

$.each(source, function(idx, region) {
 var input = $("<input>").attr("type","checkbox").attr("id","chk-"+idx);
 if (region.show) {
 $(input).prop("checked",true);
 }
 var span = $("").css({
 "background-color": region.color,
 "display": "inline-block",
 "height": "0.9em",
 "width": "0.9em",
 "margin-right": "0.25em",
 });
 var label = $("<label>").append(input).append(span).append(region.name);
 $("#controls").append(label);
});

Within the iteration function we do four things. First, we create the checkbox
<input> control. As you can see, we’re giving each control a unique id attribute that
combines the chk- prefix with the source array index. If the chart is showing that
region, the control’s checked property is set to true. Next we create the for
the color block. We’re setting all the styles, including the region’s color, using the
css() function. The third element we create in the function is the <label>. To that
element we append the checkbox <input> control, the color box , and the
region’s name. Finally, we add the <label> to the document.

Notice that we don’t add the intermediate elements (such as the <input> or the
) directly to the document. Instead, we construct those elements using local
variables. We then assemble the local variables into the final, complete <label> and
add that to the document. This approach significantly improves the performance of
web pages. Every time JavaScript code adds elements to the document, the web
browser has to recalculate the appearance of the page. For complex pages, that can
take time. By assembling the elements before adding them to the document, we’ve
only forced the browser to perform that calculation once for each region. (You could
further optimize performance by combining all of the regions in a local variable and
adding only that single local variable to the document.)

If we combine the JavaScript to draw the chart with the JavaScript to create
the controls, we need only a skeletal HTML structure.

<div id="visualization">
 <div id="chart" style="width:500px;height:333px;float:left"></div>
 <div id="controls" style="float:left;">
 <p>Select Regions to Include:</p>

www.it-ebooks.info

http://www.it-ebooks.info/

58 | Chapter 2

 </div>
</div>

Our reward is the visualization in Figure 2-6—the same one as shown in
Figure 2-4—but this time we’ve created it dynamically using JavaScript.

0

5

10

15

20

25

1960 1970 1980 1990 2000 2010

Select Regions to Include:

Europe & Central Asia
East Asia & Pacific
Latin America & Caribbean
Middle East & North Africa
South Asia
Sub-Saharan Africa

Gross Domestic Product (Current USD in Trillions)

Figure 2-6: Setting the chart options ensures that the data matches
the legend.

Step 9: Respond to the Interaction Controls
We still haven’t added any interactivity, of course, but we’re almost there. Our
code just needs to watch for clicks on the controls and redraw the chart appropri-
ately. Since we’ve conveniently given each checkbox an id attribute that begins
with chk-, it’s easy to watch for the right events.

$("input[id^='chk-']").click(function(ev) {
 // Handle the click
})

When the code sees a click, it should determine which checkbox was clicked,
toggle the show property of the data source, and redraw the chart. We can find the
specific region by skipping past the four-character chk- prefix of the event target’s
id attribute.

idx = ev.target.id.substr(4);
source[idx].show = !source[idx].show

Redrawing the chart requires a couple of calls to the chart object that plot()
returns. We reset the data and then tell the library to redraw the chart.

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 59

plotObj.setData(
 $.map(
 $.grep(source, function (obj) { return obj.show; }),
 function (obj) { return { data: obj.data, color: obj.color }; }
)
);
plotObj.draw();

And that’s it. We finally have a fully interactive visualization of regional gross
domestic product, as shown in Figure 2-7.

0

5

10

15

20

25

1960 1970 1980 1990 2000 2010

Select Regions to Include:

Europe & Central Asia
East Asia & Pacific
Latin America & Caribbean
Middle East & North Africa
South Asia
Sub-Saharan Africa

Gross Domestic Product (Current USD in Trillions)

Figure 2-7: An interactive chart gives users control over the visualization.

The visualization we’ve created engages users more effectively than a static
chart. They can still see the overall picture, but the interaction controls let them
focus on aspects of the data that are especially important or interesting to them.

There is still a potential problem with this implementation. Two data sets
(Europe and East Asia & Pacific) dominate the chart. When users deselect those
regions, the remaining data is confined to the very bottom of the chart, and much
of the chart’s area is wasted. You could address this by rescaling the chart every
time you draw it. To do this, you would call plotObj.setupGrid() before calling
plotObj.draw(). On the other hand, users may find this constant rescaling dis-
concerting, because it changes the whole chart, not just the region they selected.
In the next example, we’ll address this type of problem by giving users total con-
trol over the scale of both axes.

Zooming In on Charts
So far, we’ve given users some interaction with the visualization by letting them
choose which data sets appear. In many cases, however, you’ll want to give them
even more control, especially if you’re showing a lot of data and details are hard to

www.it-ebooks.info

http://www.it-ebooks.info/

60 | Chapter 2

discern. If users can’t see the details they need, our visualization has failed. Fortu-
nately, we can avoid this problem by giving users a chance to inspect fine details
within the data. One way to do that is to let users zoom in on the chart.

Although the Flot library in its most basic form does not support zooming,
there are at least two library extensions that add this feature: the selection plug-in
and the navigation plug-in. The navigation plug-in acts a bit like Google Maps. It
adds a control that looks like a compass to one corner of the plot and gives users
arrows and buttons to pan or zoom the display. This interface is not especially
effective for charts, however. Users cannot control exactly how much the chart
pans or zooms, which makes it difficult for them to anticipate the effect of an
action.

The selection plug-in provides a much better interface. Users simply drag
their mouse across the area of the chart they want to zoom in on. The effect of this
gesture is more intuitive, and users can be as precise as they like in those actions.
The plug-in does have one significant downside, however: it doesn’t support touch
interfaces.

For this example, we’ll walk through the steps required to support zooming
with the selection plug-in. Of course, the best approach for your own website and
visualizations will vary from case to case.

Step 1: Prepare the Page
Because we’re sticking with the same data, most of the preparation is identical to
the last example.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <!-- Content goes here -->
 <!--[if lt IE 9]><script src="js/excanvas.min.js"></script><![endif]-->
 <script src="//cdnjs.cloudflare.com/ajax/libs/jquery/1.8.3/jquery.min.js">
 </script>
 <script src="//cdnjs.cloudflare.com/ajax/libs/flot/0.7/jquery.flot.min.js">
 </script>

u <script src="js/jquery.flot.selection.js"></script>
 </body>
</html>

As you can see, we do, however, have to add the selection plug-in to the
page. It is not available on common CDNs, so we host it on our own server, as
shown at u.

Step 2: Draw the Chart
Before we add any interactivity, let’s go back to a basic chart. This time, we’ll add a
legend inside the chart since we won’t be including checkboxes next to the chart.

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 61

$(function () {
 $.plot($("#chart") [
 { data: eas, label: "East Asia & Pacific" },
 { data: ecs, label: "Europe & Central Asia" },
 { data: lcn, label: "Latin America & Caribbean" },
 { data: mea, label: "Middle East & North Africa" },
 { data: sas, label: "South Asia" },
 { data: ssf, label: "Sub-Saharan Africa" }
], {legend: {position: "nw"}});
});

Here, we call the jQuery extension plot (from the Flot library) and pass it three
parameters. The first parameter identifies the HTML element that should contain the
chart, and the second parameter provides the data as an array of data series. These
series contain regions we defined earlier, plus a label to identify each series. The
final parameter specifies options for the plot. We’ll keep it simple for this example—
the only option we’re including tells Flot to position the legend in the top-left (north-
west) corner of the chart.

Figure 2-8 shows the resulting chart.

25

20

15

10

5

0
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Europe & Central Asia
East Asia & Pacific
Latin America & Caribbean
Middle East & North Africa
South Asia
Sub-Saharan Africa

Figure 2-8: The starting point for most interactive charts is a good
static chart.

It looks like we’ve done a good job of capturing and presenting the data
statically, so we can move on to the next phase.

Step 3: Prepare the Data to Support Interaction
Now that we have a working static chart, we can plan how to support interaction.
As part of that support, and for the sake of convenience, we’ll store all the param-
eters we’re passing to plot() in local variables.

www.it-ebooks.info

http://www.it-ebooks.info/

62 | Chapter 2

u var $el = $("#chart"),
v data = [

 { data: eas, label: "East Asia & Pacific" },
 { data: ecs, label: "Europe & Central Asia" },
 { data: lcn, label: "Latin America & Caribbean" },
 { data: mea, label: "Middle East & North Africa" },
 { data: sas, label: "South Asia" },
 { data: ssf, label: "Sub-Saharan Africa" }
],

w options = {legend: {position: "nw"}};

x var plotObj = $.plot($el, data, options);

Before we call plot(), we create the variables $el u, data v, and options w.
We’ll also need to save the object returned from plot() at x.

Step 4: Prepare to Accept Interaction Events
Our code also has to prepare to handle the interaction events. The selection plug-in
signals the user’s actions by triggering custom plotselected events on the element
containing the chart. To receive these events, we need a function that expects two
parameters—the standard JavaScript event object and a custom object containing
details about the selection. We’ll worry about how to process the event shortly. For
now let’s focus on preparing for it.

$el.on("plotselected", function(ev, ranges) {
 // Handle selection events
});

The jQuery .on() function assigns a function to an arbitrary event. Events
can be standard JavaScript events such as click, or they can be custom events like
the one we’re using. The event of interest is the first parameter to .on(). The sec-
ond parameter is the function that will process the event. As noted previously, it
also takes two parameters.

Now we can consider the action we want to take when our function receives
an event. The ranges parameter contains both an xaxis and a yaxis object, which
have information about the plotselected event. In both objects, the from and to
properties specify the region that the user selected. To zoom to that selection, we
can simply redraw the chart by using those ranges for the chart’s axes.

Specifying the axes for the redrawn chart requires us to pass new options to
the plot() function, but we want to preserve whatever options are already defined.
The jQuery .extend() function gives us the perfect tool for that task. The function
merges JavaScript objects so that the result contains all of the properties in each
object. If the objects might contain other objects, then we have to tell jQuery to
use “deep” mode when it performs the merge. Here’s the complete call to plot(),
which we place inside the plotselected event handler.

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 63

plotObj = $.plot($el, data,
 $.extend(true, {}, options, {
 xaxis: { min: ranges.xaxis.from, max: ranges.xaxis.to },
 yaxis: { min: ranges.yaxis.from, max: ranges.yaxis.to }
 })
);

When we use .extend(), the first parameter (true) requests deep mode, the
second parameter specifies the starting object, and subsequent parameters spec-
ify additional objects to merge. We’re starting with an empty object ({}), merging
the regular options, and then further merging the axis options for the zoomed
chart.

Step 5: Enable the Interaction
Since we’ve included the selections plug-in library on our page, activating the
interaction is easy. We simply include an additional selection option in our call to
plot(). Its mode property indicates the direction of selections the chart will support.
Possible values include "x" (for x-axis only), "y" (for y-axis only), or "xy" (for both
axes). Here’s the complete options variable we want to use.

var options = {
 legend: {position: "nw"},
 selection: {mode: "xy"}
};

And with that addition, our chart is now interactive. Users can zoom in to see
as much detail as they want. There is a small problem, though: our visualization
doesn’t give users a way to zoom back out. Obviously we can’t use the selection
plug-in to zoom out, since that would require users to select outside the current
chart area. Instead, we can add a button to the page to reset the zoom level.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <div id="chart" style="width:600px;height:400px;"></div>

u <button id="unzoom">Reset Zoom</button>
 <!--[if lt IE 9]><script src="js/excanvas.min.js"></script><![endif]-->
 <script src="//cdnjs.cloudflare.com/ajax/libs/jquery/1.8.3/jquery.min.js">
 </script>
 <script src="//cdnjs.cloudflare.com/ajax/libs/flot/0.7/jquery.flot.min.js">
 </script>
 <script src="js/jquery.flot.selection.js"></script>
 </body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

64 | Chapter 2

You can see the button in the markup at u; it’s right after the <div> that
holds the chart.

Now we just need to add code to respond when a user clicks the button.
Fortunately, this code is pretty simple.

$("#unzoom").click(function() {
 plotObj = $.plot($el, data, options);
});

Here we just set up a click handler with jQuery and redraw the chart using
the original options. We don’t need any event data, so our event handling function
doesn’t even need parameters.

That gives us a complete, interactive visualization. Users can zoom in to any
level of detail and restore the original zoom with one click. You can see the interac-
tion in Figure 2-9.

25

20

15

10

5

0
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Europe & Central Asia
East Asia & Pacific
Latin America & Caribbean
Middle East & North Africa
South Asia
Sub-Saharan Africa

Gross Domestic Product (Current USD in Trillions)

Figure 2-9: Interactive charts let users focus on data relevant to
their needs.

Figure 2-10 shows what the user sees after zooming in.

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 65

10

8

2

0
1980.0

Europe & Central Asia
East Asia & Pacific
Latin America & Caribbean
Middle East & North Africa
South Asia
Sub-Saharan Africa

Gross Domestic Product (Current USD in Trillions)

6

4

1982.5 1985.0 1987.5 1990.0 1992.5 1995.0 1997.5 2000.0

Figure 2-10: Users can zoom in on a section of particular interest.

If you experiment with this example, you’ll soon see that users cannot select
an area of the chart that includes the legend. That may be okay for your visualiza-
tion, but if it’s not, the simplest solution is to create your own legend and position
it off the chart’s canvas, like we did for the first example in this chapter.

Tracking Data Values
A big reason we make visualizations interactive is to give users control over their
view of the data. We can present a “big picture” view of the data, but we don’t
want to prevent users from digging into the details. Often, however, this can
force an either/or choice on users: they can see the overall view, or they can see
a detailed picture, but they can’t see both at the same time. This example looks
at an alternative approach that enables users to see overall trends and specific
details at once. To do that, we take advantage of the mouse as an input device.
When the user’s mouse hovers over a section of the chart, our code overlays
details relevant to that part of the chart.

This approach does have a significant limitation: it works only when the user
has a mouse. If you’re considering this technique, be aware that users on touch-
screen devices won’t be able to take advantage of the interactive aspect; they’ll
see only the static chart.

www.it-ebooks.info

http://www.it-ebooks.info/

66 | Chapter 2

Since simple GDP data doesn’t lend itself well to the approach in this example,
we’ll visualize a slightly different set of data from the World Bank. This time we’ll
look at exports as a percentage of GDP. Let’s start by considering a simple line
chart, shown in Figure 2-11, with data for each world region.

50

40

30

20

10

0
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

60

Figure 2-11: Plotting multiple data sets on a single chart can be
confusing for users.

There are a couple of ways this chart falls short. First, many of the series have
similar values, forcing some of the chart’s lines to cross back and forth over each
other. That crisscrossing makes it hard for users to follow a single series closely to
see detailed trends. Second, it’s hard for users to compare specific values for all
of the regions at a single point in time. Most chart libraries, including Flot, have
options to display values as users mouse over the chart, but that approach shows
only one value at a time. We’d like to give our users a chance to compare the val-
ues of multiple regions.

In this example we’ll use a two-phase approach to solve both of those prob-
lems. First, we’ll change the visualization from a single chart with multiple series to
multiple charts, each with a single series. That will isolate each region’s data, mak-
ing it easier to see a particular region’s trends. Then we’ll add an advanced mouse
tracking feature that spans all of the charts. This feature will let users see individual
values in all of the charts at once.

Step 1: Set Aside a <div> Element to Hold the Charts
Within our document, we need to create a <div> element to contain the charts we’ll
construct. This element won’t contain the charts directly; rather, we’ll be placing
other <div>s within it, which will each contain a chart.

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 67

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>

u <div id="charts"></div>
 <!--[if lt IE 9]><script src="js/excanvas.min.js"></script><![endif]-->
 <script src="//cdnjs.cloudflare.com/ajax/libs/jquery/1.8.3/jquery.min.js">
 </script>
 <script src="//cdnjs.cloudflare.com/ajax/libs/flot/0.7/jquery.flot.min.js">
 </script>
 </body>
</html>

The "charts" <div> is added at u. We’ve also included the required JavaScript
libraries here, just as in the previous examples.

We’ll use JavaScript to create the <div>s for the charts themselves. These ele-
ments must have an explicit height and width, or Flot won’t be able to construct the
charts. You can indicate the element’s size in a CSS style sheet, or you can define it
when we create the <div> (as in the following example). This creates a new <div>,
sets its width and height, saves a reference to it, and then appends it to the con-
taining <div> already in our document.

$.each(exports, function(idx,region) {
 var div = $("<div>").css({
 width: "600px",
 height: "60px"
 });
 region.div = div;
 $("#charts").append(div);
});

To iterate through the array of regions, we use the jQuery .each() function.
That function accepts two parameters: an array of objects (exports) and a function.
It iterates through the array one object at a time, calling the function with the indi-
vidual object (region) and its index (idx) as parameters.

Step 2: Prepare the Data
We’ll see how to get data directly from the World Bank’s web service in the next
section, but for now we’ll keep things simple again and assume we have the data
downloaded and formatted for JavaScript already. (Once again, only excerpts are
shown here. The book’s source code includes the full data set.)

var exports = [
 { label: "East Asia & Pacific",
 data: [[1960,13.2277],[1961,11.7964], // Data continues...
 { label: "Europe & Central Asia",

www.it-ebooks.info

http://www.it-ebooks.info/

68 | Chapter 2

 data: [[1960,19.6961],[1961,19.4264], // Data continues...
 { label: "Latin America & Caribbean",
 data: [[1960,11.6802],[1961,11.3069], // Data continues...
 { label: "Middle East & North Africa",
 data: [[1968,31.1954],[1969,31.7533], // Data continues...
 { label: "North America",
 data: [[1960,5.9475],[1961,5.9275], // Data continues...
 { label: "South Asia",
 data: [[1960,5.7086],[1961,5.5807], // Data continues...
 { label: "Sub-Saharan Africa",
 data: [[1960,25.5083],[1961,25.3968], // Data continues...
];

The exports array contains an object for each region, and each object con-
tains a label and a data series.

Step 3: Draw the Charts
With the <div>s for each chart now in place on our page, we can draw the charts
using Flot’s plot() function. That function takes three parameters: the containing
element (which we just created), the data, and chart options. To start, let’s look at
the charts without any decoration—such as labels, grids, or checkmarks—just to
make sure the data is generally presented the way we want.

$.each(exports, function(idx,region) {
 region.plot = $.plot(region.div, [region.data], {
 series: {lines: {fill: true, lineWidth: 1}, shadowSize: 0},
 xaxis: {show: false, min:1960, max: 2011},
 yaxis: {show: false, min: 0, max: 60},
 grid: {show: false},
 });
});

The preceding code uses several plot() options to strip the chart of all the
extras and set the axes the way we want. Let’s consider each option in turn.

series Tells Flot how we want it to graph the data series. In our case we
want a line chart (which is the default type), but we want to fill the area from
the line down to the x-axis, so we set fill to true. This option creates an area
chart instead of a line chart. Because our charts are so short, an area chart
will keep the data visible. For the same reason, we want the line itself to be
as small as possible to match, so we set lineWidth to 1 (pixel), and we can
dispense with shadows by setting shadowSize to 0.

xaxis Defines the properties of the x-axis. We don’t want to include one
on these charts, so we set show to false. We do, however, need to explicitly
set the range of the axis. If we don’t, Flot will create one automatically, using
the range of each series. Since our data doesn’t have consistent values for all
years (the Middle East & North Africa data set, for example, doesn’t include
data before 1968), we need to make Flot use the exact same x-axis range on
all charts, so we specify a range from 1960 to 2011.

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 69

yaxis Works much like the xaxis options. We don’t want to show one,
but we do need to specify an explicit range so that all of the charts are
consistent.

grid Tells Flot how to add grid lines and checkmarks to the charts. For now,
we don’t want anything extra, so we turn off the grid completely by setting
show to false.

We can check the result in Figure 2-12 to make sure the charts appear as
we want.

Figure 2-12: Separating individual data sets into multiple charts
can make it easier to see the details of each set.

Next we turn to the decoration for the chart. We’re obviously missing labels
for each region, but adding them takes some care. Your first thought might be to
include a legend along with each chart in the same <div>. Flot’s event handling,
however, will work much better if we can keep all the charts—and only the charts—
in their own <div>. That’s going to require some restructuring of our markup. We’ll
create a wrapper <div> and then place separate <div>s for the charts and the
legends within it. We can use the CSS float property to position them side by side.

<div id="charts-wrapper">
 <div id="charts" style="float:left;"></div>
 <div id="legends" style="float:left;"></div>
 <div style="clear:both;"></div>
</div>

When we create each legend, we have to be sure it has the exact same
height as the chart. Because we’re setting both explicitly, that’s not hard to do.

$.each(exports, function(idx,region) {
 var legend = $("<p>").text(region.label).css({

www.it-ebooks.info

http://www.it-ebooks.info/

70 | Chapter 2

 "height": "17px",
 "margin-bottom": "0",
 "margin-left": "10px",
 "padding-top": "33px"
 });
 $("#legends").append(legend);
});

Once again we use .each, this time to append a legend for each region to
the legends element.

Now we’d like to add a continuous vertical grid that spans all of the charts.
Because the charts are stacked, grid lines in the individual charts can appear as
one continuous line as long as we can remove any borders or margins between
charts. It takes several plot() options to achieve that, as shown here.

 $.plot(region.div, [region.data], {
 series: {lines: {fill: true, lineWidth: 1}, shadowSize: 0},
 xaxis: {show: true, labelHeight: 0, min:1960, max: 2011,
 tickFormatter: function() {return "";}},
 yaxis: {show: false, min: 0, max: 60},
 grid: {show: true, margin: 0, borderWidth: 0, margin: 0,
 labelMargin: 0, axisMargin: 0, minBorderMargin: 0},
 });

We enable the grid by setting the grid option’s show property to true. Then
we remove all the borders and padding by setting the various widths and margins
to 0. To get the vertical lines, we also have to enable the x-axis, so we set its show
property to true as well. But we don’t want any labels on individual charts, so we
specify a labelHeight of 0. To be certain that no labels appear, we also define a
tickFormatter() function that returns an empty string.

The last bits of decoration we’d like to add are x-axis labels below the bot-
tom chart. To do that, we can create a dummy chart with no visible data, position
that dummy chart below the bottom chart, and enable labels on its x-axis. The
following three sections create an array of dummy data, create a <div> to hold the
dummy chart, and plot the dummy chart.

var dummyData = [];
for (var yr=1960; yr<2012; yr++) dummyData.push([yr,0]);

var dummyDiv = $("<div>").css({ width: "600px", height: "15px" });
$("#charts").append(dummyDiv);

var dummyPlot = $.plot(dummyDiv, [dummyData], {
 xaxis: {show: true, labelHeight: 12, min:1960, max: 2011},
 yaxis: {show: false, min: 100, max: 200},
 grid: {show: true, margin: 0, borderWidth: 0, margin: 0,
 labelMargin: 0, axisMargin: 0, minBorderMargin: 0},
});

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 71

With the added decoration, our chart in Figure 2-13 looks great.

1960 1970 1980 1990 2000 2010

East Asia & Pacific

Europe & Central Asia

Latin America & Caribbean

Middle East & North Africa

North America

South Asia

Sub-Saharan Africa

Figure 2-13: Carefully stacking multiple charts creates the appearance of a
unified chart.

Step 4: Implement the Interaction
For our visualization, we want to track the mouse as it hovers over any of our charts.
The Flot library makes that relatively easy. The plot() function’s grid options include
the hoverable property, which is set to false by default. If you set this property to
true, Flot will trigger plothover events as the mouse moves over the chart area. It
sends these events to the <div> that contains the chart. If there is code listening for
those events, that code can respond to them. If you use this feature, Flot will also
highlight the data point nearest the mouse. That’s a behavior we don’t want, so
we’ll disable it by setting autoHighlight to false.

 $.plot(region.div, [region.data], {
 series: {lines: {fill: true, lineWidth: 1}, shadowSize: 0},
 xaxis: {show: true, labelHeight: 0, min: 1960, max: 2011,
 tickFormatter: function() {return "";}},
 yaxis: {show: false, min: 0, max: 60},
 grid: {show: true, margin: 0, borderWidth: 0, margin: 0,
 labelMargin: 0, axisMargin: 0, minBorderMargin: 0,
 hoverable: true, autoHighlight: false},
 });

Now that we’ve told Flot to trigger events on all of our charts, you might
think we would have to set up code to listen for events on all of them. There’s an
even better approach, though. We structured our markup so that all the charts—
and only the charts—are inside the containing charts <div>. In JavaScript, if no
code is listening for an event on a specific document element, those events

www.it-ebooks.info

http://www.it-ebooks.info/

72 | Chapter 2

automatically “bubble up” to the containing elements. So if we just set up an event
listener on the charts <div>, we can capture the plothover events on all of the indi-
vidual charts. We’ll also need to know when the mouse leaves the chart area. We
can catch those events using the standard mouseout event as follows:

$("charts").on("plothover", function() {
 // The mouse is hovering over a chart
}).on("mouseout", function() {
 // The mouse is no longer hovering over a chart
});

To respond to the plothover events, we want to display a vertical line across
all of the charts. We can construct that line using a <div> element with a border.
In order to move it around, we use absolute positioning. It also needs a positive
z-index value to make sure the browser draws it on top of the chart. The marker
starts off hidden with a display property of none. Since we want to position the
marker within the containing <div>, we set the containing <div>’s position property
to relative.

<div id="charts-wrapper" style="position:relative;">
 <div id="marker" style="position:absolute;z-index:1;display:none;
 width:1px;border-left: 1px solid black;"></div>
 <div id="charts" style="float:left;"></div>
 <div id="legends" style="float:left;"></div>
 <div style="clear:both;"></div>
</div>

When Flot calls the function listening for plothover events, it passes that
function three parameters: the JavaScript event object, the position of the mouse
expressed as x- and y-coordinates, and, if a chart data point is near the mouse,
information about that data point. In our example we need only the x-coordinate.
We can round it to the nearest integer to get the year. We also need to know
where the mouse is relative to the page. Flot will calculate that for us if we call the
pointOffset() of any of our plot objects. Note that we can’t reliably use the third
parameter, which is available only if the mouse is near an actual data point, so we
can ignore it.

$("charts").on("plothover", function(ev, pos) {
 var year = Math.round(pos.x);
 var left = dummyPlot.pointOffset(pos).left;
});

Once we’ve calculated the position, it’s a simple matter to move the marker
to that position, make sure it’s the full height of the containing <div>, and turn it on.

$("#charts").on("plothover", function(ev, pos) {
 var year = Math.round(pos.x);
 var left = dummyPlot.pointOffset(pos).left;

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 73

u var height = $("#charts").height();
 $("#marker").css({
 "top": 0,

v "left": left,
 "width": "1px",

w "height": height
 }).show();
});

In this code, we calculate the marker height at u, set its position at v, and
set the height at w.

We also have to be a little careful on the mouseout event. If a user moves
the mouse so that it is positioned directly on top of the marker, that will gener-
ate a mouseout event for the charts <div>. In that special case, we want to leave the
marker displayed. To tell where the mouse has moved, we check the relatedTarget
property of the event. We hide the marker only if the related target isn’t the marker
itself.

$("#charts").on("mouseout", function(ev) {
 if (ev.relatedTarget.id !== "marker") {
 $("#marker").hide();
 }
});

There’s still one hole in our event processing. If the user moves the mouse
directly over the marker, and then moves the mouse off the chart area entirely
(without moving it off the marker), we won’t catch the fact that the mouse is
no longer hovering on the chart. To catch this event, we can listen for mouseout
events on the marker itself. There’s no need to worry about the mouse moving
off the marker and back onto the chart area; the existing plothover event will
cover that scenario.

$("#marker").on("mouseout", function(ev) {
 $("#marker").hide();
});

The last part of our interaction shows the values of all charts corresponding
to the horizontal position of the mouse. We can create <div>s to hold these values
back when we create each chart. Because these <div>s might extend beyond the
chart area proper, we’ll place them in the outer charts-wrapper <div>.

$.each(exports, function(idx,region) {
 var value = $("<div>").css({
 "position": "absolute",
 "top": (div.position().top - 3) + "px",

u "display": "none",
 "z-index": 1,
 "font-size": "11px",
 "color": "black"

www.it-ebooks.info

http://www.it-ebooks.info/

74 | Chapter 2

 });
 region.value = value;
 $("#charts-wrapper").append(value);
});

Notice that as we create these <div>s, we set all the properties except the
left position, since that will vary with the mouse. We also hide the elements with
a display property of none at u.

With the <div>s waiting for us in the document, our event handler for plothover
sets the text for each, positions them horizontally, and shows them on the page.
To set the text value, we can use the jQuery .grep() function to search through
the data for a year that matches. If none is found, the text for the value <div> is
emptied.

$("#charts").on("plothover", function(ev, pos) {
 $.each(exports, function(idx, region) {
 matched = $.grep(region.data, function(pt) { return pt[0] === year; });
 if (matched.length > 0) {
 region.value.text(year + ": " + Math.round(matched[0][1]) + "%");
 } else {
 region.value.text("");
 }
 region.value.css("left", (left+4)+"px").show();
 });
});

Finally, we need to hide these <div>s when the mouse leaves the chart area.
We should also handle the case of the mouse moving directly onto the marker, just
as we did before.

$("#charts").on("plothover", function(ev, pos) {

 // Handle plothover event

}).on("mouseout", function(ev) {
 if (ev.relatedTarget.id !== "marker") {
 $("#marker").hide();
 $.each(exports, function(idx, region) {
 region.value.hide();
 });
 }
});

$("#marker").on("mouseout", function(ev) {
 $("#marker").hide();
 $.each(exports, function(idx, region) {
 region.value.hide();
 });
});

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 75

We can now enjoy the results of our coding, in Figure 2-14. Our visualization
clarifies the trends in exports for each region, and it lets users interact with the
charts to compare regions and view detailed values.

1960 1970 1980 1990 2000 2010

East Asia & Pacific

Europe & Central Asia

Latin America & Caribbean

Middle East & North Africa

North America

South Asia

Sub-Saharan Africa

Exports as Percentage of GDP
1993: 20%

1993: 27%

1993: 16%

1993: 31%

1993: 11%

1993: 11%

1993: 26%

Figure 2-14: The final visualization combines multiple charts with mouse
tracking to more clearly present the data.

As users move their mouse across the charts, the vertical bar moves as well.
The values corresponding to the mouse position also appear to the right of the
marker for each chart. The interaction makes it easy and intuitive to compare val-
ues for any of the regions.

The chart we’ve created in this example is similar to the small multiples
approach for letting users compare many values. In our example the chart takes up
the full page, but it could also be designed as one element in a larger presentation
such as a table. Chapter 3 gives examples of integrating charts in larger web page
elements.

Retrieving Data Using AJAX
Most of the examples in this book emphasize the final product of data visualiza-
tion: the graphs, charts, or images that our users see. But effective visualizations
often require a lot of work behind the scenes. After all, effective data visualizations
need data just as much as they need the visualization. This example focuses on a
common approach for accessing data—Asynchronous JavaScript and XML, more
commonly known as AJAX. The example here details AJAX interactions with the
World Bank, but both the general approach and the specific techniques shown
here apply equally well to many other data sources on the Web.

www.it-ebooks.info

http://www.it-ebooks.info/

76 | Chapter 2

Step 1: Understand the Source Data
Often, the first challenge in working with remote data is to understand its format
and structure. Fortunately, our data comes from the World Bank, and its website
thoroughly documents its application programming interface (API). We won’t spend
too much time on the particulars in this example, since you’ll likely be using a dif-
ferent data source. But a quick overview is helpful.

The first item of note is that the World Bank divides the world into several
regions. As with all good APIs, the World Bank API allows us to issue a query to get
a list of those regions.

http://api.worldbank.org/regions/?format=json

Our query returns the full list as a JSON array, which starts as follows:

[{ "page": "1",
 "pages": "1",
 "per_page": "50",
 "total": "22"
 },
 [{ "id": "",
 "code": "ARB",
 "name": "Arab World"
 },
 { "id": "",
 "code": "CSS",
 "name": "Caribbean small states"
 },
 { "id": "",
 "code": "EAP",
 "name": "East Asia & Pacific (developing only)"
 },
 { "id": "1",
 "code": "EAS",
 "name": "East Asia & Pacific (all income levels)"
 },
 { "id": "",
 "code": "ECA",
 "name": "Europe & Central Asia (developing only)"
 },
 { "id": "2",
 "code": "ECS",
 "name": "Europe & Central Asia (all income levels)"
 },

The first object in the array supports paging through a large data set, which
isn’t important for us now. The second element is an array with the information
we need: the list of regions. There are 22 regions in total, but many overlap. We’ll
want to pick from the total number of regions so that we both include all the world’s

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 77

countries and don’t have any country in multiple regions. The regions that meet
these criteria are conveniently marked with an id property, so we’ll select from the
list only those regions whose id property is not null.

Step 2: Get the First Level of Data via AJAX
Now that you understand the data format (so far), let’s write some code to retrieve
the data. Since we have jQuery loaded, we’ll take advantage of many of its utilities.
Let’s start at the simplest level and work up to a full implementation.

As you might expect, the $.getJSON() function will do most of the work for
us. The simplest way to use that function might be something like the following:

$.getJSON(
 "http://api.worldbank.org/regions/",

u {format: "json"},
 function(response) {
 // Do something with response
 }
);

Note that we’re adding format: "json" to the query at u to tell the World
Bank what format we want. Without that parameter, the server returns XML, which
isn’t at all what getJSON() expects.

Unfortunately, that code won’t work with the current web servers supplying
the World Bank data. In fact, this problem is very common today. As is often the
case with the Web, security concerns are the source of the complication. Consider
the information flow we’re establishing, shown in Figure 2-15.

your.web.site.com

api.worldbank.com

User

1

2

GET /country?per_page=10&format=json HTTP/1.1
Host: api.worldbank.org
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; en-US;
Accept: text/html,application/json
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Connection: keep-alive

Figure 2-15: Our server (your.web.site.com) sends a web page—
including scripts—to the user, and those scripts, executing in the
user’s browser, query the World Bank site (api.worldbank.com).

www.it-ebooks.info

http://www.it-ebooks.info/

78 | Chapter 2

Getting data using AJAX often requires the cooperation of three different
systems.

The script’s communication with the World Bank is invisible to users, so they
have no chance to approve or refuse the exchange. In the case of the World Bank,
it’s hard to imagine any reason for users to reject the query, but what if our script
were accessing users’ social network profile or, more seriously, their online banking
site? In such cases user concerns would be justified. Because the communication is
invisible to the user, and because the web browser cannot guess which communi-
cations might be sensitive, the browser simply prohibits all such communications.
The technical term for this is same-origin policy. This policy means that web pages
that our server provides cannot directly access the World Bank’s JSON interface.

Some websites address this problem by adding an HTTP header in their
responses. The header tells the browser that it’s safe for any web page to access
this data:

Access-Control-Allow-Origin: *

Unfortunately, as of this writing, the World Bank has not implemented this
header. The option is relatively new, so it’s missing from many web servers. To work
within the constraints of the same-origin policy, therefore, we rely on jQuery’s help
and a small bit of trickery. The trick relies on the one exception to the same-origin
policy that all browsers recognize: third-party JavaScript files. Browsers do allow
web pages to request JavaScript files from third-party servers (that is, after all, how
services such as Google Analytics can work). We just need to make the response
data from the World Bank look like regular JavaScript instead of JSON. Fortunately,
the World Bank cooperates with us in this minor deception. We simply add two
query parameters to our request:

?format=jsonP&prefix=Getdata

The format parameter with a value of jsonP tells the World Bank that we
want the response formatted as JSON with padding, which is a variant of JSON
that is also regular JavaScript. The second parameter, prefix, tells the World Bank
the name of the function that will accept the data. (Without that information, the
JavaScript that the World Bank constructs wouldn’t know how to communicate
with our code.) It’s a bit messy, but jQuery handles most of the details for us. The
only catch is that we have to add ?something=? to the URL we pass to .getJSON(),
where something is whatever the web service requires for its JSONP response. The
World Bank expects prefix, but a more common value is callback.

Now we can put together some code that will work with the World Bank
and many other web servers, although the parameter prefix is specific to the
World Bank.

$.getJSON(
u "http://api.worldbank.org/regions/?prefix=?",
v {format: "jsonp"},

 function(response) {

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 79

 // Do something with response
 }
);

We’ve added the prefix directly in the URL at u, and we’ve changed the
format to jsonp at v.

JSONP does suffer from one major shortcoming: there is no way for the
server to indicate an error. That means we should spend extra time testing and
debugging any JSONP requests, and we should be vigilant about any changes
in the server that might cause previously functioning code to fail. Eventually the
World Bank will update the HTTP headers in its responses (perhaps even by the
time of this book’s publication), and we can switch to the more robust JSON
format.

 QNote: At the time of this writing, the World Bank has a significant bug in its
ApI. the server doesn’t preserve the case (uppercase versus lowercase) of
the callback function. the full source code for this example includes a work-
around for the bug, but you’re unlikely to need that for other servers. Just
in case, though, you can look at the comments in the source code for a com-
plete documentation of the fix.

Now let’s get back to the code itself. In the preceding snippet, we’re defin-
ing a callback function directly in the call to .getJSON(). You’ll see this code struc-
ture in many implementations. This certainly works, but if we continue along these
lines, things are going to get quite messy very soon. We’ve already added a couple
of layers of indentation before we even start processing the response. As you can
guess, once we get this initial response, we’ll need to make several more requests
for additional data. If we try to build our code in one monolithic block, we’ll end up
with so many levels of indentation that there won’t be any room for actual code.
More significantly, the result would be one massive interconnected block of code
that would be challenging to understand, much less debug or enhance.

Fortunately, jQuery gives us the tool for a much better approach: the
$.Deferred object. A Deferred object acts as a central dispatcher and scheduler
for events. Once the Deferred object is created, different parts of our code indi-
cate that they want to know when the event completes, while other parts of our
code signal the event’s status. Deferred coordinates all those different activities,
letting us separate how we trigger and manage events from dealing with their
consequences.

Let’s see how to improve our AJAX request with Deferred objects. Our main
goal is to separate the initiation of the event (the AJAX request) from dealing with
its consequences (processing the response). With that separation, we won’t need a
success function as a callback parameter to the request itself. Instead, we’ll rely on
the fact that the .getJSON() call returns a Deferred object. (Technically, the function
returns a restricted form of the Deferred object known as a promise; the differences
aren’t important for us now, though.) We want to save that returned object in a
variable.

www.it-ebooks.info

http://www.it-ebooks.info/

80 | Chapter 2

// Fire off the query and retain the deferred object tracking it
deferredRegionsRequest = $.getJSON(
 "http://api.worldbank.org/regions/?prefix=?",
 {format: "jsonp"}
);

That’s simple and straightforward. Now, in a different part of our code, we
can indicate our interest in knowing when the AJAX request is complete.

deferredRegionsRequest.done(function(response) {
 // Do something with response
});

The done() method of the Deferred object is key. It specifies a new func-
tion that we want to execute whenever the event (in this case the AJAX request)
successfully completes. The Deferred object handles all the messy details. In par-
ticular, if the event is already complete by the time we get around to registering
the callback via done(), the Deferred object executes that callback immediately.
Otherwise, it waits until the request is complete. We can also express an interest
in knowing if the AJAX request fails; instead of done(), we use the fail() method
for this. (Even though JSONP doesn’t give the server a way to report errors, the
request itself could still fail.)

deferredRegionsRequest.fail(function() {
 // Oops, our request for region information failed
});

We’ve obviously reduced the indentation to a more manageable level, but
we’ve also created a much better structure for our code. The function that makes
the request is separate from the code that handles the response. That’s much
cleaner, and it’s definitely easier to modify and debug.

Step 3: Process the First Level of Data
Now let’s tackle processing the response. The paging information isn’t relevant,
so we can skip right to the second element in the returned response. We want to
process that array in two steps.

1. Filter out any elements in the array that aren’t relevant to us. In this case
we’re interested only in regions that have an id property that isn’t null.

2. Transform the elements in the array so that they contain only the properties
we care about. For this example, we need only the code and name properties.

This probably sounds familiar. In fact, it’s exactly what we needed to do in
this chapter’s first example. As we saw there, jQuery’s $.map() and $.grep() func-
tions are a big help.

Taking these steps one at a time, here’s how to filter out irrelevant data from
the response.

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 81

filtered = $.grep(response[1], function(regionObj) {
 return (regionObj.id !== null);
});

And here’s how to transform the elements to retain only relevant properties.
And as long as we’re doing that, let’s get rid of the parenthetical “(all income lev-
els)” that the World Bank appends to some region names. All of our regions (those
with an id) include all income levels, so this information is superfluous.

regions = $.map(filtered, function(regionObj) {
 return {
 code: regionObj.code,
 name: regionObj.name.replace(" (all income levels)","")
 };
 }
);

There’s no need to make these separate steps. We can combine them in a
nice, concise expression.

deferredRegionsRequest.done(function(response) {
 regions = $.map(
 $.grep(response[1], function(regionObj) {
 return (regionObj.id !== null);
 }),
 function(regionObj) {
 return {
 code: regionObj.code,
 name: regionObj.name.replace(" (all income levels)","")
 };
 }
);
});

Step 4: Get the Real Data
At this point, of course, all we’ve managed to retrieve is the list of regions. That’s
not the data we want to visualize. Usually, getting the real data through a web-
based interface requires (at least) two request stages. The first request just gives
you the essential information for subsequent requests. In this case, the real data
we want is the GDP, so we’ll need to go through our list of regions and retrieve that
data for each one.

Of course we can’t just blindly fire off the second set of requests, in this case
for the detailed region data. First, we have to wait until we have the list of regions.
In Step 2 we dealt with a similar situation by using .getJSON() with a Deferred object
to separate event management from processing. We can use the same technique
here; the only difference is that we’ll have to create our own Deferred object.

www.it-ebooks.info

http://www.it-ebooks.info/

82 | Chapter 2

var deferredRegionsAvailable = $.Deferred();

Later, when the region list is available, we indicate that status by calling the
object’s resolve() method.

deferredRegionsAvailable.resolve();

The actual processing is handled by the done() method.

deferredRegionsAvailable.done(function() {
 // Get the region data
});

The code that gets the actual region data needs the list of regions, of
course. We could pass that list around as a global variable, but that would be
polluting the global namespace. (And even if you’ve properly namespaced your
application, why pollute your own namespace?) This problem is easy to solve. Any
arguments we provide to the resolve() method are passed straight to the done()
function.

Let’s take a look at the big picture so we can see how all the pieces fit
together.

// Request the regions list and save status of the request in a Deferred object
u var deferredRegionsRequest = $.getJSON(

 "http://api.worldbank.org/regions/?prefix=?",
 {format: "jsonp"}
);

// Create a second Deferred object to track when list processing is complete
v var deferredRegionsAvailable = $.Deferred();

// When the request finishes, start processing
w deferredRegionsRequest.done(function(response) {

 // When we finish processing, resolve the second Deferred with the results
x deferredRegionsAvailable.resolve(

 $.map(
 $.grep(response[1], function(regionObj) {
 return (regionObj.id != "");
 }),
 function(regionObj) {
 return {
 code: regionObj.code,
 name: regionObj.name.replace(" (all income levels)","")
 };
 }
)
);
});

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 83

deferredRegionsAvailable.done(function(regions) {
y // Now we have the regions, go get the data

});

First, starting at u, we request the list of regions. Then, at v, we create a
second Deferred object to track our processing of the response. In the block start-
ing at w, we handle the response from our initial request. Most importantly, we
resolve the second Deferred object, at x, to signal that our processing is complete.
Finally, starting at y, we can begin processing the response.

Retrieving the actual GDP data for each region requires a new AJAX request.
As you might expect, we’ll save the Deferred objects for those requests so we can
process the responses when they’re available. The jQuery .each() function is a
convenient way to iterate through the list of regions to initiate these requests.

deferredRegionsAvailable.done(function(regions) {
 $.each(regions, function(idx, regionObj) {
 regionObj.deferredDataRequest = $.getJSON(
 "http://api.worldbank.org/countries/"
 + regionObj.code

u + "/indicators/NY.GDP.MKTP.CD"
 + "?prefix=?",
 { format: "jsonp", per_page: 9999 }
);
 });
});

The “NY.GDP.MKTP.CD” part of each request URL at u is the World Bank’s
code for GDP data.

As long as we’re iterating through the regions, we can include the code to
process the GDP data. By now it won’t surprise you that we’ll create a Deferred
object to track when that processing is complete. The processing itself will simply
store the returned response (after skipping past the paging information) in the
region object.

deferredRegionsAvailable.done(function(regions) {
 $.each(regions, function(idx, regionObj) {
 regionObj.deferredDataRequest = $.getJSON(
 "http://api.worldbank.org/countries/"
 + regionObj.code
 + "/indicators/NY.GDP.MKTP.CD"
 + "?prefix=?",
 { format: "jsonp", per_page: 9999 }
);
 regionObj.deferredDataAvailable = $.Deferred();
 regionObj.deferredDataRequest.done(function(response) {

u regionObj.rawData = response[1] || [];
 regionObj.deferredDataAvailable.resolve();
 });
 });
});

www.it-ebooks.info

http://www.it-ebooks.info/

84 | Chapter 2

Note that we’ve also added a check at u to make sure the World Bank actu-
ally returns data in its response. Possibly due to internal errors, it may return a null
object instead of the array of data. When that happens, we’ll set the rawData to an
empty array instead of null.

Step 5: Process the Data
Now that we’ve requested the real data, it’s almost time to process it. There is a
final hurdle to overcome, and it’s a familiar one. We can’t start processing the data
until it’s available, which calls for defining one more Deferred object and resolving
that object when the data is complete. (By now it’s probably sinking in just how
handy Deferred objects can be.)

There is one little twist, however. We’ve now got multiple requests in prog-
ress, one for each region. How can we tell when all of those requests are complete?
Fortunately, jQuery provides a convenient solution with the .when() function. That
function accepts a list of Deferred objects and indicates success only when all of the
objects have succeeded. We just need to pass that list of Deferred objects to the
.when() function.

We could assemble an array of Deferred objects using the .map() function,
but .when() expects a parameter list, not an array. Buried deep in the JavaScript
standard is a technique for converting an array to a list of function parameters.
Instead of calling the function directly, we execute the .when() function’s apply()
method. That method takes, as its parameters, the context (this) and an array.

Here’s the .map() function that creates the array.

$.map(regions, function(regionObj) {
 return regionObj.deferredDataAvailable
})

And here’s how we pass it to when() as a parameter list.

$.when.apply(this,$.map(regions, function(regionObj) {
 return regionObj.deferredDataAvailable
}));

The when() function returns its own Deferred object, so we can use the meth-
ods we already know to process its completion. Now we finally have a complete
solution for retrieving the World Bank data.

With our data safely in hand, we can now coerce it into a format that Flot
accepts. We extract the date and value properties from the raw data. We also have
to account for gaps in the data. The World Bank doesn’t have GDP data for every
region for every year. When it’s missing data for a particular year, it returns null for
value. The same combination of .grep() and .map() that we used before will serve
us once again.

deferredAllDataAvailable.done(function(regions) {
u $.each(regions, function(idx, regionObj) {
v regionObj.flotData = $.map(

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 85

w $.grep(regionObj.rawData, function(dataObj) {
 return (dataObj.value !== null);
 }),

x function(dataObj) {
 return [[

y parseInt(dataObj.date),
z parseFloat(dataObj.value)/1e12

]];
 }
)
 })
});

As you can see, we’re iterating through the list of regions with the .each()
function at u. For each region, we create an object of data for the Flot library.
(No points for originality in naming that object flotData at v.) Then we filter the
data starting at w to eliminate any data points with null values. The function that
creates our Flot data array starts at x. It takes, as input, a single data object from
the World Bank, and returns the data as a two-dimensional data point. The first
value is the date, which we extract as an integer at y, and the second value is the
GDP data, which we extract as a floating-point number at z. Dividing by 1e12 con-
verts the GDP data to trillions.

Step 6: Create the Chart
Since we’ve made it this far with a clear separation between code that handles
events and code that processes the results, there’s no reason not to continue the
approach when we actually create the chart. Yet another Deferred object creates
that separation.

var deferredChartDataReady = $.Deferred();

deferredAllDataAvailable.done(function(regions) {
 $.each(regions, function(idx, regionObj) {
 regionObj.flotData = $.map(
 $.grep(regionObj.rawData, function(dataObj) {
 return (dataObj.value !== null);
 }),
 function(dataObj) {
 return [[
 parseInt(dataObj.date),
 parseFloat(dataObj.value)/1e12
]];
 }
)
 })

u deferredChartDataReady.resolve(regions);
});

www.it-ebooks.info

http://www.it-ebooks.info/

86 | Chapter 2

deferredChartDataReady.done(function(regions) {
 // Draw the chart
});

Here we’ve taken the preceding code fragments and wrapped them in
Deferred object handling. Once all of the data has been processed, we resolve
that Deferred object at u.

The entire process is reminiscent of a frog hopping between lily pads in a
pond. The pads are the processing steps, and Deferred objects are the bridges
between them (Figure 2-16).

Request list of regions Process list of regions Request region data

Create chart Create chart data Process region data

deferredRegionsRequest deferredRegionsAvailable

deferredDataRequest

deferredDataAvailable

deferredAllDataAvailabledeferredChartDataAvailable

Figure 2-16: Deferred objects help keep each bit of code isolated to
its own pad.

The real benefit to this approach is its separation of concerns. Each process-
ing step remains independent of the others. Should any step require changes,
there’s no need to look at the others. Each lily pad, in effect, remains its own island
without concern for the rest of the pond.

Once we’re at the final step, we can use any or all of the techniques from this
chapter’s other examples to draw the chart. Once again, the .map() function can
easily extract relevant information from the region data. Here is a basic example:

deferredChartDataReady.done(function(regions) {
 $.plot($("#chart"),
 $.map(regions, function(regionObj) {
 return {
 label: regionObj.name,
 data: regionObj.flotData
 };
 })
 ,{ legend: { position: "nw"} }
);
});

www.it-ebooks.info

http://www.it-ebooks.info/

 Making Charts Interactive | 87

Our basic chart now gets its data directly from the World Bank. We no longer
have to manually process its data, and our charts are updated automatically when-
ever the World Bank updates its data (Figure 2-17).

25

20

15

10

5

0

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

East Asia & Pacific
Europe & Central Asia
Latin America & Caribbean
Middle East & North Africa
North America
South Asia
Sub-Saharan Africa

Gross Domestic Product (Current USD in Trillions)

Figure 2-17: With AJAX we can graph live data from another site in the
user’s browser.

In this example you’ve seen how to access the World Bank’s application
programming interface. The same approach works for many other organizations
that provide data on the Internet. In fact, there are so many data sources available
today that it can be difficult to keep track of them all.

Here are two helpful websites that serve as a central repository for both
public and private APIs accessible on the Internet:

 > APIhub (http://www.apihub.com/)

 > ProgrammableWeb (http://www.programmableweb.com/)

Many governments also provide a directory of available data and APIs. The
United States, for example, centralizes its resources at the Data.gov website (http://
www.data.gov/).

This example focuses on the AJAX interaction, so the resulting chart is a
simple, static line chart. Any of the interactions described in the other examples
from this chapter could be added to increase the interactivity of the visualization.

www.it-ebooks.info

http://www.apihub.com
http://www.programmableweb.com
http://www.data.gov
http://www.it-ebooks.info/

88 | Chapter 2

Summing Up
As the examples in this chapter show, we don’t have to be satisfied with static charts
on our web pages. A little JavaScript can bring charts to life by letting users interact
with them. These interactions give users a chance to see a “big picture” view of the
data and, on the same page, look into the specific aspects that are most interesting
and relevant to them. We’ve considered techniques that let users select which data
series appear on our charts, zoom in on specific chart areas, and use their mouse
to explore details of the data without losing sight of the overall view. We’ve also
looked at how to get interactive data directly from its source using AJAX and asyn-
chronous programming.

www.it-ebooks.info

http://www.it-ebooks.info/

3
Integrating Charts

on a page

You might expect a data visualization for the
Web to be featured very prominently on the
page, or even make up the entire web page.
That’s not always the right approach, though.
The best visualizations are effective because
they help the user understand the data, not
because they “look pretty” on the page.

www.it-ebooks.info

http://www.it-ebooks.info/

90 | Chapter 3

Some data may be straightforward enough to present without context,
but meaningful data probably isn’t. And if our presentation requires context, its
visualizations are likely sharing the page with other content. When we design web
pages, we should take care to balance any individual component with the page as
a whole. If a single visualization is not the entire story, it shouldn’t take up all (or
even most) of the space on the page. It can be challenging, however, to minimize
the space a traditional chart requires. There are, after all, axes, labels, titles, leg-
ends, and more to place.

Edward Tufte considered this problem in his groundbreaking work The
Visual Display of Quantitative Information (Graphics Press, 1983), and he proposed
a novel solution he called sparklines. Sparklines are charts stripped to their bare
essentials, presented without the aforementioned elements we often see in a
chart. Sparklines can present a lot of information in very little space, even to the
point where it is possible to include a chart right in the middle of a sentence. There
is no need for “See figure below” or “Click for larger view.” One of Tufte’s earli-
est examples presents the glucose level of a medical patient; Figure 3-1 shows a
reproduction.

Figure 3-1: Tufte’s classic sparkline example
shows a lot of information in a small space.

In a mere 154×20 pixels, we’ve shown the patient’s current glucose level,
its trend for more than two months, high and low values, and the range of normal
values. This high information density makes sparklines effective anytime space is
a premium—inline in textual paragraphs, as cells in tables, or as part of informa-
tion dashboards. Sparklines do have disadvantages, of course. They cannot pro-
vide as much fine-grained detail as a full-size chart with axes and labels. They also
cannot support significant interactivity, so we can’t give users a lot of flexibility in
selecting data or zooming in for detail. But for many visualizations, these aren’t
major concerns. Plus, as we’ll see in this chapter’s examples, the Web gives us the
chance to augment sparklines in ways that aren’t possible in print. There are a few
JavaScript libraries and toolkits for creating sparklines, but we’ll focus on the most
popular of them: jQuery sparklines (http://omnipotent.net/jquery.sparkline/). As the
name implies, this open source library is an extension to jQuery. The examples in
this chapter look closely at how to use these tools to incorporate dense visualiza-
tions into your web page. Here’s what you’ll learn:

 > How to create a classic sparkline for integration directly into text

 > How to combine multiple sparklines to show comparisons

 > How to annotate sparklines with additional details

 > How to create composite charts

 > How to respond to click events on the page

 > How to update charts in real time

www.it-ebooks.info

http://omnipotent.net/jquery.sparkline/
http://www.it-ebooks.info/

 Integrating Charts on a Page | 91

Creating a Classic Sparkline
As later examples will demonstrate, the sparklines library is both flexible and pow-
erful, and we can use it in many different contexts. As a start, though, we’ll use the
library to create a sparkline exactly as Edward Tufte first defined it. The process is
quite straightforward and takes only four simple steps.

Step 1: Include the Required JavaScript Libraries
Since we’re using the jQuery sparklines library to create the chart, we need to
include that library in our web pages, along with jQuery. Both jQuery and spark-
lines are available on public CDNs. For this example (and the others in this chapter),
we’ll use the CloudFlare CDN. For some notes on the advantages and disadvan-
tages of using CDNs, see page 49.

Here’s the skeleton with which we start:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <!-- Content goes here -->

u <!--[if lt IE 9]><script src="js/excanvas.min.js"></script><![endif]-->
 <script src="//cdnjs.cloudflare.com/ajax/libs/jquery/1.8.3/jquery.min.js">
 </script>
 <script src="//cdnjs.cloudflare.com/ajax/libs/jquery-sparklines/2.0.0/
jquery.sparkline.min.js"></script>
 </body>
</html>

As you can see, we’re including the JavaScript libraries at the end of the
document. This approach lets the browser load all of the document’s HTML
markup and begin laying out the page while waiting for the server to provide the
JavaScript libraries.

In addition to the jQuery library, sparklines rely on the HTML canvas feature.
Since Internet Explorer didn’t support canvas until version 9, we use some special
markup at u to ensure that IE 8 and earlier will load an additional library (excanvas
.min.js), just like we did in Chapter 2.

Step 2: Create the HTML Markup for the Sparkline
Because we’re closely integrating the sparkline chart with other elements, we
simply use a tag to hold the HTML markup for our visualization, rather than
using a <div>. In addition to the chart itself, we include the final value and a label
as standard HTML. Here is the HTML for the glucose sparkline:

<p>

www.it-ebooks.info

http://www.it-ebooks.info/

92 | Chapter 3

 170,134,115,128,168,166,122,81,56,39,97,114,114,130,151,
 184,148,145,134,145,145,145,143,148,224,181,112,111,129,
 151,131,131,131,114,112,112,112,124,187,202,200,203,237,
 263,221,197,184,185,203,290,330,330,226,113,148,169,148,
 78,96,96,96,77,59,22,22,70,110,128

 128 Glucose
</p>

Compared to other visualizations, two characteristics of our sparkline chart
are unusual.

 > We include the data right in the HTML itself, not in the JavaScript that creates
the chart.

 > The for the chart does not have a unique id attribute.

Both of these differences are optional; we could construct the chart as in
other visualizations by passing data to a JavaScript function and identifying its
container with a unique id. For sparklines, however, the approach we’re using here
often makes more sense. By including the chart data directly in the HTML, we can
easily see the data’s relation to other content on the page. It’s clear, for example,
that the final value of our chart (128) is the same as the value we’re using for the
label. If we had made a mistake and used a different value for the label, the error
would be much easier to spot and correct. Using a common class for all sparklines
instead of unique ids simplifies how we might use the library to create multiple
charts on one page. With unique ids, we would have to call a library function for
every chart. With a common class, on the other hand, we need only call a single
library function to create multiple charts. That’s especially helpful when a web
page contains a lot of sparklines.

Step 3: Draw the Sparkline
Now that we’ve included the necessary libraries and set up our HTML, it’s remark-
ably easy to draw the charts. In fact, a single line of JavaScript is sufficient. We
simply select the containing element(s) using jQuery—$(".sparkline")—and call
the sparklines plug-in.

$(function() {
 $(".sparkline").sparkline();
}

As you can see in Figure 3-2, the sparklines library creates a standard sparkline
from our data.

Figure 3-2: The default sparkline options
differ slightly from the classic example.

www.it-ebooks.info

http://www.it-ebooks.info/

 Integrating Charts on a Page | 93

The library’s default options differ from Tufte’s classic sparkline in color,
chart type, and density. We’ll tweak those next.

Step 4: Adjust the Chart Style
To make our sparkline match Tufte’s definition exactly, we can specify new values
for some of the default options. To pass these options to sparklines, we construct
a JavaScript object and include it as the second parameter in the sparkline func-
tion call. The function’s first parameter is the data itself, which here we specify with
"html" because our data is included in the HTML markup.

$(".sparkline").sparkline("html",{
u lineColor: "dimgray",
v fillColor: false,
w defaultPixelsPerValue: 1,
x spotColor: "red",

 minSpotColor: "red",
 maxSpotColor: "red",

y normalRangeMin: 82,
 normalRangeMax: 180,
});

To complete our transformation to Tufte’s original, we can style the HTML
content as well. Making the final value the same color as the key data points clari-
fies that connection, and making the chart label bold emphasizes it as a title.

<p>

 170,134,115,128,168,166,122,81,56,39,97,114,114,130,151,
 184,148,145,134,145,145,145,143,148,224,181,112,111,129,
 151,131,131,131,114,112,112,112,124,187,202,200,203,237,
 263,221,197,184,185,203,290,330,330,226,113,148,169,148,
 78,96,96,96,77,59,22,22,70,110,128

 128
 Glucose
</p>

Let’s walk through the changes we just made:

 > Tufte’s classic sparklines are black and white except for key data points (mini-
mum, maximum, and final values). His color scheme adds extra emphasis to
those points. To change the library’s default (blue), we can set a lineColor.
For screen displays, we might choose a dark gray rather than pure black.
That’s what we’re using at u.

 > Tufte doesn’t fill the area below the line so that he can use shading to indi-
cate a normal range. To eliminate the library’s light blue shading, we set
fillColor to false v.

www.it-ebooks.info

http://www.it-ebooks.info/

94 | Chapter 3

 > By default, the library uses 3 pixels as the width for each data point. To maxi-
mize information density, Tufte would likely suggest using only a single pixel.
Setting the defaultPixelsPerValue option at w makes that change.

 > Tufte uses red for key data points. To change the library’s default (orange),
we set spotColor, minSpotColor, and maxSpotColor at x.

 > Finally, Tufte’s sparklines can include shading to mark the normal range
for a value. To show, for example, a range of 82–180 mg/dL, we set the
normalRangeMin and normalRangeMax options at y.

With these changes, we have the classic Tufte sparkline on our web page.
We can even include it within a text paragraph, like this , so
that the visualization enhances the content of the text.

Charting Many Variables
By design, sparklines take up very little space on a page, and that makes them
ideal for another visualization challenge: showing many variables at once. Of
course, regular line charts and bar charts can plot multiple data sets simultane-
ously; however, these multiple-series charts rapidly grow unwieldy if the number of
data sets exceeds four or five. Some visualization projects show dozens of differ-
ent variables, far beyond what a multiple-series chart can accommodate. A small-
multiples approach turns the standard chart approach completely around. Instead
of showing one chart with multiple data sets, we can show multiple charts, each
with a single data set. Placing lots of charts on a page means that each individual
chart cannot take up much space. That is exactly the problem that sparklines solve.

We won’t go too crazy here, to keep the code examples manageable,
but it’s easy to extend this approach to many more variables. In our case, we’ll
construct a visualization for analyzing stock market performance. The companies
in our analysis will include the 10 largest American companies in 2012 (http://
money.cnn .com/magazines/fortune/fortune500/2012/full_list/), also known as
the Fortune 500 Top 10; Barclay’s best technology stocks for 2012 (http://www
.marketwatch.com/story/barclays-best-tech-stocks-for-2012-2011-12-20/), as identified
in December 2011; and Bristol-Myers Squibb, which CR Magazine named the top
company in America for corporate responsibility (http://www.thecro.com/files/
100Best2012_List_3.8.pdf/). Those selections are completely arbitrary, but the
example is designed to include three different cases that we will style differently
in our visualization. We’ll treat one as a general case (the Fortune 500 Top 10 list),
one as a special class (the Barclay’s list), and one as a unique variable (Bristol-Myers
Squibb). Just as in this chapter’s first example, we need to include the sparklines
and jQuery libraries in our web page.

Step 1: Prepare the HTML Markup
The sparklines library makes it easy to embed the data directly inside the HTML
markup. For this example, an HTML table is the most appropriate structure for
the data. Here’s how such a table could begin. (For brevity’s sake, the following

www.it-ebooks.info

http://money.cnn.com/magazines/fortune/fortune500/2012/full_list/
http://www.marketwatch.com/story/barclays-best-tech-stocks-for-2012-2011-12-20
http://www.thecro.com/files/100Best2012_List_3.8.pdf
http://www.thecro.com/files/100Best2012_List_3.8.pdf
http://www.it-ebooks.info/

 Integrating Charts on a Page | 95

excerpt doesn’t include the full HTML, but the complete example is available in
the book’s source code at http://jsDataV.is/source/.)

<table>
 <thead>
 <tr>
 <th>Symbol</th>
 <th>Company</th>
 <th>2012 Performance</th>
 <th>Gain</th>
 </tr>
 </thead>
 <tbody>
 <tr class="barclays">
 <td>AAPL</td>
 <td>Apple Inc.</td>
 <td class="sparkline">
 418.68,416.11,416.6,443.34,455.63,489.08,497.7,517.81,...
 </td>
 <td>27%</td>
 </tr>
 <tr class="barclays">
 <td>ALTR</td>
 <td>Altera Corporation</td>
 <td class="sparkline">
 37.1,36.92,39.93,39.81,40.43,39.76,39.73,38.55,36.89,...
 </td>
 <td>-7%</td>
 </tr>
 // Markup continues...
 </tbody>
</table>

The table has three important characteristics relevant to our visualization.

 > Each stock is a single table row (<tr>).

 > Stocks from Barclay’s technology list have the class attribute "barclays"
added to that <tr> element.

 > The top corporate responsibility stock has no special attributes or character-
istics (yet).

Step 2: Draw the Charts
Just as in this chapter’s first example, creating the sparklines using default options
is amazingly simple: it takes only a single line of JavaScript. We use jQuery to select
all the elements that contain sparkline data, and we call the sparkline() function to
generate the charts.

$(function() {
 $(".sparkline").sparkline();
}

www.it-ebooks.info

http://www.it-ebooks.info/

96 | Chapter 3

Notice that we only have to make one call to sparkline(), even though each
chart has unique data. That’s a major benefit of placing the data within the HTML
itself.

The resulting charts, shown in Figure 3-3, all have identical styles, but we’ll
fix that in the next few steps.

Figure 3-3: Sparklines can be a good visualization to include within page
elements such as tables.

Step 3: Establish a Default Style for the Charts
If we don’t like the sparklines library’s default style, it’s easy to change it using an
options object, as shown next.

$(".sparkline").sparkline("html",{
 lineColor: "#006363",
 fillColor: "#2D9999",
 spotColor: false,
 minSpotColor: false,
 maxSpotColor: false
});

The object is the second parameter to the sparkline() function, and here it
changes the color for the charts and disables the highlights on the minimum, maxi-
mum, and final values. The first parameter, the string "html", indicates to the library
that the data is already present in our HTML.

www.it-ebooks.info

http://www.it-ebooks.info/

 Integrating Charts on a Page | 97

Figure 3-4 shows the result for one row. We’ll use this style as the default for
all our charts.

Figure 3-4: The sparkline options let us adjust the chart styles.

Step 4: Modify the Default Style for Special Classes
With a default style in place, we can turn our attention to the special class of charts
for stocks in Barclay’s technology list. For our example, let’s change the color of
the chart without any other changes to our default style. That final clause is impor-
tant. We could just copy and paste the options, but that would be setting ourselves
up for problems in the future. You can see why in the following example code.

$("tr:not(.barclays) .sparkline").sparkline("html",{
 lineColor: "#006363",
 fillColor: "#2D9999",
 spotColor: false,
 minSpotColor: false,
 maxSpotColor: false
});
$("tr.barclays .sparkline").sparkline("html",{
 lineColor: "#A50000",
 fillColor: "#FE4C4C",
 spotColor: false,
 minSpotColor: false,
 maxSpotColor: false
});

Notice that the second call to sparklines() duplicates options from the first
call that haven’t changed, specifically for the spot colors. This makes the code
harder to maintain if, in the future, we decide to turn spot colors back on for all our
charts, since we would have to make changes to our code in two places. There is a
better way.

To avoid duplication, we first define a variable that holds our default options.

var sparkline_default = {
 lineColor: "#006363",
 fillColor: "#2D9999",
 spotColor: false,
 minSpotColor: false,
 maxSpotColor: false
};

Next we create a new variable for the Barclay’s styles. To create this new vari-
able, we can use the jQuery .extend() function to avoid duplication.

www.it-ebooks.info

http://www.it-ebooks.info/

98 | Chapter 3

var sparkline_barclays = $.extend({}, sparkline_default, {
 lineColor: "#A50000",
 fillColor: "#FE4C4C"
});

In this code, we pass three parameters to .extend(). The first parameter is
the target. It’s an object that the function will modify, and we start with an empty
object ({}). The next parameters are objects that .extend() will merge into the target.
The merge process adds new properties to the target and updates any properties in
the target object with new values. Since we’re passing two additional parameters,
we’re asking for two merges.

You can think of the call to .extend() as a two-stage process.

1. Since our target is initially empty, the first merge will add all of the properties
from sparkline_default to the target.

2. Our target now has the same properties as sparkline_default, and the sec-
ond merge will modify it by updating the two properties in the last param-
eter, lineColor and fillColor.

The resulting object will hold the options we want for charts of Barclay’s
technology stocks. Here’s a complete code listing, using these objects to create
the charts.

var sparkline_default = {
 lineColor: "#006363",
 fillColor: "#2D9999",
 spotColor: false,
 minSpotColor: false,
 maxSpotColor: false
};
var sparkline_barclays = $.extend({}, sparkline_default, {
 lineColor: "#A50000",
 fillColor: "#FE4C4C"
});

u $("tr:not(.barclays) .sparkline").sparkline("html",sparkline_default);
v $("tr.barclays .sparkline").sparkline("html",sparkline_barclays);

Notice at u that we create the nontechnology sparklines by selecting table
rows (<tr>) that don’t have the "barclays" class. At v we create the technology
sparklines. Because we’ve defined the technology options based on the default,
we have an easy way to maintain both default styles and styles for special classes.
The chart colors in Figure 3-5 clearly distinguish the stock types in our table.

www.it-ebooks.info

http://www.it-ebooks.info/

 Integrating Charts on a Page | 99

Figure 3-5: Different visual styles distinguish different types of data.

Step 5: Create a Unique Style for a Specific Chart
For the final step in this example, let’s consider the single stock at the top of CR
Magazine’s list. Suppose we want to add distinct styles to its chart, and we know
those styles only when we’re generating the HTML, not when we’re writing the
JavaScript. How can we adjust the chart style if we can’t modify any JavaScript?

Sparklines let you add special attributes directly to the HTML element con-
taining a chart. To set the line color, for example, you need to specify the attribute
sparkLineColor. The problem is that if we were to enter this attribute directly in the
HTML, the result wouldn’t be valid HTML, because the HTML specification doesn’t
recognize the sparkLineColor attribute. To conform to the HTML standard, custom
attributes must have names that begin with the prefix data-.

<tr>
 <td>BMY</td>
 <td>Bristol Meyers Squibb Co.</td>

u <td class="sparkline" data-LineColor="#679A00"
 data-FillColor="#B6ED47">32.86,32.46,31.36,...</td>
 <td>(2%)</td>
</tr>

To use HTML-compliant names to refer to sparklines’ custom attributes, we
just need to tell the sparklines library how to find those names. For our HTML, we
use the standard data- prefix instead of spark in at u.

Now we have to add a couple more options in our call to sparkline(). First
we set enableTagOptions to true to tell the library that we’re including options directly
in the HTML. Then we set tagOptionsPrefix to "data-" to specify the prefix we’re
using for those attributes.

 QNote: As of this writing, the jQuery sparklines documentation for
tagOptionsPrefix is not correct. the documentation lists the option as
tagOptionPrefix, where option is singular instead of plural. the library’s
code, however, expects the plural form.

www.it-ebooks.info

http://www.it-ebooks.info/

100 | Chapter 3

If we use these options correctly, one of our charts will have the distinct color
in Figure 3-6.

Figure 3-6: The sparklines library supports unique styling options for
individual charts.

To pass the appropriate options to sparkline(), we can take advantage of
the work we did in Step 5. Since we created a special object for default options,
that’s the only object we have to change.

var sparkline_default = {
 lineColor: "#006363",
 fillColor: "#2D9999",
 spotColor: false,
 minSpotColor: false,
 maxSpotColor: false,
 enableTagOptions: true,
 tagOptionsPrefix: "data-"
};

We only need to make the change in one place, and all of our calls to
sparkline() use the new options. Here is the final, complete JavaScript code
for this example.

$(function() {
 var sparkline_default = {
 lineColor: "#006363",
 fillColor: "#2D9999",
 spotColor: false,
 minSpotColor: false,
 maxSpotColor: false,
 enableTagOptions: true,
 tagOptionsPrefix: "data-"
 };
 var sparkline_barclays = $.extend({}, sparkline_default, {
 lineColor: "#A50000",
 fillColor: "#FE4C4C"
 });
 $("tr:not(.barclays) .sparkline").sparkline("html",sparkline_default);
 $("tr.barclays .sparkline").sparkline("html",sparkline_barclays);
}

Figure 3-7 shows the final result. We have a table that integrates text and
charts, and we can style those charts appropriately and efficiently for the default
case, for a special class, and for a unique value.

www.it-ebooks.info

http://www.it-ebooks.info/

 Integrating Charts on a Page | 101

Figure 3-7: A complete example distinguishes different individual data sets
in a larger collection.

“Tracking Data Values” on page 65 uses a full-featured charting package
for a similar result. If you don’t need the space efficiency of sparklines, consider
that approach as an alternative.

Annotating Sparklines
Because they’re designed to maximize information density, sparklines omit many
traditional chart components such as axes and labels. This approach certainly
focuses on the data itself, but it can sometimes leave users without enough con-
text to understand the data. Print versions usually rely on traditional text to supply
this context, but on the Web we have more flexibility. We can present the data
by itself in a sparkline, and we can give users the chance to explore the data’s
context through interactions. Tool tips, which show additional information as a
user hovers their mouse pointer over sections of a web page, can be an effective
way to annotate a sparkline, so long as the users are accessing the page from a
desktop computer. (Touch-based devices such as smartphones and tablets don’t
typically support the concept of hover.) We’ll walk through a visualization that
includes tool tips in this example; other examples in the chapter consider alterna-
tive approaches that may be more effective for touch devices. Let’s see how we
can use a customized form of tool tips by enhancing the charts in the previous
example. Just as in this chapter’s first example, we need to include the sparklines
and jQuery libraries in our web page.

www.it-ebooks.info

http://www.it-ebooks.info/

102 | Chapter 3

Step 1: Prepare the Data
In the previous examples, we’ve embedded the data directly in the HTML markup.
That’s convenient since it lets us separate the data from our code. In this example,
however, the JavaScript code will need more-detailed knowledge of the data so it
can present the right tool tip information. This time we’ll use a JavaScript array to
store our data so that all the relevant information is in one place. For this example,
we can focus on a single stock. And even though we’re graphing only the adjusted
closing price, the array will track additional data that we can include in the tool
tips. Here’s an excerpt of the data for one of the stocks.

var stock = [
 { date: "2012-01-03", open: 409.40, high: 422.75, low: 409.00, close: 422.40,
 volume: 10283900, adj_close: 416.26 },
 { date: "2012-01-09", open: 425.50, high: 427.75, low: 418.66, close: 419.81,
 volume: 9327900, adj_close: 413.70 },
 { date: "2012-01-17", open: 424.20, high: 431.37, low: 419.75, close: 420.30,
 volume: 10673200, adj_close: 414.19 },
 // Data set continues...

Step 2: Prepare the HTML Markup
Our visualization will include three distinct areas, each in a <div> element.

<div id="stock">
 <div style="float:left">

u <div class="chart"></div>
v <div class="info"></div>

 </div>
 <div style="float:left">

w <div class="details"></div>
 </div>
</div>

The primary <div> created at u will hold the chart. Underneath the chart
we’ll add the primary tool tip information in its own <div> v, and we’ll include
supplementary details to the right w. This example uses inline styles for clarity;
a production site might prefer to use CSS style sheets.

Step 3: Add the Chart
Adding the chart to our markup is easy with the sparklines library. We can use the
jQuery .map() function to extract the adjusted close value from our stock array. The
minSpotColor and maxSpotColor options tell the library how to highlight the lowest
and highest values for the year.

$("#stock .chart").sparkline(
 $.map(stock, function(wk) { return wk.adj_close; }),
 {
 lineColor: "#006363",

www.it-ebooks.info

http://www.it-ebooks.info/

 Integrating Charts on a Page | 103

 fillColor: "#2D9999",
 spotColor: false,
 minSpotColor: "#CA0000",
 maxSpotColor: "#CA0000"
 }
);

The static chart of Figure 3-8 shows the stock performance nicely.

Figure 3-8: A static sparkline shows
the change in the data set over time.

Step 4: Add the Primary Annotation
The sparklines library adds a simple tool tip to all of its charts by default. Although
that tool tip shows the value over which the user’s mouse is hovering, the presenta-
tion isn’t particularly elegant, and, more importantly, it doesn’t provide as much
information as we would like. Let’s enhance the default behavior to meet our needs.

Looking at the library’s defaults, we can retain the vertical marker, but we
don’t want the default tool tip. Adding the option disableTooltips with a value of
true will turn off the undesired tool tip.

For our own custom tool tip, we can rely on a handy feature of the sparklines
library. The library generates a custom event whenever the user’s mouse moves
over a chart region. That event is the sparklineRegionChange event. The library
attaches a custom property, sparklines, to those events. By analyzing that prop-
erty, we can determine the mouse’s location relative to the data.

$(".chart")
 .on("sparklineRegionChange", function(ev) {
 var idx = ev.sparklines[0].getCurrentRegionFields().offset;

u /* If it's defined, idx has the index into the
 data array corresponding to the mouse pointer */
 });

As the comment at u indicates, the library sometimes generates the event
when the mouse leaves the chart area. In those cases, a defined value for the off-
set will not exist.

Once we have the mouse position, we can place our tool tip information in
the <div> we set aside for it.

 if (idx) {
 $(".info").html(

u "Week of " + stock[idx].date
 + " "

v + "Close: $" + stock[idx].adj_close);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

104 | Chapter 3

We get the information at u and v from the stock array using the index
value from the sparklineRegionChange event.

The sparklines library isn’t completely reliable in generating events when
the mouse leaves the chart area. Instead of using the custom event, therefore, we
can use the standard JavaScript mouseout event. When the user moves the mouse
off the chart, we’ll turn off the custom tool tip by setting its content to a blank
space. We use the HTML nonbreaking space () so the browser doesn’t think
the <div> is completely empty. If we used a standard space character, the browser
would treat the <div> as empty and recalculate the height of the page, causing an
annoying jump in the page contents. (For the same reason, we should initialize that
<div> with instead of leaving it blank.)

 .on("mouseout", function() {
 $(".info").html(" ");
 });

For the cleanest implementation, we combine all of these steps using method
chaining. (To keep it concise, I’ve omitted the chart styling options in the following
excerpt.)

$("#stock .chart")
 .sparkline(
 $.map(stock, function(wk) { return wk.adj_close; }),
 { disableTooltips: true }
).on("sparklineRegionChange", function(ev) {
 var idx = ev.sparklines[0].getCurrentRegionFields().offset;
 if (idx) {
 $(".info").html(
 "Week of " + stock[idx].date
 + " "
 + "Close: $" + stock[idx].adj_close);
 }
 }).on("mouseout", function() {
 $(".info").html(" ");
 });

Now with Figure 3-9 we have a nice, interactive tool tip that tracks the user’s
mouse as it moves across the chart.

Figure 3-9: An interactive sparkline tracks
the user’s mouse and provides information
relevant to the mouse position.

www.it-ebooks.info

http://www.it-ebooks.info/

 Integrating Charts on a Page | 105

Step 5: Provide Additional Information
The tool tip information we’ve added so far shows the immediately relevant infor-
mation to the user: the week and the adjusted closing price of the stock. Our data,
however, contains additional information that might be useful to the user. We can
expand on the original tool tip by displaying that as well.

At the same time we update the primary tool tip region, let’s add the
extra data.

$(".details").html(
 "Open: $" + stock[idx].open + "
"
 + "High: $" + stock[idx].high + "
"
 + "Low: $" + stock[idx].low + "
"
 + "Volume: " + stock[idx].volume
);

When we clear the primary tool tip region, we’ll clear this area as well.

$(".details").html("");

Because it won’t affect the vertical size of the page, we don’t need to fill this
<div> with a dummy .

With Figure 3-10 we have the visualization we want. The chart clearly shows
the overall trend for the stock during the year, but it takes up only a small amount
of space on the web page. At first glance the chart is also free of distracting ele-
ments such as labels and axes. For users who just want a general sense of the
stock’s performance, those elements are superfluous. Users who want the full
details need only hover their mouse over the chart, and it reveals the complete
market information.

Figure 3-10: Interactive sparklines can show
additional information in many ways.

Because we’ve managed to display the information while retaining the com-
pact nature of sparklines, the technique in this example works well when combined
with the small-multiples approach of this chapter’s second example. The next
example includes an alternate method for showing the extra details.

Drawing Composite Charts
So far in this chapter, we’ve seen how sparklines can provide a lot of visual informa-
tion in a very small space. That characteristic makes them perfect for integrating
charts in a complete web page that includes text, tables, and other elements. We

www.it-ebooks.info

http://www.it-ebooks.info/

106 | Chapter 3

haven’t yet exhausted the capabilities of sparklines, however. We can increase
the information density of our visualizations still further by creating composite
charts—in effect, drawing multiple charts in the same space.

To see an example of this technique, we can build on the previous example.
In that example we used a sparkline to show the closing price of a stock over
an entire year. Price is indeed the most relevant data about a stock, but there’s
another quantity that many investors like to see: the stock’s trading volume. And
just as with price, it can be important to understand the trend for trading volume
at a glance. That makes the value an excellent candidate for a chart.

Just as in this chapter’s first example, we need to include the sparklines and
jQuery libraries in our web page. Because we’re visualizing the same data as in the
previous example, we’ll also want to set up the data array and the HTML markup
exactly as in that example.

Step 1: Draw the Trading Volume Chart
Even though we’re including a chart of trading volume, the most important quan-
tity is the stock price. To keep the emphasis on stock price, we want to draw that
chart on top of the chart for trading volume. That means we need to draw the trad-
ing volume chart first.

The code for trading volume is very similar to that of the stock price from the
previous example. Instead of an area chart, however, we’ll use a bar chart.

$("#stock .chart").sparkline(
 $.map(stock, function(wk) { return wk.volume; }),

u { type: "bar" }
);

We use the jQuery .map() function to extract the volume property from our
data array. Setting the type option to "bar" at u is all it takes to tell the sparklines
library to create a bar chart.

Figure 3-11 shows the results.

Figure 3-11: The sparklines library can
create bar charts as well as line charts.

Step 2: Add the Closing Price Chart
To add the price chart on top of the volume chart, we can call the sparklines library
once again.

$("#stock .chart")
 .sparkline(
 $.map(stock, function(wk) { return wk.volume; }),

www.it-ebooks.info

http://www.it-ebooks.info/

 Integrating Charts on a Page | 107

 {
 type: "bar"
 }
).sparkline(
 $.map(stock, function(wk) { return wk.adj_close; }),
 {

u composite: true,
 lineColor: "#006363",
 fillColor: "rgba(45, 153, 153, 0.3)",
 disableTooltips: true
 }
);

We give it the same containing element and, most importantly, set the
composite option to true at u. This parameter tells the library not to erase any
existing chart in the element but to simply draw over it.

Notice the way we specify the fill color for the second chart. We set a trans-
parency (or alpha) value of 0.3. This value makes the chart area nearly transparent,
so the volume chart will show through. Note, though, that some older web browsers,
notably IE8 and earlier, do not support the transparency standard. If your site has a
significant number of users with those browsers, you might consider simply setting
the fillColor option to false, which will disable filling the area entirely.

As Figure 3-12 shows, the result combines both charts in the same space.

Figure 3-12: Multiple charts may be
combined in the same space.

Step 3: Add the Annotations
We can add annotations to the chart using the same approach as in the previous
example. Because our charts now include the trading volume, it’s appropriate to
move that value from the details area into the primary annotation <div>. The code
to do that is a simple adjustment from the prior example.

.on("sparklineRegionChange", function(ev) {
u var idx = ev.sparklines[1].getCurrentRegionFields().offset;

 if (idx) {
 $(".info").html(
 "Week of " + stock[idx].date
 + " Close: $" + stock[idx].adj_close

v + " Volume: "
 + Math.round(stock[idx].volume/10000)/100 + "M"
);
 $(".details").html(
 "Open: $" + stock[idx].open + "
"
 + "High: $" + stock[idx].high + "
"

www.it-ebooks.info

http://www.it-ebooks.info/

108 | Chapter 3

 + "Low: $" + stock[idx].low
);
 }

In addition to moving the text from one area to the other, we’ve made two
significant changes.

 > We get the idx value from the second element of the event’s sparklines array
(sparklines[1]) at u. That’s because the first element of that array is the first
chart. The sparklines library doesn’t really return any useful information about
bar charts in the sparklineRegionChange event. Fortunately, we can get all the
information we need from the line bchart.

 > We show the trading volume in millions, rounded to two decimal places. The
calculation is in at v. It’s much easier for users to quickly grasp “24.4M” than
“24402100.”

As in the previous example, the annotations in our chart (shown in Fig-
ure 3-13) provide additional details.

Figure 3-13: Tracking the mouse position makes
it possible to interactively annotate the charts.

Step 4: Show Details as a Chart
So far we’ve shown the additional details for the stock (open, close, high, and
low) as text values. As long as we’re drawing multiple charts, we can show those
values graphically as well. The statistical box plot serves as a useful model for us.
Traditionally, that plot type shows the range of a distribution, including deviations,
quartiles, and medians. Visually, however, it provides a perfect model of a stock’s
trading performance. We can use it to show the opening and closing prices, as well
as the high and low values during the period.

The sparklines library can draw a box plot for us, but normally it calculates
the values to display given the distribution as input data. In our case we don’t want
to use the standard statistical calculations. Instead, we can use an option that tells
the library to use precomputed values. The library expects at least five values:

 > The lowest sample value

 > The first quartile

 > The median

 > The third quartile

 > The highest sample value

www.it-ebooks.info

http://www.it-ebooks.info/

 Integrating Charts on a Page | 109

For our example, we’ll provide the following values instead:

 > The lowest price

 > Whichever is less of the opening and closing prices

 > The adjusted closing price

 > Whichever is greater of the opening and closing prices

 > The highest price

We’ll also color the median bar red or green depending on whether the
stock gained or lost value during the period.

This code creates that chart in response to the sparklineRegionChange event:

$("#composite-chart4 .details")
 .sparkline([

u stock[idx].low,
 Math.min(stock[idx].open,stock[idx].close),
 stock[idx].adj_close,
 Math.max(stock[idx].open,stock[idx].close),
 stock[idx].high
], {
 type: "box",
 showOutliers: false,

v medianColor: (stock[idx].open < stock[idx].close)
w ? "green" : "red"

 });

The data for the chart (shown at u) is simply the five values extracted from the
stock data for the appropriate week. As v and w demonstrate, we can change the
color of the median bar depending on whether the stock finished higher or lower
for the day.

When the mouse leaves the chart region, we can remove the box plot by
emptying its container.

$(".details").empty();

Now as our users mouse over the chart area, they can see a visual represen-
tation of the stock’s price range during each period (Figure 3-14).

Figure 3-14: Interactive annotations can
be charts themselves in addition to text.

www.it-ebooks.info

http://www.it-ebooks.info/

110 | Chapter 3

Responding to Click Events
Throughout this chapter we’ve looked at how to include a lot of visual information
in a small space, making it easier to integrate a visualization within a web page.
The basic sparkline by itself is very efficient, and previous examples have added
annotations and composites to increase the information density further. Sometimes,
however, there’s just no way to fit all the possible data in a small enough space. Even
in these cases, though, the interactive nature of the Web can help us out. Our web
page can start with a compact visualization but expand to a different view—one
with richer details—with a simple click or tap.

Indeed, the compact quality of sparklines seems to invite interaction. In
every usability test I’ve performed that included sparklines on a web page, the
participants invariably clicked on the chart. That was true even when there were no
other details that the page could provide and the participants had no idea what to
expect in response to their clicks. They clicked just to see what would happen.

This example continues our stock market example. We’ll begin with the same
basic stock price chart we’ve seen before, but enhance it to provide details when
users click on the chart region.

Just as in this chapter’s first example, we need to include the sparklines
and jQuery libraries in our web page. Because we’re visualizing the same data as
in the previous example, we’ll also want to set up the data array exactly as in that
example. The HTML markup, however, can be much simpler. All we need is a <div>
to hold the chart.

<div id="stock"></div>

Step 1: Add the Chart
Adding the chart to our markup is easy with the sparklines library. We can use the
jQuery .map() function to extract the adjusted close value from our stock array.

$("#stock").sparkline($.map(stock, function(wk) { return wk.adj_close; }));

The static chart of Figure 3-15, which shows the stock performance, probably
looks familiar by now.

Figure 3-15: Starting with a static chart
ensures that the visualization is sound.

www.it-ebooks.info

http://www.it-ebooks.info/

 Integrating Charts on a Page | 111

Step 2: Handle Click Events
The sparklines library makes it easy for us to handle click events. When users click
on a chart region, the library generates a custom sparklineClick event. The event
data includes all of the normal click properties, plus information about where on
the chart the user clicked. To be notified of clicks, we define a handler for that
custom event.

$("#stock")
 .sparkline($.map(stock, function(wk) { return wk.adj_close; }))
 .on("sparklineClick", function(ev) {
 var sparkline = ev.sparklines[0],
 region = sparkline.getCurrentRegionFields();
 /* region.x and region.y are the coordinates of the click */
 });

Now that we’re set up to receive sparklineClick events, we can write the code
to respond to them. For our example, let’s reveal a detailed financial analysis widget.
Many web services, including Yahoo and Google, have similar widgets, but we’ll
use one from WolframAlpha. As is typical, WolframAlpha provides code for the
widget as an HTML <iframe>. We can wrap that <iframe> in our own <div> and place
it immediately after the chart. We set a display property of none so that the con-
tents are initially hidden. (The following snippet omits the details of the <iframe>
element for clarity.)

<div id="stock"></div>
<div id="widget" style="display:none"><iframe></iframe></div>

Now our event handling code can reveal the widget using the jQuery show()
function.

 .on("sparklineClick", function(ev) {
 $("#widget").show();
 });

That works to reveal the details, but as Figure 3-16 shows, the resulting pre-
sentation isn’t as elegant as it could be since the details appear so abruptly.

www.it-ebooks.info

http://www.it-ebooks.info/

112 | Chapter 3

Apple (AAPL)

Apple

computer hardware

company name

sector

Timothy D. Cook (Director and Chief Executive Officer)

(as of August 2, 2014)

Input interpretation:

Company information:

Company management:

Source information »

Show officers Show directors

Figure 3-16: Mouse clicks can reveal more details for a chart.

Step 3: Improve the Transitions
Instead of simply revealing the widget beneath the chart, it would be better to
have the widget replace the chart. And if we’re going to do that, we’ll also want
to give users a chance to restore the chart and hide the widget.

<div id="stock"></div>
u <div id="widget-control" style="width:600px;display:none">

 ×
</div>
<div id="widget" style="width:600px;display:none">
 <iframe></iframe>
</div>

Here, we include a "widget-control" <div> u for controlling the widget’s visi
bility. The only content we need for this controller is a close symbol floated right.
Just like the widget itself, the controller is initially hidden.

Now when the user clicks on the chart, we reveal the widget, reveal the con
troller, and hide the chart.

www.it-ebooks.info

http://www.it-ebooks.info/

 Integrating Charts on a Page | 113

.on("sparklineClick", function(ev) {
 $("#widget").show();
 $("#widget-control").show();
 $("#stock").hide();
});

Next we intercept clicks on the close symbol in the widget controller. We first
prevent default event handling; otherwise, the browser will jump disconcertingly to
the top of the page. Then we hide the widget and its controller while revealing the
chart again.

$("#widget-control a").click(function(ev) {
 ev.preventDefault();
 $("#widget").hide();
 $("#widget-control").hide();
 $("#stock").show();
})

Finally, we need to give the user some indication that this interaction is
possible.

$("#stock")
 .sparkline(
 $.map(stock, function(wk) { return wk.adj_close; }),

u { tooltipFormatter: function() {return "Click for details"; } }
);

On the chart, we override the sparklines library’s default tool tip at u to let
users know that more details are available.

And now for the widget controller:

<div id="stock"></div>
<div id="widget-control" style="width:600px;display:none">

u ×
</div>
<div id="widget" style="width:600px;display:none">
 <iframe></iframe>
</div>

Here, we simply add a title attribute at u to tell users how to hide the
widget.

These additions give us the simple sparkline chart in Figure 3-17, which
expands to offer a wealth of details with a single click. The close symbol in the
upper-right corner lets users return to the more compact sparkline.

www.it-ebooks.info

http://www.it-ebooks.info/

114 | Chapter 3

Apple (AAPL)

Apple

computer hardware

company name

sector

Timothy D. Cook (Director and Chief Executive Officer)

(as of August 2, 2014)

Input interpretation:

Company information:

Company management:

Source information »

Show officers Show directors

Figure 3-17: Mouse clicks can reveal more details for a chart.

Step 4: Animate
For the final touch to our visualization, let’s do something about the abrupt hiding
and revealing of the visualization components. A smoother animation will help our
users follow the transition, and jQuery makes it easy enough to implement. There
are lots of animation effects available in the jQuery UI library, but the basic func-
tionality of jQuery’s core is fine for this example. We simply replace the show() and
hide() functions with slideDown() and slideUp(), respectively.

.on("sparklineClick", function(ev) {
 $("#widget").slideDown();
 $("#widget-control").slideDown();
 $("#stock").slideUp();
});
$("#widget-control a").click(function(ev) {
 ev.preventDefault();
 $("#widget").slideUp();
 $("#widget-control").slideUp();
 $("#stock").slideDown();
})

At this point we can call our visualization complete; the final product is shown
in Figure 3-18. The compact sparkline smoothly transitions to reveal detailed infor-
mation when the user clicks, and those details transition back to the sparkline
when the user closes them.

www.it-ebooks.info

http://www.it-ebooks.info/

 Integrating Charts on a Page | 115

Apple (AAPL)

Apple

computer hardware

company name

sector

Input interpretation:

Company information:

Company management:

Show officers Show directors

Click for details

Figure 3-18: Animating transitions can make the visualization less jarring
to users.

Updating Charts in Real Time
As we’ve seen in this chapter’s other examples, sparklines are great for integrating
visualizations in a complete web page. They can be embedded in text content or
used as table elements. Another application that suits sparklines well is an infor-
mation dashboard. Effective dashboards summarize the health of the underlying
system at a glance. When users don’t have the time to read through pages of texts
or detailed graphics, the information density of sparklines makes them an ideal tool.

In addition to high information density, most dashboards have another
requirement: they must be up-to-date. For web-based dashboards, that means the
contents should be continuously updated, even while users are viewing the page.
There is no excuse for requiring users to refresh their browsers. Fortunately, the
sparklines library makes it easy to accommodate this requirement as well.

Just as in this chapter’s first example, we need to include the sparklines and
jQuery libraries in our web page. For this visualization we’ll show both a chart and
the most recent value of the data. We define <div> elements for each and place
both in a containing <div>. The following code includes some styles inline, but you
could place them in an external style sheet. Here the styles are just meant to posi-
tion the value immediately to the right of the chart rather than on a separate line.

<div id="dashboard">
 <div id="chart" style="float:left"></div>
 <div id="value" style="float:left"></div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

116 | Chapter 3

Step 1: Retrieve the Data
In a real dashboard example, the server would provide the data to display and
updates to that data. As long as the frequency of the updates was modest (not
faster than once every five seconds or so), we could simply poll the server for
updates on a regular interval. It’s probably not a good idea, however, to use the
JavaScript setInterval() function to control the polling interval. That may seem
strange at first because setInterval() executes a function periodically, which
would seem to meet the requirements exactly. The situation is not quite that
simple, however. If the server or network encounters a problem, then requests
triggered by setInterval() will continue unabated, stacking up in a queue. Then,
when communication with the server is restored, all of the pending requests will
immediately finish, and we’d have a flood of data to handle.

To avoid this problem, we can use the setTimeout() function instead. That
function executes only once, so we’ll have to keep calling it explicitly. By doing
that, though, we can make sure that we send a request to the server only after the
current one finishes. This approach avoids stacking up a queue of requests.

(function getData(){
 setTimeout(function(){
 // Request the data from the server
 $.ajax({ url: "/api/data", success: function(data) {

 // Data has the response from the server

 // Now prepare to ask for updated data
u getData();

 }, dataType: "json"});
 }, 30000); // 30000: wait 30 seconds to make the request

v })();

Notice that the structure of the code defines the getData() function and imme-
diately executes it. The closing pair of parentheses at v triggers the immediate
execution.

Within the success callback, we set up a recursive call to getData() at u so
the function executes again whenever the server responds with data.

Step 2: Update the Visualization
Whenever we receive updated information from the server, we can simply update
the chart and value.

(function getData(){
 setTimeout(function(){
 // Request the data from the server
 $.ajax({ url: "/api/data", success: function(data) {

u $("#chart").sparkline(data);
v $("#value").text(data.slice(-1));

www.it-ebooks.info

http://www.it-ebooks.info/

 Integrating Charts on a Page | 117

 getData();
 }, dataType: "json"});
 }, 30000); // 30000: wait 30 seconds to make the request
})();

The code needs only a straightforward call to the sparklines library and a
jQuery function to update the value. We’ve added that to the code here at u and v.

Figure 3-19 shows what a default chart looks like. Of course, you can specify
both the chart and text styles as appropriate for your own dashboard.

Figure 3-19: A live updating
chart can show real-time data.

Summing Up
In this chapter, we’ve considered various techniques for integrating visualizations
within a web page. We’ve seen that sparklines are an excellent tool. Because
they provide a lot of visual information in a small space, they leave room for other
elements of the page, including text blocks, tables, and dashboards. We’ve con-
sidered several ways to increase the information density even further with annota-
tions, composite charts, and click events. Finally, we looked at how to create charts
that update in real time, accurately visualizing the up-to-the-minute status of an
underlying system.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

4
Creating

Specialized Graphs

The first three chapters looked at different ways
to create many common types of charts with
JavaScript. But if your data has unique proper-
ties or if you want to show it in an unusual way,
a more specialized chart might be more appro-
priate than a typical bar, line, or scatter chart.

www.it-ebooks.info

http://www.it-ebooks.info/

120 | Chapter 4

Fortunately, there are many JavaScript techniques and plug-ins to expand
our visualization vocabulary beyond the standard charts. In this chapter, we’ll look
at approaches for several specialized chart types, including the following:

 > How to combine hierarchy and dimension with tree maps

 > How to highlight regions with heat maps

 > How to show links between elements with network graphs

 > How to reveal language patterns with word clouds

Visualizing Hierarchies with Tree Maps
Data that we want to visualize can often be organized into a hierarchy, and in many
cases that hierarchy is itself an important aspect of the visualization. This chapter
considers several tools for visualizing hierarchical data, and we’ll begin the examples
with one of the simplest approaches: tree maps. Tree maps represent numeric
data with two-dimensional areas, and they indicate hierarchies by nesting subordi-
nate areas within their parents.

There are several algorithms for constructing tree maps from hierarchical
data; one of the most common is the squarified algorithm developed by Mark
Bruls, Kees Huizing, and Jarke J. van Wijk (http://www.win.tue.nl/~vanwijk/stm.pdf).
This algorithm is favored for many visualizations because it usually generates
visually pleasing proportions for the tree map area. To create the graphics in our
example, we can use Imran Ghory’s treemap-squared library (https://github.com/
imranghory/treemap-squared). That library includes code for both calculating and
drawing tree maps.

Step 1: Include the Required Libraries
The treemap-squared library itself depends on the Raphaël library (http://raphaeljs
.com/) for low-level drawing functions. Our markup, therefore, must include both
libraries. The Raphaël library is popular enough for public CDNs to support.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <div id="treemap"></div>

u <script src="//cdnjs.cloudflare.com/ajax/libs/raphael/2.1.0/raphael-min.js">
 </script>

v <script src="js/treemap-squared-0.5.min.js"></script>
 </body>

</html>

www.it-ebooks.info

http://www.it-ebooks.info/

 Creating Specialized Graphs | 121

As you can see, we’ve set aside a <div> to hold our tree map. We’ve also
included the JavaScript libraries as the last part of the <body> element, as that
provides the best browser performance. In this example, we’re relying on Cloud-
Flare’s CDN u. We’ll have to use our own resources, however, to host the treemap-
squared library v.

 QNote: See page 49 for a more extensive discussion of CDns and the trade-
offs involved in using them.

Step 2: Prepare the Data
For our example we’ll show the population of the United States divided by region
and then, within each region, by state. The data is available from the US Census
Bureau (http://www.census.gov/popest/data/state/totals/2012/index.html). We’ll fol-
low its convention and divide the country into four regions. The resulting JavaScript
array could look like the following snippet.

census = [
 { region: "South", state: "AL", pop2010: 4784762, pop2012: 4822023 },
 { region: "West", state: "AK", pop2010: 714046, pop2012: 731449 },
 { region: "West", state: "AZ", pop2010: 6410810, pop2012: 6553255 },
 // Data set continues...

We’ve retained both the 2010 and the 2012 data.
To structure the data for the treemap-squared library, we need to create

separate data arrays for each region. At the same time, we can also create arrays
to label the data values using the two-letter state abbreviations.

var south = {};
south.data = [];
south.labels = [];
for (var i=0; i<census.length; i++) {
 if (census[i].region === "South") {
 south.data.push(census[i].pop2012);
 south.labels.push(census[i].state);
 }
}

This code steps through the census array to build data and label arrays for
the "South" region. The same approach works for the other three regions as well.

Step 3: Draw the Tree Map
Now we’re ready to use the library to construct our tree map. We need to assemble
the individual data and label arrays and then call the library’s main function.

www.it-ebooks.info

http://www.it-ebooks.info/

122 | Chapter 4

var data = [west.data, midwest.data, northeast.data, south.data];
var labels = [west.labels, midwest.labels, northeast.labels, south.labels];

u Treemap.draw("treemap", 600, 450, data, labels);

The first two parameters at u are the width and height of the map.
The resulting chart, shown in Figure 4-1, provides a simple visualization of the

US population. Among the four regions, it is clear where most of the population
resides. The bottom-right quadrant (the South) has the largest share of the popu-
lation. And within the regions, the relative size of each state’s population is also
clear. Notice, for example, how California dominates the West.

Figure 4-1: Tree maps show the relative size of data values using
rectangular area.

Step 4: Vary the Shading to Show Additional Data
The tree map in Figure 4-1 does a nice job of showing the US population distribution
in 2012. The population isn’t static, however, and we can enhance our visualization
to indicate trends by taking advantage of the 2010 population data that’s still lurk-
ing in our data set. When we iterate through the census array to extract individual
regions, we can also calculate a few additional values.

Here’s an expanded version of our earlier code fragment that includes these
additional calculations.

var total2010 = 0;
var total2012 = 0;
var south = {
 data: [],

www.it-ebooks.info

http://www.it-ebooks.info/

 Creating Specialized Graphs | 123

 labels: [],
 growth: [],
 minGrowth: 100,
 maxGrowth: -100
};
for (var i=0; i<census.length; i++) {

u total2010 += census[i].pop2010;
v total2012 += census[i].pop2012;
w var growth = (census[i].pop2012 - census[i].pop2010)/census[i].pop2010;

 if (census[i].region === "South") {
 south.data.push(census[i].pop2012);
 south.labels.push(census[i].state);
 south.growth.push(growth);

x if (growth > south.maxGrowth) { south.maxGrowth = growth; }
y if (growth < south.minGrowth) { south.minGrowth = growth; }

 }
 // Code continues...
}

Let’s walk through those additional calculations:

 > We accumulate the total population for all states, both in 2010 and in 2012, at
u and v, respectively. These values let us calculate the average growth rate
for the entire country.

 > For each state, we can calculate its growth rate at w.

 > For each region, we save both the minimum and maximum growth rates at x
and y.

In the same way that we created a master object for the data and the labels,
we create another master object for the growth rates. Let’s also calculate the total
growth rate for the country.

var growth = [west.growth, midwest.growth, northeast.growth, south.growth];
var totalGrowth = (total2012 - total2010)/total2010;

Now we need a function to calculate the color for a tree-map rectangle. We
start by defining two color ranges, one for growth rates higher than the national
average and another for lower growth rates. We can then pick an appropriate color
for each state, based on that state’s growth rate. As an example, here’s one pos-
sible set of colors.

var colorRanges = {
 positive: ["#FFFFBF","#D9EF8B","#A6D96A","#66BD63","#1A9850","#006837"],
 negative: ["#FFFFBF","#FEE08B","#FDAE61","#F46D43","#D73027","#A50026"]
};

Next is the pickColor() function that uses these color ranges to select the right
color for each box. The treemap-squared library will call it with two parameters—
the coordinates of the rectangle it’s about to draw, and the index into the data

www.it-ebooks.info

http://www.it-ebooks.info/

124 | Chapter 4

set. We don’t need the coordinates in our example, but we will use the index to
find the value to model. Once we find the state’s growth rate, we can subtract the
national average. That calculation determines which color range to use. States that
are growing faster than the national average get the positive color range; states
growing slower than the average get the negative range.

The final part of the code calculates where on the appropriate color range to
select the color.

function pickColor(coordinates, index) {
 var regionIdx = index[0];
 var stateIdx = index[1];
 var growthRate = growth[regionIdx][stateIdx];
 var deltaGrowth = growthRate - totalGrowth;
 if (deltaGrowth > 0) {
 colorRange = colorRanges.positive;
 } else {
 colorRange = colorRanges.negative;
 deltaGrowth = -1 * deltaGrowth;
 }
 var colorIndex = Math.floor(colorRange.length*(deltaGrowth-minDelta)/
(maxDelta-minDelta));
 if (colorIndex >= colorRange.length) { colorIndex = colorRange.length - 1;
}

 color = colorRange[colorIndex];
 return{ "fill" : color };
}

The code uses a linear scale based on the extreme values from among all the
states. So, for example, if a state’s growth rate is halfway between the overall aver-
age and the maximum growth rate, we’ll give it a color that’s halfway in the posi-
tive color range array.

Now when we call TreeMap.draw(), we can add this function to its parameters,
specifically by setting it as the value for the box key of the options object. The
treemap-squared library will then defer to our function for selecting the colors of
the regions.

Treemap.draw("treemap", 600, 450, data, labels, {"box" : pickColor});

The resulting tree map of Figure 4-2 still shows the relative populations for
all of the states. Now, through the use of color shades, it also indicates the rate
of population growth compared to the national average. The visualization clearly
shows the migration from the Northeast and Midwest to the South and West.

www.it-ebooks.info

http://www.it-ebooks.info/

 Creating Specialized Graphs | 125

Figure 4-2: Tree maps can use color as well as area to show data values.

Highlighting Regions with a Heat Map
If you work in the web industry, heat maps may already be a part of your job.
Usability researchers often use heat maps to evaluate site designs, especially when
they want to analyze which parts of a web page get the most attention from users.
Heat maps work by overlaying values, represented as semitransparent colors, over
a two-dimensional area. As the example in Figure 4-3 shows, different colors rep-
resent different levels of attention. Users focus most on areas colored red, and less
on yellow, green, and blue areas.

For this example, we’ll use a heat map to visualize an important aspect of
a basketball game: from where on the court the teams are scoring most of their
points. The software we’ll use is the heatmap.js library from Patrick Wied (http://
www.patrick-wied.at/static/heatmapjs/). If you need to create traditional website
heat maps, that library includes built-in support for capturing mouse movements
and mouse clicks on a web page. Although we won’t use those features for our
example, the general approach is much the same.

www.it-ebooks.info

http://www.it-ebooks.info/

126 | Chapter 4

Figure 4-3: Heat maps traditionally show where web users focus
their attention on a page.

Step 1: Include the Required JavaScript
For modern browsers, the heatmap.js library has no additional requirements. The
library includes optional additions for real-time heat maps and for geographic inte-
gration, but we won’t need these in our example. Older browsers (principally IE8
and older) can use heatmap.js with the explorer canvas library. Since we don’t need
to burden all users with this library, we’ll use conditional comments to include it
only when it’s needed. Following current best practices, we include all script files
at the end of our <body>.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <!--[if lt IE 9]><script src="js/excanvas.min.js"></script><![endif]-->
 <script src="js/heatmap.js"></script>
 </body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

 Creating Specialized Graphs | 127

Step 2: Define the Visualization Data
For our example, we’ll visualize the NCAA Men's Basketball game on February 13,
2013, between Duke University and the University of North Carolina. Our data set
(http://www.cbssports.com/collegebasketball/gametracker/live/NCAAB_20130213_
UNC@DUKE) contains details about every point scored in the game. To clean the
data, we convert the time of each score to minutes from the game start, and we
define the position of the scorer in x- and y-coordinates. We’ve defined these coor-
dinates using several important conventions:

 > We’ll show North Carolina’s points on the left side of the court and Duke’s
points on the right side.

 > The bottom-left corner of the court corresponds to position (0,0), and the
top-right corner corresponds to (10,10).

 > To avoid confusing free throws with field goals, we’ve given all free throws a
position of (−1, −1).

Here’s the beginning of the data; the full data is available with the book’s
source code (http://jsDataV.is/source/).

var game = [
 { team: "UNC", points: 2, time: 0.85, unc: 2, duke: 0, x: 0.506, y: 5.039 },
 { team: "UNC", points: 3, time: 1.22, unc: 5, duke: 0, x: 1.377, y: 1.184 },
 { team: "DUKE", points: 2, time: 1.65 unc: 5, duke: 2, x: 8.804, y: 7.231 },
 // Data set continues...

Step 3: Create the Background Image
A simple diagram of a basketball court, like that in Figure 4-4, works fine for our
visualization. The dimensions of our background image are 600×360 pixels.

Figure 4-4: A background image sets the context for the visualization.

www.it-ebooks.info

http://www.it-ebooks.info/

128 | Chapter 4

Step 4: Set Aside an HTML Element to Contain the Visualization
In our web page, we need to define the element (generally a <div>) that will hold
the heat map. When we create the element, we specify its dimensions, and we
define the background. The following fragment does both of those using inline
styles to keep the example concise. You might want to use a CSS style sheet in an
actual implementation.

<div id="heatmap"
 style="position:relative;width:600px;height:360px;
 background-image:url('img/basketball.png');">
</div>

Notice that we’ve given the element a unique id. The heatmap.js library
needs that id to place the map on the page. Most importantly, we also set the
position property to relative. The heatmap.js library positions its graphics using
absolute positioning, and we want to contain those graphics within the parent
element.

Step 5: Format the Data
For our next step, we must convert the game data into the proper format for the
library. The heatmap.js library expects individual data points to contain three
properties:

 > The x-coordinate, measured in pixels from the left of the containing element

 > The y-coordinate, measured in pixels from the top of the containing element

 > The magnitude of the data point (specified by the count property)

The library also requires the maximum magnitude for the entire map, and
here things get a little tricky. With standard heat maps, the magnitudes of all the
data points for any particular position sum together. In our case, that means that
all the baskets scored from layups and slam dunks—which are effectively from
the same position on the court—are added together by the heat-map algorithm.
That one position, right underneath the basket, dominates the rest of the court.
To counteract that effect, we specify a maximum value far less than what the heat
map would expect. In our case, we’ll set the maximum value to 3, which means that
any location where at least three points were scored will be colored red, and we’ll
easily be able to see all the baskets.

We can use JavaScript to transform the game array into the appropriate
format.

u var docNode = document.getElementById("heatmap");
v var height = docNode.clientHeight;
w var width = docNode.clientWidth;
x var dataset = {};
y dataset.max = 3;
z dataset.data = [];

www.it-ebooks.info

http://www.it-ebooks.info/

 Creating Specialized Graphs | 129

for (var i=0; i<game.length; i++) {
 var currentShot = game[1];

{ if ((currentShot.x !== -1) && (currentShot.y !== -1)) {
 var x = Math.round(width * currentShot.x/10);
 var y = height - Math.round(height * currentShot.y/10);
 dataset.data.push({"x": x, "y": y, "count": currentShot.points});
 }
}

 We start by fetching the height and width of the containing element at u, v,
and w. If those dimensions change, our code will still work fine. Then we initialize
the dataset object x, with a max property y and an empty data array z. Finally, we
iterate through the game data and add relevant data points to this array. Notice
that we’re filtering out free throws at {.

Step 6: Draw the Map
With a containing element and a formatted data set, it’s a simple matter to draw
the heat map. We create the heat-map object (the library uses the name h337 in an
attempt to be clever) by specifying the containing element, a radius for each point,
and an opacity. Then we add the data set to this object.

var heatmap = h337.create({
 element: "heatmap",
 radius: 30,
 opacity: 50
});
heatmap.store.setDataSet(dataset);

The resulting visualization in Figure 4-5 shows where each team scored its
points.

Figure 4-5: The heat map shows successful shots in the game.

www.it-ebooks.info

http://www.it-ebooks.info/

130 | Chapter 4

Step 7: Adjust the Heat Map z-index
The heatmap.js library is especially aggressive in its manipulation of the z-index
property. To ensure that the heat map appears above all other elements on the
page, the library explicitly sets this property to a value of 10000000000. If your web
page has elements that you don’t want the heat map to obscure (such as fixed-
position navigation menus), that value is probably too aggressive. You can fix it by
modifying the source code directly. Or, as an alternative, you can simply reset the
value after the library finishes drawing the map.

If you’re using jQuery, the following code will reduce the z-index to a more
reasonable value.

$("#heatmap canvas").css("z-index", "1");

Showing Relationships with
Network Graphs
Visualizations don’t always focus on the actual data values; sometimes the most
interesting aspects of a data set are the relationships among its members. The
relationships between members of a social network, for example, might be the
most important feature of that network. To visualize these types of relationships,
we can use a network graph. Network graphs represent objects, generally known
as nodes, as points or circles. Lines or arcs (technically called edges) connect these
nodes to indicate relationships.

Constructing network graphs can be a bit tricky, as the underlying mathe-
matics is not always trivial. Fortunately, the Sigma library (http://sigmajs.org/)
takes care of most of the complicated calculations. By using that library, we can
create full-featured network graphs with just a little bit of JavaScript. For our
example, we’ll consider one critic’s list of the top 25 jazz albums of all time (http://
www.thejazzresource.com/top_25_jazz_albums.html). Several musicians performed
on more than one of these albums, and a network graph lets us explore those
connections.

Step 1: Include the Required Libraries
The Sigma library does not depend on any other JavaScript libraries, so we don’t
need any other included scripts. It is not, however, available on common content
distribution networks. Consequently, we’ll have to serve it from our own web host.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>

www.it-ebooks.info

http://www.it-ebooks.info/

 Creating Specialized Graphs | 131

 <body>
u <div id="graph"></div>
v <script src="js/sigma.min.js"></script>

 </body>
</html>

As you can see, we’ve set aside a <div> to hold our graph at u. We’ve also
included the JavaScript library as the last part of the <body> element at v, as that
provides the best browser performance.

 QNote: In most of the examples in this book, I included steps you can take to
make your visualizations compatible with older web browsers such as Ie8. In
this case, however, those approaches degrade performance so severely that
they are rarely workable. to view the network graph visualization, your users
will need a modern browser.

Step 2: Prepare the Data
Our data on the top 25 jazz albums looks like the following snippet. I’m showing
only the first couple of albums, but you can see the full list in the book’s source
code (http://jsDataV.is/source/).

var albums = [
 {
 album: "Miles Davis - Kind of Blue",
 musicians: [
 "Cannonball Adderley",
 "Paul Chambers",
 "Jimmy Cobb",
 "John Coltrane",
 "Miles Davis",
 "Bill Evans"
]
 },{
 album: "John Coltrane - A Love Supreme",
 musicians: [
 "John Coltrane",
 "Jimmy Garrison",
 "Elvin Jones",
 "McCoy Tyner"
]
 // Data set continues...

That’s not exactly the structure that Sigma requires. We could convert it to a
Sigma JSON data structure in bulk, but there’s really no need. Instead, as we’ll see
in the next step, we can simply pass data to the library one element at a time.

www.it-ebooks.info

https://github.com/sathomas/jsDataV.is-source
https://github.com/sathomas/jsDataV.is-source
http://www.it-ebooks.info/

132 | Chapter 4

Step 3: Define the Graph’s Nodes
Now we’re ready to use the library to construct our graph. We start by initializing the
library and indicating where it should construct the graph. That parameter is the id
of the <div> element set aside to hold the visualization.

var s = new sigma("graph");

Now we can continue by adding the nodes to the graph. In our case, each
album is a node. As we add a node to the graph, we give it a unique identifier (which
must be a string), a label, and a position. Figuring out an initial position can be a bit
tricky for arbitrary data. In a few steps, we’ll look at an approach that makes the ini-
tial position less critical. For now, though, we’ll simply spread our albums in a circle
using basic trigonometry.

for (var idx=0; idx<albums.length; idx++) {
 var theta = idx*2*Math.PI / albums.length;
 s.graph.addNode({
 id: ""+idx, // Note: 'id' must be a string
 label: albums[idx].album,
 x: radius*Math.sin(theta),
 y: radius*Math.cos(theta),
 size: 1
 });
}

Here, the radius value is roughly half of the width of the container. We can
also give each node a different size, but for our purposes it’s fine to set every
album’s size to 1.

Finally, after defining the graph, we tell the library to draw it.

s.refresh();

With Figure 4-6, we now have a nicely drawn circle of the top 25 jazz albums
of all time. In this initial attempt, some of the labels may get in one another’s way,
but we’ll address that shortly.

If you try out this visualization in the browser, you’ll notice that the Sigma
library automatically supports panning the graph, and users can move their mouse
pointer over individual nodes to highlight the node labels.

www.it-ebooks.info

http://www.it-ebooks.info/

 Creating Specialized Graphs | 133

Somethin’ Else

Speak No Evil

Birth of the Cool

Maiden Voyage

A Boy Named Charlie Brown

Out to Lunch

The Blues and the Abstract Truth

Go
Sarah Vaughan with Clifford BrownKind of BlueA Love Supreme

Time Out

Ellington at Newport

Jazz at Massey Hall

The Best of the Hot Five...

Blue Trane

Getz/Gilberto

Mingus Ah Um

Concert by the Sea

Bitches Brew

Saxophone Colossus
Clifford Brown & Max RoachMoanin’

At Carnegie Hall

Soul Station

Figure 4-6: Sigma draws graph nodes as small circles.

Step 4: Connect the Nodes with Edges
Now that we have the nodes drawn in a circle, it’s time to connect them with edges.
In our case, an edge—or connection between two albums—represents a musician
who performed on both of the albums. Here's the code that finds those edges.

u for (var srcIdx=0; srcIdx<albums.length; srcIdx++) {
 var src = albums[srcIdx];

v for (var mscIdx=0; mscIdx<src.musicians.length; mscIdx++) {
 var msc = src.musicians[mscIdx];

w for (var tgtIdx=srcIdx+1; tgtIdx<albums.length; tgtIdx++) {
 var tgt = albums[tgtIdx];

x if (tgt.musicians.some(function(tgtMsc) {return tgtMsc === msc;}))
{
 s.graph.addEdge({
 id: srcIdx + "." + mscIdx + "-" + tgtIdx,
 source: ""+srcIdx,
 target: ""+tgtIdx
 })
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

134 | Chapter 4

To find the edges, we iterate through the albums in four stages.

1. Loop through each album as a potential source of a connection at u.
2. For the source album, loop through all musicians at v.
3. For each musician, loop through all of the remaining albums as potential

targets for a connection at w.
4. For each target album, loop through all the musicians at x, looking for a

match.

For the last step we’re using the .some() method of JavaScript arrays. That
method takes a function as a parameter, and it returns true if that function itself
returns true for any element in the array.

We’ll want to insert this code before we refresh the graph. When we’ve done
that, we’ll have a connected circle of albums, as shown in Figure 4-7.

Somethin’ Else

Speak No Evil

Birth of the Cool

Maiden Voyage

A Boy Named Charlie Brown

Out to Lunch

The Blues and the Abstract Truth

Go
Sarah Vaughan with Clifford BrownKind of BlueA Love Supreme

Time Out

Ellington at Newport

Jazz at Massey Hall

The Best of the Hot Five...

Blue Trane

Getz/Gilberto

Mingus Ah Um

Concert by the Sea

Bitches Brew

Saxophone Colossus
Clifford Brown & Max RoachMoanin’

At Carnegie Hall

Soul Station

Figure 4-7: Sigma can then connect graph nodes using lines
to represent edges.

Again, you can pan and zoom in on the graph to focus on different parts.

Step 5: Automate the Layout
So far we’ve manually placed the nodes in our graph in a circle. That’s not a terrible
approach, but it can make it hard to discern some of the connections. It would be
better if we could let the library calculate a more optimal layout than the simple
circle. That’s exactly what we’ll do now.

www.it-ebooks.info

http://www.it-ebooks.info/

 Creating Specialized Graphs | 135

The mathematics behind this approach is known as force-directed graphing.
In a nutshell, the algorithm proceeds by treating the graph’s nodes and edges
as physical objects subject to real forces such as gravity and electromagnetism.
It simulates the effect of those forces, pushing and prodding the nodes into new
positions on the graph.

The underlying algorithm may be complicated, but Sigma makes it easy to
employ. First we have to add the optional forceAtlas2 plug-in to the Sigma library.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <div id="graph"></div>
 <script src="js/sigma.min.js"></script>
 <script src="js/sigma.layout.forceAtlas2.min.js"></script>
 </body>
</html>

Mathieu Jacomy and Tommaso Venturini developed the specific force-
direction algorithm employed by this plug-in; they document the algorithm, known
as ForceAtlas2, in the 2011 paper “ForceAtlas2, A Graph Layout Algorithm for
Handy Network Visualization” (http://webatlas.fr/tempshare/ForceAtlas2_Paper.pdf).
Although we don’t have to understand the mathematical details of the algorithm,
knowing how to use its parameters does come in handy. There are three param-
eters that are important for most visualizations that use the plug-in:

gravity This parameter determines how strongly the algorithm tries to
keep isolated nodes from drifting off the edges of the screen. Without any
gravity, the only force acting on isolated nodes will be one that repels them
from other nodes; undeterred, that force will push the nodes off the screen
entirely. Since our data includes several isolated nodes, we’ll want to set this
value relatively high to keep those nodes on the screen.

scalingRatio This parameter determines how strongly nodes repel each
other. A small value draws connected nodes closer together, while a large
value forces all nodes farther apart.

slowDown This parameter decreases the sensitivity of the nodes to the repul-
sive forces from their neighbors. Reducing the sensitivity (by increasing this
value) can help reduce the instability that may result when nodes face com-
peting forces from multiple neighbors. In our data there are many connec-
tions that will tend to draw the nodes together and compete with the force
pulling them apart. To dampen the wild oscillations that might otherwise
ensue, we’ll set this value relatively high as well.

www.it-ebooks.info

http://www.it-ebooks.info/

136 | Chapter 4

The best way to settle on values for these parameters is to experiment with
the actual data. The values we’ve settled on for this data set are shown in the fol-
lowing code.

s.startForceAtlas2({gravity:100,scalingRatio:70,slowDown:100});
setTimeout(function() { s.stopForceAtlas2(); }, 10000);

Now, instead of simply refreshing the graph when we’re ready to display it, we
start the force-directed algorithm, which periodically refreshes the display while it
performs its simulation. We also need to stop the algorithm after it’s had a chance to
run for a while. In our case, 10 seconds (10000 milliseconds) is plenty of time.

As a result, our albums start out in their original circle, but quickly migrate to
a position that makes it much easier to identify the connections. Some of the top
albums are tightly connected, indicating that they have many musicians in com-
mon. A few, however, remain isolated. Their musicians make the list only once.

As you can see in Figure 4-8, the labels for the nodes still get in the way of
one another; we’ll fix that in the next step. What’s important here, however, is that
it’s much easier to identify the albums with lots of connections. The nodes rep-
resenting those albums have migrated to the center of the graph, and they have
many links to other nodes.

Somethin’ Else

Speak No Evil

Birth of the Cool

Maiden Voyage

A Boy Named Charlie Brown

Out to Lunch

The Blues and the Abstract Truth

Go

Sarah Vaughan with Clifford Brown

Kind of Blue

A Love Supreme

Time Out
Ellington at Newport

Jazz at Massey Hall

The Best of the Hot Five

Blue Trane

Getz/Gilberto

Mingus Ah Um

Concert by the Sea

Bitches Brew

Saxophone Colossus

Clifford Brown & Max Roach

Moanin’

At Carnegie Hall

Soul Station

Figure 4-8: Force direction positions the graph nodes automatically.

www.it-ebooks.info

http://www.it-ebooks.info/

 Creating Specialized Graphs | 137

Step 6: Add Interactivity
To keep the labels from interfering with one another, we can add some interactiv-
ity to the graph. By default, we’ll hide the labels entirely, giving users the chance to
appreciate the structure of the graph without distractions. We’ll then allow them to
click on individual nodes to reveal the album title and its connections.

for (var idx=0; idx<albums.length; idx++) {
 var theta = idx*2*Math.PI / albums.length;
 s.graph.addNode({
 id: ""+idx, // Note: 'id' must be a string

u label: "",
v album: albums[idx].album,

 x: radius*Math.sin(theta),
 y: radius*Math.cos(theta),
 size: 1
 });
}

To suppress the initial label display, we modify the initialization code at u so
that nodes have blank labels. We save a reference to the album title, though, at v.

Now we need a function that responds to clicks on the node elements. The
Sigma library supports exactly this sort of function with its interface. We simply
bind to the clickNode event.

s.bind("clickNode", function(ev) {
 var nodeIdx = ev.data.node.id;
 // Code continues...
});

Within that function, the ev.data.node.id property gives us the index of the
node that the user clicked. The complete set of nodes is available from the array
returned by s.graph.nodes(). Since we want to display the label for the clicked
node (but not for any other), we can iterate through the entire array. At each itera-
tion, we either set the label property to an empty string (to hide it) or to the album
property (to show it).

s.bind("clickNode", function(ev) {
 var nodeIdx = ev.data.node.id;
 var nodes = s.graph.nodes();
 nodes.forEach(function(node) {

u if (nodes[nodeIdx] === node) {
 node.label = node.album;
 } else {
 node.label = "";
 }
 });
});

www.it-ebooks.info

http://www.it-ebooks.info/

138 | Chapter 4

Now that users have a way to show the title of an album, let’s give them a
way to hide it. A small addition at u is all it takes to let users toggle the album
display with subsequent clicks.

 if (nodes[nodeIdx] === node && node.label !== node.album) {

As long as we’re making the graph respond to clicks, we can also take the
opportunity to highlight the clicked node’s connections. We do that by chang-
ing their color. Just as s.graph.nodes() returns an array of the graph nodes,
s.graph.edges() returns an array of edges. Each edge object includes target and
source properties that hold the index of the relevant node.

s.graph.edges().forEach(function(edge) {
 if ((nodes[nodeIdx].label === nodes[nodeIdx].album) &&

u ((edge.target === nodeIdx) || (edge.source === nodeIdx))) {
v edge.color = "blue";

 } else {
w edge.color = "black";

 }
});

Here we scan through all the graph’s edges to see if they connect to the
clicked node. If the edge does connect to the node, we change its color at v to
something other than the default. Otherwise, we change the color back to the
default at w. You can see that we’re using the same approach to toggle the edge
colors as we did to toggle the node labels on successive clicks at u.

Now that we’ve changed the graph properties, we have to tell Sigma to
redraw it. That’s a simple matter of calling s.refresh().

s.refresh();

Now we have a fully interactive network graph in Figure 4-9.

Revealing Language Patterns with
Word Clouds
Data visualizations don’t always focus on numbers. Sometimes the data for a visual-
ization centers on words instead, and a word cloud is often an effective way to pres-
ent this kind of data. Word clouds can associate any quantity with a list of words;
most often that quantity is a relative frequency. This type of word cloud, which we’ll
create for our next example, reveals which words are common and which are rare.

www.it-ebooks.info

http://www.it-ebooks.info/

 Creating Specialized Graphs | 139

Kind of Blue

Figure 4-9: An interactive graph gives users the chance
to highlight specific nodes.

To create this visualization, we’ll rely on the wordcloud2 library (http://
timdream.org/wordcloud2.js), a spin-off from author Tim Dream’s HTML5 Word
Cloud project (http://timc.idv.tw/wordcloud/).

 QNote: As is the case with a few of the more advanced libraries we’ve exam-
ined, wordcloud2 doesn’t function very well in older web browsers such as
Ie8 and earlier. Since wordcloud2 itself requires a modern browser, for this
example we won’t worry about compatibility with older browsers. this will
free us to use some other modern JavaScript features, too.

Step 1: Include the Required Libraries
The wordcloud2 library does not depend on any other JavaScript libraries, so we
don’t need any other included scripts. It is not, however, available on common
content distribution networks, so we’ll have to serve it from our own web host.

www.it-ebooks.info

http://www.it-ebooks.info/

140 | Chapter 4

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <script src="js/wordcloud2.js"></script>
 </body>
</html>

To keep our example focused on the visualization, we’ll use a word list that
doesn’t need any special preparation. If you’re working with natural language as
spoken or written, however, you might wish to process the text to identify alter-
nate forms of the same word. For example, you might want to count hold, holds,
and held as three instances of hold rather than three separate words. This type of
processing obviously depends greatly on the particular language. If you’re work-
ing in English and Chinese, though, the same developer that created wordcloud2
has also released the WordFreq JavaScript library (http://timdream.org/wordfreq/),
which performs exactly this type of analysis.

Step 2: Prepare the Data
For this example, we’ll look at the different tags users associate with their questions
on the popular Stack Overflow (http://stackoverflow.com/). That site lets users pose
programming questions that the community tries to answer. Tags provide a conve-
nient way to categorize the questions so that users can browse other posts related
to the same topic. By constructing a word cloud (perhaps better named a tag cloud),
we can quickly show the relative popularity of different programming topics.

If you wanted to develop this example into a real application, you could
access the Stack Overflow data in real time using the site’s API. For our example,
though, we’ll use a static snapshot. Here’s how it starts:

var tags = [
 ["c#", 601251],
 ["java", 585413],
 ["javascript", 557407],
 ["php", 534590],
 ["android", 466436],
 ["jquery", 438303],
 ["python", 274216],
 ["c++", 269570],
 ["html", 259946],
 // Data set continues...

In this data set, the list of tags is an array, and each tag within the list is also
an array. These inner arrays have the word itself as the first item and a count for
that word as the second item. You can see the complete list in the book’s source
code (http://jsDataV.is/source/).

www.it-ebooks.info

http://www.it-ebooks.info/

 Creating Specialized Graphs | 141

The format that wordcloud2 expects is quite similar to how our data is already
laid out, except that in each word array, the second value needs to specify the draw-
ing size for that word. For example, the array element ["javascript", 56] would tell
wordcloud2 to draw javascript with a height of 56 pixels. Our data, of course, isn’t set
up with pixel sizes. The data value for javascript is 557407, and a word 557,407 pixels
high wouldn’t even fit on a billboard. As a result, we must convert counts to draw-
ing sizes. The specific algorithm for this conversion will depend both on the size of
the visualization and on the raw values. A simple approach that works in this case is
to divide the count values by 10,000 and round to the nearest integer.

var list = tags.map(function(word) {
 return [word[0], Math.round(word[1]/10000)];
});

In Chapter 2, we saw how jQuery’s .map() function makes it easy to process
all the elements in an array. It turns out that modern browsers have the same func-
tionality built in, so here we use the native version of .map() even without jQuery.
(This native version won’t work on older browsers like jQuery will, but we’re not
worrying about that for this example.)

After this code executes, our list variable will contain the following:

[
 ["c#", 60],
 ["java", 59],
 ["javascript", 56],
 ["php", 53],
 ["android", 47],
 ["jquery", 44],
 ["python", 27],
 ["c++", 27],
 ["html", 26],
 // Data set continues...

Step 3: Add the Required Markup
The wordcloud2 library can build its graphics either using the HTML <canvas> inter-
face or in pure HTML. As we’ve seen with many graphing libraries, <canvas> is a
convenient interface for creating graphic elements. For word clouds, however,
there aren’t many benefits to using <canvas>. Native HTML, on the other hand, lets
us use all the standard HTML tools (such as CSS style sheets or JavaScript event
handling). That’s the approach we’ll take in this example.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>

www.it-ebooks.info

http://www.it-ebooks.info/

142 | Chapter 4

u <div id="cloud" style="position:relative;"></div>
 <script src="js/wordcloud2.js"></script>
 </body>
</html>

When using native HTML, we do have to make sure that the containing ele-
ment has a position: relative style, because wordcloud2 relies on that when placing
the words in their proper location in the cloud. You can see that here we’ve set that
style inline at u.

Step 4: Create a Simple Cloud
With these preparations in place, creating a simple word cloud is about as easy as
it can get. We call the wordcloud2 library and tell it the HTML element in which to
draw the cloud, and the list of words for the cloud’s data.

WordCloud(document.getElementById("cloud"), {list: list});

Even with nothing other than default values, wordcloud2 creates the attrac-
tive visualization shown in Figure 4-10.

The wordcloud2 interface also provides many options for customizing the
visualization. As expected, you can set colors and fonts, but you can also change
the shape of the cloud (even providing a custom polar equation), rotation limits,
internal grid sizing, and many other features.

Figure 4-10: A word cloud can show a list of words with their relative
frequency.

www.it-ebooks.info

http://www.it-ebooks.info/

 Creating Specialized Graphs | 143

Step 5: Add Interactivity
If you ask wordcloud2 to use the <canvas> interface, it gives you a couple of call-
back hooks that your code can use to respond to user interactions. With native
HTML, however, we aren’t limited to just the callbacks that wordcloud2 provides.
To demonstrate, we can add a simple interaction to respond to mouse clicks on
words in the cloud.

First we’ll let users know that interactions are supported by changing the
cursor to a pointer when they hover the mouse over a cloud word.

#cloud span {
 cursor: pointer;
}

Next let’s add an extra element to the markup where we can display informa-
tion about any clicked word.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <div id="cloud" style="position:relative;"></div>

u <div id="details"><div>
 <script src="js/wordcloud2.js"></script>
 </body>
</html>

Here we've added the <div> with the id details at u.
Then we define a function that can be called when the user clicks within the

cloud.

var clicked = function(ev) {
u if (ev.target.nodeName === "SPAN") {

 // A element was the target of the click
 }
}

Because our function will be called for any clicks on the cloud (including
clicks on empty space), it first checks to see if the target of the click was really a
word. Words are contained in elements, so we can verify that by looking
at the nodeName property of the click target. As you can see at u, JavaScript node
names are always uppercase.

If the user did click on a word, we can find out which word by looking at the
textContent property of the event target.

www.it-ebooks.info

http://www.it-ebooks.info/

144 | Chapter 4

var clicked = function(ev) {
 if (ev.target.nodeName === "SPAN") {

u var tag = ev.target.textContent;
 }
}

After u, the variable tag will hold the word on which the user clicked. So, for
example, if a user clicks on the word javascript, then the tag variable will have the
value "javascript".

Since we’d like to show users the total count when they click on a word, we’re
going to need to find the word in our original data set. We have the word’s value, so
that’s simply a matter of searching through the data set to find a match. If we were
using jQuery, the .grep() function would do just that. In this example, we’re sticking
with native JavaScript, so we can look for an equivalent method in pure JavaScript.
Unfortunately, although there is such a native method defined—.find()—very few
browsers, even modern ones, currently support it. We could resort to a standard
for or forEach loop, but there is an alternative that many consider an improvement
over that approach. It relies on the .some() method, an array method that modern
browsers support. The .some() method passes every element of an array to an
arbitrary function and stops when that function returns true. Here’s how we can
use it to find the clicked tag in our tags array.

var clicked = function(ev) {
 if (ev.target.nodeName === "SPAN") {
 var tag = ev.target.textContent;
 var clickedTag;

u tags.some(function(el) {
v if (el[0] === tag) {

 clickedTag = el;
 return true; // This ends the .some() loop
 }

w return false;
x });

 }
}

The function that’s the argument to .some() is defined beginning at u and
ending at x. It is called with the parameter el, short for an element in the tags array.
The conditional statement at v checks to see if that element’s word matches the
clicked node’s text content. If so, the function sets the clickedTag variable and
returns true to terminate the .some() loop.

If the clicked word doesn’t match the element we’re checking in the tags
array, then the function supplied to .some() returns false at w. When .some() sees
a false return value, it continues iterating through the array.

We can use the return value of the .some() method to make sure the clicked
element was found in the array. When that’s the case, .some() itself returns true.

var clicked = function(ev) {
 var details = "";

www.it-ebooks.info

http://www.it-ebooks.info/

 Creating Specialized Graphs | 145

 if (ev.target.nodeName === "SPAN") {
 var tag = ev.target.textContent,
 clickedTag;
 if (tags.some(function(el) {
 if (el[0] === tag) {
 clickedTag = el;
 return true;
 }
 return false;
 })) {

u details = "There were " + clickedTag[1] +
v " Stack Overflow questions tagged \"" + tag + "\"";

 }
 }

w document.getElementById("details").innerText = details;
}

At u and v we update the details variable with extra information. At w we
update the web page with those details.

And finally we tell the browser to call our handler when a user clicks on any-
thing in the cloud container.

document.getElementById("cloud").addEventListener("click", clicked)

With these few lines of code, our word cloud is now interactive, as shown in
Figure 4-11.

There were 557407 Stack Overflow questions tagged “javascript”.

Figure 4-11: Because our word cloud consists of standard HTML elements,
we can make it interactive with simple JavaScript event handlers.

www.it-ebooks.info

http://www.it-ebooks.info/

146 | Chapter 4

Summing Up
In this chapter, we’ve looked at several different special-purpose visualizations
and some JavaScript libraries that can help us create them. Tree maps are handy
for showing both hierarchy and dimension in a single visualization. Heat maps can
highlight varying intensities throughout a region. Network graphs reveal the con-
nections between objects. And word clouds show relative relationships between
language properties in an attractive and concise visualization.

www.it-ebooks.info

http://www.it-ebooks.info/

5
Displaying timelines

The most compelling visualizations often suc-
ceed because they tell a story; they extract a
narrative from data and reveal that narrative to
their users. And as with any narrative, time is a
critical component. If the data consists solely of
numbers, a standard bar or line chart can eas-
ily show its evolution over time. If the data is
not numerical, however, standard charts prob-
ably won’t work. This chapter considers several
alternatives for time-based visualizations.

www.it-ebooks.info

http://www.it-ebooks.info/

148 | Chapter 5

All are based on some variation of a timeline; one linear dimension represents
time, and events are places along that dimension based on when they occurred.
In all of the examples, we’ll consider the same underlying data: a possible
chronology of the plays of William Shakespeare (http://en.wikipedia.org/wiki/
Chronology_of_Shakespeare%27s_plays).

We’ll look at three very different approaches for adding timelines to web
pages. One option relies on a JavaScript library, and it follows a process similar to
many other visualizations in the book. The other two techniques, however, offer
a different perspective. In one, we won’t use a visualization library at all. Instead,
we’ll build a timeline with basic JavaScript, HTML, and CSS, and we’ll see how to
do that both with and without jQuery. The final example shows the other extreme.
It relies on a full-featured web component available from an external website. In
short, we’ll look at the following:

 > How to use a library to create timelines

 > How to create timelines without a library using only JavaScript, HTML, and CSS

 > How to integrate a timeline component in a web page

Building Timelines with a Library
First, we’ll build the timeline using the Chronoline.js library (http://stoicloofah.github
.io/chronoline.js/), which works a lot like most of the other JavaScript libraries we’ve
used in the book. You include the library in your page, define your data, and let the
library create the visualization.

Step 1: Include the Required Libraries
The Chronoline.js library itself depends on a few other libraries, and we’ll need to
include all of them in our pages.

 > jQuery (http://jquery.com/)

 > qTip2, including its style sheet (http://qtip2.com/)

 > Raphaël (http://raphaeljs.com/)

All of these libraries are popular enough for public content distribution net-
works to support, so we’ll use CloudFlare’s CDN in the following markup. We’ll
have to use our own resources, however, to host Chronoline.js itself. That library
also defines its own style sheet.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 <link rel="stylesheet" type="text/css"
 href="//cdnjs.cloudflare.com/ajax/libs/qtip2/2.2.0/jquery.qtip.css">
 <link rel="stylesheet" type="text/css"
 href="css/chronoline.css">

www.it-ebooks.info

http://www.it-ebooks.info/

 Displaying Timelines | 149

 </head>
 <body>

u <div id="timeline"></div>
 <script src="//cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js">
 </script>
 <script src="//cdnjs.cloudflare.com/ajax/libs/qtip2/2.2.0/jquery.qtip.min.js">
 </script>
 <script src="//cdnjs.cloudflare.com/ajax/libs/raphael/2.1.2/raphael-min.js">
 </script>
 <script src="js/chronoline.js"></script>
 </body>
</html>

As you can see at u, we’ve set aside a <div> to hold our timeline. We’ve also
included the JavaScript libraries as the last part of the <body> element, as that pro-
vides the best browser performance.

Step 2: Prepare the Data
The data for our timeline comes from Wikipedia (http://en.wikipedia.org/wiki/
Chronology_of_Shakespeare%27s_plays). As a JavaScript object, that data might
be structured like the following excerpt:

[
 {
 "play": "The Two Gentlemen of Verona",
 "date": "1589-1591",
 "record": "Francis Meres'...",
 "published": "First Folio (1623)",
 "performance": "adaptation by Benjamin Victor...",
 "evidence": "The play contains..."
 }, {
 "play": "The Taming of the Shrew",
 "date": "1590-1594",
 "record": "possible version...",
 "published": "possible version...",
 "performance": "According to Philip Henslowe...",
 "evidence": "Kier Elam posits..."
 }, {
 "play": "Henry VI, Part 2",
 "date": "1590-1591",
 "record": "version of the...",
 "published": "version of the...",
 "performance": "although it is known...",
 "evidence": "It is known..."
 },
 // Data set continues...

You can see the complete data set in the book’s source code (http://jsDataV
.is/source/).

www.it-ebooks.info

http://www.it-ebooks.info/

150 | Chapter 5

Before we can use Chronoline.js, we have to convert the raw data into the
format the library expects. Since we have jQuery available, we can take advan-
tage of its .map() function for the conversion. (For details on .map(), see Step 7 of
“Selecting Chart Content” on page 55.)

var events = $.map(plays, function(play) {
 var event = {};
 event.title = play.play;

u if (play.date.indexOf("-") !== -1) {
 var daterange = play.date.split("-");

v event.dates = [new Date(daterange[0], 0, 1),
 new Date(daterange[1], 11, 31)]
 } else {

w event.dates = [new Date(play.date, 0, 1), new Date(play.date, 11, 31)]
 }
 return event;
});

As you can see from our data set, some of the plays have a single year as
their date, while others have a range of years (two dates separated by a dash). To
set the date range for Chronoline.js, we check for a dash at u. If one is present, we
split the date string at that dash and set a multiyear range at v. Otherwise, we set
the range to a single year at w.

 QNote: Recall that the JavaScript Date object numbers months from 0 rather
than 1.

Step 3: Draw the Timeline
To draw the timeline, we create a new Chronoline object, passing it the HTML
container element, our event data, and any options. The HTML container element
should be a native element, not a jQuery selection. To convert from a selection to
a native element, we use the get() method. In this case, we want the first element,
so we use the parameter 0.

$(function() {
 var timeline = new Chronoline($("#timeline").get(0), events, {});
}

If we try to use the default options of Chronoline.js with our data, however,
the result is quite disappointing. (In fact, it’s illegible and not worth reproducing
at this point.) We can fix that in the next step with some additional options.

Step 4: Set Chronoline.js Options for the Data
The Chronoline.js library has default options that are well suited for its original
application, but they don’t work so well for Shakespeare’s plays. Fortunately, we
can change the options from the default values. As of this writing, Chronoline.js

www.it-ebooks.info

http://www.it-ebooks.info/

 Displaying Timelines | 151

doesn’t have much documentation on its options; to see the full set, you would
normally have to examine the source code. We’ll cover the most important options
here, though.

One of the most obvious problems with the Chonoline.js defaults is the
date shown in the initial view. Chronoline.js starts by displaying the current date
by default. Since our timeline ends in 1613, the user would have to scroll back-
ward for a long time to see anything meaningful. We can change this view by
giving Chronoline.js a different start date for the initial view:

defaultStartDate: new Date(1589, 0, 1),

As long as we’re setting the timeline to start somewhere near Shakespeare’s
lifetime, there’s no need for Chronoline.js to add a special mark for the current
date, so we use this simple option to tell it not to bother:

markToday: false,

The next major problem to address is the labeling. By default, Chronoline.js
tries to label every day on the timeline. As our events span 24 years, we don’t need
that granularity. Instead, we can tell Chronoline.js just to label the years. For the
same reason, we also need to change the checkmarks. Instead of every day, we
need checkmarks only for every month.

To change both of these options, we supply Chronoline.js with a pair of func-
tions to call.

hashInterval: function(date) {
 return date.getDate() === 1;
},
labelInterval: function(date) {
 return date.getMonth() === 0 && date.getDate() === 1;
},

Chronoline.js passes each of these functions a date object, and the functions
return true or false depending on whether the date merits a checkmark or label.
For checkmarks, we return true only on the first day of the month. We return true
for labels only on January 1.

By default, Chronoline.js will try to show a full date for each label. Since we
only want to label each year, we’ll change the label format to just show the year.
The details for the format specification are based on a standard C++ library (http://
www.cplusplus.com/reference/ctime/strftime/).

labelFormat: "%Y",

For our last adjustments to the labeling, we remove the “sublabels” and
“sub-sublabels” that Chronoline.js adds by default. Those labels don’t provide any
value in our case.

www.it-ebooks.info

http://www.it-ebooks.info/

152 | Chapter 5

subLabel: null,
subSubLabel: null,

We also want to change the span of time that Chronoline.js displays in the
timeline. For our data, showing a span of five years at a time seems good.

visibleSpan: DAY_IN_MILLISECONDS * 366 * 5,

Note that the variable DAY_IN_MILLISECONDS is defined by Chronoline.js itself.
We’re free to use it in this or any other option setting.

Now we can address the timeline scrolling. Chronoline.js normally advances
the timeline by a single day with each click. That would result in some rather tedious
scrolling for our users. Instead of the default behavior, we’ll have Chronoline.js
advance by a full year. As with the labels, we change this behavior by supplying
Chronoline.js with a function. That function is passed a date object, and it should
return a new date object to which Chronoline.js should scroll. In our case, we sim-
ply add or subtract one from the year value.

scrollLeft: function(date) {
 return new Date(date.getFullYear() - 1, date.getMonth(), date.getDate());
},
scrollRight: function(date) {
 return new Date(date.getFullYear() + 1, date.getMonth(), date.getDate());
},

The last few adjustments clean up the appearance and behavior of
Chronoline.js. Adding some extra space (in our case, three months) before the
start and after the end of the timeline gives the data a bit of room.

timelinePadding: DAY_IN_MILLISECONDS * 366 / 4,

We can also make the scrolling animate smoothly instead of jumping, enable
users to drag the timeline right or left, and improve the default browser tool tips.

animated: true,
draggable: true,
tooltips: true,

For the final tweaks, we can change the appearance of the timeline. To
change the color and size of the events, we use the following options:

eventAttrs: { // attrs for the bars and circles of the events
 fill: "#ffa44f",
 stroke: "#ffa44f",
 "stroke-width": 1
},
eventHeight: 10,

www.it-ebooks.info

http://www.it-ebooks.info/

 Displaying Timelines | 153

To change the color of the scroll buttons, we have to modify the chronoline.css
style sheet. The property to change is background-color.

.chronoline-left:hover,

.chronoline-right:hover {
 opacity: 1;
 filter: alpha(opacity=100);
 background-color: #97aceb;
}

With those changes, we finally have a timeline of Shakespeare’s plays, as
shown in Figure 5-1.

Figure 5-1: The Chronoline.js library creates a simple, interactive timeline.

The resulting timeline looks pretty good, but the limitations of the library
make it difficult to customize and enhance the timeline further. Next, we’ll build a
new timeline from scratch without the library so we have complete control.

Building Timelines with JavaScript
If you followed the example in the previous section, you might not be completely
satisfied with the results. We did end up with an accurate timeline of Shakespeare’s
plays, but the resulting visualization may not be communicating what you want.
For example, the timeline doesn’t show the names of the plays unless the user
hovers a mouse over that section of the graph. Perhaps we’d rather have the plays’
titles always visible. That kind of problem is a limitation of third-party libraries. The
author of Chronoline.js didn’t see the need for displaying titles, so he didn’t offer the
option. And unless we’re willing to take on the potentially daunting task of modifying
the library’s source code, we can’t make the library do exactly what we want.

Fortunately, particularly in the case of timelines, we can take a completely
different approach. We can create visualizations without using any third-party
library at all, which will give us total control over the result. Timelines are espe-
cially amenable to this technique because they can be created with nothing more
than text and styling. All it takes is a basic understanding of HTML and CSS, plus
enough JavaScript to set things up and perhaps provide simple interactions.

www.it-ebooks.info

http://www.it-ebooks.info/

154 | Chapter 5

That’s exactly what we’ll do in this example. We’ll start with the same data
set as before. Instead of feeding that data into a third-party library, however, we’ll
use plain old JavaScript (with an optional dose of jQuery) to construct a pure HTML
representation of the data. Then we’ll use CSS to set the appearance of the timeline.

Step 1: Prepare the HTML Skeleton
Without any required libraries, the HTML page for our timeline is pretty simple. All
we need is a containing <div> with a unique id attribute.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <div id="timeline"></div>
 </body>
</html>

Step 2: Start JavaScript Execution
As soon as the browser has finished loading our page, we can start processing the
data. As before, we’ll start with our data formatted as a JavaScript array. You can
see the complete data set in the book’s source code (http://jsDataV.is/source/).

window.onload = function () {
 var plays = [
 {
 "play": "The Two Gentlemen of Verona",
 "date": "1589-1591",
 "record": "Francis Meres'...",
 "published": "First Folio (1623)",
 "performance": "adaptation by Benjamin Victor...",
 "evidence": "The play contains..."
 }, {
 "play": "The Taming of the Shrew",
 "date": "1590-1594",
 "record": "possible version...",
 "published": "possible version...",
 "performance": "According to Philip Henslowe...",
 "evidence": "Kier Elam posits..."
 }, {
 "play": "Henry VI, Part 2",
 "date": "1590-1591",
 "record": "version of the...",
 "published": "version of the...",
 "performance": "although it is known...",
 "evidence": "It is known..."
 },

www.it-ebooks.info

http://www.it-ebooks.info/

 Displaying Timelines | 155

 // Data set continues...
}

Step 3: Create the Timeline in Semantic HTML
To create the timeline in HTML, we first need to decide how to represent it. If
you’re used to working with arbitrary <div> and elements, you might think
that’s the best approach here as well. Instead of jumping right to these generic
elements, however, we should consider other HTML structures that more accu-
rately convey the content. HTML that more closely reflects the meaning of the
underlying content is known as semantic markup, and it’s usually preferred over
generic <div> and tags. Semantic markup exposes the meaning of your con-
tent to computers such as search engines and screen readers for users with visual
impairments, and it can improve your site’s search rank and accessibility. If we think
about a timeline in the context of semantic markup, it’s easy to see that the time-
line is really just a list. In fact, it’s a list with a specific order. We should build our
HTML timeline, therefore, as an ordered list () element. While we’re creating
the , we can also give it a class name for CSS style rules we’ll be adding later.

var container = document.getElementById("timeline");
var list = document.createElement("ol");
list.className="timeline";
container.appendChild(list);

Next we can iterate through the plays, creating an individual list item, ,
for each one. For now, we’ll just insert the date and title as text.

plays.forEach(function(play) {
 var listItem = document.createElement("li");
 listItem.textContent = play.date + ": " + play.play;
 list.appendChild(listItem);
})

Figure 5-2 shows a truncated version of the resulting list. It may not look like
much (yet), but it has the essential data and structure.

Figure 5-2: A pure HTML timeline
can start out as a simple ordered list.

If you look at the resulting HTML that underlies that list, it’s pretty simple:

<ol class="timeline">
 1589-1591: The Two Gentlemen of Verona

www.it-ebooks.info

http://www.it-ebooks.info/

156 | Chapter 5

 1590-1594: The Taming of the Shrew
 1590-1591: Henry VI, Part 2
 1591: Henry VI, Part 3
 1591: Henry VI, Part 1

In the spirit of semantic HTML, we should stop and consider whether that
markup can be improved. Since it appears first in our list items, let’s consider the
date or date range for a play. Although there has been some controversy around
the decision, HTML5 has defined support for a <time> element to contain dates
and times. Using that element as a wrapper will make our dates more semantic.
The second part of each list item is the title of the play. As it happens, HTML5’s
<cite> element is perfect for that content. To quote the current standard (http://
html.spec.whatwg.org):

The <cite> element represents the title of a work (e.g., a book, . . . a play,
[emphasis added] . . . etc). This can be a work that is being quoted or refer-

enced in detail (i.e., a citation), or it can just be a work that is mentioned in

passing.

To add those elements to our code, we’ll have to distinguish between dates
that are single years and those that are ranges. Looking for a dash (-) in the data
will tell us which we have.

plays.forEach(function(play) {
 var listItem = document.createElement("li");
 if (play.date.indexOf("-") !== -1) {

u var dates = play.date.split("-");
 var time = document.createElement("time");
 time.textContent = dates[0];
 listItem.appendChild(time);
 time = document.createElement("time");
 time.textContent = dates[1];

v listItem.appendChild(time);
 } else {
 var time = document.createElement("time");
 time.textContent = play.date;
 listItem.appendChild(time);
 }
 var cite = document.createElement("cite");
 cite.textContent = play.play;
 listItem.appendChild(cite);
 list.appendChild(listItem);
})

Notice how we handle date ranges (u through v). Since a range has a start
and end time, we create two distinct <time> elements. We don’t need to add any
punctuation between the dates at this point.

www.it-ebooks.info

http://www.it-ebooks.info/

 Displaying Timelines | 157

Because we’re no longer including the punctuation, the resulting output
(shown in Figure 5-3) might look a little worse than before. Don’t worry, though;
we’ll fix it soon.

Figure 5-3: Semantic markup
simplifies the required HTML, but
it may require special styling.

What is much improved is the underlying HTML. The markup clearly identi-
fies the type of content it contains: an ordered list of dates and citations.

<ol class="timeline">
 <time>1589</time><time>1591</time><cite>The Two Gentlemen of Verona
 </cite>
 <time>1590</time><time>1594</time><cite>The Taming of the Shrew
 </cite>
 <time>1590</time><time>1591</time><cite>Henry VI, Part 2</cite>
 <time>1591</time><cite>Henry VI, Part 3</cite>
 <time>1591</time><cite>Henry VI, Part 1</cite>

Step 4: Include the Supporting Content
When we created a timeline using the Chronoline.js library, we weren’t able to
include the supporting content from Wikipedia, because the library did not offer
that option. In this example, though, we have complete control over the content,
so let’s include that information in our timeline. For most plays, our data includes
its first official record, its first publication, its first performance, and a discussion of
the evidence. This type of content is perfectly matched to the HTML description list
(<dl>), so that’s how we’ll add it to our page. It can follow the <cite> of the play’s title.

plays.forEach(function(play) {
 // Additional code...
 listItem.appendChild(cite);
 var descList = document.createElement("dl");
 // Add terms to the list here
 listItem.appendChild(descList);
 list.appendChild(listItem);
})

We can define a mapping array to help add the individual terms to each play.
That array maps the property name in our data set to the label we want to use in
the content.

www.it-ebooks.info

http://www.it-ebooks.info/

158 | Chapter 5

var descTerms = [
 { key: "record", label: "First official record"},
 { key: "published", label: "First published"},
 { key: "performance", label: "First recorded performance"},
 { key: "evidence", label: "Evidence"},
];

With that array we can quickly add the descriptions to our content. We iter-
ate over the array using .forEach().

plays.forEach(function(play) {
 // Additional code...
 listItem.appendChild(cite);
 var descList = document.createElement("dl");
 descTerms.forEach(function(term) {

u if (play[term.key]) {
 var descTerm = document.createElement("dt");
 descTerm.textContent = term.label;
 descList.appendChild(descTerm);
 var descElem = document.createElement("dd");
 descElem.textContent = play[term.key];
 descList.appendChild(descElem);
 }
 });
 listItem.appendChild(descList);
 list.appendChild(listItem);
})

At each iteration, we make sure that the data has content (u) before creating
the description item. A description item contains the term(s) being described in
one <dt> tag and the description itself in a <dd> tag.

Our timeline is still lacking a bit of visual appeal, but it has a much richer set
of content, as you can see in Figure 5-4. In fact, even without any styling at all, it
still communicates the essential data quite well.

Here’s the resulting markup (truncated for brevity):

<ol class=”timeline”>

 <time>1589</time><time>1591</time>
 <cite>The Two Gentlemen of Verona</cite>
 <dl>
 <dt>First official record</dt><dd>Francis Meres'...</dd>
 <dt>First published</dt><dd>First Folio (1623)</dd>
 <dt>First recorded performance</dt><dd>adaptation by...</dd>
 <dt>Evidence</dt><dd>The play contains...</dd>
 </dl>

 <time>1590</time><time>1594</time><cite>The Taming of the Shrew</cite>
 <dl>

www.it-ebooks.info

http://www.it-ebooks.info/

 Displaying Timelines | 159

 <dt>First official record</dt><dd>possible version...</dd>
 <dt>First published</dt><dd>possible version...</dd>
 <dt>First recorded performance</dt><dd>According to Philip...</dd>
 <dt>Evidence</dt><dd>Kier Elam posits...</dd>
 </dl>

Figure 5-4: HTML makes it easy to add extra content to the list.

Step 5: Optionally Take Advantage of jQuery
Our code so far has used nothing but plain JavaScript. If you’re using jQuery on your
web pages, you can shorten the code a bit by taking advantage of some jQuery fea-
tures. If your web pages aren’t using jQuery already, the minor enhancements in this
step don’t justify adding it, but if you’d like to see a more concise version, check
out the book’s source code for an alternative.

Step 6: Fix Timeline Problems with CSS
Now that we’ve built our timeline’s content in HTML, it’s time to define the styles
that determine its appearance. Throughout this example, we’ll focus on the func-
tional aspects of styling rather than pure visual elements such as fonts and colors,
since you’ll probably want those visual styles to be specific to your own website.

The first step is a simple one. We want to get rid of the numbering (1, 2, 3 . . .)
that browsers normally add to ordered list items. A single rule banishes them from
our timeline: by setting the list-style-type to none, we tell the browser not to add
any special characters to our list items.

.timeline li {
 list-style-type: none;
}

www.it-ebooks.info

http://www.it-ebooks.info/

160 | Chapter 5

We can also use CSS rules to add some punctuation to our semantic HTML.
First we look for places where two <time> elements appear right after each other,
while skipping isolated <time> tags.

.timeline li > time + time:before {
 content: "-";
}

The trick to finding <time> pairs is the CSS adjacent selector +. A rule with
time + time specifies a <time> element that immediately follows a <time> element.
To add the punctuation, we use the :before pseudoselector to specify what we
want to happen before this second <time> tag, and we set the content property to
indicate the content we want inserted.

If you haven’t seen the > before in a CSS rule, it’s the direct descendant
selector. In this example, it means that the <time> element must be an immediate
child of the element. We’re using this selector so our rules won’t inadvertently
apply to other <time> elements that may be nested deeper within the list item’s
content.

To finish up the punctuation, let’s add a colon and space after the last of the
<time> elements in each list item.

.timeline li > time:last-of-type:after {
 content: ": ";
}

We use two pseudoselectors for this rule. The :last-of-type selector targets
the last <time> element in the list item. That’s the first <time> if there’s only one,
and the second <time> if both are present. Then we add the :after pseudoselector
to insert content after that <time> element.

With these changes, we’ve cleaned up all of the obvious problems with our
timeline (see Figure 5-5).

Figure 5-5: CSS styles make the timeline
easier to read without changing the markup.

Now we can add a little flair to the visualization.

www.it-ebooks.info

http://www.it-ebooks.info/

 Displaying Timelines | 161

Step 7: Add Styles to Visually Structure the Timeline
The next set of CSS styles will improve the visual structure of the timeline. First
among those improvements will be making the timeline look more like, well, a line.
To do that, we can add a border to the left side of the elements. At the same
time, we’ll also want to make sure that those elements don’t have any margins,
as margins would introduce gaps in the border and break the continuity of the line.

.timeline li {
 border-left: 2px solid black;
}
.timeline dl,
.timeline li {
 margin: 0;
}

These styles add a nice vertical line on the left side of our entire timeline.
Now that we have that line, we can shift the dates over to the left side of it. The
shift requires rules for the parent as well as the <time> elements. For the par-
ent elements, we want their position specified as relative.

.timeline li {
 position: relative;
}

By itself, this rule doesn’t actually change our timeline. It does, however,
establish a positioning context for any elements that are children of the . Those
children include the <time> elements that we want to move. With the set to
position: relative, we can now set the <time> children to position: absolute. This
rule lets us specify exactly where the browser should place the time elements,
relative to the parent . We want to move all <time> elements to the left, and
we want to move the second <time> element down.

.timeline li > time {
 position: absolute;
 left: -3.5em;
}
.timeline li > time + time {
 top: 1em;
 left: -3.85em;
}

In the previous code, the first selector targets both of our <time> tags, while
the second selector, using the same time + time trick described earlier, targets
only the second of two <time> tags.

By using em units rather than px (pixel) units for this shift, we define the shift
to be relative to the current font size, regardless of what it is. That gives us the
freedom to change the font size without having to go back and tweak any pixel
positioning.

www.it-ebooks.info

http://www.it-ebooks.info/

162 | Chapter 5

The specific values for the position shift may need adjustment depending on
the specific font face, but, in general, we use a negative left position to shift con-
tent farther to the left than it would normally appear, and a positive top position to
move the content down the page.

After moving the dates to the left of the vertical line, we’ll also want to shift
the main content a bit to the right so it doesn’t crowd up against the line. The
padding-left property takes care of that. And while we’re adjusting the left pad-
ding, we can also add a bit of padding on the bottom to separate each play from
the other.

.timeline li {
 padding-left: 1em;
 padding-bottom: 1em;
}

With the dates and the main content on opposite sides of our vertical line,
we no longer need any punctuation after the date, so we’ll remove the style that
adds a colon after the last <time> element.

.timeline li > time:last-of-type:after {
 content: ": ";
}

The fact that we’re able to make this change highlights one of the reasons
for using CSS to add the colon in the first place. If we had included the punctua-
tion explicitly in the markup (by, for example, generating it in the JavaScript code),
then our markup would be more tightly coupled to our styles. If a style modifica-
tion changed whether the colon was appropriate, we would have to go back and
change the JavaScript as well. With the approach that we’re using here, however,
styles and markup are much more independent. Any style changes are isolated to
our CSS rules; no modifications to the JavaScript are required.

To further improve its visual styling, we can make a few other changes to our
timeline. We can increase the font size for each play’s title to make that information
more prominent. At the same time, we can add some extra spacing below the title
and indent the description list a bit.

.timeline li > cite {
 font-size: 1.5em;
 line-height: 1em;
 padding-bottom: 0.5em;
}
.timeline dl {
 padding-left: 1.5em;
}

For a last bit of polish, let’s add a bullet right on the vertical line to mark each
play and tie the title more closely to the dates. We use a large bullet (several times
the normal size) and position it right over the line.

www.it-ebooks.info

http://www.it-ebooks.info/

 Displaying Timelines | 163

.timeline li > time:first-of-type:after {
 content: "\2022";
 font-size: 3em;
 line-height: 0.4em;
 position: absolute;
 right: -0.65em;
 top: 0.1em;
}

As you can see, the Unicode character for a bullet can be represented as
"\2022". The exact position values will depend on the specific font, but a bit of trial
and error can perfect the adjustments.

Now our timeline is starting to look like an actual timeline (as shown in
Figure 5-6). In your own pages, you could include additional styles to define
fonts, colors, and so on, but even without those decorations the visualization
is effective.

Figure 5-6: Additional styles clarify the
structure of the timeline elements.

Step 8: Add Interactivity
The full details on all 40 of Shakespeare’s plays might be a little overwhelming for
a first view of our timeline. The visualization would be more effective if it showed
only the play titles at first, but let users reveal more details through interactions.
Because we’re building this visualization ourselves, we have all the control neces-
sary to make that happen.

First we’ll set up a few additional styles. There are several ways to hide the
play details with CSS, the most obvious being the display:none property. As we’ll
see a little later, though, a better choice for our timeline is setting the max-height to
0. If the maximum height of an element is 0, then, in theory, it should be invisible.
In practice, we also have to set the overflow property to hidden. Otherwise, even
though the <dl> element itself has no height, the browser will display the content
that overflows from it. Since we want our description lists to start out hidden, we
can set that property as the default.

www.it-ebooks.info

http://www.it-ebooks.info/

164 | Chapter 5

.timeline li dl {
 max-height: 0;
 overflow: hidden;
}

To reveal a play’s details, users click on the play’s title in the <cite> element.
To indicate to users that they can click on the title, we’ll change the mouse cursor
from the normal arrow to the “clickable” hand. We can also change the display
property from the default inline to block. That change gives users a larger and
more consistent area to click.

.timeline li > cite {
 cursor: pointer;
 display: block;
}

Finally, we need a way to reveal a play’s details. We’ll do that by adding a
class of "expanded" to the for the play. When that class is present, our styles
should override the max-height of 0.

.timeline li.expanded dl {
 max-height: 40em;
}

The exact value for the expanded max-height will depend on the content. In
general, though, it should be large enough to reveal the full details for the item.
It’s okay to make it a little larger than necessary “just in case.” Don’t go overboard,
however, and make it unreasonably large. (We’ll see why at the end of this step.)

With these styles in place, we can add a bit of JavaScript to control them. It
won’t take much. The first step is writing an event handler that will be called when
users click.

var clicked = function(ev) {
 if (ev.target.nodeName === "CITE") {
 // Code continues...
 }
};

This function takes a single parameter, specifically an Event object, with details
about the click. One of those details is the .target property, which will contain a
reference to the specific element of the page on which the user clicked. We care
only about clicks on the <cite> elements.

Once we know that a <cite> was clicked, we find its parent element. We
can then check to see if the has the "expanded" class. If it doesn’t, we add it. If
the class is already present, we remove it.

var clicked = function(ev) {
 if (ev.target.nodeName === "CITE") {

www.it-ebooks.info

http://www.it-ebooks.info/

 Displaying Timelines | 165

 var li = ev.target.parentNode;
 if (li.className === "expanded") {
 li.className = "";
 } else {
 li.className = "expanded";
 }
 }
};

Our approach is a bit primitive because it allows only one class to be defined
for the . That’s all we need for this example, though, so we’ll stick with it.

 QNote: modern browsers have a more sophisticated interface for controlling
the class attributes of elements. that interface is the classList, and it easily
supports multiple classes per element, as well as toggling the class on and off
with a single function. older browsers (namely Ie9 and earlier) don’t support
that interface, however. Since we don’t need the extra functionality, the older
className is sufficient for this example.

With our event handling function defined, we can associate it with clicks any-
where on the timeline. The standard addEventListener method creates the associa-
tion for any element.

document.getElementById("timeline").addEventListener("click", clicked);

You might be curious as to why we’re associating an event listener with
the entire timeline visualization instead of, for example, adding individual event
listeners to each <cite>. That alternative would eliminate the need to check the
event target in the handler; however, it turns out that it’s much less efficient than
the approach we’re taking. Event listeners can consume a fair bit of JavaScript
resources, and our page will perform better if we keep them to a minimum.

If you’re using jQuery, the required code is even simpler:

$("#timeline").on("click", "cite", function() {
 $(this).parent("li").toggleClass("expanded");
})

We’re almost ready to show our new and improved timeline to the world,
but there’s one final refinement we can make. Our current version shows or hides a
play’s details all at once. This transition can be abrupt to users, as content appears
or disappears instantly. We can provide a better experience by gracefully transition-
ing between the two states, and a natural transition for this timeline is animating
the height of the content. When the details are hidden, they have a height of 0. And
when we want to show them, we will gradually animate the height to its natural value.

It’s possible to add these animations using JavaScript. The jQuery library, in
fact, has a fairly extensive set of animation functions. In modern browsers, how-
ever, it is much better to animate content using CSS transitions. Web browsers are
optimized for CSS, often offloading the computations to special high-performance

www.it-ebooks.info

http://www.it-ebooks.info/

166 | Chapter 5

graphics coprocessors. In those cases, CSS-based animations can perform sev-
eral orders of magnitude better than JavaScript. The only disadvantage to using
CSS for animations is a lack of support in older browsers. But animation isn’t usually
critical to most web pages. Sure, it’s nice, but if a user with an older browser misses
out on the graceful transitions, it isn’t the end of the world. The web page will still
function just fine.

The CSS transition property is the simplest way to define a CSS animation.
It specifies the actual property to animate, the duration of the animation, and the
easing function to follow. Here’s a rule we could use in our example:

.timeline li dl {
 transition: max-height 500ms ease-in-out;
}

This rule defines a transition for the timeline’s <dl> elements. It specifies
that the property to animate is max-height, so the transition will take effect when-
ever an element’s max-height property changes (and that’s precisely the property
we modify when the "expanded" class is added or removed). The transition rule
also specifies that the animation should take 500 milliseconds, and that it should
“ease in” and “ease out.” This last property indicates that the animation should
start slowly, speed up, and then slow down again before finishing. That behavior
usually looks more natural than animating at a constant speed.

CSS transitions can animate many CSS properties, but there is one important
constraint. Both the starting and ending values must be explicit. That constraint
explains why we’re animating max-height instead of height, even though it’s really just
height that we want to change. Unfortunately, we can’t animate height, because it
has no explicit value when the description list is expanded. Every <dl> will have its
own height based on its content, and there’s no way we can predict those values
in our CSS. The max-height property, on the other hand, gives us explicit values for
both states—0 and 40em in this example—so CSS can animate its transitions. We just
have to be sure that no <dl> has content more than 40em high. Otherwise, the extra
content will be cut off. This doesn’t mean, however, that we should set the max-height
for expanded <dl> elements to an astronomical value. To see why, consider what
would happen if we transitioned max-height to 1000em for a <dl> that needed only
10em of height. Ignoring (for simplicity) the complications of easing, it would take only
1/100 of the full transition time before the full content of the element was visible.
The animation that we had planned to take 500 milliseconds is over in 5 milliseconds
instead.

There is one final complication with CSS transitions. Most browsers imple-
mented the functionality before the official standard was finalized. To make sure
their implementations wouldn’t conflict with potential changes in the official
standards, browser vendors initially implemented transitions using a proprietary
syntax. That syntax adds a prefix (-webkit- for Safari and Chrome, -moz- for Firefox,
and -o- for Opera) to the property name. To cover all the major browsers, we must
include a rule with each prefix.

www.it-ebooks.info

http://www.it-ebooks.info/

 Displaying Timelines | 167

.timeline li dl {
 -webkit-transition: max-height 500ms ease-in-out;
 -moz-transition: max-height 500ms ease-in-out;
 -o-transition: max-height 500ms ease-in-out;
 transition: max-height 500ms ease-in-out;
}

 QNote: Internet explorer doesn’t need a prefix, because microsoft didn’t
implement transitions until the standard was stable. Also, there’s no harm in
specifying multiple prefixes, since browsers simply ignore properties they
don’t understand.

Now our handcrafted timeline responds perfectly to user interactions. Fig-
ure 5-7 shows the complete visualization.

Figure 5-7: A fully interactive timeline requires only HTML, CSS,
and a little JavaScript.

Using a Web Component
In this example, we’ll look at another alternative approach; instead of building
a timeline from scratch using low-level JavaScript, we’ll integrate a full-featured
timeline component: TimelineJS (http://timeline.knightlab.com/). In many ways this
approach is the exact opposite of low-level JavaScript. At its most basic, it requires
no coding at all; it can be as easy as embedding a YouTube video in a blog post.
That method sacrifices a lot of control over the resulting visualization, however, so
we’ll also look at ways to regain some of that control.

www.it-ebooks.info

http://www.it-ebooks.info/

168 | Chapter 5

Step 1: Preview the Standard Component
Before we spend too much time customizing the visualization, it’s worthwhile to
check out the component in its most basic form. Fortunately, TimelineJS makes
this process very simple. The website (http://timeline.knightlab.com/) will walk you
through the steps in detail, but in a nutshell, they are as follows:

1. Create a Google Docs spreadsheet (http://docs.google.com/) with data for
the timeline.

2. Publish that spreadsheet for web access, which will create a URL for it.
3. Enter that URL into a form on the TimelineJS website, which will generate an

HTML snippet.
4. Copy and paste the snippet into your web page.

Figure 5-8 shows what the spreadsheet (https://docs.google.com/spreadsheet/
ccc?key=0An4ME25ELRdYdDk4WmRacmxjaDM0V0tDTk9vMnQxU1E#gid=0) looks
like for Shakespeare’s plays.

Figure 5-8: The TimelineJS component can get its data from a
Google Docs spreadsheet.

www.it-ebooks.info

http://www.it-ebooks.info/

 Displaying Timelines | 169

The HTML snippet that TimelineJS creates for this timeline is as follows:

<iframe src="http://cdn.knightlab.com/libs/timeline/latest/embed/index.html?
 source=0An4ME25ELRdYdDk4WmRacmxjaDM0V0tDTk9vMnQxU1E&font=Bevan-PotanoSans&
 maptype=toner&lang=en&height=650" width="100%" height="650"
frameborder="0">
</iframe>

When included in a page, that snippet results in fully interactive timeline for
the chronology, as shown in Figure 5-9.

Figure 5-9: TimelineJS builds a complete timeline component within
an <iframe>.

If the result meets the needs of your visualization, you may not have to go
any further. Many web pages that use TimelineJS do so in exactly this manner.
There are some potential problems with the simplest approach, however:

 > The data for the visualization must be available in a public Google Docs
spreadsheet, so the approach may not be appropriate for confidential data.

 > The data source is a spreadsheet, so it may be difficult to update it often or
show more real-time events. This problem doesn’t really affect our Shake-
speare chronology, but if the timeline you’re creating shows real-time data
such as trending topics on a social network, a static spreadsheet won’t be
practical.

 > The embedded component has few styling options. Although the default
styles and options that TimelineJS offers are quite attractive, they are very
limited and may not be appropriate for your web page.

www.it-ebooks.info

http://www.it-ebooks.info/

170 | Chapter 5

 > The timeline is embedded as an <iframe>, which gives TimelineJS complete
control over what is displayed in that section of your page. While there is
absolutely no indication that the organizations supporting TimelineJS would
do so, in theory they could alter the content (for example, by including ads)
in ways that your site might not find appropriate.

Fortunately, none of these possible concerns need prevent us from adding
beautiful TimelineJS visualizations to our web pages. The folks behind TimelineJS
make all of the software available as open source, giving us the flexibility to address
all of the aforementioned issues. We’ll see how in the rest of this example.

Step 2: Include the Required Components
To use TimelineJS, our web pages must include CSS style sheets and JavaScript
code. For now we’ll stick with the default styles, so we need only a single addi-
tional style sheet. The main JavaScript is contained in timeline.js.

It’s not obvious, but TimelineJS also requires jQuery. When you embed a
TimelineJS <iframe>, your main web page doesn’t have to include jQuery, because
the <iframe> will include it. To integrate the timeline directly in our page, though,
we have to include jQuery explicitly. We can, however, use a content distribution
network instead of hosting it ourselves. (See Chapter 2 for more details on the
advantages and disadvantages of content distribution networks.)

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 <link rel="stylesheet" type="text/css" href="css/timeline.css">
 </head>
 <body>
 <script src="//cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js">
 </script>
 <script src="js/timeline-min.js"></script>
 </body>
</html>

The HTML at this point doesn’t include the element in which we’ll place the
timeline. There are some special constraints on that element, which we’ll consider
when we add it to the page.

Step 3: Prepare the Data
Because TimelineJS supports several features that we haven’t used in the earlier
examples, we’ll add a few additional properties to our data set. The overall format,
though, looks the same as before:

var plays = [
 {
 "play": "The Two Gentlemen of Verona",

www.it-ebooks.info

http://www.it-ebooks.info/

 Displaying Timelines | 171

 "genre": "Comedies",
 "date": "1589-1591",
 "record": "Francis Meres'...",
 "published": "First Folio (1623)",
 "performance": "adaptation by Benjamin Victor...",
 "evidence": "The play contains..."
 }, {
 "play": "The Taming of the Shrew",
 "genre": "Comedies",
 "date": "1590-1594",
 "record": "possible version...",
 "published": "possible version...",
 "performance": "According to Philip Henslowe...",
 "evidence": "Kier Elam posits..."
 }, {
 "play": "Henry VI, Part 2",
 "genre": "Histories",
 "date": "1590-1591",
 "record": "version of the...",
 "published": "version of the...",
 "performance": "although it is known...",
 "evidence": "It is known..."
 "media": "http://upload.wikimedia.org/wikipedia/commons/9/96/
FirstFolioHenryVI2.jpg",
 "credit": "Wikimedia Commons",
 "caption": "Photo of the first page..."
 // Data set continues...
},

As you can see, we’ve added genre information to the plays, as well as
optional multimedia links, and text for credits and captions. With that starting
point, we can rearrange the data to match what TimelineJS expects. The basic
structure of that object, shown next, includes some overall properties (such as the
headline), and an array of events. We can initialize it to an empty array.

var timelineData = {
 headline: "Chronology of Shakespeare's Plays",
 type: "default",
 date: []
};

Note that the type property is required and should be set to "default".
Now we iterate through the data set, adding events to timelineData. For the

following code, we’ll use forEach for this iteration, but there are plenty of alterna-
tives we could use here (including for loops, array .map() methods, or jQuery’s
$.each() and $.map() functions).

www.it-ebooks.info

http://www.it-ebooks.info/

172 | Chapter 5

plays.forEach(function(play) {
 var start = play.date;
 var end = "";
 if (play.date.indexOf("-") !== -1) {
 var dates = play.date.split("-");
 start = dates[0];
 end = dates[1];
 }
});

The first step in each iteration is parsing the date information. It can take one
of two forms: either a single year ("1591") or a range of years ("1589-1591"). Our
code assumes a single date and makes adjustments if it finds two.

Now we can provide the full entry for the event in TimelineJS format by
pushing the new object into the timelineData.date array.

timelineData.date.push({
 startDate: start,
 endDate: end,
 headline: play.play,
 text: play.evidence,
 tag: play.genre,
 asset: {
 media: play.media,
 credit: play.credit,
 caption: play.caption
 }
});

Step 4: Create a Default Timeline
With our HTML set up and our data set prepared, we can now call TimelineJS
to create its default visualization. Figuring out exactly how to do that, however,
isn’t quite as simple as looking in the documentation. That’s because TimelineJS
assumes that it will be used primarily as an embedded and isolated component
rather than an integrated part of a page. The documentation, therefore, describes
how to use TimelineJS using the storyjs_embed.js wrapper for embedded content.
That wrapper loads all the TimelineJS resources (style sheets, JavaScript, fonts,
and so on), and if we use it as intended, we’ll end up with most of the same prob-
lems as if we had simply embedded an <iframe>.

Fortunately, it’s not too difficult to skip all the embedding and simply access
the JavaScript code directly. It requires only three steps:

1. Set up the configuration object.
2. Create a TimelineJS object.
3. Initialize the object using the configuration object.

www.it-ebooks.info

http://www.it-ebooks.info/

 Displaying Timelines | 173

Here’s what these steps will look like in our JavaScript, with the details omit-
ted for now:

var timelineConfig = {/* Needs properties */};
var timelinejs = new VMM.Timeline(/* Needs parameters */);
timelinejs.init(timelineConfig);

We still need to fill in the exact configuration object and the parameters
for the VMM.Timeline constructor. The configuration object is documented in the
TimelineJS source (https://github.com/NUKnightLab/TimelineJS#config-options).
We must provide a type (equal to "timeline"), dimensions, the data source, and the
id of the HTML element into which the timeline should be placed. For example, we
could use this:

 var timelineConfig = {
 type: "timeline",
 width: "100%",
 height: "600",
 source: {timeline: timelineData},
 embed_id: "timeline"
};

We have to pass many of those same parameters to the constructor. In par-
ticular, we provide the container’s id and the dimensions.

var timelinejs = new VMM.Timeline("timeline","100%","600px");

Finally, we have to build our HTML markup with care. TimelineJS styles its
HTML appropriately for an embedded <iframe>, but those styles aren’t as compat-
ible with a timeline that’s integrated in the page. In particular, it positions the time-
line absolutely and sets its z-index. If we don’t compensate, the timeline will float
out of the flow of the page content, which is almost certainly not desirable. There
are several ways to adjust for this issue, and we’ll use a simple one in this example.
Instead of a single <div>, we use two nested <div> elements. The inner <div> will
contain the timeline, and the outer <div> establishes both a positioning context
and size for the timeline.

<div style="position:relative;height:600px;">
 <div id="timeline"></div>
</div>

Now when our JavaScript executes, it produces the integrated timeline
shown in Figure 5-10 with the default TimelineJS styling.

www.it-ebooks.info

http://www.it-ebooks.info/

174 | Chapter 5

Before we leave this step, it’s worth considering how we’ve reached this
point. We’ve taken a complete web component with explicit instructions for its
use, and ignored those instructions. Instead, we’ve included only part of the com-
ponent (albeit a major part). Figuring out how to use an isolated part of a web
component (in a way that it isn’t necessarily intended for) can involve some guess-
work and trial and error, and there is clearly some risk in this approach. Even if you
manage to get it working now, a future update might invalidate your implemen-
tation. If you adopt this approach with your website, it’s a good idea to test the
implementation thoroughly and to take extra care with any updates.

Figure 5-10: With a little extra work, we can embed a TimelineJS
timeline directly in the page without an <iframe>.

Step 5: Adjust the Timeline Styles
Now that we’ve addressed the issues that an <iframe> can cause, we can turn our
attention to the timeline’s appearance. The timeline.css stylesheet determines that
appearance, and there are several alternatives for adjusting it.

www.it-ebooks.info

http://www.it-ebooks.info/

 Displaying Timelines | 175

Modify timeline.css directly Although this approach might seem the
most obvious, it’s probably not what we should do. If you look at the file,
you’ll notice that it’s compressed CSS that’s difficult to read and understand.
Making the appropriate modifications will be challenging. Furthermore, if we
later update to a new version of TimelineJS, that new version may well have a
new timeline.css file, and we’d have to start all over again.

Work with the source code TimelineJS authors its styles using the LESS
(http://lesscss.org/) CSS preprocessor. If you’re comfortable using a CSS
preprocessor, you could modify the source and build your own custom ver-
sion of timeline.css. LESS has support for variables and mixins that make it
easier to accommodate updates in the future. There are many applications
that compile LESS into CSS; TimelineJS uses CodeKit (https://incident57.com/
codekit/), which is available only for Apple’s Mac OS X, and the source code
includes all of the appropriate application settings.

Supersede timeline.css styles Instead of changing the TimelineJS style
sheet, leave it as is and add custom styles with a higher priority than the
default styles. This approach takes advantage of the cascade in Cascading
Style Sheets.

For this example, we’ll use the last approach. We’ll identify the timeline.css
styles that we want to change and add new rules to our style sheet to take prece-
dence over those styles. When CSS finds that multiple, conflicting rules apply to
an element, it resolves the conflict by considering the specificity of the rules and
their order in the document. We can give our rules priority by making them more
specific than the timeline.css rules, or by making them equally specific but includ-
ing them after timeline.css.

First we’ll tackle the fonts that TimelineJS uses. There’s nothing wrong with
the default or optional fonts, but they may not match the style of our web page.
In addition, downloading extra fonts will slow the performance of the page. The
quickest way to find the styles that affect fonts is to look at one of the optional
font selections that TimelineJS offers on its website. For example, if you select the
“Merriweather & News Cycle” option, you’ll see that TimelineJS adds an additional
style sheet to the visualization, NewsCycle-Merriweather.css, which defines all the
font rules for this option:

.vco-storyjs {
 font-family: "News Cycle", sans-serif;
}

/* Additional styles... */

.timeline-tooltip {
 font-family: "News Cycle", sans-serif
}

www.it-ebooks.info

http://www.it-ebooks.info/

176 | Chapter 5

To use our own fonts, all we need to do is copy that file and replace
"News Cycle" and "Merriweather" with our own choice—in this case, Avenir.

.vco-storyjs {
 font-family: "Avenir","Helvetica Neue",Helvetica,Arial,sans-serif;
 font-weight: 700;
}

/* Additional styles... */

.timeline-tooltip {
 font-family: "Avenir", sans-serif;
}

Customizing other aspects of the TimelineJS visualization is more challeng-
ing but not impossible. These customizations are rather fragile, however, as even
the slightest change in the TimelineJS implementation could render them ineffec-
tive. If it’s important for your page, though, it can be done.

For our example, we’ll change the blue color that TimelineJS uses in the
bottom section of the visualization. It uses that color to highlight the active item, to
show the timeline marker, and for the event line. Finding the specific rules to over-
ride takes a bit of detective work with your browser’s developer tools, but here’s
how to change the color from blue to green:

.vco-timeline .vco-navigation .timenav .content .marker.active .flag

.flag-content h3,

.vco-timeline .vco-navigation .timenav .content .marker.active .flag-small

.flag-content h3 {
 color: green;
}
.vco-timeline .vco-navigation .timenav-background .timenav-line {
 background-color: green;
}
.vco-timeline .vco-navigation .timenav .content .marker .line .event-line,
.vco-timeline .vco-navigation .timenav .content .marker.active .line
.event-line,
.vco-timeline .vco-navigation .timenav .content .marker.active .dot,
.vco-timeline .vco-navigation .timenav .content .marker.active .line {
 background: green;
}

Combining font changes with the alternative color scheme helps the visual-
ization integrate more seamlessly in an overall web page, as Figure 5-11 shows.

www.it-ebooks.info

http://www.it-ebooks.info/

 Displaying Timelines | 177

Figure 5-11: Adjusting the CSS for TimelineJS can help match its styles
with the rest of the web page.

Summing Up
In this chapter, we’ve looked at a wide range of approaches for creating timeline
visualizations. The most familiar approach relies on an open source library, but we
also considered two other options. In one, we developed the code for a timeline
from scratch, which gave us complete control over its appearance and behavior.
For the other extreme, we examined a popular open source web component. Pages
normally use that component by embedding <iframe> elements in the page, but
we also saw that it’s possible to take the open source code and integrate it more
seamlessly in our pages, even altering the visual styles if necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

6
Visualizing

Geographic Data

Humans crave context when evaluating data,
so it’s important to provide that context when
it’s available. In the previous chapter, we saw
how timelines can provide one frame of ref-
erence; now we’ll examine another equally
important context: place. If a data set includes
geographic coordinates or has values that
correspond to different geographic regions,
you can provide geographic context using a

www.it-ebooks.info

http://www.it-ebooks.info/

180 | Chapter 6

map-based visualization. The examples in this chapter consider two types of map-
based visualizations.

In the first two examples, we want to show how data varies by region. The
resulting visualizations, known as choropleth maps, use color to highlight different
characteristics of the different regions. For the next two examples, the visualization
data doesn’t itself vary by region directly, but the data does have a geographic
component. By showing the data on a map, we can help our users understand it.

More specifically, we’ll see the following:

 > How to use special map fonts to create maps with minimal JavaScript

 > How to manipulate Scalable Vector Graphic (SVG) image maps with
JavaScript

 > How to use a simple mapping library to add maps to web pages

 > How to integrate a full-featured map library into a visualization

Using Map Fonts
One technique for adding maps to web pages is surprisingly simple but often
overlooked—map fonts. Two examples of these fonts are Stately (http://intridea
.github.io/stately/) for the United States and Continental (http://contfont.net/) for
Europe. Map fonts are special-purpose web fonts whose character sets contain
map symbols instead of letters and numbers. In just a few easy steps, we’ll create
a visualization of Europe using the symbols from Continental.

Step 1: Include the Fonts in the Page
The main websites for both Stately and Continental include more detailed instruc-
tions for installing the fonts, but all that’s really necessary is including a single
CSS style sheet. In the case of Continental, that style sheet is called, naturally,
continental.css. No JavaScript libraries are required.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 <link rel="stylesheet" type="text/css" href="css/continental.css">
 </head>
 <body>
 <div id="map"></div>
 </body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 181

 QNote: For a production website, you might want to combine continental.css
with your site’s other style sheets to minimize the number of network requests
the browser has to make.

Step 2: Display One Country
To show a single country, all we have to do is include an HTML element with
the appropriate attributes. We can do this right in the markup, adding a class attri-
bute set to map- followed by a two-letter country abbreviation. (fr is the interna-
tional two-letter abbreviation for France.)

<div id="map">

</div>

For this example, we’ll use JavaScript to generate the markup.

var fr = document.createElement("span");
fr.className = "map-fr";
document.getElementById("map").appendChild(fr);

Here we’ve created a new element, giving it a class name of "map-fr",
and appending it to the map <div>.

One last bit of housekeeping is setting the size of the font. By default, any map
font character will be the same size as a regular text character. For maps we want
something much larger, so we can use standard CSS rules to increase the size.

#map {
 font-size: 200px;
}

That’s all it takes to add France to a web page, as you can see in Figure 6-1.

Figure 6-1: Map fonts make it very
easy to add a map to a web page.

www.it-ebooks.info

http://www.it-ebooks.info/

182 | Chapter 6

Step 3: Combine Multiple Countries into a Single Map
For this example we want to show more than a single country. We’d like to visualize
the median age for all of Europe’s countries, based on United Nations population
data (http://www.un.org/en/development/desa/population/) from 2010. To do that,
we’ll create a map that includes all European countries, and we’ll style each coun-
try according to the data.

The first step in this visualization is putting all of the countries into a single
map. Since each country is a separate character in the Continental font, we want to
overlay those characters on top of one another rather than spread them across the
page. That requires setting a couple of CSS rules.

#map {
u position: relative;

}
#map > [class*="map-"] {

v position: absolute;
w top: 0;

 left: 0;
}

First we set the position of the outer container to relative u. This rule doesn’t
change the styling of the outer container at all, but it does establish a positioning
context for anything within the container. Those elements will be our individual
country symbols, and we set their position to be absolute v. We then place each
one at the top and left w, respectively, of the map so they’ll overlay one another.
Because we’ve positioned the container relative, the country symbols will be posi-
tioned relative to that container rather than to the page as a whole.

Note that we’ve used a couple of CSS tricks to apply this positioning to all of
the individual symbols within this element. We start by selecting the element with
an id of map. Nothing fancy there. The direct descendent selector (>), however, says
that what follows should match only elements that are immediate children of that
element, not arbitrary descendants. Finally, the attribute selector [class*="map-"]
specifies only children that have a class containing the characters map-. Since all
the country symbols will be elements with a class of map-xx (where xx is the
two-letter country abbreviation), this will match all of our countries.

In our JavaScript, we can start with an array listing all of the countries and
iterate through it. For each country, we create a element with the appropri-
ate class and insert it in the map <div>.

var countries = [
 "ad", "al", "at", "ba", "be", "bg", "by", "ch", "cy", "cz",
 "de", "dk", "ee", "es", "fi", "fo", "fr", "ge", "gg", "gr",
 "hr", "hu", "ie", "im", "is", "it", "je", "li", "lt", "lu",
 "lv", "mc", "md", "me", "mk", "mt", "nl", "no", "pl", "pt",
 "ro", "rs", "ru", "se", "si", "sk", "sm", "tr", "ua", "uk",
 "va"
];

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 183

var map = document.getElementById("map");
countries.forEach(function(cc) {
 var span = document.createElement("span");
 span.className = "map-" + cc;
 map.appendChild(span);
});

With these style rules defined, inserting multiple elements within our
map <div> creates the complete, if somewhat uninteresting, map of Europe shown
in Figure 6-2.

Figure 6-2: Overlaying map
characters on top of one another
creates a complete map.

Step 4: Vary the Countries Based on the Data
Now we’re ready to create the actual data visualization. Naturally, we’ll start with
the data, in this case from the United Nations. Here’s how we could format that
data in a JavaScript array. (The full data set can be found with the book’s source
code at http://jsDataV.is/source/.)

var ages = [
 { "country": "al", "age": 29.968 },
 { "country": "at", "age": 41.768 },
 { "country": "ba", "age": 39.291 },
 { "country": "be", "age": 41.301 },
 { "country": "bg", "age": 41.731 },
 // Data set continues...

www.it-ebooks.info

http://www.it-ebooks.info/

184 | Chapter 6

There are several ways we could use this data to modify the map. We could
use JavaScript code to set the visualization properties directly by, for example,
changing the color style for each country symbol. That would work, but it forgoes
one of the big advantages of map fonts. With map fonts, our visualization is stan-
dard HTML, so we can use standard CSS to style it. If, in the future, we want to
change the styles on the page, they’ll all be contained within the style sheets, and
we won’t have to hunt through our JavaScript code to adjust colors.

To indicate which styles are appropriate for an individual country symbol, we
can attach a data- attribute to each.

u var findCountryIndex = function(cc) {
 for (var idx=0; idx<ages.length; idx++) {
 if (ages[idx].country === cc) {
 return idx;
 }
 }
 return -1;
}
var map = document.getElementById("map");
countries.forEach(function(cc) {
 var idx = findCountryIndex(cc);
 if (idx !== -1) {
 var span = document.createElement("span");
 span.className = "map-" + cc;

v span.setAttribute("data-age", Math.round(ages[idx].age));
 map.appendChild(span);
 }
});

In this code, we set the data-age attribute to the mean age, rounded to the
nearest whole number v. To find the age for a given country, we need that country’s
index in the ages array. The findCountryIndex() function u does that in a straight-
forward way.

Now we can assign CSS style rules based on that data-age attribute. Here’s
the start of a simple blue gradient for the different ages, where greater median
ages are colored darker blue-green.

#map > [data-age="44"] { color: #2d9999; }
#map > [data-age="43"] { color: #2a9493; }
#map > [data-age="42"] { color: #278f8e; }
/* CSS rules continue... */

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 185

 QNote: Although they’re beyond the scope of this book, CSS preprocessors
such as LeSS (http://lesscss.org/) and SASS (http://sass-lang.com/) make it
easy to create these kinds of rules.

Now we have the nice visualization of the age trends shown in Figure 6-3.

Figure 6-3: With CSS rules, we can
change the styles of individual map
symbols.

Step 5: Add a Legend
To finish off the visualization, we can add a legend to the map. Because the map
itself is nothing more than standard HTML elements with CSS styling, it’s easy to
create a matching legend. This example covers a fairly broad range (ages 28 to 44),
so a linear gradient works well as a key. Your own implementation will depend on the
specific browser versions that you wish to support, but a generic style rule would be
as follows:

#map-legend .key {
 background: linear-gradient(to bottom, #004a4a 0%,#2d9999 100%);
}

The resulting visualization in Figure 6-4 summarizes the median age for Euro-
pean countries in a clear and concise format.

www.it-ebooks.info

http://www.it-ebooks.info/

186 | Chapter 6

Figure 6-4: Standard HTML can also provide
a legend for the visualization.

Working with Scalable Vector Graphics
Map fonts like those in the previous example are easy to use and visually effective,
but only a few map fonts exist, and they definitely don’t cover all the conceivable
geographic regions. For visualizations of other regions, we’ll have to find a dif-
ferent technique. Maps, of course, are ultimately images, and web browsers can
display many different image formats. One format in particular, called Scalable
Vector Graphics (SVG), is especially well suited for interactive visualizations. That’s
because, as we’ll see in this example, JavaScript code (as well as CSS styles) can
easily and naturally interact with SVG images.

Although our example for this section deals with a map, the techniques here
are by no means limited to maps. Whenever you have a diagram or illustration in
SVG format, you can manipulate it directly on a web page.

 QNote: there is one important consideration for using SVG: only modern web
browsers support it. more specifically, Ie8 (and earlier) cannot display SVG
images. If a significant number of your users are using older browsers, you
might want to consider alternatives.

For web developers, SVG is especially convenient because its syntax uses
the same structure as HTML. You can use many of the same tools and techniques
for working with HTML on SVG as well. Consider, for example, a skeletal HTML
document.

<!DOCTYPE html>
<html lang="en">
 <head><!-- --></head>
 <body>
 <nav><!-- --></nav>

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 187

 <main>
 <section><!-- --></section>
 </main>
 <nav><!-- --></nav>
 </body>
</html>

Compare that to the next example: the universal symbol for first aid repre-
sented in an SVG document.

 QNote: If you have worked with htmL before htmL5, the similarities might
be especially striking, as the SVG header text follows the same format as
htmL4.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg id="firstaid" version="1.1" xmlns="http://www.w3.org/2000/svg"
 width="100" height="100">
 <rect id="background" x="0" y="0" width="100" height="100" rx="20" />
 <rect id="vertical" x="39" y="19" width="22" height="62" />
 <rect id="horizontal" x="19" y="39" width="62" height="22" />
</svg>

You can even style the SVG elements using CSS. Here’s how we could color
the preceding image:

svg#firstaid {
 stroke: none;
}
svg#firstaid #background {
 fill: #000;
}
svg#firstaid #vertical,
svg#firstaid #horizontal {
 fill: #FFF;
}

Figure 6-5 shows how that SVG renders.

Figure 6-5: SVG images may
be embedded directly within
web pages.

www.it-ebooks.info

http://www.it-ebooks.info/

188 | Chapter 6

The affinity between HTML and SVG is, in fact, far stronger than the simi-
lar syntax. With modern browsers, you can mix SVG and HTML in the same web
page. To see how that works, let’s visualize health data for the 159 counties in the
US state of Georgia. The data comes from County Health Rankings (http://www
.countyhealthrankings.org/).

Step 1: Create the SVG Map
Our visualization starts with a map, so we’ll need an illustration of Georgia’s coun-
ties in SVG format. Although that might seem like a challenge, there are actually
many sources for SVG maps that are free to use, as well as special-purpose applica-
tions that can generate SVG maps for almost any region. The Wikimedia Commons
(http://commons.wikimedia.org/wiki/Main_Page), for example, contains a large
number of open source maps, including many of Georgia. We’ll use one showing
data from the National Register of Historic Places (http://commons.wikimedia.org/
wiki/File:NRHP_Georgia_Map.svg#file).

After downloading the map file, we can adjust it to better fit our needs,
removing the legend, colors, and other elements that we don’t need. Although
you can do this in a text editor (just as you can edit HTML), you may find it easier
to use a graphics program such as Adobe Illustrator or a more web-focused app
like Sketch (http://www.bohemiancoding.com/sketch/). You might also want to take
advantage of an SVG optimization website (http://petercollingridge.appspot.com/
svg-optimiser/) or application (https://github.com/svg/), which can compress an
SVG by removing extraneous tags and reducing the sometimes-excessive preci-
sion of graphics programs.

Our result will be a series of <path> elements, one for each county. We’ll also
want to assign a class or id to each path to indicate the county. The resulting SVG
file might begin like the following.

<svg version="1.1" xmlns="http://www.w3.org/2000/svg"
 width="497" height="558">
 <path id="ck" d="M 216.65,131.53 L 216.41,131.53 216.17,131.53..." />
 <path id="me" d="M 74.32,234.01 L 74.32,232.09 74.32,231.61..." />
 <path id="ms" d="M 64.96,319.22 L 64.72,319.22 64.48,318.98..." />
 <!-- Markup continues... -->

To summarize, here are the steps to create the SVG map.

1. Locate a suitably licensed SVG-format map file or create one using a special-
purpose map application.

2. Edit the SVG file in a graphics application to remove extraneous compo-
nents and simplify the illustration.

3. Optimize the SVG file using an optimization site or application.
4. Make final adjustments (such as adding id attributes) in your regular

HTML editor.

www.it-ebooks.info

http://www.bohemiancoding.com/sketch/
https://github.com/svg
http://www.it-ebooks.info/

 Visualizing Geographic Data | 189

Step 2: Embed the Map in the Page
The simplest way to include an SVG map in a web page is to embed the SVG markup
directly within the HTML markup. To include the first-aid symbol, for example, just
include the SVG tags within the page itself, as shown at u through v. You don’t
have to include the header tags that are normally present in a standalone SVG file.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <div>

u <svg id="firstaid" version="1.1"
 xmlns="http://www.w3.org/2000/svg"
 width="100" height="100">
 <rect id="background" x="0" y="0"
 width="100" height="100" rx="20" />
 <rect id="vertical" x="39" y="19"
 width="22" height="62" />
 <rect id="horizontal" x="19" y="39"
 width="62" height="22" />

v </svg>
 </div>
 </body>
</html>

If your map is relatively simple, direct embedding is the easiest way to include
it in the page. Our map of Georgia, however, is about 1 MB even after optimization.
That’s not unusual for maps with reasonable resolution, as describing complex bor-
ders such as coastlines or rivers can make for large <path> elements. Especially if
the map isn’t the sole focus of the page, you can provide a better user experience
by loading the rest of the page first. That will give your users something to read
while the map loads in the background. You can even add a simple animated prog-
ress loader if that’s appropriate for your site.

If you’re using jQuery, loading the map is a single instruction. You do want
to make sure, though, that your code doesn’t start manipulating the map until the
load is complete. Here’s how that would look in the source code.

$("#map").load("img/ga.svg", function() {
 // Only manipulate the map inside this block
})

www.it-ebooks.info

http://www.it-ebooks.info/

190 | Chapter 6

Step 3: Collect the Data
The data for our visualization is available as an Excel spreadsheet directly from
County Health Rankings (http://www.countyhealthrankings.org/). We’ll convert that
to a JavaScript object in advance, and we’ll add a two-letter code corresponding
to each county. Here’s how that array might begin.

var counties = [
 {
 "name":"Appling",
 "code":"ap",
 "outcomes_z":0.93,
 "outcomes_rank":148,
 // Data continues...
 },
 {
 "name":"Atkinson",
 "code":"at",
 "outcomes_z":0.40,
 "outcomes_rank":118,
 // Data set continues...
];

For this visualization we’d like to show the variation in health outcomes among
counties. The data set provides two variables for that value, a ranking and a z-score
(a measure of how far a sample is from the mean in terms of standard deviation).
The County Health Rankings site provides z-scores slightly modified from the tra-
ditional statistical definition. Normal z-scores are always positive; in this data set,
however, measurements that are subjectively better than average are multiplied
by –1 so that they are negative. A county whose health outcome is two standard
deviations “better” than the mean, for example, is given a z-score of –2 instead of 2.
This adjustment makes it easier to use these z-scores in our visualization.

Our first step in working with these z-scores is to find the maximum and
minimum values. We can do that by extracting the outcomes as a separate array
and then using JavaScript’s built-in Math.max() and Math.min() functions. Note that
the following code uses the map() method to extract the array, and that method is
available only in modern browsers. Since we’ve chosen to use SVG images, how-
ever, we’ve already restricted our users to modern browsers, so we might as well
take advantage of that when we can.

var outcomes = counties.map(function(county) {return county.outcomes_z;});
var maxZ = Math.max.apply(null, outcomes);
var minZ = Math.min.apply(null, outcomes);

Notice how we’ve used the .apply() method here. Normally the Math.max()
and Math.min() functions accept a comma-separated list of arguments. We, of
course, have an array instead. The apply() method, which works with any JavaScript
function, turns an array into a comma-separated list. The first parameter is the
context to use, which in our case doesn’t matter, so we set it to null.

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 191

To complete the data preparation, let’s make sure the minimum and maxi-
mum ranges are symmetric about the mean.

if (Math.abs(minZ) > Math.abs(maxZ)) {
 maxZ = -minZ;
} else {
 minZ = -maxZ;
}

If, for example, the z-scores ranged from -2 to 1.5, this code would extend
the range to [-2, 2]. This adjustment will make the color scales symmetric as well,
thus making our visualization easier for users to interpret.

Step 4: Define the Color Scheme
Defining an effective color scheme for a map can be quite tricky, but fortunately
there are some excellent resources available. For this visualization we’ll rely on the
Chroma.js library (http://driven-by-data.net/about/chromajs/). That library includes
many tools for working with and manipulating colors and color scales, and it can
satisfy the most advanced color theorist. For our example, however, we can take
advantage of the predefined color scales, specifically those defined originally by
Cynthia Brewer (http://colorbrewer2.org/).

The Chroma.js library is available on popular content distribution networks,
so we can rely on a network such as CloudFlare’s cdnjs (http://cdnjs.com/) to host it.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <div id="map"></div>
 <script
 src="///cdnjs.cloudflare.com/ajax/libs/chroma-js/0.5.2/chroma.min.js">
 </script>
 </body>
</html>

To use a predefined scale, we pass the scale’s name ("BrBG" for Brewer’s
brown-to-blue-green scale) to the chroma.scale() function.

var scale = chroma.scale("BrBG").domain([maxZ, minZ]).out("hex");

At the same time, we indicate the domain for our scale (minZ to maxZ, although
we’re reversing the order because of the data set’s z-score adjustment) and our
desired output. The "hex" output is the common "#012345" format compatible with
CSS and HTML markup.

www.it-ebooks.info

http://www.it-ebooks.info/

192 | Chapter 6

Step 5: Color the Map
With our color scheme established, we can now apply the appropriate colors to
each county on the map. That’s probably the easiest step in the whole visualiza-
tion. We iterate through all the counties, finding their <path> elements based on
their id values, and applying the color by setting the fill attribute.

counties.forEach(function(county) {
 document.getElementById(county.code)
 .setAttribute("fill", scale(county.outcomes_z));
})

The resulting map, shown in Figure 6-6, illustrates which counties are above
average and which are below average for health outcomes in 2014.

Figure 6-6: CSS rules can set the styles for individual
SVG elements within an SVG illustration.

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 193

Step 6: Add a Legend
To help users interpret the map, we can add a legend to the visualization. We can
take advantage of the Chroma.js scale to easily create a table that explains the
variation. For the table, we’ll use four increments for the colors on each side of the
mean value. That gives us a total of nine colors for the legend.

<table id="legend">
 <tr class="scale">
 <td></td><td></td><td></td><td></td><td></td>
 <td></td><td></td><td></td><td></td>
 </tr>
 <tr class="text">
 <td colspan="4">Worse than Average</td>
 <td>Average</td>
 <td colspan="4">Better than Average</td>
 </tr>
</table>

Some straightforward CSS will style the table appropriately. Because we
have nine colors, we set the width of each table cell to 11.1111% (1/9 is 0.111111).

table#legend tr.scale td {
 height: 1em;
 width: 11.1111%;
}
table#legend tr.text td:first-child {
 text-align: left;
}
table#legend tr.text td:nth-child(2) {
 text-align: center;
}
table#legend tr.text td:last-child {
 text-align: right;
}

Finally, we use the Chroma scale created earlier to set the background color
for the legend’s table cells. Because the legend is a <table> element, we can directly
access the rows and the cells within the rows. Although these elements look like
arrays in the following code, they’re not true JavaScript arrays, so they don’t sup-
port array methods such as forEach(). For now, we’ll iterate through them with a
for loop, but if you’d rather use the array methods, stay tuned for a simple trick.
Note that once again we’re working backward because of the data set’s z-score
adjustments.

www.it-ebooks.info

http://www.it-ebooks.info/

194 | Chapter 6

var legend = document.getElementById("legend");
var cells = legend.rows[0].cells;
for (var idx=0; idx<cells.length; idx++) {
 var td = cells[idx];

u td.style.backgroundColor = scale(maxZ -
 ((idx + 0.5) / cells.length) * (maxZ - minZ));
};

At u we calculate the fraction of the current index from the total number of
legend colors ((idx + 0.5) / cells.length), multiply that by the total range of the
scale (maxZ - minZ), and subtract the result from the maximum value.

The result is the legend for the map in Figure 6-7.

Worse than Average Average Better than Average

Figure 6-7: An HTML <table> can serve as a legend.

Step 7: Add Interactions
To complete the visualization, let’s enable users to hover their mouse over a county
on the map to see more details. Of course, mouse interactions are not available
for tablet or smartphone users. To support those users, you could add a similar
interaction for tap or click events. That code would be almost identical to the next
example.

We’ll start by defining a table to show county details.

<table id="details">
 <tr><td>County:</td><td></td></tr>
 <tr><td>Rank:</td><td></td></tr>
 <tr><td>Health Behaviors:</td><td></td></tr>
 <tr><td>Clinical Care:</td><td></td></tr>
 <tr><td>Social & Economic Factors:</td><td></td></tr>
 <tr><td>Physical Environment:</td><td></td></tr>
</table>

Initially, we don’t want that table to be visible.

table#details {
 display: none;
}

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 195

To show the table, we use event handler functions that track when the mouse
enters or leaves an SVG path for a county. To find these <path> elements, we can
use the querySelectorAll() function that modern browsers support. Unfortunately,
that function doesn’t return a true array of elements, so we can’t use array meth-
ods such as forEach() to iterate through those elements. There’s a trick, however,
that will let us convert the returned list into a true array.

[].slice.call(document.querySelectorAll("#map path"))
 .forEach(function(path) {
 path.addEventListener("mouseenter", function(){
 document.getElementById("details").style.display = "table";
 });
 path.addEventListener("mouseleave", function(){
 document.getElementById("details").style.display = "none";
 });
 }
);

This code calls the [].slice.call() function with the “not quite array” object
as its parameter. The result is a true array with all of its useful methods.

In addition to making the details table visible, we’ll also want to update it
with the appropriate information. To help with this display, we can write a function
that converts a z-score into a more user-friendly explanation. The specific values in
the following example are arbitrary since we’re not trying for statistical precision in
this visualization.

var zToText = function(z) {
 z = +z;
 if (z > 0.25) { return "Far Below Average"; }
 if (z > 0.1) { return "Below Average"; }
 if (z > -0.1) { return "Average"; }
 if (z > -0.25) { return "Above Average"; }
 return "Far Above Average";
}

There are a couple of noteworthy items in this function. First, the statement
z = +z converts the z-score from a string to a numeric value for the tests that follow.
Second, remember that because of the z-score adjustments, the negative z-scores
are actually better than average, while the positive values are below average.

We can use this function to provide the data for our details table. The first
step is finding the full data set for the associated <path> element. To do that, we
search through the counties array looking for a code property that matches the id
attribute of the path.

www.it-ebooks.info

http://www.it-ebooks.info/

196 | Chapter 6

var county = null;
counties.some(function(c) {
 if (c.code === this.id) {
 county = c;
 return true;
 }
 return false;
});

Because indexOf() doesn’t allow us to find objects by key, we’ve used the
some() method instead. That method terminates as soon as it finds a match, so we
avoid iterating through the entire array.

Once we’ve found the county data, it’s a straightforward process to update
the table. The following code directly updates the relevant table cell’s text con-
tent. For a more robust implementation, you could provide class names for the
cells and update based on those class names.

var table = document.getElementById("details");
table.rows[0].cells[1].textContent =
 county.name;
table.rows[1].cells[1].textContent =
 county.outcomes_rank + " out of " + counties.length;
table.rows[2].cells[1].textContent =
 zToText(county.health_behaviors_z);
table.rows[3].cells[1].textContent =
 zToText(county.clinical_care_z);
table.rows[4].cells[1].textContent =
 zToText(county.social_and_economic_factors_z);
table.rows[5].cells[1].textContent =
 zToText(county.physical_environment_z);

Now we just need a few more refinements:

path.addEventListener("mouseleave", function(){
 // Previous code

u this.setAttribute("stroke", "#444444");
});
path.addEventListener("mouseleave", function(){
 // Previous code

v this.setAttribute("stroke", "none");
});

Here we add a stroke color at u for counties that are highlighted. We
remove the stroke at v when the mouse leaves the path.

At this point our visualization example is complete. Figure 6-8 shows the
result.

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 197

Worse than Average Average Better than Average

Cherokee

5 out of 159

Above Average

Above Average

Far Above Average

Average

County:

Rank:

Health Behaviors:

Clinical Care:

Social & Economic Factors:

Physical Environment:

Figure 6-8: Browsers (and a bit of code) can turn SVG illustrations into
interactive visualizations.

Including Maps for Context
So far in this chapter, we’ve looked at map visualizations where the main subjects
are geographic regions—countries in Europe or counties in Georgia. In those cases,
choropleth maps were effective in showing the differences between regions. Not all
map visualizations have the same focus, however. In some cases, we want to include
a map more as context or background for the visualization data.

When we want to include a map as a visualization background, we’re likely
to find that traditional mapping libraries will serve us better than custom chorop-
leth maps. The most well-known mapping library is probably Google Maps (http://
maps.google.com/), and you’ve almost certainly seen many examples of embed-
ded Google maps on web pages. There are, however, several free and open source
alternatives to Google Maps. For this example, we’ll use the Modest Maps library
(https://github.com/modestmaps/modestmaps-js/) from Stamen Design. To show
off this library, we’ll visualize the major UFO sightings in the United States (http://
en.wikipedia.org/wiki/UFO_sightings_in_the_United_States), or at least those
important enough to merit a Wikipedia entry.

www.it-ebooks.info

http://www.it-ebooks.info/

198 | Chapter 6

Step 1: Set Up the Web Page
For our visualization, we’ll rely on a couple of components from the Modest Maps
library: the core library itself and the spotlight extension that can be found in
the library’s examples folder. In production you would likely combine these and
minify the result to optimize performance, but for our example, we’ll include them
separately.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>

u <div id="map"></div>
 <script src="js/modestmaps.js"></script>
 <script src="js/spotlight.js"></script>
 </body>
</html>

We’ve also set aside a <div> at u to hold the map. Not surprisingly, it has the
id of "map".

Step 2: Prepare the Data
The Wikipedia data can be formatted as an array of JavaScript objects. We can
include whatever information we wish in the objects, but we’ll definitely need the
latitude and longitude of the sighting in order to place it on the map. Here’s how
you might structure the data.

var ufos = [
{
 "date": "April, 1941",
 "city": "Cape Girardeau",
 "state": "Missouri",
 "location": [37.309167, -89.546389],
 "url": "http://en.wikipedia.org/wiki/Cape_Girardeau_UFO_crash"
},{
 "date": "February 24, 1942",
 "city": "Los Angeles",
 "state": "California",
 "location": [34.05, -118.25],
 "url": "http://en.wikipedia.org/wiki/Battle_of_Los_Angeles"
},{
// Data set continues...

The location property holds the latitude and longitude (where negative
values indicate west) as a two-element array.

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 199

Step 3: Choose a Map Style
As with most mapping libraries, Modest Maps builds its maps using layers. The
layering process works much like it does in a graphics application such as Photo-
shop or Sketch. Subsequent layers add further visual information to the map. In
most cases, the base layer for a map consists of image tiles. Additional layers such
as markers or routes can be included on top of the image tiles.

When we tell Modest Maps to create a map, it calculates which tiles (both
size and location) are needed and then it requests those tiles asynchronously over
the Internet. The tiles define the visual style of the map. Stamen Design has pub-
lished several tile sets itself; you can see them on http://maps.stamen.com/.

To use the Stamen tiles, we’ll add one more, small JavaScript library to our
page. That library is available directly from Stamen Design (http://maps.stamen.com/
js/tile.stamen.js). It should be included after the Modest Maps library.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <div id="map"></div>
 <script src="js/modestmaps.js"></script>
 <script src="js/spotlight.js"></script>
 <script src="http://maps.stamen.com/js/tile.stamen.js"></script>
 </body>
</html>

For our example, the “toner” style is a good match, so we’ll use those tiles.
To use those tiles, we create a tile layer for the map.

var tiles = new MM.StamenTileLayer("toner");

When you consider a source for image tiles, be aware of any copyright
restrictions. Some image tiles must be licensed, and even those that are freely
available often require that any user identify the provider as the source.

Step 4: Draw the Map
Now we’re ready to draw the map itself. That takes two JavaScript statements:

var map = new MM.Map("map", tiles);
map.setCenterZoom(new MM.Location(38.840278, -96.611389), 4);

First we create a new MM.Map object, giving it the id of the element contain-
ing the map and the tiles we just initialized. Then we provide the latitude and
longitude for the map’s center as well as an initial zoom level. For your own maps,

www.it-ebooks.info

http://www.it-ebooks.info/

200 | Chapter 6

you may need to experiment a bit to get the right values, but for this example,
we’ll center and zoom the map so that it comfortably shows the continental United
States.

The resulting map, shown in Figure 6-9, forms a base for showing the
sightings.

Figure 6-9: Map libraries can show maps based on geographic coordinates.

Notice that both Stamen Design and OpenStreetMap are credited. That
attribution is required by the terms of the Stamen Design license.

Step 5: Add the Sightings
With our map in place, it’s time to add the individual UFO sightings. We’re using
the spotlight extension to highlight these locations, so we first create a spotlight
layer for the map. We’ll also want to set the radius of the spotlight effect. As with
the center and zoom parameters, a bit of trial and error helps here.

var layer = new SpotlightLayer();
layer.spotlight.radius = 15;
map.addLayer(layer);

Now we can iterate through the array of sightings that make up our data. For
each sighting, we extract the latitude and longitude of the location and add that
location to the spotlight layer.

ufos.forEach(function(ufo) {
 layer.addLocation(new MM.Location(ufo.location[0], ufo.location[1]));
});

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 201

At this point our visualization is complete. Figure 6-10 shows where UFOs
have allegedly appeared over the United States in a suitably mysterious context.

Figure 6-10: Adding layers in a map library can emphasize regions of a map.

Integrating a Full-Featured Mapping Library
The Modest Maps library of the previous example is a fine library for simple map
visualizations, but it doesn’t have all of the features and support of a full-featured
service such as Google Maps. There is, however, an open source library that does
provide those features: Leaflet (http://leafletjs.com/). In this example, we’ll build a
more complex visualization that features a Leaflet-based map.

In the 1940s, two private railroads were in competition for passenger traffic in
the southeastern United States. Two routes that competed most directly were the
Silver Comet (run by Seaboard Air Lines) and the Southerner (operated by Southern
Railways). Both served passengers traveling between New York and Birmingham,
Alabama. One factor cited in the Southerner’s ultimate success was the shorter
distance of its route. Trips on the Southerner were quicker, giving Southern Railways
a competitive advantage. Let’s create a visualization to demonstrate that advantage.

Step 1: Prepare the Data
The data for our visualization is readily available as timetables for the two routes.
A more precise comparison might consider timetables from the same year, but
for this example, we’ll use the Southerner’s timetable from 1941 (http://www
.streamlinerschedules.com/concourse/track1/southerner194112.html) and the Silver
Comet’s timetable from 1947 (http://www.streamlinerschedules.com/concourse/
track1/silvercomet194706.html), as they are readily available on the Internet. The

www.it-ebooks.info

http://www.it-ebooks.info/

202 | Chapter 6

timetables only include station names, so we will have to look up latitude and
longitude values (using, for example, Google Maps) for all of the stations in order
to place them on a map. We can also calculate the time difference between stops,
in minutes. Those calculations result in two arrays, one for each train.

var seaboard = [
 { "stop": "Washington",
 "latitude": 38.895111, "longitude": -77.036667,
 "duration": 77 },
 { "stop": "Fredericksburg",
 "latitude": 38.301806, "longitude": -77.470833,
 "duration": 89 },
 { "stop": "Richmond",
 "latitude": 37.533333, "longitude": -77.466667,
 "duration": 29 },
 // Data set continues...
];
var southern = [
 { "stop": "Washington",
 "latitude": 38.895111, "longitude": -77.036667,
 "duration": 14 },
 { "stop": "Alexandria",
 "latitude": 38.804722, "longitude": -77.047222,
 "duration": 116 },
 { "stop": "Charlottesville",
 "latitude": 38.0299, "longitude": -78.479,
 "duration": 77 },
 // Data set continues...
];

Step 2: Set Up the Web Page and Libraries
To add Leaflet maps to our web page, we’ll need to include the library and its
companion style sheet. Both are available from a content distribution network, so
there’s no need to host them on our own servers.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 <link rel="stylesheet"
 href="http://cdn.leafletjs.com/leaflet-0.7.2/leaflet.css" />
 </head>
 <body>

u <div id="map"></div>

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 203

 <script
 src="http://cdn.leafletjs.com/leaflet-0.7.2/leaflet.js">
 </script>
 </body>
</html>

When we create our page, we also define a <div> container for the map
at u.

Step 3: Draw the Base Map
The Silver Comet and the Southerner traveled between New York and Birmingham
(and, in the case of the Southerner, all the way to New Orleans). But the region that’s
relevant for our visualization lies between Washington, DC, and Atlanta, Georgia,
because that’s the only region where the train routes differed; for the rest of their
journeys, the routes were essentially the same. Our map, therefore, will extend from
Atlanta in the southwest to Washington, DC, in the northeast. Using a bit of trial
and error, we can determine the best center point and zoom level for the map.
The center point defines the latitude and longitude for the map’s center, and the
zoom level determines the area covered by the map on its initial display. When we
create the map object, we give it the id of the containing element as well as those
parameters.

var map = L.map("map",{
 center: [36.3, -80.2],
 zoom: 6
});

For this particular visualization, there is little point in zooming or panning the
map, so we can include additional options to disable those interactions.

var map = L.map("map",{
 center: [36.3, -80.2],

u maxBounds: [[33.32134852669881, -85.20996093749999],
v [39.16414104768742, -75.9814453125]],

 zoom: 6,
w minZoom: 6,
x maxZoom: 6,
y dragging: false,
z zoomControl: false,
{ touchZoom: false,

 scrollWheelZoom: false,
 doubleClickZoom: false,

| boxZoom: false,
} keyboard: false

});

www.it-ebooks.info

http://www.it-ebooks.info/

204 | Chapter 6

Setting both the minimum zoom level w and the maximum zoom level x to
be equal to the initial zoom level disables zooming. We also disable the onscreen
map controls for zooming at z. The other zoom controls are likewise disabled ({
through |). For panning, we disable dragging the map at y and keyboard arrow
keys at }. We also specify the latitude/longitude bounds for the map (u and v).

Because we’ve disabled the user’s ability to pan or zoom the map, we
should also make sure the mouse cursor doesn’t mislead the user when it’s hov-
ering over the map. The leaflet.css style sheet expects zooming and panning to
be enabled, so it sets the cursor to a “grabbing” hand icon. We can override that
value with a style rule of our own. We have to define this rule after including the
leaflet.css file.

.leaflet-container {
 cursor: default;
}

As with the Modest Maps example, we base our map on a set of tiles.
There are many tile providers that support Leaflet; some are open source, while
others are commercial. Leaflet has a demo page (http://leaflet-extras.github.io/
leaflet-providers/preview/) you can use to compare some of the open source tile
providers. For our example, we want to avoid tiles with roads, as the highway net-
work looked very different in the 1940s. Esri has a neutral WorldGrayCanvas set
that works well for our visualization. It does include current county boundaries, and
some counties may have changed their borders since the 1940s. For our example,
we won’t worry about that detail, though you might consider it in any production
visualization. Leaflet’s API lets us create the tile layer and add it to the map in a
single statement. The Leaflet includes a built-in option to handle attribution so
we can be sure to credit the tile source appropriately.

L.tileLayer("http://server.arcgisonline.com/ArcGIS/rest/services/"+
 "Canvas/World_Light_Gray_Base/MapServer/tile/{z}/{y}/{x}", {
 attribution: "Tiles © Esri — Esri, DeLorme, NAVTEQ",

u maxZoom: 16
}).addTo(map);

Note that the maxZoom option at u indicates the maximum zoom layer avail-
able for that particular tile set. That value is independent of the zoom level we’re
permitting for our map.

With a map and a base tile layer, we have a good starting point for our visual-
ization in (see Figure 6-11).

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 205

Figure 6-11: A base layer map provides the canvas for a visualization.

Step 4: Add the Routes to the Map
For the next step in our visualization, we want to show the two routes on our map.
First, we’ll simply draw each route on the map. Then, we’ll add an animation that
traces both routes at the same time to show which one is faster.

The Leaflet library includes a function that does exactly what we need to
draw each route: polyline() connects a series of lines defined by the latitude and
longitude of their endpoints and prepares them for a map. Our data set includes
the geographic coordinates of each route’s stops, so we can use the JavaScript
map() method to format those values for Leaflet. For the Silver Comet example,
the following statement extracts its stops.

seaboard.map(function(stop) {
 return [stop.latitude, stop.longitude]
})

This statement returns an array of latitude/longitude pairs:

[
 [38.895111,-77.036667],
 [38.301806,-77.470833],

www.it-ebooks.info

http://www.it-ebooks.info/

206 | Chapter 6

 [37.533333,-77.466667],
 [37.21295,-77.400417],
 /* Data set continues... */
]

That result is the perfect input to the polyline() function. We’ll use it for
each of the routes. The options let us specify a color for the lines, which we’ll
match with the associated railroad’s official color from the era. We also indicate
that the lines have no function when clicked by setting the clickable option to
false.

L.polyline(
 seaboard.map(function(stop) {return [stop.latitude, stop.longitude]}),
 {color: "#88020B", weight: 1, clickable: false}
).addTo(map);

L.polyline(
 southern.map(function(stop) {return [stop.latitude, stop.longitude]}),
 {color: "#106634", weight: 1, clickable: false}
).addTo(map);

With this addition, the visualization shown in Figure 6-12 is starting to convey
the relative distances of the two routes.

Figure 6-12: Additional map layers add data to the canvas.

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 207

Step 5: Add an Animation Control
Next, we’ll animate the two routes. Not only will this emphasize the competitive
advantage of the shorter route, but it will also make the visualization more interest-
ing and engaging. We’ll definitely want to let our users start and stop the anima-
tion, so our map will need a control button. The Leaflet library doesn’t have its own
animation control, but the library does have a lot of support for customizations.
Part of that support is a generic Control object. We can create an animation con-
trol by starting with that object and extending it.

L.Control.Animate = L.Control.extend({
 // Custom code goes here
});

Next we define the options for our custom control. Those options include its
position on the map, the text and tool tip (title) for its states, and functions to call
when the animation starts or stops. We define these within an options object as
follows, which lets Leaflet integrate them within its normal functionality.

L.Control.Animate = L.Control.extend({
 options: {
 position: "topleft",
 animateStartText: "▶",
 animateStartTitle: "Start Animation",
 animatePauseText: "◼",
 animatePauseTitle: "Pause Animation",
 animateResumeText: "▶",
 animateResumeTitle: "Resume Animation",
 animateStartFn: null,
 animateStopFn: null
 },

For our example, we’re using UTF-8 characters for the play and pause con-
trol. In a production visualization, you might consider using icon fonts or images to
have maximum control over the appearance.

Our animation control also needs an onAdd() method for Leaflet to call when
it adds a control to a map. This method constructs the HTML markup for the con-
trol and returns that to the caller.

 onAdd: function () {
 var animateName = "leaflet-control-animate",

u container = L.DomUtil.create(
 "div", animateName + " leaflet-bar"),
 options = this.options;

v this._button = this._createButton(
 this.options.animateStartText,
 this.options.animateStartTitle,
 animateName,
 container,

www.it-ebooks.info

http://www.it-ebooks.info/

208 | Chapter 6

 this._clicked);

 return container;
 },

Our implementation of onAdd() constructs the markup in two stages. First,
starting at u, it creates a <div> element and gives that element two classes:
leaflet-control-animate and leaflet-bar. The first class is unique to our animation
control, and we can use it to apply CSS rules uniquely to our control. The second
class is a general Leaflet class for all toolbars. By adding it to the animation control,
we’re making that control consistent with other Leaflet controls. Note that Leaflet
includes the L.DomUtil.create() method at u to handle the details of creating the
element.

The second part of onAdd() creates a button element within this <div> con-
tainer. Most of the work takes place in the _createButton() function at v, which
we’ll examine shortly. The parameters to the function include the following:

 > The text for the button

 > The tool tip (title) to display when the mouse hovers over the button

 > The CSS class to apply to the button

 > The container in which to insert the button

 > A function to call when the button is clicked

If you’re wondering why the name of this function begins with an underscore
(_), that’s the convention that Leaflet uses for private methods (and attributes).
There’s no requirement to follow it, but doing so will make it easier for someone
familiar with Leaflet to understand our code.

The _createButton() method itself relies on Leaflet utility functions.

 _createButton: function (html, title, className, container, callback) {
u var link = L.DomUtil.create("a", className, container);

 link.innerHTML = html;
 link.href = "#";

v link.title = title;

 L.DomEvent
w .on(link, "mousedown dblclick", L.DomEvent.stopPropagation)
x .on(link, "click", L.DomEvent.stop)
y .on(link, "click", callback, this);

 return link;
 },

First it creates the button as an <a> element with the specified text, title, and
class, and it creates that element within the appropriate container (u through v).
It then binds several events to this <a> element. First it ignores initial mousedown and
double-click events at w. It also prevents single-click events from propagating up

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 209

the document tree and from implementing their default behavior at x. Finally, it
executes the callback function on click events at y.

The callback function itself is our next task.

u _running: false,

 _clicked: function() {

v if (this._running) {
 if (this.options.animateStopFn) {
 this.options.animateStopFn();
 }
 this._button.innerHTML = this.options.animateResumeText;
 this._button.title = this.options.animateResumeTitle;
 } else {
 if (this.options.animateStartFn) {
 this.options.animateStartFn();
 }
 this._button.innerHTML = this.options.animatePauseText;
 this._button.title = this.options.animatePauseTitle;
 }
 this._running = !this._running;
 },

Before we get into the function, we add a single state variable (_running) to
keep track of whether the animation is currently running. It starts out stopped at u.
Then our callback function starts by checking this variable at v. If _running is true,
that means the animation was running and has just been paused by the current click,
so it changes the control to indicate that clicking will now resume the animation. If
the animation isn’t running, the callback function does the opposite: it changes the
control to indicate that a subsequent click will pause it. In both cases, the callback
function executes the appropriate control function if one exists. Finally, it sets the
state of _running to its complement.

The last part of our custom control adds a reset() method to clear the ani-
mation. This function sets the control back to its initial state.

 reset: function() {
 this._running = false;
 this._button.innerHTML = this.options.animateStartText;
 this._button.title = this.options.animateStartTitle;
 }
});

To completely integrate our custom control into the Leaflet architecture, we
add a function to the L.control object. Following the Leaflet convention, this func-
tion’s name begins with a lowercase letter but is otherwise identical to the name of
our control.

www.it-ebooks.info

http://www.it-ebooks.info/

210 | Chapter 6

L.control.animate = function (options) {
 return new L.Control.Animate(options);
};

Defining this last function lets us create the control using a common Leaflet
syntax.

L.control.animate().addTo(map);

This is the same syntax we’ve seen before with layers and polylines.

Step 6: Prepare the Animation
With a convenient user control in place, we can now begin work on the animation
itself. Although this particular animation isn’t especially taxing, we can still follow
best practices and compute as much as possible in advance. Since we’re animating
two routes, we’ll define a function that will build an animation for any input route.
A second parameter will specify polyline options. This function will return an array
of polyline paths, indexed by minutes. You can see the basic structure of this func-
tion next.

var buildAnimation = function(route, options) {
 var animation = [];

 // Code to build the polylines

 return animation;
}

The first element in the array will be the polyline for the first minute of the
route. We’ll build the entire array in the animation variable.

To build the paths, we iterate through the stops on the route.

u for (var stopIdx=0, prevStops=[];
 stopIdx < route.length-1; stopIdx++) {
 // Code to calculate steps between current stop and next stop
 }

We want to keep track of all the stops we’ve already passed, so we define the
prevStops array and initialize it as empty at u. Each iteration calculates the anima-
tion steps for the current stop up to the next stop. There’s no need to go beyond
the final stop on the route, so we terminate the loop at the next-to-last stop
(stopIdx < route.length-1;).

As we start to calculate the paths beginning at the current stop, we’ll store
that stop and the next one in local variables, and we’ll add the current stop to the
prevStops array that’s keeping track of previous stops.

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 211

 var stop = route[stopIdx];
 var nextStop = route[stopIdx+1]
 prevStops.push([stop.latitude, stop.longitude]);

For each stop in our data sets, the duration property stores the number of
minutes until the next stop. We’ll use an inner loop, shown next, to count from 1 up
to that value.

 for (var minutes = 1; minutes <= stop.duration; minutes++) {
 var position = [
 stop.latitude +
 (nextStop.latitude - stop.latitude) *
 (minutes/stop.duration),
 stop.longitude +
 (nextStop.longitude - stop.longitude) *
 (minutes/stop.duration)
];
 animation.push(
 L.polyline(prevStops.concat([position]), options)
);
 }

Within the loop, we use a simple linear interpolation to calculate the position
at the corresponding time. That position, when appended to the prevStops array, is
the polyline path for that time. This code creates a polyline based on the path and
adds it to the animation array.

When we use the array concat() method, we embed the position array within
another array object. That keeps concat() from flattening the position array before
appending it. You can see the difference in the following examples. It’s the latter
outcome that we want.

[[1,2], [3,4]].concat([5,6]); // => [[1,2], [3,4], 5, 6]
[[1,2], [3,4]].concat([[5,6]]); // => [[1,2], [3,4], [5,6]]

Step 7: Animate the Routes
Now it’s finally time to execute the animation. To initialize it, we create an array to
hold the two routes.

var routeAnimations = [
 buildAnimation(seaboard,
 {clickable: false, color: "#88020B", weight: 8, opacity: 1.0}
),
 buildAnimation(southern,
 {clickable: false, color: "#106634", weight: 8, opacity: 1.0}
)
];

www.it-ebooks.info

http://www.it-ebooks.info/

212 | Chapter 6

Next we calculate the maximum number of animation steps. That’s the mini-
mum of the length of the two animation arrays.

var maxSteps = Math.min.apply(null,
 routeAnimations.map(function(animation) {
 return animation.length
 })
);

That statement might seem overly complex for finding the minimum length,
but it works with an arbitrary number of routes. If, in the future, we decided to
animate a third route on our map, we wouldn’t have to change the code. The best
way to understand the statement is to start in the middle and work outward. The
following fragment converts the array of route animations into an array of lengths,
specifically [870,775]:

routeAnimations.map(function(animation) {return animation.length})

To find the minimum value in an array, we can use the Math.min() function,
except that function expects its parameters as a comma-separated list of arguments
rather than an array. The apply() method (which is available for any JavaScript
function) converts an array into a comma-separated list. Its first parameter is a
context for the function, which in our case is irrelevant, so we pass null for that
parameter.

The animation keeps track of its current state with the step variable, which
we initialize to 0.

var step = 0;

The animateStep() function processes each step in the animation. There are
four parts to this function.

var animateStep = function() {
 // Draw the next step in the animation
}

First we check to see whether this is the very first step in the animation.

 if (step > 0) {
 routeAnimations.forEach(function(animation) {

u map.removeLayer(animation[step-1]);
 });
 }

If it isn’t, step will be greater than zero and we can remove the previous
step’s polylines from the map at u.

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 213

Next we check to see if we’re already at the end of the animation. If so, then
we restart the animation back at step 0.

 if (step === maxSteps) {
 step = 0;
 }

For the third part, we add the current step’s polylines to the map.

 routeAnimations.forEach(function(animation) {
 map.addLayer(animation[step]);
 });

Finally, we return true if we’ve reached the end of the animation.

 return ++step === maxSteps;

We’ll execute this step function repeatedly in a JavaScript interval, shown next.

var interval = null;
var animate = function() {
 interval = window.setInterval(function() {

u if (animateStep()) {
 window.clearInterval(interval);
 control.reset();
 }
 }, 30);
}

v var pause = function() {
 window.clearInterval(interval);
}

We use a variable to keep a reference to that interval and add functions
to start and stop it. In the animate() function, we check the return value from
animateStep() at u. When it returns true, the animation is complete, so we clear the
interval and reset our control. (We’ll see where that control is defined shortly.) The
pause() function at v stops the interval.

Now all we need to do is define the animation control using the object we
created in Step 5.

var control = L.control.animate({
 animateStartFn: animate,
 animateStopFn: pause
});
control.addTo(map);

Once we add it to the map, the user will be able to activate the animation.

www.it-ebooks.info

http://www.it-ebooks.info/

214 | Chapter 6

Step 8: Create Labels for the Stops
Before we wrap up the animation, we’ll add some labels for each train stop. To
emphasize the passage of time, we’ll reveal each label as the animation reaches the
corresponding stop. To do that, we’ll create the labels using a special object; then
we’ll create a method to add labels to the map; and, to finish the label object, we’ll
add methods that get or set a label’s status.

Since Leaflet doesn’t have a predefined object for labels, we can once again
create our own custom object. We start with the basic Leaflet Class.

L.Label = L.Class.extend({
 // Implement the Label object
});

Our Label object accepts parameters for its position on the map, its label
text, and any options. Next, we extend the initialize() method of the Leaflet
Class to handle those parameters.

 initialize: function(latLng, label, options) {
 this._latlng = latLng;
 this._label = label;

u L.Util.setOptions(this, options);
v this._status = "hidden";

 },

For position and text, we simply save their values for later use. For the
options, we use a Leaflet utility at u to easily support default values. The object
includes one variable to keep track of its status. Initially all labels are hidden, so
this._status is initialized appropriately at v.

Next we define the default option values with the options attribute.

 options: {
 offset: new L.Point(0, 0)
 },
});

The only option we need for our label is an offset for the standard position.
By default, that offset will be 0 in both the x- and y-coordinates.

This options attribute, combined with the call to L.Util.setOptions in the
initialize method, establishes a default value (0,0) for the offset that can be easily
overridden when a Label object is created.

Next we write the method that adds a label to a map.

 onAdd: function(map) {
u this._container = L.DomUtil.create("div", "leaflet-label");
v this._container.style.lineHeight = "0";
w this._container.style.opacity = "0";
x map.getPanes().markerPane.appendChild(this._container);
y this._container.innerHTML = this._label;

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 215

z var position = map.latLngToLayerPoint(this._latlng);
{ position = new L.Point(

 position.x + this.options.offset.x,
 position.y + this.options.offset.y

|);
} L.DomUtil.setPosition(this._container, position);

 },

This method does the following:

1. Creates a new <div> element with the CSS class leaflet-label at u
2. Sets the line-height of that element to 0 to work around a quirk in the way

Leaflet calculates position at v
3. Sets the opacity of the element to 0 to match its initial hidden status at w
4. Adds the new element to the markerPane layer in the map at x
5. Sets the contents of the element to the label text at y
6. Calculates a position for the label using its defined latitude/longitude at z

and then adjusts for any offset ({ through |)
7. Positions the element on the map at }

 QNote: Step 2—setting the line-height to 0 —addresses a problem in the
method Leaflet uses to position elements on the map. In particular, Leaflet
does not account for other elements in the same parent container. By setting
all elements to have no line height, we nullify this effect so that the calcu-
lated position is correct.

Finally, we add methods to get and set the label’s status. As the following
code indicates, our labels can have three different status values, and those values
determine the opacity of the label.

 getStatus: function() {
 return this._status;
 },
 setStatus: function(status) {
 switch (status) {
 case "hidden":
 this._status = "hidden";
 this._container.style.opacity = "0";
 break;
 case "shown":
 this._status = "shown";
 this._container.style.opacity = "1";
 break;
 case "dimmed":
 this._status = "dimmed";
 this._container.style.opacity = "0.5";
 break;
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

216 | Chapter 6

We included the option to adjust the label’s position because not all labels
will look good positioned exactly on the latitude and longitude of the station.
Most will benefit from slight shifts to avoid interference with the route polylines,
text on the base map tiles, or other labels. For a custom visualization such as this
example, there’s no substitute for trial-and-error adjustments. We’ll capture those
adjustments for each label by adding another offset field to our data set. The
augmented data set might begin like this:

var seaboard = [
{ "stop": "Washington", "offset": [-30,-10], /* Data continues... */ },
{ "stop": "Fredericksburg", "offset": [6, 4], /* Data continues... */ },
{ "stop": "Richmond", "offset": [6, 4], /* Data continues... */ },
// Data set continues...

Step 9: Build the Label Animation
To create the label animation, we can once again iterate through the trains’ routes.
Because we have more than one route, a general-purpose function will let us avoid
duplicating code. As you can see from the following code, we’re not using a fixed
number of arguments to our function. Instead, we let the caller pass in as many
individual routes as desired. All of those input parameters will be stored in the
arguments object.

The arguments object looks a lot like a JavaScript array. It has a length prop-
erty, and we can access individual elements using, for example, arguments[0].
Unfortunately, the object isn’t a true array, so we can’t use the convenient array
methods (such as forEach) on it. As a workaround, the very first statement in our
buildLabelAnimation() function, shown next, relies on a simple trick to convert the
arguments object into the true args array.

var buildLabelAnimation = function() {
u var args = Array.prototype.slice.call(arguments),

 labels = [];

 // Calculate label animation values

 return labels;
}

It’s a bit long winded, but the statement at u effectively executes the
slice() method on arguments. That operation clones arguments into a true array.

 QNote: this same trick works for nearly all of JavaScript’s “array-like” objects.
You can often use it to convert them into true arrays.

With the routes converted into an array, we can use forEach to iterate
through all of them, regardless of their number.

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 217

 args.forEach(function(route) {
 var minutes = 0;
 route.forEach(function(stop,idx) {
 // Process each stop on the route
 });
 });

As we begin processing each route, we set the minutes value to 0. Then we
can use forEach again to iterate through all the stops on the route.

 route.forEach(function(stop,idx) {
 if (idx !== 0 && idx < route.length-1) {

u var label = new L.Label(
 [stop.latitude, stop.longitude],
 stop.stop,
 {offset: new L.Point(stop.offset[0], stop.offset[1])}
);
 map.addLayer(label);

v labels.push(
 {minutes: minutes, label: label, status: "shown"}
);

w labels.push(
 {minutes: minutes+50, label: label, status: "dimmed"}
);
 }
 minutes += stop.duration;
 });

For each stop in the route, we first check to see whether that stop is the first
or last one. If so, we don’t want to animate a label for that stop. Otherwise, we create
a new Label object at u and add it to the map. Then we append that Label object
to the labels array that’s accumulating the label animation data. Notice that we add
each label to this array twice. The first time we add it (v) is at the time the animation
reaches the stop; in this case, we add it with a status of shown. We also add the label
to the array 50 minutes later (w), this time with a status of dimmed. When we execute
the animation, it will show the label when the route first reaches the station and
then dim it a bit later.

Once we’ve iterated through all the routes, our labels array will indicate when
each label should change status. At this point, though, the labels aren’t listed in
the order of their animation state changes. To fix that, we sort the array in order of
increasing time.

 labels.sort(function(a,b) {return a.minutes - b.minutes;})

To use our new function, we call and pass in all the routes to animate.

var labels = buildLabelAnimation(seaboard, southern);

www.it-ebooks.info

http://www.it-ebooks.info/

218 | Chapter 6

Because we’re not animating the start (Washington, DC) or end (Atlanta) of any
routes, we can go ahead and display those on the map from the start. We can get
the coordinates from any route; the following example uses the seaboard data set.

var start = seaboard[0];
var label = new L.Label(
 [start.latitude, start.longitude],
 start.stop,
 {offset: new L.Point(start.offset[0], start.offset[1])}
);
map.addLayer(label);
label.setStatus("shown");

var finish = seaboard[seaboard.length-1];
label = new L.Label(
 [finish.latitude, finish.longitude],
 finish.stop,
 {offset: new L.Point(finish.offset[0], finish.offset[1])}
);
map.addLayer(label);
label.setStatus("shown");

Step 10: Incorporate Label Animation in the Animation Step
Now that the label animation data is available, we can make some adjustments to
our animation function to incorporate the labels as well as the polyline paths. The
first change is deciding when to conclude the animation. Because we’re dimming
the labels some time after the route passes their stops, we can’t simply stop when
all the paths are drawn. That might leave some labels undimmed. We’ll need sepa-
rate variables to store the number of steps for each animation, and the total num-
ber of animation steps will be whichever is greater.

var maxPathSteps = Math.min.apply(null,
 routeAnimations.map(function(animation) {
 return animation.length
 })
);
var maxLabelSteps = labels[labels.length-1].minutes;
var maxSteps = Math.max(maxPathSteps, maxLabelSteps);

We also need a copy of the label animation data that we can destroy during
the animation, while keeping the original data intact. We don’t want to destroy the
original so that users can replay the animation if they wish. The easiest way to copy
a JavaScript array is by calling its slice(0) method.

 QNote: We can’t simply copy the array using an assignment statement
(var labelAnimation = labels). In JavaScript this statement would simply set
labelAnimation to reference the same actual array as labels. Any changes
made to the first would also affect the latter.

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 219

var labelAnimation = labels.slice(0);

The animation step function itself needs some additional code to handle
labels. It will now have five major parts; we’ll walk through each of them in the code
that follows. Our first adjustment is to make sure the code removes previous poly-
line paths only as long as we’re still adding paths to the map. That’s true only when
step is less than maxPathSteps.

 if (step > 0 && step < maxPathSteps) {
 routeAnimations.forEach(function(animation) {
 map.removeLayer(animation[step-1]);
 });
 }

The next block handles the case in which the user replays the animation.

 if (step === maxSteps) {
u routeAnimations.forEach(function(animation) {

 map.removeLayer(animation[maxPathSteps-1]);
v });
w labelAnimation = labels.slice(0);
x labelAnimation.forEach(function(label) {

 label.label.setStatus("hidden");
y });
z step = 0;

 }

When the animation replays, the step value will still be set to maxSteps from
the prior animation. To reset the animation, we remove the last polyline paths for
each route (u through v), make a new copy of the label animation data (w), and
hide all the labels (x through y). We also reset the step variable to 0 (z).

The third block is a completely new block that animates the labels.

 while (labelAnimation.length && step === labelAnimation[0].minutes) {
 var label = labelAnimation[0].label;
 if (step < maxPathSteps || label.getStatus() === "shown") {
 label.setStatus(labelAnimation[0].status);
 }
 labelAnimation.shift();
 }

This block looks at the first element in the labelAnimation array, if one exists.
If the time value for that element (its minutes property) is the same as the animation
step, we check to see if we need to process it. We always process label animations
when we’re still adding the paths. If the paths are complete, though, we process
animations only for labels that are already shown. Once we’re finished with the first
element in labelAnimation, we remove it from the array (using the shift() method)

www.it-ebooks.info

http://www.it-ebooks.info/

220 | Chapter 6

and check again. We must keep checking in case multiple label animation actions
are scheduled at the same time.

The preceding code explains a couple of things about our label animation
preparation. First, because we sorted the label animation, we only need to look
at the first element in that array. That’s much more efficient than searching through
the entire array. Secondly, because we’re working with a copy of the label anima-
tion array instead of the original, it’s safe to remove elements once we finish pro-
cessing them.

Now that we’ve handled all the label animations, we can return to the poly-
line paths. As long as there are still paths to animate, we add them to the map as
before.

 if (step < maxPathSteps) {
 routeAnimations.forEach(function(animation) {
 map.addLayer(animation[step]);
 });
 }

The final code block in our animation step function is the same as before. We
return an indication of whether the animation is complete.

 return ++step === maxSteps;

There’s one more improvement we can make to the animation, in this case
with a judicious bit of CSS. Because we use the opacity property to change the
status of the labels, we can define a CSS transition for that property that will make
any changes less abrupt.

.leaflet-label {
 -webkit-transition: opacity .5s ease-in-out;
 -moz-transition: opacity .5s ease-in-out;
 -ms-transition: opacity .5s ease-in-out;
 -o-transition: opacity .5s ease-in-out;
 transition: opacity .5s ease-in-out;
}

To accommodate all popular browsers, we use appropriate vendor prefixes,
but the effect of the rule is consistent. Whenever the browser changes the opacity
of elements within a leaflet-label class, it will ease the transition in and out over a
500-millisecond period. This transition prevents the label animations from distract-
ing users too much from the path animation that is the visualization’s main effect.

www.it-ebooks.info

http://www.it-ebooks.info/

 Visualizing Geographic Data | 221

Step 11: Add a Title
To complete the visualization, all we need is a title and a bit of explanation. We can
build the title as a Leaflet control, much as we did for the animation control. The
code to do this is quite straightforward.

L.Control.Title = L.Control.extend({
 options: {

u position: "topleft"
 },

v initialize: function (title, options) {
 L.setOptions(this, options);
 this._title = title;
 },

 onAdd: function (map) {
 var container = L.DomUtil.create("div", "leaflet-control-title");

w container.innerHTML = this._title;
 return container;
 }
});

L.control.title = function(title, options) {
 return new L.Control.Title(title, options);
};

We provide a default position in the top left of the map (u) and accept a
title string as an initialization parameter (v). At w, we make it so that title string
becomes the innerHTML of the control when we add it to the map.

Now we can use the following code to create a title object with our desired
content and immediately add it to the map. Here’s a simple implementation; Fig-
ure 6-13 includes some extra information.

L.control.title("Geography as a Competitive Advantage").addTo(map);

To set the title’s appearance, we can define CSS rules for children of the
leaflet-control-title class.

At this point, we have the interactive visualization of the two train routes in
Figure 6-13. Users can clearly see that the Southerner has a quicker route from
Washington to Atlanta.

www.it-ebooks.info

http://www.it-ebooks.info/

222 | Chapter 6

Figure 6-13: Maps built in the browser with a map library can use
interactivity to build interest.

Summing Up
In this chapter, we’ve looked at several visualizations based on maps. In the first
two examples, geographic regions were the main subjects of the visualization, and
we built choropleth maps to compare and contrast those regions. Map fonts are
quick and convenient, but only if they’re available for the regions the visualization
needs. Although it usually takes more effort, we have far more control over the
map regions if we use SVGs to create our own custom maps. Unlike other image
formats, SVG can be easily manipulated in a web page with just CSS and JavaScript.
This chapter also looked at examples based on traditional mapping libraries.
Mapping libraries are especially convenient when your data sets include latitude
and longitude values, as the libraries take care of the complicated mathematics
required to position those points on a two-dimensional projection. As we saw,
some libraries are relatively simple yet perfectly capable of mapping a data set.
Full-featured libraries such as Leaflet offer much more power and customization,
and we relied on that extensibility for a custom, animated map.

www.it-ebooks.info

http://www.it-ebooks.info/

7
Custom Visualizations

with D3.js

In this book we’ve looked at many JavaScript
libraries that were designed for specific types
of visualizations. If you need a certain type of
visualization for your web page and there’s a
library that can create it, using that library is
often the quickest and easiest way to create
your visualization. There are drawbacks to such
libraries, however. They all make assumptions
about how the visualization should look and

www.it-ebooks.info

http://www.it-ebooks.info/

224 | Chapter 7

act, and despite the configuration options they provide, you don’t have complete
control over the results. Sometimes that’s not an acceptable trade-off.

In this chapter, we’ll look at an entirely different approach to JavaScript visual-
izations, one that allows us to be creative and to retain complete control over the
results. As you might expect, that approach isn’t always as easy as, for example,
adding a charting library and feeding it data. Fortunately, there is a very power-
ful JavaScript library that can help: D3.js (http://d3js.org/). D3.js doesn’t provide
predefined visualizations such as charts, graphs, or maps. Instead, it’s a toolbox
for data visualization, and it gives you the tools to create your own charts, graphs,
maps, and more.

To see some of the powerful features of D3.js, we’ll take a whirlwind tour. This
chapter’s examples include the following:

 > Adapting a traditional chart type for particular data

 > Building a force-directed graph that responds to user interactions

 > Displaying map-based data using high-quality SVGs

 > Creating a fully customized visualization

Adapting a Traditional Chart Type
The most significant difference between D3.js and other JavaScript libraries is its
philosophy. D3.js is not a tool for creating predefined types of charts and visualiza-
tions. Instead, it’s a library to help you create any visualization, including custom
and unique presentations. It takes more effort to create a standard chart with D3.js,
but by using it we’re not limited to standard charts. To get a sense of how D3.js
works, we can create a custom chart that wouldn’t be possible with a typical chart-
ing library.

For this example, we’ll visualize one of the most important findings in mod-
ern physics—Hubble’s law. According to that law, the universe is expanding, and
as a result, the speed at which we perceive distant galaxies to be moving varies
according to their distance from us. More precisely, Hubble’s law proposes that the
variation, or shift, in this speed is a linear function of distance. To visualize the law,
we can chart the speed variation (known as red shift velocity) versus distance for
several galaxies. If Hubble is right, the chart should look like a line. For our data,
we’ll use galaxies and clusters from Hubble’s original 1929 paper (http://www.pnas
.org/content/15/3/168.full) but updated with current values for distance and red
shift velocities.

So far this task seems like a good match for a scatter chart. Distance could
serve as the x-axis and velocity the y-axis. There’s a twist, though: physicists don’t
actually know the distances or velocities that we want to chart, at least not exactly.
The best they can do is estimate those values, and there is potential for error in
both. But that’s no reason to abandon the effort. In fact, potential errors in the
values might be an important aspect for us to highlight in our visualization. To do

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 225

that, we won’t draw each value as a point. Rather, we’ll show it as a box, and the
box dimensions will correspond to the potential errors in the value. This approach
isn’t common for scatter plots, but D3.js can accommodate it with ease.

Step 1: Prepare the Data
Here is the data for our chart according to recent estimates.

Table 7-1: Distance and Red Shift Velocity for Nebulae and Clusters

nebulae/cluster Distance (mpc) Red shift velocity (km/s)

NGC 6822 0.500±0.010 57±2

NGC 221 0.763±0.024 200±6

NGC 598 0.835±0.105 179±3

NGC 4736 4.900±0.400 308±1

NGC 5457 6.400±0.500 241±2

NGC 4258 7.000±0.500 448±3

NGC 5194 7.100±1.200 463±3

NGC 4826 7.400±0.610 408±4

NGC 3627 11.000±1.500 727±3

NGC 7331 12.200±1.000 816±1

NGC 4486 16.400±0.500 1307±7

NGC 4649 16.800±1.200 1117±6

NGC 4472 17.100±1.200 729±2

We can represent that in JavaScript using the following array.

hubble_data = [
 { nebulae: "NGC 6822", distance: 0.500, distance_error: 0.010,
 velocity: 57, velocity_error: 2, },
 { nebulae: "NGC 221", distance: 0.763, distance_error: 0.024,
 velocity: 200, velocity_error: 6, },
 { nebulae: "NGC 598", distance: 0.835, distance_error: 0.105,
 velocity: 179, velocity_error: 3, },
 // Data set continues...

Step 2: Set Up the Web Page
D3.js doesn’t depend on any other libraries, and it’s available on most CDNs. All
we need to do is include it in the page.

www.it-ebooks.info

http://www.it-ebooks.info/

226 | Chapter 7

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>

u <div id="container"></div>
v <script

 src="//cdnjs.cloudflare.com/ajax/libs/d3/3.4.6/d3.min.js">
 </script>
 </body>
</html>

We include D3.js at v, and we set up a <div> with the id "container" at u to
contain our visualization.

Step 3: Create a Stage for the Visualization
Unlike higher-level libraries, D3.js doesn’t draw the visualization on the page. We’ll
have to do that ourselves. In exchange for the additional effort, though, we get the
freedom to pick our own drawing technology. We could follow the same approach
as most libraries in this book and use HTML5’s <canvas> element, or we could simply
use native HTML. Now that we’ve seen it in action in Chapter 6, however, it seems
using SVG is the best approach for our chart. The root of our graph, therefore,
will be an <svg> element, and we need to add that to the page. We can define its
dimensions at the same time using attributes.

If we were using jQuery, we might do something like the following:

var svg = $("<svg>").attr("height", height).attr("width", width);
$("#container").append(svg);

With D3.js our code is very similar:

var svg = d3.select("#container").append("svg")
 .attr("height", height)
 .attr("width", width);

With this statement, we’re selecting the container, appending an <svg> ele-
ment to it, and setting the attributes of that <svg> element. This statement highlights
one important difference between D3.js and jQuery that often trips up developers
starting out with D3.js. In jQuery the append() method returns the original selec-
tion so that you can continue operating on that selection. More specifically,
$("#container").append(svg) returns $("#container").

With D3.js, on the other hand, append() returns a different selection, the newly
appended element(s). So d3.select("#container").append("svg") doesn’t return the
container selection, but rather a selection of the new <svg> element. The attr() calls
that follow, therefore, apply to the <svg> element and not the "#container".

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 227

Step 4: Control the Chart’s Dimensions
So far we haven’t specified the actual values for the chart’s height and width; we’ve
only used height and width variables. Having the dimensions in variables will come
in handy, and it will make it easy to incorporate margins into the visualization. The
following code sets up those dimensions; its form is a common convention in D3.js
visualizations.

var margin = {top: 20, right: 20, bottom: 30, left: 40},
 width = 640 - margin.left - margin.right,
 height = 400 - margin.top - margin.bottom;

We’ll have to adjust the code that creates the main <svg> container to
account for these margins.

var svg = d3.select("#chart1").append("svg")
 .attr("height", height + margin.left + margin.right)
 .attr("width", width + margin.top + margin.bottom);

To make sure our chart honors the defined margins, we’ll construct it entirely
within a child SVG group (<g>) element. The <g> element is just an arbitrary contain-
ing element in SVG, much like the <div> element for HTML. We can use D3.js to
create the element and position it appropriately within the main <svg> element.

var chart = svg.append("g")
 .attr("transform",
 "translate(" + margin.left + "," + margin.top + ")"
);

Visualizations must often rescale the source data. In our case, we’ll need to
rescale the data to fit within the chart dimensions. Instead of ranging from 0.5 to
17 Mpc, for example, galactic distance should be scaled between 0 and 920 pix-
els. Since this type of requirement is common for visualizations, D3.js has tools to
help. Not surprisingly, they’re scale objects. We’ll create scales for both the x- and
y-dimensions.

As the following code indicates, both of our scales are linear. Linear transfor-
mations are pretty simple (and we really don’t need D3.js to manage them); how-
ever, D3.js supports other types of scales that can be quite complex. With D3.js,
using more sophisticated scaling is just as easy as using linear scales.

var xScale = d3.scale.linear()
 .range([0,width]);
var yScale = d3.scale.linear()
 .range([height,0]);

We define both ranges as the desired limits for each scale. The x-scale
ranges from 0 to the chart’s width, and the y-scale ranges from 0 to the chart’s
height. Note, though, that we’ve reversed the normal order for the y-scale. That’s

www.it-ebooks.info

http://www.it-ebooks.info/

228 | Chapter 7

because SVG dimensions (just like HTML dimensions) place 0 at the top of the
area. That convention is the opposite of the normal chart convention, which places
0 at the bottom. To account for the reversal, we swap the values when defining the
range.

At this point, we’ve set the ranges for each scale, and those ranges define
the desired output. We also have to specify the possible inputs to each scale,
which D3.js calls the domain. Those inputs are the minimum and maximum values
for the distance and velocity. We can use D3.js to extract the values directly from
the data. Here’s how to get the minimum distance:

var minDist = d3.min(hubble_data, function(nebulae) {
 return nebulae.distance - nebulae.distance_error;
});

We can’t simply find the minimum value in the data, because we have to
account for the distance error. As we can see in the preceding snippet, D3.js accepts
a function as a parameter to d3.min(), and that function can make the necessary
adjustment. We can use the same approach for maximum values as well. Here’s the
complete code for defining the domains of both scales:

xScale.domain([
 d3.min(hubble_data, function(nebulae) {
 return nebulae.distance - nebulae.distance_error;
 }),
 d3.max(hubble_data, function(nebulae) {
 return nebulae.distance + nebulae.distance_error;
 })
])
 .nice();
yScale.domain([
 d3.min(hubble_data, function(nebulae) {
 return nebulae.velocity - nebulae.velocity_error;
 }),
 d3.max(hubble_data, function(nebulae) {
 return nebulae.velocity + nebulae.velocity_error;
 })
])
 .nice();

Step 5: Draw the Chart Framework
Axes are another common feature in visualizations, and D3.js has tools for those
as well. To create the axes for our chart, we specify the appropriate scales and an
orientation. As you can see from the following code, D3.js supports axes as part of
its SVG utilities.

var xAxis = d3.svg.axis()
 .scale(xScale)
 .orient("bottom");

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 229

var yAxis = d3.svg.axis()
 .scale(yScale)
 .orient("left");

After defining the axes, we can use D3.js to add the appropriate SVG ele-
ments to the page. We’ll contain each axis within its own <g> group. For the x-axis,
we need to shift that group to the bottom of the chart.

var xAxisGroup = chart.append("g")
 .attr("transform", "translate(0," + height + ")");

To create the SVG elements that make up the axis, we could call the xAxis
object and pass it the containing group as a parameter.

xAxis(xAxisGroup);

With D3.js, though, there’s a more concise expression that avoids creating
unnecessary local variables and preserves method chaining.

chart.append("g")
 .attr("transform", "translate(0," + height + ")")
 .call(xAxis);

And as long as we’re preserving method chaining, we can take advantage of
it to add yet another element to our chart: this time, it’s the label for the axis.

chart.append("g")
 .attr("transform", "translate(0," + height + ")")
 .call(xAxis)
 .append("text")
 .attr("x", width)
 .attr("y", -6)
 .style("text-anchor", "end")
 .text("Distance (Mpc)");

If you look under the hood, you’ll find that D3.js has done quite a bit of work
for us in creating the axis, its tick marks, and its labels. Here’s a taste of the SVG it
builds:

<g class="x axis" transform="translate(0,450)">
 <g class="tick" transform="translate(0,0)" style="opacity: 1;">
 <line y2="6" x2="0"></line>
 <text y="9" x="0" dy=".71em" style="text-anchor: middle;">0</text>
 </g>
 <g class="tick" transform="translate(77.77,0)" style="opacity: 1;">
 <line y2="6" x2="0"></line>
 <text y="9" x="0" dy=".71em" style="text-anchor: middle;">2</text>
 </g>
 <!-- Additional tick marks... -->

www.it-ebooks.info

http://www.it-ebooks.info/

230 | Chapter 7

 <path class="domain" d="M0,6V0H700V6"></path>
 <text x="700" y="-6" style="text-anchor: end;">Distance (Mpc)</text>
</g>

When we add the code for the y-axis, we’ve completed the framework for
the chart.

chart.append("g")
 .attr("transform", "translate(0," + height + ")")
 .call(xAxis)
 .append("text")
 .attr("x", width)
 .attr("y", -6)
 .style("text-anchor", "end")
 .text("Distance (Mpc)");

chart.append("g")
 .call(yAxis)
 .append("text")
 .attr("transform", "rotate(-90)")
 .attr("y", 6)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Red Shift Velocity (km/s)")

The result of Figure 7-1 isn’t very exciting without any data, but it does give
us a framework for the chart.

0

200

400

600

800

1,000

1,200

1,400

0 2 4 6 8 10 12 14 16 18

R
ed

 S
hi

ft
 V

el
o

ci
ty

 (k
m

/s
)

Distance (Mpc)

Figure 7-1: D3.js provides tools to create the framework for a chart.

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 231

As you can tell, we’ve had to write quite a bit of code just to get a couple of
axes on the page. That’s the nature of D3.js. It’s not a library to which you can sim-
ply pass a data set and get a chart as an output. Instead, think of it as a collection
of very useful utilities that you can use to help create your own charts.

Step 6: Add the Data to the Chart
Now that our chart’s framework is ready, we can add the actual data. Because we
want to show both the distance and velocity errors in the data, we can draw each
point as a rectangle. For a simple, static chart, we can add SVG <rect> elements
just as we’ve created the rest of the chart. We can take advantage of our x- and
y-scales to calculate the dimensions of the rectangles.

hubble_data.forEach(function(nebulae) {
 chart2.append("rect")
 .attr("x", xScale(nebulae.distance - nebulae.distance_error))
 .attr("width", xScale(2 * nebulae.distance_error))
 .attr("y", yScale(nebulae.velocity - nebulae.velocity_error))
 .attr("height", height - yScale(2 * nebulae.velocity_error));
});

The preceding approach works fine for this example and results in the chart
in Figure 7-2. Typically, however, D3.js visualizations combine their data sets directly
with markup elements and rely on D3’s enter, update, and exit selections to add the
data to the page. We’ll defer further discussion of this alternative approach until the
next example.

0

200

400

600

800

1,000

1,200

1,400

0 2 4 6 8 10 12 14 16 18

R
ed

 S
hi

ft
 V

el
o

ci
ty

 (k
m

/s
)

Distance (Mpc)

Figure 7-2: D3.js can render the data elements using any valid markup,
including SVG <rect> elements with defined dimensions.

www.it-ebooks.info

http://www.it-ebooks.info/

232 | Chapter 7

Step 7: Answer Users’ Questions
Whenever you create a visualization, it’s a good idea to anticipate questions that
users might ask when they view it. In our example so far, we’ve presented a data set
that leads to Hubble’s law. But we haven’t (yet) shown how well the data fits that law.
Since that is such an obvious question, let’s answer it right on the chart itself.

The current estimate for the Hubble constant (H0) is about 70 km/s/Mpc. To
show how that matches the data on our chart, we can create a line graph with that
slope beginning at the point (0,0). A single SVG <line> is all that’s required. Once
again we rely on the D3.js scales to define the line’s coordinates.

chart.append("line")
 .attr("x1",xScale(0))
 .attr("y1",yScale(0))
 .attr("x2",xScale(20))
 .attr("y2",yScale(1400));

In Figure 7-3 we can see that Hubble’s law remains a good approximation.

0

200

400

600

800

1,000

1,200

1,400

0 2 4 6 8 10 12 14 16 18

R
ed

 S
hi

ft
 V

el
o

ci
ty

 (k
m

/s
)

Distance (Mpc)

Figure 7-3: The complete custom chart shows the data set exactly as
we wish.

Creating a Force-Directed Network Graph
Unlike the JavaScript plotting libraries we considered in the early chapters, D3.js
is not limited to standard charts. In fact, it excels at specialized and custom graph
types. To see its power, we’ll create another version of the network graph from
Chapter 4. In the earlier implementation we used the Sigma library, and most of
our work was structuring the data into the format that library requires. We didn’t
have to decide how to draw the nodes and edges, how to connect them, or, once

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 233

we enabled layouts, how to position them on the page. As we’ll see next, D3.js
doesn’t make those decisions for us. For this example, we’ll have to draw the
nodes and edges, connect them to each other appropriately, and position them
on the page. That may sound like a lot of work, but, as we’ll also see, D3.js gives
us a lot of tools to help.

Step 1: Prepare the Data
Since we’re replicating the network graph from Chapter 4, we start with the same
data set.

var albums = [
 {
 album: "Miles Davis - Kind of Blue",
 musicians: [
 "Cannonball Adderley",
 "Paul Chambers",
 "Jimmy Cobb",
 "John Coltrane",
 "Miles Davis",
 "Bill Evans"
]
 },{
 album: "John Coltrane - A Love Supreme",
 musicians: [
 "John Coltrane",
 "Jimmy Garrison",
 "Elvin Jones",
 "McCoy Tyner"
]
 // Data set continues...

For the visualization, it will be helpful to have two separate arrays, one for
the graph’s nodes and one for the graph’s edges. Extracting those arrays from the
original data is straightforward, so we won’t bother looking at it in this chapter. You
can, however, see the full implementation in the book’s source code. The result
looks like the following:

var nodes = [
 {
 "name": "Miles Davis - Kind of Blue",
 "links": [
 "Cannonball Adderley",
 "Paul Chambers",
 "Jimmy Cobb",
 "John Coltrane",
 "Miles Davis",
 "Bill Evans"
],
 "x": 270,
 "y": 200

www.it-ebooks.info

http://www.it-ebooks.info/

234 | Chapter 7

 },
 {
 "name": "John Coltrane - A Love Supreme",
 "links": [
 "John Coltrane",
 "Jimmy Garrison",
 "Elvin Jones",
 "McCoy Tyner"
],
 "x": 307.303483,
 "y": 195.287474
 },
 // Data set continues...
];

For the nodes, we’ve added x and y properties to define a position on the
graph. Initially the code arbitrarily sets these values so that the nodes are posi-
tioned in a circle.

var edges = [
 {
 "source": 0,
 "target": 16,
 "links": [
 "Cannonball Adderley",
 "Miles Davis"
]
 },
 {
 "source": 0,
 "target": 6,
 "links": [
 "Paul Chambers",
 "John Coltrane"
]
 },
 // Data set continues...
];

The edges indicate the two nodes that they connect as indices in the nodes
array, and they include an array of the individual musicians that are common
between the albums.

Step 2: Set Up the Page
As noted in the previous example, D3.js doesn’t depend on any other libraries, and
it’s available on most content distribution networks. All we need to do is include it
in the page.

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 235

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <div id="container"></div>
 <script
 src="//cdnjs.cloudflare.com/ajax/libs/d3/3.4.6/d3.min.js">
 </script>
 </body>
</html>

Just as in the previous example, we set up a container for the visualization by
including a <div> with the id "container".

Step 3: Create a Stage for the Visualization
This step is also the same as in the previous example.

var svg = d3.select("#container").append("svg")
 .attr("height", 500)
 .attr("width", 960);

We ask D3.js to select the container element and then insert an <svg> ele-
ment within it. We also define <svg> element’s size by setting the height and width
attributes.

Step 4: Draw the Graph’s Nodes
We’ll draw each node as a circle by appending <circle> elements inside the <svg>
stage. Based on the previous step, you might think that would be as simple as
executing svg.append(“circle”) for each element in the nodes array.

nodes.forEach(function(node) {
 svg.append("circle");
});

That code will indeed add 25 circles to the visualization. What it won’t do,
though, is create any links between the data (nodes in the array) and the document
(circle elements on the page). D3.js has another way to add the circles to the page
that does create that linkage. In fact, not only will D3.js create the links, it will even
manage them for us. This support becomes especially valuable as visualizations
grow more complex.

 QNote: this feature is really the core of D3.js and, in fact, is the source for the
name D3, which is shorthand for data-driven documents.

www.it-ebooks.info

http://www.it-ebooks.info/

236 | Chapter 7

Here’s how we can use D3.js more effectively to add the <circle> elements
to the graph:

var selection = svg.selectAll("circle")
 .data(nodes);

selection.enter().append("circle");

If you haven’t seen D3.js code before, that fragment surely looks very
strange. What are we trying to do by selecting <circle> elements before we’ve
even created any? Won’t the result just be empty? And if so, what’s the point of
the data() function that follows? To answer those questions, we have to understand
how D3.js differs from traditional JavaScript libraries like jQuery. In those librar-
ies a selection represents elements of HTML markup. With jQuery, $("circle")
is nothing more than the <circle> elements in the page. With D3.js, however,
selections are more than just markup elements. D3.js selections can contain both
markup and data.

D3.js puts markup elements and data objects together with the data() func-
tion. The object on which it operates (svg.selectAll("circle") in the preceding
code) supplies the elements, and its parameter (nodes, in this case) provides the
data. The first statement in the fragment, therefore, tells D3.js that we want to match
<circle> elements with nodes in our graph. We are, in effect, saying that we want
one <circle> to represent each value in the nodes array.

The result is easiest to understand when there are exactly as many elements
as there are data values. Figure 7-4 shows four <circle> elements and four albums.
D3.js dutifully combines the two sets, giving us a selection of four objects. Each
object has both a <circle> and an album.

<circle> <circle> <circle> <circle>

Selection of
four objects

Figure 7-4: D3.js selections can associate page content such as <circle>
elements with data items such as albums.

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 237

In general, though, we can’t guarantee that there will be exactly as many ele-
ments as data values. Suppose, for example, only two <circle> elements existed for
our four albums. As Figure 7-5 shows, D3.js still creates a selection of four objects,
even though there aren’t enough circles for all of them. Two of the objects will
have a data value but no element.

<circle> <circle>

Selection of
four objects

Figure 7-5: D3.js selections keep track of page content that doesn’t
exist (yet).

Our code fragment is an even more extreme example. When it executes,
there are absolutely no circles on the page. There are, however, values in the nodes
array that we’re telling D3.js to use as data. D3.js, therefore, creates an object for
each of those data values. It just won’t have a <circle> element to go with them.

(Take a breath because magic is about to happen.)
Now we can look at the second statement in our code fragment. It starts with

selection.enter(). The enter() function is a special D3.js function. It tells D3.js to
search through the selection and find all of the objects that have a data value but
no markup element. We then complete the statement by taking that subset of the
selection and calling append(“circle”). And with that function call, D3.js will take
any object in the selection without a markup element and create a circle for it.
That’s how we add <circle> elements to the graph.

To be a little more concise, we can combine our two statements into a
single one.

var nodeSelection = svg.selectAll("circle")
 .data(nodes)
 .enter().append("circle");

The effect for our visualization is to create a <circle> within the <svg> con-
tainer for every node in the graph.

www.it-ebooks.info

http://www.it-ebooks.info/

238 | Chapter 7

Step 5: Draw the Graph’s Edges
You won’t be surprised to find that adding the edges to the graph works just like
adding nodes. We simply append <line> elements instead of circles.

var edgeSelection = svg.selectAll("line")
 .data(edges)
 .enter().append("line");

Even though we won’t need to use them for this example, D3.js has other
functions that complement the enter() function. To find objects that have a markup
element but no data value, you can use the function exit(). And to find objects
that have a markup element with a data value that has changed, you can use the
function update(). The names enter and exit derive from a theater metaphor that
D3.js associates with a visualization. The enter() subset represents those elements
that are entering the stage, while the exit() subset represents elements exiting
the stage.

Because we’re using SVG elements for both the nodes and the edges,
we can use CSS rules to style them. That’s especially important for the edges
because, by default, SVG lines have a stroke width of 0.

circle {
 fill: #ccc;
 stroke: #fff;
 stroke-width: 1px;
}

line {
 stroke: #777;
 stroke-width: 1px;
}

Step 6: Position the Elements
At this point, we’ve added the necessary markup elements to our visualization, but
we haven’t given them any dimensions or positions. As noted before, D3.js doesn’t
do any drawing, so we’ll have to write the code to do it. And as noted in Step 2, we
did assign somewhat arbitrary positions to the nodes by arranging them in a circle.
For now, we can use that to position them.

To position an SVG circle, we set its cx and cy attributes to correspond to the
circle’s center. We also specify the circle’s radius with the r attribute. Let’s start with
the radius; we’ll set it to a fixed value for all nodes. We’ve already created a D3.js
selection for all of those nodes. Setting their r attributes is a simple statement:

nodeSelection.attr("r", 10);

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 239

The cx and cy values are a little trickier because they’re not the same for all
of the nodes. Those values depend on properties of the data associated with the
nodes. More specifically, each element in the nodes array has x and y properties.
D3.js, however, makes it very easy to access those properties.

nodeSelection
 .attr("r", 10)
 .attr("cx", function(dataValue) { return dataValue.x; })
 .attr("cy", function(dataValue) { return dataValue.y; });

Instead of providing constant values for the attributes, we provide functions.
D3.js will then call those functions and pass the data values as parameters. Our
functions will return the appropriate value for the attribute.

Positioning the edges relies on a similar strategy. We want to set the end-
points of the lines to the centers of the corresponding nodes. Those endpoints are
the x1,y1 and x2,y2 attributes of the <line> elements. Here’s the code to set those
attributes.

edgeSelection
 .attr("x1", function(d) { return nodes[d.source].x; })
 .attr("y1", function(d) { return nodes[d.source].y; })
 .attr("x2", function(d) { return nodes[d.target].x; })
 .attr("y2", function(d) { return nodes[d.target].y; });

As is conventional with D3.js, the parameter d is the data value.
With the elements finally drawn and positioned, we have the first version of

our visualization with Figure 7-6.

Figure 7-6: D3.js provides tools to help draw
the circles and lines for a network graph.

www.it-ebooks.info

http://www.it-ebooks.info/

240 | Chapter 7

Step 7: Add Force Direction to the Graph
The graph has all the essential components, but its layout doesn’t make identi-
fying the connections as easy as we’d like. In Chapter 4 the Sigma library could
automate the layout with only a couple of lines of JavaScript. To perform that
automation, Sigma uses a force-direction algorithm. Force direction treats
nodes as physical objects and simulates the effect of forces such as gravity and
electromagnetism.

With D3.js we cannot rely on the library to fully automate the layout. As we’ve
seen, D3.js does not draw any of the graph elements, so it cannot, by itself, set
positions and dimensions. D3.js does, however, provide a lot of tools to help us
create our own graph layouts. One of those tools is the force layout tool. As you
might expect, the force layout tool helps us draw our own force-directed graph. It
handles all of the messy and complex calculations that underlie force direction and
gives us results we can use directly in code that draws the graph.

To get started with the layout, we define a new force object. That object
accepts many configuration parameters, but only five are essential for our
visualization:

 > The dimensions of the graph

 > The nodes in the graph

 > The edges in the graph

 > The distance we’d like to see between connected nodes

 > How strongly nodes repel each other, a parameter D3.js calls charge

The last parameter can take a bit of trial and error to optimize for any par-
ticular visualization. In our case, we’ll want to increase it substantially above its
default (-30) because we have a lot of nodes in a small space. (Negative charge
values indicate repulsion.) Here’s the code to set all of those values:

var force = d3.layout.charge()
 .size([width, height])
 .nodes(nodes)
 .links(edges)
 .linkDistance(40)
 .charge(-500);

When we tell D3.js to start its force-direction calculations, it will generate
events at intermediate steps and when the calculations complete. Force direction
often takes several seconds to execute fully, and if we wait until the calculations
are complete before we draw the graph, users may think the browser has frozen.
It’s usually better to update the graph at each iteration so users see some indica-
tion of progress. To do that, we can add a function to respond to the intermediate
force-direction calculations. That happens on a D3.js tick event.

force.on("tick", function() {
 // Update graph with intermediate results
});

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 241

Each time D3.js calls our event handler function, it will have updated the x
and y properties of the nodes array. The new values will reflect how the force direc-
tion has nudged the nodes on the graph’s stage. We can update our graph accord-
ingly by changing the SVG attributes of the circles and lines. Before we do that,
however, we can take advantage of the fact that D3.js is giving us an opportunity
to tweak the force-direction algorithm as it executes. One problem that we may
encounter, especially with the large charge force we defined, is that nodes may
repel each other so strongly that some tend to drift off the stage entirely. We can
prevent that by ensuring that the node positions remain within the dimensions of
the graph.

force.on("tick", function() {
 nodeSelection.each(function(node) {
 node.x = Math.max(node.x, 5);
 node.y = Math.max(node.y, 5);
 node.x = Math.min(node.x, width-5);
 node.y = Math.min(node.y, height-5);
 });
 // Update graph with intermediate results
});

We’ve added or subtracted 5 in the preceding fragment to account for the
radius of the nodes’ circles.

Once we’ve adjusted the nodes’ properties to keep them on the stage, we
can update their positions. The code is exactly the same as the code we used to
position them initially.

nodeSelection
 .attr("cx", function(d) { return d.x; })
 .attr("cy", function(d) { return d.y; });

We’ll also want to adjust the endpoints of our edge lines. For these objects,
however, there’s a small twist. When we initialized the edges array, we set the source
and target properties to the indices of the respective nodes in the nodes array. When
the D3.js force layout tool begins execution, it replaces those indices with direct
references to the nodes themselves. That makes it a little easier for us to find the
appropriate coordinates for the lines.

edgeSelection
 .attr("x1", function(d) { return d.source.x; })
 .attr("y1", function(d) { return d.source.y; })
 .attr("x2", function(d) { return d.target.x; })
 .attr("y2", function(d) { return d.target.y; });

With our function ready to handle updates from the force-direction calcula-
tions, we can tell D3.js to start its work. That’s a simple method of the force object.

force.start();

www.it-ebooks.info

http://www.it-ebooks.info/

242 | Chapter 7

With that statement, the graph begins an animated transition to its final,
force-directed state, as Figure 7-7 shows.

Figure 7-7: The D3.js force layout tool provides the information to
reposition network graph elements.

Step 8: Add Interactivity
Since D3.js is a JavaScript library, you would expect it to support interactions with
the user. It does, and to demonstrate, we can add a simple interaction to the graph.
When a user clicks on one of the nodes in the graph, we can emphasize that node
and its neighbors.

Event handlers in D3.js closely resemble those in other JavaScript libraries
such as jQuery. We define an event handler using the on() method of a selection,
as in the following code.

nodeSelection.on("click", function(d) {
 // Handle the click event
});

The first parameter to on() is the event type, and the second parameter is
a function that D3.js will call when the event occurs. The parameter to this func-
tion is the data object that corresponds to the selection element, and by con-
vention it’s named d. Because we’re adding the event to the selection of nodes
(nodeSelection), d will be one of the graph nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 243

For our visualization, we’ll emphasize the clicked node by adding a CSS-
accessible class to the corresponding <circle> and by increasing the circle’s size.
The class makes it possible to style the circle uniquely, but a circle’s size cannot
be specified with CSS rules. Ultimately, therefore, we have to do two things to
the circle: add the selected class and increase the radius using the r attribute. Of
course, in order to do either, we have to select the <circle> element. When D3.js
calls an event handler, it sets this equal to the target of the event; we can turn that
target into a selection with d3.select(this). The following code, therefore, is all it
takes to change the clicked node’s circle.

 d3.select(this)
 .classed("selected", true)
 .attr("r", 1.5*nodeRadius);

We can do something similar by adding a selected class to all the edges that
connect to the clicked node. To find those edges we can iterate through the full
edge selection. D3.js provides the each() function to do just that.

edgeSelection.each(function(edge) {
 if ((edge.source === d) || (edge.target === d)) {

u d3.select(this).classed("selected",true);
 }
});

As we look at each edge, we check the source and target properties to see if
either matches our clicked node. When we find a match, we add the selected class
to the edge. Note that at u we’re once again using d3.select(this). In this example
the code is inside the each() function, so this will equal the particular element of the
current iteration. In our case that’s the <line> for the edge.

The preceding code handles setting the selected class, but we still need
to remove it when appropriate. We can remove it from all the other circles (and
make sure their radii are restored to their default values) by operating on the node
selection.

nodeSelection
u .filter(function(node) { return node !== d; })

 .classed("selected", false)
 .attr("r", nodeRadius);

The code looks the same as we’ve seen before, except that at u we use the
D3.js filter() function to limit the selection to the nodes other than the one that
was clicked.

www.it-ebooks.info

http://www.it-ebooks.info/

244 | Chapter 7

A similar process resets the selected class on all the edges. We can remove
the class from all edges first, before we add to the appropriate edges in the
previous code fragment. Here’s the code that removes it; with D3.js it takes only
a single line:

edgeSelection.classed("selected", false);

And finally, if the user clicks on a node that’s already selected, we can restore
it to its default state like so:

 d3.select(this)
 .classed("selected", true)
 .attr("r", 1.5*nodeRadius);

When you put all of the preceding code fragments together, you have the
complete event handler shown here:

nodeSelection.on("click", function(d) {

 nodeSelection
 .filter(function(node) { return node !== d; })
 .classed("selected", false)
 .attr("r", nodeRadius);

 edgeSelection.classed("selected", false);

 if (d3.select(this).classed("selected")) {
 d3.select(this)
 .classed("selected", false)
 .attr("r", nodeRadius)

 } else {
 d3.select(this)
 .classed("selected", true)
 .attr("r", 1.5*nodeRadius);

 edgeSelection.each(function(edge) {
 if ((edge.source === d) || (edge.target === d)) {
 d3.select(this).classed("selected",true);
 }
 });
 }
});

Along with a bit of CSS styling to emphasize the selected circles and lines,
this code results in the interactive visualization of Figure 7-8.

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 245

Figure 7-8: D3.js includes functions to make visualizations interactive.

Step 9: Experiment with Other Enhancements
Our example has explored many of the features that D3.js provides for custom
visualizations. The code so far, however, has only scratched the surface of D3’s
capabilities. We haven’t added labels to our graph or animated the transitions in
the graph’s state. In fact, it’s a pretty safe bet that if there is anything we want to
add to the visualization, D3.js has tools to help. And although we don’t have the
time or space to consider other enhancements here, the source code for the book
does include a more full-featured implementation that takes advantage of other
D3.js capabilities.

Creating a Scalable Map
The first two examples touched on some of the capabilities of D3.js, but the library
includes many others. From the examples in Chapter 6, we know some of the best
visualizations rely on maps, and D3.js—as a general-purpose visualization library—
has extensive support for mapping. To illustrate that support, we’ll create a map
that shows tornado sightings in the continental United States.

Step 1: Prepare the Data
The US National Oceanic and Atmospheric Administration (http://www.noaa.gov/)
publishes an extensive set of weather and climate data on its Climate Data Online
site (http://www.ncdc.noaa.gov/cdo-web/). That data includes all storm events
reported in the United States and its territories. We can download the data set for
the year 2013 as a comma-separated value (CSV) file. Because the file is extremely
large and contains many events that aren’t tornadoes, we can edit it to remove
the extraneous information using a spreadsheet application such as Microsoft

www.it-ebooks.info

http://www.it-ebooks.info/

246 | Chapter 7

Excel or Numbers for Mac. For this visualization, we need only records that have
an event_type equal to "Tornado", and we want only the columns for the tornado’s
latitude, longitude, and Enhanced Fujita Scale classification (a measure of tornado
strength). Once we’ve pruned the CSV file appropriately, it will look something like
the following data.

f_scale,latitude,longitude
EF1,33.87,-88.23
EF1,33.73,-87.9
EF0,33.93,-87.5
EF1,34.06,-87.37
EF1,34.21,-87.18
EF1,34.23,-87.11
EF1,31.54,-88.16
EF1,31.59,-88.06
EF1,31.62,-87.85
--snip--

Since we’re going to access this data using JavaScript, you might be tempted
to convert the file from CSV to JSON format. It’s better, however, to keep the data
in a CSV file. D3.js has full support for CSV, so we don’t really gain anything by con-
verting to JSON. More importantly, the JSON file would be more than four times
larger than the CSV version, and that extra size would slow down the loading of our
web page.

Step 2: Set Up the Page
Our skeletal web page is no different from the other D3.js examples. We set aside
a container for the map and include the D3.js library.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <div id="map"></div>
 <script
 src="//cdnjs.cloudflare.com/ajax/libs/d3/3.4.6/d3.min.js">
 </script>
 </body>
</html>

Step 3: Create a Map Projection
If you can’t quite recall your geography lessons about map projections, don’t worry;
D3.js can handle all of the heavy lifting. Not only does it have extensive support for
common projections, but it also supports extensions for custom projections tailored

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 247

specifically for visualizations. For example, there’s a modified Albers projection
that’s optimized for choropleth maps of the United States. It repositions (and
resizes) Alaska and Hawaii to provide a convenient map of all 50 states. In our
case, since there were no tornado sightings in Alaska or Hawaii in 2013, we can
use a standard Albers projection.

We set up the projection in the following code.

u var width = 640,
v height = 400;

w var projection = d3.geo.albers()
x .scale(888)
y .translate([width / 2, height / 2]);

z var path = d3.geo.path()
{ .projection(projection);

First, at u and v, we define the size of our map in pixels. Then, at w, we create
the Albers projection. D3.js supports many adjustments to position the projection
appropriately on the page, but the default values are fine in our case. We need only
to scale the map at x and center it at y.

To draw the map on the page, we’re going to use SVG <path> elements, but
our map data takes the form of latitude and longitude values. D3.js has a path object
to translate geographic coordinates to SVG paths based on a particular map pro-
jection. At z and {, we create our path object.

Step 4: Initialize the SVG Container
We can create an SVG container to hold the map, just as we did in the previous
D3.js example.

var svg = d3.select("#map").append("svg")
 .attr("width", width)
 .attr("height", height);

u var g = svg.append("g");

As we’ll see in later steps, it will be helpful have an inner group in which to
place the map. This inner group (defined by a <g> element) acts much like an arbi-
trary <div> element in HTML. We create that inner group at u.

Step 5: Retrieve the Map Data
For our visualization, the map data is nothing but a map of the United States with
individual states. D3.js uses GeoJSON (http://geojson.org/) for its map data. Unlike
most of the image tiles that we used in Chapter 6, GeoJSON data is vector based,
so it can be used at any scale. GeoJSON data is also in JSON format, which makes
it especially compatible with JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/

248 | Chapter 7

Since our data is in a JSON format, we can use the d3.json() function to
retrieve it. This function is almost identical to the jQuery $.getJSON() function.

d3.json("data/us-states.json", function(map) {
 // Process the JSON map data
});

Step 6: Draw the Map
Once we have our data, we can draw the map on the page. The code in this step
is very similar to that in the previous example. Each state will be a <path> element
within the <g> container.

u g.selectAll("path")
v .data(map.features)
w .enter().append("path")
x .attr("d", path);

Using D3.js conventions, we create a selection of <path> elements at u and
bind those elements to our data at v. When there is no element, we create one w
and we set its d attribute to be the path associated with the data, given our projec-
tion. Note that path at x is the object we created in Step 4. It is a function that trans-
lates the latitude and longitude information into appropriate SVG coordinates.

As we can see from Figure 7-9, D3.js gives us the paths required to create a
nice SVG map.

Figure 7-9: D3.js helps create vector maps from geographic JSON data.

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 249

Step 7: Retrieve the Weather Data
Now our map is ready for some data. We can retrieve the CSV file using another
D3.js utility. Note, though, that all of the properties of a CSV file are considered
text strings. We’ll want to convert those strings to numbers. We also want to
filter out the few tornado sightings that don’t include latitude and longitude
information.

d3.csv("tornadoes.csv", function(data) {
u data = data.filter(function(d, i) {
v if (d.latitude && d.longitude) {
w d.latitude = +d.latitude;
x d.longitude = +d.longitude;
y d.f_scale = +d.f_scale[2];
z d.position = projection([
{ d.longitude, d.latitude

]);
| return true;

 }
 });
 // Continue creating the visualization...
});

Once the browser has retrieved the CSV file from the server, we can begin
processing it at u. Here we’re using the .filter() method of arrays to iterate
through the data values. The .filter() method eliminates the data points without
latitude and longitude values. It only returns true at | if both values are present v.
While we’re checking the data points for latitude and longitude, we convert the
string values into numbers at w and x, extract the number from the Enhanced
Fujita Scale classification at y, and calculate the position of the sighting in SVG
coordinates at z and { using the projection function we created in Step 3.

Step 8: Plot the Data
With the data retrieved, cleaned, and converted, it’s a simple matter to plot the
points on the map. Once again we’ll use the traditional D3.js approach.

g.selectAll("circle")
 .data(data)
 .enter().append("circle")
 .attr("cx", function(d) { return d.position[0]; })
 .attr("cy", function(d) { return d.position[1]; })

u .attr("r", function(d) { return 4 + 2*d.f_scale; });

Each data point is an SVG <circle> element, so we select those elements,
bind the data to the selection, and use the .enter() function to create new <circle>
elements to match the data.

www.it-ebooks.info

http://www.it-ebooks.info/

250 | Chapter 7

As you can see, we set the position of the circles using the position prop-
erty we created in the previous step. Also, to indicate the relative strength of each
tornado, we make the size of the circle proportional to the Enhanced Fujita Scale
classification at u. The result in Figure 7-10 is a nice map of 2013 tornado sightings
in the continental United States.

Figure 7-10: Adding points to a map is easy with D3.js projections.

Step 9: Add Interactivity
Maps naturally invite users to zoom in and pan around, and D3.js makes it easy to
support those standard map interactions. In fact, D3.js gives us complete control,
so we’re not limited to standard map interaction conventions. Let’s do something
a little different with our map. We can make it so that a user can click any state to
zoom in on it. Clicking a state that’s already zoomed in on will then zoom the map
back out to its default. As you’ll see, this behavior is easy to implement with D3.js.

The first bit of code we’ll add is a variable that keeps track of the particular
state into which the map is zoomed. Initially, the user won’t have zoomed any-
where, so that variable is empty.

var active = d3.select(null)

Next we add an event handler to all of the state <path> elements. We can do
that when we create the elements (which we did earlier in Step 6).

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 251

g.selectAll("path")
 .data(map.features)
 .enter().append("path")
 .attr("d", path)

u .on("click", clicked);

The extra statement is at u. Like jQuery, D3.js gives us an easy way to add
event handlers to HTML and SVG elements. Now we have to write that event
handler.

The handler needs to identify the state that the user clicked, calculate the
position of that state (in SVG coordinates), and transition the map to zoom to those
coordinates. Before we look at the implementation in detail, it’s worth noting that
D3.js event handlers are optimized to work with data visualizations (which shouldn’t
be surprising). In particular, the parameter passed to the handler is the data item
associated with the target element (conventionally named d). The JavaScript con-
text (this) is set to the specific element that received the event. If the handler
needs access to the other properties of the JavaScript event, they’re available in
the d3.event global variable. Here’s how those conventions work in a real event
handler:

var clicked = function(d) {
u active.attr("fill", "#cccccc");

 active = d3.select(this)
 .attr("fill", "#F77B15");

v var bounds = path.bounds(d),
 dx = bounds[1][0] - bounds[0][0],
 dy = bounds[1][1] - bounds[0][1],
 x = (bounds[0][0] + bounds[1][0]) / 2,
 y = (bounds[0][1] + bounds[1][1]) / 2,

w scale = .9 / Math.max(dx / width, dy / height),
x translate = [

 width / 2 - scale * x,
 height / 2 - scale * y];

y g.transition()
 .duration(750)
 .attr("transform", "translate(" +
 translate + ")scale(" +
 scale + ")");
};

In the first code block (starting at u), we manipulate the map colors. The
previously zoomed state is reset to a muted gray, and the clicked state is filled with
a vibrant orange. Notice that this same code resets the active variable so that it
accurately tracks the zoomed state. Next, starting at v, we calculate the bounds of
the zoomed state. Or rather, we let D3.js do the calculation. All the work happens

www.it-ebooks.info

http://www.it-ebooks.info/

252 | Chapter 7

in the bounds() function we call at v. The other lines are mostly just extracting the
individual parts of that calculation. At w, we calculate how to scale the map so that
the zoomed state fills 90 percent of the map. Then, starting at x, we calculate how
to shift the map to center that state. The final block of code, starting at y, adjusts
the map by scaling and translating the SVG. As you can see, we’re using a D3.js
transition to animate the change in view.

The code we’ve seen so far still needs a few minor additions to deal with
some loose ends, but I’ll leave those to the book’s source code (http://jsDataV.is/
source/). The result in Figure 7-11 is a nice interactive map of our data.

Figure 7-11: D3.js makes it easy to add custom interactions to maps.

Creating a Unique Visualization
If you’ve followed the first three examples in this chapter, you’re probably beginning
to appreciate the level of flexibility D3.js offers compared to traditional JavaScript
libraries. Instead of creating visualizations for you, it provides many tools and utili-
ties that you can use however you wish. We’ve used that flexibility to add uncon-
ventional error bars to a chart, to refine the behavior of a network graph, and to
customize user interactions with a map. With D3.js, however, we aren’t limited to
minor adjustments to existing visualization types. Instead, we can use the library to
create unique visualizations that are nothing like those found in traditional libraries.

In this example, we’ll use the same data from the previous visualization—
tornado sightings in 2013 from the US National Oceanic and Atmospheric Admin-
istration’s Climate Data Online site (http://www.noaa.gov/cdo-web/). Rather than
placing the sightings on a map, however, we’ll create an interactive, hierarchical
visualization that lets users understand the number of sightings by region, state,

www.it-ebooks.info

http://www.noaa.gov/cdo-web/
http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 253

or even counties within a state. A circular hierarchy can be especially effective
for this subject matter, so we’ll create a sunburst visualization with rotational
animations. The code that follows is based on an example (http://bl.ocks.org/
mbostock/4348373/) developed by Mike Bostock, the lead D3.js developer.

 QNote: It is also possible to create sunburst visualizations using some charting
libraries, generally by customizing a variation of the pie chart. those libraries,
however, are much more focused on off-the-shelf use. Creating custom visual-
izations is generally much easier with a library like D3.js, which is designed
especially for customization.

Step 1: Prepare the Data
As before, we’ll clean and prune the 2013 tornado sightings data set. Instead of
longitude, latitude, and Enhanced Fujita Scale classification, however, we’ll keep
the state and county. We’ll also add a region name as a way to group subsets of
states. The resulting CSV file begins as follows.

state,region,county
Connecticut,New England,Fairfield County
Connecticut,New England,Hartford County
Connecticut,New England,Hartford County
Connecticut,New England,Tolland County
Maine,New England,Somerset County
Maine,New England,Washington County
Maine,New England,Piscataquis County
--snip--

Step 2: Set Up the Page
Our skeletal web page is no different from the other D3.js examples. We set aside
a container for the visualization and include the D3.js library.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <div id="chart"></div>
 <script
 src="//cdnjs.cloudflare.com/ajax/libs/d3/3.4.6/d3.min.js">
 </script>
 </body>
</html>

www.it-ebooks.info

http://bl.ocks.org/mbostock/4348373
http://bl.ocks.org/mbostock/4348373
http://www.it-ebooks.info/

254 | Chapter 7

Step 3: Create a Stage for the Visualization
As with our other D3.js examples, we start by creating an <svg> container for the
visualization. Within that container, we’ll also add a group (<g>) element.

var width = 640,
 height = 400,

u maxRadius = Math.min(width, height) / 2;

var svg = d3.select("#chart").append("svg")
 .attr("width", width)
 .attr("height", height);

var g = svg.append("g");
v .attr("transform", "translate(" +

 (width / 2) + "," +
 (height / 2) + ")");

This code contains a couple of new wrinkles. First, at u, we calculate the
maximum radius for the visualization. This value—which is half of the height or
the width, whichever is smaller—will come in handy in the code that follows. More
interestingly, starting at v, we translate the inner <g> container so that its coordi-
nate system places the point (0,0) right in the center of the visualization. This trans-
lation makes it easy to center the sunburst and calculate sunburst parameters.

Step 4: Create Scales
When it’s complete, our visualization will consist of areas corresponding to regions
in the United States; larger areas will represent regions with more tornadoes.
Because we’re dealing with areas, we’ll need two dimensions for each region. But
we’re not going to draw our areas as simple rectangles; instead we’re going to use
arcs. That will require a bit of trigonometry, but fortunately, D3.js provides a lot of
help. We’ll start by defining some scale objects. We first saw scales in Step 4 of
“Adapting a Traditional Chart Type” on page 227, where we used them to translate
data values to SVG coordinates. The scales in the following code do much the
same, except they’re using polar coordinates.

var theta = d3.scale.linear()
 .range([0, 2 * Math.PI]);
var radius= d3.scale.sqrt()
 .range([0, maxRadius]);

As you can see, the angular scale is a linear scale that ranges from 0 to 2π
(or 360°). The radial scale ranges from 0 to the maximum radius, but it’s not linear.
Instead, this scale is a square root scale; D3.js takes the square root of the input
before computing the output. The area of an arc varies as the square of its radius,
and the square root scale compensates for this effect.

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 255

 QNote: In prior examples, we’ve set both ranges (outputs) and domains (inputs)
for our scales. In this case, however, we won’t need to set domains explicitly.
the default domain of [0,1] is exactly what we need for both scales.

The scales we’ve defined come in handy in the next bit of code, where we
define a function that calculates the SVG path for a single arc. Most of the work
takes place in the D3.js function d3.svg.arc(), which computes an arc’s path. That
function, though, needs four parameters: the starting and ending angles and the
starting and ending radii for the arc. The values for those parameters come from
our scales.

When we use our arc() function later in the code, we’re going to call it with
a D3.js selection. That selection will have a data value associated with it, and the
data value will include four properties:

.x the starting x–position for the data

.dx the data’s length along the x–axis (∆x)

.y the starting y–position for the data

.dx the data’s length along the y–axis (∆y)

Given those properties, here’s the code that generates the arc path.

var arc = d3.svg.arc()
 .startAngle(function(d) {
 return Math.max(0, Math.min(2 * Math.PI, theta(d.x)));
 })
 .endAngle(function(d) {
 return Math.max(0, Math.min(2 * Math.PI, theta(d.x + d.dx)));
 })
 .innerRadius(function(d) {
 return Math.max(0, radius(d.y));
 })
 .outerRadius(function(d) {
 return Math.max(0, radius(d.y + d.dy));
 });

The code itself is pretty straightforward, but a picture helps explain why
we’re using the code this way. Assume that the data associated with a selection
has an (x,y) position of (12.5,10), a width of 25, and a height of 30. The data proper-
ties would then be:

 > .x = 12.5

 > .dx = 25

 > .y = 10

 > .dy = 30

www.it-ebooks.info

http://www.it-ebooks.info/

256 | Chapter 7

With Cartesian coordinates, we could draw the selection as on the left side
of Figure 7-12. Our scales and arc function will transform the rectangle to the arc
shown on the right side of the figure.

dy=30

dx=25

x=12.5

y=10

start=45°

end=135°

inner=79 outer=158

Cartesian coordinates Polar coordinates

Figure 7-12: D3.js helps transform a rectangular area into an arc.

We haven’t specified the ranges of the x- and y-scales, but assume for now
that each ranges from 0 to 100. The starting x-value of 12.5, therefore, is 12.5 per-
cent of the full range. When we convert that value to polar coordinates, the result
will be 12.5 percent of the full 360°. That’s 45°, or π/4. The x-value extends another
25 percent, so the final x-value adds another 90°, or π/2, to the starting value. For
the y-values, our scales take the square root and map the results to the domain
from 0 to 250 (maxRadius). The initial value of 10, therefore, is divided by 100 (for the
range) and transformed to 0 1 250. × 	, or 79. The final value of 10 + 30 results in a
radius of 0 4 250. × 	 , or 158. That’s the process that creates an SVG for each data
value.

Step 5: Retrieve the Data
With the initial preparation complete, we’re now ready to process the data. As in
the previous example, we’ll use d3.csv() to retrieve the CSV file from the server.

d3.csv("tornadoes.csv", function(data) {
 // Continue processing the data...
});

When D3.js retrieves the file, it creates a data structure that begins like the
following fragment.

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 257

[{
 "state":"Connecticut",
 "region":"New England",
 "county":"Fairfield County"
 },{
 "state":"Connecticut",
 "region":"New England",
 "county":"Hartford County"
 },{
 "state":"Connecticut",
 "region":"New England",
 "county":"Hartford County"
 },
// Data set continues...

That data structure reflects the data, but it doesn’t include the .x, .dx, .y,
and .dy properties that we need to draw the arcs. There’s additional work to be
done to calculate those values. If you recall the second example in this chapter,
we’ve seen this situation before. We have a set of raw data, but we need to aug-
ment that raw data with additional properties for the visualization. In the earlier
example, we used the D3.js force layout to calculate the extra properties. In this
case, we can use the partition layout.

Before we can use the partition layout, however, we have to restructure our
data. The partition layout works with hierarchical data, and right now all we have
is a single dimensional array. We must structure the data to reflect the natural
hierarchy of region, state, and county. Here again, however, D3.js can help us. The
d3.nest() operator analyzes an array of data and extracts the hierarchy from it. If
you’re familiar with database commands, it’s the D3.js equivalent of the GROUP BY
operation. We can use the operator to create a new version of the data.

u var hierarchy = {
 key: "United States",
 values: d3.nest()

v .key(function(d) { return d.region; })
 .key(function(d) { return d.state; })
 .key(function(d) { return d.county; })

w .rollup(function(leaves) {
x return leaves.length;

 })
y .entries(data)

 };

First, at u, we define the variable that will hold our restructured data. It’s an
object with two properties. The .key property is set to "United States", and the
.values property is the result of the d3.nest() operation. Starting at v, we tell the
operator to group the data, first by .region, then by .state, and finally by .county.
Then, at w and x, we tell the operator to set the final value to be the count of

www.it-ebooks.info

http://www.it-ebooks.info/

258 | Chapter 7

entries for the final grouping. Finally, at y, we pass the original data set to the
operator. When this statement finishes, the hierarchy variable contains a struc-
tured version of our data that begins like the following fragment:

{
 "key": "United States",
 "values": [
 {
 "key": "New England",
 "values": [
 {
 "key": "Connecticut",
 "values": [
 {
 "key": "Fairfield County",
 "values": 1
 },{
 "key": "Hartford County",
 "values": 2
 },{
// Data set continues...

This structure matches what the partition layout needs, but there’s still one
more step we need to take. The d3.nest() operator places both child arrays and leaf
data in the .values property. By default, however, the partition layout expects the
data to use different property names for each type of property. More specifically, it
expects child nodes to be stored in the .children property and data values in the
.value property. Since the d3.nest() operator doesn’t create exactly that structure,
we have to extend the default partition layout. Here’s the code to do that:

var partition = d3.layout.partition()
u .children(function(d) {
v return Array.isArray(d.values) ? d.values : null;

 })
w .value(function(d) {
x return d.values;

 });

At u and v, we provide a custom function to return a node’s children. If the
node’s .values property is an array, then that property contains the children. Other-
wise, the node has no children and we return null. Then at w and x, we provide a
custom function to return a node’s value. Since this function is used only when no
children exist, the .values property has to contain the node value.

Step 6: Draw the Visualization
It’s taken a bit of work to get to this point, but now we’re ready to draw the visual-
ization. Here’s where we see the payoff for all the work. It takes only a few lines of
code to create the visualization.

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 259

u var path = g.selectAll("path")
 .data(partition.nodes(hierarchy))

v .enter().append("path")
w .attr("d", arc);

This code follows the same structure we’ve used for all of our D3.js examples.
At u, we create a selection of the SVG elements that represent our data; in this
case we’re using <path> elements. We then bind the selection to the hierarchical
data using the custom partition layout. At v, we identify the data values that don’t
(yet) have an associated SVG element, and at w we create new elements for those
values. That final step relies on the .arc() function that we created in Step 4. We
haven’t yet added any colors or labels, but we can see from Figure 7-13 that we’re
on the right track.

Figure 7-13: D3.js handles the math required to create a
sunburst diagram.

Step 7: Color the Areas
Now we can turn our attention to coloring the visualization. We want to give each
region a unique, dominant color and then shade that color for states and counties
within the region. A good starting point for us is a different type of D3.js scale, a
categorical scale for colors. All of the scales we’ve seen so far are cardinal scales;
they map numerical values to properties for the visualization. Categorical scales

www.it-ebooks.info

http://www.it-ebooks.info/

260 | Chapter 7

work with data values that are not numerical; rather, the values simply represent
different categories of some quantity. In our case, the regions represent categori-
cal data. After all, there isn’t anything intrinsically numerical about New England
or the Southwest.

As the name suggests, a categorical color scale maps different category
values to different colors. D3.js includes several of these predefined color scales.
Since we have fewer than 10 regions in our data, the d3.scale.category10() scale
works fine for this example. Figure 7-14 shows the colors in this scale.

Figure 7-14: D3.js includes color scales for categorical data.

Our next task is assigning colors from this scale to the arcs in our visualiza-
tion. To do that, we’ll define our own color() function. That function will accept a
data node from the partition layout as input.

u var color = function(d) {
 var colors;
 if (!d.parent) {

v colors = d3.scale.category10();
w d.color = "#fff";

 }

 // More code needed...

First, at u, we create a local variable that we’ll use to store colors. We then
check to see if the input node is the root of the hierarchy. If it is, we then create
a color scale at v for the node’s children and assign the node its own color at w.
The root node in our visualization, which represents the entire United States, will
be white. That assigned color will eventually be returned by the function.

After we create a color scale for the child nodes, we want to distribute the
individual colors to those nodes. There’s a slight catch, though. The nodes in the
d.children array aren’t necessarily distributed in the clockwise order we want for
our visualization. To make sure the colors from our scale are distributed in order,
we’ll have to sort the d.children array first. Here’s the complete code for this step.

if (d.children) {
u d.children.map(function(child, i) {

 return {value: child.value, idx: i};
v }).sort(function(a,b) {

 return b.value - a.value
w }).forEach(function(child, i) {

 d.children[child.idx].color = colors(i);
 });
}

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 261

In the first line, we make sure that there is a children array. If there is, we create
a copy of the children array that contains just the node values and their original array
index at u. Then, at v, we sort that copy based on the node values. Finally, at w, we
iterate through the sorted array and assign colors to the child nodes.

So far we’ve created a categorical color scale and assigned its colors to the
first-level children. That takes care of colors for the regions, but there are also states
and counties that need colors. For those, we can create a different scale based on
the parent color. Let’s go back to our function definition and add an else clause for
non-root nodes. In this clause, we also create a color scale for the children. These
child nodes, however, are not regions; they are states or counties. For states of a
region and counties of a state, we don’t want unique, distinct colors like those from
a categorical scale. Instead, we want colors related to the color of the parent. That
calls for a linear gradient.

var color = function(d) {
 var colors;
 if (!d.parent) {
 // Handle root node as above...
 } else if (d.children) {

u var startColor = d3.hcl(d.color)
 .darker(),
 endColor = d3.hcl(d.color)
 .brighter();

v colors = d3.scale.linear()
w .interpolate(d3.interpolateHcl)
x .range([

 startColor.toString(),
 endColor.toString()
])

y .domain([0,d.children.length+1]);

 }

 // Code continues...

Starting at u, we define the starting and ending colors for our gradient. To
create those colors, we start with the parent node’s color (d.color) and darken or
brighten it. In both cases we use hue, chroma, and luminance (HCL) as the basis for
the color manipulations. The HCL color space is based on human visual percep-
tion, unlike the purely mathematical basis for the more familiar RGB color space.
Using HCL generally results in a more visually pleasing gradient.

The code block starting at v actually creates the gradient. We’re using a D3.js
linear scale and a built-in interpolation algorithm for HCL colors w. Our gradient
ranges between the start and end colors x, and its domain is the indices of the
node’s children y.

www.it-ebooks.info

http://www.it-ebooks.info/

262 | Chapter 7

Now all we need to do is assign the appropriate color when we create each
data value’s <path> element. That requires a one-line addition, .attr("fill", color),
to the code that creates those paths.

var path = g.selectAll("path")
 .data(partition.nodes(hierarchy))
 .enter().append("path")
 .attr("d", arc)
 .attr("fill", color);

As Figure 7-15 shows, our visualization now includes appropriate colors.

Figure 7-15: D3.js provides tools to add attractive colors to
visualizations such as our sunburst.

Step 8: Make the Visualization Interactive
To conclude this example, we will add some interactivity. When a user clicks
an area in the chart, the chart will zoom in to show more detail for that area. To
emphasize the subject matter, we’ll create a custom rotating animation effect
for this zoom. The easiest part of this step is adding the function to handle click
events. We can do that when we add the <path> elements to the page.

var path = g.selectAll("path")
 .data(partition.nodes(hierarchy))

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 263

 .enter().append("path")
 .attr("d", arc)
 .attr("fill", color)

u .on("click", handleClick);

The handleClick function at u is the event handler that we’ll have to write.
Conceptually, the function is pretty straightforward. When the user clicks an area,
we want to modify all the paths to make that area the focal point of the visualiza-
tion. The complete function is shown in the following code.

function handleClick(datum) {
 path.transition().duration(750)
 .attrTween("d", arcTween(datum));
};

The function’s single parameter is the data value corresponding to the
clicked element. Conventionally, D3.js uses d for that value; in this case, however,
we’re using datum to avoid confusion with the SVG "d" attribute. The first line in the
function references all of the paths in the visualization and sets up an animated
transition for those paths. The next line tells D3.js what values we’re going to tran-
sition. In this case, we’re changing an attribute of the <path> elements (so we use
the function attrTween), and the specific attribute we’re changing is the "d" attri-
bute (the first parameter to that function). The second parameter, arcTween(datum),
is a function that returns a function.

Here’s the complete implementation of arcTween().

function arcTween(datum) {
 var thetaDomain = d3.interpolate(theta.domain(),
 [datum.x, datum.x + datum.dx]),
 radiusDomain = d3.interpolate(radius.domain(),
 [datum.y, 1]),
 radiusRange = d3.interpolate(radius.range(),
 [datum.y ? 20 : 0, maxRadius]);

 return function calculateNewPath(d, i) {
 return i ?
 function interpolatePathForRoot(t) {
 return arc(d);
 } :
 function interpolatePathForNonRoot(t) {
 theta.domain(thetaDomain(t));
 radius.domain(radiusDomain(t)).range(radiusRange(t));
 return arc(d);
 };
 };
};

You can see that this code block defines several different functions. First,
there’s arcTween(). It returns another function calculateNewPath(), and that function

www.it-ebooks.info

http://www.it-ebooks.info/

264 | Chapter 7

returns either interpolatePathForRoot() or interpolatePathForNonRoot(). Before we
look at the details of the implementation, let me go over the distinctions between
these functions.

 > arcTween() is called once (for a single click) in the click event handler. Its input
parameter is the data value corresponding to the clicked element.

 > calculateNewPath() is then called once for every path element, a total of
702 times for each click. Its input parameters are the data value and index
of the path element.

 > interpolatePathForRoot() or interpolatePathForNonRoot() are called multiple
times for each path element. Every call provides the input parameter t (for
time) that represents the amount of progress in the current animation transi-
tion. The time parameter ranges from 0 when the animation starts to 1 when
the animation ends. If, for example, D3.js requires 100 individual animation
steps for the transition, then these functions will be called 70,200 times for
each click.

Now that we know when each of these functions is called, we can start to look
at what they actually do. A concrete example definitely helps, so let’s consider what
happens when the user clicks the state of Kentucky. As Figure 7-16 shows, it’s on
the second row in the upper-right section of the visualization.

Figure 7-16: The tornado sightings sunburst graph with
Kentucky highlighted

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 265

The data value associated with this SVG <path> will have properties calcu-
lated by the partition layout, specifically:

 > an x value of 0.051330798479087454

 > a y value of 0.5

 > a dx value of 0.04182509505703422

 > a dy value of 0.25

In terms of our visualization, the area begins at an angular position of 18.479°
(x) and continues for another 15.057° (dx). Its innermost radius begins 177 pixels (y)
from the center. When the user clicks Kentucky, we want the visualization to zoom
in on Kentucky and its counties. That’s the region that Figure 7-17 highlights. The
angle begins at 18.479° and continues for another 15.057°; the radius begins at
177 pixels and continues to the maxRadius value, a total length of 73 pixels.

∆θ = 15.057°

∆r = 73px

Figure 7-17: When the user clicks Kentucky, we want the
visualization to focus on that small area.

The concrete example helps explain the arcTween() implementation. The
function first creates three d3.interpolate objects. These objects provide a con-
venient way to handle the mathematical calculations for interpolations. The first
object interpolates from the starting theta domain (initially 0 to 1) to our desired
subset (0.051 to 0.093 for Kentucky). The second object does the same for the
radius, interpolating from the starting radius domain (initially 0 to 1) to our desired
subset (0.5 to 1 for Kentucky and its counties). The final object provides a new,

www.it-ebooks.info

http://www.it-ebooks.info/

266 | Chapter 7

interpolated range for the radius. If the clicked element has a non-zero y value,
the new range will start at 20 instead of 0. If the clicked element was the <path>
representing the entire United States, then the range reverts to the initial start-
ing value of 0.

arcTween() returns the calculateNewPath function after creating the
d3.interpolate objects. D3.js calls this function once for each <path> element.
When it executes, calculateNewPath() checks to see if the associated <path> ele-
ment is the root (representing the entire United States). If so, calculateNewPath()
returns the interpolatePathForRoot function. For the root, no interpolation is
necessary, so the desired path is just the regular path that our arc() function
(from Step 4) creates. For all other elements, however, we use the d3.interpolate
objects to redefine the theta and radius scales. Instead of the full 0 to 2π and 0
to maxRadius, we set these scales to be the desired area of focus. Furthermore,
we use the amount of progress in the transition from the parameter t to interpo-
late how close we are to those desired values. With the scales redefined, calling
the arc() function returns a path appropriate for the new scales. As the transition
progresses, the paths reshape themselves to fit the desired outcome. You can
see the intermediate steps in Figure 7-18.

Figure 7-18: The transition smoothly animates the visualization to zoom in
on the area of focus.

www.it-ebooks.info

http://www.it-ebooks.info/

 Custom Visualizations with D3.js | 267

With this final bit of code, our visualization is complete. Figure 7-19 shows the
result. It includes some additional hover effects in lieu of a true legend; you can find
the complete implementation in the book’s source code (http://jsDataV.is/source/).

Kentucky: 44 sightings

Tornado Sightings in 2013 (www.noaa.gov)

Figure 7-19: D3.js provides all the tools needed for complex
custom interactive visualizations like this animated zoomable
sunburst.

Summing Up
As we’ve seen in these examples, D3.js is a very powerful library for building
JavaScript visualizations. Using it effectively requires a deeper understanding
of JavaScript techniques than most of the other libraries we’ve seen in this book.
If you make the investment to learn D3.js, though, you’ll have more control and
flexibility over the results.

www.it-ebooks.info

http://jsDataV.is/source/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

8
managing Data
in the Browser

So far in the book, we’ve looked at a lot of
visual ization tools and techniques, but we
haven’t spent much time considering the
data part of data visualization. The emphasis
on visualization is appropriate in many cases.
Especially if the data is static, we can take
all the time we need to clean and organize it
before it’s even represented in JavaScript. But
what if the data is dynamic and we have no

www.it-ebooks.info

http://www.it-ebooks.info/

270 | Chapter 8

choice but to import the raw source directly into our JavaScript application? We
have much less control over data from third-party REST APIs, Google Docs spread-
sheets, or automatically generated CSV files. With those types of data sources, we
often need to validate, reformat, recalculate, or otherwise manipulate the data in
the browser.

This chapter considers a JavaScript library that is particularly helpful for man-
aging large data sets in the web browser: Underscore.js (http://underscorejs.org/).
We’ll cover the following aspects of Underscore.js:

 > Functional programming, the programming style that Underscore.js
encourages

 > Working with simple arrays using Underscore.js utilities

 > Enhancing JavaScript objects

 > Manipulating collections of objects

The format of this chapter differs from the other chapters in the book.
Instead of covering a few examples of moderate complexity, we’ll look at a lot of
simple, short examples. Each section collects several related examples together,
but each of the short examples is independent. The first section differs even fur-
ther. It’s a brief introduction to functional programming cast as a step-by-step
migration from the more common imperative programming style. Understanding
functional programming is very helpful, as its philosophy underlies almost all of the
Underscore.js utilities.

This chapter serves as a tour of the Underscore.js library with a special focus
on managing data. (As a concession to the book’s overall focus on data visualiza-
tion, it also includes several illustrations.) We’ll see many of the Underscore.js utili-
ties covered here at work in a larger web application project in the subsequent
chapters.

Using Functional Programming
When we’re working with data that’s part of a visualization, we often have to iterate
through the data one item at a time to transform, extract, or otherwise manipulate
it to fit our application. Using only the core JavaScript language, our code may rely
on a for loop like the following:

for (var i=0, len=data.length; i<len; i++) {
 // Code continues...
}

Although this style, known as imperative programming, is a common
JavaScript idiom, it can present a few problems in large, complex applications.
In particular, it might result in code that’s harder than necessary to debug, test,
and maintain. This section introduces a different programming style—functional
programming—that eliminates many of those problems. As you’ll see, functional
programming can result in code that’s much more concise and readable, and
therefore often much less error prone.

www.it-ebooks.info

http://www.it-ebooks.info/

 Managing Data in the Browser | 271

To compare these two programming styles, let’s consider a simple program-
ming problem: writing a function to calculate the Fibonacci numbers. The first two
Fibonacci numbers are 0 and 1, and subsequent numbers are the sum of the two
preceding values. The sequence starts like this:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

Step 1: Start with an Imperative Version
To begin, let’s consider a traditional, imperative approach to the problem. Here’s
a first attempt:

var fib = function(n) {
 // If 0th or 1st, just return n itself
 if (n < 2) return n;

 // Otherwise, initialize variable to compute result
 var f0=0, f1=1, f=1;

 // Iterate until we reach n
 for (i=2; i<=n; i++) {

 // At each iteration, slide the intermediate
 // values down a step
 f0 = f1 = f;

 // And calculate sum for the next pass
 f = f0 + f1;
 }

 // After all the iterations, return the result
 return f;
}

This fib() function takes as its input a parameter n and returns as its output
the nth Fibonacci number. (By convention, the 0th and 1st Fibonacci numbers are
0 and 1.)

Step 2: Debug the Imperative Code
If you aren’t checking closely, you might be surprised to find that the preceding
trivial example contains three bugs. Of course, it’s a contrived example and the
bugs are deliberate, but can you find all of them without reading any further? More
to the point, if even a trivial example can hide so many bugs, can you imagine what
might be lurking in a complex web application?

To understand why imperative programming can introduce these bugs, let’s
fix them one at a time.

www.it-ebooks.info

http://www.it-ebooks.info/

272 | Chapter 8

One bug is in the for loop:

 for (i=2; i<=n; i++) {

The conditional that determines the loop termination checks for a less-than-
or-equal (<=) value; instead, it should check for a less-than (<) value.

A second bug occurs in this line:

 f0 = f1 = f;

Although we think and read left to right (at least in English), JavaScript
executes multiple assignments from right to left. Instead of shifting the values in
our variables, this statement simply assigns the value of f to all three. We need to
break the single statement into two:

 f0 = f1;
 f1 = f;

The final bug is the most subtle, and it’s also in the for loop. We’re using the
local variable i, but we haven’t declared it. As a result, JavaScript will treat it as
a global variable. That won’t cause our function to return incorrect results, but it
could well introduce a conflict—and a hard-to-find bug—elsewhere in our applica-
tion. The correct code declares the variable as local:

 for (var i=2; i<n; i++) {

Step 3: Understand the Problems Imperative
Programming May Introduce
The bugs in this short and straightforward piece of code are meant to demon-
strate some problematic features of imperative programming in general. In par-
ticular, conditional logic and state variables, by their very nature, tend to invite
certain errors.

Consider the first bug. Its error was using an incorrect test (<= instead of <)
for the conditional that terminates the loop. Precise conditional logic is critical for
computer programs, but such precision doesn’t always come naturally to most
people, including programmers. Conditional logic has to be perfect, and some-
times making it perfect is tricky.

The other two errors both relate to state variables, f0 and f1 in the first case
and i in the second. Here again there’s a difference between how programmers
think and how programs operate. When programmers write the code to iterate
through the numbers, they’re probably concentrating on the specific problem at
hand. It may be easy to neglect the potential effect on other areas of the applica-
tion. More technically, state variables can introduce side effects into a program,
and side effects may result in bugs.

www.it-ebooks.info

http://www.it-ebooks.info/

 Managing Data in the Browser | 273

Step 4: Rewrite Using Functional Programming Style
Proponents of functional programming claim that by eliminating conditionals and
state variables, a functional programming style can produce code that’s more con-
cise, more maintainable, and less prone to errors than imperative programming.

The “functional” in “functional programming” does not refer to functions in
programming languages but rather to mathematical functions such as y=f(x). Func-
tional programming attempts to emulate mathematical functions in the context
of computer programming. Instead of iterating over values by using a for loop,
functional programming often uses recursion, where a function calls itself multiple
times to make a calculation or manipulate values.

Here’s how we can implement the Fibonacci algorithm with functional
programming:

var fib = function(n) { return n < 2 ? n : fib(n-1) + fib(n-2); }

Notice that this version has no state variables and, except for the edge case
to handle 0 or 1, no conditional statements. It’s much more concise, and notice
how the code mirrors almost word-for-word the statement of the original prob-
lem: “The first two Fibonacci numbers are 0 and 1” corresponds to n < 2 ? n, and
“subsequent numbers are the sum of the two preceding values” corresponds to
fib(n-1) + fib(n-2).

Functional programming implementations often express the desired out-
come directly. They can therefore minimize the chance of misinterpretations or
errors in an intermediate algorithm.

Step 5: Evaluate Performance
From what we’ve seen so far, it may seem that we should always adopt a functional
programming style. Certainly functional programming has its advantages, but it
can have some significant disadvantages as well. The Fibonacci code is a perfect
example. Since functional programming eschews the notion of loops, our example
relies instead on recursion.

In our specific case the fib() function calls itself twice at every level until the
recursion reaches 0 or 1. Since each intermediate call itself results in more interme-
diate calls, the number of calls to fib() increases exponentially. Finding the 28th
Fibonacci number by executing fib(28) results in over one million calls to the fib()
function.

As you might imagine, the resulting performance is simply unacceptable.
Table 8-1 shows the execution times for both the functional and the imperative
versions of fib().

Table 8-1: Execution Times for fib()

Version parameter execution time (ms)

Imperative 28 0.231

Functional 28 296.9

www.it-ebooks.info

http://www.it-ebooks.info/

274 | Chapter 8

As you can see, the functional programming version is over a thousand times
slower. In the real world, such performance is rarely acceptable.

Step 6: Fix the Performance Problem
Fortunately, we can reap the benefits of functional programming without suffering
the performance penalty. We simply turn to the tiny but powerful Underscore.js
library. As the library’s web page explains,

Underscore is a utility-belt library for JavaScript that provides . . . functional

programming support.

Of course, we need to include that library in our web pages. If you’re includ-
ing libraries individually, Underscore.js is available on many content distribution
networks, such as CloudFlare.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <!-- Content goes here -->
 <script
 src="//cdnjs.cloudflare.com/ajax/libs/underscore.js/1.4.4/"+
 "underscore-min.js">
 </script>
 </body>
</html>

With Underscore.js in place, we can now optimize the performance of our
Fibonacci implementation.

The problem with the recursive implementation is that it results in many
unnecessary calls to fib(). For example, executing fib(28) requires more
than 100,000 calls to fib(3). And each time fib(3) is called, the return value is
re calculated from scratch. It would be better if the implementation called fib(3)
only once, and every subsequent time it needed to know the value of fib(3) it
reused the previous result instead of recalculating it from scratch. In effect, we’d
like to implement a cache in front of the fib() function. The cache could eliminate
the repetitive calculations.

This approach is known as memoizing, and the Underscore.js library has
a simple method to automatically and transparently memoize JavaScript func-
tions. Not surprisingly, that method is called memoize(). To use it, we first wrap the
function we want to memoize within the Underscore object. Just as jQuery uses
the dollar sign ($) for wrapping, Underscore.js uses the underscore character (_).

www.it-ebooks.info

http://www.it-ebooks.info/

 Managing Data in the Browser | 275

After wrapping our function, we simply call the memoize() method. Here’s the
complete code:

var fib = _(function(n) {
 return n < 2 ? n : fib(n-1) + fib(n-2);
 }).memoize()

As you can see, we haven’t really lost any of the readability or conciseness
of functional programming. And it would still be a challenge to introduce a bug
in this implementation. The only real change is performance, and it’s substantially
better, as shown in Table 8-2.

Table 8-2: Execution Times for fib(), Continued

Version parameter execution time (ms)

Imperative fib() 28 0.231

Functional fib() 28 296.9

Memoized fib() 28 0.352

Just by including the Underscore.js library and using one of its methods, our
functional implementation has nearly the same performance as the imperative
version.

For the rest of this chapter, we’ll look at many of the other improvements and
utilities that Underscore.js provides. With its support for functional programming,
Underscore.js makes it significantly easier to work with data in the browser.

Working with Arrays
If your visualization relies on a significant amount of data, that data is most likely
contained in arrays. Unfortunately, it’s very tempting to resort to imperative pro-
gramming when you are working with arrays. Arrays suggest the use of program-
ming loops, and, as we saw earlier, programming loops are an imperative construct
that often causes errors. If we can avoid loops and rely on functional programming
instead, we can improve the quality of our JavaScript. The core JavaScript language
includes a few utilities and methods to help applications cope with arrays in a func-
tional style, but Underscore.js adds many others. This section describes many of the
Underscore.js array utilities that are most helpful for data visualizations.

Extracting Elements by Position
If you need only a subset of an array for your visualization, Underscore.js has many
utilities that make it easy to extract the right one. For the following examples, we’ll
consider a simple array (shown in Figure 8-1).

var arr = [1,2,3,4,5,6,7,8,9];

www.it-ebooks.info

http://www.it-ebooks.info/

276 | Chapter 8

arr 1 2 3 4 5 6 7 8 9

Figure 8-1: Underscore.js has many utilities to make working with
arrays easy.

Underscore.js’s first() method provides a simple way to extract the first ele-
ment of an array, or the first n elements (see Figure 8-2):

> _(arr).first()
 1
> _(arr).first(3)
 [1, 2, 3]

_(arr).first() 1 2 3 4 5 6 7 8 9

_(arr).first(3) 1 2 3 4 5 6 7 8 9

Figure 8-2: The first() function returns the first element or the first
n elements in an array.

Notice that first() (without any parameter) returns a simple element, while
first(n) returns an array of elements. That means, for example, that first() and
first(1) have different return values (1 versus [1] in the example).

As you might expect, Underscore.js also has a last() method to extract ele-
ments from the end of an array (see Figure 8-3).

> _(arr).last()
 9
> _(arr).last(3)
 [7, 8, 9]

_(arr).last() 1 2 3 4 5 6 7 8 9

_(arr).last(3) 1 2 3 4 5 6 7 8 9

Figure 8-3: The last() function returns the last element or the last
n elements in an array.

Without any parameters, last() returns the last element in the array. With a
parameter n, it returns a new array with the last n elements from the original.

www.it-ebooks.info

http://www.it-ebooks.info/

 Managing Data in the Browser | 277

The more general versions of both of these functions (.first(3) and .last(3))
would require some potentially tricky (and error-prone) code to implement in an
imperative style. In the functional style that Underscore.js supports, however, our
code is clean and simple.

What if you want to extract from the beginning of the array, but instead
of knowing how many elements you want to include in the result, you know only
how many elements you want to omit? In other words, you need “all but the last
n” elements. The initial() method performs this extraction (see Figure 8-4).
As with all of these methods, if you omit the optional parameter, Underscore.js
assumes a value of 1.

> _(arr).initial()
 [1, 2, 3, 4, 5, 6, 7, 8]
> _(arr).initial(3)
 [1, 2, 3, 4, 5, 6]

_(arr).initial() 1 2 3 4 5 6 7 8 9

_(arr).initial(3) 1 2 3 4 5 6 7 8 9

Figure 8-4: The initial() function returns all but the last element or all but
the last n elements in an array.

Finally, you may need the opposite of initial(). The rest() method skips
past a defined number of elements in the beginning of the array and returns what-
ever remains (see Figure 8-5).

> _(arr).rest()
 [2, 3, 4, 5, 6, 7, 8, 9]
> _(arr).rest(3)
 [4, 5, 6, 7, 8, 9]

_(arr).rest() 1 2 3 4 5 6 7 8 9

_(arr).rest(3) 1 2 3 4 5 6 7 8 9

Figure 8-5: The rest() function returns all but the first element or all but
the first n elements in an array.

Again, these functions would be tricky to implement using traditional, imper-
ative programming, but they are a breeze with Underscore.js.

www.it-ebooks.info

http://www.it-ebooks.info/

278 | Chapter 8

Combining Arrays
Underscore.js includes another set of utilities for combining two or more arrays.
These include functions that mimic standard mathematical set operations, as well
as more-sophisticated combinations. For the next few examples, we’ll use two
arrays, one containing the first few Fibonacci numbers and the other containing
the first five even integers (see Figure 8-6).

var fibs = [0, 1, 1, 2, 3, 5, 8];
var even = [0, 2, 4, 6, 8];

fibs 0 1 1 2 3 5 8

even 0 2 4 6 8

Figure 8-6: Underscore.js also has many utilities to
work with multiple arrays.

The union() method is a straightforward combination of multiple arrays.
It returns an array containing all elements that are in any of the inputs, and it
removes any duplicates (Figure 8-7).

> _(fibs).union(even)
 [0, 1, 2, 3, 5, 8, 4, 6]

0 1 1 2 3 5 8

0 1 2 3 5 8 4 6

0 2 4 6 8

_(fibs).union(even)

Figure 8-7: The union() function creates the union of multiple arrays,
removing any duplicates.

Notice that union() removes duplicates whether they appear in separate
inputs (0, 2, and 8) or in the same array (1).

 QNote: Although this chapter considers combinations of just two arrays, most
Underscore.js methods can accept an unlimited number of parameters. For
example, _.union(a,b,c,d,e) returns the union of five different arrays. You can
even find the union of an array of arrays with the JavaScript apply() function
with something like _.union.prototype.apply(this, arrOfArrs).

www.it-ebooks.info

http://www.it-ebooks.info/

 Managing Data in the Browser | 279

The intersection() method acts just as you would expect, returning only
those elements that appear in all of the input arrays (Figure 8-8).

> _(fibs).intersection(even)
 [0, 2, 8]

0 1 1 2 3 5 8

0 2 8

0 2 4 6 8

_(fibs).intersection(even)

Figure 8-8: The intersection() function returns elements in common
among multiple arrays.

The difference() method is the opposite of intersection(). It returns those
elements in the first input array that are not present in the other inputs (Figure 8-9).

> _(fibs).difference(even)
 [1, 1, 3, 5]

0 1 1 2 3 5 8

1 1 3

0 2 4 6 8

_(fibs).difference(even) 5

Figure 8-9: The difference() function returns elements that are present
only in the first of multiple arrays.

If you need to eliminate duplicate elements but have only one array—making
union() inappropriate—then you can use the uniq() method (Figure 8-10).

> _(fibs).uniq()
 [0, 1, 2, 3, 5, 8]

fibs 0 1 1 2 3 5 8

0 1 2 3 5 8_(fibs).uniq()

Figure 8-10: The uniq() function removes duplicate
elements from an array.

www.it-ebooks.info

http://www.it-ebooks.info/

280 | Chapter 8

Finally, Underscore.js has a zip() method. Its name doesn’t come from
the popular compression algorithm but rather because it acts a bit like a zipper.
It takes multiple input arrays and combines them, element by element, into an
output array. That output is an array of arrays, where the inner arrays are the com-
bined elements.

> var naturals = [1, 2, 3, 4, 5];
> var primes = [2, 3, 5, 7, 11];
> _.zip(naturals, primes)
 [[1,2], [2,3], [3,5], [4,7], [5,11]]

The operation is perhaps most clearly understood through a picture; see
Figure 8-11.

primesnaturals

1 2 3 4 5 2 3 5 7 11

_.zip(naturals,primes) 1 2 2 3 3 5 54 7 11

Figure 8-11: The zip() function pairs elements from multiple
arrays together into a single array.

This example demonstrates an alternative style for Underscore.js. Instead of
wrapping an array within the _ object as we’ve done so far, we call the zip() method
on the _ object itself. The alternative style seems a better fit for the underlying
functionality in this case, but if you prefer _(naturals).zip(prime), you’ll get the
exact same result.

Removing Invalid Data Values
One of the banes of visualization applications is invalid data values. Although we’d
like to think that our data sources ensure that all the data they provide is scrupu-
lously correct, that is, unfortunately, rarely the case. More seriously, if JavaScript
encounters an invalid value, the most common result is an unhandled exception,
which halts all further JavaScript execution on the page.

To avoid such an unpleasant error, we should validate all data sets and
remove invalid values before we pass the data to graphing or charting libraries.
Underscore.js has several utilities to help.

The simplest of these Underscore.js methods is compact(). This function
removes any data values that JavaScript treats as false from the input arrays. Elimi-
nated values include the Boolean value false, the numeric value 0, an empty string,
and the special values NaN (not a number; for example, 1/0), undefined, and null.

www.it-ebooks.info

http://www.it-ebooks.info/

 Managing Data in the Browser | 281

> var raw = [0, 1, false, 2, "", 3, NaN, 4, , 5, null];
> _(raw).compact()
 [1, 2, 3, 4, 5]

It is worth emphasizing that compact() removes elements with a value of 0. If
you use compact() to clean a data array, be sure that 0 isn’t a valid data value in your
data set.

Another common problem with raw data is excessively nested arrays. If you
want to eliminate extra nesting levels from a data set, the flatten() method is
available to help.

> var raw = [1, 2, 3, [[4]], 5];
> _(raw).flatten()
 [1, 2, 3, 4, 5]

By default, flatten() removes all nesting, even multiple levels of nesting,
from arrays. If you set the shallow parameter to true, however, it removes only a
single level of nesting.

> var raw = [1, 2, 3, [[4]], 5];
> _(raw).flatten(true)
 [1, 2, 3, [4], 5]

Finally, if you have specific values that you want to eliminate from an array,
you can use the without() method. Its parameters provide a list of values that the
function should remove from the input array.

> var raw = [1, 2, 3, 4];
> _(raw).without(2, 3)
 [1, 4]

Finding Elements in an Array
JavaScript has always defined the indexOf() method for strings. It returns the posi-
tion of a given substring within a larger string. Recent versions of JavaScript have
added this method to array objects, so you can easily find the first occurrence of a
given value in an array. Unfortunately, older browsers (specifically IE8 and earlier)
don’t support this method.

Underscore.js provides its own indexOf() method to fill the gap those older
browsers create. If Underscore.js finds itself running in an environment with native
support for array indexOf, then it defers to the native method to avoid any perfor-
mance penalty.

> var primes = [2, 3, 5, 7, 11];
> _(primes).indexOf(5)
 2

www.it-ebooks.info

http://www.it-ebooks.info/

282 | Chapter 8

To begin your search somewhere in the middle of the array, you can specify
that starting position as the second argument to indexOf().

> var arr = [2, 3, 5, 7, 11, 7, 5, 3, 2];
> _(arr).indexOf(5, 4)
 6

You can also search backward from the end of an array using the lastIndexOf()
method.

> var arr = [2, 3, 5, 7, 11, 7, 5, 3, 2];
> _(arr).lastIndexOf(5)
 6

If you don’t want to start at the very end of the array, you can pass in the
starting index as an optional parameter.

Underscore.js provides a few helpful optimizations for sorted arrays. Both the
uniq() and the indexOf() methods accept an optional Boolean parameter. If that
parameter is true, then the functions assume that the array is sorted. The perfor-
mance improvements this assumption allows can be especially significant for large
data sets.

The library also includes the special sortedIndex() function. This function
also assumes that the input array is sorted. It finds the position at which a specific
value should be inserted to maintain the array’s sort order.

> var arr = [2, 3, 5, 7, 11];
> _(arr).sortedIndex(6)
 3

If you have a custom sorting function, you can pass that to sortedIndex()
as well.

Generating Arrays
The final array utility I’ll mention is a convenient method to generate arrays. The
range() method tells Underscore.js to create an array with the specified number of
elements. You may also specify a starting value (the default is 0) and the increment
between adjacent values (the default is 1).

> _.range(10)
 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
> _.range(20,10)
 [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
> _.range(0, 10, 100)
 [0, 100, 200, 300, 400, 500, 600, 700, 800, 900]

The range() function can be quite useful if you need to generate x-axis val-
ues to match an array of y-axis values.

www.it-ebooks.info

http://www.it-ebooks.info/

 Managing Data in the Browser | 283

> var yvalues = [0.1277, 1.2803, 1.7697, 3.1882]
> _.zip(_.range(yvalues.length),yvalues)
 [[0, 0.1277], [1, 1.2803], [2, 1.7697], [3, 3.1882]]

Here we use range() to generate the matching x-axis values, and use zip() to
combine them with the y-values.

Enhancing Objects
Although the previous section’s examples show numeric arrays, often our visualiza-
tion data consists of JavaScript objects instead of simple numbers. That’s espe-
cially likely if we get the data via a REST interface, because such interfaces almost
always deliver data in JavaScript Object Notation (JSON). If we need to enhance
or transform objects without resorting to imperative constructs, Underscore.js
has another set of utilities that can help. For the following examples, we can use
a simple pizza object (see Figure 8-12).

var pizza = {
 size: 10,
 crust: "thin",
 cheese: true,
 toppings: ["pepperoni","sausage"]
};

size:

crust:

cheese:

toppings: "pepperoni" "sausage"

pizza:

 10

 "thin"

 true

Figure 8-12: Underscore.js has many
utilities for working with arbitrary
JavaScript objects.

Working with Keys and Values
Underscore.js includes several methods to work with the keys and values that make
up objects. For example, the keys() function creates an array consisting solely of
an object’s keys (see Figure 8-13).

> _(pizza).keys()
 ["size", "crust", "cheese", "toppings"]

www.it-ebooks.info

http://www.it-ebooks.info/

284 | Chapter 8

"size" "crust" "cheese" "toppings"_(pizza).keys()

Figure 8-13: The keys() function returns the
keys of an object as an array.

Similarly, the values() function creates an array consisting solely of an
object’s values (Figure 8-14).

> _(pizza).values()
 [10, "thin", true, ["pepperoni","sausage"]]

10 "thin" true "pepperoni" "sausage"_(pizza).values()

Figure 8-14: The values() function returns just the
values of an object as an array.

The pairs() function creates a two-dimensional array. Each element of the
outer array is itself an array that contains an object’s key and its corresponding
value (Figure 8-15).

> _(pizza).pairs()
 [
 ["size",10],
 ["crust","thin"],
 ["cheese",true],
 ["toppings",["pepperoni","sausage"]]
]

"size" 10 "crust" "thin" "cheese" true "toppings" "pepperoni" "sausage"

Figure 8-15: The pairs() function converts an object into an array of array
pairs.

To reverse this transformation and convert an array into an object, we can
use the object() function.

> var arr = [["size",10], ["crust","thin"], ["cheese",true],
 ["toppings",["pepperoni","sausage"]]]
> _(arr).object()
 { size: 10, crust: "thin", cheese: true, toppings: ["pepperoni","sausage"]}

Finally, we can swap the roles of keys and values in an object with the
invert() function (Figure 8-16).

www.it-ebooks.info

http://www.it-ebooks.info/

 Managing Data in the Browser | 285

> _(pizza).invert()
 {10: "size", thin: "crust", true: "cheese", "pepperoni,sausage":
"toppings"}

"size"

"crust"

"cheese"

"toppings""pepperoni,sausage":

_(pizza).invert()

"10":

"thin":

"true":

Figure 8-16: The invert() function swaps keys
and values in an object.

As the preceding example shows, Underscore.js can even invert an object if
the value isn’t a simple type. In this case it takes an array, ["pepperoni","sausage"],
and converts it to a value by joining the individual array elements with commas,
creating the key "pepperoni,sausage".

Note also that JavaScript requires that all of an object’s keys are unique.
That’s not necessarily the case for values. If you have an object in which multiple
keys have the same value, then invert() keeps only the last of those keys in the
inverted object. For example, _({key1: value, key2: value}).invert() returns
{value: key2}.

Cleaning Up Object Subsets
When you want to clean up an object by eliminating unnecessary attributes, you
can use Underscore.js’s pick() function. Simply pass it a list of attributes that you
want to retain (Figure 8-17).

> _(pizza).pick("size","crust")
 {size: 10, crust: "thin"}

size:

crust:

10

"thin"
_(pizza).pick("size","crust")

Figure 8-17: The pick() function selects specific properties
from an object.

www.it-ebooks.info

http://www.it-ebooks.info/

286 | Chapter 8

We can also do the opposite of pick() by using omit() and listing the attri-
butes that we want to delete (Figure 8-18). Underscore.js keeps all the other
attributes in the object.

> _(pizza).omit("size","crust")
 {cheese: true, toppings: ["pepperoni","sausage"]}

cheese:

toppings:

true

_(pizza).omit("size","crust")
"pepperoni" "sausage"

Figure 8-18: The omit() function removes properties from
an object.

Updating Attributes
When you are updating objects, a common requirement is to make sure that an
object includes certain attributes and that those attributes have appropriate
default values. Underscore.js includes two utilities for this purpose.

The two utilities, extend() and defaults(), both start with one object and
adjust its properties based on those of other objects. If the secondary objects
include attributes that the original object lacks, these utilities add those prop-
erties to the original. The utilities differ in how they handle properties that are
already present in the original. The extend() function overrides the original prop-
erties with new values (see Figure 8-19):

> var standard = { size: 12, crust: "regular", cheese: true }
> var order = { size: 10, crust: "thin",
 toppings: ["pepperoni","sausage"] };
> _.extend(standard, order)
 { size: 10, crust: "thin", cheese: true,
 toppings: ["pepperoni","sausage"] };

Meanwhile, defaults() leaves the original properties unchanged
(Figure 8-20):

> var order = { size: 10, crust: "thin",
 toppings: ["pepperoni","sausage"] };
> var standard = { size: 12, crust: "regular", cheese: true }
> _.defaults(order, standard)
 { size: 10, crust: "thin",
 toppings ["pepperoni","sausage"], cheese: true };

www.it-ebooks.info

http://www.it-ebooks.info/

 Managing Data in the Browser | 287

size:

crust:

cheese:

toppings: "pepperoni" "sausage"

_.extend(
 standard,
 order
)

 10

 "thin"

 true

size:

crust:

toppings: "pepperoni" "sausage"

 10

 "thin"

size:

crust:

cheese:

 12

 "regular"

 true

standard order

Figure 8-19: The extend() function updates and adds missing
properties to an object.

size:

crust:

cheese:

toppings:

_.defaults(
 order,
 standard
) "pepperoni" "sausage"

 10

 "thin"

 true

size:

crust:

toppings: "pepperoni" "sausage"

 10

 "thin"

size:

crust:

cheese:

 12

 "regular"

 true

standardorder

Figure 8-20: The defaults() function adds missing properties to an
object.

www.it-ebooks.info

http://www.it-ebooks.info/

288 | Chapter 8

Note that both extend() and defaults() modify the original object directly;
they do not make a copy of that object and return the copy. Consider, for example,
the following:

> var order = { size: 10, crust: "thin",
 toppings: ["pepperoni","sausage"] };
> var standard = { size: 12, crust: "regular", cheese: true }
> var pizza = _.extend(standard, order)
 { size: 10, crust: "thin", cheese: true,
 toppings: ["pepperoni","sausage"] };

This code sets the pizza variable as you would expect, but it also sets
the standard variable to that same object. More specifically, the code modifies
standard with the properties from order, and then it sets a new variable pizza
equal to standard. The modification of standard is probably not intended. If you
need to use either extend() or defaults() in a way that does not modify input
parameters, start with an empty object.

> var order = { size: 10, crust: "thin",
 toppings: ["pepperoni","sausage"] };
> var standard = { size: 12, crust: "regular", cheese: true }
> var pizza = _.extend({}, standard, order)
 { size: 10, crust: "thin", cheese: true,
 toppings: ["pepperoni","sausage"] };

This version gets us the desired pizza object without modifying standard.

Manipulating Collections
So far we’ve seen various Underscore.js tools that are suited specifically for either
arrays or objects. Next, we’ll see some tools for manipulating collections in general.
In Underscore.js both arrays and objects are collections, so the tools in this section
can be applied to pure arrays, pure objects, or data structures that combine both.
In this section, we’ll try out these utilities on an array of objects, since that’s the data
structure we most often deal with in the context of data visualization.

Here’s a small data set we can use for the examples that follow. It contains a
few statistics from the 2012 Major League Baseball season.

var national_league = [
 { name: "Arizona Diamondbacks", wins: 81, losses: 81,
 division: "west" },
 { name: "Atlanta Braves", wins: 94, losses: 68,
 division: "east" },
 { name: "Chicago Cubs", wins: 61, losses: 101,
 division: "central" },
 { name: "Cincinnati Reds", wins: 97, losses: 65,
 division: "central" },
 { name: "Colorado Rockies", wins: 64, losses: 98,
 division: "west" },

www.it-ebooks.info

http://www.it-ebooks.info/

 Managing Data in the Browser | 289

 { name: "Houston Astros", wins: 55, losses: 107,
 division: "central" },
 { name: "Los Angeles Dodgers", wins: 86, losses: 76,
 division: "west" },
 { name: "Miami Marlins", wins: 69, losses: 93,
 division: "east" },
 { name: "Milwaukee Brewers", wins: 83, losses: 79,
 division: "central" },
 { name: "New York Mets", wins: 74, losses: 88,
 division: "east" },
 { name: "Philadelphia Phillies", wins: 81, losses: 81,
 division: "east" },
 { name: "Pittsburgh Pirates", wins: 79, losses: 83,
 division: "central" },
 { name: "San Diego Padres", wins: 76, losses: 86,
 division: "west" },
 { name: "San Francisco Giants", wins: 94, losses: 68,
 division: "west" },
 { name: "St. Louis Cardinals", wins: 88, losses: 74,
 division: "central" },
 { name: "Washington Nationals", wins: 98, losses: 64,
 division: "east" }
];

Working with Iteration Utilities
In the first section, we saw some of the pitfalls of traditional JavaScript iteration
loops as well as the improvements that functional programming can provide. Our
Fibonacci example eliminated iteration by using recursion, but many algorithms
don’t lend themselves to a recursive implementation. In those cases, we can still
use a functional programming style, however, by taking advantage of the iteration
utilities in Underscore.js.

The most basic Underscore utility is each(). It executes an arbitrary function
on every element in a collection and often serves as a direct functional replace-
ment for the traditional for (i=0; i<len; i++) loop.

> _(national_league).each(function(team) { console.log(team.name); })
 Arizona Diamondbacks
 Atlanta Braves
 // Console output continues...
 Washington Nationals

If you’re familiar with the jQuery library, you may know that jQuery includes a
similar $.each() utility. There are two important differences between the Underscore
.js and jQuery versions, however. First, the parameters passed to the iterator func-
tion differ between the two. Underscore.js passes (element, index, list) for arrays
and (value, key, list) for simple objects, while jQuery passes (index, value). Sec-
ondly, at least as of this writing, the Underscore.js implementation can execute much

www.it-ebooks.info

http://www.it-ebooks.info/

290 | Chapter 8

faster than the jQuery version, depending on the browser. (jQuery also includes a
$.map() function that’s similar to the Underscore.js method.)

The Underscore.js map() method iterates through a collection and transforms
each element with an arbitrary function. It returns a new collection containing the
transformed elements. Here, for example, is how to create an array of all the teams’
winning percentages:

> _(national_league).map(function(team) {
 return Math.round(100*team.wins/(team.wins + team.losses);
 })
 [50, 58, 38, 60, 40, 34, 53, 43, 51, 46, 50, 49, 47, 58, 54, 60]

The reduce() method iterates through a collection and returns a single value.
One parameter initializes this value, and the other parameter is an arbitrary func-
tion that updates the value for each element in the collection. We can use reduce(),
for example, to calculate how many teams have a winning percentage over 500.

> _(national_league).reduce(
u function(count, team) {
v return count + (team.wins > team.losses);

 },
w 0 // Starting point for reduced value

)
 7

As the comment at u indicates, we start our count at 0. That value is passed
as the first parameter to the function at v, and the function returns an updated
value at w.

 QNote: If you’ve followed the development of “big data” implementations such
as hadoop or Google’s search, you may know that the fundamental algorithm
behind those technologies is mapReduce. Although the context differs, the
same concepts underlie the map() and reduce() utilities in Underscore.js.

Finding Elements in a Collection
Underscore.js has several methods to help us find elements or sets of elements in
a collection. We can, for example, use find() to get a team with more than 90 wins.

> _(national_league).find(function(team) { return team.wins > 90; })
 { name: "Atlanta Braves", wins: 94, losses: 68, division: "east" }

The find() function returns the first element in the array that meets the crite-
rion. To find all elements that meet our criterion, use the filter() function.

> _(national_league).filter(function(team) { return team.wins > 90; })
 [{ name: "Atlanta Braves", wins: 94, losses: 68, division: "east" },
 { name: "Cincinnati Reds", wins: 97, losses: 65, division: "central" },

www.it-ebooks.info

http://www.it-ebooks.info/

 Managing Data in the Browser | 291

 { name: "San Francisco Giants", wins: 94, losses: 68, division: "west" },
 { name: "Washington Nationals", wins: 98, losses: 64, division: "east" }
]

The opposite of the filter() function is reject(). It returns an array of ele-
ments that don’t meet the criterion.

> _(national_league).reject(function(team) { return team.wins > 90; })
 [{ name: "Arizona Diamondbacks", wins: 81, losses: 81, division: "west" },
 { name: "Chicago Cubs", wins: 61, losses: 101, division: "central" },
 // Console output continues...
 { name: "St. Louis Cardinals", wins: 88, losses: 74, division: "central" }
]

If your criterion can be described as a property value, you can use a simpler
version of filter(): the where() function. Instead of an arbitrary function to check
for a match, where() takes for its parameter a set of properties that must match. We
can use it to extract all the teams in the Eastern Division.

> _(national_league).where({division: "east"})
 [{ name: "Atlanta Braves", wins: 94, losses: 68, division: "east" },
 { name: "Miami Marlins", wins: 69, losses: 93, division: "east" },
 { name: "New York Mets", wins: 74, losses: 88, division: "east" },
 { name: "Philadelphia Phillies", wins: 81, losses: 81, division: "east" },
 { name: "Washington Nationals", wins: 98, losses: 64, division: "east" }
]

The findWhere() method combines the functionality of find() with the sim-
plicity of where(). It returns the first element in a collection with properties that
match specific values.

> _(national_league).where({name: "Atlanta Braves"})
 {name: "Atlanta Braves", wins: 94, losses: 68, division: "east"}

Another Underscore.js utility that’s especially handy is pluck(). This function
creates an array by extracting only the specified property from a collection. We
could use it to extract an array of nothing but team names, for example.

> _(national_league).pluck("team")
 [
 "Arizona Diamondbacks",
 "Atlanta Braves",
 /* Data continues... */,
 "Washington Nationals"
]

www.it-ebooks.info

http://www.it-ebooks.info/

292 | Chapter 8

Testing a Collection
Sometimes we don’t necessarily need to transform a collection; we simply want to
check some aspect of it. Underscore.js provides several utilities to help with these
tests.

The every() function tells us whether all elements in a collection pass an arbi-
trary test. We could use it to check if every team in our data set had at least 70 wins.

> _(national_league).every(function(team) { return team.wins >= 70; })
 false

Perhaps we’d like to know if any team had at least 70 wins. In that case, the
any() function provides an answer.

> _(national_league).any(function(team) { return team.wins >= 70; })
 true

Underscore.js also lets us use arbitrary functions to find the maximum and
minimum elements in a collection. If our criteria is number of wins, we use max() to
find the “maximum” team.

> _(national_league).max(function(team) { return team.wins; })
 { name: "Washington Nationals", wins: 98, losses: 64, division: "east" }

Not surprisingly, the min() function works the same way.

> _(national_league).min(function(team) { return team.wins; })
 { name: "Houston Astros", wins: 55, losses: 107, division: "central" }

Rearranging Collections
To sort a collection, we can use the sortBy() method and supply an arbitrary func-
tion to provide sortable values. Here’s how to reorder our collection in order of
increasing wins.

> _(national_league).sortBy(function(team) { return team.wins; })
 [{ name: "Houston Astros", wins: 55, losses: 107, division: "central" }
 { name: "Chicago Cubs", wins: 61, losses: 101, division: "central" },
 // Data continues...
 { name: "Washington Nationals", wins: 98, losses: 64, division: "east" }

We could also reorganize our collection by grouping its elements according
to a property. The Underscore.js function that helps in this case is groupBy(). One
possibility is reorganizing the teams according to their division.

www.it-ebooks.info

http://www.it-ebooks.info/

 Managing Data in the Browser | 293

> _(national_league).groupBy("division")
 {
 { west:
 { name: "Arizona Diamondbacks", wins: 81, losses: 81, division: "west" },
 { name: "Colorado Rockies", wins: 64, losses: 98, division: "west" },
 { name: "Los Angeles Dodgers", wins: 86, losses: 76, division: "west" },
 { name: "San Diego Padres", wins: 76, losses: 86, division: "west" },
 { name: "San Francisco Giants", wins: 94, losses: 68, division: "west" },
 },
 { east:
 { name: "Atlanta Braves", wins: 94, losses: 68, division: "east" },
 { name: "Miami Marlins", wins: 69, losses: 93, division: "east" },
 { name: "New York Mets", wins: 74, losses: 88, division: "east" },
 { name: "Philadelphia Phillies", wins: 81, losses: 81,
 division: "east" },
 { name: "Washington Nationals", wins: 98, losses: 64, division: "east" }
 },
 { central:
 { name: "Chicago Cubs", wins: 61, losses: 101, division: "central" },
 { name: "Cincinnati Reds", wins: 97, losses: 65, division: "central" },
 { name: "Houston Astros", wins: 55, losses: 107, division: "central" },
 { name: "Milwaukee Brewers", wins: 83, losses: 79, division: "central" },
 { name: "Pittsburgh Pirates", wins: 79, losses: 83,
 division: "central" },
 { name: "St. Louis Cardinals", wins: 88, losses: 74,
 division: "central" },
 }
 }

We can also use the countBy() function to simply count the number of ele-
ments in each group.

> _(national_league).countBy("division")
 {west: 5, east: 5, central: 6}

 QNote: Although we’ve used a property value ("division") for groupBy() and
countBy(), both methods also accept an arbitrary function if the criteria for
grouping isn’t a simple property.

As a final trick, Underscore.js lets us randomly reorder a collection using the
shuffle() function.

_(national_league).shuffle()

www.it-ebooks.info

http://www.it-ebooks.info/

294 | Chapter 8

Summing Up
Although this chapter takes a different approach than the rest of the book, its ulti-
mate focus is still on data visualizations. As we’ve seen in earlier chapters (and as
you’ll certainly encounter in your own projects), the raw data for our visualizations
isn’t always perfect as delivered. Sometimes we need to clean the data by remov-
ing invalid values, and other times we need to rearrange or transform it so that it’s
appropriate for our visualization libraries.

The Underscore.js library contains a wealth of tools and utilities to help with
those tasks. It lets us easily manage arrays, modify objects, and transform collec-
tions. Furthermore, Underscore.js supports an underlying philosophy based on
functional programming, so our code that uses Underscore.js remains highly read-
able and resistant to bugs and defects.

www.it-ebooks.info

http://www.it-ebooks.info/

9
Building Data-Driven

Web Applications:
part 1

So far we’ve had a chance to see many of
the tools and libraries for creating individual
JavaScript visualizations, but we’ve consid-
ered them only in the context of a traditional
web page. Today, of course, the Web is much
more than traditional web pages. Especially on
desktop computers, websites are effectively

www.it-ebooks.info

http://www.it-ebooks.info/

296 | Chapter 9

full-featured software applications. (Even on mobile devices many “apps” are really
just websites enclosed in a thin wrapper.) When a web application is structured
around data, there’s a good chance it can benefit from data visualizations. That’s
exactly what we’ll consider in this final project: how to integrate data visualization
into a true web application.

The sections that follow will walk through the development of an example
application driven by data. The source of the data will be Nike’s Nike+ (http://
nikeplus.com/) service for runners. Nike sells many products and applications that
let runners track their activities and save the results for analysis and review. In this
chapter and the next, we’ll build a web application to retrieve that data from Nike
and present it to a user. Nike, of course, has its own web app for viewing Nike+
data, and that app is far superior to the simple example here. We’re certainly not
trying to compete with Nike; rather, we’re just using the Nike+ service to structure
our example.

 QNote: this sample project is based on the version of the interface at the time
of this writing. there may have been changes to the interface since then.

Unlike most other chapters, this chapter won’t include multiple independent
examples. Instead, it will walk through the main stages in the development and
testing of a single data-driven application. We’ll see how to build up the basic
structure and functionality of the web application. This includes the following:

 > How to structure a web application using a framework or library

 > How to organize an application into models and views

 > How to incorporate visualizations in views

In Chapter 10, we’ll focus on some of the finer details by dealing with several
quirks of the Nike+ interface and adding some finishing touches to round out the
single-page application.

 QNote: to use the nike+ data in an actual product, you must register your
application with nike and get the necessary credentials and security keys.
that process also grants you access to the full documentation for the ser-
vice, which is not publicly available. Since we’re not building a real applica-
tion in this example, we won’t cover that step. We will, however, base the
application on the nike+ ApI, which is documented publicly on nike’s devel-
oper website (https://developer.nike.com/index.html). Because the example
doesn’t include the credentials and security keys, it won’t be able to access
the real nike+ service. the book’s source code, however, does include actual
nike+ data that can be used to emulate the nike+ service for testing and
development.

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 1 | 297

Frameworks and Libraries
If we’re using JavaScript to add data visualizations to traditional web pages, we
don’t have to worry too much about organizing and structuring our JavaScript.
After all, it’s often a relatively small amount of code, especially compared to the
HTML markup and CSS styles that are also part of the page. With web applications,
however, the code can grow to be more extensive and more complex. To help
keep our code organized and manageable, we’ll take advantage of a JavaScript
application library, also called a framework.

Step 1: Select an Application Library
Deciding to use an application library might be easier than deciding which one to
use. The number of these libraries has exploded in the past few years; there are
now over 30 high-quality libraries from which to choose. A good place to see all
the alternatives is TodoMVC (http://todomvc.com/), which shows how to implement
a simple to-do application in each library.

There is an important question to ask that can help you narrow down the
choices: is an application library a pure library or an application framework? Those
terms are often used interchangeably, but there is a significant distinction. A pure
library functions like jQuery or other libraries we’ve used throughout this book. It
provides a set of tools for our application, and we can use as many—or as few—
of those tools as we like. An application framework, on the other hand, dictates
exactly how the application should work. The code that we write must follow the
strictures and conventions of the framework. Fundamentally, the difference is
about control. With a pure library, our code is in control and the library is at our
disposal. With a framework, the framework code is in control, and we simply add
the code that makes our application unique.

The main advantage of a pure library is flexibility. Our code is in control of
the application, and we have full latitude to structure the application to our own
requirements. That’s not always a good thing, however. The constraints of a frame-
work can protect us from making poor design decisions. Some of the world’s best
JavaScript developers are responsible for the popular frameworks, and they’ve put
a lot of thought into what makes a good web application. There’s another benefit
to frameworks: because the framework assumes more responsibility for the appli-
cation, there’s generally less code we’re required to write.

It’s worth noting this distinction between frameworks and pure libraries, but
almost any web application can be built effectively with either. Both approaches
provide the organization and structure necessary for a high-quality application.
For our example, we’ll use the Backbone.js (http://backbonejs.org/) library. It is by
far the most popular of the pure (nonframework) libraries, and it’s used by dozens
of the largest sites on the Web. The general approach that we’ll follow, however
(including tools such as Yeoman), works well with almost any popular application
library.

www.it-ebooks.info

http://backbonejs.org/
http://www.it-ebooks.info/

298 | Chapter 9

Step 2: Install Development Tools
When you start building your first real web application, deciding how to begin
can be a bit intimidating. One tool that can be a big help at this stage is Yeoman
(http://yeoman.io/), which describes itself as “The Web’s Scaffolding Tool for Mod-
ern Webapps.” That’s a pretty accurate description. Yeoman can define and initial-
ize a project structure for a large number of different web application frameworks,
including Backbone.js. As we’ll see, it also sets up and configures most of the other
tools we’ll need during the application’s development.

Before we can use Yeoman, we must first install Node.js (http://nodejs.org/).
Node.js is a powerful application development platform all by itself, but we won’t
need to worry about the details here. It is, however, the application platform
required by many modern web development tools like Yeoman. To install Node.js,
follow the instructions on its website (http://nodejs.org/).

With Node.js installed, we can install the main Yeoman application as well
as everything necessary to create a Backbone.js application (https://github.com/
yeoman/generator-backbone/) with one command.

$ npm install -g generator-backbone

You can execute this command in the Terminal app (on Mac OS X) or from
the Windows command prompt.

Step 3: Define a New Project
The development tools we just installed will make it easy to create a new web
app project. First, with the following commands, we create a new folder (named
running) for our application and then cd (change directory) into that folder.

$ mkdir running
$ cd running

From within that new folder, executing the command yo backbone will initial-
ize the project structure.

$ yo backbone

As part of the initialization, Yeoman will ask for permission to send diagnostic
information (mainly which frameworks and features our app uses) back to the Yeo-
man developers. It will then give us a choice to add a few more tools to the app.
For our example, we’ll skip any of the suggested options.

Out of the box I include HTML5 Boilerplate, jQuery, Backbone.js and Modernizr.
[?] What more would you like? (Press <space> to select)
❯⬡ Bootstrap for Sass
 ⬡ Use CoffeeScript
 ⬡ Use RequireJs

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 1 | 299

Yeoman will then do its magic, creating several subfolders, installing extra
tools and applications, and setting up reasonable defaults. As you watch all the
pages and pages of installation information scroll by in your window, you can be
glad that Yeoman is doing all this work for you. When Yeoman finishes, you’ll have
a project structure like the one shown in Figure 9-1. It may not look exactly like the
figure here, since web applications may have changed since this text was written,
but rest assured that it will follow the best practices and conventions.

Figure 9-1: Yeoman creates a default project structure
for a web application.

We’ll spend more time with most of these files and folders in the sections
that follow, but here’s a quick overview of the project that Yeoman has set up for us.

app/ The folder that will contain all the code for our app

bower.json A file that keeps track of all the third-party libraries our app uses

gruntfile.js A file that controls how to test and build our app

node_modules/ A folder that contains the tools used to build and test
our app

package.json A file that identifies the tools used to build and test our app

test/ A folder that will contain the code we’ll write to test our app

At this point Yeoman has set up a complete web app (albeit one that doesn’t
do anything). You can execute the command grunt serve from the command
prompt to see it in a browser.

www.it-ebooks.info

http://www.it-ebooks.info/

300 | Chapter 9

$ grunt serve
Running "serve" task

Running "clean:server" (clean) task

Running "createDefaultTemplate" task

Running "jst:compile" (jst) task
>> Destination not written because compiled files were empty.

Running "connect:livereload" (connect) task
Started connect web server on http://localhost:9000

Running "open:server" (open) task

Running "watch:livereload" (watch) task
Waiting...

The grunt command runs one of the tools that’s part of the Yeoman package.
When passed the serve option, it cleans up the application folder, starts a web
server to host the application, launches a web browser, and navigates to the skele-
ton app. You’ll see something like Figure 9-2 in your browser.

Figure 9-2: The default Yeoman web application runs
in the browser.

Congratulations! Our web app, as basic as it is, is now running.

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 1 | 301

Step 4: Add Our Unique Dependencies
Yeoman sets up sensible defaults and tools for a new app, but our app needs a
few JavaScript libraries that aren’t part of those defaults, such as Leaflet for maps
and Flot for charts. The Moment.js (http://momentjs.com/) library for dealing with
dates and times will also come in handy, as will the Underscore.string (http://epeli
.github.io/underscore.string/) library. We can add these libraries to our project with
some simple commands. The --save option tells the bower tool (which is part of
the Yeoman package) to remember that our project depends on these libraries.

$ bower install leaflet --save
$ bower install flot --save
$ bower install momentjs --save
$ bower install underscore.string --save

Perhaps you’ve already begun to appreciate how tools like Yeoman make
development easier. The simple commands shown here save us from having to find
the libraries on the Web, download the appropriate files, copy them to the right
place in our project, and so on.

Even more importantly, Yeoman (technically, the bower tool) automatically
takes care of any additional libraries on which these libraries depend. The Flot
library, for example, requires jQuery. When Yeoman installs Flot, it will also check
and make sure that jQuery is installed in the project. In our case, it is because
Backbone.js depends on it, but if jQuery weren’t already installed, Yeoman would
automatically find it and install it as well.

For most libraries, bower can completely install all the necessary compo-
nents and files. In the case of Leaflet, however, we need to perform a few extra
steps. Change directory to the leaflet folder within app/bower_components. From
there, run two commands to install the unique tools that Leaflet requires:

$ npm install
$ npm install jake -g

Executing the command jake will then run all of Leaflet’s tests and, provided
they pass, create a Leaflet.js library for our app.

$ jake
Checking for JS errors...
 Check passed.

Checking for specs JS errors...
 Check passed.

Running tests...

...

...

...

..

www.it-ebooks.info

http://momentjs.com/
http://www.it-ebooks.info/

302 | Chapter 9

PhantomJS 1.9.7 (Mac OS X): Executed 280 of 280 SUCCESS (0.881 secs / 0.496 secs)
 Tests ran successfully.

Concatenating and compressing 75 files...
 Uncompressed: 217.22 KB (unchanged)
 Compressed: 122.27 KB (unchanged)
 Gzipped: 32.71 KB

All that’s left to do is add the other libraries into our HTML files. That’s easy
enough. The main page for our app is index.html in the app folder. There’s already
a block of code that includes jQuery, Underscore.js, and Backbone.js:

<!-- build:js scripts/vendor.js -->
<script src="bower_components/jquery/dist/jquery.js"></script>
<script src="bower_components/underscore/underscore.js"></script>
<script src="bower_components/backbone/backbone.js"></script>
<!-- endbuild -->

We can add our new libraries after Backbone.js.

<!-- build:js scripts/vendor.js -->
<script src="bower_components/jquery/dist/jquery.js"></script>
<script src="bower_components/underscore/underscore.js"></script>
<script src="bower_components/backbone/backbone.js"></script>
<script src="bower_components/flot/jquery.flot.js"></script>
<script src="bower_components/leaflet/dist/leaflet-src.js"></script>
<script src="bower_components/momentjs/moment.js"></script>
<script
 src="bower_components/underscore.string/lib/underscore.string.js">
</script>
<!-- endbuild -->

Leaflet, as we saw in Chapter 6, also requires its own style sheet. We add that
to the top of index.html just before main.css.

<!-- build:css(.tmp) styles/main.css -->
<link rel="stylesheet" href="bower_components/leaflet/dist/leaflet.css">
<link rel="stylesheet" href="styles/main.css">
<!-- endbuild -->

Now that we’ve set up the structure of our app and installed the necessary
libraries, it’s time to start development.

Models and Views
There are many application libraries available for web apps, and each has its quirks,
but most of the libraries agree on the key principles that should guide an app’s
architecture. Perhaps the most fundamental of those principles is separating models

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 1 | 303

from views. The code that keeps track of the core data for the app (the models)
should be separate from the code that presents that data to the user (the views).
Enforcing this separation makes it easier to update and modify either. If you want
to present your data in a table instead of a chart, you can do that without any
changes to the models. And if you need to change your data source from a local
file to a REST API, you can do that without any changes to the views. We’ve been
employing this principle in an informal way throughout the book. In all of the
examples, we’ve isolated the steps required to obtain and format our data from
the steps we used to visualize it. Using an application library like Backbone.js
gives us the tools to manage models and views more explicitly.

Step 1: Define the Application’s Models
Our running app is designed to work with Nike+, which provides details about
runs—training runs, interval workouts, trail runs, races, and so on. The data set
we want consists of nothing but runs, so our app’s core model is, naturally, a run.

The Yeoman tool makes it very easy to define a model for our app. A simple
command defines a new model and creates the JavaScript files and scaffolding for
that model.

$ yo backbone:model run
 create app/scripts/models/run.js
 invoke backbone-mocha:model
 create test/models/run.spec.js

That command creates two new files: run.js in the app/scripts/models/ folder
and run.spec.js in the test/ folder. Let’s take a look at the file Yeoman created for
our model. It’s quite short.

u /*Global Running, Backbone*/

v Running.Models = Running.Models || {};

(function () {
 "use strict";
 Running.Models.Run = Backbone.Model.extend({
 url: "",
 initialize: function() {
 },
 defaults: {
 },
 validate: function(attrs, options) {
 },
 parse: function(response, options) {
 return response;
 }
 });
})();

www.it-ebooks.info

http://www.it-ebooks.info/

304 | Chapter 9

At u is a comment that lists the global variables our model requires. In this
case there are only two: Running (that’s our app) and Backbone. Next, at v, this
file creates a .Models property of the Running object unless that property already
exists.

When the browser encounters this line, it will check to see if Running.Models
exists. If it does, then Running.Models won’t be false, and the browser never has
to consider the second clause of the logical or (||). The statement simply assigns
Running.Models to itself, so it has no practical effect. If Running.Models does not
exist, however, then it evaluates to false, and the browser will continue to the sec-
ond clause, where it assigns an empty object ({}) to Running.Models. Ultimately, this
statement makes sure that the object Running.Models exists.

The rest of the code in the file is enclosed within an immediately invoked
function expression. If you haven’t seen this pattern before, it may look a little
strange.

(function () {
 /* Code goes here */
})();

If we rewrite the block as a single line, though, it might be easier to
understand.

(function () { /* Code goes here */ }) ();

The statement defines a JavaScript function with a function expression,
function () { /* ... */ }, and then, with the concluding (), it calls (technically
invokes) that newly created function. All we’re really doing, therefore, is putting
our code inside a function and calling that function. You’ll see this pattern a lot in
professional JavaScript because it protects a block of code from interfering with
other code blocks in the application.

When you define a variable in JavaScript, it is a global variable, available
everywhere in the code. As a consequence, if two different sections of code try
to define the same global variable, those definitions will clash. This interaction
can cause bugs that are very hard to find, as code in one section inadvertently
interferes with code in a completely different section. To prevent this problem,
we can avoid using global variables, and the easiest way to do that in JavaScript
is to define our variables inside a function. That’s the purpose of an immediately
invoked function expression. It makes sure that any variables our code defines are
local to the function rather than global, and it prevents our code blocks from inter-
fering with one another.

Step 2: Implement the Model
Our application really only needs this one model, and it’s already complete! That’s
right: the scaffolding that Yeoman has set up for us is a complete and functioning
model for a run. In fact, if it weren’t for some quirks in Nike’s REST API, we wouldn’t
have to touch the model code at all. We’ll address those quirks in Chapter 10.

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 1 | 305

Before we move on to the next step, though, let’s look at what we can do
with our newly created model. To do that we’ll make a temporary addition to the
model code. We won’t use the following code in the final app; it’s only meant to
show off what our model can already do.

First, let’s add the URL to retrieve details about a run (Nike+ uses the more
general term activity). From the Nike+ documentation, we find that this URL is
https://api.nike.com/v1/me/sport/activities/<activityId>.

Running.Models.Run = Backbone.Model.extend({
u url: "https://api.nike.com/v1/me/sport/activities/",

 initialize: function() {
 },
 defaults: {
 },
 validate: function(attrs, options) {
 },
 parse: function(response, options) {
 return response;
 }
});

The final part of the URL depends on the specific activity, so here we add
only the general part of the URL to our model (u).

Now imagine that we want to get the details for a specific run from the Nike+
service. The run in question has a unique identifier of 2126456911. If the Nike+ API
followed typical conventions, we could create a variable representing that run, and
get all its data, with the hypothetical two statements that follow. (We’ll consider
the quirks of the actual Nike+ interface in Step 7 of “Connecting with the Nike+
Service” on page 318.)

var run = new Running.Models.Run({id: 2126456911});
run.fetch();

Since many APIs do follow typical conventions, it’s worth spending some time
understanding how that code works. The first statement creates a new instance of
the Run model and specifies its identifier. The second statement tells Backbone to
retrieve the model’s data from the server. Backbone will take care of all the com-
munication with Nike+, including error handling, time-outs, parsing the response,
and so on. Once the fetch completes, detailed information from that run will be
available from the model. If we provide a callback function, we could output some
of the details. Here’s an example:

var run = new Running.Models.Run({id: 2126456911});
run.fetch({success: function() {
 console.log("Run started at ", run.get("startTime"));
 console.log(" Duration: ", run.get("metricSummary").duration);
 console.log(" Distance: ", run.get("metricSummary").distance);
 console.log(" Calories: ", run.get("metricSummary").calories);
}});

www.it-ebooks.info

http://www.it-ebooks.info/

306 | Chapter 9

The output in the browser’s console would be the following:

Run started at 2013-04-09T10:54:33Z
 Duration: 0:22:39.000
 Distance: 3.7524
 Calories: 240

Not bad for a few simple lines of code! The code in this step, though, is really
just a detour. Our application won’t use individual models in this way. Instead, we’ll
use an even more powerful Backbone.js feature: collections.

Step 3: Define the Application’s Collections
The model we created is designed to capture the data for a single run. Our users,
however, aren’t interested in just a single run. They’d like to see all of their runs—
dozens, hundreds, possibly thousands of them. We can handle all of these runs
with a collection, or group of models. The collection is one of the core concepts of
Backbone.js, and it will be a big help for our app. Let’s define a collection for all of
the user’s runs.

Yeoman makes it easy to define and set up scaffolding for our collection. We
execute the single command yo backbone:collection runs from the command line.
(Yes, we’re being very original and calling our collection of runs, well, runs.)

$ yo backbone:collection runs
 create app/scripts/collections/runs.js
 invoke backbone-mocha:collection
 create test/collections/runs.spec.js

Yeoman does the same thing for collections as it did for models: it creates an
implementation file (runs.js in the app/scripts/collections/ folder) and a test file. For
now, let’s take a look at runs.js.

/*Global Running, Backbone*/

Running.Collections = Running.Collections || {};

(function () {
 "use strict";
 Running.Collections.Runs = Backbone.Collection.extend({
 model: Running.Models.Runs
 });
})();

This file is even simpler than our model; the default collection has only a
single property to indicate what type of model the collection contains. Unfortu-
nately, Yeoman isn’t smart enough to handle plurals, so it assumes the name of
the model is the same as the name of the collection. That’s not true for our app, as
our model is Run (singular) and the collection is Runs (plural). While we’re removing

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 1 | 307

that s, we can also add a property to specify the REST API for the collection. That’s
a URL from the Nike+ service.

Running.Collections.Runs = Backbone.Collection.extend({
 url: "https://api.nike.com/v1/me/sport/activities/",
 model: Running.Models.Run
});

With those two small changes, we’re ready to take advantage of our new col-
lection (aside from handling a few quirks with the Nike+ API; we’ll ignore that com-
plication for now and address it later). All we need to do is create a new instance of
the Runs collection and then fetch its data.

var runs = new Running.Collections.Runs();
runs.fetch();

That’s all it takes to build a collection containing the user’s runs. Backbone.js
creates a model for each and retrieves the model’s data from the server. Even better,
those run models are stored in a true Underscore.js collection, which gives us access
to many powerful methods to manipulate and search through the collection. Sup-
pose, for example, we want to find the total distance for all of a user’s runs. That’s
tailor-made for the Underscore.js reduce() function.

var totalDistance = runs.reduce(function(sum, run) {
 return sum + run.get("metricSummary").distance;
}, 0);

That code could tell us, for example, that the user has logged a total of
3,358 kilometers with Nike+.

 QNote: As you may have noticed, we’re taking advantage of many utilities
from Underscore.js in our Backbone.js application. that is not a coincidence.
Jeremy Ashkenas is the lead developer for both projects.

Step 4: Define the Application’s Main View
Now that we have all the running data for a user, it’s time to present that data.
We’ll do that with Backbone.js views. To keep our example simple, we’ll consider
only two ways to show the running data. First we’ll display a table listing summary
information about each run. Then, if the user clicks on a table row, we’ll show
details about that specific run, including any visualizations. The main view of our
application will be the summary table, so let’s focus on that first.

A Backbone.js view is responsible for presenting data to the user, and that
data may be maintained in a collection or a model. For the main page of our app,
we want to show summary information for all of a user’s runs. That view, therefore,
is a view of the entire collection. We’ll call the view Summary.

www.it-ebooks.info

http://www.it-ebooks.info/

308 | Chapter 9

The bulk of the table for this Summary view will be a series of table rows,
where each row presents summary data about an individual run. That means we
can simply create a view of a single Run model presented as a table row, and
design our main Summary view to be made up (mostly) of many SummaryRow
views. We can once again rely on Yeoman to set up the scaffolding for both of
those types of views.

$ yo backbone:view summary
 create app/scripts/templates/summary.ejs
 create app/scripts/views/summary.js
 invoke backbone-mocha:view
 create test/views/summary.spec.js
$ yo backbone:view summaryRow
 create app/scripts/templates/summaryRow.ejs
 create app/scripts/views/summaryRow.js
 invoke backbone-mocha:view
 create test/views/summaryRow.spec.js

The scaffolding that Yeoman sets up is pretty much the same for each view;
only the name varies. Here’s what a Summary view looks like.

/*Global Running, Backbone, JST*/

Running.Views = Running.Views || {};

(function () {
 "use strict";
 Running.Views.Summary = Backbone.View.extend({
 template: JST["app/scripts/templates/summary.ejs"],
 tagName: "div",
 id: "",
 className: "",
 events: {},
 initialize: function () {
 this.listenTo(this.model, "change", this.render);
 },
 render: function () {
 this.$el.html(this.template(this.model.toJSON()));
 }
 });
})();

The overall structure of the file is the same as our model and our collection,
but there’s a bit more going on in the view itself. Let’s step through the view’s prop-
erties one at a time. The first property is template. That’s where we define the exact
HTML markup for the view, and we’ll look at this in more detail in the next step.

The tagName property defines the HTML tag that our view will use as its par-
ent. Yeoman defaults it to a generic <div>, but we know that in our case, it will be a
<table>. We’ll change that in a moment.

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 1 | 309

The id and className properties specify HTML id attributes or class values
to add to the main container (in our case, the <table>). We could, for example, base
some CSS styles on these values. For our example, we’re not considering styles, so
we can leave both properties blank or delete them entirely.

Next is the events property. This property identifies user events (such as
mouse clicks) that are relevant for the view. In the case of the Summary view, there
are no events, so we can leave the object empty or simply delete it.

The last two properties, initialize() and render(), are both methods.
Before we consider those, let’s see the Summary view after we make the tweaks
just mentioned. Now that we’ve omitted the properties we won’t be using, we’re
down to just the template and tagName properties, plus the initialize() and
render() methods:

Running.Views.Summary = Backbone.View.extend({
 template: JST["app/scripts/templates/summary.ejs"],
 tagName: "table",
 initialize: function () {
 this.listenTo(this.model, "change", this.render);
 },
 render: function () {
 this.$el.html(this.template(this.model.toJSON()));
 }
});

Now let’s look inside the last two methods, starting with initialize(). That
method has a single statement (other than the return statement that we just
added). By calling listenTo(), it tells Backbone.js that the view wants to listen
for events. The first parameter, this.collection, specifies the event target, so
the statement says that the view wants to listen to events affecting the collec-
tion. The second parameter specifies the type of events. In this case, the view
wants to know whenever the collection changes. The final parameter is the func-
tion Backbone.js should call when the event occurs. Every time the Runs col-
lection changes, we want Backbone.js to call the view’s render() method. That
makes sense, because whenever the Runs collection changes, whatever we were
displaying on the page is now out of date. To make it current, our view should
refresh its contents.

Most of the real work of a view takes place in its render() method. After all,
this is the code that actually creates the HTML markup for the web page. Yeoman
has gotten us started with a template, but in the case of a collection view, that’s
not enough. The template takes care of the HTML for the collection as a whole, but
it doesn’t handle the models that are part of the collection. For the individual runs,
we can use the each() function from Underscore.js to iterate through the collection
and render each run.

As you can see from the following code, we’ve also added a return this;
statement to each method. In a bit we’ll take advantage of this addition to chain
together calls to multiple methods in a single, concise statement.

www.it-ebooks.info

http://www.it-ebooks.info/

310 | Chapter 9

Running.Views.Summary = Backbone.View.extend({
 template: JST["app/scripts/templates/summary.ejs"],
 tagName: "table",
 initialize: function () {
 this.listenTo(this.collection, "change", this.render);
 return this;
 },
 render: function () {
 this.$el.html(this.template());
 this.collection.each(this.renderRun, this);
 return this;
 }
});

Now we have to write the renderRun() method that handles each individual
run. Here’s what we want that function to do:

1. Create a new SummaryRow view for the run.
2. Render that SummaryRow view.
3. Append the resulting HTML to the <tbody> in the Summary view.

The code to implement those steps is straightforward, but it’s helpful to take
each step one at a time.

1. Create a new SummaryRow view: new SummaryRow({model: run})
2. Render that SummaryRow view: .render()
3. Append the result: this.$("tbody").append();

When we put the steps together, we have the renderRun() method.

 renderRun: function (run) {
 this.$("tbody").append(new Running.Views.SummaryRow({
 model: run
 }).render().el);
 }

Most of the changes we made to the Summary view are also appropriate for
the SummaryRow view, although we don’t need to add anything to the render()
method. Here’s our first implementation of the SummaryRow. Note that we’ve
set the tagName property to "tr" because we want each run model presented as a
table row.

Running.Views.SummaryRow = Backbone.View.extend({
 template: JST["app/scripts/templates/summaryRow.ejs"],
 tagName: "tr",
 events: {},
 initialize: function () {
 this.listenTo(this.model, "change", this.render);
 return this;
 },

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 1 | 311

 render: function () {
 this.$el.html(this.template(this.model.toJSON()));
 return this;
 }
});

Now we have all the JavaScript code we need to show the main summary
view for our app.

Step 5: Define the Main View Templates
So far we’ve developed the JavaScript code to manipulate our Summary and
SummaryRow views. That code doesn’t generate the actual HTML markup, though.
For that task we rely on templates. Templates are skeletal HTML markup with
placeholders for individual values. Confining HTML markup to templates helps
keep our JavaScript code clean, well structured, and easy to maintain.

Just as there are many popular JavaScript application libraries, there are also
many template languages. Our application doesn’t require any fancy template
functionality, however, so we’ll stick with the default template process that Yeo-
man has set up for us. That process relies on a JST tool (https://github.com/gruntjs/
grunt-contrib-jst/) to process templates, and the tool uses the Underscore.js tem-
plate language (http://underscorejs.org/#template/). It’s easy to see how this works
through an example, so let’s dive in.

The first template we’ll tackle is the template for a SummaryRow. In our view,
we’ve already established that the SummaryRow is a <tr> element, so the template
needs to supply only the content that lives within that <tr>. We’ll get that content
from the associated Run model, which, in turn, comes from the Nike+ service.
Here’s an example activity that Nike+ could return.

{
 "activityId": "2126456911",
 "activityType": "RUN",
 "startTime": "2013-04-09T10:54:33Z",
 "activityTimeZone": "GMT-04:00",
 "status": "COMPLETE",
 "deviceType": "IPOD",
 "metricSummary": {
 "calories": 240,
 "fuel": 790,
 "distance": 3.7524,
 "steps": 0,
 "duration": "0:22:39.000"
 },
 "tags": [/* Data continues... */],
 "metrics": [/* Data continues... */],
 "gps": {/* Data continues... */}
}

www.it-ebooks.info

http://www.it-ebooks.info/

312 | Chapter 9

For a first implementation, let’s show the time of the run, as well as its dura-
tion, distance, and calories. Our table row, therefore, will have four cells, with each
cell holding one of these values. We can find the template, summaryRow.ejs, in the
app/scripts/templates folder. By default, Yeoman sets it to a simple paragraph.

<p>Your content here.</p>

Let’s replace that with four table cells.

<td></td>
<td></td>
<td></td>
<td></td>

As placeholders for the cells’ content, we can use model attributes enclosed
in special <%= and %> delimiters. The full SummaryRow template is as follows.

<td><%= startTime %></td>
<td><%= metricSummary.duration %></td>
<td><%= metricSummary.distance %></td>
<td><%= metricSummary.calories %></td>

The other template we need to supply is the Summary template. Since we’ve
already set the view’s main tag to be a <table>, this template should specify the
content within that <table>: a table header row plus an empty <tbody> element
(whose individual rows will come from the Run models).

<thead>
 <tr>
 <th>Time</th>
 <th>Duration</th>
 <th>Distance</th>
 <th>Calories</th>
 </tr>
</thead>
<tbody></tbody>

Now we’re finally ready to construct the main view for our runs. The steps are
quite straightforward:

1. Create a new Runs collection.
2. Fetch the data for that collection from the server.
3. Create a new Summary view for the collection.
4. Render the view.

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 1 | 313

Here’s the JavaScript code for those four steps:

var runs = new Running.Collection.Runs();
runs.fetch();
var summaryView = new Running.Views.Summary({collection: runs});
summaryView.render();

We can access the constructed <table> as the el (short for element) property
of the view. It will look something like the following:

<table>
 <thead>
 <tr>
 <th>Time</th>
 <th>Duration</th>
 <th>Distance</th>
 <th>Calories</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>2013-04-09T10:54:33Z</td>
 <td>0:22:39.000</td>
 <td>3.7524</td>
 <td>240</td>
 </tr>
 <tr>
 <td>2013-04-07T12:34:40Z</td>
 <td>0:44:59.000</td>
 <td>8.1724</td>
 <td>569</td>
 </tr>
 <tr>
 <td>2013-04-06T13:28:36Z</td>
 <td>1:28:59.000</td>
 <td>16.068001</td>
 <td>1200</td>
 </tr>
 </tbody>
</table>

When we insert that markup in the page, our users can see a simple sum-
mary table listing their runs, as shown in Figure 9-3.

www.it-ebooks.info

http://www.it-ebooks.info/

314 | Chapter 9

Figure 9-3: A simple table with a summary of run information

Step 6: Refine the Main View
Now we’re starting to get somewhere, though the table contents could use some
tweaking. After all, does the last digit in a run of 16.068001 kilometers really matter?
Since Nike+ determines the attributes of our Run model, it might seem like we
have no control over the values passed to our template. Fortunately, that’s not
the case. If we look at the SummaryView’s render() method, we can see how the
template gets its values.

render: function () {
 this.$el.html(this.template(this.model.toJSON()));
 return this;
}

The template values come from a JavaScript object that we’re creating
directly from the model. Backbone.js provided the toJSON() method, which returns
a JavaScript object corresponding to the model’s attributes. We can actually pass
any JavaScript object to the template, even one we create ourselves within the
render() method. Let’s rewrite that method to provide a more user-friendly Sum-
mary view. We’ll take the model’s attributes one at a time.

First is the date of the run. A date of “2013-04-09T10:54:33Z” isn’t very read-
able for average users, and it’s probably not even in their time zone. Working with
dates and times is actually quite tricky, but the excellent Moment.js library (http://
momentjs.com/) can handle all of the complexity. Since we added that library to
our app in an earlier section, we can take advantage of it now.

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 1 | 315

render: function () {
 var run = {};
 run.date = moment(this.model.get("startTime")).calendar();

 QNote: In the interest of brevity, we’re cheating a little with the preceding
code because it converts the UtC timestamp to the local time zone of the
browser. It would probably be more correct to convert it to the time zone
for the run, which nike+ provides in the data.

Next up is the run’s duration. It’s doubtful that we need to show the fractions
of seconds that Nike+ includes, so let’s simply drop them from the attribute. (It
would be more precise to round up or down, but assuming our users are not Olym-
pic athletes in training, a second here or there won’t matter. Besides, Nike+ seems
to always record these subsecond durations as “.000” anyway.)

run.duration = this.model.get("metricSummary").duration.split(".")[0];

The distance property can also use some adjustment. In addition to round-
ing it to a reasonable number of decimal places, we can convert from kilometers to
miles for our US users. A single statement takes care of both.

run.distance = Math.round(62. *
 this.model.get("metricSummary").distance)/100 +
 " Miles";

The calories property is fine as it is, so we’ll just copy it into our temporary
object.

run.calories = this.model.get("metricSummary").calories;

Finally, if you’re an avid runner, you might have noticed that there’s an impor-
tant value missing from the Nike+ attributes: the average pace for the run in min-
utes per mile. We have the data to calculate it, so let’s add that as well.

var secs = _(run.duration.split(":")).reduce(function(sum, num) {
 return sum*60+parseInt(num,10); }, 0);
var pace = moment.duration(1000*secs/parseFloat(run.distance));
run.pace = pace.minutes() + ":" + _(pace.seconds()).pad(2, "0");

Now we have a new object to pass to the template.

this.$el.html(this.template(run));

We’ll also need to modify both templates to match the new markup. Here’s
the updated template for SummaryRows.

www.it-ebooks.info

http://www.it-ebooks.info/

316 | Chapter 9

<td><%= date %></td>
<td><%= duration %></td>
<td><%= distance %></td>
<td><%= calories %></td>
<td><%= pace %></td>

And here’s the Summary template with the additional column for Pace.

<thead>
 <tr>
 <th>Date</th>
 <th>Duration</th>
 <th>Distance</th>
 <th>Calories</th>
 <th>Pace</th>
 </tr>
</thead>
<tbody></tbody>

Now we have a much-improved summary table for our users, shown in
Figure 9-4.

Figure 9-4: An improved summary table with cleaner-looking data

Views for Visualizations
Now that we’ve seen how to use Backbone.js views to separate data from its pre-
sentation, we can consider how to use the same approach for data visualizations.
When the presentation is simple HTML markup—as in the previous section’s

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 1 | 317

tables—it’s easy to use templates to view a model. But templates aren’t sophisti-
cated enough to handle data visualizations, so we’ll need to modify our approach
for those.

The data from the Nike+ service offers lots of opportunity for visualizations.
Each run, for example, may include a record of the user’s heart rate, instantaneous
pace, and cumulative distance, recorded every 10 seconds. Runs may also include
the user’s GPS coordinates captured every second. That type of data lends itself to
both charts and maps, and in this section, we’ll add both to our application.

Step 1: Define the Additional Views
As we did in the previous section, we’ll rely on Yeoman to create the scaffolding for
our additional views. One view, which we’ll call Details, will act as the overall view
for the details of an individual run. Within that view, we’ll create three additional
views, each showing a different aspect of the run. We can think of these views in a
hierarchy.

Details A detailed view of a single run

Properties The full set of properties associated with the run

Chart Charts showing performance during the run

Map A map of the run’s route

To start the development of these views, we return to the command line and
execute four Yeoman commands.

$ yo backbone:view details
$ yo backbone:view properties
$ yo backbone:view charts
$ yo backbone:view map

Step 2: Implement the Details View
The Details view is really nothing more than a container for its three children, so its
implementation is about as easy as it gets. We create a new view for each of the
children, render the view, and add the resulting markup to the Details. Here is the
complete code for this view:

Running.Views.Details = Backbone.View.extend({
 render: function () {
 this.$el.empty();
 this.$el.append(
 new Running.Views.Properties({model: this.model}).render().el
);
 this.$el.append(
 new Running.Views.Charts({model: this.model}).render().el
);
 this.$el.append(
 new Running.Views.Map({model: this.model}).render().el
);

www.it-ebooks.info

http://www.it-ebooks.info/

318 | Chapter 9

 return this;
 }
});

Unlike the previous views we’ve created, this view doesn’t have an initialize()
method. That’s because the Details view doesn’t have to listen for changes to the
model, so there’s nothing to do during initialization. In other words, the Details view
itself doesn’t actually depend on any of the properties of the Run model. (The child
views, on the other hand, depend greatly on those properties.)

The render() method itself first clears out any existing content from its ele-
ment. This line makes it safe to call the render() method multiple times. The next
three statements create each of the child views. Notice that all of the child views
have the same model, which is the model for the Details view as well. This capabil-
ity is the power of the model/view architecture; one data object—in our case, a
run—can be presented in many different ways. While the render() method creates
each of these child views, it also calls their render() methods, and it appends the
resulting content (their el properties) into its own el.

Step 3: Implement the Properties View
For the Properties view, we want to show all of the properties that Nike+ has asso-
ciated with the run. Those properties are determined by the data returned by the
Nike+ service; here’s an example:

{
 "activityId": "2126456911",
 "activityType": "RUN",
 "startTime": "2013-04-09T10:54:33Z",
 "activityTimeZone": "GMT-04:00",
 "status": "COMPLETE",
 "deviceType": "IPOD",
 "metricSummary": {
 "calories": 240,
 "fuel": 790,
 "distance": 3.7524,
 "steps": 0,
 "duration": "0:22:39.000"
 },
 "tags": [
 { "tagType": "WEATHER", "tagValue": "SUNNY" },
 { "tagType": "NOTE" },
 { "tagType": "TERRAIN", "tagValue": "TRAIL" },
 { "tagType": "SHOES", "tagValue": "Neo Trail" },
 { "tagType": "EMOTION", "tagValue": "GREAT" }
],
 "metrics": [
 { "intervalMetric": 10, "intervalUnit": "SEC",
 "metricType": "SPEED", "values": [/* Data continues... */] },
 { "intervalMetric": 10, "intervalUnit": "SEC",
 "metricType": "HEARTRATE", "values": [/* Data continues... */] },

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 1 | 319

 { "intervalMetric": 10, "intervalUnit": "SEC",
 "metricType": "DISTANCE", "values": [/* Data continues... */] },
],
 "gps": {
 "elevationLoss": 114.400024,
 "elevationGain": 109.00003,
 "elevationMax": 296.2,
 "elevationMin": 257,
 "intervalMetric": 10,
 "intervalUnit": "SEC",
 "waypoints": [/* Data continues... */]
 }
}

That data can certainly benefit from a bit of cleanup to make it more user-
friendly. To do that we’ll take advantage of the Underscore.string library we added
to the project before. We can make sure that library is available by “mixing it into”
the main Underscore.js library. We’ll do that right at the start of the JavaScript file
for the Properties view.

/*Global Running, Backbone, JST, _*/

.mixin(.str.exports());

Running.Views = Running.Views || {};

// Code continues...

Notice that we’ve also added the global variable for Underscore.js (_) to the
initial comment in the file.

The most straightforward way to present this information in HTML is with
a description list (<dl>). Each property can be an individual item in the list, with a
description term (<dt>) holding the property name and the description data (<dd>)
its value. To implement this, we set the tagName property of the view to be "dl", and
we create a generic list item template. Here’s the start of our Properties view code:

Running.Views.Properties = Backbone.View.extend({
 template: JST["app/scripts/templates/properties.ejs"],
 tagName: "dl",
 initialize: function () {
 this.listenTo(this.model, "change", this.render);
 return this;
 },
 render: function () {
 // More code goes here
 return this;
 }
});

And here’s the simple template that the view will use.

www.it-ebooks.info

http://www.it-ebooks.info/

320 | Chapter 9

<dt><%= key %></dt>
<dd><%= value %></dd>

A quick glance at the Nike+ data shows that it contains nested objects. The
metricSummary property of the main object is itself an object. We need a function that
will iterate through all the properties in the input object, building the HTML markup
as it does. A recursive function can be particularly effective here, since it can call
itself whenever it reaches another nested object. Next, we add an obj2Html()
method to our view. At its core, this method will use the Underscore.js reduce()
function, which is well suited to the task at hand.

obj2Html: function(obj) {
 return (
 _(obj).reduce(function(html, value, key) {

 // Create the markup for the current
 // key/value pair and add it to the html variable

 return html;

 }, "", this)
);
}

As we process each property, the first thing we can do is improve the key
name. For example, we’d like to replace startTime with Start Time. That’s where
Underscore.string comes in. Its humanize() function turns camelCase into separate
words, and its titleize() function ensures that each word begins with an upper-
case letter. We’ll use chaining to perform both operations in one statement.

key = _.chain(key).humanize().titleize().value();

Now we can consider the value. If it is an array, we’ll replace it with a string
that shows the array length.

if (_(value).isArray()) {
 value = "[" + value.length + " items]";
}

Next we check to see if the value is an object. If it is, then we’ll call the
obj2Html() method recursively.

if (_(value).isObject()) {
 html += this.obj2Html(value);

For other types, we convert the value to a string, format it a bit with
Underscore.string, and make use of our template.

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 1 | 321

} else {
 value = _(value.toString().toLowerCase()).titleize();
 html += this.template({ key: key, value: value });
}

There are a few other minor improvements we can make to the presentation,
which you can find in the book’s source code. The last piece of the view is imple-
menting the render() method. In that method, we use toJSON() to get an object
corresponding to the Run model, and then we start the obj2Html() recursion with
that object.

render: function () {
 this.$el.html(this.obj2Html(this.model.toJSON()));
 return this;
}

The result is a complete picture of the properties of the run, shown in
Figure 9-5.

Activity

Activity Type

Start Time

Activity Time Z...

Status

2126456911

Run

2013-04-09t10:54:33z

GMT-04:00

Complete

Device Type iPod

Calories 240

Fuel 790

Distance 3.7524

Steps 0

Duration 0:22:39.000

Weather Sunny

Terrain Trail

Shoes Neo Trail

Emotion Great

Speed Data [136 items]

Heartrate Data [136 items]

Distance Data [136 items]

Elevation Loss 114.400024

Elevation Max 296.2

Elevation Min 257

Waypoints [266 items]

Figure 9-5: The completed Properties view
shows all of the data associated with a run.

www.it-ebooks.info

http://www.it-ebooks.info/

322 | Chapter 9

Step 4: Implement the Map View
To show users maps of their runs, we rely on the Leaflet library from Chapter 6. Using
the library will require some small modifications to the normal Backbone.js view
implementation, but, as we’ll see, those same modifications will come in handy for
other views as well. Leaflet builds its maps in a containing element in the page
(typically a <div>), and that containing element must have an id attribute so that
Leaflet can find it. Backbone.js will take care of adding that id if we include an id
property in the view. That’s easy enough.

 Running.Views.Map = Backbone.View.extend({
 id: "map",

With <div id="map"></div> available in the page’s markup, we can create a
Leaflet map with the following statement:

var map = L.map(this.id);

We might be tempted to do that directly in the view’s render() method, but
there’s a problem with that approach. Adding (and removing) elements in a web
page requires a lot of computation by the browser. When JavaScript code does
that frequently, the performance of the page can suffer significantly. To reduce this
problem, Backbone.js tries to minimize the number of times it adds (or removes)
elements, and one way to do that is to add many elements at once rather than add-
ing each element independently. It employs that approach when it implements a
view’s render() method. Before adding any elements to the page, it lets the view
finish constructing its entire markup; only then does it add that markup to the page.

The problem here is that when render() is called the first time, there won’t
(yet) be a <div id="map"></div> anywhere in the page. If we call Leaflet, it won’t be
able to find the container for its map, and it will generate an error. What we need
to do is defer the part of render() that draws the map until after Backbone.js has
added the map container to the page.

Fortunately, Underscore.js has a utility function called defer() to do just that.
Instead of drawing the map directly in the render() method, we’ll create a separate
method. Then, in the render() method, we’ll defer execution of that new method.
Here’s what the code to do that looks like:

render: function () {
 .defer((function(){ this.drawMap(); }).bind(this));
},
drawMap: function () {
 var map = L.map(this.id);
 // Code continues...
}

As you can see, we’re actually using a couple of Underscore.js functions in
our render() method. In addition to defer(), we also take advantage of bind(). The

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 1 | 323

latter function ensures that the this value when drawMap() is eventually called is the
same as the this value within the view.

There’s one change we can make to further improve this implementation.
Although there won’t be a <div id="map"></div> in the page when render() is first
called, that element will exist in subsequent calls to render(). In those cases, we
don’t need to defer the execution of drawMap(). That leads to the following code
for our render() method.

render: function () {
 if (document.getElementById(this.id)) {
 this.drawMap();
 } else {
 .defer((function(){ this.drawMap(); }).bind(this));
 }
 return this;
},

As long as we’re making optimizations, let’s also change the initialize()
method slightly. The default method that Yeoman creates is this:

initialize: function () {
 this.listenTo(this.model, "change", this.render);
},

For the Map view, however, we don’t really care if any property of the Run
model changes. The only property the view needs is gps, so we can tell Backbone.
js to bother us only if that specific property changes.

initialize: function () {
 this.listenTo(this.model, "change:gps", this.render);
 return this;
},

You might be wondering, “Why would the gps property of the Run model
ever change?” I’ll get to that when I cover the quirks of the Nike+ REST API in
Chapter 10.

With the preliminaries out of the way, we can implement the drawMap() func-
tion, which turns out to be a very easy implementation. The steps are as follows:

1. Make sure the model has a gps property and there are waypoints associated
with it.

2. If an old map exists, remove it.
3. Extract the GPS coordinates from the waypoints array.
4. Create a path using those coordinates.
5. Create a map that contains that path, and draw the path on the map.
6. Add the map tiles.

The resulting code is a straightforward implementation of those steps.

www.it-ebooks.info

http://www.it-ebooks.info/

324 | Chapter 9

drawMap: function () {
 if (this.model.get("gps") && this.model.get("gps").waypoints) {
 if (this.map) {
 this.map.remove();
 }
 var points = _(this.model.get("gps").waypoints).map(function(pt) {
 return [pt.latitude, pt.longitude];
 });
 var path = new L.Polyline(points, {color: "#1788cc"});
 this.map = L.map(this.id).fitBounds(path.getBounds())
 .addLayer(path);
 var tiles = L.tileLayer(
 "http://server.arcgisonline.com/ArcGIS/rest/services/Canvas/"+
 "World_Light_Gray_Base/MapServer/tile/{z}/{y}/{x}",
 {
 attribution: "Tiles © Esri — "+
 "Esri, DeLorme, NAVTEQ",
 maxZoom: 16
 }
);
 this.map.addLayer(tiles);
 }
}

As you can see from the code, we’re storing a reference to the Leaflet map
object as a property of the view. From within the view, we can access that object
using this.map.

The result is a nice map of the run’s route, shown in Figure 9-6.

Figure 9-6: A map view shows the route of a run.

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 1 | 325

Step 5: Implement the Charts View
The last remaining view that we need to implement is the Charts view, where we
want to show pace, heart rate, and elevation during the run. This view is the most
complex, but nearly all of the code is identical to the example in “Tracking Data
Values” on page 65, so there’s no need to repeat it here.

You can see the interactive result in Figure 9-7.

Figure 9-7: An alternative view shows charts of the run.

The source code for the book includes the complete implementation. If you’re
looking in detail at that implementation, there a few points to note:

 > Just as with Leaflet and the map container, Flot expects a container for its
chart to be present in the web page. We can use the same defer trick to
prevent Flot errors.

 > Nike+ returns at least four types of charts as metrics: distance, heart rate,
speed, and GPS signal strength. We really only care about the first two. At
first, it might seem easiest to calculate pace from speed, but speed isn’t
present in all activities. Distance, however, is present, and we can derive
pace from distance and time.

 > If GPS waypoint data is available, we can also graph elevation, but that data
is in a separate attribute of the model (not the metrics attribute).

 > As of this writing, there’s a bit of a bug in Nike’s response for GPS data. It
claims that the measurements are on the same time scale as the other met-
rics (every 10 seconds), but in fact the GPS measurements are reported on
different intervals. To work around this bug, we ignore the reported interval
and calculate one ourselves. Also, we want to normalize the elevation graph
to the same time scale as all the others. Doing that will give us the addi-
tional benefit of averaging the GPS elevation data; averaging is useful here
because GPS elevation measurements aren’t generally very accurate.

www.it-ebooks.info

http://www.it-ebooks.info/

326 | Chapter 9

Summing Up
In this chapter, we’ve starting building an entire web application based on data
and data visualizations. To help organize and coordinate our application, we based
it on the Backbone.js library, and we relied on the Yeoman tool to create the applica-
tion’s scaffolding and boilerplate code and templates. Backbone.js lets us separate
our application into models and views so that the code responsible for managing
the data doesn’t have to worry about how that data is presented (and vice versa).

In the next chapter, we’ll enable our application to communicate with the
Nike+ interface, and we’ll add some finishing touches to improve user interaction
with the page.

www.it-ebooks.info

http://www.it-ebooks.info/

10
Building Data-Driven

Web Applications:
part 2

In Chapter 9, we set up the framework of our
web application and walked through the visu-
alizations that will be displayed for each view.
But before our web application is complete,
we have several other details to attend to.
First, we have to make the web application
communicate with the Nike+ service and

www.it-ebooks.info

http://www.it-ebooks.info/

328 | Chapter 10

account for some quirks specific to that service. Then we’ll work on making our
application easier to navigate. In this chapter we’ll look at the following:

 > How to connect application models with an external REST API

 > How to support web browser conventions in a single-page application

Connecting with the Nike+ Service
Although our example application relies on the Nike+ service for its data, we
haven’t looked at the details of that service’s interface. As I’ve mentioned, Nike+
doesn’t quite conform to common REST API conventions that application librar-
ies such as Backbone.js expect. But Nike+ isn’t very unusual in that regard. There
really isn’t a true standard for REST APIs, and many other services take approaches
similar to Nike+’s. Fortunately Backbone.js anticipates this variation. As we’ll see in
the following steps, extending Backbone.js to support REST API variations isn’t all
that difficult.

Step 1: Authorize Users
As you might expect, Nike+ doesn’t allow anyone on the Internet to retrieve details
for any user’s runs. Users expect at least some level of privacy for that information.
Before our app can retrieve any running information, therefore, it will need the
user’s permission. We won’t go into the details of that process here, but its result
will be an authorization_token. This object is an arbitrary string that our app will
have to include with every Nike+ request. If the token is missing or invalid, Nike+
will deny our app access to the data.

Up until now we’ve let Backbone.js handle all of the details of the REST API.
Next, we’ll have to modify how Backbone.js constructs its AJAX calls. Fortunately,
this isn’t as tricky as it sounds. All we need to do is add a sync() method to our
Runs collection. When a sync() method is present in a collection, Backbone.js calls
it whenever it makes an AJAX request. (If there is no such method for a collection,
Backbone.js calls its primary Backbone.sync() method.) We’ll define the new method
directly in the collection.

Running.Collections.Runs = Backbone.Collection.extend({

 sync: function(method, collection, options) {
 // Handle the AJAX request
 }

As you can see, sync() is passed a method (GET, POST, etc.), the collection in
question, and an object containing options for the request. To send the authoriza-
tion token to Nike+, we can add it as a parameter using this options object.

sync: function(method, collection, options) {
 options = options || {};
 _(options).extend({
 data: { authorization_token: this.settings.authorization_token }

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 2 | 329

 });
 Backbone.sync(method, collection, options);
}

The first line in the method makes sure that the options parameter exists. If
the caller doesn’t provide a value, we set it to an empty object ({}). The next state-
ment adds a data property to the options object using the extend() utility from
Underscore.js. The data property is itself an object, and in it we store the autho-
rization token. We’ll look at how to do that next, but first let’s finish up the sync()
method. Once we’ve added the token, our request is a standard AJAX request, so
we can let Backbone.js take it from there by calling Backbone.sync().

Now we can turn our attention to the settings object from which our sync()
method obtained the authorization token. We’re using that object to hold proper-
ties related to the collection as a whole. It’s the collection’s equivalent of a model’s
attributes. Backbone.js doesn’t create this object for us automatically, but it’s easy
enough to do it ourselves. We’ll do it in the collection’s initialize() method. That
method accepts two parameters: an array of models for the collection, and any
collection options.

Running.Collections.Runs = Backbone.Collection.extend({

 initialize: function(models, options) {
 this.settings = { authorization_token: "" };
 options = options || {};
 (this.settings).extend((options)
 .pick(_(this.settings).keys()));
 },

The first statement in the initialize() method defines a settings object for
the collection and establishes default values for that object. Since there isn’t an
appropriate default value for the authorization token, we’ll use an empty string.

The next statement makes sure that the options object exists. If none is
passed as a parameter, we’ll at least have an empty object.

The final statement extracts all the keys in the settings, finds any values in the
options object with the same keys, and updates the settings object by extending it
with those new key values. Once again, we take advantage of some Underscore.js
utilities: extend() and pick().

When we first create the Runs collection, we can pass the authorization token
as a parameter. We supply an empty array as the first parameter because we don’t
have any models for the collection. Those will come from Nike+. In the following
code fragment, we’re using a dummy value for the authorization token. A real
application would use code that Nike provides to get the true value.

var runs = new Running.Collections.Runs([], {
 authorization_token: "authorize me"
});

www.it-ebooks.info

http://www.it-ebooks.info/

330 | Chapter 10

With just a small bit of extra code, we’ve added the authorization token to
our AJAX requests to Nike+.

Step 2: Accept the Nike+ Response
When our collection queries Nike+ for a list of user activities, Backbone.js is pre-
pared for a response in a particular format. More specifically, Backbone.js expects
the response to be a simple array of models.

[
 { "activityId": "2126456911", /* Data continues... */ },
 { "activityId": "2125290225", /* Data continues... */ },
 { "activityId": "2124784253", /* Data continues... */ },
 // Data set continues...
]

In fact, however, Nike+ returns its response as an object. The array of activi-
ties is one property of the object.

{
 "data": [
 { "activityId": "2126456911", /* Data continues... */ },
 { "activityId": "2125290225", /* Data continues... */ },
 { "activityId": "2124784253", /* Data continues... */ },
 // Data set continues...
],
 // Response continues...
}

To help Backbone.js cope with this response, we add a parse() method to
our collection. The job of that function is to take the response that the server pro-
vides and return the response that Backbone.js expects.

Running.Collections.Runs = Backbone.Collection.extend({

 parse: function(response) {
 return response.data;
 },

In our case, we just return the data property of the response.

Step 3: Page the Collection
The next aspect of the Nike+ API we’ll tackle is its paging. When we request the
activities for a user, the service doesn’t normally return all of them. Users may
have thousands of activities stored in Nike+, and returning all of them at once
might overwhelm the app. It could certainly add a noticeable delay, as the app
would have to wait for the entire response before it could process it. To avoid this

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 2 | 331

problem, Nike+ divides user activities into pages, and it responds with one page
of activities at a time. We’ll have to adjust our app for that behavior, but we’ll gain
the benefit of a more responsive user experience.

The first adjustment we’ll make is in our request. We can add parameters
to that request to indicate how many activities we’re prepared to accept in the
response. The two parameters are offset and count. The offset tells Nike+ which
activity we want to be first in the response, while count indicates how many activi-
ties Nike+ should return. If we wanted the first 20 activities, for example, we can
set offset to 1 and count to 20. Then, to get the next 20 activities, we’d set offset
to 21 (and keep count at 20).

We add these parameters to our request the same way we added the autho-
rization token—in the sync() method.

sync: function(method, collection, options) {
 options = options || {};
 _(options).extend({
 data: {
 authorization_token: this.settings.authorization_token,
 count: this.settings.count,
 offset: this.settings.offset
 }
 });
 Backbone.sync(method, collection, options);
}

We will also have to provide default values for those settings during
initialization.

initialize: function(models, options) {
 this.settings = {
 authorization_token: "",
 count: 25,
 offset: 1
 };

Those values will get the first 25 activities, but that’s only a start. Our users
will probably want to see all of their runs, not just the first 25. To get the addi-
tional activities, we’ll have to make more requests to the server. Once we get the
first 25 activities, we can request the next 25. And once those arrive, we can ask
for 25 more. We’ll keep at this until either we reach some reasonable limit or the
server runs out of activities.

First we define a reasonable limit as another settings value. In the following
code, we’re using 10000 as that limit.

initialize: function(models, options) {
 this.settings = {
 authorization_token: "",
 count: 25,

www.it-ebooks.info

http://www.it-ebooks.info/

332 | Chapter 10

 offset: 1,
 max: 10000
 };

Next we need to modify the fetch() method for our collection since the
standard Backbone.js fetch() can’t handle paging. There are three steps in our
implementation of the method:

1. Save a copy of whatever options Backbone.js is using for the request.
2. Extend those options by adding a callback function when the request

succeeds.
3. Pass control to the normal Backbone.js fetch() method for collections.

Each of those steps is a line in the following implementation. The last one
might seem a little tricky, but it makes sense if you take it one piece at a time.
The expression Backbone.Collection.prototype.fetch refers to the normal fetch()
method of a Backbone.js collection. We execute this method using .call() so that
we can set the context for the method to be our collection. That’s the first this
parameter of call(). The second parameter holds the options for fetch(), which
are just the extended options we created in Step 2.

Running.Collections.Runs = Backbone.Collection.extend({

 fetch: function(options) {
 this.fetchoptions = options = options || {};
 _(this.fetchoptions).extend({ success: this.fetchMore });
 return Backbone.Collection.prototype.fetch.call(
 this, this.fetchoptions
);
 },

By adding a success callback to the AJAX request, we’re asking to be notified
when the request completes. In fact, we’ve said that we want the this.fetchMore()
function to be called. It’s time to write that function; it, too, is a method of the Runs
collection. This function checks to see if there are more activities left. If so, it exe-
cutes another call to Backbone.js’s regular collection fetch() just as in the preced-
ing code.

fetchMore: function() {
 if (this.settings.offset < this.settings.max) {
 Backbone.Collection.prototype.fetch.call(this, this.fetchoptions);
 }
}

Since fetchMore() is looking at the settings to decide when to stop, we’ll need
to update those values. Because we already have a parse() method, and because
Backbone calls this method with each response, that’s a convenient place for
the update. Let’s add a bit of code before the return statement. If the number of
activities that the server returns is less than the number we asked for, then we’ve

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 2 | 333

exhausted the list of activities. We’ll set the offset to the max so fetchMore() knows
to stop. Otherwise, we increment offset by the number of activities.

parse: function(response) {
 if (response.data.length < this.settings.count) {
 this.settings.offset = this.settings.max;
 } else {
 this.settings.offset += this.settings.count;
 }
 return response.data;
}

The code we’ve written so far is almost complete, but it has a problem. When
Backbone.js fetches a collection, it assumes that it’s fetching the whole collection.
By default, therefore, each fetched response replaces the models already in the
collection with those in the response. That behavior is fine the first time we call
fetch(), but it’s definitely not okay for fetchMore(), which is meant to add to the
collection instead of replacing it. Fortunately, we can easily tweak this behavior by
setting the remove option.

In our fetch() method, we set that option to true so Backbone.js will start a
new collection.

fetch: function(options) {
 this.fetchoptions = options = options || {};
 _(this.fetchoptions).extend({
 success: this.fetchMore,
 remove: true
 });
 return Backbone.Collection.prototype.fetch.call(this,
 this.fetchoptions
);
}

Now, in the fetchMore() method, we can reset this option to false, and
Backbone.js will add to models instead of replacing them in the collection.

fetchMore: function() {
 this.fetchoptions.remove = false;
 if (this.settings.offset < this.settings.max) {
 Backbone.Collection.prototype.fetch.call(this, this.fetchoptions);
 }
}

There is still a small problem with the fetchMore() method. That code refer-
ences properties of the collection (this.fetchoptions and this.settings), but the
method will be called asynchronously when the AJAX request completes. When
that occurs, the collection won’t be in context, so this won’t be set to the col-
lection. To fix that, we can bind fetchMore() to the collection during initialization.
Once again, an Underscore.js utility function comes in handy.

www.it-ebooks.info

http://www.it-ebooks.info/

334 | Chapter 10

initialize: function(models, options) {
 _.bindAll(this, "fetchMore");

For the final part of this step, we can make our collection a little friendlier to
code that uses it. To keep fetching additional pages, we’ve set the success callback
for the fetch() options. What happens if the code that uses our collection has its
own callback? Unfortunately, we’ve erased that callback to substitute our own. It
would be better to simply set aside an existing callback function and then restore
it once we’ve finished fetching the entire collection. We’ll do that first in our fetch()
method. Here’s the full code for the method:

fetch: function(options) {
 this.fetchoptions = options = options || {};
 this.fetchsuccess = options.success;
 _(this.fetchoptions).extend({
 success: this.fetchMore,
 remove: true
 });
 return Backbone.Collection.prototype.fetch.call(this,
 this.fetchoptions
);
}

And here’s the code for fetchMore():

fetchMore: function() {
 this.fetchoptions.remove = false;
 if (this.settings.offset < this.settings.max) {
 Backbone.Collection.prototype.fetch.call(this, this.fetchoptions);
 } else if (this.fetchsuccess) {
 this.fetchsuccess();
 }
}

Now we can execute that callback in fetchMore() when we’ve exhausted the
server’s list.

Step 4: Dynamically Update the View
By fetching the collection of runs in pages, we’ve made our application much
more responsive. We can start displaying summary data for the first 25 runs even
while we’re waiting to retrieve the rest of the user’s runs from the server. To do that
effectively, though, we need to make a small change to our Summary view. As it
stands now, our view is listening for any changes to the collection. When a change
occurs, it renders the view from scratch.

initialize: function () {
 this.listenTo(this.collection, "change", this.render);
 return this;
}

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 2 | 335

Every time we fetch a new page of runs, the collection will change and our
code will re-render the entire view. That’s almost certainly going to be annoying to
our users, as each fetched page will cause the browser to temporarily blank out the
page and then refill it. Instead, we’d like to render only views for the newly added
models, leaving existing model views alone. To do that, we can listen for an "add"
event instead of a "change" event. And when this event triggers, we can just render
the view for that model. We’ve already implemented the code to create and render
a view for a single Run model: the renderRun() method. Our Summary view, there-
fore, can be modified as shown here:

initialize: function () {
 this.listenTo(this.collection, "add", this.renderRun);
 return this;
}

Now as our collection fetches new Run models from the server, they’ll be
added to the collection, triggering an "add" event, which our view captures. The
view then renders each run on the page.

Step 5: Filter the Collection
Although our app is interested only in running, the Nike+ service supports a variety
of athletic activities. When our collection fetches from the service, the response will
include those other activities as well. To avoid including them in our app, we can
filter them from the response.

We could filter the response manually, checking every activity and remov-
ing those that aren’t runs. That’s a lot of work, however, and Backbone.js gives us
an easier approach. To take advantage of Backbone.js, we’ll first add a validate()
method to our Run model. This method takes as parameters the attributes of a
potential model as well as any options used when it was created or modified. In our
case, we care only about the attributes. We’ll check to make sure the activityType
equals "RUN".

Running.Models.Run = Backbone.Model.extend({
 validate: function(attributes, options) {
 if (attributes.activityType.toUpperCase() !== "RUN") {
 return "Not a run";
 }
 },

You can see from this code how validate() functions should behave. If
there is an error in the model, then validate() returns a value. The specifics of the
value don’t matter as long as JavaScript considers it true. If there is no error, then
validate() doesn’t need to return anything at all.

Now that our model has a validate() method, we need to make sure
Backbone.js calls it. Backbone.js automatically checks with validate() whenever
a model is created or modified by the code, but it doesn’t normally validate
responses from the server. In our case, however, we do want to validate the server

www.it-ebooks.info

http://www.it-ebooks.info/

336 | Chapter 10

responses. That requires that we set the validate() property in the fetch() options
for our Runs collection. Here’s the full fetch() method with this change included.

Running.Collections.Runs = Backbone.Collection.extend({
 fetch: function(options) {
 this.fetchoptions = options = options || {};
 this.fetchsuccess = options.success;
 _(this.fetchoptions).extend({
 success: this.fetchMore,
 remove: true,
 validate: true
 });
 return Backbone.Collection.prototype.fetch.call(this,
 this.fetchoptions
);
 },

Now when Backbone.js receives server responses, it passes all of the models
in those responses through the model’s validate() method. Any model that fails
validation is removed from the collection, and our app never has to bother with
activities that aren’t runs.

Step 6: Parse the Response
As long as we’re adding code to the Run model, there’s another change that will
make Backbone.js happy. Backbone.js requires models to have an attribute that
makes each object unique; it can use this identifier to distinguish one run from any
other. By default, Backbone.js expects this attribute to be id, as that’s a common
convention. Nike+, however, doesn’t have an id attribute for its runs. Instead, the
service uses the activityId attribute. We can tell Backbone.js about this with an
extra property in the model.

Running.Models.Run = Backbone.Model.extend({
 idAttribute: "activityId",

This property lets Backbone.js know that for our runs, the activityId prop-
erty is the unique identifier.

Step 7: Retrieve Details
So far we’ve relied on the collection’s fetch() method to get running data. That
method retrieves a list of runs from the server. When Nike+ returns a list of activi-
ties, however, it doesn’t include the full details of each activity. It returns summary
information, but it omits the detailed metrics arrays and any GPS data. Getting
those details requires additional requests, so we need to make one more change
to our Backbone.js app.

We’ll first request the detailed metrics that are the basis for the Charts view.
When the Runs collection fetches its list of runs from the server, each Run model
will initially have an empty metrics array. To get the details for this array, we must

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 2 | 337

make another request to the server with the activity identifier included in the
request URL. For example, if the URL to get a list of runs is https://api.nike.com/
v1/me/sport/activities/, then the URL to get the details for a specific run, including
its metrics, is https://api.nike.com/v1/me/sport/activities/2126456911/. The number
2126456911 at the end of that URL is the run’s activityId.

Thanks to the steps we’ve taken earlier in this section, it’s easy to get these
details in Backbone.js. All we have to do is fetch() the model.

run.fetch();

Backbone.js knows the root of the URL because we set that in the Runs col-
lection (and our model is a member of that collection). Backbone.js also knows that
the unique identifier for each run is the activityId because we set that property
in the previous step. And, fortunately for us, Backbone.js is smart enough to com-
bine those bits of information and make the request.

We will have to help Backbone.js in one respect, though. The Nike+ app
requires an authorization token for all requests, and so far we’ve added code for
that token only to the collection. We have to add the same code to the model. This
code is almost identical to the code from Step 1 in this section:

Running.Models.Run = Backbone.Model.extend({
 sync: function(method, model, options) {
 options = options || {};
 _(options).extend({
 data: {
 authorization_token:

u this.collection.settings.authorization_token
 }
 });
 Backbone.sync(method, model, options);
 },

We first make sure that the options object exists, then extend it by add-
ing the authorization token. Finally, we defer to the regular Backbone.js sync()
method. At u, we get the value for the token directly from the collection. We can
use this.collection here because Backbone.js sets the collection property of the
model to reference the collection to which it belongs.

Now we have to decide when and where to call a model’s fetch() method.
We don’t actually need the metrics details for the Summary view on the main page
of our app; we should bother getting that data only when we’re creating a Details
view. We can conveniently do that in the view’s initialize() method.

Running.Views.Details = Backbone.View.extend({
 initialize: function () {
 if (!this.model.get("metrics") ||
 this.model.get("metrics").length === 0) {
 this.model.fetch();
 }
 },

www.it-ebooks.info

https://api.nike.com/v1/me/sport/activities/
https://api.nike.com/v1/me/sport/activities/
http://www.it-ebooks.info/

338 | Chapter 10

You might think that the asynchronous nature of the request could cause
problems for our view. After all, we’re trying to draw the charts when we render
the newly created view. Won’t it draw the charts before the server has responded
(that is, before we have any data for the charts)? In fact, it’s almost guaranteed that
our view will be trying to draw its charts before the data is available. Nonetheless,
because of the way we’ve structured our views, there is no problem.

The magic is in a single statement in the initialize() method of our
Charts view.

Running.Views.Charts = Backbone.View.extend({
 initialize: function () {
 this.listenTo(this.model,
 "change:metrics change:gps", this.render);
 // Code continues...

That statement tells Backbone.js that our view wants to know whenever
the metrics (or gps) property of the associated model changes. When the server
responds to a fetch() and updates that property, Backbone.js calls the view’s
render() method and will try (again) to draw the charts.

There’s quite a lot going on in this process, so it may help to look at it one
step at a time.

1. The application calls the fetch() method of a Runs collection.
2. Backbone.js sends a request to the server for a list of activities.
3. The server’s response includes summary information for each activity, which

Backbone.js uses to create the initial Run models.
4. The application creates a Details view for a specific Run model.
5. The initialize() method of this view calls the fetch() method of the particu-

lar model.
6. Backbone.js sends a request to the server for that activity’s details.
7. Meanwhile, the application renders the Details view it just created.
8. The Details view creates a Charts view and renders that view.
9. Because there is no data for any charts, the Charts view doesn’t actually add

anything to the page, but it is waiting to hear of any relevant changes to the
model.

10. Eventually the server responds to the request in Step 6 with details for the
activity.

11. Backbone.js updates the model with the new details and notices that, as a
result, the metrics property has changed.

12. Backbone.js triggers the change event for which the Charts view has been
listening.

13. The Charts view receives the event trigger and again renders itself.
14. Because chart data is now available, the render() method is able to create

the charts and add them to the page.

Whew! It’s a good thing that Backbone.js takes care of all that complexity.

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 2 | 339

At this point we’ve managed to retrieve the detailed metrics for a run, but
we haven’t yet added any GPS data. Nike+ requires an additional request for that
data, so we’ll use a similar process. In this case, though, we can’t rely on Backbone
.js because the URL for the GPS request is unique to Nike+. That URL is formed by
taking the individual activity’s URL and appending /gps—for example, https://api
.nike.com/v1/me/sport/activities/2126456911/gps/.

To make the additional request, we can add some code to the regular
fetch() method. We’ll request the GPS data at the same time Backbone.js asks
for the metrics details. The basic approach, which the following code fragment
illustrates, is simple. We’ll first see if the activity even has any GPS data. We can do
that by checking the isGpsActivity property, which the server provides on activity
summaries. If it does, then we can request it. In either case, we also want to exe-
cute the normal fetch() process for the model. We do that by getting a reference
to the standard fetch() method for the model (Backbone.Model.prototype.fetch)
and then calling that method. We pass it the same options passed to us.

Running.Models.Run = Backbone.Model.extend({
 fetch: function(options) {
 if (this.get("isGpsActivity")) {
 // Request GPS details from the server
 }
 return Backbone.Model.prototype.fetch.call(this, options);
 },

Next, to make the request to Nike+, we can use jQuery’s AJAX function.
Since we’re asking for JavaScript objects (JSON data), the $.getJSON() function is
the most appropriate. First we set aside a reference to the run by assigning this
to the local variable model. We’ll need that variable because this won’t reference
the model when jQuery executes our callback. Then we call $.getJSON() with three
parameters. First is the URL for the request. We get that from Backbone.js by call-
ing the url() method for the model and appending the trailing /gps. The second
parameter is the data values to be included with the request. As always, we need
to include an authorization token. Just as we did before, we can get that token’s
value from the collection. The final parameter is a callback function that JQuery
executes when it receives the server’s response. In our case, the function simply
sets the gps property of the model to the response data.

if (this.get("isGpsActivity")) {
 var model = this;
 $.getJSON(
 this.url() + "/gps",
 { authorization_token:
 this.collection.settings.authorization_token },
 function(data) { model.set("gps", data); }
);
}

www.it-ebooks.info

https://api.nike.com/v1/me/sport/activities/2126456911/gps/
https://api.nike.com/v1/me/sport/activities/2126456911/gps/
http://www.it-ebooks.info/

340 | Chapter 10

Not surprisingly, the process of retrieving GPS data works the same way as
retrieving the detailed metrics. Initially our Map view won’t have the data it needs
to create a map for the run. Because it’s listening for changes to the gps property of
the model, however, it will be notified when that data is available. At that point it can
complete the render function and the user will be able to view a nice map of the run.

Putting It All Together
At this point in the chapter, we have all the pieces for a simple data-driven web
application. Now we’ll take those pieces and assemble them into the app. At the
end of this section, we’ll have a complete application. Users start the app by visit-
ing a web page, and our JavaScript code takes it from there. The result is a single-
page application, or SPA. SPAs have become popular because JavaScript code can
respond to user interaction immediately in the browser, which is much quicker than
traditional websites communicating with a server located halfway across the Inter-
net. Users are often pleased with the snappy and responsive result.

Even though our app is executing in a single web page, our users still expect
certain behaviors from their web browsers. They expect to be able to bookmark a
page, share it with friends, or navigate using the browser’s forward and back but-
tons. Traditional websites can rely on the browser to support all of those behaviors,
but a single-page application can’t. As we’ll see in the steps that follow, we have to
write some additional code to give our users the behavior they expect.

Step 1: Create a Backbone.js Router
So far we’ve looked at three Backbone.js components—models, collections, and
views—all of which may be helpful in any JavaScript application. The fourth com-
ponent, the router, is especially helpful for single-page applications. You won’t be
surprised to learn that we can use Yeoman to create the scaffolding for a router.

$ yo backbone:router app
 create app/scripts/routes/app.js
 invoke backbone-mocha:router
 create test/routers/app.spec.js

Notice that we’ve named our router app. As you might expect from this name,
we’re using this router as the main controller for our application. That approach
has pros and cons. Some developers feel that a router should be limited strictly to
routing, while others view the router as the natural place to coordinate the overall
application. For a simple example such as ours, there isn’t really any harm in add-
ing a bit of extra code to the router to control the app. In complex applications,
however, it might be better to separate routing from application control. One of
the nice things about Backbone.js is that it’s happy to support either approach.

With the scaffolding in place, we can start adding our router code to the
app.js file. The first property we’ll define is the routes. This property is an object
whose keys are URL fragments and whose values are methods of the router. Here’s
our starting point.

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 2 | 341

Running.Routers.App = Backbone.Router.extend({
 routes: {
 "": "summary",
 "runs/:id": "details"
 },
});

The first route has an empty URL fragment (""). When a user visits our page
without specifying a path, the router will call its summary() method. If, for example,
we were hosting our app using the greatrunningapp.com domain name, then users
entering http://greatrunningapp.com/ in their browsers would trigger that route.
Before we look at the second route, let’s see what the summary() method does.

The code is exactly what we’ve seen before. The summary() method creates
a new Runs collection, fetches that collection, creates a Summary view of the col-
lection, and renders that view onto the page. Users visiting the home page for our
app will see a summary of their runs.

summary: function() {
 this.runs = new Running.Collections.Runs([],
 {authorizationToken: "authorize me"});
 this.runs.fetch();
 this.summaryView = new Running.Views.Summary({collection: this.runs});
 $("body").html(this.summaryView.render().el);
},

Now we can consider our second route. It has a URL fragment of runs/:id.
The runs/ part is a standard URL path, while :id is how Backbone.js identifies an
arbitrary variable. With this route, we’re telling Backbone.js to look for a URL that
starts out as http://greatrunningapp.com/runs/ and to consider whatever follows as
the value for the id parameter. We’ll use that parameter in the router’s details()
method. Here’s how we’ll start developing that method:

details: function(id) {
 this.run = new Running.Models.Run();
 this.run.id = id;
 this.run.fetch();
 this.detailsView = new Running.Views.Details({model: this.run});
 $("body").html(this.detailsView.render().el);
 },

As you can see, the code is almost the same as the summary() method, except
we’re showing only a single run instead of the whole collection. We create a new
Run model, set its id to the value in the URL, fetch the model from the server, cre-
ate a Details view, and render that view on the page.

The router lets users go straight to an individual run by using the appropri-
ate URL. A URL of http://greatrunningapp.com/runs/2126456911, for example, will
fetch and display the details for the run that has an activityId equal to 2126456911.

www.it-ebooks.info

http://www.it-ebooks.info/

342 | Chapter 10

Notice that the router doesn’t have to worry about what specific attribute defines
the model’s unique identifier. It uses the generic id property. Only the model itself
needs to know the actual property name that the server uses.

With the router in place, our single-page application can support multiple
URLs. One shows a summary of all runs, while others show the details of a specific
run. Because the URLs are distinct, our users can treat them just like different web
pages. They can bookmark them, email them, or share them on social networks.
And whenever they or their friends return to a URL, it will show the same contents
as before. That’s exactly how users expect the Web to behave.

There is another behavior that users expect, though, that we haven’t yet sup-
ported. Users expect to use their browser’s back and forward buttons to navigate
through their browsing histories. Fortunately, Backbone.js has a utility that takes
care of that functionality. It’s the history feature, and we can enable it during the
app router’s initialization.

Running.Routers.App = Backbone.Router.extend({
 initialize: function() {
 Backbone.history.start({pushState: true});
 },

For our simple app, that’s all we have to do to handle browsing histories.
Backbone.js takes care of everything else.

 QNote: Support for multiple URLs will probably require some configuration of
your web server. more specifically, you’ll want the server to map all URLs to
the same index.html file. the details of this configuration depend on the web
server technology. With open source Apache servers, the .htaccess file can
define the mapping.

Step 2: Support Run Models Outside of Any Collection
Unfortunately, if we try to use the preceding code with our existing Run model,
we’ll encounter some problems. First among them is the fact that our Run model
relies on its parent collection. It finds the authorization token, for example, using
this.collection.settings.authorization_token. When the browser goes directly
to the URL for a specific run, however, there won’t be a collection. In the following
code, we make some tweaks to address this:

Running.Routers.App = Backbone.Router.extend({
 routes: {
 "": "summary",
 "runs/:id": "details"
 },
 initialize: function(options) {
 this.options = options;
 Backbone.history.start({pushState: true});
 },

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 2 | 343

 summary: function() {
 this.runs = new Running.Collections.Runs([],

u {authorizationToken: this.options.token});
 this.runs.fetch();
 this.summaryView = new Running.Views.Summary({
 collection: this.runs});
 $("body").html(this.summaryView.render().el);
 },
 details: function(id) {
 this.run = new Running.Models.Run({},

v {authorizationToken: this.options.token});
 this.run.id = id;
 this.run.fetch();
 this.detailsView = new Running.Views.Details({
 model: this.run});
 $("body").html(this.detailsView.render().el);
});

Now we provide the token to the Run model when we create it at v. We also
make its value an option passed to the collection on creation at u.

Next we need to modify the Run model to use this new parameter. We’ll
handle the token the same way we do in the Runs collection.

Running.Models.Run = Backbone.Model.extend({
 initialize: function(attrs, options) {
 this.settings = { authorization_token: "" };
 options = options || {};
 if (this.collection) {
 (this.settings).extend((this.collection.settings)
 .pick(_(this.settings).keys()));
 }
 (this.settings).extend((options)
 .pick(_(this.settings).keys()));
 },

We start by defining default values for all the settings. Unlike with the collec-
tion, the only setting our model needs is the authorization_token. Next we make
sure that we have an options object. If none was provided, we create an empty
one. For the third step, we check to see if the model is part of a collection by look-
ing at this.collection. If that property exists, then we grab any settings from the
collection and override our defaults. The final step overrides the result with any
settings passed to our constructor as options. When, as in the preceding code, our
router provides an authorization_token value, that’s the value our model will use.
When the model is part of a collection, there is no specific token associated with
the model. In that case, we fall back to the collection’s token.

Now that we have an authorization token, we can add it to the model’s AJAX
requests. The code is again pretty much the same as our code in the Runs collec-
tion. We’ll need a property that specifies the URL for the REST service, and we’ll
need to override the regular sync() method to add the token to any requests.

www.it-ebooks.info

http://www.it-ebooks.info/

344 | Chapter 10

urlRoot: "https://api.nike.com/v1/me/sport/activities",

sync: function(method, model, options) {
 options = options || {};
 _(options).extend({
 data: { authorization_token: this.settings.authorization_token }
 });
 Backbone.sync(method, model, options);
},

This extra code takes care of the authorization, but there’s still a problem
with our model. In the previous section, Run models existed only as part of a Runs
collection, and the act of fetching that collection populated each of its models
with summary attributes, including, for example, isGpsActivity. The model could
safely check that property whenever we tried to fetch the model details and, if
appropriate, simultaneously initiate a request for the GPS data. Now, however,
we’re creating a Run model on its own without the benefit of a collection. When
we fetch the model, the only property we’ll know is the unique identifier. We
can’t decide whether or not to request GPS data, therefore, until after the server
responds to the fetch.

To separate the request for GPS data from the general fetch, we can move
that request to its own method. The code is the same as before (except, of course,
we get the authorization token from local settings).

fetchGps: function() {
 if (this.get("isGpsActivity") && !this.get("gps")) {
 var model = this;
 $.getJSON(
 this.url() + "/gps",
 { authorization_token: this.settings.authorization_token },
 function(data) { model.set("gps", data); }
);
 }
}

To trigger this method, we’ll tell Backbone.js that whenever the model
changes, it should call the fetchGps() method.

initialize: function(attrs, options) {
 this.on("change", this.fetchGps, this);

Backbone.js will detect just such a change when the fetch() response arrives
and populates the model, at which time our code can safely check isGpsActivity()
and make the additional request.

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 2 | 345

Step 3: Let Users Change Views
Now that our app can correctly display two different views, it’s time to let our users
in on the fun. For this step, we’ll give them an easy way to change back and forth
between the views. Let’s first consider the Summary view. It would be nice if a
user could click on any run that appears in the table and be instantly taken to the
detailed view for that run.

Our first decision is where to put the code that listens for clicks. At first, it
might seem like the SummaryRow view is a natural place for that code. That view is
responsible for rendering the row, so it seems logical to let that view handle events
related to the row. If we wanted to do that, Backbone.js makes it very simple; all
we need is an extra property and an extra method in the view. They might look like
the following:

Running.Views.SummaryRow = Backbone.View.extend({
 events: {
 "click": "clicked"
 },
 clicked: function() {
 // Do something to show the Details view for this.model
 },

The events property is an object that lists the events of interest to our view.
In this case there’s only one: the click event. The value—in this case, clicked—
identifies the method that Backbone.js should call when the event occurs. We’ve
skipped the details of that method for now.

There is nothing technically wrong with this approach, and if we were to
continue the implementation, it would probably work just fine. It is, however, very
inefficient. Consider a user who has hundreds of runs stored on Nike+. The sum-
mary table would have hundreds of rows, and each row would have its own func-
tion listening for click events. Those event handlers can use up a lot of memory
and other resources in the browser and make our app sluggish. Fortunately, there’s
a different approach that’s far less stressful to the browser.

Instead of having potentially hundreds of event handlers, each listening for
clicks on a single row, we’d be better off with one event handler listening for clicks
on all of the table rows. Since the Summary view is responsible for all of those rows,
it’s the natural place to add that handler. We can still take advantage of Backbone
.js to make its implementation easy by adding an events object to our view. In this
case, we can do even better, though. We don’t care about click events on the
table header; only the rows in the table body matter. By adding a jQuery-style
selector after the event name, we can restrict our handler to elements that match
that selector.

Running.Views.Summary = Backbone.View.extend({
 events: {
 "click tbody": "clicked"
 },

www.it-ebooks.info

http://www.it-ebooks.info/

346 | Chapter 10

The preceding code asks Backbone.js to watch for click events within the
<tbody> element of our view. When an event occurs, Backbone.js will call the
clicked() method of our view.

Before we develop any code for that clicked() method, we need a way for
it to figure out which specific run model the user has selected. The event handler
will be able to tell which row the user clicked, but how will it know which model
that row represents? To make the answer easy for the handler, we can embed the
necessary information directly in the markup for the row. That requires a few small
adjustments to the renderRun() method we created earlier.

The revised method still creates a SummaryRow view for each model, ren-
ders that view, and appends the result to the table body. Now, though, we’ll add
one extra step just before the row is added to the page. We add a special attri-
bute, data-id, to the row and set its value equal to the model’s unique identifier.
We use data-id because the HTML5 standard allows any attribute with a name that
begins with data-. Custom attributes in this form won’t violate the standard and
won’t cause browser errors.

renderRun: function (run) {
 var row = new Running.Views.SummaryRow({ model: run });
 row.render();
 row.$el.attr("data-id", run.id);
 this.$("tbody").append(row.$el);
},

The resulting markup for a run with an identifier of 2126456911 would look like
the following example:

<tr data-id="2126456911">
 <td>04/09/2013</td>
 <td>0:22:39</td>
 <td>2.33 Miles</td>
 <td>240</td>
 <td>9:43</td>
</tr>

Once we’ve made sure that the markup in the page has a reference back to
the Run models, we can take advantage of that markup in our clicked event handler.
When Backbone.js calls the handler, it passes it an event object. From that object,
we can find the target of the event. In the case of a click event, the target is the
HTML element on which the user clicked.

clicked: function (ev) {
 var $target = $(ev.target)

From the preceding markup, it’s clear that most of the table row is made up
of table cells (<td> elements), so a table cell will be the likely target of the click
event. We can use the jQuery parents() function to find the table row that is the
parent of the click target.

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 2 | 347

clicked: function (ev) {
 var $target = $(ev.target)
 var id = $target.attr("data-id") ||
 $target.parents("[data-id]").attr("data-id");

Once we’ve found that parent row, we extract the data-id attribute value. To
be on the safe side, we also handle the case in which the user somehow manages
to click on the table row itself rather than an individual table cell.

After retrieving the attribute value, our view knows which run the user
selected; now it has to do something with the information. It might be tempting to
have the Summary view directly render the Details view for the run, but that action
would not be appropriate. A Backbone.js view should take responsibility only for
itself and any child views that it contains. That approach allows the view to be safely
reused in a variety of contexts. Our Summary view, for example, might well be used
in a context in which the Details view isn’t even available. In that case, trying to
switch directly to the Details view would, at best, generate an error.

Because the Summary view cannot itself respond to the user clicking on a
table row, it should instead follow the hierarchy of the application and, in effect,
pass the information “up the chain of command.” Backbone.js provides a con-
venient mechanism for this type of communication: custom events. Instead of
responding directly to the user click, the Summary view triggers a custom event.
Other parts can listen for this event and respond appropriately. If no other code is
listening for the event, then nothing happens, but at least the Summary view can
say that it’s done its job.

Here’s how we can generate a custom event in our view:

clicked: function (ev) {
 var $target = $(ev.target)
 var id = $target.attr("data-id") ||
 $target.parents("[data-id]").attr("data-id");
 this.trigger("select", id);
}

We call the event select to indicate that the user has selected a specific run,
and we pass the identifier of that run as a parameter associated with the event. At
this point, the Summary view is complete.

The component that should respond to this custom event is the same com-
ponent that created the Summary view in the first place: our app router. We’ll first
need to listen for the event. We can do that right after we create it in the summary()
method.

Running.Routers.App = Backbone.Router.extend({
 summary: function() {
 this.runs = new Running.Collections.Runs([],
 {authorizationToken: this.options.token});
 this.runs.fetch();
 this.summaryView = new Running.Views.Summary({
 collection: this.runs});

www.it-ebooks.info

http://www.it-ebooks.info/

348 | Chapter 10

 $(“body").html(this.summaryView.render().el);
 this.summaryView.on("select", this.selected, this);
 },

When the user selects a specific run from the Summary view, Backbone.js
calls our router’s selected() method, which will receive any event data as param-
eters. In our case, the event data is the unique identifier, so that becomes the
method’s parameter.

Running.Routers.App = Backbone.Router.extend({
 selected: function(id) {
 this.navigate("runs/" + id, { trigger: true });
 }

As you can see, the event handler code is quite simple. It constructs a URL
that corresponds to the Details view ("runs/" + id) and passes that URL to the
router’s own navigate() method. That method updates the browser’s navigation
history. The second parameter ({ trigger: true }) tells Backbone.js to also act as
if the user had actually navigated to the URL. Because we’ve set up the details()
method to respond to URLs of the form runs/:id, Backbone.js will call details(),
and our router will show the details for the selected run.

When users are looking at a Details view, we’d also like to provide a button
to let them easily navigate to the Summary view. As with the Summary view, we
can add an event handler for the button and trigger a custom event when a user
clicks it.

Running.Views.Details = Backbone.View.extend({
 events: {
 "click button": "clicked"
 },
 clicked: function () {
 this.trigger("summarize");
 }

And, of course, we need to listen for that custom event in our router.

Running.Routers.App = Backbone.Router.extend({
 details: function(id) {
 // Set up the Details view
 // Code continues...
 this.detailsView.on("summarize", this.summarize, this);
 },
 summarize: function() {
 this.navigate("", { trigger: true });
 },

Once again we respond to the user by constructing an appropriate URL and
triggering a navigation to it.

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 2 | 349

You might be wondering why we have to explicitly trigger the navigation
change. Shouldn’t that be the default behavior? Although that may seem reason-
able, in most cases it wouldn’t be appropriate. Our application is simple enough
that triggering the route works fine. More complex applications, however, prob-
ably want to take different actions depending on whether the user performs an
action within the app or navigates directly to a particular URL. It’s better to have
different code handling each of those cases. In the first case the app would still
want to update the browser’s history, but it wouldn’t want to trigger a full naviga-
tion action.

Step 4: Fine-Tuning the Application
At this point our app is completely functional. Our users can view their summa-
ries, bookmark and share details of specific runs, and navigate the app using the
browser’s back and forward buttons. Before we can call it complete, however,
there’s one last bit of housekeeping for us. The app’s performance isn’t optimal,
and, even more critically, it leaks memory, using small amounts of the browser’s
memory without ever releasing them.

The most obvious problem is in the router’s summary() method, repro-
duced here:

Running.Routers.App = Backbone.Router.extend({
 summary: function() {
 this.runs = new Running.Collections.Runs([],
 {authorizationToken: this.options.token});
 this.runs.fetch();
 this.summaryView = new Running.Views.Summary({
 collection: this.runs});
 $("body").html(this.summaryView.render().el);
 this.summaryView.on("select", this.selected, this);
 },

Every time this method executes, it creates a new collection, fetches that
collection, and renders a Summary view for the collection. Clearly we have to go
through those steps the first time the method executes, but there is no need to
repeat them later. Neither the collection nor its view will change if the user selects
a specific run and then returns to the summary. Let’s add a check to the method so
that we take those steps only if the view doesn’t already exist.

summary: function() {
 if (!this.summaryView) {
 this.runs = new Running.Collections.Runs([],
 {authorizationToken: this.options.token});
 this.runs.fetch();
 this.summaryView = new Running.Views.Summary({
 collection: this.runs});
 this.summaryView.render();
 this.summaryView.on("select", this.selected, this);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

350 | Chapter 10

 $("body").html(this.summaryView.el);
},

We can also add a check in the details() method. When that method
executes and a Summary view is present, we can “set aside” the Summary view’s
markup using jQuery’s detach() function. That will keep the markup and its event
handlers ready for a quick reinsertion onto the page should the user return to the
summary.

details: function(id) {
 if (this.summaryView) {
 this.summaryView.$el.detach();
 }
 this.run = new Running.Models.Run({},
 {authorizationToken: this.options.token});
 this.run.id = id;
 this.run.fetch();
 $("body").html(this.detailsView.render().el);
 this.detailsView.on("summarize", this.summarize, this);
},

Those changes make switching to and from the Summary view more effi-
cient. We can also make some similar changes for the Details view. In the details()
method we don’t have to fetch the run if it’s already present in the collection. We
can add a check, and if the data for the run is already available, we won’t bother
with the fetch.

details: function(id) {
 if (!this.runs || !(this.run = this.runs.get(id))) {
 this.run = new Running.Models.Run({},
 {authorizationToken: this.options.token});
 this.run.id = id;
 this.run.fetch();
 }
 if (this.summaryView) {
 this.summaryView.$el.detach();
 }
 this.detailsView = new Running.Views.Details({model: this.run});
 $("body").html(this.detailsView.render().el);
 this.detailsView.on("summarize", this.summarize, this);
},

In the summary() method, we don’t want to simply set aside the Details view
as we did for the Summary view. That’s because there may be hundreds of Details
views hanging around if a user starts looking at all of the runs available. Instead,
we want to cleanly delete the Details view. That lets the browser know that it can
release any memory that the view is consuming.

www.it-ebooks.info

http://www.it-ebooks.info/

 Building Data-Driven Web Applications: Part 2 | 351

As you can see from the following code, we’ll do that in three steps.

1. Remove the event handler we added to the Details view to catch summarize
events.

2. Call the view’s remove() method so it releases any memory it’s holding
internally.

3. Set this.detailsView to null to indicate that the view no longer exists.

summary: function() {
 if (this.detailsView) {
 this.detailsView.off("summarize");
 this.detailsView.remove();
 this.detailsView = null;
 }
 if (!this.summaryView) {
 this.runs = new Running.Collections.Runs([],
 {authorizationToken: this.options.token});
 this.runs.fetch();
 this.summaryView = new Running.Views.Summary({
 collection: this.runs});
 this.summaryView.render();
 this.summaryView.on("select", this.selected, this);
 }
 $("body").html(this.summaryView.el);
},

And with that change, our application is complete! You can take a look at the
final result in the book’s source code (http://jsDataV.is/source/).

Summing Up
In this chapter, we completed a data-driven web application. First, we saw how
Backbone.js gives us the flexibility to interact with REST APIs that don’t quite fol-
low the normal conventions. Then we worked with a Backbone.js router to make
sure our single-page application behaves like a full website so that our users can
interact with it just as they would expect.

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols
> (direct descendant selector), 160
$.each() utility, 289
$.getJSON() function, 77, 248, 339
$.grep() function, 55–56, 80
$.map() function, 55–56, 80, 290
_ (underscore character), 274

A
<a> element, 208
activityId attribute, 336, 337
"add" event, 335
addEventListener method, 165
Adobe Illustrator, 188
:after pseudoselector, 160
AJAX (Asynchronous JavaScript and

XML), retrieving data using,
75–87

creating chart, 85–87
first level of data, 77–80
processing response, 80–81, 84–85
second level of data, 81–82
source data format and structure,

76–77
animate() function, 213
animation variable, 210
annotating sparklines, 101–105

adding chart, 102–103
adding primary annotation,

103–104
overview, 101
preparing data, 102
preparing HTML markup, 102
providing additional

information, 105
any() function, 292
APIhub, 87
APIs, repositories for, 87
app/ folder, 299
append() method, 226
app.js file, 340
application frameworks, 297

apply() function, 190–191, 212, 278
arc() function, 255, 259
arguments object, 216
arrays

combining, 278–280
extracting elements by position,

275–277
finding elements in, 281–282
generating, 282–283
overview, 275
removing invalid data values,

280–281
Asynchronous JavaScript and XML.

See AJAX (Asynchronous
JavaScript and XML)

attr() function, 226
attrTween() function, 263, 264, 265
authorization_token object, 328
autoscale option, 27

B
Backbone.js library, 297, 322, 323

authorizing users, 328–330
collections

filtering, 335–336
paging, 330–334
supporting run models outside

of, 342–344
creating router, 340–342
fine-tuning the app, 349–351
history feature, 341
responses

accepting, 330
parsing, 336

retrieving details, 336–340
views, 307–311

allowing users to change,
345–349

dynamically updating, 334–335
background

of bubble charts, 35–38
of heat maps, 127

background-color property, 153

Index

www.it-ebooks.info

http://www.it-ebooks.info/

bar charts, 6–15
colors, 13–14
defining data to display, 7–8
<div> element to hold, 7
drawing, 8–9
dummy HTML elements in, 14–15
horizontal axis, fixing, 10–11
JavaScript required, 6–7
styling, 12–13
vertical axis, fixing, 9–10

barWidth property, 11
:before pseudoselector, 160
bind() function, 322
Bostock, Mike, 253
bower tool, 301
bower.json file, 299
Brewer, Cynthia, 191
browser, managing data in. See data

management, in browser
Bruls, Mark, 120
bubble charts, 34–41

background of, 35–38
colors in, 38–40
defining data to display, 34–35
legends in, 40–41
plotting data in, 36–37
when to use, 34, 46

buildLabelAnimation() function, 216
bullets, 163

C
C++ library, 151
calculateNewPath() function, 263,

264, 265
call() function, 332
<canvas> interface, 141, 143
Cascading Style Sheets. See CSS

(Cascading Style Sheets)
CDNs (content distribution

networks), 49
"change" event, 335
charts. See bar charts; bubble charts;

interactive charts; line
charts; radar charts;
scatter charts; sparklines;
traditional chart types; tree
maps

Charts view, 322–324
checkboxes, 52

Chroma.js library, 191
chroma.scale() function, 191
Chronoline.js library, building

timelines with
drawing timeline, 150
libraries required, 148–149
preparing data, 149–150
setting options for data, 150–153

<circle> element, 235, 236, 237, 243
<cite> element, 156, 164, 165
classList interface, 165
className interface, 165, 309
click event, 208, 345, 346
clickable option, 206
clicked() method, 346
clickedTag variable, 144
clickNode event, 137
clicks on sparklines, responding to,

110–115
CloudFlare CDN, 49
CodeKit, 175
collection property, 337
collections

finding elements in, 290–291
iteration utilities, 289–290
overview, 288–289
rearranging, 292–293
testing, 292

color() function, 260
colors

in bar charts, 13–14
in bubble charts, 38–40
in SVGs, 191–192
in tree maps, 123–124

compact() function, 280–281
composite charts, 105–109
composite option, 106
concat() method, 211
content distribution networks

(CDNs), 49
context, maps for, 197–201
Continental font, 180
continuous data. See line charts
Control object, 207
cost of site, 49
count parameter, 331
count property, 128
countby() function, 293
_createButton() function, 208
Creative Commons licenses, 35

354 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

CSS (Cascading Style Sheets)
fixing timeline problems using,

159–160
styling map fonts using, 184–185
styling SVG elements using,

187–188
styling table in legend, 193
transitions, 165–166

css() function, 57
cx attribute, 238
cy attribute, 238

D
d3.csv() function, 256
D3.js library

adapting traditional chart type
adding data to chart, 231
answering users’ questions,

231–232
controlling chart’s dimensions,

226–228
creating stage for

visualization, 226
drawing chart framework,

228–230
overview, 224
preparing data, 225
setting up web page, 225–226

creating force-directed network
graph

adding force direction to
graph, 240–242

adding interactivity, 242–245
creating stage for

visualization, 235
drawing graph’s edges,

237–238
drawing graph’s nodes,

235–237
overview, 232
positioning elements, 238–239
preparing data, 233–234
setting up page, 234–235

creating scalable map, 245–249
creating unique visualization

adding interactivity, 262–267
coloring area, 259–262
creating scales, 254–256
creating stage for

visualization, 253
drawing visualization, 258–259

overview, 252–253
preparing data, 253
retrieving data, 256–258
setting up page, 253

overview, 223–224
website for, 224

d3.min() function, 228
d3.nest() operator, 257, 258
d3.svg.arc() function, 255
dashboards, sparklines as, 115–117
data() function, 236
data management, in browser,

269–270
arrays

combining, 278–280
extracting elements by

position, 275–277
finding elements in, 281–282
generating, 282–283
overview, 275
removing invalid data values,

280–281
collections

finding elements in, 290–291
iteration utilities, 289–290
overview, 288–289
rearranging, 292–293
testing, 292

enhancing objects
cleaning up object subsets,

285–286
keys and values, 283–285
overview, 283
updating attributes, 286–288

overview, 269–270
using functional programming

evaluating performance,
273–274

fixing performance problem,
274–275

implementing Fibonacci
algorithm, 273

overview, 270–271
starting with imperative

approach, 271–272
data- prefix, 99
data property, 24, 329, 330
data-driven web applications. See web

applications, data-driven
Data.gov website, 87
data-id attribute, 346, 347
dataset object, 129

 Index | 355

www.it-ebooks.info

http://www.it-ebooks.info/

date ranges, 156
DAY_IN_MILLISECONDS variable, 152
<dd> function, 158
decimal point, dropping, 29
defaultPixelsPerValue option, 94
defaults() function, 286–288
defer() function, 322
Deferred object, 79, 80, 81, 83, 86
description list (<dl>), 157, 163, 166, 319
details() method, 341, 348, 350
details variable, 146
Details view, 317–318
difference() function, 279
direct descendant selector (>), 160
disableTooltips option, 103
display property, 54, 72, 111, 164
display:none property, 163
<dl> element, 157, 163, 166, 319
done() function, 80, 82
draw() method, Flotr object

bubble charts, 36
line charts, 16
pie charts, 23, 24
radar charts, 44
scatter charts, 26–27

drawMap() function, 323
Dream, Tim, 139
<dt> function, 158
dummy data set, use with line charts,

18–19
dummy HTML elements, in bar charts,

14–15
duration property, 211
.dx function, 257
.dy function, 257

e
.each() function, 57, 67, 70, 83, 85, 309
easing function, 166
el property, 313
em units, 54, 161
enableTagOptions parameter, 99
enter() function, 237, 238
ev.data.node.id property, 137
events property, 345
every() function, 292
excanvas.min.js library, 6, 7, 49
exit() function, 238
.extend() function, 62, 63, 97–98, 329

F
fail() method, 80
fetch() method, 332, 333, 334, 336,

337, 338, 339
fetchGps() method, 344
fetchMore() function, 332, 333
fib() function, 271, 273, 274, 275
Fibonacci numbers, 271, 273, 278
fill attribute, 192
fillColor parameter, 93
filter() function, 290, 291
filter function parameter, 35
filter option, 38
find() function, 144, 290
findWhere() function, 291
first() function, 276
flatten() function, 281
float property, 69
Flot library, 49–50. See also interactive

charts
creating static graphs, 51
and flotData, 84–85
installing in Yeoman

application, 301
and legends, 53
plot() function, 55, 58–59, 61–62,

63, 68–69, 71
and plothover events, 71–74
selection plug-in, 60–64
and zooming in on charts, 60

Flotr object, 16, 23, 24, 26–27, 36, 44
Flotr2 library, 6. See also bar charts;

bubble charts; line charts;
pie charts

including in web pages, 6–7
setting up the <div> element, 7
working around bugs, 14–15

Flotr.draw() function, 8, 15
fonts

for maps, 180–186
adding legend, 185–186
combining multiple countries

into single map, 182–183
displaying single country, 181
including in page, 180–181
varying countries based on

data, 183–185
used by TimelineJS, 175–177

force layout tool, 240
force object, 240, 241

356 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

“ForceAtlas2, A Graph Layout
Algorithm for Handy
Network Visualization”
(Jacomy and Venturini), 135

forceAtlas2 plug-in, 135
force-directed network graphs,

135–136
adding force direction to, 239–242
adding interactivity, 242–245
creating stage for visualization, 235
drawing edges, 237–238
drawing nodes, 235–237
overview, 232
positioning elements, 238–239
preparing data, 233–234
setting up page, 234–235

forEach() function, 158, 193, 195
format parameter, 78
from property, 62
functional programming, data

management using
evaluating performance, 273–274
fixing performance problem,

274–275
implementing Fibonacci

algorithm, 273
overview, 270–271
starting with imperative approach,

271–272

G
<g> (group) element, 227, 229, 253
GeoJSON, 247
get() method, 150
getData() function, 116
.getJSON() function, 77, 78, 79, 81
Ghory, Imran, 120
Google Maps, 197
gps property, 323, 339
graphs. See network graphs
gravity parameter, 135
.grep() function, 74, 84, 144
grid lines, removing from line

charts, 18
grid option, 23, 38, 69, 70, 71
group (<g>) element, 227, 229, 253
GROUP BY operation, 257
groupby() function, 292, 293
grunt command, 300
Gruntfile.js file, 299

h
handleClick function, 263
heat maps, 125–130

background image, 127
defining data to display, 127
drawing, 129
formatting data, 128–129
HTML to hold, 128
JavaScript required, 126
overview, 125
z-index property, adjusting, 130

height property, 166
height variable, 226–227
hierarchy variable, 258
history feature, Backbone.js, 341
horizontal axis

in bar charts, fixing, 10–11
in scatter charts, clarifying, 29–30

horizontalLines property, 18, 23
hoverable property, 71
HTML

dummy elements, in bar charts,
14–15

embedding SVG markup
within, 189

preparing for building
timelines, 154

semantic, creating timeline in,
155–157

HTML canvas feature, 6, 49
HTML5 Word Cloud project, 139
Hubble’s law, 224
Huizing, Kees, 120
humanize() function, 320

I
id attribute, 58, 77, 80, 92, 188, 309
<iframe> element, 111, 169–170
indexOf() function, 195, 281–282
individual list item, 155
information dashboards, sparklines as,

115–117
initial() function, 277
initialize() method, 214, 309, 318,

323, 329, 337, 338
<input> element, 52, 53, 57
interactive charts, 47–88

legends in, 53–54
retrieving data using AJAX, 75–87

creating chart, 85–87
first level of data, 77–80

 Index | 357

www.it-ebooks.info

http://www.it-ebooks.info/

interactive charts, retrieving data
using AJAX (continued)

processing response, 80–81,
84–85

second level of data, 81–82
source data format and

structure, 76–77
selecting chart content, 48–59

adding controls, 57–58
data structure for interaction,

54–55
determining data based on

interaction state, 55–56
<div> element to hold chart, 50
drawing chart, 51–52
JavaScript required, 49–50
preparing data, 50–51
responding to interaction

controls, 58–59
tracking data values, 65–75

<div> element to hold chart,
66–67

drawing chart, 68–71
implementing interaction, 71–75
preparing data, 67–68

zooming, 59–65
drawing chart, 60–61
enabling interaction, 63–64
preparing data to support

interaction, 61–62
preparing page, 60
preparing to accept interaction

events, 62–63
interpolatePathForNonRoot()

function, 263–264
interpolatePathForRoot() function,

263–264
intersection() function, 279
invert() function, 285
isGpsActivity() method, 339, 344
iteration utilities, 289–290

J
Jacomy, Mathieu, 135
JavaScript

building timelines with
adding interactivity, 163–167
adding styles, 161–163
creating timeline in semantic

HTML, 155–157

fixing timeline problems with
CSS, 159–160

including supporting content,
157–159

overview, 153–154
preparing HTML, 154
starting JavaScript

execution, 154
using jQuery features, 159

for creating basic bar chart, 6–7
for selecting chart content, 49–50

JavaScript Object Notation
(JSON), 283

jQuery, 49. See also sparklines
building timelines using, 159
using with TimelineJS, 170
Yeoman and, 301

JSON (JavaScript Object
Notation), 283

JSONP (JSON with padding), 78, 79
JST tool, 311

K
.key property, 257
keys() function, 283–284

L
<label> element, 52
Label object, 214, 217
label property, 24, 43, 137
labeling

line charts, 20–21
maps

building label animation,
216–218

creating labels for stops,
214–216

incorporating label animation,
218–220

pie charts, 24–25
scatter charts, 28–29

language patterns. See word clouds
last() function, 276
lastIndexOf() method, 282
:last-of-type selector, 160
L.control object, 209
L.DomUtil.create() method, 208
leaflet-bar class, 208
Leaflet-based maps, 201–222

adding animation control, 207–210
adding routes to, 205–206

358 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

adding titles, 221–222
animating routes, 211–213
building label animation, 216–218
creating labels for stops, 214–216
drawing base map, 203–205
incorporating label animation,

218–220
overview, 201
preparing animation, 210–211
preparing data, 201–202
setting up web page and libraries,

202–203
leaflet-control-animate class, 208
leaflet-control-title class, 221
leaflet-label class, 215, 220
left position, 162
legends

adding to maps, 185–186, 193–194
in bubble charts, 40–41
in interactive charts, 53–54

LESS CSS preprocessor, 175
 element, 155, 160, 161, 164, 165
line charts, 15–21

defining data to display, 15–16
dummy data set use with, 18–19
graphing multiple data sets, 17
graphing one data set, 16–17
labeling, 20–21
vs. pie charts, 21–22
readability of, 17–18
when to use, 15, 46

<line> element, 237, 239, 243
lineColor parameter, 93, 98
listenTo() function, 309
lists, ordered, 155
list-style-type property, 159
local variables, 57
location property, 198

m
.map() function, 26, 84, 86, 102–103,

106, 110, 141, 150, 190,
205, 290

Map view, 322–324
map-based visualization

for context, 197–201
Leaflet-based maps, 201–222

adding animation control,
207–210

adding routes to map, 205–206
adding title, 221–222

animating routes, 211–213
building label animation,

216–218
creating labels for stops,

214–216
drawing base map, 203–205
incorporating label animation,

218–220
overview, 201
preparing animation, 210–211
preparing data, 201–202
setting up web page and

libraries, 202–203
map fonts, 180–186

adding legend, 185–186
combining multiple countries

into single map, 182–183
displaying single country, 181
including in page, 180–181
varying countries based on

data, 183–185
overview, 179–180
scalable map, 245–249
Scalable Vector Graphics (SVGs)

adding interactivity, 194–197
adding legend, 193–194
collecting data, 190–191
colors, 191–192
creating SVG map, 188
embedding map in page, 189
overview, 186–188

MapReduce, 290
maps, 35. See also heat maps; map-

based visualization; tree
maps

Math.max() function, 190, 212
max property, 129
max-height property, 163, 164, 166
maxSpotColor option, 94, 102
maxZoom option, 204
memoize() function, 274–275
Mercator projection, 35
metrics property, 338
metricSummary property, 320
min() function, 292
minSpotColor option, 94, 102
MM.Map object, 199
mode option, 63
.Models property, 304
Modest Maps library, 197–200
Moment.js library, 301, 314
mouse, tracking position of, 108

 Index | 359

www.it-ebooks.info

http://www.it-ebooks.info/

mousedown event, 208
mouseout event, 72, 73, 104
mouseovers, 31
-moz- prefix, 166
multiple data sets, graphing on line

charts, 17

n
navigate() method, 348
navigation plug-in, 60
network graphs, 130–138. See also

force-directed network
graphs

adding interactivity, 137–138
adding nodes to, 132–133
automating layout of, 134–136
connecting nodes with edges,

133–134
libraries required, 130–131
preparing data, 131
when to use, 130

new Date() function, 247
Node.js platform, 298
node_modules/ folder, 299
nodeName property, 144
nodes, in network graphs

adding, 132–133
connecting with edges, 133–134

nonbreaking space (), 104
normalRangeMin option, 94

o
obj2Html() method, 320, 321
object() function, 284
offset field, 216
offset parameter, 331
 element, 155
omit() function, 286
.on() function, 62, 241
onAdd() method, 207–208
opacity property, 220
OpenStreetMap, 35, 200
options attribute, 214
options object, 207, 343
options parameter, 329
options variable, 63
ordered lists, 155
overflow property, 163

p
package.json file, 299
padding, 40
padding-left property, 162
pairs() function, 284
parents() function, 346
parse() function, 330, 332
<path> element, 188, 189, 192, 195, 247,

248, 259, 262
pause() function, 213
pick() function, 285–286, 329
pickColor function, 123
pie charts, 21–25

defining data to display, 23
drawing, 23–24
labeling, 24–25
vs. line charts, 21–22
titles for, 24–25
when to use, 22, 46

pixel (px) units, 161
plot extension, 51
plot() function, 55, 58–59, 61–62, 63,

68–69, 71
plothover events, 72
plotObj.draw() function, 58–59
plotObj.setupGrid() function, 58–59
plotselected event, 62
pluck() function, 291
pointOffset() function, 72
polyline() function, 204, 205, 206
position property, 72, 128
position: relative style, 142
prefix parameter, 78
ProgrammableWeb, 87
Properties view, 318–321
pure libraries, 297
px (pixel) units, 161

Q
qTip2 library, 148
querySelectorAll() function, 195

R
r attribute, 238
radar charts, 41–45

creating, 44–45
defining data to display, 42–44
when to use, 41–42, 46

360 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

range() function, 282–283
ranges parameter, 62
Raphaël library, 120, 148
readability, of line charts, 17–18
real-time data, 115–117
<rect> element, 231
reduce() method, 290, 320
reject() function, 291
relatedTarget property, 73
relationships. See network graphs
remove() method, 351
remove option, 333
render() method, 309, 310, 314, 318,

321, 322, 323, 338
renderRun() method, 310, 335, 346
reset() method, 209
resolve() method, 82
rest() function, 277
retrieving data using AJAX, 75–87

creating chart, 85–87
first level of data, 77–80
processing response, 80–81, 84–85
second level of data, 81–82
source data format and structure,

76–77
routes

adding to maps, 205–206
animating, 211–213

routes property, 340–341
run.js file, 303
run.spec.js file, 303

S
same-origin policy, 78
--save option, 301
scalable map, creating

adding interactivity, 250–252
drawing map, 248
map data, retrieving, 247–288
map projection, 246
overview, 245
plotting data, 248–249
preparing data, 245–246
retrieving data, 248
setting up page, 246
SVG container, initializing, 247

Scalable Vector Graphics (SVGs)
adding interactivity, 194–197
adding legend, 193–194
collecting data, 190–191

colors, 191–192
creating SVG map, 188
embedding map in page, 189
overview, 186–188

scale objects, 254
scalingRatio parameter, 135
scatter charts, 25–33

adjusting chart’s axes, 27–28
answering users’ questions, 30–33
clarifying x-axis, 29–30
defining data to display, 26
formatting data, 26
labeling, 28–29
plotting data, 26–27
subtitles for, 29
titles for, 29
when to use, 25–33, 46

search rank, 155
selected class, 244
selected() method, 348
selecting chart content

adding controls, 57–58
data structure for interaction,

54–55
determining data based on

interaction state, 55–56
<div> element to hold chart, 50
drawing chart, 51–52
JavaScript required, 49–50
preparing data, 50–51
responding to interaction controls,

58–59
selection option, 63
selection plug-in, 60
selection.enter() function, 237
semantic HTML, creating timeline in,

155–157
series option, 68
setInterval() function, 116
setTimeout() function, 116
settings object, 329
s.graph.nodes() function, 137, 138
shading, in tree maps, 122–125
shallow parameter, 281
shift() method, 219
show property, 56, 58, 70
showLabels property, 23
shuffle() function, 293
Sigma library, 130. See also network

graphs

 Index | 361

www.it-ebooks.info

http://www.it-ebooks.info/

Silver Comet’s timetable, 201–202
simplicity, importance of, 5–6
single-page applications (SPAs), 340
Sketch application, 188
slice() method, 216, 218
slideDown() function, 113
slideUp() function, 113
slowDown parameter, 135
.some() method, 134, 145
sortby() function, 292
sortedIndex() function, 282
source property, 138, 243
Southerner’s timetable, 201–202
SPAs. See single-page

applications (SPAs)
space, nonbreaking (), 104
 element, 54, 57

semantic markup vs., 155
using with map fonts, 181, 182

sparkline() function, 94–95, 97, 99, 100
sparklineClick event, 111
sparkLineColor attribute, 99
sparklineRegionChange event, 103–104,

108, 109
sparklines

adjusting to match Tufte’s
definition, 93

annotating, 101–105
adding chart, 102–103
adding primary annotation,

103–104
overview, 101
preparing data, 102
preparing HTML markup, 102
providing additional

information, 105
charting many variables using,

94–101
creating unique style for

specific chart, 99–101
default style for chart, 96–97
drawing chart, 95–96
modifying default style for

special classes, 97–99
overview, 94
preparing HTML markup,

94–95
clicks on, responding to, 110–115
composite charts using, 105–109
drawing, 92

drawing composite charts
adding annotations, 107–108
adding closing price chart,

106–107
drawing trading volume

chart, 106
overview, 105–106
showing details as chart,

108–109
HTML markup, 91–92
as information dashboards,

115–117
JavaScript required, 91
origin of, 90
responding to click events

adding chart, 110
animating, 114–115
handling click events, 111–112
improving transitions, 112–114
overview, 110

tool tips and, 101–105
updating charts in real time

overview, 115
retrieving data, 116
updating visualization, 116–117

sparklines property, 103
spotColor property, 94
s.refresh() function, 138
Stack Overflow, 140
Stamen Design, 35, 197, 199, 200
Stately font, 180
storyjs_embed.js wrapper, 172
styles, using with timelines, 161–163
subtitles, for scatter charts, 29
summary() method, 341, 347, 349, 350
summaryRow.ejs template, 312
SVGs. See Scalable Vector

Graphics (SVGs)
<svg> element, 226, 227, 235
sync() method, 328, 331, 344

t
<table> element, 193, 312
tables, use with sparklines, 94–101
tag clouds. See word clouds
tagName property, 308, 309, 310, 319
tagOptionsPrefix parameter, 99
tags, 140
tags array, 145

362 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

target property, 138, 164, 243
<tbody> element, 312, 346
template property, 308, 309
test/ folder, 299
text, in bar charts, 15
this.collection parameter, 309
tick event, 240
tickDecimals property, 10, 29
tickFormatter() function, 20, 30, 70
ticks property, 11
<time> element, 156, 161
timeline.css stylesheet, 174–175
TimelineJS component

adjusting timeline styles, 174–177
creating default timeline, 172–174
overview, 167
preparing data, 170–172
previewing standard component,

168–170
required components, 170

timelines
building with JavaScript

adding interactivity, 163–167
adding styles, 161–163
creating timeline in semantic

HTML, 155–157
fixing timeline problems with

CSS, 159–160
including supporting content,

157–159
overview, 153–154
preparing HTML, 154
starting JavaScript

execution, 154
using jQuery features, 159

building with library
drawing timeline, 150
libraries required, 148–149
preparing data, 149–150
setting Chronoline.js options

for data, 150–153
overview, 147–148
using web component

adjusting timeline styles,
174–177

creating default timeline,
172–174

overview, 167
preparing data, 170–172

previewing standard
component, 168–170

required components, 170
title attribute, 113
titleize() function, 320
titles

for line charts, 20
for pie charts, 24–25
for radar charts, 45
for scatter charts, 29

to property, 62
TodoMVC, 297
toJSON() method, 314, 321
tool tips, 31, 101–105
top position, 162
<tr> element, 311
tracking data values, 65–75

<div> element to hold chart, 66–67
drawing chart, 68–71
implementing interaction, 71–75
preparing data, 67–68

tracking mouse position, 108
traditional chart types, adapting

using D3.js
adding data to chart, 231
answering users’ questions,

231–232
controlling chart’s dimensions,

226–228
creating stage for visualization, 226
drawing chart framework, 228–230
overview, 224
setting up web page, 225–226

transition property, 166
transitions

animating, 113–114
CSS, 165–166

transparency, 106
tree maps, 120–125

drawing, 121–122
libraries required, 120–121
overview, 120
preparing data, 121
shading in, 122–125

TreeMap.draw() function, 124
trends, 21
({ trigger: true }) parameter, 348
Tufte, Edward, 90, 93
type property, 171

 Index | 363

www.it-ebooks.info

http://www.it-ebooks.info/

U
underscore character (_), 274
Underscore.js library, 270

arrays
combining, 278–280
extracting elements by

position, 275–277
finding elements in, 281–282
generating, 282–283
overview, 275
removing invalid data values,

280–281
collections

finding elements in collection,
290–291

iteration utilities, 289–290
overview, 288–289
rearranging, 292–293
testing, 292

enhancing objects
cleaning up object subsets,

285–286
keys and values, 283–285
overview, 283
updating attributes, 286–288

memoizing JavaScript functions
using, 274–275

Underscore.string library, 301, 319, 320
union() function, 278
uniq() function, 279, 282
update() function, 238
url() method, 339

V
validate() method, 335, 336
values() function, 284
.values property, 258
van Wijk, Jarke J., 120
variables

charting many, 94–101
local, 57

Venturini, Tommaso, 135
vertical axis

extending range of, in line
charts, 18

fixing in bar charts, 9–10
verticalLines property, 18, 23
Visual Display of Quantitative

Information, The (Tufte), 90

visualization. See D3.js library;
map-based visualization

VMM.Timeline constructor, 173
volume property, 106

W
web applications, data-driven

adding unique dependencies,
301–302

authorizing users, 328–330
collections

defining, 306–307
filtering, 335–336
paging, 330–334
supporting run models outside

of, 342–344
creating Backbone.js router,

340–342
defining new project, 298–300
fine-tuning the app, 349–351
installing development tools, 298
model

defining application’s, 303–304
implementing, 304–306

overview, 295–296
responses

accepting, 330
parsing, 336

retrieving details, 336–340
selecting application library, 297
views

additional, defining, 317
allowing users to change,

345–349
Charts view, 322–324
Details view, 317–318
dynamically updating, 334–335
main view, 307–314
Map view, 322–324
Properties view, 318–321

-webkit- prefix, 166
.when() function, 84
where() function, 291
width variable, 226–227
Wied, Patrick, 125
Wikimedia Commons, 188
wind property, 38
window.onload event, 8
wins2 array, 13
without method, 281

364 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

WolframAlpha, 111
word clouds, 138–145

adding interactivity, 143–146
creating, 142
libraries required, 139–140
markup required, 141–142
overview, 138–139
preparing data, 140–141

wordcloud2 library, 139. See also word
clouds

WordFreq JavaScript library, 140
WorldGrayCanvas set, 204

X
.x function, 257
x-axis. See horizontal axis
xaxis object, 62, 68

Y
.y function, 257
y-axis. See vertical axis
yaxis object, 62, 69
Yeoman application, 298–301

defining application’s collections,
306–307

defining application’s main view,
307–311

defining main view templates,
311–314

defining model for app, 303–304
implementing model, 304–306
refining main view, 314–316

Z
z-index, 72, 130, 173
zip() function, 279
zooming charts, 59–65

drawing chart, 60–61
enabling interaction, 63–64
preparing data to support

interaction, 61–62
preparing page, 60
preparing to accept interaction

events, 62–63
zooming maps, 203–204

 Index | 365

www.it-ebooks.info

http://www.it-ebooks.info/

Updates
Visit http://nostarch.com/datavisualization/ for updates, errata, and other
information.

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

eLoQUent JAVASCRIpt,
2nD eDItIon
A modern Introduction to
programming
by marijn haverbeke

december 2014, 472 pp., $39.95
isbn 978-1-59327-584-6

StAtIStICS
Done WRonG
the Woefully
Complete Guide
by alex reinhart

march 2015, 176 pp., $24.95
isbn 978-1-59327-620-1

the ARt oF R
pRoGRAmmInG
A tour of Statistical
Software Design
by norman matloff

october 2011, 400 pp., $39.95
isbn 978-1-59327-384-2

the pRInCIpLeS oF
oBJeCt-oRIenteD
JAVASCRIpt
by nicholas c. zakas

february 2014, 120 pp., $24.95
isbn 978-1-59327-540-2

the BooK oF CSS3,
2nD eDItIon
A Developer’s Guide to
the Future of Web Design
by peter gasston

november 2014, 304 pp., $34.95
isbn 978-1-59327-580-8

the moDeRn WeB
multi-Device Web
Development with htmL5,
CSS3, and JavaScript
by peter gasston

april 2013, 264 pp., $34.95
isbn 978-1-59327-487-0

More no-nonsense books from No Starch PreSS

www.it-ebooks.info

http://www.it-ebooks.info/

	About the Author
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	The Book’s Philosophy
	The Book’s Contents
	Source Code for Examples

	Chapter 1: Graphing Data
	Creating a Basic Bar Chart
	Step 1: Include the Required JavaScript
	Step 2: Set Aside a <div> Element to Hold the Chart
	Step 3: Define the Data
	Step 4: Draw the Chart
	Step 5: Fix the Vertical Axis
	Step 6: Fix the Horizontal Axis
	Step 7: Adjust the Styling
	Step 8: Vary the Bar Color
	Step 9: Work Around flotr2 “Bugs”

	Plotting Continuous Data with a Line Chart
	Step 1: Define the Data
	Step 2: Graph the CO2 Data
	Step 3: Add the Temperature Data
	Step 4: Improve the Chart’s Readability
	Step 5: Clarify the Temperature Measurements
	Step 6: Label the Chart
	Step 7: Work Around flotr2 “Bugs”

	Emphasizing Fractions Using a Pie Chart
	Step 1: Define the Data
	Step 2: Draw the Chart
	Step 3: Label the Values
	Step 4: Work Around flotr2 “Bugs”

	Plotting X/Y Data with a Scatter Chart
	Step 1: Define the Data
	Step 2: Format the Data
	Step 3: Plot the Data
	Step 4: Adjust the Chart’s Axes
	Step 5: Label the Data
	Step 6: Clarify the X-Axis
	Step 7: Answer Users’ Questions
	Step 8: Work Around flotr2 “Bugs”

	Adding Magnitudes to X/Y Data with a Bubble Chart
	Step 1: Define the Data
	Step 2: Create a Background for the Chart
	Step 3: Plot the Data
	Step 4: Add the Background
	Step 5: Color the Bubbles
	Step 6: Adjust the Legend Styles
	Step 7: Work Around flotr2 “Bugs”

	Displaying Multidimensional Data with a Radar Chart
	Step 1: Define the Data
	Step 2: Create the Chart
	Step 3: Work Around flotr2 “Bugs”

	Summing Up

	Chapter 2: Making Charts Interactive
	Selecting Chart Content
	Step 1: Include the Required JavaScript Libraries
	Step 2: Set Aside a <div> Element to Hold the Chart
	Step 3: Prepare the Data
	Step 4: Draw the Chart
	Step 5: Add the Controls
	Step 6: Define the Data Structure for the Interaction
	Step 7: Determine Chart Data Based on the Interaction State
	Step 8: Add the Controls Using JavaScript
	Step 9: Respond to the Interaction Controls

	Zooming In on Charts
	Step 1: Prepare the Page
	Step 2: Draw the Chart
	Step 3: Prepare the Data to Support Interaction
	Step 4: Prepare to Accept Interaction Events
	Step 5: Enable the Interaction

	Tracking Data Values
	Step 1: Set Aside a <div> Element to Hold the Charts
	Step 2: Prepare the Data
	Step 3: Draw the Charts
	Step 4: Implement the Interaction

	Retrieving Data Using AJAX
	Step 1: Understand the Source Data
	Step 2: Get the First Level of Data via AJAX
	Step 3: Process the First Level of Data
	Step 4: Get the Real Data
	Step 5: Process the Data
	Step 6: Create the Chart

	Summing Up

	Chapter 3: Integrating Charts on a Page
	Creating a Classic Sparkline
	Step 1: Include the Required JavaScript Libraries
	Step 2: Create the HTML Markup for the Sparkline
	Step 3: Draw the Sparkline
	Step 4: Adjust the Chart Style

	Charting Many Variables
	Step 1: Prepare the HTML Markup
	Step 2: Draw the Charts
	Step 4: Establish a Default Style for the Charts
	Step 5: Modify the Default Style for Special Classes
	Step 6: Create a Unique Style for a Specific Chart

	Annotating Sparklines
	Step 1: Prepare the Data
	Step 2: Prepare the HTML Markup
	Step 3: Add the Chart
	Step 4: Add the Primary Annotation
	Step 5: Provide Additional Information

	Drawing Composite Charts
	Step 1: Draw the Trading Volume Chart
	Step 2: Add the Closing Price Chart
	Step 3: Add the Annotations
	Step 4: Show Details as a Chart

	Responding to Click Events
	Step 1: Add the Chart
	Step 2: Handle Click Events
	Step 3: Improve the Transitions
	Step 4: Animate

	Updating Charts in Real Time
	Step 1: Retrieve the Data
	Step 2: Update the Visualization

	Summing Up

	Chapter 4: Creating Specialized Graphs
	Visualizing Hierarchies with Tree Maps
	Step 1: Include the Required Libraries
	Step 2: Prepare the Data
	Step 3: Draw the Tree Map
	Step 4: Vary the Shading to Show Additional Data

	Highlighting Regions with a Heat Map
	Step 1: Include the Required JavaScript
	Step 2: Define the Visualization Data
	Step 3: Create the Background Image
	Step 4: Set Aside an HTML Element to Contain the Visualization
	Step 5: Format the Data
	Step 6: Draw the Map
	Step 7: Adjust the Heat Map z-index

	Showing Relationships with Network Graphs
	Step 1: Include the Required Libraries
	Step 2: Prepare the Data
	Step 3: Define the Graph’s Nodes
	Step 4: Connect the Nodes with Edges
	Step 5: Automate the Layout
	Step 6: Add Interactivity

	Revealing Language Patterns with Word Clouds
	Step 1: Include the Required Libraries
	Step 2: Prepare the Data
	Step 3: Add the Required Markup
	Step 4: Create a Simple Cloud
	Step 5: Add Interactivity

	Summing Up

	Chapter 5: Displaying Timelines
	Building Timelines with a Library
	Step 1: Include the Required Libraries
	Step 2: Prepare the Data
	Step 3: Draw the Timeline
	Step 4: Set Chronoline.js Options for the Data

	Building Timelines with JavaScript
	Step 1: Prepare the HTML Skeleton
	Step 2: Start JavaScript Execution
	Step 3: Create the Timeline in Semantic HTML
	Step 4: Include the Supporting Content
	Step 5: Optionally Take Advantage of jQuery
	Step 6: Fix Timeline Problems with CSS
	Step 7: Add Styles to Visually Structure the Timeline
	Step 8: Add Interactivity

	Using a Web Component
	Step 1: Preview the Standard Component
	Step 2: Include the Required Components
	Step 3: Prepare the Data
	Step 4: Create a Default Timeline
	Step 5: Adjust the Timeline Styles

	Summing Up

	Chapter 6: Visualizing Geographic Data
	Using Map Fonts
	Step 1: Include the Fonts in the Page
	Step 2: Display One Country
	Step 3: Combine Multiple Countries into a Single Map
	Step 4: Vary the Countries Based on the Data
	Step 5: Add a Legend

	Working with Scalable Vector Graphics
	Step 1: Create the SVG Map
	Step 2: Embed the Map in the Page
	Step 3: Collect the Data
	Step 4: Define the Color Scheme
	Step 5: Color the Map
	Step 6: Add a Legend
	Step 7: Add Interactions

	Including Maps for Context
	Step 1: Set Up the Web Page
	Step 2: Prepare the Data
	Step 3: Choose a Map Style
	Step 4: Draw the Map
	Step 5: Add the Sightings

	Integrating a Full-Featured Mapping Library
	Step 1: Prepare the Data
	Step 2: Set Up the Web Page and Libraries
	Step 3: Draw the Base Map
	Step 4: Add the Routes to the Map
	Step 5: Add an Animation Control
	Step 6: Prepare the Animation
	Step 7: Animate the Routes
	Step 8: Create Labels for the Stops
	Step 9: Build the Label Animation
	Step 10: Incorporate Label Animation in the Animation Step
	Step 11: Add a Title

	Summing Up

	Chapter 7: Custom Visualizations with D3.js
	Adapting a Traditional Chart Type
	Step 1: Prepare the Data
	Step 2: Set Up the Web Page
	Step 3: Create a Stage for the Visualization
	Step 4: Control the Chart’s Dimensions
	Step 5: Draw the Chart Framework
	Step 6: Add the Data to the Chart
	Step 7: Answer Users’ Questions

	Creating a Force-Directed Network Graph
	Step 1: Prepare the Data
	Step 2: Set Up the Page
	Step 3: Create a Stage for the Visualization
	Step 4: Draw the Graph’s Nodes
	Step 5: Draw the Graph’s Edges
	Step 6: Position the Elements
	Step 7: Add Force Direction to the Graph
	Step 8: Add Interactivity
	Step 9: Experiment with Other Enhancements

	Creating a Scalable Map
	Step 1: Prepare the Data
	Step 2: Set Up the Page
	Step 3: Create a Map Projection
	Step 4: Initialize the SVG Container
	Step 5: Retrieve the Map Data
	Step 6: Draw the Map
	Step 7: Retrieve the Weather Data
	Step 8: Plot the Data
	Step 9: Add Interactivity

	Creating a Unique Visualization
	Step 1: Prepare the Data
	Step 2: Set Up the Page
	Step 3: Create a Stage for the Visualization
	Step 4: Create Scales
	Step 5: Retrieve the Data
	Step 6: Draw the Visualization
	Step 7: Color the Areas
	Step 8: Make the Visualization Interactive

	Summing Up

	Chapter 8: Managing Data in the Browser
	Using Functional Programming
	Step 1: Start with an Imperative Version
	Step 2: Debug the Imperative Code
	Step 3: Understand the Problems Imperative Programming May Introduce
	Step 4: Rewrite Using Functional Programming Style
	Step 5: Evaluate Performance
	Step 6: Fix the Performance Problem

	Working with Arrays
	Extracting Elements by Position
	Combining Arrays
	Removing Invalid Data Values
	Finding Elements in an Array
	Generating Arrays

	Enhancing Objects
	Working with Keys and Values
	Cleaning Up Object Subsets
	Updating Attributes

	Manipulating Collections
	Working with Iteration Utilities
	Finding Elements in a Collection
	Testing a Collection
	Rearranging Collections

	Summing Up

	Chapter 9: Building Data-Driven Web Applications: Part 1
	Frameworks and Libraries
	Step 1: Select an Application Library
	Step 2: Install Development Tools
	Step 3: Define a New Project
	Step 4: Add Our Unique Dependencies

	Models and Views
	Step 1: Define the Application’s Models
	Step 2: Implement the Model
	Step 3: Define the Application’s Collections
	Step 4: Define the Application’s Main View
	Step 5: Define the Main View Templates
	Step 6: Refine the Main View

	Views for Visualizations
	Step 1: Define the Additional Views
	Step 2: Implement the Details View
	Step 3: Implement the Properties View
	Step 4: Implement the Map View
	Step 5: Implement the Charts View

	Summing Up

	Chapter 10: Building Data-Driven Web Applications: Part 2
	Connecting with the Nike+ Service
	Step 1: Authorize Users
	Step 2: Accept the Nike+ Response
	Step 3: Page the Collection
	Step 4: Dynamically Update the View
	Step 5: Filter the Collection
	Step 6: Parse the Response
	Step 7: Retrieve Details

	Putting It All Together
	Step 1: Create a Backbone.js Router
	Step 2: Support Run Models Outside of Any Collection
	Step 3: Let Users Change Views
	Step 4: Fine-Tuning the Application

	Summing Up

	Index
	Updates

